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Preface

The purpose of this book is an exposition of methods and problems of
computational mathematics and basics of computer modelling. The author
attempted to generalize experience of his long-term teaching of courses on
computational methods and mathematical modelling to the students of
specialities related to automation, control and information-measuring technique.

This book is based on the works of L. Collatz, V. Krylov,
A. Samarsky, B. Demidovitch, I. Maron, J. Forsythe, R. Moor etc. The author
has already published such textbooks as “Computational methods and
applications of computers’ (in Russian: in 1989, “High school” publication,
Kiev, co-author V. Malikov) and “Methods of computerized calculations’ (in
Ukrainian: 2001, “VSTU” publication, Vinnytsia). In the nineties the author,
together with V. Dubovoy, published a series of textbooks on the use of
computerized systems. Besides the traditional sections of computational
mathematics, this book contains a wide range of the author's methods of
probabilistic and interval analysis, fractal and selfsimilar processing and
algorithms, formulas of multidimensional interpolation from theses, monographs
and in-process approbations. The sample programs of calculations are not
contained in the book, and support is done on methods and algorithms, that do it
more independent on the time and tastes of the programmers. The absence of a
lot of conclusions and theorems simplifies the perception of the book and at the
same time the book is oriented on students, engineers and scientists designing
applied problems.

The author expresses gratitude to the colleagues and students who helped
him in the process and registration of results of this book
I. Bogach, R. Boyko, A.Tchikalova, O. Skidan and to llona Kvyetna and
Valery Doroshenko who edited the English text.



Chapter 1. Modelling and Computations
1.1 Introduction

Mathematical modelling is one of the main ways of scientific and
technical researches. Objects replacement by their mathematical models allows
to limit costs and term of researches, and also to take into account boundary
situations and situations that are hard to realize. A mathematical model is a
projection of objective reality under a certain point of view, asit is described in
mathematical language. The mathematical apparatus chosen to describe the
model can be different and concerns the researcher’'s purpose of design,
convenience, traditions and tastes. The purpose of design determines what
descriptions of object are taken into account during construction of the model
and what features are unimportant in this consideration.

The methods of modelling are widely used in different fields of human
activity, especially in the fields of planning and management, where processes
of acceptance of effective decisions are based on the received information.

Obtaining, transformation, presentation and use of information are the
purposes of object modelling where the objects cooperate with each other and
with the external environment.

A model is always built with a certain goal which has influence upon the
choice of properties of the objective phenomena to be taken into account as
substantial. A model is a projection of the objective reality under a certain point
of view. Sometimes, depending on aims, it is possible to get different, even
contradictive, projections of the objective reality. It is characteristic as arule for
complex systems in which every projection selects substantial data for a certain
goal from a great number of unimportant ones.

The theory of modelling is a field of science that studies methods of
research of properties of objects (originals) on basis of their substitution by other
objects (models).

We will consider one of the most universal types of modelling - a
mathematical one, which puts a system of mathematical equations in accordance
with the designed physical process. Resolving the equations allows to get an
answer to the question about the existence of an object without creation of a
physical model that often leads to huge expenses of time and money.

The given mathematical model requires a decision in order to get an
obvious analytical or numeral kind of the required object’ s descriptions. As most
applied tasks can not be decided by traditional mathematical methods, then
modern mathematical modelling is inseparably related to the methods of
computer calculations. These calculation methods take place first of al in the
computer design because of the number of tasks (for example, nonlinear
eguations higher than the third order, systems of nonlinear equations, improper
or numerical sets of integrals etc) that in general do not have an analytical



decision; in other tasks (for example, approximation, interpolation, statistical
treatment) decisions exist only in the subsections of the applied mathematics.

Many phenomena and processes of different nature are described by
similar correlations, for example electro-acoustic analogy, electro-, magneto-
and hydrodynamics. Therefore, for the analysis (decision, calculation) of
mathematical models it is necessary to have developed mathematical skills
covering all types of model tasks of the applied mathematics. As it appliesto the
use of computer, the basic stage of calculation of mathematical models is their
realization, i.e. development of structure of the algorithm, presented as a flow-
chart, flowgraph or realization with the use of principles of structured
programming.

1.2. Algorithms

The term «algorithm» («algorism») was introduced by an Uzbek
mathematician Al-Khwarizmi, who developed the rules of arithmetic actions
above numbersin decimal notation in the 9" century.

Algorithm is a rule. These rules are formulated in a certain language and
determine the process of transformation of possible basic data to the certain
results after. An algorithm is characterized by: determinedness (definiteness) -
uniqueness of result of the process at the basic data set; discreteness -
dismemberment of algorithmic process to separate elementary acts, possibility
of implementation of which by a man or machine does not cause doubting; mass
character of the basic data - it is possible for an algorithm to choose from some
great amount of information (potentially endless); clearness for a performer.

It is possible to select blocks that are an aggregate of elementary
operations executing certain function in the structure of algorithms. Model
blocks are in the flow diagram of algorithm: process, decision, modification,
predefined process, input-output, connector, start-stop. Their conditional
denotations are presented in Figure 1.1.

An algorithm can have linear, branching and cyclic structures. A linear
structure is characterized by absence of conditional blocks. In Figure 1.2 an
example of algorithm is given for the decision of problem of content changing
between two computer memory cells R and P. A necessity appears in the use of
the third cell C.



Process- calculation unit

An arithmetic expression

true <0 >0 Solution - conditional unit

falsa =0

Modification (changing of command or program)

v
Predefined process - using of off-the-shelf algorithms or
programs
v
v
/ / Data input - output
v
6 9 Connection between interrupted schemes
é) @ Start and stop - beginning or finishing of the algorithm
Figure 1.1
—»| C=R R=P P=Cc |-»
Figure 1.2



As an example of branching structure of algorithm with only one conditional
block can serve an algorithm of choice with the most variable values of N and M/
(Figure 1.3). Revolving engineering tasks of cyclic structure (Figure 1.4) are
more widespread, where 1 is preparation for the first implementation of the
cycle body; 2 is the cycle which names repeatedly repetitive part of the
calculable process body; 3 is preparation for the next implementation of the
cycle body; 4 is implementation of verification at the end of the cycle.

There are the following types of cycles: with the set or calculated number
of reiterations; iterative, in which the number of reiterations is unknown in
advance; complex - with the fork in the cycle body and the embedded loops

(multiple).
/ Input /
N, M

Qutput
“agual’
f
Stop

Figure 1.3

There are other ways to record algorithms - flowgraphs or graph-schemes.
Boolean arithmetic operators are used for presentation of the statement chart of
algorithm. Arithmetic operators provide actions related to the calculations.

We will designate operators by capital letters of the Roman alphabet with
indices that indicate the number of the statement. After implementation of the
operations foreseen by an arithmetic operator, the process of calculations can be
continued in a unique way, regardless of the results given out by an operator.
The control transfer from an arithmetic operator is designated by the statement
where control is transferred to the number recorded on the right above the
operator.

10



v

Preparation to the
start of the cycle

P

Cycle body

v

Preparation to the
new cycle

no
Conditional
unit

yes

Figure 1.4

For example, a record A’ means that from the operator A, control is

transferred to the operator with number S.

Boolean operators are intended to verify implementation of the set of
terms. We will mark them by letter P that indicates the number of the statement.
After realization of the Boolean operator control is transferred to one of two
operators, depending upon implementation of the condition checked up. The
control transfer from a Boolean operator is designated by pointers with the

statements where control is transferred to numbers. For example, P'i_j means

that from a Boolean operator P, control is transferred to the operator with
number i, if the condition checked up by an operator is executed, or to the
operator with number |, if it is not executed. For operators, both arithmetic and
logical, denotation of transfer from one operator to another, directly after the
following, is dropped.

The control transfer to this operator from the other is designated by the
statement in which control is transferred from the number recorded on the left
above the character of this operator. For example, the record ""A_  means that

control is transferred to the operator A from operators with the numbers | and

n. In this case algorithm, the structure of which is presented in Figure 1.3, can be
written as follows (blocks are designated by numbers):

11
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Recently methods of structured programming have become very popular,
where three types of structures of algorithms are uniquely used: Articulations,
Choice and lteration. Here, the basic method of creating the programs is an
algorithm of the incremental working out in detail, in which without drafting a
flow-chart a programmer gradually moves in the text of the program,
consistently organizing and going into detailed layers, proper abstractions to the
different levels, using the special universal structured programming language,
for example PDL. The program thus made can be easily and simply translated
into any, comfortable to the user, programming language.

Finding algorithms of decision of different classes of tasks is one of the
aims of mathematics. The purpose of applied mathematics, as it applies to the
use of compuiter, is finding decision algorithms of practical (engineering) tasks
with use of computer

1.3 Mathematical Modelling

Mathematical models, being projections of the real objects, are
characterized by a number of features.

Mathematical modelling can be used as means of studying the real
systems by their substitution with more comfortable for experimental research
systems (models), preserving the substantial features of the original.

A model is called isomorphous (identical in form), if it has complete
coincidence with the real system; and it is called homomorphous, if there is
accordance only between the most important components of the object and of
the model.

The mathematical design includes the following stages: study of the
object and drafting of its mathematical description; construction of an algorithm
describing the model of the object; verification of the model’s and of the
object’ s adequacy; the model’ s implementation.

Study of the object of design and drafting its mathematical description
consists of establishment of connections between the parameters of the process,

12



exposure of its initial conditions and formalization of the scopes of the process
as a system of mathematical correlations.

Mathematical description is made on basis of physical, chemical and other
laws, characterizing dynamic and static processes in the object explored, and is
written in mathematical language. Most distributions in the process of
construction of the determined models were obtained by means of algebraic
equations, differential equations and differential equations in private derivative,
matrix algebra, and stochastic design, when casual character of processes is
taken into account, together with methods of probability and mathematical
statistics theories. If an apriori information on the object is insufficient, the type
of mathematical models is specified by methods of multidimensional statistics:
regression, cross-correlation, multivariable, other analyses and also by means of
planning passive or active experiments. The principles of models construction
are divided into analytical ones and imitations. Analytical models allow either to
get an obvious functional, depending on the sought sizes or to define the
numeral decisions for the concrete initial conditions and quantitative
descriptions of the model. However, with more complex objects of design the
construction of an analytical model grows into a hard solving problem. Also
nowadays there is a wide distribution of simulation models, when the
experiments are conducted on computer, with mathematical models imitating the
behaviour of the real objects. Features of the objects functioning, the designs
and types of mathematical descriptions used, determine continuous or discrete
character of the model, choice of the determinate or stochastic approach to the
model’ s construction. For example, in order to design functions of measuring
the devices transformation it is sufficient to use the determined method of
description, while for the errors analysis, for estimations of the informative
descriptions stochastic methods must be applied.

The method of mathematical modelling allows to eliminate the necessity
of making bulky physical models, related to the financial expenses; to reduce
time of descriptions determination (particularly in case of calculating
mathematical models on computer and applying effective calculable methods
and algorithms); to study the conduct of design object at different values of
parameters; to analyze applicability of different elements; to get descriptions and
indices which are difficult to obtain experimentally (cross-correlation,
frequency, self-reactance sensitiveness).

We will consider the basic methods of mathematical models construction,
more widespread in automation, management, information-measuring
techniques.

Generally, the mathematical model of device, system, process appears as
the system of functional

13



O(X,Y, Z, t)=0, (1.2)

where X, Y are the vectors of entrances and outputs coordinates; Z is the vector
of external influences; t is the coordinate of time.

The method of presentation of @ depends on the aims of design, setting of
the object, volume of information and character of basic data. In future, for short
we will use determination of the type of model by the following denotations:

first letter: D — determinate model, U —model in conditions of uncertainty;

second letter: A —analogue, D — digitized,;

third letter: A —analytic model, S— simulation.

1.3.1 Determinate Models

The behaviour of most technical systems can be described via the so-
called phases variables - physical sizes as a stream and potential. It is thus
expedient to select in the design objects the large enough elements to be
examined as indivisible units. The laws of the elements of the system
functioning are set by the components equations relating to heterogeneous
phases variables.

Community of the processes description, which is characteristic to
different technical systems, allows to select a few types of elements: R is the
element of energy dispersion; C and L are the elements of energy accumulation.
We can get the equivalent chart of the technical system of any complication and
the mathematical model of combination of these simplest elements and sources
of the phases variables. Concrete sense of phases variables and simplest
elements of the physical systemsisresulted in Table 1.1.

The mathematical model as basic description of many technical objects is
a system of nonlinear differential equations in general case (1.1). A similar
system can be solved in whole case only via numerical methods, replacing a
continuous independent variable by its discrete analogue. This operation
determines the retype model on DAA.

Aggregate of phases variable values and their derivatives on the step of
integration turns out as a solution of the system of n algebraic equations (in
general case nonlinear) with n unknown X, X,, ..., X .

n

(% %, i %) =0,
F, (% % s X)) =0,

14



Solution of such a system of equations is possible by iterative methods,
among which the Newton's method is the most widespread. This method is
based on Jacobi matrix,

eff, f, T, u
g

afx, x, X, 4

&ff, 7,  Tf, G

WX) =S x, 7 ox Y

e "u
B G
e u
éﬂfn 1Tfn 1Tfnl[;I
efx ix,  x. d

Dependence between the unknown sizes of phases variables and their
derivatives used in equations (1.1) is connected with different methods of
approximation.

The system of equations (1.1) is an association of components, topologies
and different equations. Topologies equations set connection between the
homogeneous phases variables related to the different elements of the system.
Such equations in most physical systems are based on equations of equilibrium
and continuity (for example, system of equations of the first and second laws of
Kirchhoff).

As an example we will consider the mathematical model of a bipolar
transistor.

The equivalent chart of a bipolar transistor is presented in Figure 1.5. The
following denotations are accepted here: 1,,C,, R,, I, C,, R, are
accordingly elements of p-n transitions of emitter-base and collector-base;
|, =bl_.- b, is a source of current, reflecting passing of non-base carriers
through the base and determining amplifying properties of transistor (b and b,
are normal and inversion amplification coefficients of the current); r., r, and r,
Is volume resistance of the regions, of accordingly emitter, collector and base.

15
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Figure 1.5.

We write components equations for every element. We will get the
following system of equations:

lc-U_/r.=0; u
e - U /R =0 :
I - leexpU./m .- 1)=0; [
oot 0, M =0
| - bl_+b,1, =0 t
I [Coc +toimi (1, +1, )4, =0; ¥ (1.2)
e im0 ]
lge - U IR, =0 i
I, -U, /r,=0; :
IrB'U,B/I‘B:O; b

where |, is thermal current of transition base emitter; m is an empiric
coefficient; j ,_is temperature potential of emitter; NBE Is barrier capacity of
transition base emitter; N,, is barrier capacity of transition base collector; j o 1S
temperature potential of collector; | is thermal current of transition base
collector; t ,, t - parameters, characterizing time of passing of current carriers

through the regions of transistor.
Unknown variables are here
[ RN (N (R I D I, 1., U, U, U, U, U, U, ., U_ U.

rE? "RyE? "E? "CE? "r? "CK? "K? "RyK? "rK? "rB?

It ensues from this list that some topologies equations are taken into account in a

16



model: voltages U, and U_,U, and U, are eliminated because they
coincided accordingly with voltagesU_ and U, .
WEe' Il write topol ogies equations of the system:

L lae- le+lg-1,=0; v
|+l -1, -1 -1, =0 :
IRE+IE_ICE_ICK+IE+IRyE_IrB:O;g (13)
U.-U,-U =0 :
U,+U_+U_-U_ =0 :
-U,+U . -U_+U, =0. b

In the last two equations U, and U_. are voltages of accordingly base

emitter and base collector. Difference approximations for derivatives 4, U
with step h join this system.

Thus, the mathematical model of a bipolar transistor is the system of
equations (1.2), (1.3). The Jacobi matrix for this system is presented in Table 1.1
(zeroing elements are not marked).

The following denotations of coefficients are accepted in this matrix:

— | JE i .
a,=- el )]

t

a,=-—Ug;
mJ OE
e. t u
aSZ-éVBE'Fm_ (IE+IOE)U’
@ J OE
tP U
a,=-— NE
m o,
&t o
aSZ-QVBE +m_ (IE +IOE)U’
e Vo
|
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Table 1.1.

Variable
<
=
g
I
E_ IrE RyE IE ICE |r ICK |K IRyE HK er UrE UE UBE UBK UE UrK UrB
o
il
1
1 1 -
=
1
2 1 - @
3 1 a,
4 a, 1 aj;
5 - b 1 b,
6 1| a, a
7 1 as
1
8 1 Rk
1
9 1 M
1
10 1 Il
11 -1 1 1 1 1
12 1 1 -1 1 1
13 1 1 -1 1 1 1
14 1 1
15 1 1 1
16 1 1 -1
1
17 - — 1
h
1
18 1 - —
h

1.3.2 Stochastic Models

When describing objects of automation and information measuring
technique it is possible to select the next types of stochastic (probabilistic)
modelling.

18



Statistical modelling known as the Monte-Carlo method is applied except
for the tasks of mathematical modelling for the solution of separate tasks of
numerical methods, for example, for approximate calculation of integrals and
solution of differential equations. The statistical models of complex processes
can be realized both on ordinary computers (analogue and digital) and on
specialized statistical computers supplied with designing blocks for generation
and transformation of random numbers.

Analytical probabilistic modelling, as an approach to creation of models,
operates not with concrete ordinary numerical sequences, but directly with their
probabilistic (laws of probabilities) and spectral descriptions. Generally, the
construction of analytical probabilistic models is an intricate calculable problem
that does not allow to a full extent to use such their advantages, as the possibility
of exact analytical task of descriptions of casual processes, absence of necessity
of generation and treatment of large selections of random numbers, adjusted to
operative optimization. The results of the researches directed to creation of
problem-oriented systems and to application uniting numerical algorithms of
solutions of more characteristic calculable procedures of analytical probabilistic
design and methods of description of structures of the system packages are
described in special literature.

Currently the method of statistical modelling on computer, operating with
models as UDS, is the basic method of stochastic modelling. Often this type of
modelling is named simulation.

The method of statistical modelling includes several stages. computer
modelling of pseudo-random numerical sequences with the set correlation and
law of probabilities as an imitation of entrance signals and influences on the
object of simulation; modelling of transformation of the numerical sequences in
the system; statistical treatment of results of modelling. We will consider these
stages.

Computer modelling of pseudo-random numerical
sequences with the set descriptions. When constructing the
simulation model of the system there is atask of receipt by computer of pseudo-
random numerical sequences with the set correlation and the law of probabilities
distribution. A method of receipt of numerical sequences is known with the set
statistical descriptions by sorting the initial sequences. This method is based on
the fact that the coefficient of correlation of random numbers depends more on
the order of their sequence, than on the size. Therefore, two pseudo-random
sequences, belonging to two different distributions, if they are well-organized by
identical appearance, will have approximately equal coefficients of correlation.

In accordance with the method of sorting a pseudo-random sequence
X(n) is generated with the set cross-correlation function, but arbitrary

distribution. The sequence of integers is put to it in accordance | (n) =n. Then
both sequences in pairs are assorted. Thus, variables X(n) are disposed in

19



ascending order, and an array | (n) memorizes their previous position (places in
an unregulated array X(n)). Thus, an integer array |(n) represents correlation
between the array cells X(n). After organization the array X(n) does not

present any interest, because all information about the cross-correlation function
Is now contained in the array |(n). A pseudo-random sequence Y(n) is then

generated with the set distribution and zeroing correlation and is written instead
of thearray X(n). Then it is assorted in the multiplied order. Further arraysl (n)
I(n) and Y(n) are assorted in pairs; thus an array |(n) is disposed in an
increasing order. The flow diagram of an algorithm is resulted in Figure 1.6.

As a result of implementation of this algorithm we will get a pseudo-
random numerical sequence, containing the up-diffused sizes on the set law and
having the set cross-correlation function. It is expedient to use a sorting
algorithm in those cases when for the statistical design of the system there is a
small volume of dtatistical information not requiring the operation with
numerical bulk arrays. In case of bulk arrays the time of design is substantially
increased.

The known algorithm of filtration requires less expenses of machine time
to get casual process with the set correlation and law of probabilities
distribution. A normal stationary casual process starts as initial X (t). Always

there is such a nonlinear fast-response transformation Y =Wy (X)which
converts normal function of probability density f, (x) of process X (t) in the set
functions of density f,(y). If an initial process X(t) has a cross-correlation
function, aregenerate process Y (t) will have a cross-correlation function RY(t)
different from the function R, () and related to it by some dependence
R, =j (R,). The type of this dependence is reflected by transformation
Y =W, (X). If the cross-correlation function of the regenerate process is

required, it is necessary to choose the cross-correlation function of the initial
process:

Ru ()= "[R ()],
where | "is reverse function ] .
Before using this method, preparatory work has to be done, consisting of a

few stages:
- finding transformation function Y =W, (X) on the set function of

density f,(y);
- getting dependence R, =j (R,, ) from the found function Y =W, (X);

20



- solution of equation R, =j (R, )
cross-correlation function R (t ) of theinitial normal process X (t).
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After ending the preparatory work, the design of random process with the
set descriptions is taken to forming the discrete realization X(n) of normal

random process X (t) and to transformation of this realization by the formula

The flow diagram of the described algorithm is resulted in Figure 1.7.

21



The algorithm requires less computer time than sorting algorithm, does not
require accumulation and storage in memory of large numerical arrays. The
principle difficulty is that in general it is not possible to prove existence of the
equation’ssolution of R (t )=j [R,, (t )] relative R, (t ).

Applying both algorithms there is a task of generating on computer of
pseudo-random numerical sequences with the set laws of distribution, zero
correlation and pseudo-random numerical sequences with the set cross
correlation function and arbitrary distribution. Generation of the random
numbers with the set law of probability distribution is realized in a few stages.
At the beginning the sequence of pseudo-random numbers is generated on an
interval [0, 1], and from it - a pseudo-random number sequence with the set law
of distribution.

We will consider the algorithmic methods of random numbers generation
(in practice the physical design with the use of a special prefix to computer is
sometimes applied). The essence of algorithmic methods consists of generation
of pseudo-random numbers that are produced by some recurrent formula, where
every next (i +1) value appears from previous i (or groups of previous) by
application of some algorithm containing the arithmetic and logic operations.

Plenty of methods of imitation of the uniform distribution are known
(take-outs, addition, truncation, interfusion methods). For all of these methods
the requirements to the generated sequence of random numbers are general: the
amount of operations for receipt of every pseudo-random number must be
minimal; random numbers are generated as less correlated as possible, and their
distribution is close to uniform, thus the type of distribution and correlation
numbers degree must not change during work of the program.

In the standard mathematical and programmatic software of different
types of computers there are special procedures and programs for generation of
uniform distributing sequences of pseudo-random numbers.

Using a casual size generation in an interval [0, 1] X, it is possible to get
random numbers sequence with an arbitrary set law of probability distribution.
Three basic methods of forming such sequences are distinguished:

1) Direct transformation of number X., being realization of random

variable X, generation on an interval [0, 1] by some function W, in anumbery ,

which can be examined as realization of random variable Y, having the set
distribution law;

2) screening-out numbers from the primary sequence of pseudo-random
numbers generation on an interval [0, 1] so that remaining numbers are up-
diffused on the set law;

3) designing of terms of the proper maximum theorems of probability
theory.

Widely spread are methods of speed-up generation of random numbers.
Thus, a considerable effect of increasing speed during imitation of the random
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numbers distributed on a normal law, as compared to the method based on the
use of central limit theorem of probability theory, gives a method, including the
Muller algorithm, by which a pair of independent numbers from the segment
[0, 1] is transformed to the pair of independent normal random distributed
variables

X, =4/- 2InX, cOS2pX, ; X, = /- 2In X CcOS2pX, .

We will note that this method is theoretically exact and requires the least
amount of generated numbers X (n).

Special methods of getting random variables with different laws of
probabilities distribution are known. For example, Rayleigh distribution with
one parameter equal to mean quadratic deviation of initial two-dimensional
normal distribution. It leads to the following method of imitation of Rayleigh
distribution:

h, =s x? +x7,

where h, is the random variable distribution by law of Rayleigh, x, and x, are

random numbers having normal distribution with the zero expectation that mean
guadratic deviation equal to unit.

There is also a correlation, relating the random numbers generated by law
of Rayleigh, with uniform random numbers distribution on a segment [0, 1],
which determines another way of generation:

h. =s./- 2Inx.

For imitation of the Maxwell distribution law it is possible to take
advantage of the random variable where Maxwell distribution can be examined
as a module of three-dimensional random vectors, the projections of which on
the axis of coordinates submit to normal distribution with equal mean of
guadratic deviations and expectations that equal to zero. It is therefore possible
to take advantage of the following formula for imitation of the Maxwell
distribution law:

qi =S \/Xlz -|-X22 +X32’

where the random number is generated by the law of Maxwell; x,, X,, X,are

random numbers with normal distribution and the expectation that equals to
zero, and mean quadratic deviations equal to unit.
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We will consider the methods of getting pseudo-random number
sequences with the set cross-correlation function. An algorithm is known where

the n uncorrelated random numbers x, ..., X are subject to such linear
transformation after which the obtained sequences vy, ..., y, have the set cross-
correlation matrix K(R, ). Thus, means y,, ..., y, could be found from matrix
eguation

K(¥) =W, [K(x)],

where W, is alinear transformation of the vector-column K(X) in K(Y).
In the unfolded form we get:

y1=a11(X1_ n‘k)+my1;
Y, =a12(X1_ n‘k)+a22(xz_ mx)+my2;

yn =a1n(X1_ rrk<)+"'+ann(xn - mX)+nl(n’

where the transformation coefficients are found from the equation

R« =a,a, +8,8, +..+a,3a,

and K[m, | is vector-column of the expected values y; .

At large values of n this method of generating the correlated pseudo-
random sequences becomes inconvenient for realization on computer, as
memorizing the elements of matrix K(a) requires a large volume of main

memory (N =n(n+1)/2) of cells and large volume of calculations (expenses of

machine time). Due to this in a number of cases it appears more comfortable to
design the correlated random processes via the method of canonical
decompositions. Let a continuous random process Y(t) be set by canonical

decomposition
Y(t)=a V3. (t). (1.6)

where V, is the uncorrelated random coefficient; J,(t) is a system of certain

determined coordinate functions.
Digital design of random processes, set by canonical decomposition, is
carried out as follows. The values of the uncorrelated casual sizes X, are used
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as V.. Infinite row (1.6) at the calculations is approximately replaced by the
truncated eventual row. Using canonical decomposition, we will get relation

Y,=av,,(n).

=

i QJOZ

1

in which dispersions D, of the uncorrelated casual sizes x, and discrete
coordinate functions J,(n) could be found from the following recurrent
relations:

We get from here

A sequence Y, will have normal distribution and set cross-correlation
function R,, (t ).

Methods of sorting and filtration in the combination with the considered
methods of generating pseudo-random numerical sequences with the set cross-
correlation functions allow to get random numbers sequences imitating entrance
signals and revolting influences to the object of design.

Simulation of processes of the random signal
transformation. We will consider methods of designing algorithms for
modelling of processes of random transformation processes via different
transformers and systems. At the design of random signal transformation by the
linear dynamic systems it is efficient to use their impulsive description g(t).

In order to get adigital model of the entrance casual signal transformation
it is necessary to design operation packages of functions x(t) and g(t).

Carrying out replacement of integral of Duhamel by the sum of discrete
values on the method of rectangles, we get
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=

-m

y(n)=a glk)x(n- k), (1.7)

k=0

where mis a discrete analogue of the transient’ s duration.
There are more exact methods of integration - trapezoids, Simpson etc. In
such cases the formula (1.7) assumes the following form

V() =4 cilalk)x(n- k).

0

where coefficients c(k) are determined depending on the used method of
numerical integration.

The substantial advantage of method of design of the linear dynamic
systems on basis of discrete analogy of integral packages is the possibility to
generalize in case of designing the linear dynamic systems with variable
parameters (non-stationary systems).

A non-stationary system is described by impulsive description depending
upon two variables. In this case as a random signal we mark the reaction of the
non-stationary system as

t

D)= & ot - et

0

or inadiscrete form

n-1
[

y(n)=a x(k)g(k, n- kk(n- k).

k=0

The described method is used in the cases when modelling of the input
random signal is carried out with help of the algorithms of nonlinear
transformation filtration and designing of terms of central limit theorem of
probability theory. The flow diagram of the design algorithm is presented in
Figure 1.8. We will note that in the case of designing entrance casual signal on
basis of the sorting algorithm (see Figure 1.6) it is impossible to build a
simulation model of the system and to explore it expediently by matrix methods.
Digital models of the closed nonlinear systems could be used as a combination
of the modelling algorithms for separate linear dynamic and nonlinear static
transformers (Figure 1.9).
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Design of the described systems is often connected with considerable
difficulties, however, in a number of cases, the flow diagram of the system can
be presented in the simplified form (Figure 1.9).

Inthis case

where W, is an operator of nonlinear transformer of the system.

Applying the described above algorithm for the digital designing of linear
dynamic systems, we get

-1

-

g(ke,(n- k).

Qo

y(n)=

=
I}

0

Thus, the necessity of every step in resolving systems of nonlinear
algebraic equations is a feature of digita models of the nonlinear closed
systems, providing that the linear dynamic links of the system are designed on
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basis of discrete packages. The resolving of this task can be simplified, if we
enter the element of delay for one period in the chain of feed-back of the system.

14
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Figure 1.9
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The nonlinear equation (Figure 1.8) will then be transformed into the recurrent
form:

-1

-

Qo

y(n)=

gk, {x(n- k- 1)- y(n- k- 1}

=
I}

0

Introduction to the chain of feed-back from the element of delay bringsin
an additional error into the digital model. However, at the digitization step
t . ® 0 an equivalent discrete system with an element of delay being the same

as without it coincides with the initial continuous system. Therefore, by
choosing a digitization step it is possible to obtain a considerably small impact
of the delay error.

Statistical treatment of results is the final stage of statistical design.

Amount of realization and exactness of calculations.
The amount of realization of the tasks resolved via method of statistical
designing depends on the required exactness of the results to be obtained.

Let the purpose of design be calculation of probability P appearance of
some random event A. As an estimation of probability P uses frequency of the
L/N of event presence A at N realizations, where L is amount of tests at which an
event is A. By virtue of the central limit theorem of probability theory frequency
L/N at large enough value N has the normal distribution determined by the
expected value M(L/N) = P and dispersion D(L/N) = P (1-P) / N.
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Consequently,

¥
P(L/N)= ¢

1
ex
S/20D(L/N) pT 2D(L/N)

At large enough value N gets

- [(L/N)- IV'('-/'\')]2['\"201(|_/N). (1.9)

&L/N)- M(L/N) e U & Ne U

& < 0» 0 6———1I (1.10)
& +/D(L/N) JD(L/N)g  &/D(L/N)g

2

e 7 dz: e isexactness of inequality.

Nk

Set by certain probability P, we will find on normal distribution the value
D(L/N), satisfying to equation, where t, =e/D(L/N).
We get the confidence estimation L/N in aform

Pl(L/N)- Pl<e]=tp/P{L- P)/N .

In a formula (1.10) with probability greater than 0.997, the size L/N
satisfies the condition

where O(z) =

(L/N)- P|<3/P(t- P)/N .

Thus, error of method of statistical modelling while calculating the
probability of event A never exceeds sizes e =3,/P(L- P)/N and decreases
with the increasing number of tests inversely proportional to a root square from
JN . Hence, it is possible to define the amount of realization N, necessary to get
the estimation L/N with exactness e and truth P

N =t’P{1- P)/e
or for P =0.997
N =9P(1- P)/e?.

It is likely possible to estimate the amount of realization necessary for
estimation of the results of the modelling of random variation’s mean. We will
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suppose forming of N realizations of random variation X, with the expectation M
and dispersion s ?. We will define

X = Xi .

Qo=

1
NS

.u‘

By virtue of central limit theorem of probability theory

P?_S(\/%/I <e+N/s %» O(e\/N_/S )
Then
P[x - M|<e]=t,s IVN,
exactness

e=ts /N.

At P =0.997 formulas acquire a form accordingly e and N
e=3 /J/N,N=09s2/e?.

Error of method of statistical modelling both at the calculation of
probability of event A at the estimation of mean random varieties makes

e =1/+/N . Diminishing of error e of close solution of task via the method of
probabilistic modelling leads to the considerable increase of number of tests of
N and to increase of time of calculations. For example, the increase of exactness
around to an order leads to increasing the time of resolving the task one hundred
times.

1.3.3 Fuzzy-Logic Models

One of the base means for modelling human-computer systems is a
fuzzy-logic theory (class of models in condition of uncertainty UAA or UDA).
At development of a model the following basic concepts of fuzzy-logic
model theory were used in one of the basic fuzzy logic works, offered by Zadeh:
1. Concept of universal set. The universal set of U isacomplete plural
that engulfs all problem areas.
2. Concept of unclear subset. Unclear subset of the F set of U concerns
the function of belonging nt (u), where u is an element of the universal set.
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3. Concept of function of belonging. The function of belonging
. (u) represents the degree of belonging of every element of universal set to

an fuzzy subset of F. The function of belonging acquires the values from 0 to
1.

A universal set can be both continuous and could consist of complete
number of sets (or elements) u,, u,, ...u_. In the first case, an fuzzy set appears

inaform:
F=gm(u)/u.

The following denotation is used in the second case:
F=m_(u)/u+m_(u)/u,+..+m_(u)/u.

The basic operations of theory of fuzzy sets are:
1. Operation of addition of the sets:
F=a - m@u)iu,

m.(u) =1- m_(u).

2. Operation of association of the sets:

FEG :é{m(ui) E m,(u)},
Mree (U) = 1T, (U) E M (W),

where E - is a sign of operation of the maximum finding.
3. Operation of crossing of the sets:

FCG=4{mu)cmu.

e (U) =, (U) G . (W),

where C - isasign of operation of the minimum finding.

Unclear logical equations could be written down using these rules. The
operations of finding the maximum and the minimum correspond to the
operations of logical “and” and logical “or”. In future these operations are

named as “fuzzy and”, “fuzzy or”.
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Knowing about causality connection of two facts, for example “If R, then
G”, that use the fuzzy sets of Rl U, GI V, it is possible to execute the unclear
inferencing of R® G, R(® G¢, which means that if the fact of G is derived from
the fact of R, then from the fact R¢ the fact Geis derived, where R, G, R¢, G-
are fuzzy sets.

To execute an fuzzy logical output operation, it is necessary to know the
fuzzy relations between the plurals of Rl U and GI V, which are set on universal
sets: W= {wy, Wy, ..., W}, and V = {vy, Vs, ..., Vi}, that are covered by the matrix:

{m.w) G my(v)}.

Qog

Y=R " G=g

[o}
i=1

.u‘

At matrix with I” m size the element standing on crossing of the i line
and j column is determined in this way:

m, (W, V) = me(W) G my (v)) .
For calculation of the result of logical (G') aformulais used:

G(=RoY=R(0o (R G),

where 0 - is an operation of min-max composition.
Putting the formula of this operation, we get:

Ge= A E i {me(w) C m, (W)}

j=1

We can base upon the experience of applying mathematical methods of
fuzzy-logic in the tasks of medical diagnostic dependences for the complex
processes of pattern recognition and for prediction processes. It is possible to
apply developed scientific principles of fuzzy logic modelling:

1. Principle of linguistic variables of the system. In
accordance with this principle entrances and initial variables of the model to be
developed will be examined as linguistic variables with qualitative terms (with
the values which adopt variables). An example of the linguistic terms is the
temperature { very low, low, middle, high, very high}.

Thus, examined variables can have the concrete numerical values.
Concrete evaluation tasks receive exact linguistic terms. Such terms are more
natural for the specialists - experts in this knowledge field.

2. Principle of linguistics knowledge about acceptance
of concrete decisions. In accordance with this principle connections
between output and input parameters of the system are described in natural
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language, and then they are formalized as an aggregate of unclear logical
utterances of “If-Then, Else”.

The aggregate of such utterances can be examined as a set of
specifications of input and output parameters. This inferencing algorithm gives a
possibility to evaluate such values of the input parameters that are absent in the
base.

3.Hierarchy principle of knowledge about the
decision. The possibility to describe connections between the output and
input parameters appears with use of the first two principles. Application of
hierarchy principle allows to avoid the difficulties related to the dimension of
the system (by amount of the input parameters). In accordance with this
principle it is expedient to conduct classification of input parameters and to
build a derivation tree.

Due to this principle it is possible to take into account the unlimited
amount of input parameters which influence the decision practically. Thus, the
problem of design consists of the following stages:

Construction of derivation tree.
Determination of regions of change of input parameters.
Estimation of qualitative (linguistic) parameters.
Determination of types of decisions (in case of few decisions) and regions of
their change.
Creation of knowledge base.
Formalization of knowledge base as fuzzy logic utterances.
Receipt of the system of unclear logical equations.
Development of models of functions of belonging, which provide
presentation of quantitative and qualitative parameters as fuzzy plurals for
the different number of linguistic terms which are entered into the knowledge
base.

Then, decision-making process on the basis of the obtained model is
presented in Figure 1.11.

The general method of designing describes the main stages of the
process, however, it doesn’t take into account some features of the technological
processes with unclear entrances and initial information. From the conducted
analysis of such processes the following differences become obvious: influence
of management algorithm, simultaneous presence of the variety of outputs
which are impossible to divide.

~oOpNPE

N O
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1.4 Errors

Replacement of the original by a model is always related to some certain
simplification and exclusion of the unimportant (in accordance with the accepted
criteria) properties, parameters, factors. In mathematical description it
determines the presence of the irremovable errors determined by methodology
of designing that are called the errors of modelling method. For
example, in statistical modelling these errors are related to digitizing the
continuous casual sizes, limited sample size, pseudo-random character of the
generated numerical sequences. Irremovable errors are always in the basic data
obtained experimentally. Thus, tasks and algorithms sensitive to the change of
basic data claim special attention, as there can be considerable growth of the
number of errors. The computer calculations within the mathematical models
require realization of an algorithm as a sequence of logic and arithmetic
operations and there is presence of errors of numerical method of the problem’s
decision. These errors can be divided into the following kinds:

Transaction error (error of digitization) because of the
limited number of digits in computer presentation of numbers,

Error of limitation (truncating), related to the numerical
method of decision, when in order to describe the function closely in place of
the infinite rows only the first members are used (for example, difference
description of the derivative).

Error of distribution, subsequent upon accumulation of errors
appearing in the previous stages of calculation.
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The indicated errors cause two types of errors: local ones are sums of
the errors during the process at every step of calculations; global ones are
sums of errors accumulating from the moment of start of calculations.

In the method of presentation there are distinguished: an absolute
error Ddetermined as a module of difference between true A and calculated a
values of size,

and arelative error

da =

Exactness of calculations is determined by the amount of numbers of the
results to be trusted. The number is named “faithful” if an absolute error does
not exceed half of unit of digit address which this number isin. It is obvious that
all numbers preceding faithful are correct.

We will transfer the basic rules of transformation of errors in the process
of calculations:

1) The absolute error of sum of eventual number of approximate
numbers does not exceed the sums of absolute errors of these numbers

éd U
Daa a a D .
ei=1 U i=1

2) The relative error of sum of eventual number of approximate
numbers does not exceed the maximum error of one of the elements

k
o)

M-

d £ maxd., .

1£ifk

&

[pl))
u\'
CC\ c

3) the relative error of multiplication at small enough errors
(d, £0,1) does not exceed the sum of relative errors of multiplicands

k
where Pa=a*a*.*a.
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During application and algorithmization it is necessary to take into
account the notions of convergence and stability connected with error
evaluation.

Thus, increase of exactness is achieved by change of internal parameters
of algorithm (for example, by the maximally possible difference between the
previous and the next approaches).

Stability of the computational algorithm is a continuous dependence on
the decision on the input data.

Correctness of the method of calculation depends upon the property of
indisputable existence of the problem’'s decision and the firmness of
computational algorithm that is applied within the method’ s realization.

Convergence is a feature of algorithm to make the calculations with
the least possible number of errors for the set class of data by way of change of
its parameters. Stability of algorithm is an ability to make calculations and to get
the final result with the set exactness during change of the algorithm’'s
parameters and input data within certain margins that are called the region of
stability.

In a number of cases (for example, at the design of the measuring systems
and devices in conditions when unstructured data is entered) probabilistic
approach to estimate the errors is used.

Error is one of basic descriptions of quality of calculable process and its
estimation must accompany decision of any engineering and scientific tasks via
computer methods.

1.5 Remarks

The mathematical modelling is a part of process of creation of software
and hardware of automation and information-measuring technique. Calculation
methods of programming on computer became the basic practical instrument of
developers of automatic measuring information devices and systems. Large
experience of use of calculation methods, application of numerical procedures,
creation of the special software for decision of various tasks in this region
allows to point out their basic types:

1. Identification of dynamic descriptions of linear links at the use of
different descriptions of signals on their entrances and outputs.

2. Use of the least-squares method for identification of transmission
description on data describing transitional and frequency descriptions or signals
on the entrances and outputs of link arrays.

3. Research of stability of the linear dynamic systems on basis of use of
different criteria. Construction of region of stability on the plane of parameters
of the system.

4. Analysis of quality of the linear automatic control systems.
Determination of optimum controls by way of decision of algebraic equation of
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Riccati (continuous and discrete cases), which is the problem of an optimum
linear controller. The decision of equation of Riccati is related to
implementation of row of transformations and decision of special problems
(making an initial matrix, transformations of similarity) allowing to bring
matrices over to the Hessenberg and Schur type; finding own values of matrices.

5. Research of the nonlinear automatic systems on basis of close methods
of decision of nonlinear differential equations. Application of methods of the
harmonic linearizing and piece-linear approximation.

6. Simulation of measuring devices and systems on computer, including:
generation of pseudo-random numerical sequences imitating measurands and
influences; design of transformation of information parameters of signals in the
explored devices; treatment of outputs of pseudo-random numerical sequences
(construction of histograms, cross-correlation functions, estimation of criteria).

7. Analytical probabilistic modelling of measuring information devices
and systems on basis of associate probabilistic (laws of probabilities
distribution) and spectral models (spectral density of power).

8. Decision of determination problem of values distribution of measurand
(flowrates, sound-wave, temperatures) in the closed region.

9. Research of automation devices by method of experiment planning.

10. Digital signal processing problems. Analysis of spectrums of different
signals with the use of Fourier transformation, for example.

11. Analysis and errors estimate of measuring devices and systems on
basis of methods of private derivatives, probabilistic design, interval analysis
efc.

12. Decision of problems of computer-aided design of the automatic
control systems. In this direction a large experience has been accumulated in
creation of various software systems.

New approach to the design of models in conditions of uncertainty is
interval modelling. This method is more simple compared to the stochastic
methods and demands knowledge only about numerical intervals of data. The
basics of interval method will be described in chapter 7 of this book.

A deeper study of the modelling theory can be found in special researches
on probabilistic and statistic methods, methods based upon the fuzzy logic
theory that are often used in indeterminate conditions, queuing systems
simulations, models of structural transformations. Comparing the approaches it’s
difficult to pick out the best possible one. Practical demands and experience
require choosing the most expedient of them that could be used at the different
stages of the systems modelling in automatics, information-measuring
techniques and control systems development.
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Exercises

1. Make examples of typical tasks of computational mathematics. Classify
them according to the type of mathematical methods and physical essence. Give
examples of application of these methods to solve the applied problems of
automatics and control systems.

2. How do the errors of calculations emerge? Classify them.

3. What is the difference between the local and the global errors?

4. Prove all the features of arithmetic operations with errors from

sectionl.3.

5. Give the definition of iterative methods.

6. What is the convergence of an iterative algorithm?

7. What is the firmness of an iterative algorithm?

8. What is the correctness of a computational method?

9. Name methods of generation of the random (pseudorandom) numbers.
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Chapter 2. Problems of Linear Algebra
2.1 Introduction

Solution of the systems of linear equations is a widespread calculation
problem of linear mathematics. Methods of solution of such problems are
considered in this chapter. We suppose the readers are already acquainted with
the information given below from the theory of matrices.

2.2 Systems of Linear Equations

Generally, the problem could be defined as following: to find the values
X, X,,...,X, Which satisfy the system of linear equations

a X ta,X +..+a,X, =¢,
X T a,X t..+a,X, =C,,

a‘nlxl + a‘nZXZ + + a‘nan = Cn !

2.1)

or inamatrix form AX =C, where

é, a, K a,i
€ u
A:éa21 azz K aZnU
K K K KO
é U
@nl anz K anna

éx u éc,u

u ecu
C:EZU,C:GZU_

ellu ellu

é u é u

e L. U

The determinant’ s inequality to zero (linear independence of equations) is
the necessary and sufficient condition of the decision’s existence:

det At 0.
The methods of decision of the systems of linear equations can be divided

into direct and iterative. To the lines which allow to get the exact decision, the
methods of determinants of Cramer, Gauss and the special direct method for
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tridiagonal system could be applied. Iterative methods are based on the accepted
clarification of progressive approximations to the exact decision, effective in the
case, when a lot of coefficients are either equal to zero or have a higher order in
the system.

2.2.1 Classic Methods

The well-known method of Cramer (determinants) in detail is considered
in the standard courses of higher mathematics and can not be applied in most
practical problems due to the essential complexity of the determinants
calculation, providing even the tiny growth of the system’'s order. That iswhy in
this section we will consider the Gauss method, which, even if it yields to the
iterative methods in certain practical problems, however is more universal, and
also a special direct method, that is used in problems with tridiagonal matrices.

2.2.1.1 Gauss M ethod

Gauss Method (method of exception) is based on reduction of matrix of
coefficients of the system (2.1) to the three-cornered form:

*

éc**l_*u
A** **U
& L u
@O*L**l;l
e u
I R
@ 00 L * *d
e u
© 00 L 0+

and consists of two stages: direct motion and reverse putting. The stage of direct
motion finishes, when one of equations of the system becomes equation with
one unknown. Then, carrying out the reverse putting, all the unknowns are
found. This method could be easily realized on compuiter.

At first by division of the coefficients a,, the first equation is rationed;
then we multiply the equation obtained on coefficients a,; and subtract from all
the equations. Thus, x, is eliminated from all the equations, except the first. At
the next stage similar procedure is used to the last (n- 1) equations and is

repeated until the system is transformed to the three-cornered form.
On a k-step the coefficients of k-equation are rationed, and new
coefficients in the next equations are concerned as

qj =a; - aikbkj,i>k.
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Coefficients a; change at every step.
Number of arithmetic operations in use of the method is

N»gng
3

The algorithm of the method is resulted in Figure 2.1.
2.2.1.2 Gauss-Jordan Method (Exception)

This method allows to bring a matrix of coefficients to the diagonal form.
In distinction to the previous method instead of 1 >k weuse it k. Inthe Gauss
method transformation is applied to the equations which stand only below the
leading row. Equations which stand either below the leading row or above it are
transformed with use of the Gauss-Jordan method.

This method facilitates the decision-making, but is accompanied with
increase of calculations volume.

2.2.1.3 Modified Gauss Method

In many cases there is a necessity to solve the systems of linear equations
with the varieties of matrix coefficients and a permanent column of free
members. Most frequently Gauss modified method is used to solve such
problems. In this method matrix equation (2.1) is transformed to the matrix of
coefficients A asamultiplication of left Land right R three-cornered matrices

L*R=A.

As the diagonal elements of one of the matrices become equal to one, they
can’'t be memorized, and it is necessary to keep both matrices in the computer
memory in place of matrix of coefficients A.

In the variant of the Kraut method the following sequence of finding the
elements of matrices Land Ris used

for k=12, ..., n;
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Movement
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a; =g; - ma

+1

b =D - mb,

=

+1

k=k+1

<1 > —

yes

Reverse movement
\ 4
( Stop )

Figure 2.1.




_ o . _
Iik _aik - a Iiprpk1 I = k,k +l,...,n,
p=1
| = 1
kk_l_v
kk
& k10 |
i :Ikkgakj Ay o i=k+1..n;
p=l [}
Ne =1.

The system is transformed to such system, the solution of which is
replaced by the solution of two systems with three-cornered matrices:

LY =C,
RX =Y.

Elements Y, X could be found from the following correlations:

yl = Illcl;

& it 0 .
yi =li&ci - alipyp,d=2,..n;
p=1 a

X =Y - é FipXp s i=n-1...1.

p=i+l

Number of arithmetic operations used in this method to solve the system
of linear algebraic equationsis N = 2n®.

2.2.1.4 Direct Method for Tridiagonal Systems

This method (named often as the method of pass) is used to solve the
systems of equations with the band matrix of coefficients. We will consider its
application to solve the tridiagonal system which is typical for many practical
problems.

Let’ s write the system in such a form:
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byYo + CoYo =) o>

aYo thyi tay, =j 4,

Y, thy, +Cy; =] 5,
ay.1thy +GVia =i,
3-1Yn-2 T B0 1Yn1 T CoiaYn = no1s
8 Yn-1 +BYn =1 -

To solve this system we will use the analogue of the direct motion of
Gauss method. Then the system is transformed to the following form:

where u,,v,,u,,v,,...,u_,v are coefficients, that are called pass-coefficients.

0?70’

Take into account, that

_lo

U, =- _0. Vo
b, b,
These coefficients give possibility to find y,,, Y, 1. Yo-
Eliminating from previous equations y, ; by arithmetic transformations,
we get the formulas for determination of the sought values:

G
UI :'—,
au_; +hb
v _Ji-avig
" au_;+h

and further



Yn = Vi
Yi =u Y, TV, i=n-1..,10

2.2.2 lterative M ethods

Iterative methods are especially effective for the systems with the big
order and with sparse matrices of coefficients. They are used in the systems
which preliminary result in the following form:

Xl = b1,nxn + b1,n-1Xn-1 Tt bllxl + bl,O’
X2 = b2,an + b2,n-1Xn-1 tot b21)(1 + bZ,O’ (22)
Xn = bn,nxn + bn,n-lxn-l Tt bn,lxl + bn,O;

or in amatrix form:;

X =BX +B,,
where
e, b, K byu oy, U
u u
poba be KB Sl
I L N éla
u u
gonl bn2 K bnnfl gonoﬂ

There are a few basic variants of iterative methods. They are: Jacobi
methods (simple iteration), Gauss-Seidel and successive overhead relaxation. In
the basics of this method there is a systematic clarification of the variable values
which are set at the beginning of the calculations.

In the Jacobi method the initial variable values are used for calculation of
the new values x,x,,..,x. in accordance with (2.2) equations. The process is

n

finished when all the new values converge to the previous ones. In the opposite
case the new values are used in place of the initial ones. This procedure repeats
itself until the convergence is attained or it becomes clear that the process
diverges. In this method replacement of all variable values is conducted
simultaneously (simultaneous displacement).

The system of iteration equationsis:
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(m+1)

X" =% 4,3 +bx ™+ L b, X" +b

1373 10?
(m+1)

X" =b,x " +b,%," +b,x"” +L+b, x " +b

2n“n 207
M

(m+1)

Xn = bnlxl(m) + anXZ(m) + bn3x3(m) + I_ + bnan(m) + bnO;
where, accordingly, value x; (i =1,...,n) on the next iteration is with index
(m+1) and the previous iteration is with index (m).

In the Gauss-Seidel method the obtained value x is immediately used for
the calculation of x,. Then by the new values x, and x, we consider x, and so

on. It allows to rate up the convergence substantially.
In the method of successive overhead relaxation all the new variable
values are calculated as:

Xi(m+1) — Xi(m) +W()_(i(m+l) _ Xi(m))’

where x(™? is the specified value x™ due to the Gauss-Seidel method;
w parameter of relaxation (1£w £ 2).

At w=1 this method is similar to the Gauss-Seidel method. Rate of
convergence depends on w.

One of the main prerequisites of successful application of iterative
methods is convergence. For estimation of convergence the norms of matrix of
coefficients |B| are calculated from the system (2.2).

The following forms of norms are frequently used:

1 norm: max & by,

£jEn =1

2 norm: maxén by |

IEiEN  j=1

n n
E-norm (Euclid): |§ & b; .

i=1j=1

There are a few approaches to determinate the convergence by estimation
of the norms. Generally it is sufficient, that at least one of the matrix norms is
less than one.

|B|< 1.
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In mathematics such a condition is called “ordinary” or “strong”. In many
cases convergence is provided via implementation of the so-called “weak” sign.
For example, “weak” sign of sums of lines: for all the sums of lines of
coefficients (i =1,...,n) the correlation is executed:

n
o

a bij £1,
j=i

but thereis one line p for which

Qo

b, <1.

j

Similarly, the “weak” sign is determined as the sums of the column’s
coefficients.

“Weak” sign can be used in those cases, when matrix of coefficients A
from the systems of equations (2.1) can be transformed to the form:

A A
o A

where A, A, are square matrices.

For such matrices the system of equations (2.1) disintegrates into two
systems of equations which are solved consistently. In special textbooks the list
of which is given at the end of this book, more detailed analysis of the properties
and signs of the convergence estimation is given, but in order to perform a
number of practical problems it is sufficient to use the information given above.

2.3 Remarks

The Gauss method and its modifications (Gauss-Jordan, the Crout, matrix
inversion etc.) are more universal, but it is difficult to use them when the
coefficients matrix is very sparse (due to a multitude of zero elements and errors
that occur in the course of the multi-step calculation processes and that should
be taken into account). At the same time the Cramer methods are effective only
for systems with comparatively little order (Iess than 10-15).

The iterative methods are very simple and convenient, but only for the
convergence problem solving. In case of a wide range of problems (for example,
in mathematical physics) it could be reached in accordance with the correct
problems formalization.
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In this chapter from a variety of problems in the sphere of linear algebra
only systems of linear equations were considered. The other problems
(transformations of complicated matrices, problems with own meanings of the
matrices) can be found in special books on the theory of matrices.

Exercises

Compare direct and indirect (iterative) methods.
Construct algorithms of Gauss and Gauss-Jordan methods.
What is the form of linear system that is used in the iterative methods?
What are the rules of checking the convergence of the iterative
methods?

5. What is the difference between iterative methods of Jacobi and Gauss-
Seidel ? How does the difference show in the algorithms?

6. Solve on computer the following system using Kramer, Gauss and
Gauss-Jordan methods

~oOpNPE

iX +X +X +X, +Xx =15
:':xl- X, + (X, = 26;

i X - 2X, +3X, - 4x, =-10;
:x1 X, + 2%, +3%, = 20;
fx +x - %, +10x, =50

7. Estimate the convergence of iterative algorithm for the following
system. Using the algorithm solve the system on computer

7.1
61 0 1 2u 20
é ( 8ol
1 1 1 24 &144
e u e, u
&1 -1 -2 of €30
7.2
62 0 7 1y al1g
é a é,u
A:él 2 -1 _lﬂ, C—ézu,
&1 -2 1 24 &0u
€0 2 0 1§ €60
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7.3

61 3 4 5 1y 381
é a &0
A=&3 -2 1 2 04 c=é4q.
e u u
sl 1 1 2 1y ?4@
&1 1 2 3 15§ 819§

8. Solve each of the following tridiagonal systems via the direct method:

a) - 2x +X, =-2 b) 5x - 2x%, =5 ) -2x*X =1
X - 2%, +X; =1 - 2X +5X, - 2%, =-2 X - 4%, +x; =0
X, - 2% +X, =0 - 2X, +5X%;- 2X, =0 X -3 +X, =-1
X;- 2%, =0 - 2%, +2X, - 2%, =2 X;- 2%, =0
- 2X,+5%, =-5

Which of these systems can be solved using iterative methods?
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Chapter 3. Equations and Systems
3.1 Introduction

In this section the methods of solution of nonlinear equations and systems
of equations are considered. Many practical tasks, for example, calculations of
nonlinear electric circles and systems management, decision of nonlinear
differential equations, analysis of the systems firmness via estimation of their
own values and so on lead to calculation of tasks of such kind.

For the simplest types of algebraic equations (not higher than the third
degree) there are exact analytical formulas, for transcendent equations and any
systems of equations such methods in general do not exist and due to this we
should use only approximate iterative methods and algorithms. Main iterative
methods and algorithms for solution of such tasks are considered below.

3.2 Nonlinear Equations

Equations in which the degrees of argument are entered only with the
proper coefficients are named algebraic.
Nonlinear equations which contain trigonometric or other special
functions are named transcendent.
General form of an algebraic equation:

f(x)=ax"+a x"'+..+ax+a,=0. (3.1)

It is possible to select some important properties of algebraic equations
which simplify further determination of the roots. Here and further we call some
properties as theorems, as it is accepted in mathematics, but give them without
proof.

1. Basic algebraic theorem. Algebraic equation of order n has n
roots, which can be real or complex.

Every root is calculated the proper number of times that equals to its
multiplicity. The multiplicity of root x, equalsto k, if

f(x)="f'(x)=..= f*Y(x)=0.

2. If all coefficients a of equation (3.1) are real, all complex roots form
complex-conjugating pair.

3. Rule of Descartes. The number of positive real roots equals or is
less than the number of changes of signs in the sequence of coefficients (that
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assertion concerns just the number of negative real roots while replacing x to -
X )in(3.1).
4. Theorem of Lagrange. The high bound of positive real roots

could be written as
R=1+« E, a, >0,
\/a0

where k is the number of the first negative coefficient; B is the most absolute
value of the negative coefficient.

5. Theorem of Gua. If equation (3.1) has real roots and real
coefficients

a‘lf > 8, 18

We keep in mind that direct analytical methods exist only for algebraic
eguations not higher than of the third order, but for transcendent equations direct
methods do not exist in general. While determining actual roots via the numeral
methods two theorems should be used. The first allows to separate roots and to
set as close intervals [l ,b] as possible, in which roots of the equation exist, and
the second one is used to estimate the approach.

Theorem 1. If a continuous function f(x) takes on the value of
different signs at the ends of the segment [I ,b], where (I )f(b)<O0, in the
middle of this segment there is at |least one root of equation f(x) =0, which is
xT (I,b) andinit f(x)=0.

Theorem 2. Let’s assumex is exact, and x is the root of the equation
f (X) =0, which is on the same segment [a b], thus| f (x)|3 m, a £x£b .
Then

_ f (x)
‘x- x‘ £u.
m

There are several methods of solution of nonlinear equations, expedience of
application of each of which depends on the type of equation, exactness needed
efc

One should also keep in mind that determining the roots to reduce the
degree of initial nonlinear equation dividing on (x- X ) (where x isthe root that

Is found) should be executed very carefully; that is related to the accumulation
of errors of distribution, which will be contained in the coefficients of the new
equation.
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3.2.1 Method of Half-Note Division (Bisection)

In this method at first the value of function is calculated in points which
are located through even intervals on the axis x. When f(x ) and f(x ) have
X4 X,

n+l

opposite signs, find x_ = , T(x ). If thesign f(x_ ) coincides with the

sign f(x,), x, is used at the next step in place of x,. If f(x,) has the sign
opposite to the sign f(x ), x_isreplaced by x .. We will mark that for all the
methods for the condition of finishing the iterative processit is expedient to take
X . - X|£e,where e isthe set of errors of the root’ s finding.

The graphic image of the method is given in Figure 3.1, and structure of
the algorithm - in Figure 3.2.
The error of solution Dvian of iterations is in scopes

D£i
2ﬂ

X, = X.

The method has a small rate of convergence as interval, where the root
diminishes no more than twice with every step.

\ 4

Figure 3.1

3.2.2 Method of Vicious Position (Chords)

This method is based upon linear interpolation for two meanings of
function x_, X, with the opposite signs. The line through these two points

crosses an axis at the point
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X - X
— _ f n n-1 .
o T O ) T T )

>

Calculation of the function before sign to
change from f (Xn) to f (Xn+1)

5]
i’

Calculation X, and f (x,,)

X, = X,

f(x,)= 1 (x)

Figure 3.2

Determine f(x ) and compare its sign with the sign of f(x,). At the
next step use x,,, in place of the value (x, ,, x,) with which the sign coincides.
If |x,., - X,| £ e, thewhole procedure is repeated again (Figure 3.3).

Algorithm of the method of chords is similar to the previous one, except
for the procedure of estimation x .. One should keep in mind that in this
algorithm the control of error is conducted with the moving end of an interval.
In the case given in Figure 3.3. progressive approximations are analysed: at the
first step [x, - x,| £ e, at thesecond—|x, - x| £e, at thethird— |x, - x,|£e and
efc.

The error of decision is estimated via the formula:

X X

n+l n

DEM
M

1

53



where M, m, are accordingly, the largest and the smallest values of the module
of the first derivative ontheinterval x , X

n? “*n+l "

y A

Y

Figure 3.3

3.2.3 Newton Method (Tangents)

In the Newton method first of all the extrapolation is carried out by
tangent to the curve (Figure 3.4)

On basis of this method decomposition of function by the Taylor row is
executed:

f(x, +h)=f(x,)+hf (x,)+2 " (x,) + oy

Members which contain h in the second degree and higher are rejected.
Taking into account that h=x . - X, we can get the previous formula

Convergence rate of this algorithm depends on the faithful choice of the
initial point. When in the process of calculations the angle of slope of the
tangent f (x) is close to zero, it becomes more difficult to use the method. We



could assume that in case of very big values of f (((x) (bulge of the function) or

when there are multiple roots the Newton method becomes ineffective.
Therefore one should choose the initial approach from the following
condition

(F€,)" > F&x,)f(x,)>0.

The error of the method is estimated as:

M 2
DE —*2 -
2rT]l (Xﬂ+l Xn ) !

where M, —the largest value of the function’s module on the interval [x , x _].

y A

\4

Figure 3.4

3.2.4 Method of Secants

One of the main problems while applying the Newton method is the
necessity of the derivative's analytical description. If this difficultly emerges, it
Is possible to apply its close estimation (figure 3.5) Then, in place of the tangent
method the method of secantsis used

BRILY
" OFgx,)’

where F(x ) is a close estimation of the derivative examined as both secants
but not as tangent, and can be calculated using the following formula:
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)= () 1)

X - X

n n-1

i) 1)
)= 1o 21)- 1)

or

F&x,

where h is acertain small step.
Algorithm of this method is similar to the Newton method but with
another iterative formula.

A

Figure 3.5

3.2.5 Method of Simple Iteration

To use this method the equation f(x) = 0 should be transformed to the
following form:
x = g(x).

The proper iterative formula looks like
Xn+l = g (Xn) b
The calculations are finished when

X X |Ee.

n+1 n

To provide the convergence, the value of q (the module of the first
derivate of function g(x) on the segment [x,, x| ) should be less than one

g<l.
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Then there WOUJd be a convergence regardless of the choice of initial
point on the interval x1 [x,, x |
Error of the method after n iterationsis

qn
DE - .
L q\xl X|

3.2.6 Problem of Complex Roots

To determine complex roots one could apply the methods similar to those
used to find the real roots, but joined with a complex number (the control of
convergence and errors is conducted via the module’s value). However, this
method is not convenient.

There are several special methods which allow to estimate the complex
roots, but via calculation by real numbers. The majority of these methods are
based on transformation of the initial algebraic equation (3.1) to a variety of
guadratic members

X* + px+q,

where p,q are the coefficients.
To perform such transformation the equation should be presented in the
following form:

(x* + px+q){x"? +b,_x"* +...+bx+b,)+bx+h, =0, (3.2

where b x+ b, isalinear remaining member which aims to zero, and the initial

equation (3.1) is divided by a quadratic factor x* + px + g without remainder .
In order to find coefficients b . b, ,...,b,b, suppose b, =b, =0. Then we

could consider the system of equations which could be obtained from the
equivalence of equations (3.1) and (3.2):

It can be performed via a special direct method for the tridiagonal systems
or via an iterative method, which is presented in Figure 3.6.
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b = a‘n - p’

b,,=a,,- pb,,- q,

M

bn-j = a‘n-j - pbn+1-j - qbﬂ"'z'j’ (33)
b3 = a3 pb4 = qb51

b2 a, - pb - gp,;

O=a - pb,- g,

0= a, - qbz

3.3 Nonlinear Systems

Generally, the system of n nonlinear equations with n unknown is the

following: ( )
X1 Xp e X, ) = 0,
f,00 %0 ,><n)=0,
' (3.4)
(% %00 %,) =0,

As nonlinear functions appear in the system, it becomes impossible to
present it in a general form; neither any analytical direct method could be
offered to solve such a system. The method of simple iteration based on adding
the system (3.4) to the system of nonlinear equations is quite simple:

X, :gl(xlx e X )
9,(% %%, ),

In amatrix form

X =G(X),
€9, (X %1 X, ), 0
e u
Where G(X) _ @gZ(X“ Xy peeny X, ),u
G, u
é (
&9, (%, %10 %,)



= D

Y

Choosing of the initial
meaningsof P and g

A
>

Y

Calculationsb b . b.b

n-1,-n-2,.., 3, 2

from the system (3.3).

Calculation of the new
meanings  of p* and

q*from the two last
equations of system (3.3)
operating with  b,,b,,

Q. 5

o o
I

Figure 3.6.

Then there can be an applied algorithm similar to the Gauss-Seidel
method for the systems of linear equations. On its basis iterative equations are
used which link (m+1) and m iterations.



Due to the fact that it is quite a difficult task to provide convergence using
this method, and providing that the convergence interval could be extremely
narrow, the choice of the initial approach is very complicated.

Generally, this method will converge, if |G(x)| <1, where [G(x)| is a

norm of matrix of partial derivates that functions on variables x , X, ..., X,

€f9, 99 y
i L R P
e T, T, a

K K K K/,
G&x)=¢, u.
( ) éﬂgn & K ﬂgn U
u

H

efmx, 1% ix, G
&

To solve the systems of nonlinear equations more frequently the Newton
method is used which proved to be more reliable. It is used in the form of the
Newton's method analogue for one equation and is based upon the
decomposition of all n equations in the Taylor row:

£ + DX X, +DX,) = £, (%0 X, )+Dx1“1+ Do g 1+Rn

where R are the members of the second order or higher which will be

subtracted in the course of the next transformations.
The task is transformed to the solution of the following system of linear
eguations:

e, | Tho = e 1
e'nx1 i, DU & g
SL L L &SyU=¢e 20
o, e U e

L UeDx. 0 & . u
g‘ﬂx1 ™%, H & fnd

In this system the matrix of partial derivatives is called the Jacobi matrix
and marked as W(X) W(X). An example of such matrix for the real task could

be found in Table 1 (chapter 1.3.1).
Iterations of value Dx, found for a certain (m+1)step are used as the

amendments to the previous approach
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X1(m+l) — Xl(m) + DXl,
KKKKKKK

X(m+l) — X[Em) + DXn

n

A general iterative formula in matrix presentation could be presented as.
X(m+1) = X(m) - W-llx(m)Jle(m)J,

where F[X(m)J is the column vector of the functions values f,f,,....,f for

approaching X'™; W-*[X ™| is the inverse Jacobi matrix.

The algorithm of Newton method is given in Figure 3.7.

Certain difficulties during using the algorithm of the Newton method
emerge due to the rotation of Jacobi matrix. The rotation methods of matrices
known from linear algebra are used for this purpose.

There are a lot of variants to apply the Newton method. For example, a
modified Newton method

X (M) — ¢ (m) _ W-llx(O)Jplx(m)J_

In this method one does not need to calculate the inverse Jacobi matrix at
every step of the calculations; that simplifies the algorithm, but slows
convergence and sensitizes the method more to the choice of the initial
approach.

Newton method with a parameter t

X (™) = x () _ pyy-2| X (|| x ()|

This method is similar to the method of successive overhead relaxation for
the systems of linear equations.

Various hybrid methods are also used in which the Newton method is
united with the method of simple iteration.

The convergence of the Newton method is estimated by calculation of the
index

where

M3 X))
L= w(x)),
P F(x),
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C =

Choice of the initial
meaning X

.
>

Forming of the Jacobi matrix
and the vector-column of the
right part of the system

Solution of the system and
definition of Di

% =X +D, no

i=12,...,n

= O

Figure 3.7

thus
. 3 m,
Ill@rg MPr{:}Oq ® 0.

The error on m iteration concerns the following inequality

2M.1
DEMP
1- g°
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3.4 Remarks

From the variety of considered methods the bisection method is more
simple and reliable, but it is very slow (as interval of the root’s position could be
cut only two times with each next step). The Newton method, as well as the
methods of simple interaction, has a convergence problem. But they are
comparatively quick if the initial approximation choice is correct.

In practice, while solving systems of nonlinear equations, only the
Newton method could be used. Both the initial approximation and the interval
resolution are to be based upon the practical cases and the physical essence of
the tasks. It should also be stressed that dealing with the method one needs to be
very careful with complex roots and multitudes of the errors accumulated.

Exercises
1. Give the rules for the definitions of quantity and type of the roots of
nonlinear equations.

2. Construct the algorithms to solve the following nonlinear system via
different methods. Perform them on computer.

X' +x*- x+1=0;

xX*-7x+2=0;
x> - 10x* +5=0;
x> - 2x*-1=0;
X>- x*-3=0;
X*-Inx=0;
x-10sinx =0;
x> - 2tgx+5=0;

x* - x+tgx =0.
3. Solve nonlinear equation with complex roots

XP+2x° +3x*+4x°- x-1=0.

63



4. Find the Jacobi matrices for the following systems
i
Ix +2x, +x: =14,
|
PInjx[+x3 - %, =1,

i
le+sinlox2 - X, =1
|

3

and

~ X,
mSX1+X2+|n§= ,

— —" —

, 2 -
X1+X2+X3_8’

"arctgx, WX X

p 2 12

R

5. Find the inverse matrices for systems from exercise 4.

6. Construct the algorithm and program to solve systems from exercise 4 via
Newton and modified Newton methods. Perform it on computer and find
roots.



Chapter 4. Ordinary Differential Equations

4.1 Introduction

An ordinary differential equation has an endless amount of solutions. To
obtain a concrete solution it is necessary to account for additional conditions.
These conditions can differ and demand different problems. In case when
additional conditions are set at one independent variable value, the Caushe
problem should be considered (problem with an initial value). If the conditions
are set for two or more independent variable’'s values, the problem becomes
boundary-value problem. In the Caushe problem the additional conditions are
named initial, and in a boundary-value — boundary. To solve these problems
different methods and algorithms are used.

Caushe problem can be formulated in the following way.

Suppose, we have a differential equation of the first order

dy _
o f(x,y). (4.1)

To find afunction on the interval fromx = a to x = b that satisfies both equation
(4.1) and the initial condition y(a) =y, (it is thus always assumed that there is a

unique decision for the whole interval).

A problem requiring a solution of an ordinary differential equation with
additional conditions put at several independent variable values is named
boundary-value problem.

We will consider a boundary-value problem on the example of ordinary
differential equation of the second order:

with boundary termsy (a) = A, y (b) = B.
The methods of solution of equations of higher orders are similar to the
equations of low orders.
4.2 Solution of the Caushe Problem

Decomposition of the function serves as a basis for a variety of methods
designed to solve differential equationsy in the Taylor row around initial point

Y, +h)= ¥(x) + hy) + heyd) ...
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where h is a distance (step) between the initial point xo and point X;=X, + h.

The different amounts of members of decomposition (in multi-step
methods in combination with interpolations formulas) determine the exactness
of calculations for different methods. While using these methods on computer
one should distinguish transaction errors due to the lack of significant numbers,
used in the course of computer calculations, and the error of transaction
(limitation) which is a methodical error that is related to approximation of
solution by eventual rows in place of the infinite, for example, by the Taylor
rows.

As aresult there are two types of errors:

Local error is a sum of errors which appear in the process of calculations
on a concrete step.

Global (total) error is a difference between the exact and calculated
meanings, which includes the so-called error of distribution that results from the
accumulation of errors at the previous stages of calculation.

Local error Ddepends on the order of method p and coefficient c

D £ ch®*'.

Coefficient ¢ concerns the derivatives and the length of the interval.
During approximation of the solution by the Taylor rows it is related to the
degree of members in the row which is taken into account.

The methods of solution of the Caushe problem are divided into one-step
and multi-step.

In one-step methods, in order to find the next point y = f (X), it is
necessary to have only information about one previous step (methods of Euler
and Runge-Cuitt).

I'n multi-step methods (prognosis and correction), in order to find the next
point y = f (X), the information about more than one of the previous points is
necessary. To get enough exact numeral data iterative procedures are often used
(for example, in the methods of Milne, Adams, Hamming).

4.2.1 One-step Methods

Among simple one-step methods, which need minimum calculations, but
give the possibility to obtain result with comparatively low exactness, is the
Euler method.

In this method to estimate the next point y=f(x) one should take into
account only one linear member in the Taylor formula

Y% +h)=y(x,) + hy(x,),
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where y¢(xo) could be obtained from the initial equation.
This process can be extended for the following steps

Yoo = Yo + D (X, Yn)-

The Euler method is the method of the first order (p =1)

D £ch?,

where ¢ = (M, + MM, )/2, Mo, My, M, — are regarded as

M, 2 |f (% y),
7 (xy)

x ‘
1t (x,y)

iy

3
1

3
2

for all xT [a,b] and y=y(x).

The Euler method is often unsteady because of the error of truncation:
small local errors result in the considerable increase of the global error.

This method can be improved in a number of different ways.

Among them are the Corrected Euler method and the Modified
(Improved) Euler method.

Iterative formulas for these methods are the following:

h .
Ynit = Yn +§[f(xn’yn) + f(Xn + h’ Yn + hyn)]

and Vo = yo +hES, + Doy + Ny
e 2 2 g

where Vo = F(Xa, Yn)-

Geometrical interpretations are represented in Figures 4.1, 4.2.

These are the methods of the second order. Their errors have the third
degree that is achieved by improving the derivative's approximation. The idea
consists in trying to save or estimate the member of the second order in the
Taylor row. However, in order to increase the exactness considerably, the

additional load of computer to calculate . is required. Y et the bigger exactness
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can be attained by calculating the higher derivative and by maintenance of a
number of Taylor row members. Such methods are called Runge-Cutt methods.
One can account for the principle on which the modified Euler method is
built by using the Taylor row and keeping in it a member with h®.
Approximation of y«(x,) is processed using the finite-difference form

Dy (x, +h)- y(x
ya(x ) = ye_ Y%, + h) - y«X,)
D x h

In thisway in afinite-difference form it is possible to calculate the higher
derivative: value of n-derivative after the values of the previous(n- 1).

Runge-Cutt method gives a set of formulas to calculate the coordinates of
internal points which are required to realize this idea. As there is a number of
methods to find these points, the Runge-Cutt method unites the whole class of
methods for the solution of differential equations.

( x, +h,y,+hy¢ )

- ——
P

<

+

[

S—"

Y

\ 4

0
X, X1 X

Figure4.1

A more widespread classic method of the fourth order is given below:

ko + 2k, +2k, +k,
=y +
yn+l yn 6 1
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Figure4.2

where
kOth(Xnyn),k1:hf$(n+h,yn+ﬁ9,
| e 2 29

k= b+ Dy 580 =i (x iy, +k,).
e 2 29

The Euler method and its modifications are called the Runge-Cuitt
methods of the first and of the second order. The Runge-Cutt method has higher
exactness that allows considerable multiplying of the steps of solution. Its
maximal size is determined by an acceptable error. Such choice is often carried
out automatically and is included as a component part in the algorithm built by
the Runge-Cutt method.

All of the Runge-Cutt formulas could be used to solve differential
eguations of higher orders and systems of differential equations. Equations of
order n can be regarded as n differential equations of the first order.

As an example we will consider the solution of an ordinary differential
eguation of the second order:

dx?
Suppose, z:ﬂ,then $=M
dx dx dx?
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and the system is the following

where f(x,y,z,)=z.
The Caushe problem in this case contains two initial conditions:

y(%)=vor 2z(x,)=y(x,) =z,
The Runge-Cutt formulas in this case are:

yn+l = yn + k and Zn+l = Zn +I

Wherek:k0+2k1+2k2+k3 and I:|°+2|1+2|2+|3.
6 )

Here
kOZhZO’ Iozhg(xmymzn)’
,0 h k, |6
=hz, + 22 l,=h +—,y +-—L,z +13
k & 25 . g%“zy“z“zg
|, 6 h k s}
k :haez + 2= . =h a§( +—,y +2, 7z +2%
2 80 Zﬂ 2 gg n 2 yn 2 n Zﬂ
k3 = hé’%o +|_39’ |3 = hg(Xn + h’ yn * k3’zn +|3)'
e 29

It was previously noted that the error of truncation in the Runge-Cuit
method of n order is D £ ch®. Calculation of the upper boundary for the
coefficient ¢ is an intricate problem related to the necessity of a number of
additional parameters estimation. There are a few methods for the effective
calculation of c. More practically suitable is the Richardson extrapolation
method (another name is the Runge method), when the value vy, is found
consistently with the step h and h/2, and the numbers obtained are put into the
eguation, from which c is determined:

a&h ¢ ,.p+l
a_ g, 20

Yo HCh™ =y e
é2¢g

that corresponds to the exact meaning of y;.
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We will get the evaluation correlation:

) N

€ % U
o & T Ve
2 é Q

C= 2p+1_ 1 hp+l

It is possible to select the general features of one-step methods:

1. In order to obtain information on a new point, it is necessary to have
information only about one previous point. Let us call this property the “self-
starting”.

2. Basically, a one-step method is a decomposition of function in the
Taylor row, members of which with degrees to p inclusive are saved. Number p
Is named as the order of the method. An error on a certain step has order p+1.

3. All one-step methods do not require any calculation of derivative.
Only the function is calculated, but its values can be required in a few
intermediate points.

4. The property of “self-starting” allows changing the amount of steps of
calculation easily.

5. Itisimpossible to estimate the error without additional calculations.

4.2.2 Multi-step Methods

In these methods, in order to calculate the value of the new point, the
information about a few values obtained previously is used. Two formulas are
used for this purpose: prognosis and correction. An algorithm of calculation for
all methods of prognosis and correction is identical and is represented in Figure
4.3. Indicated methods differ only in formulas and are not a characteristic of the
“self-starting”, as they require information on the previous values. Before using
the method of prognosis and correction, calculate initial data by any one-step
method. Often for this purpose the Runge-Cutt method is used.

The calculations are processed in the following way. At first, using the
formula of the prognosis and initial variable values, find the value y. An
index (0) means that the value, which is forecasted, is one of the sequences of
values y,,, a the stage of their clarification. After the value y!? by initial

differential equation (4.1.) find derivative yffj)l( = f(xn+l,y,§‘j)l) which should be
put in the formula of correction to calculate the specified value y!'” . In turn,

after yU'» find derivative y!: = f(x “*1)). If this value is close to the

n+l n+1? Jn+l
previous, it is brought into the correction formula and the iterative process
continues. It should be regarded in case of closeness of values of derivative
Y, - After it the process repesats itself at the next step where vy, ,, is calculated.
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Usually formulas of prognosis and correction are obtained by methods of
numeral integration.
If the differential equation y(= f (x,y) integratesin the interval the values

from X, to Xn+k, the result will be the following:

Xn+k

(%)= ¥(x)= of (x y)dx.

Xn

This integral can not be calculated directly, because y(X) is an unknown
function. The choice of the method of integration determines the method of
solution of differential equations. At the stage of prognosis it is possible to use
any formula of numeral integration, if the initial value y(x.,,) is not included
into it.

In Table 4.1 more widespread formulas of prognosis and correction are
given.

For most methods of prognosis and correction an error can be estimated
by such correlation:

11 o
DE [y - ']

One should take into account that the optimal quantity of iterations equals
to two for each step. Quantity of iterations, step and error of solution are
connected and could be controlled by charging of the step.

Basic features of the multi-step methods:

1) Using these methods it is impossible to start solution of the problem,
without information about the initial value of the function in a few previous
points;

2) It is possible to get estimation of the truncation error without
calculating the additional data;

3) The methods of prognosis and correction do not allow changing the
step of calculations easily; for this purpose it is necessary to begin iterative
process at first.
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Table4.1

Method Prognosis formula Correction formula
4
yn+1:yn-3+_h* 1
3 _ Th*
yn+l - yn-l +
*(2y8- y¢, +2y8,), 3
Milne 28, *(vg, +4ys+ye,),
DE—h’y",
90 DEihsy(s)
where y¢ - fifth derivative 90
f(xy)
1
= + _—_ h*
yn+1 yn 24 yn+1 - yn + 2_14 h*
Adams— | * (5y$- 50y8, +37y8,- 08 )| (oyg, - 19y¢- 5y¢, +y¢,)
Bashforth 251 5 (5) 19 "2
DE——h =2 hsy
7207 PET0"Y
) = 3
yn+1 yn-3 + 4
*(2yg- yg, +2y8,)
Clarification of prognosis ylis =1 9y, - v.,)+
v = O 4 8
yn+l yn+l 3 ) ¢ O
120, o). o 8y 2yg- ve. 2
+==(y, - y¥)
: 121
Hamming

[701%= 1 (x,...7%)

4
= +—h*
yn+1 yn- 3 3

*(2yg- y¢, +2y¢,),

28
DE —h°y®
0

*

(o M=

yn+1 =
*[9y, - v, +3n(yg, +2y¢- y,.)]
1
DE£-—h°y®
07

73




C

D

Initid data
=0, x,=a

Cdculdion

g’
gax Dhi1

= F(x,.,y%)

A

Cdculation yr(ﬁ)l

by the prognosisformula

1l e

e

n=n+1

4.2.3 “Rigid” Problems

There are ordinary differential equations for which it is difficult to get an
appropriate solution using the methods described higher. The origin of such
problems is related to the concept of time constant of differential equation as
interval of time, when variable part of solution diminishes in e times. Equation
of order n has n time constants; if any two of them strongly (in practice one
hundred times and more) differ in size or some of them are very small in
comparison with the time of solution, the problem is named “rigid” and it is
practically impossible to solve it using ordinary numerical methods. In such
cases the step must be small enough to make it possible to account for the
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components of solution which change quicker, even after their accounting
becomes practically unnoticeable. But diminishing the step leads to increasing
the computations time and accumulation of errors. Special methods of solving
such problems are frequent in the theory of automatic control developing.

The simpler of them are called reverse Euler method, in which the
solution is put in accordance with the following correlation:

yn+l = yn + hf (Xn’ yn+1)'

In practice, equations in which coefficients of derivatives strongly (one
hundred times and more) differ one from another have the “rigidity” features.

4.3 Solution of the Boundary-V alue Problem

The methods of solution of the boundary-value problems are examined on
the example of ordinary differential equation of the second order

d’y dy
= f X1
dx? (xy dx)

and boundary terms y(a) = A, y(b) = B. Methods of solution of the boundary-

value problem are divided into several groups. methods that allow to reduce the
solution of such problems to several Caushe problems and in which the solution
could be used as one of the methods to solve the Caushe problem (method of
“shooting”); difference methods; projections methods.

4.3.1 Method of “ Shooting”
If ordinary differential equation of the second order islinear, it looks like:
ye=f.(x)yt+ f,(x)y + f,(x)
a y(a)=A, y(b)=B.
The boundary-value problem can be brought to the Caushe problem by
using an additional initial condition, instead of y(a)=Awe enter y'(a)=a 1.
After finding the solution y;(X), it is possible to account for another initial

condition y’(a)= a » and to get another solution y,(x),. If y,(b)=b, and y,(b)=p.,
thus S1 #6 the general solutionis:
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y(x) = [(B- b,)y,(x) + (b, - B)y,(x)].

bl - bz
This solution satisfies both initial conditions.
This method can be used only for linear equations where the principle of
linear superposition of solution is correct.

4.3.2 Difference Methods

The difference methods are the powerful means of the numerical solution
of ordinary differential equations and differential equations in parts derivative.
According to these methods presentation of an independent argument lies in an
interval [a, b] as the discrete multitude of points knots x;, i=0,...,n, X;=a, X, =b,
which is called a net.

Most distributions were obtained by an even net with a step x-x.1=h.
Thus, in place of the continuous function f(x) a net function y=f (x) is
examined. Digitization of a function of several variables (for example, two) will
be the following:

Xij 1=0,...,n, J=0,..m, y;=f(x;).

Except for a more widespread rectangular net, there exist polar, three-
cornered, mowed nets etc. which are represented in Figure 4.4.
Multidimensional nets find use in problems with partial derivatives.

The solution of the problem by difference methods consists of two stages:
— getting the difference approximation of differential equations and researching
the algebraic equations obtained;

— solution of algebraic equations.

While getting the difference patterns charts, the common requirement
should be taken into account that a difference pattern could be used to deal with
basic features of the initial differential equation. Such difference patterns could
be obtained using variation principles and integral correlations. The estimation
of exactness of difference patterns could be added up to finding the error of
approximation and firmness. A net function can be examined as a function of
integer number argument

yi)=y;, i=0,+1,+2 ... .

It is possible to determine the operations which are the difference
analogues of operations of differentiation and integration.
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& 7

Figure4.4

The differences of the first order are the analogues of the first derivatives:

Dy, =V.,- y; - forward difference;
Ny, =y - y., - backward difference;

dy, = %(Dyi +Ny,) = %(yi+l - y.,) - central difference.
One should take into account that Dy, = Ny:,, .
Therefore it is possible to get the differences of the second order
D'y, =D(DY,) =D(Y. - ¥) =Yz - 2Yia t Y,
DNy, =D(Y, - ¥.1) = (Ve = ¥) = (%= i) = Vi ™ 2Y; + Yoy
that D'y, = DNy, .
The difference of morder is:
D'y =D(D"'y,).

It follows that

i
o]

2

Qo-.

aDyi:yHl_yk !

i=k j

Y=Y " Y:-

1
=

On the multitude of knots of the net, which is named a template
(unidimensional templates are examined in this section, and in the next section
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the two-dimensional ones are regarded), we will replace continuous differential
operator Ly by the difference operator Lyy.

For example, difference operators for the first net derivate on three knots
(x-h, x, x+h)

.\ X+h)- y(x .
Lhy=y( r)1 y():yx,
) X)- y(x- h )
Lhy:y() r31/( )=yx,
0 y(X+h)' y(X- h) 0
L'y = = ,
hy 2h yx

forward, backward and central difference derivatives accordingly.
Similar to the second derivative

Lo YO - 200 + (- h) | YE(9- v, () _

Y= e DEEE—

_y.(x+h)- v (%)
h

= Y (X).

Solving the boundary-value problem equations for all n knots the areas
change on interval [a, b]. Using two additional boundary conditions yo=Yy(a)
and y,=y(b), we can get the system with n-1 agebraic equations and n-1
unknown y;. If initial ordinary differential equation is linear, a problem leads to
solving the system of linear algebraic equations, and if nonlinear — to the
nonlinear or transcendent algebraic systems.

4.4 Remarks

Comparing efficiency of one-step and multi-step methods of Caushe
problem solution such features could be selected:

1. Multi-step methods require the greater volume of computer memory, as
plenty of initial data are operated .

2. When using multi-step methods, there is a possibility of estimation of
error on a step. This allows to select the optimal value of the step.

3. At identical exactness multi-step methods require less volume of
calculations. For example, in a Runge-Cutta method with the fourth order of
exactness four values of function are calculated at every step, and for provision
of convergence of method of prognosis and correction of that order of exactness
— two are sufficient.
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4. One-step methods, unlike multi-step ones, allow at once to begin the
decision of the problem (“self-starting”) and it is easy to change a step in the
process of calculations.

Before the beginning of the problem’s solution it is necessary to conduct
verification of the “rigidness’, and in the case of positive result to use the
special methods. If the Caushe problem is very difficult, usually the method of
prognosis and correction gets advantage. Beginning of solution of problem is
conducted here by one-step methods. If for the calculation of value y; two
iterations cause a large truncation error, it is necessary to decrease the step. On
the other hand, at very small error of truncation it is possible to multiply a step,
thus promoting the fast-acting, but here all the process of solution needs to be
done at first. Sometimes, in practice it is required to minimize time of
preparation of problem for the solution. Then it is expedient to use Runge-Cutta
methods.

A more universal method for solution of the boundary-value problem is a
difference method, but in case of linear problems the “shooting” method could
be used based on solution of several Caushe problems.

In conclusion, it should be noted that for the effective solution of problem
it is very important to have experience, intuition and qualification for the user,
both at setting the problem and in the process of choice of the method of
development of algorithm and program for the computer. It is thus often
convenient to use the prepared programmatic facilities which exist already (for
example, in the program systems Maple, Mathematika, Matlab etc).

In this chapter we deal with numerical methods of solving the Caushe and
the boundary-value problems with differential equations.

In order to solve the traditional problems within the Caushe problem it is
sufficient to use one-step and multi-step methods. The problem becomes more
complicated if there are some rigid features present; in this case special
inexplicit methods should be used to avoid instability and divergence of
computations.

As for the boundary-value problem, the difference and “the shootings”
methods could be considered as the only simple approaches. Regarding the large
variety of other methods available, the following ones could be applied:
variation methods (Collatz), methods of integral equations (Keller) etc.

Exercises

1. Give the statement of the Caushe and boundary value problems. What
Is the difference?

2. Give examples of the ordinary differential equation which could be
solved using the numerical methods only.

3. Could the boundary value problem of the first order be a differential
equation?
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4. What are the methods of estimation of the unistep and multistep

methods' errors?

What is the feature of the “ self-starting” in the unistep methods?

Give all the possible difference representatives of the first and second

derivatives.

What isthe “rigidness” feature of the ordinary differential equations?

What is the method to get the general solution of the boundary value

problem from several Caushe problems solution using the “shooting”

method?

9. Find the solutions of each of the following differential equations using
the Runge-Cutt methods (1, 2, 4 orders) on interval 0 £ x £ 1with step
h =0, 1and initial condition y(0) =1:

o Ul

® N

a) y(+8y-15=0;

b) y¢ by +9x =0;

c) 2y@+3yt=0;

d) y®+3yt+6y+x-1=0;
e yt 2x=3;

f) y& y¢ y+e* =0.

Estimate the errors of the solution.

10.Find the solutions of the boundary value problem for the equations
fromex. 9 ¢, d, f using the “shooting” and difference methods with the
boundary conditions y(0) = y(1) =1 and step h=0,1. Estimate the
errors of the solution.
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Chapter 5.Differential Equations in Partial Derivatives (Mathematical Physics
Problems)

5.1 Introduction

Engineers and researchers have to deal with the solution of differential
eguations in partial derivatives in many fields of science and technique: in aero-
and hydrodynamics, nuclear physics, telecommunications etc. Mathematical
models with differential equations in partial derivatives are widely used in the
theory of automatic control and in measuring techniques. Such equations contain
partial derivatives in a few independent variables. Let us consider differential
equation of the second order with two variables:

+

T f T f T f
+ B(X, + C(X,
e (X,y) Ty (X,y) v

E(% y)‘%—fy +D(% y)’%—fX +F(xY) =G(xy).

A(X,Y)
(5.1)

Like ordinary differential equations the unique solution of equation (5.1)
can be obtained only by setting additional conditions, but as two independent
variables x and y are present here, the condition must be set for some curve in
plane xy. This condition can be imposed on a function f or on its derivative
and depends upon the equation which determines its form and character of
behaviour.

There are three types of differential equations of the second order:

—dliptic, if B> - 4AC<0;
— parabolic, if B?> - 4AC =0;
— hyperbolic, if B> - 4AC >0.

Equations can change from one form to another depending upon values of
the coefficients.

Elliptic equations describe stationary processes; thus the problem is set in
the determined limits and the boundary values are set at every point of the
region’s boundary. Other two types of equations describe evolutional processes.
In such problems it is more frequent when on one part of the boundary the
boundary conditions are set, and on the other - the initial ones.

The examples of several differential equations in partial derivatives,
which describe the different types of problems, are given in Table 5.1.
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Table 5.1

Equation Mathematical form Examples of the equation problems

Laplace bf =0 Stationary flows of liquids, heat fields

Poisson DOf =-R Heat transfer with the inner heat sources
Diffusions Df = iz f I Non-stationary heat conduction

h* qt
1 7°f Wave propagation
Wave bf = c? qit? (sound, electromagnetic etc.)

Biharmonic Df =F(xY) Plates deformation

In Table 5.1 the accepted denotations of more widespread operators are
used, such as:

L aplace operator Df -1 : +g;
x> Ty

Biharmonic operator D’ f 1 E +2 ﬂz f . o1 E :
fix >y Ty

There are two methods of solution of differential equations in partial
derivatives: difference method (method of finite differences) and method of
finite elements. In the modern applied mathematics both methods are considered
as interpretations, which describe how to use the general theory of difference
methods in the solution of differential equations in partial derivatives.

The variation calculation lies in the basics of the method of finite
elements. Differential equations and boundary terms are used to define the
variation problem. In the method of finite elements the physical problem is
replaced by a cobbed-smooth model. This method complicates finding of the
problem’ s solution and demands high qualification and experience. It is unique,
as every solution is used only for a concrete problem. The method of finite
elements became widely spread for the solution of special problems in
theoretical mechanics, hydrodynamics and in the field theory. It is complicated,
requires serious preparation and knowledge in the concrete area, and its
specificity is described in special textbooks. To solve the problem in automation
and control systems difference methods are more frequently used.
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Difference Methods

In chapter 4.1. basic definitions and rules of difference patterns
construction are considered. For differential equations of the second order in
partial derivatives a two-dimensional rectangular net is more frequently used.
Difference patterns which are applied to the two-dimensional sguare net with
step h, presented in Figure 5.1 (index | gets an independent variable y, and i

belongs to axis x), can be considered as a unidimensional case from chapter
4.2.2.

y)\
y; +h
Yi
y; - h
0

Figure5.1

To facilitate the denotation f(x; +h,y;) could be replaced by f;, ;.

Using this denotation, we will get correlations to approach partials derivativesin
practice. This could be illustrated by the specific calculation templates
(Figure 5.2):
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From these elements the most complicated calculation templates could be
built for differential equations. Adding derivatives could be performed via
superposition of the calculation templates needed. Using this method the
templates for Df and D' f (Figure 5.3) are constructed.

All resulted calculation templates have errors of the second order. It is
possible to make more exact calculation templates by plugging additional knots
Into consideration. Sometimes, in order to minimize the distribution of errors,
left or right differences are used.

Often difficulties connected with the use of rectangular net emerge, as the
boundary has wrong configuration which does not pass through the knots of the
net. We will consider an example of such problem’s solution for the calculation
template of Laplace equation in the area limited by an arbitrary curve which is
represented in Figure 5.4.
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Second partial derivative for knots on the boundary of the region could be
written as:

fa' fi,j fi,j' fllj

Tf _ ah h

X 0,5(ah + h)
fo- £, f,-f..

Tf __ bh h

Ty 0,5(bh +h)

After superposition
Df » E&fi'“ f + f, + fi’j'l - a+h f

Q1O

+ a .
w8+a al+a) bl+b) 1+b ab
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After applying a calculation template to each of n knots of the net, we will
get the system of n equations, which can be linear, if initial differential equation
has the proper structure. In this case the solution of the problem becomes the
solution of the following system of equations:

ématrix  of uévector - column of unknown 0 _ évector - column of u
&coefficien tsH& meanings in nets H~ &free members of matrix



5.3 Solution of Problems in Mathematical Physics

Practical methods and algorithms of solution of different forms of
differential equations in partial derivatives have the characteristic features and
require detailed consideration on the example of the more widespread problems.

5.3.1 Elliptic Equations

Many different physical problems could be described by the elliptic
eguations: division of electric tensions on a plane that conducts a current;
problem about the stationary flows of heat in a limited three-dimensional body
etc. Often there emerges the necessity to solve such problems in the theory of
automatic control. Most elliptic equations are described by Poisson equation or
its special type — the Laplace equation.

We will consider the classic Dirichlet problem for the Laplace equation in
a rectangular area which is formulated like this: to find the continuous function
f(x.y), which satisfies into the rectangular area
W={(x,y) / O£ x£a, O£ y£b} of the Laplace equation:

taking into account the boundary value:

x=0; f(0y) = fu(y),
x=a;, f(ay)=faAy),
y=0; f(x,0) = f3(x),
y=b; f(x,b) = f4X).

Let us enter in the area of solution a two-dimensional net with the step h
on the axis x and | on the axis y. Then, using denotations from the previous
chapter and approximating the Laplace equation by a difference equation, the
following system of linear equations could be obtained (to simplify, suppose
|=h):

1
fij :Z(fiﬂ,j + fi-l' + f

Nl i,j+l

fio="F(x), fi.=f(), f,, =), f, =)
ai=1 2, ..,n1; j=1, .., ml

+ fi,j-l) )
(5.2)
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This system of equations has plenty of zeroing elements and satisfies the
terms of convergence at use of difference methods. Often the solution of such
systems is found via the Gauss-Seidel method, which, when used to elliptic
difference equations, is named the Libman method or method of successive
displacements. The order of iterations can be traced, rewriting the system (5.2)
inaform:

mH 1 [ m m
f1,(1 K :ng(h) + fl(h) + f2(,1) + fl,(z) ,
= ln@ e 0+ 10+ 1)
£ = 2@+ 100+ 10+ 10,

f () =le{f3[(n' 1)h]+ f,(h)+ f 7 + fn(_T?z},

n-1,1 n-2,1
mH+. l mH+. m m
g =2 [h@ + 10+ 10 + £,

1
(m+l) — (m+1) (m+1) (m) (m)
1:2,2 _Z[fz,l + 1:1,2 + f3,2 + f2,3 )

where overhead indices mark the sequence number of iterations. m is the
previous, m+ 1 is the following.

Usually consider ) =0 for all i and j. Any elliptic equations which do
1°f
xTy

solved either by the Libman method or by other methods (Jacobi, successive
overhead relaxation); as for them, the terms of convergence are executed. For

1°f

xTy

convergence of difference methods does not have the theoretical solution and it
IS necessary to examine the obtained system of equations in every separate case.

not contain are taken to the systems of iterative equations, which can be

elliptic equations which contain in a general view, a problem of

5.3.2. Hyperbolical Equations

The hyperbolical equations in partial derivatives are very often used in
engineering practice. An example of such a problem is a wave equation which
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describes different types of vibrations: oscillation of string or membrane,
distribution of sound-waves in different environments etc.

In a general form the problem can be formulated like this: to find the
function f (X, t) which satisfies into the area W={(x, t), Ox £ and, 0 £t £ T}
eguation

1 f _c? 1 f
it x?

(c=const >0),

with initial conditions

F(x,0) = f,(x),
it
it

w0 =9(%)

and boundary values

F(O.0) =m(t),
fa,) =my(t).

As replacement of variables of t =ct brings equation over to the form:

Tf _1°f

in future we adopt c=1.
Passing to difference equation on a net with the step honx and t ont
with central differences, we will get
f

- Zfi,j + fi-1,j — fi,j+1' Zfi,j + fi,j-l

h2 t2

i +1,]

If to enter r :%, the correlation for f; ., will be the following:

fi,j+1 = rz(fi+l,j * fi-l,j) +2(1' rz) fi,j - fi,j-l' (53)
The chart of solution in accordance with equation (5.3) is hamed three-

shares, asit linksthe value f; ; onthree sharesj-1, j, j+1. This chart is obvious
and it allows to express f; ; through the value of f from previous shares (there
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are non-obvious charts based on the use of other calculation templates, but they
require a lot of calculations in the course of the system’s solution). To find the
solution on the first share interpolations methods are usually used. For example:

fia="fig +tg(xi ) (5.4)

Correlation of the net’s sides concerns the size of r, which defines the
firmness of the solution. At r>1 the solution is unstable, at r<1 it is stable, but
exactness of it decreases with diminishing of r, at r=1 the difference solution is
stable and coincides with the exact one. The choice of r=1 is comfortable and
allows to simplify the correlation (5.4)

fia = fisgy +fiigy - fija
5.3.3 Parabolic Equations

In the example of a problem which results in parabolic equation in partial
derivatives, there is a problem concerning heat-transfer on a long bar. It is
described by equation of heat-transfer (or diffusions).

The problem consists of finding f (x, t), which satisfies in the area W={(X,
t)O£XE£a O£t £ T} equation

bl :kﬂzz (k = const >0),
It X
initial term
f(x, 0)=fo (%
and boundary values
FO.6)=m() ,
f(a,t)=my(t) .

Replacement of variablest =k t brings equation to the form

T
m 9

for simplicity in future we will assume that k=1.
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Two variants of getting the difference equation are possible on a net with
astephonxand t ont (Figure5.5).

—
—

(-Lj) 1G,j)  [(i+1,j) : ij+1)
(i-1,) (i+1.))
(i-1) J )

Figure 5.5

The variant with approximation on a four-nodes template (Figure 5.5, a)
results in a non-obvious two shares difference chart
2f, - @+2r)f +2f, =-f

i+, ij-1?

where r = k—tz
h

This chart is complemented by the equations obtained from the boundary
terms

fo, = M),  f., =m(,),

that brings the problem to the solution of the system of equations which have the
stable solution regardless of the values of r.

The variant with approximation on a four-nodes template (Figure 5.5, b)
results in the obvious two shares system

fi,j+1 :rfi+1,j +(1- 2r) fi,J +2fi'1ij'

This chart is stable only at r£0,5, that results in a necessity to conduct
calculations with a very small step on t, which limits the fast-acting and requires
the greater charges of computer time. That is why for parabolic equations a more
wide distribution received a non-obvious chart.
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5.4 Remarks

The method of the problems solution has to be chosen at the initial
stage. The developers usually prefer the difference method, but in a number of
cases for problems with well-developed theory (for example, problems of
mechanics), it is appropriate to use the method of finite elements.

In this chapter the difference methods are considered. It is vital to be as
exact as possible while determining the method of solution. In the difference
methods there is an error of the second order. To estimate it, one could use
ordinary differential equations in accordance with Runge method (Richardson
extrapolation). In case of symmetry in the solution’s area, it is possible to
decrease the number of knots two or even four times (the symmetry should be
on both axes of the co-ordinates). It allows saving time and decreasing the
amount of calculations.

To solve the problem effectively, one should carefully choose the correct
initial meanings. The speed of convergence in the course of application of the
difference methods depends on it. Often, while solving the problem, a few
stages should be passed: at the first stage the correct initial approach should be
chosen for a rough net, and at the following stage — a more exact solution for the
fine netisused .

Exercises

1. Give examples of the engineering problems leading to the differential
eguations in partial derivatives. Why are the problems with the partial
derivatives called the problems of mathematical physics?

2. What types of equations in partial derivatives depend on their
coefficients?

3. What are the stages of performing the difference method that are used

to solve the partial derivatives equations?

Give solution of the Dirichlet problem for the Laplace equation.

Give solution of one type of the wave equations.

Give difference templates for the 1, 2, 3, 4 partial derivatives, the

L aplace and biharmonic operators.

7. What are the ways to choose the correct method of solution and how
could it be estimated?

o 0k
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Chapter 6. Experimental Data Processing
6.1 Introduction

The data processing considered in this chapter (procedures of
interpolation, approximation, statistical data processing is frequently used in the
problems of the computer control systems development.

6.2 Interpolation

The purpose of interpolation — which adopts the function in separate
points x[a,b] (i =0,1,2,...,n) (knots of interpolation) —is to get the values:

F(%) =Y, FOXO) =Y, o F(X) =Y, «..F(X) =Y, (6.1)

These values coincide with the previously set values in the points of unknown
function y=f(x). It means geometrically that we need to find the curve

y = F(x) of certain type which crosses the system of points M (x,y,) (i=0, 1,
2...,n) (Figure 6.1).

y A

yn ________________ )_/T_FE:E)/

/7% P - ;

e ; ! i

Yi |- , E i E

0 ! P N

X X% X X, X
Figure 6.1

Generally, this problem has an endless number of solutions or does not
have a solution at all, but it becomes one-valued when instead of the arbitrary
function F(x) the polynomial P, (x) of degree not higher than n, which satisfies

condition (6.1) is sought, that is
P.(X) =Y, P.(X)=Y; soees Py(X)=Y; ey P(X,) =Y,

As a rule, the interpolation formula y=F(x) is used for precise
calculation of the values of unknown function f(x) for x* x (i=0,12,..,n).

Such an operation is called interpolation. One should keep in mind that
interpolation is used when xI [x,,x ] and extrapolation - when xI [x,,x ],
where X < X, orx> X, .
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Let’s consider afew methods of interpolation.

6.2.1 Difference M ethods

There are many difference methods of interpolation. The Newton method
Is more frequently used for the so-called "ahead" interpolation. An interpolation
polynomial in this case will be:

P.(x) =C, +C,(x- %) +C, (X~ x)(X- X) +...
~FC (X- X )(X- X) ... (X=X _,).

Coefficients C, could be found from equations:
P.(X) =V, i=0,12..,n,

that allow to write the system in the following form

Co = Yo
Co +C1(X1 - Xo) = Yo
Co +C(% - %) +C,(% - %)% - X) =Y, (6.2)

C:0 +C1(Xn - XO) ++Cn(Xn - XO)(Xn - Xl)(xn - Xn-l) = yn )

Thisisalinear system of equations with a three-cornered matrix.
If we adopt step x,, - x =h inthe areawhere x| [x,,x ], we will get the
difference correlations for the system’ s (6.2) coefficients:

Co = Yo

Cl:yl' yo_Dyo,
h h

Dy, - right first order difference in the point y,;

C :yz' 2y1+y0 :Dzyo
’ 2h? 2h* "’

D'y, - right second order difference;
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_ Dy,

Ly
D'y, - right j order difference.
Then
_ DY D'y,
P(X)=yY,+ h (x- Xo)+W(X- X)(X- %) +...
D
ot nl:\’: (X= X )(X- %) o (X= X). (6.3)

From practical point of view the following expression is used to determine
the differences of higher orders:

Dy, =D(Dy,) =D, - Dy,
If n=1 with (6.3) we get aformulafor linear interpolation

Dy,
h

Pl(x) =Yt (X' Xo),

and if n=2 —formula of parabolic or quadratic interpolation

D'y,
2h?

Dﬁ}“ (X- %) +

RO =Y, + (X= %,)(X= %)
Practically, in this case n is chosen so that the difference D'y is
permanent with the determined exactness. For the initial value x, it is possible

to take any tabular value of argument x. When the amount of values of function
Is finite, amount n is limited and it couldn’t be greater than the amount of the
function’ s values minus one unit.

Formula (6.3) is caled the first Newton interpolation formula. This
correlation is not convenient for interpolation near-by the last values y. In this

case, as arule, the second Newton interpolation formula is used, which could be
obtained from the left differences of the last value (x,y. ) (“back”

interpolation). Then the interpolation polynomial looks like:

Pn(X) :CO +C1(X' Xn)+C2(X' Xn)(x_ Xn-1)+
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+C3(X' Xn)(x' Xn-l)(x' Xn-2)+
G X X)X %) e (X- X).

Coefficients C | ae

C:0 = yn’
Cl o Dyn-l — Nyn ,
h h

N'y_ - left difference of j order.
The final expression for the second Newton interpolation formulais:

R0 =Y, + 2 (x %)+ 22 (- X)X %)+
DY,
+W(X_ X )(X= X1)-(X = %)

The Newton interpolation formulas can be used for extrapolation also. If
X < X,, one could use the first Newton interpolation formula, thus:

X" % 0.

If x> X, the second Newton interpolation formula could be used, so:

X- X
h

n>0.
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Thus, the first Newton interpolation formula, as arule, is used for “ ahead”
interpolation and “ back” extrapolation, and second - for the “back” interpolation
and the “ahead” extrapolation.

In the Newton formulas left and right differences are used. The use of
central differences in order to get interpolation formulas results in Gauss,
Sterling and Bessel formulas.

We can consider these formulas on (2n+1) equidistant knots of
interpolation

X s X () seees X 10 X0 s X eees Xy 10 X

thus
Dx, =X, - X =h (i=-n,-(n-1),...,n-1),

and for function y = f (x) the values are known in these knots: y; = f(x;).
We need to find the polynomial P(x) of degree not higher than 2n so
that:

P(x) =Y.
Polynomial P(x) could be found in the following way:

P(X) :Co +C1(X' X0)+C2(X' Xo)(x' X1)+C3(X' X-1)
(X' Xo)(x' X1)+"'+C2n-1(x' X—(n-l))"' (64)
-"(X' X-1)(X' Xo)(x' Xl)(x_ Xn-l)(x_ Xn)'

Similar to the Newton interpolation formul as:
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C = _ DZIr]-ly'(ﬂ-l) .
2n-1 (2n _ 1)| th-l !

CZn = DZ y‘” )
(2n)!h*"

These coefficients form the first Gauss interpolation formula, which
contains differences (Table 6.1):

Dy,, Oy., Dy, Oy,, Dy,, Dy,, ...

Similarly, it is possible to get the second Gauss interpolation formula,
which contains central differences:

Dy.,, Dy., Dy,, Dy,, Dy,, Dy,, ...

Using middle arithmetic value of the first and second Gauss interpolation
formulas, we can get the Sterling formula. In general, it is appropriate to use the
interpolation formulas with central differences in the middle of interval, while
on its edges, as a rule, the Newton formulas should be used. Application of these
formulasis given in Table 6.1.

Errors of interpolation for the Newton formulas could be estimated in the
following way for the first and second formulas accordingly:

D, (x) = H4=H-A- 1) (g

DY,
(n+1)!

D (x)= XA+ DA+ 1)y
(n+1)!

where q = X hx” :

For the Sterling formula:

D2n+1y ( ) + D2n+1y
-(n-1 -n 2_ 1 2_ 22 2_ n2 .
220+ 1) a(g° - 1)(q ) - (g )

D(x,) =

98



Differences interpolation methods

X Yy | Dy | Dy | D’y | D'y Notes
Second
7 ofv-] Newton
X2 | Yoo Vs V- formula
Dy., DYy
X1 | Y //Efy-z D'y 4
Dy, DY,
Sterling
X | Yo i Dzy-l—i—-»D4y.z--> formula
A LDy, | A DVal_ A |, Bessd
Y \\ v \ 4 formula
Xq Y1 <‘D2yo D4y-1
\
N
Dy, D'y,
AN
N
X, Y, Dy, D'y,
N
Dy, D'y, N\ First
Newton
X3 Y3 DY, D'V | formula

Table 6.1

In case of unequidistant values of the argument it is possible to get
interpolation formulas, using determination of the divided differences. For

example, relation
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[Xi , Xi +1] = M
i1” X
is called the divided difference of the first order, and relation

[Xi+1’xi+2] - [Xi’xi+1:I
Xis2 = X%

[Xi X415 Xis2] =

—the divided difference of the second order.
The divided differences of order n could be obtained from the recurrent
relation:

[X, X X ]:[Xi+1""’xi+n] = [ Xz Xinal
e Xisn = X .

It is possible to get the Newton interpolation formula for the
unequidistant values of argument:

P(X) = Yo + 1%, X1(X= %) +[%, %, %] (X- %) (X- %) + ...
% X X (X %) (X X)) e (X X y)
6.2.2 Lagrange Interpolation
Lagrange interpolation is used generally for the arbitrarily located knots.
An interpolation polynomial for the Lagrange method could be givenin a
form:

P.(X) =y,0,(x) +yhb(X)+ ... +y,b (X)),

where al b (x) (j=0,..., n) are polynomials of degree n, the coefficients of
which could be found via (n+1) equations:

P.(X) =Y,
as aresult we will get the system of equations:

Yol (%) + Vi () + ... +y.0,(%) =V,
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yObO(Xn) + ylbl(xn) + + ynbn(xn) = yn'
If the value b, (x) is picked so, that

1 i=],

bj(Xi): 0, it ]

the previous system of equations is sufficient.

This condition means that any polynomial b, (x) equals to zero at each
point x, except for x;. That iswhy in general case apolynomial b, (x) IS

b, (%) = C, (%= %)(X= X)X~ X ) (X~ X,p)oe(X X,).
If b, (x;) =1, coefficients C, could be found from correlation:
Co =1/(X; = X)) a(X; = X )(X, = X))o (X, - X))
We get the following polynomial:
P.Y=ay;*
j=0

% (X' Xo)(x' Xl)(x_ Xj-l)(x' Xj+1)"'(x_ Xn)
(Xj - XO)(Xj - Xl)(XJ - Xj-l)(xj - Xj+1)"'(xj - Xn) .

Entering denotation

Ly (%) = (X= %) (X= X)X = X )(X= X)) (X X,),

we get the following formula:

g L
R=ay

One should point out two main properties of the Lagrange polynomials:

g L%
1) Jazo L,(Xj)

J
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2) if B,(x) linear depends on y,, a suitable principle of superposition is the
following: the interpolation polynomial of the sum of a few functions equals to

the sum of interpolation polynomials of the elements.
Anerror at Lagrange interpolation can be calculated in this way:

£ Mos 3y x- X)X X),

D(x,) (n+ D)

where M_, = MaX f(nﬂ)(x)‘-

x0£x£xn

6.2.3 Spline Interpolation

It is comparatively recently that splines started to be widely used in
calculation methods. In the machine designing they have been used for quite a
long time, because it were namely the French curves or flexible lines, that were
transformed to make it possible to draw a curve through the multiplicity of
points (x, Y, )

It is possible to show (using the theory of bend to the squared beam at
small deformations) that a spline is a group of united cube polynomials, in the
conjugacy points of which the first and second derivatives are equal. Such
functions are called cube splines. To get them we need to set the coefficients
which determine a polynomial on the interval between the two points.

For example, in the case presented in Figure 6.2 it is necessary to set all
cube functions q,(x), 9,(X),...,q, (X). In a more general case these polynomials

are:
q (x) =k, +k,x+k,x* +k,x°, i=1,2, ...,m

where k;; - permanent, which is certain by the indicated conditions (j= 1,2,3,4).

The first (2m) of the conditions demands that splines clash in certain
points:

a (X)) =V, i=1,2..,m
Gua(X)=y,  i=0,1,..mL

Following (2m-2) condition demands that in the point of conjugacy the
splines are on the levels of the first and of the second derivatives
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O.(x)=0(x),  i=1..ml,

0 (%) =G (%), i=1, .. m1.
y A
Yin bommmmmmmnmgs //
Unu\X) /.
b -
1 //: !
y2 PR T ) -
QZ(X) Lo
yl ===f=X"-" H 1 :
X - r
% .
0 C :_ [ >
XO Xl XZ Xm—l Xm X
Figure 6.2

The system of algebraic equations has a solution, if the amount of
equations equals to the amount of the unknowns. Two additional equations are
needed. As arule, the following additional conditions are used:

q,(%,) =0, q.(x )=0.

The spline obtained is called a “ natural cube spline”. At the coefficients of
the spline the cobbed-smooth polynomial interpolation is used.

If we separately choose the type of cube polynomials, it is possible to
simplify a problem considerably (to decrease the amount of equations). In case,
when separate cube equations are in the following form:

0 (9 =ty +tyiq + Dx[(kiq - dtPt- (K - d)t?t, i=12,..,m

where Dx =X - X_,, t= = t=1-t,

and Dyi =Y Yoo % = di )

Dx,

each of the equations g (x) contains only two unknown coefficients. Since the
first equation is recorded, with every next eq_uation only one unknown
coefficient is added. Thus, when x=x_,, t=0, t=1, and at x=x  t=1,
t=0,
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Consequently, all conditions, except for the conditions for the second
derivative, are satisfied. The second derivative is expressed for the internal
points as following:

ki-lDXi+1 * 2k| (DXi * DXi+1) + ki+1DXi = 3(diDXi+1 * di+1DXi)’
and for two external points:

2k +k =3d, and k_ +2k =3d .

Thus, the system of equations comes to its tridiagonal form:

é2 1 0 0 u
e "2 2(DX1 + sz) Dxl sz H*
é O DX3 2(DX2 + DX3) 2(Dxm-l + Dxm) Dxm-ll;I
e u
e Dx,, 1 2
dou & d U
e, u e u
éklg é dlez +d2DX1 l;l
8.0 _ & dDerdDg U
e u e u-
é. l;l é ........... l;l
? " l:I iﬂm 1Dxm -l-deXm-ll:I
e u e u
&Kail & d, 0

The methods of solving such systems are well known.

In many cases the method of splines is more efficient and convenient,
because it allows to get an analytical piecewise-polynomial function. There are
splines of higher orders. It is also possible to use this method in the other fields
of computational mathematics, for example, in numeral integration and while
solving differential equations.

6.2.4 Tridimensional Space Interpolation

This problem is very common today in the three-dimensional designing at
the delivery and processing of the real objects’ images, construction of surfaces
and landscapes, in physics, astronomy, cosmonautics, medicine and other
spheres.

Setting the problem. Let’s assume we have a function f (x, y) and
the row of its values is known:

f(%. ) =2, f(x, v)=2, f(x. v.)=2, ... f(x, v.)=2,.
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We need to find a function, that traverses with function f(x, y) in the knots of
interpolation. In order to find the unique solution for the problem F(x, y), it is

supposed to be a polynomial of degree not higher than n.

To solve this problem the analogues of the interpolation methods, which
exist for the function of one variable, are used.

The general formula for the Newton interpolation has the
following polynomial form:

P,(% ¥) =Co +C,[(X- %)+ (¥~ ¥o)]+ C[(x- %) +(y- yo)l(x- %) +(y- y)]+
+Cy[(x- %)+ (¥~ Yollx- x) +(y- yll(x- %)+ (y - vo)]+...,

where for i from O to n.

Then
_ Dz,
" ilth e+
where h —step for x, | —step for y.
In ashort form, in case of
_X- XO - y- yO
q_ h ' p |

__ .gh+pl (gh+ ph[(a- Dh+(p- I]...[(q- nh+(p- h)]
R (X, Y)—Zo+ﬁDZo+---+ nl(h+1)" D'z,

Error of the Newton method is:

) = (@h+ pa)l(@- h+(p- De]..[@- Wh+(p- hel

Ry (n+Di(h+1)"™

We consider interpolation of space curves when the order of points is
known. In case of a huge variety of points the problem could be much more
complicated and especial two-dimensional differences are to be used.

In Lagrange method we seek for polynomial L (x,y) of degree not
higher n:

The values of coefficients Iy follow from the condition of coinciding
with a function that is studied in the knots of interpolation X; v; :

f(x,m)=§ih¢ik(>§,m),i=1.7,

where j . (x) are the fixed values of the function.
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A polynomial will transform to the following form:

P(XY)=bj ,(X,y) +bj ,(x y)+..+bj (X, y),

ibol 0(X0: Yo) ¥ BJ (X9, Vo) + -+ B (X5 Vo) = %,
:‘bJJ 004 Y1) +Bj (%, Yi) + o+ B (X, Y,) = 2,
.I....

fbnl O(Xn’yn) +bJj 1(Xn’yn) +"'+bni n(Xn’yn) = Zn'

that

General Lagrange formula interpolation is analogical to the corresponding
method of unidimensional interpolation:

P xy) =& 2 O 0 (X )0 %) 0 X,)
=0 (X = X)X = X)) e (X = X ) (X = X)) e (X - X))
(Y- Y)Y ) (Y- Y)Y Vi) (Y- )
(yj - yO)(yj - yl)(yj - yj-l)(yj - yj+1)"'(yj - yn)

Let's assume that (x,,y,) .- (Xn,Yn) — N+1 are different points in space
[X, EXEX; Y, EYEY)]. Thereisaunique polynomial P (x,y) of degree not
higher than n, which has the following characteristics:

f(x,y)=P(x.y)fori=01...,n.

L agrange formula for the given polynomial looks like (i =0, 1, ..., n):

Pn(X, y) :én Zj (X_ Xo)(x' Xl)(x- Xj—l)(x- Xj+1)"'(x- Xn)
i=0 (Xj - XO)(Xj - X1)(XJ - Xj—l)(xj - Xj+1)"'(xj - Xn)
(Y- Yo)(Y- ¥ (Y- Y)Y - Vi) (Y- )
(yj - yO)(yj - yl)(yj - yj—l)(yj - yj+1)"'(yj - yn)

In the course of the calculations, if a certain factor (x- x.) or (y-v,)
meets several times, it should be counted only once.
For acase, when X; = X, we will get:
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(X= %) (X= %) (X=X )(X= X, ) (X X )
(X = %)% = %) (X = X)X 7 X ) (X %)
(X= Xeg) (X=X )HY - Y)Y - V)Y Y
(% = X)X = X )XY, = Y, - Y)Y, - V)
. (Y- Y)Y Y
Y- Y)Y - Ya)

P(x,y)=az
j=0

ALY, =Y,

(X= X)X = %) (X= X )(X= X ) (X X))
(X = %) (X = %) (X = X )X = Xpyg)o(X) = X))
(Y- Y)Y Vo) (Y- Y Y- Vi) (Y- Yin)
(Y, - YUY, - Vo) (Y, - YD - Y)Y - Vi)
(Y- Yer) (Y- Yo)
(Y - Ye) (Y- Vo)

P(xY)=az
j=0

We will enter the following denotations:

L(jn)(x1 y) :(X' Xo)(x' Xl)(x_ Xj-l)(X+Xj+1)"'(X_ Xn),
(y' yo)(y' yl)(y' yj-l)(y+yj+1)"-(y' yn)

Then general interpolation formulawill be:

In more compact way it could be recorded as follows:

. 11,,,() X1, (y)
L(») ’ - n+1 n+1 ,
._ 0 )
where I, (X) = (X~ X)) ..(X~ X)), I . (Y)=(Y- ¥,)--.(Y- V).

The properties of Lagrange interpolation:

107



b) Actual principle of superposition:
P.(x,y) = P,(2) - alinear function from z. Thus, the sum of Lagrange polynomial

of several functions equals to the sum of polynomial of the components.
We will consider the example of the method’s application. Suppose two
points are set in space: z (X, Y,) . The expression for alinear interpolation is:

(= X)0y= %) |, (X %)0Y- ¥o) _
(Vo - YIOG- %) (V- Yo)(X - %)
_ Z(X- X)(Y- ¥i) +Z(X- X)(Y - Vo)
(%= X) (Yo~ Vi) '

P(xy) =z

If x, =%
— (y' yl) (y' yo) — Zo(y' y1)+21(y' yo)
P (X V)= = :
ﬂ(X y) “ (yo - yl) +Zl(y1' yo) (yo - yl)
_ o (x=x) o (X- %) _ Z(X- %) +Z(X- %)
Al P (X Y)= -
> Y 00 %) 706 %) (% - %)

Ifonly Y, =Y,.
The error of the method of interpolation is calculated using the formula:

1
Fx,0x,)

R.(x y)=T(xy)- L,(xy)= (n+ D) 0,.00,.,

where Xy Xy - depend on x,y and lie within the limits of the set space.

6.2.5 Interpolations by Selfsimilar Transformations

A lot of objects possess a property of selfsimilarity or geometrical
invariance to the spatial scale. If we examine these objects according to a
certain scale, their similar fundamental elements will constantly appear. Quite
often it is possible to see that mountain, coast, cloud, tree and other objects have
a similar structure. Prevalence of selfsimilar structures in nature is really
impressive. Selfsimilar are minerals and mountain breeds; locations of branches,
patterns of letters, capillary system of plants; nervous, lymphatic and other
systems in organisms of animals and humans; rivers, clouds, lines of seashore,
mountain relieves and so on. Such objects mathematically cannot be described
via simple functions.

The selfsimilar structure considers a fractal, which is a recourse model,
every part of which repeats the development of the whole model.
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The property of parts to be similar to the whole structure is called
selfsimilarity. Selfsimilarity assumes that the printing-down, down-scaling,
variations of some "standard" form allow nature to create a complex multiscale
structure easily.

Hierarchical character is another important property of fractals that allows
to repeat itself in different dimensions of space and time.

The classic methods of interpolation do not allow conducting
interpolation effectively when operating with badly differentiated functions.
Another limitation of this method is the fact that only separate points of space,
not an accumulation of points could be considered as knots of interpolation.
That is why for many practical problems interpolation is conducted using
selfsimilar multitudes.

A selfsimilar multitude (Figure 6.3) is a multitude X1 E, (in

two-dimensional space) or X1 E, (in three-dimensional space), that can be
presented as an accumulation of finite amount of submultitude

X=UX . (1.2)

The next conditions should be followed:

1) X1 E, (XIE),i=L.,n;

2) multitudes x, and X, ,i, j=1,...,n i <> ] inpairsdo not block each other;

3) X. =c(X) i =1 ..., n where ¢ isatransformation of similarity with the
coefficient of homothety 0< 5 <1.

/\M

Figure 6.3

The strictly selfsimilar multitude (Figure 6.4), is a selfsimilar
multitude, where all the transformations of similarity, i =1, ..., n have identical

coefficients of homothety 0<s<1.
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Figure 6.4

The incorporated selfsimilar multitude (Figure 6.5) is a
multitude that can be represented as an accumulation of strictly selfsimilar

multitudes.
J\_;/\? /\
V Z\/{V’

Figure 6.5

The selfaffine multitude (Figure 6.6) is a multitude (not empty),
that can be represented as an accumulation of the complete amount of subset

The following conditions are to be followed:

1) X1E, i=1..n;

2) Multitudes x, and X, j =1,...,n, i <> j inpairsdo not block each other;

3) X, =w (X) where w. are affine transformations with the coefficient of

homothety O0<s <1 and aspect 0< g £1 ratio in relation to one of the axis.

Accordingly distinguished is a strictly selfaffine multitude
(Figure 6.7) for a case, where all affine transformations have the identical
coefficient of homothety and united selfaffine multitude (Figure 6.8),
which is a union of strictly selfaffine multitudes.

N\ A

Figure 6.6 Figure 6.7

VAN
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Figure 6.8

The class of selfsimilar multitudes is a part of the class of selfaffine multitudes.
Suppose A, ={a,,..,a,}, n33 is a certain well-organized complete
multitude of three-dimensional Euclid spaceE,, and there is a Hatchinson

operator which satisfies the conditions:
1) sequence of multitudes
A=W(A)A =W(A)
Is a convergence in accordance with Hausdorf metric,
2) Ay belongs to the multitude

AT WI(A)j=12...
after j iterations.
The Hatchinson multitude interpolation with range j ( R) Is called a

continuous curve that traverses all the points of ordered multitude A =W’ (A),
thus a, is connected with a,, a, is connected with a,, ..., a_, is connected
with a,.

Consequently, the problem of interpolation consists in finding the
Hatchinson operator W that satisfies terms 1-2 and in the construction of

interpolation of Hatchinson multitude A rangej .

LetA={a ,..a_}, n33 is a complete ordered multitude of points of
three-dimensional Euclid space E,.

Let’s enter the concept §j t of relations, which will be calculated at every
iteration for every element:

. o=(a-2a)U(,-a), t=0;

. i.=(a-a)U(@,-4a), t=a-a;

- j,=(a,-a)0(-a), t=a-a;

. i.=(@.-a)U(a-a) t=a-a;
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where (a,, - a)U(a, - a,) isacorner between vectors (a,,- a) and (a, - a,).
(This corner will be calculated in plane XOY and XOZ).
On the multitude of elements A the following limitations are imposed:
1)s <1,i=0,..,n-1;
2) s =1,
3)1<D<2;
where D is selfsimilar dimension of multitude A.
According to the known Banah theorem about an immobile point, the

error of the method of interpolation using selfsimilar multitudes could be
estimated via the formula:

E m+1

D= xD;
1- E

where E = max{s; },
D =max{d(a,- a)}, i=0,..,n-1.

For every segment of the figure the following order of actions is set:

1. The coefficient of downscaling is calculated (Figure 6.9):

i-segment
di
Figure 6.9
2. The corner of rotation is 3. The corner of rotation is
calculated in plane XOY (Figure caculated in plane XOZ
6.10): (Figure 6.11):
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0
i-segment
-X\\
.......... b a\
C2
jxoy:a'b; j xoz =@ - b;
Figure 6.10 Figure 6.11
4. The rotation of the regenerated initial broken line is executed and its position
changes (figure 6.12):
X
0 »
i - segment
YVV
X
0 >
i - segment
YVV
Figure 6.12
In figure 6.13 the image of trees built of selfsimilar multitudes (fractals) is
given.
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! .".‘:f

Figure 6.13

Interpolation of the functions of two variables using selfsimilar multitudes
z = f(x,y) could be conducted on every variable x and y consistently.

The interpolation of the function of one variable x:
F,0)=f(x v,

where, y, =y. Further, examining the values obtained f (X)=f(X,y,) as
values of function f(X,y) of one variable y, by the method of interpolation
using selfsimilar multitudes we find the value f (X, y) =zZ.

Example of construction of landscape of the river by selfsimilar
transformations is represented in Figure 6.14

Figure 6.14

6.3 Approximation

Approximation in general is a close description by one function
(approximate) of a definite type of another function (approximated) which is set
in different form, for example, datafile.

There are two main approaches to approximation of data information. One
of them requires that a curve (possibly cobbed-smooth) passes approximately
through all points which are set by the table. It is possible to do this using the
methods of interpolation which were considered in the previous chapter.
According to another approach the data is approximated using a simple function
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which is used for the whole interval of values (but not certainly) that it passes
through all the stipulated points. Such approach is called an adjustment of curve,
which aims to minimize the deviation from the data information. As a rule, the
least-squares method is used, that brings to the minimum the sum of squares of
differences between the values of function, which is set by the selected curve
and the data table.

Suppose we have in the table the set (n+l point

(%, Y,),(X,Y.), - (X,Y.) and we need to find an approximate curve g(x) ina
range X, £ X £ x_ (Figure 6.3). In this case, an error will be in every tabular point

€ :g(X.)' Y-

Then the sum of squares of errorsis calculated in the following way:

E =§J[g(>§) -y

Y

=]

Figure 6.15

As a rule, the function g(x) is elected as a linear combination of the
chosen functions g, (x)

9(x)=C,9,(9 +C,g,(x) +...+ C,g, ().
The condition of minimum of E is reflected in the equation:

TE TE TE
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It is known that
E:é.[clgl()(i)+czgz()(i)+ .. +C.0,(x)- yi]zi
i=0

this condition is equivalent to the system of equations:

T .
qC =28 [C,9,(x) +..+C,9,(x) - ¥ ]o,(x) =0;
pp

o =2alCat) . +Ca.)- yla(x) =0

This system can be written in a matrix form:

g agi(x) aagx)g,(x) - égl(x)gk(x)g
éo . l;l*
ga 9,(x)g.(x) o agx) §
(6.5)
.y éa 9,(x)yu
g - &
é. € u
&1 ga 9.(x)y.H
&

Elements of matrix in the left part and column of vectors in the right are
set by the data table. The given system of k linear equations with an unknown k
can be solved. The choice of function g(x) must be carried out taking into

account the character of data (periodicity, property of symmetry, existence of
asymptotic form). Sometimes the table is broken up into several parts and
separate approximate curves are chosen for every part.

The residual finite middle quadratic error of approximation is:

D=JE/(n+1).

If during construction of an approximate function orthogonal polynomials
are used
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a9,(x)g.(x)=0 if jrKk,

the system (6.5) is simplified, and a matrix becomes diagonal. Coefficients
could be obtained from the correlations

Qo

C = g,»(x)yilégf(x)-

i=0

For this reason in many standard programs of the curves adjustment
orthogonal polynomials are used.

6.4 Statistical Data Processing

When processing the data in experiments there is a necessity to estimate
descriptions of random values in measuring techniques (for example, estimation
of the measuring error), automation (problem identification unification,
optimum control), statistical radio engineering.

Estimation x of unknown mathematical expectation m_ of random value

X demands middle arithmetic results n of the independent tests

g
a X
;(: i=1
n )
and for estimation of dispersion's ;
é (% - %)?
F _ =l
n-1

Supposing the normal law of value distribution X it is possible to show
that this value

has the t-division of Student with k= n-1 degrees of liberty. It's possible to
define areliable interval for the real value x: after the known values of reliable
probability P from Table 6.2 could be found. Thus:
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o?

N

A casual size x is up-diffused after a normal law with a mathematical
hope m, and dispersion s:. The real value x is in the interval

(m, - D,m, +D) with a reliable probability P. To estimate the type of law
most applications have the criteria of Kolmogorov and Pirson, which act using
comparison of empiric function of distribution f_ (x), histogram obtained as a

D=e

result of the experimental data processing, with hypothetical f, (x), which

answers the offered hypothesis. This allows to make conclusions about their
convergence or divergence at the level of significance a, which allows to
calculate the probability of correctness of the given hypothesis.

In a Kolmogorov criterion coefficient | is defined as:

| =[f, (9~ £,(0_n,

which is compared to the critical value set from Table 6.3.

Table 6.2
Vaue for a reliable interval - e<t<e, where value t has the Student’s
distribution, depends on the reliable probability p and the amount of liberty

degrees k

k p=0.90 p=0.95 p=0.99
1 6.310 12.71 63.7
2 2.920 4.30 9.92
3 2.350 3.18 5.84
4 2.130 2.77 4.60
5 2.020 2.57 4.03
6 1.943 2.45 3.71
7 1.895 2.36 3.50
8 1.860 231 3.36
9 1.833 2.26 3.25
10 1.812 2.23 3.17
11 1.796 2.20 3.11
12 1.782 2.18 3.06
13 1.771 2.16 3.01
14 1.761 2.14 1.98
15 1.753 2.13 2.95
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16 1.746 2.12 2.92
17 1.740 211 2.90
18 1.734 2.10 2.86
19 1.729 2.09 2.86
20 1.725 2.08 2.84
22 1.717 2.07 2.82
24 1.711 2.06 2.80
26 1.706 2.06 2.78
28 1.701 2.05 2.76
30 1.697 2.04 2.75
40 1.684 2.02 2.70
60 1671 2.00 2.66
120 1.658 1.98 2.62

1.645 1.96 2.58

Table 6.3
Critical values | , depend on the level of significance

a | 050)040 | 030 | 020 | 020 | 0.05 | 0.02 |0.001| 0.001
| 5|1 0.828|0.895|0.974 | 1.073 | 1.224 | 1.358 | 1.520 | 1.627 | 1.950

At | <l ,, ahypothesis about convergence f, (x) and f, (x) is adopted.
c > coefficient is calculated using the Pirson criterion

. _ & [500- £00f
SRR

where k is number of digits of histogram (discrete values f, (X )).

From Table 6.4 the critical value is determined in accordance with a and
amount of liberty degrees
r=k-1-1,

where | - amount of parameters in the law of distribution (for normal | =2, for
Poisson | =1 and etc).

At c? <c} , the hypothesis is accepted.

Comparing the analytically obtained laws of probabilities distribution, it
IS convenient to measure their proximity using the value of middle quadratic
error.
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To estimate dependence of random vaues, which have stochastic
connection, the coefficient of correlation is used

n

a0 m(y - m)

¥ o n-1 s

Xsy

Determining the interdependence of random values in different moments
of time, the coefficient of correlation is estimated by means of the following
formula:

L Ak mIxe +t)- m]
R.(t)= ,
n-m-1 D

X

Table 6.4

Critical points of distribution

x— random value which is distributed by the c¢? law with the liberty degrees k
(the table contains values which are obtained from condition P(x) £ a)

Sg?regs a= a =0; a= a= a= a=
K 001 | 0.025 | 005 | 0.95 0.975 0.99
1 6.6 6.0 3.8 | 0.0039 | 0.00098 | 0.00016
2 9.2 7.4 6.0 | 0.103 | 0.051 0.020
3 11.3 9.4 7.8 0.352 0.216 0.115
4 13.3 111 9.5 0.711 0.484 0.297
5 151 12.8 111 1.15 0.831 0.554
6 16.8 144 12.6 1.64 1.24 0.872
7 18.5 16.0 141 2.17 1.69 1.24
8 20.1 175 155 2.73 2.18 1.65
9 21.7 19.0 16.9 3.33 2.70 2.09
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10 23.2 20.5 18.3 3.94 3.25 2.56
11 24.7 21.9 19.7 4.57 3.82 3.05
12 26.2 23.3 21.0 5.23 4.40 3.57
13 27.7 24.7 22.4 5.89 5.01 4.11
14 29.1 26.1 23.7 6.57 5.63 4.66
15 30.6 27.5 25.0 7.26 6.26 5.23
16 32.0 28.8 26.3 7.96 6.91 5.81

where x(t;) isvalue of random value X inthe moment of time t;, and x(t; +1)
— in the moment of time which differs from t. on the interval t. Thus,
X(t)=x, X(t, +t)=x, t is a time domain between i and j values X,
i-j=m.

The interval of correlation is considered as a period of time for which a

cross-correlation function diminishes 95 %.

After obtaining the data regarding x arrays and Yy, the calculation of
cross-correlation function is rather simple, but approximation of the type of
cross-correlation function by typical cross-correlation functions (Table 6.5) can
be performed using the least-squares method.

Table 6.5
Typical cross-correlation functions
Form Parameters
a=(y;-R@))/sit",
R(t)=s;(-af), R (" X X
t <1/a x( )—knownvalueof Cross-
correlation function
Rx(t):sze-a\t\ a:ln Si
" t" R(t)
1 s’
=s2g*" a=—[In—
R(t)=se R
R(t)=s’"" (1+af]) a » 4,5/t
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R, (t)=s2e " cosbt

S 2 cos

R.(t
b=p/2t;

pt,

1

)

at two known values of cross-
correlation functionR, (t), thus

R(t,)=0.

6.5 Numerical Integration

In many problems, which are related to identification, analysis, quality
estimation of complex systems in automatics, there is a need to determine
definite integrals.

If function f(x) is an antiderivative function that is situated on the

interval [a,s], the definite integral from f(x) can be calculated using the
Newton-Leibnitz formula:

| = &f (k= Fle)- F(a),

where F(x)= f(x).

But often it's quite difficult to calculate the integral because of
complicated analytical transformations (and sometimes even impossible,
especially in cases of improper integrals), as a subintegral function is set by the
numerical data, for example, obtained from the experiment.

The problem of the function's numerical integration consists of
calculation of the integral’s value on basis of the subintegral function’s values.
Graphically an integral is considered to be an area limited to the graph of
function

y = f(x).

The most widespread methods of definite integrals' calculation are:
methods of Newton-Cotes, Gauss, Tchebyshev, that are based on the use of
the so-called quadrature formulas replacing interpolations polynomials
of f(x);
methods of Monte Carlo, based on the use of statistical models.
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6.5.1 Newton-Cotes Formulas

To get Newton-Cotes formulas the integral should be given in aform:

b

Of ()dx = én A f(x)+D, (6.6)

i=0

where x - knots of interpolation; A - coefficients depending on the type of

formula; D - error of quadrature formula.
Replacing in (6.6) a subintegral function by the proper interpolation

Lagrange polynomial for n equidistant knots with a step h :b-_na makes it

possible to get the next formula to calculate coefficients A at the arbitrary
amount of knots.

_b-a (- "q(q-1)...(q- n)
AT im0 (@) 6.7

where q = x_ha.

A

Usually coefficients H, = b-a are called the Cotes coefficients.
- a

Thus, formula (6.6) is transformed to the following form:
b n
of ()dx=(b- a)a H, f(x) : (6.8)

With the following characteristics:

n

aH =1° H =H

i n-1°
i=0

At n=1 3 n=2 with (6.7) and (6.8) the formulas of trapezoids and Simpson
could be obtained:

= D[ o)+ 100)]

= D[ 0x) 41 (5)+ 1)
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In Table (6.6) the resulted values of coefficients for n=1, 2,...,8 are

given.
The erors of formulas of trapezoids and Simpson are estimated,
accordingly, using expressions:

3 5
p=-"M, and D=-1wm,
12 90

where M, * M, - are the maximal values of the second and fourth derivative
f(x), xI (a,b).

The complex Newton-Cotes formulas are combined from the simple
formulas. For example, for the formulas of trapezoids and Simpson:

| :g[f(xo)+2f(xl)+2f(xl)+...+ f(Xn)],

1= 01106) +4100) +21 () +41 (<) +..+  (x)].
The errors of complex formulas are accordingly:

h’ h°
D=-n—M, and D=-n—M,.
12 180

It is possible to get the component Newton-Cotes formulas of higher
orders.

In order to estimate the error practically, the methods of Runge
(Richardson extrapolations) are used. This method was studied in chapter 4.
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Table 6.6

Cotes Coefficients

A, =H,
Ho | H, | H, | H, | 4, | H, | 4, | 4, | H, | Sum
N
1 1 1 2
2 1 4 1 6
3 1 3 3 1 8
4 7 32 | 12 32 7 90
5 19 | /5 | 50 50 75 19 288
6 41 | 216 | 27 | 272 27 216 | 41 840
7 751 337 152 2989 | 2989 | 1323 337 751 17280
8 989 528 9&8 10:9 45_40 10:9 9&8 528 989 | 28350

6.5.2 Tchebyshev's Formula

Formula (6.6) can be derived to the form:

of (=4 AT (1) 69)

performing replacement of vériables:

In the course of the Tchebyshev’ s formula derivation such terms are used:
All coefficients A are equal;

The quadrature formula (6.9) is exact for al polynomials up to degree n
inclusively.
Thus, formula (6.9) looks like:
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of (dt = %a £(t). (6.10)

To find t, one should consider that formula (6.10) must be exact for the
function of the form :

f) =t k

1 .. n

After substituting these functions in (6.10) the following system of
eguations could be obtained:

N

I
.:.t1+t2 +.+t =0

n
T+t =3 (6.11)

. n+l
[+t = i (1) ]
2(n+1)

T

System of equations (6.11) has a solution a& n<8 and n=9. The

imperfection of the Tchebyshev’'s formula consists namely in the restricted
exactness. The values t; for different n are givenin table (6.7).

For an arbitrary interval (a, b) formula (6.10) could be presented as
follows:

_b-ag .
I = n iaﬂf(x|),

a+b b-a

where X =——+——t.
2 2

Error of calculations in the Tchebyshev' s method is:

a a._*_b(_;_)nﬂ
& 2 g el b-a g
D:O—e (n+1)!g fl l)(x)dx- a

LN+l
& . 3rbofom(y
n(n +1) i_lg 2 g (x)
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Table 6.7
Value of abscissas t; in the Tchebyshev's formula

n i t; n i t;
2 1,2 m0.577350 6 1,6 m 0.866247
1,3 m0.707107 2;5 m0.422519
3 2 0 3,4 m 0.266635
4 1,4 m 0.794654 - 1,7 m 0.883862
2;3 m 0.187592 2,6 m 0.529657
1,5 m 0.832498 3;5 m 0.323912
5 2;4 m0.374513 4 0
3 0

6.5.3. Gauss Formula

Gauss formula is a formula of the highest algebraic exactness. For the
formula of form (6.9) the highest exactness can be achieved for the polynomials
of degree(2n- 1), which concern 2n values t, * A (i =12,...,n).

The problem consists of determining coefficients A and abscissas of
points t; .

To determine the coefficients, formula (6.9) is often used for the functions
of form

f(t)=t,k=0,1,...,2n- 1.
Obviously

/(k +1)

é;kdt _12
=i
1 10

Then, the system of equationsiis:
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la At =0

.I. i=1

g

(& At? =1 (6.12)
i

.I. on 2n 2 2

: a At 2n-1

| 5 AtiZn-l =0.

(=

This system is nonlinear, and its ordinary solution is connected with
numerous difficulties in calculations. But, if we use the system for the
polynomials of form

f(t)=t“P(t), k=01...,n-1,

where P,(t) - Legendre polynomial, then it can be derived to linear form
relating coefficients A with the determined points t . As the degrees of the

polynomials do not exceed in correlation 2n- 1, the system (6.12) and formula
(6.9) to be executed assumes

§P.0Odt =3 AUR() (6.13
As the orthogonal left part of expression (6.13) equals to O, then:
& AUP(t) =0,

that is always provided at any values A in points t, which correspond to the

roots of the proper Legendre polynomials.
Putting these values t into system (6.12), we can calculate the first n

equations, and then it is possible to define coefficients A .
Formula (6.9), where t, equals to zero of Legendre polynomial P, (t), and
A,i=1 2, ..., n arecaculated from system (6.12), is called the Gauss formula
Values t,, A for different n are givenin Table 6.8.
For an arbitrary interval (a,b) the Gauss formulais the following:
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b- a

TaAf()

i=1

where
a+b b-a
= + t,.
2 2

To estimate the error of the Gauss formula with n knots we could use
correlation

(b- @) (n')*M,,
274[2n)f (2n+1)

where M, - maximal value of 2n derivative oninterval [a,b.

Table 6.8
Elements of Gauss formula
n i t A
1 1 0 2
2 1.2 n0.57735027 1
1:3 n 0.77459667 2:0.55555556
3
2 0 220.88888889
. 1:4 0.86113631 0.34785484
2:3 0.33998104 0.65214516
16 0.93246951 0.17132450
6 25 0.66120939 0.36076158
3.4 10.238619119 0.46791394
1.7 0.94910791 0.12948496
, 2:6 n0.74153119 0.27970540
35 0.40584515 0.38183006
4 0 0.41795918
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1,8 m 0.96028986 0.10122854
2,7 m 0.79666648 0.22238104
8 3,6 m 0.52553142 0.31370664
4;5 m 0.18343464 0.36268378

6.5.4 Algorithm of Numerical Methods

The sequence in which Newton-Cotes formulas should be applied is given
below.

1. Choice of the formula and finding coefficients A (using Table 6.6).
2. Drafting the algorithm and program, so that:

- if we set discrete values y, = f(x;) with step h, these values are put into
(6.6);
- if  function y=f(x) of value vy, =f(x) is calculated, then
X =X, +th=a+ih(a£ x£b).
3. Estimation of errors.

The sequence in which the Gauss method should be applied is given
below.

1. Choice of order of the method and finding coefficients A (using Table 6.8)
andvalues t; (- 1£t £1).

2. Layingout of interval a£ x£b on| subintervals (Figure 6.4).

3. Finding the values of integral I, for every interval (j=1...1)

Thus, the values on abscissas x, on every interval j are calculated in
accordance with the formulas:

a.+ta a.-a.
- in I L I
% 2 > i (6.14)

where
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aI+1 :b1 J :1v 1|1
h:ﬁ
n
I is calculated as:
i (a'+ - a') y
1= o (x)dx:%é A f(x). (6.15)
a; i=1

4. Estimation of errors.
The sequence in which the Tchebyshev’'s method should be applied is
similar to the Gauss method, but in point 1 coefficients t, are to be taken from

table 6.7, and in point 3, in order to find |; integral, the following formulais to
be used:
aj+1

= of (x)dx:("’l“lT'aj)a"} £(x), (6.16)

LY

where x is estimated similarly to the Gauss method in accordance with formula

(6.14). Practically, the errors could be estimated using the Runge method for
comparatively high number of subintegral |.

Figure 6.16
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For the Gauss method

p=c@® 230
el g
and for the Tchebyshev’' s method
p=cZ® 20
el g

where coefficients ¢ could be calculated via two calculations with high, but
different meanings|.

6.5.5 Monte - Carlo Method
The method of numerical integration of Monte-Carlo is the most
widespread method of statistic modelling that is used for problems solution in

the applied mathematics. X
Suppose, we have random values {xi}l X sequence with the distribution

law of probabilities f (x). To perform functional transformation

v =i (%),

the expectation of the obtained random value sequence {y, }T Y

m, = § (x)f, (x)x
could be estimated using formula:
1 n

1

Let's enter in expressions (6.17) the so-called function of the area
indicator:

il, a£X£EDb;
1a, b, x| =i
10, x<a, x>Db.

After that if we choose afunction of aform
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the final expression will be:

3||—‘

6\ on
| =m, = Of (X)dx = a (( ))J[aexi]
The algorithm of the integral calculation using the Monte-Carlo method is
given in Figure 6.16.
The error of Monte-Carlo method is related to the error of generation of
the values probable sequence, that are computer-calculated, with definite laws. It

can be estimated using the formula:

D=1 (6.18)

2/n(1- P)’

where P is the actual probability error oninterval[-D;+D ]

The amount of tests of n does not depend on the dimension of the integral,
that is why the Monte-Carlo method is applied to calculate multiple integrals,
where the other methods of numerical integration are not effective because of
the huge amount of calculations needed.

Let us consider the sequence in which the calculation of multiple integrals
should be performed. First, we need to have m random numbers generators,
where m equals to multiplicity of integral.

Geometrically the calculation of m-multiple integral

I _GD OF (X, %, .y X, JAX AX,...0X (6.19)

where y = f (X, X,,....X_) - contlnuousfunction in the limited reserved area of S
- is used to determine (m+1)-volume of direct cylinder in space 0x,X,,..X_Y,
that is built on the basis of Sand is limited by surface y = f(x,X,,....X_).

To transform integral (6.19) so that the new area of mtegratlon Is situated
in the middle of single m — dimensional cube s, we can replace the variables as
follows:

x=a+{b-ak,

where x; - the proper co-ordinates from O to 1; &, - maximum values of co-
ordinates, where the area of integration is located.
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Then using (6.19) the integral could be calculated. So:

| =(a,- b)a,-b,).(a -b)l,

where
L, = @-0Of (.X,,...x,, )Jdx,dx,..dx.

C = O

Pseudo-random number
sequence (n)
{xi}l X withthe

probability law f, (X)

Y
X =% A [a, 8, xi]

_ f(x)
yi B Fx(Xi)
A 4
Calculation

b
< 1¢

m, = of(X)dXZEa Yi
i=1

a

=

Figure 6.17

If we apply m generators of random numbers in a range (0,1), calculation
of the mean value of the function from their combinations using the
multidimensional indicator of the integration area will give us the sought

estimation of the integral:
1y

a f(xli,XZi,...,xmi )1[x1i,x2i,....,xmi],
Ni=a

X
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where 1JX,,X,,,.....X,, | equals to 1, if the point is situated in the middle of the

integration area, otherwise it equalsto 0.
The error of calculation of m-multiple integral using the Monte-Carlo
method is estimated like single using formula (6.18).

6.6 Remarks

The issue of data processing is quite broad and includes not only the
problems studied in the chapter. Statistical data processing unites a multitude of
problems considering the characteristics calculation of the random processes
(not only the laws of the unidimension probability and the correlation function).
We should point out that many problems are connected with processing of the
multidimensional data sets.

Exercises

1. What is the difference in statements of the interpolation and
approximation problems?

2. What is the error of calculation /2 according to the Lagrange formula for

function +/x with knots of interpolationx, =81, x, =1, x, =47?

Give the first and second Newton interpolation formulas.

What is the concept of extrapolation? Is it possible to make an

extrapolation basing upon the splines method?

5. Build the algorithms of Chebyshev, Gauss, Newton-Cotes numerical
integration. Use these methods to calculate the following integrals:

> w

a) E‘)&expxz(1+sin xcosy/x ) dx:
b) 0\2‘ Jsin/x cosx(1+x2) dx;
C) Z‘)&exdx.

6. Using the method of the least squares, approach the points (0, -1), (1, 1),
(2,3), (3,4), (45.1). Find the straight line y = a, +a,X.

7. Using the method of the least squares and the points

X -3 -2 -1 0 1 2 3

y | -0.72 -0.01 0.50 0.82 0.89 0.81 0.50

find approximation of a polynomial of the form:y=a, +a,x+a,x’.
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8. Using the method of the least squares, fit the points (0, 1), (1, 0), (2, -7),
(3, -26) with a polynomial of the form y=a +a,x+a,x*+a,x’ and show
that the result is identical with the cubic polynomial in the given points.

9. For each of the following, determine the exact y((1). Then approximate
y((1) using the two-point and the three-point backward-difference formulas:

a) y=-5 Dx=0.1; b) y=x", Dx=0.05;
C)y=x*-3x- 7,Dx=0.2; d) y=x", Dx=0.05;
e) y=(1- x)/(1+x?), Dx=0.1; f)y=e‘, Dx=0.1
g) y =sinpx, Dx=0.001; h) y:exz, Dx=0.1

10. Build an algorithm of calculations using the Monte-Carlo method for the
following integral

| = @yx*+y?) dxdy,

(s)

where s - range of integrations define the following inequations
%ExEl, O£ y£ 2x- 1. Are the points (0.55; 0.75); (0.25; 0.75); (0.25;

0.25); (0.99; 0.70) situated in the integration area?
11.Calculate the meaning z = f (0.5; 0.03) for function f(Xx, y) using the

Newton and the Lagrange methods

N 0.4 0.7 10
0 25 143 1.00

0.05 249 142 0.99
0.10 246 1.40 0.98

12. Give definitions of the fractal and of the selfsimilarity.
13. Build an algorithm for fractal interpolation for the initial points with two
coordinates.
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Chapter 7. Interval Calculations
7.1 Introduction

Arithmetic operations are aways subject to a certain amount of
procedures that can be performed on any computer. But due to the fact that all
the numerical methods developed so far are based upon finite sequences of
arithmetic operations, nowadays it is necessary to consider the issue. Because of
the elementary essence of this book, we have selected the most elementary, but
relatively efficient, approach to the problem that is the interval arithmetic. Asits
name suggests, the interval arithmetic is the arithmetic of intervals.

We are interested in this kind of arithmetic for the following reason.
Suppose we have to calculate

X+,
where x and y are known only approximately. For example, if to three decimal
places, x and y are 4.102 and 1.8333, respectively, then x is definitely situated in
the interval
4.1023£ x £ 4.1033 (7.2)

andy - inthe interval

1.8321£ y £1.8333. (7.2)

If we add (7.1) and (7.2) termwise, which may be described as adding of
the intervals, then:

5.9344 £ x + y £ 5.9366, (7.3)

and upper and lower bounds for the exact sum of the values x and y are obtained.
Finally, if we suppose that x + y is the midvalue of the interval (7.3), so that

x+y=5.9355, (7.4)

then we can conclude, that due to the fact that 5.3720 is the midvalue, (7.4) has
an error of at most +0.0011. Thus we have not only approximated the exact, but
unknown, sum of x +y, but we have also found out that bounds for the amount
could have an error.

Since such approximations, with error bounds, would be true for all
arithmetic operations, not just addition, we should develop general rules of
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interval arithmetic. Because of the preliminary theoretic type of the discussion,
it will be suitable to write an expression such as "A is a subset of B" as the usual
theoretic notation "A 1 : B". Also, as is expected, we allow every set to be a
subset of itself, sothat A1 B does not reject A's being equal to B.

7.2 Basics of Interval Operations

For a < b, the symbol [a,b] is often used, as in this book, to represent the
interval of numbers x that satisfy a < x < b. In interval arithmetic, however, it
will be important to allow a to be equal to b, which leads to the following
definition.

Definition 7.1. For a < b, the interval [a;b] is the set of all real numbers x that
satisfy a< x< b.

Definition 7.2. Let | = [a;b], J=[c;d]. Then| + Jisthe set of all real numbers
x+y, wherexT landyT J.
Theorem 7.1. For two arbitrary intervals [a;b] and [c;d],

[a;b]+[c;d] = [atc; b+d].

Proof. If xT [a; b] andy1 [c; d], then

aEx£Eb,
CEyEd.

Hence
atc £ x+y £ b+d,

sothat x + yisin[a+ c; b + d]. To complete the proof, we need only to show
that any number z1 [a+ c; b+d] can be written in the form z = x + y, where x
T [a; bl andyT [c;d]. But this follows easily because z = x + y is a continuous
function which is minimal at x =a, y = ¢, and is maximal at x = b, y = d, and
because a continuous function takes on all the intermediate values between its
minimum and its maximum. Thus, the theorem is proved.

Definition 7.3. Let | = [a;b], J = [c;d]. Then | - Jis the set of all real numbers
x-ywherex landyT J.

Theorem 7.2. For two arbitrary intervals [a;b] and [c;d],

[a;b] - [c;d] = [a;b] + [-d;-c] = [a-d; b-c].

Proof. The proof is completely similar to that of Theorem 7.1.
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Theorem 7.2 motivates the following consistent and convenient definition,
which, in fact, enables one to view subtraction in the usual sense as the inverse
of addition.

Definition 7.4. -[a;b] = [-b; -a].

Definition 7.5. If | = [a;b] and J = [c;d], then | xJ isthe set of al numbers x xy,
wherex1 landyT J.

Theorem 7.3. For two arbitrary intervals [a;b] and [c;d],

[a; b] < [c; d = [min(ac, ad, bc, bd); max|ac, ad, hc, bd].

Proof. The proof is similar to that of Theorem 7.1.
Definition 7.6. If O is not in [c;d], then [a;b] / [c;d] is defined as the set of all
real numbers x/y where xi [a;b] andy T [c;d].
Theorem 7.4. For two intervals[a;b] and [c;d], whereOisnotin[c;d],
a1 1
[asbl/[c;dl=[ab] g
&' dH

Proof. The proof follows from Theorem 7.3.
7.3 Applications to Calculations

The rationale behind the very extensive applications made of interval
arithmetic (see, e.g., Moore) is based on the following direct consequence of the
definitions and theorems of Section 7.2. For exact values X;, Xy, ..., Xn, SUPPOSE
one wants to determine F(x;, X, ..., X,), Where F is a given rational function.
Suppose, however, X1, Xp, ..., X, are known only approximately; that is, for
intervals 4, o, ..., I, one knows only that xi 11, Xl 15, ..., X |, and that by
means of the interval arithmetic one calculates F(l4, I, ..., In). Then

F(X1,%2.. X))l F(l3,l2,...10).

We are thus led to the following convenient three-step algorithm of the
interval arithmetic application:
Step 1. In performing a set of arithmetic operations in which only rounded
numbers are available, replace the numbers by intervals that contain them. For
example, suppose one wants to determine x from

X=n+2n-c (7.5)

with m = 0.75, which is known to be correct to only two decimal places, with n
= 0.10056, which is known to be correct to only five decimal places, and with ¢
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= 0.00201, which is known to be correct to only five decimal places. Then, in
place of

m’ + 2n-c, (7.6)
we consider

[0.745;0.755]° + 2[0.100555; 0.100565] - [0.002005; 0.002015]. (7.7)

Step 2. Combine the result of step 1 by means of the interval arithmetic to
yield asingle interval [a;b]. Thus, for example, (7.7) combinesinto

[0.754120; 0.769150]. (7.8)

Step 3. Take the midpoint of the interval [a;b] generated by step 2 as an
approximation to the desired value. This midvalue is x = (a + b)/2. By virtue
of x's being the midpoint, it isin error by at most |(b-a)/2|. Thus, for example,
the midvalue x of (7.8) is x = 0.761635 and the error |x - x| is at most
0.007515; that is,

=0.007515.

‘;( ] x‘ c 0.769150 - 0.754120

Two observations are important in the practical application of interval
arithmetic. First, note that if one has to calculate an expression such as

Xy + X2, (7.9)

wherexT I, yT J,z1 K, thenit is convenient to rewrite it in the form

X(y + 2). (7.10)
For substitution of intervals into yields

1J+ IK, (7.11)
whereas substitution into yields

1+ K). (7.12)
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Since the error is determined by the width of the final interval, (7.11) has
a width which is not greater than that of (7.12) and hence is should be
considered the most desirable.

Finally, a very important rule must be followed when one is using interval

arithmetic on a digital computer. The computation of intervals often requires
rounding of numbers. To be sure that the resulting interval still contains the
exact value that is to be approximated, one should always round the left number
in an interval down and the right number - up, asit isillustrated in the following
example.
Example. Suppose that in the process of performing interval calculations, a
digital computer determines that the answer x lies in the interval J =
[0.11127;0.21123]. But suppose that the computer can carry only four decimal
places so that the end points of J have to be rounded. If one uses any of the
usual rules for rounding, then the computer would consider the interval J; =
[0.1113;0.2112]. Unfortunately, now, even though the solution x was in J, it
need not be in Jy, for J is not contained in J;. To be assured that x T J;, one
should always round the left-hand end point of J down, and the right-hand end
point up, so that J should be rounded to [0.1112;0.2113].

7.4 Applications to Modelling of Complex Systems

A common way to represent and analyse complex systems is to implement
systems models. Starting with signal modelling one comes to the mathematical
model of information parameters transformation. Construction of a model on
basis of the interval analysis allows to find an effective decision to consider the
uncertainty of informative parameters value, which could be formed either in
time of calculating or in time of processing. It is sufficient to know an interval,
in which the value of the parameter could be found. The interval analysis
represents an interval as an integral object, and for all further calculations it is
sufficient only to know borders of the interval.

Generally, a complex system consists of various sorts of converters. A
measuring converter represents an elementary part of such a system, carrying
out the transformation function (W) of set of the informative influences (X) to
set the target signals (Y) in the field of various non-informative influencing
factors (z) (Figure 7.1):

Y =W[X,Z],

where X ={x,...x},Y ={Vy,,...V.},Z={z,...,z} are sets of informative
influences, target signals and non-informative influencing factors accordingly.
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{}z
x:> W :>Y

Figure 7.1

The classical approaches to modelling consider sets X, Y and Z as sets of real
obtained value with a certain error. In the paper we mark them as interval
numbers or just intervals. It means that if a certain parameter A of the system
has value g, determined with an absolute error e, within the interval analysis we
can present it asinterval a:

A=gteb a=[aa],

where a,a - bottom and top (or right and left) borders of interval a, in the
standard notations:

a=g-ea=g+e.

If all algebraic operations are carried out according to the rules of interval
analysis, at the end of calculations we obtain the final result as some interval,
which represents bilateral approximation of the exact result.

There are the interval models of static and dynamic linear and nonlinear
converters and digital converters of complex systems. Interval models of static
converters are similar to ordinary mathematical models. There are also some
typical models of nonlinear static converters as “dead space’, “hysteresis’,
“backlash” etc.

In dynamic models the output process could be presented in the form of a
Duhamel integral:

y(t) = 3ot ) x(t- t)ct |

Let's present the initial process viathe Duhamel's integral in a discrete form, that
Is a natural form for the discrete and analogue signals This kind of presentation
IS necessary to perform computer calculations:

y(t) :E‘Jj:gD(iDt Yx(t- i) of |
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where, g, (it ) isan average value of function g(t) on aninterval from iDt to
(i+1Dt , that equalsto

(i+1)pt

gD(iDt ) :_tx C\ﬂ(t)dt,

D ipt

where n =t Is a number of intervals into which the area of integration is

ol
divided.
But the value of n becomes constant only at the end of the transient process,
therefore

el u
n,. =Entgz=,+1,

&t

where T isthe time of the transient process.

While analyzing the systems with continuous time a discretization interval
should be picked out from the condition of signal reproduction on an output of
the converter. Such condition for processes with limited spectrum is the
Kotelnikov's theorem, which asserts, that a process can be exactly reproduced if
it is presented by a series of discrete values with an interval

ot :ﬂ.
WC

Let's assume, that a pulse characteristicg(t) of alinear dynamic converter

Is a determined function, which does not include interval uncertainty. In this
case, if entrance process Xx(t) is submitted as an interval function, it forms

interval uncertainty of the initial process y(t). It makes possible to present the
linear dynamic model in the following kind:

Ya(t) =8 G (it )Xot~ i) ot (7.13)

The formula (7.13) and some of algorithms of numerous integration make
it possible to construct a model of a linear dynamic converter, the algorithm of
which is presented in Figure 7.2.
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Figure 7.2.

There are two possible ways to build models of nonlinear dynamic
converters. First, a certain nonlinear dynamic converter can be considered as a
consecutive connection of a nonlinear static and a linear dynamic converter.
When it is difficult or just impossible to perform, a nonlinear dynamic converter
could be described by models of Wiener or of Hammerstein:

- Wiener’'s model:

Y) :wg}xa-t)xg(t )dt E

- Hammerstein’s model:

Y(t):é)N[X(t-t)]xg(t)dt ;
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- Mixed model:
YO =W} g [X (- )9 g

Developed classes of static and dynamic converters, modules of interval
computation and methods of aggregation and transformation of such models
give us an opportunity to modulate complex systems with uncertainties and
ambiguities.

7.5 Remarks

The interval analysis is a more simple method of the complex systems
modelling in undetermined conditions in comparison with the probability
analysis and fuzzy logic. Traditionally it is used for performing calculations in
applied mathematics with errors consideration. This method is preferable for
analysis and modelling of complex systems, providing the estimation in terms of
interval analysisis sufficient for performance of the researches and for resolving
of the arising problems. In this chapter only basics of interval mathematics were
described. To study the matter deeper more detailed textbooks could be
recommended.

Exercises

1. Reduce each of the following to asingle interval

a) [0,4]+[-21]; b) [-3- U+[-7;11];

c) [-230]+[-24]; d) [L7]-[%9];

e) [-30]-[0;3]; f) [-8- 4]-[-6;- 4];

9) [0;2]418]; h) [-L0]%-2- 1;

1) [-354L3]; ) [-8- 7147;8];

K) [-7.-4]%4-44]; 1) [23], [35];

m) [L3], [-2- 1; n [-22],[-2-1];

o [-3-1,[-2-1; p) [1.243;2.687]- [6.6;6.6];

q) [1.45;2.00], [3.19;3.20].
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2. Reduce each of the following to asingle interval:

[L3]- 4, A g 1Ol
a) 23 b) 2%14]- 3%- 1,0];
C) 2){'3;'1]'3‘){1;2][2;3]; d) [2;3]3;
[-4- 3] +2457]
e [-23]°; f) [-3- 2°;
9) [23]"; h) [-23]%;
: S . [L3]-[-L4]+2[- 23
i) [-3- 2" J) 3+[- 2.0]° -

3. Prove the theorems 7.3 and 7.4.

4. In each of the following, the numbers have been rounded to the given number
of decimal places. Use the interval arithmetic to compute each expression and
give an error bound for each result:

a) 71.22+64.35; b) 71.22 - 83.764;
c) 71.22+64.3- 83.7; d) 71.22- (6.6)%;
g 184-964, ) 784
40.0 9.64- 40.2
(89.5)(20.6) - (34.97)
9) (2.875) + (7.6)(4.5)*

5. Solve each of the following by means of the interval arithmetic assuming that

al the given numbers have been rounded to the indicated number of decimal
places:

a) VY.=Y +t2Dx)x,i=01 2;
x, = 0.33, Dx = 0.33,
X, =0.66 , y, =112,
X, =0.99.

_ Y - 2(Dx)°
1+(x)*
x, = 0.0, Dx =0.33,
x, =03, y, = 2.1,
X, =0.7.

b) yi+1 1|:011121
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C) Y. =8n(xy),1=0,12;
x, =1.42137,  Dx =1.00000,
x, = 242137, vy, =300,
X, = 3.42137.

6. Name and determine the modelling order of the complex systems using the
interval arithmetic.
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Concise English-Russian-Ukrainian-Polish Dictionary of Terms

A
e antiderivative function r
nepBooOpa3Has (yHKOus; U TepBicHA

¢ynkuis; p funkcja pierwotna

e approach r mpubmwkenue, U
HaOmmkeHHs; p zblizac sie

e approximation r anmpoKcHMaIlus;
U anpokcuMaitisi; P aproksymacja

e axisr ock; U Bich; P 08

B
e backward difference r neBas pasHocTs;
U JstiBa pisHuIL; P réznica wsteczna funkcji
e boundary-value problem r kpaeBas
3ajava; U KpaiioBa 3amgaya; P zagadnienie
brzegowe
e bulge of the function r BeimykIOCTH

¢byHkuuu, U BHUIYKIICTh  (DYHKIIIT,
p wypuktos¢ funkgji

C
e central difference r uenTpanpHas
pasHOCTh, U TIEHTpajbHA pI3HUI; P

réznica centralna

e column r cronber;
kolumna

e convergence r
30DbKHICTB; P zbieznosé
e curver xpusas; U kpuBa; p krzywa

U croBmeub, P

CXOJUMOCTB, U

D
e data processing r o6paboTka JaHHBIX;
U 00poOka manux; p przetwarzanie danych
e derivative r mpousBojaHas; U MOXijaHa,
p pochodny
e determination r
JIETePMHUHUPOBAHHOCTH (ONPE/ICIIEHHOCTb);
U JeTepMiHOBaHICTh (BH3HAYEHICTB); P
wyznaczanie, okreslanie
e difference r pasHocTth; U pi3HHLS; P
roznica
e distribution error r  ommOka
pacrpoCTpaHeHHUs, u MOXHOKa
posmnoBcropKeHHs; P pomytka dystrybucji
e distribution  law I 3aKoH
pacripeniesieHusi; U 3aKOH PO3MOIUICHHS; P
prawo podziatu
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e divergence r PacxoIMMOCTb;
u PO30DKHICTE; p rozbieznose,
dywergencja

E
e equation r ypaBHeHHE, U pIBHSHHS,
p rownanie

eerror r ommoOka; U noxubka; p pomyika
€ exactness r TOYHOCTh, U TOYHICTD,
p scistos¢, doktadnosc

e exception r  wuckmoueHwe; U
BUKJTIOUCHHS, p wyjatek

e expectation r oxuganue; U O4iKyBaHHS,
p wartos¢ oczekiwana

F
e faithful number r npaBunsHOE umco;
U BipHE YHCIIO; P NUMEr wierny
e finite difference r xoneunas pa3HOCTb;
U KiHIIeBa pi3HUIIS; P réznica ograniczona
e firmness (stability) r ycroituuBocTs;
U criiikicTh; p Stabilnos¢, statose, trwatose
e forward difference r npaBas pazHocTb;
U mpaBa pi3HUIL; P réznica progresywna
funkcji
e function of belonging r ¢ynkus
MPUHAIIIEKHOCTH; U (PYHKI[ISI HAIEKHOCTI,
p przynaleznafunkcja
efuzzy logic r nedeTkas joruka; U HeUiTKa
norika; p logikarozmyta

H
e  hierarchical r  wuepapxuueckwuii;
U iepapxiunwuii ; p hierarchiczny

I
e integer number r menoe wwcio; IiIe
yucio; p liczba catkowita
e interpolation r  wHTepmoONAIMS;
U inTeprossis; p interpolacja
e interpolation ‘ahead’ r wHTepmonsAIUs
«Briepen»; U IHTEPHOJIALIS «BIIEPEI»;
p interpolacja «naprzod»
e interpolation ‘back’ r wuHTepmomsus
«Hazam», U IHTePHOJIAIIS  «HA3aI»;
p interpolacja «nazad»



K
eknot r y3er; U By3ou; p wezet

L
e least square method r wmerton
HaAaNUMCHBIINX KBaaApaToB ; u METOA
HalMEHIINX KBaJPaTiB; p metoda
najmniejzych kwadratow

e limitation (truncation) error r ommbka
oTrpaHWYeHUs; U TMOXHOKa OOMEXKCHHS;
p pomyika ograniczenia

M
e method of ‘shooting r wMerton
«CTpenbOBI», U METOA «CTPUIbOM»;, P

metoda «strelanie»
e multidimensional net r mHOroMepHas

CeTKa, u OaraToBUMIpHA cirka;
p wielowymiarowy siatka

N
enet r cetka; U citka; p Siatka, sie¢

P
e partial derivative r  yactHas
HpOI/I3BOZ[Ha$I; U YaCTUHHA HOXiZ[Ha; p
pochodna czastkowa

e plural r MHOXecTBO; U MHOXHUHA; P
liczba mnoga

e probability r BEPOSATHOCTH,
U BiporiaHicTh; P prawdopodobienstwo

e probability density r maoTHOCTH
BEPOSITHOCTH; U IIUIBHICTH BIPOTITHOCTI;
p gestos¢ prawdopodobienstwa

R
e random process r ciydaiiHbIi TpoIIECC;
U BUIIAJAKOBHA  mpolec;, P  proces
stochastyczny, proces losowy
erigid task r sxkectkas 3amaua; U )KOpCTKa
3aaya; p zadanie twarde
€root r kopeHb; U KopiHb; P pierwiastek
erow r psi; U psi; p rzad

S
e secant r cekyuasi; U ciuHa; p Sieczna
e selfsmilar plural r camonomo6Hoe
MHOXECTBO, U caMOmomiOHa MHOXHHA,
p samopodobna mnoga
e selfstarting r  camocraproBaHue;
U caMocTapTyBaHHs; P SAmoczynny ruch
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e %quence r MMOCJIECA0BATCIBbHOCTD,
U mocutiioBHICTR; P ustalac kolejnosc

e set r rpymnma; U rpyma; p zbior

e sharer cnoii; u map; p lemiesz

e smple iteration r mpocras urepaius;
U ipocrTa itepaitis; p iteracja prosta

e simulation r HMUTAIHOHHOE
MO/IETUPOBAHHUE; u IMiTariiHe
MoJieNroBaHHs; P Symulacja, modelowanie

e dSmultaneous  displacement r
OJTHOBpPEMEHHAA IOJICTAaHOBKA, u
OJIHOYACHA IijicTaHOBKa, P jednoczesne
przemieszczenie

e statistical processing r cratucrudeckast

oOpaboTka; U craructidHa 0OpOOKa;
p statystyczna obrobka
e successve overhead relaxation r

HoCJIeIoBaTeNbHAst BEPXHSSA penakcamnus; U
NOCITIZIOBHA BepXHs penakcailis; p kolegna
napowietrzna relaksacja

T
e tangent r kacarenpHas; U JOTHUYHA,
p styczna

etemplate r ma6non; U mabmioH; p szablon
e transaction (digitization) error r

omunoka npeoOpa3oBaHus
(mckperuzaryn); u
noxubKa TepeTBOPeHHs (AMCKpeTH3allii);
p pomyika transakcji

e transformer r mpeoOpa3oBaTeb;

U nepeTBOproBay; p transformator
e tridimensional space interpolation r

TpexMepHast UHTEPIOISAIHS B
IIPOCTPAHCTBE; u TPHOXBHMIpHA
IHTEpIOJISALiS B MPOCTOPI, p

interpolacja przestrzen tréjwymiarowa

U
e uncertainty r  HeompeneleHHOCTH,
U HEeBHU3HAYCHICTH; P NIEPEWNOSE
e unidimensional net r oxHOMepHas
ceTka; U ojaHOBUMIpHa citka; p Siatka
jednowymiarowa

Vv
e variable r mnepemenHas;
p zmienna
e Vvicious position r Jio)KHOE TOJIOKEHUE;
u xubne nonoxenns; P zjadliwe potozenie

U 3MiHHA;
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