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INTRODUCTION

Theoretical mechanics studies the most general laws of movement and
interaction of bodies, considering its main task to know the quantitative and
qualitative regularities observed in nature. It belongs to the fundamental natural
sciences, since natural science studies various forms of movement of matter.

Theoretical mechanics is of great importance in the training of engineering
personnel. It is the foundation for studying such disciplines as resistance of
materials, theory of vibrations, hydraulics, theory of elasticity, aero- and
hydromechanics, electrodynamics, biomechanics, theory of automatic control of
moving objects, theory of mechanisms and machines, devices, manipulator robots.
Knowledge of the laws of theoretical mechanics makes it possible to scientifically
predict the course of processes in new tasks that arise during the development of
science, engineering and technology.

Theoretical mechanics is a science that provides universal methods for
compiling and analyzing the equations of motion and equilibrium of complex
material systems, which is the basis of their modeling.

Theoretical mechanics relies on knowledge of analytic geometry, vector
algebra, mathematical analysis, physics, and computer science. The first
explanations of the general concepts of mechanics are contained in the works of the
ancient Greek philosopher Aristotle (384-322 BC), who considered the solution of
practical problems with the help of a lever. For the first time, the scientific
justification of mechanics appears in the work of the Syracuse geometer and
mechanic Archimedes (287-212 BC), who made an attempt to axiomatize
mechanics (statics), gave a number of scientific generalizations related to the
doctrine of equilibrium, the center of gravity and hydrostatics (Archimedes' law).

Theoretical mechanics is based on Newton's laws, which is why it is called
Newtonian or classical. The laws of theoretical mechanics were formulated thanks
to the productive work of many generations of scientists.

According to the nature of the problems being studied, theoretical mechanics
consists of three sections:

e statics, in which methods of equivalent transformations of force

systems are studied, as well as conditions of equilibrium of material bodies;

e kinematics, in which the mechanical movement of material bodies is
studied from a geometric point of view, that is, regardless of masses and forces
acting on them;

e dynamics, in which the movement of material bodies under the action
of forces is studied.



In addition to these three sections, elements of analytical mechanics are also
studied in theoretical mechanics, which is a set of the most generalized analytical
methods for solving mechanics problems, which allow not only to solve dynamics
problems in the same way, but also to spread them to such fields as classical theory
fields and quantum mechanics.

1 BASIC CONCEPTS OF THEORETICAL MECHANICS

Mechanical movement is the simplest form of movement of matter, which is
reduced to the simple movement of physical bodies over time from one position in
space to another. While studying the movement of material bodies, turning away
from everything partial, theoretical mechanics considers only those properties that
are decisive in this problem. This leads to consideration of various models of
material bodies, which represent one or another level of abstraction. The main
abstractions of theoretical mechanics include the concepts of a material point and
an absolutely solid body.

A material point is a body whose dimensions can be neglected when solving
certain problems, or a geometric point endowed with a certain mass. For example,
with a close study of the movements of the planets, they can be considered as
material points.

A system of material points is a collection of material points whose positions
and movements are interconnected.

A body whose distance between any points does not change during
equilibrium or motion is called absolutely solid.

Theoretical mechanics widely uses not only the method of abstractions, but
also generalization, mathematical methods and methods of formal logic. The
application of these methods and generalizations of the results of direct
observations, production practice and experience made it possible to establish
certain general laws that play the role of axioms. All further conclusions of
theoretical mechanics can be obtained from these axioms with the help of logical
reasoning and mathematical statements. At the same time, the reliability of the
provisions of theoretical mechanics is verified by experiment and practice.

2 STATICS. BASIC DEFINITIONS OF THE SECTION OF STATICS

Statics is a branch of mechanics that studies the methods of force
transformation and elucidates the conditions of equilibrium of bodies.

Real objects are replaced b y models — absolutely solid bodies, the distance
between two points of which does not change.

The real interaction of bodies (objects) is replaced by a model, the mechanical
interaction of bodies is replaced by force.
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The main concepts of statics are a force, a system of forces, an absolutely

solid body.
Force is a vector quantity that is a quantitative measure of mechanical

interaction between material bodies. A force F as a vector is considered given if
its modulus, direction and point of application are determined. The force can be
specified graphically or analytically.

Graphically, the force is depicted as a vector with the definition of its modulus
(the absolute value of the length of the vector) and direction. The direction is
indicated by an arrow, and the length of the straight segment in the scale
corresponds to the length of the vector. The module of a vector is denoted like the
vector itself, but with letters of a regular font and without a dash above. The line
along which the force is directed is called the line of action of the force. The basic
unit of force is 1 newton (N). This is the force that gives a mass of 1 kg an
acceleration of 1 m/s? (1H = 1 kg - 1 m/s? = 1 kg-m/s?).

Analytically, the force is set by projections on the coordinate axis. Projection
of the force on the axis is called a scalar value equal to the product of the modulus
of the force by the cosine of the angle between the positive direction of the axis and
the direction of the force, for example, on the «x» axis (Fig. 2.1). The projection is
given a «+» sign if it forms an acute angle with the positive direction of the axis,
and a «—» sign if it is obtuse.

il

Figure 2.1
Fy =ab=F.cosa = AB’; Q, =cd =CDcosf =—-Q-cosg

The projection of the force P onto the axis perpendicular to it is zero.



P,=P-cosy=P-cos90 =0,
The projection of the force F on the plane OXV s called the vector F,,

which is contained between the projections of the beginning and end of the force on
this plane (Fig. 2.2).

Vector module F, = F-C0OS¢@
F=F.i+Fj+F k,

where 1, J, K _ unit vectors directed along the axes;

F., Fy, F,- projections of the force vector F on the corresponding axes.

Figure 2.2

Projections of the force: F, =F-C0Sa; F,=F -cos3; F, =F -cosy .

Force module: F =\/FX2 +F/+F;  its direction is the angle between the

positive direction of the axis and the direction of the force
I:Z
F

A system of forces is a set of forces acting on a solid body or material point.
There are three systems of forces acting on a solid body in a plane and in space: a
convergent system of forces, the lines of action of which intersect at one point; a
parallel system of forces whose lines of action are parallel to each other; an
arbitrary system of forces, the lines of action of which are not parallel to each other
and do not all intersect at the same point.

An equivalent system of forces is one that can be used to replace the system
of forces acting on a solid body without changing the nature of the motion or
equilibrium. It is indicated by «=».

F F o .
cosa = ?X; cos f3 = Fy . COSy =—= _ direction cosines.



One force equivalent to a given system of forces (F........ F) is called
equivalent R .

Balanced (or equivalent to zero) is a system of forces that keeps in balance
the material point on which it acts (If1 Ifn) ~ 0. The balanced force is equal in
magnitude and opposite in direction to the equivalent force R .

The force that is applied to the body at a point is called concentrated
(Fig. 2.3). The point of force application is the material part of the body to which
this force is directly applied.

#

Fi
Figure 2.3

Forces acting on all points of length, surface or volume are called distributed
(Fig. 2.4).
9
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Figure 2.4

The magnitude of force per unit length, area, or volume is called intensity.
Usually, the distributed force is denoted by the letter g, which has dimensions N/m,
N/m?, N/m°, respectively. Examples of distributed forces are: the pressure of a
cylindrical roller on the road surface; the pressure of the tram wheel on the rail; the
pressure of snow on the roof; liquid pressure on the walls of pipelines, vessels,
dams; forces of body weight, etc. The character of the action of the distributed
forces is indicated by a graph (epura) (Fig. 2.5). In fig. 2.5 shows the graphs of
uniform, triangular and arbitrary intensities of acting forces, respectively.
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Figure 2.5

Forces acting on a body or mechanical system from material points or other
bodies that are not part of this system are called external forces.

Interaction forces between points of one mechanical system are called
internal forces.

Questions for self-testing
1. What does theoretical mechanics study?
2. The history of the development of theoretical mechanics.
3. What is called a material point and an absolutely solid body?
4. What is force?
5. How to determine the projection of the force on the axis, the force module and
direction cosines?
6. What is an equivalent force, an equivalent system of forces?
7. What are the different systems of forces?

3 AXIOMS OF STATICS

Statics is based on a number of axioms, which are the result of generalizations
of numerous experiments and observations on the balance and movement of bodies,
repeatedly confirmed by practice. The axioms of statics are initial propositions of
an experimental nature that are accepted without proof.

Axiom 1. About two forces

Two forces acting on a completely solid body are balanced if and only if they
act along the same line in opposite directions and are equal in magnitude (Fig. 3.1)

T

1:_|Ez
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Figure 3.1



This axiom defines the simplest balanced system of two forces, since
experiments show that a free body, on which only one force acts, cannot be in
equilibrium.

Axiom 2. Addition (subtraction) of a balanced system of forces

The action of a given system of forces on an absolutely solid body is not
disturbed if a balanced system of forces is added or subtracted from it (Fig. 3.2).

2

& y A
Figure 3.2
Axiom 3. About the parallelogram of forces

The equivalent of two forces applied to the body at one point is equal to the
vector sum of these forces and applied at the same point (Fig. 3.3).

s
A|
I
nil
_|_
o

Figure 3.3

The modulus of the uniform force R is determined by the theorem of cosines,

where a — the angle between the vectors F, and F,.

At the same direction of forces (cosa=1) R=F +F,, and on the contrary

(cosa=-1) R=F -F,.

The direction of the equivalent action of two forces is determined by the

diagonal of the parallelogram built on these forces.

Based on axiom 3, any number of forces applied at one point can be added
geometrically. Equivalent forces are defined as the vector sum of these forces

(Fig. 3.4).
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Figure 3.4

For this, from the end of the vector equal to the first force F,, we set aside the
vector equal to the force F,, etc. Connecting the beginning of the first vector F,
with the end of the last one F,, we find the equivalent force

R=F+F+FR+.+F =) F
i=1
This polygon is called a polygon of forces.

Axiom 4. The law of action and counteraction (Newton's 3rd law)
At some action of one body on another, there is a counteraction, numerically
equal, but opposite in direction (Fig. 3.5).

Action and counteraction forces (F12, F21) are equal in magnitude, act along

the same line aa in the opposite direction, but are applied to different bodies.
Therefore, the forces of action and counteraction are not balanced.

Figure 3.5

Axiom 5. The principle of solidification

The equilibrium of a deformed (changing) body, which is under the action of a
given system of forces, is not disturbed if it is considered to be solidified
(absolutely solid).

11



The meaning of the axiom is that when studying the movement of deformed
bodies, the rules of theoretical mechanics obtained for solid bodies can be used.

Axiom 6. The principle of release from linkages

Without changing the mechanical state (motion or equilibrium) of a system of
material points or a solid body, a linkage imposed on a system or a solid body can
be discarded by replacing the action of the linkage with its reaction applied to this
body or system at the point of interaction of the body and linkage.

On the basis of axiom 6, non-free material points, a system of material points,
or a solid body can be considered free if they are freed from the linkages, replacing
the action of the latter with their reactions.

4 LINKAGES. REACTIONS OF LINKAGES

A system of material points is called free if there are no restrictions on the
movement of these points. In the opposite case, the system of material points is
called unfree.

Bodies or a set of bodies that limit the movement of a given body or a given
material system are called linkages.

According to axiom 6, a non-free material body can be considered as free if
the linkages are replaced by reactions. Release from the linkages makes it possible
to reduce the equilibrium of a non-free solid body to the corresponding question
about the equilibrium of a free solid body, which is under the influence of external
forces and reactions of the linkages at the same time.

The force with which the linkage acts on the body is called the reaction of
the linkage and is directed in the direction opposite to that in which the linkage
prevents the body from moving.

Forces that are not reactions of the linkage are called active forces.

The peculiarity of the active force is that its module and direction do not directly
depend on other forces acting on the body. Reactions of linkages differ from active
forces acting on the body in that their direction and magnitude always depend on
these forces and are unknown in advance.

By their nature, linkages can be divided into two classes.

The first class includes linkages, the direction of reactions of which does not
depend on the magnitude and direction of the active forces applied to the body in a
state of equilibrium.

For example: flexible linkage (ropes, threads, chains) (Fig. 4.1); perfectly
smooth surfaces (Fig. 4.2); ideal rods (Fig. 4.3).

Let's consider in more detail how the reactions of some main types of linkages
are directed.

12



Flexible linkage (threads, ropes, cables, chains)

////A///

Figure 4.1

The reactions of the linkages of the cable, thread, and chain are directed along
the cable, thread, and chain, and these bodies can only be stretched, that is, they
counteract only the action of stretching.

The thread reaction is directed along the thread to its attachment point A and
is denoted by T or S.

In the problems of theoretical mechanics, it is assumed that the thread is
weightless and flexible.

Perfectly smooth surfaces

The reaction of a perfectly smooth surface is directed along the normal to the
surface and is denoted by N or R, .

A

e

Figure 4.2

From the point of view of statics, such surfaces are called smooth, in which
the reactions of the linkages at the point of contact with other bodies are directed
along the general normal to the tangent surfaces.

Remark

In the case of a rough surface (Fig. 4.3), the reaction R, is divided into two
components

R, —normal and R, — tangential, directed along the tangent 7 to the surface.

13
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Figure 4.3

The tangential component of the reaction R_T Is the force of friction. The force
of frictionis equal to R. < f -R,, where f is the coefficient of sliding friction.

An ideal (weightless rod) connecting two hinges A and B (Fig. 4.4).
The reaction is directed along the line connecting the hinges

(LSS
A

Figure 4.4

A weightless rod, to which no forces are applied (active and reaction
linkages), is called ideal. The reactions of the linkage of an ideal rod are directed
along the line connecting the beginning and end of the rod (Fig. 4.4), and the ideal
rod can be compressed or stretched.

The second class includes linkages, the direction of reactions of which is
completely determined by the direction and magnitude of active forces.

Such linkages are fixed (Fig. 4.5) and movable (Fig. 4.6) hinges (supports),
spherical joint (Fig. 4.7), cantilever (Fig. 4.8), and thrust bearing (Fig. 4.9).

Fixed cylindrical hinge (bearing, fixed support)

The direction of reactions of such linkages cannot be determined in advance.
The unknown linkage reaction vector R, in the plane is determined by two

components X ,and Y, along the axes ox and oy .

14
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R, =Y, +X,
Figure 4.5
Movable hinge ;I:' ,é:.
y
¥y R,

Figure 4.6

The reaction is directed perpendicular to support surface (plane).
Spherical joint. The reaction R, of a spherical joint consists of its three

projections on three coordinate axes Ry ,R, ,R; -

z

‘(Mffffffff
X

X

Ry=Ry +R, +R,
Figure 4.7
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Cantilever. The cantilever reaction consists of an equivalent force
R, (R,=Y,+X,) and a couple of forces with a moment M a (three unknown
quantities).

- T

Figure 4.8
Thrust bearing (puc. 4.9)
Like the spherical joint, the thrust bearing has three spatial components:

R.,R,,R

X! y’ yALl

Ry =Ry +R, +R,
Figure 4.9

Remark
A movable hinge is equivalent to one ideal rod; fixed cylindrical hinge — two
ideal rods; cantilever — three ideal rods.

Questions for self-testing
. Axiom about two forces.
. Axiom of addition (subtraction) of a balanced system of forces.
. Axiom about the parallelogram of forces.
. The law of action and counteraction.
. The principle of solidification.
. The principle of freedom from linkages.
. What is an linkage?
. What is called a linkage reaction?
. Types of the linkages and their reactions.

O©oOoO~NO OIS~ WN -

16



5 SIMPLEST THEOREMS OF STATICS

Theorem about force as a sliding vector. The action of a force on a solid
body will not change if the force is transferred along the line of its action to any

point (Fig. 5.1) (for example, from point A to point B).
-F

Figure 5.1

Theorem about three forces. If a completely solid body is in equilibrium
under the action of three non-parallel forces (£, F,, F,) and the lines of action of the
two forces (lfl, Ifz) intersect, then all forces lie in the same plane and their lines of
action intersect at the same point p. O (Fig. 5.2).

Figure 5.2

Theorem about the projection of an equivalent on an axis. The projection
of the vector (geometric) sum onto the axis is equal to the algebraic sum of the
projections of the components of the vector onto the same axis (Fig. 5.3).

R=F+F,+F+F,

R,=F,+F, +FK,+F, =oa+ab—-bc+cd

17



a » b d

Figure 5.3
6 FORCE SYSTEMS

Force systems are:

1. A system of forces lying on the same straight line;

2. Plane parallel system of forces;

3. Plane convergent system of forces;

4. Plane arbitrary system of forces;

5. Spatial parallel system of forces;

6. Spatial convergent system of forces. Spatial arbitrary system of forces;
7. Plane system of force pairs;

8. Spatial system of force pairs.

6.1 System of convergent forces. Equilibrium conditions of the system of
convergent forces

The simplest is the system of convergent forces. It can be spatial or plane
(Fig. 6.1). In the latter case, all the lines of action of the forces of the system belong
to one plane.

A system of converging forces is a system of forces whose lines of action
intersect at one point (the point O of the convergence of forces).

One force that is equivalent to a given system of forces (ﬁl -------- ﬁn) is called
equivalent R

18
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Figure 6.1

Using the axiom about the parallelogram of forces, the equivalent R system of

convergent forces \F,..., Fn) is defined graphically as the closing side of the

polygon of forces (Fig. 6.2) (ﬁ = Z 'f.j :
i=1

19



The value (module) of the equivalent force R is determined

R:\/RX2+R§+R22_

Equilibrium conditions of the system of convergent forces. Theorem. For
the equilibrium of the spatial system of convergent forces, it is necessary and
sufficient that the equivalent force is equal to zero

R=0.

For the equilibrium of the spatial system of convergent forces, it is necessary
and sufficient that the algebraic sums of force projections on three mutually
perpendicular axes are equal to zero:

N\

R, =D Fy=Fy+Fy+..+F, =0,

i=1

S

R,=> F,=F,+F, +.+F,=0;
i=1

=}

RZ

F,=F,+F, +.+F,=0.

i=1 )

If the system of convergent forces is plane, then only two of the three
equilibrium conditions remain, for example

Zn:Fix :O;Zn:':iy =0
i=1 i=1

Statically determined and statically undetermined systems. The problem
of statics can be solved only when the number of unknowns does not exceed the
number of equilibrium equations. That is, in the case of a spatial system of
convergent forces, the number of unknowns should not exceed three, and in a plane
system — two. Such problems are called statically determinate, if these conditions
are not fulfilled, they are called statically indeterminate, that is, such problems
cannot be solved using only static equilibrium conditions. Solving statically
indeterminate problems requires equations that can only be obtained using methods
of applied mechanics.

20



Questions for self-testing

1. Theorem about three forces.

2. Theorem about force as a sliding vector.

3. What is called a convergent system of forces?

4. Formulate the conditions for the equilibrium of convergent forces.
5. What systems are called statically determined?

6.2 Calculation-graphic and control tasks

S1. Convergent system of forces

The schemes (P. 25-27) show options for hanging a lantern with weight Q.
Find the force in the cable BC and rod AB. Data for calculation are given in
table 6.1.

Table 6.1
Task Q,N a, ° p, ° 7, °
1 50 30 45 30
2 40 30 60 45
3 60 60 30 60
4 30 30 120 75
5 45 30 60 15
6 60 30 60 30
7 70 60 30 45
8 30 60 75 60
9 80 30 60 75
0 150 60 30 45

21
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6.3 Example of task execution

Given: a diagram of hanging a lantern (Fig. 6.3); Q = 165H; a2 = 60°; B =45°; vy = 150°.
C

Figure 6.4

The solution. Consider the equilibrium of block D (Fig. 6.4). The force in the
cable on which the lantern hangs is equal to the weight of the lantern Q (neglect the
friction of the cable on block D). We discard the rod AB and cable BC and replace

/
their action with the forces Ra'Re:Q@Q with which they act on block D.
At the same time, we take into account that the cable works only for
stretching, and the connecting rod OA can be both compressed and stretched.
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Block D is in equilibrium under the action of the system of forces

S — S — JR— _/

/ /
{RaRQQ 1y (r RuRe:QQ 1-0) and besides Q=Q . Let's write the
equilibrium equation for the forces applied to block D.

Equilibrium equation
X F,=0; 6-cos45°+RA-cos30°—Rc'cos6O°=0;
X F,=0; —6+6/'sin45°+RC-sin60°+RA'sin3O°=0.
From here we find

R, :Ql—.sm45—cos45-tg60 — 7687 N.
sin30+cos30-tg60

~Q-cos45+R, -cos30

R
¢ cos 60

=100,2 N.

Answer: RA=-76,87 N; RC =100,2 N.

7 MOMENT OF FORCE RELATIVE TO THE CENTER

The moment of force £ (Fig. 7.1) relative to the center is called the vector
product of the radius-vector 7, drawn from point O to the point of application of

force F , by the force vector F

My(F)=FxF.
The module of the vector product

My(F)=r-F-sina=F-h,
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Figure 7.1

where h is the shoulder of the force, that is, the perpendicular drawn from the
center to the line of action of the force.

The rule of signs for moments

The moment of the force relative to the point is considered positive if the force
tries to rotate relative to the point counterclockwise, and negative if it tries to rotate
clockwise (Fig. 7.2).

L/

\y;ﬁo(ﬁ)

Figure 7.2

Properties of the moment of force relative to a point
1. If you move the force along the line of its action, the moment of the force
relative to the point will not change (Fig. 7.3).

Figure 7.3
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2. The moment of force relative to a point is zero if the line of action of the
force passes through this point (Fig. 7.4).

Figure 7.4

8 COUPLE OF FORCES. MOMENT OF COUPLE OF FORCES

A couple of forces is a system of two equal-module, parallel and oppositely
directed forces (Fig. 8.1).

Figure 8.1

(F..F,) — a couple of forces;
E:—%_

Fi=F_ are the same in modulus;
AB = h — the shoulder of the couple of forces.

opposite directions;

The shoulder of the couple of forces is the shortest distance between the
lines of action of the forces.

The couple of forces there is no equivalent force, but the couple forces try to
rotate the body to which they are applied.
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The rule of signs (Fig. 8.2).

M(F,,F,)
1

Figure 8.2

The moment of a couple of forces is the product of the modulus of one of the
couples of forces on the shoulder.

9 PLANE PARALLEL SYSTEM OF FORCES

A plane parallel system of forces is a system of forces in which all the forces
of the system lie in the same plane and their lines of action are parallel (Fig. 9.1).

yA

Figure 9.1

For such a system of forces, two equilibrium equations can be drawn up.

29



The main form of the equilibrium equations

iznl:':iy =0; iznl:MA(Ei):O-

An additional form of the equilibrium equations

Z::MA(EFO; iZ::MB(Ei)=o.

9.1 Calculation-graphic and control tasks

S2. A plane parallel system of forces

The beam (P. 35-40) is loaded with a force P, a distributed load of intensity ¢
and a couple of forces with a moment M. Find the reactions of the linkages. Data
for calculations are given in table 9.1.

Table 9.1
Task M, P, a, a, b, c, d,
kN-m kN KN/m m m m m
1 5 4 2 2 3 4 2
2 6 3 1 3 2 5 1
3 1 5 2 1 2 4 3
4 4 1 2 2 3 5 1
5 6 8 1 3 2 4 2
6 3 5 2 1 3 5 2
7 4 6 1 2 3 4 1
8 5 7 2 3 2 5 2
9 6 8 1 1 2 4 2
0 5 3 2 2 3 5 3
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9.2 Example of task execution

Example 1. For a beam (Fig. 9.2), find the support reactions if F = 3 kN,
q=1KkN/m.

q
_ |
|:
A
A B
Im 2M 2M
I
Figure 9.2
Consider the beam AB, which is in equilibrium (Fig. 9.3).
Y Y i
A
P
v
— — m— X
" A 0y | B
7 X4 M
Figure 9.3

A concentrated force F and a distributed load q are acted on the beam. A

distributed load q is equivalent to a concentrated force 0 :

0=q-2=12=2 kn.
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We replace the action of cylindrical hinge A and movable B with their

reactions Yy X4 Rp (Fig. 9.3). For a balanced system of forces

’XA’YA’Q’RB} ~ 0, we write down the equilibrium conditions
>F,=0; X, =0;
>M,(F)=0; F1-0-3+Rp-4=0;
> My (F)=0; F-5-Y,-4+0-1=0.
Then: Rg = 0,75 kN, Yo =4,25kN, X, =0.

The reliability of the obtained results can be checked by writing down another
equilibrium equation:

DR =0, —~F+Y,-Q+Rg =0,
—-3+4,25-2+0,75=0.

So, the problem is solved correctly.
Answer: RB = 0,75 kN, YA = 4,25 kN, XA =0.

Example 2. For a cantilever beam (Fig. 9.4), find the reaction of rigid restraint

if F = 2kN, M = 5kNm.
jM
Z
v

N\

ANAN

3m i )Y

Figure 9.4

Beam AB is acted upon by: active force F, couple of forces with moment M;
its movement is hindered by a linkage — a rigid linkage at point A. We discard the
linkage at point A, and based on the axiom of freedom from the linkages, we

replace its action with forces Xa¥a and moments M, (Fig. 9.5).
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_ M
K )
A B Z — X
X:J\MA F
Figure 9.5

Write down the equilibrium conditions for the system of forces

X, YaM, M, E}~0.

ZFX =0; X, =0;
Y R =0, Y,-F =0
D Mp(F)=0; -M,+M —F -5=0.

Where we find

Y, =F =2kN
M,=M-5-F=5-5.2=-5kN-m.

The negative sign of M, indicates that the actual direction of the force moment
in a rigid clamp is opposite to that shown in Fig. 9.5.
Let's perform the check. The problem is solved correctly if the condition is

realized
> M, (F)=0.
Let's make this equation using Fig. 9.4 and 9.5.

> M, (F)=0; M-M,-Y,-(3+2)=0;
5—(-5)-2-(3+2)=0.

So, the problem is solved correctly.

Answer: X, =0; Y, =2kN; M, =-5kN-m.

39



10 PLANE ARBITRARY FORCE SYSTEM

A plane arbitrary system of forces is a system of forces in which all the
forces of the system lie in the same plane and their lines of action can be parallel
for some forces, and intersect at one point for others.

v 4

Vv X

Figure 10.1

That is, we have a combination of parallel and convergent systems of forces.
For such a system of forces, three equations of equilibrium can be drawn up.

The first or main form

Zn:':ix =0, Zn:':iy =0 Z::MA(E): 0.

i=1 i=1

The second form

iznl:FixZO; ian:MA(Ei):O? iZ::MB(Ei):O'
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The third form
Zn:MA(Ei)ZOi iMB(Ei):O; ZH:MC(E): 0.
=1 i=1 i1

10.1 Calculation-graphic and control tasks

S3. The plane arbitrary system of forces

A beam (P. 46-51 ) is loaded with a force F applied at an angle a, a
distributed load of intensity g and a pair of forces with moment M. Find the
reactions of the linkages. The data for the calculations are given in Table 10.1.

Table 10.1
. M, F. % a, b, ¢, d, a,’
KN-m kN KN/m m m m m
1 5 4 2 2 4 3 2 30
2 6 3 1 3 5 2 1 45
3 1 5 2 1 4 2 3 60
4 4 1 2 2 5 3 1 30
3) 6 8 1 3 4 2 2 45
6 3 5 2 1 5 3 2 60
7 4 6 1 2 4 3 1 30
8 5 7 2 3 5 2 2 45
9 6 8 1 1 4 2 2 60
0 5 3 2 2 5 3 3 30
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10.2 Example of task execution
The plane frame shown in Fig. 10.2 is in equilibrium under the action of

forces F; = 10 N, F, = 20 N and a pair of forces with moment M = 60 kN-m. The
angle ¢ = 30° and the angle y = 45°. The dimensions are: a=5m,b=8m,c=3 m.
The supports of the frame are: at point A — fixed plane hinge, at point B — a

movable support.
Find the reactions of the supports A and B.

Py

Figure 10.2

The solution. We position the given frame in the coordinate system with the
origin at point A, as shown in Fig. 10.3. Indicate the reactions that appear in the

supports. At point A, the reaction is decomposed into components X, and Y, , and
at point B, the reaction Ry is directed perpendicular to the support plane.

e Va
. Rz
:'/h B .
7 g —M
N BOND
A ,:Tw - H
Z 2
A X,
A
4 - >
?A
Figure 10.3

Write an equilibrium equation for a plane arbitrary system of forces:
48



ZFXi = O, ZFyi = 0, ZMAi = O,
YFyi=0; Xpa+F,cosy+F,cosp-Rg=0, (10.1)
ZFi=0;Yat+tFysiny-Fising =0, (10.2)
2 Mpi=0;-F,acosy-Fracoso-F; (b/2)sihg+M+Rg(a+c)=0. (10.3)
From equation (10.2) we find YA

Y, =—F,siny +F sing = —20sin45° +10sin30° =—9,14N.  (10.4)

From equation (10.3) we find Rg

F,acosy + Facose + F{gjsin p—M

%= (a+c) -

20-5c0s45° +10-5c0s30° +10(2jsin 30°-60

- =9,25N
5+3 (10.5)

From equation (10.1) we find X A
X, =-F,cosy —F cosp+R, =-20c0s45° —10c0s30° +9,25=-1355N (10.6)

The modulus of reaction at point A is found by the formula

R, =~/ X2 +Y?2=1355+9,14* =16,34N. (10.7)
Let's make a check. The problem is solved correctly if the condition is met
z MDi =0.

Let's write this equation using Figure 10.3.

ZMD(E)z—YAg+ X ,a- Fzgsin;/+ M +R,C =
i=1

8 8 . (10-8)
=~(-914) 7 +(-1355)-5-20-sin45° +60+9,25-3=0

So, the problem is solved correctly.
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Questions for self-testing
1. How to determine the moment of force relative to the center?
2. When the moment of force relative to the center is zero?
3. Why the moment of force relative to the center does not change when moving
the force along the line of action?
4. What is called a pair of forces?
5. What is called the moment of a pair of forces?
6. What is called a plane parallel system of forces?
7. What is called a plane arbitrary system of forces?
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11 MOMENT OF FORCE RELATIVE TO THE AXIS

The moment of a force relative to an axis is a scalar quantity that is
numerically equal to the moment of projection of that force onto a plane
perpendicular to the axis, relative to the point of intersection of the axis with the
plane.

To determine the moment of a force F relative to any axis (for example, the
Oz axis, Fig. 11.1), it is necessary to project the force onto a plane perpendicular to
this axis and determine the moment of the resulting projection Fx, relative to the
point of intersection of the axis with the plane (point O).

M, (E)z tF h.
z4 E
0 - 14
N\ |7
2 90°
x
Figure 11.1

The rule of signs for the moment of force relative to the axis

The moment of force relative to the axis is considered positive if, when
observed from the positive direction of the axis, it is clear that the force is trying to
turn the body counterclockwise, otherwise it is negative.

Properties of the moment of force relative to the axis

The moment of force relative to the axis is zero if:

1) the projection of the force on the plane perpendicular to the axis is zero,
i.e., the force F is parallel to the axis (Fig. 11.2, a);

2) the shoulder h is zero, i.e., the line of action of the force (projection)
crosses the axis (Fig. 11.2, b).
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Thus, the moment of a force relative to an axis is zero if the force and the axis
lie in the same plane.

E

Z4 TF MZ(—)= ZA’A/':

0
| : |
ol ! oL -—TFy
" Fxy=0 h=0

a) b)
Figure 11.2

11.1 Equilibrium conditions for an arbitrary spatial system of forces

An arbitrary spatial system of forces is a system of forces anyhow arranged
in space.

For an arbitrary spatial system of forces to be in equilibrium, it is necessary
and sufficient that the principal vector and principal momentum of this system
relative to any point O are equal to zero, i. e.

Ro= D F=0, M, =Y W,(F)=0
i=1 i=1

These conditions are called equilibrium conditions for an arbitrary system of
forces in vector (geometric) form.

Conditions of equilibrium of an arbitrary spatial system of forces in analytical
form

n

ﬁOx =Z|Eix = IE1x + IEZX ot IEnx=O;
=1

Ju— n J— J— J— J—

Roy = ) Fiy =Fiy + Foy .0 By =0;
i=1

n
ﬁOz =Z|Eiz = IE1z +|E22 +.o.t IEnz =0;
-1
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Moy = Moy (B )+ Moy (B )+ ...+ MOX(IEn):ZMOX(IEi):O;
Moy = MOy(El)+ 'VlOy(EZ)”L'“+ M0y<En)=ZM0y(Ei):O;

Mo, = MOZ(E)"‘MOZ<IEZ)+"'+MOZ(EH>:ZMOZ(E):O'

Thus, for an arbitrary spatial system of forces to be in equilibrium, it is
necessary and sufficient that the sums of the projections of all forces on the
coordinate axes and the sums of the moments of these forces relative to the
coordinate axes are equal to zero.

11.2 Example of solving the problem

A rectangular homogeneous plate of weight P is fixed at point A by a
spherical hinge, at point B by a cylindrical hinge, and held horizontally by a cable
CC' (Fig. 11.3). Determine the reactions of the linkages if P =100 N, F = 40 N,

a=30°, =60°, F || zAy.

Figure 11.3

The solution: Using the principle of release from linkages, we replace the
action of the linkages imposed on the plate with their reactions. At point A we have
three components of the reaction of a spherical hinge: X, Y., z,. At point B , we
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have two components of the reaction of a cylindrical hinge: Xz, Z5 . The reaction of

the cable T is directed along the line CC'.
For the resulting arbitrary spatial system of forces, we write six equations of
equilibrium:

YFixr =0; Xa+ Xp—Tcosasinf =0;

YFiy=0; Y4+ Fcos45° — Tcosacosp = 0;

XFiz=0;Zs+ Zp+ Tsina— P — Fcos45° = 0;

SMy(F.) = 0; —P(AB/2)+ZpAB+TsinaAB = O:

SMy(F:) = 0: Fsind5°AD + P(AD/2) — TsinaAD = 0;
sMAF;) = 0; Fcos45°AD — XzAB = 0.

Now we solve the equations for the unknown reactions of the linkages.
Xp= (Fcos45°AD)/AB = (Fcos45°AD)/ADtgp = 16,33 N;
T = (Fsind5°AD+P(AD/2))/ADsina = 156,56 N;
Zp=(P(AB/2) - TsinaAB)/AB = — 28,28 N;

X4=—Xp+ Tcosasinf =101,09 N;

Y4 =—Fcos45°+Tcosacosf = 39,51 n;
Za=—Zp—Tsina+ P+ Fcos45° = 78,28 N.

Answer: X4 = 101,09 N, Y4 = 3951 N, Z4 = 78,28 N, X = 16,33 N,
Zp=-28,28 N, T = 156,56 N.
The minus sign means that the direction z, is opposite to the one shown in
Figure 11.3.

11.3 Calculation-graphic and control tasks

S4. Calculation of support reactions of a spatial structure
To a weightless rigid plate ABCD (P. 60-64) are applied forces F,, F, and a

pair of forces with moment M acting in the plane of the plate. The supports of the
plate are: in p. A — spatial hinge, in p. B — cylindrical hinge and in p. C — rod OC.
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The belonging of the forces F,, F, to the planes is indicated in the figures by
variants, and their direction and the direction of the OC rod are determined by the
angles y, p# and ¢@. The geometric dimensions of the plate and the position of the
points of application of forces are indicated by dimensions a, b, c, d.

The data for the calculations are given in Table 11.1, where the forces are
given in N, the moment in N-m, the angles in degrees, and the dimensions in
meters.

Find the modules of the reactions of the supports at points A, B, C at the
equilibrium of the plate.

Table 11. 1

Task F F, M a b c d y | B | o
1 15 ) 22 6 4 2 3 | 30 | 60 | 45
2 6 8 18 8 5 3 2 | 60 | 45 | 30
3 12 14 14 10 3 1 4 | 45 | 30 | 60
4 8 3 10 12 5 3 3 | 45| 30 | 60
5 7 8 15 9 8 4 2 | 30 | 60 | 45
6 11 | 10 | 19 14 6 2 3 | 60| 30 | 45
7 4 12 | 10 10 8 4 3 130 | 45| 60
8 10 | 7 14 16 7 5 2 | 60 | 30 | 30
9 8 5 16 11 5 3 3 | 30 | 45 | 60
0 9 6 17 15 8 4 2 | 60 | 45 | 30

55



56




Fi-e nnydz F,-¢ nunxdz

o7




Fy- e n1xAz Fy-e na yAz

2

F j2
2 o i
c. B D
"
Af %o
u TFE
Lo
@, >
B 3 A
() /
x
Fi- ¢ nm yAz, F,-¢ nn xAz

58




Frenn yAz  F,- gnn xAz Fi- ¢ naxdy, F,-e naypd:z
)z
N A
a/ | KF
F M A Sy
c
y T
F |
2
4 C i} LY 4
x & s
Fi-e i xAz, Fz-amyflz Fy-a i xAz, F}-erm.yAz

Iz
b
A gub
M. ¥
-~
0 -
—— 1 =
x B
L B
] F:?T FE
D/ e 0
Fi- ennydz, Fy-enn xAz

59




Fl:.-gmxAz .FE-& na pAr, F}-am xAz

60




11.4 Example of task execution

The weightless plate ABCD shown in Fig. 11.4 is in equilibrium under the
action of a force F; = 20 N and a pair of forces with a moment M = 30 N-m acting
in the plane of the plate. The force F; is in a plane parallel to the yAz plane and acts
at an angle ¢ to the y-axis. The dimensions of the plate and the position of the point
of application of the force F, are determined by the values:a=6 m,b=8mand c
=2m.

Az 7‘!
D 4
A
// a
¥y

F;1 —in the plane of yAz
Figure 11.4

The plate is supported by supports: in p. A — by a spherical hinge, in p. B — by
a cylindrical hinge, and in p. C — by the OC rod, which lies in a plane parallel to the
xAz coordinate plane and makes an angle p = 60 ° with the vertical.

Find the reactions of the supports at points A, B and C.

The solution: Figure 11.5 shows the forces and reactions acting on the plate.

At support A, the reaction R, is decomposed into components X, Ya, Z, , at

support B, the reaction Rg is decomposed into X_B and YB , at point C, the
reaction R is directed along the OC rod.

AZ F

Y
¥

>

R

% =N
o

Figure 11.5
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The equilibrium equation for the spatial arbitrary system of forces considered
in the problem is as follows:

D F,=0; X,+Xg+R.sinpg=0;

> F, =0; Y,—Fcos¢=0;

Y F,=0; Z,+Zy+Fsing+R.cosf=0;

> M, (F)=0; Fesing+Z,a+R.acosf=0;

M, (F)=0; Ebsing+R.bcosp=0;

> M, (F)=0; M - Xga+Fbcos¢—R.asin =0.
We now solve the equations in the following sequence:

Y, = F, cos ¢;
__Fbsing.
" bcosp’

M + Fbcosgp —R.asin g
a ;
X,=—Xg—Resing;
Fcsing+ R.acosf .
- . :
Z,=-Z,—Fsing—R.cosp.

Substituting the data, we have:

Xg =

Z, =

Y, =17,32N;
R, =—20N;
X, =10,77N;
X, =655N;
Z, =6,67N;
Z,=-667N.

Let's find the reaction modules R, and R; using the formulas:

R, =/X2+Y?+Z2 =1598N,
R, =/X2+2Z =12,67N.

Questions for self-testing

1. What is called a moment of force about an axis?

2. The rule of signs of the moment of force relative to the axis?

3. In which cases the moment of force relative to the axis is zero?

4. What is called an arbitrary spatial system of forces?

5. Conditions of equilibrium of an arbitrary spatial system of forces.
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12 FRICTION OF SOLID BODIES

12.1 Sliding friction

The force interaction when two material objects come into contact is
associated with the concept of linkages. Linkages, limiting the behavior of the
body, change its state.

Consider the interaction of a plane and a solid body at p. M (Fig. 12.1).

na Solid
body

Plane

Figure 12.1

R — plane reaction (linkages reaction);
N — normal reaction (normal component of the force);

Fr — friction force (tangential component of the force R).

If the friction force is small, it is not taken into account. In this case, the
surface is called perfectly smooth and only the normal component is taken into
account.

However, in real life, when two material bodies come into contact, friction is
most often taken into account. Friction is a physical phenomenon accompanied by
the destruction of contact surfaces, heating of bodies, electrification, etc.

In theoretical mechanics, friction is taken into account based on the Amonton-
Coulomb laws of sliding friction at rest.

The sliding friction force is the friction force that acts on a body when it
slides on a supporting surface.

The resting friction force is the friction force that occurs before the sliding
starts in the presence of forces trying to move the body.
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The Amonton-Coulomb laws apply to dry friction (without lubrication) and
are formulated as follows:
1. When one body tries to move along the surface of another, a friction force

Fr occurs in the plane of contact of the bodies, the value of which can vary from 0

to the maximum limiting friction force Fr max -

2. The friction force is directed in the opposite direction to the possible
direction of movement or sliding (Fig. 12.2).

sliding
motion

sliding
motion

Figure 12.2

3. The value of the maximum maximum friction force is equal to the product
of the friction coefficient and the normal reaction

=f-N,

FTmax
where f is the static friction coefficient (dimensionless value).

4. The magnitude Fr max does not depend on the size of the surface area of the
interaction.Thus, at equilibrium, the resting friction force

FTSFTmax 260 FTS f N

5. The friction coefficient f depends on the material and condition of the
friction surface.

6. The sliding friction force is less than the resting friction force. In reference
books, f is denoted as the sliding friction coefficient, f, as the resting friction
coefficient.

7. It is considered that the friction force does not depend on the sliding speed.

During movement, the friction force is equal to the product of the dynamic
coefficient of friction by the normal reaction

Fo=f,-N.
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The angle of friction is the largest angle ¢ between the limiting force of the
rough linkage reaction R and the normal reaction N (Fig. 12.3).

R N

ol T
FTp
Figure 12.3
F f-N
tgp=—"L=(F,=f -N)=——=f
go N (Fr ) N .

The cone of friction is the surface described by the total reaction when it is
rotated around the normal reaction (Fig. 12.4).

frictior max ‘ max
cone R : R
k S—, —
max 7777 B L7 L max
Frp Frp
Figure 12.4

If the equivalent of the active forces acting on a body is inside the friction
cone, then no increase in the modulus of this equivalent can disturb the body's
balance.

This phenomenon is called self-braking and is widely used in industry, in
particular in lifting mechanisms.

12.2 Rolling friction
The resistance that occurs when one body rolls on the surface of another is
called rolling friction.

Consider a cylinder at rest on a horizontal plane. Let's show the forces that
arise (Fig. 12.5).
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Q — an active force that tries to
move the cylinder out of place;

— weight force;

— normal reaction;

F; — friction force;

R — cylinder radius.

Z| vl

Figure 12.5

The cylinder is at rest. The active force Q and the frictional force F; form a
force pair that can cause rolling.

The body (cylinder) does not move, because in fact the contact of the body
with the horizontal plane does not occur at point C (Fig. 12.6), but along some
plane (due to the deformations of the roller and the horizontal support surface, they
touch each other along some contact area). Thus, the normal reaction is actually
shifted towards the active force by a certain amount 6.

' In the state of equilibrium
we have:

> M. (F)=0

~Q-R+N-5=0;
N-o

=R

Figure 12.6

When Q < Qjim, the body is at rest, and when Q > Qn, rolling begins.

The value 9 is called the rolling friction coefficient and has units of length.

The product of the normal reaction to the rolling friction coefficient is called
the rolling limit moments

M =N-0o.

lim

Typically, the rolling friction force is much lower than the sliding friction
force.

Questions for self-testing

1. What is called friction?
2. What is called sliding friction?
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3. What is the sliding friction force?

4. What is the angle of friction? What is the tangent of the angle of friction?
5. What are the units of measurement of the sliding friction coefficient?

6. What is called rolling friction?

7. What is the rolling friction moment?

8. What are the units of measurement of the coefficient of rolling friction?

12.3 Example of solving a problem with friction forces

Determine the limiting force Q, acting at an angle of 30°, after which the body
will move (Fig. 12.7). The weight of the body is 10 N, the coefficient of friction is 0,6.

Solution
AN Q
F}( 30°
7 con
P
Figure 12.7

We show all the forces acting on the body. Since this problem is a flat
convergent system of forces, we can write two equations of equilibrium:

= 0; —Fr+Q-cos30°=0 — Fr=0Q -cos30°

(Ngh
e

Il
ey

-

Il
Juy

F;, =0; N—P+Q-sin30°=0 - N=P —Q-sin30°

Q- cos30°= (P —Q -sin30°) - f;
Q- cos30°+ Q-sin30°-f =P - f;

FT EFT?‘THI.E
FTma.\::f'N
Paif

—~

~ c0s30° + sin30° oif

Q =5,2H.
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13 CENTER OF GRAVITY OF ASOLID BODY

13.1 The concept of the body's center of gravity, coordinates of the center
of gravity

Any body placed on the Earth's surface is subject to the forces of the weight of
each part of that body. The lines of action of these forces intersect in the center of
the Earth. Because the size of the bodies is small enough, we can consider that they
form a spatial system of parallel forces (Fig. 13.1).

The force of gravity or the weight of a solid body is an equal force
determined by the sum of the forces of the weight of all parts of the body

n
P = ZPE
i=1

p. C — center of gravity of the body;
Xc Ve, Zc — coordinates of the center
of gravity.

Figure 13.1

The center of gravity of a solid body is the point invariably associated with
this body through which the line of action of the equal force of weight of the body
parts passes at any position of the body in space, or it is the point of application of
the body's weight.

The following formulas can be used to determine the coordinates of a body's
center of gravity:
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n n .
Yk=1%kPk _ Yg=1XkPk
Xp = =

(13.1)
n . n
Ve = Yk=1YkPk _ YXk=1YkPk
C 2}::11)}{ P ’
C — .

> P

where Py — weight of a separate body part;
Xk, Yk, Zk — coordinates of the body part;
P — weight of the whole body.

The center of gravity of a homogeneous solid body
Homogeneous bodies include bodies whose specific gravity is constant in
volume p = const. Then P = pV,Pr = pVi, where V — whole body volume;

Vi — volume of the body particle.
Substituting these values into the formulas (13.1)

n n n n
_ Zk=1XkPk _ Xg=1XkPVk _ P U= XkVEk _ 2k=1%kVk

X, = = =
¢ P oV P% v o
we obtain
o= P Bus XV
G v )
Ve = Tk=1 ViV, (13.2)
C = 5
1
o Yk=1ZkVk
L __V .

Equation (13.2) allows us to determine the coordinates of the center of gravity
of a three-dimensional body.
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Center of gravity of a homogeneous plane body

The weight of a homogeneous plane body and the weight of its individual
parts can be determined by the formulas

P=pS,Pi=pSk,

where p — weight per unit of body area;
S —whole body area;
Sk — the area of each part of the body.
Thus, taking into account the above and formulas (13.1), we obtain

— V=1 XkSk .

xC - S >
(13.3)

C S .

Equation (13.3) allows us to determine the coordinates of the center of gravity
of a plane body.

Center of gravity of a homogeneous linear body

Let p be the weight of a unit length of a homogeneous linear body. Then
its weight and the weight of its part are equal to

P=pL,Pk=plk,
where L — body length;
lk— length of each body element.
Substituting these values into formulas (13.1), we obtain:

i Yh=1Xklk.

c L 7’
Ye="="3 = (13.4)
Z7. = Z;:=1Zklk

e

l.

Equation (13.4) allows you to determine the coordinates of the center of
gravity of a linear body ( for example, a rod structure, a curved line etc.).
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13.2 Methods for determining the center of gravity of a solid body

The symmetry method

If a body has a plane, an axis, or a center of symmetry, then the center of
gravity of the body is located either in the plane of symmetry, on the axis of
symmetry, or in the center of symmetry (Figure 13.2).

It follows that the center of gravity of regular geometric bodies (circle, disk,
sphere, rhombus, rectangle) is located in their geometric centers.

N
N
”
-
-
-~

C

D V=
>

-
-
-~
N
~
~

-

C .
N -
P
> il
-
-
s

Figure 13.2
Breakdown method

If a homogeneous solid can be divided into parts for which the position of
their centers of gravity is known in advance (13.3), then the coordinates of the
center of gravity of the whole body are determined by the corresponding formulas
given above.

In this case, the number of terms in each of the sums will be equal to the
number of parts into which the body is divided.

Figure 13.3

An example of solving the problem

Determine the coordinates of the center of gravity of the homogeneous plane
shown in Fig. 13.4. All dimensions are in centimeters.

Solution. Draw the x and y axes and divide the plate into three rectangles (the
dividing lines are shown in the figure). Calculate the coordinates of the centers of
gravity of each of the rectangles and their areas. Enter the data in the table.
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Table 13.1

D.n. | S, Xk Vi SiXe | SiVk
1 4 -1 1 -4 4
2 20 1 5 20 100
3 12 5 9 60 108
7 \
2 6
e
93
2 52
8 oC
S\ [c
Ci1
3 x
>
Figure 13.4

Area of the whole plate §=514S2+S53=36 cm %
Substituting the calculated values into formulas (13.3), we obtain:

—: .X'151+.r252+.f353 e —-4+20+60 — .
Xc = < = e 2,11 cwm,

V1S1+V285,+y3S3 44+100+108
—: = _ = 5,89 cw.

yC o S o 36

The resulting position of the center of gravity C is shown in Figure 13.4.
Answer: xc=2,11 cm, yc= 5,89 cm. The point C was outside the plate.
Addition method (negative weight)

The addition method is applied to bodies that have cut-out parts (holes,

cavities) (Figure 13.5).
When calculating, keep in mind that cut parts (holes, cavities) have negative

areas or volumes.
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Figure 13.5

An example of solving the problem
Determine the position of the center of gravity of a circular plate of radius R

with a hole of radius r (13.6). The distance C,C, = a.

YA

Figure 13.6

Solution. The center of gravity of the plate lies on the line C,C,, since this line
IS the axis of symmetry. Let's draw the coordinate axes. To find the coordinate xc,
add the area of the plate to a complete circle (part 1), and then subtract the area of
the cut out circular hole (part 2) from the resulting area. In this case, the area of part
2 (the hole) is taken with a negative sign. Then

51: 7TR2, 52: - 7TT'2, X1= O, Xy = A,
S=5.+S,=n(R*- 1.

Substituting the calculated values into formulas (13.3), we obtain

= .\'IS]+.\'25_7_ = (ll'z
¢~ ) T R2—p?
yC - O
ar’
Answer: X, = R Y. =0 . As can be seen in Figure 13.6, the center
—r

of gravity C is left of point C;.
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There are also experimental methods for determining the position of the center
of gravity of bodies, such as the method of suspension, the method of weighing.

Questions for self-testing

1. What is the weight of a solid?

2. What is called the center of gravity of a solid?

3. What formulas are used to determine the coordinates of the center of gravity
of a solid?

4. What are the methods of determining the position of the center of gravity of
the body?

5. What is the method of symmetry?

6. What is the essence of the method of breaking?

7. Explain the features of the method of addition (negative weight).

13.3 Calculation-graphic and control tasks

S5 Center of gravity of the plate

Determine the center of gravity of the plate (Fig. 13.7). The data for the calculation
in Table 13.2 are given in meters.

v

h
*

L 4

|

—

/ —

.
Yo b
2 .
/ [
Y
.3

Figure 13.7
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Table 13.2

No C D C; C, d1 d2 Xi )P Xn Yn h b R
task
1 0.2 ] 0.7 - 0.1 - 02 1002(004| 01 |04 | 0.2 |005]|0.01
2 03| 02| 01 - 0.05 - 0.020.02]015| 01 |0.05| 0.1 | 0.01
3 04| 0.3 - 0.15 - 03] 03 (025/005|/005| 0.1 | 0.2 |0.02
4 05|04 | 0.2 - 0.2 - 0110102 ]| 0201/ 0.2]0.05
5 06| 05 - 0.2 - 010304 01]02]02]|01)| 01
6 0.7] 06 | 0.3 - 0.4 - 05| 04 0 0 0301 01
7 0.8 | 0.7 - 0.3 - 04 | 06 |05 01]02]02]|02]| 01
8 0.7 06 | 0.2 - 0.1 - 031020404 03] 01| 02
9 06| 05 - 0.2 - 025,02 02| 030302 01]015
10 |05] 04 | 0.1 - 0.05 - 03 | 0.3 0 0 [0.15| 0.2 | 0.05
11 04| 0.3 - 0.2 - 010101 02]025{01 01| 01
12 103] 05 | 01 - 0.2 - 0.2 | 0.3 0 0 01 ] 02| 01
13 |02 ] 04 - 0.05 - 02 0101|0102 1(005| 01 ]0.05
14 (08| 1.0 | 04 - 0.05 - 06 | 077010102 03] 01
15 | 0.7| 0.9 - 0.3 - 02 | 05|07 | 05 - 04 | 0.2 | 01
16 |06 ] 0.8 | 0.2 - 0.3 - 021 0305|0501 )]01] 01
17 | 05| 0.7 - 0.2 - 04 | 0.3 | 05 0 0 02 | 03| 01
18 |04 | 0.6 | 0.1 - 0.2 - 020203 |01]02]01]| 02
19 1|03 ] 05 - 0.1 - 02| 02 | 0.2 0 0 01 02 | 01
20 {04 | 04 | 0.05 - 0.1 - 01010303 (01]01] 01
21 {09 0.7 - 0.3 - 01| 05104 0 0 02 | 03] 01
22 08| 06 | 0.3 - 0.1 - 010106050102 01
23 | 0.7] 05 - 0.3 - 01| 05|04 0 0 02| 02 | 01
24 06| 04 | 0.2 - 0.1 - 010104030101 0.2
25 |05 03 - 0.1 - 005| 04 | 0.2 0 0 0 0 0.1
26 {04 0.2 | 0.1 - 0.05 - 0101 ]03]025(005] 0.1 ] 0.2
27 03] 05 - 0.05 - 0102 | 04 0 0 0101 0.2
28 [ 08| 06 | 0.3 - 0.2 - 01 /0105|0402 03] 01
29 | 0.7] 05 - 0.3 - 01| 05104 0 0 03| 03] 01
30 |06 04 | 0.2 - 0.1 - 010105030101 0.2
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13.4 Example of task execution

To find the center of gravity of the cross section shown in Fig. 13.8. The
dimensions are given in millimeters.
The center of gravity of the cross section is found from the equations

ZSk'Xk sz'Yk
X =2y ==, (13.5)
I DIV
k=1 k=1

where S, — the area of each figure;
X, ,Y, —coordinates of the center of gravity of each figure.

[Tonepeunuii nepepiz po3rsiIaeMo K IpsiIMOKYTHHUK 1 po3mipamu 100x80mm,
3 SIKOTO BUPI13aJIM TPUKYTHUK 2, MPSIMOKYTHHUK 3 Ta KOJIO 4.
Buznaunmo mionii Ta KOOpAMHATH IIEHTPIB Baru Tin 1, 2, 3, 4.

The cross-section is considered as a rectangle 1 with dimensions 100x80 mm
from which triangle 2, rectangle 3 and circle 4 are cut.

Determine the areas and coordinates of the centers of gravity of bodies 1, 2, 3,
4,

30

50 7

30

40 30

A
Y

100
Figure 13.8
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Body 1:
S, =80x100=38-10°mm?

X, =50mm, y, =40mm

Body 2:
S, =0,5-20-30 =300mm?
X, =1-20=§mm;y2 =1-30=10mm
3 3 3
Body 3:
S, =30-20 =600mm?
X, =55mm; y, =10mm
Body 4:
S, = ﬂj _314:20 _ 314mm?

X, =50mm;y, =50mm

Based on the expressions (13.5), we find the center of gravity of the cross
section, given that the bodies 2, 3, 4 were cut out of the rectangle. That is, the areas
of bodies 2, 3, 4 must be taken into account with a negative sign.

S X =S, X, =S,- X, -5, X,
¢ S,-S,-S,-S,

8-103-50—3OO-§—600-55—314-50

3
= =51,47mm
8-10° —300—-600—-314

Y =Sl'y1_82'y2_53'y3_s4'y4 _
C S1_82_83_84
~ 8-10°-40-300-10-600-10—-314-50
8-10° —300-600—-314

X

=43 52mm

Answer: X_  =51L47mm;Y, =43,52mm.
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