А. П. Ротштейн

ИНТЕЛЛЕКТУАЛЬНЫЕ ТЕХНОЛОГИИ ИДЕНТИФИКАЦИИ

НЕЧЕТКИЕ МНОЖЕСТВА
ГЕНЕТИЧЕСКИЕ АЛОГОРИТМЫ
НЕЙРОННЫЕ СЕТИ

министерство образования украины
винницкий государственный технический университет

397240
510 Р79 1999

НТБ ВНТУ

«УНИВЕРСУМ-Винниця»
1999
Рецензент:
Герасимов Б. М., д. т. н., професор, заслужений діяч науки і техніки України (Київський військовий інститут управління і зв'язку)

Спонсор видання: Міжнародний фонд «Відродження», грант № QSU081168

Ротштейн О. П.

Це одна з перших у світовій літературі монографій, у якій проблема ідентифікації, тобто моделювання за результатами спостережень, вирішується за допомогою комплексного використання нечіткої логіки, генетичних алгоритмів і нейронних мереж. Монографія містить необхідні відомості про використовування математичних апарат, методологію побудови лінгвістичних моделей на основі нечітких баз знань, моделі лінгвістичної й аналітико-лінгвістичної апроксимації, засоби настроювання моделей генетичними алгоритмами і нейронними мережами, включаючи витяг знань, метод побудови функцій принаймнішості, опис програмної оболонки FUZZY EXPERT і її застосувань у медичній діагностиці, прогнозуванні, багатофакторному і багатокритеріальному аналізі, управлінні динамічними системами.

Міждисциплінарний характер книги може зацікавити як фахівців із математичного моделювання і чисельних методів, так і медиків, біологів, економістів, соціологів і ін., що застосовують комп'ютери для прийняття рішень.

© О. Ротштейн, 1999
Ротштейн А. П.

Это одна из первых в мировой литературе монографий, в которой проблема идентификации, т.е. моделирования по результатам наблюдений, решается посредством комплексного использования нечеткой логики, генетических алгоритмов и нейронных сетей. Монография содержит необходимые сведения об используемом математическом аппарате, методологии построения лингвистических моделей на основе нечетких баз знаний, модели лингвистической и аналитико-лингвистической аппроксимации, способы настройки моделей генетическими алгоритмами и нейронными сетями, включая извлечение знаний, метод построения функций принадлежности, описание программной оболочки FUZZY EXPERT и ее применений в медицинской диагностике, прогнозировании, многофакторном и многокритериальном анализе, управлении динамическими системами.

Междисциплинарный характер книги может привлечь к ней внимание как специалистов по математическому моделированию и численным методам, так и медиков, биологов, экономистов, социологов и др., применяющих компьютеры для принятия решений.
Rotshtein A.P.

This is one of the first monographs in world literature in which the problem of identification, that is of modelling according to the results of observation, is tackled by way of complex fuzzy logic, genetic algorithms and neural nets. The monograph contains the pertinent information about the maths apparatus used, the methods of linguistic models construction on the basis of fuzzy knowledge bases, the models of linguistic and analytical-linguistical approximation, the models tuning using genetic algorithms and neural nets, method of knowledge extraction, the method of membership functions construction, description of FUZZY EXPERT software and its use in medical diagnosis, prognostication, multifactor and multicriteria analysis, dynamic systems control.

The interdisciplinary nature of this book can draw attention of maths modelling and numerical methods experts as well as of medicine, biology, economics and sociology experts and other specialists using computer for decision making.
Посвящается научной школе

Анатолия Ильича Губинского
Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, остались в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределёнными.

В последующие годы размытые алгоритмы и стратегии управления будут завоёвывать хотя, возможно, и против желания, все большее признание. Они должны быть приняты и должны приобрести некоторую респектабельность, так как обычные неразмытые алгоритмы не могут, в общем случае, справиться со сложностью и плохой определенностью больших систем. Для того чтобы создать благоприятную среду для развития размытых алгоритмов, теория управления должна меньше значить придавать математической строгости и точности и больше заботиться о развитии качественных и приближенных решений насущных проблем реального мира. Такая теория может оказаться гораздо богаче и увлекательнее, чем теория управления в настоящее время.

Лотфи Заде, 1972 г.
ПРЕДИСЛОВИЕ

Идентификация объекта — это построение его математической модели, устанавливающей взаимосвязь между входными и выходными переменными по экспериментальным данным. Как вид математического моделирования, идентификация играет важнейшую роль в автоматическом и ситуационном управлении, технической и медицинской диагностике, распознавании образов, прогнозировании, многофакторном анализе, многокритериальном оценивании и др. задачах принятия решения.

Задача идентификации, как правило, решается в два этапа. На первом этапе, называемом структурной идентификацией, формируется грубая модель объекта, которая аппроксимирует взаимосвязь вход-выход и содержит настраиваемые параметры. На втором этапе, называемом параметрической идентификацией, подбираются такие значения параметров, которые минимизируют расстояния между модельными и экспериментальными выходами объекта.

Этап параметрической идентификации достаточно формализован, поскольку он сводится к применению различных методов оптимизации. Трудность составляют лишь поиск глобального минимума непрерывных функций отклонения теории от эксперимента, и возрастание трудоемкости вычислений по мере увеличения числа настраиваемых параметров.

Этап структурной идентификации представляет собой скорее искусство, чем науку, поскольку выбор настраиваемой модели в значительной мере зависит от «начального капитала исследователя»: его образования, опыта, понимания сущности объекта, пристрастий к тому или иному математическому аппарату и др. субъективных факторов. В качестве настраиваемых моделей в современной теории идентификации используются количественные соотношения в виде различных уравнений: алгебраических, дифференциальных, разностных, интегральных и др. Этот аппарат наиболее естественно применим к тем объектам, которые описываются законами физики: механики, термодинамики, электромагнетизма. В то же время классическая теория приводит к катастрофическим сложным моделям при идентификации зависимостей в так называемых интеллектуальных задачах, которые традиционно решаются людьми. Человек ходит, плавает, выполняет сложнейшие гимнастические упражнения, водит автомобиль, узнаёт знакомые объекты, улавливает закономерности в экспериментальных данных, решает другие, сложнейшие с математической точки зрения задачи.
управления и принятия решений, не прибегая к строгим количественным соотношениям.

Фундаментальную роль в решении человеком задач идентификации и принятия решений играют два уникальных свойства:

обучаемость, т.е. способность последовательно минимизировать отклонение фактического результата деятельности от некоторого желаемого эталона;

лингвистичность, т.е. способность выражать на естественном языке те знания, которые получены в результате обучения.

Поэтому, моделируя интеллектуальную деятельность, вполне естественно обращаться к такому математическому аппарату, который, в отличие от классических методов, приспособлен к учёту свойств обучаемости и лингвистичности.

Интеллектуальные технологии, которые в этой монографии применяются для решения задач идентификации и принятия решения, представляют собой комплексное использование трёх, независимых друг от друга, теорий:

- нечётких множеств – средства формализации естественно-языковых высказываний и логического вывода,
- нейронных сетей – искусственных аналогов человеческого мозга, моделирующих способность обучаться,
- генетических алгоритмов – метода синтеза оптимальных решений из множества начальных вариантов, над которыми выполняются операции скрещивания, мутации и селекции.

Модели объектов строятся путём проектирования и настройки нечётких баз знаний, представляющих собой совокупности лингвистических высказываний типа ЕСЛИ <входы>, ТО <выходы>. Основная идея, которую автор хочет донести до читателя, состоит в том, что настраивая нечёткую базу знаний, можно идентифицировать нелинейные зависимости с необходимой точностью.

Монография написана на основе оригинальных исследований автора и состоит из восьми глав.

Первая глава является кратким введением в интеллектуальные технологии и содержит основные сведения из теории нечётких множеств, генетических алгоритмов и нейронных сетей, необходимые для понимания последующих глав. Особый интерес у читателя может вызвать раздел по генетическим алгоритмам, которые почти не представлены в отечественной литературе. Специально разработанные численные примеры должны способствовать осознанию новых возможностей, представляемых этим мощным аппаратом синтеза оптимальных решений.
Вторая глава посвящена методологическим аспектам идентификации и принятия решений на основе интеллектуальных технологий. В ней показывается роль естественно-языковых высказываний в различных задачах кибернетики и формулируются принципы математического моделирования нелинейных объектов путём проектирования и настройки нечётких баз знаний.

Третья глава содержит модели аппроксимации нелинейных объектов на основе лингвистических высказываний, объединённых в нечёткие базы знаний. Рассматриваются модели объектов с непрерывным и дискретным выходами, а также иерархически организованные объекты. Подход к лингвистической аппроксимации основан на методе нечётких логических уравнений, предложенным в предыдущей книге автора: «Медицинская диагностика на нечёткой логике» (Винницка, Континент-ПРИМ, 1996).

Четвёртая глава посвящена аппроксимации нелинейных зависимостей путём комбинации аналитических и лингвистических моделей. Рассматривается принцип обобщения аналитических моделей на нечёткий случай и учёт факторов, влияющих на неопределенные параметры, с помощью лингвистических правил.

В пятой главе описываются методы настройки лингвистических моделей с помощью генетических алгоритмов. Задачи оптимальной настройки формулируются в терминах математического программирования для объектов с непрерывным и дискретным входом, а также для обобщённого объекта «много входов — много выходов». В качестве настраиваемых параметров рассматриваются формы функций принадлежности нечётких термов и веса правил. Эффективность настройки лингвистических моделей иллюстрируется компьютерными экспериментами с эталонными объектами. Новым, ранее не публиковавшимся, результатом этой главы является извлечение лингвистических знаний из экспериментальных данных.

В шестой главе предлагается нейро-нечёткий подход к идентификации, который позволяет настраивать лингвистические модели в реальном масштабе времени. Показывается, что имплантация нечётких правил в нейронную сеть позволяет существенно сократить затраты времени на обучение и необходимый объём обучающей выборки.

В седьмой главе рассматривается метод построения функций принадлежности нечётких множеств и его применение в многокритериальном анализе вариантов на основе пересечения нечётких множеств-критериев. Алгоритм принятия решения иллюстрируется на примере сравнения вариантов семиотических систем.

В восьмой главе описываются реальные примеры проектирования и настройки нечётких баз знаний для медицинской диагностики, прогнози-
рования, многофакторного анализа, моделирования технологического процесса, оценки качества проектов и управления динамической системой.

Настоящую монографию можно рассматривать как один из возможных подходов к проектированию интеллектуальной деятельности на основе инженерии знаний. Интерес к этой области сформировался у автора под влиянием многолетнего общения со своим учителем Анатолием Ильичем Губинским, который всегда был сторонником человеко-системного подхода к решению задач моделирования.

Автор благодарит всех, кто способствовал проведению исследований, положенных в основу этой книги: С. Д. Штовбу, Д. И. Кательникова и Ю. И. Митюшкина за огромную работу по реализации всех компьютерных экспериментов; С.М. Зеленко, Б.Ф. Мазорчука, А.М. Петуха, С.И. Ткаченко, В. Н. Ребедайло за интерес к применению нечеткой логики в медицине, технологических процессах, автомобильном деле и проектировании, приведший к построению реальных компьютерных систем; В.В. Войтко, А.П. Днестрянскую, А.А. Кашканова, Е.П. Ларюшкина, Е.Е. Лойко, Г.А. Черноволик, В.М. Шеверду за представленные экспертные знания, использованные в созданных компьютерных системах, Е.А. Карпова, В.П. Кожемяко, В.А. Огородникова, В.С. Осадчука за поддержку этого научного направления и полезные обсуждения возможностей его применения в электротехнике, медицинском приборостроении, механике, радиоэлектронике.

Особую благодарность автор выражает редактору Б. М. Герасимову за ценные замечания и советы, способствующие улучшению книги.

Материалы книги использовались в течение нескольких последних лет при чтении автором двухсенестрового курса «Интеллектуальные системы проектирования и управления» на факультете компьютерных систем управления и автоматики ВГТУ.
<table>
<thead>
<tr>
<th>Глава</th>
<th>Раздел</th>
<th>Подраздел</th>
<th>Страницы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Введение в интеллектуальные технологии</td>
<td>1.1. Нечеткие множества</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.1. Основные понятия теории нечетких множеств</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.2. Свойства нечетких множеств</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.3. Операции над нечеткими множествами</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.4. Некоторые дополнительные понятия</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.5. Нечеткие отношения</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.6. Нечеткие числа</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.7. Нечеткость и вероятность</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.2.</td>
<td>Генетические алгоритмы</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.1. Принципы построения генетических алгоритмов</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.2. Основные операции генетических алгоритмов</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.3. Стратегии поиска</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.4. Отличие от классического поиска</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.5. Преимущества генетических алгоритмов</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.6. Терминология</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.7. Примеры генетической оптимизации</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1.3.</td>
<td>Нейронные сети</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.1. Основные понятия</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.2. Имитация нервных клеток</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.3. Математическая модель нейрона</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.4. Обучение нейронных сетей</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.5. Метод обратного распространения ошибки</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.6. Алгоритм настройки нейронной сети</td>
<td>38</td>
</tr>
<tr>
<td>2.</td>
<td>Методологические аспекты</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.1.</td>
<td>Лингвистические правила в принятии решений</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1.1. Автоматическое управление</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1.2. Ситуационное управление</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1.3. Медицинская диагностика</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1.4. Многокритериальная оценка</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1.5. Многофакторный анализ</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>2.2.</td>
<td>Принятие решений и идентификация</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2.3.</td>
<td>Принципы лингвистического моделирования</td>
<td>48</td>
</tr>
<tr>
<td>3.</td>
<td>Лингвистическая аппроксимация</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>3.1.</td>
<td>Формализация исходной информации</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1.1. Входы и выходы объекта</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1.2. Лингвистические переменные</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1.3. Нечеткая база знаний</td>
<td>58</td>
</tr>
</tbody>
</table>
3.1.4. Функции принадлежности 62
3.2. Объекты с дискретным выходом 63
 3.2.1. Постановка задачи 63
 3.2.2. Нечеткие логические уравнения 63
 3.2.3. Алгоритм аппроксимации 66
3.3. Объекты с непрерывным выходом 67
 3.3.1. Постановка задачи 68
 3.3.2. Алгоритм аппроксимации 70
3.4. Применение композиционного правила вывода 71
 3.4.1. Постановка задачи 71
 3.4.2. Нечеткий логический вывод 72
 3.4.3 Интерпретация вывода 77
3.5. Иерархические объекты 78
 3.5.1. Обобщенное дерево логического вывода 78
 3.5.2. Нечеткие логические уравнения 86

4. Аналитико-лингвистическая аппроксимация 90
 4.1. Нечеткое представление неопределенных параметров 90
 4.2. Учет влияющих факторов 101
 4.3. Нечеткое обобщение аналитических моделей 106
 4.3.1. Принцип обобщения Заде 106
 4.3.2. α-уровневый принцип обобщения 109
 4.3.3. Модифицированный принцип обобщения 112
 4.4. Методика нечеткого обобщения аналитических моделей 116

5. Генетическая настройка лингвистических моделей 119
 5.1. Задачи оптимальной настройки 119
 5.1.1. Веса правил 119
 5.1.2. Объект с непрерывным выходом 121
 5.1.3. Объект с дискретным выходом 122
 5.1.4. Критерии качества идентификации 123
 5.2. Настройка параметрических функций принадлежности 125
 5.2.1. Кодирование 125
 5.2.2. Скрещивание 126
 5.2.3. Мутация 128
 5.2.4. Функция соответствия 129
 5.2.5. Выбор родителей 130
 5.2.6. Генерация популяции 131
 5.2.7. Генетический алгоритм 131
 5.3. Настройки α-уровневых функций принадлежности 132
 5.3.1. Аналитические модели функций принадлежности 132
 5.3.2. Настройки модели с дискретным выходом 136
 5.3.3. Настройки модели с непрерывным выходом 138

VI
5.3.4. Кодирование и скрещивание 139
5.3.5. Мутация 140
5.3.6. Функция соответствия 142
5.3.7. Генерация популяции 142
5.3.8. Генетический алгоритм 143
5.4. Компьютерные эксперименты 143
5.4.1. Методика экспериментов 143
5.4.2. Объекты с непрерывным выходом 144
5.4.3. Объекты с дискретным выходом 152
5.4.4. Исследование α-уровневой настройки 159
5.5. Извлечение знаний из экспериментальных данных 163
5.5.1. Постановка задачи 164
5.5.2. Критерий оптимизации 165
5.5.3. Генетический алгоритм оптимизации 168
5.5.4. Пример 170
5.6. Объект «много входов - много выходов» 173

6. Нейронная настройка лингвистических моделей 176
6.1. Нейронная идентификация 177
 6.1.1. Нейронная сеть как универсальный аппроксиматор 177
 6.1.2. Обучение нейронной сети 179
 6.1.3. Компьютерные эксперименты 181
6.2. Нейро-лингвистическая идентификация 187
 6.2.1. Лингвистический аппроксиматор 187
 6.2.2. Нейро-лингвистический аппроксиматор 189
 6.2.3. Обучения нейро-нечеткой сети 191
 6.2.4. Компьютерные эксперименты 193
6.3. Сравнение с нейронной идентификацией 199

7. Функции принадлежности и принятие решений 201
7.1. Принцип сглаживания целей и ограничений 201
 7.1.1. Нечёткие цели и ограничения 201
 7.1.2. Нечёткие решения 203
7.2. Метод построения функции принадлежности 206
 7.2.1. Постановка задачи 206
 7.2.2. Основные определения и соотношения 207
 7.2.3. Алгоритм построения функций принадлежности 210
7.3. Многокритериальный анализ вариантов 211
 7.3.1. Общие принципы 212
 7.3.2. Критерии как нечеткие множества 212
 7.3.3. Равновесные критерии 214
 7.3.4. Неравновесные критерии 215
7.4. Пример многокритериального анализа 216

VII
8. Прикладные системы идентификации

8.1. Система FUZZY EXPERT
 8.1.1. Структура системы
 8.1.2. Экранные формы

8.2. Диагностика ишемической болезни сердца
 8.2.1. Типы диагнозов и параметры состояния больного
 8.2.2. Нечеткая база знаний
 8.2.3. Нечеткие логические уравнения
 8.2.4. Грубые функции принадлежности
 8.2.5. Алгоритм принятия решения
 8.2.6. Тонкая настройка нечеткой базы знаний

8.3. Прогнозирование количества заболеваний
 8.3.1. Экспериментальные данные
 8.3.2. Экспертно-лингвистические закономерности
 8.3.3. Модель прогнозирования
 8.3.4. Настройка модели прогнозирования

8.4. Идентификация коэффициента сцепления «автомобиль-дорога»
 8.4.1. Методика идентификации
 8.4.2. Структурная идентификация
 8.4.3. Параметрическая идентификация
 8.4.4. Пример и сравнение с действующей методикой

8.5. Многофакторный анализ технологического процесса биоконверсии
 8.5.1. Этапы и принципы моделирования
 8.5.2. Дерево вывода
 8.5.3. Нечеткие матрицы знаний
 8.5.4. Нечеткий логический вывод и дефазификация
 8.5.5. Примеры моделирования

8.6. Оценка дипломных проектов
 8.6.1. Интегральные и частные показатели
 8.6.2. Уровни качества
 8.6.3. Оценка частных показателей по принципу термометра
 8.6.4. Оценка интегрального показателя
 8.6.5. Возможные обобщения

8.7. Оценка кредитоспособности инновационных проектов
 8.7.1. Типы решений и частные показатели качества
 8.7.2. Нечеткие базы знаний
<table>
<thead>
<tr>
<th>Тема</th>
<th>Страница</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7.3. Функции принадлежности и примеры оценки</td>
<td>283</td>
</tr>
<tr>
<td>8.8. Управление динамической системой</td>
<td>285</td>
</tr>
<tr>
<td>8.8.1. Объект управления</td>
<td>285</td>
</tr>
<tr>
<td>8.8.2. Классическая модель управления</td>
<td>286</td>
</tr>
<tr>
<td>8.8.3. Нечеткая модель управления</td>
<td>289</td>
</tr>
<tr>
<td>8.8.4. Связь с функциями Ляпунова</td>
<td>291</td>
</tr>
</tbody>
</table>

Послесловие 294

Список литературы 296
CONTENTS

1. Introduction to Intelligent Techniques
 1.1. Fuzzy Sets
 1.1.1. Fundamentals of Fuzzy Sets Theory
 1.1.2. Basic Properties of Fuzzy Sets
 1.1.3. Basic Operations on Fuzzy Sets
 1.1.4. Further Properties and Related Concepts
 1.1.5. Fuzzy Relations
 1.1.6. Fuzzy Numbers
 1.1.7. Fuzziness and Probability
 1.2. Genetic Algorithms
 1.2.1. General Structure of Genetic Algorithms
 1.2.2. Basic Operations
 1.2.3. Search Strategy
 1.2.4. Features
 1.2.5. Major Advantages
 1.2.6. Vocabulary
 1.2.7. Examples
 1.3. Neural Networks
 1.3.1. Basic Definitions
 1.3.2. Imitation of Human Nerve Cells
 1.3.3. Mathematical Model of Neuron
 1.3.4. Training of Neural Networks
 1.3.5. Method of Error Back-Propagation
 1.3.6. Algorithm of Neural Networks Tuning

2. Methodology
 2.1. Linguistical Rules in Decision Making
 2.1.1. Automatic Control
 2.1.2. Situational Control
 2.1.3. Medical Diagnosis
 2.1.4. Multicriteria Evaluation
 2.1.5. Multifactor Analysis
 2.2. Decision Making and Identification
 2.3. Principles of Linguistical Modelling

3. Linguistical Approximation
 3.1. Initial Information Formalization
 3.1.1. Inputs and Outputs
 3.1.2. Linguistical Variables
 3.1.3. Fuzzy Knowledge Base
3.1.4. Membership Functions
3.2. System with Discrete Output
 3.2.1. Problem Statement
 3.2.2. Fuzzy Logic Equations
 3.2.3. Algorithm of Approximation
3.3. System with Continuous Output
 3.3.1. Problem Statement
 3.3.2. Algorithm of Approximation
3.4. Compositional Rule of Evidence
 3.4.1. Problem Statement
 3.4.2. Fuzzy Logic Inference
 3.4.3. Results Interpretation
3.5. Hierarchical Systems
 3.5.1. Generalized Tree of Logic Evidence
 3.5.2. Fuzzy Logic Equations

4. Analytical - Linguistical Approximation
 4.1. Undefined Parameters Fuzzy Interpretation
 4.2. Account the Influenced Factors
 4.3. Fuzzy Extension of Analytical Models
 4.3.1. Zadeh’s Extension Principle
 4.3.2. α-Level Extension Principle
 4.3.3. Modified Extension Principle
 4.4. Fuzzy Extension Methodology

5. Genetic Tuning of Linguistical Models
 5.1. Optimization Problems
 5.1.1. Rules Weights
 5.1.2. System with Continuous Output
 5.1.3. System with Discrete Output
 5.1.4. Criteria of Identification Quality
 5.2. Parametrical Membership Functions Tuning
 5.2.1. Coding
 5.2.2. Crossover
 5.2.3. Mutation
 5.2.4. Fitness Function
 5.2.5. Selection of the Parents
 5.2.6. Generation of Population
 5.2.7. Genetic Algorithm
 5.3. α-Level Membership Functions Tuning
 5.3.1. Analytical Models of Membership Functions
 5.3.2. Tuning of Models with Discrete Output
 5.3.3. Tuning of Models with Continuous Output
7.4.1. Criteria of Variants Evaluation
7.4.2. Pairwise Comparisons
7.4.3. Matrix of Pairwise Comparisons
7.4.4. Criteria As Fuzzy Set
7.4.5. Equal Weights of Criteria Case
7.4.6. Different Weights of Criteria Case

8. Applied Systems of Identification
8.1. Software FUZZY EXPERT
8.1.1. Structure
8.1.2. Screenshots
8.2. Diagnosis of Ischemia Heart Disease
8.2.1. Diagnoses Types and Patient State Parameters
8.2.2. Fuzzy Knowledge Base
8.2.3. Fuzzy Logic Equations
8.2.4. Rough Membership Functions
8.2.5. Algorithm of Decision Making
8.2.6. Fine Tuning of Fuzzy Knowledge Base
8.3. Prognosis of Diseases Number
8.3.1. Experimental Data
8.3.2. Linguistical-Expert Regulations
8.3.3. Prognosis Model
8.3.4. Prognosis Model Tuning
8.4. Identification of Car Wheels Adhesion Factor with a Road Surface
8.4.1. Identification Technique
8.4.2. Structural Identification
8.4.3. Parametrical Identification
8.4.4. Example and Comparison with Existing Methodology
8.5. Technological Process of Bioconversion Modelling
8.5.1. Stages and Principles of Modeling
8.5.2. Inference Tree
8.5.3. Fuzzy Knowledge Matrices
8.5.4. Fuzzy Logic Inference and Defuzzification
8.5.5. Examples
8.6. Diploma Projects Evaluation
8.6.1. Integral and Partial Indicators
8.6.2. Quality Levels
8.6.3. Partial Indicators Evaluation Using Thermometer Principle
8.6.4. Integral Indicators Evaluation
8.6.5. Possible Extension
8.7. Innovative Projects Creditworthiness Evaluation
8.7.1. Types of Decisions and Partial Quality Indicators
8.7.2. Fuzzy Knowledge Bases
8.7.3. Membership Functions and Evaluation Examples 283
8.8. Dynamic System Control 285
8.8.1. Controlled Object 285
8.8.2. Conventional Model of Control 286
8.8.3. Fuzzy Model of Control 289
8.8.4. Connection with Lyapunov Functions 291

Epilogue 294

References 296
ГЛАВА 1

ВВЕДЕНИЕ В ИНТЕЛЛЕКТУАЛЬНЫЕ ТЕХНОЛОГИИ

1.1. Нечеткие множества

Этот раздел написан по материалам работ 15,18,25. С дополнительными сведениями по нечетким множествам можно познакомиться по работам [26,57,64,80,83-85].

Теория множеств представляет собой мощный инструмент математики. Однако, лежащая в ее основе аксиома исключенного третьего, утверждающая, что элемент либо принадлежит множеству либо не принадлежит, часто делает эту теорию неприменимой в реальных задачах, в которых применяются нечеткие оценки, такие как: «большая прибыль», «высокое давление», «умеренная температура», «надежные инструменты», «безопасные условия» и т.п. К сожалению, подобные высказывания не могут быть адекватно формализованы обычными математическими методами.

Если мы хотим учесть точное значение нечеткого терма, то четкое разделение элементов (например, значений давления) на те, которые принадлежат терму «высокое», и те, которые не принадлежат, является искусственным. Это происходит в первую очередь потому, что некоторые значения могут восприниматься как «высокое давление с некоторой натяжкой», «не совсем высокое давление», «некоторая натяжка» и др.

Попытка развития формального аппарата для вовлечения частичной принадлежности в теорию множеств была предпринята в середине 60-х годов Заде 15. Он ввел понятие нечеткого множества как собрания элементов, которые могут принадлежать этому множеству со степенью от 0 до 1. Причем 0 обозначает абсолютную непринадлежность, а 1 - абсолютную принадлежность множеству. Это было сделано путем применения понятия функции принадлежности, которая ставит в соответствие каждому элементу универсального множества число из интервала [0,1], обозначающее степень принадлежности. Понятие функции принадлежности является обобщением понятия характеристической функции четкого множества, которая оперирует значениями {0,1}. Поэтому основные свойства и операции над нечеткими множествами, введенные Заде и его многочисленными последователями, являются обобщениями соответст-
вующих свойств и операций классической теории множеств.
С момента своего возникновения теория нечетких множеств вызвала беспредыдентный рост интереса практически во всех отраслях науки и техники.

1.1.1. Основные понятия теории нечетких множеств

Пусть \(X = \{x\} \) - универсальное множество, т.е. полное множество, охватывающее всю проблемную область.

Определение 1.1. Нечеткое множество \(A \subseteq X \) представляет собой набор пар \(\{ (x, \mu^A(x)) \} \), где \(x \in X \) и \(\mu^A : X \to [0,1] \) - функция принадлежности, которая представляет собой некоторую субъективную меру соответствия элемента \(x \) нечеткому множеству \(A \).

\(\mu^A(x) \) может принимать значения от нуля, который обозначает абсолютную не принадлежность, до единицы, которая, наоборот, говорит об абсолютной принадлежности элемента \(x \) нечеткому множеству \(A \). Иногда удобно рассматривать значение \(\mu^A(x) \) как степень совместимости элемента \(x \) с размытым понятием, представленным нечетким множеством \(A \).

Часто нечеткое множество \(A \subseteq X \) и его функцию принадлежности \(\mu^A(x) \) рассматривают как взаимозаменяемые понятия.

Если множество \([0,1]\) заменить на \(\{0,1\}\), то функция принадлежности будет представлять собой характеристическую функцию обыкновенного (не нечеткого) множества.

Если нечеткое множество \(A \) определено на конечном универсальном множестве \(X = \{x_1, x_2, \ldots, x_n\} \), то его удобно обозначать следующим образом:

\[
A = \mu^A(x_1)/x_1 + \mu^A(x_2)/x_2 + \ldots + \mu^A(x_n)/x_n = \sum_{i=1}^{n} \mu^A(x_i)/x_i,
\]

где «\(\mu^A(x_i)/x_i\)» - пара «функция принадлежности / элемент», называемая синглтоном, а «+» - обозначает совокупность пар.

Пример 1.1. Пусть \(X = \{1, 2, \ldots, 10\} \). Тогда нечеткое множество «большие числа» может быть представлено следующим образом:

\[
A = \text{«большие числа»}=0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10.
\]
Это можно понимать следующим образом: 9 и 10 с абсолютной уверенностью можно отнести к «большим числам», 8 есть «большое число» со степенью 0.8 и т.д. 1, 2,..., 5 абсолютно не являются «большими числами».

На практике удобно использовать кусочно-линейную аппроксимацию функции принадлежности нечеткого множества как это показано на рис. 1.1, так как требуется только два значения - a и a.

![Diagram](image)

Рис. 1.1. Функция принадлежности нечеткого множества

В случае непрерывного множества X используется следующее обозначение:

$$A = \int_{X} \mu^A(x) \, dx$$

(Знак \int в этих формулках обозначает совокупность пар $\mu^A(x)/x$).

1.1.2. Свойства нечетких множеств

а) нечеткое множество $A \subseteq X$ пустое, т.е. $A = \emptyset$, если $\mu^A(x) = 0$, $\forall x \in X$.

б) нечеткие множества A и $B \subseteq X$ эквивалентны, т.е. $A = B$, если

$$\mu^A(x) = \mu^B(x), \forall x \in X.$$

в) нечеткое множество $A \subseteq X$ является подмножеством нечеткого множества $B \subseteq X$, т.е. $A \subseteq B$, если $\mu^A(x) \leq \mu^B(x), \forall x \in X$.

3
Пример 1.2. Пусть \(X = \{1, 2, 3\} \),
\[
A = 0.3/1 + 0.5/2 + 1/3,
B = 0.4/1 + 0.6/2 + 1/3.
\]
Тогда \(A \subseteq B \).

Кардинальное число (мощность) нечеткого множества

\[
A = \mu^A(x_1)/x_1 + \mu^A(x_2)/x_2 + \ldots + \mu^A(x_n)/x_n = \sum_{i=1}^{n} \mu^A(x_i)/x_i
\]

находится следующим образом:

\[
\text{card } A = |A| = \sum_{i=1}^{n} \mu^A(x_i).
\]

Пример 1.3. Если \(X = \{1, 2, 3, 4\} \) и \(A = 0.1/1 + 0.4/2 + 0.7/3 + 1/4 \),
то \(\text{card } A = 2.2 \).

1.1.3. Операции над нечеткими множествами

а) Дополнением нечеткого множества \(A \) называется нечеткое множество \(\neg A \), функция принадлежности которого равна:

\[
\mu^{\neg A}(x) = 1 - \mu^A(x), \ \forall x \in X.
\]

б) Пересечением двух нечетких множеств \(A \) и \(B \subseteq X \) называется нечеткое множество \(A \cap B \), функция принадлежности которого равна:

\[
\mu^{A \cap B}(x) = \mu^A(x) \wedge \mu^B(x), \ \forall x \in X,
\]
где \(\wedge \) - знак операции минимума.

в) Объединением двух нечетких множеств \(A \) и \(B \subseteq X \) называется нечеткое множество \(A \cup B \), функция принадлежности которого равна:

\[
\mu^{A \cup B}(x) = \mu^A(x) \vee \mu^B(x), \ \forall x \in X,
\]
где \(\vee \) - знак операции максимума.

Пример 1.4. Пусть \(X = \{1, 2, \ldots, 10\} \),

\[
A = \text{«малые числа»} = 1/1 + 1/2 + 0.8/3 + 0.5/4 + 0.3/5 + 0.1/6,
\]

4
\[B = \text{"большие числа"} = 0.1/5 + 0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10, \]

Тогда
\[\neg A = \text{"НЕ малые числа"} = 0.2/3 + 0.5/4 + 0.7/5 + 0.9/6 + 1/7 + 1/8 + 1/9 + 1/10, \]

\[A \cap B = \text{"малые числа"} \text{ И } \text{"большие числа"} = 0.1/5 + 0.1/6, \]

\[A \cup B = \text{"малые числа"} \text{ ИЛИ } \text{"большие числа"} = 1/1 + 1/2 + 0.8/3 + 0.5/4 + 0.3/5 + 0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10. \]

Приведенные определения операций над нечеткими множествами являются наиболее распространенными, однако существуют и другие определения, использующие \(t \) и \(s \) - нормы [84].

Определение 1.2. \(t \)-нормой называется отображение \(t : \)

\[[0,1] \times [0,1] \rightarrow [0,1], \]

если:

а) \(at1 = a \)

б) \(atb = bta \)

в) \(atb \geq ctd, \text{ если } a \geq c, b \geq d \)

г) \(atbtc = at(btc). \)

Примеры \(t \)-норм:

\[a \wedge b = min(a, b) - \text{наиболее распространеная,} \]

\[a \cdot b, \]

\[1 - \left[1 \wedge \left((1-a)^p + (1-b)^p \right)^{1/p} \right], \text{ } p \geq 1. \]

Определение 1.3. \(s \)-нормой называется отображение \(s : \)

\[[0,1] \times [0,1] \rightarrow [0,1], \]

если:

а) \(as0 = a \)

б) \(asb = bsa \)

в) \(asb \geq cscd, \text{ если } a \geq c, b \geq d \)

г) \(asbsc = asc(bsc). \)

Примеры \(s \)-норм:

\[a \vee b = max(a, b) - \text{наиболее распространеная,} \]

\[a + b - a \cdot b \]
\[1 \wedge \left(a^p + b^p \right)^{1/p} , \ p \geq 1. \]

1.1.4. Некоторые дополнительные понятия

Определение 1.4. \(\alpha \)-срезом (множеством уровня \(\alpha \)) нечеткого множества \(A \subseteq X \), называется (четкое) множество \(A_\alpha \subseteq X \) такое, что

\[A_\alpha = \left\{ x \in X : \mu^A (x) \geq \alpha \right\} , \ \forall \alpha \in [0,1] . \]

Пример 1.5. Если \(A = 1/1 + 0.8/2 + 0.5/3 + 0.1/4 \), то \(A_{0.1} = \{ 1, 2, 3, 4 \} \), \(A_{0.5} = \{ 1, 2, 3 \} \), \(A_1 = \{ 1 \} \).

Пусть функция \(f \) представляет собой отображение \(f : X \to Y \) и \(A \) есть нечеткое множество в \(X \). В соответствии с принципом обобщения, функция \(f \) отображает нечеткое множество \(A \) в нечеткое множество \(B \subseteq Y \) такое, что:

\[\mu^B (y) = \begin{cases} \sup_{y=f(x)} \mu^A (x), & f^{-1} (y) \neq \emptyset \\ 0, & f^{-1} (y) = \emptyset \end{cases} . \]

Пример 1.6. Пусть \(X = \{ 1, 2, 3, 4 \} \), \(Y = \{ 1, 2, 3, 4, 5, 6 \} \) и \(y = x + 2 \). Если теперь \(A = 0.1/1 + 0.2/2 + 0.7/3 + 1/4 \), то \(B = 0.1/3 + 0.2/4 + 0.7/5 + 1/6 \).

1.1.5. Нечеткие отношения

Пусть \(X = \{ x_1, x_2, ..., x_l \} \) и \(Y = \{ y_1, y_2, ..., y_m \} \).

Определение 1.5. Нечетким отношением \(R \) называется нечеткое множество, определенное на декартовом произведении \(X \times Y \), которому соответствует функция принадлежности \(\mu^R : X \times Y \to [0,1] \).

\(\mu^R (x,y) \) отражает силу зависимости между \(x \in X \) и \(y \in Y \).
Пример 1.7. Пусть \(X = \{ \text{конь, осел} \} \) и \(Y = \{ \text{мул, корова} \} \). Нечеткое отношение «подобный» может быть определено следующим образом:

\[
R = \text{«подобный»} = 0.8/(\text{конь, мул}) + 0.4/(\text{конь, корова}) + \\
+ 0.9/(\text{осел, мул}) + 0.5/(\text{осел, корова}) ,
\]

t. е. конь похож на мула со степенью 0.8, конь похож на корову со степенью 0.4 и т.д.

Определение 1.6. Если \(R \subseteq X \times Y \) и \(S \subseteq Y \times Z \), то max-min композицией называется нечеткое множество \(R \circ S \), определенное на \(X \times Z \), функция принадлежности которого имеет вид:

\[
\mu_{R \circ S}(x, z) = \sup_{y \in Y} \left[\mu_R(x, y) \wedge \mu_S(y, z) \right]
\]

Max-min композиция позволяет ответить на вопрос, какое нечеткое множество в \(Y \) следует поставить в соответствие нечеткому множеству \(A' \subseteq X \), если известно, что нечеткое множество \(B \subseteq Y \) соответствует нечеткому множеству \(A \subseteq X \).

Операция нахождения такого соответствия называется нечетким логическим выводом и выполняется по следующей формуле:

\[
B' = A' \circ R = A' \circ (A \times B),
\]

где \(R \) - нечеткое отношение:

\[
R = A \times B = \sum_{i=1}^{l} \sum_{j=1}^{m} \left\{ \mu^A(x_i) \wedge \mu^B(y_j) \right\} I(x_i, y_j),
\]

\(\circ \) - max-min композиция, в соответствии с которой:

\[
B' = \sum_{j=1}^{m} \bigvee_{i=1, l} \left\{ \mu^{A'}(x_i) \wedge \mu^R(x_i, y_j) \right\} / y_j ,
\]

\(A, A' \subseteq X \), \(B, B' \subseteq Y \).

1.1.6. Нечеткие числа

Введенный принцип обобщения является служит для переноса четких отношений в нечеткие. Например, его можно применить для определения нечеткой арифметики.
Определение 1.7. Нечеткое число это нечеткое множество A, определенное на множестве действительных чисел \mathbb{R}, если его функция принадлежности нормальна и выпукла, т. е.

$$
\sup_{x \in \mathbb{R}} \mu^A (x) = 1,
$$

$$
x \leq y \leq z \Rightarrow \mu^A (y) \geq \min \left(\mu^A (x), \mu^A (z) \right).
$$

Примеры нечетких чисел: «около 5», «чуть больше 7».

В соответствии с принципом обобщения, арифметические операции над нечеткими числами имеют вид:

- сложение $\mu^{A+B} (z) = \max_{z=x+y} \left[\mu^A (x) \wedge \mu^B (y) \right]$, $\forall x, y, z \in \mathbb{R}$

- вычитание $\mu^{A-B} (z) = \max_{z=x-y} \left[\mu^A (x) \wedge \mu^B (y) \right]$, $\forall x, y, z \in \mathbb{R}$

- умножение $\mu^{A\ast B} (z) = \max_{z=x \ast y} \left[\mu^A (x) \wedge \mu^B (y) \right]$, $\forall x, y, z \in \mathbb{R}$

- деление $\mu^{A/B} (z) = \max_{z=x / y, y \neq 0} \left[\mu^A (x) \wedge \mu^B (y) \right]$, $\forall x, y, z \in \mathbb{R}$

К сожалению, использование принципа обобщения для определения арифметических операций над нечеткими числами в общем довольно неэффективно. Поэтому часто предполагается, что нечеткие числа представляются в LR-форме, что соответствует описанию левой (left) и правой (right) частей функции.

Нечеткое число A представляется в LR-форме, если:

$$
\mu^A (x) = \begin{cases}
L \left(\frac{m - x}{\alpha} \right), & \alpha > 0, \forall x \leq m \\
R \left(\frac{m - x}{\beta} \right), & \beta > 0, \forall x \geq m
\end{cases}
$$

где L и R - функции, обладающие свойствами:

- a) $L(-x) = L(x)$
б) $L(0) = 1$

в) L монотонно убывает она промежутке $[0, +\infty]$.

Здесь m - среднее значение нечетного числа A, α -отклонение слева, β - отклонение справа.

Если $\alpha = \beta = 0$, то нечетное число A переходит в четное число m.

Таким образом, LR-форму нечетного числа A можно представить в виде тройки $A = (m_A, \alpha_A, \beta_A)$. Арифметические операции над нечетными числами можно определить через операции над соответствующими им тройками:

$$A + B = (m_A, \alpha_A, \beta_A) + (m_B, \alpha_B, \beta_B) = (m_A + m_B, \alpha_A + \alpha_B, \beta_A + \beta_B),$$

$$A - B = (m_A, \alpha_A, \beta_A) - (m_B, \alpha_B, \beta_B) = (m_A - m_B, \alpha_A + \alpha_B, \beta_A + \beta_B),$$

$$A \cdot B = (m_A, \alpha_A, \beta_A) \cdot (m_B, \alpha_B, \beta_B) \approx (m_A \cdot m_B, m_A \cdot \alpha_B + m_B \cdot \alpha_A, m_A \cdot \beta_B + m_B \cdot \beta_A).$$

На практике LR-представление упрощается за счет применения линейных функций, что приводит к треугольным нечетным числам (рис. 1.2а), которые имеют функцию принадлежности вида:

$$\mu^A(x) = \begin{cases}
\frac{(x-a^-)}{(a^- - a)}, & a^- \leq x \leq a \\
\frac{(a^+ - x)}{(a^+ - a)}, & a \leq x \leq a^+
\end{cases}$$

Кроме того, получили распространение трапециевидные формы функций принадлежности (рис. 1.2б), которые имеют функцию принадлежности вида:

$$\mu^A(x) = \begin{cases}
\frac{(x-a^-)}{(a^- - a)}, & a^- \leq x \leq a \\
1, & a \leq x \leq a^- \\
\frac{(a^+ - x)}{(a^+ - a)}, & a \leq x \leq a^+
\end{cases}$$
1.1.7. Нечеткость и вероятность

Новички в теории нечетких множеств часто пытаются сопоставить ее с теорией вероятности. Однако, обе эти теории трудно сравнивать поскольку они по-разному формализуют неопределенность. В теории вероятностей рассматривается статистическая неопределенность, например, вероятность поражения цели равна 0.9. Теория нечетких множеств позволяет работать с лингвистической неопределенностью, например, "меткий стрелок". Эти виды неопределенности формализуются с помощью:
- функций распределения - в теории вероятностей,
- функций принадлежности - в теории нечетких множеств.

Принципиальное различие двух указанных распределений иллюстрирует пример, который любит приводить основоположник теории нечетких множеств Л. Заде [85].

Пример 1.8. Рассмотрим утверждение "Автор съедает X яиц на завтрак",

$$X = \{1, 2, 3, \ldots \}.$$

Величине X, которая является неопределенным параметром, могут соответствовать распределения возможности и вероятности.

Распределение возможности $\pi_X(u)$ может быть интерпретировано как степень (субъективная мера) легкости, с которой Автор съедает u яиц. Для определения вероятностного распределения $P_X(u)$ необходимо проследить за Автором на протяжение 100 дней.

Оба распределения представлены ниже.
Распределение возможности и вероятности

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_X(u)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>$P_X(u)$</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Мы видим, что высокая степень возможности $\pi_X(u)$ никак не означает такую же высокую степень вероятности $P_X(u)$. Но бесспорно одно: если событие невозможно, то оно также и невероятно.

Принципиальное отличие теории вероятности от теории возможности состоит в том, что в этих теориях по-разному выполняется аксиома дополнения:

$$P(A) + P(\overline{A}) = 1 \quad \text{для теории вероятности.}$$
$$\pi(A) + \pi(\overline{A}) \neq 1 \quad \text{для теории возможности.}$$

1.2. Генетические алгоритмы

Как отмечалось в предисловии, оптимизация является важнейшим этапом решения задач идентификации. Основные трудности применения классических методов оптимизации нелинейных функций [10,58] связаны с проблемами локального экстремума (рис. 1.3) и «проклятия размерности» (рис. 1.4).

Рис. 1.3. Проблема локального экстремума

Рис. 1.4. Проблема «проклятия размерности»
Попытки преодоления указанных проблем привели к созданию теории генетических алгоритмов, которые выращивают оптимальное решение путем скрещивания исходных вариантов с последующей селекцией по некоторому критерию (рис. 1.5). Излагаемые в этом разделе общие сведения о генетических алгоритмах, базируются на работах [8,58,59,81]. Примеры, иллюстрирующие генетические алгоритмы, являются оригинальными.

Рис. 1.5. Идея генетического алгоритма (Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1989)
1.2.1. Принципы построения генетических алгоритмов

Генетический алгоритм (ГА) можно рассматривать как одну из разновидностей случайного поиска [30], которая основана на механизмах, напоминающих естественный отбор и размножение.

В отличие от существующих методик, ГА начинает работу с некоторого случайного набора исходных решений, который называется популяцией. Каждый элемент из популяции называется хромосомой и представляет некоторое решение проблемы в первом приближении. Хромосома представляет собой строку символов некоторой природы, не обязательно бинарных. Хромосомы эволюционируют на протяжении множества итераций, носящих название поколений (или генераций). В ходе каждой итерации хромосома оценивается с использованием некоторой меры соответствия (англ. fitness function), которую мы будем называть функцией соответствия. Для создания следующего поколения новые хромосомы, называемые отпрысками, формируются либо путем скрещивания (англ. crossover) двух хромосом - родителей из текущей популяции, либо путем случайного изменения (мутации) одной хромосомы. Новая популяция формируется путем (а) выбора согласно функции соответствия некоторых родителей и отпрысков и (б) удаления оставшихся для того, чтобы сохранять постоянный размер популяции.

Хромосомы с большей функцией соответствия имеют больше шансов быть выбранными (выжить). После нескольких итераций алгоритм сходится к лучшей хромосоме, которая является либо оптимальным, либо близким к оптимальному решением. Пусть \(P(t) \) и \(C(t) \) являются родителями и отпрысками из текущей генерации \(t \). Общая структура генетического алгоритма (рис. 1.6) имеет вид:

Процедура: Генетический алгоритм

\begin{verbatim}
begin
 t := 0;
 Задать начальное значение \(P(t) \);
 Оценить \(P(t) \) с помощью функции соответствия;
 while (нет условия завершения) do
 Скрещивать \(P(t) \) чтобы получить \(C(t) \);
 Оценить \(C(t) \) с помощью функции соответствия;
 Выбрать \(P(t+1) \) из \(P(t) \) и \(C(t) \);
 \(t := t + 1 \);
end
\end{verbatim}

13
Рис. 1.6. Обобщенная структура генетического алгоритма

Таким образом, используются два вида операций:
1. Генетические операции: скрешивание и мутация;
2. Эволюционная операция: выбор.

Генетические операции напоминают процесс наследования генов при создании нового отпрыска в каждой генерации. Эволюционная операция, осу-
1.2.2. Основные операции генетических алгоритмов

Операция скрещивания. Скрещивание является главной генетической операцией. Эта операция выполняется над двумя хромосомами-родителями и создает отпрыск путем комбинирования особенностей обоих родителей. Приведем простейший пример скрещивания. В начале выберем некоторую случайную точку (точка скрещивания - англ. cut-point), после этого создадим хромосому-отпрыск путем комбинирования сегмента первого родителя, стоящего слева от выбранной точки скрещивания с сегментом второго родителя, стоящего по правую сторону от точки скрещивания, как это показано на рис. 1.7.

![Рис. 1.7. Операция скрещивания](image)

Этот метод работает очень хорошо, если хромосомы представляют собой битовые строки. Кроме того производительность всего генетического алгоритма в первую очередь зависит от производительности используемой операции скрещивания.

Доля производимых на каждой итерации отпрысков называется коэффициентом скрещивания \(p_c \). Произведение \(p_c \times \) размер_популяции показывает количество отпрысков. Большое значение этого коэффициента позволяет исследовать большие областей пространства поиска (или пространства решений) и уменьшает шанс попадания в локальный минимум. Но если значение \(p_c \) слишком велико, то это приведет к большим затратам времени вычислений на исследование бесперспективных областей.

Операция мутации. Мутация - это фоновая операция, производящая случайное изменение в различных хромосомах. Наипростейший вариант мутации состоит в случайном изменении одного или более генов. В ГА мутация играет важную роль для (а) восстановления генов, выпавших из популяции в ходе операции выбора, так что они могут быть опробованы в новых комбинациях, (б) формирования генов, которые не были представлены в исходной по-
пуляции. Интенсивность мутаций определяется коэффициентом мутаций (p_m). Он представляет собой долю генов, подвергающихся мутации на данной итерации, в расчете на их общее число. Слишком малое значение этого коэффициента приводит к тому, что многие гены, которые могли бы быть полезными, никогда не будут рассмотрены. В то же время слишком большое значение коэффициента p_m приведет к большим случайным возмущениям. Отпрыски перестанут быть похожими на родителей и алгоритм потеряет возможность обучаться, сохраняя наследственные признаки.

1.2.3. Стратегии поиска

Поиск является одним из наиболее универсальных методов нахождения решения для случаев, когда априори не известна последовательность шагов, ведущая к оптимуму.

Существуют две поисковые стратегии: эксплуатация наилучшего решения и исследование пространства решений. Градиентный метод является примером стратегии, которая выбирает наилучшее решение для возможного улучшения, игнорируя в то же время исследование всего пространства поиска. Случайный поиск является примером стратегии, которая, наоборот, исследует пространство решений, игнорируя исследование перспективных областей поискового пространства. Генетический алгоритм представляет собой класс поисковых методов общего назначения, которые комбинируют элементы обоих стратегий. Использование этих методов позволяет удерживать приемлемый баланс между исследованием и эксплуатацией наилучшего решения. В начале работы генетического алгоритма популяция случайна и имеет разнообразные элементы. Поэтому оператор скрещивания осуществляет обширное исследование пространства решений. С ростом значения функции соответствия получаемых решений оператор скрещивания обеспечивает исследование окрестностей каждого из них. Другими словами, тип поисковой стратегии (эксплуатация наилучшего решения или исследование области решений) для оператора скрещивания определяется разнообразием популяции, а не самим этим оператором.

1.2.4. Отличие от классического поиска

В общем, алгоритм решения оптимизационных проблем представляет собой последовательность вычислительных шагов, которые асимптотически сходятся к оптимальному решению. Большинство классических методов оптимизации генерируют детерминированную последовательность вычислений, основанную на градиенте или производной целевой функции более высокого порядка. Эти методы применяются к одной исходной точке поискового пространства. Затем решение постепенно улучшается в направлении наискорейшего роста или убывания целевой функции. При таком точечном подходе сущест-
вует опасность попадания в локальный оптимум.

Генетический алгоритм осуществляет одновременный поиск по многим направлениям путем использования популяции возможных решений. Переход от одной популяции к другой позволяет избежать попадания в локальный оптимум. Популяция претерпевает нечто наподобие эволюции: в каждом поколении относительно хорошие решения репродуцируются, в то время как относительно плохие отмирают. ГА используют вероятностные правила для определения репродуцируемой или уничтожаемой хромосомы, чтобы направить поиск к областям вероятного улучшения целевой функции.

1.2.5. Преимущества генетических алгоритмов

Существуют два главных преимущества генетических алгоритмов перед классическими оптимизационными методиками:

1. ГА не имеет значительных математических требований к видам целевых функций и ограничений. Исследователь не должен упрощать модель объекта, теряя ее адекватность, и искусственно добиваясь возможности применения доступных математических методов. При этом могут использоваться самые разнообразные целевые функции и виды ограничений (линейные и нелинейные), определенные на дискретных, непрерывных и смешанных универсальных множествах.

2. При использовании классических пошаговых методик глобальный оптимум может быть найден только в том случае когда проблема обладает свойством выпуклости. В тоже время эволюционные операции генетических алгоритмов позволяют эффективно отыскивать глобальный оптимум.

1.2.6. Терминология

Поскольку ГА происходят как из естественных наук (генетика), так и из компьютерных наук, то используемая терминология представляет собой сплав естественного и искусственного. Соответствие терминов, относящихся к ГА и тех, которые относятся к решению оптимизационных проблем, приведено в табл. 1.1.

<table>
<thead>
<tr>
<th>Таблица 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>основные термины теории ГА</td>
</tr>
<tr>
<td>ГА</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>1. Хромосомы</td>
</tr>
<tr>
<td>2. Ген (несколько бит)</td>
</tr>
<tr>
<td>3. Локус (местоположение)</td>
</tr>
<tr>
<td>4. Аллель</td>
</tr>
<tr>
<td>5. Фенотип</td>
</tr>
<tr>
<td>6. Генотип</td>
</tr>
</tbody>
</table>
1.2.7. Примеры генетической оптимизации

В этом разделе мы подробно объясним как в действительности работает генетический алгоритм на двух простых примерах.

Пример 1.9. Задача оптимизации. Рассмотрим нелинейную целевую функцию с ограничениями:

\[f(x_1, x_2) = (-2x_2^3 + 6x_2^2 + 6x_2 + 10) \cdot \sin\left(\ln(x_1) \cdot e^{x_2}\right) \]

\[0.5 \leq x_1 \leq 1.1, \quad 1.0 \leq x_2 \leq 4.6 \]

Требуется найти: \[\max_{x_1, x_2} f(x_1, x_2) \]

Поверхность целевой функции показана на рис. 1.8.

Кодирование. Для реализации генетического алгоритма необходимо закодировать оптимизируемые параметры в двоичные строки. Длина строки зависит от требуемой точности. Например, пусть переменная \(x_j \) имеет интервал изменения \([a_j, b_j]\), и требуемая точность - пять знаков после запятой. В этом случае интервал изменения переменной \(x_j \) должен быть разбит как минимум на \((b_j - a_j) \times 10^{-5}\) квантов. Требуемое число битов \(m_j \) находится по формуле:

\[2^{m_j - 1} < (b_j - a_j) \times 10^{-5} \leq 2^{m_j - 1} \]

Обратное преобразование строки битов в действительное значение переменной \(x_j \) выполняется по следующей формуле:

\[x_j = a_j + \text{десятичное число(строка_битов } j \text{ }) \times \frac{b_j - a_j}{2^{m_j - 1}} \]

где \(\text{десятичное число(строка_битов } j \text{ }) \) представляет собой десятичное значение, закодированное в бинарной строке \(\text{строка_битов } j \text{ } \)
Рис. 1.8. Целевая функция

Предположим, что требуемая точность составляет 5 знаков после запятой. Найдем число битов, необходимых для кодирования переменных x_1 и x_2:

$$(1.1 - 0.5) \times 100,000 = 60,000$$

$$2^{15} < 60,000 \leq 2^{16} - 1,$$

$$m_1 = 16$$

$$(4.6 - 1.0) \times 100,000 = 360,000$$

$$2^{18} < 360,000 \leq 2^{19} - 1,$$

$$m_2 = 19$$

$$m = m_1 + m_2 = 16 + 19 = 35.$$

Суммарная длина хромосомы составляет 35 битов, которые можно представить следующим образом:

```
  v j 0100000101010010 100110111101111110
```

Соответствующие значения переменных x_1 и x_2 даны ниже:
<table>
<thead>
<tr>
<th>Двоичное число</th>
<th>Десятичное число</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0100000101010010</td>
</tr>
<tr>
<td>x_2</td>
<td>10011011110111110</td>
</tr>
</tbody>
</table>

$x_1 = 0.5 + 16722 \times \frac{1.1 - 0.6}{2^{16} - 1} = 0.65310$,

$x_2 = 1.0 + 319230 \times \frac{4.6 - 1.0}{2^{19} - 1} = 3.19198$.

Исходная популяция. Исходная популяция генерируется случайно:

$v_1 = [01000001010100101001101111111110]

v_2 = [100011101011100110000000010101001000]

v_3 = [11111000111000001000010101001000110]

v_4 = [01100110110010110110100000010111001]

v_5 = [00000010111101100010001110001101000]

v_6 = [10111110101011011000000010110011001]

v_7 = [0011010001001111000100110011110001]

v_8 = [11001011010100011000101010011001100]

v_9 = [01111110001011110110011100111011101]

v_{10} = [0111111001101101100010101101101010]

Соответствующие значения переменных x_1 и x_2 имеют вид:

$v_1 = [x_1 , x_2] = [0.653097, 3.191983]

v_2 = [x_1 , x_2] = [0.834511, 2.809287]

v_3 = [x_1 , x_2] = [1.083310, 2.874312]

v_4 = [x_1 , x_2] = [0.740989, 3.926276]

v_5 = [x_1 , x_2] = [0.506940, 1.499934]

v_6 = [x_1 , x_2] = [0.946903, 2.809843]

v_7 = [x_1 , x_2] = [0.622600, 2.935225]

v_8 = [x_1 , x_2] = [0.976521, 3.778750]

v_9 = [x_1 , x_2] = [0.795738, 3.802377]

20
\[v_{10} = [x_1, x_2] = [0.793504, 3.259521] \]

Функция соответствия. Оценка функции соответствия хромосомы выполняется в три шага:

1°. Преобразовать генотип хромосомы в фенотип. В данной задаче это означает преобразование двоичной строчки в соответствующее действительное значение \(x^k = (x_1^k, x_2^k), k = 1, 2, ..., pop_size \), где \(pop_size \) - число вариантов в исходной популяции.

2°. Вычислить целевую функцию \(f(x^k) \).

3°. Преобразовать целевую функцию в значение функции соответствия. Для решаемой задачи оптимизации функция соответствия эквивалентна целевой функции. \(eval(v_k) = f(x^k), k = 1, 2, ..., pop_size \).

Функция соответствия играет роль среды и оценивает хромосомы по степени их приспособленности к выполнению критерия оптимизации.

Значения функций соответствия вышеприведенных хромосом следующие:

\[
\begin{align*}
\text{eval}(v_1) &= f(0.653097, 3.191983) = 20.432394 \\
\text{eval}(v_2) &= f(0.834511, 2.809287) = -4.133627 \\
\text{eval}(v_3) &= f(1.083310, 2.874312) = 28.978472 \\
\text{eval}(v_4) &= f(0.740989, 3.926276) = -2.415740 \\
\text{eval}(v_5) &= f(0.506940, 1.499934) = -2.496340 \\
\text{eval}(v_6) &= f(0.946903, 2.809843) = -23.503709 \\
\text{eval}(v_7) &= f(0.622600, 2.935225) = -13.878172 \\
\text{eval}(v_8) &= f(0.976521, 3.778750) = -8.996062 \\
\text{eval}(v_9) &= f(0.795738, 3.802377) = 6.982708 \\
\text{eval}(v_{10}) &= f(0.793504, 3.259521) = 6.201905 \\
\end{align*}
\]

Очевидно, что хромосома \(v_3 \) наиболее сильная, а хромосома \(v_6 \) наиболее слабая.
Отбор.

Наибольшее распространение на практике получил подход, называемый колесо рулетки [58] (от англ. roulette wheel). Согласно этому подходу, отбор осуществляется на основе некоторой функции распределения, которая строится пропорционально вычисленным функциям соответствия сгенерированных вариантов-хромосом. Колесо рулетки может быть сконструировано следующим образом:

1. Вычисляем значение функции соответствия $eval(v_k)$ для каждой хромосомы v_k:

$$eval(v_k) = f(x^k), \quad k = 1, 2, ..., pop_size.$$

2. Вычисляем общую функцию соответствия популяции:

$$F = \sum_{k=1}^{pop_size} \left(eval(v_k) - \min_{j=1, pop_size} \{ eval(v_j) \} \right)$$

3. Вычисляем вероятность отбора p_k для каждой хромосомы v_k:

$$p_k = \frac{eval(v_k) - \min_{j=1, pop_size} \{ eval(v_j) \}}{F}, \quad k = 1, 2, ..., pop_size.$$

4. Вычисляем совокупную вероятность q_k для каждой хромосомы v_k:

$$q_k = \sum_{j=1}^{k} p_j, \quad k = 1, 2, ..., pop_size.$$

Процесс отбора начинается с вращения колеса pop_size раз; при этом каждый раз выбирается одна хромосома по следующему алгоритму:

1°. Генерируем случайное число r из интервала $[0, 1]$.

2°. Если $r \leq q_1$, то выбираем первую хромосому v_1; иначе выбираем k-ю хромосому v_k ($2 \leq k \leq pop_size$) такую, что $q_{k-1} < r \leq q_k$.

Общая функция соответствия F всей популяции равна:

$$F = \sum_{k=1}^{10} \left(eval(v_k) - \min_{j=1, 10} \{ eval(v_j) \} \right) = 242.208919.$$

22
Вероятность отбора \(p_k \) для каждой хромосомы \(v_k \) \((k = 1, 2,\ldots,10)\) равна:

\[
\begin{align*}
p_1 &= 0.181398, & p_2 &= 0.079973, & p_3 &= 0.216681, \\
p_4 &= 0.087065, & p_5 &= 0.086732, & p_6 &= 0.000000, \\
p_7 &= 0.039741, & p_8 &= 0.059897, & p_9 &= 0.125868, \\
p_{10} &= 0.122645 .
\end{align*}
\]

Совокупные вероятности \(q_k \) для каждой хромосомы \(v_k \) \((k = 1, 2,\ldots,10)\) равны:

\[
\begin{align*}
q_1 &= 0.181398, & q_2 &= 0.261370, & q_3 &= 0.478052, \\
q_4 &= 0.565117, & q_5 &= 0.651849, & q_6 &= 0.651849, \\
q_7 &= 0.691590, & q_8 &= 0.751487, & q_9 &= 0.877355, \\
q_{10} &= 1.000000 .
\end{align*}
\]

Теперь мы готовы вращать колесо рулетки 10 раз и каждый раз отобрать одну хромосому для новой популяции. Допустим, что случайная последовательность 10 чисел из интервала \([0,1]\) имеет вид:

\[
\begin{align*}
0.301431 & \quad 0.322062 & \quad 0.766503 & \quad 0.881893 \\
0.350871 & \quad 0.583392 & \quad 0.177618 & \quad 0.343242 \\
0.032685 & \quad 0.197577 & &
\end{align*}
\]

Первое число \(r_1 = 0.301431 \) больше чем \(q_2 \) и меньше чем \(q_3 \). Это означает, что отбирается хромосома \(v_3 \). Второе число \(r_2 = 0.322062 \) также больше чем \(q_2 \) и меньше чем \(q_3 \). Значит опять отбираем хромосому \(v_3 \) для новой популяции; и т.д. Наконец, получим новую популяцию, состоящую из таких хромосом:

\[
\begin{align*}
v'_1 &= \{11111000111000001000010101001000110\} \quad (v_3) \\
v'_2 &= \{11111000111000001000010101001000110\} \quad (v_3) \\
v'_3 &= \{110010110101000011000101100110011100\} \quad (v_8) \\
v'_4 &= \{011111100010111011000111100100011101\} \quad (v_9) \\
v'_5 &= \{1111100011100001100010101001001000110\} \quad (v_3) \\
v'_6 &= \{01100111011010010111010000010111001\} \quad (v_4)
\end{align*}
\]
\[v_7' = [0100000101010010100110111011111110] \quad (v_1) \]
\[v_8' = [11111000111000001000010101001000110] \quad (v_3) \]
\[v_9' = [01000001010101010011101111111110] \quad (v_1) \]
\[v_{10}' = [10001110101110011000000010101001000] \quad (v_2) \]

Скрещивание. Для скрещивания хромосом будем использовать метод с одной точкой обмена. В соответствии с этим методом, случайно выбирается одна точка обмена, относительно которой меняются местами части хромосом-родителей. Для примера рассмотрим скрещивание двух хромосом, для которых была случайно выбрана точка обмена после 17-го гена:

\[v_1 = [11111000111100001000010101001000100] \]
\[v_2 = [10001110101110011000000010101001000] \]

В результате обмена частей родительских хромосом получаются следующие хромосомы-отпрыски:

\[v_1 = [11111000111100001000010101001000100] \]
\[v_2 = [10001110101110011000000010101001000] \]

Пусть вероятность скрещивания \(p_c = 0.25 \), т. е. в среднем 25% хромосом подвергнуться скрещиванию. Таким образом, скрещивание осуществляется по такому алгоритму:

Процедура: Скрещивание.
begin
 \(k := 0 \);
 while \(k \leq 10 \) do
 \(r_k := \) случайное число из интервала \([0,1]\) ;
 if \(r_k < 0.25 \) then
 отобрать хромосому \(v_k \) как одного из родителей для скрещивания ;
 end ;
 \(k := k + 1 \);
 end ;
end.
Предположим, что сгенерирована последовательность случайных чисел:

<table>
<thead>
<tr>
<th>0.625721</th>
<th>0.266823</th>
<th>0.288644</th>
<th>0.295114</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.163274</td>
<td>0.567461</td>
<td>0.085940</td>
<td>0.392865</td>
</tr>
<tr>
<td>0.770714</td>
<td>0.548656</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Это означает, что хромосомы v'_5 и v'_7 выбираются для скрещивания. После этого мы генерируем случайное целое число pos (позиция) из промежутка [1,34] (так как общая длина хромосомы равна 35) и считаем его точкой обмена хромосом или, другими словами, точкой скрещивания. Предположим, что было сгенерировано число pos равное 1, т. е. хромосомы-родители обмениваются частями после первого бита и появляются следующие хромосомы-отпрыски:

![Diagram](image)

Мутация. Мутация состоит в изменении одного или большего числа генов с вероятностью равной коэффициенту мутации. Допустим, что 18-й ген хромосомы v'_1 подвергается мутации. Так как мы имеем дело с бинарными строками, то мутация заключается в инверсии соответствующего бита:

![Diagram](image)

Зададим коэффициенту мутации значение $p_m = 0.01$, так что в среднем 1% всех битов популяции подвергнуться операции мутации. Число битов во
всей популяции составляет \(m \times \text{pop_size} = 35 \times 10 = 350 \) битов. Поэтому в среднем в каждом поколении мутирует 3.5 бита. Каждый бит имеет одинаковый шанс подвергнуться мутации. Таким образом, мы должны сгенерировать последовательность случайных чисел \(r_k \ (k = 1, \ldots, 350) \) из интервала \([0,1]\). Предположим, что мутируют следующие гены:

<table>
<thead>
<tr>
<th>Позиция бита в популяции</th>
<th>Номер хромосомы</th>
<th>Позиция бита в хромосоме</th>
<th>Случайное число (r_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>4</td>
<td>6</td>
<td>0.009857</td>
</tr>
<tr>
<td>172</td>
<td>5</td>
<td>32</td>
<td>0.003113</td>
</tr>
<tr>
<td>211</td>
<td>7</td>
<td>1</td>
<td>0.000946</td>
</tr>
<tr>
<td>347</td>
<td>10</td>
<td>32</td>
<td>0.001282</td>
</tr>
</tbody>
</table>

После мутации получается следующая популяция:

\[
\begin{align*}
 v'_1 &= [11111000111000001100010101001000110] \\
 v'_2 &= [11111000111000001100010101001000110] \\
 v'_3 &= [1100101101010000110001011001100100] \\
 v'_4 &= [0111101001011011010100110001110101] \\
 v'_5 &= [110000010101001001010110110110110101] \\
 v'_6 &= [01100110110100110000010111001] \\
 v'_7 &= [11111000111000001100010101001000110] \\
 v'_8 &= [11111000111000001100010101001000110] \\
 v'_9 &= [01000010101001010011011101111110] \\
 v'_{10} &= [1000111010111010000001010100000] \\
\end{align*}
\]

Соответствующие десятичные значения переменных \(x_1 \) и \(x_2 \) и значения функции соответствия имеют вид:

\[
\begin{align*}
 f(1.083310,2.874312) &= 28.978472 \\
 f(1.083310,2.874312) &= 28.978472 \\
 f(0.976521,3.778750) &= -8.996062 \\
 f(0.786363,3.802377) &= 9.366723 \\
 f(0.953101,3.191928) &= -23.229745 \\
 f(0.740989,3.926276) &= -2.415740 \\
 f(1.083310,2.874312) &= 28.978472
\end{align*}
\]
\[f(1.083310, 2.874312) = 28.978472 \]
\[f(0.653097, 3.191983) = 20.432394 \]
\[f(0.834511, 2.809232) = -4.138564 \]

Таким образом, завершена одна итерация генетического алгоритма. Проделав 1000 итераций, мы получим наилучшую хромосому в 419-м поколении:

\[v^* = [0100001100010011011001001101101001] \]

\[\text{eval} \left(v^* \right) = f(0.657208, 2.418399) = 31.313555 \]

\[x_1^* = 0.657208 \quad x_2^* = 2.418399 \]

\[f(x_1^*, x_2^*) = 31.313555 . \]

Пример 1.10. Синтез текста. Этот пример прекрасно демонстрирует мощь генетических алгоритмов. Задача синтеза текста заключается в получении фрагмента известной украинской песни

несь Галя воду

из случайно сгенерированного списка букв при помощи генетического алгоритма. Так как для каждой позиции текста возможны 32 различных буквы алфавита, а таких позиций в заданном выражении 12, то вероятность получения необходимой строки случайным способом равна \(\left(\frac{1}{31} \right)^{12} = 1.27 \times 10^{-18} \), т. е. практически нуль.

Для кодирования строки букв будем использовать кодовую таблицу символов ASCII (в операционной системе Windows). Тогда строка несь Галя воду преобразуется в следующую хромосому:

\[[237, 229, 241, 229, 227, 224, 235, 255, 226, 238, 228, 243] \]

Сгенерируем исходную популяцию из 10 случайных фраз:

\[[232, 239, 225, 242, 227, 238, 255, 227, 186, 238, 236, 239] \]
\[[228, 226, 244, 231, 231, 224, 226, 224, 237, 248, 243, 247] \]
\[[252, 241, 243, 228, 228, 225, 246, 225, 234, 186, 230, 246] \]
\[[249, 227, 252, 249, 244, 245, 236, 229, 248, 252, 224, 226] \]
\[[232, 228, 227, 245, 230, 226, 232, 179, 247, 255, 238, 186] \]
Теперь преобразуем эти хромосомы в строки символов и увидим, что получится 10 бессмысленных фраз:

инбтгояжемп
dвфззавануч
ьсуддбибкежц
ышбщхмешьав
жихкхюгхотчи
идгжвиичче
ишэлшлевааьт
ышмйййифгъж
ышмерфгужфут
ышжъхптъяря .

Функция соответствия вычисляется как число правильно отгаданных букв. Например, функция соответствия для строки «инбтгояжемп» равна 2. В табл. 1.2 приведен список хромосом, которые были наилучшими на каждой из 32-х итераций генетического алгоритма.

Таблица 1.2

<table>
<thead>
<tr>
<th>Поколение</th>
<th>Строка</th>
<th>Функция соответствия</th>
<th>Поколение</th>
<th>Строка</th>
<th>Функция соответствия</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>инбтгояжемп</td>
<td>2</td>
<td>17</td>
<td>несечалядгду</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>инбтгояжемп</td>
<td>2</td>
<td>18</td>
<td>несечалядгду</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>инбтгояжемп</td>
<td>2</td>
<td>19</td>
<td>несегалядгду</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>никихгаваньйт</td>
<td>3</td>
<td>20</td>
<td>несегалядгду</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>ндмйрлйджц</td>
<td>5</td>
<td>21</td>
<td>несегалядгду</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>ндмйрлйджц</td>
<td>5</td>
<td>22</td>
<td>несегалядгду</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>ндмйрлйджц</td>
<td>5</td>
<td>23</td>
<td>несегалядгду</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>ндшеъаилвгц</td>
<td>6</td>
<td>24</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>ндшеъаилвгц</td>
<td>6</td>
<td>25</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>ндшеъаилвгц</td>
<td>6</td>
<td>26</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>нисералядгцу</td>
<td>7</td>
<td>27</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>нисералядгцу</td>
<td>7</td>
<td>28</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>нисералядгцу</td>
<td>7</td>
<td>29</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>несегалядгу</td>
<td>8</td>
<td>30</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>несегалядгу</td>
<td>8</td>
<td>31</td>
<td>несегалядоду</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>несегалядгу</td>
<td>8</td>
<td>32</td>
<td>несегалядводу</td>
<td>12</td>
</tr>
</tbody>
</table>
1.3. Нейронные сети

Этот раздел написан по материалам работ [8,12,60]. С дополнительными сведениями по нейронным сетям можно познакомиться в работах [1,4,19,65, 76,78,79,82].

1.3.1. Основные понятия

Проблема машинной имитации человеческих мыслей волнует ученых уже несколько столетий. Более 50 лет назад были созданы первые электронные модели нервных клеток. Кроме того, появлялись много работ по новым математическим моделям и обучающим алгоритмам. Сегодня так называемые нейронные сети представляют наибольший интерес в этой области. Они используют множество простых вычислительных элементов, называемых нейронами, каждый из которых имитирует поведение отдельной клетки человеческого мозга. Принято считать, что человеческий мозг – это естественная нейронная сеть, а модель мозга – это просто нейронная сеть. На рис. 1.9 показана базовая структура такой нейронной сети.

![Diagram of a neural network](image)

Входной слой 1.Внутренний слой 2.Внутренний слой Выходной слой

Рис. 1.9. Базовая структура нейронной сети

Каждый нейрон в нейронной сети осуществляет преобразование входных сигналов в выходной сигнал и связан с другими нейронами. Входные нейроны формируют так называемый интерфейс нейронной сети. Нейронная сеть, показанная на рис. 1.9, имеет слой, принимающий входные сигналы, и слой, генерирующий выходные сигналы. Информация вводится в нейронную сеть через входной слой. Все слои нейронной сети обрабатывают эти сигналы до тех пор, пока они не достигнут выходного слоя.
Задача нейронной сети — преобразование информации требуемым образом. Для этого сеть предварительно обучается. При обучении используются идеальные (эталонные) значения пар «входы-выходы» или «учитель», который оценивает поведение нейронной сети. Для обучения используется так называемый обучающий алгоритм. Ненастроенная нейронная сеть не способна отображать желаемого поведения. Обучающий алгоритм модифицирует отдельные нейроны сети и веса ее связей таким образом, чтобы поведение сети соответствовало желаемому поведению.

1.3.2. Имитация нервных клеток

Исследователи в области нейронных сетей проанализировали множество моделей клеток человеческого мозга. Далее будут рассмотрены лишь те из них, которые наиболее часто используются в промышленных применениях.

Человеческий мозг состоит из более чем 10^{11} нервных клеток, имеющих более 10^{14} взаимосвязей. На рис. 1.10 показана упрощенная схема такого человеческого нейрона. Сама по себе клетка состоит из ядра и внешней электромембраны. Каждый нейрон имеет уровень активации, лежащий в диапазоне между максимумом и минимумом, следовательно, в отличие от булевой логики, существует более чем два уровня активации.

Для увеличения или уменьшения активности данного нейрона другими нейронами существуют так называемые синапсы. Они переносят величину активности от нейрона-отправителя к нейрону-получателю. Если синапс является возбуждающим, то величина активности нейрона-отправителя увеличивает активность нейрона-получателя. Если синапс является тормозящим, то величина активности нейрона-отправителя уменьшает активность нейрона-получателя. Синапсы различаются не только по признаку торможения или возбуждения нейрона-получателя, но также и по суммарному воздействию (синаптическая мощность). Выходной сигнал каждого нейрона передается по так называемому аксону, который заканчивается более чем 10000 синапсами, влияющими на другие нейроны.

Рассмотренная модель нейрона лежит в основе большинства сегодняшних применений нейронной сети. Отметим, что данная модель является лишь очень грубым приближением действительности. На самом деле мы не можем смоделировать даже один единственный человеческий нейрон; это выше человеческих возможностей в моделировании. Следовательно, любая работа, базирующаяся на этой простой модели нейрона, не способна точно имитировать человеческий мозг. Однако многие успешные применения, использующие этот метод, обеспечили успех нейронным сетям, базирующимся на простой модели нейрона.
Рис. 1.10. Упрощенная схема человеческого нейрона.

1.3.3. Математическая модель нейрона

Множество математических моделей нейрона может быть построено на основе простой концепции строения нейрона. На рис. 1.11 показана наиболее общая схема. Так называемая суммирующая функция объединяет все входные сигналы X_i, которые поступают от нейронов-посыльников. Значением такого объединения является взвешенная сумма, где веса w_i представляют собой синаптические мощности. Возбуждающие синапсы имеют положительные веса, а тормозящие синапсы - отрицательные веса. Для выражения нижнего уровня активации нейрона к взвешенной сумме прибавляется компенсация (смещение) Θ.

Рис. 1.11. Простая математическая модель нейрона.
Так называемая функция активации рассчитывает выходной сигнал нейрона Y по уровню активности f. Функция активации обычно является сигмоидной, как показано в правой нижней рамке на рис.1.11. Другими возможными видами функций активации являются линейная и радиально-симметричная функции, показанные на рис.1.12.

![Diagram](image)

Рис. 1.12. Функции активации нейронов:
(а) линейная, (б) радиально-симметрическая

1.3.4. Обучение нейронных сетей

Существует множество способов построения нейронных сетей. Они различаются своей архитектурой и методами обучения.

Первый шаг в проектировании нейронной сети состоит в ее обучении желаемому поведению. Это – фаза обучения. Для этого используется так называемая обучающая выборка или учитель. Учитель – это либо математическая функция, либо лицо, которое оценивает качество поведения нейронной сети. Поскольку нейронные сети в основном используются в сложных применениях, где нет хороших математических моделей, то обучения производится с помощью обучающей выборки, то есть эталонных пар «входы-выходы».

После завершения обучения нейронная сеть готова к использованию. Это – рабочая фаза. В результате обучения нейронная сеть будет вычислять выходные сигналы, близкие к эталонным данным при соответствующих входных сигналах. При промежуточных входных сигналах сеть аппроксимирует необходимые выходные величины. Поведение нейронной сети в рабочей фазе детерминировано, то есть для каждой комбинации входных сигналов на выходе всегда будут одни и те же сигналы. На протяжение рабочей фазы нейронная сеть не обучается. Это очень важно для большинства технических применений, поскольку система не будет стремиться к экстремальному поведению.

Собаки Павлова. Как же обучается нейронная сеть? Как правило, это демонстрируется на примере известных собак Павлова. Когда он показывал со-
бакам еду, у них выделялась слюна. В собачьих клетках устанавливались звоночки. Когда звонил звоночек, у собак не выделялась слюна, т. е. они не видели связи между звоночком и едой. Тогда Павлов стал обучать собак иначе, каждый раз используя звоночек при предъявлении пищи. После этого, даже при отсутствии еды, наличие звоночка вызывало у собак слюну.

На рис. 1.13 показано, как простая модель нейрона может быть представлена на примере собаки Павлова. Имеется два входных нейрона: один из них соответствует тому, что собака видит пищу, другой — наличию звонка. Оба входных нейрона имеют связи с выходным нейроном. Эти связи соответствуют синапсам, а толщина линий — весам синапсов. Перед обучением собака реагирует лишь на еду, но не на звонок. Следовательно, линия между левым входным и выходным нейронами является жирной, в то время как линия между правым входным и выходным нейронами является очень тонкой.

<table>
<thead>
<tr>
<th>До обучения</th>
<th>После обучения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Еда</td>
<td>Еда</td>
</tr>
<tr>
<td>Звоночек</td>
<td>Звоночек</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

При обучении увеличивается вес данного синапса

Выделение слюны Выделение слюны

Рис. 1.13. Принцип эксперимента Павлова над собаками.

Правило обучения Хебба. Совершенно очевидно, что звонок при предъявлении пищи вырабатывает ассоциацию между ним и едой. Следовательно, правая линия также становится толще, поскольку увеличивается вес синапса. На основании этих наблюдений Хебб в 1949 году предложил следующее обучающее правило:

Увеличивать вес активного входа нейрона, если выход этого нейрона должен быть активным.

Уменьшить вес активного входа нейрона, если выход этого нейрона не должен быть активным.

Это правило, названное правилом Хебба, предшествует всем обучающим правилам, включая наиболее используемый в настоящее время метод обратного распространения ошибки (error backpropagation algorithm).
1.3.5. Метод обратного распространения ошибки

Этот метод обучения многослойной нейронной сети называется обобщенным дельта-правилом или правилом error backpropagation (обратного распространения ошибки). Метод был предложен в 1986 г. Руммельхартом, Макклеландом и Вильямсом. Это ознаменовало возрождение интереса к нейронным сетям, который стал угасать в начале 70-х годов. Позже было обнаружено, что Паркер опубликовал подобные результаты в 1982 г., а Вержбос выполнил такую работу в 1984 г. Однако такова природа науки, что ученые, работающие независимо друг от друга, не могут использовать все то прогрессивное, что есть в других областях, и поэтому часто случается повторение уже достигнутого. Однако статья Руммельхarta и др., опубликованная в журнале Nature (1986), является до сих пор наиболее цитируемой в этой области.

Обучение сети начинается с предъявления образа и вычисления соответствующей реакции. Сравнение с желаемой реакцией дает возможность изменять веса связей таким образом, чтобы сеть на следующем шаге могла выдавать более точный результат. Обучающее правило обеспечивает настройку весов связей. Информация о выходах сети является исходной для нейронов предыдущих слоев. Эти нейроны могут настраивать веса своих связей для уменьшения погрешности на следующем шаге.

Когда мы предъявляем ненастроенной сети входной образ, она будет выдавать некоторый случайный выход. Функция ошибки представляет собой разность между текущим выходом сети и идеальным выходом, который необходимо получить. Для успешного обучения сети требуется приблизить выход сети к желаемому выходу, т.е. последовательно уменьшать величину функции ошибки. Это достигается настройкой межнейронных связей. Обобщенное дельта-правило обучает сеть путем вычисления функции ошибки для заданного входа с последующим ее обратным распространением (вот откуда название!) от каждого слоя к предыдущему. Каждый нейрон в сети имеет свои веса, которые настраиваются, чтобы уменьшить величину функции ошибки. Для нейронов выходного слоя известны их фактические и желаемые значения выходов. Поэтому настройка весов связей для таких нейронов является относительно простой. Однако для нейронов предыдущих слоев настройка не столь очевидна. Интуитивно ясно, что нейроны внутренних слоев, которые связаны с выходами, имеющими большую погрешность, должны изменять свои веса значительно сильнее, чем нейроны, соединенные с почти корректными выходами. Другими словами, веса данного нейрона должны изменяться прямо пропорционально ошибке тех нейронов, с которыми данный нейрон связан. Вот почему обратное распространение этих ошибок через сеть позволяет корректно настраивать веса связей между всеми слоями. В этом случае величина функции ошибки уменьшается и сеть обучается.

Основные соотношения метода обратного распространения ошибки получены в [76] при следующих обозначениях:
\[E_p = \frac{1}{2} \sum_j \left(t_{pj} - o_{pj} \right)^2 \]

(1.1)

Множитель \(\frac{1}{2} \) вводится для упрощения операции дифференцирования.

Активация каждого нейрона \(j \) для образа \(p \) записывается в виде взвешенной суммы:

\[net_{pj} = \sum_i w_{ij} o_{pi} \]

(1.2)

Выход каждого нейрона \(j \) является значением пороговой функции \(f_j \), которая активизируется взвешенной суммой. В многослойной сети это обычно симмоидная функция, хотя может использоваться любая непрерывно дифференцируемая монотонная функция:

\[o_{pj} = f_j \left(net_{pj} \right) \]

(1.3)

Можно записать по правилу цепочки:

\[\frac{\partial E_p}{\partial w_{ij}} = \frac{\partial E_p}{\partial net_{pj}} \frac{\partial net_{pj}}{\partial w_{ij}} \]

(1.4)

Для второго сомножителя в (1.4), используя (1.2), получаем:

\[\frac{\partial net_{pj}}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \sum_k w_{kj} o_{pk} = \sum_k \frac{\partial w_{jk}}{\partial w_{ij}} o_{pk} = o_{pi}, \]

(1.5)
поскольку \(\frac{\partial w_{kj}}{\partial w_{ij}} = 0 \), за исключением случая \(k = i \), когда \(\partial w_{ij} \) равна единице.

Изменение ошибки как функция изменения входов нейрона определяется так:

\[
- \frac{\partial E}{\partial net_{pj}} = \delta_{pj} .
\]
(1.6)

Поэтому (1.4) преобразуется к виду:

\[
- \frac{\partial E}{\partial w_{ij}} = \delta_{pj} \cdot \delta_{pi} .
\]
(1.7)

Следовательно, уменьшение величины \(E_p \) означает изменение веса пропорционально \(\delta_{pj} \cdot \delta_{pi} \):

\[
\Delta w_{ij} = \eta \delta_{pj} \cdot \delta_{pi} .
\]
(1.8)

где \(\eta \) - коэффициент пропорциональности, влияющий на скорость обучения.

Теперь нам необходимо знать значение \(\delta_{pj} \) для каждого нейрона. Используя (1.6) и правило цепочки, можно записать:

\[
\delta_{pj} = - \frac{\partial E_p}{\partial net_{pj}} = - \frac{\partial E_p}{\partial o_{pj}} \cdot \frac{\partial o_{pj}}{\partial net_{pj}} .
\]
(1.9)

Исходя из (1.3), записываем второй сомножитель в (1.9):

\[
\frac{\partial o_{pj}}{\partial net_{pj}} = f'_{pj} \left(net_{pj} \right) .
\]
(1.10)

Теперь рассмотрим первый сомножитель в (1.9). Согласно (1.1), нетрудно получить:

\[
\frac{\partial E_p}{\partial o_{pj}} = - \left(t_{pj} - o_{pj} \right) .
\]
(1.11)
Посему

\[\delta_{pj} = f_j' \left(net_{pj} \right) \left(t_{pj} - o_{pj} \right). \]

(1.12)

Последнее соотношение является полезным для выходных нейронов, поскольку для них известны целевые и действительные значения выходов. Однако для нейронов внутренних слоев целевые значения выходов не известны.

Таким образом, если нейрон \(j \) - не выходной нейрон, то снова используя правило цепочки, а также соотношения (1.2) и (1.6), можно записать:

\[\frac{\partial E_p}{\partial o_{pj}} = \sum_k \frac{\partial E_p}{\partial net_{pk}} \frac{\partial net_{pk}}{\partial o_{pj}} = \sum_k \frac{\partial E_p}{\partial net_{pk}} \frac{\partial}{\partial o_{pj}} \sum_i w_{ik} o_{pi} , \]

(1.13)

\[\sum_k \frac{\partial E_p}{\partial net_{pk}} \frac{\partial}{\partial o_{pj}} \sum_i w_{ik} o_{pi} = - \sum_k \delta_{pk} w_{jk} , \]

(1.14)

Здесь сумма по \(i \) исчезает, поскольку частная производная не равна нулю лишь в одном случае, так же как и в (1.5). Подставив (1.14) в (1.9), получим окончательное выражение:

\[\delta_{pj} = f_j' \left(net_{pj} \right) \sum_k \delta_{pk} w_{jk} . \]

(1.15)

Уравнения (1.12) и (1.15) составляют основу метода обучения многослойной сети.

Преимущество использования сигмоидной функции в качестве нелинейного элемента состоит в том, что она очень напоминает шаговую функцию и, таким образом, может демонстрировать поведение, подобное естественному нейрону. Сигмоидная функция определяется как

\[f\left(net \right) = \frac{1}{1 + e^{-k \cdot net}} \]

и имеет диапазон \(0 < f\left(net \right) < 1 \). \(k \) – положительная константа, влияющая на растяжение функции: увеличение \(k \) сжимает функцию, а при \(k \to \infty \) функция \(f\left(net \right) \) приближается к функции Хевисайда. Этот коэффициент может использоваться в качестве параметра усиления, поскольку для слабых входных сигна-
лов угол наклона будет довольно крутым и функция будет изменяться довольно быстро, производя значительное усиление сигнала. Для больших входных сигналов угол наклона и, соответственно, усиление будут намного меньше. Это означает, что сеть может принимать большие сигналы и при этом оставаться чувствительной к слабым изменениям сигнала.

Однако главный смысл в использовании данной функции состоит в том, что она имеет простую производную, и это значительно облегчает применение backpropagation-метода. Если выход нейрона \(o_{pj} \) задается как

\[
o_{pj} = f(\text{net}) = \frac{1}{1 + e^{-k \cdot \text{net}}},
\]

то производная по отношению к данному нейрону \(f'(\text{net}) \) вычисляется так:

\[
f'(\text{net}) = \frac{ke^{-k \cdot \text{net}}}{\left(1 + e^{-k \cdot \text{net}}\right)^2} = \frac{kf(\text{net})}{1 - f(\text{net})} = \frac{ko_{pj} \left(1 - o_{pj}\right)}{1 - o_{pj}},
\]

t. е. является простой функцией от выходов нейронов.

1.3.6. Алгоритм настройки нейронной сети

Ниже приведен алгоритм настройки многослойной нейронной сети с использованием backpropagation-правила обучения. Для его применения необходимо, чтобы нейрон был непрерывно дифференцируемой нелинейной пороговой функцией активации. Пусть это будет сигмоидная функция

\[
f(\text{net}) = \frac{1}{1 + e^{-k \cdot \text{net}}},
\]

поскольку она имеет простую производную.

Алгоритм обучения состоит в следующем.

1°. Задать начальные значения весов и порогов каждого нейрона.

Всем весам и порогам присваиваются малые случайные значения.

2°. Представить входной и выходной образы из обучающей выборки.

Пусть

\[
X_p = \{x_0, x_1, ..., x_{n-1}\} - \text{текущий входной образ},
\]

38
Таким образом, выходной образ из обучающей выборки, где \(n \) — число нейронов входного слоя, \(m \) — число нейронов выходного слоя. При этом \(w_0 = -\Theta \) (смещение) и \(x_0 = 1 \).

При решении задач классификации образ \(T_p \) может состоять из нулей, кроме одного элемента, равного 1, который и будет определять класс текущего входного образа.

3°. Рассчитать действительные значения выходов.

Значения выходов нейронов каждого слоя рассчитываются как

\[
y_{pj} = f \left[\sum_{i=0}^{n-1} w_i x_i \right]
\]

и передаются на входы нейронов следующего слоя. Выходные значения нейронов выходного слоя равны \(o_{pj} \).

4°. Провести модификацию весов связей.

Начиная от выходного слоя и, двигаясь в обратном направлении, необходимо изменять вес связей следующим образом:

\[
w_{ij}(t+1) = w_{ij}(t) + \eta \delta_{pj} o_{pj},
\]

где \(w_{ip} \) — вес связи между \(i \)-м и \(j \)-м нейронами на \(t \)-м шаге;

\(\eta \) — скорость обучения;

\(\delta_{pj} \) — скорость изменения ошибки для нейрона \(j \) при предъявлении образа \(p \).

Для нейронов выходного слоя

\[
\delta_{pj} = k_o p_j \left(1 - o_{pj} \right) \left(t_{pj} - o_{pj} \right),
\]

для нейронов внутренних слоев

\[
\delta_{pj} = k_o p_j \left(1 - o_{pj} \right) \sum_k \delta_{pk} w_{jk},
\]

где под знаком суммы стоят величины, относящиеся к нейронам следующего слоя.
МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ

2.1. Лингвистические правила в принятии решений

В этом разделе показывается, что различные по физическому смыслу задачи принятия решений, возникающие в управлении, прогнозировании, диагностике, и других областях кибернетики, сводятся к идентификации нелинейных объектов с одним выходом и многими входами. Особенность рассматриваемых задач заключается в том, что в каждой из них взаимосвязь переменных "вход-выход" задается в виде экспертных высказываний: ЕСЛИ <входы>, ТО <выход>, представляющих собой нечеткие базы знаний.

2.1.1. Автоматическое управление

Типичным представителем задач этого класса является управление контейнерным краном. Эта задача состоит в построении регулятора, который осуществляет погрузку контейнеров на корабль с железнодорожной платформы или обратно (рис. 2.1). Во время погрузки кран подбирает контейнер с платформы при помощи гибких кабелей, присоединенных к башне. После этого башня крана передвигается по горизонтальной колее. При движении контейнер начинает колебаться в воздухе. Колебания не создают проблем при транспортировке, но затрудняют и задерживают остановку контейнера при его погрузке на платформу. Поскольку время погрузки напрямую влияет на себестоимость, то возникает задача доставки контейнера к цели за минимальное время.

Попытки автоматизировать управление краном предпринимались при помощи ПИД-регуляторов. Однако, применение таких регуляторов, а также различных моделей классической теории управления оказывается неэффективным из-за большой нелинейности задачи, а также трудностей учета различных возмущений, таких как порывы ветра и др [82].
С другой стороны, с этой, непростой для классической теории управления задачей, легко справляется опытный оператор-крановщик, не составляя и не решающая дифференциальных уравнений движения груза. Наблюдая за деятельностью оператора, можно заметить, что он управляет краном на основе следующих рассуждений.

Подняв контейнер, оператор запускает двигатель со средней скоростью, чтобы определить каким будет колебание контейнера. В зависимости от реакции, задается такая скорость двигателя, чтобы контейнер был слегка позади башни крана. В этой позиции обеспечивается наибольшая скорость движения при минимальном колебании груза. Приближаясь к цели, оператор уменьшает мощность двигателя или даже прилагает отрицательную мощность для торможения. Поэтому контейнер уходит чуть-чуть вперед башни крана. После этого башня крана достигает цели и скорость, а вместе с ней и колебания контейнера, быстро уменьшаются до нуля.

Приведенные выше рассуждения нетрудно преобразовать в систему высказываний ЕСЛИ <входы>, ТО <выход>, в которых входные и выходные переменные оцениваются словесными (нечеткими) термами.
Входные переменные:
- расстояние между башней крана и целью (большое, среднее, малое, нулевое, груз за целью),
- угол между контейнером и башней крана (большой положительный, малый положительный, нулевой, малый отрицательный, большой отрицательный).
Выходная переменная:
• мощность двигателя (большая, средняя, нулевая, средняя отрицательная).

С использованием этих переменных и их лингвистических оценок можно записать набор правил, которые выражают алгоритм деятельности опытного оператора-крановщика [82]:

ЕСЛИ расстояние большое И угол нулевой,
ТО мощность двигателя средняя;

ЕСЛИ расстояние большое И угол малый отрицательный,
ТО мощность двигателя большая;

ЕСЛИ расстояние большое И угол большой отрицательный,
ТО мощность двигателя средняя;

ЕСЛИ расстояние среднее И угол малый отрицательный,
ТО мощность двигателя средняя;

ЕСЛИ расстояние нулевое И угол нулевой,
ТО мощность двигателя нулевая.

2.1.2. Ситуационное управление

Типичным представителем задач этого класса является управление светофором. Безуспешность попыток решения этой задачи с помощью классической теории управления подробно обсуждается в [29]. Однако опытный оператор-регулировщик успешно управляет перекрестком, не формализуя объект управления с помощью различного рода уравнений. Идея переноса опыта человека, осуществляющего управление, на техническое устройство может быть положена в основу создания автоматического контроллера.

В [25] рассматривается перекресток с односторонним движением. Автоматический контроллер должен включать зеленый свет таким образом, чтобы время задержки транспортного средства на перекрестке было минимально. Весь временной промежуток управления в 57 секунд разбивается на 5 временных интервалов по 7, 17, 27, 37, 47 секунд, соответственно. В каждый десятисекундный интервал времени изменяется алгоритм управления, использующий правила ЕСЛИ <входы>, TO <выход>.

Входные переменные:
• время от начала десятисекундного интервала (очень короткое, короткое, среднее, длительное, очень длительное),
• количество транспортных средств, прибывших на перекресток справа (почти нет, очень мало, мало, среднее, много, слишком много),
• длина очереди (очень маленькая, маленькая, незначительная, сред-
ня, длинная, очень длинная).
Выходная переменная:
• время до отключения зеленого света светофора (очень короткое, короткое, среднее, длительное, очень длительное).
Фрагмент нечеткой базы знаний, связывающей входные и выходную переменные выглядит следующим образом [25]:

ЕСЛИ время очень короткое И количество почти нет И длина любая,
ТО время до отключения зеленого света очень короткое;

ЕСЛИ время короткое И количество очень мало И длина очень маленькая,
ТО время до отключения зеленого света короткое;

ЕСЛИ время среднее И количество мало И длина очень маленькая,
ТО время до отключения зеленого света среднее;

ЕСЛИ время длительное И количество среднее И длина очень маленькая,
ТО время до отключения зеленого света длительное.

2.1.3. Медицинская диагностика

Одной из типичных задач этого класса является дифференциальная диагностика ишемической болезни сердца (ИБС). Суть задачи состоит в отнесении больного с заданными параметрами состояния к одному из шести классов ИБС, принятых в клинической практике [40].

Входные переменные - это параметры состояния больного:
• возраст,
• инструментальная опасность, которая определяется параметрами:
 • двойное произведение (ДП) пульса на артериальное давление,
 • толерантность к физической нагрузке,
 • прирост ДП на один кг веса тела больного,
 • прирост ДП на один кГм нагрузки,
 • максимальное потребление кислорода на один кг веса тела больного,
 • прирост ДП в ответ на субмаксимальную нагрузку
• биохимическая опасность которая определяется параметрами:
 • аденозинтрифосфорная кислота - АТФ,
 • аденозиндифосфорная кислота - АДФ,
 • аденозинмонофосфорная кислота - АМФ,
 • коэффициент фосфорилирования,
 • коэффициент отношения содержания молочной и пировино-
градной кислот.
Выходная переменная:
• диагноз больного, который принадлежит к одному из шести классов тяжести ИБС:
 1- нейроциркуляторная дистония (НЦД) легкой степени,
 2-НЦД средней степени,
 3-НЦД тяжелой степени,
 4-стенокардия первого функционального класса,
 5-стенокардия второго функционального класса,
 6-стенокардия третьего функционального класса.

Фрагмент иерархической базы знаний, связывающей диагноз с параметрами состояния больного, выглядит следующим образом (по данным В.М. Шеверды):

ЕСЛИ возраст больного низкий
 И инструментальная опасность низкая
 И биохимическая опасность низкая,
 ТО диагноз - НЦД легкой степени;

ЕСЛИ ДП пульса на артериальное давление высокое
 И толерантность к физической нагрузке высокая
 И прирост ДП на один кг веса тела больного высокий
 И прирост ДП на один кгм нагрузки низкий
 И максимальное потребление кислорода на один кг веса тела больного высокое
 И прирост ДП в ответ на субмаксимальную нагрузку высокий,
 ТО инструментальная опасность низкая;

ЕСЛИ АТФ высокая
 И АДФ высокая
 И АМФ высокая
 И коэффициент фосфорилирования высокий
 И коэффициент отношения молочной и пировиноградной кислот высокий,
 ТО биохимическая опасность низкая.

2.1.4. Многокритериальная оценка

Типичным примером такой задачи является экспертиза различных проектов, включая инновационные [39]. Суть задача состоит в отнесении проекта к одному из классов качества, которые используются для принятия решения о финансировании или отклонении проекта.

Входные переменные -это частные показатели качества, оцениваемые
экспертом на основе информации, представленной заявителем проекта:

- уровень предприятия-заявителя, который определяется параметрами:
 - уровень руководителя, оцениваемый параметрами:
 - коммуникабельность,
 - надежность,
 - образование,
 - опыт работы руководителя,
 - комфортность;
 - активы предприятия,
 - пассивы предприятия,
 - балансовая прибыль предприятия,
 - дебиторская задолженность предприятия,
 - кредиторская задолженность предприятия;
- технико-экономический уровень проекта, который оценивается параметрами:
 - масштаб проекта,
 - новизна проекта,
 - приоритетность направления,
 - степень проработки,
 - правовая защищенность,
 - экологический уровень,
- уровень ожидаемых продаж;
- финансовый уровень предприятия-заявителя, который определяется параметрами:
 - соотношение собственных средств к средствам инновационного фонда,
 - возвратаемость инновационных средств.

Выходная переменная:

- интегральная оценка качества проекта, используемая для принятия решения (1-финансировать, 2-финансировать после доработки, 3-финансировать при наличии средств, 4-отклонить).

Для оценки входных переменных удобно использовать единую систему качественных термов: очень низкий, низкий, ниже среднего, средний, выше среднего, высокий, очень высокий. Тогда фрагмент иерархической базы знаний, связывающий выходную и входные переменные нетрудно записать в следующем виде (по данным Н.И. Петренко):

ЕСЛИ уровень предприятия-заявителя выше среднего
 И технико-экономический уровень проекта выше среднего
 И уровень ожидаемых продаж высокий
 И финансовый уровень предприятия-заявителя средний,
ТО решение - финансировать после доработки;
ЕСЛИ уровень руководителя высокий
 И активы высокие
 И пассивы высокие
 И балансовая прибыль средняя
 И дебиторская задолженность выше средней
 И кредиторская задолженность низкая,
ТО уровень предприятия-заявителя высокий;
ЕСЛИ коммуникабельность выше среднего
 И надежность высокая
 И образование выше среднего
 И опыт работы руководителя высокий
 И комфортность средняя,
ТО уровень руководителя выше среднего;
ЕСЛИ масштаб проекта высокий
 И новизна проекта высокая
 И приоритетность направления высокая
 И степень проработки высокая
 И правовая защищенность высокая
 И экологический уровень высокий,
ТО технико-экономический уровень проекта выше среднего;
ЕСЛИ соотношение собственных средств к средствам инновационного
 фонда выше среднего
 И возвратаемость инновационных средств высокая,
ТО финансовый уровень предприятия-заявителя выше среднего.

2.1.5. Многофакторный анализ

Проиллюстрируем задачу многофакторного анализа на примере технологического процесса биоконверсии [41]. В ходе выполнения такого процесса осуществляется преобразование отходов сельскохозяйственного производства в биогаз, который используется в дальнейшем как топливо. При проектировании и управлении процессом необходимо прогнозировать количество получаемого биогаза в зависимости от различных сырьевых, технологических и аппаратурных факторов.
Входные переменные - это факторы, влияющие на выход биогаза:
• качество исходного сырья, зависящее от факторов:
 • источник сырья (дойные коровы, бычки, свиньи, куры, индюки),
 • влажность сырья (низкая, нормальная, высокая),

46
• гранулометрический состав (измельченное, не измельчено),
• количество летучих жидких кислот (норма, много),
• водородный показатель (кислый, нормальный, щелочной);
• качество технологического процесса, зависящее от факторов:
 • время сбраживания (малое, нормальное, повышенное),
 • температура сбраживания (психодофильная, мезофильная, термофильная),
 • стабильность температурного режима (высокая, удовлетворительная, низкая),
 • качество перемешивания (без перемешивания, минимальное, нормальное),
 • концентрация метаногенной флоры (низкая, средняя, высокая),
 • доза загрузки реактора (низкая, средняя, высокая);
• качество аппаратуры, зависящее от факторов:
 • тип бioreактора (примитивный, традиционный, модифицированный),
 • степень иммобилизации (незначительная, достаточная, высокая),
 • качество вспомогательного оборудования (низкое, среднее, высокое),
 • качество аппаратно-схемного оформления (низкое, среднее, высокое).

Выходная переменная:
• объем биогаза, на выходе процесса который оценивается на семи уровнях: очень высокий, высокий, выше среднего, средний, ниже среднего, низкий, очень низкий.

Фрагмент нерархической базы знаний, связывающей количество получаемого биогаза с влияющими факторами выглядит так (по данным Е.П. Ларюшкина):

ЕСЛИ качество исходного сырья низкое
 И качество технологического процесса низкое
 И качество аппаратуры низкое,
 ТО объем биогаза, на выходе очень низкий.

ЕСЛИ источник сырья дойные коровы
 И влажность сырья низкая
 И гранулометрический состав не измельчено
 И количество летучих жидких кислот много
 И водородный показатель кислый,
 ТО качество исходного сырья низкое.
ЕСЛИ время сбраживания малое
 И температура сбраживания термофильная
 И стабильность температурного режима удовлетворительная
 И качество перемешивания минимальное
 И концентрация метаногенной флоры высокая
 И доза загрузки реактора высокая,
ТО качество технологического процесса высокое.

ЕСЛИ тип биореактора традиционный
 И степень иммобилизации высокая
 И качество вспомогательного оборудования среднее
 И качество аппаратно-схемного оформления высокое,
ТО качество аппаратуры высокое.

2.2. Принятие решений и идентификация

Все рассмотренные выше различные по содержанию задачи принятия решений в управлении, диагностике, многокритериальной оценке и многофакторном анализе можно рассматривать как задачи идентификации, обла дающие следующими общими свойствами (табл. 2.1):
 1) для принятия решения необходимо установить зависимость между входными и выходной переменной
 2) выходная переменная ассоциируется с объектом идентификации, т.е. с видом принимаемого решения
 3) входные переменные ассоциируются с параметрами состояния объекта идентификации.
 4) выходная и входные переменные могут иметь количественные и качественные оценки.
 5) структура взаимосвязи между выходной и входными переменными описывается правилами ЕСЛИ <входы>, ТО <выход>, использующими качественные оценки переменных и представляющими собой нечеткие базы знаний.

2.3. Принципы лингвистического моделирования

Сформулируем ряд принципов которые будут использоваться нами в разработке метода идентификации нелинейных объектов на основе нечетких баз знаний. Эти принципы являются обобщением и дальнейшим развитием аналогичных принципов, сформулированных для принятия диагностических
<table>
<thead>
<tr>
<th>Класс задач</th>
<th>Пример</th>
<th>Входные переменные</th>
<th>Выходная переменная (объект идентификации)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Автоматическое управление</td>
<td>Управление контейнерным краном</td>
<td>• расстояние, • угол</td>
<td>• мощность двигателя</td>
</tr>
<tr>
<td>Ситуационное управление</td>
<td>Управление светофором</td>
<td>• время от начала интервала • количество машин • длина очереди</td>
<td>• время до отключения зеленого света</td>
</tr>
<tr>
<td>Медицинская диагностика</td>
<td>Дифференциальная диагностика ишемической болезни сердца</td>
<td>параметры состояния больного: • возраст • давление • др.</td>
<td>• тяжесть ишемической болезни сердца</td>
</tr>
<tr>
<td>Многокритериальная оценка</td>
<td>Экспертиза проектов</td>
<td>частные показатели качества проекта: • уровень предприятия-заявителя • технико-экономический уровень проекта • др.</td>
<td>• решение о финансировании</td>
</tr>
<tr>
<td>Многофакторный анализ</td>
<td>Прогнозирование выходного показателя технологического процесса</td>
<td>факторы влияющие на выход биогаза: • качество исходного сырья • качество установки • др.</td>
<td>• выход биогаза (функция отклика)</td>
</tr>
</tbody>
</table>
решений в работах [34,67].

1) Принцип лингвистичности входных и выходных переменных. В соответствии с этим принципом, входы объекта и его выход рассматриваются как лингвистические переменные, которые оцениваются качественными термами (терм - от англ. term - называть).

Согласно Л. Заде [15], лингвистической переменной называется такая переменная, значения которой являются слова или предложения естественного языка, т.е. качественные термы. Например, в задаче управления краном, которая рассмотрена в разделе 1.1.1, входными лингвистическими переменными являются:

РАССТОЯНИЕ (большое, среднее, малое, нулевое, груз за целью);
УГОЛ (большой положительный, малый положительный, нулевой, малый отрицательный, большой отрицательный),
а выходной переменной служит:
МОЩНОСТЬ ДВИГАТЕЛЯ (большая, средняя, нулевая, средняя отрицательная);

Используя понятие функции принадлежности, каждый из термов, оценивающих лингвистическую переменную, можно формализовать в виде нечеткого множества, заданного на соответствующем универсальном множестве.

2) Принцип формирования структуры зависимости "вход-выход" в виде нечеткой базы знаний. Нечеткая база знаний представляет собой совокупность правил ЕСЛИ <входы>, ТО <выход>, которые отражают опыт эксперта и его понимание причинно-следственных связей в рассматриваемой задаче принятия решения (управления, диагностики, прогнозирования и др.).

Примером экспертного правила из нечеткой базы знаний в задаче управления краном служит следующее высказывание:

ЕСЛИ расстояние большое И угол нулевой,
ТО мощность двигателя средняя.

Особенность подобных высказываний состоит в том, что их адекватность не изменяется при незначительных колебаниях условий эксперимента. Поэтому формирование нечеткой базы знаний можно трактовать как аналог этапа структурной идентификации [53,54], на котором строится грубая модель объекта с параметрами, подлежащими настройке. В данном случае настройке подлежат формы функций принадлежности нечетких термов, с помощью которых оцениваются входы и выходы объекта.

Кроме того, совокупность правил ЕСЛИ-ТО можно рассматривать как набор экспертных точек в пространстве «входы-выходы». Применение аппарата нечеткого логического вывода позволяет восстанавливать по этим точкам многомерную поверхность, которая позволяет получать значения выхода при различных комбинациях значений входных переменных.
3) Принцип иерархичности баз знаний.
Использование этого принципа позволяет преодолеть «проклятие размерности». При большом числе входных переменных построение системы выражений о неизвестной зависимости «входы-выход» становится затруднительным. Это обусловлено тем, что в оперативной памяти человека одновременно может удерживаться не более 7 ± 2 понятий-признаков [64]. В связи с этим целесообразно провести классификацию входных переменных и по ней построить дерево вывода, определяющее систему вложенных друг в друга выражений-знаний меньшей размерности. Пример такого дерева для 9-ти входных переменных показан на рис. 2.2.

![Diagram](image)

Рис. 2.2. Пример дерева вывода

Из этого примера видно, что знания вида

$$d = d(x_1, x_2, ..., x_9),$$

связывающие входы $x_1 \div x_9$ с выходом d, заменяются последовательностью постановок:

$$d = d(y_1, z),$$

$$y_1 = y_1(x_1, x_2, x_3),$$

$$z = z(y_2, y_3),$$

51
\[y_2 = y_2 \left(x_4, x_5, x_6 \right), \quad y_3 = y_3 \left(x_7, x_8, x_9 \right), \]

где \(y_1, y_2, y_3, z \) — промежуточные выходы, рассматриваемые как лингвистические переменные.

За счет принципа иерархичности можно учитывать практически неограниченное число входных переменных, влияющих на оценку выходной переменной. При построении дерева вывода необходимо стремиться к тому, чтобы число аргументов (входных стрелок) в каждом узле дерева удовлетворяло правилу \(7 \pm 2 \).

Целесообразность по уровневого представления экспертных знаний обусловлена не только естественной иерархичностью объектов идентификации, но и необходимостью учета новых переменных по мере накопления знаний об объекте.

4) П р и н ц и п т е р м о мет р а в о ц е к е к а ч е ст в ен ных п е р е м е н ных. Суть этого принципа состоит в том, что экспертная оценка некоторой переменной осуществляется путем закрашивания части шкалы (рис. 2.3), левая и правая границы которой соответствуют наименьшему и наибольшему уровням рассматриваемой переменной.

\[
\begin{array}{ccc}
\text{минимальный уровень} & \text{средний уровень} & \text{максимальный уровень} \\
\bar{u} & u^* & u
\end{array}
\]

Рис. 2.3. Оценка переменной \(u \) по принципу термометра

Принцип термометра удобно применять в тех случаях, когда эксперт не в состоянии оценить некоторую переменную ни числом, ни качественным термом, а лишь интуитивно ощущает ее уровень. Удобство такого подхода состоит в том, что он позволяет рассматривать различные по своей природе лингвистические переменные на едином универсальном множестве \(U = \left[\bar{u}, u \right] \).

5) П р и н ц и п д в у х э т а т н о й н а с т р о й к и н е ч е т к и х баз знаний. В соответствии с этим принципом, построение модели нелинейного объекта осуществляется в два этапа (рис. 2.4), которые по аналогии с классическими методами [53-55] можно считать этапами структурной и параметрической идентификации. Настраиваемыми параметрами являются веса нечетких правил ЕСЛИ-ТО и формы функций принадлежности.

Первый этап является традиционным для технологии нечетких экспертных систем [84]. На нем осуществляется формирование и грубая настройка мо-
дели объекта путем построения базы знаний по доступной экспертной информации. Для грубой настройки весов правил и форм функций принадлежности применяется модифицированный метод парных сравнений Саати, предложенный в [75].

Рис. 2.4. Этапы настройки нечеткой базы знаний

Чем выше профессиональный уровень эксперта, тем выше адекватность нечеткой модели, построенной на этапе грубой настройки. Эта модель названа чистой экспертной системой, поскольку для ее построения используется только экспертная информация. Однако, никто не может гарантировать совпадение результатов нечеткого логического вывода (теория) и экспериментальных данных. Поэтому необходим второй этап, на котором осуществляется тонкая настройка нечеткой модели путем ее обучения по экспериментальным данным.
Суть этапа тонкой настройки состоит в подборе таких весов нечетких правил ЕСЛИ-ТО и таких параметров функций принадлежности, которые минимизируют различие между желаемым (экспериментальным) и модельным (теоретическим) поведением объекта.

Этап тонкой настройки формулируется как задача нелинейной оптимизации, которая может решаться различными методами, среди которых наиболее универсальным является наискорейший спуск [10]. Однако, при большом количестве входных переменных и нечетких термов в базе знаний, применение метода наискорейшего спуска требует поиска минимума из разных начальных точек, что существенно увеличивает затраты машинного времени. Поэтому нами предлагается тонкая настройка нечеткой базы знаний с применением генетических алгоритмов оптимизации [64]. Эти алгоритмы являются аналогом случайного поиска [30], который ведется одновременно из разных начальных точек, что сокращает время поиска оптимальных параметров нечеткой модели.
3.1. Формализация исходной информации

Идея, лежащая в основе формализации причинно-следственных связей между переменными «входы-выходы», состоит в описании этих связей на естественном языке с применением теории нечетких множеств и лингвистических переменных. Цель настоящего раздела состоит во введении основных формализмов, необходимых для определения нечетких баз знаний, являющейся носителем экспертной информации. В основу этой главы положена работа [34].

3.1.1. Входы и выходы объекта

Нами рассматривается объект с одним выходом и n входами вида:

$$y = f_y \left(x_1, x_2, ..., x_n \right)$$ \ (3.1)

где y - выходная переменная; $x_1, x_2, ..., x_n$ - входные переменные.

Переменные $x_1, x_2, ..., x_n$ и y могут быть количественными и качественными.

Примерами количественных переменных являются:

Примером переменной, для которой не существует естественной количественной шкалы, является УРОВЕНЬ СТРЕССА ОПЕРАТОРА, который может определяться качественными термами (низкий, средний, высокий) или измеряться в искусственных шкалах, например, по 5-бальной, 10-бальной, ..., 100-бальной системах.

Для количественных переменных предполагаются известными области изменения.
\[U_i = \left[\overline{x_i}, \underline{x_i} \right], \quad i = 1, n \]
(3.2)

\[Y = \left[\overline{y}, \underline{y} \right], \]
(3.3)

где \(\underline{x_i} \), \(\overline{x_i} \) - нижнее (верхнее) значение входной переменной \(x_i \), \(i = 1, n \);
\(\underline{y} \), \(\overline{y} \) - нижнее (верхнее) значение выходной переменной \(y \).

Для качественных переменных \(x_1 \leq x_n \) и \(y \) предполагается, что известны множества всех возможных значений:

\[U_i = \left\{ v^1_i, v^2_i, \ldots, v^q_i \right\}, \quad i = 1, n \]
(3.4)

\[Y = \left\{ y^1, y^2, \ldots, y^q_m \right\}, \]
(3.5)

где \(v^1_i \), \(v^q_i \) - бальная оценка, соответствующая наименьшему (наибольшему) значению входной переменной \(x_i \);
\(y^1 \), \(y^q_m \) - бальная оценка, соответствующая наименьшему (наибольшему) значению выходной переменной \(y \);
\(q_i, i = 1, n \) и \(q_m \) - мощности множеств (3.4) и (3.5), причем в общем случае \(q_1 \neq q_2 \neq \ldots \neq q_n \neq q_m \).

3.1.2. Лингвистические переменные

Пусть \(X^* = \left< x_1^*, x_2^*, \ldots, x_n^* \right> \) - вектор фиксированных значений входных переменных рассматриваемого объекта, где \(x_i^* \in U_i, \quad i = 1, n \). Задача принятия решения состоит в том, чтобы на основе информации о векторе входов \(X^* \) определить выход \(y^* \in Y \). Необходимым условием формального решения такой задачи является наличие зависимости (3.1). Для установления этой зависимости будем рассматривать входные переменные \(x_i, \quad i = 1, n \) и выходную пе-
ременную y как лингвистические переменные [15], заданные на универсальных множествах (3.2), (3.3) или (3.4), (3.5).

Для оценки лингвистических переменных x_i, $i = 1, n$ и y будем использовать качественные термы из следующих терм-множеств:

$$A_i = \left\{ a_i^1, a_i^2, ..., a_i^l \right\} \quad \text{терм-множество переменной } x_i, \; i = 1, n,$$

$$D = \left\{ d_1, d_2, ..., d_m \right\} \quad \text{терм-множество переменной } y,$$

где a_i^p — p-й лингвистический терм переменной x_i, $p = 1, l_i$, $i = 1, n$;

d_j — j-й лингвистический терм переменной y,

m — число различных решений в рассматриваемой области.

Мощности терм-множеств A_i, $i = 1, n$ в общем случае могут быть различны, т.е. $l_1 \neq l_2 \neq \ldots \neq l_n$.

Названия отдельных термов $a_i^1, a_i^2, ..., a_i^l$ могут также отличаться друг от друга для различных лингвистических переменных x_i, $i = 1, n$. Например, СКОРОСТЬ АВТОМОБИЛЯ {низкая, средняя, высокая, очень высокая}, ТЕМПЕРАТУРА КОНВЕРСИИ {психрофильная, мезофильная, термофильная}, ЧАСТОТА ПУЛЬСА {замедленная, нормальная, ускоренная}.

Лингвистические термы $a_i^p \in A_i$ и $d_j \in D$, $p = 1, l_i$, $i = 1, n$, $j = 1, m$ будем рассматривать как нечеткие множества, заданные на универсальных множествах U_i и Y, определенных соотношениями (3.2)–(3.5).

В случае количественных переменных x_i, $i = 1, n$ и y, нечеткие множества a_i^p и d_j определим соотношениями:

$$a_i^p = \int_{x_i}^{x_i} \mu_a i^p \left(x_i \right) / x_i, \quad (3.6)$$

$$d_j = \int_{d}^{d} \mu d_j \left(d \right) / d, \quad (3.7)$$

57
где $\mu_{a_i^p}(x_i)$ - функция принадлежности значения входной переменной $x_i \in [x_{i-1}, x_i]$ терму $a_i^p \in A_i, p=1, l; i=1, n$;

$\mu_{d_j}(d)$ - функция принадлежности значения выходной переменной $y \in [y_{-1}, y]$ терму-решению $d_j \in D, j=1, m$.

В случае качественных переменных $x_i, i=1, n$ и y нечеткие множества a_i^p и d_j определям так:

$$a_i^p = \sum_{k=1}^{q_i} \mu_{a_i^p}(v_i^k)/v_i^k , \quad (3.8)$$

$$d_j = \sum_{r=1}^{q_m} \mu_{d_j}(y_r^r)/y_r^r , \quad (3.9)$$

где $\mu_{a_i^p}(v_i^k)$ - степень принадлежности элемента $v_i^k \in U_i$ терму $a_i^p \in A_i, p=1, l; i=1, n; k=1, q_i$;

$\mu_{d_j}(y_r^r)$ - степень принадлежности элемента $y_r^r \in Y$ терму-решению $d_j \in D, j=1, m$;

U_i и Y определяются соотношениями (3.4) и (3.5).

Заметим, что в соотношениях (3.6)-(3.9) знаки интеграла и суммы обозначают объединение пар $\mu(u)/u$.

Данный этап построения нечеткой модели, на котором определяются лингвистические оценки переменных и необходимые для их формализации функции принадлежности, получил в литературе по нечеткой логике [84] название фазизикации переменных (от англ. fuzzification).

3.1.3. Нечеткая база знаний

Возьмем N экспериментальных данных, связывающих входы и выход
объекта идентификации, и распределим их следующим образом:

\[N = k_1 + k_2 + ... + k_m, \]

где \(k_j \) - число экспериментальных данных, соответствующих выходному решению \(d_j, j = 1, m \), \(m \) - число выходных решений, причем в общем случае \(k_1 \neq k_2 \neq ... \neq k_m \).

Предполагается, что \(N < l_1 \cdot l_2 \cdot ... \cdot l_n \), т.е. число отобранных экспериментальных данных меньше полного перебора различных сочетаний уровней \(\{ l_i, i = 1, n \} \) изменения входных переменных объекта.

Пронумеруем \(N \) экспериментальных данных следующим образом:

11, 12, ..., 1 \(k_1 \) - номера комбинаций входных переменных для решения \(d_1 \);
21, 22, ..., 2 \(k_2 \) - номера комбинаций входных переменных для решения \(d_2 \);
...
\(j1, j2, ..., jk_j \) - номера комбинаций входных переменных для решения \(d_j \);
...
\(m1, m2, ..., mk_m \) - номера комбинаций входных переменных для решения \(d_m \).

Матрицей знаний [34] назовем таблицу, сформированную по таким правилам (см. табл. 3.1):

1) Размерность этой матрицы равна \((n + 1) \times N\), где \((n + 1)\) - число столбцов, а \(N = k_1 + k_2 + ... + k_m\) - число строк.

2) Первые \(n \) столбцов матрицы соответствуют входным переменным \(x_i, i = 1, n \), а \((n + 1)\) - й столбец соответствует значениям \(d_j \) выходной переменной \(y(j = 1, m) \).

3) Каждая строка матрицы представляет некоторую комбинацию значений входных переменных, отнесенную экспертом к одному из возможных значений выходной переменной \(y \). При этом: первые \(k_1 \) строк соответствуют значению выходной переменной \(y = d_1 \), вторые \(k_2 \) строк - значению \(y = d_2, ... \), последние \(k_m \) строк - значению \(y = d_m \).

4) Элемент \(a_{ij}^p \), стоящий на пересечении \(i \)-го столбца и \(jp \)-й строки со-
ответствует лингвистической оценке параметра x_i в строке нечеткой базы знаний с номером jp. При этом лингвистическая оценка a_{jp}^i выбирается из терм-множества соответствующего переменной x_i, т.е. $a_{jp}^i \in A_i, i=1,n, j=1,m, p=1,k_j$.

Таблица 3.1

<table>
<thead>
<tr>
<th>Номер входной комбинации значений</th>
<th>Входные переменные</th>
<th>Выходная переменная</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_1</td>
<td>x_2</td>
</tr>
<tr>
<td>11</td>
<td>a_{11}^1</td>
<td>a_{11}^2</td>
</tr>
<tr>
<td>12</td>
<td>a_{12}^1</td>
<td>a_{12}^2</td>
</tr>
<tr>
<td>\ldots</td>
<td>$1k_1$</td>
<td>$1k_1$</td>
</tr>
<tr>
<td>$j1$</td>
<td>a_{j1}^1</td>
<td>a_{j1}^2</td>
</tr>
<tr>
<td>$j2$</td>
<td>a_{j2}^1</td>
<td>a_{j2}^2</td>
</tr>
<tr>
<td>\ldots</td>
<td>jk_j</td>
<td>jk_j</td>
</tr>
<tr>
<td>$m1$</td>
<td>a_{m1}^1</td>
<td>a_{m1}^2</td>
</tr>
<tr>
<td>$m2$</td>
<td>a_{m2}^1</td>
<td>a_{m2}^2</td>
</tr>
<tr>
<td>\ldots</td>
<td>mk_m</td>
<td>mk_m</td>
</tr>
</tbody>
</table>

Введенная матрица знаний определяет систему логических высказываний типа "ЕСЛИ-ТО, ИНАЧЕ", связывающих значения входных переменных $x_1 \div x_n$ с одним из возможных типов решения $d_j, j=1,m$.
ЕСЛИ \(x_1 = a_{11} \) И \(x_2 = a_{21} \) И ... И \(x_n = a_{n1} \) ИЛИ
\(x_1 = a_{12} \) И \(x_2 = a_{22} \) И ... И \(x_n = a_{n2} \) ИЛИ ...
\(x_1 = a_{1k} \) И \(x_2 = a_{2k} \) И ... И \(x_n = a_{nk} \),
ТО \(y = d_1 \), ИНАЧЕ

ЕСЛИ \(x_1 = a_{11} \) И \(x_2 = a_{21} \) И ... И \(x_n = a_{n1} \) ИЛИ
\(x_1 = a_{12} \) И \(x_2 = a_{22} \) И ... И \(x_n = a_{n2} \) ИЛИ ...
\(x_1 = a_{1k} \) И \(x_2 = a_{2k} \) И ... И \(x_n = a_{nk} \),
ТО \(y = d_2 \), ИНАЧЕ ...

ЕСЛИ \(x_1 = a_{11}^m \) И \(x_2 = a_{21}^m \) И ... И \(x_n = a_{n1}^m \) ИЛИ
\(x_1 = a_{12}^m \) И \(x_2 = a_{22}^m \) И ... И \(x_n = a_{n2}^m \) ИЛИ ...
\(x_1 = a_{1k}^m \) И \(x_2 = a_{2k}^m \) И ... И \(x_n = a_{nk}^m \),
ТО \(y = d_m \),

(3.10)

где \(d_j (j=1, m) \) - лингвистическая оценка выходной переменной \(y \), определяемая из терм множества \(D \);

\(a_{ij}^{jp} \) - лингвистическая оценка входной переменной \(x_i \) в \(p \)-й строке \(j \)-ой дизъюнкции, выбиряемая из соответствующего терм-множества \(A_i, i=1,n, j=1,m, p=1,k_j \);

\(k_j \) - количество правил, определяющих значение выходной переменной \(y = d_j \).

Будем называть подобную систему логических высказываний нечеткой базой знаний.

С использованием операций \(\bigcup \) (ИЛИ) и \(\bigcap \) (И) система логических высказываний (3.10) может быть переписана в более компактном виде:
\[k \bigcup_{p=1}^{n} \bigcap_{i=1}^{m} \left(x_i = a_i^p \right) \rightarrow y = d_j, \quad j=1, \ldots, m. \] (3.11)

Таким образом, искомое соотношение (3.1), устанавливающее связь между входными параметрами \(x_i \) и выходной переменной \(y \), формализовано в виде системы нечетких логических высказываний (3.11), которая базируется на введенной нами матрице знаний (табл. 3.1).

3.1.4. Функции принадлежности

По определению [15], функция принадлежности \(\mu^T(x) \) характеризует субъективную меру (в диапазоне \([0,1]\)) уверенности эксперта в том, что четкое значение \(x \) соответствует нечеткому терму \(T \). Наибольшее распространение в практических приложениях [84] получили треугольные, трапецеидальные и колоколообразные (гауссовы) функции принадлежности, параметры которых позволяют менять форму функций.

Нами предлагается простая и удобная для настройки аналитическая модель функций принадлежности переменной \(x \) произвольному нечеткому терму \(T \) в виде:

\[\mu^T(x) = \frac{1}{1 + \left(\frac{x-b}{c} \right)^2}, \] (3.12)

где \(b \) и \(c \) - параметры настройки: \(b \) - координата максимума функции, \(\mu^T(b) = 1 \); \(c \) - коэффициент концентрации - растяжения функции (рис. 3.1). Для нечеткого терма \(T \) число \(b \) представляет наиболее возможное значение переменной \(x \).

![Рис. 3.1. Модель функций принадлежности](image)

62
3.2. Объекты с дискретным выходом

3.2.1. Постановка задачи

Будем считать известными:

• множество решений \(D = \{ d_1, d_2, \ldots, d_m \} \), соответствующих выходной переменной \(y \),

• множество входных переменных \(X = \{ x_1, x_2, \ldots, x_n \} \),

• диапазоны количественного изменения каждой входной переменной \(x_i \in [x_i^-, x_i^+] \), \(i = 1, n \),

• функции принадлежностей, позволяющие представлять переменные \(x_i \), \(i = 1, n \) в виде нечетких множеств (3.6) или (3.8),

• матрица знаний, определенная по правилам, введенным в разделе 3.1.3.

Требуется: разработать алгоритм принятия решения, позволяющий фиксированному вектору входных переменных \(X^* = (x_1^*, x_2^*, \ldots, x_n^*) \),

\(x_i^* \in [x_i^-, x_i^+] \) поставить в соответствие решение \(y \in D \).

Задача аппроксимации объекта с дискретным выходом схематически показана на рис. 3.2, где подчеркивается, что входы объекта могут задаваться тремя способами: а) числом, б) 2-лингвистическим термом, в) 3-по принципу термометра.

Идея метода, предлагаемого ниже для решения этой задачи состоит в использовании нечетких логических уравнений. Эти уравнения строятся на базе матрицы знаний или изоморфной ей системы логических высказываний (3.10) и позволяют вычислять значения функций принадлежности различных решений при фиксированных значениях входных переменных объекта. В качестве исходного решения выбирается решение с наибольшим значением функции принадлежности.

3.2.2. Нечеткие логические уравнения

Лингвистические оценки \(a_i^{jp} \) переменных \(x_1, x_n \), входящих в логические высказывания о решениях \(d_j \) (3.10), будем рассматривать как нечеткие множества, определенные на универсальных множествах \(U_i = [x_i^-, x_i^+] \),

63
i = 1, n, j = 1, m.

Пусть $\mu_{a_i^{jp}}(x_i)$ - функция принадлежности параметра $x_i \in [x_i^1, x_i^\infty]$ нечеткому терму $a_i^{jp}, i = 1, n, j = 1, m, p = 1, k_j$;

$\mu_{d_j}(x_1, x_2, ..., x_n)$ - зависящая от n переменных функция принадлежности вектора входных переменных $X = (x_1, x_2, ..., x_n)$ значению выходной переменной $y = d_j, j = 1, m$.

Рис. 3.2. Схема аппроксимации для объекта с дискретным выходом
Связь между этими функциями определяется нечеткой базой знаний (3.11) и может быть представлена в виде следующих уравнений:

\[\mu_{d_1}(x_1, x_2, \ldots, x_n) = \mu^{11}_{a_1}(x_1) \land \mu^{11}_{a_2}(x_2) \land \ldots \land \mu^{11}_{a_n}(x_n) \lor \]
\[\lor \mu^{12}_{a_1}(x_1) \land \mu^{12}_{a_2}(x_2) \land \ldots \land \mu^{12}_{a_n}(x_n) \lor \ldots \]
\[\ldots \lor \mu^{k_1}_{a_1}(x_1) \land \mu^{k_1}_{a_2}(x_2) \land \ldots \land \mu^{k_1}_{a_n}(x_n), \]

\[\mu_{d_2}(x_1, x_2, \ldots, x_n) = \mu^{21}_{a_1}(x_1) \land \mu^{21}_{a_2}(x_2) \land \ldots \land \mu^{21}_{a_n}(x_n) \lor \]
\[\lor \mu^{22}_{a_1}(x_1) \land \mu^{22}_{a_2}(x_2) \land \ldots \land \mu^{22}_{a_n}(x_n) \lor \ldots \]
\[\ldots \lor \mu^{2k_2}_{a_1}(x_1) \land \mu^{2k_2}_{a_2}(x_2) \land \ldots \land \mu^{2k_2}_{a_n}(x_n), \]

\[\mu_{d_m}(x_1, x_2, \ldots, x_n) = \mu^{m1}_{a_1}(x_1) \land \mu^{m1}_{a_2}(x_2) \land \ldots \land \mu^{m1}_{a_n}(x_n) \lor \]
\[\lor \mu^{m2}_{a_1}(x_1) \land \mu^{m2}_{a_2}(x_2) \land \ldots \land \mu^{m2}_{a_n}(x_n) \lor \ldots \]
\[\ldots \lor \mu^{mk_m}_{a_1}(x_1) \land \mu^{mk_m}_{a_2}(x_2) \land \ldots \land \mu^{mk_m}_{a_n}(x_n), \]

где \(\lor \) - логическое ИЛИ, \(\land \) - логическое И.

Эти нечеткие логические уравнения получены из нечеткой базы знаний (3.11) путем замены лингвистических термов \(a_i^{jp} \) и \(d_j \) на соответствующие функции принадлежности, а операций \(\bigcup \) и \(\bigcap \) - на операции \(\lor \) и \(\land \).

Кратко систему логических уравнений можно записать следующим образом:

\[\mu_{d_j}(x_1, x_2, \ldots, x_n) = \bigvee_{p=1}^{k_j} \left[\bigwedge_{i=1}^{n} a_i^{jp}(x_i) \right], j=1, m. \quad (3.13) \]
3.2.3. Алгоритм аппроксимации

Принятие решения \(d^* \in D = \{ d_1, d_2, ..., d_m \} \), которое соответствует вектору фиксированных значений входных переменных

\[X^* = \left\{ x_1^*, x_2^*, ..., x_n^* \right\}, \]

будем осуществлять в такой последовательности.

1°. Зафиксируем вектор значений входных переменных

\[X^* = \left(x_1^*, x_2^*, ..., x_n^* \right). \]

2°. Зададим функции принадлежности нечетких термов, используемых в нечеткой базе знаний (3.11) и определим значения этих функций для заданных значений входных переменных \(x_1^* \div x_2^* \).

3°. Используя логические уравнения (3.13) вычислим многомерные функции принадлежности \(\mu^{d_j} \left(x_1^*, x_2^*, ..., x_n^* \right) \) вектора \(X^* \) для всех значений \(d_j, j = 1, m \) выходной переменной \(y \). При этом логические операции И(∧) и ИЛИ (∨) над функциями принадлежности заменяются на операции min и max.

\[\mu(a) \wedge \mu(b) = \min[\mu(a), \mu(b)], \]
\[\mu(a) \vee \mu(b) = \max[\mu(a), \mu(b)]. \]

4°. Определим значение \(d_j^* \), функция принадлежности которого максимальна:

\[\mu^{d_j} \left(x_1^*, x_2^*, ..., x_n^* \right) = \max_{j=1, m} \left(\mu^{d_j} \left(x_1^*, x_2^*, ..., x_n^* \right) \right). \]

Это и будет исскомым решением для вектора значений входных переменных \(X^* = \left(x_1^*, x_2^*, ..., x_n^* \right) \).

Таким образом, предложенный алгоритм использует идею идентификации лингвистического терма по максимуму функции принадлежности, и обобщающий эту идею на всю матрицу знаний.

Вычислительная часть предложенного алгоритма легко реализуется на матрице значений функций принадлежности, полученной из матрицы знаний,
путем выполнения операций min и max (рис. 3.3).

Приведенный алгоритм нахождения дискретных значений
\(\{d_1, d_2, \ldots, d_m\} \) выходной переменной \(y \) по заданному вектору фиксированных значений входных переменных \(X^* = \left(x_1^*, x_2^*, \ldots, x_n^* \right) \) и матрице значений позволяет аппроксимировать объект \(y = f_y \left(x_1, x_2, \ldots, x_n \right) \) с дискретным выходом.

3.3. Объекты с непрерывным выходом

Разобьем интервал \([\underline{y}, \overline{y}]\), на котором изменяется выход \(y \) объекта, на \(m \) частей:

\[
[y, \overline{y}] = \left[y, y_1 \right] \cup \left[y_1, y_2 \right] \cup \ldots \cup \left[y_{j-1}, y_j \right] \cup \ldots \cup \left[y_{m-1}, \overline{y} \right].
\] (3.14)

Известную экспертную информацию про объект с непрерывным выходом зададим в виде системы нечетких логических высказываний:

ЕСЛИ \(\left(x_1 = a_{11}^{j1} \right) \text{ И } \left(x_2 = a_{21}^{j1} \right) \text{ И } \ldots \left(x_n = a_{n1}^{j1} \right) \)

ИЛИ \(\left(x_1 = a_{12}^{j2} \right) \text{ И } \left(x_2 = a_{22}^{j2} \right) \text{ И } \ldots \left(x_n = a_{n2}^{j2} \right) \) \ldots

\ldots ИЛИ \(\left(x_1 = a_{1j}^{jk} \right) \text{ И } \left(x_2 = a_{2j}^{jk} \right) \text{ И } \ldots \left(x_n = a_{nj}^{jk} \right) \)

ТО \(y \in d_j = \left[y_{j-1}, y_j \right] \), для всех \(j = 1, m \),

(3.15)

где \(a_{ij}^p \) - лингвистический терм, которым оценивается переменная \(x_i \) в строчке с номером \(p = k_j \); \(k_j \) - количество строчек - конъюнкций, соответствующих интервалу \(d_j \), \(j = 1, m \).
$\mu_{11}(x_1)$	$\mu_{11}(x_2)$	\ldots	$\mu_{11}(x_3)$	\{ min \}	\{ min \}	\{ max \}
$\mu_{12}(x_1)$	$\mu_{12}(x_2)$	\ldots	$\mu_{12}(x_3)$			
\ldots	\ldots	\ldots	\ldots			
$\mu_{1k_1}(x_1)$	$\mu_{1k_1}(x_2)$	\ldots	$\mu_{1k_1}(x_3)$	\{ min \}	\{ min \}	\{ max \}
$\mu_{21}(x_1)$	$\mu_{21}(x_2)$	\ldots	$\mu_{21}(x_3)$	\{ min \}	\{ min \}	\{ max \}
$\mu_{22}(x_1)$	$\mu_{22}(x_2)$	\ldots	$\mu_{22}(x_3)$			
\ldots	\ldots	\ldots	\ldots			
$\mu_{2k_2}(x_1)$	$\mu_{2k_2}(x_2)$	\ldots	$\mu_{2k_2}(x_3)$	\{ min \}	\{ min \}	\{ max \}
\ldots	\ldots	\ldots	\ldots			
$\mu_{m1}(x_1)$	$\mu_{m1}(x_2)$	\ldots	$\mu_{m1}(x_3)$	\{ min \}	\{ min \}	\{ max \}
$\mu_{m2}(x_1)$	$\mu_{m2}(x_2)$	\ldots	$\mu_{m2}(x_3)$			
\ldots	\ldots	\ldots	\ldots			
$\mu_{mk_m}(x_1)$	$\mu_{mk_m}(x_2)$	\ldots	$\mu_{mk_m}(x_3)$	\{ min \}	\{ min \}	\{ max \}

Рис. 3.3. Матричная реализация алгоритма принятия решения

3.3.1. Постановка задачи

Будем считать известными:
• интервал изменения $[y, \overline{y}]$ выходной переменной y,
• множество входных переменных $X = \{ x_1, x_2, \ldots, x_n \}$,
• диапазоны количественного изменения каждой входной переменной $x_i \in [\overline{x_i}, \overline{x_i}]$, $i = 1, n$,
• функции принадлежностей, позволяющие представлять переменные x_i, $i = 1, n$ в виде нечетких множеств (3.6) или (3.8),
• система логических высказываний вида (3.15), которая может быть представлена в виде матрицы знаний из раздела 3.1.3.

Требуется: разработать алгоритм принятия решения, позволяющий фик-
сированному вектору входных переменных $X^* = \{x_1^*, x_2^*, ..., x_n^*\}$,
$x_i^* \in \left[\underline{x}_i, \overline{x}_i\right]$ поставить в соответствие решение $y \in \left[\underline{y}, \overline{y}\right]$.

Алгоритм нечеткого логического вывода, приведенный в разделе 3.2.3, позволяет вычислить выходную величину y в виде нечеткого множества:

$$
\tilde{y} = \left\{ \frac{\mu_{d_1}(y)}{\underline{y}, y_1}, \frac{\mu_{d_2}(y)}{y_1, y_2}, ..., \frac{\mu_{d_m}(y)}{y_{m-1}, \overline{y}} \right\}.
$$

(3.16)

Для получения четкого числа из интервала $\left[\underline{y}, \overline{y}\right]$, соответствующего нечеткому значению (3.16), необходимо применить операцию дефазификации. Дефазификация (от англ. defuzzification [85]) - это операция преобразования нечеткой (fuzzy) информации в четкую форму. Определим четкое число y^*, которое соответствует нечеткому множеству (3.16), таким образом:

$$
y^* = \frac{y \mu_{d_1}(y) + y_1 \mu_{d_2}(y) + ... + y_{m-1} \mu_{d_m}(y)}{\mu_{d_1}(y) + \mu_{d_2}(y) + ... + \mu_{d_m}(y)}.
$$

(3.17)

При вероятностной интерпретации степеней принадлежности, формула (3.17) может рассматриваться как аналог математического ожидания дискретной случайной величины.

Если интервал $\left[\underline{y}, \overline{y}\right]$ разбить на m равных частей, то есть

$$
y_1 = \underline{y} + \Delta, \quad y_2 = \underline{y} + 2\Delta, ..., \quad y_{m-1} = \underline{y} + (m-2)\Delta, \quad \Delta = \frac{\overline{y} - \underline{y}}{m-1},
$$

то формула (3.17) упрощается и принимает вид, удобный для расчетов:

$$
y^* = \frac{\sum_{j=1}^{m} y + (j-1)\Delta \mu_{d_j}(y)}{\sum_{j=1}^{m} \mu_{d_j}(y)}.
$$

(3.18)
3.3.2. Алгоритм аппроксимации

Для решения поставленной задачи аппроксимации нелинейного объекта с непрерывным выходом воспользуемся алгоритмом нечеткого логического вывода из раздела 3.2.3 и операцией дефаззификации (3.18). Тогда значение
выходной переменной \(y^* \in [y_-, y_+] \), которое соответствует вектору фиксированных значений входных переменных \(X^* = \begin{pmatrix} x_{1}^* & x_{2}^* & \ldots & x_{n}^* \end{pmatrix} \), будем находить в такой последовательности.

1°. Используя алгоритм нечеткого логического вывода из раздела 3.2.3, вычислим многомерные функции принадлежности \(\mu^* \left(\begin{pmatrix} x_{1}^* & x_{2}^* & \ldots & x_{n}^* \end{pmatrix} \right) \) вектора \(X^* \) для всех подинтервалов \(d_j = [y_{j-1}, y_j] \), \(j = 1, m \) на которые разбивается интервал \([y_-, y_+]\) изменения выходной переменной \(y^* \).

2°. Используя операцию дефаззификации (3.18), получим искомое значение \(y^* \).

Схема аппроксимации объекта с непрерывным выходом показана на рис. 3.4.

3.4. Применение композиционного правила вывода

3.4.1. Постановка задачи

Будем считать известными:

- множество решений -классов \(D = \{ d_1, d_2, \ldots, d_m \} \) в рассматриваемой предметной области;
- функции принадлежности, позволяющие представлять каждый класс \(d_j, j = 1, m \) в виде нечеткого множества (3.9);

- множество параметров состояния объекта \(X = \{ x_1, x_2, \ldots, x_n \} \), влияющих на решение;

- множества лингвистических термов для качественной оценки параметров \(x_i, i = 1, n \), т.е.

\[
A_1 = \{ a_{11}, a_{12}, \ldots, a_{1l_1} \},
\]

...
$A_i = \left\{ a_i^1, a_i^2, ..., a_i^l_i \right\}$.

...

$A_n = \left\{ a_n^1, a_n^2, ..., a_n^l_n \right\}$.

- функции принадлежности, позволяющие представлять качественные
 термы параметров $x_i, i = 1, n$ в виде нечетких множеств (3.8);
- матрицу знаний (табл. 3.1).

Требуется разработать алгоритм принятия решения, позволяющий фиксированному множеству

$$\left\{ a_1^*, a_2^*, ..., a_n^* \right\}, a_1^* \in A_1, ..., a_n^* \in A_n.$$

качественных оценок параметров состояния конкретного объекта поставить в
соответствие решение-класс $d_j^* \in D$ (рис. 3.2).

Идея алгоритма, который разрабатывается ниже для решения этой задачи, состоит в использовании композиционного правила вывода Заде [15], устанавливаемого связи между одной входной и одной выходной переменными. Это правило обобщается ниже на случай одного выхода и входов, что соответствует полной матрице знаний (табл. 3.1).

3.4.2. Нечеткий логический вывод

Рассмотрим на матрице знаний строку с номером $j1$. Этой строке соответствует нечеткое логическое высказывание:

Если $\left(x_1 = a_1^{j1} \right)$ И $\left(x_2 = a_2^{j1} \right)$... И $\left(x_n = a_n^{j1} \right)$, то $d = d_j$, (3.19)

где $a_1^{j1} \subset U_1, a_2^{j1} \subset U_2, ..., a_n^{j1} \subset U_n, d_j \in W$,

$U_i, i = 1, n$ и W - универсальные множества, определяемые соотношениями (3.4) и (3.5). В соответствии с [56], высказывание (3.19) может быть представлено в виде системы элементарных высказываний:
Если \(x_1 = a_1^{j1} \), то \(d = d_j \)
и
Если \(x_2 = a_2^{j1} \), то \(d = d_j \)
и …
Если \(x_n = a_n^{j1} \), то \(d = d_j \) \((3.20) \)

Согласно [15], система (3.20) соответствует система нечетких отношений:

\[
\begin{align*}
R_{x_1} &= a_1^{j1} \times d_j , & R_{x_1} &\subseteq U_1 \times W \\
R_{x_2} &= a_2^{j1} \times d_j , & R_{x_2} &\subseteq U_2 \times W \\
\vdots \\
R_{x_n} &= a_n^{j1} \times d_j , & R_{x_n} &\subseteq U_n \times W
\end{align*}
\] \((3.21) \)

где \(U_i \times W \) - декартово произведение обычных множеств \(U_i \) и \(W \), т.е.

\[
U_i \times W = \left\{ \left(v_i^k , w^r \right) | v_i^k \in U_i , w^r \in W \right\} .
\]

\(k = 1, q_i , \ r = 1, q_m , \ i = 1, n , \ q_i \) и \(q_m \) - мощности множеств \(U_i \) и \(W \);

\(a_1^{j1} \times d_j \) - декартово произведение нечетких множеств \(a_1^{j1} \) и \(d_j \), определяемое соотношением:

\[
a_1^{j1} \times d_j = \sum_{U_1 \times W} \left[\mu \left(a_1^{j1} , v_i^k \right) \wedge \mu \left(d_j , w^r \right) \right] / \left(v_i^k , w^r \right),
\]

где \(\mu (\cdot) \) - степени принадлежностей, введенные ранее в формулах (3.8) и (3.9).

В соответствии с композиционным правилом вывода [15], каждое отношение из (3.21) позволяет оценивать нечеткое множество \(d_j \in W \), интерпретируемое в терминах решений-классов \(d_j^*_j \in D \)
\[\begin{align*}
 d_j &= x_1 \circ \left(a_i^{j1} \times d_j \right) \\
 d_j &= x_2 \circ \left(a_i^{j1} \times d_j \right) \\
 &\vdots \\
 d_j &= x_n \circ \left(a_i^{j1} \times d_j \right)
\end{align*}\]

где \(\circ \) - операция нечеткой композиции.

Объединяя, согласно (3.20), все отношения в (3.22) операцией (\(\cup \)) и (\(\cap \)), получим:

\[d_j = \left[x_1 \circ \left(a_i^{j1} \times d_j \right) \right] \cap \left[x_2 \circ \left(a_i^{j1} \times d_j \right) \right] \cap \ldots \cap \left[x_n \circ \left(a_i^{j1} \times d_j \right) \right]\]

или более компактно

\[d_j = \bigcap_{i=1}^{n} \left[x_i \circ \left(a_i^{j1} \times d_j \right) \right].\] (3.23)

Формула (3.23) получена для одной строки матрицы знаний с номером \(j1 \). Выпишем аналогичные формулы для строк с номерами \(2, \ldots, jk \):

\[d_j = \bigcap_{i=1}^{n} \left[x_i \circ \left(a_i^{j2} \times d_j \right) \right],\] (3.24)

\[\vdots\]

\[d_j = \bigcap_{i=1}^{n} \left[x_i \circ \left(a_i^{jk} \times d_j \right) \right].\] (3.25)

Поскольку в системе нечетких логических высказываний (3.10) различные строки соответствующие решению \(d_j \), объединены по ИЛИ (\(\cup \)), то соотношения (3.23)-(3.25) также следует объединить по ИЛИ и заменить единым соотношением.
\[d_j = \bigcup_{p=1}^{k_j} \left\{ \bigcap_{i=1}^{n} \left(x_i \circ \left(a_i^{jp} \times d_j \right) \right) \right\}. \] (3.26)

Это соотношение позволяет вычислять нечеткое множество \(d_j \subset W \) на основе информации, содержащейся в строках матрицы значений с номерами \(j_1, j_2, \ldots, j_k \).

Аналогичные соотношения можно выписать для тех групп строк в табл. 3.1, которые соответствуют решениям \(d_1, d_2, \ldots, d_m \). Поскольку искомое нечеткое множество-решение \(d \) представляет собой объединение по ИЛИ различных решений \(d_j, j = 1, m \), т.e.

\[d = d_1 \cup d_2 \cup \ldots \cup d_m. \]

то, учитывая (3.26), получим

\[d = \bigcup_{j=1}^{m} \bigcup_{p=1}^{k_j} \left\{ \bigcap_{i=1}^{n} \left(x_i \circ \left(a_i^{jp} \times d_j \right) \right) \right\}. \] (3.27)

Полученное соотношение (3.27) позволяет оценить нечеткое множество \(d \), которое должно быть интерпретировано в терминах одного из решений-классов \(d_j, j = 1, m \).

Пусть параметры состояния конкретного объекта оцениваются лингвистическими термами (нечеткими множествами),

\[x_1 = a_1^*, x_2 = a_2^*, \ldots, x_n = a_n^*. \]

заданными на универсумах \(U_1, U_2, \ldots, U_n \). Согласно (3.27) решением для этого объекта будет нечеткое множество \(d^* \), заданное на универсуме \(W \), и вычисляемое по формуле:

\[d^* = \bigcup_{j=1}^{m} \bigcup_{p=1}^{k_j} \left\{ \bigcap_{i=1}^{n} \left(a_i^* \circ \left(a_i^{jp} \times d_j \right) \right) \right\}. \]

Для упрощения соотношения (3.27) перенумеруем строки матрицы значений (табл. 3.1) номерами 1, 2, ..., \(N \), учитывая, что \(N = k_1 + k_2 + \ldots + k_m \).
Сформируем модифицированную матрицу знаний (табл. 3.2), в которой \(a_i^p \) — нечеткое множество, соответствующее лингвистической оценке параметра \(x_i \) в строке с номером \(p \); \(d^p \) — нечеткое множество-решение в \(p \)-ой строке, \(a_i^p \subset U_i, d^p \subset W \), \(i = 1, n, p = 1, N \).

В соответствии с (3.27), расчет нечеткого множества-решения \(d \subset W \) на основе модифицированной матрицы знаний производится по формуле:

\[
d = \left\{ \left[x_1 \circ \left(a_1^1 \times d^1 \right) \right] \cap \left[x_2 \circ \left(a_2^1 \times d^1 \right) \right] \cap \ldots \cap \left[x_n \circ \left(a_n^1 \times d^1 \right) \right] \right\} \cup \ldots
\]

\[
\ldots \cup \left\{ \left[x_1 \circ \left(a_1^p \times d^p \right) \right] \cap \left[x_2 \circ \left(a_2^p \times d^p \right) \right] \cap \ldots \cap \left[x_n \circ \left(a_n^p \times d^p \right) \right] \right\} \cup \ldots
\]

\[
\ldots \cup \left\{ \left[x_1 \circ \left(a_1^N \times d^N \right) \right] \cap \left[x_2 \circ \left(a_2^N \times d^N \right) \right] \cap \ldots \cap \left[x_n \circ \left(a_n^N \times d^N \right) \right] \right\}
\]

или более компактно

\[
d = \bigcup_{p=1}^{N} \left\{ \bigcap_{i=1}^{n} \left[x_i \circ \left(a_i^p \times d^p \right) \right] \right\}.
\]

(3.28)

Таблица 3.2

<table>
<thead>
<tr>
<th>№</th>
<th>Параметры состояния объекта</th>
<th>Решение</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_1)</td>
<td>(x_2)</td>
</tr>
<tr>
<td>1</td>
<td>(a_1^1)</td>
<td>(a_2^1)</td>
</tr>
<tr>
<td>2</td>
<td>(a_1^2)</td>
<td>(a_2^2)</td>
</tr>
<tr>
<td>…</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(p)</td>
<td>(a_1^p)</td>
<td>(a_2^p)</td>
</tr>
<tr>
<td>…</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(N)</td>
<td>(a_1^N)</td>
<td>(a_2^N)</td>
</tr>
</tbody>
</table>

Таким образом, нами получены соотношения (3.27) и (3.28), позволяющие на основе информации, содержащейся в матрицах знаний (табл. 3.1 и 3.2),
выводить нечеткие множества - решение для текущих лингвистических оценок параметров состояния объекта.

3.4.3. Интерпретация вывода

Нечеткое множество-решение \(d^* \subset W \), полученное в результате логического вывода из матрицы знаний при фиксированных нечетких оценках параметров состояния объекта

\[
x_1 = a_1^* \subset U_1, x_2 = a_2^* \subset U_2, \ldots x_n = a_n^* \subset U_n
\]

необходимо интерпретировать в терминах одного из классов \(d_j \in D, j = 1, m \).

В соответствии с (3.9) каждый класс \(d_j \in D \) представляет собой нечеткое множество:

\[
d_j = \sum_{r=1}^{q_m} \mu(d_j, w^r) / w^r, j = 1, m.
\]

Аналогично, нечеткое множество \(d^* \in D \) выражается соотношением

\[
d^* = \sum_{r=1}^{q_m} \mu(d^*, w^r) / w^r.
\]

Для интерпретации нечеткого множества \(d^* \subset W \), необходимо найти нечеткое множество \(d_j \in D = \{ d_1, d_2, \ldots, d_m \} \), являющееся ближайшим к нечеткому множеству \(d^* \subset W \). Для решения этой задачи предлагается следующий алгоритм, основанный на минимизации обобщенного расстояния по Хеммингу [18]:

1°. Вычислить расстояние Хемминга между \(d_j \) и \(d^* \)

\[
\Delta(d_j, d^*) = \sum_{r=1}^{q_m} \left[\mu(d^*, w^r) - \mu(d_j, w^r) \right],
\]

для всех \(j = 1, m \).
2°. Выбрать такое \(d_j \in D \), для которого

\[
\Delta (d^*, d_j) = \min_{j=1,m} \Delta (d^*, d_j).
\]

Найденному нечеткому множеству \(d_j \in D \) и будет соответствовать ис-
комое решение. Выбор обобщенного расстояния Хемминга в качестве критерия
близости нечетких множеств \(d_j \) и \(d^* \) обусловлен соображениями простоты
вычислительной процедуры.

3.5. Иерархические объекты

При большом числе входных переменных \(x_i \) построение нечеткой базы
знаний о неизвестной зависимости (3.1) становится затруднительным. Это обу-
словлено тем, что в оперативной памяти человека одновременно может удержи-
ваться не более 7 ± 2 понятий признаков [64]. В связи с этим целесообразно
провести классификацию входных переменных и по ней построить дерево вы-
вода, определяющее систему вложенных друг в друга нечетких баз знаний
меньшей размерности.

В данном разделе вводится понятие обобщенного дерева логического
вывода, после чего излагается модифицированный алгоритм нечеткого логиче-
скогорывода.

3.5.1. Обобщенное дерево логического вывода

Иерархическую взаимосвязь между входными переменными, классами
входных переменных и выходной переменной (интегральным показателем)
представим в виде дерева (рис. 3.5), которому соответствует система соотно-
шений:

\[
R = f_R(X, Y, ..., Z),
\]

\[
X = f_X(x_1, x_2, ..., x_f),
\]

\[
Y = f_Y(y_1, y_2, ..., y_m).
\]
\begin{equation}
Z = f_Z(z_1, z_2, ..., z_n),
\end{equation}

где \(R \) — выходная переменная (интегральный показатель);
\(X, Y, ..., Z \) — классы входных переменных;
\(x_i, y_j, z_k \) — входные переменные, отнесенные к классам \(X, Y, ..., Z \), причем \(i = 1, l, \ j = 1, m, \ k = 1, n \).

Дерево на рис. 3.5 отражает лишь двухуровневую иерархию входных переменных. Однако детализация может быть продолжена по уровням: класс—подкласс—группа—подгруппа и т.д.

Будем считать, что все переменные, стоящие в вершинах дерева (рис. 3.5), являются лингвистическими переменными со следующими термами:

\[
\begin{align*}
\{R_1, R_2, ..., R_r\} & \quad \text{— множество термов для оценки переменной} \ R; \\
\{X_1, X_2, ..., X_a\} & \quad \text{— множество термов для оценки переменной} \ X; \\
\{Y_1, Y_2, ..., Y_b\} & \quad \text{— множество термов для оценки переменной} \ Y; \\
\{Z_1, Z_2, ..., Z_c\} & \quad \text{— множество термов для оценки переменной} \ Z; \\
\{x_{i1}, x_{i2}, ..., x_{ia_i}\} & \quad \text{— множество термов для оценки переменной} \ x_i, \ i = 1, l; \\
\{y_{j1}, y_{j2}, ..., y_{jb_j}\} & \quad \text{— множество термов для оценки переменной} \ y_j, \ j = 1, m; \\
\{z_{k1}, z_{k2}, ..., z_{kc_k}\} & \quad \text{— множество термов для оценки переменной} \ z_k, \ k = 1, n.
\end{align*}
\]

Введенные множества термов обозначены на соответствующих ветвях дерева. Внутри каждого из множеств нечеткие термы упорядочены по принципу: от низшего к высшему, например \{ низкий, средний, высокий и т.д. \}. Мощности всех множеств, т.е. числа термов, которые используются для оценки лингвистических переменных, входящих в соотношения (3.29)-(3.32), в общем случае могут быть различными.
Рис. 3.5. Обобщенное дерево логического вывода
Пользуясь понятиями универсального множества и функции принадлежности, каждый из термов представим в виде нечеткого множества:

\[R_i = \int_{W}^{R_i}(w)/w, \: i=1,r, \: w \in W, \]
\[X_i = \int_{U_X}^{X_i}(v_X)/v_X, \: i=1,a, \: v_X \in U_X, \]
\[Y_i = \int_{U_Y}^{Y_i}(v_Y)/v_Y, \: i=1,b, \: v_Y \in U_Y, \]
\[Z_i = \int_{U_Z}^{Z_i}(v_Z)/v_Z, \: i=1,c, \: v_Z \in U_Z, \]
\[x_{ij} = \int_{U_{X_i}}^{x_{ij}}(x_i)/x_i, \: i=1,l, \: j=1,a_i, \: x_i \in U_{x_i}, \]
\[y_{jk} = \int_{U_{Y_j}}^{y_{jk}}(y_j)/y_j, \: j=1,m, \: k=1,b_j, \: y_j \in U_{y_j}, \]
\[z_{kl} = \int_{U_{Z_k}}^{z_{kl}}(z_k)/z_k, \: k=1,n, \: l=1,c_k, \: z_k \in U_{z_k}, \]
где \(W \) - универсальное множество, на котором задана переменная \(R \), т.е. \(R_i \subset W, \: i=1,r; \)

\(U_X, U_Y, U_Z \) - универсальные множества, на которых заданы переменные \(X, Y, Z \), т.е. \(X_i \subset U_X, \: Y_i \subset U_Y, \: Z_i \subset U_Z; \) \(U_{x_i}, U_{y_j}, U_{z_k} \) - универсаль-
ные множества, на которых заданы переменные x_i, y_j, z_k, $i = \overline{1, l}$, $j = \overline{1, m}$, $k = \overline{1, n}$; $\mu_{\xi}(\chi)$ - функция принадлежности переменной χ нечеткому терму ξ.

Информацию о соотношениях (3.29)-(3.32) будем представлять в виде нечетких баз знаний, содержащих логические высказывания о взаимосвязях входных и выходных переменных [34]. Нечеткая база знаний о соотношении (3.29) будет иметь следующий вид:

ЕСЛИ $\left(X = X^{j_1} \right) \text{ И } \left(Y = Y^{j_1} \right) \text{ И } \ldots \text{ И } \left(Z = Z^{j_1} \right) \text{ ИЛИ }$

$\left(X = X^{j_2} \right) \text{ И } \left(Y = Y^{j_2} \right) \text{ И } \ldots \text{ И } \left(Z = Z^{j_2} \right) \text{ ИЛИ }$

$\left(X = X^{j_h} \right) \text{ И } \left(Y = Y^{j_h} \right) \text{ И } \ldots \text{ И } \left(Z = Z^{j_h} \right)$,

ТО $R = R_j$, $j = \overline{1, r}$.

Эти правила можно представить в виде матрицы знаний M_R:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>\ldots</td>
<td>Z</td>
<td>R</td>
</tr>
<tr>
<td>X^{j_1}</td>
<td>Y^{j_1}</td>
<td></td>
<td>Z^{j_1}</td>
<td>R_1</td>
</tr>
<tr>
<td>X^{j_2}</td>
<td>Y^{j_2}</td>
<td></td>
<td>Z^{j_2}</td>
<td></td>
</tr>
<tr>
<td>X^{j_h}</td>
<td>Y^{j_h}</td>
<td></td>
<td>Z^{j_h}</td>
<td></td>
</tr>
<tr>
<td>X^{r_1}</td>
<td>Y^{r_1}</td>
<td></td>
<td>Z^{r_1}</td>
<td>R_r</td>
</tr>
<tr>
<td>X^{r_2}</td>
<td>Y^{r_2}</td>
<td></td>
<td>Z^{r_2}</td>
<td></td>
</tr>
</tbody>
</table>

$M_R =$

(3.41)

С применением операций пересечения (\cap) и объединения (\cup) множеств перепишем нечеткую базу знаний (3.40) в следующей форме:

$$
\bigcup_{p=1}^{h_j} \left[\left(X = X^{jp} \right) \cap \left(Y = Y^{jp} \right) \cap \ldots \cap \left(Z = Z^{jp} \right) \right] \longrightarrow R_j, j = \overline{1, r}. (3.42)
$$

Нечеткая база знаний о соотношении (3.30) будет иметь следующий вид:
ЕСЛИ \(x_1 = x_1^j \) И \(x_2 = x_2^j \) И ... И \(x_l = x_l^j \) ИЛИ
\(x_1 = x_1^{j^2} \) И \(x_2 = x_2^{j^2} \) И ... И \(x_l = x_l^{j^2} \) ИЛИ ... \(x_1 = x_1^{je} \) И \(x_2 = x_2^{je} \) И ... И \(x_l = x_l^{je} \),
ТО \(X = X_j, \quad j = 1, a. \) (3.43)

Эти правила можно представить в виде матрицы знаний \(M_X \):

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>...</th>
<th>(x_l)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1^{11})</td>
<td>(x_1^{11})</td>
<td>...</td>
<td>(x_l^{11})</td>
<td>(X_1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(x_1^{4e})</td>
<td>(x_1^{4e})</td>
<td>...</td>
<td>(x_l^{4e})</td>
<td>...</td>
</tr>
<tr>
<td>(x_1^{je})</td>
<td>(x_1^{je})</td>
<td>...</td>
<td>(x_l^{je})</td>
<td>(X_j)</td>
</tr>
<tr>
<td>(x_1^{a1})</td>
<td>(x_1^{a1})</td>
<td>...</td>
<td>(x_l^{a1})</td>
<td>(X_a)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(x_1^{ae})</td>
<td>(x_1^{ae})</td>
<td>...</td>
<td>(x_l^{ae})</td>
<td>...</td>
</tr>
</tbody>
</table>

\(M_X = \) (3.44)

С применением операций пересечения (\(\cap \)) и объединения (\(\cup \)) множеств перепишем нечетную базу знаний (3.43) в следующей форме:

\[
\bigcup_{p=1}^{e} \left[\bigcap_{i=1}^{l} \left(x_i = x_i^{jp} \right) \right] \rightarrow X = X_j, \quad j = 1, a. \] (3.45)

Нечеткая база знаний о соотношении (3.31) будет иметь следующий вид:

ЕСЛИ \(y_1 = y_1^{j_1} \) И \(y_2 = y_2^{j_1} \) И ... И \(y_m = y_m^{j_1} \) ИЛИ
\[
\left(y_1 = y_1^{j_1^2}\right) \text{ И } \left(y_2 = y_2^{j_2^2}\right) \text{ И } \ldots \text{ И } \left(y_m = y_m^{j_m^2}\right) \text{ ИЛИ } \ldots
\]

\[
\left(y_1 = y_1^{j_1^g}\right) \text{ И } \left(y_2 = y_2^{j_2^g}\right) \text{ И } \ldots \text{ И } \left(y_m = y_m^{j_m^g}\right)
\]

ТО \quad Y = Y_j, \quad j = 1, b.

(3.46)

Эти правила можно представить в виде матрицы знаний \(M_Y \):

\[
\begin{array}{|c|c|c|c|}
\hline
y_1 & y_2 & \ldots & y_m & Y \\
\hline
y_1^{11} & y_2^{11} & \ldots & y_m^{11} & Y_1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
y_1^{1g} & y_2^{1g} & \ldots & y_m^{1g} & Y_1 \\
\hline
y_1^{j1} & y_2^{j1} & \ldots & y_m^{j1} & Y_j \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
y_1^{jg} & y_2^{jg} & \ldots & y_m^{jg} & Y_j \\
\hline
y_1^{b1} & y_2^{b1} & \ldots & y_m^{b1} & Y_b \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
y_1^{bg} & y_2^{bg} & \ldots & y_m^{bg} & Y_b \\
\hline
\end{array}
\]

(3.47)

С применением операций пересечения (\(\cap \)) и объединения (\(\cup \)) множеств перепишем нечеткую базу знаний (3.46) в следующей форме:

\[
\bigcup_{p=1}^g \left[\bigcap_{i=1}^m \left(y_i = y_i^{j_p^p} \right) \right] \rightarrow Y = Y_j, \quad j = 1, b.
\]

(3.48)

Нечеткая база знаний о соотношении (3.32) будет иметь следующий вид:

ЕСЛИ \(z_1 = z_1^{j_1^1} \) И \(z_2 = z_2^{j_1^1} \) И \ldots И \(z_n = z_n^{j_1^1} \) ИЛИ

\(z_1 = z_1^{j_2^2} \) И \(z_2 = z_2^{j_2^2} \) И \ldots И \(z_n = z_n^{j_2^2} \) ИЛИ \ldots

84
\[
\begin{align*}
(z_1 = z_1^{jt}) \quad & \text{И} \quad (z_2 = z_2^{jt}) \quad & \text{И} \quad \ldots \quad & \text{И} \quad (z_n = z_n^{jt}), \\
\text{ТО} \quad Z = Z^{j}, \quad & j = 1, c.
\end{align*}
\] (3.49)

Эти правила можно представить в виде матрицы значений \(M_Z \):

<table>
<thead>
<tr>
<th>(z_1)</th>
<th>(z_2)</th>
<th>(\ldots)</th>
<th>(z_n)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_1^{11})</td>
<td>(z_1^{11})</td>
<td>(\ldots)</td>
<td>(z_1^{11})</td>
<td>(Z_1)</td>
</tr>
<tr>
<td>(z_1)</td>
<td>(z_2)</td>
<td>(\ldots)</td>
<td>(z_n)</td>
<td>(Z_1)</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
<tr>
<td>(z_1)</td>
<td>(z_2)</td>
<td>(\ldots)</td>
<td>(z_n)</td>
<td>(Z_c)</td>
</tr>
<tr>
<td>(z_1^{c1})</td>
<td>(z_1^{c1})</td>
<td>(\ldots)</td>
<td>(z_n)</td>
<td>(Z_c)</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
<tr>
<td>(z_1)</td>
<td>(z_2)</td>
<td>(\ldots)</td>
<td>(z_n)</td>
<td>(Z_j)</td>
</tr>
</tbody>
</table>

\[M_Z = \] (3.50)

С применением операций пересечения (\(\cap \)) и объединения (\(\cup \)) множеств перепишем нечеткую базу значений (3.49) в следующей форме:

\[
\bigcup_{p=1}^{t} \left[\bigcap_{i=1}^{n} (z_i = z_i^{jp}) \right] \rightarrow Z = Z^{j}, \quad j = 1, c.
\] (3.51)

Таким образом, нами определена система нечетких логических высказываний (3.42), (3.45), (3.48), (3.51), которые описывают экспертную информацию о соотношениях (3.29)-(3.32), соответствующих обобщенному дереву взаимосвязи «входные переменные - выходная переменная». Принципы кодирования лингвистических переменных и их нечетких термов, предложенные выше для двухуркового дерева вывода, остаются неизменными для дерева произвольной размерности. Структура дерева, выбор термов лингвистических переменных на его ветвях, а также нечеткие базы знаний в каждой из нетерминальных вершин дерева, - все это определяет методику сбора экспертной информации, необходимой для построения модели нелинейного объекта.
3.5.2. Нечеткие логические уравнения

Поставим в соответствие соотношениям (3.29) - (3.32) нечеткие логические уравнения, связывающие функции принадлежности нечетких термов входных и выходных переменных. Для получения этих уравнений заменим нечеткие множества в левых и правых частях высказываний (3.42), (3.45), (3.48) и (3.51) соответствующими функциями принадлежности, а операции И и ИЛИ над нечеткими множествами заменим операциями $\land (min)$ и $\lor (max)$ над соответствующими функциями принадлежности.

Из высказывания (3.42) получаем:

$$
R_j^R (X, Y, Z) = \frac{h_j}{p=1} \left[\mu X^{jp} (X) \land \mu Y^{jp} (Y) \land \mu Z^{jp} (Z) \right], \quad (3.52)
$$

где $R_j^R (X, Y, Z) - поверхность принадлежности переменных X, Y, Z нечеткуму терму-оценке R_j;

$\mu X^{jp} (X)$, $\mu Y^{jp} (Y)$, $\mu Z^{jp} (Z)$ - функции принадлежности переменных X, Y, Z нечетким термам X^{jp}, Y^{jp}, Z^{jp}, соответственно, $p = 1, h_j, j = 1, r$.

Из высказывания (3.45) получаем:

$$
\mu X_j (x_1, x_2, ..., x_l) = \frac{e_j}{p=1} \left[\mu x_i^{jp} (x_i) \right], \quad (3.53)
$$

где $\mu X_j (x_1, x_2, ..., x_l) - поверхность принадлежности вектора переменных $x_1, x_2, ..., x_l$ нечеткому терму-оценке X_j;

$\mu x_i^{jp} (x_i)$ - функция принадлежности переменной x_i, $i = 1, l$, нечеткому терму x_i^{jp}, $p = 1, e_j, j = 1, a$.

Из высказывания (3.48) получаем:

$$
\mu Y_j (y_1, y_2, ..., y_m) = \frac{g_j}{p=1} \left[\mu y_i^{jp} (y_i) \right], \quad (3.54)
$$
где
$$ Y_j \left(y_1, y_2, ..., y_m \right) $$ - поверхность принадлежности вектора переменных
$$ \left(y_1, y_2, ..., y_m \right) $$ нечеткому терму-оценке $$ Y_j $$;

$$ \mu_{y_i}^{jp} \left(y_i \right) $$ - функция принадлежности переменной $$ y_i $$,
$$ i = 1, m $$ нечеткому терму $$ y_i^{jp} $$,
$$ p = 1, g_j $$,
$$ j = 1, b $$.

Из высказывания (3.51) получаем:

$$ Z_j \left(z_1, z_2, ..., z_n \right) = \bigvee_{p=1}^{t_j} \left[\bigwedge_{i=1}^{n} \mu_{z_i}^{jp} \left(z_i \right) \right] $$, \hspace{1cm} (3.55)

где
$$ Z_j \left(z_1, z_2, ..., z_n \right) $$ - поверхность принадлежности вектора переменных
$$ \left(z_1, z_2, ..., z_n \right) $$ нечеткому терму-оценке $$ Z_j $$;

$$ \mu_{z_i}^{jp} \left(z_i \right) $$ - функция принадлежности переменной $$ z_i^{jp} $$,
$$ i = 1, n $$ нечеткому терму $$ z_i^{jp} $$,
$$ p = 1, t_j $$,
$$ j = 1, c $$.

Учитывая то, что операциям $$ \vee $$ и $$ \wedge $$ в теории нечетких множеств соответствуют операции $$ \min $$ и $$ \max $$, перепишем соотношения (3.52)-(3.55) в виде:

$$ R_j \left(X, Y, Z \right) = \max_{p=1, h_j} \left\{ \min \left[\mu_X^{jp} \left(X \right) \mu_Y^{jp} \left(Y \right) \mu_Z^{jp} \left(Z \right) \right] \right\} $$, \hspace{1cm} (3.56)

$$ \mu_X \left(x_1, x_2, ..., x_l \right) = \max_{p=1, e_j} \left\{ \min_{i=1, l} \left[\mu_{x_i}^{jp} \left(x_i \right) \right] \right\} $$, \hspace{1cm} (3.57)

$$ \mu_Y \left(y_1, y_2, ..., y_m \right) = \max_{p=1, g_j} \left\{ \min_{i=1, m} \left[\mu_{y_i}^{jp} \left(y_i \right) \right] \right\} $$, \hspace{1cm} (3.58)

$$ \mu_Z \left(z_1, z_2, ..., z_n \right) = \max_{p=1, t_j} \left\{ \min_{i=1, n} \left[\mu_{z_i}^{jp} \left(z_i \right) \right] \right\} $$, \hspace{1cm} (3.59)
Рис. 3.6. Последовательность расчетов значения выходной переменной
Таким образом, нами получена система соотношений (3.56)-(3.59), которая полностью соответствует обобщенному дереву логического вывода (рис. 3.5) и позволяет вычислить степени принадлежности вектора значений входных переменных нечетким термам-оценкам выходной переменной. Алгоритм нечеткого логического вывода, использующий обобщенное дерево вывода имеет вид:

1°. Зафиксируем вектор значений входных переменных

\[
\left(x_1^*, x_2^*, \ldots, x_l^*, y_1^*, y_2^*, \ldots, y_m^*, z_1^*, z_2^*, \ldots, z_n^* \right)
\]

2°. Определим значения функций принадлежности термов-оценок входных переменных

\[
\mu_{x ij}^* \left(x_i \right), i=1, l, j=1, e_i, \mu_{y jk}^* \left(y_j \right), j=1, m, k=1, g_j, \mu_{z kl}^* \left(z_k \right), k=1, n, l=1, t_k
\]

3°. Используя соотношения (3.56) - (3.59) вычислим функции принадлежности \(R_j \left(X, Y, Z \right) \) термов-оценок выходной величины \(R \), которая соответствует вектору значений входных переменных

\[
\left(x_1^*, x_2^*, \ldots, x_l^*, y_1^*, y_2^*, \ldots, y_m^*, z_1^*, z_2^*, \ldots, z_n^* \right)
\]

4°. Определим оценку \(R_j^* \), функция принадлежности которой макимальна:

\[
\mu_{R_j^*} \left(X, Y, Z \right) = \max_{j=1, r} \left[\mu_{R_j} \left(X, Y, Z \right) \right] \quad \longrightarrow \quad R = R_j^* . \quad (3.60)
\]

Последовательность расчетов которые соответствуют алгоритму приведена на рис. 3.6.

При моделировании нелинейных объектов с непрерывным выходом нечеткое число

\[
\tilde{R} = \left[\frac{R_1 \left(X, Y, Z \right)}{R_1}, \frac{R_2 \left(X, Y, Z \right)}{R_2}, \ldots, \frac{R_r \left(X, Y, Z \right)}{R_r} \right],
\]

которое получается на выходе алгоритма (соотношение 3.56) следует дефаззифицировать, как это было изложено в разделе 3.3.1. (соотношение (3.18)).
ГЛАВА 4

АНАЛИТИКО-ЛИНГВИСТИЧЕСКАЯ АППРОКСИМАЦИЯ

Под аналитико-лингвистической аппроксимацией понимается получение настраиваемой модели объекта путем комбинации аналитической и лингвистической составляющих. Предполагается, что имеется аналитическая зависимость «вход-выход», параметры которой могут иметь неопределенный характер и описываться нечеткими базами знаний.

Для получения аналитико-лингвистической модели необходимо:
а) обобщить аналитическую зависимость на случай нечетких параметров;
б) представить нечеткие параметры в виде баз знаний, учитывающих влияющие факторы.

Эта глава написана на основе работ [36,69].

4.1. Нечеткое представление неопределенных параметров

Рассмотрим некоторый неопределенный параметр q, который может соответствовать вероятности, стоимости, времени или другому показателю. Для описания параметра q с помощью теории нечетких множеств этот параметр необходимо преобразовать к нечеткому числу \tilde{q}, т.е. задать функцию принадлежности.

В настоящем разделе предлагается два способа формирования функций принадлежности: трапецевидный и треугольный. Они позволяют использовать следующую экспертную информацию параметру:
- название параметра q;
- диапазон $[\overline{q},\underline{q}]$ изменения значений параметра q;
- количество лингвистических термов, с помощью которых оценивается параметр q;
- название каждого лингвистического терма.
Определение 4.1. Трапециевидной формой нечеткого числа \tilde{q} (неопределенного параметра q) будем называть четверку:

$$\tilde{q} = \left(q_0, q_0, q_1, q_1 \right),$$

(4.1)

где $q_0 (q_0)$ - нижняя (верхняя) граница нечеткого числа \tilde{q} на нулевом α-уровне;

$q_1 (q_1)$ - нижняя (верхняя) граница нечеткого числа \tilde{q} на единичном α-уровне;

Интервал $\left[q_1, q_1 \right]$ будем называть оптимистической оценкой параметра q, а интервал $\left[q_0, q_0 \right]$ - пессимистической оценкой параметра q.

Такое представление соответствует функции принадлежности, показанной на рис.4.1, которая имеет следующий вид:

$$\mu_{\tilde{q}}(q) = \begin{cases}
0, & q < q_0 \\
\frac{q - q_0}{q_1 - q_0}, & q_0 \leq q < q_1 \\
1, & q_1 \leq q < q_1 \\
\frac{q_0 - q}{q_0 - q_1}, & q_1 \leq q \leq q_0 \\
0, & q > q_0.
\end{cases}$$

(4.2)

В этом случае носителем нечеткого числа \tilde{q} будет интервал $\left[q_0, q_0 \right]$, а ядром $\left[q_1, q_1 \right]$.

Предложение 4.1. Если нечеткое число \tilde{q} задано в трапециевидной форме $\tilde{q} = \left(q_0, q_0, q_1, q_1 \right)$, то переход к α-уровневому описанию

$$\tilde{q} = \bigcup_{\alpha \in [0, 1]} \left(q_\alpha, q_\alpha \right)$$

91
осуществляется по формулам:

\[q_\alpha = q_0 + \left(q_1 - q_0 \right) \cdot \alpha, \]

\[\overline{q}_\alpha = \overline{q}_0 - \left(\overline{q}_0 - \overline{q}_1 \right) \cdot \alpha. \]

Рис. 4.1. Нечеткое число \(\overline{q} \) с трапециевидной функцией принадлежности

Доказательство. Для перехода к \(\alpha \)-уровневому описанию необходимо определить значение нечеткого числа \(\overline{q} \) на любом \(\alpha \)-уровне, т.е. найти такие \(q_\alpha \) и \(\overline{q}_\alpha \), что

\[\mu_{\overline{q}} \left(q_\alpha \right) = \mu_{\overline{q}} \left(\overline{q}_\alpha \right) = \alpha \), \(q_\alpha \leq \overline{q}_\alpha \),

где \(\mu_{\overline{q}} \left(q_\alpha \right) \) и \(\mu_{\overline{q}} \left(\overline{q}_\alpha \right) \) - степени принадлежности элементов \(q_\alpha \) и \(\overline{q}_\alpha \) нечеткому множеству \(\overline{q} \), соответственно.

Учитывая аналитический вид трапециевидной функции принадлежности (4.2) и подставляя \(\mu_{\overline{q}} \left(q \right) = \alpha \), получаем:

\[\alpha = \frac{q_\alpha - q_0}{q_1 - q_0}; \quad \alpha = \frac{\overline{q}_0 - \overline{q}_\alpha}{\overline{q}_0 - \overline{q}_1}. \]

Отсюда следует, что
\[q_\alpha = q_0 + \left(\frac{q_1 - q_0}{\alpha} \right) \alpha, \quad \overline{q}_\alpha = q_0 - \left(\frac{q_0 - q_1}{1 - \alpha} \right) \alpha, \quad \alpha \in [0,1]. \]

Пример 4.1. Пусть вероятность \(p \) безошибочного выполнения операции равна "около 0.9". Требуется задать эту информацию в виде нечеткого числа \(\tilde{p} \) с трапециевидной функцией принадлежности.

Решение. Согласно определению 4.1, число \(\tilde{p} \) представим в следующем виде:

\[\tilde{p} = \langle 0.8, 1, 0.85, 0.95 \rangle. \]

где [0.8, 1] - пессимистическая оценка параметра \(p \);
[0.85, 0.95] - оптимистическая оценка параметра \(p \).

Разложение нечеткого числа \(\tilde{p} \) по \(\alpha \)-уровневым множествам имеет вид:

\[\tilde{p} = \left(0.8, 1 \right)_0 \cup \left(0.825, 0.975 \right)_{0.5} \cup \left(0.85, 0.95 \right)_1. \]

Пример 4.1 иллюстрируется на рис. 4.2,

![Diagram](image)

Рис. 4.2. К примеру 4.1

Определение 4.2. Треугольной формой нечеткого числа \(\tilde{q} \) будем называть тройку вида:

\[\tilde{q} = \langle q, \overline{q}, \hat{q} \rangle, \]

где \(q, \overline{q} \) - нижняя (верхняя) граница нечеткого числа \(\tilde{q} \) на нулевом \(\alpha \)-уровне;
\(\hat{q} \) - значение нечеткого числа \(\tilde{q} \) на единичном \(\alpha \)-уровне.
Такое описание соответствует функции принадлежности, показанной на рис. 4.3, которая имеет следующий аналитический вид:

\[
\mu_{\tilde{q}}(q) = \begin{cases}
0, & q < \hat{q} \\
\frac{q - \hat{q}}{\hat{q} - \tilde{q}}, & \hat{q} \leq q < \tilde{q} \\
\frac{\tilde{q} - q}{\tilde{q} - \hat{q}}, & \hat{q} \leq q \leq \tilde{q} \\
0, & q > \tilde{q}.
\end{cases}
\] (4.6)

Носителем нечетного числа \(\tilde{q}\) в этом случае является интервал \([q, \tilde{q}]\), а ядром, - число \(\hat{q}\). Интервал \([q, \tilde{q}]\) будем называть пессимистической оценкой, а число \(\hat{q}\), - оптимистической оценкой параметра \(q\).

Рис. 4.3. Нечеткое число \(\tilde{q}\) с треугольной функцией принадлежности

Предложение 4.2. Если нечеткое число \(\tilde{q}\) задано в треугольной форме \(\tilde{q} = \{q, \tilde{q}, \hat{q}\}\), то переход к \(\alpha\)-уровневому описанию

\[
\tilde{q} = \bigcup_{\alpha \in [0,1]} \left(\begin{array}{c} q \\ \alpha \\ \tilde{q} \end{array} \right) \cdot \left(\begin{array}{c} \alpha \\ q \alpha \\ \tilde{q} \alpha \end{array} \right)
\]

94
осуществляется по формулам:

\[q_\alpha = q + (\hat{q} - q) \cdot \alpha; \quad q_\alpha = q - (\hat{q} - q) \cdot \alpha. \]

Доказательство. Треугольная форма неопределенного параметра является частным случаем трапециевидной формы при \(q_1 = \hat{q}_1 = \hat{q}. \) Подставляя \(q_0 = q, \overline{q} = \overline{q}, \overline{q}_1 = \hat{q}, \overline{q}_1 = \hat{q} \) в формулы (4.3) и (4.4), получаем:

\[\frac{q}{\alpha} = q + (\hat{q} - q) \cdot \alpha; \quad \overline{q}_\alpha = q - (\overline{q} - \hat{q}) \cdot \alpha. \]

Пример 4.2. Пусть время \(T \) выполнения операции составляет "около 2 сек". Требуется представить эту информацию в виде нечеткого числа \(\tilde{T} \) с треугольной формой функции принадлежности.

Решение. Согласно определению 4.2, нечеткое число \(\tilde{T} \) представим в следующем виде:

\[\tilde{T} = \begin{bmatrix} 1.6, & 2, & 2.2 \end{bmatrix}, \]

где \([1.6, 2.2]\) и 2 - пессимистическая и оптимистическая оценки, соответственно, которые предполагаются известными.

Разложение числа \(T \) по \(\alpha \)-уровневым множествам имеет вид:

\[\tilde{T} = (1.6, 2.2)_0 \cup (1.8, 2.1)_{0.5} \cup (2, 2)_1. \]

Пример 4.2 иллюстрируется на рис. 4.4.

Рис. 4.4. К примеру 4.2

Рис. 4.5. Пример функций принадлежности для \(m \) термов
Определение 4.3. \(1\)-формой неопределенного параметра \(q\) (нечеткого числа \(\tilde{q}\)) будем называть тройку вида:

\[
\tilde{q} = \left\langle q, \bar{q}, l \right\rangle ,
\]

(4.7)

где \(q, \bar{q}\) - нижняя (верхняя) граница изменения параметра \(q\);

\(l\) - лингвистическая оценка параметра \(q\) диапазоне \([q, \bar{q}]\), причем

\(l \in L = \{l_1, l_2, ..., l_m\}\).

\(L\) - линейно-упорядоченное по принципу от "меньшего" к "большему" множество лингвистических термов для качественной оценки параметра \(q\) (рис.4.5).

Допущение 4.1. При переходе от \(1\)-формы (4.7) нечеткого числа \(\tilde{q}\) к трапециевидной форме (4.1) будем предполагать, следующее:

1) носителем нечеткого числа \(\tilde{q}\) является интервал \([q, \bar{q}]\);

2) размер ядра \(\Delta\) нечетного числа \(\tilde{q}\) зависит от мощности \((m)\) терм-множества \(L\), носителя \([q, \bar{q}]\) и не зависит от лингвистической переменной;

3) для любых соседних термов \(l_j\) и \(l_i\) \((j = i + 1)\):

\[
q_1(l_j) = q_1(l_i) + 2 \cdot \Delta ,
\]

где \(q_1(l_j)\) и \(q_1(l_i)\) - нижние границы ядра нечетного числа \(\tilde{q}\), выраженного лингвистическими оценками \(l_j\) и \(l_i\), соответственно;

4) для первого терма \((l_1)\): \(q_1(l_1) = q\);

5) для последнего терма \((l_m)\): \(q_1(l_m) = \bar{q}\);

Предложение 4.3. Если неопределенный параметр \(q\) задан \(1\)-формой нечеткого числа \(\tilde{q} = \left\langle q, \bar{q}, l_i \right\rangle\), где \(l_i \in L = \{l_1, l_2, ..., l_m\}\), то переход от \(1\)-формы к трапециевидной форме (4.1) осуществляется по формулам:

\[
q_0(l_i) = q ;
\]

(4.8)

\[
\bar{q}_0(l_i) = \bar{q} ;
\]

(4.9)
где \(q_0(l_i)(\overline{q}_0(l_i)) \) - нижняя (верхняя) граница носителя нечетного числа \(\overline{q} \), оцениваемого лингвистическим термом \(l_i \);

\(q_1(l_i)(\overline{q}_1(l_i)) \) - нижняя (верхняя) граница ядра нечетного числа \(\overline{q} \), оцениваемого лингвистическим термом \(l_i \).

Доказательство. Из допущения 4.1(1) следует, что для любого лингвистического терма \(l_i \in L \):

\[
q_0(l_i) = q \quad \text{и} \quad \overline{q}_0(l_i) = \overline{q}.
\]

Учитывая, что размер ядра нечетного числа определяется по формуле \(\Delta = \overline{q}_1(l_i) - q_1(l_i) \), и, опираясь на допущения 4.1(2)-4.1(5), получаем, что в интервал \(\left[q, \overline{q} \right] \) попадает ровно \((2m-1)\) отрезков длиной \(\Delta \).

Отсюда, \(\Delta = \frac{\overline{q} - q}{2m-1} \). С учетом этого получаем:

для первого терма \(l_1 \):

\[
q_1(l_1) = q + \frac{2(1-1)(\overline{q} - q)}{2m-1} ;
\]

\[
\overline{q}_1(l_1) = q + \frac{(\overline{q} - q)}{2m-1} = q + \frac{(2-1-1)(\overline{q} - q)}{2m-1} ;
\]

для второго терма \(l_2 \):

\[
q_1(l_2) = q + \frac{2(\overline{q} - q)}{2m-1} = q + \frac{2(2-1)(\overline{q} - q)}{2m-1} ;
\]
\(\bar{q}_1(l_2) = q + \frac{3(\bar{q} - q)}{2m - 1} = q + \frac{(2 \cdot 2 - 1)(\bar{q} - q)}{2m - 1} \) \\

для последнего терма \(l_m \):

\(\bar{q}_1(l_m) = q + \frac{2(m - 1)(\bar{q} - q)}{2m - 1} \)

\(\bar{q}_1(l_m) = q + \frac{(2m - 1)(\bar{q} - q)}{2m - 1} \)

Отсюда для любого терма \(l_i \in L \):

\(\bar{q}_1(l_i) = q + \frac{2(i - 1)(\bar{q} - q)}{2m - 1} \)

\(\bar{q}_1(l_i) = q + \frac{(2i - 1)(\bar{q} - q)}{2m - 1} \)

Предложение 4.3 иллюстрируется рис. 4.6.

Рис. 4.6. Переход от \(l \)-формы нечетного числа к трапециевидной форме в случае 4-х термов

Пример 4.3. Пусть вероятность обнаружения ошибок при визуальном контроле задана в виде \(\bar{p} = 0.3, 0.8, \text{выше средней} \). При этом используется множество лингвистических оценок:

\[L = \{\text{низкая, ниже средней, средняя, выше средней, высокая}\}. \]
Необходимо представить число \tilde{p} в трапециивидной форме.

Решение. Количество лингвистических термов (мощность множества L) равно $m=5$. Лингвистическая оценка "выше средней" в множестве L имеет порядковый номер $i=4$. Применяя формулы (4.8)-(4.11) из предложения 4.3, получаем:

$$P_0 = 0.3;$$
$$\bar{P}_0 = 0.8;$$

$$P_1 = 0.3 + \frac{2(4-1) \cdot (0.8 - 0.3)}{2 \cdot 5 - 1} \approx 0.63;$$

$$\bar{P}_1 = 0.3 + \frac{(2 \cdot 4 - 1) \cdot (0.8 - 0.3)}{2 \cdot 5 - 1} \approx 0.69.$$

Поэтому в трапециивидной форме:

$$\tilde{p} = \langle 0.3, 0.8, 0.63, 0.69 \rangle,$$

или в виде разложения по α-уровневым множествам:

$$\tilde{p} = (0.3, 0.8)_0 \cup (0.63, 0.69)_1.$$

Графическое изображение нечеткого числа \tilde{p} представлено на рис.4.7.

![Графическое изображение](image)

Рис. 4.7. К примеру 4.3

Допущение 4.2. При переходе от l-формы нечеткого числа \tilde{q} (4.7) к треугольной форме (4.5) будем предполагать следующее:

- носителем нечеткого числа \tilde{q} является интервал $[\underline{q}, \overline{q}]$.
• для первого терма l_1:
 \[\hat{q}_1(l_1) = \underline{q} \; ; \]

• для последнего терма l_m:
 \[\hat{q}_1(l_m) = \overline{q} \; ; \]

• для соседних термов l_j и l_i ($j = i + 1$) расстояние между ядрами
 \[\Delta = \hat{q}(l_j) - \hat{q}(l_i) \]
 является постоянной величиной,

где $\hat{q}(l_1), \hat{q}(l_m), \hat{q}(l_i), \hat{q}(l_j)$ - ядра нечетного числа \tilde{q}, соответствующие термам l_1, l_m, l_i, l_j.

Предложение 4.4. Если неопределенный параметр q задан l-формой нечетного числа, где $\tilde{q} = \{ q, \overline{q}, l_i \}$, где $l_i \in L = \{ l_1, l_2, ..., l_m \}$, то переход от l-формы нечетного числа к треугольной форме (4.5) осуществляется по формулам:

\[q(l_i) = \underline{q} \; ; \quad (4.12) \]

\[\overline{q}(l_i) = \overline{q} \; ; \quad (4.13) \]

\[\hat{q}(l_i) = q + \frac{(i-1)(\overline{q} - q)}{(m-1)} \; , \quad (4.14) \]

где $\underline{q}(l_i)(\overline{q}(l_i))$ - нижняя (верхняя) граница носителя нечетного числа \tilde{q}, выраженного лингвистической оценкой l_i;

\[\hat{q}(l_i) \] - ядро нечетного числа \tilde{q}, выраженного лингвистической оценкой l_i.

Доказательство этого предложения аналогично тому, которое использовалось в предложении 4.3. Предложение 4.4 иллюстрирует рис.4.8.

Пример 4.4. Пусть информация о времени выполнения контрольной операции задана l-формой нечетного числа:

\[\tilde{r} = < 10, 19, \text{высокое} >. \]

Множество лингвистических оценок имеет вид:

\[L = \{ \text{низкое, среднее, высокое, очень высокое} \}. \]
Требуется представить число \(\tilde{t} \) в треугольной форме.

Решение. Количество лингвистических термов (мощность множества \(L \)) равно четырем. Лингвистическая оценка «высокое» в множестве \(L \) имеет порядковый номер \(i = 3 \). Применяя формулы (4.12)-(4.14), получаем:

\[
t = 10; \quad \tilde{t} = 19;
\]

\[
\tilde{t} = 10 + (3 - 1) \cdot (19 - 10) \div (4 - 1) = 16 .
\]

Окончательно находим:

\(\tilde{t} = < 10, 19, 16 > . \)

Функция принадлежности нечетного числа \(\tilde{t} \) показана на рис.4.9.

\[\text{Рис. 4.8. Переход от \(l \)-формы к треугольной в случае пяти термов}\]

\[\text{Рис. 4.9. К примеру 4.4.}\]

4.2. Учет влияющих факторов

В настоящем разделе излагается способ учета качественных и количественных факторов, влияющих на значения неопределенных параметров, используемых в аналитических моделях. Классификация таких факторов, как правило, определяется структурой объекта и условиями его функционирования.

Определение 4.4. Базой знаний о влиянии факторов

\[
X = \{ x_1, x_2, ..., x_n \}
\]

на значение параметра \(q \) будем называть следующую систему логических высказываний:
ЕСЛИ \(x_1 = a_{11} \) И \(x_2 = a_{12} \) И ... И \(x_n = a_{1n} \) ИЛИ
\(x_1 = a_{11} \) И \(x_2 = a_{12} \) И ... И \(x_n = a_{1n} \) ИЛИ ...
\(x_1 = a_{1k_1} \) И \(x_2 = a_{2k_1} \) И ... И \(x_n = a_{nk_1} \),
ТО \(q = l_1 \), ИНАЧЕ

ЕСЛИ \(x_1 = a_{21} \) И \(x_2 = a_{22} \) И ... И \(x_n = a_{2n} \) ИЛИ
\(x_1 = a_{22} \) И \(x_2 = a_{22} \) И ... И \(x_n = a_{2n} \) ИЛИ ...
\(x_1 = a_{2k_2} \) И \(x_2 = a_{2k_2} \) И ... И \(x_n = a_{nk_2} \),
ТО \(q = l_2 \), ИНАЧЕ ...

ЕСЛИ \(x_1 = a_{m1} \) И \(x_2 = a_{m2} \) И ... И \(x_n = a_{mn} \) ИЛИ
\(x_1 = a_{m2} \) И \(x_2 = a_{m2} \) И ... И \(x_n = a_{mn} \) ИЛИ ...
\(x_1 = a_{mk_m} \) И \(x_2 = a_{mk_m} \) И ... И \(x_n = a_{nk_m} \),
ТО \(q = l_m \),

где \(l_j \) \((j=1,m) \) — лингвистическая оценка параметра \(q \), определяемая из
term-множества \(L = \{ l_1, l_2, ..., l_m \} \);

\(a_{jp} \) — лингвистическая оценка фактора \(x_i \), выбираемая из term-
множества \(L_{x_1} = \{ l_1^i, l_2^i, ..., l_m^i \} \) в \(j \)-ой дизъюнкции, \(i=1,n, \; j=1,m, \;
\(p=1,k_j \);

\(k_j \) — количество правил, определяющих значение параметра \(q = l_j \).

Используя операции \(\bigcup \) (ИЛИ) и \(\bigcap \) (И), систему логических высказываний из определения 4.4. можно переписать в более компактном виде:

\[
\bigcup_{p=1}^{k_j} \left[\bigcap_{i=1}^{n} \left(x_i = a_{jp} \right) \right] \rightarrow q = l_j, \; j=1,m
\] (4.15)
Определение 4.5. \(l(x) \)-формой неопределенного параметра \(q \) будем называть следующую информацию:

- диапазон изменения параметра \(q \in \left[q, \bar{q} \right] \);
- терм-множество лингвистических оценок параметра \(q \):

\[
L = \{ l_1, l_2, ..., l_m \}
\]

- множество факторов \(X = \{ x_1, x_2, ..., x_n \} \), влияющих на значение параметра \(q \) в диапазоне \(\left[q, \bar{q} \right] \);
- терм-множества для лингвистических факторов \(x_i \):

\[
L_{x_i} = \left\{ l_{i_1}^{1}, l_{i_2}^{2}, ..., l_{i_m}^{m} \right\}, \; i = 1, n;
\]

- универсальные множества для нечеткой оценки факторов \(x_i \):

\[
x_i \in U_i, \quad i = 1, n;
\]

- функции принадлежности \(\mu_{l_i^b} \left(x_i \right) \) факторов \(x_i \) лингвистическим термам \(l_i^b \), \(i = 1, n, \; b = 1, m_i \);
- база знаний о влиянии факторов \(X = \{ x_1, x_2, ..., x_n \} \) на значение параметра \(q \);
- вектор текущих значений влияющих факторов \(X^* = \{ x_1^*, x_2^*, ..., x_n^* \} \), где \(x_i^* \in U_i, \quad i = 1, n \).

Наличие этой информации позволяет реализовать следующий алгоритм.

Алгоритм преобразования \(l(x) \)-формы к \(l \)-форме

1°. Обозначить:

\[
\mu_{a_i^{jp}} \left(x_i \right) - \text{функции принадлежности термов} \ a_i^{jp};
\]
\(\mu_{l_j}(q) \) - функции принадлежности термов \(l_j, i=1,n, j=1,m, \) \(p=1,k_j \).

2°. В базе знаний (4.15) заменить нечеткие значения факторов \(x_1 \div x_n \) и параметра \(q \) соответствующими функциями принадлежности. Операции \(\bigcup \) и \(\bigcap \) заменить операциями \(\lor \) и \(\land \):

\[
\mu_{l_j}(q) = \bigvee_{p=1}^{k_j} \bigwedge_{i=1}^{n} a_{i_p}(x_i), \quad j=1,m.
\]

3°. Вычислить степени принадлежности значения параметра \(q \) к лингвистическим термам \(l_j, j=1,m \):

\[
\mu_{l_j}(q) = \bigvee_{p=1}^{k_j} \bigwedge_{i=1}^{n} \sup_{U_i} \left(\mu_{a_{i_p}}(x_i) \land \mu_{x_i}(x_i) \right),
\]

где операции \(\lor \) и \(\land \) отождествляются с операциями \(\min \) и \(\max \) соответственно.

4°. Выбрать терм \(l_\ast \), для которого

\[
\mu_{l_\ast} = \max \left(\mu_{l_1}(q), \mu_{l_2}(q),..., \mu_{l_m}(q) \right).
\]

Пример 4.5. Пусть вероятность \(P \) безошибочного выполнения человеком-оператором некоторой операции находится в диапазоне \([0.95, 0.99]\) и зависит от таких факторов: \(x_1 \) - квалификация человека-оператора; \(x_2 \) - напряженность работы; \(x_3 \) - уровень утомленности. Экспертная база знаний имеет вид:

ЕСЛИ (\(x_1 = \text{В} \)) И (\(x_2 = \text{Н} \)) И (\(x_3 = \text{Н} \)), ТО \(P = \text{В} \),

ЕСЛИ (\(x_1 = \text{С} \)) И (\(x_2 = \text{вС} \)) И (\(x_3 = \text{нС} \)), ТО \(P = \text{С} \),

ЕСЛИ (\(x_1 = \text{Н} \)) И (\(x_2 = \text{В} \)) И (\(x_3 = \text{В} \)), ТО \(P = \text{Н} \),

104
где нечеткие термы имеют функции принадлежности, изображенные на рис.4.10 (Н - низкий, нС - ниже среднего, С - средний, вС - выше среднего, В - высокий).

\[\mu_{j}^{l}(q) \]

Рис. 4.10. Кусочно-линейные функции принадлежности нечетких термов

Пусть текущей ситуации отвечают такие уровни влияющих факторов: \(x_{1}^{*} = \text{вС}, \ x_{2}^{*} = \text{нС}, \ x_{3}^{*} = \text{Н} \). Возникает вопрос: каким будет уровень вероятности \(P \)?

Из базы знаний получаем следующую систему нечетких логических уравнений:

\[\mu_{B}(P) = \mu_{B}(x_{1}) \land \mu_{H}(x_{2}) \land \mu_{H}(x_{3}) \],
\[\mu_{C}(P) = \mu_{C}(x_{1}) \land \mu_{C}(x_{2}) \land \mu_{H}(x_{3}) \],
\[\mu_{H}(P) = \mu_{H}(x_{1}) \land \mu_{B}(x_{2}) \land \mu_{B}(x_{3}) \].

Используя приведенные уравнения, вычислим степени принадлежности значений параметра \(P \):

\[\mu_{B}(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}) = \sup_{x_{1}} \left[\mu_{B}(x_{1}) \land \mu_{C}(x_{1}) \right] \land \sup_{x_{2}} \left[\mu_{H}(x_{2}) \land \mu_{H}(x_{2}) \right] \land \sup_{x_{3}} \left[\mu_{H}(x_{3}) \land \mu_{H}(x_{3}) \right] = 0.75 \land 0.75 \land 1 = 0.75 \]

\[\mu_{C}(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}) = \sup_{x_{1}} \left[\mu_{C}(x_{1}) \land \mu_{C}(x_{1}) \right] \land \sup_{x_{2}} \left[\mu_{C}(x_{2}) \land \mu_{H}(x_{2}) \right] \land \sup_{x_{3}} \left[\mu_{H}(x_{3}) \land \mu_{H}(x_{3}) \right] = 0.75 \land 0.5 \land 0.75 = 0.5 \]
\[\mu_\cap (x_1^*, x_2^*, x_3^*) = \sup_{x_1} [\mu_H(x_1) \wedge \mu_B(x_2) \wedge \mu_C(x_2)] \wedge \sup_{x_2} [\mu_H(x_1) \wedge \mu_B(x_2) \wedge \mu_C(x_2)] \wedge \sup_{x_3} [\mu_B(x_3) \wedge \mu_H(x_3)] = 0.43 \wedge 0.43 \wedge 0.33 = 0.33 \]

Поскольку наибольшую принадлежность имеет терм В, то неопределенная вероятность \(P \) записывается в виде \(l \)-формы:

\[\tilde{P} = <0.95, 0.99, \text{высокий}>, \]

и \(\alpha \)-формы:

\[\tilde{P} = \bigcup \left(\begin{array}{c} 0.95, 0.99 \end{array} \right) \bigcup \bigcup \left(\begin{array}{c} 0.95, 0.96 \end{array} \right) \bigcup \bigcup \left(\begin{array}{c} 0.96, 0.96 \end{array} \right) \]

4.3. Нечеткое обобщение аналитических моделей

В этом разделе вводится принцип обобщения, который позволяет преобразовать аналитические модели таким образом, чтобы в качестве их параметров можно было использовать нечеткие числа.

4.3.1. Принцип обобщения Заде

Определение 4.6. Если задана функция от \(n \) переменных \(y = f(x_1, x_2, ..., x_n) \) и аргументы \(x_i \) - суть нечеткие числа \(\tilde{x}_i \) с носителями \(\text{supp } \tilde{x}_i = [x_i, \overline{x}_i] \), \(i = 1, n \) то нечеткое число \(\tilde{y} = f(\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n) \) определяется следующим образом [6,15]:

\[\mu_{\tilde{y}}(y^*) = \sup_{f(x_1^*, x_2^*, ..., x_n^*) = y^*} \min \left\{ \mu_{\tilde{x}_1}(x_1^*), ..., \mu_{\tilde{x}_n}(x_n^*) \right\} \]

(4.16)
Реализация этого принципа осуществляется по следующему алгоритму.

1°. Зафиксировать значение \(y = y^* \).

2°. Найти все \(n \)-ки \(\{ x_1^*, x_2^*, \ldots, x_n^* \} \), удовлетворяющие условиям:

\[
y^* = f \left(x_1^*, x_2^*, \ldots, x_n^* \right), \quad x_{ij}^* \in [\underline{x}_i, \overline{x}_i], \quad i = 1, n, \quad j = 1, k.
\]

3°. Степень принадлежности элемента \(y^* \) нечеткому числу \(\tilde{y} \) определить по формуле:

\[
\mu_{\tilde{y}} (y^*) = \max_{j = 1, k} \min \left(\mu_{\tilde{x}_1} (x_{1j}^*), \mu_{\tilde{x}_2} (x_{2j}^*), \ldots, \mu_{\tilde{x}_n} (x_{nj}^*) \right).
\]

4°. Проверить условие "Взять все элементы \(y^* \)". Если "да", то перейти к шагу 5, иначе зафиксировать новое значение \(y^* \) и перейти к шагу 2.

5°. Конец.

Пример 4.6. Пусть заданы нечеткие числа

\[
\tilde{a} = 0/1+1/2+1/3+0/4 \text{ и } \tilde{b} = 0/2+1/3+1/4+0/8.
\]

Требуется найти нечеткое число \(\tilde{c} = \tilde{a} \cdot \tilde{b} \) с использованием принципа обобщения.

Решение. Процесс решения сведен в табл.4.1. Из этой таблицы видно, что нечеткое число \(\tilde{c} \) определяется так:

\[
\tilde{c} = 0/2 + 0/3 + 0/4 + 1/6 + 1/8 + 1/9 + 1/12 + 0/16 + 0/24 + 0/32.
\]

Переходя к разложениям по \(\alpha \)-уровневым множествам, получаем:

\[
\tilde{c} = (2, 32) \cup (6, 12)
\]

В этом примере применение принципа обобщения Заде потребовало перебора 16 вариантов.
Таблица 4.1

К примеру 4.6

<table>
<thead>
<tr>
<th>$c^* = a^* \cdot b^*$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>16</th>
<th>24</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^*</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>b^*</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$\mu_{\tilde{a}}(a^*)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\mu_{\tilde{b}}(b^*)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\min\left(\mu_{\tilde{a}}(a^), \mu_{\tilde{b}}(b^)\right)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu_{\tilde{c}}(c^*)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Предложение 4.5. Если $\tilde{y} = f(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n)$ - функция от n нечетких аргументов \tilde{x}_i, каждый из которых задается функцией принадлежности в k точках универсального множества

$$\tilde{x}_i = \sum_{j=1}^{k} \mu_{\tilde{x}_i}(x_{ij})/x_{ij}, \quad i = 1, n$$

tо для определения нечетного числа \tilde{y} по принципу обобщения Заде необходимо перебрать $N = k^n$ вариантов.

Доказательство этого предложения следует из элементарных комбинаторных рассуждений.

Из предложения 4.5 становится ясно, что применение известного принципа обобщения Заде [6,15] связано с большими вычислительными трудностями. Например, для нахождения только одного значения функции от семи аргументов ($n = 7$), каждый из которых задан на трех α-уровнях ($k = 3 \cdot 2 = 6$), необходимо перебрать $N = 6^7 = 279936$ вариантов.

Для решения практических задач ниже будет предложен модифицированный принцип обобщения, не требующий трудоемких вычислительных процедур. Для доказательства его корректности введем α-уровневый принцип обобщения.
4.3.2. α-уровневый принцип обобщения

Определение 4.7. Если задана функция от нечетких аргументов
\[\tilde{y} = f(\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n) \], в которой нечеткие числа представлены в виде разложения по α-уровневым множествам:
\[\tilde{y} = \bigcup_{\alpha \in [0,1]} \left(y_{\alpha}, y_{\alpha} \right), \quad \tilde{x}_i = \bigcup_{\alpha \in [0,1]} \left(x_{i,\alpha}, \tilde{x}_{i,\alpha} \right), \quad i = 1, n. \]
то для любого α-уровня значение функции вычисляется по формулам:
\[y_{\alpha} = \inf \left(f \left(x_{1,\alpha}^*, x_{2,\alpha}^*, ..., x_{n,\alpha}^* \right) \right); \]
\[\tilde{y}_{\alpha} = \sup \left(f \left(x_{1,\alpha}^*, x_{2,\alpha}^*, ..., x_{n,\alpha}^* \right) \right), \]
где \(x_{i,\alpha}^* \in \left[x_{i,\alpha}, \tilde{x}_{i,\alpha} \right], \quad i = 1, n. \)

Эквивалентность α-уровневого принципа обобщения и классического принципа обобщения Заде доказывается в следующем предложении.

Предложение 4.6. Если задана функция от нечетких аргументов
\[\tilde{y} = f(\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n) \] и нечеткие числа представлены в виде разложения по α-уровневым множествам:
\[\tilde{y} = \bigcup_{\alpha \in [0,1]} \left(y_{\alpha}, y_{\alpha} \right), \quad \tilde{x}_i = \bigcup_{\alpha \in [0,1]} \left(x_{i,\alpha}, \tilde{x}_{i,\alpha} \right), \quad i = 1, n. \]
то результаты нечеткого обобщения по определениям 4.6 и 4.7 совпадают.

Доказательство. Достаточно доказать, что определение 4.7 следует из определения 4.6. Вначале покажем, что для вычисления значения функции
\[y = y^* \] на конкретном α-уровне достаточно знать значения аргументов только на этом α-уровне. В этом случае формула (4.16) преобразуется к виду:
\[\alpha = \mu \tilde{y} \left(y^* \right) = \sup_{\mu \tilde{x}_i \left(x^*_i \right)} \min_{i=1,n} \left(\mu \tilde{x}_i \left(x^*_i \right) \right) \] (4.17)

\[f \left(x^*_1, x^*_2, \ldots, x^*_n \right) = y^* \]

\[x^*_i \in \left[x_{i-\alpha}, x_{i+\alpha} \right], \quad i = 1, n \]

Докажем, что применение значений аргументов на других \(\alpha \)-уровнях не добавляет новых значений \(y \) со степенью принадлежности \(\alpha \). Доказательство выполним от противного. Рассмотрим аргумент \(x_i \). Новое значение аргумента \(x_i \) обозначим через \(x_i^N \). Предположим, что изменение аргумента \(x_i \) добавит новое значение \(y \) со степенью принадлежности \(\alpha \). Возможны следующие три случая:

Случай 1: \(x_i^N \notin \left[x_{i-\alpha}, x_{i+\alpha} \right] \) и \(\mu \tilde{x}_i \left(x_i^N \right) = \alpha \).

В связи с тем, что нечеткие числа представлены в виде разложения по \(\alpha \)-уровневым множествам, то из выполнения условия

\[\mu \tilde{x}_i \left(x_i^N \right) = \alpha \]

следует, что \(x_i^N \in \left[x_{i-\alpha}, x_{i+\alpha} \right] \). Последнее означает, что аргумент \(x_i \) не изменяется. Поэтому новые значения \(y \) со степенью принадлежности \(\alpha \) не появляются.

Случай 2: \(x_i^N \notin \left[x_{i-\alpha}, x_{i+\alpha} \right] \) и \(\mu \tilde{x}_i \left(x_i^N \right) \neq \alpha \).

Первое условие означает, что диапазон изменения \(x_i^N \) шире, чем \[\left[x_{i-\alpha}, x_{i+\alpha} \right] \]. В связи с этим \(\mu \tilde{x}_i \left(x_i^N \right) < \alpha \). В результате расширения диапазона изменения аргумента \(x_i \) может появиться новое значение \(y \). Однако это новое значение \(y \) не может иметь степень принадлежности равную \(\alpha \), т.к.

по формуле (4.16) \[\min_{i=1,n} \left(\mu \tilde{x}_i \left(x_i^* \right) \right) < \alpha . \]

Таким образом, изменение аргумента не приводит к появлению новых значений \(y \) со степенью принадлежности \(\alpha \).
Случай 3: $x_i^N \in \left[\bar{x}_{i,\alpha}, \underline{x}_{i,\alpha} \right]$ и $\mu_{\bar{x}_i} \left(x_i^N \right) \neq \alpha$.

Первое условие означает, что диапазон изменения аргумента не расширился. Учитывая второе условие, получаем $\mu_{\bar{x}_i} \left(x_i^* \right) > \alpha$. Отсюда следует, что диапазон изменения аргумента сузился, что означает невозможность появления новых значений y.

Таким образом, любое изменение аргумента x_i не приводит к появлению новых значений y со степенью принадлежности равной α. Аналогичные выводы можно делать для всех остальных аргументов. Это означает, что в случае представления нечетких чисел в виде разложения по α-уровневым множествам формула (4.17) справедлива.

Заметим, что

$$
\mu_{\bar{x}_1} \left(x_1^* \right) = \mu_{\bar{x}_2} \left(x_2^* \right) = \ldots = \mu_{\bar{x}_n} \left(x_n^* \right) = \alpha.
$$

Поэтому результат применения операций \min и \sup в (4.17) всегда равен α. Формула (4.17) дает ряд значений $y_1^*, y_2^*, \ldots, y_n^*$ со степенью принадлежности, равной α. Для перехода к α-уровневому представлению необходимо найти минимальное и максимальное значения:

$$
y_{-\alpha} = \min \left(y_1^*, y_2^*, \ldots, y_n^* \right) \quad \text{и} \quad y_{\alpha} = \max \left(y_1^*, y_2^*, \ldots, y_n^* \right)
$$

Окончательно получаем:

$$
y_{-\alpha} = \inf \left(f \left(x_1^*, x_2^*, \ldots, x_n^* \right) \right);

- y_{\alpha} = \sup \left(f \left(x_1^*, x_2^*, \ldots, x_n^* \right) \right),
$$

где $x_i^* \in \left[\bar{x}_{i,\alpha}, \underline{x}_{i,\alpha} \right]$, $i=1, n$, $\alpha \in [0,1]$.

111
Применение α-уровневого принципа обобщения сопряжено с необходимостью решения задачи оптимизации, которая формулируется следующим образом.

Дано: функция от n переменных $y = f\left(x_1, x_2, ..., x_n \right)$, в которой аргументы $x_i \in [\underline{x}_i, \bar{x}_i]$, $i = 1, n$.

Требуется: найти такие значения аргументов $x_1^*, x_2^*, ..., x_n^*$, которые обеспечивают максимальное $\left(\overline{y} \right)$ и минимальное $\left(\underline{y} \right)$ значение функции $y = f\left(x_1, x_2, ..., x_n \right)$ на области определения $x_i \in [\underline{x}_i, \bar{x}_i]$, $i = 1, n$.

В общем случае решение этой задачи является достаточно сложным. Однако, вводя ряд ограничений, свойственных реальным моделям, удаётся упростить решение оптимизационной задачи и получить достаточно простой алгоритм.

4.3.3. Модифицированный принцип обобщения

Допущение 4.3. Будем предполагать, что функция

$$ y = f\left(x_1, x_2, ..., x_n \right) $$

удовлетворяет следующим ограничениям:
- Область изменения любого аргумента непрерывна.
- На области определения функция дифференцируема.
- Множество аргументов $X = \{ x_1, x_2, ..., x_n \}$ можно представить объединением не более, чем трех подмножеств $X = X_1 \cup X_2 \cup X_3$ причем:

$$ X_1 \cap X_2 = X_1 \cap X_3 = X_2 \cap X_3 = \emptyset ; $$

$$ X_1 = \left\{ x_r : \frac{\partial y}{\partial x_r} \geq 0 \right\} \quad (r = 1, p_1) ; $$

$$ X_2 = \left\{ x_s : \frac{\partial y}{\partial x_s} \leq 0 \right\} \quad (s = 1, p_2) ; $$

112
\[X_3 = \left\{ x_l : \text{sign} \left(\frac{\partial y}{\partial x_l} \right) = h_l \left(x_r, x_s \right) \right\} \quad (l = 1, p_3 \ ; \ p_1 + p_2 + p_3 = n) \].

Обратим внимание, что \(\frac{\partial y}{\partial x_l} = g_l \left(x_r, x_s \right) \) - знакопеременная функция и для всех \(x_l \in X_3 \), знак производной \(\frac{\partial y}{\partial x_l} \) не зависит от \(x_l \) т.е.:

\[
\text{sign} \left(\frac{\partial y}{\partial x_l} \right) \neq h \left(x_l \right).
\]

Перечисленные ограничения введены на основе анализа аналитических моделей, которые используются в практических расчетах.

Определение 4.8. Модифицированный принцип обобщения.

Пусть \(y = f \left(x_1, x_2, \ldots, x_n \right) \) - функция от \(n \) переменных, удовлетворяющая допущениям 4.3. Аргументы функции \(x_i \) - суть нечеткие числа в виде

\[
\tilde{x}_i = \bigcup_{\alpha \in [0,1]} \left(\tilde{x}_{i\alpha}, x_{i\alpha} \right), \ i = 1, n.
\]

Нечетким обобщением \(\tilde{y} = f \left(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n \right) \) назовем число:

\[
\tilde{y} = \bigcup_{\alpha \in [0,1]} \left\{ f \left(\tilde{x}_{r\alpha}, \tilde{x}_{s\alpha}, x_{l\alpha} \right), f \left(-\tilde{x}_{r\alpha}, \tilde{x}_{s\alpha}, x_{l\alpha} \right) \right\},
\]

где

\[
x_{l\alpha} = \begin{cases} \tilde{x}_{l\alpha}, & g_l \left(\tilde{x}_r, \tilde{x}_s \right) \geq 0 \\ -x_{l\alpha}, & g_l \left(\tilde{x}_r, \tilde{x}_s \right) < 0 \end{cases}
\]

113
\[x_{II}^l \alpha = \begin{cases} x_l \alpha, & g_l \left(x_r, x_s \right) \geq 0 \\ x_l \alpha, & g_l \left(x_r, x_s \right) < 0 \end{cases} \]

Эквивалентность результатов применения модифицированного и известных принципов обобщения доказывается в следующем предложении.

Предложение 4.7. Если нечеткие числа представлены в виде разложения по \(\alpha \)-уровневым множествам и функция \(y = f \left(x_1, x_2, ..., x_n \right) \) подчиняется допущениям 4.3, то результаты нечеткого обобщения по определениям 4.6 и 4.8 совпадают.

Доказательство. Если нечеткие числа заданы в виде \(\alpha \)-уровневого разложения, то принцип обобщения Заде эквивалентен определению 4.7. Поэтому достаточно показать, что при допущениях 4.3 результаты применения определений 4.7 и 4.8 совпадают.

В предложении 4.6 доказано, что для любого \(\alpha \)-уровня

\[y_{\alpha} = \inf \left(f \left(x_1^*, x_2^*, ..., x_n^* \right) \right); \]

\[y_{\alpha} = \sup \left(f \left(x_1^*, x_2^*, ..., x_n^* \right) \right), \]

где \(x_i^* \alpha = \left[x_i^{l\alpha}, x_i^{r\alpha} \right], i = 1, n \).

Теперь необходимо найти максимальное и минимальное значение функции для каждого \(\alpha \)-уровня с учетом допущений 4.3.

Максимальное значение функции достигается при таких значениях аргументов:

\[x_r \alpha = x_r \alpha, \quad x_s \alpha = x_s \alpha, \quad x_l \alpha = \begin{cases} x_l \alpha, & g_l \left(x_r, x_s \right) \geq 0 \\ x_l \alpha, & g_l \left(x_r, x_s \right) < 0 \end{cases} \]

Это обусловлено тем, что любое приращение аргументов в пределах заданной области не увеличивает значение функции.

Минимальное значение функции достигается при таких значениях аргументов:
Это обусловлено тем, что любое приращение аргументов в пределах заданной области не уменьшает значение функции.
Учитывая это, получаем следующую нечеткую модель:

\[
\tilde{y} = \bigcup_{\alpha \in [0,1]} \left\{ f\left(\frac{x_{r}}{r_{\alpha}}, \frac{-x_{s}}{s_{\alpha}}, \frac{x_{I}}{l_{\alpha}} \right), f\left(\frac{-x_{r}}{r_{\alpha}}, \frac{-x_{s}}{s_{\alpha}}, \frac{-x_{I}}{l_{\alpha}} \right) \right\},
\]

где
\[
x_{I} = \begin{cases}
\frac{x_{l}}{l_{\alpha}}, & g_{l}\left(\frac{x_{r}}{r_{\alpha}}, \frac{-x_{s}}{s_{\alpha}} \right) \geq 0 \\
\frac{-x_{l}}{l_{\alpha}}, & g_{l}\left(\frac{x_{r}}{r_{\alpha}}, \frac{-x_{s}}{s_{\alpha}} \right) < 0
\end{cases};
\]

\[
x_{I}^{II} = \begin{cases}
\frac{x_{l}}{l_{\alpha}}, & g_{l}\left(\frac{-x_{r}}{r_{\alpha}}, \frac{-x_{s}}{s_{\alpha}} \right) \geq 0 \\
\frac{-x_{l}}{l_{\alpha}}, & g_{l}\left(\frac{-x_{r}}{r_{\alpha}}, \frac{-x_{s}}{s_{\alpha}} \right) < 0
\end{cases}.
\]

Совпадение полученных результатов с определением 4.8, свидетельствует о справедливости предложения 4.7. Целесообразность использования модифицированного принципа обобщения вытекает из следующего предложения.

Предложение 4.8. Модифицированный принцип обобщения обладает меньшей вычислительной трудоемкостью по сравнению с классическим принципом обобщения Заде.

Доказательство. Пусть \(n \) - количество аргументов функций, а \(m \)-количество \(\alpha \)-уровней, на которых задан каждый аргумент. Рассмотрим трудоемкость применения каждого принципа.

Принцип обобщения Заде. Поскольку нечеткое число задается в \(k = 2m \) точках, то, в соответствии с предложением 4.5, для применения принципа обобщения Заде необходимо перебрать \(N_1 = (2m)^n \) вариантов.

Модифицированный принцип обобщения. В этом случае максимальное и минимальное значение функции находится аналитически для каждого из \(m \alpha \)-уровней. Поэтому число вариантов \(N_2 = 2m \). Отсюда следует существенно меньшая вычислительная трудоемкость (табл. 4.2).
Таблица 4.2

<table>
<thead>
<tr>
<th>Принцип обобщения</th>
<th>Количество вариантов перебора</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N = N(n, m)$</td>
</tr>
<tr>
<td>По Заде</td>
<td>$(2m)^n$</td>
</tr>
<tr>
<td>Модифицированный</td>
<td>$2m$</td>
</tr>
</tbody>
</table>

4.4. Методика нечеткого обобщения аналитических моделей

В этом разделе излагается пошаговая методика обобщения аналитических моделей на случай нечетких исходных данных. Эта методика соответствует модифицированному принципу обобщения, т. е. определению 4.8.

Пошаговая методика состоит в следующем.

1°. Представить исходную математическую модель в виде функции

$$ y = f(x_1, x_2, ..., x_n) $$

2°. Определить границы изменения аргументов: $x_i \in [\underline{x}_i, \overline{x}_i]$, $i = 1, n$.

3°. Найти частные производные $\frac{\partial y}{\partial x_i} (i = 1, n)$.

4°. Обозначить:

- x_r - аргументы, для которых $\frac{\partial y}{\partial x_r} \geq 0$ на всей области определения;
- x_s - аргументы, для которых $\frac{\partial y}{\partial x_s} \leq 0$ на всей области определения;
- x_l - аргументы, для которых $\frac{\partial y}{\partial x_l}$ является знакопеременной функцией и ее знак зависит только от значений аргументов x_r и x_s, т. е.

$$ \frac{\partial y}{\partial x_l} = g_l(x_r, x_s). $$
5°. Записать нечеткую математическую модель \(\tilde{y} = f(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n) \), в виде:

\[
\tilde{y} = \bigcup_{\alpha \in [0, 1]} \left\{ f\left(\overline{x}_{r\alpha}, \overline{x}_{s\alpha}, x_{l\alpha}\right), f\left(\overline{x}_{r\alpha}, x_{s\alpha}, \overline{x}_{l\alpha}\right) \right\},
\]

где

\[
x_{l\alpha} = \begin{cases}
\overline{x}_{l\alpha}, & g_l\left(\overline{x}_{r\alpha}, \overline{x}_{s\alpha}\right) \geq 0 \\
x_{l\alpha}, & g_l\left(\overline{x}_{r\alpha}, \overline{x}_{s\alpha}\right) < 0
\end{cases};
\]

\[
x_{l\alpha} = \begin{cases}
\overline{x}_{l\alpha}, & g_l\left(\overline{x}_{r\alpha}, \overline{x}_{s\alpha}\right) \geq 0 \\
x_{l\alpha}, & g_l\left(\overline{x}_{r\alpha}, \overline{x}_{s\alpha}\right) < 0
\end{cases}.
\]

Пример 4.7. Пусть исходная модель \(y = t + (0.5 - x) \) определена на области: \(x \in [0, 1] \), \(p \in [0, 10] \), \(t \in [0, 5] \).

Требуется получить нечеткий аналог этой модели и определить \(\tilde{y} \) при

\[
\tilde{t} = (0.5)_0 \cup (3, 3)_1;
\]

\[
\tilde{x} = (0.2, 0.6)_0 \cup (0.2, 0.3)_1;
\]

\[
\tilde{p} = (0.10)_0 \cup (2.5, 3)_1.
\]

Решение. Применение пошаговой методики обобщения на нечеткий случай состоит в следующем:

1°. \(y = t + (0.5 - x)p \)

2°. \(t \in [0, 5] \), \(x \in [0, 1] \), \(p \in [0, 10] \)

3°. Находим частные производные:

\[
\frac{\partial y}{\partial t} = 1; \quad \frac{\partial y}{\partial p} = 0.5 - x; \quad \frac{\partial y}{\partial x} = -p.
\]

4°. Определяем знак частных производных:
\[\frac{\partial y}{\partial t} > 0 \text{ на всей области определения;} \]
\[\frac{\partial y}{\partial x} \leq 0 \text{ на всей области определения;} \]
\[\frac{\partial y}{\partial p} = \begin{cases}
 0, & 0.5 - x \geq 0 \\
 0, & 0.5 - x < 0
\end{cases} . \]

5°. Нечеткая модель имеет вид \(\tilde{y} = \tilde{t} + (0.5 - \tilde{x}) \tilde{p} \). Нечеткое значение функции вычисляется следующим образом:

\[\tilde{y} = \bigcup_{\alpha \in [0,1]} \left(t_\alpha + \left(0.5 - \tilde{x}_\alpha \right) p^I, t_\alpha + \left(0.5 - \tilde{x}_\alpha \right) p^J \right) , \]

где

\[p^I = \begin{cases}
 p_\alpha, & 0.5 - \tilde{x}_\alpha \geq 0 \\
 \overline{p}_\alpha, & 0.5 - \tilde{x}_\alpha < 0
\end{cases} ; \]

\[p^J = \begin{cases}
 \overline{p}_\alpha, & 0.5 - \tilde{x}_\alpha \geq 0 \\
 p_\alpha, & 0.5 - \tilde{x}_\alpha < 0
\end{cases} . \]

При значениях аргументов, заданных в условии задачи, значение функции \(\tilde{y} = \tilde{t} + (0.5 - \tilde{x}) \tilde{p} \) равно:

\[y_0 = 0 + (0.5 - 0.6) \cdot 10 = -1 ; \]
\[y_{-1} = 3 + (0.5 - 0.3) \cdot 2.5 = 3.5 ; \]
\[y_{-2} = 5 + (0.5 - 0.2) \cdot 10 = 8 ; \]
\[y_1 = 3 + (0.5 - 0.2) \cdot 3 = 3.9 . \]

Окончательно получаем \(\tilde{y} = (-1,8)_0 \cup (3.5,3.9) \).

С результатами практического применения принципа нечеткого обобщения к аналитико-лингвистическому моделированию в задачах надежности можно ознакомиться по работам [36,37,68,69,76,77].
ГЛАВА 5

ГЕНЕТИЧЕСКАЯ НАСТРОЙКА ЛИНГВИСТИЧЕСКИХ МОДЕЛЕЙ

Эта глава содержит модели и алгоритмы настройки нечетких баз знаний с применением генетических алгоритмов оптимизации. Настройке подлежат формы функций принадлежности и веса правил. Рассматриваются задачи настройки для параметрического и α-уровневого представления функций принадлежности. Глава написана по материалам работ [32,67,71-73].

5.1. Задачи оптимальной настройки

5.1.1. Веса правил

Уверенность эксперта в каждом правиле ЕСЛИ-ТО, входящем в нечеткую базу знаний (3.10), может быть различной. Для отражения значимости правил в работах [32,67] введены их веса.

Определение 5.1. Весом правила называется число в интервале $[0,1]$, которое характеризует субъективную меру уверенности эксперта в этом правиле.

С учетом весов правил нечеткая база знаний (3.10) о неизвестной зависимости $y = f(x_1, x_2, \ldots, x_n)$ примет следующий вид:

ЕСЛИ $(x_1 = a_{11}^{11})$ И $(x_2 = a_{21}^{11})$ И \ldots И $(x_n = a_{n1}^{11})$ (с весом w_{11})

ИЛИ $(x_1 = a_{12}^{12})$ И $(x_2 = a_{22}^{12})$ И \ldots И $(x_n = a_{n2}^{12})$ (с весом w_{12})

ИЛИ \ldots

ИЛИ $(x_1 = a_{1k_1}^{1k_1})$ И $(x_2 = a_{2k_1}^{1k_1})$ И \ldots И $(x_n = a_{nk_1}^{1k_1})$ (с весом w_{1k_1}),

ТО $y = d_1$, ИНАЧЕ

ЕСЛИ $(x_1 = a_{11}^{21})$ И $(x_2 = a_{21}^{21})$ И \ldots И $(x_n = a_{n1}^{21})$ (с весом w_{21})
ИЛИ \((x_1 = a_1^{22}) \lor (x_2 = a_2^{22}) \lor \ldots \lor (x_n = a_n^{22})\) (с весом \(w_{22}\))
ИЛИ \(\ldots\)
ИЛИ \((x_1 = a_1^{2k_1}) \lor (x_2 = a_2^{2k_1}) \lor \ldots \lor (x_n = a_n^{2k_1})\) (с весом \(w_{2k_1}\)),
ТО \(y = d_2\), ИНАЧЕ \(\ldots\)
ЕСЛИ \((x_1 = a_1^{m_1}) \lor (x_2 = a_2^{m_1}) \lor \ldots \lor (x_n = a_n^{m_1})\) (с весом \(w_{m_1}\))
ИЛИ \((x_1 = a_1^{m_2}) \lor (x_2 = a_2^{m_2}) \lor \ldots \lor (x_n = a_n^{m_2})\) (с весом \(w_{m_2}\))
ИЛИ \(\ldots\)
ИЛИ \((x_1 = a_1^{m_k}) \lor (x_2 = a_2^{m_k}) \lor \ldots \lor (x_n = a_n^{m_k})\) (с весом \(w_{m_k}\)),
ТО \(y = d_m\). \((5.1) \)

где \(d_j\) - класс решения, в который попадает значение выходной переменной, \(j = 1, m;\)
\(a_{i}^{jp}\) - лингвистическая оценка входной переменной \(x_i\) в \(p\)-й строке \(j\)-й дисъюнкции, выбиаемая из соответствующего терм-множества \(A_i\), \(i = 1, n, j = 1, m, p = 1, k_j;\)
\(k_j\) - количество правил, определяющих значение выходной переменной \(y = d_j;\)
\(w_{jp}\) - вес правила.

Модифицированной нечеткой базе знаний (5.1) будет соответствовать следующая система нечетких логических уравнений:

\[
\mu^{d_j}(x_1, x_2, \ldots, x_n) = \bigvee_{p=1}^{k_j} \left\{ \mu^{a_{jp}^{i}} \left(x_i \right) \right\}, \quad j = 1, m. \quad (5.2)
\]

Учитывая то, что операциям \(\lor\) и \(\land\) в теории нечетких множеств соответствуют операции \(\text{min}\) и \(\text{max}\) из (5.2) получим:

\[
\mu^{d_j}(x_1, x_2, \ldots, x_n) = \text{max}_{p=1, k_j} \left\{ w_{jp} \ \text{min}_{i=1, n} \left\{ \mu^{a_{jp}^{i}} \left(x_i \right) \right\} \right\}, \quad j = 1, m. \quad (5.3)
\]

120
После введения весов правил, в алгоритмах аппроксимации нелинейных объектов, изложенных в главе 3, меняются лишь соотношения для расчета выходных функций принадлежности.

5.1.2. Объект с непрерывным выходом

Модель объекта с непрерывным выходом имеет вид:

\[y = F(X, W, B, C) \] \hspace{1cm} (5.4)

где \[X = \left(x_1, x_2, \ldots, x_n \right) \] - вектор входных переменных;

\[W = \left(w_1, w_2, \ldots, w_N \right) \] - вектор весов правил из нечеткой базы знаний (5.1);

\[B = \left(b_1, b_2, \ldots, b_q \right) \] и \[C = \left(c_1, c_2, \ldots, c_q \right) \] - векторы параметров настройки функций принадлежности (3.12);

\[N \] - общее число строк в нечеткой базе знаний (5.1),

\[N = k_1 + k_2 + \ldots + k_m; \]

\[q \] - общее число термов в (5.1);

\[F \] - оператор связи входы-выход, соответствующий применению соотношений (5.3), (3.12) и (3.18).

Пусть обучающая выборка задана в виде \(M \) пар экспериментальных данных:

\[\left(X^l, y^l \right), l = 1, M, \] \hspace{1cm} (5.5)

где \[X^l = \left(x_{1}^{l}, x_{2}^{l}, \ldots, x_{n}^{l} \right) \] и \[y^l \] - входной вектор и соответствующее значение выходной переменной \(y \) для \(l \)-ой пары «вход-выход», \(y^l \in \left[y^-, y^- \right] \).

В соответствии с методом наименьших квадратов задача оптимальной настройки нечеткой модели может быть сформулирована следующим образом: найти вектор \((W, B, C) \), который удовлетворяет ограничениям

\[w_i \in \left[w_i^-, w_i^+ \right], i = 1, N, \quad b_j \in \left[b_j^-, b_j^+ \right], \quad c_j \in \left[c_j^-, c_j^+ \right], \quad j = 1, q, \]
и обеспечивает
\[\sum_{l=1}^{M} \left[F \left(X^l, W, B, C \right) - y^l \right]^2 = \min_{W, B, C} \] (5.6)

5.1.3. Объект с дискретным выходом

Соотношения (5.3) позволяют вычислить вектор функций принадлежности выходной переменной \(y \) к различным классам решений \(d_j \):

\[\left\{ \mu^d \left(X, W, B, C \right), j = 1, m \right\} \] (5.7)

где \(X, W, B \) и \(C \) - векторы, введенные ранее.

Определим желаемый вектор функций принадлежности следующим образом:

\[
\begin{align*}
(1,0,...,0) & \quad \text{для решения } d_1 \\
(0,1,...,0) & \quad \text{для решения } d_2 \\
& \quad \vdots \\
(0,0,...,1) & \quad \text{для решения } d_m
\end{align*}
\] (5.8)

Пусть обучающая выборка задана в виде \(M \) пар экспериментальных данных:

\[\left(X^l, d^l \right), l = 1, M, \] (5.9)

где \(X^l = \left(x^l_1, x^l_2, ..., x^l_n \right) \) и \(d^l \) - входной вектор и соответствующий класс решений выходной переменной для \(l \)-й пары «вход-выход», \(d^l \in \{ d_1, d_2, ..., d_m \} \).

Для нахождения вектора неизвестных параметров \((W, B, C) \), который минимизирует разницу между теорией (5.7) и экспериментом (5.9), воспользуемся методом наименьших квадратов. Задача оптимальной настройки нечеткой модели формулируется следующим образом:

найти вектор \((W, B, C)\), который удовлетворяет ограничениям
\[w_i \in [\underline{w_i}, \bar{w_i}], \quad i=1,N, \quad b_j \in [\underline{b_j}, \bar{b_j}], \quad c_j \in [\underline{c_j}, \bar{c_j}], \quad j=1,q, \]

и обеспечивает минимальное расстояние между желаемым и модельным векторами функций принадлежности

\[
\sum_{l=1}^{M} \left[\sum_{j=1}^{m} \mu^d_j \left(X^l, W, B, C \right) - \mu^d \left(X^l \right) \right]^2 \right] = \min_{W, B, C}, \quad (5.10)
\]

где

\[
\mu^d_j \left(X^l \right) = \begin{cases} 1, & d_j = d^l \\ 0, & d_j \neq d^l \end{cases}
\]

Для решения задач (5.6) и (5.10) в этой главе будут предложены генетические алгоритмы оптимизации.

5.1.4. Критерии качества идентификации

Объект с непрерывным выходом. Пусть \(y_F \left(X, M \right) \) - нечеткая модель объекта после настройки, которая получена с помощью обучающей выборки объема \(M \). Для оценки качества нечеткой модели введем такой критерий:

\[
R = \frac{1}{\left| \{X_i\} \right|} \sqrt{\sum_{\{X_i\}} \left[y_F \left(X_i, M \right) - \hat{y}_i \right]^2}, \quad (5.11)
\]

где \(y_F \left(X_i, M \right) \) и \(\hat{y}_i \) - модельный и экспериментальный выходы в точке \(X_i = (x_{i_1}, x_{i_2}, ..., x_{i_n}) \in [\underline{x_1}, \bar{x_1}] \times [\underline{x_2}, \bar{x_2}] \times ... \times [\underline{x_n}, \bar{x_n}] \), соответственно, \(\{X_i\} \) - множество \(n \)-ок типа \(X_i \), \(\left| \{X_i\} \right| \) - мощность множества \(\{X_i\} \).

Введенный критерий (5.11) имеет смысл среднеквадратического отклонения теоретического и экспериментального выходов объекта на один элемент входного пространства. Зависимость этого критерия \(R \) от объема обучающей
выборки M характеризует динамику обучения нечеткой модели.

Объект с дискретным выходом. Пусть Q - общее число ситуаций (образов) используемых для тестирования нечеткой модели. Для оценки качества нечеткого логического вывода в случае объекта с дискретным выходом $y \in \{d_1, d_2, \ldots, d_m\}$ необходимо распределить Q ситуаций согласно дереву, показанному на рис. 5.1.

На этом дереве обозначено:
Q_j - число ситуаций, требующих решения d_j, т.е.

$$Q = Q_1 + Q_2 + \ldots + Q_m,$$

Q_{ji} - число ситуаций, в которых требовалось решение d_j, но моделью принято решение d_i, т.е.

$$Q_j = Q_{j1} + Q_{j2} + \ldots + Q_{jm}, j = 1, m.$$
Согласно рис. 5.1, качество нечеткого логического вывода можно оценить следующим образом:

\[
\hat{P}_j = \frac{O_{jj}}{Q_j}, \quad \hat{P}_{ji} = \frac{O_{ji}}{Q_j}, \quad \hat{P} = \frac{1}{Q} \sum_{j=1}^{m} O_{jj}, \tag{5.12}
\]

где \(\hat{P}_j \) - вероятность правильного принятия решения \(d_j \),

\(\hat{P}_{ji} \) - вероятность принятия решения \(d_i \), при условии объективной необходимости выбора решения \(d_j \),

\(\hat{P} \) - осредненная вероятность принятия правильного решения.

Путем наблюдения за изменением вероятностей (5.12) от объема экспериментальных данных можно проследить динамику обучения нечеткой модели.

5.2. Настройка параметрических функций принадлежности

5.2.1. Кодирование

Для реализации генетического алгоритма следует задать способ кодирования нечетких моделей. Сведем неизвестные параметры \(A, B, C \) в один вектор (рис. 5.2):

\[
S = (W, B, C) = \\
(\begin{array}{cccc}
w_1, ..., w_N & b_1 & c_1 & l_1 \\
& b_1 & c_1 & l_1 \\
& \\
& b_1 & c_1 & l_1 \\
\end{array}) \tag{5.13}
\]

где \(N \) - общее число строк в нечеткой базе знаний (5.1);
\(l_i \) - количество термов-оценок входной переменной \(x_i \),

\[
l_1 + l_2 + ... + l_n = q, \ i = 1, n ;
\]

\(q \) - общее число термов в (5.1);
Рис. 5.2. Код нечеткой модели - хромосома

Вектор S единственным образом определяет некоторую нечеткую модель $F(X,W,B,C)$, и, наоборот, любая модель $F(X,W,B,C)$ однозначно определяет некоторый вектор S. Поэтому вектор S можно принять в качестве кода нечеткой модели $F(X,W,B,C)$ для объектов с непрерывным и дискретным выходами.

5.2.2. Скрещивание

Поскольку операция скрещивания является основной операцией генетического алгоритма, то его производительность в первую очередь зависит от производительности используемой операции скрещивания. В результате скрещивания двух хромосом-родителей S_1 и S_2 получаются хромосомы-отпрывка Ch_1 и Ch_2 путем обмена генов относительно $(n+1)$-ой точки скрещивания (рис. 5.3).

Следует заметить, что поскольку множества $A_i = \{a_i^1, a_i^2, ..., a_i^l\}$ термов-оценок входных переменных упорядочены по возрастанию (т.е. низкий, средний, высокий и т.п.), то введенная операция скрещивания может нарушить этот порядок. Поэтому после обмена генов следует осуществить контроль за тем, чтобы множества термов оставались упорядоченными. Введем следующие обозначения:

S_1^j - j-й вес правила в хромосоме-родителе S_1,
S_2^j - j-й вес правила в хромосоме-родителе S_2,
Ch_1^j - j-й вес правила в хромосоме отпрывке Ch_1.
а) родительские хромосомы

б) хромосомы-отпрыски

Рис. 5.3. Операция скрещивания

Ch_2 - j-й вес правила в хромосоме отпрыске Ch_2, $j = 1, N$,

b_{ip}^1 - ip-й параметр b в хромосоме-родителе S_1,

b_{ip}^2 - ip-й параметр b в хромосоме-родителе S_2,

b_{ip}^1 - ip-й параметр b в хромосоме-отпрыске Ch_1,

b_{ip}^2 - ip-й параметр b в хромосоме-отпрыске Ch_2.

Алгоритм операции скрещивания двух хромосом родителей S_1 и S_2, в результате которой появятся отпрыски Ch_1 и Ch_2 имеет следующий вид:

1°. Генерируем случайные числа z_i в количестве $(n+1)$, такие что

$1 \leq z_i < l_i$, где l_i - число термов-оценок входной переменной x_i, $i = 1, n$;
\[1 \leq z_{n+1} < N, \text{ где } N - \text{ общее число строк в нечеткой базе знаний} \] (5.1).

2°. Осуществляем обмен генов в соответствии с найденными значениями точек обмена \(z_i \) по правилам:

\[
Ch_1 = \begin{cases}
S_1 & , \quad p \leq z_i \\
b_{ip} & , \quad p > z_i
\end{cases}, \quad Ch_2 = \begin{cases}
S_2 & , \quad p \leq z_i \\
b_{ip} & , \quad p > z_i
\end{cases}, \quad 1 \leq p < l_i, \quad i = 1, n, (5.14)
\]

\[
Ch_1 = \begin{cases}
S_1 & , \quad j \leq z_{n+1} \\
w_{j} & , \quad j > z_{n+1}
\end{cases}, \quad Ch_2 = \begin{cases}
S_2 & , \quad j \leq z_{n+1} \\
w_{j} & , \quad j > z_{n+1}
\end{cases}, \quad 1 \leq j < N. (5.15)
\]

3°. Осуществляем контроль за порядком термов:

\[
\left(b_{i \xi} > b_{i \eta} \right) \land \left(\xi < \eta \right) \Rightarrow b_{i \xi} \leftrightarrow b_{i \eta}, \quad c_{i \xi} \leftrightarrow c_{i \eta}, \quad 1 \leq \xi, \eta \leq l_i, \quad i = 1, n, (5.16)
\]

где \(\leftrightarrow \) символ обмена.

5.2.3. Мутация

Каждый элемент вектора \(S \) может подвергнуться операции мутации с вероятностью \(p_m \). Обозначим мутацию элемента \(s \) через \(Mu(s) \):

\[
Mu\left(w_j \right) = \text{RANDOM}\left(\left[w, w \right] \right), \quad j = 1, N, (5.17)
\]

\[
Mu\left(b_{i \eta} \right) = \text{RANDOM}\left(\left[x_i, x_i \right] \right), (5.18)
\]

\[
Mu\left(c_{i \eta} \right) = \text{RANDOM}\left(\left[c_i, c_i \right] \right), (5.19)
\]

где \(\overline{\quad} \) - нижняя (верхняя) граница интервала возможных значений весов.
правил, \([\underline{w}, \bar{w}] \subset [0,1]\);

\[
\begin{bmatrix}
\underline{c}_i, \bar{c}_i
\end{bmatrix}
\] - интервал возможных значений коэффициента концентрации растяжения функций принадлежности термов-оценок входной переменной \(x_i\),

\[
\begin{bmatrix}
\underline{c}_i, \bar{c}_i
\end{bmatrix} \subset (0, +\infty), \ i=1, n;
\]

\(RANDOM\left(\begin{bmatrix}
\xi, \bar{\xi}
\end{bmatrix}\right)\) обозначает операцию нахождения равномерно распределенного на интервале \([\underline{\xi}, \bar{\xi}]\) случайного числа.

Алгоритм операции мутации будет иметь вид:

1°. Для каждого элемента \(s \in S\) в векторе (5.13) генерируем случайное число \(z = RANDOM\left(\begin{bmatrix}0,1\end{bmatrix}\right)\).

Если \(z > p_m\), то мутацию не производим, иначе переходим к шагу 2.

2°. Осуществляем операцию мутации элемента \(s \in S\) в соответствии с формулами (5.17)-(5.19).

3°. Осуществляем контроль за упорядоченностью термов в соответствии с (5.16).

5.2.4. Функция соответствия

Обозначим функцию соответствия хромосомы \(S\) через \(FF(S)\) (от англ. fitness function). В качестве функции соответствия будем использовать критерий оптимизации, взятый со знаком минус. Для нечетких моделей \(F(X,W,B,C)\) объектов с дискретным выходом функция соответствия хромосомы \(S\) (5.13), полученная из критерия (5.10), будет иметь вид:

\[
FF(S) = - \sum_{l=1}^{M} \left[\sum_{j=1}^{m} \left(\mu^d_j (X^l, W, B, C) - \mu^d_j (X^l) \right)^2 \right]. \quad (5.20)
\]

Для нечетких моделей \(F(X,W,B,C)\) объектов с непрерывным выходом функция соответствия хромосомы \(S\) (5.13), полученная из критерия (5.6), будет иметь вид:

\[
FF(S) = - \sum_{l=1}^{M} \left[F(X^l, W, B, C) - y^l \right]^2. \quad (5.21)
\]
Знак минус нужен для того, чтобы смысл функции соответствия не изменился, т.е. чем ниже качество нечеткой модели тем меньше ее функция соответствия.

5.2.5. Выбор родителей

В соответствии с принципами генетических алгоритмов выбор родителей для операции скрещивания должен осуществляться не случайно. Чем больше значение функции соответствия некоторой хромосомы, тем больше должна быть вероятность того, что данная хромосома даст потомство.

Способ определения родителей основывается на том, что каждой хромосоме S_i из популяции ставится в соответствие число p_i, такое что:

$$p_i \geq 0, \sum_{i=1}^{K} p_i = 1, FF(S_i) > FF(S_j) \Rightarrow p_i > p_j,$$

K - число хромосом в популяции. Числа p_i интерпретируются как вероятности, которые вычисляются следующим образом:

$$p_i = \frac{FF(S_i)}{\sum_{j=1}^{K} FF(S_j)}, \quad (5.22)$$

где $FF(S_i) = FF(S_i) - \min_{j=1,K} FF(S_j)$.

Используя ряд чисел p_i, хромосомы-родители для операции скрещивания найдем по следующему алгоритму:

1°. Отложим ряд p_i на горизонтальной оси (рис. 5.4).

Рис. 5.4. Выбор хромосомы-родителя
2°. Сгенерируем случайное число \(z \) (рис. 5.4), имеющее равномерный закон распределения на интервале \([0, 1] \).

3°. В качестве родителя выберем хромосому \(S_i \), соответствующую подинтервалу \(p_i \), в который попало число \(z \). Например, на рис. 5.4 сгенерированное число \(z \) определяет в качестве родителя хромосому \(S_2 \).

4°. Повторим шаги 1-3 для определения второй хромосомы-родителя.

5.2.6. Генерация популяции

Под генерацией популяции понимается определение начального множества решений (хромосом-родителей), которые подвергаются скрещиванию. Зададим начальные решения (элементы вектора \(S \) (5.13)) следующим образом:

\[
w_i^0 = \text{RANDOM}(\left[\bar{w}_i, \bar{w}_i \right]) , \quad (5.23)
\]

\[
b_i^0 = \text{RANDOM}(\left[\bar{x}_i, \bar{x}_i \right]) , \quad (5.24)
\]

\[
c_i^0 = \text{RANDOM}(\left[\bar{c}_i, \bar{c}_i \right]) , \quad (5.25)
\]

где \(\text{RANDOM}(\left[\bar{x}, \bar{x} \right]) \) обозначает операцию нахождения равномерно распределенного на интервале \(\left[\bar{x}, \bar{x} \right] \) случайного числа.

После случайного определения исходных вариантов хромосом их следует подвергнуть контролю (5.16), чтобы сохранялась упорядоченность термов.

Предполагается, что исходная популяция имеет \(K \) хромосом-родителей.

5.2.7. Генетический алгоритм

На каждой итерации генетического алгоритма размер популяции будет увеличиваться на \(K \cdot p_c \) хромосом-отпрысков, где \(p_c \) - коэффициент скрещивания. Для того, чтобы сохранить постоянный размер популяции (\(K \)), перед следующей итерацией следует отбросить худшие (в смысле функции соответствия) \(K \cdot p_c \) хромосом. С учетом этого, генетический алгоритм оптимальной
настройки нечеткой модели $F(X,W,B,C)$ будет иметь следующий вид:

1°. Генерируем исходную популяцию согласно (5.23)-(5.25).

2°. Находим значения функций соответствия $FF\left(S_i\right)$, $i=1,K$ согласно (5.20),(5.21).

3°. Определяем $\frac{K \cdot p_c}{2}$ пар хромосом-родителей, используя алгоритм из раздела 5.2.5.

4°. Выполняем операцию скрещивания каждой пары хромосом-родителей в соответствии с алгоритмом из раздела 5.2.2.

5°. С вероятностью p_m осуществим мутацию полученных хромосом-отпрысков согласно алгоритму из раздела 5.2.3.

6°. Из полученной популяции размером $K + K \cdot p_c$ хромосом отбрасываем $K \cdot p_c$ хромосом, имеющих худшие значения функции соответствия $FF\left(S_i\right)$.

7°. Если получена хромосома S_i, для которой $FF\left(S_i\right) = 0$, то конец алгоритма, иначе переходим к шагу 8.

8°. Если не исчерпано заданное число шагов, то переходим к шагу 2; в противном случае хромосома, имеющая наибольшее значение функции соответствия $FF\left(S_i\right)$ представляет субоптимальное решение. Конец алгоритма.

Дальнейшее улучшение решения может быть выполнено обычными поисковыми методами.

5.3. Настройки α-уровневых функций принадлежности

Функции принадлежности, которые использовались выше, настраивались лишь по двум параметрам: b - координата максимума; c - коэффициент сжатия-растяжения. В этом разделе используется α-уровневое представление функций принадлежности, которые обеспечивают больше возможностей при настройке.

5.3.1. Аналитические модели функций принадлежности

Определение 5.2. Множеством уровня $\alpha \in [0,1]$ нечеткого множества \tilde{T} в универсальном множестве U называется множество элементов $u \in U$, сте-
пении принадлежности которых нечеткому множеству \(\tilde{T} \) не меньше числа \(\alpha \), т.е. если \(T_\alpha \) - множество \(\alpha \)-уровня для нечеткого множества \(\tilde{T} \), то

\[
T_\alpha = \left\{ u \in U | \mu \tilde{T} (u) \geq \alpha \right\}.
\]

Определение 5.3. Нечетким числом \(\tilde{T} \) называется такое нечеткое множество, для которого универсумом является множество действительных чисел \(\Re \).

Определение 5.4. Нечеткое число \(\tilde{T} \) на действительной прямой выпукло, если для любых действительных чисел \(x, y, z \in \Re, x \leq y \leq z \) выполняется следующее соотношение:

\[
\mu \tilde{T} (y) \geq \min \left(\mu \tilde{T} (x), \mu \tilde{T} (z) \right).
\]

Определение 5.5. Нечеткое число \(\tilde{T} \) на действительной прямой называется нормальным, если \(\max_x \left(\mu \tilde{T} (x) \right) = 1 \).

Будем рассматривать нечеткие множества, которые соответствуют выпуклым и нормальным нечетким числам. Тогда нечеткое множество \(\tilde{T} \) можно представить в виде разложения:

\[
\tilde{T} = \bigcup_{\alpha \in [0,1]} \left(\begin{array}{c} x_\alpha^- \\ x_\alpha^+ \end{array} \right),
\]

где \(x_\alpha^- \) и \(x_\alpha^+ \) - нижняя (верхняя) граница нечеткого множества \(\tilde{T} \) на \(\alpha \)-уровне.

Ограничимся рассмотрением конечного числа \(k \) \(\alpha \)-уровней:

\[
\alpha \in \{ \alpha_1, \alpha_2, ..., \alpha_k \}, \text{ причем } 0 = \alpha_1 < \alpha_2 < ... < \alpha_k = 1.
\]

Это позволяет записать нечеткое множество \(\tilde{T} \) в следующем виде:

\[
\tilde{T} = \left[\begin{array}{c} x_{\alpha_1^-} \\ x_{\alpha_1^+} \end{array} \right]_{\alpha_1} \bigcup \left[\begin{array}{c} x_{\alpha_2^-} \\ x_{\alpha_2^+} \end{array} \right]_{\alpha_2} \bigcup ... \bigcup \left[\begin{array}{c} x_{\alpha_k^-} \\ x_{\alpha_k^+} \end{array} \right]_{\alpha_k}, (5.26)
\]

133
где \(x_{\alpha_i} \left(\overline{x_{\alpha_i}} \right) \) нижняя (верхняя) граница нечеткого множества \(\widetilde{T} \) на уровне \(\alpha_i \).

Достаточное условие выпуклости нечеткого множества \(\widetilde{T} \) имеет вид:

\[
\left[x_{\alpha_k}, x_{\alpha_k} \right]_{\alpha_k} \subseteq \left[x_{\alpha_{k-1}}, x_{\alpha_{k-1}} \right]_{\alpha_{k-1}} \subseteq \ldots \subseteq \left[x_{\alpha_1}, x_{\alpha_1} \right]_{\alpha_1}
\]
(5.27)

Функции принадлежности нечеткого множества \(\widetilde{T} \) можно поставить в соответствие код вида:

\[
c\left(\mu^{\widetilde{T}}(x) \right) = \left(\frac{x}{\alpha_1}, \frac{x}{\alpha_2}, \ldots, \frac{x}{\alpha_k}, \frac{x}{\alpha_k}, \frac{x}{\alpha_{k-1}}, \ldots, \frac{x}{\alpha_1} \right)
\]
(5.28)

как показано на рис. 5.5.

Рис. 5.5. Код функции принадлежности

Прежде чем сформулировать аналитическую модель функции принадлежности, которая будет соответствовать коду (5.28), заметим следующее:

а) если \(x^* = \frac{x}{\alpha_i} \) или \(x^* = \overline{x_{\alpha_i}} \), то \(\mu^{\widetilde{T}}(x^*) = \alpha_i \). Это следует из оп-
пределения множества α-уровня;

б) если $-\alpha_i < x^* < -\alpha_{i+1}$ как показано на рис. 5.6а, то значение $\mu_{\tilde{T}}(x^*)$ находится линейной интерполяцией по точкам $\left(-\alpha_i , \alpha_i \right)$ и $\left(-\alpha_{i+1} , \alpha_{i+1} \right)$.

в) если $x^* \in \left[-\alpha_k , -\frac{1}{\alpha_k} \right]$, то $\mu_{\tilde{T}}(x^*) = 1$, поскольку $\alpha_k = 1$.

g) если $-\alpha_i > x^* > -\alpha_{i+1}$, как показано на рис. 5.6б, то значение $\mu_{\tilde{T}}(x^*)$ находится линейной интерполяцией по точкам $\left(-\alpha_i , \alpha_i \right)$ и $\left(-\alpha_{i+1} , \alpha_{i+1} \right)$.

d) если $x^* \notin \left[\frac{1}{\alpha_1} , \alpha_1 \right]$, то $\mu_{\tilde{T}}(x^*) = 0$.

Рис. 5.6. Нахождение значения $\mu_{\tilde{T}}(x^*)$ путем линейной интерполяции
Используя линейную интерполяцию по точкам \((x_1, \mu^T(x_1))\) и
\[(x_2, \mu^T(x_2))\), значения функции принадлежности в точке \(x^*\),
\((x_1 < x^* < x_2)\) можно найти по формуле:

\[
\mu^T(x^*) = \mu^T(x_1) + \left(\mu^T(x_2) - \mu^T(x_1)\right) \frac{x^* - x_1}{x_2 - x_1}. \tag{5.29}
\]

Используя эту формулу, получаем модель функции принадлежности соответствующей коду (5.28):

\[
\mu^T(x) = \begin{cases}
0, & x \not\in \left[\frac{x}{-\alpha_1}, \frac{x}{\alpha_1}\right]_{\alpha_1} \\
\alpha_i + (\alpha_{i+1} - \alpha_i) \frac{\left(x - \frac{x}{\alpha_i}\right)}{\left(\frac{x}{-\alpha_{i+1}} - \frac{x}{\alpha_i}\right)}, & x \in \left[\frac{x}{-\alpha_i}, \frac{x}{\alpha_i}\right]_{\alpha_i} \\
1, & x \in \left[\frac{x}{-\alpha_k}, \frac{x}{\alpha_k}\right]_{\alpha_k} \\
\alpha_{i+1} + (\alpha_i - \alpha_{i+1}) \frac{\left(x - \frac{x}{\alpha_{i+1}}\right)}{\left(\frac{x}{\alpha_i} - \frac{x}{\alpha_{i+1}}\right)}, & x \in \left[\frac{x}{-\alpha_i}, \frac{x}{\alpha_i}\right]_{\alpha_i} \\
\end{cases}
\tag{5.30}
\]

\(\land x < \frac{x}{-\alpha_{i+1}}\)

5.3.2. Настройки модели с дискретным выходом

При настройке нечеткой модели будем пользоваться соотношением (5.3), в котором исходные функции принадлежности представлены моделью (5.30). Для упрощения ограничимся случаем, когда веса правил не настраиваются. Тогда общий вид нечеткой модели представляется следующим образом:

136
\[y = F \left(X, C_\mu \right), \quad y \in \{ d_1, d_2, \ldots, d_m \} \]
(5.31)

где \(X = (x_1, x_2, \ldots, x_n) \) - вектор входных переменных;

\(C_\mu \) - вектор, в который сведены коды \(c \) (5.28) функций принадлежности всех термов, используемых в нечеткой базе знаний (5.1). Этот вектор выглядит так:

\[
C_\mu = \left[\begin{array}{cccccc}
 x_{11}, & x_{11}, & \ldots, & x_{11}, & -11, & -11 \\
 -\alpha_1, & -\alpha_2, & \ldots, & -\alpha_k, & -\alpha_2, & -\alpha_1 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 x_{1l}, & x_{1l}, & \ldots, & x_{1l}, & -1l, & -1l \\
 -\alpha_1, & -\alpha_2, & \ldots, & -\alpha_k, & -\alpha_2, & -\alpha_1 \\
\end{array} \right],
\]

для переменной \(x_1 \)

\[
\begin{array}{cccccc}
 x_{n1}, & x_{n1}, & \ldots, & x_{n1}, & -n1, & -n1 \\
 -\alpha_1, & -\alpha_2, & \ldots, & -\alpha_k, & -\alpha_2, & -\alpha_1 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 x_{nl}, & x_{nl}, & \ldots, & x_{nl}, & -nl, & -nl \\
 -\alpha_1, & -\alpha_2, & \ldots, & -\alpha_k, & -\alpha_2, & -\alpha_1 \\
\end{array}
\]

для переменной \(x_n \)

где \(x \frac{ip}{a_j} \left(-\frac{ip}{x} \frac{1}{a_j} \right) \) - нижняя (верхняя) граница \(\alpha_j \)-уровня для \(p \)-го терма.
оценки переменной \(x_i, j = 1, k, p = 1, l, i = 1, n \),

- число рассматриваемых \(\alpha \)-уровней,
- число термов оценки входной переменной \(x_i \).

\(F \) - оператор связи входы-выход, соответствующий применению соотношений (5.3) и (5.30).

Пусть обучающая выборка задана в виде \(M \) пар экспериментальных данных (5.9). Для нахождения вектора \(C_\mu \) (5.32), который минимизирует отклонение теории (5.31) от эксперимента (5.9), воспользуемся методом наименьших квадратов. Тогда задача оптимальной настройки нечеткой модели может быть сформулирована следующим образом: найти вектор \(C_\mu \), удовлетворяющий ограничениям (5.27), который обеспечивает минимальное отклонение между желаемым и модельным векторами выходных функций принадлежности, т.е.:

\[
\sum_{l=1}^{M} \left[\sum_{j=1}^{m} \mu^{d_j} \left(x^{l}, C_\mu \right) - \mu^{d_j} \left(x^{l} \right) \right]^2 \right] = \min_{C_\mu} \tag{5.33}
\]

где \(\mu^{d_j} \left(x^{l} \right) \) - желаемый вектор функций принадлежности для \(l \)-й экспериментальной точки, определяемый соотношением (5.8).

5.3.3. Настройки модели с непрерывным выходом

В случае настройки объекта с непрерывным выходом используется обучающая выборка (5.5) и модель вида:

\[
y = F \left(x, C_\mu \right), \tag{5.34}
\]

где \(C_\mu \) - вектор, кодирующий функции принадлежности всех термов (5.32).

\(F \) - оператор связи входы-выход, соответствующий применению соотношений (5.3), (5.30) и (3.18).

Задача оптимальной настройки состоит в поиске вектора \(C_\mu \), который удовлетворяет ограничениям (5.27) и обеспечивает

\[
\sum_{l=1}^{M} \left[F \left(x^{l}, C_\mu \right) - y^{l} \right]^2 \right] = \min_{C_\mu} \tag{5.35}
\]

138
5.3.4. Кодирование и скрещивание

Код решения, т.е. хромосома задается вектором C_μ (5.32).

Операция скрещивания хромосом производится по α-уровням. Идея операции заключается в том, что α-уровни хромосомы-отпрыска определяются как среднее арифметическое α-уровней хромосом-родителей. В этом случае не нарушается условие выпуклости (5.27) Введем следующие обозначения:

\[
\begin{bmatrix}
S_1 x^{-\alpha_j} & S_1 -ip \\
S_2 x^{-\alpha_j} & S_2 -ip
\end{bmatrix}_{\alpha_j}
\]
- множество уровня α_j для p-го нечетного терма-оценки переменной x_i в хромосоме родителе S_1;

\[
\begin{bmatrix}
S_1 x^{-\alpha_j} & S_1 -ip \\
S_2 x^{-\alpha_j} & S_2 -ip
\end{bmatrix}_{\alpha_j}
\]
- множество уровня α_j для p-го нечетного терма-оценки переменной x_i в хромосоме родителе S_2;

\[
\begin{bmatrix}
Ch x^{-\alpha_j} & Ch -ip \\
Ch x^{-\alpha_j} & Ch -ip
\end{bmatrix}_{\alpha_j}
\]
- множество уровня α_j для p-го нечетного терма-оценки переменной x_i в хромосоме-отпрыске $Ch; j=1,k, p=1,l_i, i=1,n$.

Тогда операцию скрещивания можно определить следующими соотношениями:

\[
Ch x^{-\alpha_j} = \frac{\left(S_1 x^{-\alpha_j} + S_2 x^{-\alpha_j} \right)}{2}
\]

(5.36)

\[
Ch x^{-\alpha_j} = \frac{\left(S_1 x^{-\alpha_j} + S_2 x^{-\alpha_j} \right)}{2}
\]
На рис. 5.7 приведен пример операции скрещивания для случая трех областей уровней. В этом примере хромосомы родителей \((S_1 \ и \ S_2)\) и отпрыска \((Ch)\) задаются следующим образом:

\[S_1 = [0.0, 0.2, 3.4] , \quad S_2 = [1.2, 3.3, 3.5, 4] , \]

\[Ch = \left[\frac{0+1}{2}, \frac{0+2}{2}, \frac{0+3}{2}, \frac{2+3}{2}, \frac{3+3.5}{2}, \frac{4+4}{2} \right] = [0.5, 1, 1.5, 2.5, 3.25, 4] . \]

Рис. 5.7. Операция скрещивания

5.3.5. Мутация

Каждый элемент вектора \(C_\mu \) может подвергнуться операции мутации с вероятностью \(p_m \). Идея операции мутации заключается в том, что выбранный элемент \(s \in C_\mu \) случайно изменяется в пределах, не нарушающих условия выпуклости (5.27). Обозначим результат мутации элемента \(s \in C_\mu \) через \(Mu(s) \). Тогда операция мутации определяется следующим образом:
\[\text{RANDOM} \left(\begin{bmatrix} x, & x^{ip} \end{bmatrix} \right), \quad s = x^{ip} \]

\[\text{RANDOM} \left(\begin{bmatrix} x^{ip}, & x^{ip} \\ -\frac{1}{\alpha}, & -\frac{1}{\alpha} \end{bmatrix} \right), \quad s = x^{ip} \quad \land \quad j \neq 1 \quad \land \quad j \neq k \]

\[\text{RANDOM} \left(\begin{bmatrix} x^{ip}, & -x^{ip} \\ -\frac{1}{\alpha}, & \frac{1}{\alpha} \end{bmatrix} \right), \quad s = x^{ip} \quad \land \quad j \neq 1 \quad \land \quad j \neq k \]

\[\text{RANDOM} \left(\begin{bmatrix} x^{ip}, & -x^{ip} \\ -\frac{1}{\alpha}, & \frac{1}{\alpha} \end{bmatrix} \right), \quad s = x^{ip} \quad \land \quad j \neq 1 \quad \land \quad j \neq k \]

\[\text{RANDOM} \left(\begin{bmatrix} x^{ip}, & -x^{ip} \\ -\frac{1}{\alpha}, & \frac{1}{\alpha} \end{bmatrix} \right), \quad s = x^{ip} \quad \land \quad j \neq 1 \quad \land \quad j \neq k \]

\[Mu(s) = \]

где \(\text{RANDOM} \left(\begin{bmatrix} \xi, & \xi \end{bmatrix} \right) \) обозначает операцию нахождения равномерно распределенного на интервале \([\xi, \xi] \) случайного числа.

На рис. 5.8 изображена операция мутации элемента \(x^{ip} \), который при надлежит хромосоме \(S \). В результате мутации получилась новая хромосома \(S^* \):

\[S = [1, 2, 3, 4, 4.5, 5] \Rightarrow S^* = [1, 2, 5, 3, 4, 4.5, 5] . \]

Алгоритм мутации выглядит так:

1°. Для каждого элемента \(s \in C_{\mu} \) генерируем случайное число \(z = \text{RANDOM} \left([0, 1] \right) \). Если \(z > p_m \), то мутацию не производим, иначе переходим к шагу 2.

2°. Осуществляем операцию мутации элемента \(s \in C_{\mu} \) в соответствии с формулой (5.37).
5.3.6. Функция соответствия

Обозначим функцию соответствия хромосомы C_μ через $FF\left(C_\mu \right)$. По аналогии с разделом 5.2.4 в качестве функции соответствия будем использовать критерий оптимизации, взятый со знаком минус. Для объектов с дискретным выходом функция соответствия хромосомы C_μ (5.32), полученная из критерия (5.33), будет иметь вид:

$$ FF\left(C_\mu \right) = - \sum_{l=1}^{M} \left[\sum_{j=1}^{m} \mu^d \left(X^l, C_\mu \right) - \mu^d \left(Y^l \right) \right]^2. \quad (5.38) $$

Для объектов с непрерывным выходом функция соответствия, полученная из (5.35), имеет вид:

$$ FF\left(C_\mu \right) = - \sum_{l=1}^{M} \left[F\left(X^l, C_\mu \right) - Y^l \right]^2. \quad (5.39) $$

5.3.7. Генерация популяции

В связи с большой размерностью задачи оптимизации рекомендуется исходную популяцию формировать при помощи генетического алгоритма, изложенного в разделе 5.2. Это значит, что полученные на его выходе нечеткие мо-
дели вида \(F(X, W, B, C) \) следует преобразовать к виду \(y = F(X, C_\mu) \), и использовать полученные векторы \(C_\mu \) в качестве исходных хромосом.

5.3.8. Генетический алгоритм

На каждой итерации генетического алгоритма размер популяции будет увеличиваться на \(K \cdot p_c \) хромосом-отпрысков, где \(p_c \) - коэффициент скрещивания. Для того, чтобы сохранить постоянный размер популяции \(K \), перед следующей итерацией следует отбросить худшие (в смысле функции соответствия) \(K \cdot p_c \) хромосом. С учетом этого генетический алгоритм имеет вид:

1°. Формируем исходную популяцию.
2°. Находим значение функции соответствия для каждой хромосомы, используя соотношения (5.38)-(5.39).
3°. Определяем \(K \cdot p_c \) пар хромосом-родителей.
4°. Выполняем операцию скрещивания каждой пары хромосом-родителей в соответствии с соотношением 5.36.
5°. С вероятностью \(p_m \) осуществляем мутацию полученных хромосом-отпрысков.
6°. Из полученной популяции размером \(K + K \cdot p_c \) хромосом отбрасываем \(K \cdot p_c \) хромосом, имеющих худшие значения функции соответствия.
7°. Если получена хромосома \(C_\mu \), для которой \(FF(C_\mu) = 0 \), то конец алгоритма, иначе переходим к шагу 8.
8°. Если не исчерпано заданное число шагов, то переходим к шагу 2, иначе хромосома, имеющая наибольшее значение функции соответствия \(FF(C_\mu) \) представляет найденное субоптимальное решение.

5.4. Компьютерные эксперименты

5.4.1. Методика экспериментов

В настоящем параграфе описываются результаты компьютерных экспериментов, направленных на проверку возможности идентификации нелиней-
ных объектов с непрерывным и дискретным выходом с помощью моделей и алгоритмов, разработанных в главах 3 и 5. Методика эксперимента состояла в выполнении следующих шагов.

1°. Нелинейный объект задавался некоторой эталонной моделью в виде аналитических формул.

2°. Из заданной эталонной модели генерировалась экспертная база зна-

3°. По экспертной базе знаний осуществлялась идентификация нелиней-

4°. Результаты идентификации с помощью нечетких баз знаний, полу-

в разделах 5.4.2 и 5.4.3 исследуются по два объекта с непрерывным и дискретным выходами, соответственно, при параметрическом задании функций принадлежности. В разделе 5.4.4 исследуется настройка модели с α-уровневыми функциями принадлежности.

5.4.2. Объекты с непрерывным выходом

Эксперимент 1. Рассмотрим объект с одним входом \(x \in [0,1] \) и одним выходом \(y \in [0.05, 0.417] \). Модель-этalon имеет вид:

\[
y = f(x) = \frac{(5x-1.1)(4x-2.9)(3x-2.1)(11x-11)(3x-0.05)+10}{40}
\]

Эта формула была выбрана с целью изучения возможности нечеткого моделирования объекта пятого порядка, поведение которого показано на рис. 5.9.

Разобьем интервал изменения выходной переменной \(y \) на четыре подинтервала:

\[
[0.05, 0.417] = [0.05, 0.14] \cup [0.14, 0.23] \cup [0.23, 0.32] \cup [0.32, 0.417]
\]

Тогда поведение исследуемого объекта можно описать следующими пра-

144
ЕСЛИ \(x = P_1 \), ТО \(y \in [0.14, 0.23] \) (с весом \(w_1 \)),

ЕСЛИ \(x = P_2 \), ТО \(y \in [0.32, 0.42] \) (с весом \(w_2 \)),

ЕСЛИ \(x = P_3 \), ТО \(y \in [0.05, 0.14] \) (с весом \(w_3 \)),

ЕСЛИ \(x = P_4 \), ТО \(y \in [0.14, 0.23] \) (с весом \(w_4 \)),

ЕСЛИ \(x = P_5 \), ТО \(y \in [0.05, 0.14] \) (с весом \(w_5 \)),

ЕСЛИ \(x = P_6 \), ТО \(y \in [0.23, 0.32] \) (с весом \(w_6 \)),

где \(P_1 \) = около 0, \(P_2 \) = около 0.09, \(P_3 \) = около 0.4, \(P_4 \) = около 0.71, \(P_5 \) = около 0.92, \(P_6 \) = около 1.0 -нечеткие термы с функциями принадлежности изображенными на рис. 5.10б.

![Diagram](attachment:image.png)

Рис. 5.9. Модель-этalon для объекта «один вход - один выход»

До настройки все веса правил \(w_j \) были одинаковыми, то есть \(w_j = 1 \), \(j = 1, 2, \ldots \). Это обеспечивало нечеткую модель, изображенную на рис. 5.10. После настройки, которая заключалась в решении соответствующей оптимизационной задачи, была получена новая нечеткая модель, показанная на рис. 5.11.

Параметры функций принадлежности нечетких термов а также веса правил до и после настройки показаны в табл. 5.1 и 5.2. Динамика обучения нечеткой модели объекта \(y = f(x) \), полученная с применением формулы (5.11), изображена на рис. 5.12.
(а) сравнение эталона с нечеткой моделью

(б) функции принадлежности нечетких термов

Рис. 5.10. Нечеткая модель объекта «один вход - один выход» до настройки

(а) сравнение эталона с нечеткой моделью

(б) функции принадлежности нечетких термов

Рис. 5.11. Нечеткая модель объекта «один вход - один выход» после настройки
Таблица 5.1
Параметры функций принадлежности лингвистических термов нечеткой модели объекта $y = f(x)$

<table>
<thead>
<tr>
<th>Терм</th>
<th>Параметры</th>
<th>до настройки</th>
<th>после настройки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>P_1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>P_2</td>
<td>0.09</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>P_3</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>P_4</td>
<td>0.71</td>
<td>0.1</td>
<td>0.85</td>
</tr>
<tr>
<td>P_5</td>
<td>0.92</td>
<td>0.1</td>
<td>0.93</td>
</tr>
<tr>
<td>P_6</td>
<td>1.0</td>
<td>0.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Таблица 5.2
Веса правил нечеткой модели объекта $y = f(x)$

<table>
<thead>
<tr>
<th>Веса правил</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>до настройки</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>после</td>
<td>1</td>
<td>0.72</td>
<td>0.71</td>
<td>1</td>
<td>0.68</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Рис. 5.12. Динамика обучения нечеткой модели объекта «один вход - один выход»

Эксперимент 2. Рассматривается объект с двумя входами $x_1 \in [0, 6]$, $x_2 \in [0, 6]$ и одним выходом $y \in [-5.08, 0.855]$, имеющий эталонную аналитическую модель вида:
$$y = f(x_1, x_2) = \frac{1}{40} (2.2 - 0.9) (7z - 1) (17z - 19) (15z - 2),$$

где
$$z = \frac{(x_1 - 3)^2 + (x_2 - 3)^2}{18}.$$

Модель-эталон изображена на рис. 5.13

![Diagram](image)

Рис. 5.13. Модель-эталон для объекта «два входа - один выход»

Грубая база знаний, сформированная на основе наблюдения за поведением объекта \(y = f(x_1, x_2)\) на рис. 5.13, состоит из 49 правил вида:

ЕСЛИ \(x_1 = P_i\) И \(x_2 = Q_j\), ТО \(y = B_{ij}\), \(i = 1, 7, j = 1, 5\),

которые можно изобразить в виде следующей матрицы 7×7:

<table>
<thead>
<tr>
<th></th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
<th>(P_5)</th>
<th>(P_6)</th>
<th>(P_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_1)</td>
<td>(B_{21})</td>
<td>(B_{11})</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{31})</td>
<td>(B_{11})</td>
<td>(B_{21})</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>(B_{11})</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{51})</td>
<td>(B_{41})</td>
<td>(B_{31})</td>
<td>(B_{11})</td>
</tr>
<tr>
<td>(Q_3)</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{41})</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{41})</td>
<td>(B_{11})</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>(B_{41})</td>
<td>(B_{51})</td>
<td>(B_{41})</td>
<td>(B_{51})</td>
<td>(B_{41})</td>
<td>(B_{51})</td>
<td>(B_{31})</td>
</tr>
<tr>
<td>(Q_5)</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{41})</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{41})</td>
<td>(B_{31})</td>
</tr>
<tr>
<td>(Q_6)</td>
<td>(B_{11})</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{51})</td>
<td>(B_{31})</td>
<td>(B_{31})</td>
<td>(B_{11})</td>
</tr>
<tr>
<td>(Q_7)</td>
<td>(B_{21})</td>
<td>(B_{11})</td>
<td>(B_{31})</td>
<td>(B_{41})</td>
<td>(B_{31})</td>
<td>(B_{11})</td>
<td>(B_{21})</td>
</tr>
</tbody>
</table>

где \(P_1 = Q_1 = \text{около 0}\), \(P_2 = Q_2 = \text{около 0.5}\), \(P_3 = Q_3 = \text{около 1.5}\), \(P_4 = Q_4 = \text{около 3}\),

148
Рис. 5.14. Нечеткая модель объекта «два входа - один выход»
до настройки

Таблица 5.3
Параметры \(b \) и \(c \) функций принадлежности лингвистических термов
нечеткой модели \(y = f(x_1, x_2) \) до настройки

<table>
<thead>
<tr>
<th>Функция</th>
<th>(\mu_{P_1}(x_1)),</th>
<th>(\mu_{Q_1}(x_2))</th>
<th>(\mu_{P_2}(x_1)),</th>
<th>(\mu_{Q_2}(x_2))</th>
<th>(\mu_{P_3}(x_1)),</th>
<th>(\mu_{Q_3}(x_2))</th>
<th>(\mu_{P_4}(x_1)),</th>
<th>(\mu_{Q_4}(x_2))</th>
<th>(\mu_{P_5}(x_1)),</th>
<th>(\mu_{Q_5}(x_2))</th>
<th>(\mu_{P_6}(x_1)),</th>
<th>(\mu_{Q_6}(x_2))</th>
<th>(\mu_{P_7}(x_1)),</th>
<th>(\mu_{Q_7}(x_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0</td>
<td>0.5</td>
<td>1.5</td>
<td>3</td>
<td>4.5</td>
<td>5.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Параметры функций принадлежности до настройки приведены в табл. 5.3. Улучшенная в результате настройки нечеткая модель показана на рис. 5.1. Изменение весов правил в ходе настройки может быть представлено в виде следующей матрицы:

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>P_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_1</td>
<td>1/0.01</td>
<td>1/0.42</td>
<td>1/0.03</td>
<td>1/0.64</td>
<td>1/0.05</td>
<td>1/0.42</td>
<td>1/0.03</td>
</tr>
<tr>
<td>Q_2</td>
<td>1/0.61</td>
<td>1/0.03</td>
<td>1/0.27</td>
<td>1/0.26</td>
<td>1/0.27</td>
<td>1/0.05</td>
<td>1/0.61</td>
</tr>
<tr>
<td>Q_3</td>
<td>1/0.05</td>
<td>1/0.44</td>
<td>1/0.71</td>
<td>1/0.03</td>
<td>1/0.71</td>
<td>1/0.44</td>
<td>1/0.09</td>
</tr>
<tr>
<td>Q_4</td>
<td>1/0.87</td>
<td>1/0.34</td>
<td>1/0.01</td>
<td>1/0.90</td>
<td>1/0.02</td>
<td>1/0.34</td>
<td>1/0.87</td>
</tr>
<tr>
<td>Q_5</td>
<td>1/0.03</td>
<td>1/0.43</td>
<td>1/0.70</td>
<td>1/0.05</td>
<td>1/0.70</td>
<td>1/0.43</td>
<td>1/0.01</td>
</tr>
<tr>
<td>Q_6</td>
<td>1/0.60</td>
<td>1/0.03</td>
<td>1/0.30</td>
<td>1/0.29</td>
<td>1/0.30</td>
<td>1/0.05</td>
<td>1/0.60</td>
</tr>
<tr>
<td>Q_7</td>
<td>1/0.03</td>
<td>1/0.48</td>
<td>1/0.05</td>
<td>1/0.83</td>
<td>1/0.09</td>
<td>1/0.48</td>
<td>1/0.01</td>
</tr>
</tbody>
</table>

где в числителях стоят веса до настройки, а в знаменателях - веса после настройки.

Значения параметров b и c функций принадлежности нечетких термов после настройки приведены в табл. 5.4.

Динамика обучения нечеткой модели показана на рис. 5.16.

Таблица 5.4

<table>
<thead>
<tr>
<th>Функция</th>
<th>$\mu^p_1(x_1)$</th>
<th>$\mu^p_2(x_1)$</th>
<th>$\mu^p_3(x_1)$</th>
<th>$\mu^p_4(x_1)$</th>
<th>$\mu^p_5(x_1)$</th>
<th>$\mu^p_6(x_1)$</th>
<th>$\mu^p_7(x_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.0734</td>
<td>0.0037</td>
<td>2.3961</td>
<td>3.0050</td>
<td>3.6336</td>
<td>5.9952</td>
<td>5.9266</td>
</tr>
<tr>
<td>c</td>
<td>0.0987</td>
<td>0.8190</td>
<td>0.3204</td>
<td>0.6545</td>
<td>0.2959</td>
<td>0.8281</td>
<td>0.0987</td>
</tr>
<tr>
<td>Функция</td>
<td>$\mu^q_1(x_2)$</td>
<td>$\mu^q_2(x_2)$</td>
<td>$\mu^q_3(x_2)$</td>
<td>$\mu^q_4(x_2)$</td>
<td>$\mu^q_5(x_2)$</td>
<td>$\mu^q_6(x_2)$</td>
<td>$\mu^q_7(x_2)$</td>
</tr>
<tr>
<td>b</td>
<td>0.0027</td>
<td>0.1764</td>
<td>2.0657</td>
<td>2.9984</td>
<td>3.9416</td>
<td>5.8228</td>
<td>5.9970</td>
</tr>
<tr>
<td>c</td>
<td>0.0980</td>
<td>1.1071</td>
<td>0.4957</td>
<td>0.7217</td>
<td>0.4949</td>
<td>1.1061</td>
<td>0.0981</td>
</tr>
</tbody>
</table>
(а) нечеткая модель

(б) функции принадлежности нечетких термов

Рис. 5.15. Нечеткая модель объекта «два входа - один выход» после настройки

Рис. 5.16. Динамика обучения нечеткой модели объекта «два входа - один выход»
5.4.3. Объекты с дискретным выходом

Эксперимент 1. Рассматривается объект с двумя входами: \(x_1 \in [0,1] \) и \(x_2 \in [0,1] \) и одним выходом \(y \), на котором может появиться 5 значений: \(\{d_1, d_2, d_3, d_4, d_5\} \). Исследуемый объект представляет собой двумерное пространство, разделенное на пять областей - классов решений (рис. 5.17а). Эталонные границы областей-классов имеют следующий вид:

1. \(x_1 \in [0.5,0.625], \quad x_2 = 32(x_1 - 0.5)^2 + 0.5; \)
2. \(x_1 \in [0.025], \quad x_2 = -16(x_1 - 0.25)^4 + 0.8125; \)
3. \(x_1 \in [0.25,0.5], \quad x_2 = -80(x_1 - 0.25)^4 + 0.8125; \)
4. \(x_2 \in [0.5] \quad x_1 = (0.5 - x_2)(2 - x_2)(-0.1 - x_2) + 0.5; \)
5. \(x_2 \in [0.25,0.5], \quad x_1 = (0.5 - x_2) + 0.5; \)
6. \(x_1 \in [0.75,0.8125], \quad x_2 = -80(x_1 - 1)^4 + 0.75; \)

На рис. 5.17б показано получение нечетких правил ЕСЛИ-ТО, из которых была сформирована нечеткая база знаний (табл. 5.5), где Н - низкий, нС - ниже среднего, С - средний, вС - выше среднего, В - высокий.

Рис. 5.17. Объект-1 «два входа - один выход»: а) пять классов решений, б) получение нечетких правил ЕСЛИ-ТО

152
Таблица 5.5
Матрица знаний и соответствующие веса правил до \((w_b)\)
и после \((w_a)\) настройки

<table>
<thead>
<tr>
<th>(N)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(d)</th>
<th>(N)</th>
<th>(w_b)</th>
<th>(w_a)</th>
<th>(N)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(d)</th>
<th>(N)</th>
<th>(w_b)</th>
<th>(w_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>H</td>
<td>B</td>
<td></td>
<td>11</td>
<td>1.0</td>
<td>0.943</td>
<td>45</td>
<td>HC</td>
<td>BC</td>
<td></td>
<td>45</td>
<td>1.0</td>
<td>0.984</td>
</tr>
<tr>
<td>12</td>
<td>HC</td>
<td>B</td>
<td>(d_1)</td>
<td>12</td>
<td>1.0</td>
<td>0.987</td>
<td>46</td>
<td>HC</td>
<td>C</td>
<td></td>
<td>46</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>B</td>
<td></td>
<td>13</td>
<td>1.0</td>
<td>0.935</td>
<td>51</td>
<td>HC</td>
<td>HC</td>
<td></td>
<td>51</td>
<td>1.0</td>
<td>0.978</td>
</tr>
<tr>
<td>21</td>
<td>BC</td>
<td>B</td>
<td></td>
<td>21</td>
<td>1.0</td>
<td>1.000</td>
<td>52</td>
<td>HC</td>
<td>H</td>
<td></td>
<td>52</td>
<td>1.0</td>
<td>0.988</td>
</tr>
<tr>
<td>22</td>
<td>BC</td>
<td>BC</td>
<td>(d_2)</td>
<td>22</td>
<td>1.0</td>
<td>1.000</td>
<td>53</td>
<td>C</td>
<td>C</td>
<td></td>
<td>53</td>
<td>1.0</td>
<td>0.965</td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>B</td>
<td></td>
<td>23</td>
<td>1.0</td>
<td>1.000</td>
<td>54</td>
<td>C</td>
<td>HC</td>
<td></td>
<td>54</td>
<td>1.0</td>
<td>0.986</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td>BC</td>
<td>(d_3)</td>
<td>31</td>
<td>1.0</td>
<td>0.909</td>
<td>55</td>
<td>C</td>
<td>H</td>
<td>(d_5)</td>
<td>55</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>C</td>
<td></td>
<td>32</td>
<td>1.0</td>
<td>0.984</td>
<td>56</td>
<td>BC</td>
<td>HC</td>
<td></td>
<td>56</td>
<td>1.0</td>
<td>0.977</td>
</tr>
<tr>
<td>41</td>
<td>H</td>
<td>BC</td>
<td></td>
<td>41</td>
<td>1.0</td>
<td>1.000</td>
<td>57</td>
<td>BC</td>
<td>H</td>
<td></td>
<td>57</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>42</td>
<td>H</td>
<td>C</td>
<td>(d_4)</td>
<td>42</td>
<td>1.0</td>
<td>0.999</td>
<td>58</td>
<td>B</td>
<td>HC</td>
<td></td>
<td>58</td>
<td>1.0</td>
<td>0.982</td>
</tr>
<tr>
<td>43</td>
<td>H</td>
<td>HC</td>
<td></td>
<td>43</td>
<td>1.0</td>
<td>0.998</td>
<td>59</td>
<td>B</td>
<td>H</td>
<td></td>
<td>59</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>44</td>
<td>H</td>
<td>H</td>
<td></td>
<td>44</td>
<td>1.0</td>
<td>0.998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Функции принадлежности нечетких термов из базы знаний (табл. 5.5) изображены на рис. 5.18б, а соответствующие параметры, - в табл. 5.6. Веса правил до настройки считались одинаковыми и равными единице, что обеспечивало грубую нечеткую модель, изображенную на рис. 5.18а.

Таблица 5.6
Параметры \(b\) и \(c\) функций принадлежности лингвистических термов нечеткой модели \(y = f(x_1, x_2)\) до настройки

<table>
<thead>
<tr>
<th>Функция</th>
<th>(\mu^H(x_1))</th>
<th>(\mu^C(x_1))</th>
<th>(\mu^C(x_1))</th>
<th>(\mu^B(x_1))</th>
<th>(\mu^C(x_2))</th>
<th>(\mu^C(x_2))</th>
<th>(\mu^B(x_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0.100</td>
<td>0.375</td>
<td>0.550</td>
<td>0.650</td>
<td>0.950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 5.6
Параметры \(b\) и \(c\) функций принадлежности лингвистических термов нечеткой модели \(y = f(x_1, x_2)\) до настройки

<table>
<thead>
<tr>
<th>Функция</th>
<th>(\mu^H(x_2))</th>
<th>(\mu^C(x_2))</th>
<th>(\mu^C(x_2))</th>
<th>(\mu^B(x_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0.100</td>
<td>0.375</td>
<td>0.460</td>
<td>0.620</td>
</tr>
<tr>
<td>(c)</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
</tr>
</tbody>
</table>
а) результаты принятия решений (♦ - d_1, ■ - d_2, + - d_3, × - d_4, ◊ - d_5)

б) функции принадлежности нечетких термов

Рис. 5.18. Нечеткая модель объекта 1 «два входа - один выход» до настройки

а) результаты принятия решений (♦ - d_1, ■ - d_2, + - d_3, × - d_4, ◊ - d_5)

б) функции принадлежности нечетких термов

Рис. 5.19. Нечеткая модель объекта 1 «два входа - один выход» после настройки
После настройки, которая заключалась в решении соответствующей оп- тимизационной задачи, была получена новая нечеткая модель, показанная на рис. 5.19а.

Полученные в результате настройки функции принадлежности изобра- жены на рис. 5.19б, а их параметры в табл. 5.7.

Таблица 5.7

Параметры \(b \) и \(c \) функций принадлежности лингвистических термов нечеткой модели \(y = f(x_1, x_2) \) после настройки

<table>
<thead>
<tr>
<th>Функция</th>
<th>(\mu^H(x_1))</th>
<th>(\mu^H(x_2))</th>
<th>(\mu^C(x_1))</th>
<th>(\mu^B(x_1))</th>
<th>(\mu^H(x_2))</th>
<th>(\mu^C(x_2))</th>
<th>(\mu^B(x_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0.156</td>
<td>0.423</td>
<td>0.528</td>
<td>0.699</td>
<td>0.931</td>
<td>0.201</td>
<td>0.056</td>
</tr>
<tr>
<td>(c)</td>
<td>0.210</td>
<td>0.135</td>
<td>0.050</td>
<td>0.115</td>
<td>0.143</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Настроенные веса правил приведены в табл. 5.5. Динамику обучения не- четкой модели объекта \(y = f(x_1, x_2) \) можно наблюдать на рис. 5.20, где \(\hat{P}_i(i = 1, 5) \) и \(\hat{P} \) - вероятности безошибочного распознавания классов..

![Рис. 5.20. Динамика обучения нечеткой модели объекта1 «два входа - один выход»](image)

Эксперимент 2. Рассматривается второй объект с двумя входами: \(x_1 \in [0, 1] \) и \(x_2 \in [0, 1] \) и одним дискретным выходом \(y \). Число классов-решений равно пяти. Границы эталонных классов решений задаются моделями
(рис. 5.21а):

1: \(x_2 \in [0.5, 0.75], \ x_1 = \frac{1}{2} \cdot 3.4(0.75 - x_2) + 0.25 \)

2: \(x_2 \in [0.25, 0.75], \ x_1 = (x_2 - 0.5)^2 + 0.1875 \)

3: \(x_1 \in [0.25, 0.75], \ x_2 = 0.5 - 0.0625 \left(4(0.75 - x_1) \right)^2 \)

4: \(x_1 \in [0.25, 0.5], \ x_2 = 0.25(4(x_1 - 0.25))^{0.6} + 0.75 \)

5: \(x_1 \in [0, 0.1875], \ x_2 = 0.25 \left(1 - \frac{16}{3} x_1 \right)^{0.34} + 0.5 \)

6: \(x_1 \in [0.25, 0.5], \ x_2 = 0.25 - 0.125 \cdot x_1 - 0.25 \)

7: \(x_1 \in [0.5, 0.8125], \ x_2 = 0.1875 + 0.25 \left(1 - 0.0625 \left(5 \left(x_1 - 0.5 \right) \right)^4 \right) \)

8: \(x_1 \in [0.5, 1.0], \ x_2 = 0.3125 + 0.125 \left(16 \left(3 \left(x_1 - 0.8125 \right) \right)^2 \right) \).

Получение нечетких правил ЕСЛИ-ТО, описывающих поведение объекта, изображено на рис. 5.21б. Эти правила сведены в нечеткую базу знаний (табл. 5.8).

Параметры функции принадлежности нечетких термов, которые используются в базе знаний из табл. 5.8, до настройки приведены в табл. 5.9.

Рис. 5.21. Объект 2 «два входа - один выход»: а) пять типов решений,
б) получение нечетких правил ЕСЛИ-ТО
Матрица знаний и соответствующие веса правил до \((w_b)\) и после \((w_a)\) настройки

<table>
<thead>
<tr>
<th>N</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(d)</th>
<th>(w_b)</th>
<th>(w_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>нС</td>
<td>вС</td>
<td>(d_1)</td>
<td>1.0</td>
<td>0.998</td>
</tr>
<tr>
<td>12</td>
<td>вС</td>
<td>вС</td>
<td>(d_1)</td>
<td>1.0</td>
<td>0.998</td>
</tr>
<tr>
<td>13</td>
<td>вС</td>
<td>вС</td>
<td>(d_1)</td>
<td>1.0</td>
<td>0.997</td>
</tr>
<tr>
<td>14</td>
<td>нС</td>
<td>вС</td>
<td>(d_1)</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>вС</td>
<td>вС</td>
<td>(d_1)</td>
<td>1.0</td>
<td>0.997</td>
</tr>
<tr>
<td>21</td>
<td>вС</td>
<td>Б</td>
<td>(d_2)</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>22</td>
<td>вС</td>
<td>Б</td>
<td>(d_2)</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>23</td>
<td>Б</td>
<td>Б</td>
<td>(d_2)</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>24</td>
<td>Б</td>
<td>вС</td>
<td>(d_2)</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>25</td>
<td>вС</td>
<td>Б</td>
<td>(d_2)</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>26</td>
<td>вС</td>
<td>нС</td>
<td>(d_2)</td>
<td>1.0</td>
<td>1.000</td>
</tr>
<tr>
<td>31</td>
<td>С</td>
<td>нС</td>
<td>(d_3)</td>
<td>1.0</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Таблица 5.8

Параметры \(b\) и \(c\) функций принадлежности лингвистических термов нечеткой модели \(y = f(x_1, x_2)\) до настройки

<table>
<thead>
<tr>
<th>Функция</th>
<th>(\mu_H(x_1))</th>
<th>(\mu_H^n(x_1))</th>
<th>(\mu_C(x_1))</th>
<th>(\mu_H^C(x_1))</th>
<th>(\mu_B(x_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>(c)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Функция</th>
<th>(\mu_H(x_2))</th>
<th>(\mu_H^n(x_2))</th>
<th>(\mu_C(x_2))</th>
<th>(\mu_H^C(x_2))</th>
<th>(\mu_B(x_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>(c)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Графики функций принадлежности нечеткой модели объекта 2 «два входа - один выход» изображены на рис. 5.22б. Веса правил до настройки считались одинаковыми и равными единице. Грубая нечеткая модель показана на рис. 5.22а.

После настройки, которая заключалась в решении оптимизационной задачи, была получена улучшенная нечеткая модель, показанная на рис. 5.23а. Настроенные функции принадлежности изображены на рис. 5.23б.

Параметры функций принадлежности нечеткой модели, полученные в результате настройки, приведены в табл. 5.10
б) функции принадлежности нечетких термов

Рис. 5.22. Нечеткая модель объекта 2 «два входа - один выход» до настройки

а) результаты принятия решений (♦ - д_{1}, ■ - д_{2}, + - д_{3}, × - д_{4}, ◇ - д_{5})

б) функции принадлежности нечетких термов

Рис. 5.23. Нечеткая модель объекта 2 «два входа - один выход» после настройки

158
Таблица 5.10

Параметры b и c функций принадлежности лингвистических термов нечеткой модели $y = f(x_1, x_2)$ после настройки

<table>
<thead>
<tr>
<th>Функция</th>
<th>$\mu^H(x_1)$</th>
<th>$\mu^{MC}(x_1)$</th>
<th>$\mu^C(x_1)$</th>
<th>$\mu^{BC}(x_1)$</th>
<th>$\mu^B(x_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.033</td>
<td>0.275</td>
<td>0.503</td>
<td>0.735</td>
<td>0.960</td>
</tr>
<tr>
<td>c</td>
<td>0.149</td>
<td>0.073</td>
<td>0.139</td>
<td>0.010</td>
<td>0.313</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Функция</th>
<th>$\mu^H(x_2)$</th>
<th>$\mu^{MC}(x_2)$</th>
<th>$\mu^C(x_2)$</th>
<th>$\mu^{BC}(x_2)$</th>
<th>$\mu^B(x_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.031</td>
<td>0.275</td>
<td>0.529</td>
<td>0.733</td>
<td>0.967</td>
</tr>
<tr>
<td>c</td>
<td>0.188</td>
<td>0.062</td>
<td>0.136</td>
<td>0.010</td>
<td>0.243</td>
</tr>
</tbody>
</table>

Веса правил после настройки приведены в табл. 5.8. Динамику обучения нечеткой модели можно наблюдать на рис. 5.24.

Рис. 5.24. Динамика обучения нечеткой модели объекта 2 «два входа - один выход»

5.4.4. Исследование α-уровневой настройки

Цель эксперимента, описываемого в этом разделе, состояла в исследовании возможности настройки нечетких моделей в которых функции принадлежности представляются в виде разложения по системе α-уровней. В качестве нелинейного объекта рассматривалась функция вида

$$y = f(x) = \frac{(5x - 1.1)(4x - 2.9)(3x - 2.1)(11x - 11)(3x - 0.05) + 10}{40},$$

которая показана на рис. 5.25.
В разделе 5.4.2 рассматривалась настройка параметрических функций принадлежности нечеткой модели данного объекта. Объект описывался с помощью нечеткой базы знаний вида:

ЕСЛИ \(x = p_1 \), ТО \(y \in [0.14, 0.23] \) (с весом \(w_1 \)),

ЕСЛИ \(x = p_2 \), ТО \(y \in [0.32, 0.42] \) (с весом \(w_2 \)),

ЕСЛИ \(x = p_3 \), ТО \(y \in [0.05, 0.14] \) (с весом \(w_3 \)),

ЕСЛИ \(x = p_4 \), ТО \(y \in [0.14, 0.23] \) (с весом \(w_4 \)),

ЕСЛИ \(x = p_5 \), ТО \(y \in [0.05, 0.14] \) (с весом \(w_5 \)),

ЕСЛИ \(x = p_6 \), ТО \(y \in [0.23, 0.32] \) (с весом \(w_6 \)),

gде \(p_1 = \text{около 0} \), \(p_2 = \text{около 0.09} \), \(p_3 = \text{около 0.4} \), \(p_4 = \text{около 0.71} \), \(p_5 = \text{около 0.92} \), \(p_6 = \text{около 1.0} \)-нечеткие термы.

Рис. 5.25. Модель-этalon

Представление функций принадлежности этих термов в виде \(\alpha \)-уровней до настройки показано в табл. 5.11.

Соответствующее графическое представление функций принадлежности до настройки изображено на рис. 5.26б. Сопоставление нечеткой модели и эталона до настройки показано на рис. 5.26а. Веса правил \(w_i \) до настройки считались одинаковыми и равными единице.
Таблица 5.11

α-уровневое представление функций принадлежности нечеткой модели объекта \(y = f(x) \) до настройки

<table>
<thead>
<tr>
<th>α-уровень</th>
<th>Терм (P_1)</th>
<th>Терм (P_2)</th>
<th>Терм (P_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>[0.000 0.000]</td>
<td>[0.100 0.100]</td>
<td>[0.400 0.400]</td>
</tr>
<tr>
<td>0.750</td>
<td>[0.000 0.003]</td>
<td>[0.088 0.112]</td>
<td>[0.383 0.417]</td>
</tr>
<tr>
<td>0.500</td>
<td>[0.000 0.006]</td>
<td>[0.080 0.120]</td>
<td>[0.370 0.430]</td>
</tr>
<tr>
<td>0.250</td>
<td>[0.000 0.010]</td>
<td>[0.065 0.135]</td>
<td>[0.348 0.452]</td>
</tr>
<tr>
<td>0.000</td>
<td>[0.000 1.000]</td>
<td>[0.000 1.000]</td>
<td>[0.000 1.000]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α-уровень</th>
<th>Терм (P_4)</th>
<th>Терм (P_5)</th>
<th>Терм (P_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>[0.850 0.850]</td>
<td>[0.930 0.930]</td>
<td>[1.000 1.000]</td>
</tr>
<tr>
<td>0.750</td>
<td>[0.846 0.854]</td>
<td>[0.910 0.950]</td>
<td>[0.948 1.000]</td>
</tr>
<tr>
<td>0.500</td>
<td>[0.843 0.857]</td>
<td>[0.896 0.964]</td>
<td>[0.910 1.000]</td>
</tr>
<tr>
<td>0.250</td>
<td>[0.838 0.862]</td>
<td>[0.871 0.989]</td>
<td>[0.844 1.000]</td>
</tr>
<tr>
<td>0.000</td>
<td>[0.000 1.000]</td>
<td>[0.000 1.000]</td>
<td>[0.000 1.000]</td>
</tr>
</tbody>
</table>

После решения задачи настройки с использованием генетического алгоритма оптимизации функции принадлежности приобрел вид, показанный в табл. 5.12.

Таблица 5.12

α-уровневое представление функций принадлежности нечеткой модели объекта \(y = f(x) \) после настройки

<table>
<thead>
<tr>
<th>α-уровень</th>
<th>Терм (P_1)</th>
<th>Терм (P_2)</th>
<th>Терм (P_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>[0.000 0.010]</td>
<td>[0.100 0.112]</td>
<td>[0.384 0.400]</td>
</tr>
<tr>
<td>0.750</td>
<td>[0.000 0.014]</td>
<td>[0.098 0.138]</td>
<td>[0.365 0.417]</td>
</tr>
<tr>
<td>0.500</td>
<td>[0.000 0.018]</td>
<td>[0.091 0.144]</td>
<td>[0.358 0.430]</td>
</tr>
<tr>
<td>0.250</td>
<td>[0.000 0.030]</td>
<td>[0.085 0.160]</td>
<td>[0.352 0.452]</td>
</tr>
<tr>
<td>0.000</td>
<td>[0.000 0.086]</td>
<td>[0.066 0.358]</td>
<td>[0.296 0.563]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α-уровень</th>
<th>Терм (P_4)</th>
<th>Терм (P_5)</th>
<th>Терм (P_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>[0.850 0.850]</td>
<td>[0.930 0.957]</td>
<td>[1.000 1.000]</td>
</tr>
<tr>
<td>0.750</td>
<td>[0.846 0.854]</td>
<td>[0.902 0.963]</td>
<td>[0.942 1.000]</td>
</tr>
<tr>
<td>0.500</td>
<td>[0.843 0.857]</td>
<td>[0.896 0.964]</td>
<td>[0.930 1.000]</td>
</tr>
<tr>
<td>0.250</td>
<td>[0.793 0.862]</td>
<td>[0.871 0.989]</td>
<td>[0.844 1.000]</td>
</tr>
<tr>
<td>0.000</td>
<td>[0.494 1.000]</td>
<td>[0.600 0.998]</td>
<td>[0.734 1.000]</td>
</tr>
</tbody>
</table>

После настройки получена нечеткая модель, которая показана на рис. 5.27. Динамика обучения этой модели приведена на рис. 5.28.
(б) функции принадлежности нечетких термов на пяти α-уровнях

Рис. 5.26. Нечеткая модель с α-уровневыми функциями принадлежности до настройки

(б) функции принадлежности нечетких термов на пяти α-уровнях

Рис. 5.27. Нечеткая модель с α-уровневыми функциями принадлежности после настройки
Сопоставляя результаты настройки нечеткой модели при разных способах описания функций принадлежности, можно сделать следующий вывод: применение α-уровневого метода обеспечивает снижение максимальной (с 6.6% до 4.5%) и средней (с 0.53% до 0.29%) ошибки идентификации. Однако затраты машинного времени на решение задач оptyмизации существенно увеличивается. Для рассматриваемого здесь объекта \(y = f(x) \) затраты времени на настройку увеличились примерно в три раза.

![Diagram](image)

Рис. 5.28. Динамика обучения нечеткой модели объекта \(y = f(x) \)

5.5. Извлечение знаний из экспериментальных данных

Необходимым условием идентификации нелинейного объекта на основе нечеткой логики является наличие правил ЕСЛИ-ТО, связывающих лингвистические оценки входных и выходных переменных. Ранее нами предполагалось, что правила ЕСЛИ-ТО генерируются экспертом, хорошо знающим объект. А что делать, если такой эксперт отсутствует? В этом случае возникает интерес к генерации правил ЕСЛИ-ТО, т.е. нечеткой базы знаний из доступных экспериментальных данных.

Преобразование экспериментальной информации в нечеткие базы знаний может оказаться полезным методом обработки данных в медицине, банковском деле, менеджменте и других областях, где лица, принимающие решения, вместо строгих количественных соотношений предпочитают пользоваться прозрачными и легкими для интерпретации словесными правилами. При этом критерием качества извлеченных закономерностей является близость результатов лингвистической аппроксимации и соответствующих экспериментальных данных.
5.5.1. Постановка задачи

Рассмотрим объект вида

\[y = f(x_1, x_2, ..., x_n) \] \hspace{1cm} (5.40)

с \(n \) входами и одним выходом, для которого известны:

- интервал изменения входов и выхода:

\[x_i \in [x_i^-, x_i^+] \hspace{0.5cm} i = 1, n, \hspace{0.5cm} y \in [y^-, y^+] \]

- классы решений \(d_j \) \((j = 1, m)\) в случае дискретного выхода:

\[[y^-, y^+] = [y_1^-, y_1^+] \cup [y_2^-, y_2^+] \cup ... \cup [y_{j-1}^-, y_{j-1}^+] \cup [y_j^-, y_j^+] \cup ... \cup [y_{m-1}^-, y_{m-1}^+] \]

- \(d_1 \hspace{1cm} d_2 \hspace{1cm} d_j \hspace{1cm} d_m \)

- обучающая выборка в виде \(M \) пар экспериментальных данных «входы-выходы»:

\[\{ X_p, y_p \} \hspace{1cm} - \text{для объектов с непрерывным выходом}, \]

\[\{ X_p, d_p \} \hspace{1cm} - \text{для объектов с дискретным выходом}, \]

где \(X_p = \{ x_{p1}^P, x_{p2}^P, ..., x_{pn}^P \} \) - входной вектор в \(p \)-й паре, \(p = 1, M \).

Требуется синтезировать знания об объекте (5.40) в виде системы нечетных логических высказываний:

ЕСЛИ \[\left(x_1 = a_1^{j1} \right) \text{ И } \left(x_2 = a_2^{j1} \right) \text{ И ... И } \left(x_n = a_n^{j1} \right) \] (с весом \(w_{j1} \))

ИЛИ \[\left(x_1 = a_1^{j2} \right) \text{ И } \left(x_2 = a_2^{j2} \right) \text{ И ... И } \left(x_n = a_n^{j2} \right) \] (с весом \(w_{j2} \)) ...
... ИЛИ \[\left(x_1 = a_{1, j} \right) \text{ И } \left(x_2 = a_{2, j} \right) \text{ И } \ldots \text{ И } \left(x_n = a_{n, j} \right) \] (с весом \(w_{j, k} \)),

То \(y \in d_j = \left[y_{j-1}, y_j \right] \), для всех \(j = 1, m \), \(\quad (5.41) \)

где \(a_{i, jp} \) - лингвистический терм, которым оценивается переменная \(x_i \) в строчке с номером \(p = 1, k_j \),

\(k_j \) - количество строк, соответствующих классу \(d_j \), \(j = 1, m \),

\(w_{j, p} \) - число в диапазоне \([0, 1]\), которое характеризует вес высказывания с номером \(j, p \).

5.5.2. Критерий оптимизации

Ранее было показано, что базе знаний (5.41) соответствует модель объекта (5.40) в виде следующих расчетных соотношений:

\[
y = \frac{\sum_{j=1}^{d} y_j \mu_{d, j} (y) + \sum_{j=1}^{d} \mu_{d, j} (y)}{\sum_{j=1}^{d} \mu_{d, j} (y)} \quad , \quad (5.42)
\]

\[
\mu_{d, j} (y) = \max_{p=1, k_j} \left\{ w_{j, p} \min_{i=1, n} \left[\mu_{j, p} (x_i) \right] \right\} \quad , \quad (5.43)
\]

\[
\mu_{j, p} (x_i) = \frac{1}{1 + \left(\frac{x_i - b_{i, j, p}}{c_{i, j, p}} \right)} \quad , \quad (5.44)
\]

где \(\mu_{d, j} (y) \) - функция принадлежности выхода \(y \) к классу \(d_j \).
\[\mu_{i,j}(x_i) \text{ - функция принадлежности входа } x_i \text{ к терму } a_{i,j}, \]

\[b_{i,j} \text{ и } c_{i,j} \text{ - параметры настройки функций принадлежности входных переменных } x_i. \]

Соотношения (5.42)-(5.44) определяют модель объекта (5.40), которую запишем в виде:

\[y = F(X,W,B,C) \text{ - для непрерывного выхода,} \]

\[\mu_{i,j}(y) = \mu_{i,j}(X,W,B,C) \text{ - для дискретного выхода,} \]

где \(X = (x_1, x_2, \ldots, x_n) \) - входной вектор, \(W = (w_1, w_2, \ldots, w_N) \) - вектор весов правил-строчек в нечеткой базе знаний (5.41), \(B = (b_1, b_2, \ldots, b_q) \) и \(C = (c_1, c_2, \ldots, c_q) \) - векторы параметров настройки функций принадлежности нечетких термов в (5.44), \(N \) - общее число правил-строчек, \(q \) - общее число термов, \(F \) - оператор связи «входы-выход», соответствующий использованию соотношений (5.42)-(5.44).

Зададимся ограничениями на объем базы знаний (5.41) одним из следующих видов:

а) \(N = k_1 + k_2 + \ldots + k_m \leq \bar{N}, \)

б) \(k_1 \leq \bar{k}_1, k_2 \leq \bar{k}_2, \ldots, k_m \leq \bar{k}_m, \)

где \(\bar{N} \) - максимально допустимое общее число строк конъюнкций в (5.41), \(\bar{k}_j \) - максимально допустимое число строк конъюнкций в правилах \(j \)-го класса решений, \(j = 1, m. \)

Поскольку содержание и количество лингвистических термов \(a_{i,j} \) (\(i = 1, n, \ p = 1, k_j, \ j = 1, m \)), используемых в базе знаний (5.41), заранее не известны, то их предлагается интерпретировать на основе значений параметров \(b_{i,j}, c_{i,j} \) функций принадлежности (5.44). Поэтому синтез базы знаний

166
(5.41) сводится к получению матрицы параметров, приведенных в табл. 5.13.

<table>
<thead>
<tr>
<th>номер</th>
<th>(x_1)</th>
<th>(\ldots x_i \ldots)</th>
<th>(x_n)</th>
<th>Вес</th>
<th>ТО</th>
</tr>
</thead>
<tbody>
<tr>
<td>правила</td>
<td>(b_{11}, c_{11})</td>
<td>(b_{i1}, c_{i1})</td>
<td>(b_{n1}, c_{n1})</td>
<td>(w_{11})</td>
<td>(y)</td>
</tr>
<tr>
<td>12</td>
<td>(b_{12}, c_{12})</td>
<td>(b_{i2}, c_{i2})</td>
<td>(b_{n2}, c_{n2})</td>
<td>(w_{12})</td>
<td>(d)</td>
</tr>
<tr>
<td>(k)</td>
<td>(b_{1k}, c_{1k})</td>
<td>(b_{ik}, c_{ik})</td>
<td>(b_{nk}, c_{nk})</td>
<td>(w_{1k})</td>
<td>(d)</td>
</tr>
<tr>
<td>(j)</td>
<td>(b_{1j}, c_{1j})</td>
<td>(b_{ij}, c_{ij})</td>
<td>(b_{nj}, c_{nj})</td>
<td>(w_{1j})</td>
<td>(d)</td>
</tr>
<tr>
<td>(m)</td>
<td>(b_{1m}, c_{1m})</td>
<td>(b_{im}, c_{im})</td>
<td>(b_{nm}, c_{nm})</td>
<td>(w_{1m})</td>
<td>(d)</td>
</tr>
</tbody>
</table>

В терминах математического программирования эта задача может быть сформулирована следующим образом:

найти такую матрицу (табл. 5.13), которая, удовлетворяя ограничениям на диапазоны изменения параметров \((W, B, C)\) и количество строк, обеспечивает:

\[
\sum_{p=1}^{M} \left[F\left(X_p, W, B, C \right) - y_p \right]^2 = \min_{W, B, C} \quad , \quad (5.45)
\]
для объекта с непрерывным выходом,

$$
\sum_{p=1}^{M} \left\{ \sum_{j=1}^{m} \left[\mu^d_j \left(X^p, W, B, C \right) - \mu^d_p (y) \right]^2 \right\} = \min_{W, B, C}, \tag{5.46}
$$

для объекта с дискретным выходом, где

$$
\mu^d_p = \begin{cases} 1, & \text{если } d_j = d_p \\ 0, & \text{если } d_j \neq d_p \end{cases}.
$$

Для решения этих задач оптимизации целесообразно воспользоваться генетическими алгоритмами.

5.5.3. Генетический алгоритм оптимизации

Хромосому, описывающую искомую матрицу параметров (табл. 5.13), определим строкой, показанной на рис. 5.29, где r_{jp} - код правила ЕСЛИ-ТО с номером jp, $p = 1, k_j$, $j = 1, m$.

Операция скрещивания хромосом определена на рис. 5.30. Она состоит в обмене частей хромосом в каждом правиле r_{jp} ($j = 1, m$) и векторе весов правил. Общее число точек обмена составляет $k_1 + k_2 + \ldots + k_m + 1$: по одной на каждое правило и одной на вектор весов-правил.

Мутация (Mu) заключается в случайном изменении (с некоторой вероятностью) элементов хромосомы:

$$
Mu \left(w_{jp} \right) = \text{RANDOM} \left(\left[0, 1 \right] \right),
$$

$$
Mu \left(b_{ij}^{jp} \right) = \text{RANDOM} \left(\left[x_i, x_i \right] \right),
$$

$$
Mu \left(c_{ij}^{jp} \right) = \text{RANDOM} \left(\left[c_{ij}^{jp}, c_{ij}^{jp} \right] \right),
$$

где $\text{RANDOM} \left(\left[x, x \right] \right)$ - операция нахождения случайного числа, равномерно
Рис. 5.29. Кодирование матрицы параметров

Рис. 5.30. Операция скрещивания (■, □ - символы родителей, ☑, ☐ - символы отпрысков)
распределенного на интервале $\left[x, x \right]$.

Если веса правил могут принимать значения 1 (есть правило) или 0 (нет правила), то мутация весов должна происходить путем случайного выбора единицы или нуля.

Функция соответствия хромосом-решений вычисляется на основе критериев (5.45) и (5.46).

Если $p(t)$ - хромосомы родители, а $c(t)$ - хромосомы-отпрыски на t-ом итерации, то генетическая процедура оптимизации выполняется по следующему алгоритму:

begin

t := 0

Задать начальное значение $P(t)$;

Оценить $P(t)$ с помощью критериев (5.45) и (5.46);

while (not условия завершения) do

Скрещивать $P(t)$ чтобы получить $C(t)$;

Оценить $C(t)$ с помощью критериев (5.45) и (5.46);

Выбрать $P(t+1)$ из $P(t)$ и $C(t)$;

t := t + 1;

end

end

5.5.4. Пример

Экспериментальные данные об объекте генерировались моделью:

$$y = f(x) = e^{-x} \cdot \sin\left(\frac{\pi}{2} x\right), \quad x \in [0.10], \quad y \in [-0.47, 0.79],$$

(5.47)

которая представлена на рис. 5.31.

![Рис. 5.31. Поведение объекта](image-url)
Выход объекта разбивался на семь классов:

\[y \in \left[-0.47, -0.30 \right] \cup \left[-0.30, -0.05 \right] \cup \left[-0.05, 0.15 \right] \cup \left[0.15, 0.30 \right] \cup \left[0.30, 0.45 \right] \cup \left[0.45, 0.65 \right] \cup [0.65, 0.78] \]

Задача состояла в том, чтобы синтезировать по 5 правил, описывающих объект (5.40). Веса правил допускались равными 0 или 1. В результате применения генетического алгоритма оптимизации получены параметры матрицы правил, представленные в табл. 5.14.

Таблица 5.14

<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>вес</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>0.72</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>1.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.92</td>
<td>0.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.93</td>
<td>1.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>1.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.52</td>
<td>0.64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.82</td>
<td>1.41</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>1.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.92</td>
<td>1.65</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>2.01</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>1.36</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3.01</td>
<td>1.39</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>0.71</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.72</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4.91</td>
<td>0.21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>0.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>0.83</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9.17</td>
<td>1.19</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>б</th>
<th>с</th>
<th>вес</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.87</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>1.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8.62</td>
<td>2.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9.92</td>
<td>1.12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>1.33</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.71</td>
<td>0.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>1.13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6.91</td>
<td>2.05</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6.83</td>
<td>0.72</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>0.92</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.81</td>
<td>1.12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.72</td>
<td>0.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.93</td>
<td>0.85</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.13</td>
<td>0.64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.81</td>
<td>1.17</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Полученные формы функций принадлежности показаны в табл. 5.15.

Таблица 5.15

<table>
<thead>
<tr>
<th>ЕСЛИ x</th>
<th>параметры терма</th>
<th>функция принадлежности</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>2.81</td>
<td>2.72</td>
<td>2.93</td>
<td>2.81</td>
</tr>
<tr>
<td>1.12</td>
<td>0.7</td>
<td>0.85</td>
<td>1.17</td>
</tr>
</tbody>
</table>
После лингвистической интерпретации эти правила выглядят следующим образом:

ЕСЛИ $x = \text{около } 2.8$ ТО $y \in d_1$
ЕСЛИ $x = \text{около } 6.9$ ТО $y \in d_2$
ЕСЛИ $x = \text{около } 0$ ИЛИ $x = \text{около } 8.8$ ИЛИ $x = \text{около } 10$ ТО $y \in d_3$
ЕСЛИ $x = \text{около } 5$ ТО $y \in d_4$
ЕСЛИ $x = \text{около } 0.9$ ТО $y \in d_7$

Модель объекта, выводимая по синтезированным правилам, в сравнении с эталоном показана на рис. 5.32.

Рис. 5.32. Сравнение лингвистической модели и эталона

Дальнейшее повышение точности лингвистической модели возможно за счет ее тонкой настройки методами, изложенными ранее.

5.6. Объект «много входов - много выходов»

Если x_1, x_2, \ldots, x_n - входы объекта, а y_1, y_2, \ldots, y_m - выходы объекта, то взаимосвязь «входы-выходы» может задаваться нечеткой базой знаний вида:

\[\text{ЕСЛИ} \left(x_1 = A_1^l \right) \text{ И } \left(x_2 = A_2^l \right) \text{ И } \ldots \text{ И } \left(x_n = A_n^l \right) , \]
\[\text{ТО} \left(y_1 = B_1^l \right) \text{ И } \left(y_2 = B_2^l \right) \text{ И } \ldots \text{ И } \left(y_m = B_m^l \right) , \]
где \(l \) - номер правила, \(l = 1, N \), \(N \) - число правил, \(A_i^l \) и \(B_j^l \) - нечеткие термы для оценки входной переменной \(x_i \) (\(i = 1, n \)) и выходной переменной \(y_j \) (\(j = 1, m \)) в \(l \)-том правиле, соответственно.

Рис. 5.33. Преобразование базы знаний

После преобразования базы знаний (рис. 5.33) и выполнения нечеткого логического вывода можно получить модели аппроксимации каждой выходной переменной:

\[
\begin{align*}
y_1 &= F_1(X,W,B,C), \\
y_2 &= F_2(X,W,B,C), \\
\ldots \\
y_m &= F_m(X,W,B,C),
\end{align*}
\]

где \(X = (x_1, x_2, \ldots, x_n) \) - вектор входов, \(W = (w_1, w_2, \ldots, w_N) \) - вектор весов правил, \(B \) и \(C \) - векторы параметров функций принадлежности нечетких термов.

Пусть имеется обучающая выборка в виде \(L \) пар экспериментальных данных:

\[
\left(X^p, y_1^p, \ldots, y_m^p \right), X^p = (x_1^p, x_2^p, \ldots, x_n^p), \quad p = 1, L.
\]
Тогда задача оптимальной настройки модели рассматриваемого объекта может быть сформулирована следующим образом:

найти такой вектор \((B, C, W)\), который обеспечивает

\[
\sum_{p=1}^{L} \left[F_1 \left(X^P, W, B, C \right) - \hat{y}_1^P \right]^2 + \sum_{p=1}^{L} \left[F_2 \left(X^P, W, B, C \right) - \hat{y}_2^P \right]^2 + \ldots
\]

\[
... + \sum_{p=1}^{L} \left[F_m \left(X^P, W, B, C \right) - \hat{y}_m^P \right]^2 = \sum_{j=1}^{m} \left[\sum_{p=1}^{L} F_j \left(X^P, W, B, C \right) - \hat{y}_j^P \right]^2 = \min_{W, B, C}.
\]

Аналогично формализуется задача настройки в случае дискретных выходов.
НЕЙРОННАЯ НАСТРОЙКА
ЛИНГВИСТИЧЕСКИХ МОДЕЛЕЙ

Нейронные сети и нечеткая логика — принципиально различные математические конструкции — являются универсальными апроксиматорами сложных (нелинейных) функциональных зависимостей во многих интеллектуальных задачах кибернетики: прогнозировании, диагностике, распознавании образов и др.

Главной особенностью нейронных сетей является их способность к обучению. Она реализуется с помощью специально разработанных алгоритмов, среди которых наиболее популярно правило «обратного распространения ошибок» (back-propagation) [79]. Для обучения нейронной сети не требуется никакой априорной информации о структуре искомой функциональной зависимости. Нужна лишь обучающая выборка в виде экспериментальных пар «входы-выход». Платой за это является то, что обученная нейронная сеть — граф со взвешенными дугами — не поддается содержательной интерпретации.

Объединение нечеткой логики с нейронными сетями дает принципиально новое качество. Получаемая в результате такого объединения нейро-нечеткая сеть обладает двумя важнейшими человеческими (интеллектуальными) свойствами: а) лингвистичностью, т.е. использованием знаний на естественном языке; б) обучаемостью в реальном масштабе времени.

Основным результатом этой главы является метод нейро-лингвистической идентификации, представленный в разделе 6.2. Прежде чем переходить к построению нейро-нечеткой сети, рассмотрим возможность идентификации с помощью традиционной нейронной сети. Глава написана на основе оригинальных работ [35,43,44].
6.1. Нейронная идентификация

6.1.1. Нейронная сеть как универсальный аппроксиматор

Покажем, что при помощи нейронной сети возможно формально описать нелинейный объект вида:

$$y = f\left(x_1, x_2, ..., x_n\right),$$

где $x_1, x_2, ..., x_n$ - входы, y - выход.

Формальная модель нейронной сети представляет собой совокупность формальных нейронов, определенным образом соединенных между собой и внешней средой. Модель формального нейрона представлена на рис.6.1.

![Формальный нейрон](image)

Рис.6.1 Формальный нейрон

Нейрон в простейшем случае представляет собой элемент с несколькими входами и одним выходом, выполняющий нелинейное параметрическое преобразование суммарного взвешенного входного сигнала в скалярную величину:

$$v_0 = \psi\left(\sum_{i=1}^{M} u_i \cdot w_i\right),$$

где v_0 - выходной сигнал; u_i - входной i-й сигнал; w_i - вес i-го входа; M - количество входов; $\psi(\bullet)$ - характеристическая функция (функция активации) нейрона.

В качестве функции активации, как правило, используется сиgmoidalная функция вида:

$$\psi(\tau) = \frac{1}{1 + e^{-k\tau}},$$
где k - коэффициент сжатия-растяжения функции вдоль оси абсцисс.

Особенностью данной функции является то, что ее производную можно представить в аналитическом виде:

$$
\psi'(\tau) = \psi(\tau)(1 - \psi(\tau)) .
$$

(6.4)

Для моделирования нейронных объектов можно использовать нейронную сеть типа многослойный персептрон. Модель многослойного персептрона с тремя слоями представлена на рис.6.2. Первый слой нейронов служит для ввода, последний - для вывода, а внутренний, - для хранения информации. Каждый нейрон может соединяться с любым нейроном из соседнего слоя, однако между нейронами одного слоя связи отсутствуют. Все нейроны могут посылать сигналы только в следующие слои и принимать сигналы только из предыдущих слоев. Для организации взаимодействия нейронной сети с внешней средой служат блоки кодирования (БК) и декодирования (БДК) информации. В нашем случае эти блоки выполняют преобразование чисел соответственно из десятичной системы счисления в двоичную и из двоичной системы счисления в десятичную.

![Diagram](image)

Рис.6.2 Многослойный персептрон

Веса межнейронных связей представляются в виде матриц:

$$
W_\mu = \left\{ w_{ij}^\mu \right\},
$$

$$
\mu = 1, K, \quad i = 1, N_\mu, \quad j = 1, N_{\mu-1},
$$

(6.5)
где μ - номер матрицы межнейронных связей; w_{ij}^{μ} - вес связи между j-тым нейроном выходного слоя и i-тым нейроном входного слоя для μ-той матрицы связей; N_μ - количество нейронов μ-го слоя; $N_{\mu-1}$ - количество нейронов (μ-1)-го слоя.

Многослойный персептрон функционирует следующим образом. Вектор входных данных $X = \begin{Bmatrix} x_1, x_2, \ldots, x_n \end{Bmatrix}$ кодируется и подается на входной слой нейронной сети. После этого осуществляется поочередное вычисление выходных сигналов для нейронов каждого слоя с использованием уже известных выходов нейронов предыдущего слоя и значений весов межнейронных связей. В итоге информация, полученная из выходного слоя сети, декодируется и выдается как выход нелинейного объекта:

$$Y = F^{\left(W_1, W_2, \ldots, W^K, x_1, x_2, \ldots, x_n\right)}.$$ \hspace{1cm} (6.6)

Задача идентификации нелинейных объектов нейронными сетями может быть представлена в таком виде.

Дано: $\left(X^P, y^P\right)$, $p = 1, P$ - обучающая выборка в виде P пар вход-выход, где

$$X^P = \begin{Bmatrix} x_1^P, x_2^P, \ldots, x_n^P \end{Bmatrix}$$ - входной вектор; y^P - выходной параметр.

Необходимо: определить такие параметры (6.5) нейронной сети, при которых обеспечивается минимальное отклонение модели от объекта:

$$\sum_{p=1}^{P} \left(F^{\left(W_1, W_2, \ldots, W^K, x_1^P, x_2^P, \ldots, x_n^P\right)} - y^P \right)^2 \to \text{min.} \quad (6.7)$$

6.1.2. Обучение нейронной сети

Для поиска неизвестных параметров, обеспечивающих адекватность нейронной сети данным эксперимента, был использован метод обратного распространения ошибки (back-propagation method) [12,79]. Каждая итерация процедуры обучения состоит из двух этапов - прямого и обратного хода.
Алгоритм прямого хода

1° Вычислить суммарный взвешенный входной сигнал u_j каждого нейрона текущего слоя μ:

$$u_j = \sum_{i=1}^{N_{\mu-1}} v_i w_{ij}. \tag{6.8}$$

2° Вычислить выходной сигнал v_j, каждого нейрона текущего слоя:

$$v_j = \frac{1}{1 + e^{-k u_j}}. \tag{6.9}$$

3° Если текущий слой - не выходной, то перейти к следующему слою и повторить процедуры с п.1°.

4° Вычислить погрешность Q нейронной сети:

$$Q = \frac{1}{2} \sum_{j=1}^{N_K} \left(v_j - \hat{v}_j \right)^2, \tag{6.10}$$

где \hat{v}_j - эталонное значение выхода j-го нейрона выходного слоя,

N_K - число нейронов выходного слоя.

Алгоритм обратного хода

1° Определить скорость изменения погрешности при изменении выходного сигнала для каждого нейрона выходного слоя (EA):

$$EA^K_j = \frac{\partial Q}{\partial v_j} = \left(\hat{v}_j - v_j \right). \tag{6.11}$$

2° Определить скорость изменения погрешности при изменении суммарного входного сигнала каждого нейрона текущего слоя (EI):

$$EI^\mu_j = \frac{\partial Q}{\partial u_j} = \frac{\partial Q}{\partial v_j} \frac{\partial v_j}{\partial u_j} = EA^\mu_j v_j \left(1 - v_j \right). \tag{6.12}$$
3° Определить скорость изменения погрешности при изменении веса на входной связи каждого нейрона текущего слоя (EW):

$$EW_{ij}^{\mu} = \frac{\partial Q}{\partial w_{ij}} = \frac{\partial Q}{\partial u_j} \frac{\partial u_j}{\partial w_{ij}} = EI_j^{\mu} v_i .$$

(6.13)

4° Определить скорость изменения погрешности при изменении активности нейрона предыдущего слоя (EA):

$$EA_i^{\mu-1} = \frac{\partial Q}{\partial v_i} = \sum_{j=1}^{N_i} \left(\frac{\partial Q}{\partial u_j} \frac{\partial u_j}{\partial v_i} \right) = \sum_{j=1}^{N_i} EI_j^{\mu} w_{ij} .$$

(6.14)

5° Провести модификацию межнейронных связей по правилу градиента:

$$w_{ij} [t + 1] = w_{ij} [t] + \gamma EW_{ij}^{\mu} ,$$

(6.15)

где \(\gamma \) - скорость обучения (шаг итерации); t - номер шага обучения.
Перейти к следующему слою.
6° Если данный слой не является входным, все процедуры повторить с шага 2°.
Обучение продолжается до тех пор, пока не будет достигнута приемлемая погрешность.

6.1.3. Компьютерные эксперименты

При исследовании возможности идентификации нелинейных объектов нейронными сетями обучающая выборка генерировалась из априори заданной нелинейной модели-эталона. При помощи обучающей выборки определялись параметры нейронной сети. Полученная модель нелинейного объекта сравнивалась с эталонной моделью.

Эксперимент 1. Нелинейный объект-эталон представлен в виде:

$$y = f(x) = \frac{3(4x - 2)(4x - 3)(4x - 3.7)(4x - 1.3)(4x - 0.2)}{40}, x \in [0,1] .$$

(6.16)

и имеет форму, изображенную на рис.6.3 сплошной линией. Нейронная сеть-аппроксиматор, соответствующая данному объекту, изображена на рис.6.4, и
является полносвязанной сетью, т. е. обладает свойством полной взаимосвязи нейронов соседних слоев при отсутствии связей в слое. Структура сети: первый слой — 7 нейронов (7 разрядов двоичного кода входной переменной); второй слой (память сети) — 10 нейронов; третий слой — 7 нейронов. Вид исследуемой модели до обучения сети-аппроксиматора изображен пунктиром на рис.6.3а, а после обучения, на рис.6.3б.

Рис.6.3 Внешний вид модели и эталона: а - до обучения; б - после обучения

--- эталон
----- модель

В табл. 6.1 и 6.2 приведены весовые коэффициенты сети, которые установились после обучения.

Рис.6.4 Нейронная сеть-аппроксиматор объекта (6.16)
В проведенном эксперименте обучающая выборка состояла из 51 пары вход-выход. Обучение нейронной сети было проведено за 12000 обучающих циклов.

Таблица 6.1
Веса межнейронных связей входного \((a_i)\)
и промежуточного \((b_j)\) слоев

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1)</td>
<td>0.34</td>
<td>-2.87</td>
<td>-4.53</td>
<td>1.13</td>
<td>-2.61</td>
<td>8.51</td>
<td>-10.04</td>
</tr>
<tr>
<td>(b_2)</td>
<td>0.74</td>
<td>-0.53</td>
<td>-0.45</td>
<td>-7.35</td>
<td>-3.15</td>
<td>5.13</td>
<td>-8.25</td>
</tr>
<tr>
<td>(b_3)</td>
<td>0.62</td>
<td>1.23</td>
<td>-2.78</td>
<td>-2.14</td>
<td>-8.37</td>
<td>5.11</td>
<td>-5.66</td>
</tr>
<tr>
<td>(b_4)</td>
<td>0</td>
<td>1.88</td>
<td>0.51</td>
<td>-0.40</td>
<td>-9.87</td>
<td>6.00</td>
<td>-4.98</td>
</tr>
<tr>
<td>(b_5)</td>
<td>0.65</td>
<td>-1.75</td>
<td>-0.97</td>
<td>3.61</td>
<td>-9.41</td>
<td>5.60</td>
<td>-3.72</td>
</tr>
<tr>
<td>(b_6)</td>
<td>0.31</td>
<td>-2.09</td>
<td>-2.03</td>
<td>-9.48</td>
<td>4.95</td>
<td>6.20</td>
<td>-5.73</td>
</tr>
<tr>
<td>(b_7)</td>
<td>0.44</td>
<td>3.87</td>
<td>-3.11</td>
<td>-3.35</td>
<td>-2.74</td>
<td>-1.75</td>
<td>-2.25</td>
</tr>
<tr>
<td>(b_8)</td>
<td>0.50</td>
<td>-0.07</td>
<td>3.61</td>
<td>5.53</td>
<td>-5.47</td>
<td>3.29</td>
<td>-1.32</td>
</tr>
<tr>
<td>(b_9)</td>
<td>0.94</td>
<td>-3.62</td>
<td>-5.26</td>
<td>2.12</td>
<td>-3.91</td>
<td>-1.0</td>
<td>-2.85</td>
</tr>
<tr>
<td>(b_{10})</td>
<td>0.54</td>
<td>0.99</td>
<td>0.59</td>
<td>0.81</td>
<td>0.66</td>
<td>0.67</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Таблица 6.2
Веса межнейронных связей промежуточного \((b_j)\) и выходного \((c_i)\) слоев

<table>
<thead>
<tr>
<th></th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
<th>(b_4)</th>
<th>(b_5)</th>
<th>(b_6)</th>
<th>(b_7)</th>
<th>(b_8)</th>
<th>(b_9)</th>
<th>(b_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>0.40</td>
<td>-2.11</td>
<td>-2.15</td>
<td>0.58</td>
<td>-0.26</td>
<td>1.28</td>
<td>1.93</td>
<td>0.04</td>
<td>0.26</td>
<td>-0.92</td>
</tr>
<tr>
<td>(c_2)</td>
<td>1.95</td>
<td>1.71</td>
<td>2.38</td>
<td>0.26</td>
<td>-2.02</td>
<td>1.38</td>
<td>0.93</td>
<td>0.01</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>(c_3)</td>
<td>1.50</td>
<td>-2.97</td>
<td>-0.04</td>
<td>0.60</td>
<td>-1.27</td>
<td>0.21</td>
<td>1.19</td>
<td>1.26</td>
<td>2.01</td>
<td>-1.02</td>
</tr>
<tr>
<td>(c_4)</td>
<td>1.25</td>
<td>1.31</td>
<td>1.85</td>
<td>4.42</td>
<td>-0.41</td>
<td>-5.47</td>
<td>-5.32</td>
<td>-4.72</td>
<td>-0.16</td>
<td>3.57</td>
</tr>
<tr>
<td>(c_5)</td>
<td>3.69</td>
<td>4.13</td>
<td>1.48</td>
<td>-5.36</td>
<td>-5.94</td>
<td>-2.60</td>
<td>3.86</td>
<td>4.53</td>
<td>3.29</td>
<td>-2.16</td>
</tr>
<tr>
<td>(c_6)</td>
<td>4.34</td>
<td>6.79</td>
<td>2.34</td>
<td>-2.68</td>
<td>-3.59</td>
<td>-6.17</td>
<td>-4.65</td>
<td>0.34</td>
<td>-0.05</td>
<td>4.66</td>
</tr>
<tr>
<td>(c_7)</td>
<td>4.52</td>
<td>-7.71</td>
<td>-3.59</td>
<td>3.00</td>
<td>4.61</td>
<td>6.27</td>
<td>2.54</td>
<td>0</td>
<td>-3.27</td>
<td>4.19</td>
</tr>
</tbody>
</table>
Эксперимент 2. Нелинейный объект-эталон представлен в виде:

\[
y = \frac{1}{40} (2z - 0.9)(7z - 1)(17z - 19)(15z - 2),
\]

\[
z = \frac{(x_1 - 3)^2 + (x_2 - 3)^2}{18}, \quad x_1 \in [0.6], \quad x_2 \in [0.6],
\]

и имеет форму, изображенную на рис.6.5а.

Нейронная сеть-аппроксиматор, соответствующая данному объекту, изображена на рис.6.6, и также является полносвязанной сетью. Структура сети: первый слой – 12 нейронов (по 6 разрядов двоичного кода на каждую входную переменную); второй слой (память сети) – 15 нейронов; третий слой – 7 нейронов (6 разрядов – цифровые, 1 – знаковый). Вид исследуемой модели до обучения сети-аппроксиматора изображен на рис.6.5б, после обучения - рис.6.5в.

В табл. 6.3 и 6.4 приведены весовые коэффициенты сети, которые установились после обучения.

В проведенном эксперименте обучающая выборка состояла из 168 пар вход-выход. Обучение нейронной сети было проведено за 67000 обучающих циклов.

Таблица 6.3

Веса межнейронных связей входного \((a_j)\) и промежуточного \((b_j)\) слоев

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>(a_8)</th>
<th>(a_9)</th>
<th>(a_{10})</th>
<th>(a_{11})</th>
<th>(a_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,71</td>
<td>1,64</td>
<td>3,87</td>
<td>-6,42</td>
<td>5,93</td>
<td>-7,77</td>
<td>-1,86</td>
<td>1,58</td>
<td>3,38</td>
<td>-2,59</td>
<td>3,29</td>
<td>-7,91</td>
</tr>
<tr>
<td>2</td>
<td>4,69</td>
<td>-3,62</td>
<td>-4,18</td>
<td>2,74</td>
<td>7,32</td>
<td>2,49</td>
<td>3,58</td>
<td>8,63</td>
<td>-4,88</td>
<td>5,47</td>
<td>-8,64</td>
<td>-0,77</td>
</tr>
<tr>
<td>3</td>
<td>2,45</td>
<td>10,09</td>
<td>-7,48</td>
<td>14,44</td>
<td>-5,97</td>
<td>-1,01</td>
<td>-6,55</td>
<td>2,13</td>
<td>1,30</td>
<td>-1,23</td>
<td>-8,40</td>
<td>-2,81</td>
</tr>
<tr>
<td>4</td>
<td>-5,37</td>
<td>-2,29</td>
<td>-4,41</td>
<td>-0,38</td>
<td>4,17</td>
<td>-0,34</td>
<td>5,68</td>
<td>2,81</td>
<td>-15,18</td>
<td>3,82</td>
<td>2,48</td>
<td>-1,39</td>
</tr>
<tr>
<td>5</td>
<td>3,16</td>
<td>1,31</td>
<td>-14,66</td>
<td>-1,22</td>
<td>-1,66</td>
<td>-4,19</td>
<td>-5,23</td>
<td>-4,46</td>
<td>-7,22</td>
<td>-1,52</td>
<td>-1,42</td>
<td>-2,29</td>
</tr>
<tr>
<td>6</td>
<td>-0,94</td>
<td>1,03</td>
<td>-6,80</td>
<td>-4,62</td>
<td>-0,08</td>
<td>-2,27</td>
<td>1,83</td>
<td>6,34</td>
<td>-11,07</td>
<td>4,54</td>
<td>6,59</td>
<td>1,86</td>
</tr>
<tr>
<td>7</td>
<td>-9,17</td>
<td>5,85</td>
<td>-2,40</td>
<td>5,32</td>
<td>2,22</td>
<td>-2,17</td>
<td>-2,04</td>
<td>-2,17</td>
<td>-2,92</td>
<td>2,99</td>
<td>-7,20</td>
<td>-4,25</td>
</tr>
<tr>
<td>8</td>
<td>-5,16</td>
<td>-9,35</td>
<td>-6,67</td>
<td>4,26</td>
<td>6,59</td>
<td>-4,18</td>
<td>-4,28</td>
<td>-0,88</td>
<td>8,02</td>
<td>-5,55</td>
<td>1,54</td>
<td>2,43</td>
</tr>
<tr>
<td>9</td>
<td>-6,28</td>
<td>-9,09</td>
<td>-2,28</td>
<td>-1,87</td>
<td>-0,31</td>
<td>-1,40</td>
<td>-2,89</td>
<td>4,43</td>
<td>-3,34</td>
<td>2,77</td>
<td>-3,16</td>
<td>-5,72</td>
</tr>
<tr>
<td>10</td>
<td>-0,59</td>
<td>6,99</td>
<td>10,99</td>
<td>-3,11</td>
<td>-5,00</td>
<td>-0,40</td>
<td>-10,08</td>
<td>1,77</td>
<td>-9,87</td>
<td>1,09</td>
<td>2,77</td>
<td>2,31</td>
</tr>
<tr>
<td>11</td>
<td>-11,22</td>
<td>2,77</td>
<td>-5,51</td>
<td>-0,35</td>
<td>1,30</td>
<td>-3,68</td>
<td>12,20</td>
<td>3,55</td>
<td>-2,52</td>
<td>1,12</td>
<td>1,55</td>
<td>4,63</td>
</tr>
<tr>
<td>12</td>
<td>1,00</td>
<td>0,10</td>
<td>-6,46</td>
<td>-6,54</td>
<td>-2,85</td>
<td>-3,22</td>
<td>5,33</td>
<td>0,57</td>
<td>1,68</td>
<td>-3,89</td>
<td>-1,61</td>
<td>-4,80</td>
</tr>
<tr>
<td>13</td>
<td>3,39</td>
<td>0,30</td>
<td>0,70</td>
<td>-4,36</td>
<td>3,47</td>
<td>0,25</td>
<td>-2,59</td>
<td>-2,87</td>
<td>-4,16</td>
<td>-4,85</td>
<td>-7,96</td>
<td>-8,59</td>
</tr>
<tr>
<td>14</td>
<td>0,64</td>
<td>0,71</td>
<td>4,99</td>
<td>4,79</td>
<td>-1,59</td>
<td>1,01</td>
<td>1,08</td>
<td>-7,51</td>
<td>-11,16</td>
<td>-7,28</td>
<td>-4,81</td>
<td>-4,15</td>
</tr>
<tr>
<td>15</td>
<td>0,93</td>
<td>0,27</td>
<td>0,72</td>
<td>0,68</td>
<td>0,07</td>
<td>0,39</td>
<td>0,99</td>
<td>0,66</td>
<td>0,06</td>
<td>0,99</td>
<td>0,88</td>
<td>0,87</td>
</tr>
</tbody>
</table>
Рис. 6.5 Внешний вид эталона (а) и модели:
(б) – до обучения; (в) – после обучения

Таблица 6.4
Веса межнейронных связей промежуточного (b_j) и выходного (c_i) слоев

<table>
<thead>
<tr>
<th></th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
<th>b_6</th>
<th>b_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>7,78</td>
<td>3,63</td>
<td>4,62</td>
<td>0,67</td>
<td>1,06</td>
<td>4,34</td>
<td>-0,03</td>
</tr>
<tr>
<td>c_2</td>
<td>0</td>
<td>0,71</td>
<td>-1,63</td>
<td>-6,19</td>
<td>-6,55</td>
<td>2,54</td>
<td>4,10</td>
</tr>
<tr>
<td>c_3</td>
<td>-3,53</td>
<td>-2,55</td>
<td>-2,94</td>
<td>3,09</td>
<td>10,22</td>
<td>-2,76</td>
<td>-9,27</td>
</tr>
<tr>
<td>c_4</td>
<td>-2,53</td>
<td>-1,45</td>
<td>-5,70</td>
<td>-3,18</td>
<td>-2,11</td>
<td>4,61</td>
<td>8,92</td>
</tr>
<tr>
<td>c_5</td>
<td>-6,93</td>
<td>-2,16</td>
<td>-7,17</td>
<td>-11,96</td>
<td>-9,88</td>
<td>-6,39</td>
<td>-3,31</td>
</tr>
<tr>
<td>c_6</td>
<td>-11,68</td>
<td>-5,72</td>
<td>-7,99</td>
<td>-1,09</td>
<td>-0,28</td>
<td>-2,66</td>
<td>3,79</td>
</tr>
<tr>
<td>c_7</td>
<td>-11,39</td>
<td>-6,10</td>
<td>-9,39</td>
<td>-3,93</td>
<td>-1,05</td>
<td>-1,69</td>
<td>2,53</td>
</tr>
</tbody>
</table>
Таблица 6.4 (продолжение)

<table>
<thead>
<tr>
<th></th>
<th>b_8</th>
<th>b_9</th>
<th>b_{10}</th>
<th>b_{11}</th>
<th>b_{12}</th>
<th>b_{13}</th>
<th>b_{14}</th>
<th>b_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>-6,79</td>
<td>-7,58</td>
<td>-8,67</td>
<td>-8,15</td>
<td>-8,93</td>
<td>-5,88</td>
<td>-1,92</td>
<td>0,02</td>
</tr>
<tr>
<td>c_2</td>
<td>2,13</td>
<td>2,40</td>
<td>2,16</td>
<td>-0,02</td>
<td>-0,76</td>
<td>0,07</td>
<td>-1,64</td>
<td>-2,54</td>
</tr>
<tr>
<td>c_3</td>
<td>-3,85</td>
<td>-6,65</td>
<td>-5,31</td>
<td>2,55</td>
<td>2,77</td>
<td>5,03</td>
<td>1,22</td>
<td>0,17</td>
</tr>
<tr>
<td>c_4</td>
<td>3,22</td>
<td>-1,07</td>
<td>-1,63</td>
<td>-5,63</td>
<td>4,46</td>
<td>3,88</td>
<td>-0,97</td>
<td>-0,48</td>
</tr>
<tr>
<td>c_5</td>
<td>0,27</td>
<td>4,34</td>
<td>2,77</td>
<td>4,28</td>
<td>7,33</td>
<td>6,04</td>
<td>5,83</td>
<td>-1,12</td>
</tr>
<tr>
<td>c_6</td>
<td>6,91</td>
<td>9,82</td>
<td>6,03</td>
<td>4,54</td>
<td>3,18</td>
<td>3,79</td>
<td>3,72</td>
<td>-4,92</td>
</tr>
<tr>
<td>c_7</td>
<td>4,14</td>
<td>8,58</td>
<td>1,14</td>
<td>3,93</td>
<td>7,58</td>
<td>8,82</td>
<td>13,97</td>
<td>6,63</td>
</tr>
</tbody>
</table>

Рис. 6.6 Нейронная сеть-аппроксиматор объекта (6.17)
6.2. Нейро-лингвистическая идентификация

6.2.1. Лингвистический аппроксиматор

Рассматривается объект вида

\[y = f \left(x_1, x_2, \ldots, x_n \right), \] \hspace{1cm} (6.18)

для которого связь «входы(\(x_i\))-выход(\(y\))» можно представить в виде экспертной матрицы знаний, показанной в табл.6.5.

Таблица 6.5

<table>
<thead>
<tr>
<th>№</th>
<th>ЕСЛИ <входы></th>
<th>ТО <выход></th>
<th>Вес правила</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(2)</td>
<td>(a^{12}_1)</td>
<td>(a^{12}_2)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(1k_1)</td>
<td>(a^{1k_1}_1)</td>
<td>(a^{1k_1}_2)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(m_1)</td>
<td>(a^{m_1}_1)</td>
<td>(a^{m_1}_2)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>(a^{m_2}_1)</td>
<td>(a^{m_2}_2)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(mk_m)</td>
<td>(a^{mk_m}_1)</td>
<td>(a^{mk_m}_2)</td>
</tr>
</tbody>
</table>

Этой матрице соответствует нечеткая база знаний:

ЕСЛИ \[\left[\left(x_1 = a^{j_1}_1 \right) \text{ И } \ldots \left(x_i = a^{j_1}_i \right) \text{ И } \ldots \left(x_n = a^{j_1}_n \right) \right] \] (с весом \(w_{j_1}\)) \ldots

ИЛИ \[\left[\left(x_1 = a^{j_k}_1 \right) \text{ И } \ldots \left(x_i = a^{j_k}_i \right) \text{ И } \ldots \left(x_n = a^{j_k}_n \right) \right] \] (с весом \(w_{j_k}\)).

187
Тогда \(y = d_j, \quad j = 1, m, \quad (6.19) \)

gде \(a^P_i \) - лингвистический терм, оценивающий переменную \(x_i \) в строке \(p = k_j \);

\(k_j \) - количество строк-конъюнкций, соответствующих классу \(d_j \) выходной переменной \(y \);

\(w_{jp} \) - число в диапазоне \([0,1]\), характеризующее субъективную меру уверенности эксперта в части высказывания с номером \(p = k_j \).

Классы \(d_j, \quad j = 1, m, \) формируются путем квантования диапазона \([y, \bar{y}]\) выходной переменной на \(m \) уровнях:

\[
\left[y, \bar{y} \right] = \left[y, y_1 \right] \cup \ldots \cup \left[y_{j-1}, y_j \right] \cup \ldots \cup \left[y_{m-1}, \bar{y} \right]_{d_1 \quad d_j \quad d_m}.
\]

(6.20)

Нечеткой базе знаний (6.19) соответствует следующая аппроксимация объекта (6.18):

\[
y = \frac{\mu_{d_1} (y) + y_1 \mu_{d_2} (y) + \ldots + y_{m-1} \mu_{d_m} (y)}{\mu_{d_1} (y) + \mu_{d_2} (y) + \ldots + \mu_{d_m} (y)}, \quad (6.21)
\]

\[
\mu_{d_j} (y) = \max_{p=1, k_j} \left\{ w_{jp} \min_{i=1, n} \left[\mu_{jp} \left(x_i \right) \right] \right\}, \quad (6.22)
\]

\[
\mu_{jp} \left(x_i \right) = \frac{1}{1 + \left(\frac{x_i - b_{jp}}{c_{jp}} \right)^2}, \quad i = 1, n, \quad j = 1, m, \quad p = k_j, \quad (6.23)
\]

где \(\mu_{d_j} (y) \) - функция принадлежности выхода \(y \) к классу \(d_j \in \left[y_{j-1}, y_j \right] \).
\[\mu_{ijp}(x_i) \] - функция принадлежности переменной \(x_i \) к терму \(a_i^p \);

\[b_i^{jp}, c_i^{jp} \] - параметры настройки функций принадлежности.

6.2.2. Нейро-лингвистический аппроксиматор

В этом разделе предлагается способ представления лингвистической информации об объекте (6.18) в виде специальной нейро-нечеткой сети, изоморфной базе знаний (6.19). Структура такой сети представлена на рис.6.7, а содержание узлов показано в табл.6.6.

![Diagram](image)

Рис.6.7 Структура нейро-нечеткой сети

Из рис.6.7 видно, что нейро-нечеткая сеть имеет пять слоев:

- слой 1 - входы объекта идентификации;
- слой 2 - нечеткие термы, используемые в базе знаний (6.19);
- слой 3 - строки-конъюнкций нечеткой базы знаний (6.19);
- слой 4 - правила, объединяемые в классы \(d_j, j=1,m \);
- слой 5 - операция дефаззификации (6.21), т. е. преобразование результатов нечеткого логического вывода в четкое число.
Число узлов в нейро-нечеткой сети определяется так:
слой 1 - по количеству входов объекта идентификации;
слой 2 - по количеству нечетких термов в базе знаний (6.19);
слой 3 - по количеству строк-конъюнкций в базе знаний;
слой 4 - по количеству классов, на которые разбивается диапазон выходной переменной.

Таблица 6.6

<table>
<thead>
<tr>
<th>Узел</th>
<th>Название</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>Вход</td>
<td>$v = u$</td>
</tr>
<tr>
<td>u</td>
<td>Нечеткий терм</td>
<td>$v = \mu^T(u)$</td>
</tr>
<tr>
<td>u_1</td>
<td>Нечеткое правило</td>
<td>$v = \prod_{i=1}^{l} u_i$</td>
</tr>
<tr>
<td>u_1</td>
<td>Класс правил</td>
<td>$v = \sum_{i=1}^{l} u_i$</td>
</tr>
<tr>
<td>u_1</td>
<td>Дефаззификация</td>
<td>$v = \sum_{j=1}^{m} u_j \bar{d}j / \sum{j=1}^{m} u_j$</td>
</tr>
</tbody>
</table>

Дуги графа взвешиваются следующим образом:
единицей - дуги между 1-м и 2-м слоями;
функциями принадлежности входа к нечеткому терму - дуги между 2-м и 3-м слоями;
весами правил - дуги между 3-м и 4-м слоями;
единицей - дуги между 4-м и 5-м слоями.
В табл.6.6 обозначено:
$\mu^T(u)$ - функция принадлежности переменной u к терму T;
\bar{d}_j - центр класса $d_j \in [y, \bar{y}]$.

При определении элементов нечеткое правило и класс правил, входящих в табл.6.6, нечетко-логические операции \min и \max из формулы (6.22) заменены арифметическими операциями умножения и сложения. Возможность такой замены обоснована в работе [85]. Здесь это позволяет получить аналитические выражения, удобные для дифференцирования.
6.2.3. Обучение нейро-нечеткой сети

Суть обучения состоит в подборе таких весов дуг, которые минимизируют различие между результатами нейро-нечеткой аппроксимации и реальным поведением объекта. Для обучения используется система рекуррентных соотношений:

$$ w_{jp} (t+1) = w_{jp} (t) - \eta \frac{\partial E_t}{\partial w_{jp} (t)}, \quad (6.24) $$

$$ c_{i}^{jp} (t+1) = c_{i}^{jp} (t) - \eta \frac{\partial E_t}{\partial c_{i}^{jp} (t)}, \quad (6.25) $$

$$ b_{j}^{jp} (t+1) = b_{j}^{jp} (t) - \eta \frac{\partial E_t}{\partial b_{j}^{jp} (t)}, \quad j = 1, m, i = 1, n, p = k, \quad (6.26) $$

минимизирующих критерий

$$ E_t = \frac{1}{2} (\hat{y}_t - y_t)^2, \quad (6.27) $$

применяемый в теории нейронных сетей, где:

\hat{y}_t и y_t - теоретический и экспериментальный выходы объекта (6.18) на t-м шаге обучения;

$w_{jp} (t), c_{i}^{jp} (t), b_{j}^{jp} (t)$ - веса правил (w) и параметры функций принадлежности (b, c) на t-м шаге обучения;

η - параметр обучения, который может выбираться в соответствии с рекомендациями работы [53].

Частные производные, входящие в соотношения (6.24)-(6.26), характеризуют чувствительность ошибки (E_t) к изменению параметров нейро-нечеткой сети, и вычисляются следующим образом:

$$ \frac{\partial E_t}{\partial w_{jp}} = \varepsilon_1 \varepsilon_2 \varepsilon_3 \frac{\partial \mu^d j (y)}{\partial w_{jp}}, \quad (6.28) $$
\[
\frac{\partial E_t}{\partial c_i^{\mu j p}} = \varepsilon_1 \varepsilon_3 \varepsilon_4 \frac{\partial \mu^{\mu j p}(x_i)}{\partial c_i^{\mu j p}},
\]
(6.29)

\[
\frac{\partial E_t}{\partial b_i^{\mu j p}} = \varepsilon_1 \varepsilon_3 \varepsilon_4 \frac{\partial \mu^{\mu j p}(x_i)}{\partial b_i^{\mu j p}},
\]
(6.30)

где

\[
\varepsilon_1 = \frac{\partial E_t}{\partial y} = y_t - \dot{y}_t,
\]
(6.31)

\[
\varepsilon_2 = \frac{\partial E_t}{\partial \mu_i^{d_j(y)}} = \frac{\bar{d}_j \sum_{j=1}^m \mu_i^{d_j(y)} - \sum_{j=1}^m \bar{d}_j \mu_i^{d_j(y)}}{\left(\sum_{j=1}^m \mu_i^{d_j(y)}\right)^2},
\]
(6.32)

\[
\varepsilon_3 = \frac{\partial \mu_i^{d_j(y)}}{\partial \left(\prod_{i=1}^n \mu_i^{j_p(x_i)}\right)} = w_i^{j_p},
\]
(6.33)

\[
\varepsilon_4 = \frac{\partial \left(\prod_{i=1}^n \mu_i^{j_p(x_i)}\right)}{\partial \mu_i^{j_p(x_i)}} = \frac{1}{\prod_{i=1}^n \mu_i^{j_p(x_i)}} \prod_{i=1}^n \mu_i^{j_p(x_i)},
\]
(6.34)

\[
\frac{\partial \mu_i^{d_j(y)}}{\partial w_{j_p}} = \prod_{i=1}^n \mu_i^{j_p(x_i)},
\]
(6.35)
\[
\frac{\partial \mu_{jp}(x_i)}{\partial c_i^{jp}} = \frac{2c_i^{jp}(x_i - b_i^{jp})^2}{\left(\left(c_i^{jp}\right)^2 + \left(x_i - b_i^{jp}\right)^2\right)^2},
\]
\[
\frac{\partial \mu_{jp}(x_i)}{\partial b_i^{jp}} = \frac{2\left(c_i^{jp}\right)^2(1 - b_i^{jp})}{\left(\left(c_i^{jp}\right)^2 + \left(x_i - b_i^{jp}\right)^2\right)^2}.
\]

Аналогично правилу «back-propagation», алгоритм обучения нейронной сети состоит из двух фаз. На первой фазе вычисляется модельное значение выхода объекта \(y\), соответствующее заданной архитектуре сети. На второй фазе вычисляется значение невязки \(E_t\) и по формулам (6.28)-(6.37) пересчитывается веса межнейронных связей.

6.2.4. Компьютерные эксперименты

Эксперимент 1. Для генерации экспертно-экспериментальной информации использовался нелинейный объект пятого порядка:

\[
y = f(x) = \frac{3(4x - 2)(4x - 3)(4x - 3.7)(4x - 1.3)(4x - 0.2)}{40}, \quad x \in [0, 1].
\]

Поведение этого объекта показано на рис.6.8 жирной линией.

Наблюдая поведение объекта, нетрудно описать его базой знаний:

ЕСЛИ \(x = A_1 = \text{около 0}\) ТО \(y = d_1 \in [0, 0.4]\)

ЕСЛИ \(x = A_2 = \text{около 0,15}\) ТО \(y = d_5 \in [0.7, 0.9]\)

ЕСЛИ \(x = A_3 = \text{около 0,4}\) ТО \(y = d_3 \in [0.45, 0.55]\)

ЕСЛИ \(x = A_4 = \text{около 0,6}\) ТО \(y = d_4 \in [0.55, 0.7]\)

ЕСЛИ \(x = A_5 = \text{около 0,85}\) ТО \(y = d_2 \in [0.4, 0.45]\)

ЕСЛИ \(x = A_6 = \text{около 1}\) ТО \(y = d_6 \in [0.9, 1]\).
Функции принадлежности нечетких термов, используемых в этой базе знаний, выбиралась экспертно (рис. 6.9а).
Структура нейро-нечеткой сети, соответствующей рассматриваемому объекту, представлена на рис. 6.10. Эта сеть с выбранными функциями принадлежности обеспечивает грубую аппроксимацию объекта, показанную на рис. 6.8 тонкой линией.

Рис. 6.8 Модель исследуемого объекта: —— — эталон,
— — модель до обучения, — — — модель после обучения

Рис. 6.9 Функции принадлежности входных термов
(а) - до обучения; (б) - после обучения

В результате обучения сети по соотношениям (6.24) – (6.37) получена модель объекта, которая показана на рис. 6.8 пунктиром. Функции принадлежности нечетких термов после обучения приведены на рис. 6.9б. Значения настраиваемых параметров \((b, c)\) функций принадлежности, а также весов нечетких правил приведены в табл. 6.7 и 6.8.
Рис.6.10 Нейро-нечеткая сеть для идентификации объекта (6.38)

Таблица 6.7

Параметры функций принадлежности

<table>
<thead>
<tr>
<th>Термы</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>До обучения</td>
<td>b</td>
<td>0</td>
<td>0.3</td>
<td>0.6</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>После обучения</td>
<td>b</td>
<td>0</td>
<td>0.13</td>
<td>0.63</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Таблица 6.8

Веса правил

<table>
<thead>
<tr>
<th>Вес правила</th>
<th>w_{11}</th>
<th>w_{25}</th>
<th>w_{33}</th>
<th>w_{44}</th>
<th>w_{52}</th>
<th>w_{66}</th>
</tr>
</thead>
<tbody>
<tr>
<td>До обучения</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>После обучения</td>
<td>0.9997</td>
<td>0.9985</td>
<td>0.9988</td>
<td>0.9985</td>
<td>0.9984</td>
<td>0.9975</td>
</tr>
</tbody>
</table>

Эксперимент 2. Нелинейный объект-этalon представлен в виде:

\[
y = \frac{1}{40} \left(2z - 0.9 \right) \left(7z - 1 \right) \left(17z - 19 \right) \left(15z - 2 \right),
\]

\[
z = \frac{(x_1 - 3)^2 + (x_2 - 3)^2}{18}, \quad x_1 \in [0.6], \quad x_2 \in [0.6],
\]

(6.39)
и имеет форму, изображенную на рис.6.11а.

Рис.6.11 Внешний вид эталона (а) и модели:
(б) - до обучения, (в) - после обучения.

Нечеткая база знаний, описывающая поведение данного объекта, сформирована из 49 правил типа:

ЕСЛИ $x_1 = A_i$ И $x_2 = B_j$ ТО $y = C_j$.

Эти правила сведены в матрицу:

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>C_2</td>
<td>C_1</td>
<td>C_3</td>
<td>C_4</td>
<td>C_3</td>
<td>C_1</td>
<td>C_2</td>
</tr>
<tr>
<td>B_2</td>
<td>C_1</td>
<td>C_3</td>
<td>C_4</td>
<td>C_5</td>
<td>C_4</td>
<td>C_3</td>
<td>C_1</td>
</tr>
<tr>
<td>B_3</td>
<td>C_3</td>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
<td>C_3</td>
</tr>
<tr>
<td>B_4</td>
<td>C_4</td>
<td>C_5</td>
<td>C_4</td>
<td>C_5</td>
<td>C_4</td>
<td>C_3</td>
<td>C_4</td>
</tr>
<tr>
<td>B_5</td>
<td>C_3</td>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
<td>C_3</td>
</tr>
<tr>
<td>B_6</td>
<td>C_1</td>
<td>C_3</td>
<td>C_4</td>
<td>C_5</td>
<td>C_4</td>
<td>C_3</td>
<td>C_1</td>
</tr>
<tr>
<td>B_7</td>
<td>C_2</td>
<td>C_1</td>
<td>C_3</td>
<td>C_4</td>
<td>C_3</td>
<td>C_1</td>
<td>C_2</td>
</tr>
</tbody>
</table>

где 1) A_1=B_1=около 0, A_2=B_2=около 0.5, A_3=B_3=около 1.5, A_4=B_4=около 3, A_5=B_5=около 4.5, A_6=B_6=около 5.5, A_7=B_7=около 6 - лингвистические термы.
входных переменных x_1 и x_2;
2) $C_1=[-5.08, -4.5], C_2=[-4.5, -3], C_3=[-3, -0.5], C_4=[-0.5, 0], C_5=[0, 0.855]$ - классы выходной переменной y.

Начальные веса всех правил приравнивались к 1.

Функции принадлежности нечетких термов входных переменных до настройки показаны на рис.6.12а.

![Diagram](image)

Рис.6.12 Функции принадлежности входных термов:
а - до обучения; б - после обучения.

Структура нейро-нечеткой сети, соответствующей рассматриваемому объекту, представлена на рис.6.13. Эта сеть с выбранными функциями принадлежности обеспечивает грубую аппроксимацию объекта, показанную на рис.6.11б.

В результате обучения сети по соотношениям (6.24) - (6.37) получена модель объекта, которая показана на рис.6.11в. Функции принадлежности нечетких термов после обучения приведены на рис.6.12б, в. Значения настраиваемых параметров (b,c) функций принадлежности, а также весов нечетких правил приведены в табл. 6.9-6.11.
Рис. 6.13 Нейро-нечеткая сеть для идентификации объекта (6.39)
Таблица 6.9

Параметры функций принадлежности термов переменной x_1

<table>
<thead>
<tr>
<th>Термы</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>До обучения</td>
<td>b</td>
<td>0</td>
<td>0.5</td>
<td>1.5</td>
<td>3</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>После обучения</td>
<td>c</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>До обучения</td>
<td>b</td>
<td>-0.16</td>
<td>0.54</td>
<td>1.53</td>
<td>3</td>
<td>4.46</td>
<td>5.45</td>
</tr>
<tr>
<td>После обучения</td>
<td>c</td>
<td>0.24</td>
<td>0.17</td>
<td>0.16</td>
<td>0.3</td>
<td>0.13</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Таблица 6.10

Параметры функций принадлежности термов переменной x_2

<table>
<thead>
<tr>
<th>Термы</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>До обучения</td>
<td>b</td>
<td>0</td>
<td>0.5</td>
<td>1.5</td>
<td>3</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>После обучения</td>
<td>c</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>До обучения</td>
<td>b</td>
<td>-0.19</td>
<td>0.53</td>
<td>1.52</td>
<td>3.01</td>
<td>4.46</td>
<td>5.44</td>
</tr>
<tr>
<td>После обучения</td>
<td>c</td>
<td>0.14</td>
<td>0.18</td>
<td>0.19</td>
<td>0.27</td>
<td>0.1</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Таблица 6.11

Итоговые веса правил

<table>
<thead>
<tr>
<th>Термы</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>0.9995</td>
<td>0.9954</td>
<td>0.9479</td>
<td>0.9989</td>
<td>0.9761</td>
<td>0.9738</td>
<td>0.9785</td>
</tr>
<tr>
<td>B_2</td>
<td>0.9969</td>
<td>0.9014</td>
<td>0.9998</td>
<td>0.9989</td>
<td>0.9997</td>
<td>0.9666</td>
<td>0.9451</td>
</tr>
<tr>
<td>B_3</td>
<td>0.9894</td>
<td>0.9999</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9998</td>
<td>0.958</td>
</tr>
<tr>
<td>B_4</td>
<td>0.9862</td>
<td>1</td>
<td>1</td>
<td>0.9834</td>
<td>1</td>
<td>0.9993</td>
<td>0.9976</td>
</tr>
<tr>
<td>B_5</td>
<td>0.9938</td>
<td>0.9995</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9995</td>
<td>0.9688</td>
</tr>
<tr>
<td>B_6</td>
<td>0.997</td>
<td>0.8971</td>
<td>0.9994</td>
<td>0.9983</td>
<td>0.9991</td>
<td>0.934</td>
<td>0.9245</td>
</tr>
<tr>
<td>B_7</td>
<td>0.9995</td>
<td>0.9986</td>
<td>0.9536</td>
<td>0.9988</td>
<td>0.98</td>
<td>0.9831</td>
<td>0.9806</td>
</tr>
</tbody>
</table>

6.3. Сравнение с нейронной идентификацией

В табл.6.12 приведены сравнительные характеристики идентификации нелинейных объектов посредством нейронной и нейро-неchetкой сетей.

Как видно, использование нейро-нечетких сетей позволяет существенно снизить затраты времени при решении задачи идентификации нелинейных объектов. Кроме того следует заметить, что обучение предложенной нейро-нечеткой сети позволяет перейти к новому способу обработки эксперименталь-
Таблица 6.12

Сравнение нейронной и нейро-неchetкой идентификации

<table>
<thead>
<tr>
<th>Нелинейные зависимости</th>
<th>Нейронные сети</th>
<th>Нейро-неchetкие сети</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Время настройки</td>
<td>Число итераций</td>
</tr>
<tr>
<td></td>
<td>6 мин</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td>15 мин</td>
<td>67000</td>
</tr>
</tbody>
</table>
ГЛАВА 7

ФУНКЦИИ ПРИНАДЛЕЖНОСТИ И ПРИНЯТИЕ РЕШЕНИЙ

В этой главе излагается метод построения функций принадлежности нечетких множеств и его применение для сравнения вариантов решений по многим критериям. В основу многокритериального анализа вариантов положена процедура слияния нечётких целей и ограничений, известная как принцип Беллмана-Заде [5]. Глава базируется на работах [44,46,75].

7.1. Принцип слияния целей и ограничений

В общепринятом подходе главными элементами процесса принятия решения являются: а) множество альтернатив; б) множество ограничений, которые необходимо учитывать при выборе между различными альтернативами и в) функция предпочтительности, ставящая каждой альтернативе в соответствие выигрыш (или проигрыш), который будет получен в результате выбора этой альтернативы.

При рассмотрении этого процесса с более общих позиций принятия решений в нечётких условиях естественной представляется другая логическая схема, важнейшей чертой которой является симметрия π относительно к целям и ограничениям. Эта симметрия устраняет различия между целями и ограничениями и позволяет довольно просто сформировать на их основе решение.

7.1.1. Нечёткие цели и ограничения

Пусть $X = \{x\}$ - заданное множество альтернатив. Тогда нечёткая цель, или просто цель, G будет тождестваться с фиксированным нечётким множеством G в X. Например, если $X = R^1$ (действительная прямая), а нечёткая цель формулируется как "x должно быть значительно больше 10", то ее можно представить как нечёткое множество в R^1 с функцией принадлежности,
имеющей, скажем, такой вид:

\[
\mu_G(x) = \begin{cases}
0, & x < 10, \\
\left(1 + \left(\frac{x - 10}{2}\right)^2\right)^{-1}, & x \geq 10.
\end{cases} \tag{7.1}
\]

Аналогично цели "\(x\) должно быть в окрестности 15" может быть поставлено в соответствие нечёткое множество с функцией принадлежности:

\[
\mu_G(x) = \left(1 + (x - 15)^4\right)^{-1}, \tag{7.2}
\]

Подобным же образом нечёткое ограничение, или просто ограничение, \(C\) в пространстве \(X\) определяется как некоторое расплывчатое множество в \(X\). Например, в случае \(X = \mathbb{R}^1\) ограничение "\(x\) должно находиться в диапазоне 2-10" может быть представлено нечётким множеством с функцией принадлежности, скажем, вида:

\[
\mu_C(x) = \left(1 + a(x - 6)^m\right)^{-1},
\]

где \(a\) - положительное число и \(m\) - четное положительное число, выбираемое так, чтобы передать смысл, в котором следует понимать "приближение" к заданному интервалу.

Важным аспектом приведенных выше определений является то, что и цель и ограничения рассматриваются как нечёткие множества в пространстве альтернатив; это дает возможность не делать между ними различия при формировании решения.

Действительно, предположим, например, что нечёткая цель \(G\) и нечёткое ограничение \(C\) заданы следующим образом:
- \(G\) : \(x\) должно быть значительно больше 10 и
- \(C\) : \(x\) должно быть в окрестности 15.

[\(\mu_G(x)\) и \(\mu_C(x)\) задаются соответственно формулами (7.1) и (7.2)]. Заметим, что цель \(G\) и ограничения \(C\) соединены между собою союзом "И", причём "И" соответствует пересечению нечётких множеств. Это означает, что в рассматриваемом примере совокупное влияние нечёткой цели \(G\) и нечёткого ограничения \(C\) на выбор альтернатив может быть представлено пересечением \(G \cap C\). Функция принадлежности для пересечения задается соотношением

\[
\mu_{G \cap C}(x) = \mu_G(x) \wedge \mu_C(x)
\]

202
или, в развернутой форме

$$\mu_{G \cap C(x)} = \begin{cases} \min \left(\frac{1}{1 + (x - 10)^2}, \frac{1}{1 + (x - 15)^2} \right) & \text{для } x \geq 10, \\ 0, & \text{для } x < 10. \end{cases}$$

Отметим, что в силу выпуклости расплывчатых множеств G и C множество $G \cap C$ также является выпуклым.

7.1.2. Нечёткие решения

Обратимся теперь к понятию решения. Интуитивно ясно, что решение - это по сущности выбор одной или нескольких из имеющихся альтернатив. Предыдущий пример наводит на мысль, что расплывчатое решение, или просто решение, следует определить как нечёткое множество в пространстве альтернатив, получающееся в результате пересечения заданных целей и ограничений. Следующее определение уточняет эту мысль.

Определение 7.1. Пусть в пространстве альтернатив X заданы нечёткая цель G и нечёткое ограничение C. Тогда нечёткое множество D, образуемое пересечением G и C, называется решением. В символической форме

$$D = G \cap C \quad (7.3)$$

и соответственно $\mu_D = \mu_G \cap \mu_C$. Взаимосвязь между G и C показана на рис.7.1

![Diagram](image)

Рис.7.1. Функции ограничения, цели и решения.
В более общем случае, если имеется \(n \) целей и \(m \) ограничений, то решающее решение определяется пересечением всех заданных целей и ограничений, т.е.

\[
D = G_1 \cap G_2 \cap \ldots \cap G_n \cap C_1 \cap C_2 \cap \ldots \cap C_m
\]

(7.4)

и соответственно

\[
\mu D = \mu G_1 \cap \mu G_2 \cap \ldots \cap \mu G_n \cap \mu C_1 \cap \mu C_2 \cap \ldots \cap \mu C_m
\]

(7.5)

Заметим, что в приведенном определении нечёткого решения цели и ограничения входят в выражение для \(D \) совершенно одинаковым образом, что и соответствует тождественности целей и ограничений в логической схеме процесса принятия решений в нечётких условиях.

Коротко обобщенное определение решения можно сформулировать следующим образом:

Решение = Слияние целей и ограничений.

В качестве иллюстрации к соотношению (7.5) рассмотрим простой пример, в котором \(X = \{1, 2, \ldots, 10 \} \), а \(G_1, G_2, C_1 \) и \(C_2 \) определяются табл. 7.1. Образуя коньонкцию \(\mu G_1, \mu G_2, \mu C_1 \) и \(\mu C_2 \), получим таблицу значений для \(\mu_D(x) \) (табл. 7.2). Решение в этом случае есть расплывчатое множество

\[
D = \{(2; 0,1), (3; 0,4), (4; 0,7), (5; 0,8), (6; 0,6), (7; 0,4), (8; 0,2)\}.
\]

Заметим, что ни одно \(x \) из \(X \) не принадлежит решению \(D \) полностью (т.е. со степенью принадлежности, равной 1). Это, конечно, является следствием того, что заданные цели и ограничения вступают в конфликт друг с другом, исключая тем самым возможность существования альтернативы, которая бы полностью им всем удовлетворяла.

Понятие решения как расплывчатого множества в пространстве альтернатив может поначалу показаться несколько искусственным. На самом деле оно совершенно естественно, поскольку расплывчатое решение может рассматриваться как некоторая "инструкция", расплывчатость которой является следствием неточности формулировки поставленных целей и ограничений. Так, в приведенном примере \(G_1, G_2, C_1 \) и \(C_2 \) могли бы быть выражены следующими фразами: "\(x \) следует взять близким к 5", "\(x \) следует взять близким к 3", "\(x \) следует взять близким к 4", "\(x \) следует взять близким к 6". Тогда решение состоит в том, что "следует взять" "\(x \) близкое к 5". При этом точное значение слова "ближко" определяется в каждом случае значением соответствующей функции принадлежности.
Таблица 7.1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{G_1}</td>
<td>0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.8</td>
<td>1.0</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>μ_{G_2}</td>
<td>0.1</td>
<td>0.6</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>μ_{C_1}</td>
<td>0.3</td>
<td>0.6</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>μ_{C_2}</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Таблица 7.2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_D</td>
<td>0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Как следует выполнить расплывчатые инструкции типа "x следует взять близким к 5"? Хотя на вопросы такого типа не представляется возможным дать универсальный ответ, во многих случаях все же разумно выбрать те альтернативы, которые имеют максимальную степень принадлежности к D. В нашем примере этому соответствует $x = 5$.

В определении нечёткого решения D как пересечения или, в более общем смысле, как слияния цели и ограничений подразумевается, что все входящие в D цели и ограничения имеют в некотором смысле одинаковую важность. Однако встречаются ситуации, в которых некоторые цели и, возможно, некоторые ограничения являются более важными, чем остальные. В таких случаях решение D может быть выражено выпуклой комбинацией целей и ограничений с весовыми коэффициентами, характеризующими относительную важность составляющих элементов. Таким образом, $\mu_D(x)$ может быть записано в виде:

$$\mu_D(x) = \sum_{i=1}^{n} a_i(x)\mu_{G_i}(x) + \sum_{i=1}^{m} \beta_j(x)\mu_{C_j}(x)$$ \hspace{1cm} (7.6)$$

где a_i и β_j - функции принадлежности, такие, что

$$\sum_{i=1}^{n} a_i(x) + \sum_{j=1}^{m} \beta_j(x) = 1$$ \hspace{1cm} (7.6)$$

205
С учетом этого ограничения \(a_i(x) \) и \(\beta_j(x) \) могут быть подобраны так, чтобы передавать относительную важность целей \(G_1, G_2, \ldots, G_n \) и ограничений \(C_1, C_2, \ldots, C_n \). В частности, если \(m = n = 1 \), получится любое расплывчатое множество, содержащееся в \(G \cup C \) и включающее \(G \cap C \). Отметим, что формула (7.6) напоминает известный способ сведения векторного критерия к скалярному с помощью образования линейной комбинации компонент векторной функции цели.

7.2. Метод построения функции принадлежности

Успешное использование теории нечетких множеств предусматривает наличие функции принадлежности, с помощью которых лингвистическая информация превращается в форму, пригодную для обработки на ЭВМ. Среди многих методов определения функции принадлежности наибольшее распространение получил метод парных сравнений Саати [49]. Сложность использования этого метода обусловлена необходимостью нахождения собственного вектора матрицы парных сравнений, которая задается с помощью специально предложенной шкалы. Причем эти сложности увеличиваются с ростом размерности универсального множества, на которой задается лингвистический терм.

Предлагаемый здесь метод тоже использует матрицу парных сравнений элементов универсального множества. Но в отличие от метода Саати, он не требует нахождения собственного вектора матрицы, т. е. освобождает исследователя от трудоемких процедур решения характеристических уравнений.

7.2.1.Постановка задачи

Пусть \(S \) - некоторое свойство, которое рассматривается как лингвистический терм. Нечеткое множество, с помощью которого формализуется терм \(\tilde{S} \), представляет собой совокупность пар:

\[
\tilde{S} = \left\{ \frac{\mu_S(u_1)}{u_1}, \frac{\mu_S(u_2)}{u_2}, \ldots, \frac{\mu_S(u_n)}{u_n} \right\}
\]

где \(\{u_1, u_2, \ldots, u_n\} = U \) - универсальное множество, на котором задается нечеткое множество \(S \subset U \); \(\mu_S(u_i) \) - степень принадлежности элемента
относительно множеству S.

Задача состоит в том, чтобы определить значения $\mu_s(u_i)$ для всех $i = 1, n$. Совокупность этих значений и будет составлять неизвестную функцию принадлежности.

7.2.2. Основные определения и соотношения

Метод, который предлагается для решения поставленной задачи, базируется на идее распределения степеней принадлежности элементов универсального множества согласно с их рангами. Эта идея раньше использовалась в теории структурного анализа систем, где рассмотрены разные способы определения рангов элементов. Методика распределения надежности по элементам системы согласно их рангов приведена в книге [27].

В нашем случае под рангом элемента $u_i \in U$ будем понимать число $r_s(u_i)$, которое характеризует значимость этого элемента в формировании свойства, которое описывается нечетким термом S. Допускаем, что выполняется правило: чем больший ранг элемента, тем больше степень принадлежности.

В дальнейшем введем такие обозначения:

$$r_s(u_i) = r_i, \quad \mu_s(u_i) = \mu_i, \quad i = 1, n$$

Тогда правило распределения степеней принадлежности можно задать в виде соотношения:

$$\frac{\mu_1}{r_1} = \frac{\mu_2}{r_2} = \ldots = \frac{\mu_n}{r_n}, \quad (7.7)$$

до которого прибавляется условие нормировки:

$$\mu_1 + \mu_2 + \mu_n = 1 \quad (7.8)$$

Используя соотношение (7.7), легко определить степени принадлежности всех элементов универсального множества через степень принадлежности опорного элемента.

Если опорным является элемент $u_1 \in U$ с принадлежностью μ_1 то
\[\mu_2 = \frac{r_2}{r_1} \mu_1, \quad \mu_3 = \frac{r_3}{r_1} \mu_1, \ldots, \quad \mu_n = \frac{r_n}{r_1} \mu_1. \] (7.9)

Для опорного элемента \(u_2 \in U \) принадлежностью \(\mu_2 \) получаем:

\[\mu_1 = \frac{r_1}{r_2} \mu_2, \quad \mu_3 = \frac{r_3}{r_2} \mu_2, \ldots, \quad \mu_n = \frac{r_n}{r_2} \mu_2. \] (7.10)

И наконец, для опорного элемента \(u_n \in U \) с принадлежностью \(\mu_n \) имеем:

\[\mu_1 = \frac{r_1}{r_n} \mu_n, \ldots, \mu_{n-1} = \frac{r_{n-1}}{r_n} \mu_n. \] (7.11)

Учитывая условие нормировки (7.8), из соотношений (7.9) - (7.11) находим:

\[\begin{aligned}
\mu_1 &= \left(1 + \frac{r_2}{r_1} + \frac{r_3}{r_1} + \ldots + \frac{r_n}{r_1} \right)^{-1} \\
\mu_2 &= \left(\frac{r_1}{r_2} + 1 + \frac{r_3}{r_2} + \ldots + \frac{r_n}{r_2} \right)^{-1} \\
&\vdots \\
\mu_n &= \left(\frac{r_1}{r_n} + \frac{r_2}{r_n} + \frac{r_3}{r_n} + \ldots + 1 \right)^{-1}
\end{aligned} \] (7.12)

Полученные формулы (7.12) дают возможность вычислять степени принадлежности \(\mu_s \left(u_i \right) \) элементов \(u_i \in U \) к нечеткому терму \(\tilde{S} \) двумя независимыми путями:

1) по абсолютным оценкам уровней \(r_i, \quad i = 1, \ldots, n \), которые определяются согласно методикам, предложенным в теории структурного анализа систем [17,27]. Для экспертных оценок рангов можно использовать 9-ти бальную шкалу (1 - наименьший ранг, 9 - наибольший ранг) или принцип термометра, который рассмотрен в главе 2.
2) по относительным оценкам рангов \(\frac{r_i}{r_j} = a_{ij}, \quad i, j = 1, n \), которые образуют матрицу:

\[
A = \begin{bmatrix}
1 & \frac{r_2}{r_1} & \frac{r_3}{r_1} & \ldots & \frac{r_n}{r_1} \\
\frac{r_1}{r_2} & 1 & \frac{r_3}{r_2} & \ldots & \frac{r_n}{r_2} \\
\frac{r_1}{r_3} & \frac{r_2}{r_3} & 1 & \ldots & \frac{r_n}{r_3} \\
\frac{r_1}{r_n} & \frac{r_2}{r_n} & \frac{r_3}{r_n} & \ldots & 1
\end{bmatrix}
\]

(7.13)

Эта матрица обладает следующими свойствами:

а) она диагональная, т. е. \(a_{ii} = 1, \quad i = 1, n \).

б) элементы, которые симметричны относительно главной диагонали, связаны зависимостью: \(a_{ij} = 1/a_{ji} \).

в) она транзитивна, т. е. \(a_{ik} \cdot a_{kj} = a_{ij} \), поскольку \(\frac{r_i}{r_k} \cdot \frac{r_k}{r_j} = \frac{r_i}{r_j} \).

Наличие этих свойств приводит к тому, что при известных элементах одной строки матрицы \(A \) легко определить элементы всех других строк. Если известна \(r \)-я строка, т. е. элементы \(a_{kj}, \quad k, j = 1, n \), то произвольный элемент \(a_{ij} \) находится так:

\[
a_{ij} = a_{kj} / a_{ki}, \quad i, j, k = 1, n.
\]

Поскольку матрица (7.13) может быть интерпретирована как матрица парных сравнений рангов, то для экспертных оценок элементов этой матрицы можно использовать 9-ти бальную шкалу Саати: \(a_{ij} = \frac{r_i}{r_j} \). В нашем случае эта шкала формируется так:

1 — при отсутствии преимущества \(r_j \) над \(r_i \).
3 — при слабом преимуществе \(r_j \) над \(r_i \);
5 — при существенном преимуществе \(r_j \) над \(r_i \);
7 — при явном преимуществе \(r_j \) над \(r_i \);
9 — при абсолютном преимуществе \(r_j \) над \(r_i \);
2, 4, 6, 8 — промежуточные сравнительные оценки.

Таким образом, с помощью полученных формул (7.12), экспертные значения о рангах элементов или их парные сравнения преобразуются в функцию принадлежности нечеткого терма.

7.2.3. Алгоритм построения функции принадлежности

Для реализации предложенного метода необходимо:

1°. Задать лингвистическую переменную \(x \).

2°. Определить универсальное множество, на котором задается переменная \(x \).

3°. Задать совокупность нечетких термов \(\{ S_1, S_2, \ldots, S_m \} \), которые используются для оценки переменной \(x \).

4°. Для каждого терма \(S_j \), \(j = 1, m \) сформировать матрицу (7.13).

5°. Используя формулы (7.12) вычислить элементы функций принадлежности для каждого терма. Нормирование найденных функций осуществляется путем деления на наибольшие степени принадлежности.

Пример 7.1. Рассмотрим лингвистическую переменную “КАЧЕСТВО СЫРЬЯ” для процесса биоконверсии, которая определена на универсальном множестве \(\{ u_1 - коровы, u_2 - бычки, u_3 - свиньи, u_4 - куры, u_5 - индюки \} [41]. Уровень качества будем оценивать такими нечеткими термами: Н - низкий; С - средний; В - высокий.

Матрицы (7.13) для каждого терма сформировано таким образом:

\[
A_H = \begin{bmatrix}
1 & 7/9 & 5/9 & 3/9 & 1/9 \\
9/7 & 1 & 5/7 & 3/7 & 1/7 \\
9/5 & 7/5 & 1 & 3/5 & 1/5 \\
9/3 & 7/3 & 5/3 & 1 & 1/3 \\
9 & 7 & 5 & 3 & 1
\end{bmatrix},
\]

\[
A_B = \begin{bmatrix}
1 & 3 & 5 & 7 & 9 \\
1/3 & 1 & 5/3 & 7/3 & 9/3 \\
1/5 & 3/5 & 1 & 7/5 & 9/5 \\
1/7 & 3/7 & 5/7 & 1 & 9/7 \\
1/9 & 3/9 & 5/9 & 7/9 & 1
\end{bmatrix},
\]

10
После обработки этих матриц по формулам (7.12) получим функции принадлежности, которые в нормированном виде приведены на рис.7.2.

![Diagram](attachment:diagram.png)

Рис.7.2. Функции принадлежности нечетких множеств.

Главным преимуществом предложенного метода является то, что в отличие от известного метода Саати, он не требует решения характеристического уравнения матрицы парных сравнений при нахождении элементов ее собственного вектора. Кроме того, полученные соотношения дают возможность вычислять функции принадлежности с использованием ранговых оценок, которые задаются экспертно, или при помощи методик, разработанных в теории структурного анализа систем.

7.3. Многокритериальный анализ вариантов

Анализ вариантов по многим критериям — это важная задача принятия решений, которая возникает не только в технике, но и в экономике, образовании, политике и т. д..
Известные методики многокритериального анализа, которые используются в технических системах [52], предусматривают преобразование вектора частичных критериев, которыми оценивается система, к скалярному интегральному критерию. Существенное ограничение такого подхода состоит в том, что он плохо приспособлен к качественным критериям, которые оцениваются экспертными методами.

Методика, которая предлагается в этой работе, не требует ни количественной оценки частичных критериев, ни процедуры скаляризации. Она использует информацию о качестве вариантов в виде парных сравнений типа:
по критерию A вариант 1 примерно такой же, как вариант 2,
по критерию B вариант 1 намного лучше, чем вариант 2 и т.п.

7.3.1. Общие принципы

Будем считать известными:

\[V = \{ v_1, v_2, \ldots, v_n \} \] — множество вариантов (аналогов), которые подлежат многокритериальному анализу;

\[C = \{ c_1, c_2, \ldots, c_m \} \] — множество количественных и качественных критериев, которыми оцениваются варианты.

Задача состоит в том, чтобы упорядочить элементы множества \(V \) по критериям из множества \(C \).

Для решения этой задачи предлагается использование следующих принципов:

Принцип 1 рассмотрение критериев как нечетких множеств, которые заданы на универсальных множествах вариантов с помощью функции принадлежности.

Принцип 2 определение функций принадлежности нечетких множеств на основе экспертной информации о парных сравнениях вариантов с помощью 9-тибальной шкалы Саати.

Принцип 3 ранжирование вариантов на основе пересечения нечетких множеств - критериев, которые отвечают известной в теории принятия решений схеме Беллмана - Заде.

Принцип 4 ранжирование критериев методом парных сравнений и учет полученных рангов как степеней концентрации соответствующих функции принадлежности.

7.3.2. Критерии как нечеткие множества

Пусть \(\mu^I (v_i) \) — число в диапазоне \([0,1]\), которое характеризует уро-
вень оценки варианта \(v_i \in U \) по критерию \(c_l \in C \): чем больше число \(\mu^l(v_i) \), тем выше оценка варианта по критерию \(c_l \in C, i=1, n, l=1, m \). Тогда критерий \(c_l \in C \) можно представить в виде нечетного множества \(\tilde{c}_l \), которое задано на универсальном множестве \(V \) таким образом:

\[
\tilde{c}_l = \left\{ \frac{\mu^l(v_1)}{v_1}, \frac{\mu^l(v_2)}{v_2}, \ldots, \frac{\mu^l(v_n)}{v_n} \right\},
\]

(7.14)

где \(\mu^l(v_i) \) — степень принадлежности элемента \(v_i \) к нечетному множеству \(\tilde{c}_l \).

Чтобы определить степени принадлежности, которые входят в (7.14), воспользуемся методом, предложенным в работе [17]. Для этого сформируем матрицы парных сравнений вариантов по каждому критерию. Общее количество таких матриц совпадает с количеством критериев и равно \(m \).

Для критерия \(c_l \in C \) матрица парных сравнений имеет вид:

\[
A^l = \begin{bmatrix}
v_1 & v_2 & \cdots & v_n \\
v_1 & a_{11}^l & a_{12}^l & \cdots & a_{1n}^l \\
v_2 & a_{21}^l & a_{22}^l & \cdots & a_{2n}^l \\
& \vdots & \ddots & \ddots & \vdots \\
v_n & a_{n1}^l & a_{n2}^l & \cdots & a_{nn}^l
\end{bmatrix},
\]

(7.15)

где элемент \(a_{ij}^l \) оценивается экспертом за 9-тибальной шкалой Саати:

1 — если отсутствует преимущество варианта \(v_j \) над вариантом \(v_i \);
3 — если имеется слабое преимущество \(v_j \) над \(v_i \);
5 — если имеется существенное преимущество \(v_j \) над \(v_i \);
7 — если имеется явное преимущество \(v_j \) над \(v_i \);
9 — если имеется абсолютное преимущество \(v_j \) над \(v_i \);
2, 4, 6, 8 — промежуточные сравнительные оценки.
Знание матрицы (7.15) позволяет с использованием метода Саати про-
ранжировать каждый вариант \(v_i \in V \) по каждому критерию \(c_i \in C \). Для вы-
числения рангов в соответствии с методикой, впервые предложенной в работе
[49] и далее развивающейся в работе [48], необходимо найти собственный вектор матрицы (7.15). Для получения первых приближений искомых характеристик рангов можно пользоваться процедурой, предложенной в [75], которая предполагает, что матрица (7.15) имеет такие свойства:

— она диагональна, то есть \(a_{ii}^l = 1, \ i = 1, n \);

— элементы, которые симметричны относительно главной диагонали, связаны зависимостью \(a_{ij}^l = \frac{1}{a_{ji}^l} \);

— она транзитивна, т.е. \(a_{ik}^l a_{kj}^l = a_{ij}^l \).

Наличие этих свойств позволяет определить все элементы матрицы (7.15) по элементам одной из строк. Если известна \(k \)-тая строка, т.е. элементы \(a_{kj}^l \), то произвольный элемент \(a_{ij}^l \) определяется так:

\[
a_{ij}^l = \frac{a_{kj}^l}{a_{ki}^l}, \quad i, j, k = 1, n, \quad l = 1, m.
\]

После определения всех элементов матрицы (7.15) степени принадлежности, необходимые для формирования нечетного множества (7.14), вычисляются по формуле [75]:

\[
\mu^l \left(v_i \right) = \frac{1}{a_{i1}^l + a_{i2}^l + \ldots + a_{in}^l}.
\]

(7.16)

Уточнение оценок рангов может быть выполнено с использованием метода анализа иерархий [48] на основе матрицы (7.15), не обладающей вышеуказанными ограничениями: транзитивностью и симметричностью.

7.3.3. Равновесные критерии

Базируясь на принципе Беллмана-Заде [5], наилучшей системой будем считать ту, которая одновременно лучшая по критериям \(c_1, c_2, \ldots, c_m \). По
этому нечеткое множество, которое необходимо для рей-ингового анализа, определяется в виде пересечения (интегральный критерий оценки систем):

\[D = \tilde{c}_1 \cap \tilde{c}_2 \cap \ldots \cap \tilde{c}_m. \]

Учитывая то, что в теории нечетких множеств операции пересечения \(\cap \) соответстует \(\min \), получаем:

\[
D = \left\{ \min_{l=1,m} \left[\mu^l(v_1) \right], \min_{l=1,m} \left[\mu^l(v_2) \right], \ldots, \min_{l=1,m} \left[\mu^l(v_n) \right] \right\}. \tag{7.17}
\]

Согласно с полученным множеством \(D \), наилучшей системой следует считать тот вариант, для которого степень принадлежности (числитель) является наибольшей.

7.3.4. Неравновесные критерии

Пусть \(w_1, w_2, \ldots, w_m \) — коэффициенты относительной важности (или рангов) критериев \(c_1, c_2, \ldots, c_m \) такие, что \(w_1 + w_2 + \ldots + w_m = 1 \). Для определения коэффициентов \(w_j, j=1,m \) необходимо сформировать матрицу парных сравнений важности критериев \(c_j \in C \), аналогичную (7.15), и воспользоваться формулой (7.16).

При наличии коэффициентов важности \(w_j, j=1,m \) формула (7.17) имеет вид:

\[
D = \left\{ \min_{l=1,m} \left[\mu^l(v_1) \right]^{w_1}, \min_{l=1,m} \left[\mu^l(v_2) \right]^{w_2}, \ldots, \min_{l=1,m} \left[\mu^l(v_n) \right]^{w_m} \right\}. \tag{7.18}
\]

где степень \(w_j \) свидетельствует о концентрации нечеткого множества \(\tilde{c}_j \) в соответствии с мерой важности критерия \(c_j \in C \).
7.4. Пример многокритериального анализа

Недавно появилась новая альтернативная форма изображения цифр, которую предложил А.М. Петух. Для сравнения этой новой формы с традиционными семиотическими системами в [44] использовалась изложенная выше методика.

7.4.1. Критерии оценки вариантов

Объектами вари антного анализа являются три семиотические системы, приведённые в табл. 7.3.

Для оценки семиотических систем воспользуемся такими критериями:

\[c_1 = \begin{cases}
10 & \text{для арабской системы}, \\
3 & \text{для римской системы (I, V, X)}, \\
10 & \text{для альтернативных систем.}
\end{cases} \]

Таблица 7.3

<table>
<thead>
<tr>
<th>Цифры</th>
<th>Арабская</th>
<th>Римская</th>
<th>Альтернативная симметрическая</th>
</tr>
</thead>
<tbody>
<tr>
<td>ноль</td>
<td>0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>один</td>
<td>1</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>два</td>
<td>2</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>три</td>
<td>3</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>четыре</td>
<td>4</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>пять</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>шесть</td>
<td>6</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>семь</td>
<td>7</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>восемь</td>
<td>8</td>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>девять</td>
<td>9</td>
<td>IX</td>
<td></td>
</tr>
<tr>
<td>десять</td>
<td>10</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

\[c_2 \] — максимальное количество знаков, которые используются в системе для изображения цифры. Из табл. 7.3 видно, что
\[c_2 = \begin{cases}
1 & \text{для арабской системы,} \\
4 & \text{для римской системы (VIII),} \\
1 & \text{для альтернативных систем.}
\end{cases} \]

Как видим, для отображения цифр до десяти в арабской и альтернативной системах используются один знак, в римской системе: наибольшее количество знаков (4) необходимо для отображения цифры VIII. Естественно, лучше для использования (написания больших чисел, расчетов и т.д.) является цифровая система с минимальным значением критерия \(c_2 \).

\(c_3 \) — сложность написания больших чисел, которая определяется критериями \(c_1 \) и \(c_2 \). С увеличением \(c_1 \) и уменьшением \(c_2 \) сложность написания больших чисел уменьшается и наоборот, если значение \(c_1 \) уменьшается, а значение \(c_2 \) увеличивается, то сложность написания больших чисел увеличивается;

\(c_4 \) — необходимое количество сегментов индикатора для отображения десяти первых цифр рабочего алфавита:

\[c_4 = \begin{cases}
7 & \text{для арабской системы} \\
6 & \text{для римской системы,} \\
4 & \text{для альтернативных систем.}
\end{cases} \]

\(c_5 \) — простота изображения, которая определяется количеством нелинейных сегментов. Из табл.7.3 видно, что наиболее простые знаки свойственны альтернативной и римской системам, а сложные — арабской системе;

\(c_6 \) — прямолинейность основания изображения знаков, которая определяется соотношением прямолинейных и криволинейных контуров изображения элементов. Наиболее прямолинейными есть альтернативные и римские цифры, менее прямолинейными, — арабские цифры;

\(c_7 \) — полнота использования площади индикатора. Из табл.7.3 видно, что наибольшее значение критериев \(c_7 \) имеет для альтернативных систем, а для традиционных систем значение \(c_7 \) значительно меньше;

\(c_8 \) — константность изображения знаков, т. е. относительная стойкость и инвариантность образа к переменным условиям восприятия. Этот критерий определяется количеством использования знаков, константность которых большая: квадрат, эллипс, треугольник.

Избранное множество критериев не является закрытым и может дополняться в зависимости от требований к конкретному средству отображения информации.
7.4.2. Парные сравнения

Сравнение систем из табл. 7.3 по критериям $c_1 \div c_8$ приводит к таким очевидным высказываниям:

Критерий c_1: \[
\begin{cases}
\text{явное преимущество систем } S_3 \text{ и } S_1 \\
\text{отсутствие преимущества } S_1 \text{ над } S_3,
\end{cases}
\]

Критерий c_2: \[
\begin{cases}
\text{существенное преимущество } S_1 \text{ над } S_2 \\
\text{отсутствие преимущества } S_3 \text{ над } S_1, \\
\text{существенное преимущество } S_3 \text{ над } S_2,
\end{cases}
\]

Критерий c_3: \[
\begin{cases}
\text{отсутствие преимущества } S_3 \text{ над } S_1, \\
\text{почти явное преимущество } S_1 \text{ над } S_2, \\
\text{почти явное преимущество } S_3 \text{ над } S_2,
\end{cases}
\]

Критерий c_4: \[
\begin{cases}
\text{почти слабое преимущество } S_2 \text{ над } S_1, \\
\text{явное преимущество } S_3 \text{ над } S_1, \\
\text{почти явное преимущество } S_3 \text{ над } S_2,
\end{cases}
\]

Критерий c_5: \[
\begin{cases}
\text{существенное преимущество } S_2 \text{ над } S_1, \\
\text{почти явное преимущество } S_3 \text{ над } S_1, \\
\text{почти слабое преимущество } S_3 \text{ над } S_2,
\end{cases}
\]

Критерий c_6: \[
\begin{cases}
\text{явное преимущество } S_3 \text{ над } S_1, \\
\text{почти явное преимущество } S_2 \text{ над } S_1, \\
\text{почти слабое преимущество } S_3 \text{ над } S_2,
\end{cases}
\]

Критерий c_7: \[
\begin{cases}
\text{почти абсолютное преимущество } S_3 \text{ над } S_1, \\
\text{абсолютное преимущество } S_3 \text{ над } S_2, \\
\text{слабое преимущество } S_1 \text{ над } S_2,
\end{cases}
\]
Критерий \(e_8 \):

\[
\begin{align*}
\text{явное преимущество } S_3 \text{ над } S_1 \text{ и } S_2, \\
\text{отсутствие} \text{ преимущества } S_1 \text{ над } S_2.
\end{align*}
\]

7.4.3. Матрицы парных сравнений

Экспертным высказываниям, приведенным выше, соответствуют такие матрицы парных сравнений:

\[
S_1 \begin{bmatrix} 1 & 1 & 7 \\ 7 & 1 & 7 \\ 1 & 7 & 1 \end{bmatrix}, \quad A(e_2) = S_2 \begin{bmatrix} 1 & 1 & 5 \\ 5 & 1 & 4 \\ 1 & 4 & 1 \end{bmatrix}, \quad A(e_3) = S_2 \begin{bmatrix} 1 & 1 & 6 \\ 6 & 1 & 6 \\ 1 & 6 & 1 \end{bmatrix},
\]

\[
S_1 \begin{bmatrix} 1 & 2 & 7 \\ 1 & 2 & 7 \\ 7 & 7 & 1 \end{bmatrix}, \quad A(e_4) = S_2 \begin{bmatrix} 1 & 1 & 5 \\ 1 & 5 & 6 \\ 1 & 6 & 1 \end{bmatrix}, \quad A(e_5) = S_2 \begin{bmatrix} 1 & 6 & 7 \\ 6 & 1 & 7 \\ 6 & 7 & 1 \end{bmatrix},
\]

\[
S_1 \begin{bmatrix} 1 & 1 & 8 \\ 3 & 8 & 8 \\ 1 & 8 & 1 \end{bmatrix}, \quad A(e_7) = S_2 \begin{bmatrix} 1 & 1 & 7 \\ 1 & 7 & 1 \\ 1 & 7 & 1 \end{bmatrix}, \quad A(e_8) = S_2 \begin{bmatrix} 1 & 1 & 7 \\ 1 & 7 & 1 \\ 1 & 7 & 1 \end{bmatrix},
\]

7.4.4. Критерии как нечеткие множества

Пользуясь матрицами парных сравнений и формулой (7.16), получим:
\[
\begin{align*}
 c_1 &= \left\{ \frac{0.46}{S_1}, \frac{0.06}{S_2}, \frac{0.46}{S_3} \right\}, \\
 c_2 &= \left\{ \frac{0.45}{S_1}, \frac{0.09}{S_2}, \frac{0.45}{S_3} \right\}, \\
 c_3 &= \left\{ \frac{0.46}{S_1}, \frac{0.08}{S_2}, \frac{0.46}{S_3} \right\}, \\
 c_4 &= \left\{ \frac{0.1}{S_1}, \frac{0.2}{S_2}, \frac{0.7}{S_3} \right\}, \\
 c_5 &= \left\{ \frac{0.08}{S_1}, \frac{0.42}{S_2}, \frac{0.5}{S_3} \right\}, \\
 c_6 &= \left\{ \frac{0.07}{S_1}, \frac{0.43}{S_2}, \frac{0.05}{S_3} \right\}, \\
 c_7 &= \left\{ \frac{0.11}{S_1}, \frac{0.15}{S_2}, \frac{0.67}{S_3} \right\}, \\
 c_8 &= \left\{ \frac{0.11}{S_1}, \frac{0.11}{S_2}, \frac{0.78}{S_3} \right\}.
\end{align*}
\]

7.4.5. Случай равновесных критериев

Пользуясь нечеткими множествами \(c_1 + c_8 \) и моделью (7.17), получим:

\[
D = \left\{ \frac{0.07}{S_1}, \frac{0.06}{S_2}, \frac{0.45}{S_3} \right\},
\]

что свидетельствует о значительном преимуществе системы \(S_3 \) над системами \(S_2 \) и \(S_1 \), а также о почти отсутствующем преимуществе системы \(S_1 \) над системой \(S_2 \).

7.4.6. Случай неравновесных критериев

Ранги выбранных критериев \(c_1 + c_8 \) можно определить, пользуясь вышеизложенной методикой. При ранжировании критериев следует учитывать интересы как разработчика, так и пользователя устройств отображения, использующих различные семиотические системы. Поэтому критерий \(c_4 \) (необходимое количество сегментов индикатора для отображения цифр рабочего алфавита), являющийся важным для реализации устройств отображения, и критерий \(c_7 \) (полнота использования площади индикатора), который важен для пользователя, имеют наибольшие значения рангов. Важными, с точки зрения
разработчика и пользователя устройств отображения информации, являются также критерии c_3, c_5, c_6, c_8, ранги которых также имеют высокие экспертные оценки. Учитывая вышеуказанные требования, получены экспертные оценки критериев методом парных сравнений. Следует отметить, что значения рангов критериев $c_1 \div c_8$ пронормированы.

Пользуясь методом парных сравнений, определим ранги критериев $c_1 \div c_8$:

$w_1 = 0.1$
$w_4 = 0.26$
$w_7 = 0.24$
$w_2 = 0.04$
$w_5 = 0.11$
$w_8 = 0.08$
$w_3 = 0.08$
$w_6 = 0.09$

что означает наибольшую важность минимального количества сегментов индикатора и полноты использования его площади. Тогда, согласно (7.18), получаем:

$$c_1 = \left\{ \frac{0.46}{S_1}, \frac{0.06}{S_2}, \frac{0.46}{S_3} \right\} = \left\{ \frac{0.93}{S_1}, \frac{0.75}{S_2}, \frac{0.93}{S_3} \right\},$$

$$c_2 = \left\{ \frac{0.45}{S_1}, \frac{0.09}{S_2}, \frac{0.45}{S_3} \right\} = \left\{ \frac{0.97}{S_1}, \frac{0.91}{S_2}, \frac{0.97}{S_3} \right\},$$

$$c_3 = \left\{ \frac{0.46}{S_1}, \frac{0.08}{S_2}, \frac{0.46}{S_3} \right\} = \left\{ \frac{0.94}{S_1}, \frac{0.82}{S_2}, \frac{0.94}{S_3} \right\},$$

$$c_4 = \left\{ \frac{0.1}{S_1}, \frac{0.2}{S_2}, \frac{0.7}{S_3} \right\} = \left\{ \frac{0.55}{S_1}, \frac{0.66}{S_2}, \frac{0.91}{S_3} \right\},$$

$$c_5 = \left\{ \frac{0.08}{S_1}, \frac{0.42}{S_2}, \frac{0.5}{S_3} \right\} = \left\{ \frac{0.76}{S_1}, \frac{0.9}{S_2}, \frac{0.93}{S_3} \right\},$$

$$c_6 = \left\{ \frac{0.07}{S_1}, \frac{0.4}{S_2}, \frac{0.5}{S_3} \right\} = \left\{ \frac{0.79}{S_1}, \frac{0.93}{S_2}, \frac{0.94}{S_3} \right\},$$

221
\[c_7 = \left\{ 0.11^{0.24} \frac{0.15^{0.24}}{S_1}, \frac{0.67^{0.24}}{S_2}, \frac{0.59^{0.24}}{S_3} \right\} = \left\{ \frac{0.59}{S_1}, \frac{0.63}{S_2}, \frac{0.9}{S_3} \right\}, \]

\[c_8 = \left\{ 0.11^{0.08} \frac{0.11^{0.08}}{S_1}, \frac{0.78^{0.08}}{S_2}, \frac{0.84^{0.08}}{S_3} \right\} = \left\{ \frac{0.84}{S_1}, \frac{0.84}{S_2}, \frac{0.98}{S_3} \right\}. \]

Пересечение этих нечетких множеств с учётом рангов критериев имеет вид:

\[D = \left\{ \frac{0.55}{S_1}, \frac{0.63}{S_2}, \frac{0.9}{S_3} \right\}, \]

что опять свидетельствует о явном преимуществе системы \(S_3 \) над системами \(S_2 \) и \(S_1 \), а также о наличии преимущества системы \(S_2 \) над \(S_1 \).

Заметим, что полученные результаты анализа могут измениться при использовании других критериев оценки.

Применение предложенной в этом разделе методики многокритериального анализа вариантов для ранжирования студентов, рассмотрено в работе [38].
Эта глава содержит описание программной оболочки, реализующей модели и алгоритмы, рассмотренные в предыдущих главах, а также результаты ее применения к решению прикладных задач. Глава базируется на авторских работах [33,39,41,45,67]. С другими приложениями можно познакомиться по работам [70,74].

8.1. Система FUZZY EXPERT

Программная оболочка FUZZY EXPERT предназначено для проектирования и настройки экспертных систем на базе нечеткой логики. Авторы системы: Ротштейн А.П. (постановки задач и руководство разработкой) и Кательников Д.И. (программирование).
Задача оболочки состоит в сборе, хранении и использовании знаний, полученных от экспертов, с целью решения прикладных задач идентификации и принятия решений. Оболочка состоит из двух основных частей: программной среды, позволяющей создавать экспертные системы в выбранной предметной области, и собственно экспертной системы, которая является конечным продуктом.
Система FUZZY EXPERT разработано с использованием языка программирования C++ (компилятор Microsoft Visual C++) для операционных систем Windows версии 3.1 и выше и Windows 95.

8.1.1. Структура системы

Структура системы FUZZY EXPERT изображена на рис. 8.1. Она содержит 16 программных блоков, 8 из которых составляют собственно экспертную систему, а остальные, - среду разработки нечетких экспертных систем. Поясним назначение тех блоков системы, которые не упоминались ранее.
Рис. 8.1. Структурная схема программного обеспечения FUZZY EXPERT
Блок модификации нечеткой базы знаний и дерева вывода содержит все экранные формы, необходимые для внесения изменений в блоки экспертной системы: дерево логического вывода, базу знаний и функции принадлежности. Это основной блок среды разработки нечетких баз знаний. Он выполняет следующие функции:

а) формирование дерева логического вывода;
б) задание функций принадлежности лингвистических термов:
 • модифицированным методом Сати,
 • методом статистической обработки экспертной информации,
 • используя библиотеку стандартных моделей.
в) заполнение нечетких баз знаний;
г) сохранение (извлечение) вариантов экспертных систем из библиотеки.

Блок моделирования используется для получения графиков и поверхностей, отражающих зависимость выходной переменной от одной или двух входных переменных при фиксированных значениях остальных переменных. Цель подобного моделирования состоит в исследовании поведения объекта в различных областях факторного пространства.

Блок настройки предназначен для решения задач оптимизации нечеткой базы знаний с целью повышения качества идентификации нелинейных объектов. Этот блок выполняет следующие функции:

а) запрос обучающей выборки;
б) решение задач оптимизации нечетких баз знаний градиентным методом;
в) решение задач оптимизации нечетких баз знаний с параметрическими функциями принадлежности при помощи генетического алгоритма;
г) решение задач оптимизации нечетких баз знаний с α-уровневыми функциями принадлежности при помощи генетического алгоритма.

Блок тестирования экспертной системы предназначен для выполнения следующих действий:

а) запрос тестирующей выборки;
б) оценка качества идентификации в точках тестирующей выборки.

Блок документирования осуществляет выдачу информации о построенной экспертной системе в виде, удобном для инженера по знаниям.

Библиотека экспертных систем используется для хранения созданных экспертных систем на различных этапах их разработки (до настройки и после настройки).

Библиотека функций принадлежности содержит набор стандартных моделей функций принадлежности:

а) трапециевидные;
б) треугольные;
в) колоколообразные (с параметрами b и c);
г) экспоненциальные.

Архив расчетов позволяет хранить результаты выполняемых расчетов на
различных этапах создания и функционирования системы.

8.1.2. Экранные формы

Процесс построения нечеткой экспертной системы выполняется по следующему алгоритму:

А. Определение характеристик системы.
На этом шаге выводится информация о назначении системы, определяется выходная переменная идентифицируемого объекта (с непрерывным или дискретным выходом).

Б. Формирование дерева логического вывода.
Дерево логического вывода формируется путем последовательного выполнения операций добавления и/или удаления узлов. При добавлении нового узла запрашивается информация о названии (например, температура), обозначении (t), количестве термов для оценки и их названии («низкая», «нормальная», «высокая»). При добавлении узла, соответствующего входной переменной, запрашивается информация о диапазоне ее изменения. Сформированное дерево логического вывода изображено на рис. 8.2.

В. Определение функций принадлежности лингвистических термов.
На этом шаге определяются модели функций принадлежности, используемые для формализации термов-оценок переменных. На рис. 8.3 показано соответствующее диалоговое окно. Этот шаг соответствует этапу фазификации переменных.

Г. Определение экспертных правил ЕСЛИ-ТО, описывающих поведение объекта. Экспертные правила ЕСЛИ-ТО вносятся в соответствующие матрицы знаний (рис. 8.4).

Д. Настройка нечеткой экспертной системы путем решения задач оптимизации с использованием обучающей выборки.
Ввод значений входных переменных при выполнении расчетов осуществляется в количественной или качественной форме, а также по шкале термометра (рис. 8.5).
В результате нечеткого логического вывода получаются функции принадлежности выходной переменной каждому из классов решений. Соответствующее диалоговое окно содержит так же интерпретированный результат. В
Дерево вывода

Возраст больного (X1)

Двухное произведение пульса на артериальное давление (X2)
Терпимость к физической нагрузке (X3)
Прирост ДП на 1 кг веса тела больного (X4)
Прирост ДП на 1 кгм нагрузки (X5)
Максимальное потребление кислорода (X10)
Прирост ДП в ответ на субмаксимальное напряжение (X11)
АТФ (X6)
АДФ (X7)
АМФ (X8)
Коэффициент фосфорилирования (X9)
Коэффициент отношения содержания молочной и пироглазидной кислот (X12)

Инструментальная опасность (Y)
Биохимическая опасность (Z)

НЦД легкой степени (d1)
НЦД средней степени (d2)
НЦД тяжелой степени (d3)
Стенокардия первого функционального класса (d4)
Стенокардия второго функционального класса (d5)
Стенокардия третьего функционального класса (d6)

Рис. 8.2. Дерево логического вывода
Параметр X9 (Коэффициент фосфорилирования)
Форма функций принадлежности:
Два настраиваемых параметра, a и b
Коэффициенты:

ι - Низкий
ιС - Ниже среднего
С - Средний
ιВ - Выше среднего
В - Высокий

m H (X9) = 0.380
m ιС (X9) = 0.929
m С (X9) = 0.656
m ιВ (X9) = 0.252
m В (X9) = 0.119

НПД легкой степени
НПД средней степени
НПД тяжелой степени
Стенокардия первого функционального класса
Стенокардия второго функционального класса
Стенокардия третьего функционального класса

Рис. 8.3. Задание функций принадлежности
Дерево вывода

Функции принадлежности
Базы знаний
Метод вывода
Промежуточные результаты
Дефазификация
Моделирование
Windows
Натрийка

Таблица знаний

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X10</th>
<th>Y</th>
<th>Wght</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>H</td>
<td>B</td>
<td>H</td>
<td>1.000</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>N</td>
<td>C</td>
<td>H</td>
<td>1.000</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>N</td>
<td>C</td>
<td>B</td>
<td>1.000</td>
</tr>
<tr>
<td>H</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>1.000</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>1.000</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Инструментальная опасность

НЦД легкой степени: d1
НЦД средней степени: d2
НЦД тяжелой степени: d3
Стенокардия первого функционального класса: d4
Стенокардия второго функционального класса: d5
Стенокардия третьего функционального класса: d6

Рис. 8.4. Матрица знаний
Рис. 8.5. Ввод значений входных переменных
ходе одно- и двухфакторного моделирования инженер по знаниям может наблюдать за поведением объекта в разных областях пространства входных переменных. Настройка по имеющимся экспериментальным данным позволяет повысить адекватность нечеткой экспертной системы.

8.2. Диагностика ишемической болезни сердца

Ишемическая болезнь сердца (ИБС) является одной из наиболее распространенных причин снижения работоспособности и смерти людей в зрелом возрасте. Успешность лечения ИБС определяется возможностью ее дифференциальной диагностики, то есть отнесения к одному из принятых в клинической практике уровней тяжести [40]: нейроциркуляторной дистонии и стенокардии. Качество диагностики сильно зависит от квалификации врача. Это обуславливает актуальность создания компьютерной системы интеллектуальной поддержки принятия диагностических решений.

8.2.1. Типы диагнозов и параметры состояния больного

В соответствии со сложившейся клинической практикой тяжесть ИБС будем определять на следующих уровнях (от низшего к высшему):

- d_1 - нейроциркуляторная дистония (НЦД) легкой степени;
- d_2 - НЦД средней степени;
- d_3 - НЦД тяжелой степени;
- d_4 - стенокардия первого функционального класса;
- d_5 - стенокардия второго функционального класса;
- d_6 - стенокардия третьего функционального класса.

Перечисленные уровни $d_1 + d_6$ будем считать типами диагнозов, которые подлежат распознаванию. При установлении диагноза ИБС для конкретного больного будем принимать во внимание следующие основные параметры, которые измеряются в лабораторных условиях (возможные диапазоны изменения указаны в скобках):

- x_1 - возраст больного (31-57 лет),

231
\[x_2 - \text{двойное произведение (ДП) пульса на артериальное давление (147-405 условных единиц - y.e.),} \]
\[x_3 - \text{толерантность к физической нагрузке (90-1200 кгм/мин),} \]
\[x_4 - \text{прирост ДП на один кг веса тела больного (0.6-3.9 y.e.),} \]
\[x_5 - \text{прирост ДП на один кгм нагрузки (0.1-0.4 y.e.),} \]
\[x_6 - \text{аденозинтрифосфорная кислота АТФ (34.5-66.2 ммоль/л),} \]
\[x_7 - \text{аденозиндифосфорная кислота АДФ (11.9-29.2 ммоль/л),} \]
\[x_8 - \text{аденозинмонофосфорная кислота АМФ (3.6-27.1 ммоль/л),} \]
\[x_9 - \text{коэффициент fosфорилирования (1-5.7 y.e.),} \]
\[x_{10} - \text{максимальное потребление кислорода на один кг веса тела больного (10.5-40.9 млтр/мин кг),} \]
\[x_{11} - \text{прирост ДП в ответ на субмаксимальную нагрузку (46-312 y.e.),} \]
\[x_{12} - \text{коэффициент отношения содержания молочной и пировиноградной кислот (3.9-22.8 y.e.).} \]

Перечисленные параметры (кроме возраста) измеряются в лабораторных условиях после работы больного на велоэргометре. Задача диагностики состоит в том, чтобы каждому сочетанию значений параметров поставить в соответствие одно из решений: \[d_j \left(j = 1, 6 \right). \]

8.2.2. Нечеткая база знаний

Параметры \(x_1 + x_{12} \), определенные выше, будем рассматривать как лингвистические переменные. Кроме того, введем следующие лингвистические переменные (рис. 8.6):

\(d \) - опасность ИБС, которая измеряется уровнями \(d_1 + d_6 \); y - инструментальная опасность, которая зависит от параметров \(\{x_2, x_3, x_4, x_5, x_{10}, x_{11}\} \);
\(z \) - биохимическая опасность, которая зависит от параметров \(\{x_6, x_7, x_8, x_9, x_{12}\} \).

Структура модели для дифференциальной диагностики ИБС показана на рис. 8.6. в виде дерева логического вывода, отвечающего соотношениям:

\[d = f_d \left(x_1, y, z \right), \quad (8.1) \]
\[y = f_y \left(x_2, x_3, x_4, x_5, x_{10}, x_{11} \right), \quad (8.2) \]
\[z = f_z \left(x_6, x_7, x_8, x_9, x_{12} \right). \quad (8.3) \]

Рис. 8.6. Дерево логического вывода

Для оценки значений лингвистических переменных \(x_1 \div x_{12} \), а также \(y \) и \(z \), будем использовать единую шкалу качественных термов: Н - низкий, нС - ниже среднего, С - средний, вС - выше среднего, В - высокий. Каждый из этих термов представляет нечеткое множество, заданное с помощью соответствующей функции принадлежности.

Пользуясь введенными качественными термами и знаниями эксперта (врач-терапевт В.М. Шеверда), представим соотношения 8.1-8.3 в виде табл. 8.1-8.3.

8.2.3. Нечеткие логические уравнения

Используя табл. 8.1-8.3 и операции \(\cdot \) (И - min) и \(\lor \) (ИЛИ - max), легко записать систему нечетких логических уравнений, связывающих функции принадлежности диагнозов и входных переменных:
Таблица 8.1

<table>
<thead>
<tr>
<th>x_1</th>
<th>y</th>
<th>z</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>d_1</td>
</tr>
<tr>
<td>H</td>
<td>nC</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>nC</td>
<td>nC</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>nC</td>
<td>nC</td>
<td>nC</td>
<td>d_2</td>
</tr>
<tr>
<td>C</td>
<td>nC</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>nC</td>
<td>nC</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>nC</td>
<td>C</td>
<td>d_3</td>
</tr>
<tr>
<td>vC</td>
<td>vC</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>vC</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>vC</td>
<td>C</td>
<td>vC</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>vC</td>
<td>vC</td>
<td></td>
</tr>
<tr>
<td>vC</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>vC</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>vC</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 8.2

<table>
<thead>
<tr>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_{10}</th>
<th>x_{11}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>H</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>nC</td>
<td>B</td>
<td>H</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>vC</td>
<td>B</td>
<td>nC</td>
<td>B</td>
<td>vC</td>
<td>H</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>vC</td>
<td>C</td>
<td>B</td>
<td>vC</td>
<td>nC</td>
</tr>
<tr>
<td>B</td>
<td>vC</td>
<td>B</td>
<td>nC</td>
<td>vC</td>
<td>vC</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>vC</td>
<td>vC</td>
<td>vC</td>
<td>vC</td>
<td>vC</td>
<td>vC</td>
<td>C</td>
</tr>
<tr>
<td>nC</td>
<td>vC</td>
<td>vC</td>
<td>vC</td>
<td>vC</td>
<td>vC</td>
<td>vC</td>
</tr>
<tr>
<td>nC</td>
<td>nC</td>
<td>vC</td>
<td>nC</td>
<td>nC</td>
<td>nC</td>
<td>vC</td>
</tr>
<tr>
<td>C</td>
<td>nC</td>
<td>nC</td>
<td>nC</td>
<td>nC</td>
<td>nC</td>
<td>B</td>
</tr>
<tr>
<td>nC</td>
<td>H</td>
<td>H</td>
<td>vC</td>
<td>H</td>
<td>nC</td>
<td>B</td>
</tr>
<tr>
<td>H</td>
<td>nC</td>
<td>nC</td>
<td>vC</td>
<td>H</td>
<td>nC</td>
<td>B</td>
</tr>
<tr>
<td>H</td>
<td>nC</td>
<td>nC</td>
<td>vC</td>
<td>H</td>
<td>nC</td>
<td>B</td>
</tr>
</tbody>
</table>

234
Таблица 8.3

<table>
<thead>
<tr>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{12}</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>вC</td>
<td>B</td>
<td>B</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
</tr>
<tr>
<td>B</td>
<td>вC</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>вC</td>
</tr>
<tr>
<td>вC</td>
<td>вC</td>
<td>C</td>
<td>вC</td>
<td>B</td>
<td>вC</td>
</tr>
<tr>
<td>C</td>
<td>вC</td>
<td>C</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
</tr>
<tr>
<td>вC</td>
<td>вC</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
</tr>
<tr>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
</tr>
<tr>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
</tr>
</tbody>
</table>

\[
\mu^d_1 (d) = \left[\mu^H(x_1) \cdot \mu^H(y) \cdot \mu^H(z) \right] \lor \left[\mu^H(x_1) \cdot \mu^{HC}(y) \cdot \mu^{HC}(z) \right] \lor \\
\lor \left[\mu^{HC}(x_1) \cdot \mu^{HC}(y) \cdot \mu^H(z) \right],
\]

\[
\mu^d_2 (d) = \left[\mu^{HC}(x_1) \cdot \mu^{HC}(y) \cdot \mu^{HC}(z) \right] \lor \left[\mu^{C}(x_1) \cdot \mu^{HC}(y) \cdot \mu^{HC}(z) \right] \lor \\
\lor \left[\mu^{HC}(x_1) \cdot \mu^{HC}(y) \cdot \mu^{C}(z) \right],
\]

\[
\mu^d_3 (d) = \left[\mu^{C}(x_1) \cdot \mu^{HC}(y) \cdot \mu^{C}(z) \right] \lor \left[\mu^{BC}(x_1) \cdot \mu^{BC}(y) \cdot \mu^{HC}(z) \right] \lor \\
\lor \left[\mu^{BC}(x_1) \cdot \mu^{C}(y) \cdot \mu^{C}(z) \right],
\]

\[
\mu^d_4 (d) = \left[\mu^{BC}(x_1) \cdot \mu^{C}(y) \cdot \mu^{BC}(z) \right] \lor \left[\mu^{C}(x_1) \cdot \mu^{BC}(y) \cdot \mu^{BC}(z) \right] \lor \\
\lor \left[\mu^{HC}(x_1) \cdot \mu^{BC}(y) \cdot \mu^{BC}(z) \right],
\]

235
\[
\mu^d (d) = \left[\mu^C(x_1) \cdot \mu^B(y) \cdot \mu^C(z) \right] \lor \left[\mu^eC(x_1) \cdot \mu^eC(y) \cdot \mu^B(z) \right] \lor \\
\left[\mu^B(x_1) \cdot \mu^eC(y) \cdot \mu^eC(z) \right],
\]

\[
\mu^d (d) = \left[\mu^B(x_1) \cdot \mu^B(y) \cdot \mu^B(z) \right] \lor \left[\mu^eC(x_1) \cdot \mu^B(y) \cdot \mu^eC(z) \right] \lor \\
\left[\mu^C(x_1) \cdot \mu^B(y) \cdot \mu^eC(z) \right].
\]

\[(8.4) \]

\[
\mu^H(y) = \mu^B(x_2) \cdot \mu^B(x_3) \cdot \mu^B(x_4) \cdot \mu^H(x_5) \cdot \mu^B(x_{10}) \cdot \mu^B(x_{11}) \lor \\
\lor \mu^B(x_2) \cdot \mu^eC(x_3) \cdot \mu^B(x_4) \cdot \mu^hC(x_5) \cdot \mu^B(x_{10}) \cdot \mu^B(x_{11}) \lor \\
\lor \mu^eC(x_2) \cdot \mu^B(x_3) \cdot \mu^eC(x_4) \cdot \mu^H(x_5) \cdot \mu^B(x_{10}) \cdot \mu^B(x_{11}),
\]

\[
\mu^H(y) = \mu^eC(x_2) \cdot \mu^eC(x_3) \cdot \mu^B(x_4) \cdot \mu^hC(x_5) \cdot \mu^B(x_{10}) \cdot \mu^eC(x_{11}) \lor \\
\lor \mu^B(x_2) \cdot \mu^B(x_3) \cdot \mu^eC(x_4) \cdot \mu^hC(x_5) \cdot \mu^B(x_{10}) \cdot \mu^B(x_{11}) \lor \\
\lor \mu^eC(x_2) \cdot \mu^B(x_3) \cdot \mu^eC(x_4) \cdot \mu^hC(x_5) \cdot \mu^C(x_{10}) \cdot \mu^eC(x_{11}),
\]

\[(8.5) \]

\[
\mu^C(y) = \mu^C(x_2) \cdot \mu^C(x_3) \cdot \mu^C(x_4) \cdot \mu^C(x_5) \cdot \mu^C(x_{10}) \cdot \mu^C(x_{11}) \lor \\
\lor \mu^eC(x_2) \cdot \mu^eC(x_3) \cdot \mu^C(x_4) \cdot \mu^hC(x_5) \cdot \mu^C(x_{10}) \cdot \mu^C(x_{11}) \lor \\
\lor \mu^C(x_2) \cdot \mu^eC(x_3) \cdot \mu^eC(x_4) \cdot \mu^C(x_5) \cdot \mu^C(x_{10}) \cdot \mu^eC(x_{11}),
\]

\[
\mu^hC(y) = \mu^hC(x_2) \cdot \mu^C(x_3) \cdot \mu^hC(x_4) \cdot \mu^eC(x_5) \cdot \mu^hC(x_{10}) \cdot \mu^hC(x_{11}) \lor \\
\lor \mu^hC(x_2) \cdot \mu^hC(x_3) \cdot \mu^C(x_4) \cdot \mu^hC(x_5) \cdot \mu^H(x_{10}) \cdot \mu^hC(x_{11}) \lor \\
\lor \mu^C(x_2) \cdot \mu^hC(x_3) \cdot \mu^hC(x_4) \cdot \mu^C(x_5) \cdot \mu^hC(x_{10}) \cdot \mu^C(x_{11}),
\]

\[
\mu^B(y) = \mu^H(x_2) \cdot \mu^H(x_3) \cdot \mu^H(x_4) \cdot \mu^eC(x_5) \cdot \mu^H(x_{10}) \cdot \mu^H(x_{11}) \lor \\
\lor \mu^hC(x_2) \cdot \mu^hC(x_3) \cdot \mu^C(x_4) \cdot \mu^B(x_5) \cdot \mu^H(x_{10}) \cdot \mu^hC(x_{11}) \lor \\
\lor \mu^H(x_2) \cdot \mu^hC(x_3) \cdot \mu^hC(x_4) \cdot \mu^eC(x_5) \cdot \mu^H(x_{10}) \cdot \mu^H(x_{11}).
\]
\[\mu^H(z) = \mu^B(x_6) \cdot \mu^B(x_7) \cdot \mu^B(x_8) \cdot \mu^B(x_9) \cdot \mu^B(x_{12}) \\
\lor \mu^{aC}(x_6) \cdot \mu^B(x_7) \cdot \mu^{bC}(x_8) \cdot \mu^{bC}(x_9) \cdot \mu^{bC}(x_{12}) \\
\lor \mu^B(x_6) \cdot \mu^{cC}(x_7) \cdot \mu^B(x_8) \cdot \mu^C(x_9) \cdot \mu^{cC}(x_{12}) \\
\lor \mu^{\mu C}(x_6) \cdot \mu^{\mu C}(x_7) \cdot \mu^C(x_8) \cdot \mu^C(x_9) \cdot \mu^{\mu C}(x_{12}) \\
\lor \mu^C(x_6) \cdot \mu^C(x_7) \cdot \mu^C(x_8) \cdot \mu^C(x_9) \cdot \mu^C(x_{12}) \\
\lor \mu^aC(x_6) \cdot \mu^aC(x_7) \cdot \mu^aC(x_8) \cdot \mu^aC(x_9) \cdot \mu^aC(x_{12}) \\
\lor \mu^bC(x_6) \cdot \mu^bC(x_7) \cdot \mu^bC(x_8) \cdot \mu^bC(x_9) \cdot \mu^bC(x_{12}) \\
\lor \mu^cC(x_6) \cdot \mu^cC(x_7) \cdot \mu^cC(x_8) \cdot \mu^cC(x_9) \cdot \mu^cC(x_{12}) \\
\lor \mu^{H}(x_6) \cdot \mu^C(x_7) \cdot \mu^C(x_8) \cdot \mu^{\mu C}(x_9) \cdot \mu^C(x_{12}) \\
\lor \mu^{H}(x_6) \cdot \mu^H(x_7) \cdot \mu^H(x_8) \cdot \mu^H(x_9) \cdot \mu^{\mu C}(x_{12}) \\
\lor \mu^{H}(x_6) \cdot \mu^{\mu C}(x_7) \cdot \mu^{\mu C}(x_8) \cdot \mu^{\mu C}(x_9) \cdot \mu^{\mu C}(x_{12}) \] (8.6)

Общее число нечетких логических уравнений составляет 16. Заметим, что веса правил не указаны, поскольку при грубой настройке их значения равны единицам.

8.2.4 Грубые функции принадлежности

В общем случае каждая входная переменная \(x_1 \div x_{12} \) имеют свои собственные функции принадлежности нечетким термам (H, \(\mu^C \), C, \(\mu^C \), B), которые используются в уравнениях (8.4)-(8.6). Для упрощения моделирования будем
использовать для всех переменных $x_1 + x_{12}$ только одну форму функции принадлежности, которая показана на рис. 8.7. Для этого приведем интервалы изменения каждой переменной к одному универсальному интервалу $[0, 4]$ с помощью следующих соотношений:

$$
\mu^j (x_i) = \tilde{\mu}^j (u), \quad u = 4 \frac{x_i - x_{i-}}{x_i - x_i}, \quad j = H, \text{nC}, C, \text{vC}, B,
$$

где $[x_{i-}, x_i]$ - интервал изменения переменной x_i, $i = 1, 12$.

Аналитическая модель функций принадлежности (рис. 8.7):

$$
\tilde{\mu}^j (u) = \frac{1}{1 + \left(\frac{u - b}{c} \right)^2},
$$

(8.7)

а ее параметры b и c приведены в табл. 8.4. Взят таких функций обусловлен тем, что они являются хорошими аппроксимациями функций принадлежности, полученных от эксперта методом парных сравнений:

<table>
<thead>
<tr>
<th>Терм</th>
<th>H</th>
<th>nC</th>
<th>C</th>
<th>vC</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>0.923</td>
<td>0.923</td>
<td>0.923</td>
<td>0.923</td>
<td>0.923</td>
</tr>
</tbody>
</table>

Таблица 8.4

Параметры грубых функций принадлежности (рис. 8.7)

![Грубые функции принадлежности](image)

Рис. 8.7. Грубые функции принадлежности

238
8.2.5. Алгоритм принятия решения

Нечеткие логические уравнения (8.4)-(8.6) вместе с функциями принадлежности нечетких термов (8.7) позволяют принимать решение об уровне ИБС по следующему алгоритму:

1°. Зафиксируем значения параметров состояния больного

\[X^* = \left(x_1^*, x_2^*, ..., x_{12}^* \right) . \]

2°. Используя модель (8.7) и параметры б и c из табл. 8.4, определим значения функций принадлежности \(\mu^j \left(x_i^* \right) \), при фиксированных значениях параметров \(x_i^*, i=1,12 \).

3°. Используя логические уравнения (8.4)-(8.6), вычислим значения функций принадлежности \(\mu^d \left(x_1^*, x_2^*, ..., x_{12}^* \right) \) при векторе состояния \(X^* = \left(x_1^*, x_2^*, ..., x_{12}^* \right) \) для всех диагнозов \(d_1, d_2, ..., d_6 \). При этом, логические операции И(\(\wedge \)) и ИЛИ(\(\vee \)) над функциями принадлежности заменяются операциями min и max:

\[\mu(a) \wedge \mu(b) = \min[\mu(a), \mu(b)] , \]
\[\mu(a) \vee \mu(b) = \max[\mu(a), \mu(b)] . \]

4°. Определим решение \(d_j^* \), для которого:

\[\mu^d \left(x_1^*, x_2^*, ..., x_{12}^* \right) = \max_{j=1,12} \left[\mu^d \left(x_1^*, x_2^*, ..., x_{12}^* \right) \right] . \]

Пример 8.1. Пусть некоторому больному соответствуют следующие количественные значения параметров состояния:

\[x_1^* = 53 \text{ лет}, \quad x_2^* = 175 \text{ у.е.}, \quad x_3^* = 507 \text{ кгм/мин}, \]
\[x_4^* = 2.4 \text{ у.е.}, \quad x_5^* = 0.25 \text{ у.е.}, \quad x_6^* = 60.7 \text{ ммоль/л}, \]
\[x_7^* = 26.14 \text{ ммоль/л}, \quad x_8^* = 10.4 \text{ ммоль/л}, \quad x_9^* = 3.9 \text{ у.е.}, \]
\[x_{10}^* = 22.4 \text{ мл/мин кг}, x_{11}^* = 172 \text{ у.е.}, \quad x_{12}^* = 26.1 \text{ у.е.} \]
Используя модель (8.7) и значения параметров b и c из табл. 8.4 находим
значения функций принадлежности в точках x_i^*, $i=1,12$ для всех нечетких
tермов и представим их в табл. 8.5.

Подставляя полученные значения в уравнение (8.5), находим:

$$
\mu^H(y) = 0.072 \cdot 0.120 \cdot 0.205 \cdot 0.315 \cdot 0.149 \cdot 0.133
$$

$$
\vee 0.072 \cdot 0.275 \cdot 0.205 \cdot 0.867 \cdot 0.149 \cdot 0.133
$$

$$
\vee 0.137 \cdot 0.120 \cdot 0.560 \cdot 0.315 \cdot 0.149 \cdot 0.133 = 0.120
$$

Аналогично: $\mu^H_C(y) = 0.137$, $\mu^C(y) = 0.328$, $\mu^B(y) = 0.241$, $\mu^B(y) = 0.210$.

В соответствии с уравнением (8.6):

$$
\mu^H(z) = 0.458 \cdot 0.635 \cdot 0.095 \cdot 0.266 \cdot 0.687
$$

$$
\vee 1.000 \cdot 0.635 \cdot 0.201 \cdot 0.751 \cdot 0.857
$$

$$
\vee 0.458 \cdot 0.911 \cdot 0.095 \cdot 0.795 \cdot 0.857 = 0.201
$$

Аналогично: $\mu^H_C(z) = 0.545$, $\mu^C(z) = 0.343$, $\mu^B(z) = 0.176$, $\mu^B(z) = 0.087$.

Таблица 8.5

<table>
<thead>
<tr>
<th>№</th>
<th>x_i^*</th>
<th>u^*</th>
<th>$\mu^H(x_i^*)$</th>
<th>$\mu^H_C(x_i^*)$</th>
<th>$\mu^C(x_i^*)$</th>
<th>$\mu^bC(x_i^*)$</th>
<th>$\mu^B(x_i^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
<td>3.259</td>
<td>0.074</td>
<td>0.143</td>
<td>0.349</td>
<td>0.927</td>
<td>0.608</td>
</tr>
<tr>
<td>2</td>
<td>175</td>
<td>0.679</td>
<td>0.649</td>
<td>0.892</td>
<td>0.328</td>
<td>0.136</td>
<td>0.072</td>
</tr>
<tr>
<td>3</td>
<td>507</td>
<td>1.503</td>
<td>0.274</td>
<td>0.771</td>
<td>0.775</td>
<td>0.275</td>
<td>0.120</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>2.182</td>
<td>0.152</td>
<td>0.379</td>
<td>0.963</td>
<td>0.560</td>
<td>0.205</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>1.362</td>
<td>0.315</td>
<td>0.867</td>
<td>0.676</td>
<td>0.241</td>
<td>0.109</td>
</tr>
<tr>
<td>6</td>
<td>60.7</td>
<td>2.996</td>
<td>0.087</td>
<td>0.176</td>
<td>0.462</td>
<td>1.000</td>
<td>0.458</td>
</tr>
<tr>
<td>7</td>
<td>26.14</td>
<td>3.255</td>
<td>0.074</td>
<td>0.142</td>
<td>0.343</td>
<td>0.911</td>
<td>0.635</td>
</tr>
<tr>
<td>8</td>
<td>10.4</td>
<td>1.157</td>
<td>0.389</td>
<td>0.972</td>
<td>0.545</td>
<td>0.201</td>
<td>0.095</td>
</tr>
<tr>
<td>9</td>
<td>3.9</td>
<td>2.468</td>
<td>0.123</td>
<td>0.283</td>
<td>0.795</td>
<td>0.751</td>
<td>0.266</td>
</tr>
<tr>
<td>10</td>
<td>22.4</td>
<td>1.791</td>
<td>0.210</td>
<td>0.576</td>
<td>0.951</td>
<td>0.368</td>
<td>0.149</td>
</tr>
<tr>
<td>11</td>
<td>172</td>
<td>1.647</td>
<td>0.239</td>
<td>0.670</td>
<td>0.872</td>
<td>0.318</td>
<td>0.133</td>
</tr>
<tr>
<td>12</td>
<td>26.1</td>
<td>3.376</td>
<td>0.070</td>
<td>0.131</td>
<td>0.310</td>
<td>0.857</td>
<td>0.687</td>
</tr>
</tbody>
</table>

Наконец, в соответствии с уравнением (8.4) находим:

$$
\mu^d_1(a) = 0.074 \cdot 0.120 \cdot 0.201
$$

$$
\vee 0.074 \cdot 0.137 \cdot 0.545
$$

$$
\vee 0.143 \cdot 0.137 \cdot 0.201 = 0.137
$$

240
Аналогично: $\mu^d 2 \ (d) = 0.137$, $\mu^d 3 \ (d) = 0.328$, $\mu^d 4 \ (d) = 0.176$, $\mu^d 5 \ (d) = 0.210$, $\mu^d 6 \ (d) = 0.176$.

Поскольку наибольшее значение функции принадлежности соответствует решению d_3, то в качестве диагноза выбираем НЦД тяжелой степени.

8.2.6. Тонкая настройка нечеткой базы знаний

В качестве обучающей выборки для тонкой настройки нечеткой модели использовались реальные истории болезни с верифицированными диагнозами. Задача оптимизации решалась с помощью генетического алгоритма. В результате была получена настроенная модель, в которую входит параметры функций принадлежности (b и c) из табл. 8.6 и веса правил из табл. 8.7-8.9. Графики функций принадлежности после настройки показаны на рис. 8.8. Сравнение врачебного и компьютерного диагнозов для 65-ти больных представлено в табл. 8.10. Легко видеть, что только в одном случае (***) компьютерное решение (d_4) слишком далеко от реального диагноза (d_2). В 8-ми случаях (*) компьютерные и врачебные диагнозы находятся в соседних классах решений. В остальных случаях наблюдается полное совпадение компьютерного и врачебного диагнозов. Это свидетельствует о высоком, с точки зрения практического использования, качестве построенной экспертной системы.

Таблица 8.6

<table>
<thead>
<tr>
<th></th>
<th>aС</th>
<th>aC</th>
<th>С</th>
<th>вC</th>
<th>В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Х1</td>
<td>32.58</td>
<td>23.33</td>
<td>38.21</td>
<td>9.80</td>
<td>43.39</td>
</tr>
<tr>
<td>Х2</td>
<td>128.00</td>
<td>57.31</td>
<td>186.39</td>
<td>87.84</td>
<td>235.24</td>
</tr>
<tr>
<td>Х3</td>
<td>182.46</td>
<td>807.90</td>
<td>509.02</td>
<td>242.91</td>
<td>648.08</td>
</tr>
<tr>
<td>Х4</td>
<td>0.600</td>
<td>0.761</td>
<td>1.288</td>
<td>0.985</td>
<td>1.847</td>
</tr>
<tr>
<td>Х5</td>
<td>0.117</td>
<td>0.055</td>
<td>0.217</td>
<td>0.026</td>
<td>0.322</td>
</tr>
<tr>
<td>Х6</td>
<td>34.48</td>
<td>7.88</td>
<td>47.34</td>
<td>40.20</td>
<td>51.94</td>
</tr>
<tr>
<td>Х8</td>
<td>3.60</td>
<td>5.42</td>
<td>8.61</td>
<td>10.79</td>
<td>15.93</td>
</tr>
<tr>
<td>Х9</td>
<td>1.00</td>
<td>1.08</td>
<td>2.18</td>
<td>1.08</td>
<td>3.18</td>
</tr>
<tr>
<td>Х10</td>
<td>9.01</td>
<td>18.62</td>
<td>16.69</td>
<td>8.50</td>
<td>21.63</td>
</tr>
<tr>
<td>Х11</td>
<td>46.00</td>
<td>30.15</td>
<td>144.32</td>
<td>157.80</td>
<td>200.10</td>
</tr>
</tbody>
</table>
Таблица 8.7
Веса правил в Табл. 8.2 до \((w_b)\) и после \((w_a)\) настройки

<table>
<thead>
<tr>
<th>(y)</th>
<th>(w_b)</th>
<th>(w_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.734</td>
</tr>
<tr>
<td>нС</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.632</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td>C</td>
<td>1.000</td>
<td>0.757</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.470</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.473</td>
</tr>
<tr>
<td>вС</td>
<td>1.000</td>
<td>0.527</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.480</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.664</td>
</tr>
<tr>
<td>B</td>
<td>1.000</td>
<td>0.499</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.806</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.499</td>
</tr>
</tbody>
</table>

Таблица 8.8
Веса правил в табл. 8.3 до \((w_b)\) и после \((w_a)\) настройки

<table>
<thead>
<tr>
<th>(z)</th>
<th>(w_b)</th>
<th>(w_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td>нС</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.400</td>
</tr>
<tr>
<td>C</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td>вС</td>
<td>1.000</td>
<td>0.771</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td>B</td>
<td>1.000</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Таблица 8.9
Веса правил в табл. 8.1 до \((w_b)\) и после \((w_a)\) настройки

<table>
<thead>
<tr>
<th>(d)</th>
<th>(w_b)</th>
<th>(w_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1)</td>
<td>1.000</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.419</td>
</tr>
<tr>
<td>(d_2)</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.764</td>
</tr>
<tr>
<td>(d_3)</td>
<td>1.000</td>
<td>0.428</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.724</td>
</tr>
<tr>
<td>(d_4)</td>
<td>1.000</td>
<td>0.663</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.449</td>
</tr>
<tr>
<td>(d_5)</td>
<td>1.000</td>
<td>0.499</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.770</td>
</tr>
<tr>
<td>(d_6)</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.915</td>
</tr>
</tbody>
</table>

242
Рис. 8.8. Графики функций принадлежности после настройки

<table>
<thead>
<tr>
<th>№</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(x_8)</th>
<th>(x_9)</th>
<th>(x_{10})</th>
<th>(x_{11})</th>
<th>(x_{12})</th>
<th>Диагноз</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>40</td>
<td>300</td>
<td>865</td>
<td>2.1</td>
<td>0.25</td>
<td>59.40</td>
<td>25.80</td>
<td>9.30</td>
<td>3.5</td>
<td>21.9</td>
<td>0.03</td>
<td>21.4</td>
<td>d3</td>
</tr>
<tr>
<td>44</td>
<td>36</td>
<td>270</td>
<td>777</td>
<td>2.1</td>
<td>0.28</td>
<td>61.00</td>
<td>26.10</td>
<td>9.70</td>
<td>4.1</td>
<td>22.3</td>
<td>0.16</td>
<td>21.3</td>
<td>d3</td>
</tr>
<tr>
<td>45</td>
<td>34</td>
<td>275</td>
<td>859</td>
<td>2.3</td>
<td>0.30</td>
<td>62.50</td>
<td>27.00</td>
<td>9.60</td>
<td>4.2</td>
<td>24.0</td>
<td>0.95</td>
<td>22.5</td>
<td>d3</td>
</tr>
<tr>
<td>46</td>
<td>52</td>
<td>261</td>
<td>776</td>
<td>1.7</td>
<td>0.36</td>
<td>65.00</td>
<td>22.50</td>
<td>8.40</td>
<td>2.7</td>
<td>20.4</td>
<td>0.04</td>
<td>23.8</td>
<td>d4</td>
</tr>
<tr>
<td>47</td>
<td>41</td>
<td>258</td>
<td>785</td>
<td>1.5</td>
<td>0.36</td>
<td>62.70</td>
<td>23.80</td>
<td>7.60</td>
<td>2.5</td>
<td>19.8</td>
<td>0.25</td>
<td>24.0</td>
<td>d4</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td>290</td>
<td>845</td>
<td>1.8</td>
<td>0.39</td>
<td>57.10</td>
<td>24.00</td>
<td>7.20</td>
<td>2.5</td>
<td>18.7</td>
<td>0.68</td>
<td>22.5</td>
<td>d4</td>
</tr>
<tr>
<td>49</td>
<td>39</td>
<td>203</td>
<td>723</td>
<td>2.0</td>
<td>0.40</td>
<td>58.50</td>
<td>23.70</td>
<td>6.20</td>
<td>2.8</td>
<td>17.1</td>
<td>0.09</td>
<td>24.7</td>
<td>d4</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>244</td>
<td>802</td>
<td>1.7</td>
<td>0.35</td>
<td>62.00</td>
<td>25.30</td>
<td>6.30</td>
<td>3.0</td>
<td>18.5</td>
<td>0.12</td>
<td>24.9</td>
<td>d4</td>
</tr>
<tr>
<td>51</td>
<td>46</td>
<td>233</td>
<td>795</td>
<td>1.9</td>
<td>0.39</td>
<td>57.90</td>
<td>24.90</td>
<td>5.20</td>
<td>2.4</td>
<td>17.4</td>
<td>0.51</td>
<td>23.5</td>
<td>d4</td>
</tr>
<tr>
<td>52</td>
<td>54</td>
<td>262</td>
<td>805</td>
<td>1.8</td>
<td>0.38</td>
<td>57.90</td>
<td>24.50</td>
<td>7.70</td>
<td>2.2</td>
<td>19.2</td>
<td>0.44</td>
<td>22.1</td>
<td>d4</td>
</tr>
<tr>
<td>53</td>
<td>51</td>
<td>245</td>
<td>595</td>
<td>1.3</td>
<td>0.44</td>
<td>64.20</td>
<td>26.40</td>
<td>6.50</td>
<td>2.1</td>
<td>16.5</td>
<td>0.04</td>
<td>24.7</td>
<td>d5</td>
</tr>
<tr>
<td>54</td>
<td>40</td>
<td>209</td>
<td>772</td>
<td>1.5</td>
<td>0.45</td>
<td>60.20</td>
<td>27.80</td>
<td>5.90</td>
<td>2.4</td>
<td>14.7</td>
<td>0.95</td>
<td>25.0</td>
<td>d5</td>
</tr>
<tr>
<td>55</td>
<td>42</td>
<td>198</td>
<td>621</td>
<td>1.4</td>
<td>0.42</td>
<td>58.80</td>
<td>25.20</td>
<td>6.10</td>
<td>2.6</td>
<td>12.2</td>
<td>0.25</td>
<td>24.5</td>
<td>d5</td>
</tr>
<tr>
<td>56</td>
<td>44</td>
<td>245</td>
<td>523</td>
<td>1.5</td>
<td>0.39</td>
<td>57.50</td>
<td>23.30</td>
<td>6.50</td>
<td>2.2</td>
<td>14.1</td>
<td>0.07</td>
<td>26.9</td>
<td>d5</td>
</tr>
<tr>
<td>57</td>
<td>50</td>
<td>237</td>
<td>652</td>
<td>1.6</td>
<td>0.45</td>
<td>63.70</td>
<td>24.70</td>
<td>6.40</td>
<td>2.1</td>
<td>11.9</td>
<td>0.62</td>
<td>24.2</td>
<td>d5</td>
</tr>
<tr>
<td>58</td>
<td>56</td>
<td>202</td>
<td>744</td>
<td>1.3</td>
<td>0.45</td>
<td>61.80</td>
<td>25.70</td>
<td>5.70</td>
<td>2.4</td>
<td>12.3</td>
<td>0.26</td>
<td>22.6</td>
<td>d5</td>
</tr>
<tr>
<td>59</td>
<td>51</td>
<td>247</td>
<td>723</td>
<td>1.2</td>
<td>0.38</td>
<td>62.50</td>
<td>26.90</td>
<td>5.60</td>
<td>2.3</td>
<td>10.4</td>
<td>0.30</td>
<td>25.8</td>
<td>d5</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>192</td>
<td>516</td>
<td>1.1</td>
<td>0.52</td>
<td>60.10</td>
<td>22.70</td>
<td>5.50</td>
<td>2.0</td>
<td>9.9</td>
<td>0.00</td>
<td>22.9</td>
<td>d6</td>
</tr>
<tr>
<td>61</td>
<td>39</td>
<td>188</td>
<td>446</td>
<td>1.2</td>
<td>0.48</td>
<td>59.00</td>
<td>23.50</td>
<td>5.20</td>
<td>2.4</td>
<td>9.5</td>
<td>0.12</td>
<td>26.7</td>
<td>d6</td>
</tr>
<tr>
<td>62</td>
<td>49</td>
<td>212</td>
<td>406</td>
<td>0.9</td>
<td>0.56</td>
<td>61.70</td>
<td>26.00</td>
<td>5.30</td>
<td>1.9</td>
<td>8.2</td>
<td>0.25</td>
<td>29.4</td>
<td>d6</td>
</tr>
<tr>
<td>63</td>
<td>45</td>
<td>247</td>
<td>527</td>
<td>0.7</td>
<td>0.51</td>
<td>62.60</td>
<td>27.40</td>
<td>5.10</td>
<td>2.0</td>
<td>7.4</td>
<td>0.17</td>
<td>28.5</td>
<td>d6</td>
</tr>
<tr>
<td>64</td>
<td>44</td>
<td>206</td>
<td>448</td>
<td>0.8</td>
<td>0.55</td>
<td>57.40</td>
<td>22.10</td>
<td>6.30</td>
<td>2.1</td>
<td>7.4</td>
<td>0.88</td>
<td>30.1</td>
<td>d6</td>
</tr>
<tr>
<td>65</td>
<td>42</td>
<td>228</td>
<td>512</td>
<td>1.0</td>
<td>0.52</td>
<td>53.90</td>
<td>25.60</td>
<td>5.40</td>
<td>2.3</td>
<td>7.8</td>
<td>0.04</td>
<td>29.5</td>
<td>d6</td>
</tr>
</tbody>
</table>

1) врачебный диагноз,
2) компьютерный диагноз.

8.3. Прогнозирование количества заболеваний

Прогнозирование или предсказание количества заболеваний того или иного типа на уровне города, региона, и т. д. является необходимым элементом организации лечебно-профилактических мероприятий. С формальной точки зрения эта задача относится к широкому классу задач прогнозирования дискретных последовательностей (совокупности значений в фиксированные моменты), которые возникают не только в медицине, но и в физике, технике, экономике, социологии, и других областях.

Нетривиальность прогнозирования дискретных последовательностей обусловлена тем, что, в отличие от хорошо алгоритмизованных процедур ин-
терполяции [13], прогнозирование требует экстраполяции данных о прошлом на будущее. При этом необходимо учитывать неизвестную закономерность о явлении, лежащем в основе процесса, который генерирует дискретные последовательности. Разработка математических моделей прогнозирования посвящено большое количество исследований [16]. Наиболее распространенными являются методы, построенные на базе вероятностно-статистического аппарата. Но их использование требует значительного количества экспериментальных данных, которые не всегда удаётся собрать в условиях событий, состоявшихся относительно недавно, например, авария в Чернобыле.

В последнее время в задачах прогнозирования возродился интерес к использованию искусственных нейронных сетей [12,63]. Они рассматриваются как близкие к человеческому мозгу универсальные модели, которые обучаются распознаванию неизвестных закономерностей. Но, как и в случае вероятностно-статистических методов, для обучения нейронных сетей требуется большая выборка экспериментальных данных. Кроме того обученная нейронная сеть не допускает ясной интерпретации весов дуг.

В этом разделе предлагается подход к прогнозированию, который объединяет экспериментальные данные о количестве заболеваний с экспертной-лингвистической информацией о закономерностях, которые удается увидеть в существующих данных. Использование экспертно-лингвистических закономерностей, которые формализуются при помощи нечеткой логики, позволяет построить модель прогнозирования в условиях малых экспериментальных выборок. Предлагаемый здесь подход идеологически достаточно близок к так называемому «нейро - нечеткому» подходу [66], объединяющему способности нейронных сетей к обучению и легкую интерпретируемость нечетких правил ЕСЛИ-ТО. Однако, в отличие от [66], мы не используем нейронную сеть для обучения модели прогноза, а непосредственно настраиваем нечеткие правила ЕСЛИ-ТО с помощью существующих экспериментальных данных [33].

8.3.1. Экспериментальные данные

Нами рассматривается количество заболеваний аппендикулярным перитонитом у детей по данным клиники детской хирургии г. Винницы в 1982-1997 годах, которые сведены в табл. 8.11.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество заболеваний</td>
<td>109</td>
<td>143</td>
<td>161</td>
<td>136</td>
<td>161</td>
<td>163</td>
<td>213</td>
<td>220</td>
</tr>
<tr>
<td>Количество заболеваний</td>
<td>162</td>
<td>194</td>
<td>164</td>
<td>196</td>
<td>245</td>
<td>252</td>
<td>240</td>
<td>225</td>
</tr>
</tbody>
</table>

Таблица 8.11

246
Наблюдая динамику изменения количества заболеваний по рис. 8.9, легко заметить наличие четырехлетних циклов, в которых на третьем месте стоит високосный год. Эти циклы будем обозначать так:

\[
\ldots x_4^{i-1} \} \{ x_1^i \ x_2^i \ x_3^i \ x_4^i \} \{ x_4^{i+1} \ldots
\]

где \(i \) - номер четырехлетнего цикла,
\(x_1^i \) - количество заболеваний за два года до високосного,
\(x_2^i \) - количество заболеваний за один год до високосного,
\(x_3^i \) - количество заболеваний в високосном году,
\(x_4^i \) - количество заболеваний в следующем году после високосного.

Введеные обозначения будут использованы в дальнейшем при формировании закономерностей, необходимых для прогнозирования.

8.3.2. Экспертно-лингвистические закономерности

Закономерности, которые удается наблюдать на рис. 8.9, легко записать в виде четырех экспертных высказываний на естественном языке. Эти высказывания являются правилами ЕСЛИ-ТО, которые связывают количество заболеваний в \(i \)-ом и \((i+1)\)-ом циклах (рис. 8.10):

247
Сеть зависимостей на рис. 8.11, которая объединяет сформированные выше правила, показывает, что по двум первым годам \(i \)-го цикла можно прогнозировать на четыре года вперед: на два последних года \(i \)-го цикла и на два первых года следующего \((i+1)\)-го цикла.

8.3.3. Модель прогнозирования

Для использования экспертно-лингвистических высказываний \(F_1 \pm F_4 \) используется аппарат теории нечетких множеств. Согласно этой теории, лин
Рис. 8.10. Функциональные связи между количествами заболеваний

Рис. 8.11. Сеть зависимостей для прогнозирования

gвистические оценки «низкий», «ниже среднего» и другие формализуются при помощи функций принадлежности. Будем использовать модель функции принадлежности, введенные в главе 3. Выбранные экспертами параметры b и c для разных лингвистических оценок, которые используются в правилах $F_1 + F_4$,
Представлены в табл. 8.12. Полученные при этом функции принадлежности показаны на рис. 8.12.

<table>
<thead>
<tr>
<th>Лингвистические оценки переменных</th>
<th>Параметр</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1^i + y_4^i)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>низкая (Н)</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>ниже среднего (нС)</td>
<td>160</td>
<td>30</td>
</tr>
<tr>
<td>средняя (С)</td>
<td>195</td>
<td>25</td>
</tr>
<tr>
<td>выше среднего (вС)</td>
<td>222</td>
<td>20</td>
</tr>
<tr>
<td>высокая (В)</td>
<td>260</td>
<td>30</td>
</tr>
</tbody>
</table>

Рис. 8.12. Функции принадлежности лингвистических оценок до настройки

Помимо выбранных выше двухпараметрических функций принадлежности, могут быть использованы и другие функции, например, треугольные или трапециевидные [85], содержащие три и четыре настраиваемых параметра, соответственно.

Обозначим через \([x, x]\) диапазон возможных значений количества заболеваний. Разобьем этот диапазон на пять частей:

\[
H \quad nC \quad C \quad vC \quad B
\]

\[
\begin{align*}
& x_1 \quad x_2 \quad x_3 \quad x_4 \quad x \\
& \quad H \quad nC \quad C \quad vC \quad B \\
& \quad x \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x
\end{align*}
\]

которые ассоциируются с лингвистическими оценками: низкая (H), ниже среднего (nС), средняя (C), выше среднего (vС), высокая (B). Тогда, используя нечетко-логические операции \(\text{min} \) (И), \(\text{max} \) (ИЛИ) и операцию дефаззификации для преобразования функции принадлежности к четкому числу, можно записать модель прогнозирования в явном виде:
\[
\begin{align*}
x_3^i &= \frac{x_1 \mu^{H C}(x_3^i) + x_3 \mu^{B C}(x_3^i) + x_4 \mu^B(x_3^i)}{\mu^{H C}(x_3^i) + \mu^{B C}(x_3^i) + \mu^B(x_3^i)}, \\
F_1: \quad \mu^{H C}(x_3^i) &= \max \left(\min \left(\mu^H(x_1^i), \mu^{H C}(x_2^i) \right), \min \left(\mu^{H C}(x_1^i), \mu^C(x_2^i) \right) \right) \\
\mu^{B C}(x_3^i) &= \min \left(\mu^{H C}(x_1^i), \mu^{H C}(x_2^i) \right) \\
\mu^B(x_3^i) &= \min \left(\mu^B(x_1^i), \mu^B(x_2^i) \right)
\end{align*}
\]

\[
\begin{align*}
x_4^i &= \frac{x_1 \mu^H(x_4^i) + x_2 \mu^C(x_4^i) + x_3 \mu^{B C}(x_4^i)}{\mu^H(x_4^i) + \mu^C(x_4^i) + \mu^{B C}(x_4^i)} \\
F_2: \quad \mu^H(x_4^i) &= \min \left(\mu^H(x_1^i), \mu^{H C}(x_2^i) \right) \\
\mu^C(x_4^i) &= \min \left(\mu^{H C}(x_1^i), \mu^C(x_2^i) \right) \\
\mu^{B C}(x_4^i) &= \max \left(\min \left(\mu^{H C}(x_1^i), \mu^{H C}(x_2^i) \right), \min \left(\mu^B(x_1^i), \mu^B(x_2^i) \right) \right)
\end{align*}
\]

\[
\begin{align*}
x_1^{i+1} &= \frac{x_1 \mu^{H C}(x_1^{i+1}) + x_4 \mu^B(x_1^{i+1})}{\mu^{H C}(x_1^{i+1}) + \mu^B(x_1^{i+1})} \\
F_3: \quad \mu^{H C}(x_1^{i+1}) &= \max \left(\mu^H(x_4^i), \mu^{B C}(x_4^i) \right) \\
\mu^B(x_1^{i+1}) &= \mu^C(x_4^i)
\end{align*}
\]
\[
\begin{align*}
x_{2}^{i+1} &= \frac{x_{1} \mu^{H C}(x_{2}^{i+1}) + x_{2} \mu^{C}(x_{2}^{i+1}) + x_{4} \mu^{B}(x_{2}^{i+1})}{\mu^{H C}(x_{2}^{i+1}) + \mu^{C}(x_{2}^{i+1}) + \mu^{B}(x_{2}^{i+1})} \\
F_{4} &:= \mu^{H C}(x_{2}^{i+1}) = \min \left(\mu^{H}(x_{4}^{i}), \mu^{H C}(x_{1}^{i+1}) \right) \\
&\mu^{C}(x_{2}^{i+1}) = \min \left(\mu^{C}(x_{4}^{i}), \mu^{H C}(x_{1}^{i+1}) \right) \\
&\mu^{B}(x_{2}^{i+1}) = \min \left(\mu^{C}(x_{4}^{i}), \mu^{B}(x_{1}^{i+1}) \right)
\end{align*}
\]

При помощи полученной модели можно грубо прогнозировать количество заболеваний, как показано на рис. 8.13.

Рис. 8.13. Сопоставление экспериментальных данных и модели прогноза до настройки

Для повышения точности прогноза необходимо перейти к настройке модели.

8.3.4. Настройка модели прогнозирования

Задача настройки состоит в подборе таких параметров \(b \) и \(c \) функций принадлежности лингвистических оценок (рис. 8.12), которые обеспечат минимум рассогласования между теоретическим и экспериментальным количеством заболеваний. В соответствии с методом наименьших квадратов эта задача формулируется так:
найти такие параметры b и c, что

$$
\sum_{i=1}^{N} \left(x^i_3 - \hat{x}_3^i \right)^2 + \sum_{i=1}^{N} \left(x^i_4 - \hat{x}_4^i \right)^2 +
\sum_{i=1}^{N-1} \left(x^{i+1}_1 - \hat{x}_1^{i+1} \right)^2 + \sum_{i=1}^{N-1} \left(x^{i+1}_2 - \hat{x}_2^{i+1} \right)^2 = \min_{b,c}
$$

где $x^i_3, x^i_4, x^{i+1}_1, x^{i+1}_2$ - прогнозные количества заболеваний, которые зависят от параметров b и c функций принадлежности,

$\hat{x}^i_3, \hat{x}^i_4, \hat{x}^{i+1}_1, \hat{x}^{i+1}_2$ - экспериментальные количества заболеваний,

N - число циклов, которые используются для настройки модели.

Таблица 8.13

<table>
<thead>
<tr>
<th>Параметры функций принадлежности после настройки</th>
<th>Лингвистические оценки переменных</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^i_1 + x^i_4$</td>
<td>низкая (Н)</td>
<td>100.385</td>
<td>14.148</td>
</tr>
<tr>
<td></td>
<td>ниже среднего (нС)</td>
<td>146.502</td>
<td>21.046</td>
</tr>
<tr>
<td></td>
<td>средняя (С)</td>
<td>195.550</td>
<td>7.621</td>
</tr>
<tr>
<td></td>
<td>выше среднего (вС)</td>
<td>234.457</td>
<td>19.760</td>
</tr>
<tr>
<td></td>
<td>высокая (В)</td>
<td>251.336</td>
<td>36.640</td>
</tr>
</tbody>
</table>

Задача оптимизации решалась генетическим алгоритмом. Функции принадлежности после настройки приведены на рис. 8.14. В расчет принималось: $\bar{x} = 100$, $x_1 = 140$, $x_2 = 180$, $x_3 = 210$, $x_4 = 232$, $x = 260$.

![Diagram](image_url)

Рис. 8.14. Функции принадлежности лингвистических оценок после настройки
Использование настроенных функций принадлежности дает модель прогнозирования, которая достаточно близка к экспериментальным данным (рис. 8.15).

Рис. 8.15. Сопоставление экспериментальных данных и модели прогноза после настройки

Таблица 8.14

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Эксперимент</td>
<td>109</td>
<td>143</td>
<td>161</td>
<td>136</td>
<td>161</td>
<td>163</td>
<td>213</td>
<td>220</td>
<td>162</td>
<td>194</td>
</tr>
<tr>
<td>Теория</td>
<td>163</td>
<td>135</td>
<td>158</td>
<td>165</td>
<td>199</td>
<td>222</td>
<td>159</td>
<td>201</td>
<td>201</td>
<td>201</td>
</tr>
<tr>
<td>Ошибка</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Эксперимент</td>
<td>164</td>
<td>196</td>
<td>245</td>
<td>252</td>
<td>240</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Теория</td>
<td>168</td>
<td>198</td>
<td>234</td>
<td>247</td>
<td>231</td>
<td>232</td>
<td>154</td>
<td>199</td>
<td>163</td>
<td>195</td>
</tr>
<tr>
<td>Ошибка</td>
<td>4</td>
<td>2</td>
<td>11</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.4. Идентификация коэффициента сцепления «автомобиль-дорога»

Задача оценки коэффициента сцепления колес автомобиля с дорожным покрытием возникает в связи с проведением автотехнической экспертизы при расследовании дорожно-транспортных происшествий (ДТП). От точности определения коэффициента сцепления зависит объективность принятия решения о виновности или невиновности водителя, который совершил ДТП (например, наезд на пешехода). Существующая методика позволяет определить только диапазон возможных значений коэффициента сцепления в зависимости от ряда влияющих факторов. Поэтому, окончательная его оценка определяется автотехническим экспертом субъективно, с учетом дополнительных факторов и условий, которые не входят в методику.

Принятие решения о причине аварии очень чувствительно к значению коэффициента сцепления: субъективный выбор нижнего или верхнего значения коэффициента может решить судьбу участников происшествия.

Целью исследования, результаты которого представлены в этом разделе, была разработка математической модели оценки коэффициента сцепления, которая бы исходила всю доступную информацию о влияющих факторах, и, за счет уточнения величины коэффициента сцепления, повышала объективность решений [49,70].

8.4.1. Методика идентификации

Модель оценки коэффициента сцепления разрабатывалась на основе идентификации нелинейных объектов нечеткими базами знаний. Построение модели производилось в два этапа: первый - структурная идентификация; второй - параметрическая идентификация. На первом этапе строилась структура зависимости коэффициента сцепления от влияющих факторов с применением экспертных правил «ЕСЛИ - ТО». На втором этапе проводилась настройка модели путем подбора таких параметров формы функций принадлежности нечетких термов и весов правил «ЕСЛИ - ТО», которые обеспечивают минимальное расхождение модельных и экспериментальных результатов.

8.4.2. Структурная идентификация

Структура предлагаемой модели представлена на рис. 8.16 в виде дерева, висящим вершинами которого являются факторы, влияющие на коэффициент сцепления. Особенность модели заключается в том, что она учитывает как традиционные для известной методики факторы, которые обобщены интеграль
nym показателем Q, так и дополнительно введенные факторы: S, H, P, N, V. Все влияющие факторы, сведенные в табл. 8.15, рассматриваются как лингвистические переменные, заданные на соответствующих универсальных множествах и оцениваются нечеткими термами. Интегральный показатель Q, который входит в табл. 8.15, в свою очередь, зависит от факторов: D_1 — тип дорожного покрытия; D_2 — состояние дорожного покрытия; T — тип шин. Это показано на древовидной структуре модели коэффициента сцепления (рис. 8.16). Рекомендации для оценки интегрального показателя Q даны в табл. 8.16, которая отвечает общей принятой методике.

Экспертная матрица знаний для оценки коэффициента сцепления в зависимости от влияющих факторов представлена в табл. 8.17 (эксперты В.Н. Ребедайло, А.А. Кашканов). Применение этой матрицы знаний и модели нечеткого логического вывода позволяет прогнозировать коэффициент сцепления в практическом диапазоне его изменения. Однако точная оценка этого коэффициента зависит от выбора параметров настройки модели.

8.4.3. Параметрическая идентификация

Настройка модели производилась с помощью обучающей выборки, которая представляет собой совокупность пар «влияющие факторы — коэффициент
<table>
<thead>
<tr>
<th>Фактор</th>
<th>Универсальное множество</th>
<th>Термы для оценок</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q) – интегральный показатель “тип шин - дорога”</td>
<td>(0 – 9) у.е.</td>
<td>низкий ((Q_1)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ниже среднего ((Q_2)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>средний ((Q_3)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>выше среднего ((Q_4)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>высокий ((Q_5))</td>
</tr>
<tr>
<td>(S) – степень проскальзывания шины</td>
<td>(0 – 100)%</td>
<td>качение с проскальзыванием ((S_1)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>юз ((S_2))</td>
</tr>
<tr>
<td>(H) – износ шины</td>
<td>(0 – 100)%</td>
<td>новат ((H_1)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>в пределах допустимого ((H_2)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>льяза ((H_3))</td>
</tr>
<tr>
<td>(P) – давление в шине</td>
<td>(0.1 – 0.325) МПа</td>
<td>пониженный ((P_1)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>нормальный ((P_2)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>повышенный ((P_3))</td>
</tr>
<tr>
<td>(N) – нагрузка на колесо</td>
<td>(0 – 100)%</td>
<td>без нагрузки ((N_1)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>средняя ((N_2)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>полная ((N_3))</td>
</tr>
<tr>
<td>(V) – скорость автомобиля</td>
<td>(0 – 130)км/ч</td>
<td>низкая ((V_1)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ниже средней ((V_2)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>средняя ((V_3)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>выше средней ((V_4)),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>высокая ((V_5))</td>
</tr>
<tr>
<td>Дорожное покрытие</td>
<td>Показатель Q для типа шин (T)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Высокого давления</td>
<td>Низкого давления</td>
</tr>
<tr>
<td>Тип (D_1)</td>
<td>Состояние (D_2)</td>
<td></td>
</tr>
<tr>
<td>Асфальтобетонное, цементобетонное</td>
<td>Сухое</td>
<td>5.63 - 7.88</td>
</tr>
<tr>
<td></td>
<td>Увлажненное дождем</td>
<td>3.1 - 4.33</td>
</tr>
<tr>
<td></td>
<td>Мокрое</td>
<td>3.94 - 5.06</td>
</tr>
<tr>
<td></td>
<td>Покрытое грязью</td>
<td>2.81 - 5.06</td>
</tr>
<tr>
<td></td>
<td>Мокрый снег ($t > 0^\circ C$)</td>
<td>2.1 - 3.4</td>
</tr>
<tr>
<td></td>
<td>Гололед ($t < 0^\circ C$)</td>
<td>0.9 - 1.69</td>
</tr>
<tr>
<td>Булыжное</td>
<td>Сухое</td>
<td>4.5 - 5.63</td>
</tr>
<tr>
<td></td>
<td>Мокрое</td>
<td>2.7 - 3.75</td>
</tr>
<tr>
<td>Щебеночное</td>
<td>Сухое</td>
<td>5.63 - 6.75</td>
</tr>
<tr>
<td></td>
<td>Мокрое</td>
<td>3.38 - 4.5</td>
</tr>
<tr>
<td>Грунтовая дорога</td>
<td>Сухая</td>
<td>4.5 - 5.63</td>
</tr>
<tr>
<td></td>
<td>Увлажненная дождем</td>
<td>2.25 - 4.5</td>
</tr>
<tr>
<td></td>
<td>В период распутицы</td>
<td>1.68 - 2.81</td>
</tr>
<tr>
<td>Целина летом: Песок</td>
<td>Сухой</td>
<td>2.25 - 3.38</td>
</tr>
<tr>
<td></td>
<td>Влажный</td>
<td>3.94 - 4.5</td>
</tr>
<tr>
<td>Суглинок</td>
<td>Сухой</td>
<td>4.5 - 5.63</td>
</tr>
<tr>
<td></td>
<td>Увлажненный до пластического состояния</td>
<td>2.25 - 4.5</td>
</tr>
<tr>
<td></td>
<td>Увлажненный до текущего состояния</td>
<td>1.69 - 2.25</td>
</tr>
<tr>
<td>Целина зимой: снег</td>
<td>Рыхлый</td>
<td>2.25 - 3.38</td>
</tr>
<tr>
<td></td>
<td>Укатанный</td>
<td>1.69 - 2.25</td>
</tr>
<tr>
<td>(Q)</td>
<td>(S)</td>
<td>(H)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(Q_1)</td>
<td>(S_2)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_1)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_1)</td>
<td>(S_1)</td>
<td>(H_3)</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>(S_2)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_1)</td>
<td>(S_1)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>(S_1)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>(S_2)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_3)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_3)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>(S_2)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_3)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>(S_2)</td>
<td>(H_3)</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>(S_2)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>(S_2)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_5)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_5)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
<tr>
<td>(Q_5)</td>
<td>(S_2)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_5)</td>
<td>(S_2)</td>
<td>(H_2)</td>
</tr>
<tr>
<td>(Q_5)</td>
<td>(S_1)</td>
<td>(H_1)</td>
</tr>
</tbody>
</table>

сцепления». Для получения обучающей выборки проводился специальный спланированный натурный эксперимент с автомобилем «Москвич - 412». В этом эксперименте варились факторы, влияющие на коэффициент сцепления, и измерялась длина пути торможения автомобиля. Общий объем обучающей выборки составил 60 пар данных «влияющие факторы - коэффициент сцепления». Настройка модели производилась с помощью системы FUZZY EXPERT.
В результате получены функции принадлежности нечетких термов, показанные на рис. 8.17. Параметры центров \((b)\) и крутизны \((c)\) настроенных функций принадлежности сведены в табл. 8.18. Веса нечетких правил, полученные после настройки, приведены в правой части табл. 8.17.

Таблица 8.18

<table>
<thead>
<tr>
<th>Терм</th>
<th>(b)</th>
<th>(c)</th>
<th>Терм</th>
<th>(b)</th>
<th>(c)</th>
<th>Терм</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_1)</td>
<td>0.90</td>
<td>0.97</td>
<td>(H_1)</td>
<td>21.36</td>
<td>24.33</td>
<td>(N_2)</td>
<td>64.48</td>
<td>28.92</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>2.50</td>
<td>0.40</td>
<td>(H_2)</td>
<td>57.15</td>
<td>38.68</td>
<td>(N_3)</td>
<td>85.92</td>
<td>20.31</td>
</tr>
<tr>
<td>(Q_3)</td>
<td>4.63</td>
<td>0.59</td>
<td>(H_3)</td>
<td>90.21</td>
<td>26.55</td>
<td>(V_1)</td>
<td>10.40</td>
<td>14.74</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>6.23</td>
<td>0.42</td>
<td>(P_1)</td>
<td>0.14</td>
<td>0.04</td>
<td>(V_2)</td>
<td>10.40</td>
<td>30.06</td>
</tr>
<tr>
<td>(Q_5)</td>
<td>8.58</td>
<td>0.75</td>
<td>(P_2)</td>
<td>0.20</td>
<td>0.04</td>
<td>(V_3)</td>
<td>14.07</td>
<td>42.26</td>
</tr>
<tr>
<td>(S_1)</td>
<td>24.88</td>
<td>41.76</td>
<td>(P_3)</td>
<td>0.32</td>
<td>0.07</td>
<td>(V_4)</td>
<td>64.65</td>
<td>5.82</td>
</tr>
<tr>
<td>(S_2)</td>
<td>98.93</td>
<td>41.95</td>
<td>(N_1)</td>
<td>0.10</td>
<td>38.98</td>
<td>(V_5)</td>
<td>119.99</td>
<td>13.48</td>
</tr>
</tbody>
</table>

![Diagram](image)

Рис. 8.17. Функции принадлежности лингвистических термов после настройки

260
<table>
<thead>
<tr>
<th></th>
<th>Факторы</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q</td>
<td>S</td>
<td>H</td>
<td>P</td>
<td>N</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.15</td>
<td>100</td>
<td>62</td>
<td>0.2</td>
<td>15</td>
<td>20</td>
<td>0.45 - 0.55</td>
</tr>
<tr>
<td>4.45</td>
<td>100</td>
<td>65</td>
<td>0.2</td>
<td>15</td>
<td>60</td>
<td>0.25 - 0.4</td>
</tr>
<tr>
<td>4.7</td>
<td>100</td>
<td>65</td>
<td>0.18</td>
<td>20</td>
<td>40</td>
<td>0.30 - 0.45</td>
</tr>
<tr>
<td>3.4</td>
<td>90</td>
<td>45</td>
<td>0.17</td>
<td>95</td>
<td>120</td>
<td>0.22 - 0.40</td>
</tr>
<tr>
<td>3.7</td>
<td>64</td>
<td>95</td>
<td>0.25</td>
<td>45</td>
<td>72</td>
<td>0.20 - 0.40</td>
</tr>
<tr>
<td>3.9</td>
<td>84</td>
<td>81</td>
<td>0.27</td>
<td>67</td>
<td>65</td>
<td>0.25 - 0.45</td>
</tr>
<tr>
<td>8.1</td>
<td>67</td>
<td>72</td>
<td>0.25</td>
<td>20</td>
<td>58</td>
<td>0.60 - 0.70</td>
</tr>
<tr>
<td>3.4</td>
<td>65</td>
<td>80</td>
<td>0.14</td>
<td>15</td>
<td>15</td>
<td>0.25 - 0.40</td>
</tr>
<tr>
<td>3.6</td>
<td>40</td>
<td>75</td>
<td>0.18</td>
<td>20</td>
<td>45</td>
<td>0.30 - 0.45</td>
</tr>
<tr>
<td>3.9</td>
<td>100</td>
<td>35</td>
<td>0.29</td>
<td>45</td>
<td>110</td>
<td>0.20 - 0.40</td>
</tr>
<tr>
<td>7.4</td>
<td>35</td>
<td>70</td>
<td>0.19</td>
<td>60</td>
<td>90</td>
<td>0.60 - 0.70</td>
</tr>
<tr>
<td>5.3</td>
<td>30</td>
<td>5</td>
<td>0.26</td>
<td>90</td>
<td>35</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>8.6</td>
<td>100</td>
<td>60</td>
<td>0.2</td>
<td>15</td>
<td>20</td>
<td>0.70 - 0.80</td>
</tr>
<tr>
<td>6.15</td>
<td>100</td>
<td>62</td>
<td>0.2</td>
<td>15</td>
<td>40</td>
<td>0.45 - 0.55</td>
</tr>
<tr>
<td>6.5</td>
<td>100</td>
<td>65</td>
<td>0.18</td>
<td>20</td>
<td>60</td>
<td>0.50 - 0.60</td>
</tr>
<tr>
<td>4.7</td>
<td>100</td>
<td>65</td>
<td>0.18</td>
<td>20</td>
<td>60</td>
<td>0.30 - 0.45</td>
</tr>
<tr>
<td>4.8</td>
<td>15</td>
<td>55</td>
<td>0.21</td>
<td>62</td>
<td>32</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>15</td>
<td>0.18</td>
<td>17</td>
<td>25</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>6.8</td>
<td>70</td>
<td>28</td>
<td>0.16</td>
<td>90</td>
<td>52</td>
<td>0.50 - 0.70</td>
</tr>
<tr>
<td>7.3</td>
<td>41</td>
<td>37</td>
<td>0.2</td>
<td>50</td>
<td>65</td>
<td>0.60 - 0.70</td>
</tr>
<tr>
<td>6.7</td>
<td>80</td>
<td>55</td>
<td>0.12</td>
<td>56</td>
<td>62</td>
<td>0.50 - 0.60</td>
</tr>
<tr>
<td>4.8</td>
<td>100</td>
<td>20</td>
<td>0.23</td>
<td>10</td>
<td>80</td>
<td>0.35 - 0.50</td>
</tr>
<tr>
<td>3.3</td>
<td>50</td>
<td>90</td>
<td>0.3</td>
<td>50</td>
<td>85</td>
<td>0.25 - 0.40</td>
</tr>
<tr>
<td>2.1</td>
<td>20</td>
<td>55</td>
<td>0.23</td>
<td>70</td>
<td>40</td>
<td>0.15 - 0.20</td>
</tr>
<tr>
<td>8.6</td>
<td>100</td>
<td>60</td>
<td>0.2</td>
<td>15</td>
<td>40</td>
<td>0.70 - 0.80</td>
</tr>
<tr>
<td>6.15</td>
<td>100</td>
<td>62</td>
<td>0.2</td>
<td>15</td>
<td>60</td>
<td>0.45 - 0.55</td>
</tr>
<tr>
<td>6.3</td>
<td>100</td>
<td>65</td>
<td>0.18</td>
<td>20</td>
<td>40</td>
<td>0.50 - 0.60</td>
</tr>
<tr>
<td>7.2</td>
<td>70</td>
<td>70</td>
<td>0.19</td>
<td>15</td>
<td>60</td>
<td>0.60 - 0.70</td>
</tr>
<tr>
<td>1.7</td>
<td>35</td>
<td>30</td>
<td>0.16</td>
<td>74</td>
<td>34</td>
<td>0.10 - 0.20</td>
</tr>
<tr>
<td>1.3</td>
<td>72</td>
<td>35</td>
<td>0.15</td>
<td>70</td>
<td>33</td>
<td>0.08 - 0.15</td>
</tr>
<tr>
<td>2.25</td>
<td>62</td>
<td>21</td>
<td>0.31</td>
<td>85</td>
<td>64</td>
<td>0.20 - 0.25</td>
</tr>
<tr>
<td>4.5</td>
<td>32</td>
<td>75</td>
<td>0.19</td>
<td>90</td>
<td>80</td>
<td>0.35 - 0.50</td>
</tr>
<tr>
<td>7.5</td>
<td>75</td>
<td>25</td>
<td>0.18</td>
<td>71</td>
<td>67</td>
<td>0.60 - 0.70</td>
</tr>
<tr>
<td>2.6</td>
<td>65</td>
<td>50</td>
<td>0.16</td>
<td>60</td>
<td>55</td>
<td>0.20 - 0.30</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>20</td>
<td>0.17</td>
<td>100</td>
<td>25</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>0.7</td>
<td>100</td>
<td>75</td>
<td>0.18</td>
<td>20</td>
<td>10</td>
<td>0.05 - 0.10</td>
</tr>
<tr>
<td>8.6</td>
<td>100</td>
<td>60</td>
<td>0.2</td>
<td>15</td>
<td>60</td>
<td>0.70 - 0.80</td>
</tr>
<tr>
<td>4.45</td>
<td>100</td>
<td>65</td>
<td>0.2</td>
<td>15</td>
<td>20</td>
<td>0.25 - 0.40</td>
</tr>
<tr>
<td>6.3</td>
<td>100</td>
<td>65</td>
<td>0.18</td>
<td>20</td>
<td>60</td>
<td>0.50 - 0.60</td>
</tr>
<tr>
<td>5.6</td>
<td>100</td>
<td>75</td>
<td>0.2</td>
<td>25</td>
<td>100</td>
<td>0.45 - 0.55</td>
</tr>
<tr>
<td>2.9</td>
<td>48</td>
<td>25</td>
<td>0.24</td>
<td>51</td>
<td>68</td>
<td>0.20 - 0.40</td>
</tr>
<tr>
<td>2.85</td>
<td>56</td>
<td>75</td>
<td>0.29</td>
<td>40</td>
<td>40</td>
<td>0.20 - 0.30</td>
</tr>
<tr>
<td>5.5</td>
<td>53</td>
<td>98</td>
<td>0.18</td>
<td>100</td>
<td>35</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>5.2</td>
<td>78</td>
<td>20</td>
<td>0.17</td>
<td>38</td>
<td>129</td>
<td>0.40 - 0.55</td>
</tr>
<tr>
<td>8.2</td>
<td>15</td>
<td>10</td>
<td>0.2</td>
<td>100</td>
<td>115</td>
<td>0.70 - 0.80</td>
</tr>
<tr>
<td>8.3</td>
<td>100</td>
<td>30</td>
<td>0.17</td>
<td>80</td>
<td>40</td>
<td>0.70 - 0.80</td>
</tr>
<tr>
<td>4.3</td>
<td>90</td>
<td>10</td>
<td>0.13</td>
<td>10</td>
<td>120</td>
<td>0.35 - 0.40</td>
</tr>
<tr>
<td>8.6</td>
<td>100</td>
<td>62</td>
<td>0.2</td>
<td>15</td>
<td>80</td>
<td>0.70 - 0.80</td>
</tr>
<tr>
<td>4.45</td>
<td>100</td>
<td>65</td>
<td>0.2</td>
<td>15</td>
<td>40</td>
<td>0.25 - 0.40</td>
</tr>
</tbody>
</table>

Таблица 8.19

Сравнение решений

<table>
<thead>
<tr>
<th>Коэффициент сцепления</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Экспериментальный</td>
</tr>
<tr>
<td>2) По предложенной модели</td>
</tr>
</tbody>
</table>

261
Сравнение модельных и экспериментальных результатов оценки коэффициента сцепления (табл. 8.19), свидетельствует об удовлетворительной для практики адекватности полученной модели.

8.4.4. Пример и сравнение с действующей методикой

Рассматривается случай наезда на пешехода автомобилем ГАЗ-24. Информация из протокола ДТП:
- тип дорожного покрытия \((D_1)\) – асфальтобетон;
- состояние дорожного покрытия \((D_2)\) – покрытий грязью;
- тип шин \((T)\) – низкого давления;
- степень проскальзывания шины \((S)\) – качение с проскальзыванием;
- износ шин \((H)\) – в пределах допустимого (около 50%);
- давление в шинах \((P)\) – нормальное (0.2MPa);
- нагрузка на колесо \((N)\) – низкая (около 10%);
- скорость автомобиля \((V)\) – 55 км/ч.

Участок дороги горизонтального профиля. После наезда до полной остановки автомобиль ГАЗ – 24 в заторможенном состоянии преодолел 9.2 м. С момента возникновения преграды для движения и до момента наезда пешеход преодолел 5 м со скоростью 4.5 км/ч. Пешеход был сбит передней частью автомобиля. Результаты расчетов величины коэффициента сцепления составили:

а) по действующей методике: \(\varphi = 0.25 - 0.4;\)

б) по предложенной методике: \(\varphi = 0.35.\)

Результаты использования всей известной информации сведены в табл. 8.20. Последний столбик этой таблицы показывает насколько важно точное знание коэффициента сцеплений для принятия решения.

<table>
<thead>
<tr>
<th>Методика</th>
<th>Коэффициент сцепления</th>
<th>Остановочный путь автомобиля</th>
<th>Расстояние до препятствия в момент возникновения опасной ситуации</th>
<th>Решение о возможности избежать наезда</th>
</tr>
</thead>
<tbody>
<tr>
<td>Действующая</td>
<td>0.25</td>
<td>68.8 м</td>
<td>46.2 м</td>
<td>не возможно</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>51.0 м</td>
<td>55.3 м</td>
<td>возможно</td>
</tr>
<tr>
<td>Предложенная</td>
<td>0.35</td>
<td>55.3 м</td>
<td>53.3 м</td>
<td>не возможно</td>
</tr>
</tbody>
</table>
8.5. Многофакторный анализ технологического процесса биоконверсии

Технологический процесс биоконверсии (ТПБК) - это процесс при выполнении которого осуществляется преобразование отходов сельскохозяйственного производства в биогаз. Внедрение таких процессов обеспечивает возможность решения двух актуальных проблем, экологической - очистка сельскохозяйственных территорий от загрязняющих отходов; энергетической - получение биогаза, который может использоваться как полезное топливо.

Важнейшим критерием качества функционирования ТПБК является количество полученного на выходе биогаза. Поэтому прогнозирование выходного количества биогаза в зависимости от влияющих факторов является необходимым элементом проектирования устройств и процессов биоконверсии.

Традиционный подход к моделированию многофакторных технологических процессов опирается на математическую теорию планирования эксперимента [51]. Применение этой теории предусматривает возможность регистрации выходного показателя (в данном случае - количества биогаза) при разных значениях влияющих факторов с дальнейшим построением регрессионной зависимости. Однако отсутствие экспериментальной установки, которая существует в проекте, лишает исследователя такой возможности. В этом случае единственным источником информации для моделирования являются экспертные оценки, которые имеют качественный характер.

Ниже рассматривается методика и некоторые результаты моделирования ТПБК с целью прогнозирования выходного количества биогаза [41]. Основой моделирования является экспертная лингвистическая информация, которая доступна проектировщику.

Поскольку ТПБК является типичным представителем широкого класса химико-технологических процессов, то излагаемая методика может быть использована для многофакторного анализа таких процессов на ранних стадиях их проектирования.

8.5.1. Этапы и принципы моделирования

Рассмотрим этапы и общие принципы исследования, которые используются при построении модели ТПБК.

Этап 1. Построение дерева выводов и фазификация влияющих факторов.

Дерево вывода - это граф, структура которого отображает классификацию факторов, влияющих на прогнозируемый показатель, т.е. выход биогаза. Вершины дерева интерпретируются таким образом: корень дерева - выходной
показатель, терминальные вершины - влияющие факторы, нетерминальные вершины - классы влияющих факторов.

Этап фазификации предусматривает выбор нечетких термов для лингвистической оценки факторов и формализацию этих термов с помощью функций принадлежности.

Этап 2. Построение нечетких матриц знаний.

Нечеткая матрица знаний является аналогом матрицы планирования эксперимента [51]. Но в отличии от реальных экспериментальных данных, в нечеткую матрицу знаний заносятся результаты так называемого виртуального (т. е. фиктивного или воображаемого) эксперимента. В процессе такого эксперимента эксперт отвечает на вопрос: какой будет лингвистическая оценка выходного показателя при заданном сочетании лингвистических оценок факторов. Иерархический характер дерева вывода предусматривает необходимость построения нечетких матриц знаний для всех нетерминальных вершин и корня этого дерева.

Этап 3. Нечеткий логический вывод и дефазификация выходного показателя.

Техника нечеткого логического вывода, примененная к информации, собранной на предыдущих этапах, позволяет вычислить показатель, который прогнозируется, в виде нечеткого множества. Это нечеткое множество определяет уровень выхода биогаза для фиксированного вектора влияющих факторов. Чтобы перейти от полученного нечеткого множества к количественной оценке нужно выполнить процедуру дефазификации, т. е. преобразования нечеткой информации в четкую форму. Среди разных методов дефазификации наиболее распространенным является нахождение "центра масс" плоской фигуры, ограниченной функцией принадлежности нечеткого множества и горизонтальной координатой. Модель нечеткого логического вывода вместе с процедурой дефазификации обеспечивает возможность наблюден цем изменением выходного показателя при вариации влияющих факторов.

8.5.2. Дерево вывода

Дерево вывода, определяющее последовательности расчетов при прогнозировании количества биогаза, показано на рис. 8.18. Одинарными кружками обозначены влияющие факторы, которые приведены в табл. 8.21. Они рассматриваются как лингвистические переменные, заданные на соответствующих универсальных множествах с помощью нечетких термов. Функции принадлежности нечетких термов, приведенных в табл. 8.21, получены методом парных сравнений и изображены на рис. 8.19.
<table>
<thead>
<tr>
<th>Обозначение и название переменной</th>
<th>Универсальное множество</th>
<th>Термы для оценки</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1 - качество сырья</td>
<td>(5±13) у.е.</td>
<td>коровы(1), бычки(2), свиньи(3), куры(4), индюки(5)</td>
</tr>
<tr>
<td>y_2 - влажность сырья</td>
<td>(80±98) %</td>
<td>низкая(1), нормальная(2), высокая(3)</td>
</tr>
<tr>
<td>y_3 - гранулометрический состав</td>
<td>(1±2) у.е.</td>
<td>измельчено(1), неизмельчено(2)</td>
</tr>
<tr>
<td>y_4 - количество жирных кислот</td>
<td>(600±1500) мг/л</td>
<td>норма(1), много(2)</td>
</tr>
<tr>
<td>y_5 - водородный показатель</td>
<td>(6.5±8.5) РН</td>
<td>кислый(1), нейтральный(2), щелочной(3)</td>
</tr>
<tr>
<td>z_1 - время сбраживания</td>
<td>(5±15) суток</td>
<td>малое(1), нормальное(2), повышенное(3)</td>
</tr>
<tr>
<td>w_1 - температура брожения</td>
<td>(15±55)°С</td>
<td>психрофильный(1), мезофильный(2), термофильный(3)</td>
</tr>
<tr>
<td>w_2 - стабильность температурного режима</td>
<td>(0±0.3) Δt/t</td>
<td>низкая(1), удовлетворительная(2), высокая(3)</td>
</tr>
<tr>
<td>z_3 - качество перемешивания</td>
<td>(0±4) у.е.</td>
<td>без перемешивания(1), минимальное(2), обычное(3)</td>
</tr>
<tr>
<td>z_4 - содержание метано- генной микрофлоры</td>
<td>$(0.1±4\times10^{10})$ клет/Г(СВ)</td>
<td>низкое(1), среднее(2), высокое(3)</td>
</tr>
<tr>
<td>z_5 - доза загрузки реагтора</td>
<td>(6±20) %</td>
<td>низкая(1), средняя(2), высокая(3)</td>
</tr>
<tr>
<td>x_1 - тип биореактора</td>
<td>(1±1.5) у.е.</td>
<td>примитивная(1), традиционная(2), модернизированная(3)</td>
</tr>
<tr>
<td>x_2 - степень иммобилизации</td>
<td>(1±3) у.е.</td>
<td>незначительная(1), достаточная(2), высокая(3)</td>
</tr>
<tr>
<td>v_2 - качество дополнительного оборудования</td>
<td>(0±100) баллов</td>
<td>низкое(1), среднее(2), высокое(3)</td>
</tr>
<tr>
<td>v_3 - качество аппаратно- схемного оформления</td>
<td>(0±100) баллов</td>
<td>низкое(1), среднее(2), высокое(3)</td>
</tr>
</tbody>
</table>
В табл. 8.21 использованы следующие обозначения: у.е. – условные единицы, \(\Delta t/t \) – отношение наибольшего отклонения температуры к заданному уровню, РН – водородный показатель, клеток/Г(СВ) – клеток на грамм сухого вещества. Для факторов \(v_2 \) и \(v_3 \), характеризующих качество биореактора, выбрана стобальная шкала интегральной оценки. Но каждый из этих факторов может рассматриваться на более глубоких уровнях детализации.

Рис. 8.18. Дерево логического вывода
Рис. 8.19. Функции принадлежности нечетких термов
8.5.3. Нечеткие матрицы знаний

Двойными кружками на дереве вывода (рис. 8.18) показаны зависимости вида

\[Q = f_4(Y, Z, V), \]

\[Y = f_y(y_1, y_2, y_3, y_4, y_5), \]

\[Z = f_z(z_1, z_2, z_3, z_4, z_5), \]

\[V = f_v(v_1, v_2, v_3), \]

\[z_2 = f_{z_2}(w_1, w_2), \]

\[v_1 = f_{v_1}(x_1, x_2). \]

Для представления этих зависимостей лингвистическими правилами «ЕСЛИ-ТО» введены нечеткие термы-оценки переменных, которые стоят в левых частях зависимостей (8.8)-(8.13). Эти термы приведены рядом со стрелками, которые выходят из двойных кружков на дереве вывода. Здесь обозначено: оН = очень низкий; Н = низкий, нС = ниже среднего, С = средний, вС = выше среднего, В = высокий, оВ = очень высокий.

Использование нечетких термов позволяет задать экспертные высказывания для всех зависимостей (8.8) - (8.13). Например, для зависимости (8.8) такие высказывания имеют вид:

ЕСЛИ качество сырья \(Y \) = (Н, нС, С, вС, В),
И качество технологии \(Z \) = (Н, нС, С, вС, В),
И качество аппаратуры \(V \) = (Н, нС, С, вС, В),
ТО выход биогаза \(Q \) = (оН, Н, нС, С, вС, В, оВ).

Нечеткая матрица знаний, используемая для моделирования зависимости (8.8), представлена в табл. 8.22. Аналогичные матрицы знаний построены для зависимостей (8.9) - (8.13). Количество строк, которые задавались экспертом для каждого уровня выходной переменной, составляло от 1 до 5. Общая база знаний для дерева вывода содержит 53 экспертных высказывания.

8.5.4. Нечеткий логический вывод и дефаззификация

Прогнозирование выхода биогаза \(Q \) осуществляется с использованием обобщенного элемента нечеткого логического вывода, который описывает за
<table>
<thead>
<tr>
<th>Качество выходного сырья (Y)</th>
<th>Качество технологического процесса (Z)</th>
<th>Качество аппаратно-схемного оформления (V)</th>
<th>ТО</th>
<th>Выход биогаза (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>низкое</td>
<td>низкое</td>
<td>низкое</td>
<td>очень низкий</td>
<td></td>
</tr>
<tr>
<td>низкое</td>
<td>низкое</td>
<td>высокое</td>
<td>низкий</td>
<td></td>
</tr>
<tr>
<td>ниже среднего</td>
<td>ниже среднего</td>
<td>низкое</td>
<td>ниже среднего</td>
<td></td>
</tr>
<tr>
<td>среднее</td>
<td>ниже среднего</td>
<td>низкое</td>
<td>средний</td>
<td></td>
</tr>
<tr>
<td>выше среднего</td>
<td>выше среднего</td>
<td>высокое</td>
<td>выше среднего</td>
<td></td>
</tr>
<tr>
<td>высокое</td>
<td>высокое</td>
<td>высокое</td>
<td>высокий</td>
<td></td>
</tr>
</tbody>
</table>

Высочность \(y = f_y \left(x_1, x_2, \ldots, x_n \right) \) при помощи системы высказываний \(\text{ЕСЛИ-ТО} \). Последовательное применение этой обобщенной модели к дереву вывода (рис. 8.18) позволяет вычислить нечеткое множество \(Q \) для выходного количества биогаза в заданной точке факторного пространства:

\[
\overline{Q} = (Y, Z, V, X, W) = \left\{ \frac{\mu^{q_1} \left(Q \right)}{d_1}, \frac{\mu^{q_2} \left(Q \right)}{d_2}, \ldots, \frac{\mu^{q_m} \left(Q \right)}{d_m} \right\}
\]

(8.14)

где \(l \) - количество нечетких термов для оценки переменной \(Q \) (в нашем случае \(l = 7 \)), \(q_i \) - название \(i \)-го терма, \(i = 1, l, \mu^{q_i} \left(Q \right) \) степень принадлежности переменной \(Q \) к терму \(q_i \), \(d_i \) - количественное значение переменной \(Q \) для терма \(q_i \).

Дефаззификация нечеткого множества (8.14) по принципу центра тяжести дает количественную оценку \(Q^* \) выхода биогаза при заданных значениях влияющих факторов:

\[
Q^* = \left(Y^*, Z^*, V^*, X^*, W^* \right) = \frac{\sum_{i=1}^{l} \frac{Q + (i-1) \overline{Q} - Q}{l-1} \mu^{q_i} \left(Q \right)}{\sum_{i=1}^{l} \mu^{q_i} \left(Q \right)}
\]

(8.15)
где \underline{Q} (\overline{Q}) - нижнее (верхнее) количественное значение переменной Q.

8.5.5. Примеры моделирования

Нечеткий логический вывод с последующей дефаззификацией дает возможность не только прогнозировать выход газа, но и наблюдать за изменением количества биогаза при вариации влияющих факторов. Пусть заданы такие текущие значение факторов:

$y_1^* = 7$ у.e. (бычки); $z_1^* = 10$ сут.; $z_5^* = 10\%$;

$y_2^* = 84\%$; $w_1^* = 35^\circ C$; $x_1^* = 1.25$ у.e.;

$y_3^* = 2$ у.e. (измельчено); $w_2^* = 0.15\Delta t/t$; $x_2^* = 2$ у.e.;

$y_4^* = 1200$ м; $z_3^* = 2$ у.e.; $v_2^* = 50$ баллов;

$y_5^* = 7$ РН; $z_4^* = 2 \times 10^{10}$ клеток/Г(СВ); $v_3^* = 50$ баллов.

В результате расчета по дереву вывода получаем степени принадлежности выходного количества биогаза каждому из семи нечетких термов:

$\mu^{oH}(Q) = 0.335$; $\mu^C(Q) = 0.55$; $\mu^{oB}(Q) = 0.33$.

$\mu^{H}(Q) = 0.335$; $\mu^{8C}(Q) = 0.57$;

$\mu^{uC}(Q) = 0.55$; $\mu^B(Q) = 0.47$;

Пусть нижняя и верхняя оценки выходной величины Q составляют: $\underline{Q} = 1$ м3/сут., $\overline{Q} = 7$ м3/сут. Тогда дефаззификация по формуле (8.15) обеспечивает следующий прогноз выхода биогаза:

$$Q^* = \frac{1 \cdot 0.335 + 2 \cdot 0.355 + 3 \cdot 0.55 + 4 \cdot 0.55 + 5 \cdot 0.57 + 6 \cdot 0.47 + 7 \cdot 0.33}{0.335 + 0.355 + 0.55 + 0.55 + 0.57 + 0.47 + 0.33} = 4.088 \text{ м}^3/\text{сут.}$$
Для исследования чувствительности величины \(Q^* \) к изменению влияющих факторов проводились компьютерные эксперименты с разработанными моделями. В этих экспериментах по очереди менялся один из факторов, а другие фиксировались на средних уровнях в своих диапазонах. Некоторые из результатов изображены на рис. 8.20. Полученные однофакторные зависимости не противоречат известным экспертным оценкам, что позволяет судить об адекватности разработанной модели. Увеличение точности моделирования может быть достигнуто за счет настройки функций принадлежности (рис. 8.19) по мере накопления реальных экспериментальных данных.

Рис. 8.20. Однофакторные зависимости выходного количества биогаза от влияющих факторов
8.6. Оценка дипломных проектов

Усовершенствование системы оценки качества дипломного проектирования представляет интерес в двух аспектах: информационном и управленческом. Информационный аспект связан с возможностью создания автоматизированных банков данных, содержащих информацию о личных и профессиональных качествах студента-дипломника. Управленческий аспект состоит в том, что во время дипломирования студент-дипломник должен иметь возможность оперативно прогнозировать свою будущую оценку и вносить коррективы для ее улучшения.

Известная методика оценки дипломных проектов и работ [11] базируется на скаларизации векторного критерия качества при помощи весовых коэффициентов. Последние выбираются экспертно, отображая важность каждого частичного показателя качества и его вклад в интегральный показатель, который оценивается по традиционной пяти бальной системе.

Не останавливаясь подробно на известных из теории многокритериальной оценки трудностях в подборе весовых коэффициентов, следует признать, что главным недостатком методики [11] является то, что она весьма далека от реальной схемы рассуждений, которыми пользуются квалифицированные специалисты (члены комиссии) при оценке работы дипломника. Эти рассуждения выглядят примерно так:

ЕСЛИ работа актуальна, выполнена самостоятельно, решения глубоко обоснованы, оформление отвечает стандартам, результаты пригодны к внедрению, во время защиты даются четкие ответы на вопросы,
ТО дипломник заслуживает отличной оценки.

Рассуждения такого рода, зафиксированные в виде словесных инструкций (нечетких алгоритмов) есть, как правило, на всех выпускающих кафедрах. Поэтому целесообразно их непосредственное использование для оценки качества дипломного проектирования [39].

8.6.1. Интегральные и частные показатели

Процесс дипломного проектирования начинается с получения задания и заканчивается публичной защитой проекта перед членами государственной экзаменационной комиссии (ГЭК). При этом источниками первичной информации о качестве деятельности студента-дипломника являются: руководитель проекта, который располагает сведениями о работе студента во время дипломирования; рецензент (оппонент), который оценивает дипломный проект как конечный продукт, не имея информации о личных качествах дипломника; члены ГЭК, которые принимают конечное решение с учетом качества защиты проекта.
Обозначим R - интегральный показатель качества дипломного проектирования. Для оценки этого показателя с учетом трех названных выше источников информации выделим:

X - качество процесса подготовки дипломного проекта, которое оценивается, руководителем на основе таких частных показателей: x_1 - добротность студента дипломника; x_2 - умение самостоятельно работать с литературой; x_3 - достижение цели, поставленной руководителем; x_4 - объем самостоятельно полученных результатов;

Y - качество дипломного проекта как продукта, которое оценивается рецензентом на основе таких частных показателей: y_1 - обоснование актуальности; y_2 - качество обзора литературы; y_3 - новизна работы; y_4 - глубина обоснования решений; y_5 - возможность практического использования; y_6 - соблюдение стандартов; y_7 - качество графических материалов; y_8 - грамотность изложения, y_9 - научно-технический уровень разработки;

Z - качество заработанной работником степени, которое оценивается ГЭК.

Рис. 8.21. Взаимосвязь интегрального и частных показателей

8.6.2. Уровни качества

Традиционная 5-ти-балльная система оценки качества знаний не позволяет учитывать различные градации (оттенки) качества, например, твердая четверка, четверка с натяжкой и т.д. Поэтому оценку качества дипломного проектирования будем проводить на 7-ми уровнях: \(r_1 \) - очень низкий; \(r_2 \) - низкий; \(r_3 \) - ниже среднего; \(r_4 \) - средний; \(r_5 \) - выше среднего; \(r_6 \) - высокий; \(r_7 \) - очень высокий.

Чем больше уровней имеет показатель качества, тем точнее его оценка. Но использование более 9 уровней не целесообразно, поскольку из психологии известно, что в оперативной памяти человека удерживается одновременно не больше, чем \(7 \pm 2 \) понятий [64]. Переход от введенной 7-ми уровневой системы к традиционной 5-ти-балльной системе может осуществляться по-разному в зависимости от так называемой планки учебного заведения. Она зависит от многих факторов, среди которых важнейшими являются уровни квалификации.
ции, требовательности и принциpiалности руководителя проекта, рецензента и членов ГЭК. Из рис. 8.22 видно, что снижение планки осуществляется с переходом от варианта а), где она самая высокая, к варианту в), где она самая низкая.

8.6.3. Оценка частных показателей по принципу термометра

Особенность частных показателей \(x_1 \div x_4, y_1 \div y_9 \) и \(z_1 \div z_4 \), состоит в том, что все они имеют качественный характер, т.е. не имеют точного количественного измерения. Поэтому при оценке одного и того же показателя несколькими экспертами могут возникать разные мнения. Кроме того эксперт не всегда способен словесно оценить частный показатель, а эти интуитивно ощущает его уровень. Для преодоления этих трудностей можно оценивать частичные показатели по принципу термометра (рис. 8.23).

![Рис. 8.23. Оценка переменной \(u \) по принципу термометра](image)

Удобство такого подхода состоит в том, что разные по смыслу частные показатели определяются как лингвистические переменные, заданные на едином универсальном множестве

\[
U = \left[\frac{u}{-u} \right],
\]

(8.20)

которым является шкала термометра. Снижение субъективизма может быть достигнуто за счет использования рекомендаций из табл. 8.23. Например, зараженная часть шкалы на рис. 8.23 для показателя "НОВИЗНА РАБОТЫ", соответствует уровню перспективных образцов.

8.6.4. Оценка интегрального показателя

Предположим, что лингвистические переменные \(x_1 \div x_4, y_1 \div y_9, z_1 \div z_4 \) и \(X, Y, Z \) оцениваются нечеткими термами: Н - низкий, нС - ниже
<table>
<thead>
<tr>
<th>Частный показатель</th>
<th>Минимальный уровень</th>
<th>Средний уровень</th>
<th>Максимальный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Новизна работы</td>
<td>Ниже среднего уровня</td>
<td>Уровень средних образцов</td>
<td>Перспективные образцы</td>
</tr>
<tr>
<td>Качество обзора литературы</td>
<td>Недостаточный анализ</td>
<td>Отечественная литература</td>
<td>Современная отечественная литература</td>
</tr>
<tr>
<td>Глубина обоснования решений</td>
<td>Вариантные расчеты отсутствуют</td>
<td>Есть результаты только одного варианта</td>
<td>Обоснован выбор оптимального варианта</td>
</tr>
<tr>
<td>Возможность практического использования</td>
<td>Нет конкретных практических рекомендаций</td>
<td>Результаты имеют рекомендационный характер</td>
<td></td>
</tr>
<tr>
<td>Качество графического материала</td>
<td>Не раскрывают смысл проекта</td>
<td>Не полностью раскрывают смысл, есть погрешность в оформлении</td>
<td>Полностью раскрывают смысл и отвечают ГОСТ</td>
</tr>
<tr>
<td>Грамотность изложения</td>
<td>Много стилистических и грамматических ошибок</td>
<td>Есть отдельные грамматические ошибки</td>
<td>Текст читается легко, ошибки отсутствуют</td>
</tr>
<tr>
<td>Научно-технический уровень</td>
<td>Использование ЭВМ отсутствует или носит второстепенный характер</td>
<td>Современные пакеты программ в основной части</td>
<td>Оригинальные программно-технические средства в основной части работы</td>
</tr>
<tr>
<td>Качество доклада</td>
<td>Не раскрывает тему проекта</td>
<td>Не соблюден регламент, не достаточно раскрыта тема проекта</td>
<td>Есть ошибки в регламенте и использовании плакатов</td>
</tr>
<tr>
<td>Качество чертежей</td>
<td>Не отвечают докладу, выполнены на низком уровне</td>
<td>Не полностью отвечают содержанию доклада, есть ошибки в оформлении и отклонение от стандартов</td>
<td>Есть незначительные потребности в оформлении</td>
</tr>
<tr>
<td>Качество ответов на вопросы</td>
<td>Не может ответить на дополнительные вопросы</td>
<td>Знание основного материала</td>
<td>Высокая эрудиция, нет существенных ошибок</td>
</tr>
</tbody>
</table>
Рис. 8.24. Функции принадлежности нечетких термов

нечеткие значения входных и выходных переменных. Например, из табл. 8.24 видно, что условием очень высокого \((r_7)\) качества дипломного проектирования \((R)\) является высказывание:

Если \((X = B)\) и \((Y = B)\) и \((Z = B)\) или \((X = vC)\) и \((Y = B)\) и \((Z = B)\),
то \(R = r_7\).

Таблица 8.24
Фрагмент знаний о соотношениях (8.16)

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>(B)</td>
<td>(B)</td>
<td>(r_7)</td>
</tr>
<tr>
<td>(vC)</td>
<td>(B)</td>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>(B)</td>
<td>(B)</td>
<td>(r_6)</td>
</tr>
<tr>
<td>(vC)</td>
<td>(vC)</td>
<td>(vC)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(H)</td>
<td>(H)</td>
<td>(H)</td>
<td>(r_1)</td>
</tr>
<tr>
<td>(Y)</td>
<td>(Yc)</td>
<td>(Y)</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 8.25
Фрагмент знаний о соотношениях (8.17)

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>(B)</td>
<td>(B)</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>(vC)</td>
<td>(vC)</td>
<td>(B)</td>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>(vC)</td>
<td>(B)</td>
<td>(B)</td>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>(C)</td>
<td>(vC)</td>
<td>(vC)</td>
<td></td>
</tr>
<tr>
<td>(H)</td>
<td>(vC)</td>
<td>(vC)</td>
<td>(vC)</td>
<td></td>
</tr>
<tr>
<td>(vC)</td>
<td>(vC)</td>
<td>(vC)</td>
<td>(vC)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(B)</td>
<td>(B)</td>
<td>(H)</td>
<td>(H)</td>
<td>(B)</td>
</tr>
<tr>
<td>(C)</td>
<td>(C)</td>
<td>(H)</td>
<td>(H)</td>
<td>(vC)</td>
</tr>
<tr>
<td>(H)</td>
<td>(H)</td>
<td>(H)</td>
<td>(H)</td>
<td>(H)</td>
</tr>
</tbody>
</table>

277
8.6.5. Возможные обобщения

Задача оценки качества дипломного проектирования, один из методов решения которой предложен в этом разделе, принадлежит к широкому классу задач оценки качества интеллектуальной деятельности. Типичными представителями таких видов деятельности являются: подготовка статей, диссертаций, инновационных проектов и другой технической продукции.

Использование нечеткой логики для решения такого рода задач позволяет максимально приблизить математическую модель оценки качества к логике

<table>
<thead>
<tr>
<th>(y_1)</th>
<th>(y_2)</th>
<th>(y_3)</th>
<th>(y_4)</th>
<th>(y_5)</th>
<th>(y_6)</th>
<th>(y_7)</th>
<th>(y_8)</th>
<th>(y_9)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(z_1)</th>
<th>(z_2)</th>
<th>(z_3)</th>
<th>(z_4)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Нечеткие логические уравнения, поставленные в соответствие табл. 8.24-8.27, позволяют оценивать интегральное качество дипломного проектирования для фиксированных значений частных показателей (табл. 8.28). Автоматизированная система оценки качества дипломного проектирования описана в [39].

Опыт применения системы показал, что она дает ряд позитивных эффектов, которые способствуют повышению качества дипломного проектирования. Во-первых, студент-дипломник может оперативно прогнозировать свою оценку, тем самым управляя качеством собственной деятельности во время дипломирования. Во-вторых, благодаря существованию формализованного бланка оценки частных показателей, заведующий кафедрой может оперативно контролировать качество и объективность отзывов, которые подают руководитель и ректор на каждый дипломный проект. В-третьих, выпускающая кафедра накапливает банк данных о качестве деятельности всех своих выпускников. В-четвертых, появляется возможность оценки планки учебного заведения, благодаря сопоставлению расчетных 7-ми уровневых оценок, и окончательных оценок по пятибалльной системе, которые выставляет ГЭК (рис. 8.22).
Таблица 8.28

Примеры оценки качества дипломного проектирования

<table>
<thead>
<tr>
<th>Частный показатель</th>
<th>Стudiant 1</th>
<th>Стudiant 2</th>
<th>Стudiant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Интегральный показатель R

<table>
<thead>
<tr>
<th></th>
<th>НИЗКИЙ</th>
<th>ОЧЕНЬ ВЫСОКИЙ</th>
<th>НИЖЕ СРЕДНЕГО</th>
</tr>
</thead>
</table>

рассуждений квалифицированных специалистов, принимающих оценочные решения. Построение нечетких экспертных систем, которые основаны на предложенной методике, дает возможность не только оценить качество интеллектуальной деятельности, но и создает условия для ее проектирования, т.е. такого управления частными показателями, при котором интегральный показатель качества будет принимать желаемое значение.
8.7. Оценка кредитоспособности инновационных проектов

Описываемая здесь экспертная система создавалась на базе оболочки FUZZY EXPERT по заказу инновационного фонда Украины и эксплуатируется в 20-ти региональных отделениях этого фонда. Типы решений, перечень частных показателей и базы знаний определялись группой экспертов под руководством Н.И. Петренко.

8.7.1. Типы решений и частные показатели качества

Оценка качества инновационного проекта используется для принятия одного из следующих решений: d_1 - финансировать, d_2 - финансировать после доработки, d_3 - финансировать при наличии средств, d_4 - отклонить.

Обозначим через D - интегральный показатель качества инновационного проекта. Для оценки этого показателя будем использовать следующую информацию:

X - уровень предприятия-заявителя, который оценивается с учетом следующих частных показателей: x_1 - уровень руководителя предприятия, x_2 - активы предприятия, x_3 - пассивы предприятия, x_4 - балансовая прибыль предприятия, x_5 - дебиторская задолженность предприятия, x_6 - кредиторская задолженность предприятия. Для оценки уровня руководителя предприятия принимаются во внимание следующие показатели: a_1 - коммуникабельность, a_2 - надежность, a_3 - образование, a_4 - опыт работы руководителя, a_5 - комфортность;

Y - технико-экономический уровень проекта, для оценки которого используются следующие частные показатели: y_1 - масштаб проекта, y_2 - новизна проекта, y_3 - приоритетность направления, y_4 - степень проработки, y_5 - правовая защищенность, y_6 - экологический уровень;

V - уровень ожидаемых продаж;

Z - финансовый уровень предприятия-заявителя, который оценивается с учетом следующих частных показателей: z_1 - соотношение собственных средств к средствам инновационного фонда, z_2 - возвращаемость инновационных средств.

Задача оценки состоит в том, чтобы поставить в соответствие некоторому инновационному проекту с известными частными показателями одно из решений $d_1 \div d_4$.

280
8.7.2. Нечеткие базы знаний

Взаимосвязь принятых показателей качества инновационного проекта изображена на рис. 8.25 в виде дерева логического вывода, которому соответствует система отношений:

\[D = f_D (X, Y, V, Z), \] \hspace{1cm} (8.21)

\[X = f_X \left(x_1, x_2, x_3, x_4, x_5, x_6 \right), \] \hspace{1cm} (8.22)

\[x_1 = f_{x_1} \left(a_1, a_2, a_3, a_4, a_5 \right). \] \hspace{1cm} (8.23)

\[Y = f_Y \left(y_1, y_2, y_3, y_4, y_5, y_6 \right), \] \hspace{1cm} (8.24)

\[Z = f_Z \left(z_1, z_2 \right). \] \hspace{1cm} (8.25)

Рассматриваемые частные показатели \(x_1 \div x_6, a_1 \div a_5, y_1 \div y_6, V, z_1 \) и \(z_2 \), а также укрупненные показатели \(X, Y, Z \) рассматриваются как лингвистические переменные с единой шкалой качественных термов: oH - очень низкий, H - низкий, вС - ниже среднего, C - средний, вC - выше среднего, B - высокий, oB - очень высокий.

Каждый из этих термов представляет нечеткое множество, заданное с помощью соответствующей функции принадлежности.

Знания, соответствующие соотношениям (8.21) - (8.25), представлены в табл. 8.29-8.33.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(V)</th>
<th>(Z)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>(d_1)</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td>вC</td>
<td></td>
</tr>
<tr>
<td>вC</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>вC</td>
<td>вC</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>(d_3)</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>вC</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(d_4)</td>
</tr>
<tr>
<td>C</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
Рис. 8.25. Дерево логического вывода
Таблица 8.30

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td>H</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>нС</td>
<td>нС</td>
<td>нС</td>
<td>нС</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>нC</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>вC</td>
<td>вC</td>
<td>C</td>
<td>вC</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>В</td>
<td>В</td>
<td>H</td>
<td>В</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>В</td>
<td>С</td>
<td>вC</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Таблица 8.31

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>оH</td>
<td>оH</td>
<td>оH</td>
<td>оH</td>
<td>оH</td>
<td>оH</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>нC</td>
<td>C</td>
<td>нС</td>
<td>C</td>
<td>нC</td>
<td>нC</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>вC</td>
<td>В</td>
<td>вC</td>
<td>В</td>
<td>C</td>
<td>вC</td>
</tr>
<tr>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
</tr>
<tr>
<td>оB</td>
<td>оB</td>
<td>оB</td>
<td>оB</td>
<td>оB</td>
<td>оB</td>
</tr>
</tbody>
</table>

Таблица 8.32

<table>
<thead>
<tr>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_4</th>
<th>y_5</th>
<th>y_6</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>оH</td>
<td>оH</td>
<td>оH</td>
<td>оH</td>
<td>оH</td>
<td>оH</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>С</td>
<td>С</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C</td>
<td>нC</td>
</tr>
<tr>
<td>С</td>
<td>С</td>
<td>С</td>
<td>С</td>
<td>С</td>
<td>С</td>
<td>С</td>
</tr>
<tr>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>вC</td>
<td>вC</td>
</tr>
<tr>
<td>оB</td>
<td>оB</td>
<td>оB</td>
<td>оB</td>
<td>оB</td>
<td>оB</td>
<td>В</td>
</tr>
</tbody>
</table>

Таблица 8.33

<table>
<thead>
<tr>
<th>z_1</th>
<th>z_2</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>оH</td>
<td>оH</td>
<td>H</td>
</tr>
<tr>
<td>С</td>
<td>H</td>
<td>нC</td>
</tr>
<tr>
<td>С</td>
<td>С</td>
<td>С</td>
</tr>
<tr>
<td>вC</td>
<td>B</td>
<td>вC</td>
</tr>
<tr>
<td>оB</td>
<td>оB</td>
<td>B</td>
</tr>
</tbody>
</table>

8.7.3. Функции принадлежности и примеры оценки

Для моделирования использовались колоколообразные функции принадлежности, заданные на едином универсальном множестве $U = [0, 100]$ с параметрами центра (b) и сжатия-растяжения (c), представленными в табл. 8.34.
Таблица 8.34

<table>
<thead>
<tr>
<th>Терм</th>
<th>oH</th>
<th>H</th>
<th>nC</th>
<th>C</th>
<th>вC</th>
<th>B</th>
<th>oB</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.0</td>
<td>16.7</td>
<td>33.3</td>
<td>50.0</td>
<td>66.7</td>
<td>83.3</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Примеры оценки трех инновационных проектов представлены в табл. 8.35. Для оценивания частных критериев по шкале термометра разработана специальная методика, которая аналогична табл. 8.23.

Таблица 8.35

<table>
<thead>
<tr>
<th>Частный критерий</th>
<th>Проект 1</th>
<th>Проект 2</th>
<th>Проект 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Решение</th>
<th>финансировать при наличии средств</th>
<th>финансировать</th>
<th>финансировать после доработки</th>
</tr>
</thead>
</table>

284
8.8. Управление динамической системой

Понятие динамической системы традиционно связывается с ее количественным описанием на языке дифференциальных (или других) уравнений [7]. Классическая теория автоматического регулирования (управления) предполагает, что такие уравнения можно построить на основе законов физики: механики, термодинамики, электромагнетизма [3]. Построение уравнений динамики требует глубокого понимания процессов, происходящих в объекте управления, и высокой физико-математической квалификации [20]. Между тем, человек способен управлять сложными объектами, не составляя и не решая никаких уравнений. Вспомним, например, с какой легкостью водитель паркует автомобиль. Даже новичок, впервые севший за руль, может управлять автомобилем, выполняя словесные команды инструктора, сидящего рядом.

Уникальным свойством человека является его способность к обучению и оценке наблюдаемых параметров на естественном языке: малая скорость, большое расстояние и т.п. Возможность формализации естественно-языковых высказываний обеспечивается теорией нечетких множеств. В этом разделе показывается, что, настраивая нечеткую базу знаний, можно управлять динамическим объектом не менее эффективно, чем с помощью классической теории управления.

8.8.1. Объект управления

В качестве объекта управления рассматривается перевернутый маятник (рис. 8.26), т. е. стержень, зафиксированный относительно тележки с возможностью колебаний в продольно-вертикальной плоскости.

![Diagram](image_url)

Рис. 8.26. Перевернутый маятник

285
Задача системы управления состоит в удержании перевернутого маятника в вертикальном положении за счет смещения тележки. Более привычный вариант такой задачи - это удерживание в вертикальном положении палки на пальце. В [3] показано, что к такому классу задач сводится моделирование ракет, сверхзвукового самолета, состава барж, толкаемых буксиром - всех тех объектов, в которых центр масс и точка приложения силы не совпадают.

Прежде чем перейти к дифференциальным уравнениям, описывающим управление перевернутым маятником, отметим, что вертикальное положение палки на пальце достигается с помощью простых правил:

Если угол отклонения палки от вертикали большой, то следует быстро перемещаться в том же направлении.

Если угол отклонения палки от вертикали малый, то следует осуществить малое перемещение в том же направлении.

Если угол отклонения палки от вертикали равен нулю, то не следует перемещаться вообще.

8.8.2. Классическая модель управления

Следуя [23], введем обозначения (рис. 8.26): l - длина маятника, m - масса маятника, M - масса тележки, g - ускорение свободного падения, u - управляющая сила, приложенная к тележке, f_x и f_y - горизонтальная и вертикальная составляющие сил, действующих на маятник, θ - угол отклонения маятника от вертикали, I - момент второго порядка в плоскости качания маятника, $I = \frac{ml^2}{3}$.

Уравнение движения перевернутого маятника как объекта управления можно записать следующим образом [23]:

крутящий момент относительно точки G

$$\ddot{\theta} = f_x \cos \theta + f_y \sin \theta ;$$

смещение проекции точки G на ось y

$$f_y - mg = m \frac{d^2}{dt^2} (l \cos \theta) = -ml (\ddot{\theta} \sin \theta + \dot{\theta}^2 \cos \theta) ;$$

смещение проекции точки G на ось x

$$f_x = m \frac{d^2}{dt^2} (x - l \sin \theta) = mx - ml (\ddot{\theta} \cos \theta - \dot{\theta}^2 \sin \theta) ;$$

286
перемещение тележки (параллельно оси x)

\[u - f_x = M \ddot{x} \]

Линейная аппроксимация этих уравнений при условии управления углом \(\theta \) в достаточно малой области \(\cos \theta \approx 1, \sin \theta \approx \theta, \theta \dot{\theta} \approx 0, \dot{\theta}^2 \approx 0 \) позволяет упростить такую систему уравнений и привести ее к виду:

\[l \ddot{\theta} = f_x l + f_y l \theta; \]

\[f_y - mg = 0; \]

\[f_x = m \ddot{x} - ml \ddot{\theta}; \]

\[u - f_x = M \ddot{x}. \]

Подставляя в первое уравнение выражения для \(f_x \) и \(f_y \), найденные из остальных уравнений, получим дифференциальное уравнение движения перевернутого маятника в форме:

\[
\dot{\theta} = \frac{3 g (M + m)}{(4 M + m) l} \theta + \frac{3 u}{(4 M + m) l}. \quad (8.26)
\]

Для удерживания маятника в вертикальном положении с помощью обычной системы управления с обратной связью зададим управляющую переменную в виде:

\[u = \alpha \theta + \beta \dot{\theta}, \quad (8.27) \]

что соответствует пропорционально-дифференциальному (ПД) регулятору.

Для обеспечения устойчивости выберем значения коэффициентов:

\[\alpha = -10, \beta = -2, \]

что дает отрицательные значения корней

\[\lambda_1 = -2.98, \lambda_2 = -16.99 \]

в характеристическом уравнении

\[
\lambda^2 - \frac{3 \beta}{(4 M + m) l} \lambda - \frac{3 g (M + m) + 3 \alpha}{(4 M + m) l} = 0,
\]

287
соответствующем (8.26).

Таким образом, для удержания перевернутого маятника в вертикальном положении можно использовать управляющее воздействие

\[u = -10 \theta - 2 \dot{\theta}, \]
(8.28)

при котором уравнение устойчивого движения имеет вид:

\[\ddot{\theta} = -\frac{6}{(4M + m)l} \dot{\theta} + \frac{3g\left(M + m \right) - 30}{(4M + m)l} \theta \]
(8.29)

В табл. 8.36 приведена динамика изменения переменных \(\theta \) (рад) и \(\dot{\theta} \) (рад/с), полученная из (8.29) методом Рунге-Кутта, при различных начальных условиях: \(\gamma_1 \), \(\gamma_2 \) и \(\gamma_3 \). При решении уравнения (8.29) использовались следующие значения параметров:

\[m = 0,035 \text{ кг}, \quad M = 0,5 \text{ кг}, \quad l = 30 \text{ см}, \quad g = 9,8 \text{ м/с}^2. \]

Таблица 8.36

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\gamma_1)</th>
<th>(\gamma_2)</th>
<th>(\gamma_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\theta)</td>
<td>(\dot{\theta})</td>
<td>(\theta)</td>
</tr>
<tr>
<td>0.0</td>
<td>0.175</td>
<td>0.0000</td>
<td>0.105</td>
</tr>
<tr>
<td>0.1</td>
<td>0.150</td>
<td>-0.3523</td>
<td>0.090</td>
</tr>
<tr>
<td>0.2</td>
<td>0.115</td>
<td>-0.3261</td>
<td>0.069</td>
</tr>
<tr>
<td>0.3</td>
<td>0.086</td>
<td>-0.2540</td>
<td>0.052</td>
</tr>
<tr>
<td>0.4</td>
<td>0.064</td>
<td>-0.1908</td>
<td>0.039</td>
</tr>
<tr>
<td>0.5</td>
<td>0.048</td>
<td>-0.1421</td>
<td>0.029</td>
</tr>
<tr>
<td>0.6</td>
<td>0.035</td>
<td>-0.1056</td>
<td>0.021</td>
</tr>
<tr>
<td>0.7</td>
<td>0.026</td>
<td>-0.0784</td>
<td>0.016</td>
</tr>
<tr>
<td>0.8</td>
<td>0.020</td>
<td>-0.0582</td>
<td>0.012</td>
</tr>
<tr>
<td>0.9</td>
<td>0.015</td>
<td>-0.0432</td>
<td>0.009</td>
</tr>
<tr>
<td>1.0</td>
<td>0.011</td>
<td>-0.0321</td>
<td>0.006</td>
</tr>
<tr>
<td>1.1</td>
<td>0.008</td>
<td>-0.0238</td>
<td>0.005</td>
</tr>
<tr>
<td>1.2</td>
<td>0.006</td>
<td>-0.0177</td>
<td>0.004</td>
</tr>
<tr>
<td>1.3</td>
<td>0.004</td>
<td>-0.0131</td>
<td>0.003</td>
</tr>
<tr>
<td>1.4</td>
<td>0.003</td>
<td>-0.0098</td>
<td>0.002</td>
</tr>
<tr>
<td>1.5</td>
<td>0.002</td>
<td>-0.0072</td>
<td>0.001</td>
</tr>
<tr>
<td>1.6</td>
<td>0.002</td>
<td>-0.0054</td>
<td>0.001</td>
</tr>
<tr>
<td>1.7</td>
<td>0.001</td>
<td>-0.0040</td>
<td>0.001</td>
</tr>
<tr>
<td>1.8</td>
<td>0.001</td>
<td>-0.0030</td>
<td>0.001</td>
</tr>
<tr>
<td>1.9</td>
<td>0.001</td>
<td>-0.0022</td>
<td>0.000</td>
</tr>
<tr>
<td>2.0</td>
<td>0.001</td>
<td>-0.0016</td>
<td>0.000</td>
</tr>
</tbody>
</table>

288
В дальнейшем табл. 8.36 будет использована как обучающая выборка для настройки нечеткой модели управления.

8.8.3. Нечеткая модель управления

Зависимость управления \(u \) от переменных \(\theta \) и \(\dot{\theta} \) представим в виде базы знаний, сформированной из 25-ти экспертных правил типа:

Если \(\theta = A_i \) И \(\dot{\theta} = B_j \), ТО \(u = C_{ij} \), \(i = 1,5 \), \(j = 1,7 \).

Эти правила сведены в матрицу \(5 \times 5 \):

<table>
<thead>
<tr>
<th>Скорость изменения угла, (\dot{\theta})</th>
<th>О</th>
<th>Н</th>
<th>П</th>
<th>бП</th>
</tr>
</thead>
<tbody>
<tr>
<td>oB</td>
<td>oBO</td>
<td>oBO</td>
<td>6O</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>oBO</td>
<td>6O</td>
<td>O</td>
<td>H</td>
</tr>
<tr>
<td>Н</td>
<td>6O</td>
<td>O</td>
<td>Н</td>
<td>П</td>
</tr>
<tr>
<td>П</td>
<td>O</td>
<td>Н</td>
<td>П</td>
<td>бП</td>
</tr>
<tr>
<td>бП</td>
<td>Н</td>
<td>П</td>
<td>6П</td>
<td>обП</td>
</tr>
</tbody>
</table>

(8.30)

где переменные \(\theta \) и \(\dot{\theta} \) оцениваются на пяти уровнях:

\(A_1 = B_1 = \) отрицательный большой (oB),
\(A_2 = B_2 = \) отрицательный (O),
\(A_3 = B_3 = \) нулевой (Н),
\(A_4 = B_4 = \) положительный (П),
\(A_5 = B_5 = \) положительный большой (nP),

а переменная \(u \) оценивается на семи уровнях:

\(C_1 = \) очень большая отрицательная (oBO),
\(C_2 = \) большая отрицательная (6O),
\(C_3 = \) отрицательная (O),
\(C_4 = \) нулевая (Н),
\(C_5 = \) положительная (П),
\(C_6 = \) большая положительная (6П),
\(C_7 = \) очень большая положительная (обП).
В качестве обучающей выборки для настройки нечеткой базы знаний (8.30) использовались данные из табл. 8.36 и соотношение (8.28). Задача настройки состояла в подборе таких функций принадлежности нечетких термов A_i и B_j ($i = 1, 5$) и таких весов правил в (8.30), при которых достигается минимальное расхождение между теоретическим (база знаний (8.30)) и экспериментальным (табл. 8.36 и формула (8.28)) уравнениями. Полученные функции принадлежности представлены на рис. 8.27.

Веса нечетких правил после настройки соответствуют элементам матрицы:

<table>
<thead>
<tr>
<th>Угол отклонения, θ</th>
<th>об</th>
<th>О</th>
<th>Н</th>
<th>П</th>
<th>бП</th>
</tr>
</thead>
<tbody>
<tr>
<td>об</td>
<td>0.9837</td>
<td>0.3490</td>
<td>0.7902</td>
<td>0.8841</td>
<td>0.9015</td>
</tr>
<tr>
<td>О</td>
<td>0.3490</td>
<td>0.9111</td>
<td>0.3901</td>
<td>0.7509</td>
<td>0.2199</td>
</tr>
<tr>
<td>Н</td>
<td>0.7902</td>
<td>0.3901</td>
<td>0.7981</td>
<td>0.6381</td>
<td>0.5594</td>
</tr>
<tr>
<td>П</td>
<td>0.8841</td>
<td>0.7509</td>
<td>0.6381</td>
<td>0.3690</td>
<td>0.5114</td>
</tr>
<tr>
<td>бП</td>
<td>0.9015</td>
<td>0.2199</td>
<td>0.5594</td>
<td>0.5114</td>
<td>0.8708</td>
</tr>
</tbody>
</table>

Сравнение динамики изменения угла θ для классической и нечеткой модели при различных начальных условиях $(\gamma_1, \gamma_2, \gamma_3)$ представлено на рис. 8.28.

Рис. 8.27. Функции принадлежности нечетких уровней оценки переменных θ и $\bar{\theta}$

Рис. 8.28. Сравнение нечеткой и классической моделей управления после настройки
8.8.4. Связь с функциями Ляпунова

Покажем, что известные в теории устойчивости функции Ляпунова можно использовать для синтеза нечетких правил управления динамической системой.

Рассмотрим использование этого критерия применительно к общому нелинейному уравнению:

\[\dot{x} = f(x), \quad x(0) = x_0, \tag{8.31} \]

где \(x \) — вектор состояния системы.

Предположим, что \(f(0) = 0 \) и функция \(f \) непрерывна в окрестности начала координат.

Определение функции Ляпунова. Функция \(V(x) \) называется функцией Ляпунова (энергетической функцией) системы (8.31), если:

1) \(V(0) = 0 \),
2) \(V(x) > 0 \) для всех \(x \neq 0 \) в окрестности начала координат,
3) \(\frac{\partial V(x)}{\partial t} < 0 \) вдоль траектории системы (8.31).

Основной результат, полученный Ляпуновым, был сформулирован в виде следующей теоремы об устойчивости.

Теорема Ляпунова об устойчивости. Положение равновесия \(x = 0 \) системы (8.31) асимптотически устойчиво в том и только в том случае, если существует функция Ляпунова \(V(x) \) системы.

Подчеркнем, что метод Ляпунова требует знания уравнений динамики системы. Нас же будет интересовать случай, когда такие уравнения отсутствуют.

Вернемся к перевернутому маятнику (рис.8.26) и предположим, что известна лишь следующая априорная информация.
а) состояния системы определяются координатами $x_1 = \theta$ и $x_2 = \hat{\theta}$;
б) \dot{x}_2 пропорционально управлению u, т.е. если u возрастает (убывает), то \dot{x}_2 возрастает (убывает).

Для применения теоремы Ляпунова к перевернутому маятнику, выберем кандидатом на функцию Ляпунова следующую функцию:

$$V(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2).$$ (8.32)

Поскольку $V(0,0) = 0$ и $V(x_1, x_2) > 0$, то для того, чтобы $V(x_1, x_2)$ была функцией Ляпунова, необходимо обеспечить:

$$\frac{\partial V(x_1, x_2)}{\partial t} = x_1\dot{x}_1 + x_2\dot{x}_2 = x_1x_2 + x_2\dot{x}_2 < 0.$$ (8.33)

Нечеткую базу знаний об управлении $u = u(x_1, x_2)$ сформулируем как условия выполнения последнего неравенства. Для этого рассмотрим три случая.

Если x_1 и x_2 имеют противоположные знаки, то $x_1x_2 < 0$ и неравенство (8.33) будет выполняться при $x_2\dot{x}_2 = 0$.

Если x_1 и x_2 положительны, то (8.33) будет выполняться при $\dot{x}_2 < -x_1$.

Если x_1 и x_2 отрицательны, то (8.33) будет выполняться при $\dot{x}_2 > -x_1$.

Используя приведенные рассуждения и априорную информацию о том, что x_2 пропорционально u, получаем четыре нечетких правила устойчивого управления перевернутым маятником:

ЕСЛИ x_1 положительный И x_2 отрицательный,
ТО и нулевой,

ЕСЛИ x_1 отрицательный И x_2 положительный,
ТО и нулевой,

ЕСЛИ x_1 положительный И x_2 положительный,
ТО и большой отрицательный,

ЕСЛИ x_1 отрицательный И x_2 отрицательный,
ТО и большой положительный.
Настройка этой базы знаний может производиться путем подбора формы функций принадлежности соответствующих термов.
Принципиальные отличия классической и нечеткой систем управления представлены в табл. 8.37.

Таблица 8.37

<table>
<thead>
<tr>
<th>Тип системы</th>
<th>Достоинства</th>
<th>Недостатки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Классическая</td>
<td>Если имеется модель системы, адекватно описывающая ее динамику, то можно обойтись без настройки модели</td>
<td>Трудно получить дифференциальные уравнения, адекватно описывающие динамику системы с учетом различных нелинейных возмущений</td>
</tr>
<tr>
<td>Нечеткая</td>
<td>Дифференциальные уравнения не нужны. Модель динамики системы легко записывается в виде лингвистических правил.</td>
<td>Требуется настройка лингвистической модели.</td>
</tr>
</tbody>
</table>
ПОСЛЕСЛОВИЕ

Идентификация объекта состоит в построении его математической модели по экспериментальным данным. К различным постановкам задач идентификации сводится обработка информации не только в физике и технике, но и в медицине, биологии, социологии, экономике.

Эта книга посвящена теории и практике решения задач идентификации на основе так называемых интеллектуальных технологий, под которыми понимается комплекс «нечеткая логика + генетические алгоритмы + нейронные сети». Суть интеллектуальности заключается в унифицированном для всех задач представлении структуры объекта в виде лингвистических правил «ЕСЛИ-ТО», отражающих человеческие рассуждения на уровне здравого смысла и практических знаний. Это принципиально отличает предлагаемый подход от классических методов идентификации [53-55], в которых структура объекта моделируется различного рода уравнениями: дифференциальными, разностными и др. Для формализации лингвистических знаний нами используется специально введенные нечеткие логические уравнения, которые настраиваются (обучаются) генетическими алгоритмами и нейронными сетями.

Следует заметить, что нечеткая логика ошибочно воспринимается многими специалистами по математическому моделированию как средство принятия лишь приближенных решений в медицине, экономике, искусствоведении и др. отличных от физики и техники гуманитарных областях, где не требуется высокая точность. Поэтому одна из основных задач автора состояла в том, чтобы показать, что настраивая нечеткие базы знаний, можно достигать точности моделирования, не уступающей строгим количественным соотношениям.

Многочисленные примеры, рассмотренные в этой книге, свидетельствуют о широких возможностях интеллектуальных технологий моделирования в различных областях человеческой деятельности. О междисциплинарном характере такого подхода можно судить, в частности, по обзору [50], в котором описываются новое направление теоретической физики, основанное на использовании качественных знаний.

Использование нечеткой экспертной информации о нелинейном объекте позволяет уменьшить объем экспериментальных исследований, что дает значительный перевес перед известными методами идентификации при росте количества входных переменных объекта. Кроме того, нечеткая база знаний легко интерпретирует структуру объекта, что не всегда возможно при использовании известных методов.

Автор надеется, что читатель нашел в книге ответы на такие вопросы:

- Что такое нечеткие множества, генетические алгоритмы и нейронные сети.
- Как применяются лингвистические высказывания в различных задачах моделирования.
• Как аппроксимируются нелинейные зависимости с помощью лингвистических высказываний.
• Как объединяются лингвистические и аналитические модели.
• Как применяются генетические алгоритмы для настройки лингвистических моделей и извлечения знаний из экспериментальных данных.
• Как настраиваются лингвистические модели с помощью нейронных сетей и каковы преимущества нейро-нечетких сетей по сравнению с обычными нейронными сетями.
• Как строятся функции принадлежности, и как они используются для ранжирования вариантов по многим критериям.
• Как автоматизируются и применяются интеллектуальные технологии в медицинской диагностике, прогнозировании временных рядов, многофакторном моделировании, многокритериальном анализе, управлении динамическими объектами.

Рассмотренные в этой книге модели и алгоритмы, далеко не исчерпывают перечень возможных комбинаций нечеткой логики, генетических алгоритмов и нейронных сетей в вопросах идентификации. Перспективными задачами дальнейших исследований, которые могут быть темами диссертационных работ, автор считает:

1. Классификацию объектов идентификации по признакам, определяющим характер настраиваемых лингвистических моделей.
2. Сравнительный анализ моделей аппроксимации различными механизмами нечеткого логического вывода и дефазификации.
3. Извлечение лингвистических знаний путем комбинации нейронных сетей и генетических алгоритмов.
4. Настройка нейро-нечетких сетей генетическими алгоритмами.
5. Настройка лингвистических моделей с нечеткими обучающими выборками.
6. Извлечение лингвистических знаний из моделей динамики физических систем, включая уравнения математической физики.

43. Ротштейн О.П., Мітюшкін Ю.І. Нейро-лінгвістична ідентифікація нелінійних залежностей // Вимірювальна та обчислювальна техніка в технологічних процесах.-1998.-№4.- С. 5-12.

47. Ротштейн О.П., Штовба С.Д. Оцінка надійності алгоритмічних процесів при нечітких початкових даних // Вісник ВПІ.-1996.-№2.-С.30-37.

64. Miller G.A. The Magic Number Seven Plus or Minus Two: Some Limits on Our Capacity for Processing Information //Psychological Review.- 1956.- № 63.- p. 81-97.

"Biomedical Engineering & Medical Informatics" in Gliwice, Poland, 1997.-p.106-110.

Ротштейн Александр Петрович — профессор, зав. кафедрой компьютерных систем управления Винницкого государственного технического университета. Закончил радиофизический факультет Горьковского государственного Университета им. Н.И. Лобачевского. Степень кандидата техн. наук получил в Рижском политехническом институте, а степень доктора техн. наук — в Московском институте авиационного оборудования. Член Международного общества «Человеческий фактор и эргономика». Действительный член Нью-Йорской академии наук. Член Международной ассоциации нечетких систем. Академик академии наук судостроения Украины.

Научные интересы: математическая теория человечно-машиных систем.

Основные публикации:
РСТШТЕЙН Олександр Петрович

ІНТЕЛЕКТУАЛЬНІ ТЕХНОЛОГІЇ ІДЕНТИФІКАЦІЇ
Нечіткі множини
Генетичні алгоритми
Нейронні мережі

Оригінал-макет підготовлено автором

Формат 29,7х42 \%
Гарнітура Times New Roman
Друк різографічний
Ум. друк. арк. 18,40

Зам. № 7350-0010

Віддруковано в кімп'ютерному інформаційно-видавничому центрі Вінницького державного технічного університету
286021, м. Вінниця, Хмельницьке шосе, 93, ВДТУ, головний корпус,
9-й поверх
Тел.: (0432) 44-01-59