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Preface  
 

The purpose of this book is an exposition of methods and problems of 
computational mathematics and basics of computer modelling. The author 
attempted to generalize experience of his long-term teaching of courses on 
computational methods and mathematical modelling to the students of 
specialities related to automation, control and information-measuring technique. 
 This book is based on the works of L. Collatz, V. Krylov,  
A. Samarsky, B. Demidovitch, I. Maron, J. Forsythe,  R. Moor etc. The author 
has already published such textbooks as “Computational methods and 
applications of computers” (in Russian: in 1989, “High school” publication, 
Kiev, co-author V. Malikov) and “Methods of computerized calculations” (in 
Ukrainian: 2001, “VSTU” publication, Vinnytsia). In the nineties the author, 
together with V. Dubovoy, published a series of textbooks on the use of 
computerized systems. Besides the traditional sections of computational 
mathematics, this book contains a wide range of the author’s methods of 
probabilistic and interval analysis, fractal and selfsimilar processing and 
algorithms, formulas of multidimensional interpolation from theses, monographs 
and in-process approbations. The sample programs of calculations are not 
contained in the book, and support is done on methods and algorithms, that do it 
more independent on the time and tastes of the programmers. The absence of a 
lot of conclusions and theorems simplifies the perception of the book and at the 
same time the book is oriented on students, engineers and scientists designing 
applied problems. 
 The author expresses gratitude to the colleagues and students who helped 
him in the process and registration of results of this book  
I. Bogach, R. Boyko, A.Tchikalova, O. Skidan and to Ilona Kvyetna and  
Valery Doroshenko who edited the English text.  
 
 



 7 

Chapter 1. Modelling and Computations 
 
1.1 Introduction 

 
Mathematical modelling is one of the main ways of scientific and 

technical researches. Objects replacement by their mathematical models allows 
to limit costs and term of researches, and also to take into account boundary 
situations and situations that are hard to realize. A mathematical model is a 
projection of objective reality under a certain point of view, as it is described in 
mathematical language. The mathematical apparatus chosen to describe the 
model can be different and concerns the researcher’s purpose of design, 
convenience, traditions and tastes. The purpose of design determines what 
descriptions of object are taken into account during construction of the model 
and what features are unimportant in this consideration. 

The methods of modelling are widely used in different fields of human 
activity, especially in the fields of planning and management, where processes 
of acceptance of effective decisions are based on the received information. 

Obtaining, transformation, presentation and use of information are the 
purposes of object modelling where the objects cooperate with each other and 
with the external environment. 

A model is always built with a certain goal which has influence upon the 
choice of properties of the objective phenomena to be taken into account as 
substantial. A model is a projection of the objective reality under a certain point 
of view. Sometimes, depending on aims, it is possible to get different, even 
contradictive, projections of the objective reality. It is characteristic as a rule for 
complex systems in which every projection selects substantial data for a certain 
goal from a great number of unimportant ones. 

The theory of modelling is a field of science that studies methods of 
research of properties of objects (originals) on basis of their substitution by other 
objects (models).  

We will consider one of the most universal types of modelling - a 
mathematical one, which puts a system of mathematical equations in accordance 
with the designed physical process. Resolving the equations allows to get an 
answer to the question about the existence of an object without creation of a 
physical model that often leads to huge expenses of time and money. 

The given mathematical model requires a decision in order to get an 
obvious analytical or numeral kind of the required object’s descriptions. As most 
applied tasks can not be decided by traditional mathematical methods, then 
modern mathematical modelling is inseparably related to the methods of 
computer calculations. These calculation methods take place first of all in the 
computer design because of the number of tasks (for example, nonlinear 
equations higher than the third order, systems of nonlinear equations, improper 
or numerical sets of integrals etc) that in general do not have an analytical 
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decision; in other tasks (for example, approximation, interpolation, statistical 
treatment) decisions exist only in the subsections of the applied mathematics.  

Many phenomena and processes of different nature are described by 
similar correlations, for example electro-acoustic analogy, electro-, magneto- 
and hydrodynamics. Therefore, for the analysis (decision, calculation) of 
mathematical models it is necessary to have developed mathematical skills 
covering all types of model tasks of the applied mathematics. As it applies to the 
use of computer, the basic stage of calculation of mathematical models is their 
realization, i.e. development of structure of the algorithm, presented as a flow-
chart, flowgraph or realization with the use of principles of structured 
programming. 
 
1.2. Algorithms 
 

The term «algorithm» («algorism») was introduced by an Uzbek 
mathematician Al-Khwarizmi, who developed the rules of arithmetic actions 
above numbers in decimal notation in the 9th century. 

Algorithm is a rule. These rules are formulated in a certain language and 
determine the process of transformation of possible basic data to the certain 
results after. An algorithm is characterized by: determinedness (definiteness) - 
uniqueness of result of the process at the basic data set; discreteness - 
dismemberment of algorithmic process to separate elementary acts, possibility 
of implementation of which by a man or machine does not cause doubting; mass 
character of the basic data - it is possible for an algorithm to choose from some 
great amount of information (potentially endless); clearness for a performer. 

It is possible to select blocks that are an aggregate of elementary 
operations executing certain function in the structure of algorithms. Model 
blocks are in the flow diagram of algorithm: process, decision, modification, 
predefined process, input-output, connector, start-stop. Their conditional 
denotations are presented in Figure 1.1. 

An algorithm can have linear, branching and cyclic structures. A linear 
structure is characterized by absence of conditional blocks. In Figure 1.2 an 
example of algorithm is given for the decision of problem of content changing 
between two computer memory cells R and P. A necessity appears in the use of 
the third cell C.  
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As an example of branching structure of algorithm with only one conditional 
block can serve an algorithm of choice with the most variable values of N and М 
(Figure 1.3). Revolving engineering tasks of cyclic structure (Figure 1.4) are 
more widespread, where 1 is preparation for the first implementation of the 
cycle body; 2 is the cycle which names repeatedly repetitive part of the 
calculable process body; 3 is preparation for the next implementation of the 
cycle body; 4 is implementation of verification at the end of the cycle. 

There are the following types of cycles: with the set or calculated number 
of reiterations; iterative, in which the number of reiterations is unknown in 
advance; complex - with the fork in the cycle body and the embedded loops 
(multiple). 

 

 
 

Figure 1.3 
 
      There are other ways to record algorithms - flowgraphs or graph-schemes. 
Boolean arithmetic operators are used for presentation of the statement chart of 
algorithm. Arithmetic operators provide actions related to the calculations. 

We will designate operators by capital letters of the Roman alphabet with 
indices that indicate the number of the statement. After implementation of the 
operations foreseen by an arithmetic operator, the process of calculations can be 
continued in a unique way, regardless of the results given out by an operator. 
The control transfer from an arithmetic operator is designated by the statement 
where control is transferred to the number recorded on the right above the 
operator. 
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Figure 1.4 

 
  For example, a record S

PA  means that from the operator PA  control is 
transferred to the operator with number S. 

Boolean operators are intended to verify implementation of the set of 
terms. We will mark them by letter P that indicates the number of the statement. 
After realization of the Boolean operator control is transferred to one of two 
operators, depending upon implementation of the condition checked up. The 
control transfer from a Boolean operator is designated by pointers with the 
statements where control is transferred to numbers. For example, j

i

KP ↓
↑  means 

that from a Boolean operator KP  control is transferred to the operator with 
number i, if the condition checked up by an operator is executed, or to the 
operator with number j, if it is not executed. For operators, both arithmetic and 
logical, denotation of transfer from one operator to another, directly after the 
following, is dropped. 

The control transfer to this operator from the other is designated by the 
statement in which control is transferred from the number recorded on the left 
above the character of this operator. For example, the record m

nl A,  means that 
control is transferred to the operator mA  from operators with the numbers l and 
n. In this case algorithm, the structure of which is presented in Figure 1.3, can be 
written as follows (blocks are designated by numbers): 
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Recently methods of structured programming have become very popular, 

where three types of structures of algorithms are uniquely used: Articulations, 
Choice and Iteration. Here, the basic method of creating the programs is an 
algorithm of the incremental working out in detail, in which without drafting a 
flow-chart a programmer gradually moves in the text of the program,  
consistently organizing and going into detailed layers, proper abstractions to the 
different levels, using the special universal structured programming language, 
for example PDL. The program thus made can be easily and simply translated 
into any, comfortable to the user, programming language. 

Finding algorithms of decision of different classes of tasks is one of the 
aims of mathematics. The purpose of applied mathematics, as it applies to the 
use of computer, is finding decision algorithms of practical (engineering) tasks 
with use of computer  
 
1.3 Mathematical Modelling 
 

Mathematical models, being projections of the real objects, are 
characterized by a number of features. 

Mathematical modelling can be used as means of studying the real 
systems by their substitution with more comfortable for experimental research 
systems (models), preserving the substantial features of the original.  

A model is called isomorphous (identical in form), if it has complete 
coincidence with the real system; and it is called homomorphous, if there is 
accordance only between the most important components of the object and of 
the model. 

The mathematical design includes the following stages: study of the 
object and drafting of its mathematical description; construction of an algorithm 
describing the model of the object; verification of the model’s and of the 
object’s adequacy; the model’s implementation. 

Study of the object of design and drafting its mathematical description 
consists of establishment of connections between the parameters of the process, 
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exposure of its initial conditions and formalization of the scopes of the process 
as a system of mathematical correlations. 

Mathematical description is made on basis of physical, chemical and other 
laws, characterizing dynamic and static processes in the object explored, and is 
written in mathematical language. Most distributions in the process of 
construction of the determined models were obtained by means of algebraic 
equations, differential equations and differential equations in private derivative, 
matrix algebra, and stochastic design, when casual character of processes is 
taken into account, together with methods of probability and mathematical 
statistics theories. If an apriori information on the object is insufficient, the type 
of mathematical models is specified by methods of multidimensional statistics: 
regression, cross-correlation, multivariable, other analyses and also by means of 
planning passive or active experiments. The principles of models construction 
are divided into analytical ones and imitations. Analytical models allow either to 
get an obvious functional, depending on the sought sizes or to define the 
numeral decisions for the concrete initial conditions and quantitative 
descriptions of the model. However, with more complex objects of design the 
construction of an analytical model grows into a hard solving problem. Also 
nowadays there is a wide distribution of simulation models, when the 
experiments are conducted on computer, with mathematical models imitating the 
behaviour of the real objects. Features of the objects’ functioning, the designs 
and types of mathematical descriptions used, determine continuous or discrete 
character of the model, choice of the determinate or stochastic approach to the 
model’s construction. For example, in order to design functions of measuring 
the devices’ transformation it is sufficient to use the determined method of 
description, while for the errors analysis, for estimations of the informative 
descriptions stochastic methods must be applied. 

The method of mathematical modelling allows to eliminate the necessity 
of making bulky physical models, related to the financial expenses; to reduce 
time of descriptions determination (particularly in case of calculating 
mathematical models on computer and applying effective calculable methods 
and algorithms); to study the conduct of design object at different values of 
parameters; to analyze applicability of different elements; to get descriptions and 
indices which are difficult to obtain experimentally (cross-correlation, 
frequency, self-reactance sensitiveness). 

We will consider the basic methods of mathematical models construction, 
more widespread in automation, management, information-measuring 
techniques. 

Generally, the mathematical model of device, system, process appears as 
the system of functional 
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,0),,,( =tZYXÔ       (1.1) 
 

where X, Y are the vectors of entrances and outputs coordinates; Z is the vector 
of external influences; t is the coordinate of time. 

The method of presentation of Ф depends on the aims of design, setting of 
the object, volume of information and character of basic data. In future, for short 
we will use determination of the type of model by the following denotations: 

first letter: D – determinate model, U –model in conditions of uncertainty; 
second letter: A – analogue, D – digitized; 
third letter: A – analytic model, S – simulation. 
 

1.3.1 Determinate Models                                                  
 

 The behaviour of most technical systems can be described via the so-
called phases variables - physical sizes as a stream and potential. It is thus 
expedient to select in the design objects the large enough elements to be 
examined as indivisible units. The laws of the elements of the system 
functioning are set by the components equations relating to heterogeneous 
phases variables. 

Community of the processes description, which is characteristic to 
different technical systems, allows to select a few types of elements: R is the 
element of energy dispersion; C and L are the elements of energy accumulation. 
We can get the equivalent chart of the technical system of any complication and 
the mathematical model of combination of these simplest elements and sources 
of the phases variables. Concrete sense of phases variables and simplest 
elements of the physical systems is resulted in Table 1.1. 

The mathematical model as basic description of many technical objects is 
a system of nonlinear differential equations in general case (1.1). A similar 
system can be solved in whole case only via numerical methods, replacing a 
continuous independent variable by its discrete analogue. This operation 
determines the retype model on DAA. 

Aggregate of phases variable values and their derivatives on the step of 
integration turns out as a solution of the system of n algebraic equations (in 
general case nonlinear) with n unknown .,...,, 21 nxxx  
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Solution of such a system of equations is possible by iterative methods, 
among which the Newton’s method is the most widespread. This method is 
based on Jacobi matrix, 
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Dependence between the unknown sizes of phases variables and their 

derivatives used in equations (1.1) is connected with different methods of 
approximation. 

The system of equations (1.1) is an association of components, topologies 
and different equations. Topologies equations set connection between the 
homogeneous phases variables related to the different elements of the system. 
Such equations in most physical systems are based on equations of equilibrium 
and continuity (for example, system of equations of the first and second laws of 
Kirchhoff). 

As an example we will consider the mathematical model of a bipolar 
transistor. 
 The equivalent chart of a bipolar transistor is presented in Figure 1.5. The 
following denotations are accepted here: yKKKyÅÅÅ RCIRCI ,,,,,  are 
accordingly elements of p-n transitions of emitter-base and collector-base; 

KIEr III ββ −=  is a source of current, reflecting passing of non-base carriers 
through the base and determining amplifying properties of transistor ( β  and Iβ  
are normal and inversion amplification coefficients of the current); kE rr ,  and Br  
is volume resistance of the regions, of accordingly emitter, collector and base. 
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Figure 1.5. 
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where ÒEI  is thermal current of transition base emitter; m is an empiric 
coefficient; 

ÒE
ϕ is temperature potential of emitter; 

BE
Ñ  is barrier capacity of 

transition base emitter; BÊÑ  is barrier capacity of transition base collector; 
ÒÊ

ϕ  is 
temperature potential of collector; 

ÒÊ
I is thermal current of transition base 

collector; ττ ,P - parameters, characterizing time of passing of current carriers 
through the regions of transistor. 

Unknown variables are here  
rrBrKKCKCEErErBrKRyKKCKrCEERyErE UUUUUUUUIIIIIIIIII ,,,,,,,,,,,,,,,,, . 

It ensues from this list that some topologies equations are taken into account in a 
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model: voltages ÑEU  and RCK UU ,  and RKU  are eliminated because they 
coincided accordingly with voltages EU  and KU . 

We’ll write topologies equations of the system: 
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In the last two equations BEU  and BÊU  are voltages of accordingly base 

emitter and base collector. Difference approximations for derivatives ÑKÑE UU && ,  
with step h join this system. 

Thus, the mathematical model of a bipolar transistor is the system of 
equations (1.2), (1.3). The Jacobi matrix for this system is presented in Table 1.1 
(zeroing elements are not marked). 

The following denotations of coefficients are accepted in this matrix: 
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Table 1.1.  
 

Variable 

№
  o

f  
eq

ua
tio

n 

 

rEI
 

 

RyEI
 

EI  
 

CEI
 

 

rI  

 

CKI
 

 

KI  

 

RyÊI
 

 

rKI
 

 

rBI
 

 

rEU  
 

EU  

 

BEU
 

 

BKU
 

 

ÊU  
 

rKU  

 

rBU
 

 

rU

1 1          
Er
1−         

2  1          
yER
1

−        

3   1         1α        

4   2α  1         3α       

5   β−   1  Iβ             

6      1 4α        5α      

7       1        6α     

8        1       
yKR
1

−

 

   

9         1       
Kr
1

−

 

  

10          1       
Br
1

−

 
 

11 -1 -1 -1 1 -1              
12     1 1 -1 -1 -1          
13  1 1 -1  -1 1 1  -1         
14            1   -1   -1 
15           1 1     1  
16               -1 1 -1  

17            
h
1

−  1      

18              1 
h
1

−     

 
 
1.3.2 Stochastic Models 
 

 When describing objects of automation and information measuring 
technique it is possible to select the next types of stochastic (probabilistic) 
modelling.  
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Statistical modelling known as the Monte-Carlo method is applied except 
for the tasks of mathematical modelling for the solution of separate tasks of 
numerical methods, for example, for approximate calculation of integrals and 
solution of differential equations. The statistical models of complex processes 
can be realized both on ordinary computers (analogue and digital) and on 
specialized statistical computers supplied with designing blocks for generation 
and transformation of random numbers. 

Analytical probabilistic modelling, as an approach to creation of models, 
operates not with concrete ordinary numerical sequences, but directly with their 
probabilistic (laws of probabilities) and spectral descriptions. Generally, the 
construction of analytical probabilistic models is an intricate calculable problem 
that does not allow to a full extent to use such their advantages, as the possibility 
of exact analytical task of descriptions of casual processes, absence of necessity 
of generation and treatment of large selections of random numbers, adjusted to 
operative optimization. The results of the researches directed to creation of 
problem-oriented systems and to application uniting numerical algorithms of 
solutions of more characteristic calculable procedures of analytical probabilistic 
design and methods of description of structures of the system packages are 
described in special literature.  

Currently the method of statistical modelling on computer, operating with 
models as UDS, is the basic method of stochastic modelling. Often this type of 
modelling is named simulation.  

The method of statistical modelling includes several stages: computer 
modelling of pseudo-random numerical sequences with the set correlation and 
law of probabilities as an imitation of entrance signals and influences on the 
object of simulation; modelling of transformation of the numerical sequences in 
the system; statistical treatment of results of modelling. We will consider these 
stages. 

C o mp u t e r  mo d e l l i n g  o f  p s e u d o - r a n d o m n u me r i c a l  
s e q ue n c e s  w i t h  t h e  s e t  d e s c r i p t i o ns .  When constructing the 
simulation model of the system there is a task of receipt by computer of pseudo-
random numerical sequences with the set correlation and the law of probabilities 
distribution. A method of receipt of numerical sequences is known with the set 
statistical descriptions by sorting the initial sequences. This method is based on 
the fact that the coefficient of correlation of random numbers depends more on 
the order of their sequence, than on the size. Therefore, two pseudo-random 
sequences, belonging to two different distributions, if they are well-organized by 
identical appearance, will have approximately equal coefficients of correlation. 

In accordance with the method of sorting a pseudo-random sequence 
)(nX  is generated with the set cross-correlation function, but arbitrary 

distribution. The sequence of integers is put to it in accordance nnI =)( . Then 
both sequences in pairs are assorted. Thus, variables )(nX  are disposed in 



 20 

ascending order, and an array )(nI  memorizes their previous position (places in 
an unregulated array )(nX ). Thus, an integer array )(nI  represents correlation 
between the array cells )(nX . After organization the array )(nX  does not 
present any interest, because all information about the cross-correlation function 
is now contained in the array )(nI . A pseudo-random sequence )(nY  is then 
generated with the set distribution and zeroing correlation and is written instead 
of the array )(nX . Then it is assorted in the multiplied order. Further arrays )(nI  

)(nI  and )(nY  are assorted in pairs; thus an array )(nI  is disposed in an 
increasing order. The flow diagram of an algorithm is resulted in Figure 1.6. 

As a result of implementation of this algorithm we will get a pseudo-
random numerical sequence, containing the up-diffused sizes on the set law and 
having the set cross-correlation function. It is expedient to use a sorting 
algorithm in those cases when for the statistical design of the system there is a 
small volume of statistical information not requiring the operation with 
numerical bulk arrays. In case of bulk arrays the time of design is substantially 
increased. 

The known algorithm of filtration requires less expenses of machine time 
to get casual process with the set correlation and law of probabilities 
distribution. A normal stationary casual process starts as initial )(tX . Always 
there is such a nonlinear fast-response transformation )(XWY N= which 
converts normal function of probability density )(xf X  of process )(tX  in the set 
functions of density ( )yfY . If an initial process )(tX  has a cross-correlation 
function, a regenerate process )(tY  will have a cross-correlation function ( )τYYR  
different from the function ( )τXXR  and related to it by some dependence 

( )XXYY RR ϕ= . The type of this dependence is reflected by transformation 
)(XWY N= . If the cross-correlation function of the regenerate process is 

required, it is necessary to choose the cross-correlation function of the initial 
process: 

 
( ) ( )[ ],* τϕτ YYXX RR =  

 
where *ϕ is reverse function ϕ . 
 

Before using this method, preparatory work has to be done, consisting of a 
few stages: 

- finding transformation function )(XWY N=  on the set function of 
density ( )yfY ; 

- getting dependence ( )XXYY RR ϕ=  from the found function )(XWY N= ; 
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- solution of equation ( )XXYY RR ϕ=  in relation to XXR , determination of 
cross-correlation function ( )τXXR  of the initial normal process )(tX .  

 

       
                 Figure 1.6                    Figure 1.7  

 
After ending the preparatory work, the design of random process with the 

set descriptions is taken to forming the discrete realization )(nX  of normal 
random process )(tX and to transformation of this realization by the formula  

 
( ) ( ){ }.nXWnY N=  

 
The flow diagram of the described algorithm is resulted in Figure 1.7. 

Start

Definition of the 
transformation 

Y=WN(X) 

Definition 
Ryy=y(Rxx) in 

accordance with  
Y=WN(X)

Solution of the 
equation  

Rxx=y*(Ryy)

Input 
fy(y) and 

Ryy(t)

Generation of the 
random process 

X(n)

Transformation 
from X(n) to Y(n)

Stop
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The algorithm requires less computer time than sorting algorithm, does not 
require accumulation and storage in memory of large numerical arrays. The 
principle difficulty is that in general it is not possible to prove existence of the 
equation’s solution of ( ) ( )[ ]τϕτ XXYY RR =  relative ( )τXXR . 

Applying both algorithms there is a task of generating on computer of 
pseudo-random numerical sequences with the set laws of distribution, zero 
correlation and pseudo-random numerical sequences with the set cross-
correlation function and arbitrary distribution. Generation of the random 
numbers with the set law of probability distribution is realized in a few stages. 
At the beginning the sequence of pseudo-random numbers is generated on an 
interval [0, 1], and from it - a pseudo-random number sequence with the set law 
of distribution. 

We will consider the algorithmic methods of random numbers generation 
(in practice the physical design with the use of a special prefix to computer is 
sometimes applied). The essence of algorithmic methods consists of generation 
of pseudo-random numbers that are produced by some recurrent formula, where 
every next ( )1+i  value appears from previous i (or groups of previous) by 
application of some algorithm containing the arithmetic and logic operations. 

Plenty of methods of imitation of the uniform distribution are known 
(take-outs, addition, truncation, interfusion methods). For all of these methods 
the requirements to the generated sequence of random numbers are general: the 
amount of operations for receipt of every pseudo-random number must be 
minimal; random numbers are generated as less correlated as possible, and their 
distribution is close to uniform, thus the type of distribution and correlation 
numbers degree must not change during work of the program. 

In the standard mathematical and programmatic software of different 
types of computers there are special procedures and programs for generation of 
uniform distributing sequences of pseudo-random numbers. 

Using a casual size generation in an interval [0, 1] X, it is possible to get 
random numbers sequence with an arbitrary set law of probability distribution. 
Three basic methods of forming such sequences are distinguished: 

1) Direct transformation of number iX , being realization of random 
variable X, generation on an interval [0, 1] by some function NW , in a number iy , 
which can be examined as realization of random variable Y, having the set 
distribution law;  

2) screening-out numbers from the primary sequence of pseudo-random 
numbers generation on an interval [0, 1] so that remaining numbers are up-
diffused on the set law; 

3) designing of terms of the proper maximum theorems of probability 
theory. 

Widely spread are methods of speed-up generation of random numbers. 
Thus, a considerable effect of increasing speed during imitation of the random 
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numbers distributed on a normal law, as compared to the method based on the 
use of central limit theorem of probability theory, gives a method, including the 
Muller algorithm, by which a pair of independent numbers from the segment  
[0, 1] is transformed to the pair of independent normal random distributed 
variables 

 
.2cosln2;2cosln2 212121 xxxx πξπξ −=−=  

 
We will note that this method is theoretically exact and requires the least 

amount of generated numbers ( )nX .  
Special methods of getting random variables with different laws of 

probabilities distribution are known. For example, Rayleigh distribution with 
one parameter equal to mean quadratic deviation of initial two-dimensional 
normal distribution. It leads to the following method of imitation of Rayleigh 
distribution: 

 
,2

2
2

1 ξξση +=i  
 

where iη  is the random variable distribution by law of Rayleigh,  1ξ  and 2ξ  are 
random numbers having normal distribution with the zero expectation that mean 
quadratic deviation equal to unit.  

There is also a correlation, relating the random numbers generated by law 
of Rayleigh, with uniform random numbers distribution on a segment [0, 1], 
which determines another way of generation: 

 
.ln2 ii x−= ση  

 
For imitation of the Maxwell distribution law it is possible to take 

advantage of the random variable where Maxwell distribution can be examined 
as a module of three-dimensional random vectors, the projections of which on 
the axis of coordinates submit to normal distribution with equal mean of 
quadratic deviations and expectations that equal to zero. It is therefore possible 
to take advantage of the following formula for imitation of the Maxwell 
distribution law: 

 
,2

3
2
2

2
1 ξξξσθ ++=i  

  
where the random number is generated by the law of Maxwell; 321 ,, ξξξ are 
random numbers with normal distribution and the expectation that equals to 
zero, and mean quadratic deviations equal to unit. 
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We will consider the methods of getting pseudo-random number 
sequences with the set cross-correlation function. An algorithm is known where 
the n uncorrelated random numbers ni xx ,...,  are subject to such linear 
transformation after which the obtained sequences ni yy ,...,  have the set cross-
correlation matrix ( )nmRK . Thus, means ni yy ,...,  could be found from matrix 
equation 

 
( ) ( )[ ],xKWYK N=  

 
where NW  is a linear transformation of the vector-column ( )XK  in ( )YK . 

In the unfolded form we get: 
 

( )
( ) ( )

( ) ( ) ,...
...................................

;
;

11

22221122

11111

YnXnnnxnn

yXx

yx

mmxamxay

mmxamxay
mmxay

+−++−=

+−+−=

+−=

 

 
where the transformation coefficients are found from the equation  

 
lkllklkllK aaaaaaR +++= ...2211  

 
and [ ]YmK  is vector-column of the expected values iy .  

At large values of n this method of generating the correlated pseudo-
random sequences becomes inconvenient for realization on computer, as 
memorizing the elements of matrix ( )aK  requires a large volume of main 
memory ( )( )2/1+= nnN  of cells and large volume of calculations (expenses of 
machine time). Due to this in a number of cases it appears more comfortable to 
design the correlated random processes via the method of canonical 
decompositions. Let a continuous random process ( )tY  be set by canonical 
decomposition 

 

( ) ( ),
1

∑
∞

=

=
k

kk tJVtY       (1.6) 

 
where kV  is the uncorrelated random coefficient; ( )tJ k  is a system of certain 
determined coordinate functions. 

Digital design of random processes, set by canonical decomposition, is 
carried out as follows. The values of the uncorrelated casual sizes kX  are used 
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as kV . Infinite row (1.6) at the calculations is approximately replaced by the 
truncated eventual row. Using canonical decomposition, we will get relation  

 

( ),
1

∑
=

=
N

k
kkn nJVY  

 
in which dispersions VkD  of the uncorrelated casual sizes kx  and discrete 
coordinate functions ( )nJ k  could be found from the following recurrent 
relations: 
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We get from here 

 

( ).
1

∑
=

=
N

k
kkkn nJxY σ  

 
A sequence nY  will have normal distribution and set cross-correlation 

function ( )τXXR . 
Methods of sorting and filtration in the combination with the considered 

methods of generating pseudo-random numerical sequences with the set cross-
correlation functions allow to get random numbers sequences imitating entrance 
signals and revolting influences to the object of design. 

S i mu l a t i o n  o f  p r o c e s s e s  o f  t he  r a n d o m s i g n a l  
t r a ns f o r ma t i o n .  We will consider methods of designing algorithms for 
modelling of processes of random transformation processes via different 
transformers and systems. At the design of random signal transformation by the 
linear dynamic systems it is efficient to use their impulsive description ( )tg . 

In order to get a digital model of the entrance casual signal transformation 
it is necessary to design operation packages of functions ( )tx  and ( )tg . 

Carrying out replacement of integral of Duhamel by the sum of discrete 
values on the method of rectangles, we get 
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( ) ( ) ( ),
0

∑
−

=

−=
mn

k
knxkgny      (1.7) 

 
where m is a discrete analogue of the transient’s duration.  

There are more exact methods of integration - trapezoids, Simpson etc. In 
such cases the formula (1.7) assumes the following form 

 

( ) ( ) ( ) ( ),
0

∑
=

−=
n

k
knxkgkcny  

 
where coefficients ( )kc  are determined depending on the used method of 
numerical integration. 

The substantial advantage of method of design of the linear dynamic 
systems on basis of discrete analogy of integral packages is the possibility to 
generalize in case of designing the linear dynamic systems with variable 
parameters (non-stationary systems). 

A non-stationary system is described by impulsive description depending 
upon two variables. In this case as a random signal we mark the reaction of the 
non-stationary system as 

 

( ) ( ) ( ) ττττ dtgxty
t

−= ∫ ,
0

 

 
or in a discrete form 
 

( ) ( ) ( ) ( ).,
1

0
kncknkgkxny

n

k
−−= ∑

−

=

 

 
The described method is used in the cases when modelling of the input 

random signal is carried out with help of the algorithms of nonlinear 
transformation filtration and designing of terms of central limit theorem of 
probability theory. The flow diagram of the design algorithm is presented in 
Figure 1.8. We will note that in the case of designing entrance casual signal on 
basis of the sorting algorithm (see Figure 1.6) it is impossible to build a 
simulation model of the system and to explore it expediently by matrix methods. 
Digital models of the closed nonlinear systems could be used as a combination 
of the modelling algorithms for separate linear dynamic and nonlinear static 
transformers (Figure 1.9). 
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Figure 1.8 

 
Design of the described systems is often connected with considerable 

difficulties, however, in a number of cases, the flow diagram of the system can 
be presented in the simplified form (Figure 1.9).  

In this case 
 

( ) ( ) ( )
( ) ( ) ( ) ,][

;

1 nynxWn
nynxn

N −=
−=

ε
ε

 

 
where NW  is an operator of nonlinear transformer of the system. 

Applying the described above algorithm for the digital designing of linear 
dynamic systems, we get 

 

( ) ( ) ( ).
1

0
1∑

−

=

−=
n

k
knkgny ε  

  
Thus, the necessity of every step in resolving systems of nonlinear 

algebraic equations is a feature of digital models of the nonlinear closed 
systems, providing that the linear dynamic links of the system are designed on 
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basis of discrete packages. The resolving of this task can be simplified, if we 
enter the element of delay for one period in the chain of feed-back of the system. 

  

 
Figure 1.9 

 

 
Figure 1.10 

 
The nonlinear equation (Figure 1.8) will then be transformed into the recurrent 
form: 

 

( ) ( ) ( ) ( ){ }.11
1

0
∑

−

=

−−−−−=
n

k
N knyknxWkgny  

 
Introduction to the chain of feed-back from the element of delay brings in 

an additional error into the digital model. However, at the digitization step 
0→∆τ  an equivalent discrete system with an element of delay being the same 

as without it coincides with the initial continuous system. Therefore, by 
choosing a digitization step it is possible to obtain a considerably small impact 
of the delay error. 

Statistical treatment of results is the final stage of statistical design. 
A mo u n t  o f  r e a l i z a t i o n  a n d  e x a c t ne s s  o f  c a l c u l a t i o n s .  

The amount of realization of the tasks resolved via method of statistical 
designing depends on the required exactness of the results to be obtained. 

Let the purpose of design be calculation of probability P appearance of 
some random event A. As an estimation of probability P uses frequency of the 
L/N of event presence A at N realizations, where L is amount of tests at which an 
event is A. By virtue of the central limit theorem of probability theory frequency 
L/N at large enough value N has the normal distribution determined by the 
expected value M(L/N) = P and dispersion D(L/N) = P (1-P) / N. 
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Consequently, 
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At large enough value N gets 
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where ( ) ε
π

;2
0

2

∫ −=
x

z dzezÔ  is exactness of inequality. 

 
 Set by certain probability P, we will find on normal distribution the value 
D(L/N), satisfying to equation, where ( )NLDt p //ε= . 

We get the confidence estimation L/N in a form 
 

( )[ ] ( ) ./1/ NPPtPNLP P −=<− ε  
 

In a formula (1.10) with probability greater than 0.997, the size L/N 
satisfies the condition 

 
( ) ( ) ./13/ NPPPNL −<−  

 
Thus, error of method of statistical modelling while calculating the 

probability of event A never exceeds sizes ( ) NPP /13 −=ε  and decreases 
with the increasing number of tests inversely proportional to a root square from 

N . Hence, it is possible to define the amount of realization N, necessary to get 
the estimation L/N with exactness ε  and truth P 

 
( ) 22 /1 εPPtN p −=  

 
or for P =0.997 

 
( ) ./19 2εPPN −=  

 
It is likely possible to estimate the amount of realization necessary for 
estimation of the results of the modelling of random variation’s mean. We will 
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suppose forming of N realizations of random variation X, with the expectation M 
and dispersion 2σ . We will define 
 

.1
1

∑
=

=
N

i
Xi

N
X  

 
By virtue of central limit theorem of probability theory  
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Then 

 
[ ] ,/ NtMXP pσε =<−  

 
 exactness 

 
./ Nt pσε =  

 
At P = 0.997 formulas acquire a form accordingly ε  and N   

 
./9,/3 22 εσσε == NN  

 
Error of method of statistical modelling both at the calculation of 

probability of event A at the estimation of mean random varieties makes 
N/1=ε . Diminishing of error ε  of close solution of task via the method of 

probabilistic modelling leads to the considerable increase of number of tests of 
N and to increase of time of calculations. For example, the increase of exactness 
around to an order leads to increasing the time of resolving the task one hundred 
times. 
 
1.3.3 Fuzzy-Logic Models  
 

One of the base means for modelling human-computer systems is a 
fuzzy-logic theory (class of models in condition of uncertainty UAA or UDA). 

At development of a model the following basic concepts of fuzzy-logic 
model theory were used in one of the basic fuzzy logic works, offered by Zadeh: 
1. C o nc e p t  o f  u n i v e r s a l  s e t .  The universal set of U is a complete plural 

that engulfs all problem areas. 
2. C o nc e p t  o f  u n c l e a r  s u b s e t .  Unclear subset of the F set of U concerns 

the function of belonging µF (u), where u is an element of the universal set.  
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3. C o nc e p t  o f  f u n c t i o n  o f  b e l o n g i n g .  The function of belonging 
)(uFµ represents the degree of belonging of every element of universal set to 

an fuzzy subset of F. The function of belonging acquires the values from 0 to 
1. 

 
A universal set can be both continuous and could consist of complete 

number of sets (or elements) nuuu ...,, 21 . In the first case, an fuzzy set appears 
in a form: 
 
 uuF

U
F /)(∫= µ . 

  
The following denotation is used in the second case: 

 
 ./)(.../)(/)( 2211 nnFFF uuuuuuF µµµ +++=   

 
The basic operations of theory of fuzzy sets are: 

1. Operation of addition of the sets: 
 

∑
=

−=
n

i
iiF uuF

1
,/))(1( µ  

).(1)( uu FF µµ −=  
 
2. Operation of association of the sets: 
 

 { },)()(
1

∑
=

∪=∪
n

i
iGiF uuGF µµ   

 ),()()( uuu GFGF µµµ ∪=∪   
 
where ∪ - is a sign of operation of the maximum finding. 
3. Operation of crossing of the sets: 
 

 { }∑
=

∩=∩
n

i
iGiF uuGF

1
)()( µµ ,  

 ),()()( uuu GFGF µµµ ∩=∩   
 
where ∩ - is a sign of operation of the minimum finding.  

Unclear logical equations could be written down using these rules. The 
operations of finding the maximum and the minimum correspond to the 
operations of logical “and” and logical “or”. In future these operations are 
named as “fuzzy and”, “fuzzy or”. 
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Knowing about causality connection of two facts, for example “If R, then 
G”, that use the fuzzy sets of R⊂U, G⊂V, it is possible to execute the unclear 
inferencing of GR → , GR ′→′ , which means that if the fact of G is derived from 
the fact of R, then from the fact R′  the fact G′ is derived, where R, G, R′ , G′ - 
are fuzzy sets. 

To execute an fuzzy logical output operation, it is necessary to know the 
fuzzy relations between the plurals of R⊂U and G⊂V, which are set on universal 
sets: W = {w1, w2, ..., wl}, and V = {v1, v2, ..., vm}, that are covered by the matrix: 
 

 { }∑∑
= =

∩=×=
l

i

m

j
iGiR vwGRY

1 1

)()( µµ .  

 
At matrix with l×m size the element standing on crossing of the і line 

and j column is determined in this way: 
 
 )()(),( jGiRjiy vwvw µµµ ∩= .  
 

For calculation of the result of logical (G’) a formula is used: 
 
 )( GRoRYoRG ×′=′=′ ,  
 
where  ο - is an operation of min-max composition. 

Putting the formula of this operation, we get: 
 

 { }),()(
1

iiYiR

m

j
Wwi vwwG µµ ∩∪=′ ′

=
⊂∑ .  

 
We can base upon the experience of applying mathematical methods of 

fuzzy-logic in the tasks of medical diagnostic dependences for the complex 
processes of pattern recognition and for prediction processes. It is possible to 
apply developed scientific principles of fuzzy logic modelling: 

1. P r i n c i p l e  o f  l i n g u i s t i c  v a r i a b le s  o f  t h e  s ys t e m.  In 
accordance with this principle entrances and initial variables of the model to be 
developed will be examined as linguistic variables with qualitative terms (with 
the values which adopt variables). An example of the linguistic terms is the 
temperature {very low, low, middle, high, very high}. 

Thus, examined variables can have the concrete numerical values. 
Concrete evaluation tasks receive exact linguistic terms. Such terms are more 
natural for the specialists - experts in this knowledge field. 

2. P r i n c i p l e  o f  l i n g u i s t i c s  k n o w l e d ge  a b o u t  a c c e p t a n c e  
o f  c o nc r e t e  d e c i s i o n s .  In accordance with this principle connections 
between output and input parameters of the system are described in natural 
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language, and then they are formalized as an aggregate of unclear logical 
utterances of “If-Then, Else”. 

The aggregate of such utterances can be examined as a set of 
specifications of input and output parameters. This inferencing algorithm gives a 
possibility to evaluate such values of the input parameters that are absent in the 
base. 

3 . H i e r a r c h y  p r i n c i p l e  o f  k n o w l e d ge  a b o u t  t h e  
d e c i s i o n .  The possibility to describe connections between the output and 
input parameters appears with use of the first two principles. Application of 
hierarchy principle allows to avoid the difficulties related to the dimension of 
the system (by amount of the input parameters). In accordance with this 
principle it is expedient to conduct classification of input parameters and to 
build a derivation tree.  

Due to this principle it is possible to take into account the unlimited 
amount of input parameters which influence the decision practically. Thus, the 
problem of design consists of the following stages: 
1. Construction of derivation tree. 
2. Determination of regions of change of input parameters. 
3. Estimation of qualitative (linguistic) parameters. 
4. Determination of types of decisions (in case of few decisions) and regions of 

their change. 
5. Creation of knowledge base.  
6. Formalization of knowledge base as fuzzy logic utterances. 
7. Receipt of the system of unclear logical equations. 
8. Development of models of functions of belonging, which provide 

presentation of quantitative and qualitative parameters as fuzzy plurals for 
the different number of linguistic terms which are entered into the knowledge 
base.  

Then, decision-making process on the basis of the obtained model is 
presented in Figure 1.11. 

The general method of designing describes the main stages of the 
process; however, it doesn’t take into account some features of the technological 
processes with unclear entrances and initial information. From the conducted 
analysis of such processes the following differences become obvious: influence 
of management algorithm, simultaneous presence of the variety of outputs 
which are impossible to divide.  
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Figure 1.11 
 
1.4 Errors  
 

Replacement of the original by a model is always related to some certain 
simplification and exclusion of the unimportant (in accordance with the accepted 
criteria) properties, parameters, factors. In mathematical description it 
determines the presence of the irremovable errors determined by methodology 
of designing that are called the e r r o r s  o f  mo d e l l i n g  me t h o d . For 
example, in statistical modelling these errors are related to digitizing the 
continuous casual sizes, limited sample size, pseudo-random character of the 
generated numerical sequences. Irremovable errors are always in the basic data 
obtained experimentally. Thus, tasks and algorithms sensitive to the change of 
basic data claim special attention, as there can be considerable growth of the 
number of errors. The computer calculations within the mathematical models 
require realization of an algorithm as a sequence of logic and arithmetic 
operations and there is presence of errors of numerical method of the problem’s 
decision. These errors can be divided into the following kinds: 

T r a ns a c t i o n  e r r o r  ( e r r o r  o f  d i g i t i z a t i o n )  because of the 
limited number of digits in computer presentation of numbers; 

E r r o r  o f  l i m i t a t i o n  ( t r u n c a t i n g ) , related to the numerical 
method of decision, when in order to describe the function closely in place of 
the infinite rows only the first members are used (for example, difference 
description of the derivative).  

E r r o r  o f  d i s t r i b u t i o n , subsequent upon accumulation of errors 
appearing in the previous stages of calculation. 
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The indicated errors cause two types of errors: l o c a l  o ne s  are sums of 
the errors during the process at every step of calculations; g l o b a l  o n e s  are 
sums of errors accumulating from the moment of start of calculations. 

In the method of presentation there are distinguished: an a b s o l u t e  
e r r o r  ∆ determined as a module of difference between true A and calculated a 
values of size, 

 
,aA −=∆  

 
and a r e l a t i v e  e r r o r  

.
aa
∆

=δ  

 
Exactness of calculations is determined by the amount of numbers of the 

results to be trusted. The number is named “faithful” if an absolute error does 
not exceed half of unit of digit address which this number is in. It is obvious that 
all numbers preceding faithful are correct. 

We will transfer the basic rules of transformation of errors in the process 
of calculations: 

1) T h e  a b s o l u t e  e r r o r  o f   s u m of eventual number of approximate 
numbers does not exceed the sums of absolute errors of these numbers 
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2) T h e  r e l a t i v e  e r r o r  o f  s u m of eventual number of approximate 

numbers does not exceed the maximum error of one of the elements  
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3) t h e  r e l a t i v e  e r r o r  o f  mu l t i p l i c a t i o n  at small enough errors 

( )1,0≤aδ  does not exceed the sum of relative errors of multiplicands 
 

∑
=

=
≤



Π

k

i
ii

k

i
a

11
δδ , 

where ki

k

i
aaaa ∗∗∗=Π

=
...211

. 



 36 

During application and algorithmization it is necessary to take into 
account the notions of convergence and stability connected with error 
evaluation.  

Thus, increase of exactness is achieved by change of internal parameters 
of algorithm (for example, by the maximally possible difference between the 
previous and the next approaches). 

S t a b i l i t y  of the computational algorithm is a continuous dependence on 
the decision on the input data.  

C o r r e c t n e s s  of the method of calculation depends upon the property of 
indisputable existence of the problem’s decision and the firmness of 
computational algorithm that is applied within the method’s realization. 

C o n v e r ge n c e  is a feature of algorithm to make the calculations with 
the least possible number of errors for the set class of data by way of change of 
its parameters. Stability of algorithm is an ability to make calculations and to get 
the final result with the set exactness during change of the algorithm’s 
parameters and input data within certain margins that are called the region of 
stability. 

In a number of cases (for example, at the design of the measuring systems 
and devices in conditions when unstructured data is entered) probabilistic 
approach to estimate the errors is used. 

Error is one of basic descriptions of quality of calculable process and its 
estimation must accompany decision of any engineering and scientific tasks via 
computer methods. 
 
1.5 Remarks 
 

The mathematical modelling is a part of process of creation of software 
and hardware of automation and information-measuring technique. Calculation 
methods of programming on computer became the basic practical instrument of 
developers of automatic measuring information devices and systems. Large 
experience of use of calculation methods, application of numerical procedures, 
creation of the special software for decision of various tasks in this region 
allows to point out their basic types:  

1. Identification of dynamic descriptions of linear links at the use of 
different descriptions of signals on their entrances and outputs. 

2. Use of the least-squares method for identification of transmission 
description on data describing transitional and frequency descriptions or signals 
on the entrances and outputs of link arrays. 

3. Research of stability of the linear dynamic systems on basis of use of 
different criteria. Construction of region of stability on the plane of parameters 
of the system. 
 4. Analysis of quality of the linear automatic control systems. 
Determination of optimum controls by way of decision of algebraic equation of 
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Riccati (continuous and discrete cases), which is the problem of an optimum 
linear controller. The decision of equation of Riccati is related to 
implementation of row of transformations and decision of special problems 
(making an initial matrix, transformations of similarity) allowing to bring 
matrices over to the Hessenberg and Schur type; finding own values of matrices. 

5. Research of the nonlinear automatic systems on basis of close methods 
of decision of nonlinear differential equations. Application of methods of the 
harmonic linearizing and piece-linear approximation. 

6. Simulation of measuring devices and systems on computer, including: 
generation of pseudo-random numerical sequences imitating measurands and 
influences; design of transformation of information parameters of signals in the 
explored devices; treatment of outputs of pseudo-random numerical sequences 
(construction of histograms, cross-correlation functions, estimation of criteria). 

7. Analytical probabilistic modelling of measuring information devices 
and systems on basis of associate probabilistic (laws of probabilities 
distribution) and spectral models (spectral density of power). 

8. Decision of determination problem of values distribution of measurand 
(flowrates, sound-wave, temperatures) in the closed region. 

9. Research of automation devices by method of experiment planning. 
10. Digital signal processing problems. Analysis of spectrums of different 

signals with the use  of Fourier transformation, for example. 
11. Analysis and errors estimate of measuring devices and systems on 

basis of methods of private derivatives, probabilistic design, interval analysis 
etc.  

12. Decision of problems of computer-aided design of the automatic 
control systems. In this direction a large experience has been accumulated in 
creation of various software systems.  

New approach to the design of models in conditions of uncertainty is 
interval modelling. This method is more simple compared to the stochastic 
methods and demands knowledge only about numerical intervals of data. The 
basics of interval method will be described in chapter 7 of this book. 

A deeper study of the modelling theory can be found in special researches 
on probabilistic and statistic methods, methods based upon the fuzzy logic 
theory that are often used in indeterminate conditions, queuing systems 
simulations, models of structural transformations. Comparing the approaches it’s 
difficult to pick out the best possible one. Practical demands and experience 
require choosing the most expedient of them that could be used at the different 
stages of the systems modelling in automatics, information-measuring 
techniques and control systems development. 
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Exercises 
 

1. Make examples of typical tasks of computational mathematics. Classify 
them according to the type of mathematical methods and physical essence. Give 
examples of application of these methods to solve the applied problems of 
automatics and control systems. 

2. How do the errors of calculations emerge? Classify them. 
3. What is the difference between the local and the global errors? 
4. Prove all the features of arithmetic operations with errors from  

     section1.3. 
5. Give the definition of iterative methods. 
6. What is the convergence of an iterative algorithm? 
7. What is the firmness of an iterative algorithm? 
8. What is the correctness of a computational method? 
9. Name methods of generation of the random (pseudorandom) numbers. 
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Chapter 2. Problems of Linear Algebra 
 
2.1 Introduction 
 
 Solution of the systems of linear equations is a widespread calculation 
problem of linear mathematics. Methods of solution of such problems are 
considered in this chapter. We suppose the readers are already acquainted with 
the information given below from the theory of matrices. 
 
2.2 Systems of Linear Equations  
 
 Generally, the problem could be defined as following: to find the values 

nxxx ,...,, 21  which satisfy the system of linear equations 
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The determinant’s inequality to zero (linear independence of equations) is 

the necessary and sufficient condition of the decision’s existence: 
 

0≠Adet . 
 

The methods of decision of the systems of linear equations can be divided 
into direct and iterative. To the lines which allow to get the exact decision, the 
methods of determinants of Cramer, Gauss and the special direct method for 



 40 

tridiagonal system could be applied. Iterative methods are based on the accepted 
clarification of progressive approximations to the exact decision, effective in the 
case, when a lot of coefficients are either equal to zero or have a higher order in 
the system. 
 
2.2.1 Classic Methods  

 
The well-known method of Cramer (determinants) in detail is considered 

in the standard courses of higher mathematics and can not be applied in most 
practical problems due to the essential complexity of the determinants 
calculation, providing even the tiny growth of the system’s order. That is why in 
this section we will consider the Gauss method, which, even if it yields to the 
iterative methods in certain practical problems, however is more universal, and 
also a special direct method, that is used in problems with tridiagonal matrices. 
 
2.2.1.1 Gauss Method 
 
 Gauss Method (method of exception) is based on reduction of matrix of 
coefficients of the system (2.1) to the three-cornered form: 
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and consists of two stages: direct motion and reverse putting. The stage of direct 
motion finishes, when one of equations of the system becomes equation with 
one unknown. Then, carrying out the reverse putting, all the unknowns are 
found. This method could be easily realized on computer. 
 At first by division of the coefficients 1,1a  the first equation is rationed; 
then we multiply the equation obtained on coefficients ia ,1 and subtract from all 
the equations. Thus, 1x  is eliminated from all the equations, except the first. At 
the next stage similar procedure is used to the last )n( 1−  equations and is 
repeated until the system is transformed to the three-cornered form. 
 On a k -step the coefficients of k -equation are rationed, and new 
coefficients in the next equations are concerned as 

 
kibaab ,kjikijij >−= . 
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Coefficients ija  change at every step. 
Number of arithmetic operations in use of the method is  
 

3

3
2 nN ≈ . 

 
The algorithm of the method is resulted in Figure 2.1. 
 

2.2.1.2 Gauss-Jordan Method (Exception) 
 

 This method allows to bring a matrix of coefficients to the diagonal form. 
In distinction to the previous method instead of ki >  we use ki ≠ . In the Gauss 
method transformation is applied to the equations which stand only below the 
leading row. Equations which stand either below the leading row or above it are 
transformed with use of the Gauss-Jordan method.  
 This method facilitates the decision-making, but is accompanied with 
increase of calculations volume. 
 
2.2.1.3 Modified Gauss Method 

 
 In many cases there is a necessity to solve the systems of linear equations 
with the varieties of matrix coefficients and a permanent column of free 
members. Most frequently Gauss modified method is used to solve such 
problems. In this method matrix equation (2.1) is transformed to the matrix of 
coefficients A  as a multiplication of left L and right R  three-cornered matrices 
 

ARL =* . 
 

 As the diagonal elements of one of the matrices become equal to one, they 
can’t be memorized, and it is necessary to keep both matrices in the computer 
memory in place of matrix of coefficients A . 
 In the variant of the Kraut method the following sequence of finding the 
elements of matrices L and R is used 
 

for ;...,,2,1 nk =  
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The system is transformed to such system, the solution of which is 

replaced by the solution of two systems with three-cornered matrices: 
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Elements X,Y  could be found from the following correlations: 
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 Number of arithmetic operations used in this method to solve the system 
of linear algebraic equations is 22nN = . 
 
 
2.2.1.4 Direct Method for Tridiagonal Systems 
 
 This method (named often as the method of pass) is used to solve the 
systems of equations with the band matrix of coefficients. We will consider its 
application to solve the tridiagonal system which is typical for many practical 
problems. 

Let’s write the system in such a form: 
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To solve this system we will use the analogue of the direct motion of 

Gauss method. Then the system is transformed to the following form: 
 

,
,

,
,

.....................
,
,

111

1

1111

1211

0100

nn

nnnn

iiii

iii

vy
vyuy

vyuy
vyuy

vyuy
vyuy

=

=−
=−

=−

=−
=−

−−−

+

−−−  

 
where nn vuvuvu ,,...,,,, 1100  are coefficients, that are called pass-coefficients.  

Take into account, that  
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These coefficients give possibility to find 01 y,...,y,y nn − . 

 Eliminating from previous equations 1−iy  by arithmetic transformations, 
we get the formulas for determination of the sought values: 
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and further  
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2.2.2 Iterative Methods 

 
Iterative methods are especially effective for the systems with the big 

order and with sparse matrices of coefficients. They are used in the systems 
which preliminary result in the following form: 
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or in a matrix form:  
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 There are a few basic variants of iterative methods. They are: Jacobi 
methods (simple iteration), Gauss-Seidel and successive overhead relaxation. In 
the basics of this method there is a systematic clarification of the variable values 
which are set at the beginning of the calculations. 
 In the Jacobi method the initial variable values are used for calculation of 
the new values nxxx ,...,, 21  in accordance with (2.2) equations. The process is 
finished when all the new values converge to the previous ones. In the opposite 
case the new values are used in place of the initial ones. This procedure repeats 
itself until the convergence is attained or it becomes clear that the process 
diverges. In this method replacement of all variable values is conducted 
simultaneously (simultaneous displacement). 
 The system of iteration equations is: 
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where, accordingly, value ),...,1( nixi =  on the next iteration is with index 
(m+1) and the previous iteration is with index (m).  
 In the Gauss-Seidel method the obtained value 1x  is immediately used for 
the calculation of 2x . Then by the new values 1x  and 2x  we consider 3x  and so 
on. It allows to rate up the convergence substantially. 
 In the method of successive overhead relaxation all the new variable 
values are calculated as: 
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where )1( +m

ix  is the specified value )(m
ix  due to the Gauss-Seidel method;  

ω   parameter of relaxation ( 21 ≤≤ ω ). 
At 1=ω  this method is similar to the Gauss-Seidel method. Rate of 

convergence depends on ω .  
One of the main prerequisites of successful application of iterative 

methods is convergence. For estimation of convergence the norms of matrix of 
coefficients B  are calculated from the system (2.2). 

The following forms of norms are frequently used: 
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There are a few approaches to determinate the convergence by estimation 

of the norms. Generally it is sufficient, that at least one of the matrix norms is 
less than one. 

 
1<B . 
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 In mathematics such a condition is called “ordinary” or “strong”. In many 
cases convergence is provided via implementation of the so-called “weak” sign. 
For example, “weak” sign of sums of lines: for all the sums of lines of 
coefficients ),...,1( ni = the correlation is executed: 
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but there is one line p  for which  
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Similarly, the “weak” sign is determined as the sums of the column’s 
coefficients. 
 “Weak” sign can be used in those cases, when matrix of coefficients A 
from the systems of equations (2.1) can be transformed to the form: 
 

,
0 3

21









A
AA

 

 
where 31 , AA  are square matrices. 

For such matrices the system of equations (2.1) disintegrates into two 
systems of equations which are solved consistently. In special textbooks the list 
of which is given at the end of this book, more detailed analysis of the properties 
and signs of the convergence estimation is given, but in order to perform a 
number of practical problems it is sufficient to use the information given above. 
 
2.3 Remarks 
 

The Gauss method and its modifications (Gauss-Jordan, the Crout, matrix 
inversion etc.) are more universal, but it is difficult to use them when the 
coefficients matrix is very sparse (due to a multitude of zero elements and errors 
that occur in the course of the multi-step calculation processes and that should 
be taken into account). At the same time the Cramer methods are effective only 
for systems with comparatively little order (less than 10-15).  

The iterative methods are very simple and convenient, but only for the 
convergence problem solving. In case of a wide range of problems (for example, 
in mathematical physics) it could be reached in accordance with the correct 
problems formalization.  
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In this chapter from a variety of problems in the sphere of linear algebra 
only systems of linear equations were considered. The other problems 
(transformations of complicated matrices, problems with own meanings of the 
matrices) can be found in special books on the theory of matrices. 
 
Exercises 
 

1. Compare direct and indirect (iterative) methods. 
2. Construct algorithms of Gauss and Gauss-Jordan methods. 
3. What is the form of linear system that is used in the iterative methods? 
4. What are the rules of checking the convergence of the iterative 

methods? 
          5. What is the difference between iterative methods of Jacobi and Gauss-
Seidel? How does the difference show in the algorithms?  
 6. Solve on computer the following system using Kramer, Gauss and 
Gauss-Jordan methods  
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         7. Estimate the convergence of iterative algorithm for the following 
system. Using the algorithm solve the system on computer  
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   7.3 
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8. Solve each of the following tridiagonal systems via the direct method: 
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 Which of these systems can be solved using iterative methods? 
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Chapter 3. Equations and Systems 
 
3.1 Introduction 
 

In this section the methods of solution of nonlinear equations and systems 
of equations are considered. Many practical tasks, for example, calculations of 
nonlinear electric circles and systems management, decision of nonlinear 
differential equations, analysis of the systems firmness via estimation of their 
own values and so on lead to calculation of tasks of such kind. 

For the simplest types of algebraic equations (not higher than the third 
degree) there are exact analytical formulas, for transcendent equations and any 
systems of equations such methods in general do not exist and due to this we 
should use only approximate iterative methods and algorithms. Main iterative 
methods and algorithms for solution of such tasks are considered below.  

 
3.2 Nonlinear Equations 
 

Equations in which the degrees of argument are entered only with the 
proper coefficients are named algebraic. 
 Nonlinear equations which contain trigonometric or other special 
functions are named transcendent. 
 General form of an algebraic equation: 
 
 0...)( 01

1
1 =++++= −

− axaxaxaxf n
n

n
n . (3.1) 

 
 It is possible to select some important properties of algebraic equations 
which simplify further determination of the roots. Here and further we call some 
properties as theorems, as it is accepted in mathematics, but give them without 
proof. 
 

1. B a s i c  a l g e b r a i c  t h e o r e m.  Algebraic equation of order n has n 
roots, which can be real or complex. 
 Every root is calculated the proper number of times that equals to its 
multiplicity. The multiplicity of root 0x  equals to k, if  
 

0)(...)()( 0
)1(

0
''

0
' ==== − xfxfxf k . 

 
 2. If all coefficients ia  of equation (3.1) are real, all complex roots form 
complex-conjugating pair. 
 3. R u l e  o f  D e s c a r t e s . The number of positive real roots equals or is 
less than the number of changes of signs in the sequence of coefficients (that 
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assertion concerns just the number of negative real roots while replacing x  to -
x  ) in (3.1). 

4. T he o r e m o f  L a g r a n g e . The high bound of positive real roots 
could be written as  

 

,0,1 0
0

>+= a
a
BR k  

 
where k  is the number of the first negative coefficient; B  is the most absolute 
value of the negative coefficient. 
  5. T he o r e m o f  G ua . If equation (3.1) has real roots and real 
coefficients 
 

.11
2

+−> kkk aaa  
 

 We keep in mind that direct analytical methods exist only for algebraic 
equations not higher than of the third order, but for transcendent equations direct 
methods do not exist in general. While determining actual roots via the numeral 
methods two theorems should be used. The first allows to separate roots and to 
set as close intervals [ ]βλ,  as possible, in which roots of the equation exist, and 
the second one is used to estimate the approach. 

T h e o r e m 1 .  If a continuous function )(xf  takes on the value of 
different signs at the ends of the segment [ ]βλ, , where 0)()( <βλ ff , in the 
middle of this segment there is at least one root of equation 0)( =xf , which is 

),( βλξ ∈  and in it 0)( =ξf . 
T h e o r e m 2 . Let’s assume ξ  is exact, and x  is the root of the equation 
0)( =xf , which is on the same segment [ ]βα, , thus βα ≤≤≥ xmxf ,)('  . 

Then 

m

xf
x

)(
≤− ξ . 

 
There are several methods of solution of nonlinear equations, expedience of 
application of each of which depends on the type of equation, exactness needed 
etc 
 One should also keep in mind that determining the roots to reduce the 
degree of initial nonlinear equation dividing on )( ixx − (where ix  is the root that 
is found) should be executed very carefully; that is related to the accumulation 
of errors of distribution, which will be contained in the coefficients of the new 
equation. 
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3.2.1 Method of Half-Note Division (Bisection) 
 

In this method at first the value of function is calculated in points which 
are located through even intervals on the axis x . When )( nxf  and )( 1+nxf  have 

opposite signs, find 
2

1 nn
m

xxx +
= + , )( mxf . If the sign )( mxf  coincides with the 

sign )( nxf , mx  is used at the next step in place of nx . If )( mxf  has the sign 
opposite to the sign )( nxf , mx  is replaced by 1+nx . We will mark that for all the 
methods for the condition of finishing the iterative process it is expedient to take 

ε≤−+ nn xx 1 , where ε  is the set of errors of the root’s finding. 
The graphic image of the method is given in Figure 3.1, and structure of 

the algorithm - in Figure 3.2. 
The error of solution ∆ via n of iterations is in scopes 
 

.
2
1

01 xxn −≤∆  

 
The method has a small rate of convergence as interval, where the root 

diminishes no more than twice with every step. 
 

 

4x
 

y 

x 0 

1x  3x

5x 2x  

Figure 3.1 
 

 
3.2.2 Method of Vicious Position (Chords) 

 
This method is based upon linear interpolation for two meanings of 

function nn xx ,1−  with the opposite signs. The line through these two points 
crosses an axis at the point 
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( ) ( ) 0>nm xfxf

ε≤−+ nn xx 1

( ) ( )mn

mn

xfxf
xx

=
=

+

+

1

1  

 
Figure 3.2 

 
Determine )( 1+nxf  and compare its sign with the sign of )( nxf . At the 

next step use 1+nx  in place of the value ),( 1 nn xx −  with which the sign coincides. 
If ε≤−+ nn xx 1 , the whole procedure is repeated again (Figure 3.3).  
 Algorithm of the method of chords is similar to the previous one, except 
for the procedure of estimation .1+nx  One should keep in mind that in this 
algorithm the control of error is conducted with the moving end of an interval. 
In the case given in Figure 3.3. progressive approximations are analysed: at the 
first step ε≤− 21 xx , at the second – ε≤− 31 xx , at the third – ε≤− 43 xx  and 
etc. 

The error of decision is estimated via the formula: 
 

,1
1

11
nn xx

M
mM

−
−

≤∆ +  
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where 11 ,mM  are accordingly, the largest and the smallest values of the module 
of the first derivative on the interval 1, +nn xx .  

 
y 

x 0 

1x  3x

2x  

4x
 

Figure 3.3  
 

3.2.3 Newton Method (Tangents) 
 

In the Newton method first of all the extrapolation is carried out by 
tangent to the curve (Figure 3.4) 

 

( )
( ) .1

n

n
nn xf

xfxx
′

−=+  

 
On basis of this method decomposition of function by the Taylor row is 

executed: 
 

( ) ( ) ( ) ( ) ...,''
2

' 2
+++=+ n

h
nnn xfxhfxfhxf  

 
Members which contain h  in the second degree and higher are rejected. 

Taking into account that nn xxh −= +1 , we can get the previous formula. 
Convergence rate of this algorithm depends on the faithful choice of the 

initial point. When in the process of calculations the angle of slope of the 
tangent ( )xf ′  is close to zero, it becomes more difficult to use the method. We 
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could assume that in case of very big values of ( )xf ′′  (bulge of the function) or 
when there are multiple roots the Newton method becomes ineffective. 

Therefore one should choose the initial approach from the following 
condition 

 
( )( ) ( ) ( ) .000

2
0 >′′>′ xfxfxf  

 
The error of the method is estimated as: 
 

( ) ,
2

2
1

1

2
nn xx

m
M

−≤∆ +  

 
where 2M  – the largest value of the function’s module on the interval [ ]1, +nn xx . 

 

3x

y 

x 0 

1x  

2x  

Figure 3.4 
 

3.2.4 Method of Secants 
 

One of the main problems while applying the Newton method is the 
necessity of the derivative’s analytical description. If this difficultly emerges, it 
is possible to apply its close estimation (figure 3.5) Then, in place of the tangent 
method the method of secants is used  

 
( )
( ) ,1

n

n
nn xF

xfxx
′

−=+  

 
where ( )nxF ′  is a close estimation of the derivative examined as both secants 
but not as tangent, and can be calculated using the following formula: 
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( ) ( ) ( )
1

1

−

−

−
−

=′
nn

nn
n xx

xfxfxF  

or  

( ) ( ) ( ) ,
h

xfhxfxF nn
n

−+
=′  

 
where h  is a certain small step. 

Algorithm of this method is similar to the Newton method but with 
another iterative formula. 

 

nx

1+nx

y 

x 0 1−nx  

Figure 3.5 

 
3.2.5 Method of Simple Iteration 
 

To use this method the equation ( )xf  = 0 should be transformed to the 
following form: 

( )xgx = . 
 

The proper iterative formula looks like 
 

( )nn xgx =+1 . 
 

 The calculations are finished when 
 

.1 ε≤−+ nn xx  
 

To provide the convergence, the value of q (the module of the first 
derivate of function ( )xg  on the segment [ ]10 , xx  ) should be less than one 

 
.q 1<  
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Then there would be a convergence regardless of the choice of initial 

point on the interval [ ]., 10 xxx ∈  
Error of the method after n iterations is 
 

011
xx

q
q n

−
−

≤∆ . 

 
3.2.6 Problem of Complex Roots 

 
To determine complex roots one could apply the methods similar to those 

used to find the real roots, but joined with a complex number (the control of 
convergence and errors is conducted via the module’s value). However, this 
method is not convenient. 

There are several special methods which allow to estimate the complex 
roots, but via calculation by real numbers. The majority of these methods are 
based on transformation of the initial algebraic equation (3.1) to a variety of 
quadratic members  

 
qpxx ++2 , 

 
where q,p  are the coefficients. 

To perform such transformation the equation should be presented in the 
following form: 
 
     ( ) ( ) 0... 0123

3
1

22 =++++++⋅++ −
−

− bxbbxbxbxqpxx n
n

n , (3.2) 
 
where 01 bxb +  is a linear remaining member which aims to zero, and the initial 
equation (3.1) is divided by a quadratic factor qpxx ++2  without remainder . 
 In order to find coefficients 2,3,2,1 ..., bbbb nn −−  suppose 001 == bb . Then we 
could consider the system of equations which could be obtained from the 
equivalence of equations (3.1) and (3.2): 

 It can be performed via a special direct method for the tridiagonal systems 
or via an iterative method, which is presented in Figure 3.6. 
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3.3  Nonlinear Systems 
 

Generally, the system of n nonlinear equations with n unknown is the 
following: 

 

( )
( )

( ) .0,...,,

,0,...,,
,0,...,,

21

212

211

=

=

=

nn

n

n

xxxf

xxxf
xxxf

M
 (3.4) 

 
As nonlinear functions appear in the system, it becomes impossible to 

present it in a general form; neither any analytical direct method could be 
offered to solve such a system. The method of simple iteration based on adding 
the system (3.4) to the system of nonlinear equations is quite simple: 
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( ).,...,,
..............................

,,...,,
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2122

,2,111

nnn
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In a matrix form 

( )XGX = , 
 

where                                      ( )
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.
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Then there can be an applied algorithm similar to the Gauss-Seidel 
method for the systems of linear equations. On its basis iterative equations are 
used which link ( )1+m  and m iterations. 
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                              Figure 3.6.  
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Due to the fact that it is quite a difficult task to provide convergence using 
this method, and providing that the convergence interval could be extremely 
narrow, the choice of the initial approach is very complicated. 

Generally, this method will converge, if ( ) ,xG 1<′  where ( )xG′  is a 
norm of matrix of partial derivates that functions on variables .21 ,...,, nxxx  
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To solve the systems of nonlinear equations more frequently the Newton 

method is used which proved to be more reliable. It is used in the form of the 
Newton’s method analogue for one equation and is based upon the 
decomposition of all n equations in the Taylor row: 
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where nR  are the members of the second order or higher which will be 
subtracted in the course of the next transformations. 

The task is transformed to the solution of the following system of linear 
equations: 
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In this system the matrix of partial derivatives is called the Jacobi matrix 

and marked as )(XW W(X). An example of such matrix for the real task could 
be found in  Table 1 (chapter 1.3.1). 

Iterations of value ix∆  found for a certain )1( +m step are used as the 
amendments to the previous approach 
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A general iterative formula in matrix presentation could be presented as: 
 

( ) ( ) ( )[ ] ( )[ ],11 mmmm XFXWXX −+ −=  
 

where ( )[ ]mXF  is the column vector of the functions values nfff ,...,, 21  for 
approaching ( )mX ; ( )[ ]mXW 1−  is the inverse Jacobi matrix. 

The algorithm of Newton method is given in Figure 3.7. 
Certain difficulties during using the algorithm of the Newton method 

emerge due to the rotation of Jacobi matrix. The rotation methods of matrices 
known from linear algebra are used for this purpose. 

There are a lot of variants to apply the Newton method. For example, a 
modified Newton method  

 
( ) ( ) ( )[ ] ( )[ ]mmm XFXWXX 011 −+ −= . 

 
In this method one does not need to calculate the inverse Jacobi matrix at 

every step of the calculations; that simplifies the algorithm, but slows 
convergence and sensitizes the method more to the choice of the initial 
approach. 

Newton method with a parameter τ  
 

( ) ( ) ( )[ ] ( )[ ].XFXWXX mmmm 11 −+ τ−=  
 

This method is similar to the method of successive overhead relaxation for 
the systems of linear equations. 

Various hybrid methods are also used in which the Newton method is 
united with the method of simple iteration. 

The convergence of the Newton method is estimated by calculation of the 
index 
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The error on m iteration concerns the following inequality  
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3.4  Remarks 
 

From the variety of considered methods the bisection method is more 
simple and reliable, but it is very slow (as interval of the root’s position could be 
cut only two times with each next step). The Newton method, as well as the 
methods of simple interaction, has a convergence problem. But they are 
comparatively quick if the initial approximation choice is correct. 

In practice, while solving systems of nonlinear equations, only the 
Newton method could be used. Both the initial approximation and the interval 
resolution are to be based upon the practical cases and the physical essence of 
the tasks. It should also be stressed that dealing with the method one needs to be 
very careful with complex roots and multitudes of the errors accumulated. 
 
Exercises 
 

1. Give the rules for the definitions of quantity and type of the roots of 
nonlinear equations. 

2. Construct the algorithms to solve the following nonlinear system via 
different methods. Perform them on computer.  
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3. Solve nonlinear equation with complex roots  
 

.01432 3456 =−−+++ xxxxx  
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4. Find the Jacobi matrices for the following systems 
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5. Find the inverse matrices for systems from exercise 4. 
6. Construct the algorithm and program to solve systems from exercise 4 via 

Newton and modified Newton methods. Perform it on computer and find 
roots.  
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Chapter 4. Ordinary Differential Equations 
 

4.1 Introduction 
 

An ordinary differential equation has an endless amount of solutions. To 
obtain a concrete solution it is necessary to account for additional conditions. 
These conditions can differ and demand different problems. In case when 
additional conditions are set at one independent variable value, the Caushe 
problem should be considered (problem with an initial value). If the conditions 
are set for two or more independent variable’s values, the problem becomes 
boundary-value problem. In the Caushe problem the additional conditions are 
named initial, and in a boundary-value – boundary. To solve these problems 
different methods and algorithms are used.  

Caushe problem can be formulated in the following way. 
Suppose, we have a differential equation of the first order  
 

 ( ) .y,xf
dx
dy

=   (4.1) 

 
To find a function on the interval from х = а to х = b that satisfies both equation 
(4.1) and the initial condition ( ) 0yay =  (it is thus always assumed that there is a 
unique decision for the whole interval). 

A problem requiring a solution of an ordinary differential equation with 
additional conditions put at several independent variable values is named 
boundary-value problem. 

We will consider a boundary-value problem on the example of ordinary 
differential equation of the second order: 
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with boundary terms y (a) = A, y (b) = B.  

The methods of solution of equations of higher orders are similar to the 
equations of low orders. 
 
4.2  Solution of the Caushe Problem 
 

Decomposition of the function serves as a basis for a variety of methods 
designed to solve differential equations y in the Taylor row around initial point  
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where h  is a distance (step) between the initial point x0 and point x1=x0 + h. 

The different amounts of members of decomposition (in multi-step 
methods in combination with interpolations formulas) determine the exactness 
of calculations for different methods. While using these methods on computer 
one should distinguish transaction errors due to the lack of significant numbers, 
used in the course of computer calculations, and the error of transaction 
(limitation) which is a methodical error that is related to approximation of 
solution by eventual rows in place of the infinite, for example, by the Taylor 
rows.  

As a result there are two types of errors: 
Local error is a sum of errors which appear in the process of calculations 

on a concrete step. 
Global (total) error is a difference between the exact and calculated 

meanings, which includes the so-called error of distribution that results from the 
accumulation of errors at the previous stages of calculation. 

Local error ∆ depends on the order of method р and coefficient c 
 

1+≤∆ pch . 
 

Coefficient c concerns the derivatives and the length of the interval. 
During approximation of the solution by the Taylor rows it is related to the 
degree of members in the row which is taken into account. 

The methods of solution of the Caushe problem are divided into one-step 
and multi-step. 

In one-step methods, in order to find the next point y = f (x), it is 
necessary to have only information about one previous step (methods of Euler 
and Runge-Cutt). 

In multi-step methods (prognosis and correction), in order to find the next 
point y = f (x), the information about more than one of the previous points is 
necessary. To get enough exact numeral data iterative procedures are often used 
(for example, in the methods of Milne, Adams, Hamming). 
 
4.2.1 One-step Methods 

 
Among simple one-step methods, which need minimum calculations, but 

give the possibility to obtain result with comparatively low exactness, is the 
Euler method. 

In this method to estimate the next point y=f(x) one should take into 
account only one linear member in the Taylor formula  

 
( ) ( ) ( ),000 xyhxyhxy ′+=+  
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where y′ (x0) could be obtained from the initial equation. 
This process can be extended for the following steps 
 

( )nnnn y,xhfyy +=+1 . 
 

The Euler method is the method of the first order ( )1=p  
 

2ch≤∆ , 
 

where ( ) 2201 MMMc += , M0, M1, M2 – are regarded as 
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for all [ ]b,ax ∈  and ( )xyy = . 

The Euler method is often unsteady because of the error of truncation: 
small local errors result in the considerable increase of the global error. 

This method can be improved in a number of different ways. 
Among them are the Corrected Euler method and the Modified 

(Improved) Euler method. 
Iterative formulas for these methods are the following: 
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where                                             ).,(*

nnn yxfy =  
 

Geometrical interpretations are represented in Figures 4.1, 4.2. 
These are the methods of the second order. Their errors have the third 

degree that is achieved by improving the derivative’s approximation. The idea 
consists in trying to save or estimate the member of the second order in the 
Taylor row. However, in order to increase the exactness considerably, the 
additional load of computer to calculate *

ny  is required. Yet the bigger exactness 
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can be attained by calculating the higher derivative and by maintenance of a 
number of Taylor row members. Such methods are called Runge-Cutt methods. 

One can account for the principle on which the modified Euler method is 
built by using the Taylor row and keeping in it a member with 2h . 
Approximation of )( 0xy ′′  is processed using the finite-difference form 

 

h
xyhxy
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∆
′∆=′′ . 

  
In this way in a finite-difference form it is possible to calculate the higher 

derivative: value of n -derivative after the values of the previous )1( −n . 
Runge-Cutt method gives a set of formulas to calculate the coordinates of 

internal points which are required to realize this idea. As there is a number of 
methods to find these points, the Runge-Cutt method unites the whole class of 
methods for the solution of differential equations. 
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Figure 4.1 

 
A more widespread classic method of the fourth order is given below: 
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The Euler method and its modifications are called the Runge-Cutt 

methods of the first and of the second order. The Runge-Cutt method has higher 
exactness that allows considerable multiplying of the steps of solution. Its 
maximal size is determined by an acceptable error. Such choice is often carried 
out automatically and is included as a component part in the algorithm built by 
the Runge-Cutt method. 

All of the Runge-Cutt formulas could be used to solve differential 
equations of higher orders and systems of differential equations. Equations of 
order n can be regarded as n differential equations of the first order. 

As an example we will consider the solution of an ordinary differential 
equation of the second order: 
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and the system is the following       
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where ( ) z,z,y,xf = . 

The Caushe problem in this case contains two initial conditions: 
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The Runge-Cutt formulas in this case are: 
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It was previously noted that the error of truncation in the Runge-Cutt 

method of n order is 1+≤∆ pch . Calculation of the upper boundary for the 
coefficient c is an intricate problem related to the necessity of a number of 
additional parameters estimation. There are a few methods for the effective 
calculation of c. More practically suitable is the Richardson extrapolation 
method (another name is the Runge method), when the value yn is found 
consistently with the step h and h/2, and the numbers obtained are put into the 
equation, from which c is determined: 
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that corresponds to the exact meaning of yn. 
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We will get the evaluation correlation: 
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It is possible to select the general features of one-step methods: 
1. In order to obtain information on a new point, it is necessary to have 

information only about one previous point. Let us call this property the “self-
starting”. 

2. Basically, a one-step method is a decomposition of function in the 
Taylor row, members of which with degrees to p inclusive are saved. Number p 
is named as the order of the method. An error on a certain step has order p+1.  

3. All one-step methods do not require any calculation of derivative. 
Only the function is calculated, but its values can be required in a few 
intermediate points. 

4. The property of “self-starting” allows changing the amount of steps of 
calculation easily. 

5. It is impossible to estimate the error without additional calculations. 
 
4.2.2 Multi-step Methods 
 
 In these methods, in order to calculate the value of the new point, the 
information about a few values obtained previously is used. Two formulas are 
used for this purpose: prognosis and correction. An algorithm of calculation for 
all methods of prognosis and correction is identical and is represented in Figure 
4.3. Indicated methods differ only in formulas and are not a characteristic of the 
“self-starting”, as they require information on the previous values. Before using 
the method of prognosis and correction, calculate initial data by any one-step 
method. Often for this purpose the Runge-Cutt method is used. 
 The calculations are processed in the following way. At first, using the 
formula of the prognosis and initial variable values, find the value )0(

1+ny . An 
index (0) means that the value, which is forecasted, is one of the sequences of 
values 1+ny  at the stage of their clarification. After the value )0(

1+ny  by initial 

differential equation (4.1.) find derivative ( ))0(
11

)0(
1 , +++ =′

nnn yxfy  which should be 
put in the formula of correction to calculate the specified value )1(

1
+

+
j

ny . In turn, 

after )1(
1
+

+
j

ny  find derivative ( ))1(
11

)1(
1 , +

++
+

+ =′ j
nn

j
n yxfy . If this value is close to the 

previous, it is brought into the correction formula and the iterative process 
continues. It should be regarded in case of closeness of values of derivative 

1+ny . After it the process repeats itself at the next step where 2+ny  is calculated. 
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Usually formulas of prognosis and correction are obtained by methods of 
numeral integration. 

If the differential equation ),( yxfy =′  integrates in the interval the values 
from xn to xn+k, the result will be the following: 

 

( ) ( ) ∫
+

+ =−
knx

nx
nkn dxyxfxyxy ),( . 

 
This integral can not be calculated directly, because y(x) is an unknown 

function. The choice of the method of integration determines the method of 
solution of differential equations. At the stage of prognosis it is possible to use 
any formula of numeral integration, if the initial value ( )1+′ nxy  is not included 
into it. 

In Table 4.1 more widespread formulas of prognosis and correction are 
given. 

For most methods of prognosis and correction an error can be estimated 
by such correlation:  
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One should take into account that the optimal quantity of iterations equals 

to two for each step. Quantity of iterations, step and error of solution are 
connected and could be controlled by charging of the step. 

 
Basic features of the multi-step methods: 
1) Using these methods it is impossible to start solution of the problem, 

without information about the initial value of the function in a few previous 
points; 

2) It is possible to get estimation of the truncation error without 
calculating the additional data; 

3) The methods of prognosis and correction do not allow changing the 
step of calculations easily; for this purpose it is necessary to begin iterative 
process at first. 
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Table 4.1 
 

Method Prognosis formula Correction formula 
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Figure 4.3 

 
 
4.2.3 “Rigid” Problems 

 
There are ordinary differential equations for which it is difficult to get an 

appropriate solution using the methods described higher. The origin of such 
problems is related to the concept of time constant of differential equation as 
interval of time, when variable part of solution diminishes in e times. Equation 
of order n has n time constants; if any two of them strongly (in practice one 
hundred times and more) differ in size or some of them are very small in 
comparison with the time of solution, the problem is named “rigid” and it is 
practically impossible to solve it using ordinary numerical methods. In such 
cases the step must be small enough to make it possible to account for the 
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components of solution which change quicker, even after their accounting 
becomes practically unnoticeable. But diminishing the step leads to increasing 
the computations time and accumulation of errors. Special methods of solving 
such problems are frequent in the theory of automatic control developing. 

The simpler of them are called reverse Euler method, in which the 
solution is put in accordance with the following correlation: 
 

).,( 11 ++ += nnnn yxhfyy  
 

In practice, equations in which coefficients of derivatives strongly (one 
hundred times and more) differ one from another have the “rigidity” features. 
 
4.3 Solution of the Boundary-Value Problem 

 
The methods of solution of the boundary-value problems are examined on 

the example of ordinary differential equation of the second order 
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and boundary terms .B)b(y,A)a(y ==  Methods of solution of the boundary-
value problem are divided into several groups: methods that allow to reduce the 
solution of such problems to several Caushe problems and in which the solution 
could be used as one of the methods to solve the Caushe problem (method of 
“shooting”); difference methods; projections methods. 
 
4.3.1  Method of “Shooting” 
 
 If ordinary differential equation of the second order is linear, it looks like: 

 
)()()( 321 xfyxfyxfy ++′=′′  

 
at .B)b(y,A)a(y ==  
 
 The boundary-value problem can be brought to the Caushe problem by 
using an additional initial condition, instead of y(a)=A we enter y´(a)= α 1. 

After finding the solution y1(x), it is possible to account for another initial 
condition y´(a)= α 2 and to get another solution y2(x)). If ( ) 11 β=by  and y2(b)=β2, 
thus β1 ≠β2 the general solution is: 
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. 

This solution satisfies both initial conditions. 
 This method can be used only for linear equations where the principle of 
linear superposition of solution is correct.  
 
4.3.2 Difference Methods 
 
 The difference methods are the powerful means of the numerical solution 
of ordinary differential equations and differential equations in parts derivative. 
According to these methods presentation of an independent argument lies in an 
interval [ ]ba,  as the discrete multitude of points knots xi, i=0,...,n, x0=a, xn =b, 
which is called a net. 
 Most distributions were obtained by an even net with a step xi-xi-1=h. 
Thus, in place of the continuous function f(x) a net function yi=f (xi) is 
examined. Digitization of a function of several variables (for example, two) will 
be the following: 
 

xij  i=0,...,n,   j=0,...,m,   yij=f(xij). 
 
 Except for a more widespread rectangular net, there exist polar, three-
cornered, mowed nets etc. which are represented in Figure 4.4. 
Multidimensional nets find use in problems with partial derivatives.  

The solution of the problem by difference methods consists of two stages: 
     – getting the difference approximation of differential equations and researching 

the algebraic equations obtained; 
     – solution of algebraic equations. 

While getting the difference patterns charts, the common requirement 
should be taken into account that a difference pattern could be used to deal with 
basic features of the initial differential equation. Such difference patterns could 
be obtained using variation principles and integral correlations. The estimation 
of exactness of difference patterns could be added up to finding the error of 
approximation and firmness. A net function can be examined as a function of 
integer number argument 

 
y(i)=yi ,    i= 0, ± 1, ± 2, …  . 

 
It is possible to determine the operations which are the difference 

analogues of operations of differentiation and integration. 
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Figure 4.4 

 
The differences of the first order are the analogues of the first derivatives:  
 

iii yyy −=∆ +1    -  forward difference; 
1−−=∇ iii yyy    -   backward difference; 
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One should take into account that 1+∇=∆ ii yy .  
 
Therefore it is possible to get the differences of the second order 
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The difference of m order is: 
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It follows that  
 

,1∑
=

+ −=∆
i

kj
kii yyy          ∑

=
−−=∇

i

kj
kii yyy 1 . 

 

On the multitude of knots of the net, which is named a template 
(unidimensional templates are examined in this section, and in the next section 
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the two-dimensional ones are regarded), we will replace continuous differential 
operator Ly by the difference operator Lhy. 

For example, difference operators for the first net derivate on three knots 
(x-h, x, x+h) 
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forward, backward and central difference derivatives accordingly. 

Similar to the second derivative 
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Solving the boundary-value problem equations for all n knots the areas 

change on interval [a, b]. Using two additional boundary conditions y0=y(a)  
and yn=y(b), we can get the system with n-1 algebraic equations and n-1 
unknown yi. If initial ordinary differential equation is linear, a problem leads to 
solving the system of linear algebraic equations, and if nonlinear – to the 
nonlinear or transcendent algebraic systems.  

 
4.4 Remarks 
 

Comparing efficiency of one-step and multi-step methods of Caushe 
problem solution such features could be selected: 

1. Multi-step methods require the greater volume of computer memory, as 
plenty of initial data are operated . 

2. When using multi-step methods, there is a possibility of estimation of 
error on a step. This allows to select the optimal value of the step. 

3. At identical exactness multi-step methods require less volume of 
calculations. For example, in a Runge-Cutta method with the fourth order of 
exactness four values of function are calculated at every step, and for provision 
of convergence of method of prognosis and correction of that order of exactness 
– two are sufficient. 
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4. One-step methods, unlike multi-step ones, allow at once to begin the 
decision of the problem (“self-starting”) and it is easy to change a step in the 
process of calculations. 

Before the beginning of the problem’s solution it is necessary to conduct 
verification of the “rigidness”, and in the case of positive result to use the 
special methods. If the Caushe problem is very difficult, usually the method of 
prognosis and correction gets advantage. Beginning of solution of problem is 
conducted here by one-step methods. If for the calculation of value yi two 
iterations cause a large truncation error, it is necessary to decrease the step. On 
the other hand, at very small error of truncation it is possible to multiply a step, 
thus promoting the fast-acting, but here all the process of solution needs to be 
done at first. Sometimes, in practice it is required to minimize time of 
preparation of problem for the solution. Then it is expedient to use Runge-Cutta 
methods. 

A more universal method for solution of the boundary-value problem is a 
difference method, but in case of linear problems the “shooting” method could 
be used based on solution of several Caushe problems.  

In conclusion, it should be noted that for the effective solution of problem 
it is very important to have experience, intuition and qualification for the user, 
both at setting the problem and in the process of choice of the method of 
development of algorithm and program for the computer. It is thus often 
convenient to use the prepared programmatic facilities which exist already (for 
example, in the program systems Maple, Mathematika, Matlab etc).  

In this chapter we deal with numerical methods of solving the Caushe and 
the boundary-value problems with differential equations.  

In order to solve the traditional problems within the Caushe problem it is 
sufficient to use one-step and multi-step methods. The problem becomes more 
complicated if there are some rigid features present; in this case special 
inexplicit methods should be used to avoid instability and divergence of 
computations. 

As for the boundary-value problem, the difference and “the shootings” 
methods could be considered as the only simple approaches. Regarding the large 
variety of other methods available, the following ones could be applied: 
variation methods (Collatz), methods of integral equations (Keller) etc. 
 
Exercises 
 

1. Give the statement of the Caushe and boundary value problems. What 
is the difference? 

2. Give examples of the ordinary differential equation which could be 
solved using the numerical methods only. 

3. Could the boundary value problem of the first order be a differential 
equation? 
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4. What are the methods of estimation of the unistep and multistep 
methods’ errors? 

5. What is the feature of the “self-starting” in the unistep methods? 
6. Give all the possible difference representatives of the first and second 

derivatives. 
7. What is the “rigidness” feature of the ordinary differential equations? 
8. What is the method to get the general solution of the boundary value 

problem from several Caushe problems solution using the “shooting” 
method? 

9. Find the solutions of each of the following differential equations using 
the Runge-Cutt methods (1, 2, 4 orders) on interval 10 ≤≤ x with step 

1,0=h and initial condition 1)0( =y : 
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xeyyyf
xye

xyyyd
yyc

xbyyb
yya

 

 
      Estimate the errors of the solution. 
10. Find the solutions of the boundary value problem for the equations 

from ex. 9 c, d, f using the “shooting” and difference methods with the 
boundary conditions 1)1()0( == yy  and step 1,0=h . Estimate the 
errors of the solution. 
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Chapter 5.Differential Equations in Partial Derivatives (Mathematical Physics 
Problems) 
 
5.1 Introduction 

 
Engineers and researchers have to deal with the solution of differential 

equations in partial derivatives in many fields of science and technique: in aero- 
and hydrodynamics, nuclear physics, telecommunications etc. Mathematical 
models with differential equations in partial derivatives are widely used in the 
theory of automatic control and in measuring techniques. Such equations contain 
partial derivatives in a few independent variables. Let us consider differential 
equation of the second order with two variables: 
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  (5.1) 

 
Like ordinary differential equations the unique solution of equation (5.1) 

can be obtained only by setting additional conditions, but as two independent 
variables x  and y are present here, the condition must be set for some curve in 
plane yx . This condition can be imposed on a function f  or on its derivative 
and depends upon the equation which determines its form and character of 
behaviour. 

There are three types of differential equations of the second order: 
 

            – elliptic, if 042 <− ACB ; 
 – parabolic, if 042 =− ACB ; 
 – hyperbolic, if 042 >− ACB . 

 
 Equations can change from one form to another depending upon values of 
the coefficients. 
 Elliptic equations describe stationary processes; thus the problem is set in 
the determined limits and the boundary values are set at every point of the 
region’s boundary. Other two types of equations describe evolutional processes. 
In such problems it is more frequent when on one part of the boundary the 
boundary conditions are set, and on the other - the initial ones. 
 The examples of several differential equations in partial derivatives, 
which describe the different types of problems, are given in Table 5.1. 
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Table 5.1 
 

Equation Mathematical form Examples of the equation problems  
Laplace 0=∆f  Stationary flows of liquids, heat fields 
Poisson Rf −=∆  Heat transfer with the inner heat sources 

Diffusions 2

2

2

1
t
f

h
f

∂
∂

=∆  Non-stationary heat conduction 

Wave 2

2

2

1
t
f

c
f

∂
∂

=∆  Wave propagation  
(sound, electromagnetic etc.) 

Biharmonic ),(2 yxFf =∆  Plates deformation 
  
 In Table 5.1 the accepted denotations of more widespread operators are 
used, such as: 
 

 Laplace operator         2
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ff
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 Biharmonic operator   4
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 There are two methods of solution of differential equations in partial 
derivatives: difference method (method of finite differences) and method of 
finite elements. In the modern applied mathematics both methods are considered 
as interpretations, which describe how to use the general theory of difference 
methods in the solution of differential equations in partial derivatives. 
 The variation calculation lies in the basics of the method of finite 
elements. Differential equations and boundary terms are used to define the 
variation problem. In the method of finite elements the physical problem is 
replaced by a cobbed-smooth model. This method complicates finding of the 
problem’s solution and demands high qualification and experience. It is unique, 
as every solution is used only for a concrete problem. The method of finite 
elements became widely spread for the solution of special problems in 
theoretical mechanics, hydrodynamics and in the field theory. It is complicated, 
requires serious preparation and knowledge in the concrete area, and its 
specificity is described in special textbooks. To solve the problem in automation 
and control systems difference methods are more frequently used. 
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 Difference Methods 
 

 In chapter 4.1. basic definitions and rules of difference patterns 
construction are considered. For differential equations of the second order in 
partial derivatives a two-dimensional rectangular net is more frequently used. 
Difference patterns which are applied to the two-dimensional square net with 
step h, presented in Figure 5.1 (index j  gets an independent variable y, and i  
belongs to axis x ), can be considered as a unidimensional case from chapter 
4.2.2.  
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Figure 5.1 
 

To facilitate the denotation ( )ii y,hxf +  could be replaced by j,if 1+ . 
Using this denotation, we will get correlations to approach partials derivatives in 
practice. This could be illustrated by the specific calculation templates 
(Figure 5.2): 
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From these elements the most complicated calculation templates could be 
built for differential equations. Adding derivatives could be performed via 
superposition of the calculation templates needed. Using this method the 
templates for f∆  and f2∆  (Figure 5.3) are constructed. 
 All resulted calculation templates have errors of the second order. It is 
possible to make more exact calculation templates by plugging additional knots 
into consideration. Sometimes, in order to minimize the distribution of errors, 
left or right differences are used. 
 Often difficulties connected with the use of rectangular net emerge, as the 
boundary has wrong configuration which does not pass through the knots of the 
net. We will consider an example of such problem’s solution for the calculation 
template of Laplace equation in the area limited by an arbitrary curve which is 
represented in Figure 5.4. 

Figure 5.2  
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Second partial derivative for knots on the boundary of the region could be 

written as: 
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After superposition 
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 After applying a calculation template to each of n knots of the net, we will 
get the system of n  equations, which can be linear, if initial differential equation 
has the proper structure. In this case the solution of the problem becomes the 
solution of the following system of equations: 
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5.3 Solution of Problems in Mathematical Physics  
 
 Practical methods and algorithms of solution of different forms of 
differential equations in partial derivatives have the characteristic features and 
require detailed consideration on the example of the more widespread problems. 
 
5.3.1 Elliptic Equations 
 
 Many different physical problems could be described by the elliptic 
equations: division of electric tensions on a plane that conducts a current; 
problem about the stationary flows of heat in a limited three-dimensional body 
etc. Often there emerges the necessity to solve such problems in the theory of 
automatic control. Most elliptic equations are described by Poisson equation or 
its special type – the Laplace equation. 
 We will consider the classic Dirichlet problem for the Laplace equation in 
a rectangular area which is formulated like this: to find the continuous function 
f(x,y), which satisfies into the rectangular area 

( ){ }by,ax/y,x ≤≤≤≤=Ω 00  of the Laplace equation: 
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taking into account the boundary value: 
 

x=0;   f (0,y) = f1(y), 
x=a;   f (a, y) = f2(y), 
y=0;   f (x,0) = f3(x), 
y=b;   f (x,b) = f4(x). 

 
Let us enter in the area of solution a two-dimensional net with the step h 

on the axis x and l on the axis y. Then, using denotations from the previous 
chapter and approximating the Laplace equation by a difference equation, the 
following system of linear equations could be obtained (to simplify, suppose 
l=h): 
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  (5.2) 

at i=1, 2, ..., n-1;  j=1, ..., m-1. 
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 This system of equations has plenty of zeroing elements and satisfies the 
terms of convergence at use of difference methods. Often the solution of such 
systems is found via the Gauss-Seidel method, which, when used to elliptic 
difference equations, is named the Libman method or method of successive 
displacements. The order of iterations can be traced, rewriting the system (5.2) 
in a form:  
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                                     ---------------------------------------------- 
 
where overhead indices mark the sequence number of iterations: m is the 
previous, m+1 is the following. 
 Usually consider 0)0(

, =jif  for all i and j. Any elliptic equations which do 

not contain 
yx
f

∂∂
∂ 2

 are taken to the systems of iterative equations, which can be 

solved either by the Libman method or by other methods (Jacobi, successive 
overhead relaxation); as for them, the terms of convergence are executed. For 

elliptic equations which contain 
yx
f

∂∂
∂ 2

 in a general view, a problem of 

convergence of difference methods does not have the theoretical solution and it 
is necessary to examine the obtained system of equations in every separate case. 
 
 
5.3.2. Hyperbolical Equations 
 
 The hyperbolical equations in partial derivatives are very often used in 
engineering practice. An example of such a problem is a wave equation which 
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describes different types of vibrations: oscillation of string or membrane, 
distribution of sound-waves in different environments etc. 
  In a general form the problem can be formulated like this: to find the 
function f (x, t) which satisfies into the area Ω={(x, t), 0 x ≤  and, 0 ≤  t ≤  T}  
equation 
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 As replacement of variables of t =ct brings equation over to the form: 
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in future we adopt c=1. 
 Passing to difference equation on a net with the step h on x and τ  on t 
with central differences, we will get 
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 If to enter 
h

r τ
= , the correlation for 1+j,if  will be the following: 

 
 1,,

2
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2
1, )1(2)( −−++ −−++= jijijijiji ffrffrf .  (5.3) 

 
 The chart of solution in accordance with equation (5.3) is named three-
shares, as it links the value j,if  on three shares j-1,  j,  j+1. This chart is obvious 
and it allows to express j,if  through the value of f from previous shares (there 
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are non-obvious charts based on the use of other calculation templates, but they 
require a lot of calculations in the course of the system’s solution). To find the 
solution on the first share interpolations methods are usually used. For example: 
 

          ( )i,i,i xgff τ+= 01 .                                        (5.4) 
 
 Correlation of the net’s sides concerns the size of r, which defines the 
firmness of the solution. At r>1 the solution is unstable, at r<1 it is stable, but 
exactness of it decreases with diminishing of r, at r=1 the difference solution is 
stable and coincides with the exact one. The choice of r=1 is comfortable and 
allows to simplify the correlation (5.4) 
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5.3.3 Parabolic Equations 
 
 In the example of a problem which results in parabolic equation in partial 
derivatives, there is a problem concerning heat-transfer on a long bar. It is 
described by equation of heat-transfer (or diffusions). 
 The problem consists of finding f (x, t), which satisfies in the area Ω={(x, 
t) 0 ≤  x ≤  a,  0 ≤  t ≤  T } equation 
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 Replacement of variables t =k t  brings equation to the form  
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for simplicity in future  we will assume that k=1.  
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Two variants of getting the difference equation are possible on a net with 
a step h on x and τ  on t (Figure 5.5). 
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Figure 5.5 

 
 
The variant with approximation on a four-nodes template (Figure 5.5, a) 

results in a non-obvious two shares difference chart 
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This chart is complemented by the equations obtained from the boundary 
terms 
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that brings the problem to the solution of the system of equations which have the 
stable solution regardless of the values of r. 
 The variant with approximation on a four-nodes template (Figure 5.5, b) 
results in the obvious two shares system 
 

jijijiji ffrrff ,1,,11, 2)21( −++ +−+= . 
 

 This chart is stable only at r ≤ 0,5, that results in a necessity to conduct 
calculations with a very small step on t, which limits the fast-acting and requires 
the greater charges of computer time. That is why for parabolic equations a more 
wide distribution received a non-obvious chart. 
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5.4  Remarks 
 

The method of the problems’ solution has to be chosen at the initial 
stage. The developers usually prefer the difference method, but in a number of 
cases for problems with well-developed theory (for example, problems of 
mechanics), it is appropriate to use the method of finite elements. 
 In this chapter the difference methods are considered. It is vital to be as 
exact as possible while determining the method of solution. In the difference 
methods there is an error of the second order. To estimate it, one could use 
ordinary differential equations in accordance with Runge method (Richardson 
extrapolation). In case of symmetry in the solution’s area, it is possible to 
decrease the number of knots two or even four times (the symmetry should be 
on both axes of the co-ordinates). It allows saving time and decreasing the 
amount of calculations. 
 To solve the problem effectively, one should carefully choose the correct 
initial meanings. The speed of convergence in the course of application of the 
difference methods depends on it. Often, while solving the problem, a few 
stages should be passed: at the first stage the correct initial approach should be 
chosen for a rough net, and at the following stage – a more exact solution for the 
fine net is used . 
 
Exercises 
 

1. Give examples of the engineering problems leading to the differential 
equations in partial derivatives. Why are the problems with the partial 
derivatives called the problems of mathematical physics? 

2. What types of equations in partial derivatives depend on their 
coefficients? 

3. What are the stages of performing the difference method that are used 
to solve the partial derivatives equations? 

4. Give solution of the Dirichlet problem for the Laplace equation. 
5. Give solution of one type of the wave equations. 
6. Give difference templates for the 1, 2, 3, 4 partial derivatives, the 

Laplace and biharmonic operators. 
7. What are the ways to choose the correct method of solution and how 

could it be estimated? 
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Chapter 6. Experimental Data Processing 
 
6.1 Introduction 
 
 The data processing considered in this chapter (procedures of 
interpolation, approximation, statistical data processing is frequently used in the 
problems of the computer control systems development.  
 
6.2 Interpolation 
 
 The purpose of interpolation – which adopts the function in separate 
points ],[ baxi  ( ni  ..., ,2 ,1 ,0 = ) (knots of interpolation) – is to get the values: 
 

       .)(...,,)(...,,)(,)( 1100 nnii yxFyxFyxFyxF ====  (6.1) 
 
These values coincide with the previously set values in the points of unknown 
function )(xfy = . It means geometrically that we need to find the curve 

)(xFy =  of certain type which crosses the system of points ),( ii yxM  (i = 0, 1, 
2..., n) (Figure 6.1). 
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Figure 6.1 
 

 Generally, this problem has an endless number of solutions or does not 
have a solution at all, but it becomes one-valued when instead of the arbitrary 
function )(xF  the polynomial ( )xPn  of degree not higher than n, which satisfies 
condition (6.1) is sought, that is 
 

nnniinnn yxPyxPyxPyxP ==== )(,...,)(,...,)(,)( 1100 . 

 
 As a rule, the interpolation formula )(xFy =  is used for precise 
calculation of the values of unknown function )(xf  for ixx ≠  ( ni  ..., ,2 ,1 ,0 = ). 
Such an operation is called interpolation. One should keep in mind that 
interpolation is used when ],[ 0 nxxx ∈  and extrapolation - when ],[ 0 nxxx ∉ , 
where 0xx <  or nxx > . 
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 Let’s consider a few methods of interpolation. 

6.2.1 Difference Methods 
 
 There are many difference methods of interpolation. The Newton method 
is more frequently used for the so-called "ahead" interpolation. An interpolation 
polynomial in this case will be: 
 

+−−+−+= ))(()()( 102010 xxxxCxxCCxPn ... 
...+ )(...))(( 110 −−−− nn xxxxxxC . 

 
 Coefficients Ci  could be found from equations: 
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that allow to write the system in the following form 
 

           ,00 yC =  
           00110 )( yxxCC =−+ ,  
           2120220210 ))(()( yxxxxCxxCC =−−+−+ ,   (6.2) 
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 This is a linear system of equations with a three-cornered matrix. 
 If we adopt step hxx ii =−+1  in the area where ],[ 0 nxxx ∈ , we will get the 
difference correlations for the system’s (6.2) coefficients:  
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 From practical point of view the following expression is used to determine 
the differences of higher orders: 
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 If   =n 1 with (6.3) we get a formula for linear interpolation 
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and if   =n 2 – formula of parabolic or quadratic interpolation 
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 Practically, in this case n  is chosen so that the difference i

n y∆  is 
permanent with the determined exactness. For the initial value 0x  it is possible 
to take any tabular value of argument x . When the amount of values of function 
is finite, amount n  is limited and it couldn’t be greater than the amount of the 
function’s values minus one unit. 
 Formula (6.3) is called the first Newton interpolation formula. This 
correlation is not convenient for interpolation near-by the last values y . In this 
case, as a rule, the second Newton interpolation formula is used, which could be 
obtained from the left differences of the last value ),( nn yx  (“back” 
interpolation). Then the interpolation polynomial looks like: 
 

+−−+−+= − ))(()()( 1210 nnnn xxxxCxxCCxP  



 96 

).(...))((...
...))()((

11

213

xxxxxxC
xxxxxxC

nnn

nnn

−−−+

+−−−+

−

−−  

 
 Coefficients jC  are: 
 

nyC =0 , 
 

,1
1 h

y
h
yC nn ∇

=
∆

= −  

 
ny∇ - left first order difference in the point n 

 

,
2!2 2

2

2
2

2

2 h
y

h
yC nn ∇

=
∆

= −  

 
ny2∇  - left difference of the second order  

. . . . . . 

,
h!j
y

h!j
y

C j
n

j

j
jn

j

j
∇

=
∆

= −  

 

n
j y∇  - left difference of j order. 

 The final expression for the second Newton interpolation formula is: 
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 The Newton interpolation formulas can be used for extrapolation also. If 

0xx < , one could use the first Newton interpolation formula, thus: 
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 Thus, the first Newton interpolation formula, as a rule, is used for “ahead” 
interpolation and “back” extrapolation, and second - for the “back” interpolation 
and the “ahead” extrapolation. 
 In the Newton formulas left and right differences are used. The use of 
central differences in order to get interpolation formulas results in Gauss, 
Sterling and Bessel formulas.  
 We can consider these formulas on ( 1+2n ) equidistant knots of 
interpolation 

 
,,,...,,,,...,, 1101)1( nnnn xxxxxxx −−−−−  

 
thus 
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and for function )(xfy =  the values are known in these knots: )( ii xfy = . 
 We need to find the polynomial )x(P  of degree not higher than n2  so 
that: 
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 Polynomial )x(P  could be found in the following way: 
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Similar to the Newton interpolation formulas: 
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C  

 

.
)!2( 2

2

2 n
n

n

n hn
yC −∆

=  

 
 These coefficients form the first Gauss interpolation formula, which 
contains differences (Table 6.1): 
 

...,,,,,, 2
6

2
5

2
4

1
3

1
2

0 −−−−− ∆∆∆∆∆∆ yyyyyy . 
 

Similarly, it is possible to get the second Gauss interpolation formula, 
which contains central differences: 

 

...,,,,,, 3
6

3
5

2
4

2
3

1
2

1 −−−−−− ∆∆∆∆∆∆ yyyyyy . 
 

 Using middle arithmetic value of the first and second Gauss interpolation 
formulas, we can get the Sterling formula. In general, it is appropriate to use the 
interpolation formulas with central differences in the middle of interval, while 
on its edges, as a rule, the Newton formulas should be used. Application of these 
formulas is given in Table 6.1. 
 Errors of interpolation for the Newton formulas could be estimated in the 
following way for the first and second formulas accordingly: 
 

,
)!1(

))...(1()( 0
1 y

n
nqqqx n

n
+∆

+
−−

=∆  

,
)!1(

))...(1()( 1
n

n
n y

n
nqqqx −

+∆
+

++
=∆  

where .
h

xxq n−
=  

 
 For the Sterling formula: 
 

).(...)2)(1(
)!12(2

)( 22222
12

)1(
12

nqqqq
n

yy
x n

n
n

n

n −−−
+

∆+∆
=∆ −

+
−−

+
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Table 6.1 
 
 
 
 
 
 

x  y  y∆  y2∆  y3∆  y4∆  Notes 

      

2−x  2−y   3
2

−∆ y
 

 4
4

−∆ y
 

  2−∆y   3
3

−∆ y
 

 

1−x  1−y   2
2

−∆ y
 

 3
4

−∆ y
 

  1−∆y   2
3

−∆ y
 

 

0x  0y   1
2

−∆ y
 

 2
4

−∆ y
 

  0y∆   1
3

−∆ y
 

 

1`x  1y   0
2 y∆   1

4
−∆ y

 

  1y∆   0
3 y∆   

2x  2y   1
2 y∆   0

4 y∆  

  2y∆   1
3 y∆   

3x  3y   2
2 y∆

 
 1

4 y∆  

      

 
Second 
Newton  
formula 

 
 
 
 
 
 

Sterling 
formula 

 
Bessel 

formula 
 
 
 
 
 
 
 

First 
Newton 
formula 

 

Differences interpolation methods 

 
 
In case of unequidistant values of the argument it is possible to get 

interpolation formulas, using determination of the divided differences. For 
example, relation 
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ii

ii
ii xx

yy
xx

−
−

=
+

+
+

1

1
1],[  

 
is called the divided difference of the first order, and relation 
 

ii

iiii
iii xx

xxxx
xxx

−

−
=

+

+++
++

2

121
21

],[],[
],,[  

 
– the divided difference of the second order. 
 The divided differences of order n could be obtained from the recurrent 
relation: 
 

ini

niinii
niii xx

xxxx
xxx

−

−
=

+

−++++
++

],...,[],...,[
]...,,,[ 111

2 . 

 
 It is possible to get the Newton interpolation formula for the 

unequidistant values of argument: 
 

...))(](,,[)](,[)( 102100100 +−−+−+= xxxxxxxxxxxyxP  
).(...))(](,...,,[ 11010 −−−−+ nn xxxxxxxxx  

 

6.2.2 Lagrange Interpolation 
 

Lagrange interpolation is used generally for the arbitrarily located knots. 
 An interpolation polynomial for the Lagrange method could be given in a 
form: 
 

)(...)()()( 1100 xbyxbyxbyxP nnn +++= , 
 

where all )(xb j  (j=0,..., n) are polynomials of degree n, the coefficients of 
which could be found via (n+1) equations: 
 

,)( iin yxP =  
 
as a result we will get the system of equations: 
 

;)(...)()( 00011000 yxbyxbyxby nn =+++  
.................. 
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.)(...)()( 1100 nnnnnn yxbyxbyxby =+++  
 
 If the value )( ij xb  is picked so, that 
 

j,i0,
j,=i,1

)(
≠

=ij xb  

 
the previous system of equations is sufficient. 
 This condition means that any polynomial ( )xb j  equals to zero at each 
point x, except for jx . That is why in general case a polynomial ( )xb j  is: 
 

).)...()()...()(()( 1110 njjjj xxxxxxxxxxCxb −−−−−= +−  
 
 If )( jj xb =1, coefficients jC  could be found from correlation: 
 

).)...()()...(/(1 1100 njjjjjj xxxxxxxxC −−−−= +−  
 

 We get the following polynomial: 
 

∗= ∑
=

n

j
jn yxP

0

)(  

))...()()...()((
))...()()...()((

1110

1110

njjjjjjj

njj

xxxxxxxxxx
xxxxxxxxxx
−−−−−

−−−−−
∗

+−

+− . 

 
Entering denotation 

 
),)...()()...()(()( 1110 njjj xxxxxxxxxxxL −−−−−= +−  

 
we get the following formula: 
 

∑
=

=
n

j jj

j
jn xL

xL
yxP

0
.

)(
)(

)(  

 
 One should point out two main properties of the Lagrange polynomials: 

1) ∑
=

=
n

j jj

j

xL
xL

0
;1

)(
)(
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2) if )(xPn  linear depends on jy , a suitable principle of superposition is the 
following: the interpolation polynomial of the sum of a few functions equals to 
the sum of interpolation polynomials of the elements. 
 An error at Lagrange interpolation can be calculated in this way:  
 

),)...()((
)!1(

)( 10
1

n
n

n xxxxxx
n
Mx −−−

+
≤∆ +  

 

where    .)(max )1(

0
1

xf n

nxxxnM
+

≤≤
=+  

      
6.2.3 Spline Interpolation  
 
 It is comparatively recently that splines started to be widely used in 
calculation methods. In the machine designing they have been used for quite a 
long time, because it were namely the French curves or flexible lines, that were 
transformed to make it possible to draw a curve through the multiplicity of 
points ( )., ii yx   
 It is possible to show (using the theory of bend to the squared beam at 
small deformations) that a spline is a group of united cube polynomials, in the 
conjugacy points of which the first and second derivatives are equal. Such 
functions are called cube splines. To get them we need to set the coefficients 
which determine a polynomial on the interval between the two points. 
 For example, in the case presented in Figure 6.2 it is necessary to set all 
cube functions ).(),...,(),( 21 xqxqxq m  In a more general case these polynomials 
are: 
 

,)( 3
4

2
321 xkxkxkkxq iiiii +++=             i=1,2, ...,m 

 
where jik  - permanent, which is certain by the indicated conditions (j= 1,2,3,4). 
 The first (2m) of the conditions demands that splines clash in certain 
points: 
 

iii yxq =)(              i=1, 2 ..., m 
iii yxq =+ )(1            i=0, 1, ... m-1. 

 
 Following (2m-2) condition demands that in the point of conjugacy the 
splines are on the levels of the first and of the second derivatives 
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),()( ''
1 iiii xqxq =+          i=1, ... m-1, 

),()( ''''
1 iiii xqxq =+          i=1, ... m-1. 

 
 

( )xq1  

( )xqm  

( )xq2  

my  

1−my  

2y
1y  

0y
0 

0x  1x  2x 1−mx  x  

Figure 6.2 

y  

mx  

 
 
 The system of algebraic equations has a solution, if the amount of 
equations equals to the amount of the unknowns. Two additional equations are 
needed. As a rule, the following additional conditions are used: 
 

;0)( 0
''

1 =xq                 .0)('' =mm xq  
 
 The spline obtained is called a “natural cube spline”. At the coefficients of 
the spline the cobbed-smooth polynomial interpolation is used. 
 If we separately choose the type of cube polynomials, it is possible to 
simplify a problem considerably (to decrease the amount of equations). In case, 
when separate cube equations are in the following form: 
 

,)()[()( 22
11 ttdkttdkxyttyxq iiiiiiii −−−∆++= −−     mi ,...,2,1=  

 

where     ,1−−=∆ iii xxx            ,
x
xx

t
i

i

∆
−

= −1                 t t= −1 ,  

and        ,1−−=∆ iii yyy              ,d
x
y

i
i

i =
∆
∆

 

 
each of the equations )(xqi  contains only two unknown coefficients. Since the 
first equation is recorded, with every next equation only one unknown 
coefficient is added. Thus, when 1−= ixx , ,t 0=  ,t 1=  and at ixx =    ,t 1=    

,t 0=  
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 Consequently, all conditions, except for the conditions for the second 
derivative, are satisfied. The second derivative is expressed for the internal 
points as following: 
 

=∆+∆+∆+∆ +++− iiiiiii xkxxkxk 1111 )(2 ),(3 11 iiii xdxd ∆+∆ ++  
 
and for two external points: 
 

110 32 dkk =+       and    .321 mmm dkk =+−  
 
 Thus, the system of equations comes to its tridiagonal form: 
 

∗



















∆
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∆∆∆+∆∆
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)(2)(20
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0012

11323

21212
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x
xxxxxx

xxxxx
 

*

























mk

k
k

.

.

.
1

0

  =  3 

























∆+∆

∆+∆
∆+∆

−−

m

mmmm

d
xdxd

xdxd
xdxd

d

11

2332

1221

1

...........
. 

 
The methods of solving such systems are well known. 
 In many cases the method of splines is more efficient and convenient, 
because it allows to get an analytical piecewise-polynomial function. There are 
splines of higher orders. It is also possible to use this method in the other fields 
of computational mathematics, for example, in numeral integration and while 
solving differential equations. 
 
6.2.4 Tridimensional Space Interpolation 
 

This problem is very common today in the three-dimensional designing at 
the delivery and processing of the real objects’ images, construction of surfaces 
and landscapes, in physics, astronomy, cosmonautics, medicine and other 
spheres. 
 S e t t i n g  t h e  p r o b l e m.  Let’s assume we have a function ),( yxf  and 
the row of its values is known:  

( ) ( ) ( ) nnn zyxfzyxfzyxfzyxf ==== ,,...,,,,,),( 222111000 . 
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We need to find a function, that traverses with function ( )yxf ,  in the knots of 
interpolation. In order to find the unique solution for the problem ( )yxF , , it is 
supposed to be a polynomial of degree not higher than n . 
 To solve this problem the analogues of the interpolation methods, which 
exist for the function of one variable, are used.  

The general formula for the N e w t o n  i n t e r p o l a t i o n  has the 
following polynomial form: 

 
[ ] [ ][ ]

[ ][ ][ ] ,...)()()()()()(
)()()()()()(),(

2211003

110020010

+−+−−+−−+−+
+−+−−+−+−+−+=

yyxxyyxxyyxxC
yyxxyyxxCyyxxCCyxPn  

 
where for i from 0 to n. 

Then 
 

,
)(! i

o
i

i lhi
z

C
+

∆
=  

where h – step for x, l – step for y. 
In a short form, in case of 
 

,,
l

yyp
h

xxq oo −
=

−
=  

 
[ ] [ ]

000 )(!
)()(...)1()1()(...),( z

lhn
lhphnqlphqplqhz

lh
plqhzyxP n

nn ∆
+

−+−−+−+
++∆

+
+

+=

 
 Error of the Newton method is: 
 

[ ] [ ]
0

1
1)1()!1(

)()(...)1()1()(),( z
hn

ehphhqephqpeqhyxR n
hn

+
+

∆
++

−+−−+−+
= . 

 
We consider interpolation of space curves when the order of points is 

known. In case of a huge variety of points the problem could be much more 
complicated and especial two-dimensional differences are to be used.  

 
In L a g r a n g e  me t h o d  we seek for polynomial ),( yxLn  of degree not 

higher n : 
The values of coefficients ib  follow from the condition of coinciding 

with a function that is studied in the knots of interpolation ix iy : 

∑
=

=
n

k
iikkii yxbyxf

0
),(),( ϕ , ni ...1= , 

where )(xiϕ  are the fixed values of the function. 
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A polynomial will transform to the following form: 
 

                                  ),(...),(),(),( 1100 yxbyxbyxbyxP nnn ϕϕϕ +++= , 
 

that          







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=+++

=+++

=+++

.),(...),(),(
...

,),(...),(),(
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110

11111111101

00000110000
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General Lagrange formula interpolation is analogical to the corresponding  

method of  unidimensional interpolation: 
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×
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+−∑
 

 
Let’s assume that ),( 00 yx  ... ),( nn yx  – 1+n  are different points in space 

)];[ 00 nn yyyxxx ≤≤≤≤ . There is a unique polynomial ),( yxPn  of degree not 
higher than n, which has the following characteristics: 

 
).(),( iinii yxPyxf = for ni ...,,1,0= . 

 
Lagrange formula for the given polynomial looks like ( ni ...,,1,0= ): 
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)(...))((...))((
)(...))((...))((

)(...))((...))((
),(

1110

1110

0 1110

1110

njjjjjjj

njj

n

i njjjjjjj

njj
jn

yyyyyyyyyy
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+−
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= +−

+−∑
                    

 
In the course of the calculations, if a certain factor )( kxx −  or )( kyy −  

meets several times, it should be counted only once.  
For a case, when kj xx =  we will get: 
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At  kj yy = : 
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We will enter the following denotations: 
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Then general interpolation formula will be: 
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In more compact way it could be recorded as follows: 
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),( 11)(
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where )(...)()( 01 nn xxxxxÏ −−=+ , )(...)()( 01 nn yyyyyÏ −−=+ . 

 
The properties of Lagrange interpolation: 

a) ∑
=

=
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yxL
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0
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. 
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b) Actual principle of superposition: 
)(),( zPyxP nn = - a linear function from z . Thus, the sum of Lagrange polynomial 

of several functions equals to the sum of polynomial of the components.  
We will consider the example of the method’s application. Suppose two 

points are set in space: ),( 111 yxz . The expression for a linear interpolation is: 
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)(

)()(
)(
)(

)(
)(),(

10

0110

01

0
1

10

1
0 yy

yyzyyz
yy
yyz

yy
yyzyxPn −

−+−
=

−
−

+
−
−

= . 

 

Also         
)(

)()(
)(
)(

)(
)(),(

10

0110

01

0
1

10

1
0 xx

xxzxxz
xx
xxz

xx
xxzyxPn −

−+−
=

−
−

+
−
−

=  

If only 10 yy = . 
 
The error of the method of interpolation is calculated using the formula: 

 

∏∏ ++
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+
=−=
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nn yx
n

f
yxLyxfyxR

ξξ , 

where yx ξξ ,  - depend on yx,  and lie within the limits of the set space. 
 
6.2.5 Interpolations by Selfsimilar Transformations 
 

A lot of objects possess a property of selfsimilarity or ge o me t r i c a l  
i n v a r i a n c e  to the spatial scale. If we examine these objects according to a 
certain scale, their similar fundamental elements will constantly appear. Quite 
often it is possible to see that mountain, coast, cloud, tree and other objects have 
a similar structure. Prevalence of selfsimilar structures in nature is really 
impressive. Selfsimilar are minerals and mountain breeds; locations of branches, 
patterns of letters, capillary system of plants; nervous, lymphatic and other 
systems in organisms of animals and humans; rivers, clouds, lines of seashore, 
mountain relieves and so on. Such objects mathematically cannot be described 
via simple functions. 

The selfsimilar structure considers a fractal, which is a recourse model, 
every part of which repeats the development of the whole model. 
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The property of parts to be similar to the whole structure is called 
selfsimilarity. Selfsimilarity assumes that the printing-down, down-scaling, 
variations of some "standard" form allow nature to create a complex multiscale 
structure easily.  

Hierarchical character is another important property of fractals that allows 
to repeat itself in different dimensions of space and time.  

The classic methods of interpolation do not allow conducting 
interpolation effectively when operating with badly differentiated functions. 
Another limitation of this method is the fact that only separate points of space, 
not an accumulation of points could be considered as knots of interpolation. 
That is why for many practical problems interpolation is conducted using 
selfsimilar multitudes.  

A  s e l f s i m i l a r  mu l t i t u d e  (Figure 6.3) is a multitude 2EX ∈  (in 
two-dimensional space) or 3EX ∈  (in three-dimensional space), that can be 
presented as an accumulation of finite amount of submultitude  

 

U
n

i
iXX

1=

=  .               (1.2) 

 
The next conditions should be followed: 
1) 2EX i ∈  ( 3EX i ∈ ), ni ,...,1= ; 
2)  multitudes njixandx ji ,...,1,, =   ji <>  in pairs do not block each other; 
3) ( )XcX ii =  ni ...,,1=  where ic  is a transformation of similarity with the 

coefficient of homothety 10 << is . 
 

 
 

Figure 6.3  
 
T h e  s t r i c t l y  s e l f s i mi l a r  mu l t i t u d e  (Figure 6.4), is a selfsimilar 

multitude, where all the transformations of similarity, ni ...,,1=  have identical 
coefficients of homothety 10 << s . 
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Figure 6.4 
 

T h e  i n c o r p o r a t e d  s e l f s i m i l a r  m u l t i t u d e  (Figure 6.5) is a 
multitude that can be represented as an accumulation of strictly selfsimilar 
multitudes.  

 
 

Figure 6.5 
 
T h e  s e l f a f f i n e  m u l t i t u d e  (Figure 6.6) is a multitude (not empty), 

that can be represented as an accumulation of the complete amount of subset  
 

U
n

i
iXX

1=

= . 

 
The following conditions are to be followed: 
1) 2EX i ∈  ni ,...,1= ; 
2) Multitudes njXandx ji ,...,1, = , ji <>  in pairs do not block each other; 

3) ( )XwX ii =  where iw  are affine transformations with the coefficient of 
homothety 10 << is  and aspect 10 ≤< iq  ratio in relation to one of the axis. 

 Accordingly distinguished is a s t r i c t l y  s e l f a f f i n e  m u l t i t u d e  
(Figure 6.7) for a case, where all affine transformations have the identical 
coefficient of homothety and u n i t e d  s e l f a f f i n e  m u l t i t u d e   (Figure 6.8), 
which is a union of strictly selfaffine multitudes. 
 

       
 
                        Figure 6.6                                              Figure 6.7 
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Figure 6.8  

 
The class of selfsimilar multitudes is a part of the class of selfaffine multitudes. 

Suppose { }no aaA ,...,0 = , 3≥n  is a certain well-organized complete 
multitude of three-dimensional Euclid space 3E , and there is a Hatchinson 
operator which satisfies the conditions: 

1) sequence of multitudes  
   ( )01 AWA = ( )1−= nn AWA  

is a convergence in accordance with Hausdorf metric, 
2) 0A  belongs to the multitude  
  ( )00 AWA j⊂ ,...2,1=j . 

after j iterations. 
The Hatchinson multitude interpolation with range j ( jA ) is called a 

continuous curve that traverses all the points of ordered multitude ( )0AWA j
j = , 

thus 0a  is connected with 1a , 1a  is connected with 2a , . . . , 1−na  is connected 
with na . 

Consequently, the problem of interpolation consists in finding the 
Hatchinson operator W  that satisfies terms 1-2 and in the construction of 
interpolation of Hatchinson multitude jA  range j . 

Let { }no aaA ,...,= , 3≥n  is a complete ordered multitude of points of 
three-dimensional Euclid space 3E . 

Let’s enter the concept tsϕ of relations, which will be calculated at every 
iteration for every element: 
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where ( ) ( )01 aaaa nii −∧−+  is a corner between vectors ( )ii aa −+1  and ( )0aan − . 
(This corner will be calculated in plane XOY  and XOZ ). 

On the multitude of elements A  the following limitations are imposed: 
1) 1<is , 1...,,0 −= ni ; 

2) 1
1

0
=∑

−

=

n

i

D
is ; 

3) 21 << D ; 
where D  is selfsimilar dimension of multitude A . 

According to the known Banah theorem about an immobile point, the 
error of the method of interpolation using selfsimilar multitudes could be 
estimated via the formula: 

 

D
E

E m

⋅
−

=∆
+

1

1

; 

 
where { }ismax=Ε , 

( ){ }ii aadD −= +1max ,  1,...,0 −= ni . 
 

For every segment of the figure the following order of actions is set: 
 

1. The coefficient of downscaling is calculated (Figure 6.9):  
 

 
i - й сегмент

d1

d2

 
Figure 6.9 

 
2. The corner of rotation is 

calculated in plane XOY (Figure 
6.10): 

3. The corner of rotation is 
calculated in plane XOZ 
(Figure 6.11): 

i-segment 



 113 

i - й сегмент

0 X

Y

α

β
 

 
βαϕ −=xoy ; 

 
Figure 6.10 

i - й сегмент

0 X

Z

α

β

 
Ç2 

βαϕ −=xoz ; 
 

Figure 6.11 
 

4. The rotation of the regenerated initial broken line is executed and its position 
changes (figure 6.12): 

 
0

X

Y

i - й сегмент

 

0
X

Y

i - й сегмент

 
 

Figure 6.12 
 

In figure 6.13 the image of trees built of selfsimilar multitudes (fractals) is 
given. 

 

segment 

segment 

i-segment 

i-segment 
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Figure 6.13 
 

Interpolation of the functions of two variables using selfsimilar multitudes 
),( yxfz = could be conducted on every variable x and y consistently.  

The interpolation of the function of one variable x: 
 

),()( kx yxfxf = , 
 

where, yyk = . Further, examining the values obtained ),()( jx yxfxf =  as 
values of function ),( yxf  of one variable y, by the method of interpolation 
using selfsimilar multitudes we find the value zyxf =),( . 
 Example of construction of landscape of the river by selfsimilar 
transformations is represented in Figure 6.14 

 
Figure 6.14 

 
 
6.3  Approximation 
 
 Approximation in general is a close description by one function 
(approximate) of a definite type of another function (approximated) which is set 
in different form, for example, data file. 
 There are two main approaches to approximation of data information. One 
of them requires that a curve (possibly cobbed-smooth) passes approximately 
through all points which are set by the table. It is possible to do this using the 
methods of interpolation which were considered in the previous chapter. 
According to another approach the data is approximated using a simple function 
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which is used for the whole interval of values (but not certainly) that it passes 
through all the stipulated points. Such approach is called an adjustment of curve, 
which aims to minimize the deviation from the data information. As a rule, the 
least-squares method is used, that brings to the minimum the sum of squares of 
differences between the values of function, which is set by the selected curve 
and the data table. 
 Suppose we have in the table the set )1( +n  point 

),(...,),,(),,( 1100 nn yxyxyx  and we need to find an approximate curve )(xg  in a 
range nxxx ≤≤0  (Figure 6.3). In this case, an error will be in every tabular point  
 

.)( iii yxg −=ε  

Then the sum of squares of errors is calculated in the following way: 

[ ]∑
=

−=
n

i
ii yxgE

0

2 .)(  
 

nε  

1ε  

0  

y  

ny  

2y  

1y  

0y  

0x  1x  2x  nx  x  

Figure 6.15 

( )xg=Υ  

 
 As a rule, the function )(xg  is elected as a linear combination of the 
chosen functions )(xg k  
 

( ) ).(...)()( 2211 xgCxgCxgCxg kk+++=  
 
 The condition of minimum of Е is reflected in the equation: 
 

.0...
21

====
kC

E
C
E

C
E

∂

∂

∂

∂

∂

∂
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 It is known that 
 

[ ]∑
=

−+++=
n

i
iikkii yxgCxgCxgCE

0

2
2211 ,)(...)()(  

 
this condition is equivalent to the system of equations: 
 

[ ]∑ =−++= ;0)()(...)(2 11111
1

xgyxgCxgC
C
E

iikk∂

∂
 

. . . . . . . . . . . . . . . . . . . . . . . . . 

[ ]∑ =−++= .0)()(...)(2 111 xgyxgCxgC
C
E

kiikki
k∂

∂
 

 
 This system can be written in a matrix form: 

 
 

∗
















∑∑

∑∑∑

)(......)()(
............

)()(...)()()(g
 

2
1

121
2
1

ikiki

ikiiii

xgxgxg

xgxgxgxgx
 

        
(6.5) 

*



















kC

C
C

.
2

1

   =   
















∑

∑

iik

ii

yxg

yxg

)(
......

)(1

 .                         

 
 Elements of matrix in the left part and column of vectors in the right are 
set by the data table. The given system of k linear equations with an unknown k 
can be solved. The choice of function )(xg  must be carried out taking into 
account the character of data (periodicity, property of symmetry, existence of 
asymptotic form). Sometimes the table is broken up into several parts and 
separate approximate curves are chosen for every part.  
 The residual finite middle quadratic error of approximation is: 
 

.)1/( +=∆ nE  
 
 If during construction of an approximate function orthogonal polynomials 
are used 
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∑ = 0)()( ikij xgxg     if  ,kj ≠  

 
the system (6.5) is simplified, and a matrix becomes diagonal. Coefficients 
could be obtained from the correlations 
 

).(/)(
0 0

2
i

n

i

n

i
jiijj xgyxgC ∑ ∑

= =

=  

 
 For this reason in many standard programs of the curves adjustment 
orthogonal polynomials are used. 
 
6.4 Statistical Data Processing 
 
 When processing the data in experiments there is a necessity to estimate 
descriptions of random values in measuring techniques (for example, estimation 
of the measuring error), automation (problem identification unification, 
optimum control), statistical radio engineering. 
 Estimation x  of unknown mathematical expectation Xm of random value 
X  demands middle arithmetic results n  of the independent tests 
 

,
n

x
x

n

i
i∑

== 1  

 
and for estimation of dispersion 2

Xσ   
 

1

)(
1

2

2

−

−
=δ

∑
=

n

xx
n

i
i

. 

 
Supposing the normal law of value distribution X it is possible to show 

that this value  
 

n
mxT X

/δ
−

=  

 
has the t-division of Student with 1-n=k  degrees of liberty. It’s possible to 
define a reliable interval for the real value x : after the known values of reliable 
probability P  from Table 6.2 could be found. Thus:  
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.
n

2δ
∗ε=∆  

 
 A casual size x  is up-diffused after a normal law with a mathematical 
hope Xm  and dispersion 2

Xσ . The real value x  is in the interval 
),( ∆+∆− xx mm  with a reliable probability P . To estimate the type of law 

most applications have the criteria of Kolmogorov and Pirson, which act using 
comparison of empiric function of distribution )(* xf x , histogram obtained as a 
result of the experimental data processing, with hypothetical )(xf x , which 
answers the offered hypothesis. This allows to make conclusions about their 
convergence or divergence at the level of significance α , which allows to 
calculate the probability of correctness of the given hypothesis. 
 In a Kolmogorov criterion coefficient λ  is defined as: 
 

nxfxf XX max

* )()( −=λ , 

 
which is compared to the critical value set from Table 6.3. 

Table 6.2 
Value for a reliable interval ε<<ε− t , where value t  has the Student’s 
distribution, depends on the reliable probability p  and the amount of liberty 
degrees k  

k  p =0.90 p =0.95 p =0.99 
1 6.310 12.71 63.7 
2 2.920 4.30 9.92 
3 2.350 3.18 5.84 
4 2.130 2.77 4.60 
5 2.020 2.57 4.03 
6 1.943 2.45 3.71 
7 1.895 2.36 3.50 
8 1.860 2.31 3.36 
9 1.833 2.26 3.25 

10 1.812 2.23 3.17 
11 1.796 2.20 3.11 
12 1.782 2.18 3.06 
13 1.771 2.16 3.01 
14 1.761 2.14 1.98 
15 1.753 2.13 2.95 
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16 1.746 2.12 2.92 
17 1.740 2.11 2.90 
18 1.734 2.10 2.86 
19 1.729 2.09 2.86 
20 1.725 2.08 2.84 
22 1.717 2.07 2.82 
24 1.711 2.06 2.80 
26 1.706 2.06 2.78 
28 1.701 2.05 2.76 
30 1.697 2.04 2.75 
40 1.684 2.02 2.70 
60 1.671 2.00 2.66 
120 1.658 1.98 2.62 

 1.645 1.96 2.58 
  

Table 6.3 

Critical values 0λ  depend on the level of significance 
 

α  0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.001 0.001 
0λ  0.828 0.895 0.974 1.073 1.224 1.358 1.520 1.627 1.950 

 
 At рђλ<λ  a hypothesis about convergence )(xf X  and )(* xf X  is adopted. 
 2χ coefficient is calculated using the Pirson criterion 
 

[ ]
∑

=

−
=

k

i iX

iXiX

xf
xfxfx

0

2*
2

)(
)()( , 

 
where k is number of digits of histogram (discrete values )( iX xf ). 
 From Table 6.4 the critical value is determined in accordance with α  and 
amount of liberty degrees  

1−−= lkr , 
 
where l - amount of parameters in the law of distribution (for normal l =2, for 
Poisson l =1 and etc). 
 At 22

рђχ<χ  the hypothesis is accepted. 
Comparing the analytically obtained laws of probabilities distribution, it 

is convenient to measure their proximity using the value of middle quadratic 
error.  
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 To estimate dependence of random values, which have stochastic 
connection, the coefficient of correlation is used  
 

.
))((

1
1 1

yx

n

i
Yixi

xy

mymx

n
R

σσ

−−

−
=

∑
=  

 
Determining the interdependence of random values in different moments 

of time, the coefficient of correlation is estimated by means of the following 
formula: 

 

[ ][ ]
,

)()(

1
1)( 1

X

mn

i
XiXi

X D

mtxmtx

mn
R

∑
−

=
−+−

−−
=

τ
τ  

 
Table 6.4 

Critical points of distribution 
x – random value which is distributed by the 2χ  law with the liberty degrees k 
(the table contains values which are obtained from condition α≤)(xP ) 
 

Liberty 
Degrees 

k  

α = 
0.01 

α =0; 
0.025 

α = 
0.05 

α = 
0.95 

α = 
0.975 

α = 
0.99 

1 6.6 6.0 3.8 0.0039 0.00098 0.00016 

2 9.2 7.4 6.0 0.103 0.051 0.020 

3 11.3 9.4 7.8 0.352 0.216 0.115 

4 13.3 11.1 9.5 0.711 0.484 0.297 

5 15.1 12.8 11.1 1.15 0.831 0.554 

6 16.8 14.4 12.6 1.64 1.24 0.872 

7 18.5 16.0 14.1 2.17 1.69 1.24 

8 20.1 17.5 15.5 2.73 2.18 1.65 

9 21.7 19.0 16.9 3.33 2.70 2.09 
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10 23.2 20.5 18.3 3.94 3.25 2.56 

11 24.7 21.9 19.7 4.57 3.82 3.05 

12 26.2 23.3 21.0 5.23 4.40 3.57 

13 27.7 24.7 22.4 5.89 5.01 4.11 

14 29.1 26.1 23.7 6.57 5.63 4.66 

15 30.6 27.5 25.0 7.26 6.26 5.23 

16 32.0 28.8 26.3 7.96 6.91 5.81 
 

where )( itx  is value of random value X  in the moment of time ,ti  and )( τ+itx  
– in the moment of time which differs from it  on the interval τ . Thus, 

,)(,)( jiii xtxxtx =+= τ  τ  is a time domain between i and j values x , 
.mji =−  

 The interval of correlation is considered as a period of time for which a 
cross-correlation function diminishes 95 %. 
 After obtaining the data regarding x  arrays and y , the calculation of 
cross-correlation function is rather simple, but approximation of the type of 
cross-correlation function by typical cross-correlation functions (Table 6.5) can 
be performed using the least-squares method. 
 

  Table 6.5 

Typical cross-correlation functions 
Form  Parameters 

ατ

ταστ

/1
),1()( 2

<

−= XxR  

*2*2 /))(( τστσα XxX R−= , 
)( *τxR  – known value of cross-
correlation function 

ταστ −= eR Xx
2)(  

)(
ln1

*

2

* τ
σ

τ
α

x

X

R
=  

222)( ταστ −= eR Xx  )(
ln1

*

2

* τ
σ

τ
α

x

x

R
=  

)1()( 2 ταστ
τα

+=
−

eR xx  max
k4,5/τ≈α  
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βτσ=τ τα− cose)(R xx
2

 

)(
2

cos
ln*1

*
2

*
1

*
22

*
2 τ

τ
πτ

σ

τ
α

x

x

R
= , 

*/ 12τπ=β  
at two known values of cross-

correlation function )(τxR , thus 
.0)( *

1 =τxR  
 
 

6.5  Numerical Integration 
 

In many problems, which are related to identification, analysis, quality 
estimation of complex systems in automatics, there is a need to determine 
definite integrals. 
 If function ( )xf  is an antiderivative function that is situated on the 
interval [ ]в,a , the definite integral from ( )xf  can be calculated using the 
Newton-Leibnitz formula: 
 

( ) ( ) ( )aFвFdxxfI
в

а

−== ∫ , 

 
where  ( ) ( )xfxF =′ . 

But often it’s quite difficult to calculate the integral because of 
complicated analytical transformations (and sometimes even impossible, 
especially in cases of improper integrals), as a subintegral function is set by the 
numerical data, for example, obtained from the experiment. 

The problem of the function’s numerical integration consists of 
calculation of the integral’s value on basis of the subintegral function’s values. 
Graphically an integral is considered to be an area limited to the graph of 
function 

 
).(xfy =  

 
 The most widespread methods of definite integrals’ calculation are: 
• methods of Newton-Cotes, Gauss, Tchebyshev, that are based on the use of 

the so-called quadrature formulas replacing interpolations polynomials 
of )(xf ; 

• methods of Monte Carlo, based on the use of statistical models. 
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6.5.1 Newton-Cotes Formulas  
 

To get Newton-Cotes formulas the integral should be given in a form: 
 

 ∫ ∑ ∆+=
=

b

a

n

i
ii xfAdxxf ,)()(

0
          (6.6) 

 
where ix - knots of interpolation; iA  - coefficients depending on the type of 
formula; ∆  - error of quadrature formula. 
 Replacing in (6.6) a subintegral function by the proper interpolation 

Lagrange polynomial for n  equidistant knots with a step 
n

abh −
=  makes it 

possible to get the next formula to calculate coefficients iA  at the arbitrary 
amount of knots. 

 

,
)(

))...(1(
)!1(!

)1(
0

1

dq
iq

nqqq
nin

abA
nn

i ∫ −
−−

−
−−

=
−

  (6.7) 

 

where 
h

axq −
= . 

 Usually coefficients 
ab

AH i
i −

=  are called the Cotes coefficients. 

 Thus, formula (6.6) is transformed to the following form: 
 

 ∫ ∑
=

−=
b

a

n

i
ii xfHabdxxf

0
)()()( . (6.8) 

 
With the following characteristics: 
 

.1 1
0

−
=

==∑ ni

n

i
i HH³H  

 
At 21 == n³n  with (6.7) and (6.8) the formulas of trapezoids and Simpson 
could be obtained: 
 

[ ]

[ ].)()(4)(
3

,)()(
2

20

10

xfxfxfhI

xfxfhI

i ++=

+=
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In Table (6.6) the resulted values of coefficients for 8...,,2,1=n  are 

given. 
The errors of formulas of trapezoids and Simpson are estimated, 

accordingly, using expressions: 
 

,
9012 4

5

2

3

MhandMh
−=∆−=∆  

 
where −42 M³M are the maximal values of the second and fourth derivative 

).,(),( baxxf ∈  
The complex Newton-Cotes formulas are combined from the simple 

formulas. For example, for the formulas of trapezoids and Simpson: 
 

[ ]

[ ].)(...)(4)(2)(4)(
3

,)(...)(2)(2)(
2

3210

110

n

n

xfxfxfxfxfhI

xfxfxfxfhI

+++++=

++++=
 

 
The errors of complex formulas are accordingly: 

 

.
18012 4

5

2

3

MhnàndMhn −=∆−=∆  

 
It is possible to get the component Newton-Cotes formulas of higher 

orders. 
 In order to estimate the error practically, the methods of Runge 
(Richardson extrapolations) are used. This method was studied in chapter 4. 
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Table 6.6  

Cotes Coefficients 
 

 0H
)

 1H
)

 2H
)

 3H
)

 4H
)

 5H
)

 6H
)

 7H
)

 8H
)

 Sum 

1 1 1        2 

2 1 4 1       6 

3 1 3 3 1      8 

4 7 32 12 32 7     90 

5 19 75 50 50 75 19    288 

6 41 216 27 272 27 216 41   840 

7 751 357
7 

122
3 2989 2989 1323 357

7 751  17280 

8 989 588
8 

-
928 

1049
6 

-
4540 

1049
6 

-
928 

588
8 989 28350 

 
 
6.5.2 Tchebyshev’s Formula  
 

Formula (6.6) can be derived to the form: 
 

 ∫ ∑
− =

=
1

1 1
)()(

n

i
ii tfAdttf          (6.9) 

performing replacement of variables: 
 

tabbax
22
−

+
+

=  . 

 
In the course of the Tchebyshev’s formula derivation such terms are used: 

• All coefficients iA  are equal; 
• The quadrature formula (6.9) is exact for all polynomials up to degree n  

inclusively. 
Thus, formula (6.9) looks like: 
 

N  

  ii HH =
)  
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∫ ∑
− −

=
1

1 1
).(2)(

n

i
itf

n
dttf           (6.10) 

 
 To find it  one should consider that formula (6.10) must be exact for the 
function of the form : 

 
....,,1,)( nkttf k ==  

 
After substituting these functions in (6.10) the following system of 

equations could be obtained: 
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n

           (6.11) 

 
 System of equations (6.11) has a solution at .98 =< nandn  The 
imperfection of the Tchebyshev’s formula consists namely in the restricted 
exactness. The values it  for different n  are given in table (6.7). 
 For an arbitrary interval (a, b) formula (6.10) could be presented as 
follows: 
 

( ) ,xf
n

abI
n

i
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=

−
=
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where                                           ii tabbax
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−

+
+

= . 

 
 Error of calculations in the Tchebyshev’s method is: 
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Table 6.7 
Value of abscissas it  in the Tchebyshev’s formula  

 

n  i  it  n  i  it  

2 1;2 m 0.577350 6 1;6 m 0.866247 

1;3 m 0.707107 2;5 m 0.422519 
3 

2 0 
 

3;4 m 0.266635 

1;4 m 0.794654 1;7 m 0.883862 
4 

2;3 m 0.187592 
7 

2;6 m 0.529657 

1;5 m 0.832498 3;5 m 0.323912 

2;4 m 0.374513 
 

4 0 5 

3 0    
 
6.5.3. Gauss Formula 
 

Gauss formula is a formula of the highest algebraic exactness. For the 
formula of form (6.9) the highest exactness can be achieved for the polynomials 
of degree )12( −n , which concern n2  values ).,...,2,1( niA³t ii =  
 The problem consists of determining coefficients iA  and abscissas of 
points it . 
 To determine the coefficients, formula (6.9) is often used for the functions 
of form  
 

.12.,..,1,0,)( −== nkttf k  
Obviously 
 



 +

=∫
− 0

)1/(21

1

k
dtt k , 

 
Then, the system of equations is: 
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          (6.12) 

 
This system is nonlinear, and its ordinary solution is connected with 

numerous difficulties in calculations. But, if we use the system for the 
polynomials of form  

 
,1,...,1,0),()( −== nktPttf n

k  
 

where )(tPn  - Legendre polynomial, then it can be derived to linear form  
relating coefficients iA  with the determined points it . As the degrees of the 
polynomials do not exceed in correlation 12 −n , the system (6.12) and formula 
(6.9) to be executed assumes 

 

∫ ∑
− =

=
1

1 1
.)()(

n

i
in

k
iin

k tPtAdttPt                                  (6.13) 

 
As the orthogonal left part of expression (6.13) equals to 0, then:  

 

∑
=

=
n

i
in

k
ii tPtA

1
,0)(  

 
that is always provided at any values iA  in points it  which correspond to the 
roots of the proper Legendre polynomials. 
 Putting these values it into system (6.12), we can calculate the first n  
equations, and then it is possible to define coefficients iA . 
 Formula (6.9), where it  equals to zero of Legendre polynomial )(tPn , and 

niAi ...,,2,1, =  are calculated from system (6.12), is called the Gauss formula. 
 Values it , iA  for different n  are given in Table 6.8. 
 For an arbitrary interval (a,b)  the Gauss  formula is the following: 
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 To estimate the error of the Gauss formula with n  knots we could use 
correlation 
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where nM 2  - maximal value of  2n  derivative on interval [ ].b,a  

 
Table 6.8 

Elements of Gauss formula 
 

n  i  it  iA  

1 1 0 2 
2 1;2 m 0.57735027 1 

1;3 m 0.77459667 
9
5 =0.55555556 

3 
2 0 

9
8 =0.88888889 

1;4 m 0.86113631 0.34785484 
4 

2;3 m 0.33998104 0.65214516 
1;6 m 0.93246951 0.17132450 
2;5 m 0.66120939 0.36076158 6 
3;4 m 0.238619119 0.46791394 
1;7 m 0.94910791 0.12948496 
2;6 m 0.74153119 0.27970540 
3;5 m 0.40584515 0.38183006 

7 

4 0 0.41795918 
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1;8 m 0.96028986 0.10122854 
2;7 m 0.79666648 0.22238104 
3;6 m 0.52553142 0.31370664 

8 

4;5 m 0.18343464 0.36268378 
 
6.5.4 Algorithm of Numerical Methods 
 

The sequence in which Newton-Cotes formulas should be applied is given 
below. 
 
1. Choice of the formula and finding coefficients iA (using Table 6.6). 

2. Drafting the algorithm and program, so that: 

• if we set discrete values )( ii xfy =  with step h , these values are put into 
(6.6); 

• if function )(xfy =  of value )( ii xfy =  is calculated, then 
).(0 bxaihaihxxi ≤≤+=+=  

3. Estimation of errors. 
 
 The sequence in which the Gauss method should be applied is given 
below. 
 
1. Choice of order of the method and finding coefficients iA  (using Table 6.8) 

and values ).11( ≤≤− tti  
2. Laying out of interval lonbxa ≤≤  subintervals (Figure 6.4). 
3. Finding the values of integral jI  for every interval ),...,1( lj =  

 

∑
=

=
l

j
jII

1
. 

 
Thus, the values on abscissas ix  on every interval j are calculated in 

accordance with the formulas: 
 

 ,
22

11
i

jjjj
i t

aaaa
x

−
+

+
= ++                                   (6.14) 

where 
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jI  is calculated as: 
 

 ∑∫
=

+ −
==

+ n

i
ii

jj
a

a
j xfA

aa
dxxfI

j

j 1

1 ).(
2

)(
)(

1

                     (6.15) 

 
4. Estimation of errors. 
 The sequence in which the Tchebyshev’s method should be applied is 
similar to the Gauss method, but in point 1 coefficients it  are to be taken from 
table 6.7, and in point 3, in order to find jI  integral, the following formula is to 
be used: 
 

  ( ) ( ) ( )∑∫
=

+
+ −

==
n

i
i

jj
ja

ja
j xf

n
aa

dxxfI
1

1
1

,                    (6.16) 

 
where ix  is estimated similarly to the Gauss method in accordance with formula 
(6.14). Practically, the errors could be estimated using the Runge method for 
comparatively high number of subintegral l. 

 
 

 

 

2a  

( )xfy =  
y 

x 
0 

Figure 6.16 

aa =1  3a  la  bal =+1  

1I  2I  

lI  
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For the Gauss method 
 

12 +







 −

=∆
n

l
abC , 

 
and for the Tchebyshev’s method 

 
1+







 −

=∆
n

l
abC , 

 
where coefficients c could be calculated via two calculations with high, but 
different meanings l. 
 
6.5.5 Monte - Carlo Method  

 
The method of numerical integration of Monte-Carlo is the most 

widespread method of statistic modelling that is used for problems solution in 
the applied mathematics. 

Suppose, we have random values { } Xxi ∈  sequence with the distribution 
law of probabilities ( )xf x . To perform functional transformation 

 
( )ii xy ϕ= , 

 
the expectation of the obtained random value sequence { } Yyi ∈  
 

 ( ) ( )∫
∞

∞−

= dxxfxm xY ϕ   

 
could be estimated using formula: 

 ∑
=

=
n

i
iY y

n
m

1

1  .           (6.17) 

 
Let’s enter in expressions (6.17) the so-called function of the area 

indicator: 
 

[ ]




><
≤≤

=
.bx,ax,

;bxa,
x,b,a

0
1

1  

 
 After that if we choose a function of a form  
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( ) ( )
( )

,
xxf
xfx =ϕ  

 
the final expression will be: 
 

( ) ( )
( ) [ ]i

n

i ix

i
в

а
Y x,в,a

xf
xf

n
dxxfmI 11

1
∑∫

=

=== . 

 
The algorithm of the integral calculation using the Monte-Carlo method is 

given in Figure 6.16. 
The error of Monte-Carlo method is related to the error of generation of 

the values probable sequence, that are computer-calculated, with definite laws. It 
can be estimated using the formula:  

 
( )

,
Pn −

=∆
12
1       (6.18) 

 
where P is the actual probability error on interval [ ∆− ; ].∆+  
 The amount of tests of n does not depend on the dimension of the integral, 
that is why the Monte-Carlo method is applied to calculate multiple integrals, 
where the other methods of numerical integration are not effective because of 
the huge amount of calculations needed. 
 Let us consider the sequence in which the calculation of multiple integrals 
should be performed. First, we need to have m random numbers generators, 
where m equals to multiplicity of integral. 
 Geometrically the calculation of m-multiple integral  
 
 ( )

( )
∫∫ ∫=
S

mm dxdxdxxxxfI ,...,...,,... 2121             (6.19) 

where ( )mxxxfy ,...,, 21=  - continuous function in the limited reserved area of S 
- is used to determine ( )1+m -volume of direct cylinder in space yxxx m,...,0 21 , 
that is built on the basis of S and is limited by surface ( )mxxxfy ,...,, 21= . 
 To transform integral (6.19) so that the new area of integration is situated 
in the middle of single m – dimensional cube σ , we can replace the variables as 
follows: 
 

( ) ,abax iiiii ξ−+=  
 

where iξ  - the proper co-ordinates from 0 to 1; ii b,a  - maximum values of co-
ordinates, where the area of integration is located.  
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Then using (6.19) the integral could be calculated. So: 
 

( )( ) ( ) ,...2211 ξIbababaI mm −−−=  
where  

( )
( )

.......,,,... 2121 mm dddfI ξξξξξξ
σ

ξ ∫∫ ∫=  

 
 

Start 

Stop 

Pseudo-random number 
sequence (n)   

{ } Xxi ∈  with the 

probability law ( )xf x  

[ ]iii xвaxx ,,1⋅=

( )
( )ix

i
i xF

xfy =

Calculation 

( ) ∑∫
=

==
n

i
i

b

a
Y y

n
dxxfm

1

1

 

Figure 6.17 
 

If we apply m generators of random numbers in a range (0,1), calculation 
of the mean value of the function from their combinations using the 
multidimensional indicator of the integration area will give us the sought 
estimation of the integral: 

 

( ) [ ]imii

n

i
imiif

n
I ξξξξξξξ ,....,,1,...,,1

21
1

21∑
=

= , 
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where [ ]imii ξξξ ,....,,1 21  equals to 1, if the point is situated in the middle of the 
integration area, otherwise it equals to 0. 

The error of calculation of m-multiple integral using the Monte-Carlo 
method is estimated like single using formula (6.18). 

 
6.6 Remarks 
 

The issue of data processing is quite broad and includes not only the 
problems studied in the chapter. Statistical data processing unites a multitude of 
problems considering the characteristics calculation of the random processes 
(not only the laws of the unidimension probability and the correlation function). 
We should point out that many problems are connected with processing of the 
multidimensional data sets. 
 
Exercises 
 

1. What is the difference in statements of the interpolation and 
approximation problems? 

2. What is the error of calculation 2  according to the Lagrange formula for 
function x  with knots of interpolation 4,1,81 210 === xxx ? 

3. Give the first and second Newton interpolation formulas. 
4. What is the concept of extrapolation? Is it possible to make an 

extrapolation basing upon the splines method? 
5. Build the algorithms of Chebyshev, Gauss, Newton-Cotes numerical 

integration. Use these methods to calculate the following integrals: 
 

a) ( ) dxxxxx∫ +
1

0

2 cossin1exp ; 

b) ( ) dxxxx∫ +
2

1

21cossin ; 

c) dxex x∫
3

2

. 

 
6. Using the method of the least squares, approach the points (0, -1), (1, 1), 

(2, 3), (3, 4), (4,5.1). Find the straight line xaay 21 += . 
7. Using the method of the least squares and the points 
 

x -3 -2 -1 0 1 2 3 
y -0.72 -0.01 0.50 0.82 0.89 0.81 0.50 

 
find approximation of a polynomial of the form : 2

321 xaxaay ++= . 
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8. Using the method of the least squares, fit the points (0, 1), (1, 0), (2, -7), 
(3, -26) with a polynomial of the form 3

4
2

321 xaxaxaay +++=  and show 
that the result is identical with the cubic polynomial in the given points. 
 
9. For each of the following, determine the exact )1(y′ . Then approximate 

)1(y′  using the two-point and the three-point backward-difference formulas: 
 

.1.0,);001.0,sin)

;1.0,);1.0),1/()1()
;05.0,);2.0,73)
;05.0,);1.0,5)

2

2

72

4

=∆==∆=

=∆==∆+−=

=∆==∆−−=

=∆==∆−=

xeyhxxyg

xeyfxxxye
xxydxxxyc

xxybxya

x

x

π

 

 
10.  Build an algorithm of calculations using the Monte-Carlo method for the 

following integral 
 

∫∫ +=
)(

22 ,)(
σ

dydxyxI  

 
where σ  - range of integrations define the following inequations 

.120,1
2
1

−≤≤≤≤ xyx  Are the points (0.55; 0.75); (0.25; 0.75); (0.25; 

0.25); (0.99; 0.70) situated in the integration area? 
11. Calculate the meaning )03.0;5.0(fz = for function ),( yxf  using the 

Newton and the Lagrange methods 
 

            x 
      y 0.4 0.7 1.0 

0 2.5 1.43 1.00 
0.05 2.49 1.42 0.99 
0.10 2.46 1.40 0.98 

 
12.  Give definitions of the fractal and of the selfsimilarity. 
13.  Build an algorithm for fractal interpolation for the initial points with two 

coordinates.   
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Chapter 7. Interval Calculations  
 
7.1 Introduction 
 

Arithmetic operations are always subject to a certain amount of 
procedures that can be performed on any computer. But due to the fact that all 
the numerical methods developed so far are based upon finite sequences of 
arithmetic operations, nowadays it is necessary to consider the issue. Because of 
the elementary essence of this book, we have selected the most elementary, but 
relatively efficient, approach to the problem that is the interval arithmetic. As its 
name suggests, the interval arithmetic is the arithmetic of intervals.  

We are interested in this kind of arithmetic for the following reason. 
Suppose we have to calculate 

 
x + y, 

 
where x and y are known only approximately. For example, if to three decimal 
places, x and y are 4.102 and 1.8333, respectively, then x  is definitely situated in 
the interval 

 
1033.41023.4 ≤≤ x                                           (7.1) 

 
and y - in the interval 
 

8333.18321.1 ≤≤ y .                                         (7.2) 
 

If we add (7.1) and (7.2) termwise, which may be described as adding of 
the intervals, then: 

 
                                            9366.59344.5 ≤+≤ yx ,                                     (7.3) 

 
and upper and lower bounds for the exact sum of the values x and y are obtained. 
Finally, if we suppose that x + y is the midvalue of the interval (7.3), so that 

 
         9355.5=+ yx ,                                             (7.4) 

 
then we can conclude, that due to the fact that 5.3720 is the midvalue, (7.4) has 
an error of at most +0.0011. Thus we have not only approximated the exact, but 
unknown, sum of x + y, but we have also found out that bounds for the amount 
could have an error. 

Since such approximations, with error bounds, would be true for all 
arithmetic operations, not just addition, we should develop general rules of 
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interval arithmetic. Because of the preliminary theoretic type of the discussion, 
it will be suitable to write an expression such as "A is a subset of B" as the usual 
theoretic notation "A ⊂: B". Also, as is expected, we allow every set to be a 
subset of itself, so that A ⊂ B does not reject A's being equal to B. 

 
7.2 Basics of Interval Operations 
 

For a < b, the symbol [a,b] is often used, as in this book, to represent the 
interval of numbers x that satisfy a < x < b. In interval arithmetic, however, it 
will be important to allow a to be equal to b, which leads to the following 
definition. 

Definition 7.1. For a < b, the interval [a;b] is the set of all real numbers x that 
satisfy a < x < b. 

Definition 7.2. Let I = [a;b], J = [c;d]. Then I + J is the set of all real numbers 
x + y, where x ∈ I and y ∈ J. 
Theorem 7.1. For two arbitrary intervals [a;b] and [c;d],  

 
[a;b]+[c;d] = [a+c; b+d]. 

 
 Proof. If x ∈ [a; b] and y ∈ [c; d], then 

 
bxa ≤≤ , 
dyc ≤≤ . 

Hence 
a+c ≤ x+y ≤ b+d, 

 
so that x + y is in [a + c; b + d]. To complete the proof, we need only to show 
that any number z ∈ [a + c; b+d] can be written in the form z = x + y, where x 
∈ [a; b] and y ∈ [c;d]. But this follows easily because z = x + y is a continuous 
function which is minimal at x = a, y = c, and is maximal at x = b, y = d, and 
because a continuous function takes on all the intermediate values between its 
minimum and its maximum. Thus, the theorem is proved. 
Definition 7.3. Let I = [a;b], J = [c;d]. Then I - J is the set of all real numbers  
x - y where x ∈ I and y ∈ J. 
Theorem 7.2. For two arbitrary intervals [a;b] and [c;d], 

 
[a;b] - [c;d] = [a;b] + [-d;-c] = [a - d; b - c]. 

 
Proof. The proof is completely similar to that of Theorem 7.1. 
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Theorem 7.2 motivates the following consistent and convenient definition, 
which, in fact, enables one to view subtraction in the usual sense as the inverse 
of addition. 
Definition 7.4. -[a;b] = [-b; -a].  
Definition 7.5. If I = [a;b] and J = [c;d], then I ⋅ J is the set of all numbers x ⋅ y, 
where x ∈ I and y ∈ J. 
Theorem 7.3. For two arbitrary intervals [a;b] and [c;d],  

 
[a; b] • [c; d] = [min(ac, ad, bc, bd); max[ac, ad, hc, bd]. 

 
Proof. The proof is similar to that of Theorem 7.1. 
Definition 7.6. If 0 is not in [c;d], then [a;b] / [c;d] is defined as the set of all 
real numbers x/y where x∈[a;b] and y ∈[c;d]. 
Theorem 7.4. For two intervals [a;b] and [c;d], where 0 is not in [c;d],  

[a;b]/[c;d]=[a;b]⋅ 





dc
1;1 . 

Proof. The proof follows from Theorem 7.3.  
 
7.3 Applications to Calculations 

 
The rationale behind the very extensive applications made of interval 

arithmetic (see, e.g., Moore) is based on the following direct consequence of the 
definitions and theorems of Section 7.2. For exact values x1, x2, …, xn, suppose 
one wants to determine F(x1, x2, …, xn), where F is a given rational function. 
Suppose, however, x1, x2, …, xn are known only approximately; that is, for 
intervals I1, I2, …, In one knows only that x1∈I1, x2∈I2, …, xn∈In and that by 
means of the interval arithmetic one calculates F(I1, I2, …, In ). Then 

 

F(x1,x2…xn)∈F(I1,I2,…In ).  
 
We are thus led to the following convenient three-step algorithm of the 

interval arithmetic application: 
Step 1. In performing a set of arithmetic operations in which only rounded 
numbers are available, replace the numbers by intervals that contain them. For 
example, suppose one wants to determine x from 
 

x = m2 + 2n - c,                                   (7.5) 
 

with m = 0.75, which is known to be correct to only two decimal places, with n 
= 0.10056, which is known to be correct to only five decimal places, and with c 
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= 0.00201, which is known to be correct to only five decimal places. Then, in 
place of 

                                                           m2 + 2n - c,                                           (7.6) 
we consider 

         
[0.745;0.755]2 + 2[0.100555; 0.100565] - [0.002005; 0.002015].          (7.7) 

 
 Step 2. Combine the result of step 1 by means of the interval arithmetic to 
yield a single interval [a;b]. Thus, for example, (7.7) combines into 
 

  [0.754120; 0.769150].                                    (7.8) 
 
Step 3. Take the midpoint of the interval [a;b] generated by step 2 as an 
approximation to the desired value. This midvalue is x  = (a + b)/2. By virtue 
of x 's being the midpoint, it is in error by at most |(b-a)/2|. Thus, for example, 
the midvalue x  of (7.8) is x  = 0.761635 and the error | x  - x| is at most 
0.007515; that is, 
 

0.007515
2

0.754120-0.769150
=≤− xx . 

 
Two observations are important in the practical application of interval 

arithmetic. First, note that if one has to calculate an expression such as 
 

xy + xz,                                                   (7.9) 
 

 where x ∈ I, y ∈ J, z ∈ K, then it is convenient to rewrite it in the form  
 

x(y + z).                                                (7.10) 
 

For substitution of intervals into yields 
 

IJ + IK,                                                (7.11) 
 

whereas substitution into yields  
 

I(J + K).                                                (7.12) 
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Since the error is determined by the width of the final interval, (7.11) has 
a width which is not greater than that of (7.12) and hence is should be 
considered the most desirable. 

Finally, a very important rule must be followed when one is using interval 
arithmetic on a digital computer. The computation of intervals often requires 
rounding of numbers. To be sure that the resulting interval still contains the 
exact value that is to be approximated, one should always round the left number 
in an interval down and the right number - up, as it is illustrated in the following 
example. 
Example. Suppose that in the process of performing interval calculations, a 
digital computer determines that the answer x lies in the interval J = 
[0.11127;0.21123]. But suppose that the computer can carry only four decimal 
places so that the end points of  J  have to be rounded. If one uses any of the 
usual rules for rounding, then the computer would consider the interval J1 = 
[0.1113;0.2112]. Unfortunately, now, even though the solution x was in J, it 
need not be in J1, for J is not contained in J1. To be assured that x ∈ J1, one 
should always round the left-hand end point of  J  down, and the right-hand end 
point up, so that J should be rounded to [0.1112;0.2113]. 
 
7.4 Applications to Modelling of Complex Systems 

 
A common way to represent and analyse complex systems is to implement 

systems models. Starting with signal modelling one comes to the mathematical 
model of information parameters transformation. Construction of a model on 
basis of the interval analysis allows to find an effective decision to consider the 
uncertainty of informative parameters value, which could be formed either in 
time of calculating or in time of processing. It is sufficient to know an interval, 
in which the value of the parameter could be found. The interval analysis 
represents an interval as an integral object, and for all further calculations it is 
sufficient only to know borders of the interval.  

Generally, a complex system consists of various sorts of converters. A 
measuring converter represents an elementary part of such a system, carrying 
out the transformation function (W ) of set of the informative influences ( X ) to 
set the target signals (Y ) in the field of various non-informative influencing 
factors ( Z ) (Figure 7.1): 
 

],[ ZXWY = , 
 

where },...,{},,...,{},,...,{ 111 nnn zzZyyYxxX ===  are sets of informative 
influences, target signals and non-informative influencing factors accordingly. 
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WX Y

Z

 
 

Figure 7.1 
 
The classical approaches to modelling consider sets X , Y  and Z  as sets of real 
obtained value with a certain error. In the paper we mark them as interval 
numbers or just intervals. It means that if a certain parameter A  of the system 
has value γ , determined with an absolute error ε, within the interval analysis we 
can present it as interval a : 

 
];[ aaaA =⇒±= εγ , 

 
where aa,  - bottom and top (or right and left) borders of interval a , in the 
standard notations:  

 
εγεγ +=−= aa , . 

 
If all algebraic operations are carried out according to the rules of interval 

analysis, at the end of calculations we obtain the final result as some interval, 
which represents bilateral approximation of the exact result. 

There are the interval models of static and dynamic linear and nonlinear 
converters and digital converters of complex systems. Interval models of static 
converters are similar to ordinary mathematical models. There are also some 
typical models of nonlinear static converters as “dead space”, “hysteresis”, 
“backlash” etc. 

In dynamic models the output process could be presented in the form of a 
Duhamel integral:  

 

∫ −⋅=
t

dtxgty
0

)()()( τττ . 

 
Let's present the initial process via the Duhamel's integral in a discrete form, that 
is a natural form for the discrete and analogue signals This kind of presentation 
is necessary to perform computer calculations: 
                                        

∑
−

=
∆∆∆∆ −⋅=

1

0
)()()(

n

i
itxigty τττ , 
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where, )( τ∆∆ ig  is an average value of function )(tg  on an interval from τ∆i  to 
τ∆+ )1(i , that equals to  

 

∫
∆+

∆∆

∆∆ ⋅=
τ

ττ
τ

)1(

)(1)(
i

i

dttgig ; 

 

where 
τ∆

=
tn  is a number of intervals into which the area of integration is 

divided. 
But the value of n  becomes constant only at the end of the transient process, 

therefore  
 

1max +



=

∆τ
nTEntn , 

 
where nT  is the time of the transient process. 

While analyzing the systems with continuous time a discretization interval 
should be picked out from the condition of signal reproduction on an output of 
the converter. Such condition for processes with limited spectrum is the 
Kotelnikov's theorem, which asserts, that a process can be exactly reproduced if 
it is presented by a series of discrete values with an interval 

 

cω
π

τ =∆ . 

 
Let's assume, that a pulse characteristic )(tg  of a linear dynamic converter 

is a determined function, which does not include interval uncertainty. In this 
case, if entrance process )(tx  is submitted as an interval function, it forms 
interval uncertainty of the initial process )(ty . It makes possible to present the 
linear dynamic model in the following kind: 

 

∑
−

=
∆∆∆∆ −⋅=

1

0
)()()(

n

i
IRIR itXigtY τττ .                    (7.13) 

 
The formula (7.13) and some of algorithms of numerous integration make 

it possible to construct a model of a linear dynamic converter, the algorithm of 
which is presented in Figure 7.2. 
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n=Ent[
τ∆

перT
],

maxω
π

=τ∆ ; 

∆τ≤τк 

g(t),x(t) 

m=0, y0 = 0 

g(m⋅∆τ) 

ym=ym-1+g(m⋅∆τ)⋅X(T- m⋅∆τ)⋅∆τ 

m=m+1 

m ≤ n-1 

y(t) 

yes 

no 

Stop 

Start 

 
 

Figure 7.2. 
 

There are two possible ways to build models of nonlinear dynamic 
converters. First, a certain nonlinear dynamic converter can be considered as a 
consecutive connection of a nonlinear static and a linear dynamic converter. 
When it is difficult or just impossible to perform, a nonlinear dynamic converter 
could be described by models of Wiener or of Hammerstein: 
- Wiener’s model: 
 

                                                     



 ⋅−= ∫

t

dgtXWtY
0

)()()( τττ ;                                             

 
- Hammerstein’s model: 

                                                      [ ]∫ ⋅−=
t

dgtXWtY
0

)()()( τττ ;                                              
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- Mixed model: 
 

[ ]






 ⋅−= ∫

t

dgtXWWtY
0

21 )()()( τττ . 

 
Developed classes of static and dynamic converters, modules of interval 

computation and methods of aggregation and transformation of such models 
give us an opportunity to modulate complex systems with uncertainties and 
ambiguities. 
 
7.5 Remarks 
 

The interval analysis is a more simple method of the complex systems 
modelling in undetermined conditions in comparison with the probability 
analysis and fuzzy logic. Traditionally it is used for performing calculations in 
applied mathematics with errors consideration. This method is preferable for 
analysis and modelling of complex systems, providing the estimation in terms of 
interval analysis is sufficient for performance of the researches and for resolving 
of the arising problems. In this chapter only basics of interval mathematics were 
described. To study the matter deeper more detailed textbooks could be 
recommended. 
 
Exercises 
 
1. Reduce each of the following to a single interval 

 

.]20.3;19.3[]00.2;45.1[)
;]6.6;6.6[]687.2;243.1[);]1;2[]1;3[)

;]1;2[]2;2[);]1;2[]3;1[)
;]5;3[]3;2[);]4;4[]4;7[)

;]8;7[]7;8[);]3;1[]5;3[)
;]1;2[]0;1[);]8;1[]2;0[)

;]4;6[]4;8[);]3;0[]0;3[)
;]9;1[]7;1[);]4;2[]30;2[)

;]11;7[]1;3[);]1;2[]4;0[)

÷
−−−÷−−
−−÷−−−÷

÷−⋅−−
⋅−−⋅−

−−⋅−⋅
−−−−−−−

−−+−
−+−−−+

q
po
nm
lk
ji
hg
fe
dc
ba
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2. Reduce each of the following to a single interval: 
 

.
]1;2[3

]3;2[2]4;1[]3;1[);]2;3[)

;]3;2[);]3;2[)
;]2;3[);]3;2[)

;]3;2[);
]7;5[2]3;4[

]3;2][2;1[3]1;3[2)

;]0;1[3]4;1[2);
]3;2[
4]3;1[)

2

3
4

44

33

3

−+
−+−−

−−

−

−−−

⋅+−−
⋅−−−⋅

−⋅−⋅
−

ji

hg
fe

dc

ba

 

 
3. Prove the theorems 7.3 and 7.4. 
4. In each of the following, the numbers have been rounded to the given number 

of decimal places. Use the interval arithmetic to compute each expression and 
give an error bound for each result: 

 

.
)5.4)(6.7()875.2(

)97.34()6.20()5.89()

;
2.4064.9

4.78);
0.40

64.94.78)

;)6.6(22.71);7.833.6422.71)
;764.8322.71);35.6422.71)

2

2

+
−

−
−

−−+

−+

g

fe

dc
ba

 

 
5. Solve each of the following by means of the interval arithmetic assuming that 
all the given numbers have been rounded to the indicated number of decimal 
places: 
 

.99.0
,12.1,66.0
,33.0,33.0

;2,1,0,)(2)

2

01

0

1

=
==

=∆=

=∆+=+

x
yx
xx

ixxyya iii

  

 

.7.0
,1.2,3.0

,33.0,0.0

;2,1,0,
)(1

)(2)

2

01

0

2

2

1

=

==

=∆=

=
+

∆−
=+

x
yx
xx

i
x

xyyb
i

i
i
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.42137.3
,0.30,42137.2

,00000.1,42137.1
;2,1,0),sin()

2

01

0

1

=
==

=∆=

==+

x
yx

xx
iyxyc iii

 

 
6. Name and determine the modelling order of the complex systems using the 
interval arithmetic. 
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Concise English-Russian-Ukrainian-Polish Dictionary of Terms 
 

A 
e antiderivative function r 
первообразная функция; u первісна 
функція; p funkcja pierwotna 
e approach r приближение; u 
наближення; p zbliżać sie  
e approximation r аппроксимация;               
u апроксимація; p aproksymacja  
e axis r ось; u вісь; p oś 
 

B 
e backward difference r левая разность;      
u ліва різниця; p rόżnica wsteczna funkcji 
e boundary-value problem r краевая 
задача; u крайова задача; p zagadnienie 
brzegowe  
e bulge of the function r выпуклость 
функции; u випуклість функції;                    
p wypukłość funkcji  
 

C 
e central difference r центральная 
разность; u центральна різниця; p 
rόżnica centralna  
e column r столбец; u стовпець; p 
kolumna 
e convergence r  сходимость; u 
збіжність;   p zbieżność 
e curve r кривая; u крива; p krzywa 
 

D 
e data processing r обработка данных;        
u обробка даних; p przetwarzanie danych 
e derivative r производная; u похідна;         
p pochodny  
e determination  r  
детерминированность (определенность); 
u  детермінованість (визначеність); p 
wyznaczanie,  określanie 
e difference r разность; u різниця; p 
rόżnica 
e distribution error r ошибка 
распространения;  u похибка 
розповсюдження; p pomyłka  dystrybucji  
e distribution law  r закон 
распределения;  u закон розподілення; p 
prawo podziału  

e divergence  r  расходимость;                           
u розбіжність; p rozbieżność,  
dywergencja  

 
E 

e equation r уравнение; u рівняння;              
p rόwnanie 
e error r ошибка; u похибка; p pomyłka 
e exactness r точность; u точність;                     
p ścisłość, dokładność 
e exception r исключение; u 
виключення;               p wyjątek  
e expectation r ожидание; u очікування;            
p wartość oczekiwana  

 
F 

e faithful number r правильное число;                
u вірне число; p numer wierny  
e finite difference r конечная разность;             
u кінцева різниця; p rόżnica ograniczona  
e firmness (stability) r устойчивость;                   
u стійкість; p stabilność, stałość,  trwałość 
e forward difference r правая разность;           
u права різниця; p rόżnica progresywna 
funkcji 
e function of belonging r функция 
принадлежности; u функція належності;         
p  przynależna funkcja 
e fuzzy logic r нечеткая логика; u нечітка 
логіка; p logika rozmyta 

 
H 

e hierarchical r иерархический;                      
u ієрархічний ; p hierarchiczny  

 
I 

e integer number r целое число; ціле 
число; p liczba całkowita  
e interpolation r интерполяция;                       
u інтерполяція; p interpolacja 
e interpolation ‘ahead’ r интерполяция 
«вперед»; u інтерполяція «вперед»;                       
p interpolacja «naprzód» 
e interpolation ‘back’ r интерполяция 
«назад»; u інтерполяція «назад»;                      
p interpolacja «nazad» 
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K 
e knot r узел; u вузол; p węzeł 

 
L 

e least square method r метод 
наименьших квадратов; u метод 
найменших квадратів;       p metoda 
najmniejzych kwadratόw  
e limitation (truncation) error r ошибка 
ограничения; u похибка обмеження;           
p pomyłka ograniczenia  

 
M 

e method of ‘shooting’ r метод 
«стрельбы»; u метод «стрільби»; p 
metoda «strelanie» 
e multidimensional net r многомерная 
сетка; u багатовимірна сітка;                            
p wielowymiarowy siatka 

 
N 

e net r сетка; u сітка; p siatka, sieć  
 

P 
e partial derivative r частная 
производная; u частинна похідна; p 
pochodna cząstkowa  
e plural r множество; u множина; p 
liczba mnoga 
e probability  r  вероятность;                                
u вірогідність; p prawdopodobieństwo  
e probability density r плотность 
вероятности;  u щільність вірогідності;               
p gęstość  prawdopodobieństwa 

 
R 

e random process r случайный процесс;            
u випадковий процес; p proces 
stochastyczny, proces losowy  
e rigid task r жесткая задача; u жорстка 
задача; p zadanie twarde  
e root r корень; u корінь; p pierwiastek 
e row r ряд; u ряд; p rząd 
 

S 
e secant r секущая; u січна; p sieczna 
e selfsimilar plural r самоподобное 
множество; u самоподібна множина;          
p samopodobna mnoga 
e selfstarting r самостартование;                     
u самостартування; p samoczynny ruch 

e sequence r последовательность;                         
u послідовність; p ustalać kolejność  
e set r группа; u група; p zbiόr  
e share r слой; u шар; p lemiesz 
e simple iteration r простая итерация;                   
u проста ітерація; p iteracja prosta  
e simulation r имитационное 
моделирование; u імітаційне 
моделювання; p symulacja, modelowanie   
e simultaneous displacement r 
одновременная подстановка; u 
одночасна підстановка; p jednoczesne 
przemieszczenie  
e statistical processing r статистическая 
обработка; u статистична обробка;              
p statystyczna obrόbka  
e successive overhead relaxation r 
последовательная верхняя релаксация; u 
послідовна верхня релаксація; p kolejna 
napowietrzna relaksacja 

 
T 

e tangent r касательная; u дотична;             
p styczna 
e template r шаблон; u шаблон; p szablon 
e transaction (digitization) error r 
ошибка преобразования 
(дискретизации);                        u 
похибка перетворення (дискретизації);          
p pomyłka transakcji 
e transformer r преобразователь;                 
u перетворювач; p transformator 
e tridimensional space interpolation r 
трехмерная интерполяция в 
пространстве; u трьохвимірна 
інтерполяція в просторі;             p 
interpolacja przestrzeń  trόjwymiarowa 

 
U 

e uncertainty  r  неопределенность;                    
u невизначеність; p niepewność 
e unidimensional net r одномерная 
сетка; u одновимірна сітка; p siatka 
jednowymiarowa  

 
V 

e variable r переменная; u змінна;                      
p zmienna  
e vicious position r ложное положение;                
u хибне положення; p zjadliwe położenie 
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