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Preface

Thermography or infrared (IR) imaging system is dependent on an accurate analysis
of skin and tissue temperatures. Its diagnostic procedure allows practitioners to
identify the locations of abnormal chemical and blood vessel activity such as
angiogenesis in body tissue. It is a noninvasive approach by applying the tech-
nology of the infrared camera and state-of-the-art software. Nowadays available
high-resolution digital infrared imaging technology benefits highly from enhanced
image production, standardized image interpretation protocols, computerized
comparison and storage, and sophisticated image enhancement and analysis.

We are interested here to provide latest update on chapters in recent application
of infrared to biomedical sciences. More examples will be analyzed comprehen-
sively and deeply in this book. This book certainly includes color images and
tables. Since infrared imaging is a nonintrusive, contactless, safe and easy
approach, it is very beneficial to medical field. Nowadays with new generation and
advancement of sensor technology, image processing algorithms and sophisticated
computers, infrared imaging is being paid more attention. For better and healthier
society we need to look at a safe and noninvasive modality with early detection
potential as an adjunctive method to detect health problem. The book covers
wide-ranging topics as follows:

The book with 28 chapters has two parts. First part of the book covers six
different chapters by us. Various methods and applications of IR as contributed by
many IR experts are then discussed in second part of the book.

Thermography is a simple, noninvasive and reproducible test that can accurately
reflect the inflammatory activity, and can be used safely and repeatedly, during
biological course of inflammatory bowel disease. Chapter “Potential of Infrared
Imaging in Assessing Digestive Disorders” presents the possibility of infrared
imaging in assessing digestive disorders such as irritable bowel syndrome, diver-
ticulitis, and Crohn’s disease.

Pain has been a problem to be differentially diagnosed for years since it has been
diagnosed subjectively. There is no test that can provide data indicating the accurate
information regarding the location and amount of the pain. Hence clinicians count on
the patient’s own explanation of the location, form, and timing of the pain. Chapter

v



“Potential of Thermography in Pain Diagnosing and Treatment Monitoring” intro-
duces pain and application of thermography for diagnosis of different pain categories
as well as monitoring the treatments. Thermography can provide data of pain
quantitatively as it reports detail and deep thermal variations. Indeed this method can
be useful to diagnose pain objectively.

Nowadays there is a considerable appreciation of thermal physiology and the
connection between superficial hotness and blood perfusion. Furthermore, the
advantages of computer-aided digital imaging and the examination modality has
considerably enhanced the trustworthiness of this technique in medical fields. The
advantage of this new possibility and its applicability to medical determination of
peripheral perfusion and liveliness of cells are shown by studies in diabetology.
Researches demonstrate that routine checking up on foot temperature could ter-
minate the occurrence of impairment conditions including foot ulcers and lower
limb amputations. Thermography is identified as one of the potential techniques for
temperature checking up on the feet and it can be employed as an adjunctive
method for modern foot examinations in diabetes and systematically discussed in
Chapter “Assessment of Foot Complications in Diabetic Patients Using
Thermography: A Review”. Researches indicate that routine checking up on foot
temperature may terminate the occurrence of impairment conditions including foot
ulcers and lower limb amputations.

In more than 30 years of IR breast cancer investigation, 800 peer-reviewed
researches including more than 300,000 women contributors have exhibited ther-
mography’s potential for diagnosing breast cancer in very early stages. Identifying
relationships between neo-angiogenesis, chemical mediators, and the neoplastic
developments are the aim of current studies to investigate thermal feature of breast
anatomy. Chapter “An Overview of Medical Infrared Imaging in Breast
Abnormalities Detection” presents an overview of medical infrared imaging in
breast abnormalities detection.

Chapter “Registration of Contralateral Breasts Thermograms by Shape Contexts
Technique” reports that comparison of breast temperature in the contralateral breast
is very helpful in breast cancer detection diagnosis. Asymmetrical temperature
thermal diffusion might be a sign of early irregularity. Practically, most of the real
breast thermograms do not possess symmetric borders. Consequently, a suitable
registration is required for comparing temperature distribution of two breasts by
investigating in contrast the extracted features. In this chapter, the proposed reg-
istration algorithm includes two steps. First, shape context, the technique as
introduced by Belongie et al was used to register two breast borders. Second, a
mapping function of boundary points was obtained and applied for mapping two
breast interior points. Results are very encouraging. Boundary registration was
accomplished perfectly for 28 out of the 32 cases.

Although it is controversial that with pseudocolored gray images more data can
be allowed to the observer, but precisely produced pseudocolor image indeed is
capable of tumor identification that is equivalent to the grayscale and upgrades
accomplishment of other jobs like perception and judgment of a tumor. In Chapter
“Color Segmentation of Breast Thermograms: A Comparative Study”, three
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techniques for breast thermograms color segmentation (K-means, mean shift (MS),
and fuzzy c-means (FCM)) were used with 60 breast thermograms. The FCM
technique allows the two first hottest areas for each subject where convenient
features are obtainable. There are some conveniences of breast thermograms color
segmentation by FCM such as: identification of irregular subjects by contrasting the
analogous clusters from the contralateral breasts (over the symmetrical line);
determination of level of malignity with identifying the two first hottest areas and
extracting them some useful features.

The use of artificial sources for cooling the skin has revealed new functional
information that complements steady-state thermography findings. This autonomic
cold challenge has also been used to identify a tumor’s blood vessels. Recent
numerical methods have investigated the effectiveness of dynamic breast ther-
mography and revealed new parameters that are strongly correlated with tumor’s
depth. Chapter “Potentialities of Dynamic Breast Thermography” reviews the state
of the art in dynamic thermography as it is applied to breast diagnosis and identify
some of the potential information that could be provided about breast diseases.

Chapter “In Vivo Thermography-Based Image for Early Detection of Breast
Cancer Using Two-Tier Segmentation Algorithm and Artificial Neural Network”
proposes a technical framework for automatic segmentation and classification of
abnormality on multiple in vivo thermography based images. A new two-tier
automatic segmentation algorithm is developed using a series of thermography
screening conducted on both pathological and healthy Sprague-Dawley rats.
Features extracted shows that the mean values for temperature standard deviation
and pixel intensity of the abnormal thermal images are distinctively higher when
compared to normal thermal images and for classification, Artificial Neural
Network system was developed and has produced a validation accuracy perfor-
mance of 92.5% for thermal image abnormality detection. A large data set from
both healthy and cancer patients is required as future clinical study in both thermal
visual and data temperature point formats to confirm the efficacy of this method.

Detection of elevation in local surface temperature due to an underlying
pathology (hot spots) from conventional breast thermograms is quite challenging,
mainly due to incomplete image acquisition. Chapter “Detection of Breast
Abnormality Using Rotational Thermography” explores a framework in develop-
ing a breast cancer screening system using thermograms acquired with rotational
thermography in multiple views to locate the position of the tumor in correlation
with ultrasound and biopsy findings, its ability for localization of abnormality has
also been discussed. Image features are extracted from rotational thermograms in
spatial, bispectral, and multi-resolution domains. Optimal features are identified
using Genetic algorithm and automatic classification is performed using Support
Vector Machine. In addition to screening, attempt has been made to characterize a
detected abnormality as benign or malignant.

Chapter “Application of Infrared Images to Diagnosis and Modeling of Breast”
reveals several approaches that have been implemented related to the use of IR
images to breast modeling and diseases diagnosis; the authors consider many
aspects of the process of diagnostic tool implementation: capture thermal matrix of
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patient body, storage and retrieval of images from a database, segmentation, 3D
reconstruction, feature extraction and classification. The experiments and imple-
mentations were done by the Visual Lab group of the Fluminense Federal
University in Niteroi, Rio de Janeiro, Brazil. The results support the statement that
IR analysis is able to detect breast anomalies and to include the thermography in
clinical routines for breast diseases examination and screening. When considering
the dynamic protocol versus the static one, tools for diagnosis implemented using
the dynamic protocol data always achieve better results even when very simple
approaches are used like only the temporal series of data.

Chapter “A Semi-Analytical Heterogeneous Model for Thermal Analysis of
Cancerous Breasts” studies a semi-analytical method for breast thermography
through coupled stationary bioheat transfer equations. The theoretical and numer-
ical modeling results indicate that the data parameter will influence the thermal
distribution of the tumorous breast. The work provides a helpful framework for
studying the thermal profile of breast cancerous tissues. It facilitates the under-
standing of the complex behavior of its surface temperature. In brief, thermography
together with mathematical and computational modeling bring an appropriate
methodology in order to allow the assessment of rapidly growing neoplasm.

Chapter “Dynamic Angiothermography (DATG)” develops Dynamic
Angiothermography (DATG) for the noninvasive diagnosis of breast cancer. DATG
consists of a thin plate with liquid crystals that changes color due to a change in
temperature, consequently offering an image of breast vasculature. DATG is based
on the angiogenesis (bioheat) theory on tumor initiation, development, and growth.
A tumor needs new vessels. Therefore, by studying the changes in the pattern of
vascular blood supply, it is also possible to diagnose neoplasms very early. In
particular, it is shown that every human being has his or her own vascular pattern
which, in the absence of disease, does not vary throughout the life time. By
repeating DATG periodically, an efficient control of the onset of disease is possible,
even in its early stages. This is not new, however, still only little-known technique
which is a component of the overall diagnostic techniques for the study and pre-
vention of breast cancer that serves to offer a complete clinical picture of the patient.
The great advantages of DATG are: it does not use radiation; it is not invasive or
painful; it is low-cost and can be repeated periodically and successfully with no
drawbacks. The angiothermographic examination therefore makes it possible to
visualize the breast vascularity pattern without using contrast medium. On the other
hand, while highlighting changes in mammary vascularization, DATG is not able to
indicate the size or depth of the tumor; even if recent researches (based on the
approximated solution of the inverse Fourier heat equation) show the possibility to
evaluate the depth of the tumor. In brief, DATG is affordable from the economic
standpoint as it can play a very important role especially for young women and for
those applicants who need frequent checks (follow-ups).

Considering the substantial increase in diabetics cases worldwide, a dedicated
effort for early detection of diabetes is essential. Various studies reveal that infrared
thermography is capable of the early detection of diabetic peripheral neuropathy
and vascular disorders. Chapter “Infrared Thermography for Detection of Diabetic
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Neuropathy and Vascular Disorder” highlights the studies on diabetic neuropathy
and vascular disorder using IR thermography technique. The basics of IR ther-
mography, classification of medical thermography techniques, details of various IR
cameras available, ideal experimental conditions, data analysis, etc., along with
typical case studies on the subjects are discussed. To recommend IRT as routine
techniques for diagnosis of diabetic neuropathy and vascular disorder, more sys-
tematic case studies in large number of subjects from various continents and cor-
relating the IRT results with clinical findings are a prerequisite. Further, refinement
in the experimental protocols, automation, rapid and reliable data analysis
approaches are to be developed. For example, diabetes mellitus (DM), lower
extremity diseases (LED) include both diabetic peripheral neuropathy (DPN) and
peripheral vascular disease (PVD). Other than focusing on the effect of autonomic
neuropathy on the microcirculation causing atrial–venous shunting one should also
look at the fundamentals that PVD itself, i.e., macroangiopathy manifesting as
atherosclerosis is a separate disease progression among people with DM.

Chapter “Exploratory Thermal Imaging Assessments of the Feet in Patients with
Lower Limb Peripheral Arterial Disease” introduces pilot study to explore the
potential use of thermal imaging in identifying Peripheral arterial disease (PAD).
Absolute, gradient, spatial, and bilateral skin temperature differences of the feet
have been quantified in PAD and non-PAD legs and have found no significant
differences overall. The pilot study indicates that thermal imaging from resting
measurements is unlikely to be of diagnostic value in detecting significant PAD.
Furthermore, the study also raises questions about the apparent misconception that
in PAD the foot temperatures are always significantly reduced. Thus, reliable fast,
noninvasive devices (in contrast to the ankle brachial pressure index tool) for the
detection of PAD are still required to aid the diagnosis of this underdiagnosed but
significant cardiovascular disease.

The feet of healthy individuals can be very variable in absolute temperature on
different days but thermal symmetry is generally maintained. Characteristic thermal
patterns seem to be consistent so there may be some diagnostic value in a change in
pattern or symmetry. Thermal asymmetry due to transient changes during the study
period need to be ruled out with repeated images. Chapter “Reproducibility of
Thermal Images: Some Healthy Examples” permits a baseline understanding
of thermal symmetry in the feet of healthy participants which can be used when
interpreting the images of the feet of patients with diabetes and neuropathy. It
concludes that when looking for significant thermal asymmetry it is important to
rule out transient changes by repeated imaging and to refer to baseline images.

Chapter “Thermal Imaging for Increasing the Diagnostic Accuracy in Fetal
Hypoxia: Concept and Practice Suggestions” develops a method for diagnosing
fetal cerebral hypoxia with a thermal imaging camera. The method is based on the
following detected principle: hypoxia and ischemia reduce the intensity of thermal
radiation from tissues. Monitoring the dynamics of temperature in the central suture
allows doctor to evaluate the oxygen supply to fetal brain cortex during delivery. In
this context, if the temperature drop areas are not observed in fetal head skin during
his passing through the birth canals, it indicates the possibility of giving birth to a

Preface ix



healthy child. In its turn, the occurrence of local hypothermia over the central suture
of the skull indicates the hypoxic and ischemic damage to the fetal brain cortex and
requires immediate hyperoxygenation of the fetus blood.

Chapter “Active Dynamic Thermography in Medical Diagnostics” shows
importance of still new in medicine visualization modality called ADT—Active
Dynamic Thermography. Assuming that classical thermal imaging (TI) is already
broadly accepted, what in fact is only partly true as some clinicians still remember
that this technology in breast cancer diagnostics failed in early stage of develop-
ment, the ADT increases the role of thermal imaging in medicine. To register static
TI and dynamic ADT images the same IR camera is applied. Both modalities are
supplementing each other as TI shows metabolic functional thermal images and
ADT allows reconstruction of structural thermal properties adding to functional also
structural diagnostic data. Therefore analysis and comparison of temperature dis-
tribution and images of ADT descriptors provide better understanding of diagnostic
content and support multimodality concept of advanced diagnostics in medicine.

Respiratory rate is very important vital sign that should be measured and doc-
umented in many medical situations. Chapter “Evaluation of Respiration Rate
Using Thermal Imaging in Mobile Conditions” analyzes respiration rate estimators
that can be used to processed sequences of thermal images captured from small
thermal camera modules embedded or connected to smart glasses for respiration
waveforms derived from the regions of the nostrils or mouth in thermal video
sequences. After calibration of thermal camera modules and using the algorithms to
estimate pulse rate from video (recorded in visible light), additional vital signs can
be estimated. This could allow obtaining three the most important vital signs: body
temperature, pulse rate, and respiration rate. Using the intelligent patient identifi-
cation such data can be automatically stored in the Hospital Information System or
other system for the management of Electronic Health Records or Personal Health
Records.

Infrared thermography (IRT), one of the most valuable tools, is used for
non-contact, noninvasive, and rapid monitoring of body temperature; it has been
used for mass screening of febrile travelers at places such as airport quarantine
stations for over 10 years after the 2003 severe acute respiratory syndrome (SARS)
outbreak. The usefulness of IRT for mass screening has been evaluated in many
recent studies; its sensitivity varies from 40% to 89.4% under various circum-
stances. Chapter “Applications of Infrared Thermography for Noncontact and
Noninvasive Mass Screening of Febrile International Travelers at Airport
Quarantine Stations” performs IRT evaluations in detecting febrile international
travelers entering Japan at Nagoya Airport, immediately after the SARS epidemic,
from June 2003 to February 2004, and at Naha International Airport from April
2005 to March 2009. The correlation of body surface temperature measured via IRT
with the axillary temperature was significant. Febrile individuals were detected with
good accuracy and the detection accuracy was improved by corroborating
surveillance with self-reporting questionnaires. However, there are several limita-
tions associated with the use of IRT for fever screening. To solve the unreliability
and obtain higher accuracy in mass screening, the authors have developed a novel
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infection screening system using multi-sensor data, i.e., heart and respiration rates
are determined by microwave radar in non-contact manner and facial skin tem-
perature is monitored through IRT. The detection accuracy of the system improved,
which is notably higher compared to the conventional screening method using only
IRT. In future work, one of the most promising approaches is to connect multiple
infection screening systems, which enables information sharing between different
systems. This will allow application of big data analysis techniques, which can be
used to predict outbreaks of infectious diseases much earlier than the existing
methods.

It is clinically important to detect tear instability in Dry Eye (DE) as the treat-
ment may involve specific measures such as chronic eyelid warming therapy. To
achieve this, a practical and rapid method to analyze the relevant features from
different regions of the ocular surface in DE will be useful. In Chapter “Evaluation
of Evaporative Dry Eye Disease Using Thermal Images of Ocular Surface Regions
with DWT and Gabor Transform”, efficiency of using the upper half and lower half
regions of the ocular surface (cornea + conjunctiva) in the detection of evaporative
dry eye is assessed using IRT images where the significance of limited ocular
surface regions for the identification of DE is suggested by extracting Gabor
transform features from DWT coefficients. The study shows that the lower half
of the eye is superior to the upper half for the purpose of DE detection. The
proposed algorithm is efficient, simple and may be employed in polyclinics or
hospitals for faster DE assessment time without analyzing the entire ocular surface.

Skin, the largest organ of the human body, is essentially a temperature mosaic
determined by the rate of blood flow through arterioles and capillaries adjacent to
the skin. IR imaging has the potential to provide a robust method of surface tem-
perature mapping in disease states where pathology disturbs the ‘normal’ distri-
bution of blood flow to skin. Hierarchical clustering-based segmentation (HCS) has
been used in Chapter “Infrared Thermal Mapping, Analysis and Interpretation in
Biomedicine” to aid the interpretation of wound images and to identify variations in
temperature clusters around and along the surgical wound for their clinical rele-
vance in wound infection at levels not discernible by human visual processing.

Among the known and routinely used tomography methods, there is the thermal
tomography, which seems to be still unappreciated. Certainly, it has some con-
strains, especially due to the limited depth of the body penetration by the heat
waves, but on the other hand, it can be recommended for daily screening of skin
tissues pathologies, burns during healing and superficial tumors. For medical
thermal tomography, one proposes the cold provocation applied to the skin tissue
and the measurements of body temperature recovery by IRT. Then, by applying the
inverse thermal modeling of the tissue, the internal structure can be reconstructed.
Inverse thermal modeling, however, requires the forward thermal models and the
optimization. Both of these elements can be implemented today in a software to
perform the screening since IR cameras are cheaper and widely available today. It
makes possible to establish a new medical protocol for IRT screening. Chapter
“Medical Thermal Tomography—Different Approaches” describes the different
original approaches in medical thermal tomography developed by the authors
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recently and the presented protocols can be easily and fast adapted to the practical
use in the medical diagnosis.

Water transformation process operated by evaporation can be considered as one
of the most important causes of thermal disequilibrium in both living and nonliving
objects (i.e., porous materials). Vapotranspiration fluxes taking place on surfaces of
many kind of materials has been proved to be quantitatively defined measuring
surface temperature of the object being studied. This value, at the equilibrium
conditions among all terms of heat exchange occurring through the surface, shows
to be strongly dependent on the vapor flux rate. Correlations between temperature
and evaporation rate have been confirmed in Chapter “Vapotranspiration in
Biological System by Thermal Imaging” on different type of materials such as
leaves, plaster, brick and human skin, proving the strong correlation between
temperature and evaporation rate, both in a thin system such as leaf, porous
building, materials and human skin.

Chapter “Change in Local Temperature of Venous Blood and Venous Vessel
Walls as a Basis for Imaging Superficial Veins During Infrared Phlebography Using
Temperature-Induced Tissue Contrasting” demonstrates a possibility of fast, safe,
and efficient imaging of superficial veins with an IR imager in experiments with
pigs, in studies with healthy adult volunteers, and in clinical observations of adult
patients when providing vital medical care in emergency situations. This chapter
describes the original techniques for infrared veins imaging enabling the authors to
lay the basis for infrared venography. In order to image superficial veins, it is
recommended that infrared monitoring of local temperature dynamics in the
selected part of the body surface under the conditions of artificial multidirectional
changes in temperature of veins and/or surrounding tissues. The chapter also shows
advantages of infrared phlebography over other radiology methods to address
urgent and repeated imaging of superficial veins in critical situations to optimize
intravascular access for sampling venous blood, its subsequent laboratory testing
and intravenous injections of medications.

Anastomotic failure is the most serious complication following colorectal
resection that can lead to reoperation, permanent stoma, and even death. The current
practice of assessing blood perfusion at the anastomosis bowel ends by direct
inspection of bowel pulsatility, bleeding, and tissue coloration has been demon-
strated to lack predictive accuracy. In Chapter “Intraoperative Thermal and Laser
Speckle Contrast Imaging Assessment of Bowel Perfusion in Two Cases of
Colorectal Resection Surgery,” two case studies which show the feasibility of
performing thermal and laser speckle contrast imaging measurements intraopera-
tively for assessing bowel perfusion during colorectal resection surgery are repor-
ted. This experience could pave the way to a number of other applications for these
technologies in the surgical arena.

Chapter “An Approach for Thyroid Nodule Analysis Using Thermographic
Images” presents a small scale preliminary study conducted in order to evaluate the
feasibility in time, cost, and effect of the use of an IR camera as a tool in detections
of thyroid nodules in the ambulatory service of our university hospital. The authors
perform an overall analysis of thermographic images, focusing on thyroid
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thermographic acquisition, processing and analysis, which is a new field of study.
An autonomous region of interest (ROI) identification for the thyroid images is
proposed, which is based on very simple fundamentals of computer vision. Future
works will involve improving the described methodologies and analyzing the
reported evidences in regard to a large scale of data.

Chapter “Modeling Thermal Infrared Imaging Data for Differential Diagnosis”
introduces the two commonly used approaches for modeling thermal infrared data
for differential diagnosis purposes: (i) Qualitative modeling approach based on
using statistical and machine learning techniques, (ii) Quantitative modeling
approach based on performing mathematical/analytical modeling of the ther-
moregulatory processes with three main techniques: (a) empirically using automatic
control theory, (b) nonempirically using bioheat equations and (c) semi-empirically
using both bioheat equations and automatic control theory. The authors summarize
the advantages and disadvantages of each modeling approach. Such summarized
information could serve as a guide for the IR researcher in selecting the appropriate
modeling approach regarding his/her research scope and interest. However, it
should be point out that it is important to take care when considering the
assumptions and approximations in order to choose the suitable modeling method.
Hence implementing such modeling approaches highly increase the potential ability
of IR imaging to be a fascinating and promising complementary imaging tool to the
gold standard medical imaging methods for differential diagnosis.

Three-dimensional thermography systems that combine 3D geometric data and
2D thermography data enable users to have a more accurate representation of the
surface temperature distribution and aid in its interpretation. A system for 3D
dynamic infrared thermography comprising two units is presented in Chapter
“3D Dynamic Thermography System for Biomedical Applications”; each unit
consists of an off-the-shelf depth camera rigidly mounted to an IR camera. The units
are fixed on the arms of the device that allow their placement in desired positions
near the subject. The developed 3D system provides a number of advantages in
research for biomedical applications, such as the correct temperature measurements
on curved surfaces, the possibility to select regions of interest by taking into
account the shape of the subject and the possibility to use the 3D data to easily
eliminate the background from 2D thermograms. As a future work, due to hardware
limitations with the fact that a mannequin that used in the test is static, one should
use a different 3D scanning technique and registration methods to improve this
accuracy for implementing algorithm in living human beings, particularly when
selecting ROIs of smaller parts of the body, such as the breast or the feet.

In summary, IRT is identified as one of the leading technologies in use today. It
has potential for temperature monitoring of the skin and it can be used as an
adjunctive method to current practices for surface temperature examinations in
diabetes. Many esteemed authors have contributed generously and made this book
possible by their diligent hard work and valuable time. We thank them whole-
heartedly for their significant contributions. The book represents the latest infrared
technologies and helps the potential readers to better appreciate their relevant
mechanism and physics of the application and case studies are explored and
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investigated from different aspects with illustration in detail particularly from
computer aided diagnosis with classifiers.

In this book, we have made an honest effort to present information and applied
methodologies of Infrared technologies to help researchers, doctors, teachers, and
students particularly in biomedical science and engineering.

Singapore, Singapore Eddie Y.K. Ng
Isfahan, Iran Mahnaz Etehadtavakol
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Review for the Book

This book packs a big punch for its size. Each chapter is written concisely and ends
with a list of sources of additional information for those who are interested where
appropriate. The book is understandable and useful to the Infrared community.

Prof. Waldemar Minkina, Ph.D., D.Sc.
Czestochowa University of Technology
Częstochowa, Poland

Infrared Imaging is a potent tool that has not received it due attention. It is a
safe, noninvasive and noncontact tool that can well be used as a tool for detecting
abnormality as well as study the recovery from illness, disease, and physiological
response to an underlying pathological response. While there are quite a few
sources in this imaging modality, there is no one book that addresses all the
possibilities in the biomedical arena.

This is heartening to note that this book “Application of Infrared to Biomedical
Sciences” covers all aspects of IR imaging as a tool to study the various disorders,
symptoms and disease. Each chapter is written concisely and ends with a list of
sources of additional information for those who are interested where appropriate.
This, in my opinion is a “one size fits for all” in thermal imaging. This is a very
useful book for the scientific community to understand and appreciate the all
encompassing advantages of IR imaging. The practising community will be able to
appreciate the usefulness of this tool and encourage them to consider this safe
imaging modality by practising a well laid out protocol in data acquisition.

Natteri M. Sudharsan, Ph.D.
Professor and ASME Fellow, Rajalakshmi Engineering College, Chennai,
India

This book fills a critical void of information and should be viewed as a required
reference for any professional working in the area of biomedical sciences. It
provides a comprehensive technical review of the latest cutting-edge techniques
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involving infrared technology and their application to medicine. There is no other
work that brings together all of this knowledge in one convenient location.

Mukul V. Shirvaikar, Ph.D.
Professor and ABET Program Evaluator
The University of Texas at Tyler, USA

Congratulation! Each chapter of this book is precisely written and can be easily
understood for all researcher and students. This book will accelerate and stimulate
the motivation and conductor of IR research.

Shuichi Torii, Ph.D.
Professor,
Graduate School of Science and Technology Kumamoto University, Japan

This book provides a lot of information about medical infrared imaging. Very
interesting to read by everyone who likes to learn more about this technique.

Irma Wensink
Thermografie Centrum, The Netherlands

Infrared Imaging is now a mature technology. With excellent cameras and less
expensive equipment, the biomedical field of applications has rapidly grown
worldwide. This book presents a detailed account of many different areas of
research, primarily in the medical field. It therefore provides a valuable source of
information to all who are involved in this still growing area of research and
application.

Francis Ring, D.Sc., FIPEM, FRPS, FRAS
Professor,
University of South Wales, UK

Currently, diagnostic infrared imaging is experiencing a renaissance that seems
likely to propel it into wide acceptance. During the 1960’s and 70’s, novelty may
have sparked the initial interest in this mode of physiologic imaging but the lack of
basic science and analog equipment enabled only an empirical level of evaluation
that proved unreliable outside the hands of a few genuine experts. In the past forty
years, computer-linked digital thermographs have permitted a quantitative analysis
by various forms of artificial intelligence that, when applied around specific
pathophysiologic features, have led to new power and reliability for diagnostic
infrared imaging in clinical medicine. Professor Ng has had a leading role in the
development of artificial intelligence systems in this respect and this book presents
new levels of objective analysis that will enable expert systems to further the
progress of diagnostic thermology.

Phil Hoekstra, Ph.D., DABT
Therma-Scan Reference Laboratory, South-East Michigan,
USA
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This text contributes significantly to the understanding and acceptance of the
many biomedical attributes of thermal imaging technology. It provides a concise
and relatively complete review of recent research literature such as the important
uses for pain medicine, breast exams, diabetes and fever evaluation etc. are just
some of the topics discussed in detail. There is considerable attention paid to novel
diagnostic algorithms, of value to those seeking to use telethermography in a more
rigorous and scientific manner. In combination with other diagnostic tests, this
work shows how much more is added to the understanding of the patient condition
through the use of thermographic imaging. It is a ‘must have’ for the clinician and
scientist.

G.J. Rockley, Director and M.G. Rockley, Ph.D.
R&D for Teletherm Infrared,
USA

This book provides a truly comprehensive coverage of a wide spectrum of
application examples of infrared imaging in biomedical sciences. It would serve as
an excellent resource for researchers and practitioners to learn the great potential
of infrared imaging, to exploit new application domains, and to further advance the
science of applied infrared imaging.

Hairong Qi, Ph.D.
Gonzalez Family Professor
University of Tennessee
Knoxville, USA

Biomedical applications have always been an interesting field of infrared
thermography. The authors explore an important field using high resolution ther-
mographic cameras enabling them to find smallest thermal abnormalities.

Guido Mahler, Ph.D., ISO 9712 Level III Thermographer
Research & Development, Infrared Measurement Division
InfraTec GmbH, Infrarotsensorik und Messtechnik
Dresden, Germany
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Potential of Infrared Imaging in Assessing
Digestive Disorders

Mahnaz Etehadtavakol, Eddie Y.K. Ng
and Mohammad Hassan Emami

Abstract Thermography or infrared imaging is determined by detailed investiga-
tion of skin and cells’ temperatures. It helps clinicians to detect the regions of
irregular chemical and blood vessel action in body tissue. The drive of biomedical
industry with consequent rapid development in other areas of biomedical imaging
has also strongly influenced the destiny of thermography in biomedical practice.
During past few decades, the joint efforts of biomedical engineering and medical
professionals have resulted in evolution of technological progress in infrared sensor
technology, image processing, organized repository of knowledge, and their overall
integration into a system. All these enabled the new tools of research and use in
medical thermography. Thermography is a simple, noninvasive and reproducible
test that can accurately reflect the inflammatory activities, and can be used safely
and repeatedly, during biological course of inflammatory bowel disease. Objective
of this study is presenting the possibility of infrared imaging in assessing digestive
disorders such as irritable bowel syndrome, diverticulitis and Crohn’s disease.
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1 Introduction

Inflammatory bowel disease (IBD) influences chronic inflammation of all or part of
the digestive section (Fig. 1). Ulcerative colitis and Crohn’s disease are mainly
related to IBD. Pain, severe diarrhea, weight loss, and fatigue are often prevalent in
these diseases. IBD can be harmful and occasionally influences life-threatening
problems. Enduring inflammation and ulcers in the innermost lining of the large
intestine and rectum are caused by ulcerative colitis, which is an inflammatory
bowel disease. Inflammation of the lining of the digestive section appears in
Crohn’s disease. However, inflammation usually influences thoroughly on involved
tissues in Crohn’s disease. The large intestine and the small intestine, two different
parts of digestive section, or both may be affected by inflammation. Colorectal
cancer is the third most typical tumor in the United States. Several factors that
increase the risk of developing colorectal include eating foods rich in fat, drinking
alcohol, having a low fiber, being chemical solvent exposure, and having
first-degree family history. Some studies show that tumors develop from polyps in
most cases. For Stage I tumor growth through the mucosa and invasion to the
muscular layer of the colon or rectum, 85–95% rates and for Stage II tumor growth
through the colon wall, 30–70% rates, for 5-year survival, are reported [1]. While
during Stage III tumors have already spread to lymph nodes or Stage IV tumors
have spread to more than one part of the body, improvement is difficult. However,
by early detection of polyps and precancerous cells, we are able to increase chance
of improvement. Therefore, a safe, noninvasive, reproducible, and standard
adjunctively method that has potential for colon cancer early detection is appre-
ciable. Common standard diagnostic tests to evaluate IBD involve clinical exami-
nation, laboratory tests, activity evidence as well as several imaging techniques.

The first documented practice of thermobiological signs happens to be the written
works of Hippocrates at about 480 BC. Wet mud spread all over a patient to inves-
tigate the regions would dry first in order to achieve the hidden pathology of organs.
Thereupon, by advanced studies and researches it has been confirmed that particular
temperatures interrelated to organs of body were definitely indicative of healthy and

31.0°C

38.2°CFig. 1 Thermogram of an
irritable bowel syndrome
patient
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unhealthy pathological mechanism [2]. The first documented use of infrared
(IR) imaging in medicine was in 1956, when asymmetric hyperthermia regions and
vascularity in breast thermograms were examined for breast cancer detection. Since
then many discoveries have been documented [3–5]. However, thermography is not
known internationally in medicine even today, mainly as a result of the inexperienced
application of the method, the inadequate deep understanding of thermograms.
Advances in infrared (IR) camera technologies, appropriate patient protocols, and
properly calibrated thermography have led to an increased interest in the application of
IR systems in the medical imaging [6]. In addition, using 3D thermal imaging to
promote medical diagnosis has been considered in past two decades. In 1996, Chan
et al. [7] introduced generation of 3Dmedical thermograms. Souza et al. [8] also used
3D thermal imaging to integrate MRI and thermographic images. In 2015, a 3D
medical thermography device was introduced by Moghadam [9]. Furthermore, a
patent was filed by C. Herman in Johan Hopkins University in 2015 for 3D thermal
imaging for the detection of skin lesions and other natural and abnormal conditions
(US 20130116573 A1). In future work, 3D thermal imaging would be useful to
visualize internal organs for promoting digestive disorders diagnosis. This paper is
organized as follows: Methodology is explained in “Methodology” section, eighteen
case reports are presented in “Case Reports” section, results are discussed in “Results”
section, and “Conclusion” section concludes the findings.

2 Methodology

In this paper, presented case reports were patients with different indications of IBD
and colorectal cancer. Various diagnostic tests including physical examinations,
different laboratory tests, and different imaging tests were performed for each case.
Different tests include the microbiology testing of stool samples, C-reactive protein,
calprotectin, esophagogastroduodenoscopy, multidetector computed tomography,
total colonoscopy, magnetic resonance (MR) imaging of the abdomen or MR
enterocolography, upper gastrointestinal (GI) endoscopy, histopathology testing,
MR enterography, and terminal ileoscopy. However, thermal imaging was per-
formed for all the cases. Details of different tests will be explained in “Case
Reports” section for each case separately.

2.1 Thermal Imaging Protocol Guidelines

We briefly explain some guidelines to provide thermal images to detect probably
some digestive disorders [10]:

• Imaging should be done before planning for endoscopy, to eliminate any
potential influence of bowel cleansing and endoscopic mechanism.
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• Imaging can be done in two interval times: before beginning the therapy and
after the patient had attained the remission, as reported by clinical, laboratory
and endoscopic evaluation [11].

• The imaging itself can be progressed in this way;

i. Patients position in front of the camera, approximately at 1 m; so that the
whole abdomen was captured by the camera lens.

ii. Patients are undressed and requested to stand in front of the camera not
touching there abdomen for the sake of attaining thermal equilibrium.

iii. The process takes about 5–10 min.
iv. Consequently to attain equilibrium the patient’s abdomen is cooled with

alcohol and then interval thermal image can be taken after equilibrium is
attained again.

v. Differences in thermal patterns and peak temperatures are captured.
vi. Taken thermal images can be divided into four quadrants representing

colonic segments: rectosigmoid, descending colon, transverse colon, and
descending colon.

vii. The same process of thermal imaging can be performed before beginning
of therapy and consequently to achieve clinical remission of the disease.

viii. Differences in observed thermal patterns and peak temperatures can be
compared.

3 Case Reports

Case report I: In this report, a 43-year-old male patient presented to the emergency
room with severe abdominal pain. Before admittance to the hospital, an esopha-
gogastroduodenoscopy was performed that showed carcinoma on the back wall of
the gastric corpus. The diagnosis of adenocarcinoma was confirmed by the
pathohistological analysis. After admittance, the preoperative workup including

Fig. 2 MDCT showing
gastric carcinoma indicated
by red part prior operation of
a 43 years male [12]
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laboratory testing and imaging methods for staging the carcinoma was performed.
Laboratory testing indicated no abnormalities; however, the preformed
Multidetector Computed Tomography (MDCT) indicated thickening of the gastric
small curve 4 cm in diameter and a couple of affected perigastric lymph nodes. It is
shown in Fig. 2.

Besides the observations in the stomach, the MDCT also revealed nonspecific
opacification of the colon wall that could show an inflammatory process as it is
demonstrated in Fig. 3.

There were no radiological signs of diverticulitis, besides the diverticula.
However, the patient also underwent the thermal imaging as it is shown in Fig. 4.
The thermal image demonstrated signs of inflammation in spots that could reflect
the position of the diverticula that revealed by the MDCT.

Fig. 3 Colon diverticula and opacification of the colon wall as revealed with red part by MDCT
prior operation [12]

Fig. 4 Hot spot indicating
inflammation as shown in
thermal image of 43 years
male with left UC [12]
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A colonoscopy was performed to confirm and verify the diagnosis of divertic-
ulitis (repeated). The patient was operated 5 days later. The procedure was proven.
Surgical team conducted total gastrectomy with splenectomy. However, the newly
diagnosed diverticulitis caused the planed adjuvant chemo-radiotherapy to be
postponed. Considering that chemo-radiotherapy could provoke perforation of the
inflamed diverticula and potentially be fatal for the patient [12].

Case report II: In 2013, a 47-year-old male diagnosed with left-sided ulcerative
colitis (UC). He was admitted in a hospital whereas aggravation of the disease
happened in September 2014. Before admittance to the hospital, the patient pre-
sented with fever, fatigue, loss of appetite, and loss of body weight, in duration of
2 weeks. The disease was characterized with abdominal cramps located in the lower
left quadrant of the abdomen, and diarrhea (7–10 stools/day, mixed with mucus and
blood). The laboratory tests indicated elevated leucocyte levels. Total colonoscopy
suggested severe left-sided colitis with Mayo endoscopic subscore of 2 (in range 0–
3). However, the patient also underwent for the thermal imaging. His abdominal
thermal image is shown in Fig. 5.

Detected temperatures in quadrants were 2 °C higher than in the unaffected parts
of the abdomen representing the left colon (the rectosigmoid and the descending
colon). The patient was discharged clinically in better shape after 12 days of
hospitalization. The plan was to take another thermogram of the patient’s abdomen,
upon achieving whole remission. There were no obvious signs of disease activity
seven months later. Although stool frequency and consistency were normal, the
patient did complain about discomfort in the lower left quadrant of the abdomen.
A control thermogram was taken and surprisingly some disease activity was
detected. Detected temperatures in quadrant representing the left colon were almost
the same as the one taken 7 months earlier. The thermogram is shown in Fig. 6.

Two days later the patient was readmitted to the hospital with full worsening
conditions. Active disease along the left part of the colon, Mayo endoscopic sub-
score 2 as indicated by the preformed colonoscopy [10].

Case report III: In this report, a 42-year-old female, diagnosed with UC in
2005. She consulted her gastroenterologist because of frequent bloody stools

Fig. 5 Marked areas of
severe inflammatory activity
of 47-year male with left UC
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(7–8/day) and abdominal pain in February 2015. Active disease extending to the
hepatic flexure was indicated by colonoscopy. Elevated inflammatory markers (high
leukocytosis and elevated C-reactive protein) were revealed by the laboratory tests.
Any infective causes were however excluded by microbiological stool analysis.
A thermogram of the patient’s abdomen was taken and a distinctive infrared pattern
corresponding to colonoscopy findings was indicated as shown in Fig. 7.

Hot spots were observed in quadrants representing the left and the transverse
colon. Intensive treatment with anti-inflammatory drugs (methylprednisolone and
azathioprine, in combination with mesalamine) and after four weeks, the patient
entered the remission of the disease. Clinical, laboratory, and imaging examination
indicated significant improvement in disease activity. Only mild abnormalities with
the significant normalization in abdominal surface temperature pattern were
observed when compared to the initial thermographic examination. It indicated the
remission of active colitis, [10]. His remitted thermal image was presented in Fig. 8.

Temperatures in the affected quadrant were significantly lower as can be seen in
Chart 1.

Fig. 6 Control thermogram
showing some remaining
disease activity after
7 months discharged from
hospitalization

Fig. 7 Disease activity
shown by the 42-year-old
female patient abdomen
thermogram
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Case report IV: Banic et al. [13] presented findings belonging to a 53-year-old
female patient diagnosed with severe ulcerative pancolitis. The patient had been
presented with fever, fatigue, loss of appetite and loss of body weight for 6 weeks
before her admittance to the University Hospital of Dubrava, Croatia. The disease
was characterized with abdominal cramps and diarrhea (5–10 stools/day, mixed
with mucus and blood). The laboratory tests revealed anemia with elevated ery-
throcyte sedimentation rate and c-reactive protein (CRP) levels above normal
values. The upper gastrointestinal (GI) endoscopy documented mild chronic gas-
tritis and histopathology testing did not document the presence of Helicobacter
pylori (H. pylori) infection in the stomach. The MR enterography documented no
signs of Crohn’s disease in the small intestines and no signs of fistulas [13].

The terminal ileoscopy indicated no signs of inflammatory involvement of the
mucosa in terminal ileum. However, total colonoscopy revealed acute severe
pancolitis with Mayo endoscopic subscore of 3 (in range 0–3), in each colonic
segments. The initial findings of pancolitis and severe inflammatory activity of the
disease were discovered through the heat patterns of thermal images taken before
any treatment. Abdominal skin temperature of the patient is shown in Fig. 9 which
indicates temperature abnormalities.

Fig. 8 Thermogram of the
same patient, after 4 weeks of
treatment with improvement
in disease activity

Chart 1 Temperatures
before treatment (Series1) and
after treatment (Series2) of
case report III
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After four weeks of intensive treatment with anti-inflammatory drugs (methyl-
prednisolone and azathioprine, in combination with mesalamine), the patient
entered the remission of the disease, documented with significant clinical, labora-
tory and imaging improvement in disease activity [14, 15]. The laboratory tests
detected no anemia with normal values of CRP. Control examination by the means
of total colonoscopy, performed 4 weeks after initial examination documented
healing in each segments of colonic mucosa, expressed with Mayo endoscopic
subscore of 1. This finding indicated the remission of active colitis according to the
non-contact thermal image (Fig. 10) shows only mild abnormalities with the sig-
nificant decrease in abdominal skin temperature compared to the first taken thermal
image (Fig. 9).

Ulcerative colitis represents a chronic inflammatory and ulcerative disease of
colonic mucosa. Clinically, ulcerative colitis is characterized by bloody diarrhea,
and the diagnosis most often relies on invasive colonoscopy and macroscopically
scoring of visualized inflammatory and ulcerative mucosal pattern [16–18].
Diagnostic methods currently in use, clinical (endoscopy), imaging (CT, MR) or
laboratory (C-reactive protein, calprotectin) provide an insight into disease activity,

Fig. 9 A 53-year-old female
patient with areas of enhanced
thermal abnormalities

Fig. 10 Patient in Fig. 9
after 4 weeks of intensive
treatment
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but are possibly associated with significant discomfort for the patient and/or
increased risk of irradiation and potential allergic reactions on contrast agents.

Case report V: A typical irritable bowel thermogram is shown in Fig. 11. It
shows diffuse (scattered throughout) hyperthermia (too much heat) in upper
abdomen. The patient was having symptoms of gas, bloating, pain in abdomen [19].

Case report VI: A thermal image of a patient with parasite infection in gas-
trointestinal tract is demonstrated in Fig. 12. Localized areas of heat with “focal
points” of hyperthermia are indicated. H. pylori bacteria was diagnosed on her
blood test [19].

Case report VII: A sequence of thermograms for one treated irritable bowel
syndrome (IBS) patient are presented in Fig. 13a–c [19]. In the first thermogram,
we observe too much heat that is diffused throughout in the upper abdomen. Before
the treatment the patient was complaining about gas, bloating, and pain in the
abdomen. We observe that the thermograms are softer and cooler after taking
alovera juice.

Case report VIII: An abdominal thermal image and its corresponding tem-
perature histogram of a healthy female individual are presented in Fig. 14a, b. The
temperature histogram has a normal distribution pattern with a peak temperature
around 32 °C [1].

Case report IX: A thermal image of a female patient with active Crohn’s colitis
is included in Fig. 15a, b. A clear thermal pattern change is observable in the
abdominal part. In addition, the histogram of the heat pattern has different distri-
bution comparing to normal case (Fig. 14). The peak temperature is around
35 °C [1].

Fig. 11 An irritable bowel
thermogram

Fig. 12 A patient with
parasite infection in
gastrointestinal tract
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Fig. 13 IBS patient treatment with aloe vera juice. a Initial thermogram. b 5 days of taking
alovera juice. c 13 days of taking aloe vera juice

Fig. 14 A healthy female individual. a An abdominal thermal image. b Corresponding
temperature histogram

Fig. 15 A female patient with active Crohn’s colitis. a An abdominal thermal image.
b Corresponding temperature histogram
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A thermal image of the above-mentioned female patient with active Crohn’s
colitis after induction of remission is demonstrated in Fig. 16. A clear thermal
pattern change is evident in the abdominal part. The main peak temperature after
induction of remission was 31.5 °C. However, a second less expressed peak at
32.5 °C is observed.

Case report X: A thermogram of a male patient with high-grade dysplastic
polypoid lesion in left-sided ulcerative colitis is shown in Fig. 17a. A hot spot
above a polypoid lesion with high-grade dysplasia is observable. Also the 3D
analysis of that hot spot is demonstrated in Fig. 17b [1].

Case report XI: An abdominal thermogram of a person with hepatitis is shown
in Fig. 18. After birth, the hepatic blood vessel was blocked which is shown by hot
area in the abdominal thermogram. Further action was treated and the blood vessel
was opened from the liver to the umbilicus [20].

Fig. 16 a A thermal image of a female patient with active Crohn’s colitis after induction of
remission. b A histogram

Fig. 17 a A thermogram of a male patient with high-grade dysplastic polypoid lesion in left-sided
ulcerative colitis. b 3D plot of hot spots
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Case report XII: A thermogram of a patient complaining back pain is presented
in Fig. 19. No thermal evidence was discovered in her back; however, some
hyperthermia areas were observed over the right kidney through her abdomen
thermogram which could address pain to the back. Besides further tests showed
kidney infection as well [20].

Case report XIII: An abdomen thermogram of a female patient, depicted in
Fig. 20, indicates a hyperthermia area over the hepatic flexure of the colon. Further
examinations confirm diverticulitis and then suitable treatment was recommended
[20].

Case report XIV: Thermography is a very useful technique for treatment
monitoring of a patient. An initial abdomen thermogram of an IBS (irritable bowel
syndrome) female patient is shown in Fig. 21a where the circular hyperthermia
spots were indicating IBS. The patient was treated with acupuncture and Chinese
herbs for 45 days. The thermogram shown in Fig. 21b was taken after the treat-
ment. Increasing cooler and green thermal area in Fig. 21b was indicating progress
in the treatment and the patient returned to a better and helthier condition [21].

Fig. 18 A patient with hepatic blood vessel blockage [20]

Right 
kidney

infection

Fig. 19 Thermogram of a patient with right kidney infection confirmed with other examination
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Case report XV: Fig. 22 suggests a patient with abdominal distension that
happens when substances, for example gas or fluid, gather in the abdomen and
generate the outward enlargement on the far side of the normal girth of the stomach
and waist. Consequently, elevated abdominal pressure and volume are sensed [22].

Case report XVI: Ileocecal valve is a sphincter muscle valve that allows
digested material to pass from the small intestine to the large one by opening and
closing. Figure 23 demonstrates a thermogram of a patient with ileocecal valve
blockage [22].

Case report XVII: One of the possible side effects of colonoscopy in rare cases
is making a puncture in colon. Figure 24 shows a thermogram of a case with a
punctured colon during a colonoscopy. Hot spots or hyperthermia areas are indi-
cating inflammation or possible infection due to colon perforation [22].

Hyperthermia
over the 
hepatic 
flexture

Fig. 20 Thermogram of a patient with diverticulitis [20]

    31.0 ºC 

38.2°C 
(a) (b)

Fig. 21 Progress of an IBS patient treatment with acupuncture and Chinese herbs. a Before
treatment. b After treatment
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Case report XVIII: In order to absorb most of the nutrients from what we eat,
the intestinal track must be cleaned the dirt out. Otherwise the needed proteins,
vitamins, etc., can not be absorbed by the coated intestinal walls. Figure 25 reveals
an individual with belly fat and poor gut health which caused the stomach dis-
tention [22].

34.7°C

28.1°C

30.89°C

32.89°C

Fig. 22 A patient with abdominal distension

28.36°C

32.86°C

34.61°C

32.67°C

Ileocecal Valve

Fig. 23 Ileocecal valve blockage
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4 Results

Thermography is capable of providing non-contact, in vivo diagnostic information
in regard to body temperature. Also it has the possibility to map small variations in
the body surface temperature and identify thermal abnormalities that accompany
various physiological conditions. Being a passive technique, without external
sources of radiation this technique is non-invasive and therefore intrinsically
harmless.

Clear changes in thermal pattern of the abdomen of the 18 patients examined
here with inflammatory bowel problems are evident. In addition, their corre-
sponding temperature histograms have different distributions comparing to the
normal cases.

31.71°C

34.39°C

27.35ºC

33.82°C 

Fig. 24 Punctured colon
during a colonoscopy

26.86ºC

35.05ºC

34.28ºC

28.84ºC

Fig. 25 An individual with
extreme distension from poor
intestinal health in
conjunction with belly fat
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5 Conclusion

Thermal imaging measures the radiation of infrared heat from human body. It
presents a very early detecting system, often able to identify an abnormality process
before it is distinguishable by standard diagnostic imaging techniques. On the other
hand, a best application at the interface of environment and genetics is chronic
inflammation which is famous to lead the development of many categories of
precancerous lesions and specific diseases themselves, together with oesophageal,
liver and colon inflammation.

This review has presented the potential of infrared thermography as a feasible
and safe technique to be used adjunctively to evaluate patients with various man-
ifestations of inflammatory bowel diseases. There is a need for further basic and
clinical studies in order to evaluate and validate this to assess the activity and extent
of intestinal inflammation and other intraabdominal inflammatory conditions.
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Potential of Thermography in Pain
Diagnosing and Treatment Monitoring

Mahnaz Etehadtavakol and Eddie Y.K. Ng

Abstract Pain has been a problem to be differentially diagnosed for years since it
has been diagnosed subjectively. Thermography can provide data of pain quanti-
tatively as it reports detail and deep thermal variations. Hence, this method can be
useful to diagnose pain objectively. It is a noninvasive complementary diagnostic
approach that allows the practitioners to see and quantify alterations on skin tem-
perature. Since in a healthy human individual, there is a high degree thermal
symmetry in terms of both magnitude and pattern in the same regions in con-
tralateral parts of the body, subtle skin temperature changes can be easily detected.
According to thermography pain is classified based on which part of the body is
involved. It is mostly classified in diseases as neural, inflammatory, muscu-
loskeletal, and vascular. Nowadays with the new generation of infrared cameras and
very advanced sensitive sensors, thermography has been applied in many medical
applications. Pain diagnosis is one of the many uses of thermography in medicine.
This chapter introduces pain and application of thermography for diagnosis of
different pain categories as well as monitoring the treatments.

Keywords Thermography � Pain diagnosing � Treatment monitoring

1 Introduction

In very old practice of medicine, practitioners measure temperature by hands.
Hippocrates, approximately four decades B.C., applied wet sludge to patient’s body
to identify superficial body temperature. The areas that had disease dried more
quickly. It is obvious that a number of pathological factors are involved in
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thermoregulation of human body. Hence, extracting thermal patterns of human
body can help to access valuable information regarding the underlying physio-
logical process causing diseases. Dissipation of heat through the skin generates
infrared radiation that can be captured by sensitive infrared detectors. Pain is a
complicated experience and the most familiar explanation for patient–clinician
discussion in most developed countries. It is a major symptom in many medical
conditions. We briefly introduce different pain categories in Sect. 2. Physiology of
human skin is discussed in Sect. 3. Section 4 is about interpretation guidelines.
Application of thermal imaging to diagnose different pain categories and treatment
monitoring are presented in Sect. 5. Conclusion is provided in Sect. 6.

2 Classifications of Pain

There are many ways to classify pain and classifications may overlap. The
International Association for the Study of Pain (IASP), in 1994, categorized pain in
accordance with particular aspects: (1) area of the body complication such as lower
limbs and abdomen, (2) system whose abnormalities may produce the pain such as
gastrointestinal and nervous system, (3) continuation and form of happening,
(4) strength and duration, and (5) etiology [1]. Although this introduced system was
disapproved by Woolf et al. [2] as insufficient for leading study and therapy, three
categories of pain were proposed by them as nociceptive pain, inflammatory pain
that is related to tissue undesirable event as well as the immune cells incursion, and
pathological pain which is a disease condition caused by nervous system corruption
or by its irregular behavior such as irritable bowel syndrome, fibromyalgia, tension
type headache, etc. [3]. However, classification of pain is a complicated issue and
still many physicians are uncertain about it. Consequently, many clinicians often
practice several different classification systems and clear separation of them is not
always achievable.

a. Nociceptive pain:

Nociceptive pain is a chronic pain generated by injury to body tissue and often
characterized as a sharpened, aching, or pulsating pain. This type of pain can be a
result of benign pathology or by tumors or cancerous cells that are expanding and
spreading to the tumor region neighborhood. Nociceptive pain may also be due to
cancer growing to the muscles, joints, or bones or that brings about the closure of an
organ or blood vessels [4, 5].

b. Neuropathic pain:

Neuropathic pain happens when there is a real nerve injury. Nerves accompany the
spinal cord to the remnant of the body and permit the brain to interact with the skin,
within organs and muscles. Nutritional disparity, alcohol addiction, toxicant sub-
stances, infections, or auto-immunity can all harm this network and generate pain. In
addition neuropathic pain can be generated by a cancer tumor pressuring on a nerve or
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a group of nerves. Patients usually characterize this pain as a flashing or severe
sensation, or numbness toward the damaged nerve direction [6–8]. Thermal (vaso-
motor) variations which are reactions to the afferent noxious impulses of the
unmyelinated sensory (thermoreceptors) nerves in the wall of microvasculature
produce the neuropathic pain, while the ordinary somatic (somesthetic) pain is not
often associated with circulatory dysfunction. The somesthetic pain involves afferent
somatic (spinothalamic) nerves normally with no circulatory disturbance.
Hooshmand et al. [9] found a case in which dermatomal pattern is developed in the
extending of nerve roots and nerve trunks with somatic pain. However, the ther-
matomal distribution of neuropathic pain ‘matches’ to an arterial distribution
including femoral, carotid, or brachial arteries. Hypothermic and hyperthermic vari-
ations in pathologic stages reflected in thermal imaging can be very valuable to choose
a suitable treatment protocol. Magnetic resonance imaging, computed tomography,
and physiological tests including electromyography and nerve conduction velocity
tests are anatomical tests that are used as major identification techniques in the
somesthetic (somatic) pain management, while they are not generally descriptive
techniques in neuropathic pain recognition.However infrared imaging has potential to
record neurovascular connection in neuropathic pain. Hooshmand et al. [9] found that
thermogram produces information regarding diagnosis and treatment information
restricted to complications connecting to neurovascular, autonomic, and
neuro-inflammatory changes. Contrarily, it cannot assist diagnosing nerve damages
with no microvascular connection including somesthetic nerve damages.

c. Inflammatory pain:

Inflammation is a reaction caused by injury of living tissues. The inflammatory
reaction is a defense process that expanded into higher organisms to take care of
them from infection and harm. The reaction incorporates changes in blood flow, a
rise in blood vessels permeability, and transferring of fluid, proteins, and white
blood cells (leukocytes) from the spread to the tissue corruption spot. If an
inflammatory reaction ends only in a few days, it is named acute inflammation;
however, a reaction of greater lasting is termed to as chronic inflammation. Despite
the fact that acute inflammation is normally advantageous, it usually motivates
displeasing sensations. Unpleasantness is generally lasting only a short while and
ends when the inflammatory reaction has finished its task. However, in some
occasions inflammation can cause harm. Tissue damage can happen when the
managing processes of the inflammatory reaction are abnormal or the capability to
improve harmed tissue and irrelevant individuals is damaged. The four important
signs of inflammation, introduced by Aulus Cornelius Celsus in the first century,
are as follows: redness (Latin rubor), heat (calor), swelling (tumor), and pain
(dolor). Redness is generated by the expansion of small blood vessels in the region
of damage. By increasing blood flow direct to the region, heat is generated and is
accomplished solely in peripheral parts of the body such as skin. Fever boosts the
temperature at the destroyed region by chemical attributors of inflammation.
Basically fluid outside the blood vessels is built up and develops swelling or edema
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[10]. When tissue is first damaged, the small blood vessels in the injured region are
prohibited temporarily through a mechanism called vasoconstriction. Subsequent to
this transient phenomenon, the process of vasodilation occurs or the blood vessels
enlarge, rising blood flow into the region. Vasodilation period varies from 15 min
to a few hours. Subsequently, the walls of the blood vessels, which typically admit
simply only water and salts to pass through, eventually be more penetrable. Exudate
or protein-rich fluid is instantly capable to leave and arrive at the tissues. Materials
in the exudate involve clotting factors, which aid the expansion of infectious agents
all over the body to be limited. Other proteins involve antibodies that enhance to
demolish the attack of microorganisms. If a generated inflammation cannot be
removed, or if the healing mechanism occurs, then an acute inflammatory reaction
may develop to the chronic phase. If acute inflammation events happen again, a
chronic inflammation is generated. The physical extent, duration, and impacts of
chronic inflammation change with the originator of the injury and the body’s
strength to becoming better. However in some situations, chronic inflammation is
not ended to acute inflammation. Some of the most typical and impairing human
diseases, including tuberculosis, rheumatoid arthritis, and chronic lung diseases, are
described by this kind of inflammation. Chronic inflammation can be achieved by
infectious organisms that are capable of opposing host defenses and remain in
tissues for a lengthened time.

d. Musculoskeletal Pain:

Impairment of muscles, joints, ligaments, bones, tendons, or a combination can
cause musculoskeletal pain. The most typical cause of pain is injuries. Fibromyalgia
may produce pain in the muscles, ligaments or tendons. The pain is normally
involved with tenderness in multiple sites and sometimes is hard to express it
accurately. However it is commonly not originating from the joints. Patients often
complain other symptoms, such as poor sleep and fatigue. Compressing nerves may
generate pain in some musculoskeletal impairment. These situations are introduced
in the tunnel syndromes (for instance cubital tunnel, carpal tunnel, and tarsal tunnel
syndromes). The pain spread diffusely along the path provided by the nerve and
may be burning [11]. It is often associated with numbness, tingling, or both. When
muscle strain occurs, heat elevation is observed due to the discharged chemicals.
Consequently a strong hyperthermia pattern can be observed in the affected area or
provoked site as an example of fibromyalgia.

3 Physiology of Human Skin

The skin is the largest organ of the body. Body temperature regulation is obtained
by skin assistance that the human body has allowances to maintain its core internal
temperature. Homeostasis is a condition that the internal temperature distributed
evenly and all thermoregulation processes attempt the body back to the homeostasis
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condition. Healthy body has a very limited temperature range of 37 °C (98 °F)–
37.8 °C (100 °F). Body temperature can be affected by various factors. Diseases are
the most familiar factors. Thermoregulation may lead to either cooling down or
warming up. Thermoregulation for cooling down occurs in two major steps. In the
first step, signals are sent to the hypothalamus by the sensors in central nervous
system (CNS) to indicate the rise of internal temperature and in the second step, the
hypothalamus in controlling thermoregulation mechanism stimulates one of several
processes for temperature reduction. The mechanism can be considered as a neg-
ative feedback as shown in Fig. 1.

Conversely, the thermoregulation mechanism of body warming can be sum-
marized as shown in Fig. 2.

Thermoregulation is a very complex and striking mechanism that we are not able
to consider the details in this chapter. Spectrum of human skin blood circulation is
very wide. It can be extended from almost zero when the whole body or a part of it
is in cooling situation to up to 8 l/min (or equal to � 60% of cardiac output) in
extreme heat situations [12, 13]. Hence, the skin blood perfusion is a complicated
process that the blood is capable to flow from very high to very low levels and able
to control all within levels in order to satisfy the combined conditions of human
physiology. There are two systems for reflex sympathetic innervation of the cuta-
neous circulation in human bodies. These two systems are non-noradrenergic active
vasodilator system and sympathetic noradrenergic vasoconstrictor system. In nor-
mothermic environments, noradrenergic vasoconstrictor nerves are typically active
and their activities are improved with cold stimulation, then norepinephrine as well

hypothalmus
Vasodilation

Diaphoresis
CoolingCNS

External 
factors

Fig. 1 Thermoregulation for cooling down

hypothalmus
Vasoconstriction

Shivering
WarmingCNS

External 
factors

Fig. 2 Thermoregulation for warming up
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as cotransmitters are released and consequently skin blood flow is decreased.
However, the active vasodilator system is activated only when the body temperature
is increased by heat stimulation. By cholinergic nerve cotransmission, active
cutaneous vasodilation is developed. Long-term factors, such as illness, aging, and
reproductive hormones as well as short-term factors such as hydration and exercise
affect the processes of reflex cutaneous vasoconstriction and vasodilation [14, 15].

Skin temperatures in healthy individuals are symmetric since skin temperatures
are controlled by one central controller which produces a uniform and simultaneous
control system [16, 17]. Consequently, asymmetric thermal patterns of contralateral
sides of the body (more than a certain level) can be a remarkable indicator of
abnormality. Infrared radiation is one of different ways of human body heat loss.
Planck’s law considers the dry human skin nearly an ideal black body with an
emissivity factor of 0.98. Hence it can be studied as a long wave infrared with a
wavelength emissivity of 9.3 µm at most. The highest temperatures of human body
are in the head and neck area, next trunk, and then declines over the limbs
approaching the acral regions. One of the most crucial aspects of skin temperature
pattern of the human body is bilateral symmetry [18–20].

4 Interpretation Guidelines

The following guidelines can be helpful to diagnose pain in using thermography
method:

(1) Providing contralateral skin temperature differences in normal individuals:
mean temperature difference for each part of the body. Different parts have
different difference values

(2) Providing normal thermal pattern of the skin. For examples, hyperthermia is
observed on the muscles (brachioradialis, trapezius, anterior tibia) [21],
overlapped skin areas (under the breast, ham, axilla, groin (inguen)). While
hypothermia is observed on the joint area (knee, elbow), distal area (finger tips
(palm side), toe tips, cheek, heel, nose), fat area (breast, buttock, brachial
region)

(3) Engaging patient’s complain
(4) Identifying region of interest
(5) Testing the contralateral heat pattern to check the symmetries
(6) Testing the mean temperature difference for each part of patient’s body
(7) Exploring different colors in patients’ thermogram. In thermography certain

colors have different interpretations. For example inflammatory disease,
muscle activity related disorders and acute stage are indicated by bright red
color, while neural disease and chronic stage by dark blue

(8) Discovering shape of heat from patient’s thermal pattern. Shape of heat also
has different implication in thermography. For instance, local muscle activity
is mostly indicated by localized form (spot type), somatic or visceral induced
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disorders by regional form (referred type) and thermatome, neuropathic pain
by patterned form.

Many studies have been done to establish some of the guidelines. In a study, Niu
et al. [22] provided normative data of the skin temperature in different areas to
investigate contralateral thermal symmetry in young and old as well as male and
female normal individuals in Taiwan. They tested 57 healthy subjects. They found
that the neck had the highest skin temperature average of 31.9 °C with standard
deviation of 0.6, while the toes had the lowest ones with average of 27.5 °C and
standard deviation of 0.2. They also found slight contralateral thermal differences
no more than 0.5 °C. In addition, they understood that old people had lower skin
temperature particularly in the distal parts of extremities. Lower temperatures are
found in different truncal regions in elderly females [22]. Gatt et al. investigated
thermal patterns of the upper and lower limbs of 67 subjects. They discovered
thermal symmetry in terms of both magnitude and pattern in the same regions in
contralateral limbs. The warmest finger was thumb and the temperature declined
gently for the second and the fifth digits. The big toe and the fifth toe were the
warmest digits while the second to the fourth toes the coolest ones [23].

5 Application of Thermal Imaging

(a) Diagnosing Different Pain Categories

According to thermography pain is classified based on which part of the body is
involved. It is mostly classified in neural disease, musculoskeletal disease,
inflammatory disease and vascular disease. Pain has been a problem to be differ-
entially diagnosed for years since it has been diagnosed subjectively. On the other
hand, thermography can provide data of pain quantitatively. Hence, it can diagnose
pain objectively. Thermography presents crucial data concerning neuropathic pain
as a result of perivascular microcirculatory sympathetic dysfunction. It can help the
physician to select a suitable and safe treatment protocol, particularly preventing
needless surgery. Brusselmans et al. [24] did a test in healthy and fibromyalgia
groups. They measured the autonomic response of individuals during a cold-water
test. They concluded that the central body temperature, forearm temperature and
peripheral (forearm)-central (ear) temperature ratio are significantly different in the
two groups. In addition, fibromyalgia subjects had less tolerance to cold water than
healthy subjects. They also studied the cool down rate, thermal recovery, and total
temperature reduction in the two groups. In a project, Goto et al. [25] aimed to
detect differentiating aspects in thermal images of venous leg ulcer (VLU), to
evaluate VLU-related nociceptive pain. They concluded thermal patterns may catch
nociceptive pain of VLU received by inflammation and has potential to evaluate
pain as a simple and fast method. Hooshmand et al. [26] in a study investigated the
role of thermal imaging for identification and management of pain. Herry et al. [27]
introduced an algorithm that thermographic image of pain was computerized
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automatically for pain evaluation in order to assist specialists to diagnose the dis-
eases. A considerable betterment in circulation and indicative response to decreased
pain with Electron Transfer Technology sleep system after applying it for only
4 nights was obtained by the thermal images in a case with chronic neck and upper
back pain, reported by Dr. William Amalu [28]. A common cause of pain in situ-
ations of varicose veins is thrombophlebitis which results painful legs.
Inflammation is generated by increasing the venous diameter that results in increase
in volume, and consequently by a decrease in serous velocity [29]. Thermography
helps us to visualize superficial vascular patterns of legs. Thermogram of a patient
experiencing phlebitis, the inflammation of a vein, is shown in Fig. 3.

Figure 4 shows a patient with a Complex Regional Pain Syndrome in right foot
with an asymmetry of 3.7 °C of contralateral feet. The patient went through the cold
stress test indicating no sympathetic change. The disease spread in the right foot
following the fracturing of the calcaneum 18 months earlier. At first, the disease
was not recognized by nuclear imaging and failed. However, thermography could
show the alterations.

Very few methods are available to indicate pain located in the metal implants
sites. Glehr et al. [30] concluded that thermography had potential to identify and
assess pain more accurately. They showed that the skin temperature on the painful
regions of individuals complaining of anterior knee pain after implantation of

Phlebitis

Fig. 3 Thermogram of a patient experiencing phlebitis [29]

Left Right

Complex Regional 
Pain Syndrome

Fig. 4 Thermogram of a patient with a complex regional pain syndrome in right foot [29]

26 M. Etehadtavakol and E.Y.K. Ng



artificial knee joints was significantly higher. Thermography can be helpful for
patients that suffering pain that other tests cannot diagnose. Patients with golfer
elbow are complaining of pain due to the condition that causes pain where the
tendons of the forearm muscles attach to the bony bump on the inside of the elbow.
Golfer elbow and, in some cases carpal tunnel syndrome, are all problems asso-
ciated with the inflammation of the soft tissues in the wrist and elbow. Repetitive
physical motion in sports or work, producing repeated impacts to the arm that
finally pain can be induced from the wrist to the elbow. Thermogram of a
28-year-old male carpet layer with golfer left elbow who has pain that radiates
distally through the ulna into the smallest finger is shown in Fig. 5. By doing
thermography cold stress test, an early carpal tunnel syndrome was indicated [31].

A multiple symptoms such as ache, muscle tenderness, headaches, anxiety,
depression, sleep pattern disruptions, fatigue as well as pain and ache throughout
the body can be observed with fibromyalgia patients. Thermography is very useful
to identify the muscular and myofascial inflammation accurately and objectively
thus allowing the physician to monitor a comprehensive action plan of treatment.
Thermogram of a fibromyalgia patient is presented in Fig. 6. Areas of pain and
inflammation associated with fibromyalgia are demonstrated with different
colors [32].

Right Left

Epicondylitis
(an early carpal 

tunnel 
syndrome)

Fig. 5 Thermogram of a patient with golfer left elbow [31]

Inflammation in
fibromyalgia

Fig. 6 Thermogram of a fibromyalgia patient [32]
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(b) Treatment monitoring

Blood circulation improvement is a powerful sign of physiological recovery. By
comparing thermal images of pre- and post-therapy, treatment progress can be
assessed. Consequently, if the image of post-therapy is not indicating major thermal
recovery, then additional therapies could be considered. As shown in Fig. 7a,
around the lower patella there is an extensive hyperthermia that indicates the
inflammation development associated with swelling and pain. However, as shown
in Fig. 7b, the same knee after 6 months of treatment by a comprehensive reha-
bilitation program [33].

Another example is a case with severe alpine skiing accident with a serious
injury as a fracture. The thermogram shown in Fig. 8a was provided 3 months after
a combined fracture of the tibia and fibula with intramedullary nailing [33].
However, no clear differences of the thermal pattern of two sides were observed and
complete recovery was approved and confirmed with physical examination as it is
evident in Fig. 8b.

In an encyclopedic study, Hooshmand et al. [34] indicated that the most sensitive
tool to detect Reflex Sympathetic Dystrophy is thermography method and no other

(a) (b)
38.2ºC

31.0 ºC

Fig. 8 Treatment monitoring of a case with severe alpine skiing accident [33]. a Pre-therapy
b post-therapy

(a)                                          (b)

extensive 
hyperthermia

around the 
lower patella

31.0 ºC

38.2ºC

Fig. 7 Inflammation monitoring [33]. a Pre-therapy b post-therapy
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test can compete with it [34]. There was a patient with Reflex Sympathetic
Dystrophy (Complex Regional Pain) that had a “glove-like” hypothermia zone in
the left hand as shown in Fig. 9a. The temperature differential was 1.5 °C and
asymmetry was 5 °C. These numbers were notable. The patient went through the
cold stress test showed the right hand had sympathetic function while the left had
nothing. Provided thermal patterns of post-therapy indicated thermal symmetry as
shown in Fig. 9b. In addition, cold stress test also indicated sympathetic function in
both hands [29].

Figure 10a–c, are thermal images of one irritable bowel syndrome (IBS) patient
who is treated with aloe vera juice. Figure 10b, c show the treatment by taking aloe
vera juice 5 days and 13 days, respectively [35].

Right             Left               Right               Left

(a)                                                (b)

Max 40.48°C
Min 38.01°C
Ave 35.47 °C
Std 
Dev 1.25 °C 

Max  37.87°C
Min 35.44°C
Ave   33.46 °C
Std 
Dev   .95 °C

Max  40.58°C
Min 38.92°C
Ave 36.17 °C
Std 
Dev .84°C

Max 40.88°C
Min 39.03°C
Ave 36.98 °C
Std 
Dev .67 °C 

Fig. 9 A patient with reflex sympathetic dystrophy (complex regional pain) [29]. a Pre-therapy
b post-therapy

Fig. 10 Treatment monitoring of one irritable bowel syndrome (IBS) patient by taking aloe vera
juice [35]. a Pre-treatment b after 5 days c after 13 days
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Figure 11 shows an individual who had a fracture in the left ankle. The cast was
removed and unfortunately healing response was poor. Left ankle was monitoring
for further treatment [36].

6 Conclusion

Pain diagnosis has been a problem for many years since the diagnosis is a very
subjective and an individual experience. There is no test can provide data indicating
the accurate information regarding the location and amount of the pain. Hence,
clinicians count on the patient’s own explanation of the location, form and timing
the pain. However, thermography can provide data of pain quantitatively and be
useful to diagnose pain objectively. It is a noninvasive complementary diagnostic
method that can help the clinicians to discover any alterations on the skin tem-
perature. With the new generation of infrared cameras, many specialists have
considered thermography as a method to diagnose the type and location of pain
precisely. It has been recognized that thermography is the most sensitive test to
detect pain in some diseases for example Reflex Sympathetic Dystrophy and no
other is able to compete with it. Hopefully, specialists are getting familiar with this
powerful technique to use it for accurate detection of different pain categories and
monitoring of different pain treatments in the near future.
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Assessment of Foot Complications
in Diabetic Patients Using Thermography:
A Review

Mahnaz Etehadtavakol and Eddie Y.K. Ng

Abstract Nowadays, there is a considerable appreciation of thermal physiology
and the connection between superficial hotness and blood perfusion. Moreover, the
advantages of computer-aided digital imaging and the examination modality have
considerably enhanced the trustworthiness of this technique in medical fields. The
advantage of this new possibility and its applicability to medical determination of
peripheral perfusion and liveliness of cells are shown by studies in diabetology.
Researches demonstrate that routine checking up on foot temperature could ter-
minate the occurrence of impairment conditions including foot ulcers and lower
limb amputations. Thermography is identified as one of the popular techniques in
practice today. It has potential for temperature checking up on the feet and it can be
employed as an adjunctive method for modern foot examinations in diabetes.

Keywords Thermography � Diabetes � Foot complications

1 Introduction

The previous infrared cameras were not as accurate or reliable as those accessible
recently. However, today’s modern infrared cameras support high speed and high
resolution. Consequently, researches reconsidered this method. Some of the most
important factors accommodated pathogenesis of the diabetic foot are represented
by peripheral vascular changes, such as macroangiopathy, microangiopathy, and
neuropathy-induced capillary circulation changes. These factors produce superficial
temperature variations which can be identified by applying thermography. Patients’
difficulties cause significant costs and life quality deprivation. Abnormal areas can
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be easily detected by thermography since temperature can be measured.
Investigations indicate that routine checking up on foot hotness may terminate the
occurrence of impairment conditions including foot ulcers and lower limb ampu-
tations. Many researchers comply that the thermography of the diabetic foot can be
much informational to evaluate in the specified four issues: (1) the arterial circu-
lation disorder, determination of microangiopathy and additional vascular alter-
ations produced by diabetic neuropathy; (2) recognition of regions with great
chance of ulceration or re-ulceration, determination of tissue liveliness, amputation
stage, and the intra-operative skin flap activity; (3) osteomyelitis examination;
(4) checking up on the reaction to medical therapy [1]. Diabetic foot wounds are in
charge of more hospitalizations than any other problems of diabetes. U.S.
Department of Health and Human Services stated that individuals with diabetes
with some form of neuropathy are between 60 and 70% [2]. One estimate shows 16
million Americans are diabetic. Approximately 15% result a foot ulcer and for
every 1000 individuals, 6–8 need amputation, correspondingly the long-term
complications [1]. Indeed, in the United States, diabetes is the major producer of
nontraumatic lower extremity amputations. Test of ulcer as well as the general
condition of the extremity, determination of the chance of vascular inability, and
determination of the chance of peripheral neuropathy are possible by different
levels of physical checkup of the extremity having a diabetic ulcer. Soft tissue depth
and osseous connection can identify the stage of diabetic foot wounds [3–5].

2 Considerations for Applying Thermography
in Examination of the Diabetic Foot

Macroangiopathic vascular changes in the foot can be assessed using eco-Doppler
and angiography. However, thermography is particularly helpful to characterize the
ischemic foot and the neuropathic foot. Ischemic foot is cold while the neuropathic
foot is warm. In addition, thermography has also been described to be useful in
detecting areas of critical ischemia. Ischemic foot is a condition of decreased arterial
perfusion. Following considerations should be reviewed for applying thermography
in examination of the diabetic foot: (1) the macro-circulation pathology concen-
trating more often at, or below the popliteal fossa, than at the level of the aorta or
iliac vessels. (2) atheromatous plaques are mono-segmental, exist in the tibial and
peroneal arteries, and are generally nonexistent in the more proximal or distal (pedal)
arteries. (3) changes are usually asymmetric, the tibial—peroneal triangle being the
most commonly affected. (4) room temperature must be constant. (5) subject must
remove their shoes, socks and seated or lay down relax up to 15–20 min.
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3 Application of Thermography in Diabetic Foot
Monitoring

Thermography is very useful in the detection of following cases:

3.1 Critical Ischemia Involving Small Arterial Territories

Since it involves small arterial territories it cannot be identified easily. Thermogram
of a critical ischemia—hypothermic area situated above the right medial malleolus
is shown in Fig. 1.

Another example is the infrared image of an ischemic foot in a patient with
diabetes shown in Fig. 2. It demonstrates asymmetric heat pattern, classic for
atherosclerotic lesions, caused by hypothermia on the right posterior tibialis tra-
jectory [1].

Fig. 1 Thermogram of a
critical ischemia—
hypothermic area situated
above the right medial
malleolus (hypothermic area
indicated by the white circle)
[1]

Fig. 2 An ischemic foot in a
patient with diabetes
(asymmetric contralateral feet
and toes thermal patterns) [1]
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3.2 Changes in the Cutaneous Circulation Induced
by Diabetic Microangiophathy, Which Leads
to Ulceration

Thermogram of a patient with symmetric decrease in infrared radiation in the distal
regions of the feet is presented in Fig. 3.

3.3 Neuropathy Evaluation, Specifically Small Fiber
Sensory Neuropathy

Diabetic neuropathy is a kind of nerve injury that may be developed if one indi-
vidual has diabetes. High blood sugar may damage nerve fibers all over the body,
however diabetic neuropathy usually harms nerves in the legs and feet. Symptoms
of diabetic neuropathy may extend from pain and numbness in the extremities to
complications with the blood vessels, heart, urinary tract and digestive system,
based on the damaged nerves. These symptoms for some individuals are weak; for
others, they can be painful, becoming physically handicapped and even death.
Symptoms are varied in patients; sometimes are painful, and other times are mild or
no symptoms at all. Hence careful foot examination should be mandatory to
diagnose neuropathy. Two typical thermograms of patients with foot neuropathy are
illustrated in Figs. 4 and 5.

Gheorghe Serbu found that average temperature of the neuropathy patients was
32.8 °C, (hyperthermia) compared to 27.9 °C in diabetic patients without neu-
ropathy [1]. In a study, Bagavathiappan et al. [7] further confirmed that foot tem-
peratures in subjects with diabetic neuropathy (32–35 °C) were greater than
subjects without neuropathy (27–30 °C).

Fig. 3 Symmetric decrease
in infrared radiation in the
distal regions of the feet
(Microangiopathy) [1]
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3.4 Plantar Patterns

Skin temperature distribution of plantar in diabetic patients has been one of the
valuable factors for determining feet complications in diabetic patients. Takashi
Nagase et al. through a project indicated that particularized plantar thermal patterns
were demonstrating larger changes in the diabetic subjects than in the healthy
individuals. A new scheme of theoretical categorization of 20 contrasting classes of
plantar thermal patterns in accordance with the angiosome concept of foot was

Fig. 4 A patient with
neuropathy, hyperthermia of
the 1/3 distal aspect of the
foot and the toes
(hyperthermia areas indicated
by white circles) [1]

Fig. 5 A patient with foot neuropathy a Asymmetric contralateral feet and toes thermal patterns.
b Asymmetric contralateral plantar thermal patterns [6]
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introduced. In their work for the healthy category, greater than 65% of thermal
patterns of feet were assigned to the two usual classes, containing the “butterfly
pattern” in the whole 20 classes, considering 225 ft (87.2%) of the diabetic groups
were differently assigned to 18 out of the 20 classes [8].

An image segmentation method was employed by Mori et al. to propose a novel
plantar forepart thermal patterns classification system. They observed larger
changes of the plantar forepart thermal patterns in the subjects with diabetes mel-
litus comparing with those in the control subjects [9]. In addition, Balbinot et al.
employed cardiac tests (heart rate variability) as a reference standard since auto-
nomic small fibers are damaged first by this disease for evaluating plantar ther-
mography sensitivity and specificity to diagnose diabetic polyneuropathy. In Fig. 6,
a plantar thermal image in a diabetic patient, interdigital anisothermal (DT less than
0.4 °C) as well as a control subject (DT less than 0.4 °C) are presented with
Fig. 6b. They observed that plantar thermography is helpful in early diagnosing
diabetic neuropathy and also, the interdigital anisothermal method alone did better
performance in diabetic patients comparing the thermal recovery index alone,
accompanying an improved sensitivity (81.3%) and specificity (46.2%) [10].

3.5 Detecting area at High Risk for Ulceration
or Pre-ulceration and Monitoring Ulcer Healing

In diabetic patient, the ulcer is the most detecting problem and their early detection
is crucial. Weak circulation, high blood sugar or hyperglycemia, nerve injury, and
irritated or injured feet are mostly responsible for diabetic ulcers. Poor blood cir-
culation can be described as a model of vascular disease in which blood cannot flow
to the feet adequately [11]. In addition, poor circulation makes healing of ulcers

Fig. 6 a Plantar thermographic image in a diabetic patient (interdigital anisothermal areas
indicated by white circles). b A control subject (DT less than 0.4 °C) [9]
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more difficult. A long-term effect of diabetes is nerve damage which can lead to a
failure of feeling in the feet which named neuropathy. In onset of harmed nerves
conditions individuals may feel stimulated and hurtful. In the long term, sensitivity
to foot pain is reduced and painless wounds which have ability to cause ulcers are
formed [12]. All individuals with diabetic foot ulcers must be evaluated so as to
investigate the urgency for revisional surgery, debridement, vascular reconstruction,
bony construction, or soft tissue coverage.

Liu et al. [13] in a study, discussed different imaging techniques applied to
identify presigns of ulceration. Four different imaging techniques are as follows:
photographic imaging, foot sole scanning, thermal imaging, and hyperspectral
imaging. However foot sole scanning demands individuals to squeeze the foot
against the scanner, which will generate some undesired force on the foot sole.
Consequently, they deduced that a noninteractive foot scanner is preferable to
acquire a superior view of the foot skin [13]. Some of presigns of ulceration are
local skin temperature increasing, redness, callus formation, blisters and fissures
that let a therapist to identify the location of risk sites. By early identification, the
first appearance of diabetic foot ulcers may be halted and following treatment can
be started. Nonetheless, early identification depends on repeated risk evaluation,
which is not consistently manageable. Self-examination is almost not possible and
regular examination by specialists is also priceless and not achievable. Liu et al.
[13] focused on the basic analysis on the collected thermal images with their setup
to show the ability of employing thermal imaging to identify the local temperature
rising [13]. The final goal of their research was to establish an intelligent tele-
medicine monitoring system that can be utilized at the patients’ home surroundings
for repeated test of the patients’ feet, to identify presigns of ulceration in an
appropriate approach.

In a study, Lavery et al. [14] discovered that Infrared temperature home moni-
toring has potential to defeat these restrictions, to identify the early warning signs
automatically, and it is non-invasive, non-contact and effortless using. It should be
supported and put into action in diabetic foot care [14]. Researches indicate that
there is a connection between rising temperature and foot problems in diabetes [15–
17]. A week before a foot ulcer is developed; a raised temperature may be happened
[15, 18]. Patients hardly experience pain in this initial stage of the disease as a
consequence of neuropathic sensory loss. It shows that raised temperature can be a
helpful indicative sign of foot ulceration and subclinical inflammation of the feet.

Besides, 3D surface reconstruction is also important to identify the presigns. It
has potential to acknowledge the local 3D deformity of the skin superficial and
present proper information about the surface textures. Geometrical changes of the
surface such as fissures, papillary lines, and heavy callus as well as radiometric
changes can cause these textures. Colantonio et al. [19] presented a model to
reconstruct, visualize, and manage data of three-dimensional infrared volumes
especially for diabetic foot disease. One example of their work is shown in Fig. 7.
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4 Asymmetry Analysis

Since symmetry generally shows healthy subjects [20], the rise of asymmetry
development of paired structures could be a sign of abnormality. Many studies have
been accomplished by applying asymmetry analysis in order to investigate breast
abnormalities [21–28]. Temperature variations between corresponding areas on
contralateral feet indicate inflammatory development. Investigations indicate that
elevated temperatures may be identified at a level where a capable diabetic foot
problem is still reversible. Temperatures of corresponding areas on contralateral feet
do not generally alter of greater than 1 °C and a temperature alteration of greater
than 2.2 °C (4 °F) is treated abnormal [29–31]. In a study, Liu et al. [32] showed
that thermography is a hopeful technique for early identification of diabetic foot
complications. The temperature differences between corresponding sites of the right
and left foot are the clinically important features. Their outcome was
97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic
subjects with manual comments as a Ref. [32].

van Netten et al. [33] found that mean temperatures >1.5 °C between the ipsi-
lateral and the contralateral foot in subjects without complications were not dif-
ferentiated. In subjects with local complications, mean temperatures of the
ipsilateral and the contralateral foot were identical, while temperature at the ROI
was >2 °C greater contrasting with the matching area in the contralateral foot and to
the mean of the whole ipsilateral foot. In addition, Netten et al. observed the mean
temperature differences of >3 °C between ipsilateral and contralateral foot in pa-
tients with diffuse complications.

A methodology was presented by Peregrina-Barreto et al. [34] to provide
assessable information about atypical temperature variations in symmetric sites
between feet and inside of the same foot [34]. The methodology took into account
the temperature differences, their distribution, and their area. Differences between
symmetric areas in both feet were studied in their first analysis while studying
temperatures inside the angiosomes in order to detect the existence of small
abnormal areas (hot spots) was performed in their second project. In order to

Fig. 7 3D image of the
diabetic foot [19]
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accomplish asymmetry analysis, 140 thermal images were collected by Rathod
et al. [35]. They concluded that the overlapping technique works well only when
the feet projections sizes and shapes are the same, the scalable scanning technique
works well for all types of feet projections.

Mendes et al. [36] in a work showed that thermography is able to quantify small
temperature asymmetries in order to monitor some physiological conditions for
recognition of subjects at risk for diabetic foot [36]. Although diabetic foot clinical
examination involves a 10-g Semmes–Weinstein monofilament test, palpation of
peripheral arterial pulses, subjective evaluation of skin temperature, besides the
observation of structural and dermatological characteristics of the feet. Kaabouch
et al. [37] established an asymmetry investigation to observe the thermal pattern of
the feet for the sake of identifying inflammation that leads to foot ulceration.
Extraction of higher order statistical parameters helps them to raise the performance
of their introduced method. The experimental findings indicate that their method is
trustworthy and have potential detecting foot inflammation.

5 Conclusion

This review article gives the reliability and availability of thermography for foot
temperature monitoring as a method of early identification of foot complications in
diabetes. The objective here is describing and summarizing experiences from
experimental use. Researches indicate that routine checking up on foot temperature
may terminate the occurrence of impairment conditions including foot ulcers and
lower limb amputations.
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An Overview of Medical Infrared Imaging
in Breast Abnormalities Detection

Mahnaz Etehadtavakol and Eddie Y.K. Ng

Abstract Thermography or infrared (IR) imaging is based on a detailed investi-
gation of skin and tissue temperatures. Its examination scheme allocates specialists
to determine the regions of irregular action of carrying blood through the tissues
such as angiogenesis in the body. Infrared imaging is totally safe and uses no
radiation that engages the technology of the infrared camera and advanced soft-
wares. Nowadays this technique is getting popular on medical fields because of
accessible ultra-sensitive infrared cameras, advanced image processing techniques,
approved protocols for interpretation of thermograms, and matured sensing devices.
In more than 30 years of investigation, 800 peer-reviewed researches including
more than 300,000 women contributors have exhibited thermography’s potential
for diagnosing breast cancer in very early stages. Identifying relationships between
neo-angiogenesis, chemical mediators, and the neoplastic developments are the aim
of current studies to investigate thermal features of breast anatomy.

Keywords Infrared imaging � Breast � Cancer

1 Introduction

The writing of Hippocrates at around 480 BC is the first recorded application of
thermo-biological diagnosis [1]. He applied mud slurry all over a patient and
monitored area that would dry first and treated the hidden organ pathology is
demonstrated. By pursuing research and clinical study since then, scientists have
defined that particular hotness of some degrees related to parts of an individual were
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surely indicative of regular and irregular physiologic developments. Lawson [2]
diagnosed that the surface temperature over a cancerous breast tumor was greater
than that of healthy cells in 1956. Since the 1970s, IR technology has been applied
and as early as 1975 medical books recorded thermography as one of the techniques
to identify breast cancer [3]. In 1979, Maurice Bales, the originator of the first
digital infrared camera at the University of California, Berkeley completed the
details, and then advanced the apparatus for the thermal image processor [4, 5]. It
was applied to diagnose musculoskeletal complications, for instance stress frac-
tures. The quality of the breast thermography process is established with the quality
of the imaging machinery as is true with essentially all other imaging modalities,
Thomas Tierney, conveyed one statement in 1972, that exhibited, “The medical
specialists expressed that thermography, at this time, is in advance of the ex-
ploratory state as a diagnostic method in the coming fields: (1) Female breast
pathology, (2) Extracranial vessel disorder, (3) Peripheral vascular disorder,
(4) Musculoskeletal damage”.

Thermography as an adjuvant prognostic imaging technique for identifying
breast cancer was confirmed and published by the Food and Drug Administration
(FDA). It is documented in the Federal Register; 147(20), pp. 4419–4420, 1982 [6,
7]. Nowadays many clinics and health services all over the world have used ther-
mography for different prognostic objectives [8].

This paper is put in order as follows: metabolism of tumors and tumor growth
are explained in Sect. 2. Principals of IR imaging are presented in Sect. 3.
Relationship between pathology and IR imaging and the performance of IR
imaging in diagnosis of cancer are discussed in Sects. 4 and 5. Section 6 describes
the limitations and advantages of IR imaging. Finally, Sect. 7 presents the con-
cluding remarks.

2 Metabolism of Tumors and Tumor Growth

Action of carrying blood through the pre-cancerous tissues and metabolic activity in
the neighborhood of a growing breast tumor is relatively ever greater than in
healthy tissue. It is the principle that the digital IR imaging application is based on.

Angiogenesis, the process of prompting capillaries in the body, is a crucial
natural mechanism adopted for healing and reproduction. The body disciplines
angiogenesis by generating a proper balance of growth and inhibitory factors in
normal tissues. Cancerous tumors deliver angiogenic growth factor proteins that
prompt blood vessels to expand into the tumor, affording it by oxygen and nutrients.
This mechanism generally concludes rise in sectional outer heat of the breast.
Tumor expanding fluctuated greatly between individuals. For example, 5% of
tumors acquire less than 1.2 months to expand in diameter from 10 to 20 mm,
while another 5% acquire more than 6.3 years. The average time required for
expansion of a tumor in diameter from 10 to 20 mm was anticipated about
1.7 years, rising with lifetime [9]. Angiogenesis can be absolutely invisible to the
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human eye and X‐rays. However it can be seen with IR eyes. IR imaging is the key
to the problem of detecting angiogenesis in the earliest stage particularly for dense
breast tissue which offers a harmless and painless opportunity to recognize
angiogenesis as a warning sign. Breast thermography has potential to identify the
foremost marks that cancer cells may be developing about 7–10 years sooner than
other methods.

3 Principals of IR Imaging

3.1 Physics

IR waves are electromagnetic radiation of a special wavelength or color that is first
discovered by William Herschel around 1800. Their range is from 700 nm
(nanometers) to 1 mm. They are just beyond what human eyes can distinguish on
the red side of the rainbow. We constantly are impacted by IR. Warm items, like
human body, generate great extent of IR. Moreover, half of the energy generated by
the sun is infrared, so we are being bombardment by it every moment. Temperature
measurements governed by thermal cameras calculate on the electromagnetic
radiation, or energy, constantly radiated from subjects and just as to their outer
temperature: thermal cameras capture the IR emission radiated by subjects. The
energy movements also relay on the surface emissivity and the wavelength range of
the radiations emitted. Shortly, some laws restricting this event are presented. As
stated in Kirchhoff’s law, a black body or an ideal emitter is a body that can absorb
radiations of any wavelength and re-emit them [10]. If Plank’s law (spectral radiant
existence) employs to this, then the intensity of the emitted radiation is described by
Eq. 1.

Wk ¼ c1
k5 exp c2

kT

� �� 1
� � W sr�1 m�3

� �
; ð1Þ

where Wk is the spectral radiant emittance within the spectral range at wavelength
(k) of 1 µm. c1 and c2 are the first and second radiation parameters correspondingly.
T is the absolute temperature in Kelvin.

For the whole field of wavelengths of the electromagnetic spectrum, the Stefan–
Boltzmann law can be attained by integrating this term. The total radiating energy
of the black body is illustrated by this law.

Wb ¼ rT4; ð2Þ

where r is 5.6704 � 10−8 Wm−2 K−4 (the Stefan–Boltzmann constant). Although
in reality no black bodies exist, but only gray bodies exist that more or less
extremely vary from the ideal behavior. By suggesting emissivity, e, in the
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Stefan–Boltzmann formula, checking the difference between the real body and the
ideal behavior can be considered. Hence, the law becomes the following

W ¼ reT4 ð3Þ

At the greatest, emissivity can reach 1 since it is the ratio of the radiating power
of an object to the produced energy by a black body at the identical temperature and
wavelength. It has a great importance to have an object’s emissivity for the sake of
obtaining the surface temperature of it.

3.2 Equipment Considerations

In the 2–20 µm wavelength spectrums, generally human body emits IR, with an
average peak at 9–10 µm [11]. Contemporary IR observation systems utilize
ultra-sensitive IR cameras and advanced computers to identify, analyze, and pro-
vide high-resolution diagnostic images.

The importance of IR cameras is depended on two aspects: resolution and
sensitivity. Resolution is the detail that a camera is able to acquire and sensitivity
determines how precise the camera is capable to discern levels of infrared radiation
(heat) and is measured in degrees C per level. It is preferable to choose a camera
with the highest resolution and sensitivity. Advanced IR cameras achieve a reso-
lution of 480 optical lines while some cameras gain 600 optical lines. The higher is
advantageous. These cameras have sensitivities at least 0.05 °C per level while
some is obtaining 0.025 °C per level. The less is preferable. A resolution of 240
optical lines and a sensitivity of 0.05 °C per level is the minimum requirement for
approved breast thermography. For other areas of the body imaging, cameras with
requirements lower than these numbers may be applied, however, for breast ther-
mography are not satisfactory to catch the detailed temperature variations.

First-generation IR camera systems experienced some complications, for
example, inappropriate detector resolution, thermal accumulation, analog interface,
and calibration that have been approximately cleared up for two decades.

3.3 Laboratory Considerations

Imaging is required to be conducted in a controlled environment considering
thermography as a test of physiology. Non-clinical unrestricted room environment
generate thermal artifacts that are not desirable [12]. It is crucial to provide a
thermal image free from error.
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4 Relationship Between Pathology and IR Imaging

Lawson conducted an early quantitative experiment which demonstrated that the
rise in local superficial temperature inherent in breast cancer was associated to
convection of the venous [13]. These IR data had correlation with both elevated
blood flow and elevated metabolism. Since thermography of the breast may have
correlation with a type of pathologic predictive aspects for example size of tumor,
grade of tumor, status of lymph node and factors of tumor development then it may
have an explanatory predictive significance. One prospect of the pathologic basis
for these IR information can be elevated vascular flow as a result of vascular
proliferation accordingly tumor related angiogenesis.

Head et al. recorded that upgraded thermograms from second generation IR
cameras have potential to perform more objective and quantitative analysis in 1993
[14]. They demonstrated that the IR image interpretation greatly affiliated to the
growth-rate related prognostic indicators.

In 1994 Anbar observed, using a sophisticated biochemical and immunological
cascade, that small tumors had potential to generate remarkable IR changes as a
result of upgraded circulation over a considerable region of the breast exterior by
local tumor prompted nitric oxide vasodilatation [15]. Nitric oxide is a molecule
with effective vasodilation effects that is synthesized by nitric oxide synthase
(NOS). It is discovered in different forms: in form of nitric oxide synthase (c-NOS)
in endothelial, and as an active form of nitric oxide synthase (i-NOS) in macro-
phages [16]. Using tissue immunohistochemistry, NOS has been observed in breast
carcinoma [17]. It is related to an advanced tumor development. There is possibility
that IR data may connect tumor NOS content. Forthcoming investigations can be
done in order to investigate these possible associations.

Guidi and Schnitt called the theory of angiogenesis, as an essential part of early
breast cancer, in 1996. They indicated that it is an early phenomenon in the progress
of breast cancer and could be developed earlier than tumor tissues gain power to
occupy the neighboring tissue and even earlier than when morphologic information
of an in situ carcinoma observed [18]. In 1996, Gamagami worked angiogenesis by
thermography and recorded in Atlas of Mammography (his greatly analyzed book).
He recognized that 86% of non-palpable breast cancers have indication of hyper-
vascularity and hyperthermia and for 15% of them, thermography is able to detect
cancers that were not recognizable on mammography [19].

5 The Role of IR Imaging in the Detection of Cancer

Great numbers of studies have been accomplished on the utilization of thermog-
raphy in breast cancer detection since the late 1950s. In more than 30 years of
investigation, 800 peer-reviewed researches including more than 300,000 female
contributors have exhibited potential of IR imaging for breast cancer early
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detection. The prominent numbers of contributors are ranging from 10,000 to
85,000 in these particular studies. Concerning the unique capability of this tech-
nique as a risk indicator, in some of these studies, cases have been known for up to
12 years.

For more than 15 years, IR breast screening has obtained sensitivity and
specificity of 90% in average with disciplinarian approved established protocols of
interpretation.

A persistent abnormal thermogram is 10-fold more considerable than a
first-order ancestry of breast cancer and imports a risk 22-fold greater than its
normal correspondent as a future indicator for breast cancer. Investigations have
shown that an abnormal thermogram is apparently the single most important risk
indicator for the existence of incoming breast cancer development [20].
Gershon-Cohen in 1965, found the potential of IR imaging to medical arena [21].
Four thousands cases examined by him and a sensitivity rate of 94% and a
false-positive rate of 6% were obtained. In 1968 in California, this data was
reported in “A Cancer Journal for Physicians”. In another research, Hoffman [22]
detected 23 carcinomas in 1924 cases and obtained 8.4 and 7.4% of false-negative
and false-positive rates respectively. Also, Stark and Way [23] studied on 4621
cases and diagnosed 24 cancers with a sensitivity of 98.3% and specificity of
93.5%. Amalric et al. studied thermography with 25,000 cases, attained 1878
medically recognized breast cancers. For this study, false-negative rate of 9% and
false-positive rate of 9% were discovered [24]. In a study, in Hobbins [25, 26]
reported 12 and 14% of false-negative and false-positive rates correspondingly for
37,506 subjects. For a period of more than 10 years, Spitalier et al. [27] tested
61,000 subjects applying IR imaging. They recorded the false-negative and
false-positive rates of 11%. In addition, they also may detect 91% of Grade T0 or
tumors lesser than 1 cm of non-palpable tumors. They declared that IR imaging
alone in 60% of the cancer subjects had the ability to detect the first signs of tumor
growth. Isard et al. [28] discovered the exceptional thermal and vascular strength of
the IR image from year to year in a normal case and the significance of identifying
any considerable variation with 10,000 IR image performed subsequently with
mammography for a duration of three years. They identified 4393 irregular subjects,
although a mammographic examination would have been narrowed to only 1028
irregular subjects. Hence a cancer detection rate of 24.1 per 1000 was obtained by
utilizing both modalities in comparison with the seven per 1000 expectedly by
mammography alone. He suggested that since thermography is a non-invasive
examination, it could be utilized for females with unhealthy breasts who should be
checked more often. In addition, they observed thermography does not identify
cancer, but only demonstrates the presence of an abnormality. Two small sets of
150 and 515 cases are studied by Moskowitz et al. [29] and Threatt et al. [30]
respectively, to explore the sensitivity and accuracy of thermography. Both studies
did not generate any invaluable discoveries; however the inadequacy of approved
screening approaches and protocols could lead to those results. Haberman et al. [31]
used thermography as well as a physical test, over a three-year term, in a singular

50 M. Etehadtavakol and E.Y.K. Ng



project involving 39,802 cases. For thermography they obtained 85% sensitivity
and 70% specificity.

In 1988, Useki [32] investigated importance of IR imaging discoveries in breast
cancer detection. He observed sensitivity of 88% for IR imaging to identify breast
cancers. Gautherie et al. [33, 34] showed sensitivity of 90% and specificity of 88%
using thermography with 85,000 subjects imaged. Jones [35] utilized approximately
70,000 cases, and obtained false-negative of 13% and false-positive of 15% for
thermography in a large-scale multicenter study. To determine mammographically
questionable cases, Parisky et al. [36] accomplished a project with IR imaging.
They investigated 875 cases with 187 malignant and 688 benign results. In a
project, a contrasting between three approaches for breast cancer detection
including; physical examination, mammography, and thermography is accom-
plished by Nyirjesy and Ayme [37]. Three groups are involved in their project;
4716 individuals with carcinoma, 3305 individuals with benign breast disease, and
8757 healthy individuals. They additionally examined their work with other
well-known works in conjunction with the National Cancer Institute (NCI)-spon-
sored Breast Cancer Detection and Demonstration Projects (BCDDPs). For
example, they found that to identify all kind of tumors, physical examination
obtained sensitivity of 75% in average and cancers lesser than 2 cm in size obtained
50%. Considering other studies with sensitivity between 35 and 66% that looks
satisfactory. Mammography was recorded to obtain sensitivity and specificity of 80
and 73% respectively. IR imaging achieved sensitivity of 88% for tumors lesser
than 1 cm as well as specificity of 85%. An abnormal IR image obtained a pre-
dictive value of 94%. They found that no technique alone is accurate enough to be
utilized to access imaging of breast carcinoma and also cases with breast diseases.
Hence the best outcomes is applying a multimodal approach. Thomassin and
Giraud [38] conducted a project with 4000 subjects with breast cancer. He found
130 carcinoma subjects with tumors vary from 3 to 5 mm in diameters.
Mammography as well as thermography applied alone with 130 cancer cases that
10% of individuals by mammography alone and 50% by thermography alone were
detected, and 40% by both techniques. From 1967 to 1998, breast thermography
has demonstrated sensitivity and specificity of 90% in average in the 15 large-scale
projects. In the past decade with the state of the art thermography technology, some
studies are indicating even greater sensitivity and specificity rates.

6 Restrictions and Conveniences of IR Imaging

IR imaging is not a recent technique in medicine. The adaptability, safety, and
inexpensive of this technique cause it an adjuvant mechanism in medical imaging
and prognostic [39–73]. It can be utilized without any restrictions since this safe
method accumulates without any harmful radiation. In vivo investigations on cells
without extraction of sample is achievable by this method, consequently, it is a
passive examination [66].
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In addition, the derived real time data can be applied as a quick observation for
the patient. Despite the fact that the ability of this method has been positively
identified and confirmed since 1959, however some reasons made some early
studies to be eliminated. Reasons were as follows: (1) absolutely inexpert techni-
cians took the images, (2) Inexperienced radiologists who obtained no knowledge
interpreting IR images were worked, (3) Appropriate laboratory environmental
controls were thoroughly neglected, (4) Standard reading protocol for IR imaging
had not yet been approved, (5) Behind technology of the IR camera was insuffi-
cient, (6) Coverage/complication of medical insurance and implication upon any
early suspected or indication of diagnosis.

Nevertheless, IR imaging becomes even more beneficial when its restrictions are
acknowledged. It is also essential to consider that IR can generate physiological
data but is not able to represent aetiologies and local anatomy. The subject irreg-
ularities in addition to the complex aspects of thermoregulation restrict the inter-
pretation. Depletion of specificity feels necessity for incorporating these
examinations with other more structural techniques (X-ray, computed tomography),
alternately applying it as a complementary modality [74, 75]. Computer simulation
applying bioheat transfer theory besides medical thermography as a complementary
technique for breast cancer early detection has also been suggested in work by
[76–78].

Two sets of images using typical thermography, mammography and ultrasound
are shown in Figs. 1 and 2 respectively.

The considerable demand is to incorporate the anatomical and physiological data
extracted from thermal pattern of the skin surface.

Fig. 1 Breast cancer detection using thermography and mammography (http://medscans.co.uk/
thermography-and-mammography)
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7 Conclusion

IR imaging in medical fields is not a recent tool, however early projects with old and
inadequate methods have resulted arguable findings. Recently with new generation of
ultra-sensitive IR cameras, knowledge about thermoregulation, powerful image
processing algorithms, standardized reading protocol and controlling laboratory and
certified trained thermologists, thermography opens its place in medical society
especially in developed country. For example, today more than 170 certified breast
thermography centers are only in theUnited States [79]. The objective of thismodality
is not to be an alternate for clinical measurement however to upgrade it. Experimental
data of interaction between pathology and IR imaging is fundamental to further
anticipate the worth of IR imaging of breasts. Depended on the convenience of breast
thermography as a safe, non-invasive, and inexpensive first-line detection technique,
it should be utilized as an adjunctive technique in breast examinations.

Unfortunately, in spite of the value of breast thermography, many specialists still
are uncertain to recognize thermography as an appropriate technique in clinical
practice. This viewpoint may be concluded since the physical and biological fea-
tures of thermography are not known to most specialists whereas the other ap-
proaches investigating cancer introduce exactly subjects of medical teaching.
Comparatively, radiography and ultrasonography indicate anatomy. However,
thermography is relied on thermodynamics and bioheat transfer that are unknown to
many specialists.

References

1. Adams, F.: The Genuine Works of Hippocrates. Williams and Wilkins, Baltimore (1939)
2. Lawson, R.: Implications of surface temperatures in the diagnosis of breast cancer. Can. Med.

Assoc. J. 75, 309–310 (1956)

Fig. 2 Breast cancer detection using thermography and ultrasound (http://www.
universalmedicalimaging.com/)

An Overview of Medical Infrared Imaging … 53

http://www.universalmedicalimaging.com/
http://www.universalmedicalimaging.com/


3. http://www.worldcat.org/title/clinical-thermography/oclc/1324536. Last access 16 Nov 2015
4. http://www.mypinkimage.com. Last access 16 Nov 2015
5. http://womensacademyofbreastthermography.com/html/breast-health.html. Last access 16

Nov 2015
6. http://www.bk2health.com/docs/UtilizationofClinicalThermology.pdf. Last access 16 Nov

2015
7. www.miamiholisticcenter.com/services/BreastThermography.htm. Last access 16 Nov 2015
8. .http://www.iact-org.org/professionals/new-therm-tech.html. Last access 16 Nov 2015
9. Piana, A., Sepper, A.: Contemporary evaluation of thermal breast screening. Pan. Am. J. Med.

Thermol. 1(2), 93–100 (2015)
10. Usamentiaga, R., Venegas, P., Guerediaga, J., Laura Vega, L., Molleda, J., BulnesInfrared,

F.G.: Thermography for temperature measurement and non-destructive testing. Sensors
14:12305–12348 (2014)

11. Maldague, X.P.V., Jones, T.S., Kaplan, H., Marinetti, S., Prystay, M.: Fundamentals of
infrared and thermal testing. In: Nondestructive Handbook, Infrared and Thermal Testing,
p. 718. ASNT Press, Columbus (2001)

12. Archer, F., Gros, C.: Classification Thermographique des Cancers Mammaries. Bull. Cancer
58, 351–362 (1971)

13. Lawson, R.N., Chughtai, M.S.: Breast cancer and body temperatures. Can. Med. Assoc. J. 88,
68–70 (1963)

14. Head, J., Elliott, R.L.: Breast thermography. Cancer 79, 186 (1993)
15. Anbar, M.: Breast cancer. In: Quantitative Dynamic Telethermometry in Medical Diagnosis

and Management, pp. 84–94. CRC Press, Ann Arbor (1994)
16. Rodenberg, D.A., Chaet, M.S., Bass, R.C., Arkovitz, M.D., Garcia, B.F.: Nitric oxide: an

overview. Am. J. Surg. 170, 292–303 (1995)
17. Thomsen, L.L., Miles, D.W., Happerfield, L., Bobrow, L.G., Knowles, R.G., Mancada, S.:

Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72(1), 41–44 (1995)
18. Guidi, A.J., Schnitt, S.J.: Angiogenesis in pre-invasive lesions of the breast. Breast J. 2,

364–369 (1996)
19. Gamagami, P.: Indirect signs of breast cancer: angiogenesis study. In: Atlas of

Mammography, pp. 231–226. Blackwell Science, Cambridge (1996)
20. Ng, E.Y.K.: A review of thermography as promising non-invasive detection modality for

breast tumor. Int. J. Thermal Sci. 48, 849–855 (2009)
21. Gershon-Cohen, J., Haberman, J., Brueschke, E.E.: Medical thermography: a summary of

current status. Radiol. Clin. North Am. 3:403–431 (1965)
22. Hoffman, R.: Thermography in the detection of breast malignancy. Am. J. Obstet. Gynecol.

98, 681–686 (1967)
23. Stark, A., Way, S.: The screening of well women for the early detection of breast cancer using

clinical examination with thermography and mammography. Cancer 33, 1671 (1974)
24. Amalric, R., Giraud, D., Altschule, C., Spitalier, J.M.: Value and interest of dynamic

telethermography in detection of breast cancer. Acta. Thermogr. 1, 89–96 (1976)
25. Hobbins, W.B.: Mass breast cancer screening. In: Proceedings of 3rd International

Symposium, Detection and Prevention of Breast Cancer, New York City, NY, pp. 637 (1976)
26. Hobbins, W.B.: Abnormal thermogram significance in breast cancer. Interamer. J. Rad. 12,

337 (1987)
27. Spitalier, H., Giraud, D., Altschuler, C., Amalric, F., Spitalier, J.M., Brandone, H., Ayme, Y.,

Gardiol, A.: Does infrared thermography truly have a role in present day breast cancer
management? In: Biomedical Thermology (Proceedings of an International Symposium),
Alan R. Liss, Inc., New York City, NY, pp. 269–278 (1982)

28. Isard, H.J., Becker, W., Shilo, R., Ostrum, B.J.: Breast thermography after four years and
10,000 studies. Am. J. Roentgenol. 115, 811 (1972)

29. Moskowitz, M., Milbrath, J., Gartside, P., Zermeno, A., Mandel, D.: Lack of efficacy of
thermography as a screening tool for minimal and stage I breast cancer. N. Engl. J. Med. 295,
249–252 (1976)

54 M. Etehadtavakol and E.Y.K. Ng

http://www.worldcat.org/title/clinical-thermography/oclc/1324536
http://www.mypinkimage.com
http://womensacademyofbreastthermography.com/html/breast-health.html
http://www.bk2health.com/docs/UtilizationofClinicalThermology.pdf
http://www.miamiholisticcenter.com/services/BreastThermography.htm
http://www.iact-org.org/professionals/new-therm-tech.html


30. Threatt, B., Norbeck, J.M., Ullman, N.S., Kummer, R., Roselle, P.F.: Thermography and
breast cancer: an analysis of a blind reading. Ann. N. Y. Acad. Sci. 335, 501–527 (1980)

31. Haberman, J., Francis, J., Love, T.: Screening a rural population for breast cancer using
thermography and physical examination techniques. Ann. N. Y. Acad. Sci. 335, 492–500
(1980)

32. Useki, H.: Evaluation of the thermographic diagnosis of breast disease: relation of
thermographic findings and pathologic findings of cancer growth. Nippon. Gan. Chiryo.
Gakkai. Shi. 23, 2687–2695 (1988)

33. Gautherie, M.: Thermobiological assessment of benign and malignant breast diseases. Am.
J. Obstet. Gynecol. 147, 861–869 (1983)

34. Louis, K., Walter, J., Gautherie, M.: Long term assessment of breast cancer risk by thermal
imaging. In: Biomedical Thermology (Proceedings of an International Symposium), Alan R.
Lis, Inc., NY, pp. 279–301 (1982)

35. Jones, B.F.: A reappraisal of the use of infrared thermal image analysis in medicine. IEEE
Trans. Med. Imaging 17, 1019–1027 (1998)

36. Parisky, Y.R., Sardi, A., Hamm, R., Hughes, K., Esserman, L., Rust, S., Callahan, K.:
Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious
lesions. Am. J. Roentgenol. 180, 263–269 (2003)

37. Nyirjesy, I., Ayme, T.: Clinical evaluation, Mammography, and thermography in the
diagnosis of breast carcinoma. Thermology 1, 170–173 (1986)

38. Thomassin, L., Giraud, D.: Detection of subclinical breast cancers by infrared thermograph.
In: Recent Advances in Medical Thermology (Proceedings of the Third International
Congress of Thermology), New York City, NY, Plenum Pres, pp. 575–579 (1984)

39. Etehadtavakol, M., Sadri, S., Ng, E.Y.K.: Application of K- and fuzzy C-means for color
segmentation of thermal infrared breast images. J. Med. Syst. 34, 35–42 (2010)

40. Jiang, L.J., Ng, E.Y.K., Yeo, A.C.B., Wu, S., Pan, F., Yau, W.Y., Chen, J.H., Yang, Y.: A
perspective on medical infrared imaging. J. Med. Eng. Tech. 29, 257–267 (2005)

41. Gold, J.E., Cherniack, M., Buchholz, B.: Infrared thermography for examination of skin
temperature in the dorsal hand of office workers. Eur. J. Appl. Physiol. 93, 245–251 (2004)

42. Kakuta, N., Yokoyama, S., Mabuchi, K.: Human thermal models for evaluating infrared
images. Eng. Med. Biol. Mag. IEEE 21, 65–72 (2002)

43. Mercer, J.B.: Infrared thermal imaging in modern medical research: a technique with
extensive possibilities. In: The Kastelli Symposium: Oulu, Finland (2000)

44. Ammer, K.: The Glamorgan protocol for recording and evaluation of thermal images of the
human body. Thermol. Int. 18, 125–129 (2008)

45. Buchlin, J.M.: Convective heat transfer and infrared thermography. J. Appl. Fluid Mech. 3,
55–62 (2010)

46. Steketee, J.: Spectral emissivity of skin and pericardium. Phys. Med. Biol. 18, 686–694
(1973)

47. Planck, M.: On the law of distribution of energy in the normal spectrum. Ann. Phys. 4, 553
(1901)

48. Maldague, X.P.V., Jones, T.S., Kaplan, H., Marinetti, S., Prystay, M.: Fundamentals of
infrared and thermal testing. In: Nondestructive Handbook, Infrared and Thermal Testing,
p. 718. ASNT Press, Columbus (2001)

49. Plassmann, P., Murawski, P.: CTHERM for standardized thermography. In: Proceedings of
Abstracts, the 9th Congress of Thermology Poland, Krakow, Poland, pp. 27–29 (2003)

50. Plassmann, P., Ring, E.J.F., Jones, C.D.: Quality assurance of thermal imaging systems in
medicine. Thermol. Int. 16:10–15 (2006)

51. Selfe, J., Hardaker, N., Thewlis, D., Karki, A.: An accurate and reliable method of thermal
data analysis in thermal imaging of the anterior knee for use in cryotherapy research. Arch.
Phys. Med. Rehabil. 87, 1630–1635 (2006)

52. Kattapong, K.R., Fogg, L.F., Eastmann, C.I.: Effect of sex, menstrual cycle phase and oral
contraceptive use on circadian temperature rhythms. Chronobiol. Int. 12, 257–266 (1995)

An Overview of Medical Infrared Imaging … 55



53. Zaproudina, N., Varmavuo, V., Airaksinen, O., Närhi, M.: Reproducibility of infrared
thermography measurements in healthy individuals. Physiol. Meas. 29, 515–524 (2008)

54. Hildebrandt, C., Raschner, C.: An intra-examiner reliability study of knee temperature
patterns with medical infrared thermal imaging. Therm. Int. 19, 73–77 (2009)

55. Owens, E.F., Hart, J.F., Donofrio, J.J., Haralambous, J., Mierzejewski, E.: Paraspinal skin
temperature patterns: an inter-examiner and intra-examiner reliability study. J. Manipulative
Physiol. Ther. 27, 155–159 (2004)

56. Vardasca, R.: Symmetry of temperature distribution in the upper and lower extremities.
Thermol. Int. 18, 154–155 (2008)

57. Selfe, J., Whitaker, J., Hardaker, N.: A narrative literature review identifying the minimum
clinically important difference for skin temperature asymmetry at the knee. Thermol. Int. 18,
41–44 (2008)

58. Koehle, M.S., Lloyd-Smith, R., Taunton, J.E.: Alpine ski injuries and their prevention. Sports
Med. 32, 785–793 (2002)

59. Bergstrom, K.: Activity related knee injuries and pain in athletic adolescents, knee surgery.
Sport Traumat. Arthros. 9, 146–150 (2001)

60. Ammer, K.: Thermal evaluation of tennis elbow. In: Ammer, K., Ring, E.J.F. (eds.) The
Thermal Image in Medicine and Biology, pp. 214–219. Uhlen Verlag Wien, Vienna (1995)

61. De Loes, M., Dahlstedt, L.J., Thomee, R.: A 7 year on risks and costs of knee injuries in male
and female youth participants in 12 sports. Scand. J. Med. Sci. Sports 10, 90–97 (2000)

62. Randall, W.V., Steadman, J.R., Mair, S.D., Briggs, K.K., Sterett, W.I.: Anterior cruciate
ligament injury incidence among male and female professional alpine skiers. Am. J. Sports
Med. 27, 792–795 (1999)

63. Fisher, G., Hoyt, G.L., III, Lamberth, J.G., Joe, L.A., Chromiak, J.A., Chromiak, A.B.,
Willard, S.T., Ryan, P.L.: Determination of the typical digital infrared thermographic profile
of the knee of distance runners. Med. Sci. Sports Exer. 39:318 (2007)

64. Ring, E.F.J., Ammer, K.: Thermal imaging in sports medicine. Sport Med. Today 1, 108–109
(1998)

65. Xiaojiang, X., Werner, J.: A dynamic model of the human clothing environment system.
Appl. Human Sci. 16, 61–75 (1997)

66. Elliott, R.L., Head, J.F.: Medical infrared imaging in the twenty first century. Thermol. Int. 9,
111 (1999)

67. Diakides, N.A., Diakides, M., Lupo, J.C., Paul, J.L., Balcerak, R.: Medical infrared imaging.
In: Diakides, N.A., Bronzino, J.D. (eds.) Advances in Medical Infrared Imaging, pp. 1–13.
CRC Press, Boca Raton (2008)

68. Ring, E.F.J., Ammer, K.: The technique of infrared imaging in medicine. Thermol. Int. 10,
7–14 (2000)

69. Thomas, R.A.: Reliability of medical thermography. In: Proceedings of Thermal Solutions
Conference, Sarasota, FL, USA, pp. 23–26 (2006)

70. Mayr, H.: Korrelation durchschnittlicher und maximaler; Temperatur am Kniegelenk bei
Auswertung Unterschiedlicher Messareale. Thermol. Int. 5, 89–91 (1995)

71. Akata, T., Kanna, T., Yoshino, J., Higashi, M., Fukui, K., Takahashi, S.: Reliability of
fingertip skin surface temperature and its related thermal measures as indices of peripheral
perfusion in the clinical setting of the operating theatre. Anaest. Intensive Care 32, 519–529
(2004)

72. Etehadtavakol, M., Ng, E.Y.K.: Breast thermography as a potential non-contact method in the
early detection of cancer: a review. J. Mech. Med. Biol. 13(2) (2013)

73. Amalu, W.C.: A review of breast thermography. Int. Acad. Clin. Thermol. http://
clinicalthermography.co.nz/A_review_of_Breast_Thermography.php (2003)

74. Ng, E.Y.K., Rajendra Acharya, U.: A review of remote-sensing infrared thermography for
indoor mass blind fever screening in containing an epidemic. IEEE Eng. Med. Biol. 28(1):
76–83 (2009)

75. Acharya, U.R., Ng, E.Y.K., Tan, J.-H., et al.: Thermography based breast cancer detection
using texture features and support vector Machin. J. Med. Syst. 36(3):1503–1510 (2012)

56 M. Etehadtavakol and E.Y.K. Ng

http://clinicalthermography.co.nz/A_review_of_Breast_Thermography.php
http://clinicalthermography.co.nz/A_review_of_Breast_Thermography.php


76. Ng, E.Y.K., Sudharsan, N.M.: Numerical computation as a tool to aid thermographic
interpretation. J. Med. Eng. Technol. 25(2), 53–60 (2001)

77. Ng, E.Y.K., Sudharsan, N.M.: An improved three-dimensional direct numerical modelling
and thermal analysis of a female breast with tumour. Proc. Inst. Mech. Eng. Part H J. Eng.
Med. 215(H1):25–37 (2001)

78. Ng, E.Y.K., Sudharsan, N.M.: Computer simulation in conjunction with medical thermog-
raphy as an adjunct tool for early detection of breast cancer. BMC Cancer 4(17), 1–26 (2004)

79. http://www.iact-org.org/links.html. Last access 16 Nov 2015

An Overview of Medical Infrared Imaging … 57

http://www.iact-org.org/links.html


Registration of Contralateral Breasts
Thermograms by Shape Context
Technique

Mahnaz Etehadtavakol and Eddie Y.K. Ng

Abstract Comparison of breast temperature in the contralateral breast is very
helpful in breast cancer diagnosis. Asymmetrical thermal diffusion might be a sign
of early irregularity. Practically, most of the existent breast thermograms do not
possess symmetric borders. Consequently, a suitable registration is required for
comparing temperature distribution of two breasts by investigating in contrast the
extracted features. In this book chapter, the proposed registration algorithm includes
two steps. First, shape context, the technique as introduced by Belongie et al, was
used to register two breast borders. Second, a mapping function of boundaries
points was obtained and applied for mapping two breasts’ interior points. Results
are very encouraging. Boundary registration was accomplished perfectly for 28 out
of the 32 cases.

Keywords Breast thermal images � Shape contexts � Registration

1 Introduction

One of the major issues in today’s women health is breast diseases. It is remarkably
important for physicians to identify potentially threatening malignant tumors in
breasts. Thermography has a long and highly arguable history for breast cancer
early detection. However, nowadays a renewed interest is obtained as a conse-
quence of the accessibility of high-sensitive thermographic cameras that can pro-
vide the indicative thermograms showing breast vascular alterations, and also the
existence of advanced image processing algorithms. The level of blood circulation
influences the skin hotness that impacts the amount of the infrared heat radiate from
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the human skin. To provide thermal imaging, a sensitive infrared camera is applied
to catch the skin temperature alterations as a result of the blood perfusion changes
[1–3]. Signals are sent by cancerous tumor cells to neighborhood normal cells and
special genes stimulate to build proteins that accelerate expansion of additional
blood vessels [4]. Consequently, malignant tumors are indicated by hot regions in
thermograms. Since symmetricity generally shows healthy subjects [5], asymmet-
rical isotherms of the contralateral breasts perhaps is a powerful indicator of
irregularities [6–11]. Practically most of the actual thermograms do not possess
symmetric borders. Therefore, in analyzing the temperature diffusion relating to the
opposite side of breasts, a proper registration for the two breasts is required. We
first introduced the shape context method to register two contralateral breasts
borders in this study. Then in order to align the points of inside of the contralateral
breasts the obtained transfer function of borders points was applied. This chapter is
arranged as follows: in Sect. 2, the shape context technique as well as the thin-plate
spline is presented. Section 3 introduces dataset and the algorithm guidelines.
Section 4 presents the experimental results and the findings are concluded in
Sect. 5.

2 Methods

The mechanism of aligning two or more images of the same scene is image reg-
istration. This mechanism involves labeling one image as the reference, and using
geometric transformations to the other images in order to align them with the
reference. Misalignment of images could be due to a variety of reasons. Image
registration is usually applied as a preliminary step in other image processing
practices. Image registration provides assessing feasibility and comparison of
common features in different images. Usually, an image is considered as a vector of
dimension n designed by chaining pixels intensity. However, a vector of pixel
intensity somehow is an insufficient descriptor of a shape. For example, very small
changes in rotation, translation, and scale need adequate preprocessing in order to
obtain necessary invariances. Then alternative suggestions like finding key points
could be provoked. But all shapes do not have noticeable key points and this
approach is insufficient for all cases. Hence, a general representation of an object as
a set of points selected from the border of the object is appreciable. The shape
context, a descriptor related to each point, represents the coarse description of the
rest of the object concerning that point. We introduce shape context, a point-based
registration technique next.

A. Shape Context

In 2002 Belongie et al. [12] proposed the shape context or point set matching
algorithm. In this algorithm, shapes are described in a way that deals with mea-
suring shape similarity and the point correspondences improving. To explain this
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algorithm, one known and one unknown objects are considered. Supposing point
set l ¼ l1; . . .lnf g captured the form of the known object and h ¼ h1; . . .hnf g the
unknown object. The scattering over respective positions is compact, robust, and
greatly selective. Therefore, the coarse histogram of the respective coordinates of
the remaining n − 1 points for the point li is defined to be the shape context of li
that is illustrated by Eq. (1):

mi kð Þ ¼ # h 6¼ li : h� lið Þ 2 bin kð Þf g: ð1Þ

Primarily, the likeliness of two patterns is calculated. Patterns are presented by a
group of finite sample points from pattern outlines as discussed earlier. These points
are not needed to be certain points like curvature extrema or landmarks, etc. As the
number of samples is getting bigger, the obtained closeness to the hidden pattern is
becoming better. By applying the shape context, we enable to represent the rough
distribution of the rest of pattern regarding to a given point on the pattern. For each
sample point on one pattern, by discovering likeliness of two patterns, we detect the
most analogous shape context for the sample point on the other pattern. With the
given likeliness at sample points, the likeliness is continued to complete pattern by
calculating a mapping transformation that aligns one pattern onto the other.
Aligning patterns can be considered the degree of pattern likeliness. In attaining a
total of corresponding errors between similar points, collected with an expression
which calculates the magnitude of the mapping transform, then calculation of the
dissimilarity between the two shapes is possible.

Assuming a point li and a point hj are on the known pattern and on the unknown
pattern, respectively, and C li; hj

� �
is the cost of matching point li and point hj.

Shape contexts are distributions introduced as histograms, it is statistically X2 test:

C li; hj
� � ¼ 1

2

XK

k¼1

mi kð Þ � mj kð Þ� �2

mi kð Þþmj kð Þ ; ð2Þ

where the k bin normalized histogram at li and hj are indicated by mi kð Þ and mj kð Þ,
respectively. It designates the group of costs Cij between all pairs of points li and hj
on the known and unknown patterns, respectively. The aim is minimizing the sum
of matching cost denoted in Eq. (3):

G pð Þ ¼
X

i

C li; hp ið Þ
� �

; ð3Þ

where p is a permutation. It could be determined in O(N3) time applying the
Hungarian approach.

Here we present examples of two original objects and their sample points on
their borders shown in Fig. 1a, b. Furthermore, the compassion of the two objects is
shown in Fig. 2.
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By having a limited set of similarities between points on two patterns, we enable
to continue estimating a plane transformation. Thin-plate spline (TPS) was
employed in this work. A short explanation of TPS is presented in the following
part.

B. Thin-Plate Spline (TPS)

Thin-plate spline (TPS) is an approach derived from a spline. It is applied to
interpolate and smooth data and has generally been considered as a nonrigid
mapping model to align two images and match two shapes. Bookstein discovered
that TPS model is greatly powerful for modeling alterations in biological patterns
[13]. The TPS model is the most extensively applied model in transformations
when working with shape contexts. It can be used to map optional points from one
pattern to the other. In other words, TPS is 2D observation of the cubic spline. Let
that positions of (xi, yi) are all distinctive and are not collinear. The TPS interpolant
g(x, y) minimizes the bending energy Ef described in Eq. (4):

Fig. 1 Shape context matching. a Two original objects. b Sample points of two objects on their
borders

Fig. 2 The compassion of
the two objects
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Ef ¼
ZZ

@2g
@x2

� �2

þ 2
@2g
@x@y

� �2

þ @2g
@y2

� �2

dxdy

g x; yð Þ ¼ a1 þ axxþ ayyþ
Xn

i¼1

wiO xi; yið Þ � ðx; yÞk kð Þ; ð4Þ

where O rð Þ is expressed as follows:

O rð Þ ¼ r2 log r2: ð5Þ

3 Dataset and Processing Steps

In this study, thermal images, accessible from Sun State Thermal Imaging Center in
Australia [14], Thermography of Iowa [15], American College of Clinical
Thermology [16], Thermal imaging lab in the San Francisco Bay Area [17], and
Ann Arbor thermography center [18], were used. The algorithm includes the fol-
lowing steps:

(1) Selecting randomly two sets of points that lie on the boundaries of two breasts
separately.

(2) Determining similarities between points on the borders of the two breasts.
(3) Estimating a mapping function using the correspondences. The obtained

mapping function of boundaries points is employed for mapping the inside
points of the breast thermogram. In digital images, pixels are prescribed to lie
on an experiencing lattice, captured to be in an integer network. Typically, the
output grid does not accompany with the integer grid. Comparatively, the
positions of the grid points may acquire any of the connected values which are
appointed by the mapping function. Consequently, an interpolation must be
suggested to convert discrete sample data to a connected surface. Then the
connected surface may be sampled at noninteger positions of the output grid.
The output image benefits of the accuracy of the interplant function.

(4) Determining the measure of R, G, B of the output grid accordingly by
employing cubic spline for interpolation.

4 Experimental Results

We implemented the algorithm for 32 subjects. It thoroughly accomplished for 28
subjects. The proposed algorithm implementation for two typical subjects is shown
in Figs. 3 and 4. Thermograms of the left breasts are shown in Figs. 3b and 4b,
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Fig. 3 Case I a original thermogram, b left breast, c right breast, d Blue points on borders of right
breast, and red points on borders of left breast, e unwarped borders, f warped borders, g borders of
two breasts after alignment, and h interpolated left and right breasts
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Fig. 4 Case II a original image, b left breast, c right breast, d blue points on borders of right
breast, and red points on borders of left breast, e unwarped borders, f warped borders, g borders of
two breasts after alignment, and h Interpolated left and right breasts
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while the thermograms of the right ones are in Figs. 3c and 4c. The set of points on
borders of right and left breasts are depicted in Figs. 3d and 4d. Unwarped
boundaries are demonstrated in Figs. 3e and 4e and warped boundaries in Figs. 3f
and 4f. Borders of two breasts after using the aligning function are shown in
Figs. 3g and 4g. Furthermore, the interpolated left and right breasts are demon-
strated in Figs. 3h and 4h.

5 Conclusion

We have proposed a technique in achieving symmetrical borders for thermograms
of contralateral breasts. Shape context method was used in our proposed algorithm.
After accomplishing registration of borders, then, the determined mapping function
of borders points is applied for mapping of points of inside of two breast images.
The benefits for employing shape context technique in this study include not
requiring special land marks or key points, and progressing to all usual shape
deformation. Although the technique is straightforward and not difficult to use it
presents an especially rich descriptor for point sets notably improving point set
registration. Findings are very hopeful. The proposed algorithm was accomplished
for 32 subjects and perfect implementation was obtained for 28 of them.

6 Future Work

As long as we attain two symmetric breast thermograms, many works can be done
for comparison of thermal distribution of the two breasts in future. The two
obtained symmetric breast thermograms will be used for comparing their temper-
ature diffusion by analyzing suitable obtained features from opposite side breasts to
diagnose thermal unlikeness. Various features such as statistical features and geo-
metrical features may be the suitable ones.
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Color Segmentation of Breast
Thermograms: A Comparative Study

Mahnaz Etehadtavakol and Eddie Y.K. Ng

Abstract Color segmentation of breast thermograms can have a crucial perfor-
mance in tumor detection. There is a relation between blood vessel activity and the
surrounding area temperature. Once a cancer increases blood vessel activity, the
cancer cells and their surrounding tissue become hotter than normal tissue.
Pre-cancer and cancer cells need plenty of nutrients to multiply and survive con-
sequently; they are highly metabolic tissue and have different thermal patterns
compared to the normal one. In this paper, a comparison work is presented for three
modeled color segmentation approaches: K-means, mean shift (MS), and fuzzy
c-means (FCM) applied to infrared breast images. There are some drawbacks for
K-means and MS approaches. Almost empty clusters may be obtained in the seg-
mentation results using K-means algorithm. In addition, we frequently confront
almost empty clusters with MS algorithm due to its sensitiveness to the window size
parameter. Choosing an appropriate window size parameter is not an easy task. On
the other hand, the fuzzy inherent breast thermal images aid the FCM technique to
obtain more precise outcomes. Malignant tumors show hotter thermal patterns than
healthy tissues and even with benign tissues. Segmenting different parts of two
breasts in terms of their temperature has potential helping to identify abnormal
breast tissues.
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1 Introduction

Over 2000 years ago Hippocrates layered mud over a patient’s body. He noticed the
mud dried quicker where the internal disease generated heat. Actually he under-
stood the diagnostic significance of body temperature changes.

Infrared energy wavelength is extended from 700 nm to 1 mm which human
eyes sensors are not able to detect the all range, so it is not visible. Infrared energy
is a sector of the electromagnetic spectrum that one recognizes as heat. All objects
with a temperature above absolute zero radiate infrared electromagnetic energy.
Objects with higher temperature radiate larger infrared radiations. One infrared
camera can capture the heat pattern emitted from the object.

Breast thermal imaging is a radiation-free updating screening procedure that
captures heat pattern of the breast helping early detection of cancer. The infrared
radiation from an individual as an outcome of surface temperature is related to the
amount of blood circulation. As a tumor grows it develops a blood supply that emits
more heat [1].

Breast thermal imaging is a harmless physiological examination that presents the
chance of earlier detection of breast disease than has been attainable through breast
self-examination, and other breast screening tests alone.

Breast cancer if detected early can be taken out and stopped. Once a woman who
has cancer is too late to start early detection, but if identified early enough, it can be
removed in initial phases before it metastasizes and spreads to the neighboring area.

Breast thermal imaging is a painless, noninvasive, fast, low cost, passive,
updating clinical examination without any risk of radiation. All subjects with any
age with any breast size can benefit of this technique. Also women with dense
breast as well as nursing or pregnant women can use breast thermal imaging [2–6].

Lawson declared in 1956 that the surface temperature of cancerous breast was
higher than the normal one. Therefore, Lawson claimed that the cancerous cells can
be recognized as hot regions in thermograms [7]. In infrared pseudo-color images
distinct colors show distinct rate of hotness. Hence, breast thermograms’ color
segmentation can be beneficial in identifying the suspecting zones.

This study is arranged in this way: Pseudo-coloring of gray images is explained
in Sect. 2. MS technique is discussed in Sect. 3. Numerical outcomes and discus-
sions are given in Sect. 4 and finally the findings are achieved in Sect. 5.

2 Color Conversion of Gray-Scale Images

Pseudo-coloring or color conversion of gray-scale images is one of the possible
means of upgrading digital image. The human eye is more sensitive to differences in
color than to differences in shades of gray. It is a common task in image processing
with the aim of upgrading visual quality, presenting a visual appeal and empha-
sizing specific features in the image.
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Two limitations with gray-scale images which are related to specific character-
istics of the individual discernable system lead to suggest the concept of
pseudo-coloring. First, as the size of the feature composed of the alternate gray
shade is reduced, a human’s ability to discern gray-shade differences in an image
decreases. As the size of the feature decreases, it takes larger differences in
gray-scale intensity for a person to be able to see the alternate shade of gray.
Second, humans are only capable of discerning between 60 and 90 separate shades
of gray, suggesting much of the information in a typical 256 gray-shade image is
lost on the viewer. Furthermore, individuals are capable of discerning more than
500 shades of color [8, 9].

Although it is controversial that the viewer allocates greater knowledge by
pseudo-coloring of gray images, thoroughly produced pseudo-color image indeed
allows tumor identification that is as good as gray scale and enhances fulfillment of
other jobs like recognition and interpretation of a tumor. In the interest of rehearsing
a thoroughly produced pseudo-coloring which can keep the whole knowledge of
grey-scale images and derives no deformity in images, uniform color space is
suggested [10].

In a uniform color space, identical alterations in the component of color space
correlate to identical noticeable alterations in color chroma and color hue angle.
However, many elements cause some difficulties. Some of these elements are as
follows: (1) the color of an area relies on neighborhood colors; (2) chromatic
accommodation impacts are influenced by eye motions, because colors are a head
or come after other colors in time; and (3) color discriminability evaluates on the
angular stretch of the investigation area. The 1976 CIELAB color space is sug-
gested by the International Commission on Illumination (CIE).

The space of CIELAB is shown in Fig. 1.
It is an attempt to provide an intuitively uniform color space. In this color space,

the amount of dissimilarities of the colors in terms of luminance, chroma, and hue
can be nearly described by the two-point separation length. In addition, tristimulus
values XYZ can obtain CIELAB coordinates (L*, a*, b*) as expressed by the

Fig. 1 CIELAB color space
[11]
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formulas in Eq. (1) where the white point values are denoted by the subscript n [12,
13]:
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3 Mean Shift Clustering (MS)

MS is a nonparametric technique that was introduced in 1975, [14]. This technique
does not need knowing about the number of clustering and does not force any
format of the clusters in advance [15–18]. Supposing a set of feature vectors, yi
(i = 1,…, n), be in a feature space of dimension d. The relation between the density
of any point y in terms of the kernel density evaluator K(y) and the size of window
h is obtained by Eq. (4):
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The zero gradient of Eq. (4) produces Eq. (5)
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where qðsÞ ¼ �K 0ðsÞ, supposing function q be the derivate of function
K. Equation (5) is a product of two expressions. The first expression is proportional
to the density estimate at y, and the MS vector which is the second expression is
introduced by Eq. (6):
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It is noticed that the direction of the greatest amount of growth in the density is
certainly pointed by the MS vector. The MS algorithm is demonstrated in Fig. 2.
The red arrow displays the MS vector while the updated center of the cluster is
indicated by the green circle. It is noteworthy to mention that the window size
variable h is the only variable of the MS technique. It has remarkable impact on the
acquired results.

4 Experimental Results

In this study K-means [19] and FCM [20] were applied for color segmentation of
breast thermograms [21, 22]. However, the three techniques K-means, MS, and
FCM are applied and compared. Sixty breast thermal images accessible from five
different breast thermography centers [23–27] were investigated in this work.

These three techniques put all cases into practice. With K-means algorithm,
almost empty clusters are appeared in some experiments. Besides, if K-means is
redone some times, the outcomes for distinct experiments are non-identical in
accordance with the drawbacks of the K-means technique [28–31]. Figure 3b shows
the experiment in which two almost empty clusters are obtained for a cancerous
individual as shown in Fig. 3a. Nevertheless by performing the FCM technique
(Fig. 3c), no empty cluster is obtained because fuzzy c-means technique measures
the colors in a comparative way and categorize them in groups that are not with
rigid borders. Consequently, data point is able to associate to more than one group
although in hard clustering (K-means) data is collected to rigid groups suggesting
each data point associates to particularly one group [32–34]. Also performance of

Fig. 2 Demonstration of
mean shift algorithm; the red
arrow shows the MS vector;
the green circle shows the
updated center of the cluster

Color Segmentation of Breast Thermograms: A Comparative Study 73



FCM for a normal individual (Fig. 4a) is demonstrated in Fig. 4b. MS technique is
easily affected by parameter h, the window size. In this work, MS algorithm was
performed for a normal case. Figure 4b shows the results for h = 12 with eleven
empty clusters while Fig. 4c for h = 15 with four empty clusters.

In this work, FCM technique has potential to identify the two first hottest areas
by measuring their colors with respect to the provided palette spectrum colors. By
color segmenting of breast thermograms, we are able to identify the two hottest
clusters. Consequently providing some helpful data from the doubtful areas by
measuring the color of the two hottest areas with the color of the provided palette
spectrum is feasible.

(a)

1                          2                          3                        4

5         6                          7                         8

(b)

1 2                        3                           4

5 6 7 8

(c)

Fig. 3 a An inflammatory cancer breast thermogram. b Two almost empty clusters out of eight
clusters obtained by K-means technique. c Eight non-empty clusters obtained by FCM clustering
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5 Conclusion

Although it is controversial that with pseudo-colored gray images more data can be
allowed to the observer, but precisely produced pseudo-color image indeed is
capable of tumor identification that is equivalent to the gray scale and upgrades
accomplishment of other jobs like perception and judgment of a tumor. In this
research, three techniques for breast thermograms color segmentation were used.
MS technique is easily affected by parameter h, the window size, and accordingly,
in this study, we usually challenged empty clusters and selecting a suitable h was
not straight forward. K-means technique reduces the sum of within cluster outcomes
numerically and clusters are tight and fully divided and produce precise outcomes.
Due to the K-means drawbacks, nevertheless, for many cases, K-means technique is
not practicable where clusters are not separated and an element in an image may

(a)

1                        2                        3       10                   11                       12

4 5       6                                  13                   14     15

7 8                        9                  16                  17

(b)

1                             2                           3                           4

5 6 7 8

(c)

Fig. 4 a A normal breast thermogram. b Eleven almost empty clusters out of seventeen clusters
obtained by MS with h = 12. c Four almost empty clusters out of eight clusters obtained by MS
with h = 15
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associate to various clusters. Choosing appropriate initial cluster centers is crucial
for K-means clustering. Inadequate initial centers may produce empty clusters. In
FCM technique, elements of the image are included in different clusters with dis-
parate levels of association. By reason of the fuzzy nature of the breast thermo-
grams, more faultless outcomes were resulted by FCM method to segment breast
thermograms.

In this study, 60 breast thermograms were studied. By implementing FCM
technique, we provided the two first hottest areas for each subject where convenient
features are obtainable. There are some conveniences of breast thermograms color
segmentation by FCM such as identification of irregular subjects by contrasting the
analogous clusters from the contralateral breasts (over the symmetrical line),
determination of level of malignity with identifying the two first hottest areas, and
extraction of some useful features from them.
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Potentialities of Dynamic Breast
Thermography

Amina Amri, Anthony James Wilkinson and Susan Helen Pulko

Abstract Since the introduction of breast thermography into medicine, researchers
have been interested in enhancing the thermal contrast in thermograms taken at
steady state. It was found that cooling the surface of the skin during long accli-
mation periods produced better thermal contrast, although it was agreed that
acclimation periods of up to 15 min may suffice to reflect functionalities of inner
skin tissues. However, the use of artificial sources for cooling the skin has revealed
new functional information that complements steady state thermography findings.
The method has been referred to as ‘Dynamic thermography’ and is based on
monitoring skin’s thermal state after cold stress. Although dynamic thermography
showed some promises in breast cancer diagnosis during the 70s, it has not received
much interest till the advent of computer image processing techniques. Analytical
tools such as sequential thermography, subtraction thermography, l-thermography
and thermal parametric images have been used in order to increase the accuracy of
breast thermography. Other processing techniques used thermal transients of con-
trol points on the breasts to examine the change in blood perfusion induced by the
presence of a breast disease. Autonomic cold challenge has also been used to
identify a tumour’s blood vessels. Recent numerical methods have investigated the
effectiveness of dynamic breast thermography and revealed new parameters that are
strongly correlated with tumour’s depth. Here we review the state of the art in
dynamic thermography as it is applied to breast diagnosis and identify some of the
potential information that could be provided about breast diseases.

Keywords Breast cancer � Cold stress � Autonomic cold challenge � Subtraction
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1 The Concept of Dynamic Thermography

Breast thermography was introduced into medicine by Lawson [1] who observed
that some breast cancers cause a rise in the temperature of the overlying tissue and
argued that breast cancers could be detected at an early stage if thermal scan of the
chest could be performed. Since then medical research has focused on the devel-
opment of medical infrared scanning systems that could produce a quantitative
temperature map of the breast [2, 3]. This interest in infrared scanning systems has
been driven by the potential value of thermograms and was encouraged by the
development of sensitive infrared detectors and sophisticated scanning systems for
military requirements. Discussion about spurious thermography findings and pos-
sible errors that could affect thermal images have pointed out the importance of
insuring that the temperatures measured at the surface of the skin are relevant to the
physiological or pathological conditions of the body and not caused by artefacts
[2–5]. It has been thus agreed that thermography should be performed using pro-
tocols during which thermal images of the unclothed part of the body be taken after
10–15 min acclimation period in a room of temperature between 18 and 24 °C, free
of drafts, heat sinks or sources and that the patient be seated in an appropriate
position. Under the foregoing conditions, better thermal contrasts have been
observed. Further, faster scanning techniques and better thermal resolution are
required for accurate thermal mapping.

At this stage, it was known that, in a healthy body any two symmetrically
located areas of skin are at the same temperature under controlled environmental
conditions [6–9]. Therefore, it was important to be able to correlate thermal contrast
observed on thermograms with pathological conditions of the body in order to
appraise the clinical value of thermography and to avoid subjective interpretation of
thermograms. Barnes [5] has observed that the contrasts shown on thermograms are
essentially caused by the generators of heat within the body and that thermograms
can give information about pathological conditions from which the patient may be
suffering. Subsequently, Williams [8, 9] proposed several causes for thermal con-
trast and stated that a range of breast diseases such as abscesses and some tumours
induce a hot spot on the surface of a thermogram.

In the light of this, it was desirable to enhance the thermal contrast observed on
thermograms given that the temperature of the skin is affected by environmental
parameters and inner tissues characteristics. Barnes [10] demonstrated that the
acclimation period is nothing but natural cooling of the skin and observed that
better thermal contrasts are associated with longer acclimation periods which allow
an equilibrium condition to be reached. Using the Barnes Mod I infrared scanner, a
modified infrared instrument originally designed for military applications [11],
Barnes [10] obtained a series of thermograms during natural cooling of the
unclothed upper body of a patient in a room temperature of 29 °C and observed that
the contrast was progressively increased after 15, 42, 65 and 94 min acclimation
period while thermal details were still faithfully reproduced. In another experiment,
Barnes [10] artificially cooled an arm by placing a damp towel on it for a few
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seconds and then drying it quickly. A series of thermograms were taken during
27 min thermal recovery period at 3 min interval. An enhancement of contrast was
observed during the first 9 min after which contrast decreased as the arm returned to
thermal equilibrium.

Although heating the skin would obviously decrease the thermal contrast,
Barnes [10] examined the effect of heating the arm progressively from ambient up
to a temperature of 43 °C. Thermograms taken at temperatures of approximately
34, 37, 40, 41, 42 and 43 °C showed that at approximately body temperature,
thermal contrast disappear. At elevated temperatures, a different thermal pattern
emerged including cool areas directly over the veins. Consequently, Barnes [10]
concluded that heating the skin could provide information about thermal conduc-
tivities of various tissues beneath it and suggested the use of superficial heating to
study dermatological problems.

Concurrently, Williams [9] also reported that thermal contrast is accentuated by
longer acclimation periods and by overcooling using artificial means. A steady state
thermogram of a patient with advanced carcinoma of the right breast showed a
temperature difference of 3.5 °C. When the chest wall was cooled using a towel
soaked in iced water, the thermal contrast was observed to increase. The
enhancement observed in the thermal contrast over a cancerous breast has marked
the beginning of the use of superficial cooling as part of breast thermography
protocols.

The advent of thermography as an adjunct technique for breast screening has
spurred many medical researchers to establish its value in breast diseases with
regard to known modalities of mammography and physical examination. Amalric
et al. [12] compared thermography with physical examination, mammography and
cytology. During thermography examination, the patient’s chest was sprayed with a
cooling liquid which was evaporated using a fan for 10 min. Thermograms were
taken just after cooling. Thermographic findings were then compared with histo-
logical findings for evaluating thermographic usefulness. Out of 1879 confirmed
cancers, 9% could not been identified either by physical examination or by mam-
mography, but have been detected by the combination of cold stress and
thermography.

2 Breast Dynamic Thermography Using Autonomic Cold
Challenge

The early 80s witnessed the use of a protocol involving autonomic challenge before
thermography. The method involved cooling of the extremities (hands or feet) by
ice water immersion as part of breast thermography protocol. The cold challenge
has been known as a test of sympathetic function and was used as a definitive
diagnostic method for Complex Regional Pain Syndrome also known as Reflex
Sympathetic Dystrophy (CRPS/RSD). The introduction of an autonomic challenge
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was predicated on the fact that at some stage of its growth, cancerous tumours
release angiogenic growth factor proteins that stimulate blood vessels to grow into
the tumour, so that it can be supplied with nutrients and oxygen. However, an-
giogenesis growth does not continue throughout all stages of cancer. The autonomic
cold test was intended to identify the development of a tumour’s blood new vessels
known as neoangiogenesis, and these could then be correlated with the develop-
ment and existence of breast cancer. Since neoangiogenesis are devoid of a mus-
cular layer and normal neural regulation, they would fail to constrict in response to
a sympathetic stimulus. Therefore, a high blood perfusion rate is maintained in the
tumour region as well as a high level of metabolic heat generation, while vaso-
constriction occurs near the skin surface.

The concept was initiated in France where Gautherie et al. [13] used hand
immersion in an attempt to make breast thermography more sensitive. The study
used large sample data including over 10,000 patients. Thermograms could be
taken prior to and after 45 s of cooling. It was reported that false positive rate
decreased to 3.5%.

However, there have been theoretical claims that some anatomical factors can
compromise the ability of the sympathetic nervous system to provoke vasocon-
striction. Cockburn [14] argued that dilated vessels or capillary networks that
resulted from surgery, incisional biopsy and lumpectomy, as well as local trauma
and thoracic spine instabilities, would fail to respond to the autonomic cold chal-
lenge thus compromising the detection of tumour’s neoangiogenesis. He also
suggested that patient’s own anxiety about the procedure may cause a sympathetic
fight or flight response before the autonomic cold challenge and may lead to
negative findings after applying cold stress. Therefore, researchers in the realm of
breast thermography discontinued the use of the autonomic cold challenge in the
early 90s after observing poor correlation between the results using cold stress and
medical case histories [14–16].

Using advanced medical imaging systems, Amalu [17] has conducted a clinical
study in order to reappraise the role of autonomic cold challenge as it might be
applied to breast thermography. Breast thermograms of 23 patients with histolog-
ically confirmed breast cancers demonstrated positive and negative responses to
cold stress. Amalu [17] found that excluding the autonomic cold test from breast
thermography protocol does not affect the sensitivity or the specificity of ther-
mography in the detection of breast cancers and concluded that more studies are
needed to assess the validity of the autonomic cold test.

3 Characterisation of Thermal Recovery After Cold Stress

Barnes’ observations during thermal recovery from superficial cooling and heating
stimulated the interest of Japanese medical researchers to obtain information about
the reaction of blood perfusion, metabolic heat generation and thermal conduction
of the human skin to superficial stimulus. Nagasawa and Okada [18] referred to this
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type of thermography as “dynamic thermography” because it is based on recording
thermal transient during the dynamic thermal recovery of the skin.

Nagasawa and Okada [18] devised a spot cooling source consisting of a piece of
ice in a film container of 30 mm diameter. A constant pressure of about 200 g
insured that the cooling source was kept in contact with the skin. The part of the
skin in contact with the device beyond the cooling area was insulated. Instead of
taking several thermograms of the cooled area at different time intervals during
thermal recovery, Nagasawa and Okada [18] recorded the thermal transient at the
centre of the cooled area in a room that fulfilled thermography conditions. After
cooling a pair of healthy human cheeks for 15 s, the thermal recovery curve of the
right cheek was almost identical to the left cheek. After removal of the coolant, the
temperature T of the centre of the spot recovered rapidly for the first minute and
then its rise became more gradual ultimately reaching thermal equilibrium tem-
perature, T1, which was almost the same as before cooling. The time needed to
reach the final temperature was referred to as Recovery Time, ReT.

In order to calculate ReT, the thermal recovery curve was processed to a straight
line using a logarithmic transformation of the difference between T and T1. The
calculated and the measured values of ReT were found to be almost identical. The
recovery time, ReT, was measured in cases of various diseases. In a case of
hemangioma, ReT value of 3 min suggests active blood perfusion whilst for lipoma,
the ReT was longer suggesting a low heat activity. Recovery time measurements
were also used to track the acceptance of transplanted tissue in a deficient region on
the cheek. It was found that after the first 20 days the recovery time was relatively
slow but became faster after 80 days, which indicated its acceptance. Consequently,
it was concluded that ReT depends on the kind of disease and its seriousness.
Nagasawa and Okada [18] further investigated the value of dynamic thermography
in observing the process of diseases and the effects of medication. Figure 1 shows a
comparison of the linearized thermal recovery curves of a postoperative inflam-
mation area, after removing an impacted mandibular third molar, and its

Fig. 1 Linear representation of thermal recovery curves of normal and inflamed cheeks after
cooling [18]. The ratio RtR ¼ t2=t1 ¼ tan a2= tan a1 ¼ ReT2=ReT1
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symmetrical part. It was observed that the ratio of their corresponding slopes was
equal to the ratio of their recovery times. This ratio was referred to as Recovery
time Rate, RtR, and was used to observe the gradual recovery of the inflammation.

After examining various clinical experiments of dynamic thermography using
cooling as well as heating stimuli, Nagasawa and Okada [18] concluded that a
thermal recovery process could provide quantitative information about blood per-
fusion and heat activity of a tumour and that dynamic thermography could be
applicable to differential diagnosis. It was also suggested that chemicals may be
used as a stimulus for dynamic thermography in order to observe the reaction of
specific diseases.

Concurrently with the clinical work of Nagasawa and Okada [18], Cary and
Mikic [19] described a localised cooling method that could be used in differential
diagnosis of human tumours. Although it was already known that thermal contrast
is enhanced by cooling, the observed effects of cooling were not well understood at
the time of the study. The method was established using the fact that the growth of
tumours is usually associated with increases in the local blood perfusion and the
local metabolic rate. These changes can produce an effect on skin temperature maps
in the region above a tumour. Therefore, differential diagnosis of tumours could be
made from comparison of temperature fields near tumours and in the corresponding
region of the contralateral breast, on the basis that this is healthy tissue. Further, it
was assumed that blood perfusion rates in healthy or normal tissue could differ
significantly from blood perfusion rates through tumours during moderate cooling.
Blood rate differences between cancerous and healthy tissue are thereby reflected in
the observed thermal contrast.

The theoretical concept was later used to devise a simple, inexpensive local
cooling system that could help in differential diagnosis of breast tumours [20]. The
system comprises two cylindrical cooling units weighting approximately 500 g
each. The units are filled with crushed ice at least 30 min prior to testing so that the
cooling disk reaches 10 °C or less. The patient should be lying on her back with
pen marks on the point where the tumour is closest to the surface. During a 10 min
test, the units are held by the patient on the region of interest and on its symmetrical
healthy part. Each unit insures a small surface cooling area of approximately
25 mm around which the skin in contact with the cooling device is insulated. Using
such a system, relatively large temperature differences between the skin over
cancerous tissue and that above healthy tissue could be obtained, without the heat
loss from the patient being sufficient to affect patient comfort adversely and so limit
the enhancement of the thermal contrast. The cooling units insure controlled
cooling as well as recording the temperature of the cooling surface at one minute
intervals. It was observed that thermal equilibrium was reached after 10 min and the
thermal contrast DT after 10 min was calculated.

During cooling, the rate of variation of skin temperature Ts with time is influ-
enced by blood perfusion of the tissue. When the temperature of a tissue does not
vary significantly in space during cooling because of the inner fixed body tem-
perature, the rate of variation of Ts could be expressed as:
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dTs
dt

/ xb Ta � Tsð Þ ð3:1Þ

where xb is the blood perfusion rate and Ta is the temperature of the arterial blood
perfusing the tissue. However, the rate of variation of Ts is nonlinearly related to
blood perfusion due to the complex breast tissue structure that causes both spatially-
and time-varying temperature field. Since the ratio ðdTs=dtÞ=ðTa � TsÞ is a mono-
tonically increasing function of perfusion rate, a parameter M was defined as:

M ¼ dTs2=dt Ta � Ts1ð Þ
dTs1=dt Ta � Ts2ð Þ ð3:2Þ

To quantify the response of the local cooling device to known breast diseases,
M and DT values were used to define diagnosis criteria. If DT � 0.9 °C or
M � 1.35 then the test was assumed positive for cancer. On the other hand, if
DT < 0.9 °C and M > 1.35 then the tumour was classified as non-malignant. The
local cooling method was tested on 130 women for whom xerographical, ther-
mographical, clinical and pathological information was available. Fifty-two of the
women were normal. There were 31 carcinomas, 14 solitary cysts, 4 benign
tumours and 22 diffuse dysplexia. Other patients include 5 women with asym-
metrical axillary tail and 2 with abscesses or inflammation. Masses were of average
diameter of 17 mm and were 15 mm deep.

The foregoing criteria correctly diagnosed: 23 of 31 malignancies, which cor-
responds to 74%; 16 of 18 benign growths, which is 88%, and 46 of 52 normal
cases which is also 88%. However, 10 of 22 women (45%) who had asymmetrical
diffuse non-malignant disease would have been falsely diagnosed as having cancer.
Some false negative results were caused by clinically occult carcinomas with
insignificant thermal contrast and by large necrotic, inactive neoplasm. On the other
hand, false negative findings were induced by large thermal contrasts observed in
benign breast diseases such as sclerosing adenosis, cystic disease, fibroadenoma
and abscesses. Cary et al. [20] have outlined some technical issues in the cooling
unit and procedure that could have influenced the results including unequal initial
disc temperature, improper location of the unit during testing and movement of the
units during testing due to patient’s breathing.

4 A Mathematical Model for Thermal Recovery
After Cooling

Since the early 60s, the medical community has been aware that steady state
thermography could produce false positive as well as false negative findings. It was,
therefore, important to investigate theoretically whether dynamic thermography
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could provide substantial information which could be useful for the clinical
diagnosis.

Motivated by the findings of Nagasawa and Okada [18] during thermal recovery
after cold stress, Steketee [21] subjected the skin of the forehead of 20 healthy
subjects to a cold temperature Tcold and subsequently recorded the thermal recovery
over a period of 15 min. The recovery curve shown in Fig. 2a was approximated by
a mono-exponential function:

T � Tcold ¼ ðT1 � TcoldÞð1� e�ltÞ; ð4:1Þ

where T1 is the steady state temperature. The value of the decay constant, l, was
determined from a semi-logarithmic plot of T1 � T as a function of time as shown
in Fig. 2b. However, it has been noticed that the steady state temperature T1 was

Fig. 2 Typical curves
obtained by Steketee and Van
Der Hoek [22] after cooling
the forehead. a Thermal
recovery and
b semi-logarithmic
linearization of T1 � T
versus time
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lower than the temperature before cooling inconsistent with the observation of
Nagasawa and Okada [18] that T1 was approximately the same before cooling.
Furthermore, data obtained using thermal recovery measurements taken over a
shorter period, couldn’t be fitted by a mono-exponential curve as shown in Fig. 2b.
The variance of the measured decay constants was also very high. Therefore,
Steketee and Van Der Hoek [22] used a theoretical model based on the bioheat
equation attributed to Pennes [23] in order to understand the character of the
thermal recovery and improve the method.

The following Pennes [23] bioheat equation was used to model heat transfer
during thermal recovery:

qc
@T
@t

¼ k
@2T
@x2

� xbqbcb T � Tað ÞþQm ð4:2Þ

In Eq. (4.2), q (kg m−3), k (W m−1 K−1) and c (J kg−1 K−1) denote the density,
thermal conductivity, and specific heat capacity of tissue; qb, cb are density and
specific heat capacity of blood; xb (s−1) is the blood perfusion rate; Qm is the
metabolic heat generation; Ta is the supplying arterial blood temperature which is
assumed constant, and T is the breast temperature.

A one-dimensional homogeneous skin model was used to study the thermal
transient after cooling the surface at a temperature Tcold. Assuming that the skin is at
body temperature, Tc, at a distance L from the surface and that the surface is
exposed to ambient temperature, Tf , the following boundary conditions were
prescribed

k@Tðx;tÞ@x

���
x¼0

¼ h0 Tð0; tÞ � Tf½ �
T x; tð Þ ¼ Tc for x� L

(

ð4:3Þ

In Eq. (4.3), h0 is the effective heat transfer coefficient that combines the heat
transfer attributable to convection and radiation as well as the cooling effect
associated with evaporation. Defining h ¼ T � Tcold, Eq. (4.2) becomes:

@h
@t

¼ a
@2h
@x2

� bhþ c ð4:4Þ

where a is the thermal diffusivity a ¼ k=qc, b ¼ xbqbcb=qc and
c ¼ ðQm=qcÞþ bhc. The boundary conditions then become:

@hðx;tÞ
@x

���
x¼0

¼ h0 hð0; tÞ � hf½ �
h L; tð Þ ¼ 37� Tcold for x� L

(

ð4:5Þ

where h0 ¼ h0=k (m−1). Steketee and Van Der Hoek [22] solved the problem using
the Laplace transformation method [24] and the complex inverse Bromiwich’s
integral formula [25] to obtain the thermal transient during recovery:
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hðx; tÞ ¼ h x; 0ð ÞþA
sinh gðL� xÞ

g cosh gLþ h0 sinh gL

� 2aA
X1

n¼1

exp �lntð Þp2n sin pn½1� ðx=LÞ�
lnL½p2n þ h0Lð1þ h0aÞ� sin pn ð4:6Þ

where

A ¼ g½hc þðc=bÞðcoshðLgÞ � 1Þ�
sinhðLgÞ þ h0hf and g ¼

ffiffiffiffiffiffiffiffi
b=a

p

ln ¼ bþ ap2n
L2

; tan pn ¼ � pn
h0L

and b 6¼ 0

The surface temperature hð0; tÞ and the steady state value hð0;1Þ were derived
from Eq. (4.6).

hð0; tÞ ¼ 2aA
X1

n¼1

½1� expð�lntÞ�p2n
lnL½p2n þ h0Lð1þ h0aÞ� ð4:7Þ

hð0;1Þ ¼ A
sinh gðLÞ

g cosh gLþ h0 sinh gL
ð4:8Þ

Equation (4.7) can be used to study the effect produced by a variety of
parameters on the steady state temperature and to estimate the time needed to reach
that temperature that Nagasawa and Okada [18] refer to as ReT. Equation (4.8)
shows that T1 depends on the temperature at depth L. The later varies among
subjects implying that T1 cannot be used as a reliable measurement for blood
perfusion. Furthermore, the theoretical solution (4.6) showed that the decay con-
stants, ln, depends strongly on the thermal diffusivity of the tissue. It was also
concluded that a two-exponential model should be used to fit the thermal recovery
curve in order to better discriminate normal and pathological blood circulation.

5 Computer Assisted Dynamic Breast Thermography

Computers were introduced for the qualitative analysis of breast thermograms in the
70s [26–29] with the aim of improving the accuracy of diagnosis. It was a rea-
sonable assumption that a computer-based system would be a fast way of diag-
nosing abnormality, and would be less expensive than visual interpretation in a
large breast screening program. Winter and Stein [28] assessed the ability of three
computer image processing techniques: spatial signature analysis, symmetry mea-
surement using thermal density distributions and image coding by contour map data
structure. Newman et al. [26] devised a simple automated technique for obtaining
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the breast outline and investigated criteria for abnormality. Ziskln et al. [29] clas-
sified 85 thermograms into normal and abnormal categories using a statistical
decision program based on a linear discriminant analysis technique. They reported
an overall accuracy of 85%.

Over the years, different methods of dynamic breast thermography have been
reported. After the application of an external cold stress, thermal recovery of the
breast could be examined by means of sequential thermograms taken at time
intervals, or/and subtracting sequential thermograms to produce a single contrasted
thermogram. Another approach was to compare the thermal transients of particular
areas of interest on the abnormality with its contralateral symmetrical part.

Using a standardised cooling procedure, Geser et al. [30] reduced the temper-
ature of the breast by approximately 3 °C using two fans. A computer-assisted
discriminant analysis was used to classify a sequence of 20 thermograms recorded
during thermal recovery of the breast after cooling. This quantitative dynamic
thermography was then able to correctly classify 80% of 162 patients with negative
clinical and mammography findings and 72.5% of 51 patients with proven breast
cancer. When combined with steady state thermography, the false positive rate was
reduced to 40%, though this value remains high.

Usuki et al. [31] combined observation of steady-state thermal maps with
dynamic thermography after cold stress in a clinical study that included 56 breast
carcinomas and 320 diagnosed benign diseases. Unspecified imaging procedures
were used. Thermographic measurements were taken in a room of temperature
24 ± 1 °C and 60 ± 10% humidity using a thermo-tracer 6T66 (NEC-Sanei Co.).
After an acclimation period of 15 min, steady state thermograms were taken. Soon
after, the breasts were cooled with 70% alcohol mist and thermograms were taken at
0, 1, 2 and 3 min after cooling. Thermograms were then processed using imaging
software that subtracted thermograms obtained immediately after cooling from the
thermograms obtained 3 min after cooling. Statistical analysis of steady state
thermography findings provides a sensitivity of 85.7%, a specificity of 65.6% and a
total accuracy of 68.6%. In contrast, subtraction thermography showed a sensitivity
of 89.3%, a specificity of 78.4% and a total accuracy of 80.1%. It was then con-
cluded that, although subtraction thermography after cold stress decreases the false
positive rate, it cannot be used as an ultimate breast imaging method. It was also
recommended that correlations between steady state and subtraction thermography
findings required more studies and that image analysis techniques needed further
development in order to be used in this context.

Uchida et al. [32] developed a physiological functional image processing system
for the quantitative analysis of sequential thermograms obtained during thermal
recovery of the breast after cooling. This system used models developed by
Steketee and Van Der Hoek [22] which describe the rewarming of the skin after
cold stress is removed. By assuming that this thermal recovery can be approximated
by a mono-exponential function, the temperature T of a pixel (i, j) at a time t was
given as:
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T i; j; tð Þ � T i; j; 0ð Þ ¼ T i; j;1ð Þ � T i; j; 0ð Þ½ � � 1� exp �ltð Þ½ �; ð5:1Þ

where the constant l depends on the blood perfusion underneath the skin surface as
well as the thermal conductivity of the tissue. The l-value thermal imaging system
provided a colour-coded 250 � 230 image of l values of each pixel calculated
from sequential thermograms. Despite the observation of Steketee and Van Der
Hoek [22] that it is necessary to discard the initial part of the transient if a
mono-exponential thermal recovery is to be useful, it was thought that l-thermo-
grams could reveal information about pathophysiological abnormality.

The effectiveness of the l-value thermal imaging system was initially assessed
for a patient with a proven cancer in the right breast and a false negative steady state
thermogram performed after 20 min acclimation in a room temperature of 21 °C.
After 2 min chilling by using cold air moved over the breast surface using an
electric fan, the temperatures of the right and left nipples were recorded every 15 s
during rewarming. Measurements were taken over a period of approximately 4 min.
Thermal recovery curves showed that the temperature of the left nipple was lower
than the temperature of the right one. Furthermore, the computer system processed
a sequence of 6 thermograms taken every 15 s by subtracting the temperature
values in each thermogram from corresponding values in the previous one in order
to produce a colour-coded l-value image.

Two years Later, Uchida et al. [33] used the l-value thermal image processing
system to analyse 18 patients with breast cancer which had been incorrectly
diagnosed by steady state thermography and dynamic thermography (sequential and
subtraction). Steady state thermograms were taken in a room temperature of 23 °C
after 10 min acclimation. Then thermograms were taken sequentially at intervals of
15 s, following exposure to cold air applied using an electric fan for a period of
2 min. The diagnosis criteria used for breast thermography at steady state and after
cooling depended on qualitative and quantitative findings of:

1. Asymmetric hot spot on the steady state thermogram
2. Asymmetric abnormal exaggeration of vascular pattern
3. Significant differences in the thermal map
4. Positive heat patterns in thermograms taken sequentially
5. A hot spot in the subtracted thermogram

The presence of sign 1 or sign 2 was considered positive in terms of diagnosis
using steady state thermography. However, several problems including patient
movement as well as breathing have limited the diagnostic value of l-thermography
which corrected 4 cases among 12 false negative thermograms and 4 cases among 6
false positive thermograms. The authors also pointed out thermal artefacts caused
by uneven air flow distribution over the curved surface of the breast and suggested
that better results could be produced using different cooling methods. The accuracy
of l-thermography was then reassessed after incorporating motion compensation
analytical tools by examining 26 patients with non-palpable breast cancer [34].
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A correct diagnosis was obtained in 55% cases using steady state thermography,
14% using dynamic thermography (sequential and subtraction) and 11% using
l-thermography.

Later, Ohashi and Uchida [35] reviewed the effectiveness of steady state and
subtraction thermography in the diagnosis of 728 patients with proven breast cancer
and 100 patients with benign breast diseases between 1989 and 1994. However, for
patients with breast cancer, the diagnostic accuracy improved from 54% when
steady state thermography was used to the much larger value of 82% in the case of
dynamic thermography after cold stress, without any associated increase in the rate
of false positives. For cases of benign breast diseases, the overall false positive rate
of steady state thermography was 41% versus 29% using subtraction thermography.
Although Ohashi and Uchida emphasised the merit of l-thermography as a future
diagnosis tool, the current authors are not aware of any further work that has been
published since 1997.

More recently, Arora et al. [36] conducted a 2-year study to evaluate an
advanced digital thermography system for cancer detection. The study involved 92
women whose average age was 51 years, the range being between 23 and 85, all of
whom had a suspicious breast lesion which had been identified using mammog-
raphy or ultrasound. Prior to thermography examination, the group of patients
underwent biopsy in a prospective double-blind trial. 60 out of 94 biopsies sug-
gested the presence of a malignancy and 34 suggested no malignancy. The majority
of malignancies were infiltrating ductal carcinoma and the invasive tumours ranged
in size from 0.5 to 14 cm. The clinical study used the Sentinel BreastScan, an
advanced digital thermography system manufactured by Infrared Science
Corporation comprising a digital camera with a sensitivity of 0.08 °C and a spatial
resolution of 320 � 240 pixels. Unlike other infrared system, the Sentinel
BreastScan is a fully automated diagnostic tool that employs artificial intelligence to
provide a fully interpreted real-time test report to the doctor. During the ther-
mography procedure, a series of more than 100 thermograms were collected while
cool air was directed at the breasts for approximately 4 min. Specific thermal
parameters for each breast were extracted and compared using asymmetry analysis
during post-processing of thermograms recorded during cooling. The software then
produced colour-coded images of the breast indicating suspicious areas as well as
all measured thermal breast parameters. Dynamic thermography identified 58 of 60
malignancies; the sensitivity was 97% and the specificity 44%.

6 Active Dynamic Breast Thermography

Active Dynamic Thermography (ADT) refers to dynamic thermography in
non-destructive evaluation of materials [37]. It is based on retrieving thermal
parameters of a tested object from its surface thermal response to an active external
excitation which involves heating or cooling. A series of thermal images are
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processed for the calculation of parametric images mainly thermal constant profiles
that are strongly correlated with the presence of defect in the tested object.

Advanced infrared imaging systems and image processing tools are being
developed to retrieve information from thermal recovery response after removing
the external excitation [38–40]. By assuming a Fourier heat conduction model in
tissue, two-exponential models have been used to fit temperature transients at the
surface of the tissue during thermal recovery after heating or cooling:

Tc x; y; tð Þ ¼ Te þDT1 exp �t=s1c x; yð Þð ÞþDT2 exp �t=s2c x; yð Þð Þ ð6:1Þ

Th x; y; tð Þ ¼ Te þDT1ðx; yÞ: 1� exp �t=s1hðx; yÞð Þ½ �
þDT2ðx; yÞ: 1� exp �t=s2hðx; yÞð Þ½ � ð6:2Þ

where T is the temperature transient during thermal recovery from heating or
cooling, Te is the temperature at steady state, s1 and s2 time constants, the sub-
scripts c and h indicates cooling and heating phase, respectively. Time constants s1
and s2 of the models can be identified using readily available nonlinear fitting
functions. In order to establish diagnosis criteria, averaged values for time constants
of the healthy tissue, �sref , are used as references in normalised time constants
defined by:

snorm ¼ s� �sref
sþ�sref

ð6:3Þ

Normalised values of time constant would eliminate any change in blood per-
fusion in a patient or between a group of patients [39].

Different types of excitations and cooling mode have been used. Forced con-
vection was applied using two different cooling units. The first is a cryotherapeutic
unit designed for clinical applications that uses expanded carbon dioxide mixed
with air and provides a cooling stream from 0 °C to ambient temperature. The
second industrial air conditioning unit blows air at temperatures in the range of 5 °C
to ambient temperature. Both units are supplied with disposable air filters to insure
aseptic conditions during cooling. Ice held in a thin plastic bag was used for
localised cooling of the tested tissue. Controlled cooling periods were between 30
and 60 s. Halogen lamps were used to heat the surface of tissues to a maximum
temperature of 48 °C.

Active Dynamic Thermography procedures have been applied for burns diag-
nosis [41], quality evaluation of cardio-surgery procedures [42] and post-surgery
wound healing [43]. Despite the promising results that have been obtained [38], the
use of ADT in breast diagnosis has received little attention [44, 45]. Active dynamic
thermography was performed on a small-scale study group of three women with
proven breast cancer (mammography and biopsy). In order to achieve heating, the
breast surface was exposed to light from halogen lamps of electrical power of
1000 W located 50 cm from the breast surface, for a period of 30 s. Parametric
images of time constants s1c and s2c were obtained but not presented for all the
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three women’s breasts. Further, interpretations of parametric images were not given
because of the complex structure of breast tissue, limited heating power and limited
depth of detectable cancers.

Generally, research studies have identified problems of implementing ADT in
medicine caused by the complex structure of tissues, variability of thermal prop-
erties between patients, movement of patient during imaging due to breathing and
technical limitations inherent to the type of external heating or cooling source.
Therefore, the main challenges of the research studies were as follows [46]:

1. Define optimal excitation sources which induce the best thermal contrast in each
specific medical diagnosis problem. Sources should be non-invasive, safe and
aseptic, easy to use and reliable.

2. Determine the required characteristics of the imaging system (thermal resolution
and spectral range) to be used with a particular excitation.

3. Identify sources of errors that may affect the final parametric images.

The performances of heating and cooling sources have been extensively
investigated for medical applications. Cooling was found to be safer than heating
[46]. The change of skin temperature up to 20 °C was found comfortable for a
patient. The signal to noise ratio was higher for cooling than for heating. It was also
suggested that heating should never exceed 42 °C and that the best condition for
cooling is at room temperature to avoid thermal gradient and heat exchange with the
environment. However, when electric fans were used for cooling, it was difficult to
control the energy level and the uniformity of cooling. The later also depends on the
shape of the tested tissue. Overall, cooling experiments showed that the excitation
should not last for more than one minute in order to minimise the effect of the
thermoregulatory mechanism. For the instrumentation requirement, a minimum
infrared camera resolution of 0.1 °C and a recording rate of at least 30 images per
second was recommended. Interference between the heating sources and the ther-
mal radiation from the tested tissue should be avoided. To improve the quality of
parametric images, thermal images should be pre-processed using algorithms for
motion compensation caused by unintentional patient displacement and for noise
filtering. In some applications of ADT, recording of thermal images have to be
synchronised with natural movement of the body caused mainly by breathing or by
heart beating in the case of cardiovascular surgery.

However, it has been reported that the main challenge to which are faced every
application of ADT in medicine, is the interpretation of the parametric images of
time constants. It has been observed that different stresses yield different parametric
images reflecting information about blood perfusion, thermal diffusivity and
metabolic heat generation. Nevertheless, promising clinical results were obtained
by a versatile instrumentation that could be used for the quantitative and qualitative
analysis of dynamic thermography in various medical applications [38].
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7 Numerical Modelling of Breast Dynamic Thermography

Numerical simulations are a powerful means of understanding and optimising
breast thermography. So far, several numerical techniques have been used to
examine conditions that affect breast surface temperature and steady state thermal
contrast in the presence of a tumour. The effect of factors such as blood perfusion,
tumour characteristics including depth and diameter as well as environmental
characteristics affecting thermography measurements, namely ambient temperature
and heat transfer coefficient, have all been investigated [47–53]. Nevertheless, none
of these numerical methods obtained the details of tumour characteristics from
steady state and transient thermograms.

In the late 70s, Chen et al. [54] studied the feasibility of determining interior
information from temperature transients, and investigated its limitations. It was
shown that it is almost impossible to determine the metabolic heat of an embedded
source from sequential thermograms. However, Chen et al. [54] proposed a theo-
retical method to determine blood perfusion of a volumetric heat source from
time-dependent thermographic observations. A two-dimensional numerical model
was used with no specific inversion technique. The procedure consists of varying
the air flow and the ambient temperature impulsively and recording the temperature
transients for a fixed duration. Computer-based harmonic analysis was then used to
determine the blood perfusion.

Although it is useful to detect the presence of a tumour by determining the
change in blood perfusion in the surrounding tissue after cooling, it is also inter-
esting to use thermal recovery to derive information about tumour’s parameters
such as depth, diameter and blood perfusion. Such characterisation represents
numerically an ill-posed inverse numerical problem that can be impractical to solve
due to the complexity of the boundary conditions. Therefore, the main objectives of
numerical modelling of breast dynamic thermography are to examine optimal
conditions for cooling that induce larger thermal contrasts during thermal recovery
of the breast and to identify thermal recovery parameters that could be correlated
with tumour’s characteristics.

To this end, it is necessary to describe a heat transfer model for the breast with
and without a tumour and to implement a numerical scheme for a breast’s model
geometry. This later should provide a steady state solution for breast thermography
and transient solutions during cooling and the subsequent thermal recovery.

7.1 A Heat Transfer Model for the Breast

Heat conduction, blood perfusion and metabolic heat generation all influence the
mechanism of heat and associated temperature fields in biological materials. There
is a general agreement that it is difficult to model the mechanism of blood perfusion,
due to the complex structure of the perfused tissue. There have been two types of
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approaches: a continuum approach and a vascular approach. In the continuum
approach [23, 55–57], a single parameter is used to represent the effect of all blood
vessels. On the other hand, in the vascular approach each blood vessel is considered
individually in terms of its thermal effect [58, 59]. The earliest continuum model,
Pennes [23] bioheat transfer equation, represents the effects of the blood flow using
a single heat source, which is nonlinear in the sense that it is itself temperature
dependent. Other models have been proposed to overcome the shortcomings of
Pennes model by considering the influence on heat transfer of blood flow within
elements of the vascular network. There are several critical reviews of heat transfer
models in biological materials, including [60–64]. However, Pennes equation has
been shown to have a high level of validity when vessels larger than 500 µm are
concerned [65].

Because the use of a vascular model requires detailed knowledge of the breasts
microvascular network which varies from one woman to another, continuum
models are more attractive, and Pennes bioheat equation (7.1) has been extensively
used to model heat transfer in the breast. We recall this as:

qc
@T
@t

¼ r:krT � xbqbcb T � Tað ÞþQm; ð7:1Þ

where the symbols have the meanings given previously. Heat transfer between the
surface of the breast and the surrounding ambient is by radiation and convection,
with additional cooling as the result of evaporation of sweat. These processes can
be expressed as [66]:

�k
@T
@n

����
skin

¼ hf Ts � Tfð Þþ re T4
s � T4

f

� �þQe; ð7:2Þ

where n is the normal vector at the surface; hf (W m−2 C−1) is the convection heat
transfer coefficient; Ts and Tf are temperature of the skin and the surrounding air,
respectively; e is the skin emissivity, and r the Stefan–Boltzman constant; Qe is the
evaporative heat loss.

Since changes in air temperature, circulation and humidity all cause changes in
the thermogram of a breast, a strict protocol is needed for recording thermograms.
Protocols developed so far include environmental specification, as well as
requirements relating to the patient’s condition. Imaging room temperature should
fall within the range 18–22 °C to promote cooling by vasoconstriction and the flow
of heat to the breast surface by air convection needs to be minimized [66]. To this
end, heat-generating equipment such as computers should be located outside the
examination room. Amalu et al. [67] pointed out that such temperatures do not
cause patients to either shiver or perspire. Patients are also ideally recommended to
avoid consuming alcohol, tea or coffee, eating heavy meals, smoking, sunbathing,
using cosmetic preparations or undertaking strenuous exercise before examination,
since these can have an effect on skin temperatures [68, 69].
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When appropriate protocols are followed, Draper and Boag [66] showed that
total heat loss may be considered to be proportional to Ts � Tfð Þ, assuming that
Ts � Tfð Þ is small. Thus the boundary condition at the breast surface is reduced to

�k
@T
@n

����
skin

¼ h0 Ts � Tfð Þ; ð7:3Þ

where h0 is a constant referred to as the surface conductance which combines the
effect of radiative and convective heat coefficients:

h0 ¼ hconv þ hrad ð7:4Þ

If the environment is suitably controlled, the heat loss associated with evapo-
ration may be rendered negligible. It is difficult to estimate accurately the con-
vection heat loss from the patient. However, Winslow et al. [70] studied the
influence of air movement on convective heat loss from the whole body. For wind
speeds between 2.6 and 0.46 m s−1 they derived the empirical formula:

hconv ¼ 12:1 m0:5
� �

Wm�2 �C�1; ð7:5Þ

where m is the wind speed. This approach yields values of hconv for the upper breast
surface of 4.6 W m−2 °C−1and for the lower surface of the breast of 5 W m−2 °C−1.
If Ts � Tfð Þ is small in comparison to the average temperature Tm, then we can
consider the heat loss due to radiation to be 4reT3

m where Tm ¼ Ts þ Tfð Þ=2, so that

hrad ¼ 4reT3
m ð7:6Þ

Mitchell et al. [71] found that, at thermal radiation wavelengths, the emissivities
of black and white skin were within 1% of unity throughout the whole range. Since
Tm is likely to vary between a minimum of 22 °C and a maximum of 27 °C,
Eq. (7.6) suggests that hrad varies between 5.95 and 6.15 W m−2 C−1.

Draper and Boag [66] recorded a total heat loss of h0 ¼ 10:4 W m−2 C−1 when
ambient air is stationary and values in the range of h0 ¼ 12 and 24 W m−2 C−1

when air at speeds in the range of 0.2–2 m s−1 flows over the surface of the breast.
Osman and Afify [72], on the other hand, evaluated the heat transfer coefficient
representing the combined effect of radiation, convection and evaporation, as
h0 ¼ 13:5 W m−2 C−1.

The presence of a tumour in the breast can be accounted for by implementing the
corresponding metabolic heat generation and blood perfusion or thermal conduc-
tivity. Gautherie et al. [73] showed that the time necessary for the tumour to double,
s, and the metabolic heat are related by a hyperbolic function:

Qm ¼ 3:27� 106

468:5 lnð100DÞþ 50
Wm�3; ð7:7Þ
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where D is the diameter of the tumour assumed of spherical shape. Gautherie [74]
estimated a global effective thermal conductivity for a cancerous breast tissue, the
value of which was enhanced to include the effect of blood perfusion. The estimated
value was 0.511 W m−1 °C−1. By assuming that the thermal conductivity of the
tumour tissue matches that of the glandular tissue at 0.48 W m−1 °C−1, Ng and
Sudharsan [51] used the enhancement in the thermal conductivity value of
0.03 W m−1 °C−1 to calculate tumour blood perfusion. Using mathematical and
physical models, Priebe [75] established an incremental relationship between blood
flow and thermal conductivity: a variation of blood flow of 150 ml min−1 per 100 g
of tissue results in a change of thermal conductivity of about 0.05 W m−1 oC−1.
Correspondingly, the enhancement in the tumour blood perfusion is 90 ml min−1

per 100 g.

7.2 A Numerical Procedure for Transient Thermography

To solve the previous heat transfer model, a breast’s model geometry needs to be
defined. From a knowledge of breast anatomy [76, 53] developed a two dimen-
sional model in which the various layers of the breast (subcutaneous, gland and fat),
were modelled using layers of various thickness close to the actual shape. Later, a
three dimensional breast model with an embedded tumour was used to examine
numerically the effectiveness of subtraction thermography during breast thermal
recovery after cold stress [77]. The cooling of the breast was not considered,
although a lumped thermal analysis was used to estimate the extent to which the
cold layer, induced by an instantaneous change in the ambient temperature, pene-
trated the breast and to develop an approximate model for vasoconstriction. During
thermal recovery, a time-dependent model for blood perfusion was used for the
three quadrants of the breast affected by vasoconstriction whilst the tumour of
diameter 32 mm, was located at the upper quadrant of the breast that was assumed
unaffected by cold stress. The model was numerically solved using FASTFLO
calculator, which solves partial differential equations dedicated for CFD (compu-
tational fluid dynamics). The temperature’s map observed after 60 min of recovery
from cold stress was almost the same as the steady state temperature distribution.
Unlike the observation of Usuki et al. [31] that subtraction thermography may
enhance thermal contrast, subtraction of thermal profiles obtained for 1, 3 and
5 min during thermal recovery did not yield any improvement in the thermal
contrast or give information not available using the steady state thermogram.

Numerical simulation of dynamic thermography using a three-dimensional
model based on a hemisphere with and without a tumour could pose problems in
terms of computer processing times and memory storage due to the large number of
thermograms that would need to be captured and processed during the phase of
thermal recovery. In addition, the use of such models for comparing the effec-
tiveness of different cooling methods is rather impractical. An alternative breast
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model geometry has been suggested by Amri et al. [47]. Based on the model of Ng
and Sudharsan [51], the breast model shown in Fig. 3 consists of a 5 mm thick fat
and gland which thickness H of at least 45 mm. The embedded tumour was
assumed to be spherical and of diameter D and metabolic heat Qm. The use of such
a model for steady state thermography has shown consistency with the results
obtained using hemispherical models. The breast model of Fig. 3 was recently used
by Amri et al. [78] to examine numerically the dynamic breast thermography after
cold stress using the Transmission Line Matrix (TLM) method [79].

The numerical procedure starts by solving Pennes bioheat equation (7.1) at
steady state, subject to the following conditions:

�k
@T
@z

¼ h0 Tf � Tð Þ at z ¼ 0 and T ¼ Tc at z ¼ H ð7:8Þ

�k
@T
@x

¼ 0 at x ¼ 0 and � k
@T
@x

¼ 0 at x ¼ L ð7:9Þ

�k
@T
@y

¼ 0 at y ¼ 0 and � k
@T
@y

¼ 0 at y ¼ L ð7:10Þ

Perfect thermal contact is assumed between the breast tissue and the tumour.

Tb x; y; zð Þ ¼ Tt x; y; zð Þ
@Tb
@n ¼ @Tt

@n

�
ð7:11Þ

Subscribes b and t denote breast and tumour respectively. The change in the
temperature of the surface, associated with the presence of a tumour, is evaluated

Fig. 3 A three-dimensional
breast model geometry [78]
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using a parameter known as the steady state thermal contrast, Css. This is defined as
the difference between the maximum temperature reached in the presence of a
tumour and the temperature at the surface of the normal breast.

Css ¼ max Ttumourð Þ � Thealthy ð7:12Þ

Tumour diameters of 10, 20 and 30 mm at depths of dp = 5, 7.5, 10, 15, 20 and
30 mm were considered. The depth is defined as the distance between the breast
surface and the top of the tumour. The steady state thermal contrast Css illustrated in
Fig. 4 shows that, irrespective of tumour diameter, steady state thermography is
best suited to detect tumours at depths less than 20 mm. An infrared camera with a
thermal resolution of 0.1 °C can be used, though higher resolution is desirable.
Beyond this depth, it is difficult to distinguish the tumour diameter and depth as
they lead to almost identical steady state thermal contrast Css. Thus, if the thermal
contrast is small, this may indicate a deep tumour but does not give information
about the tumour’s diameter.

With the tissue initially in a state of thermal equilibrium, a cold stress temper-
ature Tcold was applied on the surfaces of both the normal (healthy) breast and the
cancerous breast during a cooling period tcool. Pennes equation was then solved
using a constant boundary condition:

T ¼ Tcold for 0\t� tcool ð7:13Þ

To estimate how far into the breast tissue the effect of surface chilling penetrates,
it is helpful to define the thermal penetration depth dp. The temperature of the tissue
when the penetration depth has been reached should satisfy [24]:

@Tðz; tÞ
@z

¼ 0 at z ¼ dpðtÞ ð7:14Þ

Fig. 4 Thermal contrast
plotted against tumour
diameter and depth at steady
state
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Tðz; tÞ ¼ Ti at z ¼ dpðtÞ ð7:15Þ

where Ti is the initial temperature. Although some clinical studies that have been
reported in earlier sections used fan cooling of the breast, it has been criticised for
producing nonuniform cooling and for being difficult to control. Therefore localised
cooling seems to be an ideal choice as long as cooling is applied for short periods of
time to avoid patient’s shivering.

In order to study the effect of cold stress temperature Tcold and the cooling period
tcool on the thermal transients, cold temperatures of 5, 10 and 15 °C and cooling
periods of 10, 20, 30, 60 and 120 s have been examined. Figure 5 represents the
variation of the penetration depth versus the cooling time. The horizontal line
represents the rear boundary of the fat layer. Equations (7.14) and (7.15) predict
that a minimum cooling period of 20 s is required for the cold front to reach the
gland region where a tumour is likely to be. When cooling for a maximum of 2 min,
the thermal cold front penetrates about 14 mm into the breast, so that tumours
located deeper in the breast are uncooled.

After the cold stress was removed, the surface temperatures on both breasts were
recorded throughout the rewarming period of 60 min; this is consistent with [23]
that skin temperature at the forearm needs 30–60 min to return to steady state after
the end of chilling. During thermal recovery, both normal and cancerous breasts
exchange with adiabatic ambient via radiation and convection. To evaluate the
efficiency of the cold stress on the enhancement of temperature differences between
the breasts, the transient thermal contrast is again defined by:

Cmax tð Þ ¼ max Ttumour tð Þ½ � � Thealthy tð Þ ð7:16Þ

To enable tracking of the maximum temperature, the steady state thermogram
may help since the location of the maximum temperature can be identified. It might
then be helpful to mark the hot spot location on the cancerous breast and on the

Fig. 5 Influence of cooling
period on the thermal
penetration depth. The
horizontal line indicates the
edge of the fat layer
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corresponding contralateral symmetrical part of the normal breast. There is then no
need to monitor the dynamic change in the surface temperature of the whole of the
suspicious breast so storage of enormous amounts of data can be avoided.

The diagnostic value of cold stress was assessed by comparing the transient and
steady state thermal contrasts and by extracting information about the tumour’s size
and depth. The effects of the temperature and the duration of the chilling process on
the transients were examined for different tumours at different depths and of dif-
ferent diameters.

Figure 6 illustrates a typical transient thermal contrast during the rewarming
transient. Since the objective of dynamic thermography is to enhance thermal
contrast, it is useful to use the steady state thermal contrast as a reference. This is
identified by the dash dotted line in Fig. 6. Initially, the contrast rises to the steady
state thermal contrast Css, then increases further as time continues to reach a
contrast peak, Cpeak, at a peak time speak. After this time, the thermal contrast
decreases and thermal equilibrium is reached by the end of the monitored period.

To evaluate how useful dynamic thermography after cold stress can be, the
magnitude of the contrast peak and its corresponding peak time, have been derived
from thermal contrasts transients. This has been done for tumours having a range of
diameters and being located at a range of depth. The data obtained are presented in
Fig. 7.

Figure 7a shows similar trends as steady state thermal contrast shown in Fig. 4.
It seems that the magnitude of the contrast peak is determined by the penetration
depth of figure (Fig. 5). Higher contrast peak values have been obtained for tumours
which have been affected by cooling located at depth less than 15 mm. Dynamic
thermography was unable to enhance thermal contrast for tumours at depth 20 mm
or more. It has also found that the use of lower temperatures does increase the
transient peak for tumours located near the surface. This suggests that, chilling
temperatures marginally less than ambient temperature are all that is necessary and
chill duration needs to be no longer than 1 min. Such a protocol should not prove
particularly uncomfortable or inconvenient to patients.

Fig. 6 Schematic of the
variation of the maximum
contrast as thermal recovery
occurs after the end of cold
stress. The dashdot horizontal
line represents the steady state
thermal contrast, and the filled
circle corresponds to the
contrast peak
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The measure of the corresponding peak time values shown in Fig. 7b would be
critically dependent on the responsivity associated with the infrared camera in order
to locate the contrast peak. This is particularly important for tumours located
20 mm deep and more. Nevertheless, the peak time seems to be directly related to
the tumour’s depth and independent of the tumour’s diameters. It was also found
that the peak time does not vary significantly with the magnitude of the cooling
temperature or the period of cooling. This would make details of the measurement
protocols in the clinical environment less important. In the light of the continuing
progress in the infrared imaging technology and the development of software that
include motion as well as noise compensation tools, measurements of the peak time
may become more feasible in the near future.

Fig. 7 Effect of tumour size
and depth on a the contrast
peak and b the corresponding
peak time after cooling at
Tcold = 5 °C during
tcool = 1 min
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8 Conclusion

Dynamic thermography techniques have been utilised in a variety of diagnostic
applications including breast cancer. Clinical experiments have observed enhanced
thermal contrast after artificially cooling the breast and have demonstrated the
ability of increasing the accuracy of breast cancer diagnosis. Various computer
techniques have been deployed to process sequential thermograms during thermal
recovery of the breast including subtraction thermography and l-thermography.
These techniques have been applied to small-sample breast cancer studies and have
revealed information pertaining to the change in thermal parameters of the breast
associated with the presence of a tumour. The complexity of the thermal findings
has caused major difficulties for the clinical interpretation of thermal parametric
images. Some research studies investigated the change in blood perfusion caused by
the presence of a tumour. These studies employed localised cooling on the area that
shows hot spot on steady state thermograms and its contralateral part. Although
results were promising, the rate of false positive was a major constraint to this
technique and might relate to protocol and instrumentation issues. Other clinical
studies used the autonomic cold challenge by cooling patient’s extremities in order
to identify new tumour’s blood vessels known as neoangiogenesis but research
findings did not correlate with the presence of the tumour.

In an attempt to understand skin’s temperature transient after cold stress, a
mathematical model for a homogenous one-dimensional skin slab was developed.
The analytical solution showed that a two-exponential temperature transient model
is a good fit for the thermal recovery of the skin after direct chilling and that the
corresponding time constants are related to the thermal properties of the tissue as
well as to its blood perfusion. When modelling skin with an embedded heat source
representing a tumour, a numerical study showed that it is possible to extract a
tumour’s blood perfusion from temperature transients after cooling the skin by
convection. However, it was not possible to extract the tumour’s parameters such as
metabolic heat, size and location during thermal recovery and that even the use of
inverse numerical models would fail, due to the complexity of the problem.
However, a more recent simulation study of dynamic breast thermography after
cooling the breasts at a constant temperature for a period of time of two minutes or
less, showed an enhancement in the contrast peak for tumours at depth 20 mm or
less. Furthermore, it was found that the time corresponding to the contrast peak,
referred to as the peak time, was directly related to the tumour’s depth and inde-
pendent of the tumour diameter. It was also shown that the peak time does not
correlate with the cold stress temperature or the duration of the cooling phase which
give it the potential to be an indicator of tumour depth. Although it might be
interesting to obtain information about the tumour’s diameter, depth is the more
important parameter in breast tumours diagnosis as the tumour’s diameter can be
estimated by palpation during physical examination.

Until now, different techniques have been applied to cool the breast and to
process the thermal recovery. Overall, each processing technique of breast thermal
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recovery has contribute unique information about the presence of an abnormality in
the breast such as a change in blood perfusion, an alteration in the breast thermal
parameters or by estimating its depth. Therefore, in the light of the continuing
progress in infrared imaging instrumentation, dynamic breast thermography justifies
thorough research interest in order to conclude about its usefulness in breast cancer
diagnosis.
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In Vivo Thermography-Based Image
for Early Detection of Breast Cancer Using
Two-Tier Segmentation Algorithm
and Artificial Neural Network

Asnida Abd Wahab, Maheza Irna Mohamad Salim
and Maizatul Nadwa Che Aziz

Abstract Breast cancer is the most common form of cancer among women
globally. Detecting a tumor at its early stages is very crucial for a higher possibility
of successful treatment. Cancerous cells have high metabolic rate which generate
more heat compared to healthy tissue and will be transferred to the skin surface.
Thermography technique has distinguished itself as an adjunctive imaging modality
to the current gold standard mammography approach due to its capability in
measuring the heat radiated from the skin surface for early detection of breast
cancer. It provides an additional set of functional information, describing the
physiological changes of the underlying thermal and vascular properties of the
tissues. However, the thermography technique is shown to be highly dependent on
the trained analyst for image interpretation and most of the analyses were conducted
qualitatively. Therefore, the current ability of this technique is still limited espe-
cially for massive screening activity. This chapter presented a proposed technical
framework for automatic segmentation and classification of abnormality on mul-
tiple in vivo thermography-based images. A new two-tier automatic segmentation
algorithm was developed using a series of thermography screening conducted on
both pathological and healthy Sprague-Dawley rats. Features extracted show that
the mean values for temperature standard deviation and pixel intensity of the
abnormal thermal images are distinctively higher when compared to normal thermal
images. For classification, Artificial Neural Network system was developed and
produced a validation accuracy performance of 92.5% for thermal image
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abnormality detection. In conclusion, this study has successfully demonstrated that
for massive or routine screening activities, the proposed technical framework could
provide a highly reliable clinical decision support to the clinicians in making a
diagnosis based on the medical thermal images.

Keywords Thermography � Thermal image processing � Artificial neural network

1 Introduction

Breast cancer is the most common cancer experienced among women globally [1,
2]. The number of breast cancer incidences has steadily increased, and breast cancer
has recently appeared to be the second leading cause of death in women [3].
National Cancer Institute of Canada has estimated that two out of five women will
develop breast cancer during their lifetime, and approximately one out of four will
die as a result of this disease [2]. Although breast cancer is highly treatable if it is
detected at the early stages, the number of women diagnosed with breast cancer is at
the later stage especially those in developing and third world countries due to the
unavailability of portable breast imaging facilities and lack of awareness [4, 5].

Mammography technique is the current gold standard morphological-based
imaging tool that is used in clinical practices globally. However, this technique
exhibits low sensitivity in dense breast tissue composition or in young women.
Additionally, it requires breast compression during screening and exposes to
harmful radiation [6–9]. On the other hand, infrared thermography technique has
shown to be a potential adjunctive tool for detecting breast cancer [10–12].
Previous studies show that the heat generated by cancerous cells due to the high
metabolic rate will be transferred to the skin surface via heat conduction and heat
convection through both tissue and blood vessel respectively. Infrared thermogra-
phy will then measures the heat radiation emitted from the skin surface and converts
it into a visual thermal image format with its respective temperature values [8, 13].
It is a non-invasive and effective alternative modality for early detection of breast
cancer with simple screening procedure requirement, high accuracy for surface
temperature measurement, low in cost and available in small sizes which allow
mobility for bigger population coverage [10, 11, 14, 15].

With the advances in the infrared camera technology and computerized image
processing system, the subtle alteration of temperature associated with underlying
physiological changes is becoming more accessible in thermography, enabling high
accuracy thermal-based breast cancer detection. However, this technique is highly
dependent on trained analysts for thermal image interpretation which means, a
single thermal image may be interpreted differently by different analysts relative to
their respective skills, experiences, and health conditions [16, 17]. As a result, the
clinical applicability of the thermography technique is still limited, and it is very
crucial to further improve the technical aspects to increase the overall system
reliability for high acceptance into a clinical practice.
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Unlike any other applications of thermography (e.g., image from surveillance
camera) which mainly focus on the presence of overall subject, thermal images
obtained from medical thermography present a different temperature patterns and
contours related to the underlying physiological changes which occur at a specific
area within the subject. Thus, detecting and segmenting the symptomatic region
from the rest could be a very challenging task due to the inhomogeneous nature and
lack of clear limits in each subject. In addition, different camera settings and ini-
tialization that could vary the size of subject in each frame. As a consequence, most
researchers prefer to manually segment or to use a semi-automatic region of interest
(ROI) segmentation method for further measurement and analysis.

In the case of qualitative breast cancer diagnosis, the ROI segmented must
include both breasts since clusters of lymph nodes are found in the axillar region,
above the collarbone and chest. Herry and Frize have developed a contour detector
using morphological operators, as a means of comparing the intensity distribution
between both breasts. However, the initial segmentation of the subject has been
carried out manually [18]. Lipari and Head have constructed a semi-automatic
segmentation method, wherein each breast was divided into four distinct quadrants,
and an asymmetrical pattern between the quadrants was used for further. But, lack
of ideal body symmetry in the images has resulted in missing data for comparison
[14]. Another semi-automatic segmentation has been proposed by Scales and others
which comprised of eight different steps. They have reported that only 4 out of 21
images result in satisfactory ROI detection and errors were due to detection of
inframammary fold and bad edge detection [19]. However, for large number of
thermal images that need to be processed, both semi-automatic and manual seg-
mentation will be time consuming with a high chance of result inconsistency due to
fatigue. Motta and others have recently developed a fully automatic segmentation
method based on automatic threshold and border detection, and extraction of infra
mammary folds. They have used mathematical morphology and cubic spline
interpolation to separate both breasts symmetrically. However, the ROI detected
may exclude the portion of upper quadrant of the breast [20]. Therefore, most of the
researchers are currently focusing on developing an autonomous method for breast
segmentation.

Contrarily, in quantitative analysis, important features required to be extracted
from the ROI and to be fed into a classification system for diagnosis purposes. In
this particular case, the presence of breast images for processing is not necessary
but accurate ROI detected is crucial in order to ensure that features extracted from
the thermal images are highly reliable. In Schaefer and others’ studies, the ROIs
were segmented manually by an expert before fuzzy rule-based classification sys-
tem was applied [21, 22]. On the other hand, Ng and Kee have performed manual
segmentation on patients’ thermal images prior feeding them in an advanced
integrated breast thermography classification method [23]. However, fully auto-
matic ROI segmentation is still preferred to reduce overall computational time and
intervention by analysts especially when dealing with numerous thermal images.
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Although infrared thermography has not yet been applied to clinical practice,
this technique otherwise has shown to be an ideal modality for an upfront and
routine breast screening due to its passive nature and simple screening procedure
[10, 11]. However, a reliable classification of thermal image abnormalities would be
a steadfast indicator for further assessment using other sophisticated imaging
techniques. Therefore, this chapter proposed a new technical framework for thermal
image computer-aided diagnosis which integrates automatic segmentation, feature
extraction using both characteristics from visual and temperature data for image
abnormality classification. The main focus is to assist the clinicians in analysing
multiple thermal images accurately with minimal intervention and storage
requirement for mass screening activities.

A process of selecting different features from both visual image (pixel based)
and data temperature (temperature point) is compulsory in order to compose a
feature vector for classification between abnormal and normal thermal images [24].
However, due to storage limitation, most researchers have chosen to process and
extract the pixel related features available on the thermal images. Acharya and
others have measured smoothness, coarseness and regularity of pixels from thermal
images in order to further segregate these textures into two main classes, namely
structural and statistical. Later, they have used support vector machine (SVM)
method for classification [25]. Schaefer and others have extracted basic statistical
features, histogram features, cross co-occurrence matrices and mutual information
from the thermal images [21, 26]. In addition, Kuruganti and Qi have extracted
features such as mean, variance, kurtosis, peak pixel intensity and entropy, in order
to validate their proposed classification method [27]. Jakubowska and others have
extracted four different image features based on histogram, co-occurrence matrix,
gradient and run-length matrix. They have then utilized artificial neural network
(ANN) method for classification. Nevertheless, extracting and analyzing the fea-
tures from the pixel-based aspect alone for classification might introduce asyn-
chronization of data especially when extensive preprocessing technique is carried
out [28]. Therefore, Ng and Kee have extracted thermal information from the data
temperature point with additional history information, to determine breast abnor-
malities [23]. Borchartt and others have considered features including range of
temperature, mean temperature, and standard deviation of temperature in their study
and used SVM to evaluate the selected features [29]. Both studies have achieved a
high accuracy performance of 80.95 and 85.71% respectively.

It can be seen that different combinations and flows of image processing
methods have been applied and proposed previously, in accordance with the
specific objectives of each study. In general, the image segmentation and feature
analysis techniques have been developed from a simple single method analysis to
an advanced integration analysis techniques depending on the different objectives
that need to be achieved and also the availability of image data types.
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2 Data Collection

2.1 Animal Preparation

The use of animals in this study was approved by the institutional review board of
the Universiti Kebangsaan Malaysia, Animal Ethics Committee (UKMAEC),
Selangor Malaysia. Two groups of female Sprague-Dawley strain rats consisting of
fifteen pathological (abnormal) rats and fifteen control (normal) rats weighing
between 180 and 250 g were housed in polypropylene cages with wood shavings
used as bedding at an ambient room temperature, as well as access to water and
food ad libitum with a 12 h light/dark cycle. For pathological group, a single dose
of 10 mg of 7, 12-dimethylbenz(a)anthracene (DMBA), a carcinogenic chemical
used widely to produce mammary tumor, was dissolved in 0.5 mL of sesame oil
purchased from Sigma-Aldrich and administered via a subcutaneous injection into
the rats at the average age of 57 days [30]. All rats were palpated weekly to detect
the presence of mammary tumors. The induced rats were then allowed to adapt to a
new environment for two weeks before thermography screenings were carried out.

2.2 In Vivo Thermography Screening

The entire experiment has been conducted in a small preparation room with min-
imal light exposure located in the Clinical Animal Laboratory of the Faculty of
Bioscience and Medical Engineering (FBME) at the Universiti Teknologi Malaysia
(UTM) in Johor, Malaysia. The room temperature was controlled and maintained at
a range of 20–22 °C, using an air-conditioning system with relative humidity of
60–65%. The fluorescent lights available in the room were turned off during
acclimatization and screening processes [31]. This will ensure factors such as high
variations in room temperature, different percentages of light exposure, and other
possible factors that could influence the result in a significant way were minimized.
With this approach, a higher result consistency could be achieved. The images were
acquired using an Epidermal Thermal Imaging Professional (ETIP) infrared
imaging camera system model 7640 P-Series, manufactured by Infrared Camera
Incorporation, Texas USA, with a resolution of 640 � 480 pixel, and a field of
view of 49°/18 mm � 36°/25 mm, using a focal plane array microbolometer type
detector, a spectral range of 7–14 µm, a thermal sensitivity of 0.038 °C with a
temperature range of −40 to 400 °C and an accuracy of ±1% of readings.

The camera was mounted on a flexible arm which was connected to the display
monitor as shown in Fig. 1. The distance between the camera to the sample was
manually controlled, in order to get the best display output. The initialization of the
camera was carried out once prior to screening, in order to reduce noise and
stabilize the system.
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All rats were allowed to acclimate to the room temperature of range from 20 to
22 °C for up to 15 min before screening. Since a still or minimal movement target
is required during the screening process, a single dose of 0.1 ml/100 g of
Ketamine–Zoletil–Xylazine (KTX) anesthetics combination was administered into
each rat via an intramuscular route to provide a light anesthesia for 30–45 min [32].
A polyethylene decapicone restrainer was used for handling and approaching the
rats. Anesthetized rats were placed back in their individual cage until they were
fully unconscious. The rats were weighed and palpated to check for any lumps or
tumor multiplicity as shown in Fig. 2 before the screening and all this data was
measured and recorded accordingly.

Fig. 1 In vivo thermography screening setup

Fig. 2 Frontal view of a a normal rat with symmetrical body shape, b a pathological rat with
palpated lump on the left side of the body and c side view of a pathological rat with palpated lump
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Rats were then placed on the wooden plate in anterior position facing the camera
for ten minutes. Images were captured at a rate of five frames per minute and
thermal image in the joint photographic expert group (jpeg) format and temperature
data point in the comma separated values (csv) file formats were stored for further
analysis and processing. All screened rats were kept in their individual cages, and
were monitored hourly for any post-procedure effects.

2.3 Disease Verification

After 12 weeks of consecutive screening, histology test and disease verification
procedure were carried out to ensure that the symptomatic hotspot areas detected on
the thermal images were due to the cancer disease and not any other pathologies.
All surviving rats were euthanized by using drug overdose method to harvest the
breast tissue sample. Before excision, the fur around the breast area was shaven and
tissue samples were cut into smaller pieces and immersed inside 10% buffered
formalin solution for fixation and preservation purposes. The tissue were processed,
embedded in paraffin and section at 5 µm. The sections were then mounted on the

Fig. 3 Histological view of a–b cell arrangement in healthy breast tissue and c–d cell
arrangement in cancerous tissue
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glass slides and stained with haematoxylin and eosin to give contract to the tissue as
well as to visualize the microscopic structures.

An expert from Pathology and Clinical Laboratory, Johor, Malaysia has clas-
sified both normal and pathological samples based on gross morphologic appear-
ance of the tissue as shown in Fig. 3. Obtained histology results have confirmed
that all specimens within the pathological group had high grade invasive ductal
carcinoma of the mammary gland, with the presence of the syringomatous carci-
noma component in certain samples, while healthy group specimens were con-
firmed to be normal without the presence of any cancerous cells.

3 Image Processing

A two-tier segmentation algorithm was developed in order to detect the symp-
tomatic regions on the visual image and mapped them to the corresponding tem-
perature data file for feature extraction and classification purposes. This will assist
the clinician in diagnosing the thermal image by focusing only on the data extracted
from affected area and not having to examine the whole image captured.

3.1 First Tier: Segmentation for Subject of Interest (SOI)

The first segmentation process involved separating the subject from the background
in the thermal images using histogram based separation method. This eliminates the
possibility of the system to detect any hot spot area in the background as one of the
possible symptomatic region of interest since each pixel in the visual image cor-
responding one temperature value. Two vertical points namely x1, y1 and x2, y2 need
to be chosen by the analyst once during system initialization, in order to approx-
imately mark the subject position based on laboratory setting as shown in Fig. 4.

Fig. 4 Example of selection
of two vertical points
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Local information such as the overall intensity and vertical profile based on the
selected vertical points were utilized in order to perform an individual image
background correction. This particular step will allow flexibility alteration to dif-
ferent types of room and equipment settings including distance of the subject to the
camera, the zooming function and the various physical sizes of the subjects.

Figure 5 shows a flowchart of new algorithms proposed for SOI segmentation.
The raw image obtained from the thermography screening was preprocessed. Since
different system have different color schemes (e.g., RGB, thermal, rainbow), analyst
has to select one channel that suit the system best during initialization phase. The
calculation of the mean intensity (li) value as shown in Eq. 1 was used to generate
a new matrix layout mapping with identical intensity value.

li ¼
1
N

XN

i¼1

xi ð1Þ

where N is the total pixel determined using vertical range (0—y1 and y2—max
vertical pixel number) and xi is the intensity value of each pixel measured.

Fig. 5 Flowchart for SOI segmentation
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Each pixel value in the output image, I 0ði;jÞ, was generated by the subtraction of

the mean intensity value from the pixel value in the input image, Iði;jÞ, as shown in
Eq. 2.

I 0ði;jÞ ¼ Iði;jÞ � li ð2Þ

Next, the image was converted into a binary format background and was
remapped onto a new image. Subject edge detection was performed within the
subject with a flood-fill operation applied in order to eliminate any brightness
discontinuity and to allow only one subject boundary to be detected. For perfor-
mance evaluation, a comparative study between the proposed algorithm and the
conventional segmentation methods namely the Otsu and Active Contours was
performed.

3.2 First Tier: Result and Discussion

Figure 6 shows the output of the SOI segmentation carried out on multiple thermal
images using the newly developed algorithm. It can be seen that although each
thermal image has a different image background profile, the proposed algorithm is
capable of detecting the SOI accurately, while manual segmentation requires longer
time due to the complicated subject outline.

On the other hand, Fig. 7 shows the segmented image using Otsu’s method. It
can be clearly observed that the segmented image did not show any distinct
boundary between the subject and the background. This is due to the default
thresholding applied in Otsu’s method which is not suitable for use in thermal

Fig. 6 Segmentation of multiple thermal images using a new developed algorithm
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images due to its inhomogeneous color contours. However, for images with
homogeneous objects and backgrounds Otsu’s method has been shown to be very
precise.

Figure 8 shows the segmented thermal image, using the Active Contour method
with a different iteration number used. Interestingly, it can be observed that the
higher the iteration, the detected edge becomes smoother and clearer. However, the
disadvantage of larger iteration numbers is that they require higher computational
loads and longer times to process. In addition, for the large number of images which
need to be processed, single settings on iteration number may not be suitable to be
used and could result in subject segmentation inconsistency.

Further morphological and quantitative comparisons were made based on the
edge detection line drawn on each SOI segmented image and time taken for each
segmentation as shown in Fig. 9 and Table 1 separately. It was observed that the

Fig. 7 Thermal image
segmentation using Otsu’s
method

Fig. 8 Thermal image segmentation using the Active Contour method including a the raw
thermal image b after 300 iterations c after 600 iterations and d after 700 iterations

In Vivo Thermography-Based Image for Early Detection … 119



Fig. 9 Comparison of segmentation methods using a the Otsu’s method b the Active Contour
with 700 iterations and c the newly proposed SOI algorithm

Table 1 Processing time
comparison

Method Time (mean ± std) (s)

SOI segmentation 0.6415 ± 0.0429

Otsu’s method 0.7130 ± 0.0651

Active Contour (700) 30.318 ± 1.0519
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newly proposed SOI segmentation algorithm has outperformed the existing meth-
ods in both aspects, producing a distinguished boundary line between SOI and clear
image background with lowest processing time. However, since initial image
cropping can be controlled, analyst may choose to exclude the lower part of the
body to minimize the undesirable noise captured along the tail. In previous clinical
case study, areas such as face, neck and lower body were excluded during image
processing. A corrected background profile shows a smooth and consistent pixel
arrangement.

Segmented SOI from Otsu’s method is shown to be the least accurate with a
comparable processing time to the newly developed algorithm. The thermal image
output was shown to capture the largest amount of background information. This
may reduce the ROI segmentation accuracy in the later stage. Likewise, the
background profile displayed a polluted pixel arrangement. Otsu’s method has a
drawback as it uses a single parameter setting, although this method is generally
preferred in other digital image processing field, it seems to be not suitable for SOI
segmentation in medical thermal image processing.

Contrariwise, the Active Contour method with 700 iterations produced a better
cut-off line between the subject and background than Otsu’s method with a small
background area captured, but this method requires the longest processing time and
highest load among others.

Therefore, the newly proposed SOI segmentation algorithm has proven to be
capable for segmenting the SOI in different thermal images automatically with high
accuracy and requires less processing load and time.

3.3 Second Tier: Segmentation for Region of Interest (ROI)

The second-tier segmentation algorithm was developed to detect the possible ROIs
within the subject, where any presence of hotspots outside the SOI boundary will be
disregarded in this stage.

Figure 10 shows the overall flow chart for the ROI segmentation process. By
using the mean intensity value calculated previously in the SOI segmentation stage
as a new threshold, all possible ROIs could be determined. Equation 3 shows the
possible ROIs selection criteria where value ‘1’ represents positive possible ROIs
and value ‘0’ represent non-ROI hotspots.

Rposs ¼ 1 if Ri [ li
0 otherwise

�
ði ¼ 1; 2; 3. . .nÞ; ð3Þ

where Rposs are the possible regions which have pixel value larger than the mean
value and Ri are all hot spot in the SOI segmented. Figure 11 shows the output of
possible regions detected within the subject using two different regions selection
schemes.
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Fig. 10 Flowchart for ROI segmentation
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Local parameter properties, such as the intensity, centroid value, diameter and
area of each identified region were measured and tabulated for all possible symp-
tomatic ROIs. Two parameters namely mean area (la) and mean intensity (li) were
calculated and used to determine the final ROIs (Rfinal) selection as shown in Eq. 4.

Rfinal ¼ Rposs [ ðla \liÞ ð4Þ

Mean area was used to eliminate the presence of smaller hotspots which are
insignificant, while mean intensity was used to eliminate low temperature areas.
Areas which satisfied both criterions were masked on the SOI segmented thermal
image. Regions that not belong to these criterions were ignored, and if there were
none detected, the image is considered normal and the algorithm will be terminated.

Finally, the output result of the ROI segmented image was compared to the
temperature data contour plot, in order to validate and verify whether the final ROIs
detected from the thermal image are in the same position as those generated from
the raw temperature data file. This is a very important step as processing a raw
temperate data file in the ‘comma separated value’ or csv format can significantly
increase the processing load requirement by thrice. However, qualitative compar-
ison alone is insufficient to evaluate the performance of the developed ROI seg-
mentation method. Hence, four different area based evaluation methods namely
Dice Similarity Coefficient (DSC), Jaccard Index (JI), Relative Area Different
(RAD) and Area Overlap Error (AOE) were used to analyze and compare ROI
obtained via automated segmentation and using manual tracing for all samples
[33–35].

DSC identifies the degree of area that is overlapping between automated and
manual segmentation. On the other hand, Jaccard Index study the ratio of area in
common of both automated and manual segmentation methods. RAD calculates the
difference between area of the automated segmentation and the one from manual
tracing where negative values indicate that the region segmented by the proposed

Fig. 11 Example of possible hotspot regions detected with a color highlighted and b numbered
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method is smaller than that by manual tracing. Positive values indicate that the
region segmented manually is smaller than the one segmented by the system. AOE,
which is based on JI, shows that ratio of the area that is not intersecting between
both regions.

Hence, segmenting the ROI in its visual format and extracting features based on
the ROI mapped onto the temperature data file will certainly increase the overall
processing efficiency.

3.4 Second Tier: Results and Discussion

Figures 12 and 13 show the results of ROI segmented in both normal and abnormal
thermal images respectively.

It was observed that for normal thermal image, no symptomatic region was
detected and mapped onto the SOI segmented image. However, for the abnormal
thermal image, few distinctive symptomatic regions were detected and mapped onto
the SOI segmented image. Although a large hotspot could be seen clearly on the
raw thermal image, only areas which satisfied the criterion set earlier were selected.
This is crucial to guide and assist the clinicians in diagnosing a patient. As visual
image only carries pixel information, it is important to ensure that ROI segmented
corresponded to the highest temperature on the raw thermal image.

Based on the output result obtained in Fig. 14a, it is clearly shown that the ROIs
detected have correspondingly matched their respective temperature data shown in
Fig. 14b, c. In addition, an automated segmentation method developed shown to
have high similarity coefficient to manual tracing with 97.38 and 94.89% for both
DSC and JI respectively as shown in Table 2. RAD shows a positive value of 5.38
which indicates that bigger region segmented using manual tracing than the one
segmented automatically. This is due to the small temperature changes along the
border of symptomatic regions that was not able to be differentiated visually.

Fig. 12 ROI segmentation of normal thermal image a raw thermal image, and b ROI masked on
raw image
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Fig. 13 ROI segmentation of abnormal thermal image a raw thermal image, and b ROI masked
on raw image

Fig. 14 Comparative analysis between a ROI segmented thermal image and b, c temperature data
plot in 2D and 3D respectively
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Finally, AOE result obtained shows that there was a high resemblance between both
regions segmented using manual and automated methods.

4 Automatic Abnormalities Detection

Once the final ROIs were detected, the pixel number lies within the ROI boundary
will be used as a reference to extract the temperature related information from the
temperature data file. For normal thermal images with no ROI boundary detected,
temperature information within an area of size 50 � 50 pixels from the subject
midpoint were extracted. Five different features including mean intensity, mean
temperature, maximum temperature, minimum temperature and standard deviation
were extracted. These data which were taken from a total of 200 sets of thermal
images and were then sampled into three different categories namely training,
testing, and validation. Target value of ‘1’ was assigned to all pathological images
and target value ‘0’ was assigned to all thermal images captured on normal samples.
In this study, an artificial neural network (ANN), a widely used classification
method in medical diagnosis has been utilized to classify whether the thermal image
is belong to the abnormal group or otherwise [36, 37]. ANN processes the data in
parallel distributed mainframe and has the ability to learn on the basis of the input
data they fed. The network was first trained using back propagation algorithm
which employs steepest gradient descent with momentum and consists of one input
layer, two hidden layers and one output layer with sigmoid and linear transfer
function were applied in the hidden layers. The network was then optimized to
reduce over fitting before data testing and validation can be performed by varying
the training parameters including number of neuron, learning rate, momentum
constant, and iteration rate. The values of each parameter was considered optimum
when the network produces the lower mean squared error (MSE) value with high
prediction accuracy performance. The prediction values obtained from both testing
and validation steps were further evaluated for group recognition and accuracy
measurement. The MSE calculation is shown is Eq. 5.

Ek ¼ 1
2

XN

j¼1

Tkj � Okj
� �2

; ð5Þ

where Ek is the MSE value, Tkj represent target value for jth output neuron, Okj is
the actual output and N is the total output number of neuron. The range used for

Table 2 Quantitative performance measurement between automated and manual segmentation

Dice similarity
coefficient (%)

Jaccard index
(%)

Relative area
difference (%)

Area overlap error
(%)

97.38 94.89 5.38 5.10
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both groups are shown in Eqs. 6 and 7. While the accuracy calculation was made
based on conditions in Eq. 8.

�0:2\Pnormal\0:2 ð6Þ

0:8\Pabnormal\1:2 ð7Þ

Accuracy %ð Þ ¼ Total of Correct Detection
Total Detection

� 100 ð8Þ

4.1 Features Extraction and Classification

Figure 15 shows the comparison of temperature and mean intensity values for all
features extracted including maximum temperature, minimum temperature, mean
temperature and standard deviation from data temperature file and mean intensity
values from thermal image for both normal and pathological rats separately. The
temperature standard deviation and mean intensity values for both groups were
shown to be the most significant distinguishable features among others. Mean
values (°C) of 0.433 ± 0.1547 and 0.109 ± 0.037 for both the abnormal and
normal groups were observed in temperature standard deviation while distinctive
values of 216.9417 ± 8.6471 and 167.0467 ± 3.708 were obtained in pixel mean
intensity.

Maximum temperature and mean temperature showed a comparably significant
difference with minimal correlation, while the minimum temperature was observed
to have the least significant difference where values from the third quartile (Q3) of a
normal group could be mistakenly assigned to the abnormal group. Data which
have outlier values were excluded for classification. Nonetheless, these features
have been considered with additional selected features from image processing to be
used in the development of ANN as they fulfil the least requirements needed for
robust prediction.

For classification, a total of 120 sets of data (60 normal and 60 abnormal images)
were used in the training process, 40 sets of data (20 normal and 20 abnormal
images) for testing and another 40 sets of data (20 normal and 20 abnormal images)
were used for validation purposes. A final optimized network architecture consists
of 5 network inputs, 2 neurons in the hidden layer and 1 network output with
learning rate of 0.3, an iteration rate of 200,000 and momentum constant of 0.2.

Figure 16 shows the result plot between actual classification output value and
the predicted classification output value for validation data set from the optimized
network while Table 3 shows the final classification performance for both testing
and validation data with a training performance of 98.45% and an MSE of 0.015.

The prediction results obtained showed that the ANN developed for the image
abnormality classification was capable of achieving an overall accuracy of 97.5 and
92.5% for both testing and validation data, respectively, which is comparable to the
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performance achieved by other techniques [23, 29, 38]. This finding indicates the
higher possibility of using features extracted from both visual image and temper-
ature data in assisting clinicians to improve the current breast oncology diagnosis
process.

Fig. 15 Comparison of a maximum temperature, b minimum temperature, c mean temperature,
d standard deviation of temperature and e mean intensity value for both abnormal and normal
groups
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5 Conclusion

In this chapter, a two-tier segmentation method was proposed to automatically
segment the symptomatic regions lie within the subject of interest. Features from
both thermal visual image and data temperature file were extracted and fed into
ANN classification system to assist the analyst in diagnosing multiple thermal
images with low processing time and computational load required. A total of 200
thermal images were used to test the framework and show that the proposed method
is capable in processing a large number of images from mass screening activities.
This approach has produced a high accuracy of 92.5%. For future clinical study, a
large data set from both healthy and cancer patients is required in both thermal
visual and data temperature point formats to confirm the efficacy of this method.

Acknowledgements The authors would like to express gratitude to Universiti Teknologi
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Fig. 16 Plot of actual classification value against predicted classification value for thermal image
abnormality detection

Table 3 Classification
results for abnormality
detection

Data Testing Validation

Abnormal Normal Abnormal Normal

Actual data 20 20 20 20

ANN prediction 20 19 19 18

Group accuracy (%) 100 95 95 90

Total accuracy (%) 97.5 92.5
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Detection of Breast Abnormality Using
Rotational Thermography

Sheeja V. Francis, M. Sasikala and Sandeep D. Jaipurkar

Abstract Breast cancer is considered to be one of the major causes for highmortality
rates in young women in the developing countries. Survival rate in breast cancer
patients may be improved significantly by early detection. In order to detect cancer in
its initial stages breast screening is recommended for women over 40 years of age.
Due to the limitations of existing breast cancer screening techniques alternative
modalities such as thermography are being explored. An elevation in local surface
temperature due to an underlying pathology is considered as one of the earliest
indications of an underlying cancer. Such regions are represented as hotspots on a
conventional thermogram. Detection of these hotspots from conventional breast
thermograms is quite challenging, mainly due to incomplete image acquisition.
A novel technique called rotational thermography has been developed to address this
issue. In this chapter, a frame work has been presented for developing a breast cancer
screening systemusing thermograms acquiredwith this new imagingmodality. Image
features are extracted from rotational thermograms in spatial, bispectral, and
multi-resolution domains. Optimal features are identified using genetic algorithm and
automatic classification is performed using support vector machine. In addition to
screening, attempt has been made to characterize a detected abnormality as benign or
malignant. As rotational thermography acquires images of the breast in multiple
views, study is carried out to locate the position of the tumor in correlation with
ultrasound and biopsy findings. Thus the potential of the system for screening,
characterization, and localization of breast abnormalities is explored.
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1 Introduction

Breast cancer is reported to be the most predominant of all cancers detected in
women. Cancer facts and figures released by the American Cancer Society esti-
mates that about 29% of all reported cancers in 2015 would be of the breast [1]. It is
estimated that one in every eight women possesses the risk of developing breast
cancer in their lifetime. The estimated mortality rates are also very high, with breast
cancer contributing to 15% of all cancer deaths.

The mortality rate due to breast cancer is found to be rising in both the developed
and the developing countries. These rates may be brought under control if the
disease is detected early, leading to effective treatment and prognosis. As early
detection can lead to better survival chances, women above 40 years of age are
advised to undergo screening for breast cancer annually. Currently, mammography
is used as the gold standard imaging technique for the purpose. However, the
diagnostic ability of this technique is found to be compromised in women with
dense breasts. Keyserlingk et al. [2] have reported that mammography fails to detect
small tumors of size less than 1.66 cm on an average and hence is not able to detect
cancer at an early stage. Further, patients who undergo mammographic procedure
are at the risk of radiation hazards due to repeated X-ray exposures. Hence, con-
tinuous efforts are being made to develop radiation safe imaging techniques for the
early detection of breast cancer. According to Gautherie et al. [3], thermography is
one such technique that can detect breast cancer 8–10 years ahead of mammog-
raphy. Although thermography is popularly used for mass screening of fever [4],
several studies have reported on its early detection capability of breast cancer in the
last two decades [5–8]. Understanding of the thermal profile of human breast is
quite essential to evolve thermography for breast cancer detection.

1.1 Thermal Profile of Human Breast

The core temperature of human body is reported to be around 37 °Cwhen the ambient
temperature is maintained at 25 °C. The transfer of heat from core of the body to skin
surface is a complex thermo-biological process. When subjected to extreme envi-
ronmental temperatures, the vaso-regulatory system of our body helps to maintain the
thermal equilibrium by triggering shivering or sweating as reflex mechanisms. The
optimal temperature range in which a slightly dressed human body can maintain
thermal equilibrium is 20–25 °C. Hence, thermographic studies are conducted in
controlled environments maintained within this temperature range. The mean tem-
perature of human breasts is found to vary from person to person based on several
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factors such as environmental conditions, physical exertion, menstrual cycle, anxiety,
etc. Also, different regions within the breast exhibit different temperatures. The
average temperature of breast surface is reported to be around 30 °C in a controlled
environment at 20 °C [9]. Several researchers have established that the surface
temperature of a cancerous region is significantly higher than that of the surrounding
normal regions. Hence, an abnormal breast condition may be detected by analyzing
the temperature differenceswithin a breast region. Further, a temperature difference of
more than 0.5 °C between right and left breasts is reported to be indicative of
abnormality [10]. Hence, exploring the thermal asymmetry between the contra-lateral
breasts is widely practiced for breast cancer detection. Due to advancements in sensor
technology, infrared cameras with enhanced thermal resolution of less than 0.1 °C are
available. These are capable of sensing the subtle temperature variations and are used
for evaluating breast conditions in breast thermography.

2 Breast Thermography

The first instance of using infrared imaging for cancer diagnostics can be traced to
1956, when it was discovered that surface temperature over cancerous tissues in a
breast was higher than the surrounding normal regions [11]. The high rate of
metabolic activity around cancerous tumors triggers a huge demand for supply of
nutrients. Consequently, an increased blood flow is ensured in order to nourish these
cancer cells by recruiting dormant vessels and creating new ones (neo-angiogenesis).
This process leads to vascular asymmetry and increase in regional surface temper-
atures in the breasts, which may be considered as the earliest signs of breast cancer
[12, 13]. Breast thermography involves capturing these variations and interpreting
them for early detection of breast cancer or for monitoring its prognosis.

A large-scale study popularly known as breast cancer detection and demon-
stration project (BCDDP) was conducted in the United States in the early 70s to
evaluate the diagnostic ability of breast thermography. According to the report of
the working group, the diagnostic value of infrared imaging was considered to be
poor [14]. This was followed by a period of uncertainty and waning interest in the
procedure. However, poor study design, use of untrained technicians, improper
environmental controls, and protocols led to the failure of the project [15].

Since mid-70s, significant improvements have been made in infrared technology,
sensor arrays, and computing systems for military purposes. This has renewed the
research interest in breast cancer detection through thermography. State-of-the-art
breast thermography uses highly sensitive infrared cameras and software systems to
represent thermal variations of the breast surface in the form of high-resolution
images called breast thermograms. The procedure is noninvasive, comfortable, and
radiation safe. An abnormal breast thermogram has been reported to be an important
high-risk marker for cancers that might develop in the future [16].

Both passive and active methods are being practiced in breast thermography. In
passive thermography, the regions of interest are naturally at a higher or lower
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temperature than the background. Hence, the infrared rays emitted from these
regions are picked up effectively by the camera system. An active approach is
necessary when such regions are usually in equilibrium with the surroundings. Thus
in active thermography, an energy source is used to produce a thermal contrast
between the regions of interest and the background by applying a cold challenge. It
is usually implemented as a blow of hot air or chemical vaporization on the skin
surface. Though Amalu [17] has reported that application of cold challenge does
not lead to performance improvement in active breast thermography-based systems,
continuous research has been going on in this area.

Though thermography is a promising screening tool for breast cancer, diagnosis
is usually done manually by skilled professionals. Hence, interpretations made from
thermograms are highly subjective in nature. In order to overcome factors such as
shortage of trained personnel and operator variability, a computer-aided diagnostic
(CAD) system needs to be developed. The advancements made in thermal imaging
systems and pattern analysis techniques may be used to build a reliable system for
breast cancer detection based on thermography. Such a system can be used for
breast cancer screening in developing countries, especially by primary health care
professionals in rural areas where specialized health care is lacking. Several
researchers have worked on developing CAD systems for breast cancer detection
using thermograms acquired by conventional breast thermography technique.

2.1 Conventional Breast Thermography

In the conventional technique for breast thermography the patient is seated in front
of the infrared camera at a distance of 80–100 cm. This distance is chosen so as to
image the complete torso of the subject with good resolution at the field of view of
the camera. The schematic representation of conventional breast thermography

Breast
Thermogram

Fig. 1 Schematic
representation of conventional
breast thermography
technique
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technique is shown in Fig. 1. In this method infrared images of the breast are
acquired in three views, viz., Contra-lateral, Medio-Lateral Oblique, and Axillary.

Most of the CAD systems presented in literature use contra-lateral or frontal
thermograms and are confronted with two problems. First, tumors in the inferior
regions of the breast are obscured behind the natural sag and often go undetected.
Second, the neck carotid and infra mammary folds are visible in the images. These
are normally hot regions that may lead to wrong diagnosis if not removed.
Segmentation of the breasts from these areas is a pre-requisite for effective CAD
systems and is quite a challenge till date. The image acquisition and interpretation
processes are operator dependent and are found to vary across patients. In order to
address these issues a new thermal imaging technique called rotational thermog-
raphy has been evolved.

2.2 Rotational Breast Thermography

A novel setup known as the Mammary Rotational Infrared Thermogram
(MAMRIT) unit [18] is used for acquiring rotational breast thermograms. The unit
comprises an imaging chamber with a patient table on its top as shown in Fig. 2.
The ambient temperature and humidity inside the chamber are controlled with an
inbuilt air conditioner.

The subject lies in prone position on the patient table of the MAMRIT unit with
one breast suspended through the small circular aperture into the imaging chamber
beneath. An infrared camera is fixed at the free end of a robotic arm situated inside
the MAMRIT chamber. The arm is programmed to revolve around the suspended
breast in angular steps of 30°. The infrared camera captures images of breast at
every step. Thus 12 views of the breast are obtained in one rotation ensuring
complete imaging of the breast. Surface temperature information of the entire breast
is captured and may be displayed by placing the cursor at required spatial positions.
The acquisition of temperature information is repeated after lowering the ambient
temperature to understand the tissue response to external stimuli. All the images are
stored along with patient information, the camera position, ambient temperature,
and time of acquisition. The set of thermograms obtained before and after lowering
of ambient temperature are called precool and post-cool series, respectively. The
same procedure is repeated for the other breast.

The images are acquired with patient consent and Institutional review board—
approved protocol, using infrared camera ICI7320P [19]. The camera is an
uncooled bolometer type with spatial resolution 480 � 640 pixels. The inbuilt
software represents the raw temperature data picked up by the detector in the form
of pseudo-color images. The ‘hot’ color palette is used which varies from blue to
red in increasing order of temperature (heat). A temperature variation of around
10 °C is observed in the human breast. These variations are represented on ther-
mogram images by grouping pixels into 10–12 bands, such that the temperature
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Fig. 2 Views of MAMRIT Unit
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variation between successive bands is around 1 °C. The minimum temperature
resolution is 0.01 °C. At such resolution, the slight variations in intensity present
within the bands are not perceived by the human eye. Nevertheless, these pixel
intensities may be observed by placing the cursor on regions of interest and more so
by computer vision techniques. A specific pattern of temperature variation is
observed along the vertical direction in rotational breast thermograms of normal
subjects. The nipple region is found to be the coldest and the temperature increases
in regions closer to the chest wall. This pattern is found to extend across the breast
when all twelve views are observed. In case of abnormality, bands that represent
higher temperatures are found protruding into the zones of lower temperature
thereby disturbing the characteristic temperature pattern. Figure 3 shows the
complete sequence of precool rotational images of single breast (Left side) at angles
0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, and 330°, respectively.

( a ) 0 o (b) 30 o ( c )60 o

(d) 90 o (e) 120 o
( f ) 150 o

(j) 270 o
(k) 300 o (l) 330 o

(g) 180 o (h ) 210 o (i) 240 o

Fig. 3 Image sequence acquired by rotational breast thermography
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The rotational breast thermography technique contains more diagnostic infor-
mation than the conventional technique due to the following reasons.

• Chances of missing a tumor are much less as the breast is imaged completely.
• As images are captured by moving the camera around the suspended breast, all

tumors that are located within 4.5 cm from breast surface are detected (at least in
a few closest views), whereas, in the conventional method, the heat emissions
from such depths are scattered and lost in the overlying tissues.

• Cold challenge may be easily implemented as the breast is imaged in a tem-
perature-controlled chamber.

• Movement artifacts are greatly reduced as the patient is made to lie comfortably
in prone posture during image acquisition.

2.3 Outline of the Chapter

The study is presented in two sections. In the first, a screening system is developed
for detecting breast abnormality in rotational thermograms by exploring texture
features in various domains. Optimal features are identified using genetic algorithm
in order to design a reliable system for detection of breast abnormalities. Automatic
classification of normal, benign, and malignant conditions is carried out to study the
ability of rotational thermography-based system in characterizing the detected
abnormality. The capability of the system to locate the abnormal region has been
studied in correlation with ultrasound findings in the second section.

3 Screening and Characterization of Breast Abnormality
in Rotational Thermograms

During the last two decades several computer-aided systems have been developed
for screening of abnormality from conventional breast thermograms. Such systems
include general image processing techniques such as segmentation, feature
extraction, and classification. Several segmentation methods have been proposed to
extract whole breasts and specific regions of interest as well [20–26].
Spatial-domain statistical features [27–31], wavelet-based features [32, 33], higher
order spectral features [34], bispectral invariant features [35], and fractal dimension
[36] have been employed for classifying breast thermograms. Numerical modeling
of thermal properties of breast has been used to aid interpretation from breast
thermograms [37–39]. The relationship between texture features and surface tem-
perature changes has been well established in literature [40]. Hence, texture features
are extracted from regions of elevated temperatures in rotational thermograms for
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breast screening. As a preliminary study failed to prove the effectiveness of existing
cold challenge mechanism, only rotational thermograms of precool series were used
for the study.

Various breast abnormalities exhibit distinct temperature profiles and may be
broadly characterized as benign or malignant. According to Jayashree et al. [9], the
local temperature rise is less than 1 °C in benign regions while it is more than
1.5 °C in case of malignancy. This margin between benign and malignant condi-
tions may be even less when malignancy is in its initial stages. Further, the patterns
of thermal variations between normal and benign conditions are often indistin-
guishable. Hence, the characterization study is also important for detection of breast
cancer. Examples of normal, benign, and malignant thermograms are shown in
Fig. 4.

From the observations made from literature survey on conventional thermog-
raphy-based systems and preliminary study on rotational thermography, a CAD
system has been developed for screening and characterization of abnormality in
rotational breast thermograms. The general block diagram of this system is shown
in Fig. 5.

Breast cancer detection potential of rotational thermography is evaluated by
extracting texture features from rotational breast thermograms in various domains,
analyzing and classifying normal and abnormal breast conditions. The potential of
these features in characterizing a detected abnormality as benign or malignant has
also been studied. Principal component analysis (PCA) and genetic algorithm (GA)
are used to identify the most discriminative features for improving the screening
and characterization accuracy of the system.

(a) Normal (b) Benign

(c) Malignant

Fig. 4 Samples of rotational
breast thermograms

Detection of Breast Abnormality Using Rotational Thermography 141



3.1 Preprocessing—Segmentation

As the first step, the regions of interest are extracted from rotational thermograms.
Normal and abnormal breast thermograms are converted into gray scale as shown in
Fig. 6. It is observed that the temperature variation in a normal breast follows a
specific pattern in the vertical direction as discussed earlier: an increase in tem-
perature from the nipple to the chest wall. The camera captures the images of breast
at every angular increment of 30° by rotating around it, resulting in a series of 12
thermograms. Given the average size of breast, each successive view (image) in the
series includes a region already covered in the previous one. Thus, there is partial
overlap of regions in successive thermograms in a series.

The distance between the breast and camera is adjusted to obtain complete view
of the breast within the frame. According to clinician’s requirement, 30% of the
total breast area is extracted at the center of image to form the ROI. This extraction
is done on all 12 thermograms in a series to ensure that the entire breast area is
examined.

ROTATIONAL 
BREAST 

THERMOGRAM

EXTRACTION 
OF ROI

FEATURE  EXTRACTION 
IN SPATIAL / WAVELET / 

CURVELET &  
BISPECTRAL DOMAINS

CLASSIFICATI
ON

NORMAL / 
ABNORMAL

FEATURE ANALYSIS, 
REDUCTION & 
OPTIMIZATION

NORMAL / BENIGN / 
MALIGNANT

Fig. 5 Rotational breast thermography-based system for screening and characterization of
abnormality
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ROI is extracted using the following steps.

• Obtain the whole breast region from thermogram and calculate its area.
• Identify a vertical axis, midway between the right and left extremes of the breast

with nipple position as lower most reference.
• Extract a symmetrical rectangular region about the central axis as the ROI when

its area becomes equal to 0.3 � total area of breast.

The central 30% of breast area is extracted from all 12 views in a series of
thermograms to form regions of interest. As the entire breast area is covered by this
process, no information is lost. The ROIs thus obtained from normal and abnormal
thermograms in Fig. 6 are shown in Fig. 7.

3.2 Feature Extraction

Statistical features that best represent the thermal variations in thermograms are
extracted as features. First- and second-order statistical features are obtained from
the regions of interest of normal and abnormal thermograms. First, these features
have been extracted and analyzed in the spatial domain, followed by
multi-resolution domains such as wavelet and curvelet.

• First-Order Statistical features

First-order statistical features, viz., mean, variance, skewness, and kurtosis,
represent the spatial distribution of gray-level intensities in a given ROI. These
simple histogram-based statistical features extract global texture information from
the thermograms [41]. Mean represents the average intensity of pixels in the ROI

(a) Normal (b) Abnormal

Fig. 7 Regions of interest
extracted from rotational
breast thermograms

( ) N l (b) Ab l

Fig. 6 Rotational breast
thermograms in gray scale
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and does not carry significant information. Variance feature represents the deviation
of pixel intensities from the mean value of the ROI. Skewness and Kurtosis rep-
resent the third- and fourth-order deviations from the mean. Since abnormal regions
contain large variations in intensity, features such as variance, skewness, and
kurtosis contain significant information.

• Second-Order Statistical Features

Second-order statistical features also known as texture features are extracted
from normalized gray-level co-occurrence matrices (GLCMs) constructed from the
ROIs. Thirteen texture features described by Haralick et al. [42] have been com-
puted. These include angular second moment (ASM), contrast, correlation, sum of
squares, inverse difference moment, sum average, sum variance, sum entropy,
entropy, difference variance, difference entropy, information measure of correlation
1, and information measure of correlation 2. The ASM feature represents the extent
of uniformity in textures. Contrast represents the amount of local intensity varia-
tions in an image. Correlation measures linear dependencies in the image. Inverse
difference moment is a measure of local homogeneity while entropy measures the
range of randomness of the gray-level distribution in the image. All the features
derived from normalized co-occurrence matrices contain information about the
texture of an image. However, it is difficult to identify the specific texture char-
acteristics represented by each of them.

3.2.1 Wavelet Transform

Wavelet transform is used in signal analysis to overcome the time–frequency
localization limitations of Fourier transform. A wavelet is a waveform that exists for
a limited duration and has a zero average value. A mother wavelet is a small wave
of distinct signature. Wavelet analysis convolves shifted and scaled mother
wavelets with the input signal. In two-dimensional signals (images), wavelet
decomposition is performed with separable filtering along the rows and columns. At
the first scale of decomposition, the image is represented by four sub-bands (three
directional sub-bands and 1 approximate band). The wavelet coefficients in these
sub-bands carry information about intensity variations in horizontal, vertical, and
diagonal directions in the image. Thus wavelet analysis is considered as an image
decomposition method that offers good space–frequency localization. Statistical
features extracted from the wavelet sub-bands may be used to analyze the under-
lying characteristics of an image. Figure 8 illustrates image decomposition using
wavelet transforms at levels (scales) 1 and 2.

Transformed domain features pose problems of high dimensionality and
redundancy due to decomposition into multiple sub-bands. A sub-band is identified
for each ROI based on maximum variance criterion. Statistical features are
extracted from this sub-band, instead of using the coefficient values directly thereby
leading to dimensionality reduction of the feature set. As Symlet mother wavelet is
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most suited to detect a deviation from symmetry, it is used to decompose the ROI at
level 2. The sub-band with maximum variance was selected for extracting features
at decomposition level 2.

3.2.2 Curvelet Transform

Curvelet transform developed by Candes and Donoho is a multi-resolution tool that
includes directional aspect while decomposing an image in addition to the scale and
position features of a wavelet transform [43]. Most biomedical images contain
curvilinear structures. Curvelet transform at a predefined scale and orientation
decomposes an image into smaller blocks so as to approximate curves as piecewise
linear structures. Curvelet transform resolves the frequency domain into multidi-
rectional and multiscale fan-shaped wedges as shown in Fig. 9. The scale becomes
smaller from outside to inside and the number of directions gets reduced by a factor
of two after an interval of one scale.

Candes et al. [44] proposed two distinct implementations of discrete curvelet
transform: one using unequispaced fast Fourier transform (USFFT) and the other

(a) Level 1        (b) Level 2

Fig. 8 Representation of 2D
wavelet decomposition

Fig. 9 Continuous curvelet
transform decomposition in
frequency domain
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using a wrapping method. The more common of them, the fast discrete curvelet
transform (FDCT), implemented by the wrapping technique has been used in this
work.

In curvelet domain, the ROI is decomposed at scale 2 and orientation 8. The
sub-bands of curvelet decomposition comprise of curvelet coefficients. The direc-
tional sub-band with maximum variance was selected for extracting features. The
extracted features are analyzed statistically using student’s t test to study their
discriminating ability and are classified using SVM classifier. The performance of
the classifier is validated using the leave-one-out method.

3.2.3 Extraction of Bispectral Invariant Features

The potential of higher order spectral features (HOS) has been investigated with
great interest in the analysis of medical signals such as EEG. The bispectrum of a
random signal x[k] is defined as the third-order spectral feature in the frequency
domain as given in Eq. 1:

B f1; f2ð Þ ¼ X f1ð ÞX f2ð ÞX�ðf1 þ f2Þ; ð1Þ

whereX (f) is the Fourier transform of x[k] and f is the normalized frequency
(between 0 and 1).

The bispectrum of a real-valued discrete-time signal exhibits symmetry prop-
erties. Hence, computation may be done over a triangular region in bi-frequency
space as shown in Fig. 10.

The integral of bispectrum along a straight line of slope, ‘a’, gives a complex
quantity, containing magnitude and phase information as shown in Eq. 2. This
phase component is called the bispectral invariant feature (; að Þ) as defined by
Eq. 3:

I að Þ ¼
Z

1
1þ a

f1¼0þ

B f1; af1ð Þdf1 ¼ IRe að Þþ jIImðaÞ ð2Þ

Fig. 10 Region of bispectrum
computation in the
bi-frequency space
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; að Þ ¼ arctan
IImðaÞ
IReðaÞ

� �
: ð3Þ

These features have been shown to be invariant to translation, scaling, and
amplification [45]. Being sensitive to shape changes in input patterns, these may be
used to detect deviations from normal patterns in thermograms. Signal processing
principles have been extended to 2D (images) in order to extract bispectral invariant
features from thermograms. The input image is first converted into a set of 1D
projections using Radon transform at several angles. Bispectral invariant features
are computed from each of these projections. In this work Radon transform has
been computed at six angles with four slopes each. Thus each ROI is represented by
a set of 24 bispectral invariant features.

3.3 Feature Analysis

Features extracted from normal and abnormal ROIs in various domains are ana-
lyzed and classified using SVM classifier. Average value of each feature is com-
puted for both classes in all the domains. Features extracted in spatial domain and
transformed domains are analyzed statistically using student’s t test at 95% confi-
dence level. The null hypothesis is framed such that the features extracted from
normal and abnormal groups belong to the same class. If the p value returned by the
test is found to be less than 0.05, this null hypothesis is rejected. Thus features with
p < 0.05 are found to be statistically significant than the others and can discriminate
an abnormal ROI from a normal one more effectively.

Feature analysis by student’s t test proved that the first-order statistical features
were statistically insignificant in almost all domains. It is also observed that among
the 13 texture features, 8 were found to be significant in spatial domain, 4 in
wavelet, and 9 in curvelet domains. The level of statistical significance was found to
be highest with the curvelet features. Among the bispectral invariant features, those
extracted from all angles were found to be statistically significant except at angle 0.
This phenomenon may be explained from basic principles as given. The Radon
transform at 0° produces the 1D projection of intensity variations along the hori-
zontal direction at the center of the ROI. It may be observed that pattern changes on
a thermogram are minimal in this direction, compared to the vertical and other
(radial) angles. Finding the optimal number of angles and slopes for bispectrum
computation is found to be a major issue in this domain. Statistical analysis reveals
that among the features extracted, the curvelet transform-based co-occurrence
features are more suited for the problem.

As the first-order statistical features were found to be statistically insignificant,
these were eliminated from further investigation. A two-stage classification scheme
has been implemented using texture and bispectral features. In the first stage, the
screening ability of the system has been tested in all domains followed by the
evaluation of characterization ability.
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3.4 Classification

The Support Vector Machine (SVM) classifier is used for automatic detection of
abnormal conditions in thermograms. SVM is a supervised learning algorithm that
finds wide application in pattern recognition problems. It generates a robust map-
ping function from a set of training data [46]. SVM is of great use in classification
problems where the input data is not linearly separable. In such cases, nonlinear
kernel functions may be used to transform the input data to a higher dimensional
feature space where the separability is better. The order of these functions may be
varied iteratively until the distance between the decision surface and nearest sample
is maximized. Thus SVM constructs N-dimensional hyper-plane for optimal sep-
aration of input data into classes [47].

In this work a binary SVM using polynomial kernel of order 3 has been used for
the classification purpose. Performance of the classifier is validated using
leave-one-out method. In this method, a single observation from the original sample
is used as the test data, while the remaining observations form the training set. The
validation scheme is complete when each observation in the sample has been used
as the test data at least once. The performance of the classifier has been evaluated by
finding accuracy, sensitivity, and specificity measures from confusion matrices.
Traditionally, the classification results of a test under study are compared against
those of a standard test. The observations made in four categories, viz., true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN),
are presented in a (2 � 2) matrix. Accuracy is the measure of true results (both true
positive and true negative) obtained by the test in the entire population. Sensitivity
represents the probability that a test will produce a positive result when used on
diseased population. Specificity gives the probability that a test will produce a
negative result when conducted on normal population.

3.4.1 Feature Reduction Using Principal Component Analysis

Principal component analysis is a statistical procedure used to convert a set of
highly correlated input variables into a smaller set of uncorrelated variables pop-
ularly called as principal components [48]. This orthogonal transformation results
in a reduced set of variables as the number of principal components obtained is
usually less than the number of original inputs. These components are formed by
linear combinations of all input features and are arranged in decreasing order of
their variance. The composition of these principal components may be analyzed by
observing their respective Eigen vectors. PCA is generally used as a feature
reduction technique in classification problems when the input feature set is large
and redundant.
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3.4.2 Selection of Optimal Features Using Genetic Algorithm

Although PCA gives a reduced feature set, all features have to be extracted in the
first place in order to form the principal components. PCA provides fewer dis-
criminative inputs that reduce classifier complexity but fails to be of any aid in the
exhaustive feature extraction process. Hence, an effective search algorithm may be
employed to select the most discriminative subset of features. Genetic algorithm
(GA) is used to identify the optimal features that can lead to best classification
accuracy. GA is a search algorithm that models the natural process of biological
evolution using operators such as selection, mutation, and crossover to find the
optimal solution for the specific problem [49].

In GA, each feature set is represented as a chromosome. A chromosome is
represented in form of a binary string of length equal to the number of features.
A fitness function, usually a maximizing or minimizing function, is defined for the
problem. The fitness value of each chromosome is computed. The selection of a
chromosome is based on the ranking of its fitness value. The GA-based approach
begins with creation of an initial random population and its evaluation using the
fitness function based on the classifier error. The chromosomes in the population
are ranked according to their fitness values. A few with highest fitness values (Elite)
are directly transferred to the next generation. Using selection methods such as
roulette wheel, tournament, etc., chromosome pairs are selected to undergo cross
over and mutation to form new population. The process is repeated iteratively until
the GA converges and the best chromosome is returned. The composition of the
best chromosome may be examined to identify the optimal features.

3.5 Results of Classification

The SVM is trained and tested with a set of feature vectors extracted from normal
and abnormal thermograms by the leave-one-out method first for screening and then
for characterizing an abnormality as benign or malignant.

• Screening of Abnormality

The training set consisted of 36 normal and 36 abnormal thermograms
(18 malignant and 18 benign). Classifier performance for screening of breast
abnormality when features of various domains were used is presented in Fig. 11. It
is observed that the screening performance of the system is at its best, when
curvelet-based texture features are used, followed by bispectral invariant features.
The system is able to detect an abnormal thermogram with a high accuracy of
94.4% in curvelet domain with sensitivity and specificity of 97.2 and 91.7%,
respectively. In an earlier study, conventional thermography-based system had
resulted in an accuracy of 90.91% when curvelet texture features were employed
[50].
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• Characterization of Abnormality

Features extracted from 36 rotational thermograms in each class have been used
for classifying test inputs into benign-malignant, normal–malignant, and normal–
benign classes using features extracted in all domains. Classifier performance for
characterization of breast abnormality as benign/malignant is presented in Fig. 12.
It is observed that the performance of the system for characterizing a detected
abnormality as benign or malignant is also at its best when curvelet-based
Haralick’s texture features are used. An abnormal condition could be characterized
as malignant or benign with an accuracy of 94.4% in the curvelet domain.

The results of binary classifications using curvelet-based texture features are
shown in Fig. 13. It is observed that a malignant condition could be detected from

1. Haralick’s texture features-spatial domain 
2.Haralick’s texture features-Wavelet domain
3. Haralick’s texture features-Curvelet domain
4. Bispectral Invariant features
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Fig. 11 Classifier
performance for screening of
breast abnormality in
rotational breast thermograms
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other classes with 100% sensitivity. As the tissue temperature in a malignant region
is significantly higher than benign and normal conditions, the classifier is able to
detect all malignant cases in the set of input images.

• Classification using PCA- and GA-Based Feature Selection

When PCA was used for feature reduction, it was observed that the first 3
principal components (formed from the 13 curvelet-based texture features) could
produce an uncompromised classifier performance. As each component is a linear
combination of all feature inputs, those which offered maximum contribution were
identified from their Eigen vectors. It was found that features such as difference
variance, sum of squares: variance, contrast, sum variance, and sum average had
contributed significantly to the first principal component.

Incidentally, GA also identified three of these as optimal texture features: con-
trast, sum of squares—variance and difference variance. On correlating with the
results of PCA, it is observed that these features had offered maximum contribution
to the first principal component. These were also found to be statistically significant
with least p values. Nevertheless, a global optimization technique such as GA has

Table 1 Classifier performance for screening and characterization of breast abnormality in
rotational thermograms using optimal features selected by GA

Features Classes Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Optimal curvelet
transform-based texture features

Normal–abnormal
(screening)

94.4 97.2 91.7

Normal–malignant 98.6 100 97.2

Normal–benign 88.9 94.4 83.3

Benign–malignant 95.8 100 91.7

1.Normal – malignant 
2. Normal – benign 
3. Benign - malignant
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Fig. 13 Performance of
SVM classifier using
curvelet-based texture
features for normal/malignant,
normal/benign and
benign/malignant
classifications
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validated the significance of these features. These features represent variations in
the distribution of intensity values in thermograms, most effectively and may be
considered to carry significant thermal signatures of abnormality. The results of
classification with optimal features are presented in Table 1.

A significant improvement is observed in the classifier performance for char-
acterization of abnormality with the use of optimal features. Although an
improvement in classifier performance is observed with the use of optimal features,
the accuracy of detecting benign abnormality from normal conditions is only
88.9%. This is observed to be lower than the accuracy in malignant–benign classes.
On analyzing the sample thermograms used, the temperature difference between
normal and benign conditions was found to be 0.7 ± 0.3 °C and that between
malignant and benign conditions was found to be 1.7 ± 0.7 °C. As the margin of
temperature difference between the benign–normal classes is lower, it is difficult to
detect a benign condition from a normal condition in thermograms, resulting in
lower accuracy in this class.

4 Localization Study Using Rotational Thermogram
Series

As discussed earlier, images are acquired at spatial increments of 30° resulting in a
series of 12 thermograms. Given the size of breast, there is partial overlap of
regions in successive thermograms of a series. To ensure that the entire breast is
examined, 30% of the total area is extracted as ROI from the center of the breast in
each view. However, it is found that these ROIs cannot be identified uniquely with
the respective breast views due to the overlaps with ROIs of succeeding and pre-
ceding views. Nevertheless, there is a non-overlapped central region in each ROI.

• If an abnormality is represented as hot spots in a confined small area, it will be
detected in this central portion of one of the views. Thus, the accuracy of
locating it is better.

• If an abnormality is observed at the periphery of breast at one view, it will be
seen in the central portion of breast in one or two successive images down the
series.

• If an abnormality is represented as a larger hot area, it will be seen in the central
portion of more than one view. In such cases, the accuracy of locating it will be
erroneous.

As curvelet-based texture features were found to perform best for classification
purpose, these were extracted from the ROIs. These feature vectors are given as test
inputs to SVM classifier in order to detect abnormal views. The classifier is trained
with curvelet texture features extracted from 36 thermograms each in normal and
malignant groups. The spatial views where an abnormality was detected by the
system are noted for further analysis. Finally, optimal features selected by GA have
also been used for improving the localization ability.
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4.1 Results of the Localization Study

The study includes precool series—thermograms of 36 malignant patients (12
thermograms per patient). A report indicating hyper-thermal views, as interpreted
by the thermographer, is made available for each subject. According to this report,
several views are indicated to be hyper-thermal. After scrutiny by radiologist, 2–5
(views) thermograms were identified as abnormal for each patient. The details of
thermograms used in the work are given in Table 2.

Table 2 establishes that the distribution of heat on the breast surface is based on
the severity of the underlying tumor. It may be observed that hot regions are
confined to only 2 views in 10 cases, while in others, 3–5 views may be involved.
Thirty-six malignant cases with 12 thermograms each (a total of 432 thermograms,
wherein 108 were abnormal) are used for locating the abnormality. For an abnormal
patient, when all 12 images in a series were tested with a trained classifier, only
thermograms acquired at certain views were detected as abnormal.

Results of the localization study are analyzed by evaluating the performance of the
system from confusion matrices. It was observed that all (108) abnormal views were
detected by the systemwhen curvelet-based texture featureswere employed.Out of 324
normal thermograms, 288 were identified correctly by the system, resulting in an ac-
curacy of 91.6%, sensitivity of 100%, and specificity of 88.9%. Improved performance
was obtained when optimal features were used for classification as shown in Table 3.

The optimal curvelet texture feature-based system resulted in an accuracy of
93.5% with sensitivity and specificity of 100 and 90.7%, respectively. It is found
that all the identified abnormal views were detected, while 30 normal views were
misclassified as abnormal. Hence, detailed case studies were conducted to validate
the performance of the system with the opinion of expert radiologist. The abnormal
views detected by the system were compared with expert opinion and respective
ultrasound findings.

Table 2 Details of thermograms used in the localization study

No. of malignant patients (36) No. of abnormal views/patient No. of abnormal views

10 2 20

20 3 60

2 4 8

4 5 20

Total no of abnormal views 108

Table 3 Confusion matrix for localization of abnormality using optimal curvelet-based texture
features

Detected class

Normal Abnormal

True class Normal (324) (TN) 294 (FP) 30

Abnormal (108) (FN) 0 (TP) 108
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All regions which were detected as abnormal by the proposed system, expert’s
interpretation, and ultrasound as well were found to be malignant, resulting in 100%
sensitivity. This was verified with biopsy results in each case. It is found that a
normal breast region with increased vasculature is reported to be hyper-thermal on a
thermogram, but normal on ultrasound. Such cases result in false positives and
reduce the accuracy and specificity of the system when used as a standalone unit.

From results of the localization study, it is found that the views where a ther-
mogram was detected as abnormal could always be mapped to the abnormal
quadrant identified by USG, unless when the abnormality was positioned along the
periphery of two quadrants. In such cases, the location of the abnormality may be
mapped to either of the quadrants, as it lies in the overlapped ROIs of two con-
secutive thermographic views. Thus, the maximum angular error of locating an
abnormality is observed as ±30° (1 view) with respect to camera position. In order
to improve the accuracy of classification, the proposed system may be used as an
adjunct to USG. Hence, curvelet transform-based texture features may be used to
develop a reliable system for localization of breast cancer.

5 Conclusion

A comprehensive study has been conducted on the relatively new breast imaging
technique: Rotational Breast Thermography to evaluate its performance for
screening and characterization of abnormal breast conditions. As rotational breast
thermography acquires images of the breast in multiple views, its ability for
localization of abnormality has also been explored.

Features have been extracted and analyzed in spatial, wavelet, curvelet, and
bispectral domains. These features have been used for detection of abnormality in
rotational thermograms with a SVM classifier. It has been found that curvelet
transform-based Haralick’s texture features are best suited for the problem.

Screening performance of rotational thermography is found to be superior with
curvelet-based texture features. As abnormal regions on breast thermograms exhibit
curvilinear properties, curvelet transform-based feature extraction has resulted in
better screening. Also a detected abnormality could be effectively characterized as
benign or malignant. The ability of rotational thermography for detecting malig-
nancy from normal and benign conditions has also been found to be effective.

GA has been used to identify three optimal features from the curvelet-based
texture feature set. An improved system performance, screening accuracy of 94.4%,
characterization accuracy of 95.8, and 100% sensitivity for malignancy detection, is
achieved when these optimal features were used for classification. Localization of
abnormality is a promising area for further research in rotational thermography.
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Application of Infrared Images
to Diagnosis and Modeling of Breast

Roger Resmini, Aura Conci, Lincoln Faria da Silva,
Giomar Oliver Sequeiros, Francieric Araújo, Claudinéia de Araújo,
Adriel dos Santos Araújo, Reinaldo Rodríguez-Ramos
and Frédéric Lebon

Abstract This chapter presents some developments and researches on using breast
infrared images in Brazil (Visual Lab group of the Federal Fluminense University).
These researches focus on comparing protocols for data acquisition using a
FLIR SC 620 infrared (IR) camera; preprocessing the acquired data (using opera-
tions such as region of interest or ROI extraction, image registration and some other
operations to prepare the images or thermal matrices to be used in computations);
3D reconstruction and, diagnostic recommendations from the IR data. These are
steps for development of computer tools for screening breast diseases, mainly, to be
used on public health system (named in Brazil: “Sistema Único de Saúde”—SUS).
After experimentations and comparisons among the diversity of recommendations
and ways of data acquisition reported in the literature, we propose a new protocol to
IR data capture and storage. With these, we developed a web site that can be used
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by all researchers interested in development of works in such subject. The site has
public access and presents several ground truths of intermediated developments of
the research as segmentation of the ROI, sets of features to be used for comparing
artificial intelligence methods for decision making, and some techniques for ROI
registration. Our intension is to provide materials to those interested in infrared
researches for breast disease. For the development of IR applications are very
important compare outcomes in disease detection (and diagnosis) and to use dif-
ferent strategies for features extraction, decision-making, and dimensionality
reduction. However, in order to promote fair conditions for comparisons, we have
to begin in a more standardized way to go further and for this we invite all interest
in the same theme to use a unified procedure for data acquisition.

Keywords Infrared images � Image registration � Breast diseases � Image
segmentation

1 Introduction

Thermoregulation in humans is affected by their metabolic activity and sweating.
Related to the temperature distribution, the human body can be considered as a
symmetrical system around the sagittal plane. This is the idea behind the use of
temperature for diagnosis or triage of diseases [7]. As Hippocrates said, “if the
temperature of an area of the body diverges of its symmetrical, then diseases must
be chased in these” [1]. It is especially related to the tumor growth when angio-
genesis plays a fundamental part of in the processes of proliferation, migration and
cellular differentiation, and when neovascularization increases the temperature in
the region near to a cancer.

Thermography, like ultrasound (US), is a functional examination. Both present
no risks to the patient and do not use ionizing radiation, and have safety and cost
benefits. The use of US imaging or sonography in medicine requires very good
operator training: such a person, in most countries, must be the same doctor that
elaborates and signs the examination report. On the other hand, to aid the diagnosis
of breast cancer, the most widely used imaging examination is mammography. This
is, in part, due to the fact that mammography (like thermography) does not require a
medical doctor for acquiring the patient images: only a well-trained nurse or
assistant who follows an established and protocol of training is necessary; then,
diagnosis can be done later by the specialists. This possibility allows performing
examinations in a more efficient way in large hospitals, big clinics and in a very
populated and poor country for triage proposes. Additionally, combining the two
main positive aspects of these most used and traditional examinations in medicine,
some authors have pointed out that thermography can detect cancer earlier than US
imaging and mammography, due to their relation with fluid perfusion, neo vases
formation and in the beginning of a disease [12, 15].
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Historically, the computer was used for the first time to help with medical
diagnosis around the year 1960. At that time, the key idea was to achieve a diag-
nosis elaborated by the computer. Due to several factors such as low processing
power of computers and the lack of powerful algorithms, for decision making, the
idea did not progress. By the 1980s, the idea of using the computer for the diagnosis
reemerged, supported by the increase in the processing power of computers,
advances in image processing and improvements in artificial intelligence algo-
rithms. This second wave was supported on the premise that the computer system
gives a second opinion or a complementary opinion for diagnostics, but never
pretending to replace the human specialist. The first thermal sensors became
available for diagnosis in the 60s. The 1990s promoted advances in infrared
(IR) sensors (IR digital cameras allow the implementation of more elaborated
software, accurate enough to be used for medical diagnostics) . During the current
millennium, a new generation of sensors has arrived, being more rapid, sensitive
and allowing images with more resolutions.

Although, the computational power of computers has increased continuously
since then, allowing use of more sophisticated machine learning algorithms, such as
support vector machines (SVM) [33], fuzzy neural networks, and deep learning.
And, even though, big data treatments have grown in parallel, producing more
techniques for storage, maintenance and retrieval, and allowing for use of not only
an image per patient but a complete history of the patient’s life with many sorts of
examinations patients can have, included in their files along with many other sig-
nificant data sets related to heath. The idea nowadays is to use the computer as a
tool to help the physician save time, and to promote more efficient and correct
diagnosis without taking from the physicians and patients the role of protagonists
(i.e., continuing in the trend of the end of last century). With this in mind, this
chapter suggests image processing techniques to help in the medical diagnosis of
breast diseases by using thermal imaging. In the literature an inconsistent point
among the articles using infrared breast imaging is the existence of multiple pro-
tocols for data acquisition, that is. These aspects are discussed in the next section.
After acquisition, the images and data are stored and submitted to a number of
techniques which generate the result of the examination, which is the report that is
to be sent to the patients and their physician. These techniques are explained in the
following sections, which consider storage and retrieval, preprocessing, 3D re-
construction, extraction of features, classification and performance evaluation.

2 An Overview on the Image Acquisition Protocols

Image acquisition protocols present at least three aspects: the preparation of the
patient; the room environmental conditions and the procedures performed on the
patient during the examination.

The preparation of the patient is related to recommendations to be followed
before the exam (first aspect). Although, almost each hospital or health center uses
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its own protocol, there are common patient recommendations. For instance, these
are for patients do not do: smoke; drink caffeine or alcohol; practice physical
exercises; and apply any cream or oil type in the region of the breast and armpit.
A second aspect of recommendations is related to the environmental conditions of
the examination room: Temperature, relative humidity and air circulation should be
controlled during the examination and the same of all capture. This second aspect
is, in some way, almost the same among the groups (excluding the room temper-
ature) using thermal examinations over the world, as well.

However, considering the procedures performed on the patient (third aspect)
there are much more variations. This third aspect ranges from the induction of
changes in the body temperature of the patient (Passive Static Thermography), or
no temperature alteration (Active Dynamic Thermography); duration of cooling
or heating of the breasts; patient’s position (lying, sitting or standing) during the
examination; patient’s position relative to the camera (angles and distance); position
of the arms (on the head or supported at the waist, the named akimbo position), and
number of examinations used on the diagnostic decision.

Related to the induction of changes in the breast temperature, the acquisition
protocol may be classified as static or dynamic (passive or active). This nomen-
clature is considered in relation to the presence of the forced heat transfer in the
patient body and consequent increase in the transient terms of the associated
equations that describes the phenomena of thermal distribution on healthy and
unhealthy tissues of the breast. In static protocols the patient is on stable temper-
ature state with the environment of the examination room over the duration of the
exam. This type of acquisition is suitable to identify hot and cold areas and to
measure the symmetry in the distribution of skin temperature: it is the most used
type. On the other side, an acquisition protocol is named dynamic when the camera
is used for monitoring the recovery of skin surface temperature after a thermal stress
(for example, heating or cooling) or chemical stress (e.g., on the use of some drug
to promote vasodilatation or vasoconstriction in the vascular system). In other
words: the dynamic case study the temperature of the skin surface in transient part
of the processes and, allows to analyze changes over time, this turns important the
acquisition of more than one frame at same position in the examination in order to
enable the use of the transient set of data. That is, to promote the use of the
information related to the changes of the skin surface temperature plus the interior
temperature radiation and convection improves the identification of the age of the
blood vases of the breast. This is important because normal veins (the one with
almost the same age then the patient) present vasoconstriction (i.e., have con-
striction behavior) on the cold. However, this behavior is not visible for the bad
formed and incomplete vein produced by the fast malignant proliferation of cells
induced by the liquids perfusion near a cancerous region.

A fourth aspect related to the acquisition protocols is the dates or number of
examinations used to promote the current diagnosis of a patient. In this aspect it can
be classified as simple, sequential, or monitoring. In a simple acquisition, a unique
examination (capture in a specific date or a single image) of the patient is used, that
is, only a moment of time of her life is considered. In sequential mode, a series of
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images are acquired sequentially at a time interval as in dynamic protocols for
monitoring skin temperature variation do not in the same day, but after some interval
of days, weeks, or months. That is, as the dynamic protocol more images are used,
but in monitoring mode, images are captured over longer interval on the same type of
examination, for instance every 6 or 12 months, in order to monitor suspicious
region, for early detection of a disease, to verify the progress of a disease and
treatment after an therapy [27, 29]. Of course, the fourth aspect can be considered as
a repetition of the third. For this, the protocols which deserve more analysis and
experimentations are the static and the dynamic (Passive or Active) acquisition
protocol grouped in the third aspect commented before. In order to see what can be
considered the best one for the interested community on promote the union of effort
for better use of IR images on diagnosis, data from these two types of acquisitions,
obtained by our group, are available in a database of breast thermal images, named
Database for Mastology Research with Infrared Image—DMR-IR [27], and can be
used by researchers on breast infrared images. This, as far as we known, have never
be done before for breast diagnosis (for locating perforating vessels in breast
reconstruction surgery the use of cold and hot stimulation was used and compared
with static thermography by Kołacz et al. [16]). In both, the patient attempts the
common preparation and we used to ask them for, before capturing the images, pass
for acclimatization in a room with controlled temperature (between 20 and 22 °C for
10 min) with arms raised over the head and with the breast naked. The 2 acquisition
forms used on experimentations are: (1) A static protocol, where five captures are

Fig. 1 User interface of DMR-IR database (http://visual.ic.uff.br/dmi)
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done: 1 frontal, 2 laterals in an angle of 45° with the camera and 2 laterals in
direction of the right and left sides of the body (Fig. 1). (2) A dynamic protocol,
where an electric fan is turned on, in the breasts for 2 min and twenty frontal images
are acquired, in fifteen seconds interval between them [28]. The resulting infrared
images present 640 � 480 pixels and were captured using a FLIR thermal camera,
model SC620, which sensitivity of 0.04 °C range from −40 to 500 °C.

3 Storage and Retrieval

The Database for Mastology Research with Infrared Image—DMR-IR contains
infrared images and temperature matrixes, digitalized mammograms and clinical
data acquired in the university hospital (Hospital Universitário Antônio Pedro—
HUAP) of Federal Fluminense University, Rio de Janeiro, Brazil. The data are from
patients of the gynecologic department of HUAP. There are data from healthy
patients and from patients with a number of breast diseases, including cancer. This
research is approved by the Ethical Committee of the HUAP and registered at the
Brazilian Ministry of Health under number CAAE: 01042812.0.0000.5243. The
DMR-IR is accessible through a user-friendly interface (http://visual.ic.uff.br/dmi)
for managing and retrieving information. All data are from those patients that agree
on signing a term of understanding and knowledge about the research details and
consent on the use of their data for the research. Figure 1 illustrates one of the
navigations pages of the static protocol with some patient information for filtering
the wanted cases and images. Images can be downloaded in JPG or BMP format for
mammograms and thermograms (infrared images). The thermograms can also be
downloading as a 2D array of temperature. Reports of the exam can be downloaded
in txt or xml format as well.

A relational model was employed to construct the database and a client–server
application is used for data management. A retrieval tool was implemented using a
client side application that provides a search dialog to compose the query. A server
side application executes it using the tool and returns the results to the client [13,
31]. As in some cases, textual-based information is not enough for retrieval,
especially when user’s search requirements are about image visual features, a CBIR
(Content-Based Image Retrieval) tool was implemented. The image retrieval is
based on extraction of interest points. An interest point of an object represents a
specific area on the object around which the local image structure is rich in terms of
local information about the image content.

Figure 2 shows the CBIR model for image retrieval given an image as sam-
ple and performing ASIFT [20]. In this, we use the frontal position of the ther-
mograms. For image representation, the local visual feature considered is the Bag of
Words (BoW) [32]. The basic idea of BoW is that a set of local image patches is
sampled using some detected features on key points. They are composed by a
vector of visual descriptors for each patch independently. Then the patches created
are included into a set of visual words which constitute a codebook. After that, an
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image is described as a histogram-based representation of the codebook, and a
classifier (the Support Vector Machine—SVM in the implemented tool) is used to
find the image more similar to one associated to that the user have presented as
sample for retrieval [25].

4 Preprocessing

Mainly, the preprocessing step performs the segmentation of the data that is the
identification of the Region of Interest (ROI) of the images, and the separation of
this from the rest of the frame (that will be considered no relevant or the back-
ground). For diagnosis purpose, the thermal matrix and image are exported by the
camera. Both data can be used in an analysis. Images can use for segmenting
visually the ROIs, and the thermal matrixes (i.e., the file with thermal values, one
per point in the scene observed) are used for feature extraction to help in diagnosis.

The segmentation process (i.e., the ROI), in the breast application, frequently
generates two areas or masks, one for the right breast and the other for the left
breast. According to the physicians of our groups there are two possible ways to
consider the breast analysis relating to ROI segmentation [4, 8]. Both exclude head
and neck and begin in the inframammary fold. Figure 3 shows these two types of
ROIs: including (Fig. 3a, b) in the ROI the area of possible lymph nodes related to
breast and armpits or excluding this area (Fig. 3c, d) [23].

The purpose of inclusion of the armpits area is to investigate the ability to detect
altered lymph nodes, like it is done in sentinel lymph node exams (that verifies if a
cancer is in metastases) [18]. Ground truth (i.e., segmentation is done manually by
specialist) for this type of segmentations and the results achieved by two automatic

Fig. 2 Content-based image retrieval (CBIR) with bag of words (BoW) model [25]
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approaches can be seen in http://visual.ic.uff.br/en/proeng/marques/ or downloaded
in http://visual.ic.uff.br/en/proeng/marques/gt.php. Details about how they are done
can be found in Marques et al. [19]. The same process of separation of relevant data
can be applied over the array of temperature, i.e., the temperature to be analyzed
can be cropped and the elements outside the region of interest (ROI) can not be
used (Fig. 4).

Fig. 3 Two possible breast regions of interests (ROI). a Right breast and b left breast of
segmentation without armpits. c Right breast and d left breast of segmentation with armpits [23]

Fig. 4 Series do dynamic acquisition and the region of interest (ROI) on the images
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For comparison of the influence of the use of this additional area on diagnosis,
both ways of segmentation are performed in the same group of patients and the
same methodologies for features extraction and diagnostic suggestion are conduced
to a complete scheme by Resmini [23]. Segmentations used in this comparison are
available in http://visual.ic.uff.br/en/proeng/rresmini_thesis.

5 Three-Dimensional Reconstruction

The geometric modeling of the patient breast is useful for many application such as:
(1) to merge temperature information with others [5] specially with 3D exams
which represent the same patient like magnetic resonance, (2) to represent a model
of the breast with a 3D mesh for surgical reconstruction after mastectomy modeling,
(3) to identify points of correlation between IR exams and models of the patient
body for finite elements analysis or other forms of treatment of the inverse problem
(i.e., what is inside of the body that can result in a thermal distribution of skin’
surface) [3, 11, 24] and (4) for some numerical analysis and other examinations like
Electrical Impedance Tomography (EIT) [14] and 3D Ultrasound [35]. Moreover,
three dimensional meshes of the real model can be used in surgeries simulations, for
the personal project of prosthesis, for breast reduction, and other procedures.

We proposed two approaches for reconstruction. The first one uses a frontal
image and two lateral (orthogonal to this) images of the breast for shape recon-
struction. Figure 5 shows some steps of this approach [34]. The second extends the
first by proposing an apparatus to be used during the capture with thermal camera
and two Kinects (MicroSoft Xbox 360), improving the quality of the 3D mesh
generated [2]. The steps of the second one can be seen in Fig. 6.

From the two-dimensional thermal images (Fig. 5) it is possible to reconstruct
the patient breast geometry. The 3D geometric model proposed is based on fitting
two curves (for each breast a frontal and lateral view is used). The first step is the
identification of the points of the inframammary fold of the patient’s IR image).
These points are computed from IR image adjusted by using the least-square
method (LSM) [34]. These define the bottom curve used to define the size and

Fig. 5 Breast contour detection using a frontal and lateral view for each breast. Surface modeling
from such curves are achieved after positioning the lateral curves on a plane parallel to the coronal
over the nipple and using the bottom curve to define the size and shape of the breast [34]
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shape of the breast. The spatial shape is defined by positioning the border of the
lateral views orthogonally to this over the nipple. The curves are joined as indicated
in Fig. 5. A computer graphics border representation can be used to generate the 3D
mesh. Then calculated curves and surfaces are compared with those obtained from
the process of asking the patient to be inside a laser scanner device in order to
capture the shape and measure how well the calculated curves and surface fits the
patient breast shape. The steps for these are:

1. Identification of the 2D coordinates of the breast border from the IR image red
line and blue line in Fig. 5;

2. Definition of the middle point (or nipple position) of the inframammary fold
image (red line) that will joint this curve with the vertical points (blue line);

3. Translate coordinates of all the points to the same axis and origin, and calcu-
lation of the 3D representation of the coordinates of the points, i.e., the (x, y,
z) representation for the frontal breast lower curve as can be seen in order to
have an orthogonal spatial limits of the breast;

4. Creation of an NURB surfaces using this limits, and the a 3D model of the
breast [34].

The validation of generated model was realized using 3 volunteers that have
been submitted to 3D laser digitalization of their bodies. Then the model of the real
bodies obtained with the scanner and the proposed “steps” re compared: i.e., the
laser scanned points with the proposed model of reconstruction from thermal
images. It was found that, on average, the differences between the 3D shape from
this method and the acquired model by laser scanner differ between 4.42 and
6.03%. The maximum value of differences is between 4.77 and 6.08%. In addition,
the general analysis about average of maximum value, and the minimum value
found on the validation is considered small and very much acceptable, turning the
3D model created by this methodology very close to real patient breast [34].

Range images are the name of the outcomes of a collection of imaging devices
available to produce a 2D image considering the distance of the points in a scene to
a specific point. This is normally associated with some type of sensor of the device.
These images have as pixel values a measure of the corresponding distance (e.g.,
brighter values mean shorter distance). If the sensor used to produce the range

Fig. 6 Schemes for data acquisition the infrared image and at same time the range cameras
(kinects) for breast geometric reconstruction, the range image achieved and the obtained result [2]
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image is properly calibrated, the pixel values can be used directly to compute
distance in the desired length unit, such as centimeters or inch.

In the developed of a second technique for breast shape modeling we used two
Kinects, and it consists of three stages: the first is calibration of the Kinects in an
apparatus (Fig. 6 left); the second step carries out the registration of the clouds of
points acquired by the sensors (Fig. 6 center); then, the reconstruction of the surface
of the virtual object (Fig. 6 right). Comparison of this technique and the real breasts
of five (5) volunteers and two (2) phantoms are done [2]. For the volunteers the
breasts are captured by a laser scanner (as previous commented) and for the
phantoms they are measured directly by a mechanical devise. The mean differences
among the surfaces areas are 3.55%, or 0.93 considering the Dice similarity
coefficient [9], in average, and we achieve mean differences among the distances of
the real nipples and the reconstructed models of 3.51% in this technique.

6 Feature Extractions, Classification and Evaluation
of Performance for Diagnostic Tools

The developed tools for diagnostic aid [10] can be divided as a function of time in
static or dynamic. They originate from the use of data archived by the Passive
Static Thermography or by the Active Dynamic Thermography, respectively.

Using the static protocol, 3 works to perform diagnosis have been developed by
our group. In a first one [26], Lacunarity and the Hurst coefficient are calculated
from each breast ROI. Both these features use the concepts of the fractal geometry
and were computed in three approaches: using each ROI independently, combining
both patient ROIs by subtracting one from the other or by feature subtractions.
A total of 133 features were extracted in Serrano et al. [26] work from a sample of
28 volunteers. Classification algorithms of WEKA (http://www.cs.waikato.ac.nz/
ml/weka/) were used. To identify the best result achieved, the performance of a
cancer x normal classification were considered by plotting the true positive rates
(sensitivity) against the false positive rates (specificity) of each used classifiers, i.e.,
the receiver operating characteristic (ROC) curve were considered. The Naïve
Bayes technique achieved the best score for correctly identifying cancer using these
features: it presented 0.958 of area under the ROC Curve (AUC).

In a second work [22], a total of 320 features were computed: most of them are
from the geo statistic (Ripley’s K function, Moran index, and Geary coefficient), but
also features from fractal geometry (using Higuchi fractal dimension approach) and
statistic (average and standard deviation and second order moments). They are
computed from each breast separately without combination or subtraction of images
or features. The same 28 patients are considered. These characteristics are grouped in
an array of data processed by the WEKA (http://www.cs.waikato.ac.nz/ml/weka/)
classifier software, as the previous one. The principal component analysis (PCA) is
performed in two ways: with the base divided into four groups of features and with
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the entire amount of data. The Support Vector Machine (SVM) was used for patient
classification by the PCA best group. The best accuracy is 82.14 and 91.70% is the
best sensitivity obtained [21].

In a third work [4], the used features were from fractal geometry (Higuchi fractal
dimension and Succolarity), basic statistics (average, standard deviation, and
thermal amplitude), histograms from the thermal matrix, geostatistics (Moran index
and Geary coefficient), and Ripley Diversity Index, using a total of 40 features
computed from 51 patient’s ROIs. Some tests were performed to find the most
expressive set of features by Principal Components Analysis (PCA) and genetic
algorithm feature selection. The work used SVM for classification and the AUC to
perform comparison of outcomes (resulting in 85.20%).

Using data from the dynamic protocol, Silva et al. [28] proposed a methodology
for analyzing temperature variations in order to detect a number of breast abnor-
malities (including cancer), using unsupervised and supervised machine learning
techniques, which characterizes the methodology as hybrid. The sequence of
thermograms from each patient is firstly segmented and the ROIs are registered
using the initial frame as reference. Then, for each point, functions representing the
change of temperature during the examination are built and the k-means algorithm
is applied on these functions using various values of k. Indices of clustering vali-
dation are applied to evaluate the possible groups for each value of k, generating
values to be used in the classification model. Data mining tools and hyper parameter
optimization (CASH) were used to combine groups in order to classify the patients’
breast. Further, classifiers based on Bayesian networks, neural networks, SVM and
decision tree were used. Among 39 tested classification algorithms, K-Star and
Bayes Net obtained classification accuracy of 100%. Furthermore, among the Bayes
Net, Multi-Layer Perceptron, LibSVM [6] and J48 classification algorithms, an
average accuracy of 95.71% was obtained.

Dynamic protocol data were also used by Silva [30] to compute ROI features
(first and second order statistical, clustering, histogram, fractal geometry, and
diversity indexes) and then to organize temporal series. These were after reorga-
nized in subseries with different cardinalities. The top subseries of features were
selected and used in SVM to classify the breast. The leave-one-out technique is
employed for validation using 64 patients (32 healthy and 32 with some disease).
Two features were extracted from each series and submitted to the classifier, they
are: the amplitude of the series and the square root of the sum to the square of the
series. The values were normalized between 0 and 1. The SVM classifier in the
WEKA tool was used with all their default parameters. The SVC (Support Vector
Classification) learning was used (in both C-SVC and Nu-SVC). Detailed results of
each group of feature (i.e., its sensitivity, specificity, accuracy, Youden index and
the AUC, for each analysis, are presented in Appendix B of Silva [30]. The best
results of the analysis are shown in Fig. 7.

The horizontal axis of Fig. 7 shows accuracy in percentage, it is possible to
notice that the greatest accuracies were obtained by the features from simple sta-
tistical group and by the union of all the features, achieving 97%. On the other
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hand, groups formed by the diversity index (horizontal and vertical) and lacunarity
do not obtain good results.

7 Conclusions

In this chapter, we present several approaches that have been implemented related
to the use of infrared images to breast modeling and diseases diagnosis; they
consider all aspects of the process of diagnostic tool implementation: capture
thermal matrix of patient body, storage and retrieval of images from a database,
segmentation, 3D reconstruction, feature extraction and classification. The experi-
ments and implementations were done by the Visual Lab group of the Fluminense
Federal University in Niteroi, Rio de Janeiro, Brazil. The results are promising and
it promotes diseases classification with very high accuracy. Each aspect considered
in this chapter is an important application of infrared images for breast modeling
and diagnosis. Test showed that the proposed methodology is able to detect breast
anomalies, thus contributing to adopted thermography for breast cancer screening
programs. For diagnostic recommendations the achieved results support the state-
ment that IR analysis is able to detect breast anomalies and to insert the ther-
mography in clinical routines for breast diseases screening. When considering the
dynamic protocol versus the static one, tools for diagnosis implemented using the
variation of the patient temperature (the dynamic protocol data) always achieve
better results even when very simple approaches are used like only the temporal
series of data [28, 29].
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Fig. 7 Accuracy by group of features using active dynamic thermography [30]
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A Semi-Analytical Heterogeneous Model
for Thermal Analysis of Cancerous
Breasts

A. Ramírez-Torres, R. Rodríguez-Ramos, A. Conci, F.J. Sabina,
C. García-Reimbert, L. Preziosi, J. Merodio and F. Lebon

Abstract In the present work coupled stationary bioheat transfer equations are
considered. The cancerous breast is characterized by two areas of dissimilar thermal
properties: the glandular and tumor tissues. The tumorous region is modeled as a
two-phase composite where parallel periodic isotropic circular fibers are embedded
in the glandular isotropic matrix. The periodic cell is assumed square. The local
problem on the periodic cell and the homogenized equation are stated and solved.
The temperature distribution of the cancerous breast is found through a numerical
computation. A mathematical and computational model is integrated by FreeFem++.
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1 Introduction

Actually, clinical examination, ultrasound, mammography, thermography, among
others, are employed to identify and treat breast cancer [1, 2]. In particular,
mammography is considered the standard procedure for detecting breast cancer.
Yet, it presents difficulties for finding tumors in dense breasts. Thermography
technique has arisen as a prospective method with the aim of increase the efficacy of
the early discovery of breast cancer [3, 4]. Then, mathematical and numerical
models have been proposed for studying thermal distribution on healthy and
cancerous breasts, with the aim of using thermography as a complementary tool.
For instance, [5] modeled a three-dimensional tumorous breast and sensitivity
parameters are analyzed. Moreover, [3] were able to set a method to approximate
thermal properties, where the physical process was ruled by a bioheat transfer
equation. A three-dimensional breast, taking into account thermal and elastic
properties, was modeled and the influence of both properties on the surface tem-
perature was considered by [6]. In the aforementioned works, the numerical sim-
ulation was performed via FEM.

In the present study, a semi-analytical method is proposed for studying the breast
thermal properties for different parameter data. Then, mathematical and computa-
tional modeling are integrated for solving two coupled stationary bioheat transfer
equations. To separate micro and macro variables of the heterogeneous problem,
the two-scale asymptotic expansion is used [7, 8]. In fact, multiscales methods have
been successfully applied to various physical systems. For example, a formal
two-scale asymptotic expansion for studying the macroscopic behavior of a porous
and linear elastic solid was used in [9]. On the other hand, the homogeneous
problem associated with the healthy breast tissues (without tumor) and the
homogenized problem resulting by the application of the two-scale homogenization
method to the heterogeneous tumor tissue, are solved using FreeFem++. Finally,
numerical results are shown and discussed.
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2 Mathematical Model

The aim of the present work is to find the stationary temperature fields u and ue that
are described by the following bioheat transfer equations [10].
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ij
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� �
þ qbcbx

g
bu ¼ qgm þ qbcbx
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where Kg
ij ¼ kgdij denotes glandular tissue thermal conductivity, qb is blood mass

density, cb blood specific heat capacity, ua is the arterial blood temperature, uc the
temperature at the boundary between breast and chest, ue is the surrounding tem-
perature and h represents the combined effective heat transfer coefficient due to
convection, radiation and evaporation of 13:5 W=m2 K [11]. Besides, the rapidly
oscillating coefficients Ke

ij;x
e
b and qem are defined as follows

Ke
ijðxÞ ¼

kgdij; x 2 Xe
g

ktdij; x 2 Xe
t

�
; xe
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b; x 2 Xe
g
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b; x 2 Xe

t

�
and qemðxÞ ¼

qgm; x 2 Xe
g

qtm; x 2 Xe
t

�
:

Note that in the case of the healthy breast model only (P1) has to be solved.
For the sake of simplicity, we will work in a two-dimensional section where the

breast geometry is represented by a hemispherical shape with a diameter L as done in
[11]. The healthy breast will be represented by a homogeneous tissue (glandular
tissue) and associated with the open, bounded, and connected domain X1 with
Lipschitz boundary @X1 ¼ @Xn

1 [ @Xd
1, where @Xn

1 \ @Xd
1 ¼ ;. On the other hand,

the cancerous tissue will be characterized by two regions of dissimilar thermal
properties: the tumoral area (Xe

t—fibers) and the glandular area (Xe
g—matrix). In this

sense, the cancerous region will consist of a periodic microstructure associated with
the open, bounded, and connected domain X2 ¼ Xe

g [Xe
t [ @Xe

g with Lipschitz
boundary @X2 ¼ @Xe

g and with Xe
g \Xe

t ¼ ;. Then, the cancerous breast is repre-
sented by X ¼ X2 [X1 (Fig. 1). Let e[ 0 be the size of the microstructure and
y ¼ x=e the fast scale coordinate. The reference periodic cell will be denoted by Y,
which contains one inclusion occupying the domain Yt with Lipschitz boundary @Yt
such that Y ¼ Yg [Yt [ @Yt, with Yt � Y and Yg \ Yt ¼ ;. It is also assumed that Xe

g

is connected and that the inclusions do not intersect the boundary @Xe
g. In previous

works, soft tissues assume to present this type of arrangement. In fact, Penta et al. [9]
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used the same periodic geometry to depict a porous tissue microstructure. Boundary
conditions for (1) are heat transfer by convection between the surface of the tissue
and the external environment on @Xn

1 and a prescribed temperature on @Xd
1. In the

case of (2) we assume heat and temperature continuity on @X2. Moreover, continuity
conditions for temperature and heat flow are imposed on Ce (boundary between the
glandular tissue Xe

g and the tumor inclusions Xe
t ), i.e.,

ue½ �½ � ¼ 0 on Ce and Kerxu
e � n½ �½ � ¼ 0 on Ce: ð3Þ

3 Two-Scale Homogenization

Here, the two-scale homogenization technique is applied to find the homogenized
equation and corresponding effective coefficients. An overview of how this method
is applied and its main assumptions can be found in [12]. Specifically, after find-
ing the solution u of problem (1), an asymptotic expansion of ue [problem (2)] is
sought as a function of e for e ! 0, namely

ueðxÞ ¼ u0ðxÞþ evpðyÞ
@u0ðxÞ
@xp

þ e2u2ðx; yÞþ . . .; ð4Þ

where the functions vpðyÞ; u2ðx; yÞ, are Y-periodic in y. In particular, the vector
function vðyÞ satisfies the unit cell problem
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v½ �½ � ¼ 0 on C;

KijðyÞ @vpðyÞ@yj
þKipðyÞ

� �
ni

h ih i
¼ 0 on C

8>><
>>: ð5Þ

and u0ðxÞ the homogenized problem solution

Fig. 1 Decomposition of the
macroscopic domain (left) and
the corresponding unit
periodic cell (right)
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� @
@xi

K̂ij
@u0ðxÞ
@xj

� �
þ qbcbx

g
b
jYgj
jY j þ qbcbx

t
b
jYt j
jY j

� �
u0ðxÞ ¼ qgm þ qbcbx

g
bua

� � jYgj
jY j þ

þ qtm þ qbcbx
t
bua

� � jYt j
jY j in X2;

u0ðxÞ ¼ ug on @X2;

8>><
>>: ;

ð6Þ

where j � j represents volume fraction. The effective constant coefficients K̂ip are
given by

K̂ip ¼ Kij
@vp
@yj

þKip

� �
ð7Þ

where p ¼ 1; 2 and h�i denotes volume average.

3.1 Analytical Solution of the Unit Cell Problem

In particular, the theory of analytical functions by Muskhelishvili [13] is applied to
solve the cell problem (5). In this sense, the solutions of the local problems are
written as

vðgÞ1 ¼ Re a10zþ
X1 o

k¼1

a1k
fðk�1ÞðzÞ
ðk � 1Þ!

( )
and vðtÞ1 ¼ Re

X1 o

l¼1

c1l z
l

( )
; ð8Þ

vðgÞ2 ¼ Im a20zþ
X1 o

k¼1

a2k
fðk�1ÞðzÞ
ðk � 1Þ!

( )
and vðtÞ2 ¼ Im

X1 o

l¼1

c2l z
l

( )
; ð9Þ

where ðcÞ with c ¼ g; t denotes the constituent, the superscript o specifies that the
sum is carried out over odd indices, the coefficients ap0; a

p
k and cpl ðp ¼ 1; 2Þ are real

and f is the zeta quasi periodic Weierstrass function. Now, using Laurent’s
expansion of f and the quasi-periodicity property of f and its derivatives

vðgÞ1 ¼ Re
X1 o

l¼1

a1l z
�l � A1

l z
l

� �( )
and vðgÞ2 ¼ Im

X1 o

l¼1

a2l z
�l � A2

l z
l

� �( )
; ð10Þ

where for p ¼ 1; 2

Ap
l ¼

X1 o

k¼1

kapkgkl with gkl ¼ ð�1Þpþ 1p; kþ l ¼ 2
ðkþ l�1Þ!

k!l! Skþ l; kþ l[ 2

(
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and Sk are called the reticulate sums and are defined as Sk ¼P
w2L�

1
wk ðk� 3; k oddÞ with L� representing the lattice excluding the number w ¼

0 and w ¼ mw1 þ nw2 where m; n 2 Z and w1;w2 are the periods. In particular, in
the present work w1 ¼ 1 and w2 ¼ i, due to we are in presence of square unit cells.

Substitution of (8)–(10) in boundary conditions of problem (5) and taking into
account that on C; z ¼ Reih where R is the circumference radius give that coeffi-
cients apk can be found through solution of the following infinite linear system (for
finding the effective properties it is truncated into an appropriate order k ¼ N)

n�1Iþð�1Þpþ 1Wp
� �

Âp ¼ Vp; ð11Þ

where Âp ¼ ðâp1; âp2; . . .ÞT; âpk ¼ apk
ffiffiffi
k

p
=Rk;Vp ¼ ðð�1Þpþ 1R; 0; . . .ÞT,

n�1 ¼ kg þ kt
kg � kt

and Wp ¼
ð�1Þpþ 1pR2; kþ l ¼ 2P1 o

k¼1

ffiffiffi
k

p ffiffi
l

p
gklR

kþ l; kþ l[ 2

8<
: :

Now, from Eq. (7)

K̂ip ¼ Kij
@vp
@yj

þKip

� �
:

Using the form of Kij, Green’s theorem, the double periodicity of vp and for-
mulas (8)–(10), then

K̂pp ¼ kg 1� 2pa11
� �

; if p ¼ 1
kt 1þ 2pa21
� �

; if p ¼ 2

�
: ð12Þ

In fact, if kg ¼ kt. Then, K̂ ¼ K̂11 ¼ K̂22.

4 Numerical Solution and Analysis of Results

This section is devoted to find the temperature distribution of problems (1) and (6)
where we define as g ¼ qbcbx

g
b; g

eðxÞ ¼ qbcbx
e
bðxÞ, f ¼ qgm þ qbcbx

g
bua; f

eðxÞ ¼
qemðxÞþ qbcbx

e
bðxÞua. With this aim, we follow the following procedure.
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4.1 Solution of (1)

For finding solution u of (1), we use FreeFem++. First, the problem must be written
in its weak formulation. In this sense, let H1

dðX1Þ ¼ fu 2 H1ðX1Þ s:t: cðuÞ ¼
0 on @Xd

1g. Using the trace theorem for uc 2 H1=2ðX1Þ, there exists a continuous
linear operator R0 : H

1
2ð@X1Þ ! H1ðX1Þ such that c R0ucð Þ ¼ uc. Now, we define

~u ¼ u� R0uc 2 H1
dðX1Þ. Then, on @Xd

1

cð~uÞ ¼ cðuÞ � cðR0ucÞ ¼ uc � uc ¼ 0:

In this way, the equivalent variational formulation of problem (1) is

Find ~u 2 H1
dðX1Þ such that

að~u; vÞ ¼ LðvÞ; 8v 2 H1
dðX1Þ

(
; ð13Þ

where

að~u; vÞ ¼
Z
X1

Kgrx~u � rxvdxþ
Z
X1

g~uvdxþ
Z
@Xn

1

h~uvdS;

LðvÞ ¼
Z
X1

fvdx�
Z
X1

gðR0ucÞvdx�
Z
X1

KgrxðR0ucÞ � rxvdx

þ
Z
@Xn

1

hðue � R0ucÞvdS:

In particular, the weak solution existence and uniqueness of problem (13) can be
proved by standard methods using the Lax–Milgram theorem. In this sense, the
following must be proved:

(i) The bilinear form að~u; vÞ is continuous
In this sense, observe that Kg 2 Mða; b;X1Þ and by Cauchy–Schwartz

jað~u; vÞj � bkrx~ukL2ðX1ÞkrxvkL2ðX1Þ þ gk~ukL2ðX1ÞkvkL2ðX1Þ
þ hk~ukL2ð@Xn

1ÞkvkL2ð@Xn
1Þ:

Furthermore, by the Poincaré–Friedrichs II theorem

k~ukL2ðX1Þ � ~C1krx~ukL2ðX1Þ ¼ ~C1k~ukH1
d ðX1Þ:

On the other hand, by the trace theorem
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k~ukL2ð@Xn
1Þ ¼ kcð~uÞkL2ð@Xn

1Þ ¼
Z
@Xn

1

jcð~uÞj2 þ
Z
@Xd

1

jcð~uÞj2
2
64

3
75

1
2

¼ k~ukL2ð@X1Þ �C2k~ukH1ðX1Þ:

Moreover,

k~ukH1ðX1Þ ¼ k~uk2L2ðX1Þ þ krx~uk2L2ðX1Þ
h i1

2 � ~C1krx~uk2L2ðX1Þ þ krx~uk2L2ðX1Þ
h i1

2

¼ ð1þ ~C1Þ
1
2krx~ukL2ðX1Þ ¼ ~C3k~ukH1

d ðX1Þ; ~u 2 H1
dðX1Þ:

Therefore,

k~ukL2ð@Xn
1Þ �C2k~ukH1ðX1Þ � ~C4k~ukH1

d ðX1Þ;

where ~C4 ¼ C2~C3 ¼ C2ð1þ ~C1Þ
1
2. Finally, for ~u 2 H1

dðX1Þ

jað~u; vÞj � bk~ukH1
d ðX1ÞkvkH1

d ðX1Þ þ g~C1C1k~ukH1
d ðX1ÞkvkH1

d ðX1Þ þ h~C4C4k~ukH1
d ðX1ÞkvkH1

d ðX1Þ

�C5k~ukH1
d ðX1ÞkvkH1

d ðX1Þ;

with C5 ¼ bþ g~C1C1 þ h~C4C4.

(ii) The bilinear form að~u; vÞ is H1
d -elliptic

Let u 2 H1
dðX1Þ,

aðu; uÞ ¼
Z
X1

KgðrxuÞ2dxþ
Z
X1

gu2dxþ
Z
@Xn

1

hu2dS

�C6

Z
X1

ðrxuÞ2dxþ
Z
X1

u2dxþ
Z
@Xn

1

u2dS

0
B@

1
CA

¼ C6 krxuk2L2ðX1Þ þ kuk2L2ðX1Þ þ kuk2L2ð@Xn
1Þ

� �
�C6krxuk2L2ðX1Þ ¼ C6kuk2H1

d ðX1Þ; with C6 ¼ minða; g; hÞ:

(iii) The linear form LðvÞ is continuous in H1
dðX1Þ

Let v 2 H1
dðX1Þ,
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LðvÞj j ¼
Z
X1

fvdx�
Z
X1

gðR0ucÞvdx�
Z
X1

KgrxðR0ucÞ � rxvdxþ
Z
@Xn

1

hðue � R0ucÞvdS


















�
Z
X1

fvj jdxþ
Z
X1

gðR0ucÞvj jdxþ
Z
X1

KgrxðR0ucÞ � rxvj jdxþ
Z
@Xn

1

hðue � R0ucÞvj jdS:

But, by Cauchy–Schwarz inequality, the Poincaré–Friedrichs II theorem and the
fact that R0uc 2 H1ðX1Þ and rxðR0ucÞ 2 L2ðX1Þð Þn

jLðvÞj �C10kvkH1
d ðX1Þ;

where C10 ¼ C1kf kL2ðX1Þ þ gC1kR0uckL2ðX1Þ þ bkrxðR0ucÞkL2ðX1Þ þ hC7juej þð
hC8kuckH1=2ð@Xn

1ÞÞC3:

Thus, (i)–(iii) proves the existence and uniqueness of solution ~u0 by using the
Lax–Milgram theorem.

Now, it must be shown that the map hf ei 2 L2ðX1Þ ! u 2 H1
dðX1Þ is continuous

in order to prove the regularity of the weak solution. In fact, from the H1
d -ellipticity

of the bilinear form

jaðu; uÞj �C6kuk2H1
d ðX1Þ

and the continuity of the linear operator in H1
dðX1Þ

jLðuÞj �C10kuk2H1
d ðX1Þ:

Then,

C6kuk2H1
d ðX1Þ � jaðu; uÞj ¼ jLðuÞj �C10kuk2H1

d ðX1Þ;

i.e.

kukH1
d ðX1Þ �

C10

C6
¼ C11kf kL2ðX1Þ;

with

C10 ¼ 1
C6

C1 þ
gC1kR0uckL2ðX1Þ

kf kL2ðX1Þ
þ bkrxðR0ucÞkL2ðX1Þ

kf kL2ðX1Þ
þ

hC7juej þ hC8kuckH1=2ð@Xn
1Þ

� �
C3

kf kL2ðX1Þ

0
@

1
A:

Now, the contribution of R0uc may be difficult in some cases. However,
FreeFem++ replaces the Dirichlet condition by a Robin condition of the form
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rxu � nþ u=e ¼ uc=e on @Xd
1 and solves the problem with a very small value of e.

In particular, we approximate the involved functions by piecewise linear continuous
finite elements.

4.2 Solution of (6)

The last step in the homogenization procedure is to solve the homogenized problem
(6). Here we prove that u0 is its solution and that the problem is well posed. In this
sense, let H1

0ðX2Þ ¼ fu 2 H1ðX2Þ s:t: cðuÞ ¼ 0 on @X2g. Using the trace theorem

for ug 2 H1=2ðX2Þ there exists a continuous linear operator R0 : H
1
2ð@X2Þ !

H1ðX2Þ such that c R0ug
� � ¼ ug. Now, we define ~u0 ¼ u0 � R0ug 2 H1

0ðX2Þ. Then,
on @X2

cð~u0Þ ¼ cðu0Þ � cðR0ugÞ ¼ ug � ug ¼ 0:

In this way, the equivalent variational formulation of problem (6) is

Find ~u0 2 H1
0ðX2Þ such that

að~u0; vÞ ¼ LðvÞ; 8v 2 H1
0ðX2Þ

�
; ð14Þ

where

að~u0; vÞ ¼
Z
X2

K̂rx~u
0 � rxvdxþ

Z
X2

hgei~u0vdx;

LðvÞ ¼
Z
X2

hf eivdx�
Z
X2

K̂rxðR0ugÞ � rxvdx�
Z
X2

hgeiðR0ugÞvdx:

In particular, K̂ 2 Mða; b;X2Þ see Cionarescu and Donato [14], and hf ei 2
L2ðX2Þ and hgei[ 0. The existence and uniqueness of solution ~u0 can be proved
through the Lax–Milgram theorem. Then, we must show that:

(i) The bilinear form að~u0; vÞ is continuous
In this sense, observe that using the fact that K̂ 2 Mða;b;X2Þ and by Cauchy–

Schwartz inequality

jað~u0; vÞj � bkrx~u
0kL2ðX2ÞkrxvkL2ðX2Þ þ hgeik~u0kL2ðX2ÞkvkL2ðX2Þ:

Now, from remark 3.37 p. 32 by Cionarescu and Donato [14], for
~u0; v 2 H1

0ðX2Þ,
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k~u0kH1
0 ðX2Þ ¼ krx~u

0kL2ðX2Þ;

kvkH1
0 ðX2Þ ¼ krxvkL2ðX2Þ:

Furthermore, by the Poincaré–Friedrichs I theorem,

k~u0kL2ðX2Þ � Ĉ1krx~u0kL2ðX2Þ ¼ Ĉ1k~u0kH1
0 ðX2Þ;

kvkL2ðX2Þ �C1krxvkL2ðX2Þ ¼ C1kvkH1
0 ðX2Þ:

Finally, for ~u0 2 H1
0ðX2Þ

jað~u0; vÞj � bk~u0kH1
0 ðX2ÞkvkH1

0 ðX2Þ þ hgeiĈ1C1k~u0kH1
0 ðX2ÞkvkH1

0 ðX2Þ

�C2k~u0kH1
0 ðX2ÞkvkH1

0 ðX2Þ;

with C2 ¼ bþhgeiĈ1C1.

(ii) The bilinear form að~u0; vÞ is H1
0-elliptic

Let u 2 H1
0ðX2Þ,

aðu; uÞ ¼
Z
X2

K̂ðrxuÞ2dxþ
Z
X2

hgeiu2dx

¼ C3 krxuk2L2ðX2Þ þ kuk2L2ðX2Þ
� �

; with C3 ¼ minða; hgeiÞ
�C3krxuk2L2ðX2Þ ¼ C3kuk2H1

0 ðX2Þ:

(iii) The linear form LðvÞ is continuous in H1
0ðX2Þ

Let v 2 H1
0ðX2Þ,

jLðvÞj �
Z
X2

jhf eivjdxþ
Z
X2

jK̂rxðR0ugÞ � rxvjdxþ
Z
X2

jhgeiðR0ugÞvjdx:

But, using the Cauchy–Schwarz inequality, the Poincaré–Friedrichs I theorem
and the fact that R0ug 2 H1ðX2Þ and rxðR0ugÞ 2 L2ðX2Þð Þn

jLðvÞj �C6kvkH1
0 ðX2Þ;

where C6 ¼ C4khf eikL2ðX2Þ þ hgeiC5kR0ugkL2ðX2Þ þ bkrxðR0ugÞkL2ðX2Þ:
Thus, (i)–(iii) proves the existence and uniqueness of solution ~u0 by using the

Lax–Milgram theorem.
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Now, it must be shown that the map hf ei 2 L2ðX2Þ ! u 2 H1
0ðX2Þ is continuous

in order to prove the regularity of the weak solution. In fact, from the H1
0-ellipticity

of the bilinear form

jaðu; uÞj �C3kuk2H1
0 ðX2Þ

and the continuity of the linear operator in H1
0ðX2Þ

jLðuÞj �C6kuk2H1
0 ðX2Þ:

Then,

C3kuk2H1
0 ðX2Þ � jaðu; uÞj ¼ jLðuÞj�C6kuk2H1

0 ðX2Þ;

i.e.,

kukH1
0 ðX2Þ �

C6

C3
¼ C7khf eikL2ðX2Þ;

with

C7 ¼ 1
C3

C4 þ
hgeiC5kR0ugkL2ðX2Þ

khf eikL2ðX2Þ
þ bkrxðR0ugÞkL2ðX2Þ

khf eikL2ðX2Þ

 !
:

Once the solution u of (1) is found, we proceed to solve (6). In particular, the
homogenized problem (6) is solved using the aforementioned FreeFem++. As
above, we approximate the involved functions by piecewise linear continuous finite
elements.

4.3 Analysis of Results

Numerical calculations are carried out for three breast models A, B, and C, whose
tissue parameters are shown in Table 1. Temperatures are fixed as ua ¼ uc ¼ 37 	C
[5]. We fixed the surrounding temperature ue ¼ 20. The metabolic heat value for
different tumor sizes follows the law given by Jiang et al. [6] as
qtm ¼ C=ð468:6 lnð100DÞþ 50Þ, where C ¼ 3:27
 106 Wday=m3 and D is the
tumor diameter.

Figure 2A–C show the temperature distribution of healthy breast tissues with
L ¼ 0:14 m, i.e., without a tumor. Now, in Fig. 3 it is shown how depth (in the
present study the depth is stated as the distance between the tumor center and the
point on the breast surface in the same axis) affects breast thermal distribution. In
particular, in the zone “far” from the tumor area, no appreciable temperature
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changes at the surface are observed. Which is not the case when the tumor is located
near to the boundary where the temperature difference at the surface is higher if
compared with Fig. 2. Indeed, when the tumor is nearer to the boundary, the surface
temperature increases. This behavior is in accordance with the observations made
by [5] and [6]. Figure 4 first line of graphs, center line and bottom line, present the
steady-state temperature for a cancerous breast tissue with L ¼ 0:13 m, L ¼ 0:15 m
and L ¼ 0:17 m, respectively. In particular, a sphere with radius r ¼ 0:01 m was
inserted in the breast model to imitate the in situ tumor at a depth of d ¼ 0:04 m.
Moreover, a relative large tumor volume fraction jYtj ¼ 0:7 is considered so that
healthy breast tissue volume fraction is jYgj ¼ 0:3 in the tumorous region. As
observed, if the breast dimensions are bigger, the maximum temperature is higher,

Fig. 2 Thermal distribution of a healthy breast tissue

Fig. 3 Thermal distribution of a cancerous breast tissue with an embedded spherical tumor of
radius r ¼ 0:01 m located at depths d ¼ 0:03 m (first line) and d ¼ 0:05 m (second line),
respectively

Table 1 Tissue parameters

Model k (W/m °C) xb (1/s) cb
(J/Kg °C)

qb
ðkg=m3Þ

qg
ðWm�3Þ

Reference

kt kg xt
b xg

b

A 0.48 0.48 0.0132 0.0006612 3300 1100 700 [5]

B 0.48 0.48 0.009 0.00018 4200 1060 450 [3]

C 0.511 0.48 0.0108 0.000539 4200 1060 700 [15]
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where the temperature decreases from the chest wall to the front breast. Moreover,
surface temperature varies with breast dimension. On the other hand, the first and
second line of Fig. 5 show the temperature for a cancerous breast tissue where the
tumor is not located on the central axis x1 ¼ 0:07 m, i.e., its center is situated
0:02 m at the right and left of the central axis, respectively. Even, when the tumor is
found off central axis, it influences the temperature behavior on the nearest
boundary, which is higher than that of the adjacent surface. Besides, for Figs. 4 and
5 a temperature variation is noticed in the tumor area and the region surrounding it.

Fig. 4 Thermal distribution of a cancerous breast tissue with an embedded spherical tumor of
radius r ¼ 0:01 m for L ¼ 0:13 m, L ¼ 0:15 m and L ¼ 0:17 m, respectively

Fig. 5 Thermal distribution of a cancerous breast tissue with an embedded spherical tumor of
radius r ¼ 0:01 m located 0:02 m at the right and left of the central axis, respectively
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5 Conclusions

Here, a semi-analytical method is used for studying breast thermography through
coupled stationary bioheat transfer equations. One hand, the breast is assumed to be
homogeneous and constituted by glandular tissue. On the other hand, the tumor area
is represented by a periodic composite and comprised of glandular and cancerous
tissue. In particular, the temperature distribution on both, breast and tumor tissue,
was computed using a numerical algorithm implemented in FreeFem++. In sum-
mary, if the breast dimensions are bigger then the maximum temperature is higher
and no appreciable changes in temperature difference were observed far from the
breast boundary. The work results also indicate that the data parameter will influ-
ence the thermal distribution of the tumorous breast. The proposed method provides
a helpful framework for studying the thermal profile of breast cancerous tissues.
Moreover, it facilitates the understanding of the complex behavior of its surface
temperature. Also, it improves the current premature discovery and analysis of
breast tumors, integrating mathematical and computational tools. In fact, ther-
mography together with mathematical and computational modeling bring an
appropriate methodology in order to allow the assessment of rapidly growing
neoplasm.
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Dynamic Angiothermography (DATG)

F. Casali, R. Brancaccio, F.P. Draetta, M.P. Morigi,
M. Bettuzzi and G. Baldazzi

Abstract Dynamic Angiothermography (DATG) is a noninvasive technique for
the diagnosis of breast cancer. The instrument consists of a thin plate with liquid
crystals that changes color due to a change in temperature, consequently offering an
image of breast vasculature. DATG is based on the angiogenesis theory on tumor
initiation, development, and growth. A tumor needs new vessels. Therefore, by
studying the changes in the pattern of vascular blood supply, it is also possible to
diagnose neoplasms very early. In particular, it is shown that every human being
has his or her own vascular pattern which, in the absence of disease, does not vary
throughout the life time. By repeating DATG periodically, an efficient control of the
onset of disease is possible, even in its early stages. This is not new but still
little-known technique which is a component of the overall diagnostic techniques
for the study and prevention of breast cancer that serves to offer a complete clinical
picture of the patient. The great advantages of DATG are: it does not use radiation;
it is not invasive or painful; it is low-cost and can be repeated periodically and
successfully with no drawbacks. The angiothermographic examination thus makes
it possible to visualize the breast vascularity pattern without using contrast medium.
On the other hand, while highlighting changes in mammary vascularization, DATG
is not able to indicate the size or depth of the tumor; even if recent researches (based
on the approximated solution of the inverse Fourier heat equation) show the
possibility to evaluate the depth of the tumor. This paper, after the introduction in
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Sect. 1, starts with a description of historical context in Sect. 2, and outlines the
instrumentation in Sect. 3. Section 4 describes the technique, while a comparison
with other diagnostic techniques is provided in Sect. 5. To close, Sect. 6 offers a
practical guide on the use of this method.

Keywords Breast cancer � Diagnosis � Dynamic AngioThermoGraphy (DATG) �
Liquid crystals � Contactthermography � Angiogenesis

1 Introduction

Despite the numerous diagnostic techniques, according to the WHO (World Health
Organization) breast cancer as well as lung cancer and colorectal cancer, is the
second leading cause of death in developed countries [1]. In recent years, breast
cancer is the leading cause of cancer death among females in developing countries
[2]. Each diagnostic technique has advantages and limitations, and only a proper
synergy between the different techniques, together with forms of multidisciplinary
collaboration, can lead to real progress. To this end, screening is an extremely
important tool for prevention which, however, requires an extensive organization
and considerable financial resources. There are several efficient diagnostic tech-
niques (such as magnetic resonance imaging MRI) which are very expensive, and
the use of which is justified only when there is a high probability of tumor [3].
Mammography is the gold standard in older women, but it is not effective in
younger ones [4, 5]. Breast ultrasound is a radiation-free technique, but it is an
auxiliary test and its specificity is lower than that of mammography [6–8]. The
little-known Dynamic AngioThermoGraphy (DATG) has some attractive features
[9–11]. This technique should not be confused with breast thermal imaging (or
mammary thermography) [12–14], making use of a tool that shows the blood
distribution (blood pattern) in the mammary gland. Any changes in this distribution,
due to the presence of new blood vessels (angiogenesis), may be related to the
presence of malignancy [15, 16]. The basic idea is that every human being has his
or her own blood pattern, much like a fingerprint, when the person is healthy, does
not change during his or her lifetime [17, 18]. Conversely, the alteration of this
pattern might be evidence of a suspected tumoral or pretumoral activity [19, 20].

2 Historical Note

The importance of the influence of the vascular system in tumors was extensively
studied and demonstrated by Judah Folkman in 1965. In 1992, he won the Wolf
Prize for medicine for his research on angiogenesis. Studies on angiogenesis con-
tinued in France where, in the 1970s, J. Tricoire developed the first contact ther-
mography technique. To display the temperature distribution on the breast surface,
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he developed a kind of plate coated with liquid crystals [21–23]. The captured
images by a camera were analyzed by physicians who were experienced in standard
diagnostic techniques (usually gynecologists, oncologists, and radiologists). Studies
on the vascular pattern showed a correlation between contact plate images and
cancer. The method developed by Tricoire was based on the principle that emergent
tumors can be detected by recording and mapping the heat generated by them.

The research on contact thermography, initiated by Tricoire, was continued in
Bologna at the private “Madre Fortunata Toniolo” hospital by two gynecologists,
Dr. Giancarlo Montruccoli and his son, Dr. Daniel Montruccoli. They used and
studied contact thermography and found that the original technique gave rise to
numerous false positives (low specificity), while the picture had a poor spatial
resolution: characteristics confirmed by literature [24–26]. These physicians started
to analyze the vascularity pattern and its changes rather than searching directly for
the tumor as a heat source. In accordance with the angiogenesis theory, DATG does
not use the quantitative measurements of emitted heat as a diagnostic criterion.
Instead, it is based on the qualitative interpretation of breast blood flow lines, a
feature that is making DATG increasingly more valuable from both a clinical and a
scientific standpoint. In more than 30 years of clinical practice, approximately 4000
patients were followed up with a total of over 40,000 tests, of which around 1200
were histological examinations [27–30].

Thanks to the experience of these physicians, new plates were developed and the
DATG instrumentation was improved [9, 31].

3 The Instrumentation for Contact Thermography

While in mammary thermography the temperature of the area to be investigated is
recorded by an infrared camera, DATG analyzes the vascularization pattern. As an
example of mammary thermography, Fig. 1a shows (in “false colors”) a healthy
breast, while Fig. 1b shows an advanced cancer in the left breast.

In DATG, the examination tool is made of two components: a thermographic
sensor placed in contact with the breast, and a digital camera connected to a
computer (Fig. 2) [31].

3.1 The Detector (Thermographic Plate)

The detector is a plate covered with cholesteric liquid crystals. Crystals orientate
themselves in different ways depending on their temperature. Even though liquid
crystals may work in a very broad temperature range (from −30 to 120 °C), for the
DATG application their temperature range is designed to be that of the human body
skin (32–38 °C). At room temperature only infrared radiation is reflected and
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crystals appear brown. When the temperature is increased, the crystal structure
changes so that the reflected radiation becomes, successively, red, yellow, green
and blue, and then returns to brown with the reflection of UV radiation.

When the physician places the plate in contact with the patient’s breast, the plate
is able to provide false color images of its vascularization. For good results, in order
to eliminate superficial vein signals, the breast must be cooled with a current of cold
air encapsulated within the plastic support (see Fig. 2).

Fig. 1 Typical images of breast thermography (in “false color”): a healthy breast, b left breast
with an advanced cancer [32] (Reprinted from Infrared Physics and Technology, Volume 66,
Faust O, Acharya UR, Ng EYK, Hong TJ, Yu W, Application of infrared thermography in
computer aided diagnosis, Pages 160–175, September 2014, with permission from Elsevier.
doi: 10.1016/j.infrared.2014.06.001)

Fig. 2 Left Photo of Aura machine, (Right) 1 plastic support, 2 digital camera, 3 connecting
cables, 4 removable plates, where the three colored frames are indicated in white, gray, and black
[31] (Reprinted from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)
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Three plates with different sensitivities (with white, gray, or black frames,
respectively) were available:

• Black frame plate: low sensitivity (34.0–37.5 °C)
• White frame plate: high sensitivity (31.5–34.0 °C)
• Gray frame plate: intermediate sensitivity (32.5–34.5 °C).

The difference in sensitivity is very important. The low-sensitivity plate (black
frame) is used for young patients, whereas the high-sensitivity plate (white frame) is
used for patients near or going through menopause.

At present, images can be interpreted visually by the doctor and/or evaluated
with the aid of digital image enhancement techniques.

3.2 Physical Characteristics of the Plate

The physical characteristics of plates (spatial resolution of the image and its per-
sistence) were measured by means of two Plexiglas phantoms, containing ther-
moresistors crossed by a current that brought them to a temperature of 37 °C (with a
variation of no more than 1 °C). In the first phantom there is a series of ther-
moresistors with an increasingly close distance and the relative distribution of the
temperature acquired from the plate (Fig. 3). With this instrument it was possible to
evaluate a spatial resolution of a few tenths of mm. With the second phantom
(Fig. 4), it was possible to verify that the time for the proper image formation is
around just 3 s while the fade out image took only 1.2 s. Similar measurements
were carried out using LCD (liquid crystal display) commercial plates, with much
worse results [9].

Fig. 3 Sequence of thermoresistors in the Plexiglas phantom (left) and the image on the crystal
plate (right) [9] (Reprinted from Montruccoli et al. [9], with permission from Elsevier. doi: 10.
1400/19286)
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3.3 Simulation of the Breast Vascular Pattern

In a healthy breast the vascular pattern of a mammary artery is shaped like a small
channel which ends with a tip in the direction of the nipple.

A third parallelepiped-shaped phantom made of paraffin was used to simulate the
blood distribution in the breast and to assess its correct reproduction by the plate.
Paraffin was chosen because of its thermal characteristics which are similar to the
human tissues (Fig. 5). Two cannula, of a diameter of about 2 mm, were inserted
into the block of paraffin introducing water at about 37 °C. The figure clearly shows
that the cannula penetrates into the block, the same way as the vein descends toward
the nipple, thus producing an image that ends in a “wedge” mode, indicating a
proper blood circulation.

4 The Scientific Basis of Contact Thermography

Up until now, breast thermography was based on the evaluation of the cutaneous
heat level and the research on its isotherms. This approach is very different from
DATG for which, conversely, the morphological criterion is the diagnostic prin-
ciple: knowing the normal perfusion of the healthy breast, any change in its shape is

Fig. 4 Plexiglas phantom with thermoresistors to measure the acquisition time of the correct
image [9] (Reprinted from Montruccoli GC, Montruccoli Salmi D, Casali F. A new type of breast
contact thermography plate: a preliminary and qualitative investigation of its potentiality on
phantoms. Phys Medica 2004; XX(1):27–31, with permission from Elsevier. doi: 10.1400/19286)

Fig. 5 Block of paraffin with two small hot water pipes (simulation of the breast blood
circulation) [9] (Reprinted from Montruccoli et al. [9], with permission from Elsevier. doi: 10.
1400/19286)
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an indication of some pathology. In fact, DATG studies the change in the blood
perfusion both within the whole breast and within a well-defined area of it. In
particular, a relationship between interpretative patterns and corresponding histo-
logical findings has been demonstrated, both for precancerous states and for in situ
carcinomas or invasive cancers [29, 33–35].

4.1 Images of the Breast by Contact Thermography

The well-known characteristics of healthy mammary vascularity are a constant
blood perfusion pattern for many years, its sudden change in a histologically
demonstrated disease, its intense activity in the pubertal period versus its evident
reduction in the postmenopausal period, the expansion of perfusion lines during
pregnancy and lactation and, in the case of diseases, their focus within a single
point corresponding to the tumor [17, 18]. These vascular behaviors suggest the
opportuneness of using this method to study the pathophysiology of mammary
gland also through its blood supply. Moreover, this approach has already been
adopted by other methods, such as MRI and Doppler ultrasound to study precisely
the various pathological aspects of the blood circulation within the gland.

Reading DATG results means to study the images created by currents of func-
tional flow in relation to certain areas of the mammary gland, more than real blood
vessels, where an indeterminate quantity of microvessels (capillaries and precap-
illaries) are present. This functional current, passing thorough a given area, is able
to increase the tissue temperature just enough to distinguish it from the surrounding
one. By conduction and by convection, precisely this temperature difference is
transmitted through the skin to the plate that registers it. Thus, on the plate, we see
some drawings that represent the path of prevalent blood flows and not others
which are not visible because they are below the thermal detection threshold of the
plate.

On the one hand the new interpretation of the thermographic pattern, on a
functional basis, completely overlooks the quantitative aspect of the recorded
temperature, moving increasingly away from the concept of “thermography” while,
on the other, making it possible to highlight certain aspects of the blood circulation
in the mammary gland which are so important that they become its basic diagnostic
criterion.

These aspects are:

1. The angiothermographic pattern is unique and typical of each woman. In
practice, this is the best explanation for the impossibility of developing a
diagnostic–interpretative classification based on standard patterns, as had erro-
neously been done in the past.

2. In the absence of a disease this pattern remains identical, even for many years,
during child-bearing age, up until menopause. This feature has a great predictive
value and is one of the proofs of the technique’s reproducibility.
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3. There is no direct proportion between the detected pattern and the volume of the
tumor, supporting in each case a clear sign of malignancy even in the presence
of subclinical tumors. The latter aspect is of great importance for early diag-
nosis, and it is in relation to the phenomenon, presently well known, of an-
giogenesis whence the absolute need for an increased blood supply caused by
the tumor, even in the earliest stage of carcinogenesis.

Figure 6 above on the left shows a scheme of the normal vascular pattern of the
left mammary gland and the figure above on the right shows some cutaneous

Fig. 6 Above (Reprinted from http://www.breastlife.it/index.html with permission from
BreastLife s.r.l): left normal vascular pattern of the left mammary gland and (on the right) cuta-
neous projections of the main arteries in the mammary gland [31]. Below (Reprinted from http://
www.breastlife.it/index.html with permission from BreastLife s.r.l): left angiothermographic
image of the external mammary artery, perfectly representing the blood circulation in a healthy
breast; right angiothermographic image of the acromial artery: there are lines of normal currents
that follow the anatomy of the breast and head toward the nipple without leaving their quadrant of
reference [31]
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projections of the main arteries in the mammary gland [31]. Figure 6 below shows
two images of healthy breasts. If a cancer or precancerous lesion is present, the
image on the sensor either has a rounded shape or is the result of several converging
channels for the tumor feeding. Figures 7 and 8, respectively, show some images of
suspected and malignant cases.

4.2 The Role of Skin Cooling

To decrease the noise from superficial veins, the breast skin is cooled by a flow of
fresh air. Figure 9 shows the venous network before and after cooling. These
images of the superficial vein network before and after cooling show how DATG
plates are able to record even minimum differences in blood flow. Moreover, the
anatomical layout corresponds completely, both before and after cooling.

Fig. 7 Sample angiothermographic images of suspected cases. The current lines appear diverted,
not speculated and pointing outward or toward a different quadrant from their own [31] (Reprinted
from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)

Fig. 8 Sample angiothermographic images of evidently malignant cases: a current lines that
intersect to form a “malignant star”; b current lines that converge toward a “hotspot”; c and
d current lines that converge from different points [31] (Reprinted from http://www.breastlife.it/
index.html with permission from BreastLife s.r.l)
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Like all diagnostic imaging techniques, DATG can present interpretation
problems. An example is in Fig. 9e, where a quick interpretation of this highly
congested breast is difficult. It is necessary to isolate the DATG signs by pro-
gressively cooling the breast and carefully selecting plates with appropriate sensi-
tivity. In particular, at first glance, a possible malignant cross (white arrow) is
indicated. In the second image (e), photographed after more cooling, the “cross” is
indicated to be formed by an acromial flow line intersecting with an external
mammary one. In the third image (f), taken after still more cooling, one of the two
flow lines that seemed to form the “cross,” is disappeared altogether. The fourth
image (g) solves the problem: in a true “malignant cross,” the two flow lines always
have a similar intensity, but this is not the case here.

4.3 Persistence of the Vasculature in a Healthy Breast

As previously stated, in a healthy breast the vascular pattern remains unchanged
over time, as shown by two images of the same patient acquired after 16 years,
20 years, and 33 years (Fig. 10). The reproducibility of the technique makes a long
follow-up possible without pattern changes. Given the total lack of invasiveness of
the DATG technique, tests can also be performed very close together in time, which
is extremely useful in follow-ups after breast surgery.

Fig. 9 Examples of skin cooling. In the first case the problem is generated by superficial veins.
a Photo of the breast with evidence of superficial veins, b angiothermographic image without skin
cooling, c angiothermographic image after skin cooling. In the second case the progressive cooling
makes correct image interpretation possible: d first image, e the same after cooling, f after more
cooling, g diagnostic image [31] (Reprinted from http://www.breastlife.it/index.html with per-
mission from BreastLife s.r.l)
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On the one hand, the pattern remains identical throughout life in the absence of
malignancy, on the other hand, it can be more or less apparent in the various stages
of a woman’s life. During pregnancy and breastfeeding, an intensification of flow
lines is expected, while after menopause they are gradually reduced (see Figs. 11,
12, and 13). It should be noted that, under any circumstances, these natural changes
in a healthy woman involve the creation of new blood–vessels (angiogenesis).

Fig. 10 Three examples of the long-lasting persistence of the shape of the blood pattern: DATG
pattern remains the same over time in the absence of a disease. First woman: a angiothermographic
test in 1979 and b in 1995 (after 16 years). Second woman: c angiothermographic image in 1979
and d in 1999 (after 20 years). Third woman: e angiothermographic image in 1978 and f in 2011
(after 33 years). It is evident that images represent, in all cases, the same blood diagram [31]
(Reprinted from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)
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5 DATG and Other Diagnostic Methods: Integrated
Diagnosis

The comparison of DATG images with other previous acquired images or images
acquired in the same laboratory via other methods (e.g. ultrasound, mammography,
DOBI, MRI) is very important.

Fig. 11 Example of a DATG pattern change during pregnancy: 29-year-old woman: a before
pregnancy, the test shows regular external mammary flow lines, mainly in the right breast, while
the venous circulation is visible; b seven months later, during pregnancy, the functional blood
circulation is much stronger; however, no completely new or abnormal flow lines have appeared;
c sixteen months later the pattern has returned to its original appearance [31] (Reprinted
from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)

Fig. 12 Example of a DATG pattern change during breastfeeding: a DATG baseline; b after
2 years of breastfeeding; c after another 4 years, return to baseline pattern. It should be noted that
during breastfeeding superficial veins are more congested, but there is no breast neoangiogenesis
[31] (Reprinted from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)

Fig. 13 Example of normal involution of flow lines with the onset of menopause: DATG images
a at the onset of menopause; b after 6 years; c after 8 years [31] (Reprinted from http://www.
breastlife.it/index.html with permission from BreastLife s.r.l)
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In the words of Doctor Daniele Montruccoli: “While DATG may be a useful
diagnostic tool, I have always been mindful of the fact that with science in general,
and medicine in particular, absolute certainty does not exist. As noted before, we
used all three techniques together—mammography, ultrasound, and DATG—in our
work, we aimed to arrive to the most accurate diagnosis possible, what we call it an
integrated diagnosis.”

There are many diagnostic techniques for breast cancer (with their advantages
and disadvantages) including: mammography, tomosynthesis, ultrasound, MRI
with contrast medium, positron emission tomography (PET), dynamic optical breast
imaging (DOBI), and breast thermography. No single instrumental technique by
itself, except in glaring clinical cases, offers an absolute certainty of the value of the
histopathological examination. In most cases, it is precisely the set of information
from various diagnostic techniques that makes it possible to isolate the cases to be
submitted to histological examination, while differentiating them from the benign
cases or the ones to be monitored during their lifetime; an integrated diagnosis is
certainly the best way to tackle the diagnosis of breast cancer. In this context
DATG, with its peculiarities, is a further aid to the combined efforts of other
techniques for the study of breast cancer.

5.1 Mammography

Mammography is still considered the reference screening technique (“gold stan-
dard”) for breast cancer, even though some recent publications claim that annual
mammograms do not reduce breast cancer mortality in women and new screening
programs should be stopped [36, 37]. Mammography highlights the different
density of breast tissues. Modern mammography allows digital acquisitions with
low- and high-energy X-rays (dual energy) after the administration of iodine-
containing contrast media. This method offers a good resolution of the tissue
density and is useful for identifying lesions in breasts characterized by high density
[38]. A further improvement of mammography is the CT (Computed Tomography)
of the breast [39]. This technique shows the tumor in 3D and avoids the com-
pression of the breast. The radiation imparted to the breast is about twice that of a
conventional mammography [40]. A new, very interesting, X-ray diagnostic tech-
nique for the breast is Digital Tomosynthesis (DTS). This is a sort of computed
tomography of the breast done with a smaller number of acquisition angles. The
breast image is reproduced in slices that are processed by a software program.
For DTS, minimal pressure is needed, just enough to hold the breast in place. The
results seem to be much better than for standard mammography [41, 42].

Figures 14 and 15 show an angiothermographic analysis in comparison with a
mammogram of the same breast.
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The density of breast tissues in patients younger than 40 years of age degrades
the radiographic image [40]. To acquire a good 2D mammogram, it is necessary to
compress the breast, with a resulting discomfort for the patient. The risk of inducing
breast cancer—small but not zero—is offset by the benefit of a possible early
diagnosis [43, 44].

In conclusion, standard 2D mammography is a cheap, quick, and well-known
technique, widely used for screening, albeit with the above-mentioned contraindi-
cations. In this field a better diagnostic technique is tomosynthesis [42] and, even
better, breast CT [39].

5.2 Ultrasounds

With the development of modern probes, ultrasound has made significant strides
forward. This technique has been proven to be very useful in the context of other

Fig. 14 Integrated diagnosis of DATG and mammography: a angiothermographic image and
b mammography [31] (Reprinted from http://www.breastlife.it/index.html with permission from
BreastLife s.r.l)

Fig. 15 Integrated diagnosis of DATG and mammography: a mammography, b DATG image
[31] (Reprinted from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)
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techniques; such as mammography, DATG, or clinical palpation that measure
different physical parameters [45]. In particular, the DATG examination in com-
bination with the ultrasound test can be very useful: in fact, the DATG can be a
guide, highlighting the areas to be examined by ultrasound [46]. This is an example
of the advantages of integrated diagnosis in breast examination [47]. Ultrasounds
are able to measure the size of the tumor and to distinguish its liquid or solid nature
within the breast tissue. The difficulty of distinguishing the acoustic impedance of
various structures of the breast may produce some false positives. In some cases the
cancer is manifested with characteristics of a benign nodule having a homogeneous
structure and regular contours (such as in colloid, mucinous, and intracystic car-
cinomas). Also, when a tumor has poor cellularity, the answer is negative and we
will have false negatives [48].

The technique requires considerable skills on the part of the operator, thus
making it extremely “operator-dependent” [49].

In conclusion, ultrasound can be performed on women (and men!) of all ages
and is totally non-invasive. The possibility of detecting a tumor remains high
regardless of its size. A disadvantage of ultrasound scans is that they are admittedly
unable to detect non-palpable tumors, such as microcalcifications [50].

5.3 Magnetic Resonance Imaging (MRI)

If Magnetic Resonance Imaging (MRI) performed with a suitable material to
increase the contrast (for example, gadolinium), it can measure the distribution of
blood within the breast in 3D. MRI can be performed on women of all ages (even
those with dense breasts). It is recommended for women (also young ones) who
have a family history of breast or ovarian cancer [51]. MRI sensitivity and speci-
ficity are very high [52]. Before surgery, an MRI test is very much appreciated by
the surgeon for the good indications (spatial distribution) on the part of the tissue to
be excised. Figure 16 shows the comparison between DATG and MRI.

MRI may be considered the best diagnostic technique for invasive cancer [53].
The disadvantages of MRI are that it is laborious (taking a long time) and

requires expensive equipment. In order to produce good diagnostic images, contrast
media that may cause allergic reactions must be used. There are several limitations
to its performance [46]. Absolute contraindications regard the bearers of metal
implants and cochlear implants, plates, screws or nails, mechanical valve prosthesis,
neuroenhancers, cardiac pacemakers, tissue expanders (breast), and tattoos done
less than six months earlier.

Among the relative contraindications are pregnancy in the first quarter and the
possibility of claustrophobia during the test [54], even if the new MR equipment is
designed for overcoming this problem.
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5.4 Positron Emission Tomography (PET)

Another way to highlight the bloodstream is the technique called Positron Emission
Tomography (PET). A radioisotope, which emits positrons (positive electrons, b+),
is injected into the blood. The emitted positron interacts with an electron, giving
rise to the emission of two 511 keV photons (gamma rays) that exit the body in
opposite directions. The two photons are detected by a series of counters that
surround the organ on which the PET is performed. A specific software program
reconstructs the digital images of the area of blood where the reaction takes place,
thus creating a map of the vasculature as for MRI [55, 56].

The radiation dose, issued to the body from the beta + and by the two gamma
rays, is much higher than that released in a mammographic test. The spatial reso-
lution of the image is not too good [57].

Fig. 16 Two examples of consistency between DATG and MRI tests. First woman: a angiother-
mographic image, and b resonance image. Second woman: c angiothermographic image, and
d resonance image. MRI shows a local recurrence confirmed by DATG [31] (Reprinted
from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)
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5.5 DOBI (Dynamic Optical Breast Imaging)

Dynamic Optical Breast Imaging (DOBI) is a technique of optical mammography
where, instead of X-rays, a light in the near-infrared spectrum is used. An array of
Light Emitting Diodes (LEDs) illuminates the slightly compressed breast. A system
with a fast digital camera, providing many images per second, records the light
through the breast tissue; the amount of light depends on the ratio between
hemoglobin and deoxyhemoglobin. A mathematical procedure reconstructs the 3D
concentration of deoxyhaemoglobin in the breast tissues, thus making possible an
evaluation of the vasculature [58]. This test can be performed on women of all ages
(even those with dense breasts), and its cost is not very high and has a good
tolerability [59, 60].

DOBI is a totally non-invasive technique, takes little time, and requires only a
slight compression of the breast. This test can also be performed on women who
have breast implants. It is a good test for monitoring recurrences, adjuvant
chemotherapy, and hormone replacement therapy.

Its disadvantages are the multi-scattering of the light, with the wavelength of the
near-infrared spectrum, and the poor spatial resolution in the image of blood dis-
tribution. Sometimes DOBI does not provide reliable results for: a) women who
have undergone surgery less than one year before; b) after either less than three
months from biopsy or less than one year after irradiation; c) lactating women
(sometimes pregnant) due to the density of the milk secretion. Other causes of
disturbance in the measurement can be the hyperpigmentation and inflammation of
the skin [61].

5.6 Thermography (Or Tele-thermography)

The human body emits infrared radiation whose wavelength depends on the body’s
temperature. The distribution of the body’s surface temperatures may be acquired
by means of photo cameras with infrared sensors. Modern infrared cameras can
detect variations in temperature of about 0.025 °C. For a better interpretation of the
image, some temperature ranges are associated with different colors (“false color”
images). Tumor tissues with high vascularization have a higher temperature than
healthy ones. Figure 1a shows a thermal image of healthy breasts, while Fig. 1b
shows the left breast affected by cancer at an advanced stage. In 1956, thermog-
raphy started being considered as a method for breast screening; it obtained FDA
approval in the U.S. and was well accepted by physicians. In 1977, a study gave
less credit to thermography, stating that it produced too many false positives [62].
This study, which was partially rebutted [63], left a “stain” of unreliability on
thermography. Today, with the development of new thermal imaging cameras,
breast thermography has regained its credibility [64].
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Thermography is an easy and inexpensive test. It is totally non-invasive and can
be performed on women (and men) of all ages. Its best contribution is offered by its
ability to report abnormalities in young patients in whom mammography does not
provide reliable results.

Drawbacks are that the image does not properly define the place where biopsy
should be performed. The majority of false negatives derive from microcalcifica-
tions, abnormalities that are not identified by thermography. The accuracy of
measurements depends on environmental conditions (e.g., constant temperature in
the location where measurements are performed). To perform these tests, patients
must remain bare-chested in a room kept at a somewhat low temperature, for a
relatively long time (about 15 min).

6 Other Interesting Applications of DATG

There are many other clinical cases other than breast cancer diagnosis in which
DATG can be useful; for example: therapy monitoring, and diagnosis of other
clinical cases. Here we will briefly explain some of the latter one. However, one
should remember that, because of the physical conformation of plates (the sensors
of DATG), this technique can provide diagnostic information only when the
medical problem is generated, more or less, superficially in the body and in areas
where the plate can be easily placed. In any case, it should be noted that it is not
possible to diagnose a problem, for example, in the pancreas, which is located deep
inside the abdomen.

6.1 DATG in a Child

DATG examination in a child of 29 months: early left breast development
(Fig. 17a). Possible cause is the breastfeeding prolonged for over 24 months
(maternal estrogens). After the abdomen ultrasound check of ovaries for pituitary
adrenal stimulation, with negative results, breastfeeding was discontinued.
The DATG examination after 7 months shows that the problem has been solved
(Fig. 17b).

6.2 Checking and Monitoring Therapies

DATG can be very useful to check the efficacy of various therapies. Figure 18
shows an example of preoperative chemotherapy. Figure 19 shows the effect of
antibiotic therapy in a case of mastitis. A third example is the monitoring of oral
contraception therapy (see Fig. 20).
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Fig. 17 DATG examination in a child of 29 months: a early left breast development; b normal
pattern 7 months after the suspension of breastfeeding [31] (Reprinted from http://www.breastlife.
it/index.html with permission from BreastLife s.r.l)

Fig. 18 Example of DATG applied to check the efficacy of a therapy: a at diagnosis, the external
upper quadrant of the right breast shows an incomplete malignant ring made of numerous short
flow lines in the external mammary gland, of acromial and internal mammary origin, all ending in
spatula terminations; b after two months and two cycles of preoperative chemotherapy, the DATG
pattern has become negative and all the abnormal flow lines have largely disappeared
[31] (Reprinted from http://www.breastlife.it/index.html with permission from BreastLife s.r.l)

Fig. 19 Uncertain differential diagnosis between purulent and carcinomatous mastitis: a initial
DATG examination; b after 14 days of antibiotics therapy the DATG pattern was completely
negative [31] (Reprinted from http://www.breastlife.it/index.html with permission from
BreastLife s.r.l)
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6.3 Male Breast Cancer

Male breast cancer is a very rare event. Its annual prevalence in Europe and in the
USA is of 1 or fewer in 100,000 and fewer than 1% of all breast cancer patients,
while male breast cancer in Japan totals fewer than five per million [65]. Jewish
men are the only racial group with higher incidence, two or three per hundred
thousand. The main problem in diagnostic approaches and treatments for men is
that techniques and therapy are generally extrapolated from those designed for
women, due to inadequate research in male patients [66]. It is apparent that
mammography is unfeasible for a man, while there are no contraindications or
issues against the use of DATG. An example of a male breast cancer diagnosis is in
Fig. 21.

Fig. 20 Oral contraception in a 25-year-old woman. The initial DATG pattern a is almost
completely normal. The only irregularity is the direction of an acromial flow line in the right
breast, which runs toward the external upper quadrant. After 3 years of oral contraception, the
DATG pattern b) shows a marked increase in the functional blood flow without any appearance of
suspicious signs. Two years after suspension of the hormonal therapy, the DATG pattern c has
returned to its initial appearance. Lastly, note that the initial abnormality of the acromial flow line,
which was directed toward the external upper quadrant, has now completely disappeared. This was
probably due to the presence of cysts, which may have disappeared because of the efficacy of the
hormonal therapy [31] (Reprinted from http://www.breastlife.it/index.html with permission from
BreastLife s.r.l)

Fig. 21 Example of a male breast cancer diagnosis. In a 74-year-old man, the left breast shows
short abnormal flow lines with nonpointed terminations. These flow lines, covering nearly all the
external upper quadrant, almost form an incomplete malignant ring around a hotspot. Note also the
hot nipple. The histological test detected infiltrating ductal carcinoma [31] (Reprinted from http://
www.breastlife.it/index.html with permission from BreastLife s.r.l)
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7 Advantages and Disadvantages of DATG

Like all other diagnostic methods, DATG has advantages and disadvantages.

7.1 Advantages

DATG is non-invasive, does not require a contrast medium, and can be repeated as
often as desired.

This technique is totally non-invasive (no ionizing radiation or contrast agents)
and free from the painful compression of the breast. It can also be used in cases of
acute or chronic mastitis, when other diagnostics tools cause great pain. Thanks to
its total lack of side effects, it is particularly useful for monitoring patients at risk of
familiarity and/or undergoing contraceptive and hormone replacement therapy, or
estrogen–progestin ovarian stimulation for in vitro fertilization: all cases where a
periodic examination is crucial.

As for the patient’s age and conditions, DATG is also very useful for young
patients or women with dense breasts, because its result is independent of the age
and condition of menopausal or fertile status. Therefore it is not affected by glan-
dularity or mammary fat. Dermatological diseases such as: herpes zoster, cutaneous
hemangiomas, Recklinghausen do not affect the result. Pregnancy is not a limiting
factor for diagnosis. Moreover, breast implants, plastic surgery procedures such as
breast lifts, reductions, etc., are not absolute contraindications for exclusion.

The medical examination’s run time is very fast: the entire procedure, which is
called “angio test” includes taking the patient’s history and a clinical examination,
usually takes no longer than 15 min. Moreover, the test requires inexpensive and
easy-to-move tools, if any. This rapid and inexpensive technique also makes pos-
sible a high number of angio tests per working day, and is matched by the
immediate response, which is another big advantage.

As for diseases, the DATG examination provides signs of suspicious or ma-
lignant tissues that are independent of the size and shape of the lesion which also
appear in cases of non-solid carcinomas. This technique is useful for screening, and
it is also able to detect precancerous lesions where these have been highlighted by
clinical examination (palpation) or other instrumental methods. DATG plays an
important role in the differential diagnosis of lipoma and liposarcoma (showing the
total absence of vascularization in the first, and vice versa in the second), and it is
suitable for checking on therapy or following up: antiblastic chemotherapy when it
would be useful to have presurgical DATG images. Certainly, it is also very useful
in the difficult diagnosis of lobular, medullary, and colloidal carcinomas. The di-
agnostics of cutaneous melanoma is another interesting application of this tech-
nique. In fact, its DATG image is characteristic of cutaneous melanoma. Further
studies will be carried out in the future.
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Lastly, this technique—thanks to its low cost and ease of use—is indicated in
screening programs, especially in “developing” countries.

7.2 Disadvantages

DATG shows the 2D vascular distribution, and not the 3D distribution, as with
MRI, PET, and DOBI. It consequently provides no in-depth information and is
therefore prone to errors caused by overlapping blood vessels and other vascular-
ized structures. However, recent researches (based on the solution of the inverse
Fourier heat equation) show the possibility to evaluate the depth of the tumor [67].
In fact, the temporal formation of the image on the plate can be processed to obtain
information about the depth of the heat source (vasculature).

Moreover, DATG is not able to determine the size of a tumor, but indicates the
presence of a suspicious lesion and points of the area looking at by using, for
example, magnetic resonance imaging. Indeed, the intensity and size of the features
in the image acquired by DATG, are not related to the shape and size of the tumor,
but rather to the biological activity of its base.

Body lotion and ultrasound gel, when applied shortly before the test, can have a
filter effect and cause an incorrect diagnosis, especially false negatives.

The existing blood flow lines immediately increase in diameter in early in
pregnancy, and almost always new ones are generated, which do not, however,
provide other predictive signs of disease. This gestational pattern remains more or
less constant throughout pregnancy. Breastfeeding, instead, causes the maximum
expression of flow lines: they become numerous, intersecting, almost indistin-
guishable from each other. During breastfeeding, DATG is not contraindicated but
must be accompanied by other techniques.

Menopausal and postmenopausal conditions are characterized by a constant,
very slow decrease in diameter and number of flow lines. But the situation differs
greatly from woman to woman, as there are women who have a pattern corre-
sponding to that of the reproductive age and others with an entirely quiescent one.
Therefore, in many cases, the ovarian menopausal situation does not correspond to
a “menopausal” breast. Consequently, each case should be evaluated
independently.

8 Concluding Remarks

As happens with a work of art, observation from different points of view provides a
greater chance of a better understanding; the same is true for DATG. This diag-
nostic technique, in fact, is not replacing with other techniques; but can combine
with them in order to add information to the clinical picture from another view-
point: that of the variation of blood distribution (angiography) which is linked to the
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development of tumors. This technique is easy to learn for gynecologists, radiol-
ogists, sonographers, and oncologists. If they appropriately trained, they all can
make correct diagnoses. It is affordable from the economic standpoint: thus it can
play a very important role especially for young women and for those applicants
who need frequent checks (follow-ups).
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Infrared Thermography for Detection
of Diabetic Neuropathy and Vascular
Disorder

B.B. Lahiri, S. Bagavathiappan, Baldev Raj and John Philip

Abstract Body temperature is a significant indicator of illness and hence is a
useful parameter for clinical diagnosis. Among various techniques available for
accurate and reliable measurement of subject temperature, infrared thermography is
a relatively new methodology. However, it has become popular because of its
noncontact, noninvasive, and real-time temperature measurement capability. During
the last few decades, numerous applications of infrared thermography are reported
in the field of medical sciences, which are rapidly growing. Diabetes is a metabolic
disorder associated with high blood sugar levels over prolonged duration. One in
every 11 adult population of the world is affected by diabetes and for every 6 s, one
person dies from diabetes-induced complications. Therefore, a worldwide dedicated
effort to prevent diabetic complications by early detection is important. Studies so
far reveal that infrared thermography is capable of detecting subtle changes in skin
temperature distribution in diabetic-at-risk foot and is capable of early detection
diabetic-related peripheral neuropathy and vascular disorders. This chapter attempts
to highlight the applications of infrared thermography in the early detection of
diabetic neuropathy and vascular disorder. The basics of infrared thermography,
classification of medical thermography techniques, details of infrared camera, ideal
experimental conditions, data analysis, etc. along with typical case studies are
discussed in detail.
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1 Introduction

Temperature has been considered as a very good indicator of health and has been
used as a parameter for clinical diagnosis since 400 BC [1–3]. Although ther-
mometers were developed around seventeenth century [2], only in 1868,
Wunderlich [4] first systematically studied the temperature of human subjects
suffering from fever and compared the same with normal subjects and established
the physiological and clinical importance of temperature. Till then, temperature has
been considered as one of the most significant indicators of illness. Among various
techniques being used for accurate and reliable measurement of subject tempera-
ture, infrared thermography is a comparatively new methodology that has become
popular because of its noncontact, noninvasive, and real-time temperature mea-
surement capability [5, 6]. Although infrared thermography is routinely used for
nondestructive evaluation and condition monitoring studies [5–9], its application in
the bio-medical field is huge and rapidly growing [10–16]. Numerous applications
of infrared thermography in the medical sciences have been reported in the last few
decades.

Some of the reviews highlighting the application of infrared thermography in
medical science are by Jones [12], Ammer and Ring [13, 17], Jung et al. [18], Yang
and Yang [19], Fauci et al. [20], Jiang et al. [21], Ring et al. [22], Lahiri et al. [10],
and Faust et al. [23]. Infrared thermography has been extensively used in various
fields of bio-medical sciences, viz., fever screening [24–31], breast cancer detection
[32–37], brain imaging (thermoencephaloscopy) [38], dentistry and dermatology
[39–42], muscular pain and shoulder impingement syndrome detection [43], dry
eye syndrome detection [44, 45], diagnosis of rheumatologic diseases [46–49],
evaluation of skin sympathetic dysfunction in Parkinson’s disease [50], ther-
moregulation [14, 15, 51–53], detection and treatment of parasitic and metastatic
liver diseases [54, 55], bowel ischemia [56], diagnosis of tuberculosis [57], renal
transplantation [58, 59], gynecology [60–62], acupuncture [63], forensic medicine
[64, 65], heart treatment [66], quantification of bacterial concentration [16, 67], and
diagnosis and early detection of diabetic neuropathy and vascular disorder [68–77].
The developments in the field of medical thermography between 1989 and 2003 are
reviewed by Ammer [78, 79]. An internet search in popular bibliometry service
“Pubmed” [80] with the keywords, “Medical” and “Thermography” in all fields,
yields in total 932 publications spanned over 1964–2016. Figure 1 shows the
number of publication in the field of medical thermography as a function of pub-
lication year. It can be seen that in recent years (especially from 2000 onward), the
number of publications per year clearly increased indicating a rapid growth in the
use of infrared thermography in medical sciences. Figure 2a shows the year-wise
number of publications on infrared thermography-based studies on diabetes, which
was obtained from the “Pubmed” [80] database which clearly shows a surge of
interest in infrared thermography-based detection of diabetes-related complications.
Figure 2b shows the percentage of diabetes-related publication with respect to total
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number of year-wise publications in medical thermography which indicates
diversified applications of infrared thermography in other medical fields, like breast
cancer detection, fever screening, diagnosis of rheumatologic diseases, etc.

Diabetes is a metabolic disorder associated with high blood sugar levels over
prolonged duration. 415 million cases of diabetes have been reported up to 2015
and the number is expected to rise to 642 million by 2040 [81]. One in every 11
adult population of the world is affected by diabetes and for every 6 s a person dies

Fig. 1 Histogram distribution showing the number of publications in the field of medical
thermography as a function of the year of publication. The data was obtained from “Pubmed”
database [80] using the keywords: “Medical” and “Thermography” in all fields

Fig. 2 a Histogram distribution showing the number of publications on application of
thermography in diabetes. The data was obtained from “Pubmed” database [80] using the
keywords “Diabetes” and “Thermography” in all fields. b Histogram showing the percentage of
publications on application of thermography in diabetes with respect to the total number of
publication in the field of medical thermography
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from diabetes-induced complications [81]. It has also been reported that 1 in every 7
birth is associated with gestational diabetes [81]. Hence, a worldwide dedicated
effort has been witnessed toward diagnosis, prevention, and early detection of
diabetes. Bharara et al. [70, 82] reported that the incidence of diabetic foot diseases
is growing worldwide leading to an increased socio-economic burden on health care
systems of different countries. Diabetic foot with higher temperature patterns is
indicative of early onset of diabetic neuropathy and subsequent ulceration, if not
treated. Moreover, peripheral small fiber damages are often undetected using
clinical and nerve conduction studies resulting in delayed diagnosis and detection of
neuropathic symptoms. Infrared thermography is capable of detecting subtle
changes in skin temperature distribution in diabetic-at-risk foot and hence, early
detection is feasible using this technique which resulted in a renewed interest in
application of infrared thermography in diagnosis of peripheral neuropathy and
vascular disorder in diabetic subjects.

This chapter attempts to highlight the applications of infrared thermography in
diabetic neuropathy and vascular disorder. For non-specialists, the basics of infrared
thermography and classification of medical thermography techniques are discussed
in detail, followed by a brief discussion on infrared camera, experimental condi-
tions, and data analysis techniques. In the subsequent section, the physiological
relationship of temperature with diabetic complications is discussed along with
relevant literature survey. Finally, a few case studies on infrared thermography-
based detection of diabetic neuropathy and vascular disorder are briefly presented.

2 Infrared Thermography

2.1 Basics of Infrared Thermography

Infrared thermography is a noncontact temperature measurement methodology
where the electromagnetic radiation emitted by the surface of an object under
observation is detected using a suitable infrared detector and surface temperature of
the object is obtained from the intensity of the recorded radiation. The infrared
radiation (wavelength ranging from 0.75 to 1000 lm) lies in between the micro-
wave and visible regions of the electromagnetic spectrum. This vast range is further
subdivided into three categories, viz., far infrared or FIR (wavelength range:
5.6–1000 lm), medium infrared or MIR (wavelength range: 1.5–5.6 lm), and near
infrared or NIR (wavelength range: 0.75–1.5 lm). Although the theoretical
understanding about infrared thermography was available from 1800, it took nearly
150–200 years for the technique to be available for routine use, due to lack of
proper equipments and technical knowhow. The origin and theory of infrared
thermography can be found elsewhere [5, 6].
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Blackbody is a hypothetical object which absorbs all radiation incident on it and
emits a continuous spectrum characteristic of its temperature and this continuous
spectrum is governed by the well-known Planck’s law [5]:

Lk ¼ C1

k5 exp C2
kT

� �� 1
� � ; ð1Þ

where k is the wavelength (lm), Lk is the power radiated by the blackbody per unit
surface and per unit solid angle (W m−2 lm−1 sr−1), T is the temperature of the
blackbody in absolute scale (K), and C1 and C2 are the first and second radiation
constants, respectively. Integrating Planck’s law over all wavelength leads to the
Stefan–Boltzmann’s law which shows that the radiative power emitted per unit area
is directly proportional to T4, as described below [5]:

q
A
¼ rT4; ð2Þ

where q is the rate of energy emission (W), A is the area of the emitting surface
(m2), and r is the Stefan–Boltzmann’s constant (r = 5.676 � 10−8 W m−2 K−4).
For a real object the Stefan–Boltzmann’s law is modified as q

A ¼ erT4, where the
parameter e is known as emissivity which is defined as the ratio of spectral power
radiated by a real surface at a particular temperature to that of a hypothetical
blackbody maintained at the same temperature. For a hypothetical blackbody e = 1
and for real surfaces e < 1 [5]. It has been reported that the emissivity of human
skin is *0.98 ± 0.01 in the wavelength range of 2–14 lm [83]. The skin emis-
sivity does not vary with the color or texture of the skin or the nature of experi-
ments, i.e., in vivo or in vitro [83]. On the other hand, studies show that the
application of cosmetics or surface curvature may lead to a change in skin emis-
sivity [84, 85]. Watmough et al. [86] have shown that the errors associated with
surface temperature measurement are insignificant for viewing angles up to 45°
which essentially rules out the variation of emissivity with skin curvature for
medical thermography studies except for the cases of female breast imaging where
silver, copper, or aluminized mylar mirrors have been used as reflectors with
suitable correction factors [84].

The temperature of an object is measured using infrared camera using the fol-
lowing radiometric equation [5]:

Mcam ¼ seMobj þ sð1� eÞMenv þð1� sÞMatm; ð3Þ

where Mcam is the radiance received by the infrared camera, Mobj, Menv, and Matm

are the radiance emitted by the surface of the object under investigation, sur-
rounding environment and atmosphere, respectively. e and s are the surface
emissivity of the object under investigation and atmospheric transmittance,
respectively. Considering atmospheric transmittance to be nearly equal to unity for
indoor experiments, Eq. 3 can be simplified to Mcam ¼ eMobj þð1� eÞMenv.
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Radiance received by the infrared camera is converted into an electrical signal by
the infrared detector housed inside the camera casing and surface temperature of the
object under investigation is obtained using suitable calibration curves [5].

Modern-day infrared cameras show the surface temperature distribution as visual
images often pseudo-color coded where each pseudo-color indicates a range of
temperature which aides in online visualization and fast analysis. Specifications of a
typical infrared camera (FLIR SC5000) are shown in Table 1 [87].

2.2 Classification of Medical Thermography Techniques

On the basis of temperature measurement methodology, medical thermography can
be primarily classified into four categories, viz., cutaneous temperature discrimi-
nation, electrical contact thermometry, liquid crystal thermography, and infrared

Table 1 Specifications of a typical high-end cooled type infrared camera (FLIR SC 5200)

Parameters Values

Detector Indium Antimonide (InSb)

Spectral range 3–5 lm (Detector response is from 2.5
to 5.1 lm)

Resolution 320 � 256 pixels

Pixel pitch 30 � 30 lm

Temperature range 5–300 °C (standard)
−20 to 300 °C (very low temperature:
additional)
5–1500 °C (high temperature: additional)
5–2500 °C (very high temperature: additional)
5–3000 °C (ultra high temperature: additional)

Accuracy ±1 °C or ± 1%

Noise equivalent temperature difference
(NETD)

<25 mk (20 mK typical) @ 25 °C

Sensor cooling Stirling closed cycle cooler

f/# f/3.0

Power 12 V (DC)

Integration Snapshot type

Integration time (electronic shutter speed) 3 ls–20 ms

Read-out mode Asynchronous integrate then read

Dynamic range 14 bit

Full frame rate Programmable 1–170 Hz

Sub-windowing 160 � 128/64 � 120/64 � 8 (minimum)

Well capacity 7.1 M electrons

Operability 99.5%

Dimension (L � W � H) (mm) 320 � 141 � 159

Weight (kg) 3.8
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thermography [69]. Bertelsmann et al. have shown that cutaneous temperature
discrimination threshold, which is a measure of small nerve fiber function, can be
used for early diagnosis of diabetic subjects [88]. One of the most widely used
instruments for the cutaneous temperature discrimination is the TipTherm (Axon
GmBh, Germany) which is pen-like device without any external power supply and
consist of two flat surfaces, one of them is metallic and the other one is synthetic
[69]. Viswanathan et al. [89] used TipTherm for studying distal symmetrical
polyneuropathy. In another study, Liniger et al. [90] used a thermo-resistance-based
device, Thermocross (Medical School, Geneva, Switzerland) for thermal sensitivity
in subjects with diabetic neuropathy. In electrical contact thermometry, individual
or arrays of suitable transducers (thermistors or semiconductor sensors) are used for
measuring skin temperature in contact mode [69]. A temperature difference
of ±1.5 °C was proposed as a limit of agreement between thermistor-based elec-
trical contact thermometry and localized infrared thermometer [91]. Although the
major drawback of electrical contact thermometry is due to fluctuation of skin
temperature due to excessive contact pressure and lack of uniform contact with skin
surface, small local arrangement of sensors in the size and shape of human foot to
measure temperature of the plantar surface of the foot in diabetic neuropathy
subjects is immensely beneficial [69]. In liquid crystal thermography,
temperature-sensitive cholesteric liquid crystals are arranged in several layers
between two flexible and heat sensitive rubber sheets for proper contact with skin
surface [41, 69]. The liquid crystals change their color according to the temperature
and the resultant pattern is a representation of skin surface temperature distribution.
The major drawbacks of liquid crystal thermography are poor spatial resolution
(>5 mm), low thermal sensitivity (*0.3–1.0 °C), slow response time (>60 s), and
contact-based subjective temperature measurement [41, 92]. Two liquid crystal
thermography-based commercial products, namely Spectrasole Pro 1000 (Sweden)
[93] and TempstatTM (USA) [94], are available since 2004. Although Spectrasole is
more focused on preventive diagnostics and monitoring of healing, Tempstat is a
personal homecare product along with regular professional expertise. Taiwan-based
Thermoscale is also a personal care device with integrated temperature-sensitive
thermistors (electrical contact thermometry) for each foot, along with body
weighing scale and fat measurement function. Piotr et al. [95] reported the devel-
opment of a temperature measurement system for continuous monitoring of feet
temperature using a data logger and wireless communication.

Infrared thermography, on the other hand, is a completely contactless temper-
ature measurement technique where the infrared rays emitted by the skin surface are
remotely detected in a noninvasive way. It is fast and can monitor temperature
variations over a comparatively larger area. Modern infrared cameras are capable of
real-time skin temperature measurement, with onboard image processing, which
enables fast online data interpretations. The representation of skin surface tem-
perature distribution in terms of pseudo-color-coded visual images also aides in data
interpretation. Moreover, infrared thermography records naturally emitted radia-
tions and no harmful radiation effects are present which makes this technique
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perfectly suitable for prolonged and repeated use. In general, for medical applica-
tions, passive infrared thermography technique is used without the presence of
external heat sources. An object at 27 °C emits a wavelength in the range of
2–20 lm with a peak around 10 lm. A narrow wavelength band of 8–12 lm is in
general used for medical applications, which is also termed as body infrared rays.
With the advent of newer generation infrared cameras near and mid-infrared bands
are also used for medical thermography [68, 96]. Several commercial infrared
cameras are available in the market as subsequently discussed.

3 Experimental Methods

3.1 Infrared Camera

The major requirements for medical thermography experiments are an infrared
camera, a tripod, an image display, and processing unit. With advent of sophisti-
cated computers, on-chip image processing is very common and most modern
infrared cameras are equipped with inbuilt visual display and primary image
analysis options. Personal computers equipped with necessary hardware and soft-
ware configurations are the most widely used alternatives for detailed image pro-
cessing and data analyses. Ring [74] stressed the need of a parallax-free mounting
stand (not a common tripod) for medical infrared imaging for ensuring that
reproducible camera positioning and reduced angular errors in the field of view
between the infrared camera and the subject under investigation.

Development and detailed working principle of various infrared cameras and
detectors have been described elsewhere [5, 97, 98]. Infrared cameras have
undergone three major generations of advancements. The first-generation cameras
were equipped with a single detector and two scanning mirrors for image pro-
duction. These cameras were very slow and they suffered from saturation and
calibration errors. Time delay integration was enabled in the second-generation
cameras which improved image production. They were equipped with a small 2-D
array or a large linear array of detectors along with two scanning mirrors.
Third-generation cameras were free of any scanning mirrors and a focal plane array
detector produced an image of the entire field of view in one snap. Modern-day
infrared cameras are improved version of third-generation cameras with better and
faster backplane electronics, sharpness controlled autofocus, on-chip image pro-
cessing, variable integration time, and frame rate for image acquisition which make
them suitable for real-time temperature measurement enabling online monitoring of
dynamic temperature variation. Modern infrared detectors can be classified into two
major categories, viz., cooled and uncooled. Traditionally cooled cameras are more
stable and provide better spatial and temperature resolution but they are heavy and
costly. On the other hand, uncooled cameras are light weight, portable, and cheap
compared to the cooled cameras and with advancement of solid-state electronics,
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the thermal sensitivity of uncooled cameras has reached *0.05 °C, which is more
than sufficient for majority of applications and mass manufacturing of such detector
is possible using silicon wafer technologies [99]. It has been reported that infrared
cameras equipped with focal plane arrays have spatial resolution of *2 mm over a
range of working distances and fields of view (e.g., 200 � 200 mm to
500 � 500 mm at a distance of 1 m) [100]. To provide a guideline for nonspecialist
for selecting infrared cameras from various models available in the market, a few
infrared cameras used for diabetes-related thermal imaging are tabulated in Table 2.

3.2 Experimental Conditions

Infrared radiation emitted from skin surface depends on several environmental
factors like airflow, surrounding temperature, humidity, and the physiological
condition of subjects. Hence, it is essential to perform medical thermography
experiments in a controlled environment, especially when the main objective is to
detect subtle temperature changes. The importance of a standard data acquisition
protocol was stressed by Clark et al. [115] and Ring and Ammer [116] for repro-
ducible and reliable results. According to their studies, the basic standards for
examination room, subject information processing, imaging system, data acquisi-
tion, and data processing were very important for medical thermography.
International Organization for Standardization (ISO) guidelines on human tem-
perature screening [117, 118] were also found to provide additional useful infor-
mation on test requirement and implementation guidelines for a proper and accurate
medical thermography experiments.

Amalu et al. [32] reported that the temperature and humidity of the examination
room must be selected in such a way that the physiology of the subjects is not
“stressed into a condition of shivering or perspiring.” A comfortable room tem-
perature ensures mild thermal stress-induced vasoconstriction aided cooling of skin
rendering the hot spots due to the underlying abnormalities to be clearly discernible
[12]. A thermal acclimatization time is useful for the subjects to adjust with the
environmental temperature and the duration of thermal acclimatization time is
essential as it affects skin temperature profile. This thermal acclimatization proce-
dure can be either nude or with normal dressing, depending on the requirements.
For infrared thermography experiments on the lower or upper extremities, in most
of the cases, disrobing is not required. Literature shows a wide variation in thermal
acclimatization time adopted by various researchers, viz., nil duration [119],
1–5 min [68, 105, 120], 15–20 min [101, 107, 109, 111], and up to 30 min [104].
15 min of thermal acclimatization time is more than sufficient in maximum cases as
this is approximately 50% higher than the recommended duration for stabilization
of infrared thermography images of human subject at rest [121]. Experimental
conditions followed by a few research groups are highlighted in Table 3.
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Additionally, the examination room must be free from secondary sources of in-
frared radiation like incandescent lamps and direct sunlight to reduce the scattering
and background temperature fluctuations. Moreover, the subjects should be advised
to refrain from the use of cosmetics, deodrants, and antiperspirants. The ambient
temperature of the experiment room can be varied between approximately
26–33 °C, i.e., within the limit of classical thermoneutral zone [122]. The physi-
ological conditions of the subjects (like drugs, medications, alcohol, nicotine,
exercise, etc.) may alter the skin temperature and hence, proper protocol must be
followed in subject selection. Infrared thermography results are to be compared
with clinical and medical data to establish possible correlations.

3.3 Data Analysis and Image Processing

Data analysis and image processing are important in medical thermography
applications. Temperature data obtained from the acquired thermal images are in
general presented as mean ± standard deviation (S.D.). The fluctuations in
experimental conditions lead to such deviations and hence, statistical analysis is
important obtaining reliable measurement of skin temperature distribution. The
common statistical tools are hypothesis testing (Student’s t test, Fischer’s test),
correlation analysis, v2 test, and analysis of variance (ANOVA) [71, 103, 123].
Selection of optimal statistical tool is very important as it varies with experimental
protocol, data size, and primary objective of the study and design of experiments.
Personal computer-based statistical software packages like IBM-SPSS, SAS/STAT
statistical analysis software, R, Origin, and Microsoft Excel are in general used for
statistical analysis.

Thermal waves attenuate exponentially in a medium and hence, skin surface
thermal signatures, which represent underlying anomalies, are of comparatively low
signal-to-noise ratio (SNR) [124]. Hence, image processing is fundamental to
medical thermography and its importance in medical thermography was rightly

Table 3 Experimental parameters followed by a few research groups

Serial
no.

Researcher Year Experimental conditions

Ambient room
temperature (°C)

Acclimatization
time (min.)

1 Branemark et al. [101] 1967 18–20 15–20

2 Armstrong et al. [71] 1997 21 ± 2 15

3 Hosaki et al. [75] 2002 20 15

4 Sun et al. [103] 2006 21 ± 1 15–20

5 Bagavathiappan
et al. [68]

2010 25 5
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pointed out by Jones and Plassmann [11]. Nowadays, the image obtained from the
infrared camera is directly fed into a personal computer where different filters, in
time and frequency domains, for minimizing noise, preservation of edges, reducing
blurring and for enhancing image quality, are used [112]. Soft computing tech-
niques like artificial neural network (ANN), fuzzy logic, image fusion, etc. have
significantly contributed to the development of the semi-automatic processing of
medical thermography images [37, 112, 125]. Bandyopadhyay et al. [112] used
histogram and Hough transform-based image processing algorithm for screening
and monitoring of diabetic status from acquired infrared images of the subjects.
Content-based automatic target localization and pattern matching has also been
implemented in a few studies [126, 127]. Liu et al. [128] used asymmetric analyses
for automatic detection of diabetic foot complications. They developed a robust
algorithm for avoiding foot segmentation error using color images and used non-
rigid landmark-based registration along with B-splines to circumvent contralateral
differences arising out of shape or amputation. Hernandez-Contreras et al. [129]
used 3D morphological pattern spectrum for automatic classification of thermal
patterns in diabetic foot. Standardization of image capture by means of software
masks have been reported by Ring [74]. These masks were designed for infrared
imaging of subjects with diabetic neuropathy and vascular disorder where the
masks fit the dorsal and plantar surfaces of the feet and hands along with other body
parts. Recently, the concept of angiosome, which is defined as the “composite unit
of skin and underlying deep tissue supplied by a source artery” [130], has emerged
in thermographic monitoring of diabetic foot. Attinger et al. [131] have proposed
four angiosomes in the plantar surface of foot, viz., the medial plantar artery
angiosome, lateral plantar artery angiosome, medial calcaneal artery angiosome,
and the lateral calcaneal artery angiosome. The concept of angiosome along with
the aid of software mask will be immensely helpful for accurate monitoring and
reliable measurement of temperature patterns in diabetic foot. Plassmann, Ring and
Murawski [132, 133] have developed a modern PC-based software called
CTHERM which is capable to acquire, store, and manipulate infrared images from
both modern and older generation cameras. Modern software packages like Matlab,
Labview, Altair, Thermacam-Researcher, etc. have multitude of options for image
acquisition and image processing to suit the requirements of medical thermography
researchers. The need for a digital database for medical thermography images was
felt long ago and substantial work has been done in this direction [134–137].
Colantonio et al. [138] integrated infrared thermography data with 3D shapes to
present a 3D image of diabetic foot. Netten et al. [110] have developed and
implemented an automatic algorithm for differentiating between local and diffuse
diabetic foot complications which was based on parameters captured by an infrared
camera and was also capable of detecting absence of diabetic foot complications in
healthy subjects. Nevertheless as of now, there is no dedicated database of medical
thermography images for diabetic neuropathy and vascular disorder.
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4 Infrared Thermography for Detection of Diabetic
Neuropathy and Vascular Disorder

The term “diabetic foot” indicates physiological and clinical condition of lower
extremities of human subject resulting from diabetes or its long-term complications
[139]. The major issues of diabetic foot can be categorized into four types of
complications, viz., peripheral neuropathy, peripheral arterial disease or vascular
disorder, secondary infection, and soft tissue or bone deformity [140]. Mayfield
et al. [141] discussed in detail the various complications of diabetes and preventive
foot care methodologies.

Peripheral neuropathy in the lower extremity is one of the most common
complications in diabetes subjects and approximately 60% diabetic subjects suffer
from peripheral neuropathy [10, 68, 140, 142–144]. It has also been reported to be
the most significant cause of pain in diabetic foot with burning or tingling sensation
in the foot, which is often accompanied with radiating pain in the plantar regions
[140]. In general, it has been observed that the severity of peripheral neuropathy
increases with subject’s age or duration of diabetes. Diabetic neuropathy affects
large and small fibers affecting temperature discrimination and sensory functions
[69, 70, 88, 103]. Sympathetic dysfunction in lower limbs often results in reduced
sweating and dry skin leading to cracks, fissures, and thermoregulatory sweating
abnormalities [103, 145, 146]. Cyclic and repetitive pressure, shear force during
weight-bearing exercise or walking, etc. leads to an increased plantar pressure on
diabetic foot leading to callus formation and skin breakdown [140]. Diabetic foot
motor neuropathy is often associated with the imbalance of flexor and extensor
muscles, which results in foot deformation along with prominent metatarsal heads,
dry skin, and clawing of claws [140]. If left untreated, foot deformity may progress
to joint deformity requiring conservative off loading or surgical intervention [140].
Charcot’s neuropathy is a limb threatening advanced stage of joint neuropathy
which involves small fiber neuropathy and the two major mechanistic processes
involved in the pathogenesis are neurovascular theory and neurotraumatic theory
which may ultimately lead to dislocation, disorganization, and changes in bone
density [71, 140]. Sympathetic skin response is in general mediated through
post-junctional unmyelinated small fibers via pseudo-motor pathways, which is
anatomically distinct from vasomotor pathway, whereas skin temperature is regu-
lated by vasomotor as well as pseudo-motor pathways [103, 147]. The elevated skin
temperature in neuropathic foot is due to arteriovenous shunt flow [103, 148, 149].
Although the peripheral neuropathy affects somatic and sympathetic neural com-
ponents in diabetic subjects, clinical and nerve conduction studies investigate only
the somatic functions of large myelinated fiber [103, 150]. It has been reported that
diabetic neuropathy can be identified in the early stage through detection of damage
to unmyelinated small fibers [151] which is associated with change in skin tem-
perature [103]. Studies show that infrared thermography can be reliably applied for
early diagnosis of diabetic neuropathy and feet with elevated skin temperature in
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diabetic subject is considered as an indication of early diabetic neuropathy [68, 69,
71, 103, 140, 145, 149]. Harding et al. [152] used infrared thermography for early
detection of foot ulceration in diabetic neuropathic foot and observed that compared
to radiation or isotope-based methods, infrared thermography is beneficial due to
radiation protection, logistic, and cost reasons. Bharara et al. [69] reported that in
early stages of diabetic neuropathy the skin temperature appears elevated, whereas
in later stages the affected areas present lower skin temperature distribution due to
significant vascular damage.

Branemark et al. [101] applied infrared thermography to study 16 (12 females
and 4 males) diabetic subjects with an average history of 13 years and found that all
of them presented abnormal temperature distribution in the feet and hands, like
reduced temperature over the toes, fingers, and metatarsal regions. This is one of the
first thermography-based studies on diabetic subjects and their studies indicated no
variation in the temperature pattern over the dorsal aspect of the foot and tibia in the
subjects. Bharara et al. [69] presented an excellent review on diabetes-induced
complication in foot and the role of infrared thermography in diagnosis of diabetic
foot. Sun et al. [103] used infrared thermography for studying the relationship
between plantar skin temperature and sympathetic dysfunction in diabetic-at-risk
foot in 29 diabetic subjects and compared the findings with temperature pattern of
25 control subjects. Their studies indicated that diabetes-at-risk subjects have sig-
nificantly higher mean foot temperature (30.2 ± 1.3 °C) compared to the normal
subjects (26.8 ± 1.8 °C). Mean foot temperature was obtained by averaging of the
foot temperature over six regions, viz., hallux, lesser toes, forefoot, arch, lateral
sole, and heel. Armstrong et al. [71] carried out comparative studies on the skin
temperature of subjects affected with asymptomatic peripheral neuropathy
(78 subjects), neuropathic ulcers (44 subjects), and Charcot’s anthropathy
(21 subjects) where contralateral limb was used as control. Their studies revealed
significant contralateral temperature difference in the cases of neuropathic ulcers
(5.6 °F) and Charcot’s anthropathy (8.3 °F) whereas, no such temperature differ-
ence was observed in the cases of asymptomatic peripheral neuropathy. Vinik et al.
[153] reported large temperature variation in extremities of diabetic subjects which
was found to depend on several factors like environmental temperature and activity
of the neurovegetative sympathetic nervous system. Papanas et al. [154] and Vinik
et al. [155] studied the association of pseudo-motor dysfunction with foot tem-
perature and dermal neurovascular dysfunction in diabetic subjects, respectively.
Sivanandam et al. [156] studied 62 diabetic subjects using infrared thermography
along with other clinical examinations and reported that infrared thermography was
very successful in examining the extremities of the subjects and early diagnosis of
foot ulceration was possible. This study also indicates a better sensitivity, accuracy,
and specificity of infrared thermography-based diagnosis compared to conventional
HBA1c-based measurements. Chan et al. [157] reported that diabetic subjects with
painful peripheral neuropathy have higher forefoot temperature compared to normal
subjects. Benbow et al. [73] and Stess et al. [158] reported that higher foot tem-
perature in diabetic subjects was indicative of foot ulceration and temperature
measurement aids in early diagnosis. Roback et al. [93] studied the feasibility of
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thermography technique for early detection of foot complications in diabetic sub-
jects. Fujiwara et al. [159] also used thermography for skin temperature measure-
ment in diabetic subjects. Nishide et al. [160] applied thermography and
ultrasonography for studying latent inflammation in diabetic foot callus. Recently,
Kanazawa et al. [161] used a smartphone attached infrared thermography system
(FLIR one) for assessment of pressure ulcer induced inflammation and diabetic foot
monitoring and their results suggest that such ultra-lightweight alternative ther-
mography systems can be reliably used for diabetic foot monitoring. Hazenberg
et al. [162] combined digital photography and infrared thermography for assess-
ment of foot infection in diabetic subjects and obtained high specificity (>79%) and
high sensitivity (>60%) from the combined technique which was not possible to
achieve with an individual technique alone. A typical case study [68] carried out in
author’s laboratory is described below. The infrared images were acquired using
AGEMA Thermovision 550 infrared camera which is equipped with a focal plane
array of platinum silicide (PtSi) detector elements cooled using an internal Stirling
cycle. The spectral range was 3.6–5 lm and thermal sensitivity of the camera was
better than 0.1 °C. Experiments were performed under controlled environment with
an ambient temperature of 25 °C and 5 min of thermal acclimatization time during
which the subjects were requested to remove their foot wears and socks and lie
supine on a couch.

Randomly chosen 112 subjects suffering from type 2 diabetes were studied using
infrared thermography. Anthropometric measurements like weight, height, waist,
and hip sizes were carried out along with clinical measurements of vibratory per-
ception threshold (VPT) using biothesiometry and pathological measurement of
glycated hemoglobin (HBA1c). Mean foot temperature (MFT) was obtained from
the infrared images of the plantar surface of the subjects by averaging the tem-
perature over various locations, viz., hallux, lesser toes, arch, lateral sole ,and
forefoot regions. It was also observed that neuropathic subjects (VPT > 20) have
higher MFT compared to non-neuropathic subjects and the MFT showed a positive
correlation with right and left great toes VPT values [68]. Figure 3 shows the
variation of MFT values as a function of VPT values and it can be seen that 28
subjects with VPT values less than 20 (non-neuropathic) showed MFT values
within the temperature range of 27–30 °C. On the other hand, 33 subjects were
found with VPT values higher than 20 (neuropathic) and MFT values varying
between 30 and 37 °C. Figure 4a, b shows the infrared images of the lower
extremities of a 44-year-old neuropathic male diabetic (HbA1c value = 9.6%) and a
67-year-old non-neuropathic female diabetic (HbA1c value = 6.6%) subjects,
respectively. The mean foot temperatures over the encircled regions were found to
be 34.1 and 29.1 °C, respectively. It can be clearly seen that neuropathic subjects
were associated with a higher mean foot temperature. The elevated skin temperature
in neuropathic foot is attributed to arteriovenous shunt flow [103, 148, 149].

Diabetes often leads to peripheral arterial diseases (PAD) or vascular disorder
which mainly affects the small and large blood vessels in the extremities, more
commonly in the lower arteries resulting in varicose veins with inadequate

Infrared Thermography for Detection of Diabetic Neuropathy … 231



drainage. The major arteries that deliver blood to the lower extremities are posterior
tibial, anterior tibial, and peroneal arteries and with progressing diabetes-induced
vascular disorder these arteries may be affected [140]. It has been reported that
progressing PAD primarily affect anterior tibial and peroneal arteries, whereas
dorsalis pedis, posterior tibial, and plantar arteries are less affected resulting in
normal pulsating responses in these arteries [76, 140]. Further complications of
vascular disorder result in micro-arterial dysfunction, limited capillary capacity,
increased arteriovenous shunting, and decreased neurogenic regulation, mild to

Fig. 3 Mean foot temperature (MFT) of diabetic subjects as a function of their vibratory
perception threshold (VPT) values [68]. For non-neuropathic subjects (indicated by the blue
rectangle) with VPT values less than 20, MFT values were distributed within 27–30 °C, whereas
for neuropathic subjects (indicated by the red rectangle) with VPT values greater than 20, MFT
values were within a range of 30–37 °C

Fig. 4 Typical pseudo-color-coded infrared images of the plantar regions for two diabetic
subjects [68]. a A 44-year-old neuropathic male subject and b A 67-year-old non-neuropathic
female subject. The average temperature over the encircled regions were found to be 34.1 and
29.1 °C, for the neuropathic and non-neuropathic subjects, respectively
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severe pain due to lack of oxygen and nutrient. Varicose veins are often associated
with mild inflammation which can be detected using infrared thermography from
the abnormally higher skin temperature over the affected regions [76]. Moreover,
toe temperature at the distal positions appears to be lower in diabetic subjects
suffering from vascular disorder due to inadequate drainage [76, 77] which can be
reliably detected using infrared thermography. Historically, infrared thermography
had been used for studying peripheral vascular disorder from mid-sixties. Probably,
the first two studies on the application of infrared thermography in peripheral
vascular disorder was reported by Skversky et al. [163] and Winsor and Bendezu
[164] in 1964. In 1970, Robins and Bernstein [165] applied digital plethysmog-
raphy and infrared thermography on subjects with peripheral vascular diseases and
compared the efficacy of both the techniques. Application of infrared thermography
for vascular disorder was also studied by Langer et al. [166] in 1972. Soulen et al.
[167] compared angiography, ultrasonography, and thermography in the evaluation
of peripheral vascular diseases in 166 subjects with suspected thrombophlebitis and
300 other subjects with peripheral arterial diseases and found that thermography
aided in recognition of phlebitis and in assessment of post-operative vascular dis-
order. Holm et al. [168] reported the use of thermography in vascular surgery based
on results obtained from 12 case studies. Henderson and Hackett [169] described
thermography as a reliable, noninvasive and rapid methodology for investigating
subjects with peripheral vascular disorders. Hosaki et al. [75] applied infrared
thermography to quantitatively study peripheral vascular circulation in 27 diabetic
subjects in which 14 were males and the rest were females. They observed tem-
perature gradients, indicating abnormal blood flow in the affected regions which
were found to be correlated with other clinical findings. This study also indicated
that recovery ratio calculated from the infrared images were correlated with blood
flow measured using laser Doppler flowmetry and it was suggested that infrared
thermography can be used as a potential tool for early detection of arteriosclerosis
obliterans (ASO) in diabetic subjects. Hitoi and Matsuoka [170] stressed the use-
fulness of infrared thermography-based monitoring of peripheral circulation in
diabetic subjects. Balbinot et al. [108] applied IRT to diabetic subjects and found
that rewarming index after cold stress presented good repeatability. The study also
revealed that temperature difference (DT) measured using infrared thermography
was clinically more relevant. Fushimi et al. [171] studied the abnormal
vaso-reaction of peripheral arteries to cold stimulation in both hands of diabetic
subjects. Huang et al. [105] applied infrared thermography for evaluating subjects
with higher risk of lower extremity peripheral arterial disease (PAD) and observed
that temperature changes in the soles of PAD versus non-PAD subjects were −1.25
versus −0.15 (p < 0.001). Mitchell et al. [172] applied thermography for studying
skin blood flow and limited joint mobility in 32 insulin-dependent subject and 13
healthy control subjects at room temperature and after immersing in warm and cold
water. They reported a predominantly distal rewarming pattern after withdrawal of
cold stress with higher mean index finger temperature in the insulin-dependent
subjects compared to the controls which was experimentally confirmed using
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thermography. Toutouzas et al. [173] used an infrared thermography-based pro-
cedure for evaluating subjects with diabetes mellitus and coronary artery disease
and reported that such subjects suffer from higher carotid inflammation. Uchikawa
et al. [174] studied the effects of cilostazol (anti-platelet agent) on peripheral vas-
cular disorder in diabetic subjects and reported that infrared thermography is
beneficial in planning individual dose and monitor the effects of cilostazol and
subject compliance during long-term drug administration. The effect of cilostazol in
peripheral arterial occlusion was also studied by Ohashi et al. [175] using ther-
mography techniques. Staffa et al. [176] applied infrared thermography for
long-term monitoring of foot temperature in diabetic subjects. Three case studies,
carried out by Bagavathiappan et al. [76, 77], on application on infrared ther-
mography in detection of peripheral vascular disorder are described below.
AGEMA Thermovision 550 infrared camera was used for acquiring the infrared
images. Experiments were performed under controlled environment after 15 min of
thermal acclimatization time.

Case: 1

First is a 48-year-old male subject reported recurring pain in the left calf muscle
for past two years with the severity of pain continuously increasing over the last
half a year. The pain was found to increase on walking or prolonged standing and
presented symptoms of relief on comfortable seating posture. Clinical examinations
revealed normal pulses in the left and right upper and lower limbs, normal dorsalis
pedis and posterior tibial pulse in the right lower limb, and low volume of dorsalis
pedis and posterior tibial pulse in the left lower limb. A non-healing ulcerous
8-month-old injury in the left great toe was observed with the presence of gan-
grenous tissue. The subject was occasional user of alcohol and nicotine. The res-
piratory system (RS), cardiovascular system (CS), central nervous system (CNS),
and abdominal examinations were also found to be normal for this subject. Thermal
imaging was carried out on the left leg of the subject.

Figure 5a shows the pseudo-color-coded infrared image of the medial view of
the left leg of the subject along with the temperature scale. Figure 5b shows a
horizontal line scan (as indicated in Fig. 5a) along the calf muscle which indicates a
region of higher temperature at the middle portion which is also visually discernible
from the thermal image [76, 77]. Such abnormal higher temperature regions were
not present in healthy subjects used as control. This region of higher temperature
was attributed to the presence of thrombosis which is an arterial obstruction to
blood flow causing blood clotting within blood vessels. Such thrombosis may turn
potentially life threatening if the dislodgement of the thrombus results in pulmonary
embolism. This region of higher temperature was found to be associated with mild
to severe inflammation and was coincident with the region of pain. Infrared ther-
mography enabled noncontact detection of the region of pain and associated
thrombosis. It was concluded that this may be due to thromboangiitis obliterans (or
Buerger’s disease) due to arterial insufficiency.
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Case: 2

A 31-year-old male subject with a long history (approximately five years) of
swelling in both lower limbs on prolonged standing reported recurrent ulceration on
the left lateral malleolus associated with pain and discharge of pus even after
undergoing treatment and surgery (four years earlier). The RS, CVS, CNS,
abdominal examination, and palpable arterial pulse were found to be normal for the
subject. The subject was suffering from systematic hypertension and was under
medication for the same for 6 months. Clinical examinations of the left lower limb
revealed tortuous dilated veins and recurrent healing ulcers on the left lateral
malleolus which were covered with slough and pus discharge. Thermal imaging
was carried out on the left leg of the subject.

Figure 6 shows the pseudo-color-coded thermal image of the dorsal view of the
left leg of the subject. It can be seen from the infrared image that clinically detected
areas with varicosity presented an elevated temperature distribution (encircled by
the black-dotted line) which was attributed to the varicosity-induced mild inflam-
mation and slow passage of warm blood through the tortuous veins compared to
normal veins. It was observed that the higher temperature regions (containing
varicose veins) were presented in the lateral side of the left leg and not in the medial
side of the leg (most commonly observed locations of varicose veins). It can be
further seen from the infrared image that distal regions in the vicinity of the toes
were at a significantly lower temperature (indicated by the white arrow) which was
due to vascular disorder resulting in poor perfusion of blood [76, 77].

Case: 3

A 28-year-old male subject was suffering from a pain in the left lower limb
which increased on prolonged standing. RS, CVS, CNS, abdominal examination,
radial pulse, carotid pulse, dorsalis pedis, and posterior tibial pulse were found to be

Fig. 5 a Pseudo-color-coded infrared image of the dorsal profile of the left leg of a 48-year-old
male subject suffering from vascular disorder [77]. b Temperature profile along the horizontal line
shown in the infrared image which indicated the presence of a higher temperature region that was
attributed to the presence of thrombosis
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normal for the subject. Clinical examinations revealed varicosity of the long
saphenous system of the left lower limb and the varicosity-related complications
were predominant for the past one year. Thermal imaging was carried out over the
left leg of the subject.

Figure 7a shows the pseudo-color-coded infrared image of the left leg of the
subject. The line profile over the toe tips is shown in Fig. 7b. It can be clearly seen
that distal position (indicated by the white arrow in the thermal image) had a

Fig. 6 Typical infrared image of the dorsal profile of the left leg of a 31-year-old male subject
suffering from vascular disorder [76, 77]. Clinically diagnosed areas of varicosity were found to
coincide with the regions of higher temperature (encircled by the black-dotted lines). The distal
region was found to be at a lower temperature (indicated by the white arrow) due to inadequate
blood flow

Fig. 7 a Typical infrared image of the left leg of a 28-year-old male subject suffering from
vascular disorder. The image is shown in pseudo-color-coded isotherm scale and the region of
higher temperature (encircled by the black-dotted line) corresponded to the mild inflammation of
the varicose veins. The distal regions (indicated by a white arrow) presented a lower temperature
due to inadequate blood perfusion. b Temperature profile along the line indicated in the infrared
image. The periodic lower temperature confirmed slow blood perfusion in the distal regions (toes)
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comparatively lower temperature, which was attributed to varicosity-induced
inadequate venous drainage. Higher temperature regions (encircled by the
black-dotted line) were observed over the left leg of the subject, which were found
to be coincident with the varicosity-affected regions. It was observed that the
temperature was 0.7–1.0 °C higher in these regions compared to the surrounding
skin temperature. The affected regions presented an elevated temperature distri-
bution due to varicosity-induced mild inflammation which was otherwise not
detected during routine clinical examination.

Foot damages resulting from diabetic neuropathy, vascular disorder, or ischemia
very often causes infection, which ultimately results in foot ulceration. Infection can
be active (bacterial or fungal) or passive (biofilms). Most common species causing
infection in diabetic foot are aerobic gram-positive cocci (Staphylococcus aureus),
gram-negative bacilli (Escherichia coli), and anaerobic Bacteroides sp. and
Peptostreptococcus sp. [140, 177]. Infrared thermography is successfully used for
monitoring wound healing in the cases of foot ulcerations [178]. Apart from pe-
ripheral neuropathy and vascular disorder, infrared thermography has also been
applied to diabetic retinopathy. Sodi et al. [179] performed a comparative study of
the ocular surface temperature (OST) in 51 subjects with nonproliferative diabetic
retinopathy (NPDR) and in 53 age and gender matched healthy subjects. They
found that in diabetic subjects OST was significantly lower than the normal sub-
jects. Although majority of the infrared thermography-based studies were con-
ducted on subjects with type 2 diabetes, a few recent studies [180, 181] report the
applicability of infrared thermography on type 1 diabetic subjects. Sejling et al.
[180, 182] studied the changes in skin temperature during hypoglycemia in type 1
diabetic subjects and reported that skin temperature decreased during hypoglycemia
over the nose and glabella regions. They indicated the suitability of infrared ther-
mography to study the hypoglycemia-induced decrease in skin temperature which
was observed to be higher in subjects with hypoglycemia awareness. Zotter et al.
[181] applied infrared thermography to assess the abnormalities in skin blood flow
before and after cold challenge on lower leg of 25 adolescent asymptomatic sub-
jects with type 1 diabetes. Their studies revealed that adolescent type 1 diabetic
subjects show abnormalities in skin blood flow over the tips of first and fifth toes
and inner ankles after cold challenge which was successfully mapped using infrared
thermography. Schindl et al. [183, 184] applied infrared thermography for moni-
toring low-intensity laser-induced improvement in peripheral circulation in subjects
with diabetic microangiopathy.

The above case studies and literature survey clearly indicate that diabetic foot
complications are associated with significant changes in skin temperature with
definite patterns (e.g., lower temperature distribution in the distal position of the
toes in the cases of vascular disorders and elevated foot temperature for the diabetic
neuropathic subjects), which facilitates early diagnosis of diabetic complications
using infrared thermography-based skin temperature monitoring. Therefore, peri-
odic monitoring of skin temperature reduces the risk of foot ulceration [185].
Further, identifying individuals at high risk and treating for lower extremity

Infrared Thermography for Detection of Diabetic Neuropathy … 237



complications may reduce the number of amputations by 85% [186]. Pafili and
Papanas [187] suggested that a 5-year use of infrared thermography or liquid crystal
thermography for daily self-examination among high-risk group of subjects may
significantly lower further complications in diabetic foot.

5 Conclusions

Among various techniques available for accurate and reliable measurement of
subject temperature, infrared thermography is a relatively new methodology that
has become popular because of its noncontact, noninvasive, and real-time tem-
perature measurement capability. During the last few decades, numerous applica-
tions of infrared thermography are reported in the field of medical sciences.
Considering the huge increase in diabetics cases worldwide, a dedicated effort for
early detection of diabetes is essential. Studies reveal that infrared thermography is
capable of the early detection of diabetic peripheral neuropathy and vascular dis-
orders. This book chapter highlights the studies on diabetic neuropathy and vascular
disorder using infrared thermography technique. The basics of infrared thermog-
raphy, classification of medical thermography techniques, details of various infrared
cameras available, ideal experimental conditions, data analysis, etc. along with
typical case studies on the above two subjects are discussed. To become IRT as
routine techniques for diagnosis of diabetic neuropathy and vascular disorder, more
systematic case studies in large number of subjects from various continents and
correlating the IRT results with clinical findings are a prerequisite. Further,
refinements in the experimental protocols, automation, rapid, and reliable data
analysis approaches are to be developed. One of the impeding issues in the use of
this technique in the past was the higher cost of infrared camera but it has now
surmounted because of the availability of infrared cameras at affordable rates.
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Exploratory Thermal Imaging
Assessments of the Feet in Patients
with Lower Limb Peripheral
Arterial Disease

Daniel Kyle, John Allen, Klaus Overbeck and Gerard Stansby

Abstract Peripheral arterial disease (PAD) is an atherosclerotic condition that can
result in reduced lower limb tissue perfusion. It is associated with significant
comorbidity including coronary artery disease (CAD) and cerebrovascular disease.
One of the most currently utilised diagnostic tools is the ankle brachial pressure
index, which is time consuming, requires significant user training and is unreliable
in diabetics due to vessel calcification leading to falsely elevated results. The aim of
this pilot study was to explore the potential use of thermal imaging in identifying
PAD. In 44 patients (24 male; mean (SD) age 67 [12] years) thermal images of
three regions of interest (ROI’s) on the feet were collected within a normothermic
measurement room. The ROI’s for each foot included the first toe (T), proximal foot
(PF) and whole foot (WF). The ankle brachial pressure index (ABPI) reference test
was collected to make a diagnosis of PAD (ABPI < 0.9). Parametric statistics were
employed and a p value <0.05 considered statistically significant. Twenty-three
patients had significant PAD in at least one leg (Mean ABPI 0.64; Range
0.32–0.86) while 26 patients had a normal ABPI (non-PAD) in at least one leg
(Mean ABPI 1.14; Range 0.9–1.46). There were no significant ROI differences
between PAD (Mean WF temperature 30.3 °C; SD 0.8) and non-PAD feet (Mean
WF temperature 31.0 °C; SD 0.7) for their mean or SD values. The temperature
gradient (toe-proximal foot) was close to −1 °C but this was not significantly
different between the groups. Furthermore, right minus left whole foot temperature
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differences were not significant. Absolute, gradient, spatial and bilateral skin tem-
perature differences of the feet have been quantified in PAD and non-PAD legs and
have found no significant differences overall. This pilot study indicates that thermal
imaging from resting measurements is unlikely to be of diagnostic value in
detecting significant PAD. Furthermore, the study also raises questions about the
apparent misconception that in PAD the foot temperatures are usually significantly
reduced.

Keywords Thermal imaging � Peripheral Arterial Disease (PAD) � Vascular dis-
ease � ABPI � Cardiovascular disease � Skin temperature

1 Introduction and Research Context

1.1 Peripheral Arterial Disease (PAD): The Overlooked
Cardiovascular Disease with Great Implications

Peripheral arterial disease (PAD), which is an atherosclerotic process effecting
nearly 20% of all people aged over 70 years old worldwide, causes reduced lower
limb tissue perfusion [1]. Atherosclerosis results from atheroma (fatty deposits) and
can progress to thrombosis and vessel occlusion [2]. This can result in ischaemia,
pain, tissue necrosis and potentially even limb loss or death [3].

Atherosclerosis can occur in any vessel within the arterial system leading to not
only PAD but ischaemic heart disease (IHD) and cerebrovascular disease, which
can result in myocardial infarction (MI) and stroke, respectively [4] (Fig. 1). These
conditions are commonly grouped as cardiovascular diseases (CVD) and they have
overlap in pathoetiology, diagnosis, prognosis and treatment [5]. The risk factors

Fig. 1 Atherosclerosis affecting the periphery leading to PAD and the heart leading to CAD and
MI. Source http://www.angioslide.com/USA/Patients/peripheral-artery-disease
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for all CVD’s include smoking, high blood pressure, diabetes, high cholesterol,
obesity, renal disease and family history of vascular disease [3]. Therefore, diag-
nosis of PAD should alert to the patient’s concurrent risk of MI and stroke. It was
found that 65% of PAD patients also have coronary or cerebral artery disease [6].
Thus, improved diagnosis of PAD may have the added benefit of leading to earlier
diagnosis of other CVD’s and the improved outcomes secondary to earlier identi-
fication and management.

The most common symptom of PAD is intermittent claudication, defined as the
repeatable, predictable onset of pain in the lower limbs (typically in the calf) that
occurs on exertion as a result of impaired blood delivery and reduced oxygen
supply to the muscles. The pain is characteristically worse uphill, and as disease
progression occurs the distance a patient is able to walk before they have to stop
due to pain will shorten. Pain resolves with rest and predictably re-occurs again on
exertion. There are a number of classification systems of PAD which consider
claudication distance such as the Fontaine and Rutherford classification systems [3].
As disease progresses, patients may suffer with rest pain and eventually develop
arterial ulcers and gangrene, known as critical limb ischaemia (CLI), which once
established leaves the patient with only a 50–60% five-year survival [7].

However, patients do not always give a clear history of their symptoms and
especially in the early stages of the disease it can be difficult for the physician to
confidently identify PAD. Other conditions that may produce similar pain include
lumbar spinal stenosis (neurogenic claudication), osteoarthritis, chronic venous
insufficiency and degenerative disc disease, which need to be excluded. On ex-
amination, the PAD patient’s feet and legs may feel cold, hairless and a pulse may
not be palpable. In severe disease, arterial ulcers and tissue necrosis/gangrene may
be observed.

Investigations include screening for risk factors such as performing blood tests
(total cholesterol, LDL cholesterol, triglycerides, blood glucose, HBA1c, C-reactive
protein, urea and electrolytes) and electrocardiography (ECG). More specific
investigations within a primary care setting include performing the ankle brachial
pressure index (ABPI), which involves measuring the blood pressure from the
upper and lower limbs of a patient in the supine position after they have rested for
10 min and calculated performing the following calculation:

ABPI ¼ �Leg systolic BP
Highest arm systolic BP

* Performed on each leg to calculate an ABPI for both legs, usually using the
highest of dorsalis pedis (DP) and posterior tibial (PT) arterial pressure
measurements.
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The value calculated can then be cross-referenced to the table below

ABPABPI score Diagnosis

0.9–1.3 Normal

0.5–0.89 Mild/moderate PAD

<0.5 Severe PAD

Typically, values greater than 0.9 are considered normal, however, arterial
calcification can lead to an ABPI result of greater than 1.3 due to reduced vessel
compressibility. This can result in the arterial calcification masking arterial stenosis
leading to a falsely reassuring ABPI. In addition, arterial calcification is common in
diabetics who are also twice as likely to have PAD [8]. Therefore, the ABPI is
potentially missing patients who have one of the highest risk factors for PAD,
which is another limitation of the test. Furthermore, the ABPI requires the patient to
lie in a supine position for 10 min before performing a measurement, which places
a significant time commitment on a busy GP service. In order to perform the ABPI
correctly also requires an element of formal training and expertise.

Once a patient is suspected to have PAD, they are referred to secondary care for
definitive imaging via ultrasound Doppler of the lower limb arteries, often followed
by either magnetic resonance angiography (MRA) or computed tomography
angiography (CTA), which is able to identify the severity and level of an arterial
stenosis/occlusion. First-line management is through modification of lifestyle factors
followed by endovascular procedures such as angioplasty and stenting. Only in
severe PAD, when a patient’s quality of life is significantly impaired, surgery is
considered an option. This would include bypass operations or amputation.

However, further objective, reliable screening tests for PAD that could be used
in primary care are required due to the limitations of ABPI outlined above [9]. This
is where the potential use of thermal imaging in identifying PAD arose. It is widely
thought that a patient who has PAD would have reduced limb perfusion, leading to
a reduction in skin temperature at the feet. We propose in this work that if a reduced
skin temperature in PAD patients exists, then it would be identified using an
infrared thermal imaging camera.

1.2 Thermal Imaging: The Fast, Non-contact Solution
to Improved Diagnosis of PAD in Primary Care?

For thousands of years a raised body temperature, in the form of a fever, has been
recognised as an indication of illness. Around 400 BC Hippocrates wrote
“Whatever part of the body excess of heat or cold is felt, the disease is there to be
discovered” [10]. A fever is the generalised, symptomatic manifestation of the
presence of inflammation, infection or malignancy within the body. In addition,
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increased localised skin temperature has also long been recognised as an indicator
of local pathology, perhaps the most well known being the red, hot great toe which
occurs in gout and or the hot, swollen joints of the hand in rheumatoid arthritis.
Whether generalised or localised, the change in skin temperature is recognised as
the presence of illness or pathology. This is because injury, infection, inflammation
or malignancy is associated with localised vasodilation leading to tissue
hyper-perfusion to the affected area and increased metabolic processes, all which
lead to a higher emitted temperature [11]. The detection of increased body tem-
perature in illness was purely subjective until the invention of the thermometer in
the seventeenth century when objective measurements could then be made [12].
Traditional glass thermometers worked through detecting temperature changes via
conduction but heat also leaves the body via radiation, evaporation and convection.
It remained difficult to objectively measure the temperature of specific areas of the
body until the invention of the first electronic sensor of infrared radiation in 1934
and the developments in infrared sensors since then [12].

Infrared thermal imaging involves the identification and quantification of natu-
rally emitted infrared radiation from skin which is then represented as an infrared
thermogram [13]. The different areas of skin temperature are represented as dif-
ferent colours on the thermogram making the image easily interpretable. It also has
the advantages of being noninvasive, non-contact, quick and sensitive. The tech-
nology has progressed considerably since the first published paper which presented
the use of infrared thermal imaging in preclinical diagnosis of breast cancer in 1956
[14]. Thermal imaging cameras are now able to detect differences in skin temper-
ature at much smaller scales and with increased spatial accuracy. This has led to its
increased use as a medical imaging tool with a vast number of potential applications
including diabetes, Raynaud’s Disease, the detection of breast cancer and the
identification of flap viability in reconstructive surgeries [14].

However, despite the increasing research interest and potential clinical appli-
cations of thermography, often the clinical interpretation of the results remains
challenging. This is because the relationship between skin temperature and skin
perfusion is complex. It depends on many factors including site (central vs. pe-
ripheral), skin thickness, perspiration, core body temperature and ambient room
temperature [9]. In addition, ingestion of caffeine or alcohol and certain drugs can
affect skin temperature. Pertinently, the change in skin temperature in relation to
blood flow may depend on whether the change in blood flow has occurred for
physiological adaptation, for example due to a change in ambient temperature, or in
response to pathology (Fig. 2).

Nonetheless, it is often taught to medical students learning to examine a patient
for peripheral arterial disease to feel for skin temperature, as a limb with arterial
disease may be cooler than a limb without blockage [1]. This is because it is
thought, possibly incorrectly, that reduced blood flow to the limb may result in
reduced cutaneous limb temperature that may provide the physician with a further
clinical sign to help make a diagnosis. There have been a number of studies which
have correlated skin temperature with PAD, however most studies have evaluated
subjective assessments of skin temperature. A large scale cross-sectional study
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performed in the Netherlands in 1997 which evaluated the diagnostic value of signs
and symptoms of PAD in primary care found a relatively high specificity of pal-
pating skin temperature and a diagnosis of PAD. Interestingly, in the same study,
there was no diagnostic value in the patients reporting of cold feet [15].

The use of thermal imaging to detect peripheral vascular disorders including
venous insufficiency, Raynaud’s phenomenon and diabetes, has been studied pre-
viously, with some interesting observations. Bagavathiappan et al. [16] published a
case series of four patients in which thermal imaging was concluded to reliably
detect vascular diseases including chronic venous insufficiency and arterial
obstruction. Distal tissues were found to be cooler than more proximal, surrounding
tissue which was hypothesised to be due to arterial obstruction, whereas areas of
venous compromise were warmer than surrounding skin, due to tissue inflammation
[16]. In Clark et al. [17], the comparison of laser Doppler and thermal imaging in
the detection of digital blood flow in Raynaud’s was poorly correlated, however, in
Schlager et al. [18] good correlation between thermal imaging and skin perfusion
(determined using laser Doppler perfusion imager) was demonstrated in patients
with Primary Raynaud’s Phenomenon. In Cheng et al. [19] thermal imaging was
demonstrated to be able to identify poor blood supply surrounding diabetic ulcers
and Sivanandam et al. [20] demonstrated reduced peripheral foot temperature in
type 2 diabetes mellitus, which correlated with HBa1c level. Ring [21] concluded in
a review paper that thermal imaging is useful in the assessment of peripheral
circulation in diabetes mellitus. In diabetic neuropathy, the thermoregulatory
mechanisms are no longer functioning correctly leading to impaired neurovascular
function and abnormal skin temperature [21].

However, there is limited evidence in the literature of the use of thermal imaging
in detecting PAD. A study by Huang et al. [22] demonstrated that resting skin
temperatures between PAD and control subjects were non-significant. However
after a 6-min exercise test, the feet of PAD patients was either the same as or cooler
than at rest but in the control group the feet were warmer or the same as at rest [22].

Therefore, the aim of this pilot study was to explore the potential of thermal
imaging in identifying PAD. In this chapter, we describe the results of 44 patients who
had thermal images taken of their feet, looking specifically at three regions of interest

Fig. 2 Thermal imaging of a
PAD patient. A PAD patient
with a cool right foot (ABPI
0.53; whole foot temperature
30.4 °C) and a warmer left
foot (ABPI 0.86; whole foot
temperature 31.3 °C). There
is only a physiologically small
difference in skin temperature
between the feet despite
having clearly asymmetric
PAD
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(ROI) and the correlation of peripheral skin temperature with evidence of peripheral
arterial disease, as diagnosed by ABPI. The results of this study may inform as to
whether there is potential use of thermal imaging in the diagnosis of PAD.

2 Methods

Vascular measurements comprised ABPI and TI (thermal imaging). Thermal
imaging was performed in a temperature-controlled microvascular imaging facility,
based in the Medical Physics Department at Freeman Hospital, Newcastle upon
Tyne. The room has a normothermic control which allowed all experiments to be
performed at 25 °C.

Vascular patients were recruited from the Northern Vascular Centre
(NVC) wards or NVC outpatient clinics. Healthy controls were recruited from
hospital staff and local retired engineering groups. After consent was gained for the
study, participants were asked to remove their shoes and socks, ensuring they were
bare from the mid-shin down before lying supine on a standard medical exami-
nation couch. Participants were acclimatised at rest for at least 10 min in the
measurement facility to allow for thermal equilibration before imaging took place.

Thermal imaging was performed using a FLIR SC300 (FLIR Systems) with
standard view lens. The thermal camera was placed on an imaging stand that was
placed approximately 1 m above a patient’s legs so that both feet were captured in
the same image. All images were taken by 1 thermal imaging operator (JA).

Ankle brachial pressure index (ABPI) measurements were performed shortly
after the thermography using standard methods. An ABPI value of <0.9 was
considered as diagnostic for significant PAD.

Thermal images of three regions of interest (ROI’s) on the feet were collected
from each patient. The ROI’s for each foot included the first toe (T), proximal foot
(PF) and whole foot (WF) (Fig. 3). The thermal imaging analysis was performed by
a single operator (DK).

Thermal images were visualised and analysis was performed using FLIR
ThermaCAM Researcher Pro 2.10 software. Temperature was colour-coded using a
rainbow palette across a range of 18–36 °C.

Fig. 3 Regions of interest
(ROI). (1) First toe (T) (blue
outline), (2) Proximal foot
(PF) (green outline),
(3) Whole foot (WF) (purple
outline)
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Three ROI’s were measured, as described above. The mean temperature of each
respective ROI was calculated and results were exported to a Microsoft Excel
spreadsheet for analysis. Parametric statistics were employed using Minitab
Statistical Software (Version 17) and a p value <0.05 considered statistically sig-
nificant. Data were mainly displayed graphically using nonparametric statistical
measures. Numerical summaries for the data were provided using parametric
measures and with standard parametric statistical tests used throughout.

3 Results

A total of 44 patients were studied (24 male; 20 female) with a mean age of
67 ± 12 years (range 44–91 years old). The mean height was 168 cm [(Range
152–181 cm); mean PAD group 167.2 cm; non-PAD 168.2 cm)]. Mean weight
was 78 kg [(Range 51–111 kg) mean PAD group 80 kg; mean non-PAD 76 kg)]
Mean BMI 27.8 [(Range 20.8–38.4) mean PAD group 28.6; mean non-PAD 26.9)].
There were a total of eight patients with diabetes in the study, seven in the PAD
group (five non-insulin dependent diabetic (NIDDM); two insulin dependent) and
one in the non-PAD group (1 NIDDM).

Twenty-three had significant PAD in at least one leg [mean ABPI: 0.64 (SD
0.15)]. Five patients were found to have PAD in only one leg, which provided
interesting individual comparison. There were no significant ROI differences
between PAD and non-PAD legs for their mean or SD values (Figs. 4 and 5).
However, the mean temperature of PAD feet at each ROI was close to 0.6 °C cooler
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Fig. 4 ROI average temperature for PAD versus non-PAD. Figure shows the mean (as cross
within circle), the median (as line within boxplot), interquartile range (either ends of the main box)
(IQR (25–75%)), lower and upper quartile ranges with outliers removed (either end of the lines).
There was no significant difference in ROI average between PAD and non-PAD legs (p � 0.05)
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Fig. 5 Variation across each ROI (using SD values) for PAD versus non-PAD. Figure shows the
mean (as cross within circle), the median (as line within boxplot), interquartile range (either ends
of the main box) (IQR (25–75%)), lower and upper quartile ranges with outliers removed (either
end of the lines). There was no significant difference in ROI SD between PAD and non-PAD legs
(p � 0.05)

Table 1 Temperature gradients for each ROI expressed using mean and SD values for PAD and
non-PAD groups

Toe (°C) (SD) Proximal (°C) (SD) Whole foot (°C) (SD)

PAD 28.9 (0.53) 29.9 (0.60) 30.4 (0.75)

Non-PAD 29.4 (0.54) 30.6 (0.60) 31.0 (0.70)

The foot is progressively warmer as you move proximally, but there is no significant difference in
temperature gradients between groups
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Fig. 6 ROI temperature difference between PAD and non-PAD patients. PAD feet are
approximately 0.5 °C cooler than non-PAD feet across each ROI, which was non-significant. In
addition, the temperature gradient from toe to proximal foot was close to −1 °C but this was also
non-significant. (T First Toe; PF Proximal foot; WF Whole foot). ROI Region of interest
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than non-PAD feet, which was statistically non-significant. The temperature gra-
dient (toe-proximal foot) was close to −1 °C but this was not significantly different
between groups (Table 1; Fig. 6). Right–left whole foot temperature differences
were also not significant (Figs. 7 and 8).
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Fig. 7 The Bilateral differences in non-PAD patients. Figure shows the mean (as cross within
circle), the median (as line within boxplot), interquartile range (either ends of the main box) (IQR
(25–75%)), lower and upper quartile ranges with outliers removed (either end of the lines). There
were no significant right minus left (R − L) differences in non-PAD patients. The 95% CI of the
differences for the whole foot would be -0.9 to + 1.2 °C

Fig. 8 The Bilateral differences in PAD patients i.e. with PAD in at least 1 leg. Figure shows the
mean (as cross within circle), the median (as line within boxplot), interquartile range (either ends
of the main box) (IQR (25–75%)), lower and upper quartile ranges with outliers removed (either
end of the lines). Overall, there were no significant R − L differences in PAD patients. However,
there was significantly wider variance seen in PAD group (p < 0.05: for whole foot and proximal
foot)
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There was no significant difference between foot temperature in non-PAD
subjects compared to PAD patients with mild/moderate disease, but appeared to be
reduced in some of the severe PAD subjects but was not significant overall (Fig. 9).
Individual patient examples of this point are given in Figs. 10, 11 and 12.
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Fig. 9 The whole foot temperature is no different between healthy subjects and patients with
mild/moderate PAD. Figure shows the mean (as cross within circle), the median (as line within
boxplot), interquartile range (either ends of the main box) (IQR (25–75%)), lower and upper
quartile ranges with outliers removed (either end of the lines). In the higher grade PAD
(ABPI < 0.5) the foot temperature appears reduced only in a fraction of the patients

Fig. 10 Example thermograms highlighting the range of normal for toe temperatures since
healthy subjects can have very cold toes without arterial pathology. In the cases shown the PAD
patient has bilateral disease (left panel) with feet at 32 °C and the healthy subject has cooler feet at
29 °C
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Some examples of patients who had one PAD (ABPI < 0.9) foot and one
non-PAD (ABPI � 0.9) foot
Example 1

Example 2

Fig. 11 No significant
temperature differences
between the right PAD leg
(ABPI 0.77) and the left
non-PAD leg (ABPI 1.02)

Fig. 12 The right PAD first
toe (ABPI 0.51) is close to
4 °C cooler than the left
non-PAD first toe (ABPI
1.06). In addition, the right
foot is approximately 2 °C
cooler for the proximal and
whole foot ROI’s
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4 Discussion and Summary

In this pilot study, we have quantified absolute, gradient, spatial and bilateral skin
temperature differences in PAD and non-PAD legs and have found no significant
differences between groups. However, a trend towards cooler feet in PAD patients
of close to 0.6 °C was observed, but this was non-significant overall. Good per-
fusion of superficial tissues was maintained despite PAD. This pilot study indicates
that thermal imaging is unlikely to be of diagnostic value in detecting significant
PAD. The BMI of patients in the PAD group was approximately 2 kg/m2 greater
than the non-PAD group and patients in the PAD group were also more likely to be
diabetic (PAD group 8; non-PAD 1). This is consistent with the expected
co-morbidities of a PAD patient, as it well known that being overweight and
diabetes are significant risk factors for the development of PAD.

There are a number of reasons as to why there were no significant differences
observed between the temperature of PAD and non-PAD feet. First, it is possible
that the sample size in this pilot study was insufficient to reach statistical power and
with increasing patient numbers, significance may become apparent. However,
temperature differences would still be small and detection through skin palpation as
part of a clinical examination would be unlikely to sense a significant difference in
individual patients.

The microcirculation of the peripheral tissues is partly controlled via the auto-
nomic nervous system and thermoregulation mechanisms. Therefore, despite
reduced gross tissue perfusion to the distal tissues in PAD, the superficial tissues are
compensated via the autonomic response of the microcirculation, which results in
maintained cutaneous temperatures. In addition, thermal imaging techniques are
highly sensitive to detecting differences from so-called normal values. However,
thermal imaging is not able to inform us as to why such a deviation exists. This is
why care is always required when interpreting thermal images in the clinical
context. For example, in PAD, as a consequence of impaired tissue perfusion, tissue
necrosis may occur. Tissue necrosis may result in increased metabolic response of
the tissue, leading to the accumulation of catabolic waste products which are known
to be vasodilatory. As a consequence, tissue inflammation may be increased as part
of the immune response towards necrosis, leading to increased heat production
despite reduced gross perfusion to the tissues. Therefore, despite reduced perfusion
to the feet due to PAD, thermal imaging is unable to detect the changes as cuta-
neous temperature is maintained and often even elevated, due to inflammation.

Furthermore, we have indicated that it is only at the extremes of PAD (e.g.
ABPI < 0.5) that a reduced temperature begins to become apparent. Perhaps once
such severe disease is established compensatory microcirculatory autonomic
mechanisms that were maintaining skin perfusion and hence normal skin temper-
ature are overwhelmed and the foot then becomes palpably cold. It is also possible
that if the study was performed at a cooler room temperature, the effects of reduced
tissue perfusion due to PAD would become more apparent. There is scope for
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further work and future studies should consider disease severity across the spectrum
of PAD in relationship to measurement room ambient temperature and thermal
imaging diagnostic test accuracy in PAD.

Nevertheless, this study has revealed some interesting findings. Not least whe-
ther it is still valid to teach medical students, as part of a clinical examination of the
vascular system, to palpate for skin temperature, as an indication of potential pe-
ripheral arterial disease. Perhaps, assessing skin temperature as part of a peripheral
vascular examination has been a long held misconception that holds limited diag-
nostic weight.

However, it is apparent that further PAD detection tests are still required which
may be informed from the observed findings in this pilot study. Other
infrared-based technologies such as photoplethysmography (PPG) have been shown
to possess diagnostic value although this is based on near infrared rather than far
infrared technology [9, 23]. In PAD, the PPG waveform becomes damped and
delayed, even for lower grade disease. The nature of PPG signals however is not
well understood. We believe that a future cross-comparison of thermal imaging and
PPG in PAD could help in the understanding of such technologies and the devel-
opment of reliable tests.

In summary, we found no significant differences in the overall absolute, gradient,
spatial or bilateral skin temperature differences between PAD and non-PAD legs.
This pilot study indicates that thermal imaging from resting measurements is
unlikely to be of diagnostic value in detecting significant PAD. Furthermore, it also
raises questions about the apparent misconception that the foot temperatures are
always significantly reduced in a patient with PAD. Finally, reliable fast,
non-invasive devices for the detection of PAD are still required to aid the diagnosis
of this under-diagnosed but significant cardiovascular disease.
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Reproducibility of Thermal Images: Some
Healthy Examples
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Abstract Thirty participants with healthy feet were imaged in the same way on
two separate occasions (an average of 4 weeks apart). Overall, feet were found to
be thermally symmetric although absolute temperature could vary considerably
between visits. Temperature differences at specific sites on the foot sometimes
exceeded the threshold of 2.2 °C regarded as clinically significant when looking for
evidence of inflammation prior to skin breakdown in diabetes. At least one site
exceeded this threshold in nine (30%) participants (the same figure for both visits).
However, when looking for significant thermal asymmetry it is important to rule out
transient changes by repeated imaging and to refer to baseline images.
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1 Introduction

Thermal imaging has attracted attention as a fast, comprehensive and non-contact way
to measure the fundamental physiological parameter, skin temperature. The colourful
temperature ‘maps’ generated are capable of quick interpretation and easily comparable
to ‘healthy’ or baseline images (see Fig. 1). However, it is important when interpreting
images to be sure that the images are truly comparable and to have an understanding of
what variability can be expected.

Thermal imaging of the skin is complicated by numerous factors. Some of these
factors can affect how ‘true’ the temperature measurements are by affecting the
emissivity of the skin. They include perspiration, hair and the use of skin creams.
Physiological factors for an individual can affect actual skin temperatures and these
include caffeine, certain medications, exertion and possibly time of day or point in
menstrual cycle [1].

A good data collection study which seeks to establish baseline temperatures and ‘maps’
should be designed to minimise the impact of factors which affect accuracy of measure-
ment. The protocol should be clear about which physiological factors it is controlling so
that the relevance of the data to other studies or subject groups can be determined.

However, not all factors can be reliably controlled. As is the case with many
types of test, thermal imaging would perform best in highly specific, controlled
conditions which minimise normal variation but the simplicity and accessibility of
thermal imaging and visual interpretation of images suits a fast test available in
multiple settings [2]. For example, there have been studies on thermal imaging in
operating theatres, podiatry clinics and even airports [3–5]. Measurements done in
these settings will inevitably involve compromising some environmental and
physiological factors which are known to affect variability.

In addition to this problem, published studies seldom describe the reproducibility
of temperature measurements or maps on a day to day basis.

Fig. 1 Dorsal view of a healthy feet and b foot demonstrating increased temperature attributed to
an ingrowing toenail on the right 1st toe (not one of the study group)
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2 Research Context

2.1 Thermal Imaging, Spot Measurements, and the ‘at Risk’
Foot

Thermal imaging is gaining interest from practitioners who care for patients with
diabetes. Foot ulcers are a serious complication for patients with diabetes who may
also have neuropathy or peripheral or systemic vascular disease. In particular,
patients with neuropathy are at increased risk of damaging their feet without the
warning signs of discomfort or pain. Research has suggested that hotspots seen on
the foot could give early warning of ulcer formation [6, 7]. These studies involved
patients measuring spot temperatures with an infrared thermometer at corre-
sponding sites on their feet at home and comparing right with left. Spot temperature
differences greater than or equal to 2.2 °C were defined as significant. This
threshold appears to have been widely accepted, considering the studies which have
followed from the successful results reported [8]. Thermal imaging has the potential
to compare all sites on the foot simultaneously and further studies have begun to
investigate the possibility of imaging the feet in the podiatric clinic setting; how-
ever, regular checking of foot health is the goal of every podiatrist for patients with
at risk feet. The aspiration is daily monitoring of foot health either in the patient’s
home or at least in accessible, non-specialist clinic settings such as GP surgeries.

The research which suggested patients’ risk of foot ulceration improved if they
monitored their skin temperatures daily could not rule out the effect of responding
to random temperature differences [7]. The temperature monitoring group had
reduced ulceration rates but also more contact with the study coordinator and more
periods of rest (triggered by measuring temperature differences between right and
left feet). The validity of comparing contralateral foot temperatures and images
must depend on how consistent they are when no pathological change is suspected.
Any measure of thermal asymmetry must be designed to be specific enough to
confidently suggest pathology such as inflammation.

2.2 Diabetic Foot Ulcer Prevention System (DFUPS)

The Microvascular Diagnostics section of the Northern Medical Physics and
Clinical Engineering Dept (part of Newcastle upon Tyne Hospitals NHS Trust) is in
collaboration with King’s College Hospital (London), Pennine Acute Hospitals
Trust, Photometrix Imaging Ltd. and the National Physical Laboratory to complete
a project funded by the National Institute for Health Research. The project aims to
investigate the use of thermal imaging when managing patients at high risk of
developing foot ulcers. Before patients were recruited however, an initial study was
completed which was designed to collect data from participants with healthy feet.
These feet had temperatures measured using the Thermofocus® infrared spot
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thermometer (see Fig. 2b) and also thermally imaged using the Diabetic Foot
InfraRed Standard Thermography system (DFIRST) (see Fig. 2a). DFIRST is an
experimental device that was developed by Photometrix Imaging Ltd specifically
for this investigation. Visual images are captured simultaneously with the thermal
information in order to aid placement of regions of interest when analysing the foot
thermal image using a bespoke software package also written specifically for this
investigation.

The study was approved by London-City Road and Hampstead Research Ethics
Committee.

3 Method

3.1 Camera Description/Calibration

At the core of the battery-powered DFIRST device is a Micro-Epsilon TIM 400
thermal camera with a spatial resolution of 382 � 288 pixels and a thermal reso-
lution of 0.08 °C. Before and after this investigation, the thermal camera was
characterised by the National Physical Laboratory (NPL) for measurements errors
such as temperature offset, start-up behaviour, short-term- and long-term mea-
surement drift over time, and noise. Both the DFIRST thermal camera and the
Thermofocus® infrared spot thermometer were calibrated by the NPL traceable to
national standard blackbody references [9, 10]. Absolute temperature dependent
calibration coefficients created by the work of NPL were applied as corrections to
the measurements made. Overall, the DFIRST uncertainty was ±0.2 °C for the
range 15–45 °C. The stated accuracy of the Thermofocus® 01500A3 thermometer
used was ±0.2 °C for the range 20–35.9 °C.

Fig. 2 a Diabetic Foot InfraRed Standard Thermography system (DFIRST), b Thermofocus®

infrared spot thermometer
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3.2 Test Procedure

Healthy participants were asked to attend the Microvascular measurement facility at
Freeman Hospital, Newcastle upon Tyne. The lab was set to a constant normoth-
ermic temperature of 23.5 °C. After consent was obtained for the test, participants
were asked to remove their shoes and socks and rest for 10 min, seated on a
podiatry couch with their legs supported and feet bare. Participants were excluded if
they had active foot ulceration and/or infection or previous ulceration, a con-
founding foot deformity, past foot surgery, an implantable electronic device, history
of high blood glucose levels, any symptoms of peripheral neuropathy or any
symptom of ischemia. Intact feet and at least one palpable foot pulse (posterior
tibial or dorsalis pedis) on each foot were requirements for inclusion.

The image capture order was a combined plantar foot image, combined dorsal
view, right medial, right lateral, left medial and left lateral views. This required
passively lowering each of the feet using the adjustable leg supports of the podiatry
couch. A complete set of images were acquired at 10 min rest. Then a second set of
images was acquired along with spot temperature measurements using a
Thermofocus® infrared spot thermometer. The sites of the 33 spot measurements
performed are illustrated in Fig. 3. The sites were chosen as the most frequent sites
for ulcers to develop on the foot. The Thermofocus® measurements were performed
in right/left pairs in order to keep contralateral measurements as close together as
possible in time. After this, three more combined plantar views of the feet were
acquired.

All 30 participants were asked to return for a second identical study. Although it
is possible to obtain temperature data from the thermal images (by averaging over
any selected region of interest) technical issues meant that this could not be done for
all of the first visit data sets. The thermal variability results are therefore based on
the Thermofocus® spot thermometer temperature measurements. However, the key
conclusions are clearly illustrated by the thermal images taken at both visits.

Fig. 3 The 33 measurement sites/regions of interest on the plantar, dorsal, medial and lateral
aspects of the foot
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4 Results

Thirty pairs of ‘healthy’ feet were studied at repeat visits. The average time between
visits was 26.7 ± 8.2 days (3.8 ± 1.2 weeks). Table 1 details the demographics of
the group studied and the results of the data analysis on whole feet. Whole foot
temperature was taken to be the mean of all 33 spot temperatures measured on each
foot (MFT33).

Conditions were similar at both visits and the mean foot temperatures (for the
overall group) almost identical. However, individual mean foot temperatures dif-
fered between visits by up to ±4.6 °C. The symmetry between right and left feet
overall for each of the two visits was comparable but greater asymmetry was
demonstrated at the second visit. This is also seen when considering the individual
spot measurements. Table 2 describes the distribution and number of hotspots
found.

Hotspots were measured in nine participants at each visit. Five participants had
at least one hotspot at both visits. Over three times as many hotspots were measured
for visit 2 when compared with visit 1. However, 29 of the hotspots measured in
visit 2 were accounted for by just three participants (in visit 1 these three partici-
pants only accounted for 1 hotspot).

Table 1 Demographics and temperature data statistics [expressed as mean ± standard deviation
(range)]

Visit 1 Visit 2

Age 42.6 ± 12.1 years (23–64 years)

Height 1.7 ± 0.1 m (1.53–1.94 m)

Weight 80.1 ± 15.2 kg (54–115 kg)

BMI 26.7 ± 4.3 kgm−2 (20.9–38.9 kgm−2)

Sex ratio 20 male:10 female

Temp of room 23.5 ± 0.2 °C 23.5 ± 0.3 °C

Relative humidity of room 45.9 ± 5.3% 44.9 ± 8.9%

Mean foot temperature (An average of
33 spots: MFT33)

R: 28.3 ± 2.6 °C
(24.2–33.4 °C)
L: 28.2 ± 2.6 °C
(24.3–33.4 °C)

R: 28.6 ± 2.5 °C
(24.3–34.5 °C)
L: 28.5 ± 2.5 °C
(24.2–34.4 °C)

R-L MFT33 0.14 ± 0.70 °C (−0.5
to 1.0 °C)

0.16 ± 0.94°C (−1.7
to 1.7 °C)

Difference in mean foot temperatures
between visits

R: 0.32 ± 1.96 °C (−4.29 to 4.41 °C)
L: 0.31 ± 2.07 °C (−4.61 to 4.59 °C)
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The maximum temperature change measured for one of the spot sites between
visits is −8.8 °C (fifth toe). The thermal images show the whole feet are much
warmer at the first visit (see Fig. 5A). MFT33 for that participant cooled by 4.6 °C
between visits.

The biggest temperature increase recorded between visits was 7.8 °C for the
fourth toe. The thermal images show that the whole feet are much cooler at the first
visit (see Fig. 5B). The MFT33 increased by 4.4 °C between visits.

Figure 4 is a Bland–Altman plot of MFT33 between visit variability [11].
A larger sample size would be needed to determine if there is a significant differ-
ence between male and female absolute temperatures, and their variability between
visits.

Table 2 Hotspot distribution and spot measurement descriptive statistics [where relevant
expressed as mean ± standard deviation (range)]

Visit 1 Visit 2

Total number of hotspots i.e. Spot measurements
� 2.2 °C or �−2.2 °C out of a possible total of
30 x 33 = 990

12 (1.2%) 40 (4%)

Number of participants with at least one hotspot 9 (30%) 9 (30%)

Number of participants with at least one hotspot
at both visits

5 (17%)

R-L difference between spot measurements 0.14 ± 0.70 °C (−2.8
to 2.8 °C)

0.16 ± 0.94 °C (−3.4
to 5.4 °C)

Between visit difference between spot
measurements

0.35 ± 2.19 °C (−8.8 to 7.8 °C)

Number of hotspots by site
(Site number/number of hotspots recorded)
P-plantar
D-dorsal
M-medial
L-lateral

P
1/1
2/2
3/0
4/0
5/2
6/1
7/1
8/0
9/0
10/0
11/0
12/1

D
1/1
2/0
3/0
4/0
5/1
6/1
7/0
8/0
9/0
10/0
11/0
12/0
13/0
14/0
15/0

M
1/1
2/0
3/0

L
1/0
2/0
3/0

P
1/0
2/3
3/4
4/2
5/5
6/1
7/0
8/2
9/2
10/0
11/0
12/0

D
1/1
2/0
3/2
4/4
5/3
6/1
7/0
8/0
9/2
10/2
11/0
12/1
13/0
14/0
15/0

M
1/2
2/1
3/0

L
1/2
2/0
3/0
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5 Discussion

5.1 Right/Left Thermal Symmetry

It is important when discussing thermal symmetry between right and left regions of
interest to be clear how the data has been presented. In our results relative tem-
perature differences have been reported which preserves the sign or direction of the
asymmetry. Unless a foot equivalent of handedness influences thermal symmetry
we would expect a spread of thermal differences around zero, with the standard
deviation giving information about the extent of asymmetry observed. Previously
published studies have not always been clear about this, so it is not always possible
to compare the results of similar studies. This study has demonstrated a thermal bias
to the right of 0.15 °C (the average of the two visits). Although a bias due to
handedness may be possible, analysis of equivalent regions of interest using the
thermal image data acquired by the thermal camera for the second study generates a
mean difference much closer to zero (0.03 °C ± 0.99 °C). This difference could
have arisen due to the Thermofocus® measurements not being simultaneous. The
analysis of regions of interest performed on the thermal images was predominantly
performed on views which captured both feet simultaneously. Therefore the slight
offset to the right seen in the Thermofocus® results could be due to gradual cooling
of both feet (the right foot measurement was always performed first and 77%
participants experienced their feet cooling over the course of the study in visit 2).

Fig. 4 Bland–Altman plot of mean foot temperature (MFT33) between visit variability. MFT33 is
a measure of foot temperature derived from 33 spot temperature measurements from all four
aspects of the foot (plantar, dorsal, medial and lateral)
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Fig. 5 Images from visit 1 and visit 2 for selected participants A–G (seven examples from the 30
studied). A and B exhibit large differences in mean foot temperature between visits whilst
maintaining thermal symmetry. C, D and E are thermally symmetric and more consistent between
visits although they illustrate the variety of thermal patterns seen. F and G exhibit thermal
asymmetry. F undergoes vasodilation during visit 1 and G has a persistent asymmetry throughout
visit 2 which is explained by a foot injury (see text). NB the thermal colour scale for the images is
the same as that for the images in Fig. 1 (which ranges from 15 to 40 °C)
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The results of this study demonstrate the large variability in foot temperatures of
the feet of healthy participants. Figure 5 illustrates that although there can be big
variations in mean foot temperatures from visit to visit, thermal symmetry can be
preserved (see Fig. 5A, B). However, significant spot temperature differences (i.e.
2.2 °C or greater) were measured in 30% of participants. If temperature differences
between contralateral areas of the feet are to be used as predictive indicators of
pathology such as ulceration, the definition of a thermal hotspot needs to be refined.

5.2 Vasodilation

In our study, several factors known to influence thermography of the skin were not
controlled. These factors included the consumption of caffeine, time of previous
meal, footwear worn prior to the test and the level of exertion prior to the test.
Consumption of caffeine, for example, can result in cardiovascular changes after a
short delay. In several participants, over the sequence of images taken, it was
possible to see vasodilation taking place. It often did so unevenly between the two
feet and hotspot measurements were made because a snapshot of thermal symmetry
captured the lag between right and left warming. The images in Fig. 5F illustrate
this in visit 1. A refinement to the definition of a hotspot could be to ensure that the
difference is not a transient feature. This can only be observed if more than one
thermal image is taken. We recommend that taking at least two thermal images,
several minutes apart, should be considered in a test to detect asymmetry.

5.3 Persistent Asymmetry

The images in Fig. 5G illustrate an example of persistent hotspots throughout a
visit. At the first visit, the initially hotter first metatarsal head (MTH) cooled down
over the course of the study. During the second visit, the first MTH and fifth toe on
the right foot were consistently warm when compared with the rest of the same foot
and the contralateral foot. Although there was no visible sign of skin trauma, the
thermal images clearly show areas of increased temperature which can be explained
by the participant reporting pain in those areas.

5.4 Thermal Symmetry

The images in Fig. 5C–E is examples of participants who were thermally sym-
metric throughout each study and were consistent between the two study visits.
They are also examples of the variety of thermal patterns which can be observed in
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healthy feet. Participant C had hot toes and forefoot. Participant D had fairly
uniform feet throughout the study. Participant E had consistently cold toes.

5.5 Significance of Thermal Asymmetry or ‘Hotspots’

The significance of thermal asymmetry or the measurement of hotspots on feet is
dependent on the extent to which they can be observed in the ‘healthy’ population.
Although several factors are known to increase thermal variability these cannot all
be controlled, especially in the context of a quick test which is designed to be a
monitoring tool to predict tissue damage onset. Our study has shown the importance
of taking repeat images in order to rule out transient temperature differences.

5.6 Significance of Foot Temperature

Since all the participants (except perhaps G in Fig. 5) had apparently ‘healthy’ feet,
our study suggests that there is no significance in overall foot temperature when
screening for foot pathology. Some studies have found slight differences in the
mean foot temperatures of different groups, but they did not follow this up with
repeated measurements on the same participants [12, 13]. The magnitude of the
variation we have seen between participants with healthy feet, and between visits
for the same participants, makes it hard to believe that any significance can be
attached to mean foot temperature at all. Foot temperature is naturally bounded by
core body temperature and (roughly) room temperature (dependent on acclimati-
sation time). We have seen mean foot temperatures close to both extremes in just 30
participants.

6 Conclusion

The feet of healthy individuals can be very variable in absolute temperature on
different days but thermal symmetry is generally maintained. Characteristic thermal
patterns seem to be consistent so there may be some diagnostic value in a change in
pattern or symmetry. Thermal asymmetry due to transient changes during the study
period need to be ruled out with repeated images. These studies provide a baseline
understanding of thermal symmetry in the feet of healthy participants which can be
used when interpreting the images of the feet of patients with diabetes and
neuropathy.
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Thermal Imaging for Increasing
the Diagnostic Accuracy in Fetal Hypoxia:
Concept and Practice Suggestions

N.A. Urakova and A.L. Urakov

Abstract We developed a method for diagnosing fetal cerebral hypoxia with a
thermal imaging camera. The method is based on the following detected principle:
hypoxia and ischemia reduce the intensity of thermal radiation from tissues.
Infrared thermography was performed in 35 pregnant women with a ThermoTracer
TH9100XX thermal imaging camera (NEC, USA) in the temperature range of 26–
36 °C. The research results showed that the local temperature of the skin in the
parietal head part in live fetuses during delivery and immediately after birth ranged
from 31.6 to 36.1 °C. It is found that normally an area of local hyperthermia might
be observed on the top of the fetal head, and the temperature in this area might be
0.5–4.0 °C more than the temperature of the areas close to it. This area is located
above the central suture of the skull, and has oblong shape. Monitoring the
dynamics of temperature in the central suture allows us to evaluate the oxygen
supply to fetal brain cortex during delivery. In this context, if the temperature drop
areas are not observed in fetal head skin during his passing through the birth canals,
it indicates the possibility of giving birth to a healthy child. In its turn, the
occurrence of local hypothermia over the central suture of the skull indicates the
hypoxic and ischemic damage to the fetal brain cortex and requires immediate
hyper-oxygenation of the fetus blood. To increase the oxygen delivery to the fetus,
we suggested giving the mother oxygen through a face mask and instruct her to
breathe it in until “feeling drunk”. We also suggest putting oxygen face mask on the
fetus inside the mother’s womb for artificial intrauterine ventilation of fetus lungs
with breathing gas. In addition, in order to prevent fetal brain cortex cells from
dying from hypoxia we suggested cooling the fetal head as soon as it comes out of
the birth canal. We also propose to document the child health status in the final
stage of childbirth by recording the dynamics of local temperature in the head skin
area over the gap between the parietal skull bones with infrared thermography.

Keywords Physiological birth � Intrauterine hypoxia � Thermal imaging diag-
nostics � Newborn � Obstetric care
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1 Introduction

Hypoxia during childbirth is a major cause of perinatal damage to the cerebral
cortex and is a leader in morbidity, disability and mortality rates in infants in the
neonatal period [1]. Therefore, the threat of intrauterine fetal hypoxia in pregnancy
and childbirth should be of great concern to obstetricians and gynecologists [2].
However, this problem remains unsolved, and the doctors lack safe methods for the
diagnosis and monitoring of intrauterine fetal hypoxia.

With this aim in view, monitoring of the fetal heart rate is used to evaluate fetal status.
Fetal heartbeat is monitored by cardiac heart murmur detection device or by measuring
potential difference [1]. The murmur is detected during auscultation using a stethoscope
and/or hand-held Doppler device. Ultrasound examination can also be used [3]. Electrical
forces of fetal heart are detected by electrocardiograph with special sensors [4].

The informative value of these methods is reduced during labor due to the fact
that the contractions of the uterus and other skeletal muscles cause electrical noise
[5, 6]. This increases the error in monitoring sound and electric waves and results in
the situation when sensors need to be replaced.

The study of the amniotic fluid collected by intubation is another common
method for assessing fetal health [3]. This method is based on spectral changes of
amniotic fluid associated with fetal excretion during severe hypoxia. It is monitored
with an amnioscope or by visual observation after amniotomy. Such changes in
amniotic fluid transparency are rare and exceptional [4]. Therefore, the diagnostic
value of amniotic fluid transparency is limited and narrow.

At the same time, fetal hypoxia is dangerous not only for the heart, but also for
the whole body. Moreover, the oxygen consumption in fetal brain is greater than in
fetal heart [7–9]. The status of fetal brain cells defines future mental abilities [10].
Therefore, adequate oxygen and arterial blood supply to the fetal brain is an evi-
dence of adequate obstetric support [1, 4, 11, 12].

In case of hemorrhagic shock in adult patients, this problem is solved by measuring
the local temperature in fingertips with IR thermal imaging camera [13, 14]. However,
this method is not applicable to neonates [15, 16]. In this case, the neonate’s head can be
used instead of the fingertips. Indeed, heat production by the neonate’s brain is asso-
ciated with aerobic metabolism intensity [17]. This allows us to use the dynamics of
local temperature of fetal head for evaluating oxygen supply [4, 17]. However, moni-
toring the fetal head temperature in the delivery room and childbirth thermal imaging
were not used previously for documentation of the labor process [1, 3, 10].

Nowadays continuous infrared thermal imaging of the visible part of the fetus’s head
skin after its appearance is not included in the list of compulsory procedures in childbirth
control. As for methods for diagnosing hypoxia and/or ischemia of the fetal cerebral
cortex during childbirth bearing down period, they are also unknown [18–22]. Based on
the well-known role of general and local temperature in the preservation of life and health
in warm-blooded mammals and humans [8, 9], recently we demonstrated high diagnostic
value of infrared thermal imaging of various body parts surface for evaluating hypoxic,
ischemic and drug damage in adults [5, 13, 23] and children [7, 16]. On this basis, we
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developed a method for assessing the degree of hypoxic damage to the cerebral cortex
and resuscitation efficacy in adults during clinical death [24]. However, this method is not
suitable for diagnosis of hypoxia and/or ischemic brain injury in fetuses during bearing
down labor stage. It was assumed that infrared thermography of the fetal head will reveal
symptoms of hypoxic damage to the cerebral cortex in the fetus. Due to the fact that
hypoxia and ischemia of any part of a human body is associated with local cooling and
change in color of infrared radiation from multicolor palette of red-orange-
yellow-green-blue to monocolor blue palette, the occurrence of local cooling in the
skin area above the suture of fetal skull fontanel during the second labor stage may be a
diagnostic symptom for brain hypoxia. Therefore infrared thermography of fetal head can
be used to diagnose fetal brain hypoxia and/or ischemia in bearing down labor period and
after head appearance out of the birth canals.

2 Results

Before beginning our research, we considered the following assumptions. Sudden
fetal hypoxia can occur in case of placental abruption, uterine inertia and umbilical
cord compression in the final stage of labor. This is due to the physiological
characteristics of this stage of labor such as periodic muscular uterus contractions.
When the uterine wall contracts, the uterus increases the pressure in the amniotic
fluid inside it. Uterine muscles compress not only the fetus, but also the uterine
blood vessels. This evacuates blood from the uterine vessels, thereby inducing
hypoxia of uterus, placenta and fetus.

In the final stage of labor, there is a danger of mechanical compression of the
umbilical cord. This is due to close mechanical contact between the fetus and the
birth canal walls. The umbilical cord can sometimes be pressed against the birth
canal wall by hard fetal body parts. This can lead to its mechanical compression,
devascularization and result in fetal hypoxia.

In physiological childbirth, the fetus passes through the birth canal headfirst.
Thus, during birth the fetal head comes first. The fetal head temperature is higher
than ambient temperature (25–26 °C), which causes rapid evaporation of fluid. As a
result of evaporation, the fetal head temperature decreases. The temperature
decrease rate depends on the intensity of blood circulation in fetal head and brain.
The dynamics of the head skin temperature depends on the oxygen supply to brain
tissues. Local temperature of fetal head can be monitored using IR thermal imaging.
This method is contactless and valid at a distance of 1–2 m. In addition, this method
for monitoring fetal head temperature is virtually instantaneous.

Infrared thermography was performed in a maternity hospital in 35 pregnant
women admitted for physiological birth. Preliminary ultrasonic examination of
women and fetuses health status was performed before childbirth. The tests were
performed using ultrasonic scanners ALOKA SSD—ALPHA 10 and Medison
SonoAce_600_C with standard convex transducers with frequency 3–7 MHz in a
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conventional way. The pregnant women were tested for fetal hypoxia using the
Haussknecht method [25–29].

In this group, in 20 women in 30–32 weeks of pregnancy, fetuses demonstrated
high adaptation to intrauterine hypoxia, which was confirmed by Gauskhneht test
results (more than 30 s). In other 15 pregnant women in 30–32 weeks of preg-
nancy, fetuses demonstrated low adaptation to intrauterine hypoxia, which was
confirmed by Gauskhneht test results (less than 10 s). Infrared thermometry was
performed using Thermo Tracer TH9100XX thermal imager (NEC, USA) in the
temperature range of +26 to +36 °C. The ambient temperature in the delivery room
was in the range of +24 to +26 °C.

In our opinion, fetal health should be evaluated using digital parameters saved
and stored as a document which can be accessed for 18 years after childbirth. In our
study, this was achieved through recording digital IR images. For this purpose, we
consider fetal head temperature to be the most informative parameter because the
cortex has the highest intensity of oxygen metabolism and emits sufficient amounts
of heat to the skin covering the skull fissures.

During our study, we found that infrared thermography of fetal head surface
during labor ensures immediate delivery of accurate information on the dynamics of
its local temperature values in the infrared radiation spectrum. It is shown that
individual values of local skin temperature in the parietal scalp of live fetuses
during labor and immediately after it were observed in the range of +31.6 to +36.1 °
C. If the placental insufficiency symptoms are not observed, and the fetus has high
resistance to hypoxia, then the infrared image of the parietal part of the head rarely
has significant variations in colors.

In the absence of fetal hypoxia, the fontanel temperature is on the average
2.8 ± 0.21 °C (P < 0.05, n = 20) greater than cranium skin temperature. In case of
severe hypoxia, the fontanel temperature is on the average only 1.5 °C greater than
in the absence of hypoxia.

It was found that in normal pregnancy and normal physiological delivery, the
head of live fetus is displayed on the thermal camera screen mostly in
yellow-orange-red color palette. Besides, normally the temperature of infants’ scalp
is high (Figs. 1, 2, 3, 4, 5 and 6).

However, the scalp and body temperature in infants born with meconium-stained
amniotic fluid was low. Moreover, normally an area of local hyperthermia might be
observed on the top of the fetal head, and the temperature in this area might be 0.5–
4.0 °C more than the temperature of the areas close to it. This area is located above
the central suture of the skull, and has oblong shape (Figs 7, 8 and 9).

In the group of 15 pregnant women with placental insufficiency symptoms and
with low fetal adaptation to hypoxia, the dynamics of temperature in the visible
head surface during the bearing down labor stage in 10 fetuses had no fundamental
differences from the dynamics of the temperature in the fetuses in the control group
of mothers. But in other five fetuses we observed short periods of temperature drop
in the central suture area of the scalp. The duration of these periods ranged from 30
to 120 s.
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We analyzed the circumstances of local hypothermia occurrence. It was found
out that the immobile position of the fetus in the birth canal induced local
hypothermia in the fetus’ head above the central suture, whereas spontaneous labors
induced rapid temperature increase (in 2–3 s) in five mothers.

The results showed that the immobility of the fetus in the birth canal enhances
hypothermia in central suture area. We found that temperature image of the head in
these fetuses was normalized only by artificially induced pushing of the fetuses
inside the birth canal.

In addition, high informative value of thermal imaging was demonstrated during
the first period after childbirth. For instance, in newly born infants the temperature
during hypoxia was 32.2 ± 0.08 °C (P � 0.05, n = 5), while after 5 min of

Fig. 1 Thermal camera image of perineum of mother P. and parietal part of the head surface of a
live fetus at the beginning of his coming out of the birth canal in the norm

Fig. 2 Thermal camera image of perineum of mother P. and parietal part of the head surface of a
live fetus at the delivery from the birth canal in the norm
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artificial ventilation it was 34.15 ± 0.09 °C (P � 0.05, n = 5). In addition,
neonatal hypoxia was associated with local hypothermia in their fingertips. This
effect was observed together with blue skin in hands. The nose was the coolest area
in the neonate’s body. The average nose temperature was 30.85 ± 0.15 °C
(P � 0.05, n = 5). The occurrence of local hypothermia in the nasolabial triangle
was observed in one infant (Fig. 10).

We monitored neonates’ health status during the first week after birth. From 20
neonates demonstrating high tolerance to hypoxia before birth and no signs of local
hypothermia of the head skin area over central suture during labor, only one was
found to have cerebral ischemia I. On the other hand, in five of 15 neonates with
intrauterine hypoxia and local hypothermia of the head skin area over central suture

Fig. 3 Thermal camera image of parietal part of the head surface of a live fetus after delivery from
the birth canal in mother P. in the norm

Fig. 4 Thermal camera image of the live newborn head immediately after birth from mother
P. before cutting off the umbilical cord in the norm
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cerebral ischemia I and II was observed. The five neonates were born with
meconium-stained amniotic fluid and acrocyanosis.

Therefore, IR thermal imaging of neonate’s head and body after delivery pro-
vides an informative approach to health monitoring and obstetric care quality
control. Thermal imaging of the fetal head surface, performed with thermal imaging
camera in the final period of labor, allows us to detect the occurrence and devel-
opment of relative local hypo- and hyperthermia in the area of open central suture.
In our opinion, the image of exposed and wet surface of the fetal head during its
delivery surrounded by dry air at ambient temperature allows us to make conclu-
sions about the intensity of oxidative metabolism in the brain cortex, as it is

Fig. 5 Thermal camera image of the live newborn head after birth from mother P. after cutting off
the umbilical cord in the norm

Fig. 6 Thermal camera image of perineum of mother C. and fetus head during the bearing down
stage of labor. Before birth the fetus had a low resistance to intrauterine hypoxia. Curve line in the
graph corresponds to the local temperature of the fetus head between the selected measurement
points
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associated with heat radiation. In its turn, the intensity of aerobic metabolism and
thermal radiation enable us to make conclusions about the oxygenated arterial blood
supply to cerebral cortex. Therefore, normal- and hyperthermia of the entire surface
of the fetal head give bases for assuming that there is no threat of hypoxia and
ischemia of the brain cortex.

Prolonged intrauterine hypoxia is the most probable cause of fetal death during
abnormal labor and mental disability in newborns who underwent hypoxia and
remained alive. The cells of cerebral cortex are known to be the most vulnerable to
lack of oxygen, and the first to lose their functional activity and die. Nevertheless,
modern standards of obstetric care still do not include methods for controlling the

Fig. 7 Thermal camera image of perineum of mother C. and fetus head in 35 s after the
termination of the uterus activity in labor. Curve line in the graph corresponds to the local
temperature of the fetal head surface between the selected measurement points

Fig. 8 Perineum of mother B. and the surface of fetal head at its coming out from the birth canal
in 30 s after the termination of uterus activity during labor and the process of fetus passing through
the birth canal in the infrared (a) and visible (b) ranges of the spectrum
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intensity of aerobic metabolism in fetal brain cortex in the final stage of physio-
logical labor in real time.

Recently, with infrared thermography and thermal imaging cameras being
introduced in medical practice, it has been revealed that monitoring the dynamics of
local temperature of the body surface in humans and animals with a thermal
imaging camera allows us to diagnose the occurrence and development of local
hypothermia areas due to hypoxia and ischemia in a safe and contactless manner.
We were the first to establish that the temperature of the parietal area of the head in
newborns after coming out of the birth canal decreases in case of hypoxia and
increases in case of hyperoxia.

At the same time, we found that the temperature of the head surface in adults
with burr hole in the skull also depends on the efficiency of oxygen supply in real
time. We found that local temperature drop is observed in 11–13 s in finger pads
and in 50–60 s in the trepanation area after the beginning of voluntary apnea. The
recovery of respiration begins to raise the local temperature in finger pads and in the

Fig. 9 Perineum of mother C. and the surface of fetal head at its coming out from the birth canal
in 30 s after the completion of the uterus activity during labor and the beginning of the spot of the
fetus in the birth canal in infrared (a) and visible (b) ranges of the spectrum

Fig. 10 IR image of
neonate’s face diagnosed with
hypoxia in 30 min after birth
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area of burr hole in the skull simultaneously after 2–5 s. Then, after 1–2 min, the
local temperature returns to its initial value, and then continues to increase and may
exceed its initial value by 0.1–1.5 °C. As a result, the area of local hyperthermia
occurs in the former local hypothermia area (Figs. 11 and 12).

Thus, by monitoring the local temperature of the head surface over open suture
and skull fontanelle in newborns and over the burr hole in adults, we can carry out
inference about the sufficiency of oxygen supplied by the arterial blood to the
cerebral cortex, and about the efficiency of lungs ventilation with breathing gas.
Therefore, our data creates hope that monitoring local temperature of fetal head
after its coming out of the birth canal and adult head with a burr hole with infrared
imaging camera may become a new radiology method for evaluating oxygen supply
to the cells of cerebral cortex.

Based on these results and on the theoretical concepts about the relationship
between aerobic metabolism and the local temperature, we presented several
inventions aimed at saving fetal brain cells from hypoxic damage during pregnancy
and childbirth. To increase the oxygen delivery to the fetus, we suggested giving
the mother oxygen through a face mask and instruct her to breathe it in until
“feeling drunk” [21]. We also suggest putting oxygen face mask on the fetus inside

Fig. 11 The head of the
patient V., 56 y.o., in 12 days
after trepanation at normal
blood oxygenation level
(control). Arrows indicate the
values of scalp surface
temperature at point A—over
the intact surface and at point
B—over the burr hole

Fig. 12 The head of the
same patient V., 56 y.o., with
a burr hole in the skull in 60 s
after voluntary apnea and in
3 min after the intensive
recovery of respiration.
Arrows indicate the values of
scalp surface temperature at
point A—over the intact
surface and at point B—over
the burr hole
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the mother’s womb for artificial intrauterine ventilation of fetus lungs with
breathing gas [12]. In addition, in order to prevent fetal brain cortex cells from
dying from hypoxia we suggested cooling the fetal head as soon as it comes out of
the birth canal [20]. We also propose to document the child health status in the final
stage of childbirth by recording the dynamics of local temperature in the head skin
area over the gap between the parietal skull bones with infrared thermography [10].
Finally, we developed lymph substitute agent injected into the cerebral cortex and
aimed at preserving cells viability during hypoxia and ischemia [30].

3 Conclusion

Out findings showed that infrared thermal imaging provides real-time monitoring of
delivery process as well as the dynamics of local body temperature of the neonate; it
is insensitive to acoustical, mechanical and electrical noises caused by sudden
muscular contractions and electrical forces variation in the labor process. This
technique allows monitoring the temperature variations in different areas of the fetal
head skin, providing timely diagnosis of sudden intrauterine hypoxia and control-
ling its duration. Detecting local hypothermia areas over the central suture or frontal
fontanel also contributes to prognosis of neonatal encephalopathy.

IR thermal imaging provides contactless monitoring of the neonate’s head
temperature, thereby providing real-time quality control of obstetric care during
labor and immediately after delivery. The occurrence of local hypothermia area
above the central suture and fontanel can be regarded as an evidence of oxygen
deficiency and intrauterine hypoxia. In normal labor and in the absence of
intrauterine hypoxia, the head skin temperature over the suture should not be lower
than the temperature of the areas close to it. Local hypothermia over the central
suture and/or fontanels is an evidence of insufficient arterial blood and oxygen
supply to the brain, i.e. brain hypoxia and/or ischemia. Long-term local
hypothermia increases the danger of neonatal encephalopathy.

Thus, IR thermal imaging of the neonate’s head during the labor and immedi-
ately after delivery provides a new approach to labor monitoring and obstetric care
quality control. During the final labor stage, this technique provides safe diagnosis
of intrauterine hypoxia and its danger to the neonate’s brain, and involves obstetric
care correction. We believe this method might have favorable prospects in
decreasing the neonatal mortality and neonatal encephalopathy.

Infrared thermal imaging also enables taking digital videos and photographs of
the fetus, which can be saved and stored in USB flash drive.
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Active Dynamic Thermography
in Medical Diagnostics

Mariusz Kaczmarek and Antoni Nowakowski

Abstract This is an overview of active thermal imaging methods in medical
diagnostics using external thermal stimulation. In this chapter, several clinical cases
diagnosed using the active dynamic thermography method, ADT, are presented.
Features of this technology are discussed and main advantages underlined.
Applications in skin burn diagnostics and quantitative evaluation leading to modern
classification of burned patients for further treatment are shown. Also the use of
thermal imaging in cardiosurgery is discussed. A method of quantitative evaluation
of the healing progress of post-cardiosurgery wounds is presented. The ADT
method gives quantitative description of thermal structural data, supplementing
well-established static thermal imaging that carry functional physiological infor-
mation. Combination of both modalities supports the idea of modern multimodality
approach in medical diagnostics.

Keywords Thermal imaging � Thermal stimulation � Signal processing �
Thermography

1 Introduction—Thermal Non-destructive
Testing Methods

InfraRed Thermal Imaging (TI), for the first time applied to medical diagnostics by
Barnes [1] in sixties XX-century, allows to analyze physiological processes man-
ifested by abnormal distribution of temperature at the surface of a human body.
Overview of TI history may be found in many articles [2, 3]. Probably the most
comprehensive handbook dealing with thermal imaging in medicine is the mono-
graph [4]. Hot or cold spots indicate different metabolic processes but also strongly
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depend on heat exchange conditions and are not specific. Therefore interpretation of
diagnostic value of skin temperature distribution is difficult and requires careful
preparation of a patient in stable environmental conditions.

Another thermal diagnostic value offer several methods using intentional heat
exchange processes, known in industry since late eighties as thermographic
non-destructive testing (TNDT) called also infrared non-destructive testing
(IR-NDT). All of those methods using the same IR-thermal cameras and registra-
tion of dynamic temporal distribution of temperature, following external excitation,
allow insight into internal structure of a tested object. Such analysis requires
knowledge of boundary conditions and may be called model based. As the result
analysis of transient thermal images existing at the surface of a tested object is
giving structural information. In medicine we proposed one of such methods called
Active Dynamic Thermal IR-imaging (ADT) as a new diagnostic modality, what we
recently reported for the last 15 years [5]. In this chapter, we summarize this
experience showing a few cases of practical value of ADT in clinical diagnostics.

The idea of material testing by any of active thermography methods is based on
forcing heat flows in a tested structure and observation of transient thermal pro-
cesses at its’ visible surface, allowing further analysis of thermal transients using
model-based approach. In effect visualization of material subsurface structure and
existing abnormalities or failures is possible and leads to application of thermal
testing in many technical fields [6]. There are numerous ways of excitation and
following data treatment described in this book. Analysis of the progress of all
quantitative thermal methods applied up to date is possible by studying materials of
following Quantitative Infrared Thermography Conferences [7]. In medicine, one of
the most frequently applied methods is pulse excitation, heating or cooling, here
called Active Dynamic Thermography (ADT). For evaluation of tested structures
parametric images are calculated mainly using multi-exponential approximation
parameters as quantitative descriptors. The measurement procedure requires use of
heat excitation, heating or cooling, to be applied to the object under test (OUT).
Thermal response at the surface of OUT to external excitation is recorded using IR
camera. Usually during excitation, the tested surface is of limited visibility by an IR
camera, therefore the phase of natural recovery to initial conditions after excitation
gives more reliable data for further analysis.

It is worth to mention that measurements of thermal transient processes allowed
proposing the method called thermal tomography (TT). Vavilow and others,
dealing with IR-NDT, proposed this term already 30 years ago [8–10]. According
to the common meaning of the word tomography, this proposal was not correct as
instead of using real reconstruction of a tested structure, existing in all tomographic
procedures, they proposed so called maxigrams as diagnostic descriptors. Real
thermal tomography approach was presented in 2003 [11]. The dynamic response
recorded as a series of IR images allows reconstruction of properties of the
equivalent thermal model. Either thermal properties of the model (for assumed
structure of the OUT) or the internal structure (for known material thermal prop-
erties) may be determined and recognized. Even today the concept of using TT is
not new; this modality may be practically regarded as a research tool only because
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in real technical and medical applications it is not practical. Reconstruction algo-
rithms are rather slow, 3D thermal models required to run the reconstruction are
complicated and identification of boundary conditions is problematic. In conse-
quence results of the research in TT are known, but it is difficult to find its’ practical
application in clinical or technical diagnostics.

Another more successful approach is the procedure called thermographic signal
reconstruction (TSR) [12]. Here also pulse excitation is applied and shapes of
transient thermal processes are approximated by multi-exponential functions.
Additionally derivatives are calculated allowing enhanced visualization quality of
tested structures. Recently this method was applied in medicine, based on analysis
of the thermal processes after temporal occlusion stopping blood circulation. This
experiment shows that even complicated physiology processes may be evidenced
using this approach [13, 14].

In medicine, thermographic registration after external energy excitation was
applied probably for the first time around 30 years ago [15]. To force heat flows the
microwave excitation was applied in vivo on mice with induced tissue of the breast
cancer. Again we proposed to use ADT in medicine and published early results of
animal experiments [16–18]. As a handy procedure for visualization of affected
regions we proposed the use of synthetic pictures of exponential model parameters,
describing thermal transient processes at the phase of natural recovery to equilib-
rium after external pulse excitation [19, 20]. In this case, equivalent thermal model
parameters of tested region of interest (ROI) are calculated allowing quantitative
data visualization.

The main advantage of ADT in medicine is possibility of short thermal inter-
action with a tested region, as normally biofeedback processes may be activated
strongly influencing on measurement results. On the other hand there are several
practical issues limiting use of ADT in medical applications. For many years
heating was regarded as almost ideal solution using optical or microwave energy,
being fully aseptic and handy. Unfortunately, distribution of microwave energy is
hardly controlled and optical excitation is usually nonuniform. Additionally the
level of heating is strictly limited to 42 °C; higher value is damaging living cells
and organs. Finally boundary conditions are usually uncontrolled, as temperature
along superficial tissue is decreasing due to heat exchange at the skin surface. In
such conditions, temperature gradient after heating may be low, what makes
understanding of heat exchange difficult in interpretation. This leads to conclusions,
that cooling, even technically more difficult, is a better solution. First, the amplitude
of excitation may be higher comparing to the heating case; cooling down even to
4 °C is acceptable. For typical skin temperature equalling around 30 °C it is more
than 20 °C difference; such gradient of temperature is easy and accurately mea-
surable. Additionally the applied thermal camera shows the difference of the skin
and the environment temperatures. If the tested ROI would be cooled only to the
room temperature, the external heat exchange is minimized and internal heat flows
are dominant, enabling better understanding of thermal phenomena and in conse-
quence reconstruction of internal structure of a tested region. One has to remember
that measurement results may strongly differ for ex vivo and in vivo experiments.
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In medical diagnostics the concept and problems of validity of active dynamic
thermal imaging (ADT) as well as thermal tomography (TT) or temperature signal
reconstruction (TSR) are almost the same. In all three cases, the main element
allowing quantitative evaluation of tested objects is the use of realistic thermal
equivalent models. Practically the same instrumentation is applied in diagnostic
procedure and only the data treatment and object reconstruction methods are dif-
ferent. Also the sources of errors influencing quality of measurements and limiting
accuracy of reconstruction data are the same. Main limitations are due to necessity
of using proper thermal models of living tissues, which are influenced by physio-
logical processes and are not very accurate due to hardly controlled experiment
conditions. One of important problems is correlation of thermal and physiological
properties of living tissues essential for proper diagnostic interpretation of images.

ADT research results from phantoms, from in vivo animal experiments as well
as from clinical applications performed in the Department of Biomedical
Engineering Gdansk University of Technology and in co-operating clinics of the
Medical University of Gdansk are discussed [20–27]. The results concern appli-
cations of thermal imaging in diagnostics of burns, skin transplants, cancer visu-
alization and open-heart surgery, including study on healing processes of
postoperative scars, evaluation and diagnostics. In this chapter, the problem of
clinical use of ADT in skin burns and in analysis of post-cardiosurgery wound
healing are presented for illustration.

2 Principles of Active Thermography Methods

The diagnostic instrumentation of all three dynamic thermography methods—ADT,
TSR, and TT is the same. Central is the IR-thermal camera; most of modern
research cameras with software allowing synchronization of image capture is suf-
ficient for ADT experiments, of course the lower MRTD and higher geometry
resolution the better for image quality. Very important is the excitation source, it
should be able to force fast switching on and off pulses of constant energy lasting
from seconds to even minutes. External thermal excitation source (heating or
cooling) should be applied to a tested structure in fully controlled conditions. The
basic data acquisition procedure is shown in Fig. 1.

What is very important, each patient should be carefully prepared for diagnos-
tics. Environmental conditions should be controlled and registered, too. First,
steady state temperature distribution on the region of interest (ROI) is registered
using the IR camera. The following step requires pulsed thermal excitation appli-
cation to the diagnosed region of interest and registration of temperature transients
at the ROI surface. The driving unit synchronizes the processes of ROI excitation
and thermal images registration. Usually the most important phase is recovery to the
initial conditions after excitation as during excitation ROI may be not accessible.
The ADT procedure may be repeated even in following days therefore careful
determination of ROI is essential for proper data treatment. Visual camera (Fig. 3)
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and fiducial markers may help to assure ROI determination the same in each image.
All raw data are stored in the data acquisition system for further computer analysis,
including geometry matching.

As in medicine, one is dealing with living patients problems of unintentional
movements, breezing etc. must be solved. This requires synchronization of fol-
lowing images, determination of the region of interest—ROI—the same on all
images in the series, and even in different days; therefore movement corrections are
necessary. Usually diagnostic instrumentation is equipped in proper software
packages allowing easy data manipulation and at least semiautomatic registration of
images. Corrected series of images are stored in the image database for further
application of ADT, TSR, or TT procedures.

In ADT, simplest equivalent multi-exponential models are applied. As the
diagnostic descriptors mainly thermal time constants (s1, s2) are applied, though the
magnitude Ts (temperature gradients) are also of important diagnostic values. Such
descriptors are strongly correlated to a simple equivalent model, e.g., the three-layer
structure described by thermal resistance Rth(1-3) and thermal capacitance Cth(1-3).
The product Rth(1-3)Cth(1-3) is equivalent to thermal time constants. In many cases,
due to limited measurement accuracy only two exponential models applied are
sufficient. It should be underlined that medical staff expectations concerning data
manipulation is the simplest possible description!

Much more complicated is TT procedure as in this case reliable 2D or 3D
structural thermal models must be applied and identified. Tomographic procedure
of reconstruction and identification of model parameters is shown in Fig. 2. It may
be performed after all of diagnostic images of series are properly registered and
corrected serving as the reference measurement data (database of series of diag-
nostic ROI images). Reconstruction starts as an iterative process of identification

Fig. 1 Diagram of active thermography procedure
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parameters of the assumed model structure. Unfortunately only surface ROI tem-
perature is known from measurements; therefore the reconstructive procedure
strongly depends on the knowledge of boundary conditions and accuracy of mea-
surements, in fact on the accuracy of reconstructed temperature transient signal in
each pixel only. The simulated transient after solving the forward thermal problem
is compared with measurement data. If the results of measurements and simulation
are not satisfactory, the model parameters are changed and the following iterative
procedure is continued. If results are convergent the reconstruction procedure stops.
With a great probability the model is representing the tested structure.
Unfortunately this reconstruction procedure is long and not always successful as the
problem is mathematically ill posed and boundary conditions are not always
properly identified. Those facts are responsible for limited interest of TT in practical
applications.

In principle, the TSR method is using the same approach and instrumentation as
ADT and is already broadly applied in industry IR-NDT. Heat exchange problems
in medicine are much more complicated due to very complicated biological
structures, additionally masked by biofeedback processes; therefore here we will
stress our notice on practical discussion of ADT experiments only. In some medical
experiments “internal” thermal excitation may be applied, e.g., clamping blood
flow, instead of forced external cooling.

The set practically used in clinical diagnostics described in the following text is
shown in Fig. 3. Two cameras—IR and RGB are applied for registration of thermal
processes and visible images. Use of both cameras is essential for proper deter-
mination of ROI as RGB images are of much better spatial resolution than thermal
images. Here cooling using two CO2 cryotherapy units is applied to get relatively

Fig. 2 Tomographic procedure of reconstruction and identification of a tested structure
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uniform ROI area for diagnostics. Usually excitation procedure (cooling) lasts up to
60 s, practically until ROI temperature decreases to the room temperature. At this
moment coolers are switched off. The recovery phase is longer but registration of IR
images is performed during no more than three cooling cycle times. This procedure
was applied to skin burn diagnostics as well as to the analysis of post cardiosurgery
wound healing, skin transplants, and others.

Additionally a weather station is installed to control environmental conditions
such as temperature, air pressure and humidity. If necessary, ECG unit is applied for
synchronization of thermal images with the heart action during open heart car-
diosurgery interventions.

The temperature distribution at the ROI is composed of pixels which should be
identified as the same on all following images in series. In ADT parametric images
are calculated representing equivalent, usually the two exponential models. Chosen
model parameter, mainly one of time constants allows quantitative description of
ROI properties important in taking specific diagnostic decision.

To read more about this set see e.g., [5, 28, 29], where also issues related to
applied software, data processing, model fitting, normalizing to the reference ROI
are discussed.

Fig. 3 ADT set in clinical environment; here diagnostics of a post-cardiosurgery wound
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3 Evaluation of Burns

It was almost natural to apply thermal imaging to assessment of burns [1]. The
results have been encouraging giving for the first time an objective and quantitative
tool in burn wound diagnostics. Still, the problem of undetermined burns diag-
nostics was not fully solved. Important progress using ADT is described in [27].
Here we comment main outcomes of this work. The research was performed at the
Department of Biomedical Engineering Gdansk University of Technology in
cooperation with the Department of Plastic Surgery, Gdansk University of
Medicine. All experiments were performed with permission of the proper ethics
commission.

In burn treatment it was typical to classify burn wound area to four degree
classes of the Jackson scale [30]. According to present methodology only two class
determinations of burns are important: the first class is when wounds will heal
spontaneously within 3 weeks and the second class—those which will not heal
within 3 weeks. Treatment of burn patients strongly improved over recent years
with help of diagnostic instrumentation, but diagnostics of undetermined burns still
requires definition of objective diagnostic descriptors to determine regions to be
healing within three weeks after the burn.

Before treatment procedure of a burn wound can be applied, the patient should
be properly and completely evaluated. Reliable diagnostics, evaluation, and man-
agement greatly help in minimizing suffering, optimizing healing results, and
reduce economic costs. The best expected situation during the burn treatment would
be if the physician could obtain a diagnostic image with clearly visible area of burn
for surgical treatment (3) and area for conservative treatment (1) like it is shown in
Fig. 4.

Burn wounds depth is regarded as the factor of crucial importance for the proper
choice of treatment [31, 32]. Beside very imperfect, based only on visual inspection
but the most frequently used clinical (visual) evaluation, several objective diag-
nostic methods have been proposed. Monstreya at all published [33] the review of
methods used in evaluation of burn depth: (1) clinical evaluation; (2) histopathol-
ogy of local biopsy as the reference; (3) methods based on evaluation of micro-
circulation in the burn wound, as: thermography, laser Doppler imaging (LDI) and
other [34, 35]; (4) the group of research methods, as: optical, USG, photo-acoustic

Fig. 4 Example of burn
wound diagnostic results;
1 burn wound area; 2 healthy
skin; 3 recognized and
indicated area of full thickness
burn requiring surgical
intervention
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and nuclear imaging [36, 37]. After 2008, papers devoted to development of the
LDI method are most frequently published, see e.g., [38–41]. Our proposal allows
determination of the burn depth using the ADT [27] and TT [11] approach.

Our recent ADT procedure of burn wound diagnosis comprises the cooling
phase lasting about 60 s, then recording of the thermograms sequence within 3 min;
the last step is the data fitting procedure. Using as a stimulus cooling medium one
can get larger temperature gradients comparing to stimulation by heating using
halogen lamps or incandescent IR sources, not worrying about the possibility of
destructive action of the excitation to the tested tissue. However, be careful to avoid
biofeedback reaction by inclusion of body’s defense mechanisms counteracting
becoming too cool and falsifying the test results. Another problem is to ensure
uniform cooling of the entire ROI surface during the stimulus.

In the case of cooling the burnt skin surface to the ambient temperature the
gradient between the inner tissue layer and the skin surface increases, while
the temperature difference from the environment decreases. After switching-off the
cooling source, the heating process occurs at the skin surface, largely due to the heat
flow from deeper layers of the body. Value of the heat flux depends on factors
characterizing the tissue, its structure, and physiology. This perfectly justifies the
use of cooling in diagnosis of burn wounds and other types of diseases in which
there are changes in the structure or functioning of tissues. It allows detection of
particular changes in blood circulation or local changes of tissue structure, for
example changes in tumor tissue depending on the stage of the disease, resulting in
increased or decreased blood circulation. As an example, the case shown in Fig. 5 is
discussed in details.

It is a case of burn wound by hot oil to the abdomen. Clinical diagnosis is shown
in Fig. 5a, but the patient was treated conservatively only, as for assuring clinical
diagnosis the histopathology of the biopsy specimen taken in the center of the
undetermined burn area was 50.4% dtms (dermal thickness on measurement site)
what should be healing spontaneously within three weeks. Interpretation of para-
metric ADT images differs. The magnitude—temperature Ts—gives the same score
as the clinical method in the undetermined burn region. The time constant mean
value of s2n in Ub area was −0.01; in the area diagnosed as superficial burn s2n was
−0.09. This time is slightly longer than values for the unburned skin but shorter
than the threshold value dividing burns into healed and unhealed in 3 weeks. The
mean value for the undetermined area was −0.15 which is longer than for that part
of the wound prognosis as superficial, but still shorter than the threshold value
0.00013. So, finally the diagnosis was following: ROI marked as “1” indeed was
the first class wound which will heal in 3 weeks. The ROI marked as “?” finally
appeared to be also the first class healing wound. Therefore the undetermined in
visual inspection part of the wound was accurately diagnosed by means of the ADT
method—the time constant parametric image. The whole abdomen area was healed
in 3 weeks, which confirmed the earlier ADT diagnosis.

In order to verify quality of applied methodology in clinical tests several cases of
burned patients were carried out, see, e.g., [21, 22, 27]. Patients were treated
routinely, according to the workflows established in the clinic and in accordance
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with common standards: before the test acclimated in an especially dedicated room
for testing, which ensured controlled conditions; no drafts; no strong sources of
radiation; the ambient temperature of 22 °C and normal humidity. Clinical evalu-
ation of burns was performed by an experienced physician and compared with the
results of IR-thermal imaging TI and ADT. Evaluation of the wound treatment three
weeks after the accident proved validity of the clinical and thermal diagnostics.
Detailed results are shown in cited papers [21, 22, 27].

4 Evaluation of Post-cardiosurgery Wound Healing

One of very interesting applications of IR-thermal imaging is in cardiosurgery [42].
In this chapter, we show results of a research project devoted to analysis of the
value of ADT thermal IR-imaging in post-cardiosurgery wound healing evaluation.
This research was performed at the Department of Biomedical Engineering Gdansk

(a) (b)

(c) (d)

1
1

?1

Ub

?1

31.8°C

29.6°C

33.8°C

Ub

1
- 0.09

1
- 0.15

Ub - 0. 01

Fig. 5 Comparison of RGB diagnostic images of the burn wound to the abdomen in 19 year old
man and ADT parametric images at the post burn day 2; applied descriptions: Ub unburned skin, 1
superficial burn which will heal within 3 weeks, question mark undetermined burn; a RGB after
accident on the post burn day 2; b after 3 weeks; c temperature Ts [°C] and d time constant s2n
descriptor at the day after burn accident
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University of Technology in cooperation with the Department of Cardiosurgery,
Gdansk University of Medicine, financed by the Polish National Science Centre.
All experiments were performed according to legal regulations and permission by
the Gdansk Ethics Commission. Early results are already published in [28, 29].

There are several characteristic phases in the process of post-surgery wound
healing, where cellular and chemical reactions interweave. The first is directed to
stop the bleeding by contraction of damaged blood vessels; a clot is formed in this
phase. In the second phase, a number of mechanisms are activated aimed at clearing
the necrotic tissue, hematomas and foreign bodies in order to prepare the ground for
the formation of scar tissue. The third phase smoothly develops new vessel, nerve,
fiber, and the epithelial tissue formation. Cardiac treatment undoubtedly interferes
with these processes. Patients undergoing cardiac procedures often have signifi-
cantly impaired clotting because of the underlying disease anticoagulation.
Typically during the treatment, drugs that affect coagulation are applied. Long-time
use of extracorporeal circulation may have destructive influence on the function of
platelets and other cellular components of the blood, too. In the first days after the
operation, generalized unspecific inflammatory reaction of the body occurs.
Undoubtedly, the described processes may lead to formation of interstitial edema
and abscess fluid. The extent of surgical trauma often causes formation of large
areas of necrosis. Long-time exposure of the operating field may affect microbial
contamination, which can thrive on encountering the clot, tissue necrosis, ischemic
topically with interstitial edema can cause infectious complications in healing
wounds.

The diagnosis of complicated wound healing and/or infection uses standard
definitions [43, 44]. The one consists of the following attributes: exude from the
wound and its spontaneous dehiscence; positive results of bacteriological exami-
nation of exude or tissue taken from the wound; swelling, redness, pain, and an
increase in temperature around the wound. At least one criterion should be fulfilled
to recognize the complicated healing of the wound. It is often difficult to recognize
and properly diagnose specific symptoms existing in a short postoperative period to
six days after surgery. Early symptoms of deep wound infection with mediastinitis
may remain unrecognized due to pain in the region of the wound, which is usually
typical for a patient after the surgery, and often very strong inflammatory response
and the possibility of other infections, such as the lung tissue, etc. Only a very
experienced surgeon or doctor may determine proper diagnosis on wound healing
after surgery.

The most significant additional examinations at a rapid diagnosis of deep
wounds with inflammation of postoperative mediastinitis are cultures of secretions
from the surgical wound and bacteriological examination of the blood. Proper
prediction method of wound healing is very important. Currently, up to 10% of
patients have problems with normal healing of surgical wounds, and they often
require re-operation and costly treatment. This also has an impact on the deterio-
ration of quality of life after surgery.
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The goal of the reported research was to

1. Elaborate a simple diagnostic, qualification, and therapeutic routine in the case
of patients with wound healing complications.

2. Provide a description of “natural history” of wound healing complications.
3. Evaluate effectiveness of the proposed ADT method.

It is well known that thermal processes accompany all metabolic changes related
to blood deficit or increased circulation. Therefore it was natural to assume that
thermal processes should be effective in subtle description of temporal changes of
tissue thermal properties after surgical interventions and should be useful in terms
of diagnostic evaluation of healing processes. We applied both, TI—temperature as
a useful diagnostic descriptor, and ADT parametric images important in structure
thermal properties determination in the vicinity of the postoperative wound.

The research presents a routine of qualification process and treatment applied to
400 cardiosurgery patients with sternotomy access, among them only five patients
suffering from wound healing complications after cardiac surgery.

Patients were classified into two groups: the group 1—patients with no infected
wound dehiscent; the group 2—only five patients with superficial wound infection
and with acute deep wound infection and mediastinitis. Based on thermal investi-
gation and data analysis we proposed the following classification method:

1. Thermal and visual investigation (TI, ADT, and RGB images) on the day before
cardiosurgery—as the reference data—indicated as the day 1.

2. Thermal and visual investigation on the day after cardiosurgery intervention—
the third day.

3. Thermal and visual investigation three days later—the sixth day.
4. Following step is data analysis and fitting of measurement results at each pixel

to the two-exponential thermal model.

As descriptors the temperature as well as ADT parametric images are calculated.
Most important is calculation of descriptor differences at following days and wound
classification according to the proposed thresholds. For evaluation of the wound
healing process the differences between the day 6 and the day 3 are chosen as
diagnostically decisive

DTs ¼ Tsð6 dayÞ � Tsð3 dayÞ
Ds2 ¼ s2ð6 dayÞ � ssð3 dayÞ:

Such defined differences are finally analyzed as healing process diagnostic
images and quality indicators.

In general, thermal images are of lower geometry resolution than RGB images.
Therefore registration of IR images and matching with equivalent visual images
allow for more precise interpretation of diagnostic content. As an example, the
result of matching of a color photograph and a thermogram with additional
determination of the ROI and parametric image of the descriptor in ROI is shown in
Fig. 6. Only well identified and fitting to the reference ROI images are compared.
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Fig. 6 Example of wound healing diagnostic results: the images fusion: a photo and static thermal
image; b photo and s2 descriptor; c photo and s2 descriptor and score results
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Final ROI diagnostic visualization shows the same region on the patient chest
surface in all images.

In Table 1 values of descriptors Ts (°C), s1 (s) and s2 (s), obtained for the
controlled group of patients without the wound healing complications are collected.

According to Table 1 the value of the second (longer) time constant s2 parameter
is taken as the decisive diagnostic figure of merit. The three stage classifier and
classification thresholds are set as

a= 1 for Ds2\� 10
b= 0 for �10\Ds2\10
c= �1 for Ds2 [ 10

Based on this classification a diagnostic example is shown in Fig. 6c, where the
RGB image, the parametric s2 descriptor, and the normalized score according to
such defined thresholds are matched. The normalized and averaged in 5 by 10
pixels of ROI fields score is presented as

white (1)—“healing process with complication”;
gray (0)—unrecognized—“hard to say”;
black (−1)—“good (well) healing process”.

Patients with wound healing complications are treated following special pro-
cedure. The treatment applied during the first phase, lasting from the moment of
recognition up to 7 or 14 days, was similar for all the patients. The applied pro-
cedure combines application of antibiotics, surgical opening of the wound in order
to place an antiseptic dressing and 10 sessions of HBO (HyperBaric Oxygenation)
healing. On the following figures, two examinations are shown—first—a patient
with wound healing complications (Fig. 7) and the second one—a patient without
wound healing complications—proper wound healing (Fig. 8).

In following pages, diagnostic images allow to compare two patients: Fig. 7—
wound healing with complications and Fig. 8—no complications of healing wound.

Table 1 Descriptors of patients without complications—reference data; mean value and standard
deviation (sd) of the two exponential model

Day 1 Day 3 Day 6 d6–d3

Value sd Value sd Value sd Value

Wound area Ts [°C] 33.42 1.36 34.34 1.10 33.75 1.03 -0.59

s1 [s] 3.40 1.15 3.36 0.97 3.76 1.23 0.40

s2 [s] 35.60 8.90 32.07 8.03 38.49 9.88 6.41

Healthy area around
the wound

Ts [°C] 33.19 1.76 33.83 1.56 33.64 0.94 -0.19

s1 [s] 3.51 1.20 3.48 1.16 3.88 1.18 0.40

s2 [s] 35.11 8.87 36.03 9.75 41.57 11.97 5.53
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Patient E – with complications (deep  wound  infection  and  mediastinitis pro-
gression, Hyperbaric oxygenation treatment)

Day 3 Day 6

Difference: (Day 6) - (Day 3)

Fig. 7 Example of wound healing diagnostic results: photo; static thermal image; s1 and s2
descriptors and final score results—wound healing with complications
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Patient GKD – no complications
Day 3 Day 6

Difference: (Day 6) - (Day 3)

Fig. 8 Example of wound healing diagnostic results: photo; static thermal image; s1 and s2
descriptors and final score results—no complications wound healing
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Results of measurements are shown for the days 3 and 6. Interpretation of thermal
and parametric as well as RGB images is not easy, but the score—the lowest image
—gives clear indication what to decide about a patient.

Figures above show typical diagnostic results. We present images of descriptors
Ts (°C) and s2 following the fitting procedure for Day 3; Day 6 and differential
images (Day 6–Day 3). The applied classifier of diagnostic decision is the differ-
ential image of the second time constant of the two exponent thermal model. For
this classifier, only the closest to the wound region of the ROI is presented at the
decisive image. The score is presented on matched RGB and parametric images of
s2. There are two rows of pixels averaged in segments ±5 � 10 along 200 pixel
length covering the whole wound. Segmentation makes easy the classification and
presentation of results. The diagnostic decision would be to keep the patient at the
hospital for further treatment if the score is white (case no 1) or release him to
recover at home if the score is black (case no 2).

In most of clinical cases, this decision is taken at the day 6 (4 days after
operation), as due to economic reasons treatment and rehabilitation at home is
strongly advantageous.

5 Summary

This overview shows importance of still new in medicine visualization modality
called ADT—Active Dynamic Thermography. Assuming that classical thermal
imaging TI is already broadly accepted, what in fact is only partly true as some
clinicians still remember that this technology in breast cancer diagnostics failed in
early stage of development [45, 46], the ADT increases the role of thermal imaging
in medicine. To register static TI and dynamic ADT images the same IR camera is
applied. Both modalities are supplementing each other as TI shows metabolic
functional thermal images and ADT allows reconstruction of structural thermal
properties adding to functional also structural diagnostic data. Therefore analysis
and comparison of temperature distribution and images of ADT descriptors allow
better understanding of diagnostic content and support multimodality concept of
advanced diagnostics in medicine.
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Evaluation of Respiration Rate Using
Thermal Imaging in Mobile Conditions

Jacek Ruminski and Alicja Kwasniewska

Abstract Respiratory rate is very important vital sign that should be measured and
documented inmanymedical situations.The remotemeasurement of respiration rate can
be especially valuable for medical screening purposes (e.g. severe acute respiratory
syndrome (SARS), pandemic influenza, etc.). In this chapter we present a review of
many different studies focused on the measurements and estimation of respiration rate
using thermal imagingmethods.Additionally,wepresent results of our research focused
on the evaluation of different respiration rate estimators for the needs of data processing
of image sequences recorded by small, mobile thermal cameras.We used small thermal
camera modules in the prototypes of smart glasses for the evaluation of different
parameters related to respiration activities. The chapter presents the used methodology
and results of the respiration rate analysis, detection of apnea events, description of
respiration patterns and other parameters that can be analyzed for respirationwaveforms
derived from the regions of the nostrils or mouth in thermal video sequences.

Keywords Thermal imaging � Vital signs � Image processing � Medical imaging

1 Introduction

In physiology, respiration can be defined as the two directional exchange of gases.
Oxygen is delivered from the outside air to the cells in tissues and carbon dioxide is
transported from cells to the outside air. The exchange of gases is caused by
differences in the pressure between lungs and surrounding atmosphere. During the
inspiration (inhalation), air enters the lungs, because the air pressure in lungs
(within the alveolar spaces) is lower than the atmospheric pressure. When the air
pressure becomes higher than the atmospheric pressure the expiration (exhalation)
is observed. Therefore, the breathing process can be monitored by the observation
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of two fundamental activities: mechanical changes of chest/abdomen volumes and
airflow changes in nose/mouth regions. Such observations can be described using
quantitative parameters representing properties of the breathing process: respiration
rate, respiration regularity, presence and length of apnea events, etc. Respiration
rate (RR) can be defined as the number of breaths for one minute or “breaths per
minute” (bpm). Respiratory rate can characterize the breathing process indicating if
the respirations are normal, too fast (tachypnea), too slow (bradypnea), or nonex-
istent (apnea). However, threshold values that could be used in differentiation of
different categories of abnormal respiratory rates are sometimes defined for different
categories of subjects. For example, normal respiration rate is changing with age.
Therefore, some organizations propose tachypnea threshold values as [1, 2]:

• Newborn to 2 months: 60 bpm
• Infant 2 months–1 year: 50 bpm
• Preschool Child 1–5 years: 40 bpm
• School age Child: 20–30 bpm
• Adults: 20 bpm.

Respiratory rate is one of three fundamental vital signs (body temperature, heart
rate and RR) and it is a very important parameter indicating potential health problems.
For example, the value of the RR above 27 bpm could be a predictor of cardiac arrest
[3]. The increased RR is used in the prediction of pneumonia [4] or for the prediction
of lower respiratory tract infection [5]. In basic epidemiology, WHO’s guidelines
recommend that pneumonia case detection can be based on clinical signs alone,
mainly respiratory rate [6]. It has been also shown that the respiratory rate is more
discriminatory between stable and unstable patients than pulse rate [3]. Cretikos et al.
[7] specified many recommendations about the measurement of respiratory rates for
patients staying in hospitals. For example, they claimed “the respiratory rate should be
measured and documented accurately in all hospital patients at least once a day, and
should always be documented when other vital signs are measured”.

Apnea is defined by the cessation of respiratory airflow and it is especially
dangerous during sleep. The length of time required to classify the cessation of
respiratory airflow as a true apneic episode is measured in seconds [8], e.g., >10 s
for Central Sleep Apnea [9].

Respiration regularity is characterized by periodical appearance of
inspiration/expiration events and similar amplitudes (depth) of those events.
Abnormalities in respirations may occur in rate, rhythm, and in the effort of
breathing. Different respiration patterns have been observed for some illnesses or
injuries, including [10, 11]: Cheyne-Stokes respirations, Biot’s breathing,
Kussmaul’s respirations, Apneustic respirations, and Ataxia respirations.
Cheyne-Stokes respirations are characterized by periods of respirations, during
which breathing gets progressively deeper and then gets progressively shallower
(crescendo–decrescendo pattern). Similar series of variable in depth breaths are
separated by periods of significant apnea (Fig. 1a). This respiration pattern can be a
result of strokes, brain tumors or injuries, carbon monoxide poisoning, high altitude
sickness and can be observed as a side-effect of morphine administration. Biot’s
breathing (or cluster respiration) pattern has clusters of similar rapid respirations
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separated by apnea periods (Fig. 1b). It could be also a result of stroke or trauma.
Kussmaul’s respirations are characterized by deep and fast breathing (hyperventi-
lation) (Fig. 1c). It is typically observed in the late stages of a severe metabolic
acidosis, for example in diabetic ketoacidosis. Prolonged inspiration and expiration
phases are observed in apneustic respirations (Fig. 1d). The prolonged expiration
phase and following pause phase are interpreted as apneic phases due to long
cessation of air inflow. It is commonly caused by some damages in central nervous
system (CNS). Finally, ataxia (chaotic) respirations constitute a very irregular
respiration pattern with irregular pauses and increasing episodes of apnea (Fig. 1e).
It could be caused by damages in CNS, typically to the medulla oblongata.

Parametric description of respiration patterns should represent changes in rate
and the depth of breathings and should describe the presence and timing of apnea
events. Different methods have been proposed in literature for the monitoring and
description of respiration-related parameters. In this chapter, we are focusing on the
application of thermal imaging for remote monitoring of respiration rhythm. As it
was presented earlier, respiration activities can be analyzed observing mechanical
changes of chest/abdomen volumes or airflow changes in nose/mouth regions. Both
categories of changes can be usually recorded using thermal cameras and analyzed
to present respiration waveforms (patterns) and related parameters. This will be
described in the following sections of this chapter.

2 Review of the Current State of the Art

2.1 Respiratory Rate Estimation and Respiration
Patterns Analysis

Thermal imaging has been often used to analyze different dynamical changes that
could be observed in medical diagnostics or treatment. Some examples include:

Fig. 1 Respiration patterns: a T1—Cheyne-Stokes respirations, b T2—Biot’s breathing,
c T3—Kussmaul’s respirations, d T4—Apneustic respirations, e T5—Ataxia respirations
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wound healing [12, 13], support in cardiosurgery interventions [14, 15], detection
of tumors [16–18], and many other [19, 20]. Thermal imaging was also applied to
the monitoring of respiration activities.

In [21] authors used a narrow band-pass filter to analyze thermal recordings. The
side-view technique was used observing breathing-jet dynamics in the volume of
interest (or region of interest, ROI, in a frame) close to the nostrils or mouth. For the
ROI of each frame the average value was calculated and normalized in reference to
the mean and standard deviation. The autocorrelation sequence was calculated for
the extracted and filtered thermal waveform. Finally, the Fourier Transform was
applied and power density spectrum (PDS) was calculated. The frequency for the
dominated peak in PDS was used as a breathing frequency. The method was
experimentally verified with the participation of 9 subjects (19 thermal clips).
Results showed good correlation between breathing rate measured with the refer-
ence system (respiratory belt with piezo-strap transducer). In both methods the
medium wave infrared (MWIR) camera was used (Focal Plane Array, FPA, reso-
lution 640 � 512, 120 fps, 55 fps used in experiments, sensitivity 0.025 C).

Similar measurement technique was presented in [22]. Statistical methodology
was used to label thermal video frames as expiratory or nonexpiratory. In the
training phase the variant of K-means clustering algorithm was used to cluster “hot”
pixels (expiratory) and “cold” pixels (nonexpiratory) in first, M frames of the
thermal video. Hot and cold pixel values were modeled using normal distributions
with separate parameters (e.g. a mean) for expiratory (hot) and nonexpiratory (cold)
pixels. In each iteration the statistical distance was calculated to expiratory (De) and
nonexpiratory (Dn) distributions from the previous step. The Jeffreys divergence
measure was used with the smallest distance as a criterion. The parameters of the
winning distribution were updated using averaging operation. In the testing phase
each analyzed pixel in the ROI was modeled as a mixture of two distributions:
De + Dn. Initially, both distributions were equiprobable. In next iterations (t > 0),
the current distribution is compared to previous, existing expiration and nonexpi-
ration distributions using the Jeffreys divergence measure and minimal distance
criterion. Finally, pixels in the ROI are labeled as expiratory or nonexpiratory and
frames are also labeled accordingly. Breathing rate is calculated by counting the
labeled framed for each breathing cycle. The method was verified during experi-
ments with 3 subjects (8 thermal clips) for 3 different sizes of ROI. The results
showed that the medium size ROI (21 � 9 pixels) outperformed other ROI sizes.
The achieved accuracy for the small number of subjects was 96.43%.

Later, the same group [23, 24] used the thermal sequences recorded collinear to
the subject’s face. They proposed the use of wavelet transformation on the
resampled and normalized thermal signal to analyze it at different scales. It was
assumed that the breathing component exists at a scale Smax, which is identified for
the local maximum of the wavelet energy coefficients. The frequency, fc, that
maximizes the transform for mother wavelet is used to calculate the estimated
respiration rate:

314 J. Ruminski and A. Kwasniewska



eRR � Smax ¼ fc � d; ð1Þ

where: eRR—estimated respiration rate, d—downsampling factor (= 10 fps).
Experiments with the participation of 20 subjects [24] were performed using the

same MWIR thermal camera as described for previous works. The mean of the
absolute normalized difference between values obtained using the thermal imaging
method and using the thermistor was 1.73% (accuracy 100 − 1.73% = 98.27%).
The method was also used in experiments with pathological subjects [23].

Many papers of the same group (e.g., [24–26]) present the problem and possible
solutions for the automatic tracking of the nostrils or mouth ROI. Some methods
will be described in the next section.

Abbas et al. [27] proposed to use the long wave infrared (LWIR) camera
underling that in this range (7–14 lm) the emitted energy dominates the total signal
and it is better to measure absolute or relative object irradiance or radiance. The
proposed data acquisition and processing method was similar to previously pro-
posed methods by Pavlidis et al. It extracts the respiratory waveform for the ROI of
the nostrils, performs filtration and the wavelet transform. This is probably the first
time that the method was used for the remote monitoring of neonates. The method
was applied for 5 subjects extracting RR from the ECG signal as a reference. The
mean absolute error was 1.32 bpm.

The automatic detection of respiration-related ROIs in thermal sequences was
proposed by Pereira et al. [28]. First, the face image was segmented using three
stages: multi-level Otsu thresholding. Next, background noise was removed and the
largest area in the binary image was assumed to be a face region, The final stage
was focused on finding the chin contour using method described in [29] and
selecting the ROI after detection of nose edges with the use of Canny edge detector.
The values in each ROI of the thermal video were averaged producing the digital
respiration waveform. After band-pass filtration the adaptive short analysis window
w, was applied to the signal to estimate the local breath-to-breath interval. Three
estimators were used to calculate these local intervals: adaptive window autocor-
relation, adaptive window average magnitude difference function, and maximum
amplitude pairs. The adaptive window autocorrelation method calculates the cor-
relation between m interval samples to the right of the analysis window w[v] and to
the left w[v − m] of the center of the window w[0]. The second estimator locates the
absolute difference between samples. The last estimator is a version of a peak
detector. It calculates the maximum amplitude of any two samples. It reaches its
maximum if two peaks (in a distance of m) are included in the analysis window
w. In experimental verification the LWIR camera was used (resolution 1024 � 768,
sensitivity 0.05 K, 30 fps). Eleven volunteers participated in the study. The refer-
ence measurement was preformed using piezo plethysmograph. The average
breathing rate error for the experiment without user movements was 0.33 bpm with
the mean error spread 0.71 bpm.

The general method for the monitoring of respiration with a thermal imaging
system was also described in the US Patent Application Publication (Xu,
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US2012/0289850 A1) [30]. In the method temperatures of extremities of the head
and face (nose, mouth) are used to locate features, which are associated with
respiration. RGB values of pixels related to those features are tracked over time to
generate pattern of respiration. The respiration rate could be determined from the
pattern of respiration counting peaks over pre-defined period of time. Two methods
are mentioned: Fourier analysis and peak and valleys detectors. However, only
general methods are mentioned. In the document authors underline the use of R, G,
B channels suggesting that R and G channels are more important since these
channels are “associated with warmer temperatures” and “exhaled air is warmer”. It
assumes that the use of colorful (pre-processed) images with the mapping of
temperature values to colors. This is not a case in most other methods operating on
single matrixes with measured temperature values or intensities of radiation. Color
is not a carrier of information in this case, but it is used for the visualization.
Additionally, the dynamics of respiration waveform depends on the temperature
gradient, so inhalation and exhalation phases are both important and can be mon-
itored as a change of temperature with the sign depending on the ambient
temperature.

Lewis et al. [31] used similar methodology to estimate respiratory rate detecting
the frequency with the greatest spectral density after Fourier transformation of the
average respiration signal obtained for the ROI of the nostrils. However, authors
additionally proposed the “integration of the thermal time series generated a
transformed time-series, which contained a component assumed to be linearly
related to tidal volume”. The cubic-polynomial filter was used to remove sources of
variance in thermal time series (existing due to thermal noise). The estimates were
compared to results of the reference method, which was the LifeShirt inductance
plethysmograph. Two LWIR cameras were used: TVS-700 with the resolution of
320 � 240 (sensitivity 0.08 C) and SC-6000 with the resolution 640 � 480 (sen-
sitivity 0.02 C). Sampling rate was about 30 fps for both cameras. Thermal
sequences were measured for 12 subjects with the TVS-700 camera and for
6 subjects with the SC-6000 camera. Similar mean, within-subject correlations
were obtained (� 0.90) between results generated for thermal-based data (eRR an
relative tidal volume) and for the reference system.

In a series of papers, AL-Khalidi et al. [32–35] presented the similar methods of
respiration rate estimation by monitoring of skin surface temperature variations in
the area located around (centered) the tip of the nose. This round area (circle,
ellipse) was divided into eight segments. Pixel values in each segment were
averaged for each frame. As a result, 8 signals were obtained and filtered using
low-pass filter (5th order Butterworth filter) with the cutoff frequency of 1 Hz. The
respiration rate was estimated calculating the average of distances between peaks.
The validation of the method was performed experimental with the participation of
20 children. High correlation was obtained (R2 = 0.994) between the thermal
aiming method and the standard respiratory monitoring method.

Hanawa et al. [36] proposed similar breath detection system using the FWIR
camera (NEC/Avio, TH7102MX, resolution 320 � 240, sensitivity 0.06 C,
30 fps). The camera detects the temperature change at the nasal hole caused by
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respiratory activities. Authors focused on the practical use of the system, analyzing
different factors that can contribute the results: head rotation, the distance between
camera and human, and camera angle. Their used templates ROIs representing
nasal cavity area that were extracted from the first frame. Templates differed in size
of the rectangle. Template matching was then performed on each frame of the video
recording. In all detected regions the average temperature was calculated.
Thresholding operation was applied to calculated average temperature values to
detect frames that indicate breaths. The method was verified with the participation
of 5 subjects. Participants counted their breath during the experiment. The mean
absolute error was about 0.12 bpm. In their later papers [37, 38] they focused on
nasal cavity detection methods that are described in the next section.

2.2 Facial Tracking Methods for the Estimation
of Respiratory Rate

Recently, research of face recognition has rapidly expanded because of a wide range
of possible applications. Face and facial features detection is a first step in many
automatic face-processing systems [39], not only in computer vision communica-
tion or access control systems, but also in medicine. However, face detection is a
quite challenging task because it may suffer from lots of variations of image
appearance. These variations include environment influence, for example illumi-
nation conditions and object influence like facial expressions or pose variation.
Regardless of a kind of image (formed for different ranges of electromagnetic
spectrum) many novel solutions were proposed in literature to resolve object
influence variations, like the template-matching methods [40], the feature invariant
approaches [41] or the appearance-based methods [42]. Some solutions for elimi-
nating typical problems (the effect of the background and of disturbances caused by
the haircut) were also described by Marzec et al. [43]. Nevertheless, coping with
environment influence variations in visible light images is not straightforward and
majority of the existing solutions are not robust enough to be used for face detection
in visible light in uncontrolled environments [44, 45]. Whereas thermal infrared
(IR) record the temperature distribution making them insensitive to variance in
illumination conditions [44]. It makes thermal images processing solutions really
attractive for various applications.

Considering non-contact estimation of respiration rate, there is a need to detect
and track facial features automatically [32]. Some approaches have been already
proposed and described for detecting and tracking human face and its characteristic
points in thermal images. Many of them are threshold-based methods or at least use
binarization in preprocessing stage [32, 43–46], utilizing the fact that face has
intensities higher than other regions [43]. Different ideas for proper temperature
value determination were performed and described in [43]. Some of them were not
satisfactory, but in some cases setting the threshold to 28.3 °C allowed eliminating
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most of the problems related to the background and haircut. Al-Khalidi et al. [32]
proposed to use image processing techniques that include segmentation and median
filter to enhance the recorded thermal images and remove unwanted noise. The
segmentation stage consisted of thresholding and edge detection. Then, the nostril
ROI was identified by extracting two warmest regions (points where eye corners
meet the nose) within selected boundary (region between the bridge pointed by the
nose and inner of each eye). The results indicate that the ROI had not been suc-
cessfully located in a very small percentage of images (in almost all cases failure
was less than 1%). Another method for detecting face in thermal images was
described by Bhattacharjee et al. [46]. The preprocessing phase involved bina-
rization of acquired image, marking face area and its centroid. After this phase
specific facial features were extracted and classified using two techniques: Haar
Wavelet Transform and Local Binary Pattern.

Some other approaches are based on Haar-like features [39, 44], which are
descriptors of the local appearance. These features are the main concept of the
Viola–Jones algorithm that is often used because of its high efficiency and preci-
sion. In [44] authors proposed an automatic eye localization method from long
wave infrared images. Described method included eyeglass detection based on a
Support Vector Machine classifiers trained from eyeglass features vector. Before
eye localization, the face region was firstly detected according to intensities dif-
ference between this region and the background. Intensity variations of specific
facial regions were described by Haar features. Proposed algorithm allowed
achieving accurate rate of eye localization around 85%. Similar methodology was
used by Mostafa et al. [39]. In the presented approach Haar features and AdaBoost
algorithm were used to model a local texture around a given facial feature and
create texture based model. The classifier was learned from labeled examples and
used to detect a face. The face recognition process was performed by using nearest
neighbor classifier in feature space defined by three signature extraction approa-
ches: LBP, SIFT and Binary Robust Independent Elementary Features (BRIEF).
Presented results indicate that thermal images have better performance under dif-
ferent illumination conditions but worse under expression variation. It is better to
solve object (expressions) variations in visible images as geometric and appearance
features in thermography are more blurred [44]. Different approach takes advantage
of temperature distribution together with some considerations about face symmetry
[43]. This analysis allows determining characteristic facial points on thermograms
and applying specially prepared pattern to it. As a result, head orientation may be
determined with satisfactory accuracy.

In order to estimate the respiration rate in mobile conditions, face detection and
tracking algorithm should be able to run in real time. Although some methods have
been already proposed for detecting face and its features in thermography, the time
of processing one frame has not been specified in most of them. However, this
parameter is required in order to determine whether the computational performance
of the methods allows to run robustly in real time while achieving reliable feature
detection.
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3 Analysis of Respiration Waveforms

3.1 Heat Flow Near Nasal Cavities

Temperature differences observed at the nostrils or mouth level are a result of heat
flow caused by respiration activities and several components describing the local
environment. Abbas [27] described the total heat flow rate that is related to one
respiration cycle inside the nasal cavity at the nostrils level, as:

QRRðtÞ ¼ QconvðtÞþQradðtÞþQperfðtÞþQevapðtÞþQotherðtÞ; ð2Þ

where:

Qconv(t) convective heat flow related to airflow in nasal cavities, proportional to
the temperature difference between the body (nasal cavity tissue) and the
environment.

Qrad(t) the radiation heat flow.
Qperf(t) heat flow as a result of blood perfusion/flow.
Qevap(t) heat flow caused by evaporation at the nasal surface.
Qother(t) other, secondary heat flow/loss sources

The convective heat transfer is a result of temperature differences between the
body (nasal cavity tissue) and the environment:

QconvðtÞ ¼ k � TeðtÞ � TncðtÞð Þ � Anc ¼ �k � DTðtÞ � Anc; ð3Þ

where: k is the heat transfer coefficient, Te is the local environment temperature, Tnc
is the temperature of nasal cavity tissue, Anc is the internal surface area of the nasal
cavity.

The net radiation loss rate at the nostrils region can be described by

QradðtÞ ¼ e � r � ðT4
nc�T4

e Þ � Anc; ð4Þ

where: e is the emissivity of the nasal tissue, r = 5.6703 10−8 � (W/m2 K4) is the
Stefan-Boltzmann Constant.

The heat flow related to blood perfusion can be usually treated as a distributed
heat source:

QperfðtÞ ¼ x � qb � cb � ð1� kÞ � TaðtÞ � TncðtÞð Þ; ð5Þ

where: x is the perfusion rate (volumetric flow rate of blood per volume of tissue),
qb is the blood density factor, cb is the specific heat capacity of the blood, k < 1 is
the factor representing the incomplete thermal equilibrium between blood and tis-
sue; Ta is the arterial blood temperature.

The overall heat flow is therefore mainly related to changing air temperature and
blood perfusion. The initial state or hypothetical steady state can be defined here as
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a lack of airflow due to the apnea (cessation of respiratory actions). Inspiration or
expiration actions result in airflow that depending on values of parameters in
Eqs. 3–5 and can produce observable changes of intensity of radiation or temper-
ature in nasal/nostrils region of interest (ROI). Due to dynamic character of this
process the observable intensity (I(x, y, t)) or temperature (T(x, y, t)) change is a
function of time and location. In Fig. 2 examples of thermal images are presented,
taken during inspiration (a) and during expiration (b). There is an observable dif-
ference of temperature distributions between both thermograms visible in the
highlighted region of the nostrils.

The heat flow dynamics at nostrils or mouth levels can be observed in measured
sequences of thermal images. These sequences are further processed to extract
respiration-related waveforms (signals).

3.2 Data Acquisition and Preprocessing

Sequences of thermal images are recorded using thermal camera, usually using
LWIR detectors. The goal of the presented work was to evaluate accuracy of
respiration rate analysis using small and portable thermal cameras that can be
embedded in smart glasses. Under the eGlasses platform we are developing the
experimental smart glasses platform that is dedicated to research activities. It can be
easily modified, for example, different electronic modules can be changed; it is
possible to print another cover using 3D printer, add sensors or electrodes, change
the display, etc. The current prototype of eGlasses uses OMAP 4460 processor with
1024 � 768 transparent display (Elvision Company), 1 GB RAM, 5 MPx camera,
WiFi and Bluetooth 4 wireless interfaces, additional sensors (accelerometer,
gyroscope, magnetometer, etc.), eye-tracker and extension slots. The Android 4.1
OS and Linux Ubuntu OS have been already tested. For the goals of this work two

Fig. 2 Examples of thermal images taken during inspiration (a) and during expiration (b). Color
legend is presented in (c). The ambient temperature was 25 °C
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thermal cameras were used: the TAMARISK 320 LWIR camera and FLIR
Lepton LWIR camera module. The first camera, TAMARISK 320, has a spatial
resolution 320 � 240, sensitivity <50 mK and was connected using the frame
grabber. The second camera, FLIR Lepton, has smaller spatial resolution 80 � 60,
sensitivity <50 mK, has a 14-bit dynamics and was connected using SPI (Serial
Peripheral Interface) interface with the use of specially designed electronic circuit.
Figure 3 presents both cameras located is frames of two prototypes of the eGlasses
platform.

In the experimental studies it was assumed that thermal cameras are observing
subjects from short distances (<1.1 m) with at least partially visible nostrils.
Thermal sequences were recorded for several groups of healthy volunteers.
Measurements took place in laboratory rooms at ambient temperature between
23–27 °C. All subjects were asked to rest and not move during the experiment.
Thermal images were recorded during 60 s with the sampling frequency (fs or
frames per seconds, fps) set to about 25 Hz (frame grabber, TAMARISK 320) and
13 Hz (Lepton). In parallel, during all experiments, respiration activities were
additionally monitored using the respiration, pressure belt (Vernier RMB).

The first step of data preprocessing was the extraction of intensity of radiation
changes that could represent respiration changes. Since in this experiment motion
compensation was not used therefore changes were observed inside region of
interests (ROI) manually selected at the level of the nostrils or mouth. It was
assumed that due to respiration activities intensities of radiation are changing in the
region of the nose or/and mouth. For each video frame the region of interest is
extracted and corresponding values are averaged (one value for a frame):

sðtiÞ ¼ 1
NROI

XCe

x¼Cs

Xre

y¼rs

Iðx; yÞ; ð6Þ

where: NROI—number of pixels in the nose ROI, rs, cs—first (start) row and column
of the ROI rectangle, re, ce—last (end) row and column of the ROI rectangle, I(x, y)
—pixel value of the data matrix of the ROI, i—the frame number (i = 0 … K − 1,
K—number of frames).

Fig. 3 Smart glasses with thermal cameras: a TAMARISK 320, b FLIR Lepton module
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Finally the set of digital values (respiration-related waveform) are calculated and
normalized to the mean value:

snðtiÞ ¼ sðtiÞ � lðsðtÞÞ: ð7Þ

The ROI selection plays very important role in the extraction of
respiration-related waveforms. In Fig. 4 examples of 3 different ROI locations or
sizes are presented together with the derived s(ti) signals.

In the state of the art the averaging operation is commonly used to calculate the
final aggregate of intensities of pixels inside a ROI. This is justified as it is very fast
operation to implement (near real time estimation of respiration rate) and can
spatially filter (low pass) data. To obtain high signal (respiration-related waveform)
to noise (thermal interferences) the ROI should contain many pixels that represent
skin surface where the respiration-related heat flow changes the local temperature.
Therefore, the size of the ROI should be big enough to compensate small move-
ments of the subject (and other related small temperature interferences) and small
enough to contain majority of pixels representing respiration-related change of
intensity. However, other aggregation operators could be used. For example, we
have experimentally verified that higher 1st order moments can be successfully
used to extract respiration waveforms, assuming that the ROI covers relatively large

Fig. 4 The location of ROIs and extracted (using the average operator) signals for: a the single
pixel ROI in the middle of the nose (no respiration waveform expected), b the ROI covering
nostrils, c the ROI below nostrils. Data acquired using the TAMARISK 320 camera. Decrease in
the periodical signals (b, c) is caused by inspirations (cooling—lower intensity values)
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area, where there are not other that respiration-related changes. The best results
where obtained for the adjusted Fisher-Pearson coefficient of skewness, calculated
as:

ssðtiÞ ¼ NROI

ðNROI � 1Þ � ðNROI � 2Þ �
XCe

x¼Cs

Xre

y¼rs

Iðx; yÞ � lROI
r

� �3

; ð8Þ

where: lROI is an average pixel value in the ROI, rROI is a standard deviation of
pixel values in the ROI.

Skewness is a measure of symmetry or the lack of symmetry. The skewness for a
normal distribution is zero, and any symmetric around mean data should have a
skewness coefficient value near zero. Inspiration causes the local changes of data
distribution in the analyzed ROI and data are skewed more left or right in reference
to “expiration” or “pause” frames. Subtracting mean value of the skewness lead to
the representation of skewness changes that represent temperature changes in the
ROI. In Fig. 5 some examples of respiration-related signals extracted using the
skewness operator are presented.

Fig. 5 The location, size and extracted (using skewness operator) signals for: a the biggest ROI
covering nostrils, mouth and cheeks, b the middle size ROI covering the nostrils but not mouth,
c the small ROI covering nostrils. The waveform on the bottom was extracted for the biggest ROI
using the average operator. Data acquired using the FLIR Lepton camera
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As it can be observed in Fig. 5 there are only small differences in extracted
signals for different sizes of ROIs. For comparison, the last waveform shown in
Fig. 5 presents the extracted waveform using the averaging operator for the biggest
ROI in the Fig. 5a. It is practically useless for the analysis of respiration changes
since the averaging operation performed on many pixels smoothed the changes
generated by respiration activities. In the contrary, for the skewness operator
extracted waveforms are practically not very sensitive on the size of the ROI,
assuming that (1) it covers nostrils and (2) it is not too small. It was experimentally
verified, that the width of the ROI should be at least equal to the width of nose and
the height of the ROI could be set equal to width (what simplifies calculations). It is
important to underline that using the skewness operator it is not necessary to
precisely locate the ROI or classify the pixels as respiration-related or not. The ROI
could be automatically detected using some predefined proportions in reference to
the detected face area. Methods of face detection for thermal images are described
later in this chapter.

Extracted, respiration-related waveforms are usually corrupted by higher fre-
quency noise and by baseline drift. Therefore, the additional signal filtration is
typically used. Baseline removal was performed using 4th-order high pass
Butterworth filter with cutoff frequency set to 0.1 Hz. The low-pass filtration was
implemented using repeated moving average operation with the window size of fs/2.
The preprocessed signals are further analyze to estimate the respiration rate and
other parameters describing the respiration waveform.

3.3 Respiration Rate Estimators

Different methods have been previously proposed for the determination of the main
frequency (period) of the periodical signal. In the presented studies short time
windows were analyzed in the context of the respiration rate estimation using a
thermal camera embedded in smart glasses. The typically used frequency estimator
is based on the detection of the frequency value (fRR) for the dominating peak
(maximum value) in the frequency domain. It assumes that the respiration signal is
dominating in the analyzed signal spectrum. The method has some disadvantages.
For short time signals it has low frequency resolution. For example, assuming that
the acquisition time Ta is equal to 15 s, sampling frequency fs = 15 Hz, and number
of samples N = 225 then the frequency resolution in frequency domain is equal to:

Df ¼ 1
Ta

¼ fs
N

¼ 1
15

¼ 0:066ð6Þ Hz or
Df ¼ 0:066ð6Þ � 60 s ¼ 4 bpm:

ð9Þ

Therefore, to increase the estimation accuracy of respiration rate longer acqui-
sition times are required. For example, assuming Ta = 30 s the resolution would be
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Df = 1/30 * 60 s = 2 bpm. Such resolution is practically related to the accuracy of
±1 bpm (the actual value is moved to the nearest left or right discrete frequency). In
most medical applications, especially used for screening purposes, such accuracy is
acceptable and could be much better than clinical observations. For example, in
[47] 54 doctors from London were asked to evaluate 3 video recordings of different
respiration activities of mock patients. The observed mean difference between
values measured by doctors and known respiration rate values where up to
5.43 bpm (i.e., 0.02 for video no. 1, 2.46 for video no. 2, and 5.43 for video no. 3).

The RR estimation method based on the dominated peak in the frequency
spectrum (it will be later labeled as eRR_sp) has also other disadvantage. It prac-
tically always returns the result even for a signal that doe not represent respiration
activities (e.g. noise). Therefore, additional measures are required to evaluate the
reliability that the analyzed signal represents respiration activities and the estimated
RR value is probable. It will be analyzed later in this chapter.

Respiratory rate is clinically determined by counting the number of times the
chest rises or falls per minute. Therefore, other respiration rate estimators could rely
in counting events that are related to inspiration and/or expiration. Some examples
were described in the state of the art section. Here, we analyze three additional
estimators that are used in the analysis of signals in time domain: eRR_zc—esti-
mator based on the number of zero-crossings, eRR_pk—estimator based on the
number of detected peaks, and eRR_ap—estimator based on periodicity of peaks
locations for the autocorrelation function in the time domain.

The respiratory rate estimator based on the total number of zero-crossings (nZC)
in the filtered signal computes the frequency as:

fZC ¼ 0:5 � nZC �sfnðtÞ
� �� 1

� � � fs=N ð10Þ

eRR zc ¼ fZC � 60 ð11Þ

The reliable use of this estimator assumes that the analyzed signal is smooth
(without high frequency noise/interferences) without baseline drift.

Another respiratory rate estimator that is based on signal morphology uses
detection of signal peaks. Typically, it calculates the number of
inspiration/expiration peaks in the filtered signal. Assuming that inspiration activ-
ities are more easily detected in thermal-bases respiration waveforms (ambient
temperature is lower that body temperature) then respiration frequency can be
estimated as:

fPK ¼ nPKd �sfnðtÞ
� �� 1

� � � fs=Nd ð12Þ

eRR pk ¼ fPK � 60 ð13Þ

where: nPKd—number of inspiration peaks, Nd—the total number of samples
between the first detected inspiration start and the last one.
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The method requires the use of a peak detector, so in practice many algorithms
could be proposed. In presented studies, the multistep detector was used. First, it is
looking for the local minimum and the following local maximum of the analyzed
signal, for which their difference is greater than the threshold value T:

dj ¼ �sfnðtJþ 1Þ � �sfnðtJÞ; dj [ T ð14Þ

where: �sfnðtJÞ—filtered signal value of the local minimum at j, �sfnðtJþ 1Þ—filtered
signal value of the local maximum at j + 1.

Peak and valleys points are labeled in two phases. In the first phase the threshold
value

T = T1 is calculated as:

T1 ¼ TK1 � max �sfnðtÞ
� ��min �sfnðtÞ

� �� � ð15Þ

where TK1 was the scaling value set to 0.33.
The calculated threshold value is used to detect valleys and corresponding peaks

in the analyzed signal. In the second phase, gradients between the corresponding
valleys and peaks are calculated and the median value is computed. Next, the
calculated median value is used to find the value of the T2 threshold as:

T2 ¼ TK2 �medianðfDigÞ ð16Þ

where fDig is a set of gradient values between the corresponding peaks and valleys.
The new threshold value T2 is next used in the detector based on the first

derivative estimator (4). In the reported study the scaling factor TK2 = 0.25 was
used. The detected peaks are used to calculate the number of peaks () and points in
time of the first inspiration event in the analyzed signal window and of the last
inspiration event. It enables to calculate the total number of samples between the
first detected inspiration start and the last one (Ni).

The next respiration rate estimator used in this study was based on the auto-
correlation function. It is known that the autocorrelation sequence of a periodic
signal has the same cyclic characteristics as the signal itself. Therefore, the auto-
correlation for different time lags is calculated. The period can be further calculated
using Fourier Transform and similar analyzes as for the eRR_sp estimator. This
estimator will be designed further as eRR_af. This method has the practically the
same disadvantages as the eRR_sp. However, the period can be also determined
computing the average time period between detected peaks in time domain.
Therefore, the next estimator is further used (eRR_ap) that detects peaks of the
autocorrelation function using the peak detector method presented above.

The estimated frequencies were multiplied by 60(s) to obtain results in beats per
minute (bpm). All estimators were calculated for thermal-based signals and signals
measured using the reference pressure belt. Reference signals were visually
inspected to manually calculate the respiration rate as a number of respiration
events in time. The first and the inspiration events were visually detected in the
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analyzed signal window. It was assumed that one respiration event longs between
two successive starts of inspiration events. The number of respiration events in the
analyzed time segment was counted (NRE) and the total time of all respiration
events was calculated (TRE). The reference respiration rate was calculated as

RR ¼ ðNRE � 60Þ=TRE ð17Þ

The Mean Absolute Error (MAE) was used in the evaluation of different esti-
mators. It is defined as:

MAE ¼ 1
L

XL

l¼1

eRR xxl � RRlj j ð18Þ

where: L—number of data recordings, eRR_xx—the evaluated estimator (e.g.
eRR_sp), RR—manually calculated respiration rate using belt data (the reference).

Similarly the standard deviation of absolute errors was calculated.
In [48] we have demonstrated the results of the study focused on the analysis of

different respiration rate estimators. Sequences of thermal images were recorded for
16 healthy volunteers (avg. age = 34.75 years ± 13.16) using the TAMARISK
320 LWIR camera. All subjects were asked to breathe naturally and not to move
during the acquisition time (1 min). In parallel reference data were collected using
the chest pressure belt (Vernier RMB). Next, data were processed using methods
described above in this section (the average operator was used as an aggregation
operator in ROIs). The mean absolute error was calculated as a difference between
manually calculated respiration rates and values computed using different respira-
tion rate estimators. The best results were achieved for the eRR_ap estimator
MAE = 0.415 bpm (std. dev. 0.398). The worst results were obtained for the
estimator that was based on counting zero-crossings, eRR_zc. The achieved MAE
was 1.291 bpm (std. dev. 0.93). The same estimators applied to data collected using
the reference belt gave very similar results as for thermal-based data. For example
the MSE for the eRR_ap estimator was 0.295 bpm (std. dev. 0.368), but for the
worst eRR_zc the MSE was 1.584 bpm (std. dev. 0.816). The error lower that
2 bpm is fully acceptable for medical screening what is the main application of the
proposed methodology. It is worth to underline that the implemented estimators
worked properly giving similar results for thermal-based data and for belt-data.
Small differences in results between the best estimator and manually calculated
values were also caused by different number of samples that were analyzed by those
methods. The estimators automatically analyzed the whole 30 s long data window.
For manually calculated respiration rates only full respiration periods were manu-
ally selected from 30 s long data windows.

Similar experiments were described in [49]. Sequences of thermal images were
recorded for 11 healthy volunteers (mean age: 39.73 years ± 11.98) using the
FLIR Lepton LWIR camera. All subjects were asked to breathe naturally and not to
move during the acquisition time (1 min). Also in this experiment reference data

Evaluation of Respiration Rate Using Thermal Imaging … 327



were collected using chest pressure belt (Vernier RMB). All data were processed
using methods described above in this section (the average operator was used as an
aggregation operator in ROIs). However only two estimators were evaluated:
eRR_sp and eRR_ap. The mean absolute error was calculated as a difference
between manually calculated respiration rates (using Eq. 10) and values computed
using two respiration rate estimators. Similar, good results were obtained for both
estimators. For thermal-based data the MAE for the eRR_ac estimator was
0.501 bpm (std. dev. 0.504) and for the eRR_sp estimator it was 0.525 bpm (std.
dev. 0.454). For belt data results were a little bit better: MAE for the eRR_ac
estimator was 0.194 bpm (std. dev. 0.143) and for the eRR_sp estimator it was
0.418 bpm (std. dev. 0.368).

The above shown results were achieved assuming that subjects do not move and
do not speak. In [50] we wanted to investigate if it is possible to estimate respiration
rate when subjects are talking. We asked 12 healthy volunteers (avg. age = 36.25
years ± 12.08) to continuously speak (small head movements were allowed). This
condition was similar to such situation, when a patient, during the interview,
describes his/her problem. Analyzing the breathing patterns during natural speech
could be interesting for medical purposes but also for proper speech training. In this
study, the general methodology used in data processing was the same as previously
described. However, the average operator was used for ROIs covering mouth areas.
Three respiration rate estimators were evaluated: eRR_zc, eRR_sp and eRR_ap. The
interesting finding of this study was that results automatically obtained for
thermal-based data were generally better than for belt-data. The MAE for the best
eRR_ac estimator was 0.728 bpm (std. dev. 0.597), for the eRR_sp estimator it was
2.089 bpm (std. dev. 2.346) and for the eRR_zc estimator it was 3.575 bpm (std.
dev. 2.864). Results obtained for belt data were: for the eRR_ac estimator
MAE = 2.553 bpm (std. dev. 2.373), for the eRR_sp estimator it was 2.496 bpm
(std. dev. 2.153) and for the eRR_zc estimator it was 1.423 bpm (std. dev. 1.377).
The overall results are worse than those when subjects were not speaking. This is
because the extracted respiration related signals were much more noisy and
sometimes respirations were irregular. In such conditions signals were not sta-
tionary. Some examples are presented in Fig. 6.

The described results were obtained using an average as the aggregation operator
applied for ROIs of the nostrils or mouth. However, we have also compared pre-
viously described estimators for signals extracted using the skewness operator. In
this study the FLIR Lepton camera was used. Data were recorded for 10 healthy
volunteers (age: 38 years ± 9.3; recording time 1 min, sampling frequency
fs = 13 Hz). The respiration, pressure belt (Vernier RMB) was used for reference
measurements. The best results were obtained for three estimators: eRR_sp, eRR_af,
and eRR_ap. In most cases the results of the eRR_sp and eRR_af were similar due to
the used similar method of the frequency estimation. Theoretically, for periodical
signals without noise, values calculated by these estimators should be the same
because the autocorrelation sequence of a periodic signal has the same cyclic
characteristics as the signal itself. So the dominated peaks should be observed for
the same frequency in the frequency spectrum. In Fig. 7 examples of filtered
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signals, their frequency spectrum and autocorrelation signal as a function of time
lags are presented.

In Table 1 values of the mean absolute error, the standard deviation of absolute
error and the coefficient of determination, denoted R2, (representing the correlation
between estimated and reference data) are presented for best estimators in the study.

The best results were achieved using the signals extracted from thermal
recordings as a sequence of normalized skewness values of ROI data. It should be
also underlined that these good results were observed for all estimators. The results
obtained using the skewness operator for thermal data were almost identical to
those obtained for reference belt data. The eRR_ap estimator gave best results for
belt data and for thermal data processed using the skewness operator. In Fig. 8 the
values of MAE are illustrated and graphically compared.

Other aggregation operators were proposed in [51], however the better results
were obtained for the skewness operator.

The obtained results indicate that respiration rate can be reliable estimated using the
analysis of thermal recordings. Different estimators were evaluated for thermal
sequences recorded using two small, portable cameras: TAMARISK 320 and FLIR
Lepton. In all cases the most accurate estimates of respiration rates were achieved for
the eRR_ap estimator. This estimator is based on the calculation of autocorrelation for
different time lags. Peaks of the derived signal are detected in time domain so there are
not such limitations as for methods based on the analysis in frequency domain
(e.g. limited frequency resolution). The periodicity of the derived signal is analyzed so

Fig. 6 Results of extracted respiration waveforms for speaking subjects. S02, S08
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additional measures could be proposed to evaluate if the analyzed signal is periodi-
cally enough to reliable estimate respiration rate. It is also important to underline that if
respirations are irregular then better results should be obtained using estimators based
on the detection (and counting) of peaks in time domain. In such cases respiration
signals are not stationary and results based on the dominating frequency analysis
could lead to higher errors of respiration rate estimates.

Additionally, the very interesting finding is the possibility of estimation of
respiration rate when the observed subject is speaking. In practice, smart glasses
with the embedded thermal camera and required software could be a very useful
tool for a healthcare professional. It can estimate respiration rate more naturally,
during typical interview, without “artificially” connected devices to a patient.

Another interesting observation was related to data aggregation in ROIs. For
thermal sequences recorded using the FLIR Lepton camera module better results
were obtained calculating the skewness value instead of the average value for the
ROI of each frame. It was also important, from the practical point of view, that the
size of the ROI was not so important for obtaining the signal that contained

Fig. 7 The frequency spectrum, the filtered signal and (bottom) the autocorrelation signal as a
function of time lags for the subject S09 for: a belt data, b thermal data—processed using the
average operator, c thermal data—processed using the skewness operator

Table 1 Results of the study with the analysis of signals extracted using the skewness operator

Method Belt Thermal camera (average) Thermal camera (skewness)

Estimator eRR_sp eRR_ap eRR_af eRR_sp eRR_ac eRR_af eRR_sp eRR_ac eRR_af

MAE (bpm) 0.350 0.182 0.428 0.468 0.529 0.622 0.350 0.236 0.350

Std. dev (bpm) 0.314 0.139 0.404 0.440 0.514 0.627 0.314 0.193 0.314

R2 0.991 0.998 0.987 0.982 0.982 0.970 0.991 0.997 0.991
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respiration related changes. It could partially reduce the computational complexity
related to the determination of the best ROI size and location in data frames.
However, this still does not solve a problem of patient movements. In such situa-
tions face/nostril detection and tracking algorithms are required.

3.4 Respiration Pattern Analysis

Respiration rate is the most important parameter that can be computed from the respi-
ration signal. However, other parameters could be valuable for medical diagnostics.
Some examples include: the number and length of apnea events, the depth of breathing
or amplitudes of inspiration/expiration event, the length of inspiration phase, the length
of expiration phase, the regularity of respiration events, etc. These parameters can also
describe and can allow discriminating between different respiration patterns presented
inSect. 1.Most of the parameters aremainly based on the detection of three events: start
of the inspiration event, start of the expiration event and end of the expiration event. For
example, the apnea period can be defined here as a time period between the start of the
inspiration event and the end of previous expiration event.

In the study presented in [49] we investigated whether it is possible to reliable
detect apnea events from respiration waveforms extracted from sequences of
thermal images. During the experiments 12 healthy participants (avg. age =
37.15 years ± 9.16) were asked to follow the T1–T5 respiration patterns. Thermal
sequences were recorded using the TAMARISK 320 camera using the procedure
described earlier for the analysis of respiration rate. To analyze the possibility of
apnea events detection volunteers were asked to hold breath to simulate apnea
periods in T1, T2, T4, and T5 patterns. They could decide when hold the breath and
how long the apnea event should long. In apnea periods of the extracted signals
from thermal recordings the temperature variations were observed. It is caused
many internal (e.g. blood flow) and external (heat flow due to ambient temperature
changes) thermal conditions. In reference to the baseline such changes can be
positive (trend with the positive slope), negative (trend with the negative slope) or

Fig. 8 The comparison of values of mean absolute error for particular methods
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neutral (without slope, normalized mean about 0). The observed rate of such
changes is typically smaller that for respiration rate and the observed temperature
gradient is also significantly smaller than for respiration activity. We proposed the
apnea events detection algorithm (Algorithm 1).

Algorithm 1: DetectApneaEvents(filteredSignal, Fs, K, Tapnea)

sDiff=FirstDerivative(filteredSignal); 
absSDiff=abs(sDiff); 
nAbsSDiff=1/max(absSDiff) * absSDiff; 
IQR=CalculateInterQuartileRange(nAbsSDiff); 
T=K*IQR; 
i=0, tStart=0; 
for j=1:length(nAbsSDiff) 

if (nAbsSDiff (j) <T)  
if (counter==0)  

tStart=j;
else counter++;  
endif;

else if(counter>0){ 
if((counter/Fs)>Tapnea)

apneaStart[i]=tStart;  
apneaStop[i]=j;
apneaPeriods[i]=counter/Fs;  

endif;
endif;
tStart=0;
counter=0;

endif; 
endfor;
return [apneaStart apneaStop apneaPeriods] 

It was based on the first derivative of the filtered signal. The absolute values of
the first derivative signal were normalized in reference to maximum signal value.
Then the algorithm is counting all successive samples, for which values are smaller
than the threshold value. The threshold value, T, is calculated as the weighted
(K) value of the interquartile range (IQR) for the processed signal. The apnea event
is detected if the number of samples (or time period) is higher than the assumed
parameter value, Tapnea (e.g. >10 s).

Some results for the apnea detection algorithm are presented in Fig. 9a, b.
The very interesting result can be observed from the analysis of signals presented in

Fig. 9. For example, thefirst train of respiration events for thermal recording hasmore
events (8 inspiration events) than the signal measured using the respiration belt
(7 events). Similar situation can be observed for the last, 3rd, train. For the pattern T1,
subjects were asked to first increase the respiration effort and then decrease. Very
shallow respirations in the end of 1st and 3rd trains were not observed using the
respiration belt. The pressure difference was too small to be observable. Probably, if
the initial air pressure in the belt were higher then the pressure difference would be
visible. However, that would be very uncomfortable for the participant of the
experiment. It can be concluded that respirationmonitoring using the thermal imaging
is sensitive to inspirations even when the respiration effort is small.

In Fig. 10 examples of the results of apnea detection algorithm are presented for
different respiration patterns extracted from recorded sequences of thermal images.
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Fig. 9 Original respiration waveforms (top) and detected apnea periods using the Algorithm 1 for:
a the signal recorded using the pressure belt, b the signal derived from the thermal recording.
Presented signals were recorded for a subject S01 using the T1 respiration pattern

Fig. 10 Original respiration waveforms (top) and detected apnea periods using the Algorithm 1
for signals derived from the thermal recording for subject S09 and for: a T1 pattern, b T2 pattern,
c T4 pattern, and d T5 pattern. The results for the T3 pattern is not presented since it does not
contain simulated apnea periods
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The mean absolute error calculated for differences between automatically
detected lengths of apnea periods in thermal-based signals and manually calculated
lengths of apnea events for belt-based signals was 0.44 (assuming Tapnea = 4 s
and K = 0.6 in the Algorithm 1). The standard deviation was 0.39. Obtained results
were very similar to the results of automatic processing of belt-based data.
Therefore, it can be concluded that apnea periods can be reliable detected from
different respiration patterns that can be extracted from thermal recordings. In the
description of respiration patterns we proved that respiration rates (in given time
windows) and length of apnea events could be accurately detected from signals
extracted for thermal recordings. Additionally, relative amplitude values of respi-
ration waveforms obtained using the reference belt and using the thermal camera
were analyzed. The amplitudes were compared manually by the comparison of
signal plots in time domain (for the pattern RP1). As it can be observed from Fig. 9
signals derived from thermal recordings do not follow the crescendo–decrescendo
pattern than is easily observable in the signal recorded by the pressure belt. Results
obtained for all volunteers confirmed that it is not possible to reliable correlate
amplitude variations between signals measured with the pressure belt and signals
extracted from thermal recordings. As it was described earlier, the thermal
recording is sensitive to small temperature changes (respiration with very small
effort) but it is not proportional to different effort levels. It can be explained by the
heat flow mechanism assuming the cooling process during the inspiration (in room
temperatures lower that body temperature). In the first phase of inhalation there is a
high gradient of temperatures (air to nasal cavity tissue) that decreases with time of
inhalation. Since the ambient temperature is not changing and, in parallel, nasal
cavity tissue is heated by blood perfusion (and also by other mechanisms) therefore
the observable temperature change is becoming saturated. Therefore, it is practically
impossible to quantitatively compare breathings with different efforts (depths).

In [51] we additionally compared methods of detection of inspiration periods
and expiration periods comparing the results obtained for signals recorded with the
respiration belt and extracted from thermal recordings (using the TAMARISK 320
camera). The peak-and-valleys detector was used twice: analyzing the signal from
the start to the end and from the end to the start. In the first phase starts of
inspiration events and ends of inspiration events were detected. In the second pass
(from the last sample towards the first sample) the end of expiration and the start of
expiration events were detected. The inspiration period It was calculated as the
difference between the time of inspiration end and inspiration start. The same
method was used to calculate the expiration period Et. Values of It and Et were
calculated for signals recorded with the respiration belt and extracted from thermal
recordings. The mean absolute difference was calculated as a normalized mean
absolute difference between values calculated for the belt-based signal and for the
thermal-based signal. The normalization was performed by dividing the absolute
difference value by the inspiration or expiration period value obtained for signals
recorded using the reference pressure belt, i.e.:
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DIt ¼ ItB � ItTj j=ItB; DEt ¼ EtB � EtTj j=EtB; ð19Þ

where:

ItB, EtB inspiration/expiration period calculated for the belt signal,
ItT, EtT inspiration/expiration period calculated for the signal extracted from the

thermal recording.

In Fig. 11 examples of respiration waveforms with automatically detected
inspiration/expiration beginnings and ends are presented. It can be observed that for
the original belt signal the respiration pause can be observed due to small pressure
changes measured in the end of expiration and at the beginning of inspiration.

The results obtained for data recorded for 12 healthy volunteers (avg. age =
36.25 years ± 12.08) shown that inspiration and expiration beginnings and ends
events can be detected with certain accuracy. Some differences were obtained
between inspiration and expiration periods calculated for signals recorded using the
respiration belt and signals extracted from thermal recordings. The normalized,
mean absolute difference was about 19% for inspiration periods and about 15% for
expiration periods. This relatively big difference is caused by several issues. First,
there is a difference between both measurement methods. The start of inspiration
can be earlier detected by the thermal imaging since even very small inspiration
effort is clearly visible as cooling (if the ambient temperature is lower that the body
temperature). For the respiration belt the small pressure change is visible only if the
belt firmly adheres to the body and the initial air pressure in the belt is high enough
to observe the difference related to very small respiration movements. Another
reason for the observed values of mean absolute differences was the role of signal
filtration. The proper use of the peak detector assumes that the signal is smoothed.
The filtered signal has smoothed edges so the accuracy of the detection of exact

Fig. 11 Examples of original (left) and filtered (right) respiration waveforms obtained for the
respiration belt (top) and extracted from the thermal recording (bottom). Automatically detected
inspiration/expiration beginnings and ends are indicated. After low pass filtration inspiration ends
are practically the same as expiration beginnings and expiration ends are the inspiration beginnings
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points in time when the change starts is lower that for the ideal step signal.
Additionally, the analyzed signals have limited resolution. For example, if the
inspiration period longs 1 s (13 samples) then shift by 1 sample in inspiration start
and stop events leads to 2/13 = 14.4% of total difference.

Additionally, inspiration-related slopes (S) were calculated and compared for
signals recorded with the thermal camera and using the reference, pressure belt. The
values of slopes were calculated as the relation of the signal gradient for the
corresponding inspiration start/end events to the time difference between points of
time when those events occurred. The mean difference between inspiration-related
slopes calculated between values obtained for signals recorded using the respiration
belt and signals extracted from thermal recordings was 5.04° (±5.24). The smallest
difference was 0.97, but the highest value was 18.32. Again, reasons of such
differences are similar as described previously, since the calculation of slopes is
based on accurate detection of inspiration beginning and end.

3.5 Automatic Detection of the Nostril Region

To estimate the respiration rate of subjects, the thermal facial image sequences have
to be preprocessed for detecting and tracking face and nostril region. Some ap-
proach for real time nostril area tracking has already been discussed and described
in details [52, 53]. The flow of described solution is presented in Fig. 12. In
face-processing systems face detection is usually a first step [39]. After extracting
facial area from the background it can be processed further in order to analyze its
features.

In thermal imagery, the face is usually distinct from other part of image and can
be easily marked. Most of existing methods extract face by segmentation, which
can be easily achieved with thresholding [32]. On the other hand, Haar-like features

Fig. 12 The flow of proposed solution for tracking nostril region
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are often used as a descriptor of the local appearance, because of high precision and
computation speed of Viola-Jones algorithm [39, 44, 54]. This algorithm, which
can run practically in real time, consists of two steps: training and detection. In a
first phase a special classifier with cascade structure is trained from labeled images.
Features from each image are extracted by encoding the presence of oriented
contrasts between two regions with Haar-features. The resulted classifier is then
used to detect objects in test data set.

In the study presented in [53], thermal video sequences were recorded by using
TAMARISK 320 long wave thermal camera (resolution 320 � 240,
sensitivity <50 mK, 25 fps) on a group of 19 volunteers (age: 23.7 ± 5.2). During
the experiment each volunteer was asked to stand still, turn head slightly left and
turn head slightly right. Then, 12,000 thermal images that portray male and female
faces (positive cases) and 3000 images of other objects (negative cases) were
extracted from recorded sequences and used to train the classifier. Examples of
acquired images are presented in Fig. 13. The result of the training step was the
Haar-feature classifier capable for face detection in the test data set that consisted of
480 images (20 for each volunteer).

The presented research [53] aimed at validating possibilities of tracking nostril
region with acceptable accuracy in real time. In order to measure the precision of
the algorithm, the mean value of pixel intensities in detected and tracked area was
compared with the mean value of pixel intensities in nostril area marked manually
in fixed position (not tracked), see Fig. 14.

Moreover, mean squared error (MSE) and root mean squared error (RMSE) of
mean values were calculated separately for series of images that portray each
volunteer during performing each movement (quiescence, turn left or turn right).

Fig. 13 Examples of acquired images: from the left—2 positive and 2 negative cases

Fig. 14 The nostril area
marked manually
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In thermography most of facial features are usually blurred and undistinguish-
able [39]. Moreover, usable data may be represented by close contrast values. To
make the detection algorithm more robust authors of [53] increased image contrast
by making following improvements: the image conversion to a gray scale and a
histogram equalization. After extracting facial region and enhancing valuable data,
interest points detectors (ORB, SIFT, SURF and Harris Corner Detector) were
applied to this area to find specific facial features. Each detector was tested for
processing time and accuracy, that was measured as a displacement of detected area
from its expected location (specified by an expert) divided by the image height. For
each interest point detector, the subtraction between image with found features and
original image was calculated. The resulted image is presented in Fig. 15.

Then, the image was divided into blocks (30 � 30) and the mean value of pixel
intensities in each block was calculated. In next step, authors applied thresholding
as a segmentation technique, which aimed at partitioning an image into different
components. The image was divided into parts with values higher and lower than
selected threshold. This operation allowed marking blocks that contain interest
points. After that, blocks that were close to each other were classified to the same
group. The most numerous groups were formed from facial contour and they did
not contain information about facial features, so they were removed. From the
remaining groups, interest areas templates were extracted. The whole procedure
was repeated for N initial frames and the average location of each template was
calculated. The resulted locations and sizes were used to extract final templates,
which were matched in next frames using pattern matching technique. The best
match was defined as global minimum of all comparisons between templates and
image patches slid across tested image. At each location, the template was com-
pared against overlapped patch by calculating its metric using ‘CV_TM_SQDIFF’
method from OpenCV library [55].

The number of matched regions was limited to two, by preserving only these,
which distance to nostril area (marked manually) was smallest. Next, the detected
nose area was located in the middle of the horizontal distance between two matched
areas (in all cases they represented eyes) and directly underneath them. Then, this
nostril area was tracked by applying the same pattern matching method.

Fig. 15 The subtraction of
original image and image with
detected interest’s points
(Harris corner detection)
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Undoubtedly, the biggest advantage of described system for automatic tracking
of nostril area is really short processing time [27.7 ms (Harris), 23.9 ms (ORB),
19.7 ms (SIFT), 27.6 ms (SURF)] while preserving satisfactory accuracy of region
detection (displacement for Harris 7.2 ± 4.3%, ORB 9.9 ± 2.2%, SIFT
7.0 ± 1.9%, SURF 8.9 ± 2.7%).

Each interest point detector was used to detect nostril area separately for each
movement. Taking it into account, mean value of pixel intensities in tracked and

Fig. 16 Mean values of pixel intensities for one volunteer while turning head slightly right (all
methods for tracked and fixed localization of nostril region)

Fig. 17 Mean values of pixel intensities for one volunteer for chosen detector (all movements for
tracked and fixed localization of nostril region)
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nostril area marked in fixed position vary depending on used detector and pose of
volunteer. Example values of pixel intensities for all detectors while turning head
slightly right are presented in Fig. 16.

Values of pixel intensities for chosen detector depending on performed move-
ment are presented in Fig. 17.

As can be seen, changes in the mean values were much more considerable for
nostril regions marked in fixed positions. This result was also confirmed by cal-
culated RMSE values (see Table 2). Almost in all cases (instead of 2 pairs of values
marked in table with red color) errors were higher for not tracked areas. Similar
situation may be observed for different pose variations. For tracked regions fluc-
tuations of mean values were smaller. However, the movements analyzed in [53]
were quite inconsiderable and achieved results may be different for other distur-
bances (for example background or haircut influence, as described in [43]).
Currently, algorithm similar to solution presented by authors of [53] is tested for
more noticeable movements (also in other planes) by us.

4 Conclusions

In clinical observations, the respiratory rate is often estimated by counting the
number of times the chest rises or falls per minute [56]. Other, quantitative methods
use different algorithms and techniques, including inductive plethysmographs or
thoracic impedance systems [57], oxygen masks [58], bioacoustic sensors [59],
accelerometers or gyroscope sensors [60], etc. Respiration activities are often
recorded together with other biomedical signals. For example in the sleep studies a
set of signals could be recorded, including electroencephalogram,
electro-oculogram, electromyogram, nasal airflow, abdominal and/or thoracic
movements, body position, snore acoustic signal, electrocardiogram, and blood
oxygen saturation [61, 62]. Respiration rate can be estimated not only from one of
those methods (e.g. nasal airflow) but also from other recorded signals (body
movements, electrocardiogram, etc.). Additionally, in [63] 3D breathing waveforms
can be also recovered out of thermal sequences allowing visualization of subtle
pathological patterns.

The remote measurement of respiration rate is another very important and useful
possibility. It can be especially valuable for medical screening purposes (e.g. severe
acute respiratory syndrome (SARS), pandemic influenza, etc.). In this chapter we
presented many different studies focused on the measurements and estimation of
respiration rate using thermal imaging methods. All of the methods demonstrated
the very good results of the estimation of respiratory rates. In our works we focused
on the evaluation of different respiration rate estimators for the needs of data
processing of image sequences recorded by small, mobile thermal cameras. The
miniaturization of thermal camera allowed embedding such cameras in smart
glasses. In several studies we demonstrated that using image sequences recorded by
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thermal cameras of smart glasses not only respiration rate can be reliable estimated
by also some other parameters that describe respiration patterns.

Respiration rate estimation should be performed as fast as possible. However,
this requires data acquisition during a specific period of time. This is especially
important for typically used data analysis in frequency domain (due to limited
spatial resolution). The presented results of our experiments shown that the best
accuracies had been obtained using the analysis of autocorrelation as a function of
time lags (eRR_ap estimator). Ideally, the correlation of the signal with its shifted
version should produce a value of 1 if the shift is equal to the signal period. In
practice, except for the time offset equal to 0 (the same signal), the values are lower
than 1. However, the absolute correlation values obtained for time offsets equal to
the next multiplicities of signal period can be further used to evaluate if the original
signal is really periodical or not. This could be used to evaluate if it is possible that
the signal contains respiration-related information. Other similar measures or
parameters can be used to evaluate if the signal is less or more periodical. Some
examples include Hijorth parameters [64] or spectral “purity” indexes [65]. We
have used them with success in the evaluation of signals for pulse rate estimation
[66, 67].

In the analysis of respiration rate it is also important to locate pixels, which
values change due to respiration activities. Sometimes data classification procedures
are used but it requires relatively more computational resources. More often pixels
are aggregated in the manually or automatically specified region of interests. In all
papers presented in the state of the art the average operator was used. This requires
that the ROI should contain majority of pixels that values are changing due to
respiration activities. In such cases the specification of ROI location and size could
be critical. In our works we asked if other aggregation operators assuming that
differences in the parameters describing the distribution of values in the ROI could
be useful. We successfully evaluated the skewness parameter calculated for ROI
data of thermal sequences recorded using FLIR Lepton camera. It was interesting
that the extracted signals using the skewness operator were not so highly dependent
on the size of ROI, as it was observed for the average operator. Other parameters
could be analyzed in the future.

Automatic detection and tracking of respiration-related sources of thermal
changes (nostrils, mouth) are also very important for the context of mobile appli-
cations, especially when a patient is not cooperating. Different methods were pre-
sented in the state of the art. In our works we focused on methods that could be fast
and have been previously successful for image sequences captured in visible-light.

Analysis performed for detecting and tracking nostril region showed that it is
possible to process one frame in less than 30 ms for all detectors [27.7 ms (Harris),
23.9 ms (ORB), 19.7 ms (SIFT), 27.6 ms (SURF)]. This high computational per-
formance is indicator for the assumption that analyzed methods could be used for
tracking nostril region in applications running in real-time. Moreover, accuracy of
tracking algorithm was also measured by calculating root mean squared error of
pixel intensities in tracked and fixed localization of nostril area. Almost in all cases
errors for tracked regions were smaller than corresponding not tracked area (for
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chosen movement, volunteer and method), what allowed for reliable feature
tracking. However, analyzed movements were rather small and achieved results are
only preliminary. Considering future work in this area, in order to ensure correct-
ness of results, algorithm should also be tested for more noticeable movements and
other disturbances. Furthermore, for reliable and efficient medical applications we
would like to track facial features without manual alignment, calibration or ini-
tialization. Therefore, a fully automatic system for detection, tracing and calculating
respiration rate parameters should be designed and implemented in future. Recently,
very small thermal cameras have been developed, so a system of this kind could use
them after embedding them into wearable devices, like smart glasses.

In this chapter we analyzed respiration rate estimators that can be used to pro-
cessed sequences of thermal images captured from small thermal camera modules
embedded or connected to smart glasses. After calibration of thermal camera
modules and using the algorithms to estimate pulse rate from video (recorded in
visible light) [68] additional vital signs can be estimated. This could allow obtaining
three the most important vital signs: body temperature, pulse rate and respiration
rate. Using the intelligent patient identification [68, 69] such data can be auto-
matically stored in the Hospital Information System [70] or other system for the
management of Electronic Health Records or Personal Health Records.
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Applications of Infrared Thermography
for Noncontact and Noninvasive Mass
Screening of Febrile International
Travelers at Airport Quarantine Stations

Guanghao Sun, Takemi Matsui, Tetsuo Kirimoto, Yu Yao
and Shigeto Abe

Abstract Infrared thermography (IRT), one of the most valuable tools, is used for
noncontact, noninvasive, and rapid monitoring of body temperature; this has been
used for mass screening of febrile travelers at places such as airport quarantine
stations for over 10 years after the 2003 severe acute respiratory syndrome (SARS)
outbreak. The usefulness of thermography for mass screening has been evaluated
in many recent studies; its sensitivity varies from 40 to 89.4% under various
circumstances. In this chapter, we perform IRT evaluations for detecting febrile
international travelers entering Japan at Nagoya Airport, immediately after the
SARS epidemic, from June 2003 to February 2004, and at Naha International
Airport from April 2005 to March 2009. The correlation of body surface temper-
ature measured via thermography with the axillary temperature was significant.
Through IRT, febrile individuals were detected with good accuracy and the
detection accuracy was improved by corroborating surveillance with self-reporting
questionnaires. However, there are several limitations associated with the use of
IRT for fever screening. For instance, taking antifebrile medications results in rapid
modification of the body temperature and directly affects the efficiency of IRT. To
solve this unreliability and obtain higher accuracy in mass screening, we have
developed a novel infection screening system using multisensor data, i.e., heart and
respiration rates are determined by microwave radar in noncontact manner and
facial skin temperature is monitored through IRT. The detection accuracy of the
system improved, which is notably higher compared to the conventional screening
method using only IRT.
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1 Introduction

Infrared thermography (IRT) is a powerful tool for two-dimensional temperature
mapping and thereby creating a thermal image. Due to noncontact, noninvasive,
and rapid features of IRT monitoring, it has been widely used in clinical medicine
and research. For instance, thermal image is an effective indicator for the diagnosis
of breast cancer [1], peripheral vascular disorders [2], diabetes [1], fever screening
[3] etc. In particular, it has been successfully applied to mass screening of febrile
travelers at many quarantine stations of international airports after the severe acute
respiratory syndrome (SARS) outbreak in 2003 [4–8].

Conventionally, entry quarantine was carried out in various ways, i.e., self-report
from passengers, questionnaires on health condition, visual inspection by quarantine
officers; this was done for reducing risks due to the entry of infected passengers into the
country. However, quarantine screening by self-reporting questionnaires related to
medical state do not provide accurate rate of infected individuals and true symptoms of
those infected with epidemic diseases. For this reason, IRT was proposed for non-
contact and rapid monitoring of body temperature for mass screening of international
travelers. The usefulness of IRT for mass screening has been evaluated in many recent
studies; its sensitivity varies from 40 to 89.4% under various circumstances [9–11].

In this chapter, we perform IRT evaluations for detecting febrile international travelers
at Nagoya Airport, immediately after the SARS epidemic, from June 2003 to February
2004, and at Naha International Airport from April 2005 to March 2009. Our results
indicated that IRT sufficiently detected febrile individuals and its detection accuracy was
improved by corroborating surveillance with self-reporting questionnaires. However, there
are several limitations associated with the use of IRT for fever screening. IRT deterred
inspectors from utilizing due to its unreliability originated from following three causes:

(i) Individual-related causes would alter body surface temperatures. Internal
causes such as water and alcohol consumption, pregnancy, estrus cycle, and
hormone treatment would increase body temperature and external causes
such as sweat and thick makeup would decrease body temperature. In
addition, glasses and hats would cover the parts used for detection and body
movements while scanning would result in unsuccessful image extraction.

(ii) Machine parameters may be influenced by factors such as ambient temper-
ature, humidity, air ventilation, and performance differential.

(iii) Staff alternation would result in differences in judgment of images; these will be
due to untrained or inexperienced inspectors, setting of inaccurate cutoff body
surface temperature, and incorrect distance between the subject and IRT
equipment.
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Considering these issues with using IRT, we proposed a noncontact infection
screening system for medical examinations that can be performed within 10 s by
measuring vital signs (i.e., heart rate, respiration rate, and facial skin temperature)
[12–15]. If a person is infected, not only the body temperature but also heart and
respiration rates will invariably increase. Thus, our system automatically detects
infected individuals within 10 s by a discriminant function using the measured vital
signs. Heart and respiration rates are determined using microwave radar in a
noncontact manner, and facial skin temperature is monitored through IRT. By
adding heart and respiration rates as the new screening parameters, our infection
screening system provides higher sensitivity than that of using only IRT.

This chapter is organized as follows. In Sects. 2 and 3, we introduce IRT evalua-
tions for detecting febrile international travelers at Nagoya and Naha International
Airports in Japan. In Sect. 4, we provide an overview of the hardware of the multiple
vital sign based infection screening system, as well as the classification algorithm for
screening of potentially infected patients. Finally, we draw conclusions in Sect. 5.

2 Fever Screening for SARS Symptoms at Nagoya Airport
Through IRT in 2003

Between November 2002 and July 2003, there was an outbreak of SARS in southern
China [16]. Nationwide surveillance for SARS in Japan was reinforced and IRT was set
up at Nagoya Airport on May 12, 2003. On July 5, 2003, even though WHO
announced that all known chains of person-to-person transmission of the SARS virus
had been broken, quarantine stations at airports in Japan sustained their thermal
scanning for febrile passengers. According to the data collected at Nagoya Airport in
2003 and 2004, we evaluated the efficiency of IRT as a means for quarantine.

2.1 Subjects and Methods

Out of a total of 137,473 subjects, 135,020 were passengers and 2453 were crew
members from the 1280 flights arriving from Asian countries and Northern America
to Nagoya Airport between June 2003 and February 2004; all these subjects were
scanned through IRT (Neo Thermo TVS-700, Avio. Co., Ltd.). The isotherm low
temperature was set at 35.4 °C, displaying the subjects above the set temperature in
red (see Fig. 1). The distance from the subjects was approximately 3 m. The
temperature accuracy was ±2 °C in an indoor environment. The subjects displayed
in red on the screen were led to the Health Consultation Room for further mea-
surements of either axillary or tympanic temperature by digital thermometers.

Using the Chi-squared test, we compared fever detections of temperature above
37 °C as detected by thermal scanning and those by self-reported questionnaires.
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2.2 IRT Screening Results at Nagoya Airport

A total of 226 subjects (223 passengers and 3 crew members) were displayed in red
by IRT scanning. Figure 2 shows a histogram of the axillary temperature of the
above-mentioned subjects using digital thermometers; 31% of them had tempera-
ture 37.0–37.4 °C.

One of the symptoms for diagnosing SARS was a fever of above 38 °C. In this
study, 0.054% of the scanned individuals met this criterion. Our follow-up survey
found that 60% of these subjects had temperature between 38.0–38.9 °C along with
influenza-like symptoms and acute upper respiratory inflammation. Three febrile

Fig. 1 Isotherm low
temperature was set at
35.4 °C, displaying targeting
subject in red above the set
temperature

Fig. 2 Histogram of axillary temperature for 226 subjects (223 passengers and 3 crew members,
all displayed in red by IRT) measured using digital thermometers
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subjects with no clear explanation other than alcohol intake and one subject with
sunburn were assumed to be detected as false positive. A self-reporting diarrhea
subject, displayed in red by IRT, was diagnosed with dysentery. Sixty percent of the
subjects with temperature between 39.0 and 39.9 °C also had influenza-like
symptoms and acute upper respiratory inflammation. One subject without
self-reporting diarrhea was found to be feverish by IRT and was revealed to have
dysentery through a fecal examination.

By adopting the Chi-square test, we compared the detection rate of IRT with a
temperature threshold of 37 °C to the detection rate obtained by self-reporting
questionnaires. The detection rate of the IRT scan stochastically showed significant
difference (significance level under 0.01%) from that of the questionnaires; thereby
thermal scan was proved to be efficient for quarantine screening.

This indicates that active surveillance of feverish passengers and examinations at
the Health Consultation Room will work efficiently for extracting patients in early
stages or incubation period of infection.

3 Four-Year Large-Scale Evaluation of IRT at Naha
International Airport in Japan1

Two years after the installation of IRT at quarantine stations of major airports in
Japan, we conducted a large-scale test for IRT evaluation. A total of 617,289
international passengers who underwent quarantine screening at Naha International
Airport from April 2005 to March 2009 were the subjects, out of which 7% of the
passengers submitted self-reporting questionnaires.

3.1 Subjects and Methods

Facial skin temperature of all the passengers was measured at quarantine stations
through IRT (Infra-eye 2000 DM-IN2000-05, Fujitsu Tokki Systems Limited,
Japan). Passengers were made to stand at a distance of 2 m from the IRT to acquire
the image for each passenger. The surface temperature of median forehead was
measured for those who showed a temperature of above 35.4 °C by Thermofocus
(Tecnimed Srl, Italy). Passengers who had a fever of above 37.0 °C as detected by
Thermofocus were asked to fill questionnaires and their axillary temperature was
measured by a digital thermometer (Thermo Digital Thermometer C202, Terumo
Corp.). Clinicians examined those passengers who self-reported symptoms and
axillary temperature was measured for those who consented.

1Dr. Shigeto Abe was chief of Naha Quarantine Station in these period.
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3.2 IRT Screening Results at Naha International Airport

(i) The effect of seasonal changes on detecting the temperature of feverish subjects

Feverish subjects are defined as passengers having fever as detected by IRT and
Thermofocus with an axillary temperature of above 37.0 °C. The number of
feverish subjects was 391 (0.063% of all subjects). We investigated the effect of
seasonal changes on the detection of the temperature of feverish subjects. Figure 3
shows significant fluctuation in the detection of feverish subjects. We assumed this
fluctuation was affected by age and destination of passengers during long holiday
seasons, i.e., Golden Week, summer vacation, and New Year’s holiday in Japan,
and not affected by internal and external conditions of passengers.

(ii) Correlation between axillary temperature and facial skin temperature

The mean value of facial skin temperature scanned by IRT was 35.1 °C and that
of axillary temperature measured by thermometer was 37.8 °C. The difference
between these temperatures was 2.7 °C, which was greater than the difference of
1.6 °C between IRT set point (35.4 °C) and axillary temperature (37.0 °C). This
shows the possibilities of IRT detecting false negatives for febrile subjects. Figure 4
shows the correlation plot of the facial skin temperatures monitored by IRT and the
axillary temperatures measured by thermometer. The IRT measurement exhibited a

Fig. 3 Effect of seasonal
changes on the detection of
the temperature of feverish
subjects

Fig. 4 Relationship between
the facial skin temperature
measured by IRT and the
axillary temperature measured
by thermometer
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positive correlation with that of the thermometer (r = 0.60); the linear least square
fitting equation is as follows:

y ¼ 0:43xþ 22:57 ð1Þ

Body surface temperature and axillary temperature, which is assumed to be core
temperature, correlated significantly. The result is very similar to that obtained by
Ng et al. [4]. In order to increase the correlation between body surface temperature
and axillary temperature and maintain detection accuracy of thermography, stan-
dard operating procedure must be strictly conducted by quarantine inspectors.

The results indicated that IRT could sufficiently detect febrile individuals and the
detection accuracy was improved by corroborating surveillance with self-reporting
questionnaires. Questionnaires can be highly reliable when used in combination
with thermal scanning that detects feverish passengers negligent to report their
symptoms in the questionnaires. By excluding passengers in early stages or incu-
bation period of infection, active border control can be reinforced and precautionary
measures will prevent the infection from spreading within country.

4 Multiple Vital Sign Based Infection Screening System

4.1 Fundamental Idea of Infection Screening System

Since fever is one of the major symptoms of infectious diseases such as SARS and
influenza, IRT is adopted for febrile passenger screening by monitoring their body
temperature. However, facial skin temperature measured through IRT can be
affected by many factors, such as antifebrile and alcohol intake, and ambient
temperatures. Specifically, taking antifebrile medication results in rapid modifica-
tion of body temperature and directly affects the efficiency of IRT. In order to
achieve more accurate infection screening, we have developed an infection
screening system, which monitors infection-induced alternation of heart and res-
piration rates as well as body temperature in a noncontact manner in our previous
studies. The idea of using vital signs stems from the fact that infectious diseases are
associated with inflammation and the increased rates of body temperature, heart,
and respiration are included in the diagnostic criteria for the systemic inflammatory

Table 1 Diagnostic criteria for systemic inflammatory response syndrome

Criteria Range

Body temperature More than 38 °C or less than 36 °C

Heart rate More than 90 beats per minute

Respiration rate More than 20 breaths per minute

White blood cell count >12,000/mm3, <4000/mm3, or >10% bands

Two or more of above criteria
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response syndrome (Table 1) [17]. One of the criteria for infection is the white
blood cell (WBC) count; however, this requires blood samples, which precludes its
use as a fast and efficient screening parameter.

4.2 System Design of Infection Screening System for Airport
Quarantine Stations

The proposed system automatically detects infected individuals within 10 s via a
discriminant function by measuring vital signs, i.e., heart rate, respiration rate, and
facial skin temperature.

Our first prototype was designed for airport quarantine stations in 2009 [18]; the
schematic diagram of the noncontact infection screening system is shown in Fig. 5.
The system consists of a laser Doppler blood flow meter (ALF21N, Advance,
Tokyo), a 10-GHz microwave radar (Tau-giken, Yokohama), and an IRT (NEC
SANEI, IS7800, Tokyo). The laser Doppler blood flow meter measures the pulse
within a range of 3 cm from palmar surface. In order to monitor the respiratory
motion of a subject’s chest, the microwave radar radiates 10-GHz microwaves with
an output power of 7 mW. The subject’s facial skin temperature is measured via
IRT, which is placed at a distance of 2 m from the target face. The pulse wave
measured by laser Doppler blood flow meter, the respiratory curve measured by
microwave radar, and the thermal image measured by IRT are displayed in real
time.

Fig. 5 Diagrammatic illustration of the noncontact infection screening system [18]
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4.3 Classification Algorithms for Screening of Potential
Infected Patients

In order to execute automatic detection of the patients with potential infection from
measured vital signs, we proposed classification algorithms including linear dis-
criminant analysis (LDA), quadratic discriminant analysis (QDA), support vector
machine (SVM), k-nearest neighbors (kNN), logistic regression (LR), naive Bayes
(NB), and Kohonen’s self-organizing maps (SOM) with k-means clustering [19,
20]. In this section, we provide a short introduction of the SOM with the k-means
clustering algorithm, which had the most reliable screening accuracy.

The unsupervised algorithm was created by a two-layer neural network, i.e.,
SOM combined with a k-means clustering method. The input layer had three inputs:
heart rate, respiration rate, and facial skin temperature (Fig. 6). First, the prepro-
cessing of the input layer for these three parameters was conducted. Data from all
subjects was used to construct an ASCII file, which contained four columns, i.e.,
three parameters and one label. Whereas the scale of the parameters is important in
determining the nature of SOM, we normalized all the parameters using the loga-
rithmic scale. After preprocessing of the input layer, the ASCII file was used to
create various SOM clusters. The SOM clustering result was visualized on a
two-dimensional color-coded map using the unified distance matrix (U-matrix). The
U-matrix shows the distance between neighboring map units by a color tone. This
classification is composed of various clusters corresponding to a variety of U-matrix
distances (color tone). Second, the k-means clustering algorithm was employed to
reduce the SOM clusters into two clusters (“Potential infection group” and “Normal
group”).

Fig. 6 Schematic representation of SOM combined with a k-means clustering algorithm to
generate a nonlinear discriminant function [20]
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We tested these classification algorithms on clinical data, i.e., 57 medicated
influenza patients and 35 normal control subjects at the Japan Self-defense Forces
Central Hospital. Moreover, we also compared the performance of all the proposed
classification algorithms with the data (Table 2). Acquiring heart and respiration
rates in addition to facial skin temperature allowed us to reduce the misclassification
rate by more than 50%. In addition, mutual information scores and classification
results indicate that the multiple vital sign approach for infection screening can
present a solution to the problem of identifying infected individuals treated with
antipyretics.

5 Conclusions and Future Work

In this chapter, we introduced the applications of IRT for mass screening of in-
ternational travelers at airport quarantine stations. IRT could sufficiently detect
febrile individuals in noncontact manner and the detection accuracy was improved
by corroborating surveillance with self-reporting questionnaires. IRT is efficient in
detecting infected passengers or those who come in contact with infected indi-
viduals in early seasons of epidemic; IRT will play an important role in avoiding the
spread of infections with unclear characteristics. The benefits of implementing IRT
for quarantine purposes can be summarized as follows:

(i) Fever at entry will be recorded and the collected data will be used as a
reference in other fields of medicine.

(ii) Questionnaires can be highly reliable when conducted with thermal scanning
that detects feverish passengers who were negligent in reporting their symp-
toms in the questionnaires. By excluding passengers in the early stages or
incubation period of infection, active border control can be reinforced and
these precautionary measures will prevent infection from spreading within the
country.

Furthermore, to overcome the limitations associated with the use of IRT for fever
screening, we developed a novel infection screening system based on noncontact
acquisition of heart rate, respiration rate, and facial skin temperature. Multiple vital

Table 2 Classification results [21]

Method Error rate (%) Sensitivity (%) Specificity (%)

LDA 10.9 91.2 85.7

QDA 9.8 93 85.7

SVM 9.8 93 85.7

kNN 10.9 93 82.9

LR 12 89.5 85.7

NB 14.1 89.5 80

SOM + k-means 9.7 98 77
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sign based infection screening has a much higher potential to increase the detection
rate than the traditional IRT-based screening.

To improve screening performance, as a part of future work, one of the most
promising approaches is to connect multiple infection screening systems, which
enables information sharing between different systems. This will allow us to apply
big data analysis techniques, which can be used to predict outbreaks of infectious
diseases much earlier than the existing methods (Fig. 7).
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Evaluation of Evaporative Dry Eye
Disease Using Thermal Images of Ocular
Surface Regions with DWT and Gabor
Transform
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Abstract Tear film instability is a major cause of dry eye (DE) disease. The lack
of stability of the tear film may be associated with optical aberrations, visual
disturbances, and ocular surface damage. It is clinically important to detect tear
instability in DE as the treatment may involve specific measures such as chronic
eyelid warming therapy. To achieve this, a practical and rapid method to analyze
the relevant features from different regions of the ocular surface in DE will be
useful. Thus, in this chapter, efficiency of using the upper half and lower half
regions of the ocular surface (cornea + conjunctiva) in the detection of evaporative
dry eye is assessed using infrared thermography images. Here, we define the ocular
surface as the exposed area of the cornea and the bulbar conjunctiva during natural
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blinking conditions. Infrared thermography images are acquired from each eye of
normal and DE participants. Discrete wavelet transform (DWT) and Gabor trans-
form are used to extract the salient features from the 1st, 5th, and 10th frames of the
infrared thermography images after the first blink is subjected to segmentation to
obtain the upper half and lower half ocular regions. Each segmented region is
decomposed up to three levels using DWT and Gabor transform is performed on the
DWT coefficients. Principal component analysis (PCA) is performed on these
extracted features to reduce the number of features, and PCA coefficients are ranked
using t-value and fed to support vector machine (SVM) classifier. Using the 1st,
5th, and 10th frames of the upper half of ocular region after the first blink, we
achieved classification accuracies of (i) 82.3, 89.2, 88.2% for the left eye and
(ii) 93.4, 81.5, 84.4% for the right eye, respectively. Similarly, using 1st, 5th, and
10th frames of lower half of ocular regions we achieved accuracies of (i) 95.0, 95.0,
89.2% and (ii) 91.2, 97.0, 92.2% for the left and right eyes, respectively. This study
shows that the lower half of the eye is superior to the upper half for the purpose of
DE detection using our technique. The proposed algorithm is efficient, simple, and
may be employed in polyclinics or hospitals for faster DE assessment.

Keywords Dry eye � Gabor transform � DWT � Thermogram � Feature �
Classifier � SVM

1 Introduction

Dry eye (DE) may be caused by enhanced tear film evaporation and/or reduced tear
production [1]. The tear film subserves important functions including the lubrication
and continuous moisture necessary for maintaining optimal vision and comfort of the
eye. The tear film’s outer layer (lipid layer) maintains tear stability and prevents
excessive tear evaporation.Any imbalance arising in the tearfilm components triggers
DE symptoms in at risk individuals [2]. In addition, DEdisturbs the homeostasis of the
tear film, and significantly damages its defense capability such as preventing micro-
bial invasion and supporting the ocular surface epithelium [3].

Clinically DE disease is diagnosed by indirect assessment of tear production and
tears film stability measurements. For the measurement of tear production, the most
commonly employed method is the Schirmer’s test [4, 5]. In this test, a filter paper
is placed inside the lower lid of eye to quantify the amount of wetting of the strip
over a 5 min duration. The fluorescent breakup time (FBUT) method is used to
evaluate the tear film stability. To perform this test, fluorescent sodium drops are
applied onto the ocular surface and the time needed for dry spots to appear on the
cornea is assessed [4, 5]. However, both of these tests may disturb the tear film and
have other drawbacks, including inconvenience for patients.
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Recent studies have been conducted to evaluate the health of the eye using IR
images and tear film stability [6, 7]. The ocular surface temperature (OST) is dis-
turbed by tear film instability [8, 9] and is one of the factors associated with DE
symptoms [10, 11]. Studies have observed that the OST decreases significantly in
DE patients group compared to the control group [12–14] and also rate of cooling is
higher in the DE patients due to excessive tear evaporation [15]. Conversely, the
pattern of the IR thermal images in DE patients appears to be more unstable and
asymmetrical compared to those from normal research participants [9, 12, 15–17].
The temperature sketch of the normal eye is found to be more uniform as compared
to the situation in DE [18, 19]. Nevertheless, the asymmetry present in the tear
film’s IR thermal image has not been quantitatively investigated. Previously, we
have shown using OST derived tear evaporation rates that a specific treatment
modality for evaporative DE, chronic eyelid warming, will benefit patients who
present with increased evaporative loss. If patients have abnormally increased tear
evaporation prior to treatment, they are more likely to achieve greater symptomatic
relief and restoration of beneficial tear lipids such as O-acyl-x-hydroxy-fatty acids
(OAHFAs), at three months after commencement of treatment [20]. However, this
method of tear evaporation assessment is computationally cumbersome for routine
clinical use and can be simplified.

The existing diagnostic approaches are subjective, invasive, and uncomfortable.
In the current work, we extract Gabor transform-based features from the DWT
coefficients of lower and upper half regions of the eye to identify DE efficiently.
The region-based DE assessment system developed will decrease the need for
conventional DE tests currently used by ophthalmologists, and provide faster and
more objective interpretation of tear film status. Assessing these different regions of
the ocular surface on the thermograms instead of the entire ocular surface may
hasten the evaluation of DE. Furthermore, this approach may be even more suitable
when large numbers of people are to be screened for DE. The proposed method
highlights the regional differences in the tear status in DE diagnosis and may
increase our understanding of the tear physiology in DE.

Figure 1 shows the block diagram of proposed method. During off-line, ther-
mogram images of normal and DE patients obtained during 1st, 5th, and 10th
frames after blink are subjected to preprocessing and segmentation to extract lower
half and upper half of ocular surface regions. Subsequently, the segmented images
are subjected to discrete wavelet transform (DWT) up to three levels of decom-
position to obtain the DWT coefficients. Gabor Transform is performed on each
DWT coefficient, and 48 Gabor features are extracted, obtaining a total of 48 � 12
(DWT coefficients) Gabor features. These features are reduced using principal
component analysis (PCA) and coefficients are ranked using t-value. These ranked
features are used to feed the support vector machine (SVM). During on-line, from
the unknown (test) thermogram images, the important Gabor features are extracted
from the input (unknown) thermography images at various locations (lower and
upper half) after going through DWT process. The features extracted are then
classified automatically using support vector machine (SVM) classifier.
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2 Methodology

2.1 Materials

In this study, IR thermal images were obtained from normal and DE patients using
the VarioTHERM head II device (Dresden, Germany) located at the Singapore Eye
Research Institute (SERI), Singapore. This study has acquired ethical permission
from the Singapore Health Services Centralized Institutional Review Board (IRB),
Singapore, and written informed consent was obtained from all participants. The
study recruited 83 DE participants and 21 normal volunteers. The recordings were
captured from 10 AM to 4 PM, at 20 to 23 °C room temperature and 60 to 68%
humidity. Twenty-five thermal images were taken over 20 s sequentially. Each
thermal image was kept at a size of 442 � 299 pixels, and stored in JPEG format.
Figure 2 shows a typical thermographic image of normal and DE subjects.

2.2 Preprocessing and Segmentation

We have taken the 1st, 5th, and 10th frames of IR thermography images after the
first blink and manually delineated an ocular region as previously described [17].

Fig. 1 Block diagram of the proposed methodology
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On the delineated ocular region, reverse warping method [21] is used to obtain a
standardized image. This new algorithm is described briefly in Fig. 3. To enhance
the image quality, an adaptive histogram [22] is constructed.

Once the ocular surface region is outlined, the images are segmented into upper
half and lower half ocular region. Figure 4 shows the upper and lower half of ocular
region of the IR thermography images used for this study.

Fig. 2 Typical thermogram eye image: a normal, b DE

Fig. 3 Region of interest selection

Fig. 4 Shows the selection of ocular region a lower half segmented IR thermography image, and
b upper half segmented IR thermography image
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2.3 Feature Extraction

Feature extraction is a significant step in developing an automated detection system
using IR thermography images. This paper proposes a new feature extraction
method in which Gabor Transform features are extracted from the DWT coefficients
of thermograms. A brief description of the methods used is as follows.

2.3.1 Discrete Wavelet Transform (DWT)

The DWT is performed on each segmented image (upper and lower regions) up to
the three levels of decomposition prior to feature extraction [23, 24]. Thus, total of
12 subband coefficients are obtained from which Gabor features are extracted. In
this study, DWT is performed on the segmented upper and lower ocular surface
regions. From the DWT coefficients of upper and lower regions, Gabor Transform
parameters are computed for each subband using the procedure detailed in the next
section. In this work, we used Daubechies 8 (db8) wavelet function [25].

2.3.2 Gabor Transform—Features

The Gabor features help to identify fine variations occurring in the pixels [26–28].
A 2D Gabor function ðgl;kðp; qÞÞ is obtained as follows,

gl;kðp; qÞ ¼ 1
2prprq

� �
exp � 1

2
p2

r2p
þ q2

r2q

 !
þ 2pjxp

" #
; ð1Þ

where x is the frequency of sinusoid, rm ¼ 1=2prx and rn ¼ 1=2pry represents the
standard deviation (SD) of the Gaussian envelopes [29]. From the mother wavelet
ðgl;kðp; qÞÞ the 2D Gabor wavelets are obtained as follows,

gl;kðp; qÞ ¼ a�lg a�l p cos hþ q sin hð Þa�l �p sin hþ q cos hð Þ� �
; a[ 1; ð2Þ

where a�l, is the scale factor; l and k are the integers; h ¼ qp=K represents the
orientation and K represents the total number of orientations [29]. rp and rq are the
filter parameters.

Let us consider that Iðp; qÞ is a given IR image. Gabor transform of Iðp; qÞ is
calculated as,

Gl;kðp; qÞ ¼ Iðp; qÞ � gl;kðp; qÞ for l ¼ 1; 2; . . .; S and k ¼ 1; 2; . . .:;K; ð3Þ

where � is convolution operator. llk (mean) and rlk (standard deviation) of the
transform coefficients are used as features [29]. They are computed as follows,
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ll;k ¼
1
P2

XP
p¼1

XQ
q¼1

gl;kðp; qÞ
�� �� ð4Þ

rl;kðp; qÞ ¼ 1
P2

XP
p¼1

XQ
q¼1

gl;kðp; qÞ
�� ��� ll;k
� �2 !1=2

ð5Þ

In this paper, we used K = 6 orientations and S = 4 scales, extracting a total of
48 features, which are denoted as,

f ¼ ðl1; r1; . . .; l48; r48Þ ð7Þ

2.4 Feature Reduction

Gabor transform features are calculated from each DWT coefficients of segmented
images (lower and upper regions); a total of 48 Gabor features are obtained for each
coefficient (total of 12 coefficients). These features are reduced to 101 PCA
coefficients.

2.4.1 Principal Component Analysis (PCA)

The PCA is a linear dimensionality reduction technique [30, 31] used to evaluate
the paths of highest deviations and then projecting these signals onto the paths.
Eigenvectors of covariance matrix are used as the basis vectors for these paths. In
this work, the PCA is performed on the Gabor transform features (48 � 12 fea-
tures) obtained at each coefficient. We have obtained total of 101 PCA components.
Only the significant PCA components are tabulated in the results section.

2.5 Feature Ranking

It is very tedious to identify distinct and clinically significant image features to
classify DE from normal. In order to select unique and highly discriminating fea-
tures the Student t-test is used. t-test calculates the mean values of the two groups to
determine difference existing between them [31]. This test returns the p-value and
the t-statistic; the latter can be used to rank the classes since a high t-value suggests
better discrimination of DE from normal.
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2.6 Classification

This step is significant in the development of computer-aided diagnostic system.
During classification process, highly ranked extracted features from upper and
lower half regions are fed to classifier SVM with linear, quadratic, third-order
polynomials and radial basis function (RBF) kernels [31] and the performance in
classifying normal DE features is validated using tenfold cross-validation method.

3 Results

Tables 1, 2, 3, and 4 present the results of ranked features from lower and upper
halves of the right and left eye regions, in thermography images from normal and
DE individuals. The features are tabulated as mean and standard deviation (SD) and
those features with p-values < 0.05 are chosen as clinically significant features.

Next, we evaluated the classifiers with the ranked features from upper and lower
regions of 1st, 5th, and 10th IR images after the blink. We tested several combi-
nations of the features to train the classifiers using tenfold cross validation tech-
nique. We found that four highly ranked features from left and right lower half of
ocular surface resulted in the highest accuracy for DE detection. Table 5 shows the
results of the classification using features extracted from left lower half, right lower
half, left upper half, and right upper half, using 1st, 5th, and 10th frames after the

Table 1 Results of (mean and SD) of features extracted from lower half of left eye ocular region
(p < 0.05)

PCA coefficients Normal DE t-Value

Mean SD Mean SD

1st frame after the blink

PCA2 −0.2711 0.0236 −0.3272 0.0313 7.6535

PCA10 0.0764 0.0108 0.0828 0.0060 3.5764

PCA9 −0.4697 0.0085 −0.4753 0.0076 2.9394

PCA6 0.2579 0.0129 0.2501 0.0106 2.8332

5th frame after the blink

PCA2 −0.2805 0.0163 −0.3436 0.0310 8.9700

PCA5 −0.0667 0.0106 −0.0568 0.0147 2.8935

PCA9 −0.4964 0.0082 −0.5010 0.0078 2.3381

PCA19 −0.0297 0.0028 −0.0282 0.0025 2.2934

PCA8 −0.1411 0.0104 −0.1369 0.0081 1.9882

10th frame after the blink

PCA2 −0.2748 0.0174 −0.3396 0.0314 9.0592

PCA5 −0.1152 0.0094 −0.1054 0.0149 2.8561

PCA8 0.1587 0.0100 0.1642 0.0081 2.5975
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blink with SVM. The SVM classifier with RBF kernels performed consistently well
for all frames and features. Table 5 shows that the proposed method is able to detect
DE using the 5th frames after each blink, with an accuracy of 97% using only four
features. In addition, the lower half of ocular surface is more effective for diag-
nosing DE.

4 Discussion

In this paper, the effectiveness of different regions of the eye in DE diagnosis is
evaluated using Gabor Transform features extracted from DWT coefficients from
different ocular surface regions of IR thermography images. First- and second-order
statistics are not sufficient to analyze the features of the image, so Gabor transform
has been used to extract the more subtle variations in the image.

Different techniques such as Schirmer’s test, fluorescein dye, tear stability
analysis system (TSAS), IR thermometer, and IR thermography have been explored
by various researchers to compute imaging indices such as, tear function index
(TFI), temperature difference value (TDV), tear stability regularity index (TSRI),
mean ocular surface temperature (MOST), radial temperature difference (RTD), tear
stability asymmetry index (TSAI), higher order spectra (HOS) bispectrum and HOS
cumulants features in the assessment of DE patients. A summary of these studies

Table 2 Results (mean and SD) of features extracted from lower half of right eye ocular region
(p < 0.05)

PCA coefficients Normal DE t-Value

Mean SD Mean SD

1st frame after the blink

PCA3 0.1098 0.0278 0.0567 0.0314 7.0582

PCA2 −0.3924 0.0289 −0.4274 0.0407 3.7019

PCA6 −0.1913 0.0123 −0.2013 0.0127 3.1997

PCA12 −0.0875 0.0067 −0.0843 0.0060 2.0689

5th frame after the blink

PCA3 0.1762 0.0283 0.1272 0.0321 6.3702

PCA2 0.3706 0.0248 0.4125 0.0385 4.7174

PCA6 0.2941 0.0106 0.3050 0.0122 3.7244

PCA18 0.0636 0.0028 0.0656 0.0032 2.6608

PCA24 −0.0283 0.0024 −0.0294 0.0020 2.0810

10th frame after the blink

PCA2 −0.2864 0.0178 −0.3419 0.0351 6.9979

PCA3 −0.2848 0.0308 −0.2473 0.0350 4.4711

PCA6 0.2905 0.0097 0.2995 0.0117 3.2055

PCA18 −0.1045 0.0026 −0.1066 0.0030 2.8517
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which focusses on DE diagnosis using different ocular surface regions is summa-
rized in Table 6.

Xu et al. [32] assessed the entire ocular surface clinically to assess tear dynamics
for diagnosis of DE using TFI. They showed that TFI is able to identify the DE with
91.8% sensitivity and 78.9% specificity. Vico et al. [33] also utilized the same TFI
method and detected DE with 74% sensitivity and 63% specificity. TFI is com-
paratively inexpensive and simple, but is tedious and potentially biased, and
instillation of fluorescein dye performed during the test causes an artificial increase
in tear volume and can also cause irritation and induce reflex tear production.

Tai et al. [34] evaluated the two parameters TDV and CV from the region of
interest in the ocular surface using a linear discriminant function to discriminate DE
from normal eyes. These indices evaluate respectively, the degree of temperature
change and the degree of tear film stability for >6 s. The study reported 84%
sensitivity and 83% specificity. While both parameters represent stability of the tear
film, the CV is a useful parameter which measures the asymmetry of the relatively
lower temperature region which corresponds to the region of the tear film with
excessive evaporation. A larger TDV corresponds to larger amounts of tear
evaporation.

Table 3 Results (mean and SD) of features extracted from upper half of ocular region left eye
ocular region (p < 0.05)

PCA coefficients Normal DE t-Value

Mean SD Mean SD

1st frame after the blink

PCA3 −0.1606 0.0225 −0.1324 0.0264 4.4783

PCA14 0.1109 0.0077 0.1177 0.0059 4.3648

PCA4 −0.0278 0.0269 −0.0137 0.0226 2.4516

PCA19 0.0352 0.0040 0.0327 0.0042 2.4342

PCA5 −0.0399 0.0236 −0.0489 0.0157 2.0713

PCA16 0.1197 0.0083 0.1172 0.0041 1.9352

5th frame after the blink

PCA5 0.0154 0.0136 0.0296 0.0145 4.0426

PCA16 −0.3273 0.0043 −0.3317 0.0046 3.8892

PCA3 0.2415 0.0243 0.2197 0.0255 3.5143

PCA42 −0.1254 0.0007 −0.1247 0.0008 3.2368

PCA12 −0.1793 0.0075 −0.1746 0.0066 2.7459

10th frame after the blink

PCA5 0.0701 0.0137 0.0592 0.0144 3.1100

PCA16 0.1760 0.0047 0.1791 0.0040 3.0180

PCA11 −0.1277 0.0049 −0.1325 0.0073 2.8312

PCA3 −0.2693 0.0253 −0.2518 0.0260 2.7459

PCA13 −0.0347 0.0077 −0.0314 0.0044 2.5358

PCA34 0.0071 0.0013 0.0064 0.0010 2.3030
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Excessive tear evaporation increases the rate of cooling in the eyes of a DE
patient [9, 17, 35, 36]. Chiang et al. [13] evaluated decreasing ocular surface
temperatures (OST) using an IR thermal imager system for the DE identification.
They reported 79.3% sensitivity, 75% specificity, and the area-under-curve
(AUC) in the Receiver Operating Characteristic (ROC) of 0.841.

Takashi et al. [37] assessed the entire eye using the TSAS for the evaluation of
tear film stability in DE patients. This equipment produced two indices TSRI and
TSAI for the tear film stability analysis, showing promising results in distinguishing
DE subtypes using dynamic changes in tear stability. The TSAS quantifies dynamic
alterations in tear stability for 10 s by evaluating regions of asymmetry, and greater
tear asymmetry is associated with more severe DE. Unfortunately the TSAS method
is rather time-consuming and expensive, resulting in limited studies.

Dorota et al. [38] assessed tear film surface quality using three different tech-
niques during suppressed and natural blinking condition (SBC and NBC) to predict
DE. They obtained and analyzed ocular surface images using three non-invasive
methods. Among them, the Lateral Shearing Interferometry (LSI) method outper-
formed (AUC = 0.80, 0.73 under SBC, NBC respectively) the other methods, even
though the LSI instrument analyzes only a small portion of the ocular surface.

Table 4 Results (mean and SD) of features extracted from upper half of right eye ocular region

PCA coefficients Normal DE t-Value

Mean SD Mean SD

1st frame after the blink

PCA2 0.5182 0.0280 0.4830 0.0307 4.7540

PCA4 0.1930 0.0263 0.2064 0.0135 3.2405

PCA6 0.1453 0.0134 0.1387 0.0101 2.4797

PCA13 0.1278 0.0081 0.1316 0.0058 2.4042

PCA8 −0.0114 0.0115 −0.0165 0.0084 2.3021

PCA15 0.0112 0.0072 0.0084 0.0043 2.2818

5th frame after the blink

PCA2 −0.5521 0.0256 −0.5211 0.0293 4.4365

PCA14 −0.0632 0.0051 −0.0667 0.0039 3.3167

PCA9 0.1224 0.0109 0.1276 0.0057 2.9973

PCA17 0.0822 0.0050 0.0844 0.0035 2.2762

PCA63 −0.0040 0.0003 −0.0038 0.0003 2.2052

PCA21 0.1582 0.0036 0.1597 0.0029 1.9399

10th frame after the blink

PCA2 −0.5508 0.0203 −0.5182 0.0290 4.8532

PCA12 0.1731 0.0059 0.1760 0.0045 2.4682

PCA7 0.0372 0.0100 0.0425 0.0087 2.3703

PCA14 0.0060 0.0060 0.0083 0.0040 2.0452

PCA5 0.3642 0.0104 0.3587 0.0110 2.0347

PCA18 −0.0548 0.0048 −0.0565 0.0032 2.0129
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Morgan et al. [39] analyzed OST in five anatomical locations of the eye in DE
patients using IR thermography. They calculated Mean OST (MOST) from OST
values obtained in the five regions. In addition, the radial temperature difference
(RTD), which is the temperature difference between the center of the cornea and
average of two limbal readings, is evaluated. They found a higher MOST and RTD
in DE than normal controls respectively. They also presented that RTD is higher in
severe DE patients with TBUT � 6 s compared to moderate DE patients with
TBUT >6 s. Tear evaporation rate is suitable for predicting the usefulness of
treatment strategies that target evaporative dry eye. We showed that
thermography-derived evaporation rates are correlated to symptomatic response to
eyelid warming three months after therapy [20]. In that study, we also showed that
TBUT at baseline is not predictive of this symptomatic response, suggesting that
this conventional test for dry eye alone is not sufficient to detect cases of evapo-
rative DE that will benefit from eyelid warming. Most physicians and patients are
aware of the use of lubricants for DE, but many may not be aware of the role of
eyelid warming or how to select appropriate patients for eyelid warming treatment.

We have previously proposed the HOS method to analyze the ocular surface of
the eye using IR thermography to detect DE [24]. The study extracted third-order
cumulant (bispectrum) features from the ocular surface region of interest and
reported 99.8% sensitivity, 99.8% specificity, and 99.8% accuracy using proba-
bilistic neural network (PNN) and k-nearest neighbor (KNN) classifiers. Similar
classification accuracies have been obtained using the SVM classifier (polynomial
order 2 kernel). That proposed system extracts features automatically from the

Table 5 Classification using features extracted from specific ocular regions of eyes with SVM
classifier

Frames No of features Accuracy (%) Sensitivity (%) Specificity (%)

Left lower half

1st 4 95.0 98.7 80.9

5th 5 95.0 95.0 95.2

10th 2 89.2 87.6 95.2

Left upper half

1st 3 82.3 82.7 80.9

5th 5 89.2 90.1 85.7

10th 7 88.2 90.1 90.9

Right lower half

1st 3 91.2 90.2 95.2

5th 4 97.0 97.5 95.2

10th 2 92.2 91.4 95.2

Right upper half

1st 2 93.4 82.9 85.7

5th 3 81.5 84.1 71.4

10th 3 84.4 86.5 76.1
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entire ocular surface, and since not much user interaction is required, the analysis is
faster and reproducible. However we used 37 features in the left eye and 34 in the
right eyes to achieve the high accuracy. In addition, the system uses about 10
frames after the blink to achieve the maximum classification accuracy, resulting in a
computationally intensive approach.

To address this issue, we only utilized the 1st, 5th, and 10th frames after the
blink in the infrared thermography images using Gabor Transform features. We
achieved an accuracy of (i) 95.0, 95.0, and 89.2%, and (ii) 91.2, 97.0, and 92.2%
for 1st, 5th, and 10th left and right lower halves of the ocular surface, respectively.
Similarly, left and right upper halves resulted in an accuracy of (i) 82.3, 89.2, and
88.2%, and (ii) 93.4, 81.5, and 84.4% in identifying DE, respectively. The 5th and
10th frames after blink have provided better results compared to the 1st frame. This
proposed method uses only one image frame after the first blink to detect DE
efficiently, thus reducing computational time, which is a very important consider-
ation for any algorithms used in point-of-care diagnostics. Clinicians need to know
if eyelid warming is to be recommended for a patient a few minutes into the
consultation.

The main advantages of this proposed method are,

(i) Only one frame (1st or 5th or 10th frame after the first blink) in lower half of
the eye is used to detect DE. Also, the detection of DE is faster and com-
putation time shorter, as we need to analyze only half the area of the exposed
ocular surface.

(ii) It is semi-automatic compared to manual interpretations of tear film quality,
ocular surface assessment, and TFI which may be more susceptible to
inter-observer variation.

(iii) Our approach is more accurate compared to conventional tests as demon-
strated by tenfold cross validation.

(iv) The proposed algorithm may have application in any polyclinics or situations
economically, where the use of dyes and specialized consumables are not
available.

5 Conclusion

In this chapter, the significance of limited ocular surface regions for the identifi-
cation of DE using IR thermography images is proposed by extracting Gabor
transform features from DWT coefficients. The method shows accuracy of (i) 82.3,
89.2, and 88.2%, for the left eye, and (ii) 93.4, 81.5, and 84.4%, for the right eye,
upper half of 1st, 5th, and 10th frames after blink, respectively, using the SVM
classifier. Similarly, using the 1st, 5th, or 10th frames obtained after the blink in the
lower half of ocular regions we achieved accuracies of (i) 95.0, 95.0, 89.2% (left
eye), and (ii) 91.2, 97.0, 92.2% (right eye) respectively in DE detection using SVM
classifier. Our proposed algorithm helps in DE detection using IR thermography,
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and assessment time is reduced without analyzing the entire ocular surface. In the
future, the authors will explore the possibility of further limiting the analyzed
regions to quarters of the ocular surface.
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Infrared Thermal Mapping, Analysis
and Interpretation in Biomedicine

Arul N. Selvan and Charmaine Childs

Abstract Measurement of body temperature is one of the cornerstones of clinical
assessment in medicine. Skin, the largest organ of the human body, is essentially a
temperature mosaic determined by the rate of blood flow through arterioles and
capillaries adjacent to the skin. This makes the conventional methods of ‘spot’
measurement rather limited in providing detailed information of regional skin
temperature. Infrared (IR) thermal imaging however has the potential to provide a
robust method of surface temperature mapping in disease states where pathology
disturbs the ‘normal’ distribution of blood flow to skin. To advance image inter-
pretation from the conventional qualitative narrative to a quantitative and robust
system, analytical developments focus on digital images and require
computer-aided systems to produce results rapidly and safely. Hierarchical
clustering-based segmentation (HCS) provides a generic solution to the complex
interpretation of thermal data (pixel by pixel) to produce clusters and boundary
regions at levels not discernible by human visual processing. In this chapter, HCS
has been used to aid the interpretation of wound images and to identify variations in
temperature clusters around and along the surgical wound for their clinical rele-
vance in wound infection.
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1 Human Temperature Measurement

Measurement of the temperature of the tissues of the human body is probably one
of the most well recognised clinical activities in modern medicine. A change in
body temperature, notably fever, has long been regarded as a classical sign of
inflammation and infection in man which for centuries was measured with a variety
of instruments. In recent years, clinical thermometry has undergone an evolution
with a variety of “liquid in glass, liquid crystal and electronic” ‘thermometers’ in
everyday use. The sites for measurement are limited and, by convention, confined
to body cavities (mouth, oesophagus, rectum) skin folds and crevices of the groin
and axilla (armpit) [21].

However, over the last few decades, advances in thermometry and accompa-
nying technology has evolved such that we are now able to implant temperature
sensors deep inside the human body, previously possible only in the experimental
laboratory. In the brain for example, being able to implant sensors into injured
white matter and/or cerebral ventricles [9] has shown variations in organ temper-
ature from deep to superficial structures [14] and across the brain [8] and has
revolutionised our understanding of the pathophysiology of brain damage [27, 36].
Similar variations in regional tissue temperature have also been reported, with
non-invasive imaging of healthy brain using 1H magnetic resonance spectroscopy
(1HMRS) and imaging (1H MRSI) [7]. That said, we have to recognise the limi-
tations of in situ sensor technology for whole organ temperature measurement.
Since the insertion of multiple probes and sensors are not feasible in the clinical
setting, the measurement site is generally restricted to just a single ‘spot’. The same
is true for skin temperature measurement. When it comes to surface temperature,
the skin has long been regarded as a thermal ‘mosaic’ [17]. With the knowledge that
skin temperature can vary widely across the body, what value might there be in a
single skin measurement? More useful would be skin temperature “mapping” in
body regions where disease manifests upon the skin. Infrared (IR) thermometry
provides a solution to both temperature measurement and regional temperature
mapping and can be undertaken rapidly and relatively simply.

Non-ionising IR thermal imaging has many advantages. Although not used
routinely as a diagnostic clinical tool, it does have potential as a future imaging
modality provided that image analysis can be developed to provide reliable routes to
interpretation, assessment and diagnosis in medicine. In this chapter, methods for the
interpretation of digital thermal imaging in biomedical applications are presented.

2 Infrared Thermal Imaging in Medicine

The use of infrared thermal imaging in health care is not a recent phenomenon.
Thermography in breast cancer screening began in 1956 when Lawson [19]
observed that skin temperature overlying a breast tumour was higher than that of
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‘normal’ skin. However, using thermography without a standardised protocol for
imaging, patient preparation, control of ambient temperature or physician training
led to scepticism; the technique not being perceived well for “diagnostic/screening”
accuracy. It subsequently suffered a demise [42]. Alternative imaging modalities at
this time; X-ray, proton magnetic resonance imaging (1HMRI) computed tomog-
raphy (CT) whilst costly had a superior reputation for reliability and clinical utility.
However, it is now recognised that when used repeatedly in diagnostics, all incur a
degree of hazard to health due to ionising radiation load; particularly for neonates
and young children [22, 26]. By contrast, IR thermography does not penetrate
structures below the skin and is non-ionising.

The utility of IR thermal imaging is underpinned by its penetration depth. IR
radiation is not emitted by skin at depths greater than 5.0 mm [20] thus it is unable
to “ímage” deep tissue and organs. That said, many physiological and patho-
physiological changes “trigger” alterations in skin dermis via capillary networks,
particularly in acral regions (toe, finger, ear, tip of nose). Such changes occur either
intrinsically through local biochemical stimuli, and/or by external factors (heat/cold
for example) via vascular, neurological and/or neurovascular pathways [20]. This
makes IR imaging at the surface of real value for a number of prognostic and
diagnostic capabilities where changes in skin blood flow, and thus skin temperature,
provide clinically relevant information. The significant advances in IR detectors and
technology, along with improvements in the development of image processing
techniques have, over the last 5 years, seen a re-emergence of interest in IR imaging
with a successful reported use in oncology, pain management, vascular disorders,
arthritis/rheumatism, neurology, sports and rehabilitation medicine [11].

3 Digital Medical Thermal Imaging Interpretation

Typically, thermal images are inspected and interpreted using the following
methods:

• Qualitative or a narrative report determined by visually inspecting the image to
identify differences in the colour map corresponding to temperature (°C/°F)
(Fig. 1a).

• Quantitative analysis of a region of interest (ROI) or “spot” (pixel) measures
(Fig. 1b) with options for including average, maximum and minimum values
within a ROI.

• Image analysis, in its most simple form, relies solely on the variation in colour
of the thermogram which corresponds to a temperature range [39].

3.1 Issues Associated with Visual Inspection
of Thermal Images

Until recently, IR thermal cameras were constructed with sensors having low res-
olution only (e.g. 160 � 120 pixels) but, with advances in detector technology,
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improved thermal sensitivity with possible pixel resolution of (640 � 480–
1024 � 768) are available as affordable thermal imaging systems. The problem is
that human visual processing is not capable of perceiving all of the subtle infor-
mation present in such high resolution images. Thermal pattern-recognition com-
puter software systems are therefore required to “extract” information of thermal
values “hidden” within the data provided by the thermal camera manufacturers’
dedicated software. For example in Fig. 1a, the skin surface temperature over this
anatomical region appears relatively homogeneous in colour. However,
post-processing with camera software identifies two distinct regions which differ by
approximately 1 °C when using measurement spots to provide temperature values
at each selected pixel location (SP1 and SP2) and referenced with the temperature
key (Fig. 1b). This simple image analysis can be advanced further but requires far
greater systems complexity to identify temperature variations over very small areas;
for example, between groups of pixels. A system for defining (pixel) areas of

Fig. 1 Temperature values in
a thermal image displayed
using different colour palettes
(a, b). The locations of
interest Sp1 and Sp2 are better
differentiated visually when
the temperature values are
displayed using colour palette
(b) versus (a) and reveals the
potential impact of colour
palette choice for
interpretation. To choose the
right colour palette the user
may need to know what they
would like to highlight by
differentiating from the
surrounding area. For
example in this case, the pain
site (approximate location
provided by the patient)
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similarity may then be required. As an example, Fig. 2 shows temperature variation
of approximately 1.5 °C across single pixel locations. This temperature variation
could be lost or overlooked on visual inspection but may be identified easily with a
computer-aided pixel highlighting process.

In medicine, clues to the identification of skin/body regions where disease or
injury may exist can be provided by the patient him/herself. In Fig. 3a, the patient
had complained of pain at the muscles of the thenar eminence. In Fig. 3a, the painful
region is identified by an arrow. An adjacent spot measure (SP2) reveals the tem-
perature value; one of a number of regions in this thermogram close to the maximum
value in the field of view (maximum being 34.4 °C). In Fig. 3b much greater detail is
provided by exploring pixel boundaries around the site (arrow). At least three dif-
ferent colour coded regions can be identified within which the temperature values are
similar. By using computer-aided software, it is possible to distinguish each of these
regions as a separate temperature “boundary”. Furthermore, the boundaries make the
size and shape of each region, having similar temperature values, become evident. In
this way, these images have the potential to map areas of skin temperature linked to
the anatomical distribution of pain. This method for outlining areas of similar
temperature will aid the objective assessment of the size and position of the area of
interest because accuracy of diagnosis depends on how well the segmentation of the
ROI is performed in a thermogram [18].

Comparing the ROI from images in Fig. 4a, b, it can be seen how the loss of
visual detail inherent in human visual perception can be overcome by further

Fig. 2 A typical thermal image where there is a temperature variation of almost 1.5 °C across a
single pixel distance. These locations might be missed on casual visual inspection and may need
software tools to highlight the dissimilarity
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discrimination of pixels and boundary patterns achieved by the use of isotherms. In
this context, isotherms are curves which enclose regions of similar temperature
patterns. The isothermal patterns of Fig. 4b show greater detail than information in
Fig. 4a and have been produced by a boundary outlining software [29] to enhance
image information and to reveal the size and shape of regions with the same (and
different) temperature characteristics. By using isothermal patterns and boundary
regions, fine resolution and greater information from the same original image can be
obtained. Thus, computer generated boundaries aid the visualisation of fine gra-
dations of temperature changes within an area having a seemingly uniform
temperature.

Fig. 3 Hand thermal image showing location of patient-reported pain thought due to underlying
inflammation (yellow arrow). In a, pixel spot (Sp2) indicates the pixel temperature at adjacent skin
site to the painful area. Computer-aided software tools system applied to (a) defines the areas of
similar temperature and noting the extent and pattern of the temperature region commensurate with
the painful area (red arrow) (b)

Fig. 4 Isotherms plotted by a computer programme aids visualisation of fine gradations of
temperature in the region (defined by the “box”) in (a). For example, around the locations
identified at the (yellow arrows) (a) the fine gradations of temperature changes are highlighted by
using isotherms (Red arrows) (b)
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Given the potential for computer-aided image analysis to reveal details of the
user-drawn ROI (not possible on visual inspection using the software provided by
proprietary systems), there is an emerging interest in the development of ‘smart’
image processing algorithms to enhance the interpretation and analysis of thermal
signatures.

We have previously reported the variation in temperature along two different
surgical wound types; wounds produced after closure of enterostoma [34] and after
caesarean section [10]. We piloted the use of an image processing algorithm;
Hierarchical Clustering-based Segmentation (HCS) [29], in detecting anomalies in
temperature along the scar [10].

4 Computer-Assisted Medical Thermal Image
Interpretation

Anomaly detection in infrared (IR) images is a challenging task. Frize et al. [15]
have identified a number of factors which can confound the accuracy of the tem-
perature values acquired, including emissivity, external conditions (temperature,
humidity) and imaging surface factors (material, surface properties, orientation) all
of which produce IR images of low signal-to-noise ratio [4]. This introduces
inaccuracy in obtaining the actual temperature values and contributes to measure-
ment uncertainty.

The most important step in developing a computer-assisted anomaly detection
system and application for analysis of thermal images is to segment relevant
thermal information from thermal noise. Numerous algorithms are available in the
literature for detecting boundaries to segment ROI in visible and optical images.
However, because of the non-uniformity of IR images, revealed by varied pixel
values representing similar temperature across the image [6], boundary regions in
thermal images are not defined clearly. Software techniques used successfully in
detecting boundaries in optical (visible) images have the drawback of being unable
to form continuous, distinct and meaningful boundaries around an ROI in ther-
mograms; they are therefore unreliable for segmenting IR images [44].

Designs for computer-assisted methods for the interpretation of thermal images
are available, for example, to assist the user in objective identification of skin ‘hot’
spots. Snekhalatha et al. [35] implemented an automated thermal image segmen-
tation of a hot spot region of the hand. Similarly, because a regular ROI such as a
rectangle, square, circle or elipse, poorly outlines certain anatomical regions [13].
Vardasca et al. [40] designed an automated ROI fitting method to address the issues
associated with obtaining a representative temperature value from a user-drawn
regular ROI from thermal images of limbs. These examples suggest that automation
of thermal images are typically for “bespoke” applications.

Infrared Thermal Mapping, Analysis and Interpretation … 383



In this chapter, we discuss the development of a generic thermal image seg-
mentation process to extract thermal features considered to be ‘abnormal’ and using
a Hierarchical Clustering-based Segmentation (HCS) design and process [29]. HCS
segments an image as a set of regions with each region composed of sub-regions
and which are, themselves, composed of sub-regions, and so on [16]. In this way,
HCS is a dissimilarity highlighting process that yields a hierarchy of segmentation
results. It is well suited to address the issues associated with the segmentation of
‘noisy’ thermal image data.

In separating out the ROI, thresholding is used. The separation is based on the
variation of pixel values between the regions’ pixels and the surrounding pixels. For
example in a grey scale image with pixel values ranging from zero to 255, the
variation of (difference in) pixel values between parts (regions) can be between zero
and 255. In the thresholding process, a part of the image is segmented as a separate
region if its pixel values vary from the surrounding pixel values by a threshold
value (T). For a low threshold value, pixels having even the smallest difference
from the surrounding pixel values will be segmented as a separate region. Thus, a
low threshold value will locate boundaries of regions having the most subtle of
differences. As these small pixel value differences may be because of the
non-uniformity of IR images, the detected boundaries will be spurious [12]. By
contrast, higher threshold values will detect only the boundaries of regions where
there are major difference with the surroundings but by using a higher threshold, the
downside is that there are likely discontinuities in the detected boundaries [12].

Identifying boundaries where only a single threshold value is employed has two
problems [1, 2]. First, the most appropriate threshold value will depend greatly on
the application, i.e. whether identification is required for major boundaries or subtle
boundaries only. Second, and importantly, thresholding using a single threshold
will result in loss of useful boundary information, which might otherwise be found
for different threshold values.

Unlike other segmentation processes which favour identification of the bound-
aries between different regions by choosing a (single) threshold value, the HCS
process is based on a non-thresholded boundary identifying process. That is, no
threshold value is used. However, recognising that the process does, indeed, need
some form of “thresholding” approach to identify the boundaries of different re-
gions in an image, the HCS process rather than using a single threshold value,
instead uses a “hierarchical” level of thresholding to identify the boundaries
between different regions in the image.

4.1 Design of Hierarchical Clustering-Based Segmentation
(HCS) as an Aid to Interpret Medical Thermal Images

The human visual system processes images at varying resolutions; coarse to fine.
For example, given an anatomical image of the cross section of a skull, at a coarse
level a radiologist can visualise the image as distinct regions belonging to soft
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tissues or bone. At a fine level, different types of soft tissues are also identified. At a
still finer level and, given the appropriate imaging modality, the radiologist will be
able to distinguish “abnormal” regions (e.g. commensurate with ischaemia) within
the same tissue type. This example illustrates a “resolution” hierarchy from coarse
(bone) fine (tissue) and still finer (blood within tissue) within an image. Since the
early days of computer vision, this hierarchical structure of visual perception has
motivated clustering techniques for image segmentation [25]. So in a computer
model representation, the segmentation process is modelled as a process of
grouping visual information, where the details are grouped into objects, and objects
into classes of objects. Thus, starting from the composite segmentation, the per-
ceptual organization of the image can be represented by a tree of regions, ordered
by inclusion. The root of the tree is the entire scene, the leaves are the finest details
and each region represents an object at a certain scale of observation [1].

Hierarchical Clustering-based Segmentation (HCS) [28–30] implements the
traditional agglomerative clustering [23] where the regions of an initial partition are
iteratively merged and automatically generate a hierarchy of segmented images
(Fig. 5); for example, Fig. 6 (top row of images; left to right).

The hierarchy of segmented images is generated by partitioning an image into its
constituent regions at hierarchical levels of “allowable dissimilarity” (threshold
value) between its different regions. At any particular level in the hierarchy, the
segmentation process will cluster together all the pixels and/or regions which have
dissimilarity value among them; less than or equal to the dissimilarity allowed for
that level (Fig. 5).

Fig. 5 Flow chart illustrating the working of the HCS process. The input image is initially
segmented into regions by clustering similar neighbouring pixels. The initial segmentation of the
region is merged for different allowable dissimilarities, between regions, yielding a hierarchy of
segmented images. Reproduced from [28]
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A unique feature of the HCS process is the border pixel classification operation
(flow-chart Fig. 5). Border pixel reclassification is considered only for those pixels
on the boundary of the clusters which had been merged with other clusters. These
boundary pixels are removed one at a time from their original clusters. The pixel
removed is considered as a region of its own and the similarity between the one
pixel region and the regions bordering it (which include the original cluster to
which it belonged) are found and the single pixel region merged with the most
similar bordering region. Border pixel reclassification aides in over-riding local
inhomogeneity while clustering similar pixels/regions.

An example of HCS border pixel re-classification in use can be demonstrated by
the visually smooth border delineation obtained in Fig. 6. The central image (middle
row) is the image of an abnormality having ill-defined boundaries presented in an

Fig. 6 Comparison of segmentation output of an ill-defined “abnormality” from an X-ray
mammogram image (middle row) with border-pixel-re-classification (top row) and without
border-pixel-re-classification(bottom row). The delineated cluster boundaries with
border-pixel-re-classification (top row) are more easily visualised as distinct visual clusters when
compared to the cluster boundaries delineated without border-pixel-re-classification (bottom row)
and is an example of HCS process’ capability
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X-ray mammogram. It can be seen from the border outlined images that the HCS
process (with border pixel reclassification—top row) achieves far better results in
delineating the different regions within the abnormality when compared to the
segmentation without border-pixel-re-classification (bottom row). The border pixel
re-classification operation of the HCS process generates visually smooth boundaries
and also identifies more appropriate boundaries when compared to other similar
segmentation processes such as Tilton’s [37] Hierarchical Segmentation (HSEG)
[38]. For further details with relevant example see Selvan [29].

Since the HCS process is a generic segmentation process, it is applicable and
equally successful at segmentation and outlining boundaries of ROI in digital
images from any source whether from X-ray or thermal image. This makes HCS a
versatile process which has been demonstrated successfully and without any
modifications (e.g. parameter tuning) to segment images of the natural environment
(e.g. birds, trees) [29] and diagnostic images obtained using different modalities;
ultrasound images [28], CT [31], X-ray mammograms [32], magnetic resonance
imaging [33] and digital medical thermal image (DMTI) [10].

5 HCS Process in Thermal Image Analysis
of Surgical Wounds

In clinical practice, the assessment of surgical wounds for surgical site infection is
largely undertaken using wound scoring tables and criteria (e.g. [5, 41, 43]). There
are currently no independent quantitative technologies for wound assessment.
Typically, however, descriptive narratives are used to describe the state of a wound
and to undertake wound healing assessments [24].

Here we describe a novel method to aid the user to:

• visualise the thermal pattern to report information for a more robust qualitative
analysis

• provide quantitative measures for wound analysis.

5.1 HCS Process Aided Evaluation of the Temperature
Variation of the Surgical Wound

Previous studies report a relationship between temperature and skin viability during
inflammation and infection. For example, raised skin temperature is recognised as a
sign of inflammation [5]. By contrast, a fall in skin temperature can occur during
vascular insufficiency, ischaemia and necrosis [24]. In surgical wounds, we have
recently observed ‘cold spots’ in the thermograms of surgical wounds which
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subsequently were shown to be infected [34]. More recently, we have designed and
used the HCS process-based method to obtain quantitative measures to undertake an
objective and independent assessment of healthy and infected surgical wounds [10].
For detailed information of the technique see Childs et al. [10] but a brief description
is provided here where the steps involved in the designed HCS process include the
following:

(a) HCS processing of a ROI around the wound site. A box shaped ROI around
the wound site is chosen by the user (Fig. 7a)

(b) comparison of the wound site with a nearby healthy area.

(a) HCS Processing of a ROI Around the Wound Site The main purpose of
this step is to highlight regions of different temperature values in an automated and
objective manner. The HCS process is applied within the user outlined ROI
(Fig. 7a) around the wound site.

The HCS process generates a hierarchy of segmentation output, for different values
of allowable dissimilarity, amongst the pixels collated to form regions of similar
temperature profiles. From the hundreds of segmentations, the user may make use only
of the relevant segmentations having useful segmentation outputs. Briefly, in this
example, the user has chosen four different segmentation outputs ranging from the
segmentation having 253 regions to the segmentation having 11 regions only (Fig. 7b).

The segmentation having 253 regions will be produced when a low threshold of
dissimilarity is allowed between regions. Hence a lesser number of regions will be
merged. The segmentation with 11 regions will be produced when a higher value
for the dissimilarity threshold is allowed for merging. This facilitates a higher
number of regions to merge. In each of the cases (low or high threshold dissimi-
larity) the region images were produced by mapping the average temperature value
of the pixels contained within a region to 256 grey scale levels. The boundary
images were produced by plotting the border of the different regions onto the 256
level representations of the radiometric data (Fig. 7a).

From the different segmentation outputs generated, the user may choose seg-
mentation(s) of interest to generate quantitative measures for each of the regions.
On inspecting the different segmentations (Fig. 7b), the segmentation with 253
regions was chosen for further analysis and to extract the quantitative (temperature)
measurements (Fig. 8). The upper panel shows the locations of interest (locations
1–11) and the corresponding temperature boundary regions (lower panel). In this
way, the user can identify the variability in temperature regions across the ROI. In
summary, the usefulness of the HCS process in outlining regions of similar tem-
perature profile are as follows:

• The highlighted (boundary outlined) areas will aid the user to visualise, in detail,
ROI including the shape and size of “abnormal” regions and the variability in
temperature within regions which “at first sight” appear similar (Fig. 7).
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• The process will aid the user to automatically derive quantitative measures of
the highlighted (boundary outlined) areas in an objective manner (Fig. 8).

The process can also be used to automatically estimate the summary statistics of
the temperature difference between two ROIs; in this example, the regions of the
wound and of undamaged skin (Fig. 9c). In this example, marked differences in
temperature are evident across the wound and in excess of 1.5 °C.

Fig. 7 Thermal image of a surgical wound site in grey scale with user outlined (white) box.
The ROI is marked around the wound site (a). The summary statistics (maximum, minimum,
average) of the temperature values within the ROI are estimated by the camera software (a); in this
example, FLIR systems, Sweden. In (b) the region images display the average temperature value
within the region mapped to 256 grey levels. The boundaries are marked on the grey shade thermal
image (a). The HCS process will generate hundreds of segmentation outputs. The regions and
boundary images shown in (b) are a sample output to illustrate that, when the allowable
dissimilarity value is increased, the number of regions decrease because more regions will merge.
For example when there are 253 regions, the central region (locations 9, 10 upper panel Fig. 8)
reveals three bounded and segmented regions which range from 34.1 to 34.7 °C
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(b) Comparison of the Wound Site with a Nearby Healthy Area Locations of
interest along the wound site are noted as are adjacent locations marking healthy
areas (Fig. 9a). From the output of the HCS process, regions over the area of
healthy skin and the regions over the surgical wound are selected/identified for a
user-chosen “low” dissimilarity level of 10% (i.e. each segmented region allows
inclusion of pixels which differ from each other by not more than 10%) (Fig. 9b).
The process automatically estimates the summary statistics of the temperature
difference between the regions of the wound and the regions of the healthy area
(Fig. 9c). In this example, there are wide variations between wound and adjacent
healthy skin. For example, from the summary statistics generated from the HCS
process for the image shown in Fig. 9, the wound site was maximally 1.6 °C lower,
and maximally 1.2 °C higher, than healthy skin at loci shown (average differences
being 0.53° and 0.45°, respectively). In addition, the temperature values along the
wound estimated by the HCS process are average (34 °C), lowest (33.8 °C) and
highest (35.4 °C) at loci shown in the figure and reveal significant temperature
gradients within the ROI of the surgical wound.

Fig. 8 HCS process’ boundaries aid the user to visualise the different temperature patterns and
estimate objective measures; average temperature values of different regions with similar
temperature. This is much more appropriate when compared to the summary statistics estimated by
the camera software for regular shape ROI (Fig. 7a)
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6 Summary

Although the temperature of mammalian internal organs are considered relatively
uniform (and constant), recent studies have shown that significant temperature
gradients do occur [7, 8, 14]; even in a thermally “shielded” organ, brain. Whilst
temperature shielding, due primarily to the effects of incoming arterial blood [45]
would be expected to obviate large temperature gradients within internal structures,
this is not the case for skin.

Since the seminal works of Aschoff and Wever in 1968 [3] variability of the
body “shell” with temperature in excess of 10 °C are not unusual in healthy sub-
jects. Furthermore, a variable counter current heat exchange between arterial and
venous blood in limbs and digital extremities (hands, feet) enhances the temperature
gradient of the peripheral “shell”.

Fig. 9 User tagged locations along the wound (red curve) and along a healthy area nearby (green
line) (a). Regions identified by the HCS process containing user tagged locations along the healthy
area and along the wound (b) at a dissimilarity level of 10%. (c) Comparisons of temperature
values of the regions along the wound and along the healthy area are identified and at three loci
differ by 1.2–1.6 °C
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By undertaking a comprehensive assessment of healthy and injured skin by IR
thermal mapping, combined with a computer-aided system to aid visual processing,
we have exploited a variety of well-established image analysis techniques (e.g.
hierarchical clustering, isotherm patterning) to produce an objective, robust method
to obtain a hierarchy of thermal segments and boundaries to improve upon “what
we see”. Our work has allowed us to “see more” of the surgical wound and to
set-in-train a quantitative, independent HCS technique of wound imaging systems
to explore further the temperature mosaic which exists along the surgical wound for
its potential future clinical utility.
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Medical Thermal Tomography—Different
Approaches

B. Więcek, M. Strakowska, P. Więcek, R. Strakowski and G. De Mey

Abstract Thermal tomography is a new tool in medical diagnosis. It is based on
so-called cold provocation. It is practically realized be a weak cooling of an upper
layer of the skin. As it is noninvasive and harmless it can be applied as a screening
procedure and repeated frequently. Using thermographic camera, the temperature
recovery of the skin in time is measured and analyzed. In this chapter, three new
methods of thermal tomography are presented. First, one is based on the analysis in
time domain. The temperature versus time is approximated by the function which is
a combination of exponential and error functions. The chosen parameters of this
approximation that can be interpreted as the time constants are used then to visu-
alize the blood vessels. The second approach uses the thermal modeling of the
multilayer skin structure. The inverse thermal problem in frequency domain is
solved to estimate the thermal parameters of each layer of the skin, including
perfusion. The last procedure uses the wavelet transform (WT) to convert the large
sequence of thermal images and reduce it just one amplitude and one phase image
for an appropriate scale. The new two-step algorithm of WT for the image sequence
is presented. This approach speeds up the analysis significantly.

1 Introduction

Medical tomography is a very useful tool in medical diagnosis and treatment.
Nowadays, there are many methods and apparatuses available for medical
tomography, but most of them are not neutral for an alive tissue and invasive. Some
of them are based on the harmful radiation or isotopes that injected into the body.
They cannot be repeated periodically and frequently, so they cannot be classified as

B. Więcek (&) � M. Strakowska � P. Więcek � R. Strakowski
Institute of Electronics, Lodz University of Technology,
Wolczanska str. 211/215, 90-924 Lodz, Poland
e-mail: boguslaw.wiecek@p.lodz.pl

G. De Mey
University of Gent, Ghent, Belgium

© Springer Nature Singapore Pte Ltd. 2017
E.Y.K. Ng and M. Etehadtavakol (eds.), Application of Infrared
to Biomedical Sciences, Series in BioEngineering,
DOI 10.1007/978-981-10-3147-2_22

395



the screening methods. In addition they are costly, and can only be made in a clinic,
in many cases in the special rooms, equipped with an additional expensive
equipment. In many countries the patients are waiting a long time for the tomog-
raphy tests (e.g., a few months).

Among the known and routinely used tomography methods, there is the thermal
tomography, which seems to be still unappreciated. Certainly, it has some con-
strains, especially due to the limited depth of the body penetration by the heat
waves, but on the other hand, it can be recommended for daily screening of skin
tissues pathologies, burns during healing, and superficial tumors [1–5]. Thermal
tomography is very well suited wherever the skin or upper layers of the tissues
change their perfusion or vascularization. Thermal tomography is already well
developed and used in Nondestructive Testing (NDT) of nonmedical objects [6, 7].
NDT is mainly used for defect detection and material characterization. An alive
tissue is the special object, and most of the NDT methods cannot be applied
directly. The tissue is neither solid nor fluid, and is closer to the porous material.
Perfusion and the blood flow through the vessels may influence the heat transfer in
the tissue. In addition, the tissue in a nonhomogenous, anisotropic material with an
external thermal feedback called thermoregulation [8–10].

For medical thermal tomography, one proposes the cold provocation applied to
the skin tissue and the measurements of body temperature recovery by thermog-
raphy [1, 2, 11]. Then, by applying the inverse thermal modeling of the tissue, the
internal structure can be reconstructed. Inverse thermal modeling requires the for-
ward thermal models and the optimization [1, 11, 12]. Both of these elements can
be implemented today in a software to perform the screening. Thermal cameras are
cheaper and widely available today. It makes possible to establish a new medical
protocol for thermography screening. This chapter presents the different original
approaches in medical thermal tomography developed by the authors recently.
Although the results presented are coming from the research projects, the presented
protocols can be easily and fast adapted to the practical use in the medical
diagnosis.

2 Time-Domain Thermal Tomography

2.1 Cold Provocation Test

Cold provocation (also known as cold stress) is a simple medical protocol using a
slight cooling of a selected part of the body. After cooling, the recovery of the
surface temperature of the skin is recorded using the infrared technique. Almost any
part of the human body can be cooled. For practical reasons, the limbs are often
used for the diagnosis. The cooling can be performed using the metal blocks, water,
gel, stream of gas, or electronically controlled Peltier coolers [1, 3, 11, 13, 14]. In
order to get the repetitive results, it is important to assure the same cooling
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conditions during diagnosis of different patients. It can be done either by the same
initial temperature of the cooling device or by keeping the constant temperature
during cooling. It is accomplished better by the electronically controlled Peltier
cooler. The exemplary metal block and the Peltier cooler developed recently are
presented in Fig. 1 [1].

During the cold provocation tests, temperature of the upper surface of the skin
decreases by a few degrees (3–10 °C). In order to get such a temperature decay, it is
sufficient to keep the cooling active for a few minutes (1–2 min). The cooling is the
noninvasive, safe, and asepticmethod. In some cases (e.g., burns healing), the cooling
is recommended and helps the treatments. Due to the thermal inertia of human body,
the long-time temperature recovery is a certain inconvenience of this approach. This
recovery can last severalminutes. Typically, the tissue reaches the steady thermal state
after 20–30 min. During this period, the patient should stay calm, without any rapid
movement. Practically, it is impossible to get the full stability of an object during the
diagnosis. This problem can be solved by themovement tracing and correction [15]. It
is a preprocessing, offline operation, which is performed before the main images
analysis. The algorithms and software for it are now available [15].

The exemplary thermal images selected from the long sequence recorded are
presented in Fig. 2. In this test, the cooling was made by a cold gel put on the arm.
Four black markers visible on the arm were prepared for the movement correction.

2.2 Temperature Approximation in Time Domain

Cold provocation in the medical diagnosis is based on cooling the skin. It can be
done using the different devices such as cold solid blocks, water bath, gels, or cold

Fig. 1 A metal block and Peltier temperature stabilizer for cold provocation experiments
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Fig. 2 Thermal images recorded during the cold provocation test, frame no.: a 0, b 40, c 41,
d 1000, e 3000, f 5000, g 10,000, h 15,000
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stream of nontoxic gases [1–3, 6, 11, 14]. Typically, the skin gets colder by a few
degree Celsius comparing to the initial state. Then, using a thermographic camera
or a pyrometer, the temperature recovery is recorded. Due to the thermal time
constants of the tissue, this process is going on within hundreds of seconds. It is
obvious that the patient cannot remain stable for such a long time. That is why, the
movement correction on thermal images has to be performed. It is offline procedure
using the different methods [15]. One of them applies the correlation of each frame
with the selected region from one of the first thermal images in the sequence [15].
After movement correction, the approximation in time (smoothing) can be per-
formed for the temperature rise in time for each or selected pixels in the sequence—
Fig. 3.

Temperature evolution in time is due to the heating from inside of the body. This
is a thermal process involving the perfusion. From the heat transfer theory in solids,
one knows that the temperature rise in time can be approximated by the finite sum
of the exponential components—Eq. (1). These components correspond to the time
constants that are represented by the Rth–Cth sections in the thermal model for a
solid in the dynamic state (Rth—thermal resistance, Cth—thermal capacitance)

TðtÞ ¼
X1

i¼0

Ti 1� e�
t
si

� �
�

XN

i¼0

Ti 1� e�
t
si

� �
: ð1Þ

One can notice that the time constant si can be replaced by angular frequency
xi = 1/si. The perfusion makes the thermal process in a tissue different to the
heating of the solid materials. The major difference is in the very beginning of the
heating. At first, the temperature rise is much faster than in the quasi-stable state.
One can conclude that the heating of an alive tissue is 2-time-constant thermal
process. It is not always the case. After many experiments we have noticed that the
combination of the exponential and the error functions is the satisfactory

Fig. 3 Exemplary
temperature evolution in time
after cold provocation and its
approximation by the
combination of exponential
and error functions
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approximation of temperature rise for a human tissue after a weak cooling—Eq. (2)
[12, 13]:

TðtÞ ¼ T0ð1� e�x0tÞþ T1ð1� ex1t � erfcð ffiffiffiffiffiffiffiffiffiffiffi
x1 � t

p ÞÞ: ð2Þ

2.3 Time Constant Imaging—Superficial Vessel
Visualization

The time constants both from the model (1) and the approximation (2) can be
applied for visualization the internal structure of the measured object. Infrared
thermography allows to measure the temperature on the exposed surface only.
Obviously, temperature on the surface depends on the thermal process inside the
body, and therefore both time constants in Eq. (2), i.e., s0 = 1/x0 and s1 = 1/x1, as
well as the temperature coefficients T0 and T1 depend on the internal structure of an
investigated object. One should notice that the thermal coefficients (T0 and T1)
strongly correspond to the level of cooling, which is rather difficult to keep constant
for every measurement. Time constants are independent of the different cooling
conditions. Consequently, they relate directly to the internal structure of a tissue.

Figure 4a presents a raw thermal image, one selected from a large sequence
containing thousands of frames. One can notice in Fig. 4a two markers used for the
movement compensation. They are made of aluminum foil of low emissivity, and
they are clearly visible in infrared as the dark areas. There is no much information
on the skin structure from the direct thermal imaging. However, the temperature rise
in time is different due to the place on the skin, especially if the larger vessel is
beneath—Fig. 4b.

Fig. 4 Raw thermal image—one from the long sequence (a) and temperature rise for (raw and
approximated) for a tissue with and without the blood vessel inside (b)—model (2)
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In order to present the potential application of time constant imaging, the
experiment was performed for a tissue with and without the blood vessel beneath
the skin surface. As it is expected, the time constant distribution corresponds to the
internal structure of an object. Especially, the distribution of x0 = 1/s0 clearly
presents the vessel shape and its position in the tissue—Fig. 5.

Distribution of the temperature coefficients (T0 and T1) looks rather noisy. It can
be explained that the cooling was nonuniform—Fig. 6. It could be indeed, as it was
made by touching the skin with the cold metal blocks. The forearm is not the flat
and stiff object, so the contact quality between the cooling device and the tissue can
is vary.

The method of time constants has been already used in the previous research
works. It was successfully applied to breast cancer detection and burn healing
[2, 11].

Fig. 5 Distribution of x0 (a) and x1 (b) in a cooled area on a forearm with visible vessels
underneath

Fig. 6 Distribution of T0 (a) and T1 (b) in a cooled area on a forearm—model (2)
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3 Inverse Thermal Modeling of a Tissue—
Frequency-Domain Tomography

Thermal modeling of a tissue is not an easy task. A tissue is the nonhomogenous
multilayer structure. In addition, the thermal parameters of a tissue strongly depend
on perfusion and external conditions due to the thermoregulation. Generally, the
heat transfer in a tissue is not one dimensional, rarely reaching the steady state. In
the literature, there are a few fundamental achievements in the modeling of heat
transfer in an alive body [8, 9, 12, 16–20]. In many cases the thermal models
presented already in literature cannot be used for the screening because they are not
real-time procedures with rather complex numerical calculations [20].

For practical reasons we propose a simplified one-dimensional thermal modeling
of a tissue including perfusion in the dynamic conditions. It is well suited for cold
stress diagnosis with the use of the IR thermography. The well-known approach in
thermal management of electronics based on the thermal impedance Zth is proposed
[21]. The thermal impedance can be considered either in time or frequency domain.
By definition, the concept of thermal impedance assumes that the object is powered
by P(t) excitation and the temperature evolution in time is measured T(t)—Fig. 7. It
is exactly the case of the medical cold provocation. In order to normalize and unify
the results as well as to simplify the calculations, the step function excitation
P01(t) is typically used—Fig. 7. In some cases, it is very useful to present the
thermal impedance in frequency domain—Eq. (3). Then, Zth(jx) is drawn in the
graphical form as the so-called Nyquist plot [21].

By the definition, the thermal impedance in frequency domain takes the form (3)

Zth jxð Þ ¼ jx
P0

Z1

0

ejxtTðtÞdt; ð3Þ

where T(t) is the temperature surplus over the ambient.

Fig. 7 The concept of thermal impedance in time (a) and frequency domains (Nyquist plot) (b)

402 B. Więcek et al.



The main reason of using the frequency domain for the analysis is the simpli-
fication of thermal modeling. In many cases for a simple geometry, the thermal
model can be solved analytically in frequency domain. Such an approach can be
easily used for the multilayer heat transfer modeling in a tissue [12].

3.1 Thermal Model of Multilayer Tissue Structure
with Perfusion

Let us consider a tissue as three-layer structure (epidermis, dermis, and hypodermis)
with three sets (one for each layer) of thermal parameters: density qi, specific heat
csi, thermal conductivity ki, and perfusion coefficient wi, where i = 1, 2, 3—Fig. 8.
During the cold provocation, a certain volume of a tissue is cooled down. One
assumes that in the middle of this region, the heat coming from the internal part of
the body propagates perpendicularly to the skin surface, along one axis only. It
significantly simplifies the calculations. The heat transfer is described by the heat
diffusion equation. By adding the perfusion we refer to the well-known Pennes
formulae (4) [16]:

q � c � dT
dt

¼ k � d
2T
dx2

þw � cb � qbðTb � TÞ; ð4Þ

Fig. 8 Three-layer structure
of the skin tissue
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where w is the perfusion coefficient (1/s), cb and qb are the specific heat and density
of the blood, and Tb is the blood temperature.

The next simplification in the model is made by performing Laplace transform of
Eq. (4). It moves the model into the frequency domain. Simultaneously, one
reduces Eq. (4) by eliminating the temperature derivative in time, Eq. (5).
Consequently, it allows to solve the diffusion equation analytically:

k
d2T
dx2

� Tðq � cs � sþw � cblood � qbloodÞ ¼ 0

d2T
dx2

� T
L2

¼ 0

LðsÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq � cs � sþw � cblood � qbloodÞ=k

p ;

ð5Þ

where L (in m) is called diffusion length and it is a complex number.
Equation (5) is presented for all three layers with different values of the thermal

parameters and solved independently for each layer.
The thermal model (5) has the analytical solution (6):

TðsÞ ¼ AðsÞe x
LðsÞ þBðsÞe� x

LðsÞ; ð6Þ

where A(s) and B(s) are the integration constants.
The integration constants are calculated using the boundary and interface con-

ditions. For three layers, there are six unknown integration constants and six
boundary and interface equations [12]. It leads to the set of linear equations that can
be solved analytically or numerically. Typically, it is solved numerically, and
therefore the overall modeling presented here can be classified as the
semi-analytical one. The boundary and interface conditions describe the continuity
of temperature and heat fluxes at all interfaces between the layers. In addition, at the
upper surface of the skin, the convection is taken into account (using the heat
transfer coefficient h). At the bottom of third internal layer (hypodermis), we
consider isothermal surface due to the internal body temperature Tb—Fig. 8. This
heat transfer model is implemented in Matlab software, and it gives the solution in
the complex number domain. The results can be graphically presented in the form
of the Nyquist plots. In order to get the temperature variation in time, one has to
calculate the inverse Laplace transform. Unfortunately, not always it is possible in
the analytical way. On the other hand, in the cases of medical screening presented in
this chapter, it is not necessary to get the thermal impedance and temperature versus
time.

404 B. Więcek et al.



3.2 Screening Procedure

Inverse thermal problem is solved to get the values of the thermal parameters for the
multilayer skin structure. It is performed by the numerical optimization in frequency
domain, as it is presented in Fig. 9.

For thermal parameter estimation of multilayer skin structure, the Nyquist plot as
the result of thermal modeling is sufficient, and no temperature versus time is
required. The approximation of temperature rise during the cold provocation given
by Eq. (2) has its analytical Laplace-domain representation (7):

T ¼ T0
1þ j x

x0

þ T1

1þ
ffiffiffiffi
x
x0

q : ð7Þ

It denotes that the optimization and the overall inverse thermal problem can be
performed in the frequency domain. The program in Matlab environment was
prepared to perform the experiments. The main window of the program is shown in
Fig. 10. The program calculates the multilayer thermal model in Laplace domain. It
uses the optimization to get thermal parameter of the skin layers. A few opti-
mization methods were tested. Among them, the method called Patternsearch was
the most effective and fast [12]. The Nyquist plots are calculated for different
angular frequencies, typically in the range 0.001–10 1/s. The optimization allows to
match the Nyquist plots for each frequency obtained from the measurements and
simulations—Fig. 10. It ensures the high credibility of the obtained results. The

Fig. 9 Estimation of thermal parameters of the skin—screening procedure
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optimization allows to evaluate not only the thermal parameters of the skin layers,
but their thickness, convective heat transfer coefficient, and the effective heating
power applied in the thermal cold provocation test [12].

3.3 Application to Skin Pathologies Screening (Psoriasis)

The inverse thermal modeling presented above can be applied for different
screening procedures. One is to evaluate the perfusion in the skin tissue [6, 13]. In
this research we neglect the perfusion in the upper layer—epidermis. In addition we
assume the same perfusion w23 for two deeper layers: dermis and hypodermis—
Fig. 8. The experiments were performed for the patients with psoriasis in a clinic
for dermatology diseases. In order to verify the protocol, one chooses the healthy
and unhealthy parts of the skin. For psoriasis it is easy to select two regions: with
inflammation and inflammation-free because it is visible—Fig. 11. As usual, the
aluminum foil is for the movement correction. The temperature rise was measured
in the middle of the cooled regions—Fig. 11.

The quantitative results of the perfusion measurements are presented in Fig. 12.
For eight of nine measurement (patients), the perfusion is higher for the region of
skin with inflammation. Only once, the perfusion was lower for the unhealthy part
of the skin. Probably, it is due to the highly advanced disease and the upper tissue
layer necrosis.

In some practical cases the proposed protocol can be used for evaluation of
thermal parameters for three- or four-layer skin tissue structure. It allows to monitor
healing process of the injuries or burns. The exemplary sets of thermal parameters

Fig. 10 Main window of the Matlab program for thermal medical screening
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evaluated by the method presented, for all three layers, are presented in Table 1. In
addition, the thermal capacity of the blood is evaluated as well,
Cb = 4 � 106 J/K m3.

Fig. 11 The upper limb of the patient with psoriasis

Fig. 12 The results of
perfusion evaluation using
cold provocation and
thermography measurement

Table 1 Thermal parameter of three-layer skin tissue calculated using inverse thermal modeling
(data corresponding to the Nyquist plots in Fig. 10)

Parameter Epidermis Dermis Hypodermis

Thermal conductivity (W/m K) 0.1 0.16 0.3

Thermal capacity (J/Km3) 4.1 � 106 3.6 � 106 3.1 � 106

Perfusion coefficient (1/s) – 0.0034 0.0034

Medical Thermal Tomography—Different Approaches 407



4 Wavelets Transform-Based Thermal Tomography

Wavelet transform (WT) is a powerful tool for signal and image processing.
Nowadays, it is widely used for signal filtering, data compression, and feature
detection. There are continuous and discrete, one- and two-dimensional WTs. One
can use WT both for signals versus time and 2D images where the time axis is
replaced by the spatial coordinates. There is a relevance between Fourier (FT),
short-time Fourier (STFT), and wavelet transforms [6]. There are many applications
of frequency analysis using FT, STFT, and WT in Nondestructive Testing (NDT)
using IR thermography [7].

WT is the analysis either in the complex or the real number domain and can
generate the results in the form of the real and imaginary part or/and modulus and
phase. The frequency analysis allows to shift the considerations from time to fre-
quency domain. In many practical cases, the interpretation of the temperature
response in frequency domain is faster and easier. For example, one can consider
the phase as a delay between the temperature response and the power excitation. In
fact, it corresponds directly to the time constant approach presented above. WT has
an important additional feature comparing to classical FT. It can be applied to the
signals with spectrums varying in time. WT and STFT preserve time in the analysis.
There are many different wavelets, e.g., Morlet, Shannon, Gauss, and B-spline ones.
Choosing the appropriate wavelet gives another degree of freedom in the analysis
and makes WT more flexible and adjustable for the different practical diagnostic
cases.

4.1 2-Stage Algorithm of Thermal Image Processing

Application of WT for a long sequence of thermal mages is the time-consuming
task. For all pixels Pi(x, y) in each i-th image in the sequence, one can establish the
discrete signals sxy(i)—Fig. 13. For each sxy(i) signal, the frequency analysis (FT,
STFT, WT) can be performed, for (x, y) = (1, 1) … (M � N), where M � N is the
image resolution. It needs a very powerful computer, even that it is not the real-time
procedure. This is the reason that 2-stage approach has been recently developed and
presented to simplify and speed up the calculations [6].

• First, the user manually selects the pixel for the primary 1-pixel frequency
analysis—Fig. 13. Then the primary frequency analysis is performed—Fig. 14.
It generates the results in the form of imaginary and real parts, modulus, and
phase—Fig. 15. It allows to select the most suitable scale (WT) or frequency
(FT, STFT) for the further processing—Fig. 15.

• Next, the final analysis for all N�M pixels is performed for previously chosen
scale or frequency, giving four final images: imaginary, real, modulus, and
phase ones (if the wavelet is complex)—Fig. 16.

408 B. Więcek et al.



Fig. 13 One-pixel temperature evolution in time during cold provocation screening

Fig. 14 Frequency analysis of one-pixel temperature evolution in time—the result of first step of
the algorithm

Fig. 15 Exemplary results of first step of the algorithm for WT with the chosen scale, a real part
image, b imaginary part image, c modulus image, d phase part image
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The algorithm implements windowing in time before the frequency analysis.
Besides the rectangle window, the user can select either Hamming, Hanning, or
Blackman window. There are complex and real wavelets available to choose—
Fig. 14.

The primary analysis generates either 1 or 4 images depending on the type of
analysis (real or complex). Typically, the user selects the scale or frequency for
which the signal varies the most—Fig. 15. By changing the position in time
(horizontal axis) the wavelet starts to move over the signal, the different contrasts of
the images of the final analysis can be obtained.

The chosen scale or frequency is then used for the second step of the screening
method. Consequently, according to the resolution of the IR system,
M x N analyses are performed, for the specified one scale or frequency—Fig. 15.
For complex wavelets there are four-image result—imaginary part, real part,
modulus, and phase images. In the practice, the modulus and the phase are the most
useful because of the natural meaning and easy interpretation. Modulus image
corresponds to the level of temperature of an object, while the phase represents the
delay between the temperature response and the power excitation. One should take
into account that the delay is for a certain frequency. If the excitation is periodic
(lock-in approach), the user selects the frequency of the excitation for the analysis.
If the excitation is like the step function (transient thermography), the frequency
selection depends on the size and the depth of a detail one wants to visualize. The
lower the frequency, the deeper the heat penetrates the object. The smaller the
detail, the higher the frequency has to applied in measurement. The right selection
of the frequency is upon the user.

4.2 Program for Medical Screening—Data
Analysis Examples

The proposed algorithm of cold provocation data analysis is implemented in the
program TEndt [6]. This tool can be used for detection, monitoring, and

Fig. 16 Final-step frequency analysis for pixels and one chosen frequency (FT, STFT) or scale
(WT)
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differentiation the skin tissue pathological and physiological states. TEndt appli-
cation can be adapted to any existing IR camera, under the condition the Software
Development Kit (SDK) is provided by the manufacturer. The program is written
using C# Visual Studio.NET platform. The main window of the application is
shown in Fig. 17.

Two exemplary results are presented in this chapter. The first one concerns the
diagnosis of the vascularization. The second example presents the application of
cold provocation to thermal tomography to visualize the internal blood vessels.

Typically, the cold provocation tests and temperature recovery measurement are
performed for limbs. In the exemplary test, the upper limb of a patient in the gloves
was put in a water bath at the room temperature for about 1–2 min. Then the
thermal recovery of a tissue was recorded by a thermographic camera. The
sequence of thermal images is long and can contain hundreds or thousands of
images. Practically, it is impossible to analyze such a long sequence of thermal
images. One frame of the sequence of thermal images is presented in Fig. 18. One
can hardly see that there is the nonuniform heating and temperature distribution of
the different fingers.

A physician can have the better insight into the thermal process if one displays
the temperature evolution in time—Figs. 19 and 20. Both the forefinger and small
one (Fig. 19) react slower in comparison with the middle and ring fingers as well as
the thumb (Fig. 20).

This effect can be also presented in the graphical form by applying the frequency
analysis concept described in this chapter. By performing 2-step NDT analysis
using the WT, one can get the result shown in Figs. 21 and 22. The areas of slower
thermal reaction are clearly recognizable in the phase image using, e.g., the Morlet
wavelet. For higher frequencies, one can monitor the heating effects in the

Fig. 17 The main window of TEndt program (pio)
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Fig. 18 One frame from a long sequence of thermal images after cold provocation

Fig. 19 Temperature versus time for forefinger, r time scale 0–600 s

Fig. 20 Temperature versus time for ring finger time scale 0–600 s
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superficial thin skin tissue layers. Figure 21 presents the phase for the scale = 81.
The maximum scale was set to 200 in this example. The lower scale corresponds to
the higher value of frequency in the WT notation. The tips of the forefinger and the
small finger remain colder in the beginning of the recovery process. It corresponds
to the heat transfer in the superficial layers of the tissue.

The lower frequency of the excitation allows to heat up the deeper parts of the
tissue. As it is shown in Fig. 22, the inner layers of the tissue stay colder after the
longer period. By choosing the higher value of the scale = 133 (the lower value of
frequency), the thermal inertia of the deeper layers is visualized. Even the middle
finger is slightly impaired due to the weaker vascularization after longer time—
Fig. 22. In experiment presented here, the complex Morlet wavelet was used with
an appropriate center frequency and the initial width chosen by the user.

The second example shows the application of WT analysis to the thermal
tomography and visualization of the blood vessels—Fig. 23. The blood vessels full
of moving fluid cause the additional temperature delay. Depending on the depth of
the vessel, the user has to choose the appropriate frequency (scale) of the analysis.
In addition, by selecting the different wavelets, one can visualize the appropriate
details of the internal objects. The exemplary thermal tomography image is pre-
sented in Fig. 23. This result was obtained by performing WT using Gauss complex
wavelet. In this case, the image of modulus for the scale = 24 presents well the
vessels’ structure—Fig. 23.

Fig. 21 Phase distribution for wavelet transform with the complex Morlet wavelet, scale = 81
(max. scale = 200)
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Fig. 22 Phase distribution for wavelet transform with the complex Morlet wavelet, scale = 133
(max. scale 200)

Fig. 23 Modulus for WT using Gauss complex wavelet, scale = 24 (max scale = 200)
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5 Conclusion

This chapter presented the potentialities and limits of thermal tomography in
medical diagnosis. As thermal tomography is based on heat propagation in a tissue,
the depth of penetration the tissue by heat is limited. This depth strongly depends
on the frequency of the provocation. Since the cold provocation is typically per-
formed by the step-like excitation, the wide spectrum of the temperature signal is
available for the analysis. This is the well-known concept of the thermal impedance
of an object, but implemented in the frequency domain. We have shown that the
thermal tomography can be applied for medical diagnosis, but it requires the
powerful computers and advanced image processing. The IR imaging using ther-
mography is the recommended tool for the temperature measurements. Thermal
tomography can be applied wherever vascularization of the upper layers of the skin
provides the diagnostic information. Forward and inverse thermal modeling of a
tissue including the perfusion is very helpful in this applications. It can lead to the
thermal characterization of the skin layers and measurement the perfusion rate. The
proposed methods can be used to elaborate the medical protocol for the screening of
skin diseases, including tumors and cancers.
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Vapotranspiration in Biological System
by Thermal Imaging

Nicola Ludwig

Abstract Transpiration from porous materials such as leaves, stones, or human skin
plays an important role in thermographic analysis due to evaporation. The change of
physical state from liquid to vapor takes place at the interface of materials with
surrounding air exactly where thermal infrared radiation is radiated. This chapter
studies with the possibility to obtain quantitative evaluation of evaporation rate from
non contact temperature measurements. The use of the localized high-intensity
cooling on surface caused by evotranspiration has to be considered as a tool of
inspection in diagnostics. A wide review of applications in plant physiology is here
presented and some cases of follow-up of trauma in athletes are as well reported.

Keywords Leaf � Evaporation � Skin � Stomata conductance � Injuries

1 Forewords

Thermal imaging is the most immediate way to visualize evaporation in every
porous material both in normal condition and under induced stress. Biology defines
transpiration as the way plants carry water from roots to leaves where it finally
evaporates. Evaporation flux intensity depends on ambient stress factors mainly
wind and relative humidity. In this process water transformation from liquid to gas
regulates also foliar temperature. To highlight the importance of physical state
change and the relative energy transfer occurring in transpiration we will introduce
the term vapotranspiration.

For many years, infrared thermography (IRT) has been recognized as an effec-
tive tool to monitor leaves vapotranspiration in conditions of controlled environ-
ment [8]. Basically, the temperature of a leaf is the result of energy exchange
between environment and the leaf surface. The plant can react to thermal stresses by
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means of evaporation of water through the stomata positioned on the foliar surface;
this process produces cooling. Temperature modifications of a leaf are generated by
changes in vapotranspiration rate and can be used to measure evaporation rate (i.e.,
vapor mass lost per surface and time units) in single leaf or to evaluate crop vitality.

This technique can also detect water content in specific areas of a leaf (necrosis,
treatments with water repellent, etc.). In a leaf, changes of the water content (WC)
caused by severe climatic conditions lead to alterations in transpiration rate through
an active regulation mechanism of the stomatal opening. Thermography can visu-
alize the effects of these changes in real time [12], thanks the low thermal capacity
of a thin leaf (see Fig. 1). IRT application is based on the direct dependency
between transpiration and leaves temperatures. Figure 2 illustrates clearly this
relationship showing evaporation rate of bean leaves in the same environmental
conditions but treated with different products the enhance or reduce stomata
aperture and evaporative flux.

Fig. 1 Cucumber leaves, green spots are due to a local treatment with paralyzing abscisic acid
(ABA) stomata in open position during a water stress condition (RH < 40%)

Fig. 2 Correlation of the evaporation flux from leaf surface versus cooling, capitals indicate
different treatments (see Ludwig [12] for more)
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Considering porous materials, some authors confirmed that can be found a linear
dependence between the cooling due to vapotranspiration and the flux rate [1].
Temperature variations on leaves surface are dramatically dependent on the plant
moisture level (health, stress, dryness); this level depends on the stomatal con-
ductance. Conductance is also responsible of gas exchange and plays a fundamental
role in photosynthetic processes. IRT was successful used to single out the effects of
heat that caused partial necrosis on a single plant as well on the whole plantation
[11]. Furthermore, a cooling effect has been observed in a research on Arabidopsis
and tobacco plant, produced by abnormal evaporation from cells before any kind of
damage could be detected and monitored [4].

IRT experiments can be divided in two kinds of approaches: passive and active.
Dealing with a living being, we should reconsider the definition of active or passive
test taking into account these factors: heat production and heat loss inside the
biological system in “normal” or non-pathological conditions; very important is
also the ability of the system to give a feedback about any external solicitation.
Active thermography allows non-destructive measurement of the Wc of leaves
related to any changes in heat capacity of tissue. Passive thermography evaluates
changes in the evaporation flux U [kg m−2 s−1]. This approach can localize disease
areas remotely but does not give any clue about stress agents such as solar radiation,
wind speed, clouds cover, etc. We should consider that the influence of these
elements can disguise the effect of more specific natural stresses.

Thermographic analysis has been used for isolation of stomatal mutants by
means of screening tests [17] and presymptomatic visualization of the biotic plant
stresses in a number of cases [3]. The infection of “Tobacco Mosaic Virus” is a
well-characterized model due to its hypersensitive response of resistant tobacco
plant. Increasing of temperature in the sites due to this infection can be detected by
IRT. Data confirmed that this temperature increasing overlapped with the sites of
salicylic acid accumulation and it brought to the conclusion that the local tem-
perature is affected by stomatal closure caused by the accumulation of compounds
signature of the resistance during pre-necrotic phase [4]. This study showed that
thermal detection of pre-necrotic symptoms in tobacco as well as in Arabidopsis is
possible. These results led some researchers to suppose that any phenomenon
characterized by cell death in a plant would be detectable by IRT in the early
presymptomatic stage. Another example can be found in thermal anomalies of
Cercospora leaf characterized by the development of dark circular necrotic stains of
sugar beet due to a necrotrophic fungal infection [20].

The capability of passive resistance in vegetables inevitably has consequences
on plant metabolism and physiology. The effects on vapotranspiration and photo-
synthesis were revealed also by imaging of chlorophyll fluorescence and IRT
technique. Reactions of metabolism depend on interactions between plant and
pathogens [5]. Thermal imaging through both proximal and remote sensing has
been proved to be useful for evaluation of biotic stresses as well as for irrigation
scheduling. In environments characterized by severe water restriction IRT has been
used for genetic screening of stomata efficiency in series of selected crops [10]. In
fact, in arid environments and drought conditions, “The combined use of irrigation
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procedures and survey technologies can improve the plant water use efficiency”
(ibidem). The efficiency is defined as the ratio between the crop biomass and the
amount of water consumed by the crop (i.e., irrigation, rainfall, plant, and soil
vapotranspiration). In this field it is evident the importance of studying the effect of
anti-transpiration and water-repellent compounds applied spraying the foliage in
order to reduce water loss [19].

2 Thermal Imaging on Plant: The Energy Balance
Approach

Thermal imaging represents nowadays a mature technology useful to study the
energy balance at surface level of both leaf and human skin. In plants, the latent
heat lost during evaporation is the most important mean for thermoregulation, more
than conduction convection and irradiation. When the energy transfer connected to
mass transfer (i.e., sap or blood) is negligible, thermal imaging can be the only
method to map and evaluate vapotranspiration rates without any sampling.

Vapotranspiration control involves two types of compounds: film-forming and
stomatal closing, both acting to increase plant resistance to vapor loss and improve
the crop water-use efficiency as defined above. It was stated that, “The antitran-
spirant activity of chitosan (see CHT in Fig. 2) in bean plants is a natural, nontoxic
and low cost compound obtained from crustacean, insect and fungal chitin
deacetylation, the second most abundant biopolymer after cellulose” [12].

The issues concerning temperature measurements by IRT and the variables
linked to wind velocity or environment temperature have been extensively stud-
ied because of their role in the physics of vapotranspitration. The main finding is
that thermal imaging can easily measure temperature differences of some fractions
of degrees caused by differences of 10−1 bar in hydric potential. We also warn that
the on field observation of plantations is strongly affected by sudden changes in
solar radiation produced by clouds.

Leaf vapotranspiration (i.e., the loss of water vapor) can be evaluated by a
non-invasive temperature measurement technique. In fact, this evaporation has a
heavy influence in the energetic exchange processes and determines the leaf tem-
perature at the thermodynamic equilibrium with the surrounding microclimate. The
main advantage of IRT applied to vegetables monitoring is the possibility to
employ it in huge crops. The best and yet valuable model for energy balance,
applied to plant physiology, was established by Nobel in 80s [18].

Considering at the equilibrium all environmental physical variables such as
relative humidity, air temperature, wind velocity, and irradiation, temperature
measurement gives the exchanged energy between the local environment and the
leaf itself.

Any living being regulating the amount of water vapor lost during vapotran-
spiration can improve its thermoregulation mechanism, thanks to the high value of
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the heat of vaporization (2.25 � 106 J kg−1). When used to compensate for any
external stress, we can consider DQtot = 0 and as a consequence the leaf reaches an
equilibrium temperature Ta. All the different amounts of energy exchanged are
added to zero at this equilibrium condition as described in Eq. 1:

QR þQC þQT þQW ¼ 0 ð1Þ

where QR represents both outgoing and incoming radiations, QC is the heat transfer
by convection, QT represents the energy exchanged by mass transfer, and finally
QW is the heat of vaporization. For more details, we can write Eq. (1) as Eq. (2)
with proper physical expressions for each term.

aeenvrT4
env � erT4 � hðT � TairÞþ cpUwðTair � TÞ � kUv ¼ 0; ð2Þ

where

a is the spectral absorbance,
eenv is the effective emissivity of environment,
e is the emissivity of the leaf,
r 5.67 � 10−8 [W m−2 K−4], Stefan–Boltzmann constant,
Uv is the evaporation flux from the leaf stomata,
Uw is the liquid water flux to the leaf surface,
k 2.26 � 106 [J kg−1], heat of vaporization of water,
T is leaf temperature,
Tenv is the environmental temperature,
h is the coefficient of free convection,
cp is the specific heat at constant pressure of the leaf.

Energy balance expression in (2) for a leaf can be connected to their stomata
conductance by gas diffusion Fick’s law:

U� ¼ �D
@C
@x

: ð3Þ

Here, the evaporation rate [U*] is not expressed in grams but in moles [m−2 s−1],
depending on the molar concentration C [mol m−3] while D represents the diffusion
coefficient [m2 s−1].

In this way, a thermal camera can be considered as the best tool to measure
stomata conductance without any contact with foliar surface. When the balance
equation (2) is in the equilibrium condition, the solution gives the temperature Ta
with the following expression by measuring this equilibrium temperature, we can
obtain the flux rate,

Uv ¼ aeenvrT4
env � erT4 � hðTa � TairÞþ cpUwðTair � TaÞ

k
ð4Þ

Vapotranspiration in Biological System by Thermal Imaging 421



In normal water supply conditions, the water lost through evaporation corre-
sponds, mostly, to the water provided by roots to the plant. This is due to the simple
fact that the capillary rising speed is higher than the vapor diffusion through
stomata. Finally, note that the energy associated with the mass of water moved by
the capillary system is about two orders of magnitude smaller than the one needed
for the evaporation of the same quantity. In fact, the heat required for the evapo-
ration of a single gram of distilled water is about 2 kJ while 20 J is the energy
transferred within the capillary system by this mass with a DT of 5 °C between
roots and leave surface.

So we have Uv ¼ Uw and then:

U ¼ aeenvrT4
env � erT4 � hðTa � TairÞ
k� cpðTair � TaÞ ð5Þ

This expression that gives the evaporation rate depending on Ta (i.e., the equi-
librium temperature) has been experimentally verified by the author through direct
thermographic survey and simultaneous measurements of the evaporation flux
using a digital scale (Fig. 2).

It is interesting to note that tests under controlled conditions showed the same
direct correlation also on porous building materials like plaster, stone, and brick
[16]. In this work considerations can be found about the parameters of Eq. (5) and
about their dependency on specimen geometry and other environmental variables.

3 From Plant to Human Body

Some analogies can be found between leaves and the human skin. In spite of some
similarities the skin could be also defined a sort of insulating interface between an
inner core and the external environment. In particular IRT can be useful to detect
and visually represent heat dissipation through the skin during thermoregulation
processes [6, 14].

From a thermophysical point of view, human skin is a thin layer of tissues with
different values of thermal conductance. This layer separates the parts of the body
where exoenergetic processes take place and the colder external environment.
Human body tends to remain in steady condition of temperature, to achieve this
condition it balances metabolic heat production and heat losses to the surrounding
environment in many ways: convection, infrared irradiation, vapotranspiration, and
conduction (this last component is usually negligible). The fundamental role played
by infrared radiation from human skin has been confirmed since 30s and it has been
very well described as a blackbody-like radiator. Inner temperature is maintained
within a narrow range and its regulation is essential for normal performances during
everyday life considering normal metabolism of healthy subjects or particular
conditions as agonistic or intense activity. Quantitatively, vapotranspiration is the
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most important mechanism operating on thermoregulation. Theoretically, the
evaporation from the skin of just 1 g of water decreases the temperature of one
degree in up to 500 g of human tissue.

Industrial application of thermal imaging, as non destructive method, is targeted
to detection of possible defects hidden under external surface. Anomalies under the
surface cause abnormal thermal conduction toward the inner parts and are easily
recognizable by the presence of layers with different thermal properties (i.e., “de-
fects”). On the other hand, in medical applications, many pathologies can reveal
themselves through abnormal thermal patterns on the skin. Diagnostics can visually
represent this thermal pattern and eventually compare it with the one taken in
healthy areas or when possible in corresponding contralateral part. More specifi-
cally, in healthy subjects thermal imaging can be used to highlight possible
asymmetries in left/right parts of the body caused by a different muscular devel-
opment. The thermal image in Fig. 3 depicts a typical asymmetrical distribution of
temperature of a human back affected by scoliosis. The subject (male 32 y. o.) faced
a long term period of exercise (20 year) to prevent damages of a severe scoliosis.

Thermal imaging is also an effective tool to study the follow-up of muscular or
skeleton trauma even in absence of skin injuries. Figure 4 shows a strong difference
in temperature between the right and left knees of a young volleyball player with a
Ligamenta cruciata genus (LCA) injury three months after the accident.

Fig. 3 Thermographic
evidence of controlateral
thermal anomalies in a trained
male subject (34 y. o.) with
scoliosis, left part of the
mid-back shows a wide colder
area
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Nowadays one of the most important problem in post-processing infrared shots
of moving subjects, (i.e., veterinary or sport science) is the need of algorithms for
automatic target recognition [13]. The best method suggested by authors is based on
the selection of classes of pixels (hottest/coldest/between thresholds) and the
extraction of their statistic distribution in a sequence of thermal images. A peculiar
method, gathered from this approach, was successfully applied to the study of
calves and thighs on trained athletes [7, 15]. It is expected that the introduction of
this pixel recognition technique will lead to a paradigm change in thermal image
analysis for diagnostic purposes.

4 Thermoregulation Study by IRT

Blood circulation is the main and faster mechanism of heat transfer inside human
body, more specifically from the inner core to peripheral areas. A well established
relationship between heat of blackbody radiation from the cutaneous surface and
the underlying blood flow, is given by the Pennes bioheat equation.

Qm ¼ CbWbðTa � TÞ � r2T; ð6Þ

where for a given tissue we have: volumetric metabolic rate (Qm), specific heat
capacity (Cb) and the mass flow rate of blood per unit volume (Wb). Ta represents
the arterial temperature and T is the variable temperature of the tissue. Starting from
the expression above, some researchers developed numerical models used to predict

Fig. 4 Thermographic
evidence of trauma in right
knee (on left) on a volley
player male subject (23 y. o.)
after one month from LCA
fracture
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cutaneous temperature considering metabolic heat production and, inversely, to
estimate organs temperature measuring surface temperature of the body. Cooling
processes are often effective to improve experimental procedures and defining
thermography as a precise diagnostic tool.

Thermal images in Fig. 5 show another late follow-up after a tendinous injury.
The left hand of a 20 y. o. free climber with a third- finger tendon injury is shown
after a ten-minute immersion in cold water (10 °C). The first shot has been recorded
after 10 s while the second 1 min later. In the second image, the injured finger
appears, stimulated by cold water, as the one with the lowest thermal recovery,
probably due to calcification which reduce the peripheral circulation inside the
finger.

During physical exercise, in the body, heat is generated by metabolism and by
muscular work [9], this heat is then diffused from the core toward the skin by blood
flow through vessels. This occurs especially in limbs and head, where the
surface/volume ratio gets the best efficiency for heat dissipation. The possibility to
locate interested areas and study this process on the skin surface can provide
important details on the different thermoregulation mechanisms.

Thermal pattern of the venous system, even if colder than the arterial one, can be
easily revealed because these vessels are, in healthy subjects, not covered by thick
layers of fat. Figure 6 shows an example of this pattern in rest condition and Fig. 7
after an hard work (squat exercise) involving the femoral quadriceps of a subject.

Cutaneous temperature is determined by two main factors: convective heating
produced by blood flow from deeper blood vessels and cooling by sweat evapo-
ration. Thermography is an efficient tool to monitor thermoregulation processes
during sport training sessions or in presence of physical external stimulations
(cooling by air or water). In normal subjects, after proper and localized (atri-
ovestibular) stimulation, temperatures of arms, hands, feet, neck and some head

Fig. 5 IR images of the left hand of a free climber subject with former finger tendon injury (male,
19 y. o.), after immersion in cold water. First image after 10 s and second after 1 min. The injured
finger can be clearly visualized when circulation recovers the original temperature on the healthy
fingers
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regions, increases also in rest conditions, showing the activation of this ther-
moregulation mechanism. Vainer in his monograph on skin perspiration and
vapotranspiration [21] used a medium-IR camera to study sweating mechanism.
Other researchers found an asymmetry in sweat gland but also noted a cold tem-
perature area surrounding secretory ducts.

Studies on sweating rate and thermoregulatory mechanisms involved two dif-
ferent approaches: cold stress and blood flow modulation [2]. In the first method, a
more classical approach, a cold stress condition was applied placing the left hand on
a cold metal surface with a thermal camera monitoring temperature of both hands.
In the second method blood pressure was artificially modified (or “modulated”), in
the range of systolic and diastolic values, using a proper constriction applied on
arms. After an initial stationary state lasting 85 s, the temperature of the stimulated
hand drop-down while an unexpected increase of temperature was observed on the
non-stimulated hand. Also this result has been explained as a thermoregulatory
mechanism which answers symmetrically to the external stimulus in order to keep
the core temperature constant.

We also point out that only few researches deal with problems connected to
sweat evaporation from skin surface giving to this field of applied studies chances
to be exploited both in medicine and in sport sciences.

Fig. 6 Thermographic
evidence of subcutaneous
venous circulation in a male
healthy subject (27 y. o.)

Fig. 7 Thermographic
evidence of subcutaneous
venous circulation in a male
well-trained subject (23 y. o.)
during squat exercise (see
Formenti [7] for more)
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5 Conclusions

Water transformation process operated by evaporation can be considered as one of
the most important causes of thermal disequilibrium in both living and non-living
objects (i.e., porous materials). Vapotranspiration fluxes taking place on surfaces of
many kinds of materials has been proved to be quantitatively defined measuring
surface temperature of the object being studied. This value, at the equilibrium
conditions among all terms of heat exchange occurring through the surface, shows
to be strongly dependent on the vapor flux rate.

Correlations between temperature and evaporation rate have been confirmed on
different type of materials such as leaves, plaster, brick and human skin, proving the
strong correlation between temperature and evaporation rate, both in a thin system
such as leaf, porous building, materials and human skin.

Technical Note The thermal images shown in this chapter were shot by an AVIO TVS700
camera equipped with a microbolometer uncooled detector (320 � 240 pixels, thermal resolution
0.07 °C at room temperature, emissivity 0.97).
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Change in Local Temperature of Venous
Blood and Venous Vessel Walls as a Basis
for Imaging Superficial Veins During
Infrared Phlebography Using
Temperature-Induced Tissue Contrasting

Aleksandr L. Urakov, Anton A. Kasatkin and Natalia A. Urakova

Abstract A possibility of fast, safe, and efficient imaging of superficial veins with
a thermal imager is demonstrated in experiments with pigs, in studies with healthy
adult volunteers, and in clinical observations of adult patients when providing vital
medical care in emergency situations. The research describes the original tech-
niques for infrared veins imaging enabling the authors to lay the basis for infrared
venography. In order to image superficial veins, we suggest infrared monitoring of
local temperature dynamics in the selected part of the body surface under the
conditions of artificial multidirectional changes in temperature of veins and/or
surrounding tissues. The chapter describes techniques for infrared imaging of the
superficial veins in limbs and breast, and provides infrared thermograms of a hand,
a forearm, a shoulder, a foot, and a breast, thus showing the prospects of superficial
veins imaging using infrared phlebography and temperature-based “displaying.” It
explains the essence of temperature-based veins “displaying,” developed by authors
and called “temperature contrasting.” It describes the techniques for artificial
changes in local venous temperature by changing the temperature of venous blood
and/or artificial plasma extender, or by artificial cooling of the tissues surrounding
the vein. It also shows the advantages of infrared phlebography over other radi-
ology methods to address urgent and repeated imaging of superficial veins in
critical situations to optimize intravascular access for sampling venous blood, its
subsequent laboratory testing, and intravenous injections of medications.
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1 Introduction

Qualitative and quantitative parameters of blood and heart function, as well as
venous and arterial parameters, still play a key role in medical diagnostics.
However, human veins are more accessible to examinations than arteries, and the
total number of veins as well as venous blood volume are more than 2 times greater
than the arteries number and arterial blood volume. This automatically increases the
possibility of using veins and venous blood in medical diagnostics as compared to
arterial blood, heart, and arteries. However, in critical situations, veins may collapse
and may be lost in soft tissues. In this regard, due to poor vein visualization,
emergency medicine often lacks the possibility of using veins and venous blood in
patients for diagnostic and treatment purposes. In particular, the problem of fast,
safe, and efficient imaging of superficial veins for intravascular access for sampling
venous blood, its subsequent laboratory testing, and injections of intravenous drug
solutions has not been solved yet.

The following radiology methods are generally used for vein imaging:

– Examination of skin and mucous membranes color by sight in the visible
spectrum;

– Ultrasound examination of soft tissue acoustic properties; and
– X-ray examination of all tissue radial properties.

Each of these methods has its own advantages and disadvantages, but none of
them completely satisfies the experts because of low efficiency in case of vein
selection by sight, or because of low safety, in case of X-ray imaging. In particular,
X-ray vein imaging requires radiopaque agents that were first proposed about
100 years ago [1] and still pose a threat to the health and life of patients [2].

In recent years, a new radiology method has been applied for superficial tissues
imaging, called infrared thermography [3–7]. This imaging technique is based on
the analysis of the infrared rays emitted by the tissues [8]. Devices that form tissues
image in the infrared radiation spectrum are called thermal imaging cameras. The
fundamental difference between these devices and other radiology diagnostic
devices is that thermal imaging cameras allow you to obtain a color image of the
selected exposed body area in the rainbow color palette, based on the local surface
temperature. Identifying the area with color that is different from the color of
neighboring areas in the thermal image of the body surface suggests that there is a
colder or hotter “segment,” i.e., tissue area at this site, or directly under it [9–11].
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2 Results

Considering the facts mentioned above, in 2009 we put forward the hypothesis
about the possibility of imaging superficial veins without the use of conventional
radiology diagnostics methods. To prove it right, we improved the technique for
studying the local temperature of the body surface with infrared thermography by
artificially contrasting veins temperature and the temperature of surrounding tissues.
At first, we developed the technique for infrared phlebography for imaging
superficial veins in limbs. This technique is called “A.A. Kasatkin method for
infrared imaging of superficial veins in limbs” [12]. This infrared phlebography
technique involves traditional laying the patient in “the right position,” preparing
the surface to be examined for radiology scanning, mechanical compression of the
tissues located proximal to the examination area until the blood flow stops, placing
the distal part of the limb (a hand) into the water heated to +42 °C until steady local
thermal hyperemia is achieved, exposing the surface to be examined and applying
an ice pack until steady cold hyperemia is achieved, removing a limb out of water,
removing the ice pack, and restoration of blood flow while monitoring the local
surface temperature with a thermal camera in the infrared radiation spectrum. At the
same time, in order to produce high-quality images we proposed to produce infrared
phlebogram at the moment of achieving maximum vein temperature contrast
(Figs. 1 and 2).

Later, in 2010, we demonstrated the possibility of imaging veins by infrared
phlebography in veins with local inflammation (phlebitis), resulted from irritation of
the inner surface of the vein wall caused by intravascular catheter. Initially, this
possibility was demonstrated in experiments with pigs [13–15]. Then we showed
the possibility of imaging the inflamed area of superficial vein by infrared phle-
bography in clinic [14] (Fig. 3).

After that, we expanded the scope of application of infrared thermography under
artificial tissue temperature contrasting to diagnose their structure [16]. By
expanding the diagnostic applications of thermal imaging camera we were able to
show the possibility of infrared imaging of cheek structure under heating from the

Fig. 1 Infrared phlebogram
of the inner surface of the left
forearm in a healthy adult
volunteer, 23 y.o., produced
at the moment of achieving
maximum vein temperature
contrast, according to the
patent RU 2389429
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side of oral cavity by placing in it drinking water heated to +42 °C. It was shown
that if local temperature change under these conditions is imaged by infrared
monitoring as uniform, it indicates the homogeneity of cheek structure. If there is
local hypo- or hyperthermia area, we should specify its shape, size, and location as
it indicates the area in a cheek with low or high thermal conductivity, respectively.

Later we developed a technique for infrared imaging of hand tissue structures
under one-sided heating of the opposite hand surface. This innovative method
involves exposing the selected hand, squeezing the arm above the wrist until arterial
pulse in periphery disappears, dipping the hand in water at a temperature of +25 to
+26 °C for 3–10 s, removing the hand from the water, and then placing its selected
side on a flat surface of a thermal source made from a high thermal conductivity
material at a temperature of +42 °C. Then we fix the limb in a position enabling
infrared imaging of the opposite surface with a thermal imager and continuously
monitor the dynamics of local surface temperature under ischemia. The images of
the examined surface are performed in red-purple color palette depending on the
local temperature, ranging from +26 to +37 °C, respectively. If an area of abnormal
local hypo- or hyperthermia is detected in the hand, we specify its shape, size, and
location, analyze the data, and provide opinion on the object shape, size, and
location in the hand and, respectively, on its low or high thermal conductivity and

Fig. 2 Infrared phlebogram
of the inner surface of the
right forearm in a healthy
adult volunteer I., 33 y.o.,
produced at the moment of
achieving maximum vein
temperature contrast,
according to the patent RU
2389429

Fig. 3 Infrared image of the
left forearm of patient P., 32
y.o., produced 1 h after vein
catheterization (arrow marks
the local hyperthermia of skin
in projection of intravascular
tip of catheter)
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heat production. If the area of abnormal hypo- or hyperthermia is not detected, the
procedure is repeated, but no earlier than after 5 min, changing the sequence of
using the hand surfaces [17].

At present, it is found that the efficiency of superficial veins imaging by infrared
phlebography may be enhanced by preheating or precooling venous blood [18]. The
matter is that when using thermal imaging camera, the temperature-based vein
displaying is better when the liquid flowing inside veins is warmed or cooled (blood
and/or plasma-expander solution) (Figs. 4, 5 and 6).

The infrared phlebogram of the hand shown above demonstrates that dipping the
hand into the icy water for a short period of time cools the vein blood flowing back
to the forearm from the cold hand. In its turn, it cools the forearm veins and the skin
over them, providing cold-induced displaying of the superficial veins on the thermal
camera screen in accordance with local hypothermia areas locations, shapes, and
sizes.

At the same time, we proposed to use artificial temperature contrasting of breast
tissue to image its structure using infrared thermography for screening tumors and
imaging superficial veins. For infrared phlebography using temperature-induced
tissue contrasting, we proposed to conduct infrared monitoring during and after

Fig. 4 Infrared phlebogram
of both feet of volunteer I., 40
y.o., in 5 min after the
beginning of blowing their
surface with air flow at a
temperature of +25 °C by
domestic fan

Fig. 5 Infrared phlebogram
of the inner surface of the
right hand with intravenous
catheter inserted in the elbow
of patient P., 54 y.o., 3 min
after the beginning of
intravenous infusion of 0.9%
sodium chloride solution at a
rate of 4 ml/min at 30 °C
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blowing the breast surface with ambient temperature air flow from a drier which
creates a uniform flow of cooling air.

Infrared phlebograms of breast in a woman (Fig. 7) and foot in a man (Fig. 8)
show the possibility of imaging superficial veins under blowing the surface with
ambient temperature air flow from a drier and a fan.

Fig. 6 The image of the left
shoulder surface of the patient
B., 49 y.o., with intravenous
catheter connected with the
infusion system immediately
after bolus injection of 20 ml
of 0.9% sodium chloride
solution in the vein at a
temperature of +25 °C

Fig. 7 The image of the right
hand of an adult healthy
volunteer K., 41 y.o., in 3 min
after removing the hand from
icy water, where hand was
placed for 2 min

Fig. 8 The image of the left
breast in healthy woman, 23
y.o, with “C” breast size,
5 min after beginning of
blowing the breast with air
from SCARLETT SC-1073
drier at a temperature
of 28 °C
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It is shown that moderate blowing of the breast with air flow of ambient tem-
perature in summer provides especially clear imaging of superficial veins in women
with “C” breast size or more. However, regardless of this we also found that
blowing women breast with air flow of ambient temperature provides rapid
screening of breast tumors. Here, to make a conclusion the following should be
taken into consideration: if thermal camera breast image is homogeneous in terms
of color, it implies that it is homogeneous in terms of its local temperature.
Therefore, breast image homogeneity in terms of color and temperature indicates
the homogeneity of breast structure. Also, if local hypo- or hyperthermia area is
detected, it is recommended to specify its shape, size, and location, and after that
make a conclusion about the presence of neoplasms of corresponding shape, size,
and localization [19].

3 Conclusion

The illustrations shown above prove the possibility of infrared imaging of super-
ficial veins in different anatomical body areas in the conditions of artificial local
change in their temperature. The matter is that nominally homogeneous artificial
thermal intervention causes uneven change in the temperature of selected body part
in alive humans due to penetrating blood vessels with heat-transfer liquid flowing
through them. In this case, it is a network of superficial veins with heat-transfer
liquid that is the closest to the body surface and plays the role of a superficial
radiator that resists the homogeneous surface temperature change in the most
effective way. Therefore, the body surface in the area of such projected natural
radiator changes its temperature differently than the neighboring areas without
them. This principle of inhomogeneity of local tissue temperature is proposed to use
for improving the efficiency of infrared imaging of veins as compared to using
radiopaque agents in vessel X-ray imaging. That is why this method of displaying
invisible vessels was called temperature-based tissue contrasting. In its turn, the
technique for imaging veins using temperature-based contrasting may be referred as
“infrared phlebography.”
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Intraoperative Thermal and Laser Speckle
Contrast Imaging Assessment of Bowel
Perfusion in Two Cases of Colorectal
Resection Surgery

Costanzo Di Maria, Paul J. Hainsworth and John Allen

Abstract The Microvascular Diagnostics Service at Freeman Hospital, Newcastle
upon Tyne, holds a comprehensive range of optical and thermal technologies uti-
lised to study the microcirculation both for clinical and research purposes. In the
recent years, collaboration has been formed with the colorectal surgical service to
look at the feasibility and clinical value of intraoperatively assessing bowel per-
fusion using microvascular imaging technologies. Anastomotic failure is the most
serious complication following colorectal resection that can lead to re-operation,
permanent stoma, and even death. The current practice of assessing blood perfusion
at the anastomosis bowel ends by direct inspection of bowel pulsatility, bleeding,
and tissue coloration has been demonstrated to lack predictive accuracy. The
medical community is striving to improve the outcome of colorectal resections and
a key aspect in achieving this goal will be the development of more objective
techniques to intraoperatively assess and quantify the bowel perfusion. We believe
that microvascular imaging technology could play a key role in this respect. In this
chapter, we describe two case studies which show the feasibility of performing
thermal and laser speckle contrast imaging measurements intraoperatively for
assessing bowel perfusion during colorectal resection surgery. This experience
could pave the way to a number of other applications for these technologies in the
surgical arena.
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1 Research Context

1.1 The Microvascular Diagnostics Service

The Microvascular Diagnostics Service at Freeman Hospital, Newcastle upon Tyne,
holds a comprehensive range of optical and thermal technologies utilised to study
the physical structure and functioning of the human microcirculation. These
microvascular optical techniques include tissue oxygenation, spectroscopy, laser
Doppler flowmetry and imaging, capillaroscopy, and thermography [1].

Our clinical test portfolio covers many applications, including assessment of
patients with suspected connective tissue disease and Raynaud’s phenomenon,
inflammation and sweating, and also capabilities for specialist limb studies (i.e.,
amputation level assessment, muscle compartment perfusion and venous physiol-
ogy), burn wound depth classification and neurovascular function assessment.

The measurement service greatly benefits from a state-of-the-art temperature-
and humidity-controlled facility, which enables standardisation and consistency of
environment conditions across patients. The room temperature can be efficiently
shifted between cold (<15 °C) and hot (>30 °C) for whole body thermal and
physiology studies. Most studies are performed in a normothermic environment
(23 °C and 45% relative humidity). Studies intended for assessing tissue inflam-
mation are usually performed at cold room temperature (18 °C), which helps
contrast between normal tissues and inflamed areas.

Research and development work includes the assessment of microvascular
endothelial function [2], autonomic function in chronic fatigue syndrome (myalgic
encephalomyelitis) [3], renal fistula viability [4], thermoregulation in restless legs
syndrome [5], and inflammation in thyroid eye disease using thermal imaging [6].
Further work includes the evaluation and validation of various clinical applications
for photoplethysmography [7–9], fluorescence spectroscopy in scleroderma [10],
and thermal imaging to aid targeted Botox treatment planning in Frey syndrome
[11]. In the recent years, we have started collaborating with the colorectal surgical
service to determine the feasibility and clinical value of intraoperatively assessing
bowel perfusion using microvascular imaging technologies. This experience could
pave the way to a number of other uses for these technologies in the surgical arena.

1.2 The Colorectal Surgical Service

The Newcastle upon Tyne Hospitals NHS Foundation Trust is the North-East of
England’s tertiary referral service for a number of surgical disciplines including
multiple organ transplantation, soft tissue sarcomas, intestinal failure, colorectal
liver resection, services for early rectal cancer and locally advanced/recurrent rectal
cancer and transanal endoscopic microsurgery. The Newcastle Surgical Training
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Centre provides laboratory based advanced training courses for laparoscopic col-
orectal surgery.

The hospital sees approximately 280 new colorectal cancers per annum. The
majority of cancer and benign bowel resections are performed using minimally
invasive techniques and the hospital currently has two da Vinci robots which are
used for colorectal resections. National statistics show the hospital to have among
the lowest mortality rates for colorectal cancer resections in the country. Members
of the team have been responsible for heading up the national programme for
enhanced recovery in colorectal surgery.

Departmental research interests include development of enhanced recovery,
perioperative fluid balance and nutrition, collaboration with several national trials
including early rectal cancer studies. There is a programme looking at several
aspects of anastomotic integrity, including development and assessment of various
techniques for measuring intraoperative anastomotic blood flow, aiming to reduce
complication rates after colorectal surgery.

2 Introduction

Colorectal resection is the surgical removal of a portion of large bowel, and
sometimes small bowel, for either malignant or benign disease. The two remaining
ends of bowel are joined together creating an anastomosis (Fig. 1). Surgery is often
performed laparoscopically (key hole or minimal access surgery).

This operative procedure includes a preparation or mobilisation stage (which is
performed with the bowel inside the abdominal cavity) and a resection stage (which
may be completed after the affected bowel has been exteriorised out of the
abdominal cavity). During the preparation stage, the portion of bowel that is going
to be resected is completely devascularised. When the bowel is exteriorised, the
portion to be resected is usually visible along with a portion of healthy bowel that
will be used to form the anastomosis. The portion that has been devascularised no

Fig. 1 During colorectal resection surgery, a section of bowel affected by either malignant or
benign condition (left) is resected (centre). The two remaining ends of bowel are then joined
together forming an anastomosis (right)
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longer has direct blood perfusion; the healthy portion still does. The success of the
operation depends on healing of the anastomosis, which in turn is recognised to rely
on good blood perfusion of the bowel ends at the anastomosis [12]. Currently,
bowel blood perfusion is evaluated intra-operatively only by direct inspection of the
bowel pulsatility, bleeding, and tissue colouration. However, these measures have
been demonstrated to lack predictive accuracy [13] and improvements to this
practice are being advocated by the medical community [14].

Microvascular imaging techniques such as thermal imaging (TI) [15] and laser
speckle contrast imaging (LSCI) [16] could play an important role in this clinical
setting, and ultimately offer a more objective assessment tool. Thermal imaging
cameras capture the infrared radiation spontaneously emitted by the human body.
The intensity of this radiation is then converted into temperature scale and colour
coded to create a temperature map of the area being imaged known as thermogram.
The tissue temperature can be regarded as a surrogate measure of blood perfusion
[17], with higher temperatures being related to higher perfusion. The research into
possible medical applications for thermal imaging has been growing into the recent
years and many examples are now available in the literature [17, 18]. Laser speckle
contrast imaging utilises a coherent infrared beam shone onto the tissue (skin, or
internal tissues). The reflected light creates a speckle pattern and statistical tech-
niques are then utilised to quantify the variability of this pattern at different regions
within the image over time, with higher variability corresponding to higher blood
flow [19].

In this chapter, we present the feasibility of utilising microvascular imaging
techniques intraoperatively to identify and objectively quantify the differences in
blood perfusion between healthy and devascularised intestine.

3 Methods

3.1 Instrumentation

Thermal imaging was performed using a FLIR A40 thermal camera (Fig. 2, left),
which has a spectral range from 7.5 to 13 µm, thermal sensitivity of 0.08 °C at
30 °C, and accuracy of ±2% [20]. Laser speckle contrast imaging was performed
using a Moor Instruments FLPI-2 scanner system (Fig. 2, right), which utilises a
laser beam at 785 nm wavelength and a cell size for spatial image processing of
5 � 5 pixels; other technical characteristics include acquisition rate up to 25 frames
per second and camera resolution of 580 � 752 pixels with a maximum scan size of
15 cm � 20 cm [21].

Before undertaking any measurements in the operating theatre, a technical fea-
sibility stage was performed that included risk assessment, review of electrical
safety and infection control guidelines, and pre-clinical measurement. The risk
assessment was carried out to determine the overall potential risk to patients, staff,
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and equipment associated with this measurement procedure [22]. The overall risk
score was found to be 3 out of 25, which corresponds to low risk (Table 1). The
review of The Newcastle upon Tyne Hospitals NHS Foundation Trust guidelines on
Electrical Safety [23] and Infection Control [24] informed on the most appropriate
and clinically safe way to set up our measurement equipment. Electrical Safety
measures required setting up a system with cameras and laptops connected to an
isolator transformer, and only the latter plugged into the wall socket of the operating
theatre room. Infection Control measures required sterilisation of all equipment
before entering and leaving the operating theatre using sterile wipes and spray
cleaning products. The pre-clinical measurement assessments were carried out to
evaluate the influence of surgical lights and circulating air currents on the mea-
surements of both cameras, and this was found to be negligible.

The thermal camera was mounted on a tripod and positioned at about 40 cm
from the patient with an angle of 60° from the horizontal line. The LSCI camera
was mounted on a bespoke boom that positioned the camera perpendicularly over
the patient at a distance of 25 cm (accurately determined using the built-in aiming
laser functionality). Both cameras were powered up for at least 30 min before

Fig. 2 The FLIR A40 thermal camera (left); and the Moor Instruments FLPI-2 scanner system
(right)

Table 1 Correspondence
between risk score and action
required to reduce the risk
[22]

Risk score Risk level Action required

1–3 Low Minimal

4–6 Medium Some

8–12 High Action

15–16 Very high Urgent

20–25 Extreme Avoid

The risk score is derived from a matrix that considers the
likelihood for a given risk to happen and the severity of the
consequences if that risk does happen. Not all combinations are
possible and that is the reason why some ranges are not covered
in this table. The required action goes from minimal (or no cation)
up to avoid (the risk of the procedure is so high that it is best
avoiding it)
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performing any measurements [25]. The skin emissivity parameter for the thermal
camera was set to 0.98 [26]. For the laser speckle system, exposure time was set to
20 ms and the time filter to 25 frames.

3.2 Microvascular Imaging

Microvascular imaging measurements were carried out soon after exposure of the
bowel (Fig. 3). Close liaison with the surgeon helped determine the most appro-
priate time for carrying out the measurement. The measurements lasted less than
10 min and this was in order to meet clinical constraint to minimise possible
additional risk to the patient due to lengthening of the operation. A maximum
window of 10 min was considered to be an appropriate length of time in the context
of operations that may last several hours.

3.3 Image Analysis

The thermal images were visualised and analysed offline using FLIR ThermaCAM
Research Pro 2.8 software. Temperature was colour-coded with a “rainbow” colour
scale [26], across the range 18–36 °C. Two regions of interests (RoIs) were drawn
by an expert scientist (CDM), one for the healthy portion of the bowel and one for
the portion of bowel that had been devascularised. The temperature of each portion
of bowel was calculated as the mean temperature of the pixels within the respective
RoI and this was used as a surrogate measure of blood perfusion.

Fig. 3 CDM in the operating theatre performing imaging of the exposed bowel during a case of
colorectal resection using thermal imaging (left) and laser speckle contrast imaging (right)
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The laser speckle contrast images were visualised and analysed using Moor
Instruments FLPI Review V4.0 software. Flux was colour-coded with a “256 colour
palette 1” scale, across the range 100–500 AFU (Arbitrary Flux Units). Similarly to
what done with the thermal images, two RoIs were drawn by an expert scientist
(CDM), one for the healthy portion of the bowel and one for the portion of bowel
that had been devascularised. The flux for each portion of bowel was calculated as
the mean flux of the pixels within the respective RoI and this was used as an
indirect measure of blood perfusion.

4 Case Study 1

This patient was a 72-year-old man undergoing laparoscopic right hemicolectomy
for benign disease. Preoperative fitness assessment revealed the presence of severe
systemic disease (American Society of Anesthesiologists ASA grade III). Key vital
signs—which could influence microvascular measurements—at the time of imaging
were as follows: systolic blood pressure 133 mmHg, diastolic blood pressure
70 mmHg, heart rate 65 bpm, peripheral oxygen saturation (SpO2) 97%, and
fraction of inspired oxygen (FiO2) 0.21.

On thermal imaging, the mean temperature was 28.3 °C for the healthy portion
of bowel, and 26.6 °C for the devascularised bowel. On laser speckle contrast
imaging, the mean flux was 340 AFU for the healthy portion of bowel, and 67 AFU
for the devascularised bowel. Example thermal and laser speckle contrast images
are shown in Fig. 4.

5 Case Study 2

This patient was a 54-year-old man undergoing laparoscopic ileocolic resection for
benign disease. Pre-operative fitness assessment demonstrated severe systemic
disease (American Society of Anesthesiologists ASA grade III). Key vital signs—
which can influence microvascular measurements—at the time of imaging were as
follows: systolic blood pressure 152 mmHg, diastolic blood pressure 78 mmHg,
heart rate 104 bpm, peripheral oxygen saturation (SpO2) 97%, and fraction of
inspired oxygen (FiO2) 0.60.

On thermal imaging, the mean temperature was 30.0 °C for the healthy portion
of bowel, and 28.1 °C for the devascularised bowel. On laser speckle contrast
imaging, the mean flux was 380 AFU for the healthy portion of bowel, and 162
AFU for the devascularised bowel. Example thermal and laser speckle contrast
images are shown in Fig. 5.
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Fig. 4 Example thermal
image (top) and laser speckle
contrast image (centre) from
patient in case study 1. For
reference, the visible light
image is also shown (bottom).
Tissue holding forceps are
positioned at the points where
bowel was going to be
divided. The portion of bowel
above the forceps in the
picture was going to be
removed and had already
been devascularised;
therefore, it was no longer
normally perfused at the time
when microvascular images
were taken. The portion of
bowel below the forceps level
was going to be preserved and
it was still vascularised and
perfused at the time of
imaging. The thermal image
scale is given in degree
Celsius. The laser speckle
contrast image scale is given
in arbitrary flux units (AFU)

444 C. Di Maria et al.



Fig. 5 Example thermal
image (top) and laser speckle
contrast image (centre) from
patient in case study 2. For
reference, the visible light
image is also shown (bottom).
Tissue holding forceps are
positioned at the point where
the bowel was going to be
divided. The portion of bowel
above the forceps in the
picture was going to be
removed and had been
devascularised; therefore, it
was no longer normally
perfused at the time when
microvascular images were
taken. The portion of bowel
below the forceps was going
to be preserved and it was still
vascularised and perfused at
the time of imaging. The
thermal image scale is given
in degree Celsius. The laser
speckle contrast image scale
is given in arbitrary flux units
(AFU)
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6 Discussion and Conclusion

Anastomotic failure is the most serious complication following colorectal resection
that happens in up to 19% of cases [27] and can lead to re-operation, permanent
stoma, and even death. The current practice to assess the quality of blood perfusion
at the bowel ends before creating the anastomosis by direct inspection of bowel
pulsatility, bleeding, and tissue coloration has been demonstrated to lack predictive
accuracy [13]. The medical community is striving to improve the outcome of
colorectal resections [14] and a key aspect in achieving this goal will be the
development of more objective techniques to intraoperatively assess and quantify
the bowel perfusion. In this chapter, we have described our experience in setting up
a system using microvascular imaging technology and have demonstrated the
feasibility of performing such measurements intraoperatively. It was possible to
obtain high-quality images in a very short length of time and providing objective
quantification of blood perfusion.

Thermal imaging allows for rapid and non-contact intraoperative evaluation of
bowel blood perfusion during colorectal resection surgery. An electrical system
needs to be set up appropriately and a sterilisation procedure carefully followed to
meet Electrical Safety and Infection Control requirements [23, 24]. Using a modern
handheld and battery-powered camera could simplify these procedures.
Measurements can be performed in less than 10 min, which is a clinically
acceptable length of time in the context of surgical operations that may last several
hours. Tissue temperature measurements can be regarded as a surrogate measure of
blood flow [17], with higher temperatures mirroring higher blood flow. For the
patient in case study 1, the devascularised bowel was found to be 1.7 °C colder than
the healthy bowel; for the patient in case study 2, the devascularised bowel was
found to be 1.9 °C colder than the healthy bowel (Table 2). These findings are
consistent with the fact that the devascularised portion of bowel did not have direct
blood supply at the time of imaging.

Laser speckle contrast imaging measurements can also be performed in less than
10 min, and it is a non-contact technology as well. Similar measures need to be
implemented in order to meet Electrical Safety and Infection Control [23, 24]. LSCI

Table 2 Summary of the
temperature and flux
characteristics in the two
portions of bowel for the two
case studies. TI thermal
imaging; LSCI laser speckle
contrast imaging

Case study 1 Case study 2

TI temperature (°C)

Normal bowel (a) 28.3 30.0

Devascularised bowel (b) 26.6 28.1

Difference (a − b) +1.7 +1.9

LSCI flux (AFU)

Normal bowel (c) 340 380

Devascularised bowel (d) 67 162

Ratio (c � d) 5.1 2.3

AFU arbitrary flux units
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technology gives an indirect measure of blood flow known as flux. For the patient
in case study 1, the flux in the devascularised bowel was found to be five times
lower than in the healthy bowel; for the patient in case study 2, the flux in the
devascularised bowel was found to be half the value of the healthy bowel (Table 2).
These findings are consistent with the fact that the devascularised portion of the
bowel did not have direct blood supply at the time of imaging.

In conclusion, both TI and LSCI were able to reliably detect the expected
differences between the two portions of bowel in both case studies. The differences
found with LSCI were larger in value than those found with TI and this is possibly
due to the fact that the two techniques inherently measure different physiological
phenomena. LSCI is a more direct measure of blood flow and so, when this is
(almost) completely inhibited, the flux as measured by LSCI very quickly reduces.
TI measures tissue temperature (as surrogate of blood flow) and it takes some time
for this temperature to drop significantly after inhibition of the blood flow. As a
consequence, LSCI could potentially be able to detect differences in blood perfu-
sion between patients with finer resolution. The space resolution offered by LSCI is
also finer than what possible with TI (Figs. 4 and 5). However, LSCI is more
sensitive to movement artefacts and statistical noise [28]. This experience of per-
forming intraoperative microvascular measurements was extremely valuable and
could pave the way also to a number of other applications for these technologies in
the surgical arena.

References

1. Allen, J., Howell, K.: Microvascular imaging: techniques and opportunities for clinical
physiological measurements. Physiol. Meas. 35, R91–R141 (2014)

2. McKay, N., Griffiths, B., Di Maria, C., Hedley, S., Murray, A., Allen, J.: Novel
photoplethysmography cardiovascular assessments in patients with Raynaud’s phenomenon
and systemic sclerosis: a pilot study. Rheumatology 53, 1855–1863 (2014)

3. Allen, J., Murray, A., Di Maria, C., Newton, J.: Chronic fatigue syndrome and impaired
peripheral pulse characteristics on orthostasis—a new potential diagnostic biomarker. Physiol.
Meas. 33, 231–241 (2012)

4. Allen, J., Oates, C., Chishti, A., Ahmed, I., Talbot, D., Murray, A.: Thermography and colour
duplex ultrasound assessments of arterio-venous fistula function in renal patients. Physiol.
Meas. 27, 51–60 (2006)

5. Anderson, K., Di Maria, C., Allen, J.: Novel assessment of microvascular changes in
idiopathic restless legs syndrome (Willis-Ekbom disease). J. Sleep Res. 22, 315–321 (2013)

6. Di Maria, C., Allen, J., Dickinson, J., Neoh, C., Perros, P.: Novel thermal imaging analysis
technique for detecting inflammation in thyroid eye disease. J. Clin. Endocr. Metab. 99,
4600–4606 (2014)

7. Allen, J.: Photoplethysmography and its application in clinical physiological measurement.
Physiol. Meas. 28, R1–R39 (2007)

8. Allen, J., Overbeck, K., Nath, A., Murray, A., Stansby, G.: A prospective comparison of
bilateral photoplethysmography versus the ankle-brachial pressure index for detecting and
quantifying lower limb peripheral arterial disease. J. Vasc. Surg. 47, 794–802 (2008)

Intraoperative Thermal and Laser Speckle Contrast … 447



9. Mizeva, I., Di Maria, C., Frick, P., Podtaev, S., Allen, J.: Quantifying the correlation between
photoplethysmography and laser Doppler flowmetry microvascular low-frequency oscilla-
tions. J. Biomed. Opt. 20, 037007 (2015)

10. Allen, J., Di Maria, C., Murray, A., Ottewell, L., Griffiths, B.: Utility of combined
fluorescence spectroscopy and tissue oxygen saturation measurements in systemic sclerosis: a
pilot study. In: 65th Meeting of the British microcirculation society. Abstract in:
Microcirculation, vol. 22, pp. 542–676 (2015)

11. Green, R., Endersby, S., Allen, J., Adams, J.: Role of medical thermography in treatment of
Frey’s syndrome with botulinium toxin. A short communication. Br. J. Oral Maxillofac. Surg.
52, 92 (2014)

12. Urbanavičius, L., Pattyn, P., Van de Putte, D., Venskutonis, D.: How to assess intestinal
viability during surgery: a review of techniques. World J. Gastrointest. Surg. 3, 59 (2011)

13. Karliczek, A., Harlaar, N.J., Zeebregts, C.J., Wiggers, T., Baas, P.C., van Dam, G.M.:
Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int.
J. Colorectal. Dis. 24, 569–576 (2009)

14. The Association of Coloproctology of Great Britain and Ireland (ACPGBI).: Guidelines for
the management of colorectal cancer. ACPGBI, London (2007)

15. Ring, E.F.J., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Meas. 33, R33–R46
(2012)

16. Briers, J.D.: Laser Doppler, speckle and related techniques for blood perfusion mapping and
imaging. Physiol. Meas. 22, R35–R66 (2001)

17. Ring, F., Jung, A., Žuber, J. (eds.): Infrared imaging: A Casebook in Clinical Medicine. IoP
Publishing (2015)

18. Ammer, K., Ring, F. (eds.): The thermal Image in Medicine and Biology. Uhlen-Verlag, Wien
(1995)

19. Boas, D., Dunn, A.: Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15,
011109 (2010)

20. Thermovision A40 M technical specifications. FLIR Systems Inc. (2005). www.flir.com
21. moorFLPI-2 technical benefits. Moor Instruments Ltd., issue 2. www.moor.co.uk
22. The Newcastle upon Tyne Hospitals NHS Foundation Trust.: Risk register—policy for

management and use. Internal policy
23. The Newcastle upon Tyne Hospitals NHS Foundation Trust.: Electrical safety policy. Internal

policy
24. The Newcastle upon Tyne Hospitals NHS Foundation Trust.: Decontamination of healthcare

equipment following patient use and prior to service or repair. Internal policy
25. Richards, R.E., Allen, J., Howell, K.J., Smith, R.E.: Evaluation of three thermal imaging

cameras for skin temperature measurement using a blackbody reference source and a spatial
resolution test object. Thermol. Int. 13, 17–23 (2013)

26. British Standards Institution. BS EN 80601-part 2-59: 2009. Medical Electrical Equipment.
Particular requirements for the basic safety and essential performance of screening
thermographs for human febrile temperature screening. BSI, London (2010)

27. Matthiessen, P., Hallböö, O., Rutegard, J., Simert, G., Sjödal, R.: Defunctioning stoma
reduces symptomatic anastomotic leakage after low anterior resection of the rectum for
cancer: a randomized multicenter trial. Ann. Surg. 246, 207–214 (2007)

28. Briers, D., Duncan, D., Hirst, E., Kirkpatrick, S., Larsson, M., Steenbergen, W., Stromberg,
T., Thompson, O.: Laser speckle contrast imaging: theoretical and practical limitations.
J. Biomed. Opt. 18, 066018 (2013)

448 C. Di Maria et al.

http://www.flir.com
http://www.moor.co.uk


Author Biographies

Costanzo Di Maria (MIET) is a Research Scientist with the Northern Medical Physics and
Clinical Engineering directorate at Freeman Hospital, Newcastle upon Tyne, United Kingdom. He
is also a Research Associate with the Faculty of Medical Sciences, Newcastle University. His
intense research activity within the microvascular service focuses on signal processing, image
analysis, data and statistical analysis for the development of novel clinical diagnostic tools,
especially utilising optical technologies for the study of microcirculation. He also works in other
areas including uterine electromyography, non-invasive foetal electrocardiogram, and clinical
engineering. Costanzo is a Full Member of the Institution of Engineering and Technology, an
Ordinary Member of the European Association of Thermology, and an Associate Member of the
Institute of Engineering and Physics in Medicine.
Newcastle University: http://www.ncl.ac.uk/icm/people/profile/costanzo.di-maria
Research Gate: http://www.researchgate.net/profile/Costanzo_Di_Maria

Paul J. Hainsworth (MB, BS, MD, FRCS) is Foundation Colorectal Surgeon at Freeman
Hospital, Newcastle upon Tyne, United Kingdom. He is also Honorary Clinical Lecturer at the
Faculty of Medical Sciences, Newcastle University. Paul has got major interest in minimally
invasive surgery for colorectal cancer and inflammatory bowel disease, including robotics and
transanal microsurgery. He has published in the fields of technical surgery, cancer genetics and
inflammatory bowel disease.

John Allen (Ph.D., ASIS FRPS) is Lead Clinical Scientist for Microvascular Diagnostics based in
the Northern Medical Physics and Clinical Engineering directorate at the Freeman Hospital. He is
the founder of this Newcastle measurement facility and leads service development and associated
R&D. John is also an Honorary Clinical Senior Lecturer in the Faculty of Medical Sciences at
Newcastle University. His Ph.D. was awarded in 2002 on photoplethysmography and cardiovas-
cular assessments. He has published and presented many papers on various clinical vascular
optical measurements and has secured team awards at national level for medical technology and
service innovations. He is also a Chartered Engineer and Scientist, a Fellow of the Royal
Photographic Society (ASIS FRPS), and a member of the Editorial Board for the journal
Physiological Measurement.
Newcastle University: http://www.ncl.ac.uk/icm/people/profile/john.allen
Research Gate: https://www.researchgate.net/profile/John_Allen9

Intraoperative Thermal and Laser Speckle Contrast … 449

http://www.ncl.ac.uk/icm/people/profile/costanzo.di-maria
http://www.researchgate.net/profile/Costanzo_Di_Maria
http://www.ncl.ac.uk/icm/people/profile/john.allen
https://www.researchgate.net/profile/John_Allen9


An Approach for Thyroid Nodule Analysis
Using Thermographic Images

J.R. González, É.O. Rodrigues, C.P. Damião, C.A.P. Fontes,
A.C. Silva, A.C. Paiva, H. Li, C. Du and A. Conci

Abstract Thyroid cancer is said to be the second most common type of cancer in
female individuals and the third in males by 2030, according to projections. In
general, detecting cancer in its early stages improves the chance of survival of the
individual. Thermography is a diagnostic tool that has been increasingly used to
detect cancer and abnormalities, including that of thyroid. Various methods to
segment and detect hot regions in thermograms and, consequently, to detect sus-
picious tissues present in these images have been proposed. It is well known that
medical diagnosis yields a great deal of information. Thus, physicians have to
comprehensively analyse and evaluate this information in a short period of time,
which is infeasible in most cases. In this work, we perform a general review of
thermography, focusing on the thyroid analysis. We propose protocols for image
acquisiton and an autonomous registration for thyroid images. We also perform
analyses of the image data, which include feature extraction, image processing, and
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a possible approach for classification of healthy or unhealthy patients. In summary,
this work presents a pilot project for detection of tumors in our university hospital,
which is part of an effort to support preventive medical actions in our
endocrinology department. Under some future adjustments, this project will be
submitted for approval by the ethics and research committee of Hospital
Universitário Antonio Pedro at Universidade Federal Fluminense (HUAP-UFF) and
to the Brazilian Ministry of Health Ethical committee under the name: Evaluation of
the importance of thermography to aid diagnosis of thyroid nodules of patients in
HUAP-UFF (in Portuguese: Avaliação da importância da termografia no auxílio à
investigação diagnóstica de nódulos tireoidianos em pacientes acompanhados no
HUAP-UFF).

Keywords Thyroid cancer � Neck nodule � Thermography � Image registration �
Classification � Threshold � Sobel � Image analysis

1 Introduction

Equipment used in medical investigation usually rely on local changes in body
parameters like density, sound propagation, electromagnetic resonance, etc. Healthy
and diseased areas of the human body can be analysed and compared when using
these equipment. In general, features extracted from both healthy and diseased areas
are usually processed and ultimately compared to infer a diagnosis. These features
can be anything that stems from the information encapsulated by these images.
However, when primary features such as the physical information are compared
directly, it yields low recognition rates [1]. In contrast, more robust features are
usually more valuable, e.g., features that extract information from an area of the
image instead of a single point, since areas are analysed as a whole.

The temperature distribution on the human skin can be captured with a proper
camera, resulting in a thermal image (Fig. 1). These images represent temperature
patterns of the body, which are highly symmetric with respect to the vertical axis of
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the sagittal plane. Variations of this infrared map on serial imaging (images taken
over time) can also evidence a sign of abnormality. Thermography detects tem-
perature modifications in tissues that appear before or during many diseases,
including cancer. Besides, it also detects physiologic or functional changes, but it
does not have the ability to pinpoint the internal location of the problem. However,
the Pennes equation [2] can be used to describe the contributions of the internal
body elements to the skin thermal distribution. In such equation, the heat transfer
problem is written in a simplified form. However, the thermal conductivity of
tissues, their density, the specific heat of the blood, blood perfusion rate, metabolic
heat generation rate, core temperature of the body, arterial blood temperature,
environment and local temperature of each tissue must be known a priori.

Artificial intelligent methods can also be used to predict and find abnormalities
in images. In this case, a reasonable number of exams with proven diagnosis, i.e.,
ground truth, is usually required. These labelled exams are used by a classification
algorithm as source of information for finding patterns. The found patterns are used
to classify patients whose diagnoses are unknown. In order to be consistent in this
process, the same acquisition protocol, conditions and computer processing tech-
niques should be respected for every patient.

The methodology to capture the images can either consider a (1) dynamic
acquisition protocol [1], where several images are acquired as a time series, or a
(2) static protocol, where one single image is acquired [3]. In the dynamic protocol,
the area to be examined is cooled by an air stream before the examination, which
changes the patient body temperature. Meanwhile, a series of images are acquired
while their body return to the thermal equilibrium with the environment (Fig. 1b
shows a time series).

(a) Thermography acquisition. (b) Infrared image sequencing.

Fig. 1 Thermographic imaging
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During the acquisition process, the patients breathe (inhale and exhale) per-
forming some small movements. These movements change the coordinates of
points of their body in relation to a previously acquired image. Figure 2 shows the
exact movement of keypoints over the time series acquisition. Figure 2a shows a
common point located at the patient chin, and Fig. 2b shows a common point
located at the patient’s neck. Errors can be propagated to the subsequent compu-
tational analyses if these errors are not corrected. Therefore, approaches to relate
these points should be one of the first steps in the computational analysis of these
thermograms.

It is possible to correct these differences using a process named image regis-
tration [4], which is more extensively addressed in the next section. Registrations
are based on global or local transformations and are fundamental in time series
acquisition [5]. Image registration usually matches the maximum number of
common points in the images using various types of transformations respecting
rigid bodies (translation and rotation) or nonrigid bodies (transformations that do
not preserve the distances between two points) [6].

The use of very generic or incorrect transformations increases the overall pro-
cessing time and may not even produce adequate registered images. To achieve an
efficient registration, the movements that the patients perform must be carefully
analysed. A function that is sufficient to correct the performed movements must be
known a priori to improve the processing time. For instance, there is no need to
apply a complex warping or perspective transformation if a simple translation is
enough, which is also far less complex.

Fig. 2 Displacement of common keypoints over the time series acquisition
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2 Literature Review

Thermographic cameras are built with sensors that capture infrared (IR) rays. The
camera sensor is able to perceive radiation at temperatures above absolute zero. All
objects that have temperatures above this value (i.e., 0 K or −273 °C) emit infrared
radiation. The measured infrared radiation emitted by one point of the skin can be
converted directly to a temperature value that represents this point.

Some diseases trigger physiological and biological processes that interfere with
the human temperature distribution. Nitric oxide, for instance, which is produced by
cancer cells, interferes with the normal neuronal control of blood vessel flows,
causing a local vasodilation in the early stages of cancerous growth, and also
enhancing the angiogenesis in later stages. Increased blood flows can raise the
temperature of the related area. Deep lesions seem also to have the ability to induce
changes in the skin temperature. Cancerous metabolic processes also seem to
contribute to the detectable heat increase.

Among other approaches, IR thermography can detect a disease or abnormality
by identifying temperature differences on the symmetric areas being compared.
Physiological changes and the development of neoangiogenesis are often associated
to these asymmetric temperatures distributions. Asymmetry between symmetric
areas is one of the most important indicators that can be quantified. Locating areas
within the region of interest (ROI) that contain a high degree of blood perfusion or
vessels is also of great importance. Thermogram interpretation is based, in most
occasions, on exaggerate vascularisation, hot spots and on asymmetries between the
said symmetric areas.

The next sections of this work present a small survey on infrared imaging for
thyroidal screening and addresses related works in the light of their applications in
computer vision and medicine. Consequently, the ideas in the following two sec-
tions are organized according to the standard flowchart of pattern recognition
systems. The entire process is composed by: (1) image acquisition protocols,
(2) storage, (3) Region of Interest (ROI) and registration, (4) segmentation methods,
(5) feature extraction, (6) classification or diagnosis.

2.1 Acquisition Protocol

A protocol for thermal imaging can be categorized as static or dynamic, based on
the behaviour of the body in relation to heat transfer. In the static acquisition, the
body of the patient is thermally stabilized with the environment. On the other hand,
static acquisition relies on the thermal equilibrium of the patient with the envi-
ronment. Dynamic acquisition is applied to monitor the recovery of the skin tem-
perature after an induced thermal stress (e.g., heating or cooling) or chemical stress
(e.g., vasoconstrictions or vasodilations).
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The type of acquisition can also be categorized according to the repetition as
single, sequential or accompanied capture. In single acquisitions, an image of the
patient is captured in an instant of time. This type of acquisition is suitable to
identify cold and hot spots and for measuring the asymmetries on skin temperature.
In the sequential mode, however, a series of images are acquired sequentially.
Finally, in the accompanied mode, the acquired images are separated by a sub-
stantial time interval (usually 3 or 6 months) in order to follow the progress of
some disease and also to detect it early (i.e., to detect changes in the patterns early).

The influence of the room temperature, as well as the stabilization time of the
body in relation to this temperature was investigated by Usuki et al. [7]. In dynamic
acquisitions with cold stress protocols, the expected pattern is a balance between
heat conduction from tissues and deeper vessels, and heat loss by radiation and air
convection at the surface. Beyond the image acquisition, some important aspects
should be regarded as well, such as date of examination and patient’s age, as well as
use of drugs or hormonal therapy.

An alternative acquisition protocol was evaluated by Agostini et al. [8]. The
proposed protocol aims to observe the influence of blood perfusion and skin
temperature fluctuation. The authors acquire a sequence of consecutive thermal
images with rate ranging from 50 to 200 frames/s. Thereafter, they use the fre-
quency domain of the small temperature fluctuation in the studied area, rather than
considering the classical static skin temperature. Kapoor et al. [9] recommend their
patients to stop smoking for 2 hours before the test, to avoid alcohol and caffeine,
and to not apply lotions on the acquisition area. Ng et al. [3] do also orient patients
to abstain from any physical activities for 20 min before the exam, in order to
reduce the body metabolism and stabilize the body temperature.

2.2 Registration

Image registration is a mapping of points that relate two images where one is
usually called reference or fixed image and the other is usually called sensible or
moving image. Registration is an optimization problem where the goal is to max-
imize the correspondence of points from the reference image to the ones in the
sensible image using transformations [10]. Figure 3 shows an overall example of a
registration.

A desirable registration or transformation T is achieved when the statement T
(SensibleImage) ≅ ReferenceImage is true. The symbol ≅ represents an approxi-
mation and is subjective. The comparison depends on the similarity measure chosen
to compare the reference and transformed images. After the transformation, the
image is converted from the function domain to a raster. That is, rasterization is the
defined as the process of discretizing and painting pixels from the function domain
to a grid (e.g., an image, screen, etc). Interpolations are required for doing so. The
entire registration process is shown in Fig. 4.
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Patients may undergo various magnetic resonance (MR), computed tomography
(CT), single proton emission computed tomography (SPECT), and other imaging
techniques for general or anatomical reference of a single organ. Therefore,
physicians’ analyses are benefited from registrations of images from any combi-
nation of modalities (including just a single modality). For instance, in radiotherapy
treatments, both CT and MR can be used. CT is needed to compute the radiation
dose accurately, while MR is usually better for delineating tumor tissues [11].

According to Maintz et al. [11], registrations are divided in three main cate-
gories: (1) the intrinsic, (2) the extrinsic and (3) nonimage based. In intrinsic
registrations, the corresponding methods are based only on image-related content.
The intrinsic registration can be based on the alignment of segmented binary
structures or on a limited set of identified salient points (landmarks or keypoints).

In extrinsic registrations, artificial objects are attached to the patient, which are
designed to be well visible and accurately detectable in all of the pertinent
modalities. Therefore, the registration is comparatively fast and easy, which can
virtually always be automated. Furthermore, since its parameters can be often
computed explicitly, this kind of registration usually does not demand complex
optimization algorithms.

Fig. 4 A registration process

Fig. 3 A registration result
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Alternatively, registrations can also be nonimage based. If the imaging coordi-
nate systems of the two scanners involved are calibrated to each other, then reg-
istrations can be performed automatically. In this case, scanners are usually required
to be brought into the same physical location. Furthermore, it is also required to
assume that the patient performs no movements between acquisitions.

Rigid transformations stand for a group of transformations where the distances
between every pair of points are preserved [12, 13]. Therefore, rigid transforma-
tions comprise operations like translations and reflections, rotations, or combina-
tions of these operations (some authors do not consider reflection as a rigid
transformation). Affine transformations regard functions between affine spaces.
These transformations preserve straight lines, points, as well as planes [14].
Operations such as scaling, translation, homogeneous and inhomogeneous dila-
tions, reflections, shear mapping rotations and aggregations of these operations are
defined as affine. The different types of transformations are depicted in Fig. 5. The
overall range of transformations can either be (1) local, i.e., applied with regards to
a certain region or (2) global, i.e., applied to the whole image.

Fig. 5 Possible types of transformations performed in registrations
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In this work, we just consider rigid transformations, which in R
2 are usually

expressed as a linear matrix multiplication with homogeneous coordinates as shown
in Eq. 1.
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where ðx0; y0Þ represents the transformed coordinates and ðx; yÞ the coordinates
before the transformation. h represents the angle of rotation and tx as well as ty the
translation on the respective axes x and y.

Common points of the reference and sensible images can be placed manually or
autonomously to compose a landmark or keypoint registration approach. If this is
the case, there must be a good precision in order to select the correct pixel in each
image. However, it is difficult to manually place points when the number of
required points is huge. For this case, some techniques can be used to autonomously
detect points in the images such as the Scale-Invariant Feature Transform (SIFT)
[15], Affine Scale-Invariant Feature Transform (ASIFT) [16], Speed Up Robust
Features (SURF) [17], Harris Corner Detector (HARRIS) [18], etc. However, the
disadvantage of these methods is that they often provide point correspondences that
are not real. Besides, the amount of points can be huge, which may require some
heuristic to discard and consequently reduce the number of points.

2.3 Thyroid-Related Review

The thyroid is a neuroendocrine gland located at the human neck, next to the
thyroid cartilage and over the trachea. The function of the gland is to regulate the
metabolism of the body, produce proteins and to regulate the body sensibility with
regards to other hormones. Some diseases are associated to the malfunction of the
thyroid gland, which are usually related to iodine deficiency, such as goiter,
hypothyroidism, thyroiditis, and random nodules that may be cancerous.

Thyroid nodules are a common clinical problem, and thyroid cancer is becoming
more prevalent. According to the data provided by the American Thyroid
Association in 2015 [19], papillary cancer can be the third most common type of
cancer in women in 2019. In 2030, it can be the second most common in women
and the third in men. Among the main types of cancer there are (1) the
well-differentiated ones (papillary, follicular and the ones caused by Hurthle cells),
(2) the medullar, and (3) the anaplastic.

In [20], the author observed that thyroid glands produce a very characteristic
thermal pattern, which is of easy recognition. However, under hypoactivity, this
pattern is not visible. Besides, this work reinforces that it is possible to discriminate
benign nodules from malignant ones, according to the temperature pattern. It has
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also been observed that cancerous cells raise the temperature on neighboring re-
gions. It also states that the more superficial the lesion, the higher is the temperature
on the skin.

Clark et al. developed a prospective study using echography, ultrasound, and
thermography on the preoperative evaluation of thyroid nodules [21]. Their
objective was improving the accuracy on the differentiation between benign and
malignant thyroid nodules, and determining the reliability of echography and
thermography on distinguishing between solid and cystic thyroid nodules. The
patients were in the supine position with the neck hyperextended. Sixty-one patients
were analysed by clinical examination. By the combined use of echography and
thermography, the authors were able to distinguish accurately between cystic and
solid thyroid nodules.

In [22], D’Arbo et al. studied the usefulness of thermography in the selection of
thyroid nodules for surgery. 124 thyroid nodules from 110 patients with ages in the
range of 2–77 years old were studied. A hundred of these thyroid nodules were
mapped as cold and the rest as hot. Sixteen cold nodules and two hot nodules were
diagnosed as malignant. Each test took 15 minutes. Three different techniques were
evaluated: heat index (related to a mean temperature of the region where the nodule
was palpated), curve or thermal profile (established in respect to a middle point of
the region) and, differences of the isotherms (related with the points of the higher
temperature in the region compared to a near healthy area).

A design of a prototype device is proposed by Helmy and collaborators in [23].
It is an economical non-invasive system that detects and displays the relative skin
temperature variations present in human patients suffering from thyroid disorders.
In [24], the authors developed and described a model for thyroid glands, and
simulated them using finite element analysis. This model was developed in order to
determine the necessary resolutions for thermal sensors that are used to obtain
the thermal images of patients’ necks. In 2008, an improvement of this prototype
was proposed [25]. The authors also present a finite-element analysis of a hot
thyroid nodule. This analysis was used to investigate the temperature distribution.

In 2015, a successful computer model utilizing ANSIS software was proposed
[26]. This simulation model incorporates three heat transfer coefficients: conduc-
tion, convection, and radiation. While the conduction component was a major
contributor to the simulation model, the other two coefficients have improved the
accuracy and precision of the model. This study also compares simulation data with
the applied model generated from IR probe sensors. These data were analysed and
processed to produce a thermal image of the thyroid gland. The acquired data were
then compared with an Iodine uptake scan of the same patients.

In [27, 28], Gavriloaia et al. explain the details of a system used for acquiring
infrared images of necks for thyroid nodules analysis. In these works, the Penne’s
equation and its applications were analysed. In [27], a few infrared images are
explored with the aim of finding infrared signatures that can be descriptors of the
thyroid tumors. The authors found that the contour of cancerous nodules is irregular
and asymmetric. Using the ABCDE investigation method (based on features as
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Asymmetry, Border, Color, Diameter, and Evolution of the contour), 89.3% of the
investigated patients with thyroid cancer were correctly recognized.

In [29], the authors apply fractal theory to quantify the irregularity in size and
shape of thermal signatures of tumors. The self-similarity and lacunarity features
were employed. In [30], an improved method for IR image filtering is proposed.
This study is aimed at developing a numerical scheme that significantly reduces the
computing time required for thermal image denoizing with edge preservation. This
filter allows physicians to assess, faster than using other anisotropic diffusion filters,
the contour shape, and to locate the outbreaks in ROIs. Another filtering is used in
[31] to improve the quality of the information in thermographic images. In this case,
the empirical mode decomposition was used, and it was proved that one or at most
two intrinsic mode functions (IMFs) are enough for minimizing the noise effect.

The authors in [31] use thermography with other imaging modalities to diagnose
thyroid problems. This work also evidences that female individuals are more sus-
ceptible to thyroid diseases than male and that hyperthyroidism is more common
than hypothyroidism. The works [32, 33] employ an Otsu thresholding technique to
separate the thyroid ROI from the rest of the images. In this work, we propose a
novel registration and methodology to extract the ROI.

3 Proposed Approach

The images evaluated in this work (a single patient is shown in Fig. 6) were
obtained using the FLIR ThermaCam S45 under the approval of the Ethical com-
mittee of Universidade Federal Fluminense, Brazil. The thermograms were
acquired at the university hospital. All images were taken from patients and vol-
unteers. These images were corrected for relative humidity and temperature of the
room and were acquired after requesting patients to wait for 10 min in order to
stabilize their metabolism. Four patients are analysed in this work (two healthy and
two with pathological diagnosis or an abnormality in the thyroids). The blue square
on the patient chin that can be seen in Fig. 6 is a physical marker that was placed at
this region to help with the registration and recognition processes.

1. Protocol

With regards to the acquisition, we have used the dynamic acquisition protocol.
However, it is slightly in regards to previous work due to the fact that it has a
stopping condition for the thermal stress. Initially, the patient must be sitting down
in order to minimize the possible displacements that he or she may perform. When
the mean temperature of the skin decreases to 29 °C, the thermal stress is ceased
and the sequential acquisition is started. One image is captured at every 15 s over
5 min, which produces the sequence of images shown in Fig. 6. The distance from
the camera to the patient is 0.5 m, as shown in Fig. 1. The relative humidity of air
and room temperature is recorded and inserted as parameters in the camera.
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2. Recommendations to Patients

At least 2 h before the examination the patient should avoid: alcohol, caffeine,
physical exercises, nicotine and should not apply any cream, oil or deodorant.

3. Room Conditions

Room temperature is maintained between 22 and 25 °C, no windows, no
openings, no air flow directed to the patient, and only fluorescent bulbs.

4. Preparation of the patient.

Inside the examination room, the patient is asked to remove earrings, necklaces
or any other accessory that can be seen in the thermal image, central temperature is
checked by a thermometer and hair stuck with a burrow. The patient must be in the
room 20 min before starting the examination and should be sitting with his head
tilted slightly back and looking up during acquisition.

Fig. 6 Sequence of 20 thermal images from an examination
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3.1 Preprocessing—Movements During Acquisition

An important step in the processing of thermograms in the dynamic acquisition is
registration. Figure 7 shows super-positions of two images of a single patient that
moved during the acquisition (the first and the last one acquired in a sequence of 20
images). As it can be seen, the movements performed by the patients misalign the
image content. By analyzing these movements, we can transform one of the images
to resemble the other as much as possible. It can be done automatically or manually,
and that usually involve transformations and similarity measures to compare the
images, as previously addressed. As a remark, the green border of Fig. 7 precedes
the red border.

Figure 8 compares the subsequent superposition of acquired images pairwise. It
can be noted that the movements are not as severe as in Fig. 7. However, even
slightly movements can impact on further processings. The extent of the movement
does also vary depending on the patient.

The majority of the movements performed by patients can be described as
follows:

1. Full-body Modification

Includes lateral movements to the left or right (Fig. 9a), movements to the top or
bottom (Fig. 9b), or combinations of both movements. These tilts can be corrected
with a rigid transformation: translation and rotation.

2. Local Modifications

These modifications include movements related to perspective and distortion,
such as tilts of the head to the back or front. Figure 10 shows these tilts that disrupt
the border of the head without altering the border of the shoulders so much. In these
images, the chin of the patient was in a different position regarding the two
acquisitions (red and green). These movements and distortions can be corrected
with elastic (e.g., perspective, warping, etc.) transformations, which are more
complex and more expensive (computational power-wise) than the rigid ones.

Fig. 7 Movements of a patient during the image acquisition
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Fig. 8 Subsequent movements on a time series acquisition

Fig. 9 Slightly movements during the image acquisition
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3.2 Proposed Registration

As previously discussed, registrations can be oriented by user intervention, where
the user selects common points from both images. The advantage of such
semi-manual registrations is that they are usually very accurate. However, at the
same time they are time consuming and due to that fact it is not practical in several
occasions. If some landmarks or keypoints are chosen on the subsequent images
such as in Fig. 11, we can use this information to align the images by simply
matching the points. Then, we would have something like Fig. 12.

It can be seen in Fig. 12 that the sequence of images is more aligned than in
Fig. 8, since we have performed a semi-manual registration. It can also be noted
that errors are present still. That is partially because we employed simple operations
like translation and rotations only, and also due to the fact that the whole image was
registered at once.

3.2.1 Autonomous Registration

Besides this semi-manual registration, we propose a possible autonomous regis-
tration for the thyroid thermographic images. At first, we apply a filter based on the
Sobel operator, which was presented in a previous work [34] and is available at
[35]. The filter is a modification of the classical Sobel filter, it is simple and
considers kernels of variable sizes.

Fig. 10 Complex movements during the image acquisition
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The Shadow and Light Sobel filters are defined by Eqs. 2 and 4, respectively,
where P represents the image and Pi;j a value of a pixel at line i and column j; t
represents a threshold for the edge to be painted, and d a distance parameter (in
classical Sobel operators d would be close to 1), and ^ represents the boolean and
operation.

SSðP; d; t; i; jÞ ¼ 1; if ðs1 ^ s2Þ
0; otherwise

�
ð2Þ

where,

s1 ¼ Pi�d;j � Pi;j [ t ^ Piþ d;j � Pi;j [ t;
s2 ¼ Pi;j�d � Pi;j [ t ^ Pi;jþ d � Pi;j [ t

ð3Þ

and

LSðP; d; t; i; jÞ ¼ 1; if ðl1 ^ l2Þ
0; otherwise

�
ð4Þ

where,

l1 ¼ Pi;j � Pi�d;j [ t ^ Pi;j � Piþ d;j [ t;
l2 ¼ Pi;j � Pi;j�d [ t ^ Pi;j � Pi;jþ d [ t

ð5Þ

Fig. 11 An example of landmark or keypoint selection
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The main difference between the variables s1::2 and l1::2 is the orientation of the
computation, which captures either light or shadow valleys in each occasion. The
parameters used in the proposed process were t = −40, and we have performed it
only for the shadow and on the x-axis since it provided better results. That is, the LS
function was disregarded as well as s1. Thus, the function in Eq. 6 was applied to
the images.

SSðP; d; t; i; jÞ ¼ 1; if ðPi�d;j � Pi;j [ t ^ Piþ d;j � Pi;j [ tÞ
0; otherwise

�
ð6Þ

Figure 13 shows the results of this filter applied to Fig. 13a. It can be noted that
the lateral parts of the neck are clearly segmented and all the remaining stuff in the
image is removed. From that image (Fig. 13b), it is very easy to cut off a rectan-
gular shape of the area containing these lines, which would be our ROI.

Fig. 12 Registered subsequent images
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Given a rectangle of fixed width and height (we have used 330 for width and 310
for height), a few candidate positions can be evaluated, and the one that contains
the highest amount of white pixels would be the chosen ROI. Figure 14 shows an
outcome of this described processing. The width or height of the rectangle can be
reduced in order to produce different results.

It is clear by Fig. 14 that the two lines on the center of the image (which
correspond to the physical marker) influence the position of the green rectangle.
Therefore, the rectangle is forced upwards due to this residual “noise.”

One would argue that we can erase these two central residuals by using the same
heuristic described to find the ROI. And in fact we can. If we reduce the size of the
rectangle and apply the same idea, we would find the central residuals. After that,
we could just erase them completely from the image. Figure 15 shows the same
idea when the size of the rectangle is reduced to 110 � 110.

After locating the residual noise we remove them. If the same heuristic is per-
formed again, starting from bottom to top with regards to the y-axis, then we have
the result shown in Fig. 16.

After extracting the ROI, we can use the different extracted ROIs to perform the
registration. There are essentially two paths to follow. The ROI can be extracted
before the registration or after the registration. In both ways, the described

(a) Input image of a random pa-
tient.

(b) Image a after applying the fil-
ter.

Fig. 13 Our Sobel-like filter

Fig. 14 Autonomously
detecting the ROI
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methodology using the Sobel derived filter would not change and would still be
valid. However, there are some strengths and weaknesses on both of the ap-
proaches, which are discussed below.

1. ROI before Registration

In this case, just the neck region is considered for registration. The positive side
of this is that the registration would probably be more accurate, since we would
disregard the information of the shoulders and other structures. For instance, we
have observed that some patients perform movements with their heads while their
shoulders stand still. If the head is moved, so is the neck. In that way, if the
shoulders are regarded in the registration, then they would influence the final
registration result. And since the shoulders are already aligned, the registration
would not change the image significantly.

The disadvantage of this approach is that the comparison of the images would
have to be done regarding the intensity values of the ROIs, which is slightly slower
to compute than to consider a few keypoints of both images. However, it is still
very fast, lasting only a few milliseconds for a pairwise comparison. As a remark,
the intensity values can also vary considerably from one image to another, so that a

Fig. 15 Removing the residuals

Fig. 16 Final autonomous recognition of the ROI
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proper similarity measure should be employed. A simple similarity measure such as
the mean difference would probably achieve a bad performance. The Chamfer
distance [34] would probably be more accurate.

2. ROI after Registration

In this case, it is easier to find common landmarks or keypoints between the
images, since the shoulders and other structures are still present in the image.
However, it would introduce the errors of the shoulders and other structures into the
registration, which should be for the neck only in the first place.

Furthermore, no information is disregarded before the registration, so that it can
be used for any further processing if required, even to help with the diagnosis, as
opposed to the previous paradigm.

3.3 Feature Analysis and Classification

We have also noticed that it is possible to locate the nodule of sick patients with a
simple threshold operation (which was confirmed by a specialist on the avail-
able images). However, we are not sure if this is true for a wider group of diseased
patients although it seems so. A threshold operation takes the image as input and
changes the pixel or temperature value to white if it is higher or equal than a
threshold value or changes it to black if it is lower. The threshold value was set to
209, so, values higher or equal than 209 become white and values lower than
that become black.

Given the thresholded images in Fig. 17, it is already possible to extract some
valuable information from them. Three features directly based on the area seg-
mented by the threshold operation along with a symmetrical feature were analysed.
The features based on the segmented area are computed on the basis of all the pixels
within the segmented hot region.

The features based just on the thresholded area are (1) the mean intensity,
(2) the standard deviation of these intensities and (3) the maximal intensity or
temperature. The fourth feature quantifies the level of symmetry of each ROI in
each image, with respect to the vertical axis, and is based on the idea that if two
pixels belong to the same symmetric zone then their intensities should be the
similar. Thus, the absolute difference between these values should be minimal.

We analyse the intensity values of all the pixels of the ROI in the following
manner: let m and n be the height and width of the ROI, n=2 be half of the ROI
rectangle width (due to the vertical symmetry axis) then, for each pixel ði; jÞ of the
left part of the ROI, we look for the most similar intensity value in the neighbor-
hood 3� 3ð Þ of the pixel ði; n� jÞ, which is located at the right part of the ROI.
Similarly, for each pixel on the right side, a similar intensity is searched for in the
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(a) O1 (sick) (b) O1 after thresholding

(c) O2 (sick) (d) O2 after thresholding

(e) O3 (healthy) (f) O3 after thresholding

(g) O4 (healthy) (h) O4 after thresholding

Fig. 17 Temperature analysis
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left part in the same fashion. The asymmetry level is given by Eq. 7, which stands
for the average sum of the absolute values of the intensity difference of each pixel
and its most similar one. The difference between each pair of pixels is normalized
regarding the highest intensity value (in this case, 255).

AsyðIÞ ¼ 1
mn

Xm
i¼1

Xn
2

j¼1

minp;q¼�1:1 jIði; jÞ � Iðiþ p; n� jþ qÞj
255

 

þ
Xm
i¼1

Xn
j¼n

2þ 1

minp;q¼�1:1 jIði; jÞ � Iðiþ p; n� ðn� jÞþ qÞj
255

1
A

ð7Þ

We have employed the k-Nearest Neighbor (k-NN) algorithm to perform a
classification using the extracted features, where the Euclidean distance was
regarded and k was equal to 1. As previously mentioned, two patients contain
nodules (O1 and O2) while the other two do not (O3 and O4). Table 1 shows the
Euclidean distances of patient O1 in relation to all the others. It can be observed that
patient O1 is tightly related to patient O2, which makes sense, because both of these
patients are sick.

Each patient has four feature values. For each patient, we take their four feature
values and compute their distance in regards to all the feature values of the
remaining patients. For instance, the distance from the standard deviation of O1 is
calculated in relation to the standard deviation of O2, O3 and O4. That calculation is
performed for each feature (normalized mean intensity, standard deviation, nor-
malized maximum temperature and asymmetry). For each pair of patients we have a
total of four distance values, which represent the four features.

Thus, the lesser the distance value between patients Ok and Ol, the closer patient
Ok is in relation to patient Ol and vice-versa. Therefore, in Table 1, the minimal
distances of the four features are all related to O2, which indicates that O1 is tightly
related to O2. In Table 2, three features indicate that O3 is related to O4, so that we
assume that its class is the same class as of O4, which is healthy. For the patient O2,
two of its features indicate similarity with O1, while the remaining two were closer
to O3. Three features indicate that O4 can be classified as healthy.

Table 1 Euclidean distance
of patient 1 O1ð Þ in relation to
the remaining

Feature O2 O3 O4

Normalized mean intensity 0.172 0.8216 0.414

Standard deviation 14.648 28.826 37.26

Normalized maximum
temperature

0.157 0.833 0.315

Asymmetry 0.053 0.063 0.070

Bold values indicate the nearest value, or the smallest difference
between the features of patient O1 and the remaining
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4 Conclusion

This chapter reports a small scale preliminary study that evaluates the feasibility
with regards to time, cost, and effect of the use of infrared imaging as a tool in the
detection and analysis of thyroid nodules. We perform an overall analysis of
thermographic images, focusing on thyroid thermographic acquisition, process-
ing and classification, which is a new field of study. We discuss the data and
different approaches with regards to a computer science background, in order to
extract, make sense of the information captured by these images, and eventually
predict or provide automatic diagnoses.

An autonomous ROI identification for the thyroid images is proposed, which is
based on very simple fundamentals of computer vision. We have discussed different
approaches with regards to the registration and ROI extraction of these images,
highlighting the advantages and disadvantages of each one. More specifically, we
discuss whether it is better to extract the ROI before the registration rather than after.

Furthermore, we have also performed an extraction and analysis of four features
from the ROI of the patients using a classification algorithm (k-NN). In our anal-
ysis, we found some evidence that these features may be sufficient to predict
whether a patient is sick or not.

Future work involve improving the described methodologies and analysing the
reported evidences with regards to a large scale of data. Since there is still a lack of
thermographic thyroid images with abnormalities in our repository, we were forced
to work with the currently available images. Still, we expect that the evidence
found in this work applies to the general case.
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Modeling Thermal Infrared Imaging Data
for Differential Diagnosis

Enas Ismail and Arcangelo Merla

Abstract Nowadays, thermal infrared imaging (IRI) is thought to be a fascinating
and promising complementary imaging tool regarding typical gold-standard medical
imaging for differential diagnosis. This chapter presents the commonly used
approaches for modeling thermal infrared data for differential diagnosis purposes.
Two main modeling approaches were proposed, i.e., (i) qualitative modeling
approach based on using statistical and machine learning techniques, (ii) quantitative
modeling approach based on performing mathematical/analytical modeling of the
thermoregulatory processes by using three main approaches: (i) empirically using
automatic control theory, (ii) non-empirically using bioheat equations and
(iii) semi-empirically using both bioheat equations and automatic control theory.
Also, three main modeling approaches based on control system theory were pre-
sented, i.e., (i-a) time domain analysis of the thermoregulatory system’s character-
istics through a direct estimation of the closed loop dynamic response parameters of
a prototype second-order system, (i-b) a direct identification of thermoregulatory
system as a second-order system plus delay time (SOPDT) from a closed-loop step
response, and (i-c) a state-space representation of the thermoregulatory system as a
first-order differential equation from the experimental IR temperature curves.
Moreover, this chapter summarizes the advantages and disadvantages of each
modeling approach highlighting its assumptions and approximations. By imple-
menting the proposed modeling approaches, thermal infrared imaging has been
demonstrated to be able to (i) identify significant averaged and asymmetric tem-
perature parameters that could be used for disease classification, (ii) provide a direct
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functional IR indicators of the thermoregulatory malfunctions/alternations indirectly
assess the severity of functional perturbation of the autonomic sympathetic and
parasympathetic physiological activations in the presence of a disease, (iii) compute
physiological information, such as localized blood flow, cardiac pulse, and breath
rate, and (iv) identify skin’s thermal parameters, location of heat source (particularly
the vessels), depth of heat source used for defining the location and geometrical
shape of the affected-area, mostly required for tumor detection, and (v) provide a
clear description of the underlying alterations in the main thermoregulatory func-
tions as for example, environmental heat exchange process, vasoconstriction and/or
vasodilation, and sweating actions. The authors consider this chapter as a good
material that provides a great insight about the utility of thermal infrared imaging for
medical diagnostic purposes.

Keywords Control system � Finite element analysis � Modeling � Thermal
infrared (IR) � Cutaneous temperature � Medical diagnosis � Statistics

1 Introduction

While for differential diagnosis, clinicians have still using the typical gold-standard
medical imaging techniques, these days thermal infrared imaging (IRI) is thought to
be a fascinating and promising complementary imaging tool regarding these typical
gold-standard medical imaging [1, 2]. IRI, in fact, is a ‘contactless,’
‘non-obstructive,’ and ‘non-radiating’ imaging method for examining physiological
capabilities and pathologies associated with the body’s thermal homeostatic actions
expressed through the skin thermoregulation [1, 3, 4]. It screens cutaneous tem-
perature of the human body by detecting naturally emitted infrared radiation from
the skin surface that can be directly related to the temperature distribution of a
defined body region [5, 6]. Medical application of IRI goes back to early 60’s [7, 8].
The medical utility of IRI is based on the physiological fact that the thermal
abnormalities, associated with the disease’s local or systematic effect on the skin
thermoregulatory actions, may accompany with IR-detectable changes in natural
skin temperature [9]. Over the past 40 years, IRI has been used in various medical
applications, ranging from oncology, dentology, pain, surgery and vascular, res-
piratory, dermatology, and other disorders, with a great awareness for whether or
not IRI should be considered as a valid diagnostic tool [7–10]. In order to study
such hypothesis several IR imaging methods were explored for differential diag-
nosis purposes [9]. Through Classic/Static (i.e., at resting conditions) thermo-
graphic imaging method, differential diagnosis is usually performed by analyzing
the temperature distribution over the considered skin region represented by only
one captured image/frame [3]. This conventional IR imaging method can identify
significant changes of skin thermal distributions between two hemisoma or even
with respect to an average extrapolated from a control group [6, 11]. But, general
absence of certainty has arisen among clinicians regarding the clinical use of these
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approaches due to contradictory results and the lack of informative concerning
hemodynamic alterations and the underlying thermoregulatory malfunctions which
may accompany the presence of a disease [3, 6, 12]. Meanwhile, yet for different
purposes, innovative progressions yielded another generation of computerized in-
frared cameras portrayed by a high spatial resolution and temperature affectability
while minimizing the acquisition time [6]. The accurate recording of the cutaneous
temperatures’ dynamics now permits functional infrared imaging (fIRI) studies of
cutaneous thermoregulation [6]. The dynamics of thermoregulatory system could be
further understood by analyzing its response to a controlled thermal challenge
which effects local thermoregulation [3], like exercising during cold exposure [13,
14] or mechanical isometric exercising [15–17]. Examples of medical IR data
acquired during both static and dynamic IR imaging methods are illustrated in
Figs. 1, 2 and 3. Others IR imaging methods, such as multispectral, multimodal,
and sensor fusion were explored for further medical applications (please read [18]
for further information). Most of these medical IR imaging methods were designed
in order to collect a significant and effective IR data that allows both qualitative and
quantitative evaluation of the cutaneous temperature changes in both basal condi-
tions and in response to diagnostic challenges. Regarding the demands of clinicians,
physicians, or even IR researchers, using IR data for differential diagnosis came
with four main hypotheses that the evaluation of the cutaneous IR temperature
changes could (i) identify significant averaged and asymmetric temperature
parameters that could be used for detecting the medical disorders based on corre-
lations between observable IR image characteristics and human physiology without
worrying about the physical mechanism that connects them, (ii) provide direct
functional IR indicators of the thermoregulatory malfunctions/alternations

Fig. 1 Examples of the static IR data collected in the thermal infrared imaging laboratory-ITAB.
Thermograms showing abnormalities in conjunction with various medical problems: a scrotal IR
image shows the higher temperature values at the hemi scrota in the presence of grade III
varicocele disorder and b IR image shows the higher temperature values at affected fingers with the
Raynaud’ phenomenon disorder
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indirectly assessing the severity of functional perturbation of the autonomic sym-
pathetic and parasympathetic physiological activations in the presence of a disease;
thus giving an intend to indirectly evaluate the disease activity and help its primary
differential diagnosis, (iii) to compute physiological information, as for example
localized blood flow, cardiac pulse, and breath rate; thus allowing a noninvasive
and noncontact monitoring of the physiological state of the subject and identify
skin’s thermal parameters, location of heat source (particularly the vessels), depth
of heat source used for defining the location, and geometrical shape of the
affected-area, mostly required for tumor detection, and (iv) provide a clear
description of the underlying alterations in the main thermoregulatory functions as
for example, environmental heat exchange process, vasoconstriction and/or
vasodilation, and sweating actions. [9, 13–15, 19–21]. In order to study such
hypotheses, understanding the significance of false-color (typically, gray levels)
representation in a thermal IR image is an important requirement. In fact, changes in
gray-level thermogram will follow changes in the emitted surface radiance and the
corresponding cutaneous temperature of a given body region [9]. For using medical
thermograms in differential diagnosis, two main modeling approaches were
explored, (i) Qualitative modeling approach based on using statistical and machine
learning techniques, (ii) Quantitative modeling approach based on performing
mathematical/analytical modeling of the thermoregulatory processes by using three

Fig. 2 An example of thermal maps during three different recoding times: for a–c randomly
selected healthy control (HCs) subject, and d–f randomly selected psoriatic arthritis (PsA) patient
[16]
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main approaches: (ii-a) empirically using automatic control theory, (ii-b)
non-empirically using bioheat equations and (ii-c) semi-empirically using both
bioheat equations and automatic control theory. Also, three main modeling
approaches based on control system theory were presented, i.e., (a) time domain
analysis of the thermoregulatory system’s characteristics through a direct estimation
of the closed-loop dynamic response parameters of a prototype second-order sys-
tem, (b) a direct identification of thermoregulatory system as a second-order system
plus delay time (SOPDT) from a closed-loop step response, and (c) a state-space
representation of the thermoregulatory system as a first-order differential equation
from the experimental IR temperature curves. Figure 4 presents a quick summary of
the main procedures required for each of the considered modeling approaches in a
flowchart version. This chapter is mainly aimed at presenting these modeling
approaches and their applications in using medical IR data for differential diagnosis.
The remaining of chapter consists of four sections, one section for each modeling
approach. In each section, we will present the methodology of the presented
modeling approach, review the most recently performed studies for its application
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Fig. 3 Temperature versus time curves obtained from thermal imaging data during baseline, i.e.,
before performing the isometric exercise and 1.6 min after the isometric exercise separated by a
red vertical line (subjects were required to press every 2 s, and for a total of 2 min, the
dynamometer handle, at the 20% of previously assessed maximal individual strength). Measured
from: a 14 ROIs for healthy HCs subject, b 14 ROIs for psoriatic arthritis (PsA) subject, c the
randomly chosen representative ROI 2 for HCs subject, and d the randomly chosen representative
ROI 2 curve for PsA [16]
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in differential diagnosis and discuss its disadvantages and limitations. Finally, we
end up the chapter with a summary and conclusion section.

2 Qualitative Modeling of the Skin Thermoregulatory
System Using Statistical and Machine Learning
Techniques

IR detection of medical disorders using this approach is mainly based on the
correlations between observable characteristics of the medical IR thermograms and
human physiology without taking into consideration the physical mechanism that
connects them [9]. In fact, this approach relies on extracting significant indicators
that could qualitatively evaluate the cutaneous temperature changes in both basal
conditions and in response to diagnostic challenges with the main hypothesis that
such indicators could provide differential parameters/features for medical diagnostic
purposes with a high success rate [1, 9]. Generally, this approach consists of two
main processes, i.e., extracting features from the medical IR thermogram, and
subsequent classification of the thermogram into healthy and non-healthy classes
based on the extracted features [9]. A brief illustration of the involved processes of
this approach has been shown in Fig. 4. This section illustrates the brief description
of each process as follows:

Fig. 4 A quick summary of the main procedures required for each of the considered modeling
approaches in a flowchart version
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I. First, regarding the demands of clinicians, physicians, or even the IR
researchers and before extracting the indicators from the medical IR ther-
mograms, it is important to decide whether to extract the indicators from the
IR image, full image or a segmented region of it, or from a
tracked-temperature signal of the segmented regions of interest (ROIs). In
fact, some IR studies were based on extracting indicators from the full IR
image or a segmented region of interest (ROI) . Such approach usually needs
performing several image-processing techniques and some sort of segmen-
tation processes [9]. While other IR studies were based on extracting indi-
cators from the tracked-temperature signal of the segmented regions of
interest (ROIs). In such approach, the automatic identification of ROIs
necessitates the use of some sort of segmentation and tracking methods [9,
22]. A complete and exhaustive review of the commonly-used data prepro-
cessing techniques for this modeling approach like image-processing, seg-
mentation, and tracking processes cannot be allocated within this chapter
(more detailed description and references can be found in [9, 22]).

II. Second, to perform a differential diagnosis of a medical disorder with a high
success rate, extracting features as indicators of abnormalities in medical
thermograms is critically important process. In fact, abnormalities in medical
thermograms usually exist due to the underlying physiological/pathological
condition that causes alteration in the thermoregulation of the human body
[23]. These conditions are often manifested as abnormal vascular and focal
patterns, high-/low-temperature regions, asymmetries in temperature distri-
bution, abnormal contours, etc. [23, 24]. Table 1 illustrates some of the
mostly extracted features for using medical IR thermograms in medical
diagnosis purposes.

III. Finally, for using medical IR data for differential diagnosis, several studies
have been made with a main hypothesis of checking whether or not IR data
could detect a medical disorder. Some of these studies stopped at qualitative
testing of this hypothesis by using classical statistical evaluation methods as
for example Student-T test, inter-class correlation, and nonparametric sta-
tistical tests [25, 26]. While other studies did not stop at the statistical
evaluation of this hypothesis, but also demonstrated the significant findings
with calculating the true-prediction ratios of both healthy and non-healthy
groups using the machine learning algorithms as for example Support Vector
Machine (SVM) , Decision Tree (DT), Fuzzy Sugeno, k-Nearest Neighbor,
Probabilistic Neural Network (PNN), Self Organizing Map (SOM), Artificial
Neural Network (ANN) , Data resampling and performance evaluation,
Receiver Operating Characteristic (ROC) (see [27] for further information
about the detailed procedure of the proposed methods).

Medical applications of the proposed modeling approach
With this qualitative modeling approach, thermal IRI technique has been evident to
be a potentially and promising imaging tool that could be utilized as a reciprocal
technique as a part of relationship with typical medical imaging for the assessment
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of several medical disorders such as Raynaud’ phenomenon, varicocele, thoracic
outlet syndrome, knee injuries, psoriasis arthritis, diabetes, fever, breast cancer, skin
cancer, eye, pain and inflammation [1, 2, 25–27]. In fact, this modeling approach
has been proposed disease classification based on a statistical analysis of some
descriptive parameters of the cutaneous temperature curves during both basal and in
response to diagnostic challenges [6, 17, 28–33]. However, such statistical
descriptive parameters may not provide a clear explanation of the complex mech-
anism accompanying thermoregulatory malfunctions or alterations associated with
the presence of a medical disorder [13–15, 19, 20].

Table 1 Mostly extracted features from the IR thermograms for medical diagnosis purposes

Feature group Detailed-features Applications

Vascular/focal pattern – Hyperthermic feature (hot spot)
– Hypothermic feature (cold spot)
– Atypical complexity feature

– Breast cancer [79, 80]
– Vascular disorders [81]

Abnormal physical contour Confined heat along an abnormal physical
contour (edge sign)

Breast cancer [82]

Statistical features – First-order features extracted from
histogram (including mean, standard
deviation, median, maximum, minimum,
skewness, kurtosis, entropy, area, and
heat content)

– Second-order features extracted from
gray-level co-occurrence matrices

Breast cancer [83]

Thermal features Maximum temperature
Minimum temperature
Average temperature
Heat distribution index

– SARSsevere acute
respiratory syndrome
(SARS) analysis [84]

– Headache [85].
– Vascular disorders
(Raynuad’ phenomenon
[28], varicocele [29])

– Arthritis disorders [2, 86]
– Diabetic disorder [27, 87]

Presence/absence of any
response to a controlled
challenge procedure

Extract any of the previous features from
the measured IR temperature data during
both after and before periods of applying
diagnostic challenge and compare them

Arthritis disorders [2, 17]

Asymmetry-based features Compare contralateral regions of interest
by evaluating the difference of any of the
previous features

– Breast cancer [88–90]
– All malignant tumor
cases [91]

– Clinical settings
regarding the human
posture [92]

A detailed review could be found in [2, 9, 27]
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3 Quantitative Modeling of the Skin Thermoregulatory
System Based on Mathematical Modeling Approaches

Based on the experimental cutaneous temperature data, in both basal conditions and
in response to diagnostic challenges, this approach has been used to establish a
mathematical thermoregulatory model with ‘quantitative’ and ‘dynamic’ parame-
ters. Such dynamic parameters were hypothetically suggested to (i) provide a direct
functional IR indicators of the thermoregulatory malfunctions/alternations indi-
rectly assess the severity of functional perturbation of the autonomic sympathetic
and parasympathetic physiological activations in the presence of a disease [13–15,
19, 20], (ii) to compute physiological information, such as localized blood flow,
cardiac pulse, and breath rate [34–36], and (iii) identify skin’s thermal parameters,
location of heat source (particularly the vessels), depth of heat source used for
defining the location and geometrical shape of the affected area, mostly required for
tumor detection (see [9] for a review of most performed IR studies), and
(iv) provide a clear description of the underlying alterations in the main ther-
moregulatory functions as for example, environmental heat exchange process,
vasoconstriction and/or vasodilation, and sweating actions. In order to test these
hypotheses, mathematical models of the thermoregulatory processes were estab-
lished. In fact, this modeling approach contains two main steps: (i) the ther-
moregulatory model identification procedure based on the IR input–output
experimental data and (ii) the post recognition analysis performed on the estimated
model dynamic parameters, as follows (see Fig. 4 for a quick summary of these
main steps):

i. The first step is to collect a prior knowledge about the local skin ther-
moregulatory system of interest that is going to be represented in the model.
So as to make such definitions, it is essential that the reason for making the
model be characterized as obviously as could be expected under the circum-
stances. With this modeling approach, the main target of thermoregulatory
modeling is to find dynamic parameters/characteristics of the Skin temperature
curves that could investigate the thermoregulatory malfunctions or alterations
and indirectly inferring the sympathetic and parasympathetic autonomic (brain
regulatory of thermoregulation) alterations in the presence of a disease. Such
parameters could be used to differentially diagnose a medical disorder in the
medical; thus increasing the thermal infrared imaging potentialities as a di-
agnostic tool in medical applications [13–15, 19, 20].

ii. The second step is to collect data during an identification experiment
specifically designed with the objective of making the recorded data maxi-
mally informative. The thermoregulatory system is defined by considering the
skin temperature y(t) as its output, room temperature as its external input and a
basal skin temperature as its steady state reference signal. The input/output
temperature time curves can be recorded by thermal IR imaging either in the
basal healthy state or in any medical pathological conditions [17, 37, 38].
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iii. The third step is to define the input and output variables in the model and
which input variables are disturbance and whether inputs that could be
manipulated. The input/reference value is represented by the basal skin tem-
perature that can be considered steady prior to the performed challenge either
diagnostic test, while the output is the skin temperature after the end of the
challenge. The disturbance is the environmental temperature changes [13–15,
19, 20].

iv. The fourth step is to evaluate/check the measured data for acquiring
additional data that could simplify the modeling procedure. For example, if the
visual inspection of the system input elucidates that it is constant with time,
then the model input could be modeled with a step unit signal. Also, it is
important to check whether there is a statistical relationship between the model
input and output in order to consume the modeling efforts when there is no
input–output relationship. To accomplish this task, qualitative modeling ap-
proaches like classical statistical analysis or machine learning classification are
usually implemented [39].

v. The fifth step is to select the model structure and level of model com-
plexity. Mathematical skin thermoregulatory model was usually achieved by
one of three different modeling approaches, i.e., (i) empirical (black-box)
modeling approach by employing the automatic control system theory for
studying the global picture of thermoregulatory functioning through three
main approaches, i.e., (i.a) time domain analysis of the thermoregulatory
system’s characteristics through a direct estimation of the closed loop dynamic
response parameters of a prototype second-order system, (i.b) a direct iden-
tification of thermoregulatory system as a second-order system plus delay time
(SOPDT) from a closed-loop step response, and (i.c) a state-space represen-
tation of the thermoregulatory system as a first-order differential equation from
the experimental IR temperature curves, (ii) nonempirical (white-box) mod-
eling approach by establishing the bioheat equations for representing the heat
transfer processes within skin tissues, and (iii) semi-empirical (gray-box)
modeling approach by establishing the bioheat equations and also employing
the control system theory. Such approaches will be presented in the next
subsections.

vi. The sixth step is to estimate the unknown model parameters through
performing a parameter estimation task using a system identification criterion
such as linear or nonlinear regression approach and an optimization technique
such as nonlinear least square methods [40, 41].

vii. The seventh step is to evaluate the model accuracy (known as validation
process) using the input–output data based on statistical consideration. It is
desirable to use new data (if available) as well as the old data were used to
develop the model. If the model does not provide a satisfactory fit, return to
the second step and try a different model. If possible, the model should be
tested with new data (that is known as, validation data); if the model pre-
dictions agree with these data, the model is said to be validated.
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The post recognition analysis based on the estimated model dynamic parameters

i. The first step is to estimate the model parameters for each IR temperature
input/output curves measured for each subject for each considered group (for
example healthy subjects versus patients), so as to set up the estimations of the
descriptors for the statistical analysis or classification among the considered
groups.

ii. The second and final step is to group analysis based on the classical sta-
tistical analysis or the classification algorithms. This step is important to
check whether the considered model dynamic parameters could statistically
differentiate among the considered groups and consequently could elucidate the
difference in the thermoregulatory control actions, assessing the presence
disease.

If this modeling approach will succeed, such a research might reinforce the
possibilities and advantages of using thermal infrared imaging in medicine [9, 13–
15, 19, 20, 34, 35]. This section in fact will briefly present the utility of each of these
three quantitative modeling approaches for using IR data in differential diagnosis.

3.1 Empirical (Black-Box) Modeling of the Skin
Thermoregulatory System-Based Control System Theory

The thermoregulatory process of homeostasis can be modeled as control system
[42]. A control system model permits one to depict the dynamical behavior of
thermal regulation with a specific end goal to evaluate its behavior under different
experimental conditions [43].

Indeed, the overall control system has been represented as a ‘black box,’ whose
overall structure can be investigated by analyzing the input–output time-responses.
Such assumption came as a result of the skin thermoregulatory complex mecha-
nisms [44]. The general structure and the order of the thermoregulatory control
system usually identified with the empirical modeling approaches as a result of a
general lack of information about the internal system variables.

3.1.1 Time Domain Analysis of the Thermoregulatory System
Characteristics Through a Direct Estimation of the Closed-Loop
Dynamic Response Parameters of a Prototype Second-Order
System

In automatic control system theory, the dynamic performance of a linear,
time-invariant system lower than the third-order system could be evaluated by the
standard performance criteria/parameters characterizing the system dynamic
response to canonical inputs (like the step input) in the time domain [45]. On the
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other hand, in some IR medical applications the visual inspection of the temperature
recovery curves suggested considering the system as a second-order time-invariant
feedback system with an exponential critically damped decay [46]. Therefore, by
employing the control theory, analyzing the time domain characteristics of the
dynamic responses extracted from the IR recovery curves could provide a better
understanding of the functional and morphological thermoregulatory alterations
associated with the disease [19, 20], also providing a powerful discrimination
between the healthy controls and patient groups. In this approach, the time domain
analysis of the thermoregulatory behavior based on the step dynamic characteristics
of a prototype second-order system were performed considering two main
assumptions: (i) considering the superficial basal temperature measured prior to the
performed a challenge to be steady (i.e., with no change with time as the step
signal) and averaging its values over time to provide the thermoregulatory input
signal/ reference value, (ii) the visual inspection of the system’s thermal recovery,
i.e., superficial skin temperature signal after the end of the applied challenge should
exhibit an exponential critically damped decay [46] and with any overdamped, or
under damped decay with small overshoot curves could be assumed to be critically
damped. The detailed description of the proposed modeling approach is illustrated
as follows:

i. The standard closed-loop transfer function of the second-order control system,
with the real and imaginary parts of its roots S1, S2 (poles) are defined in
Eqs. 1–4, respectively, with f is the damping ratio, xn is natural damping
frequency, and x is the oscillating frequency [45].

HðsÞ ¼ w2
n

s2 þ 21wnsþw2
n

ð1Þ

s1; s2 ¼ �1wn � jwn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

p
¼ �r� jw ð2Þ

r ¼ 1wn ð3Þ

w ¼ wn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

p
ð4Þ

ii. The time domain analysis of dynamic response of a system involves the
evaluation of its transient response, defined as the part of the time response
that goes to zero as time becomes very large, and the steady-state response, is
simply defined as the part of the total response that remains after the transient
has died out [45]. Table 2 presents the time domain dynamic transient and
steady sate parameters used with this approach.

iii. The evaluation of the system transient response is important in order to infer
the system dynamic behavior related to the deviation between the output
response and the input or the desired response, before the steady state is
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reached. While the evaluation of the system is also very important, because it
indicates where the system output ends up when the time becomes large [45].
In fact, the delay time (td) is used to estimate the delaying behavior shown
between the end of the exercise to recovery signal and the rise time (tr) is used
to study the recovery speed performance, the closed loop poles location on the
s-plane is used to reflect the speed and stability performance of the controlled
system, and the steady state error ess the steady state performance of the
thermoregulatory system [13, 14].

iv. Since this approach assumes knowing the model structure and order of the
thermoregulatory system, i.e., standard second-order system, the model
identification procedures will be canceled for this thermoregulatory modeling
approach. In fact, with this thermoregulatory modeling approach, the standard
time domain characteristics, i.e., td, tr, S1, S2, ess, and Tb, will be directly and
graphically calculated from the thermal IR recovery curves as illustrated in
Fig. 5.

v. By employing control system theory, changes in the skin temperature repre-
sented by IR curves may be related to the skin thermoregulatory malfunc-
tioning level, that could be evaluated by the actual values of a given set of
defined standard characteristics/parameters. Therefore, direct estimation of
these characteristic parameters could give quick insight of the dynamics in the
rewarming IR recovery curve after an applied challenge or test, and hence
classification of the altered rewarming curves from those of healthy/normal
subjects will be more easy and sufficient.

Table 2 The transient and steady state characteristics of a control system in terms of the unit-step
response

Parameter Name Calculation description

td
(transient)

Delay time The delay time is calculated as the time required for the step
response to reach 50% of its final value (i.e., recovery point
after 20 min)

tr
(transient)

Rise time The rise time is calculated as the time required for the step
response to rise from 10 to 90% of its final value (i.e., recovery
point after 20 min)

S1, S2
(transient)

Closed-loop
poles

For critically damped system, with zero oscillating frequency x
(by applying f = 1 from Eq. 4) is assumed to be equals and at
ϭ = −xn in the left half of s-plane [45]. S1; S2 ¼ �1:8

tr

ess
(steady
state)

Steady-state
error

The steady-state error of a system response is defined as the
discrepancy between the output and the reference input when
the steady state (t ! 1) is reached. ess = reference input
(baseline constant temperature value) − (final value, i.e., final
recovery point after 20 min)
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Medical applications of the proposed modeling approach
Several IR studies have been using such quantitative modeling approach for dif-
ferential diagnosis of several medical disorders like Raynaud’s phenomenon
(RP) and Varicocele (VR); emphasizing the promising ability of thermal infrared
imaging as a diagnostic tool in the differential diagnosis of the considered medical
disorders. Table 3 presents a quick review of these studies. However, it ought to be
brought up that this technique is restrictly applicable to systems lower than the third
order [45]. Hence, the researcher should have a great insight about the system order
and its standard canonical input when using such modeling approach [13, 14].

Fig. 5 Direct estimation of the closed loop dynamic response parameters of a prototype
second-order system based on time domain analysis of the IR input/output curves for Raynaud’
phenomenon patient, measured from the region of interest indicated by the red circle

Table 3 A summary of some IR studies that used the quantitative modeling approach “a direct
estimation of the closed loop dynamic response parameters of a prototype second-order system
based on time domain analysis” for differential diagnosis

Reference Extracted dynamic parameter Medical disorder

[28–31,
33, 93]

Time constant, lag time, time constant,
integral curves of temperature

Varicocele, Raynaud’s
phenomenon (RP)

[6] Rise time named as “tau time” Vein thrombosis, muscular
lesions, and Raynaud’s
phenomenon

[13] Delay time, rise time, closed-loop poles,
steady-state error, and basal skin
temperature

Raynaud’s phenomenon

[14] Delay time, rise time, closed-loop poles,
steady-state error, and basal skin
temperature

Varicocele (VR)
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3.1.2 A Direct Identification of Thermoregulatory System
as a Second-Order System Plus Delay Time (SOPDT)
from a Closed-Loop Step Response

In some IR applications, like the differential diagnosis of Psoriasis Arthritis
(PsA) disease [15], visual inspection of thermal IR recovery curves does not allow
studying the thermoregulatory systems’ behavioral dynamics based on the direct
estimation of the step dynamic characteristics of a prototype second order system.
That is because, the altered recovery IR curves exhibit a dynamic response known
for a non-minimum-phase system which is different from the standard step dynamic
response second-order system in which it has an initial undershoot (Fig. 6) [47].

In these cases, time domain system identification methods based on step
dynamic response analysis, known in literature, as classical step response identi-
fication techniques, could be used to identify the thermoregulatory system’s transfer
function based on its closed step dynamic response analysis through employing
control system theory [48, 49]. The detailed description of the modeling approach is
illustrated as follows [19, 20]:

(i) Based on control system theory, this modeling approach approximated the
thermoregulatory system with a second-order transfer function with a time
delay (SOPTD) and suggested that its dynamic parameters could be esti-
mated from its negative feedback closed-loop formulation [19, 20].

(ii) This approach is mainly based on considering two main assumptions: (i) the
skin thermoregulatory system does not immediately respond after the end of
the applied challenge, (ii) visual inspection of the temperature recovery
curves suggests considering the thermoregulatory system as a second-order
time-invariant feedback system with an exponential critically damped decay
with and without an initial undershoot [40, 46], (iii) within this approach the
thermoregulatory system was modeled through a feedback control system
contains two hierarchical control organizations: a higher supervisor unit and

Fig. 6 Different dynamic responses of thermal IR recovery curves for: a a healthy control subject
(HCS) shows standard dynamics of a standard second-order system, and b PSA patient shows a
dynamic response with an initial undershoot
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a lower feedback executor, driven by the supervisor as shown in Fig. 7.
These two hierarchical control units were proposed to model both peripheral/
local, and central/systematic thermoregulatory effectors in response to the
applied challenge/test. In fact, the supervisor sets the reference signal based
on of the basal (i.e., pre-stress) temperature and the onset time. The overall
performance of the thermoregulatory actions bases on both the supervisor
and the executor activities. Besides the contribution of the thermoregulatory
effector mechanisms, the skin temperature (i.e., system output) is also
influenced by the environmental thermal exchange with the considered skin
tissue. This thermal exchange depends on the temperature difference which
constitutes the external input to the thermoregulatory system.

(iii) In particular, the lower feedback unit consists of a controller and a plant
block in sequence (Fig. 7), both considered to be time-invariant systems
simulated by first-order transfer functions. The theory provides the differ-
ential equation to model the plant output y(t) (i.e., the skin temperature) in
the time domain:

_y
:

ðtÞ ¼ �a � yðtÞþ b � uðtÞ ð5Þ

where u is the plant input, and a and b are constant coefficients.

(iv) The diagnostic stress stimulation directly affects the system output, decreasing
the skin temperature. The post-stress temperature y(0) (i.e., the temperature
measured immediately after the cessation of the diagnostic stress) constitutes
the initial condition for the response of the control system. The plant input u
(t) is then achieving by summing of the feedback controller output m(t) and the
additional external input d:

uðtÞ ¼ mðtÞþ d ð6Þ

Fig. 7 The overall architecture of the thermoregulatory system. Adapted from [19, 20]
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Input d represents the environmental passive heat exchange. Therefore, it
depends on room temperature and y(t). Hence, input d can be considered as the
non-manipulated effect of environmental conditions on the skin temperature.

(v) The feedback controller produces the signal m(t) stimulated by the output error e
(t) signal (i.e., difference between the system output and the reference signal r),

eðtÞ ¼ r � yðtÞ ð7Þ

The feedback controller works to minimize the output error to zero by acting on
the plant by the signal m(t).

(vi) Common approaches for modeling homeostatic processes are based on a
feedback controller system of an integral type, which annuls stepwise variation
of the error signal [50]. The integral controller’s behavior could be described
by the following time domain differential equation,

_m
:

ðtÞ ¼ k � _eðtÞ ð8Þ

where k is integral controller constant and h is the proportional controller constant.

(vii) The supervisor unit stimulates this controller by logic signals (on/off tran-
sition). When the supervisor logical output is “on,” the feedback will activate
the controller in order to recover the temperature to its reference settings. On
the other hand, when the supervisor logical output is “off” (during the lag
time LT), the controller will be deactivated to restore the reference temper-
ature settings, while the external input d is independent of this switching
logic. In fact, this plant system could be better represented in the Laplace
domain. The Laplace transform (L-transform) of Eq. 5 is given by

YðsÞ ¼ 1
ðsþ aÞ � Yð0Þþ

b
ðsþ aÞ � UðsÞ ð9Þ

where s is the Laplace variable, and Y(s) and U(s) are the output and input L-
transforms, respectively. The ratio between plant output and input defines the plant
transfer function P(s), which is computed assuming null y(0) [48]:

PðsÞ ¼ YðsÞ
UðsÞ ¼

b
ðsþ aÞ ð10Þ

where b is the coefficient of the plant gain and s = −a is its pole, that is, the
negative reciprocal of the plant time constant. The plant was as assumed to be
unitary gain process with (b = a) [19]. According to Eq. 10, the transfer function of
the controller G(s) could be represented by
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GðsÞ ¼ k
s

ð11Þ

where k is the integral controller gain.

(viii) When considering the effect of external disturbance input (d) and that the
skin thermoregulatory system is not instantaneous the general overall
transfer function of the model will depend on the lag time parameter as
follows. The overall model works in open loop for t < LT:

YðsÞ ¼ PðsÞ � d ð12Þ

and in closed loop for t > LT:

YðsÞ ¼ GðsÞ � PðsÞ
1þGðsÞ � PðsÞ � rþ

PðsÞ
1þGðsÞ � PðsÞ � d ð13Þ

where Y(s), r, and d are the output, reference input, and the disturbance inputs,
respectively.

(ix) As the purpose of applying control theory is to offer a model which can fit the
sample data well, which means making the error between the calculated
system output y* and the actual/experimental system output ye as small as
possible, the closer those two quantities are, the better fitting impact will be.
Therefore, function f can be taken as the fitness function [48].

f ðxÞ ¼
XNE

i

y�i � yei
� �2 ð14Þ

where yei is the vector of the experimental finger rewarming curves’ data points, y�i
is the vector of the estimated model’s raw data. The raw data are defined from i = 1
to number of data points NE, and x is the vector of the model parameters, i.e., a, k,
d, and LT. Where a is the plant’s open-loop pole location (the inverse of time
constant), k is the integral controller gain, d is the disturbance gain, and LT is the
system lag time [19].

(x) Broadly speaking, the set of parameters (i.e., a, k, d, and LT) could provide an
insight about the dynamics and thermoregulatory activity levels for both
healthy and patient states. In fact, the inverse/reciprocal of the plant time
constant (a) figures the response speed of the thermal process to external and
internal stimuli. The integral controller constant (k) was assumed to describe the
active and systemic vasodilation action in maintaining and restoring the ref-
erence basal temperature conditions [19], since it figures the control action and
could evaluate the feedback control system ability to achieve the steady state.
The disturbance input (d) represents the environmental passive heat exchange
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and depends on y(t) and the room temperature. LT refers to the time required
for the internal thermoregulatory rewarming process to activate after the end of
the isometric exercise. The thermal variations during this time are mostly due to
the environmental passive heat exchange. After the end of LT, rewarming
process starts to activate the controller restoring action to the reference basal
conditions T. Figure 8 summarizes the proposed modeling approach.

Medical applications of the proposed modeling approach
Indeed, this modeling approach has been used by Mariotti and colleagues to sim-
ulate various thermal responses due to functional, pathological, and morphological
alterations in the skin thermoregulation system associated with vascular diseases
like Raynaud’s Phenomenon (RP) and varicocele (vr) [19, 20]. They demonstrated
that this approach cannot predict the dynamics of the IR curves with an initial
undershoot, i.e., non-minimum phase response [47]. However, Ismail and col-
leagues used this modeling approach for the differential diagnosis of psoriasis
arthritis demonstrating the ability of this modeling approach to model the dynamics
of the IR curves with an initial undershoot, i.e., non-minimum phase response [15].

Finally, the investigated relations between the model parameters and the local
thermoregulatory actions like active rewarming remains hypothetical and specula-
tive, given the system complexity and the need for a better understanding of the
investigated relation between the model parameters to the actual physiological
alterations.

Fig. 8 Direct identification of a second-order system plus delay time (SOPDT) from a closed-loop
step response measured by the IR input/output curves for Psoriasis arthritis patient, measured from
the region of interest indicated by the red circle

Modeling Thermal Infrared Imaging Data for Differential Diagnosis 495



3.1.3 A State-Space Representation of the Thermoregulatory System
as a First-Order Differential Equation from the Experimental IR
Temperature Curves

Because of the nonlinear nature of thermal regulation, this problem is better suited
to state-space model, an alternative form of control system representation [51]. In
fact, such models occur naturally in mathematical models of metabolism and sig-
naling pathways. Moreover, the state-space form accommodates nonlinear
dynamical biological and physiological features [43]. Moreover, in some IR ap-
plications, like the Differential Diagnosis of diabetic peripheral neuropathy (DPN)
visual inspection of thermal IR recovery curves suggest using a first-order differ-
ential equation for representing the thermoregulatory system [43]. The detailed
description of the proposed model is illustrated as follows:

I. Assuming that the amount of heat exchange between blood and tissue varies
with time, the regulation parameter rb written in Eq. 15 should be a function of
time. And for human blood, the change of density and thermal capacity (qc) can
be neglected for this temperature range; thus, one must consider the effects of
blood perfusion, (t). Equation 15 becomes parametric; therefore, allowing one
to substitute the regulation parameter (t) for r.

rb ¼ ðqcÞb
Vqc

wb ð15Þ

II. Empirically from the experimental thermal IR curves, one can observe that the
substantial, essentially exponential, initial thermal recovery rate occurs, thus
indicating a negative form of the exponent. One form of r(t) is given by

rðtÞ ¼ kð1� Qe�stÞ ð16Þ

From Pennes’ thermal model [43], Eq. 2 may be written as

dTðtÞ
dt

¼ �kð1� Qe�stÞðTðtÞ � TAÞ ð17Þ

And has a solution of

T1ðtÞ ¼ TA þ T0 � TAð Þe�k tþ Q
s e�st�1ð Þð Þ ð18Þ
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where

T0 Is the initial value of the output temperature, i.e., recovery temperature

TA Is the input temperature, assumed to be the basal blood temperature from [43]

K Is a constant and a function of the material, the tissue in this application, with the inverse
time dimension (s−1)

Q Is the intensity of regulation (dimensionless)

s Is the speed of regulation (s−1)

Hence, from the experimental temperature input–output curves, the parameters
of interest, i.e., Q, s, and k could be estimated and analyzed providing a quantitative
evaluation of the thermoregulatory malfunctions associated with the presence of the
disease. In fact, Qj j � 0 indicates absence of the thermoregulation which corre-
sponds to the Newton’s Law of Cooling [52]. Also, larger values of s mean faster
thermoregulation, whereas s � 0 corresponds to the absence of regulation [43].

Medical applications of the proposed modeling approach
This model has been applied for the differential diagnosis of diabetic peripheral
neuropathy (DPN) [12, 43, 53]. However, it should be point out that such model is
very simple given the elevated complexity of the system and the need for a better
understanding of the investigated relations between the model parameters and the
actual physiological alterations.

3.2 Nonempirical (White-Box) Modeling of the Skin
Thermoregulatory System Based on Bioheat Equations

While IRI shows promise to be a contact-less and effective imaging modality for
disease primary assessment [2, 9, 21, 27], it is still hindered by: (i) ignoring subtle
interior pathophysiological factors like metabolic heat generation, and localized
blood flow, (ii) its poor sensitivity to deeper or smaller disease locations [9, 54].
Such parameters are crucial for investigating the linkage between the thermal
distribution over skin surface and internal human pathophysiology that is usually
desired in noninvasive thermal diagnostics [9]. Hence, to address this problem, a
mathematical model is essential for an overall understanding of the system response
and the role of different thermophysical and geometrical properties [55]. To this
goal, this white-box modeling approach, also well-known in literature as “inverse
problem” has been proposed [9]. This approach has been used for the identification
of skin’s thermal parameters, location of heat source (particularly the vessels),
depth of heat source, etc., and also to compute physiological information, such as
localized blood flow, cardiac pulse, and breath rate [9, 34–36, 55–61]. This
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modeling approach includes two main steps, i.e. (i) forward thermal modeling
problem, i.e., (i.e., finding the simulated skin temperature distribution for given
thermal properties with considering various assumptions: some of the parameters
are given fixed values from averages over many subjects and other parameters are
estimated), and (ii) inverse thermal modeling problem (i.e., finding the unknown
thermal or thermophysical properties using the measured skin temperature distri-
bution given by IR camera thermogram). A detail description of the main included
procedure will be presented as follows:

I. The first step, i.e., solving the forward thermal modeling problem involves
the use of the bioheat transfer equation/model to account the heat exchange
processes in the body/or even studied area, geometric model to simulate the
geometry and the anatomical structure of the skin tissue, including the blood
vessels, etc., with considering various assumptions: Some parameters are cal-
culated by averaging their values over many subjects and other parameters are
estimated [9].

(a) Adopting a mathematical model for the heat transfer processes between tissue
and blood, possibly a variation of Pennes’ bioheat transfer model [62]. Using the
general Pennes bioheat equation (model of blood perfusion), the amount of heat
transferred to the surface from the heat source and the surrounding blood flow can
be quantified as

Cq
@T
@t

¼ kr2T þCbxb Ta � Tð Þþ qm ¼ 0 ð19Þ

where

C Is the specific heat of tissue ðJ=Kg=�CÞ
q Is the tissue density ðKg=m3Þ
k Is the thermal conductivity ðW=m=�CÞ
qm Is volumetric metabolic heat generation rate at the tissue ðW=m3Þ
Cb Is the specific heat capacity of the blood ðJ=Kg=�CÞ
xb Is the mass blood flow rate (measured in units per volume of tissue) ðKg=m3=sÞ
T Is the unknown tissue temperatureð�CÞ
Tb Is the arterial temperature ð�CÞ

In a steady state, we have @T
@t ¼ 0 and Eq. 19 takes the following form:

kr2T þCbxb Ta � Tð Þþ qm ¼ 0 ð20Þ

The equation left-hand side represents the rate at which thermal energy enters or
leaves the unit volume per unit time by conduction, perfusion, and metabolism,
respectively. This equation is applicable with the assumptions that (i) all heat
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transfer between the tissue and the blood occurs in the capillaries, (ii) there are no
large arteries or veins crossing the region of interest, and (iii) the region is suffi-
ciently large to make heat transfer to adjacent tissue areas negligible [61].

Other studies assumed that the heat produced by the body from metabolic
processes is transported to the skin level via convection and conduction and is lost
to the environment through radiation, evaporation, and air flow convection. The
heat loss was modeled as

qs ¼ qrad þ qcon þ qev ð21Þ

where

qs Is the total heat loss from the skin surface Under the environmental conditions ðWm�2Þ
qrad Is the radiative heat loss ðWm�2Þ
qcon Is the convective heat loss ðWm�2Þ
qev Is the evaporative heat loss by air ðWm�2Þ

Then the Pennes bioheat model was extended to include the three different
mechanisms of heat dissipation to the environment:

Cq
@T
@t

¼ kr2T þCbxb Ta � Tð Þþ qm � qs � qrad � qcon � qev ¼ 0 ð22Þ

In this model, the blood is assumed to maintain its own temperature Ta until it
reaches thermal equilibrium with the skin tissue.

(b) Adapting a geometric model is necessary to simulate the geometry (i.e.,
depth and size) and the anatomical structure of the skin tissue, including the blood
vessels, etc. The model could be sketched as shown respectively in Fig. 9.
Figure 10 shows examples of the skin tissue structures considered in literature. The
geometric model is considered to be a partial differential equation (PDE) with
boundary conditions that attempt to describe bioheat transfer of vascular structure
of the considered skin tissue geometry, where the vessels are assumed to be vol-
umetric heat sources for the surrounding layers of tissue structure. Each tissue layer
is assumed to be isotropic with respect to tissue specific heat, density, metabolic
heat rate, and thermal conductivity. The geometry and the anatomy of vascular skin
structure (i.e., the skin, the fat, the muscle, and the core), its thermal properties, the
general energy balance between the skin, the tissue, and the environment, as well as
the location and the shape of the skin were all taken into consideration in the
development of the PDE model to achieve a realistic description of the bioheat
transfer processes [56, 63]. Equation 22 then, for this geometric model, according
to the geometrical model (Fig. 9c) may be written as
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qC
@T
@t

� @

@x
k zð Þ @T

@x

� �
� @

@z
k zð Þ @T

@z

� �
¼ qbðx; tÞþ qmðx; zÞ ð23Þ

where: x and z respectively are the parallel axis and the perpendicular axis to toward
the inner tissues in the defined coordinate system of the skin surface.

II. Second step is solving the inverse thermal modeling problem, i.e., finding the
thermal properties for a given thermogram. It involves the use of the solving
and simulation method for the bioheat equations and the use of an opti-
mization algorithm as follows:

(a) After totally defining the geometric model and its bioheat equations with their
boundary and initial conditions, direct parametric simulation and numerical
simulation approaches have been used to calculate the estimated skin tem-
perature distribution [61]. The commonly used numerical methods are the
boundary element method (BEM), the finite difference method (FDM) [57,
64], the finite element method (FEM) [54, 65], the Monte Carlo method
(MC) [59], and the sensitivity analysis [55]. A simple example of the included
methodology, for as example FEM, we can rewrite the algebraic thermal FE
equations as KT = P for solving for the unknown temperature vector T.

Fig. 9 Examples of sketched geometrical models for representing a malignant lesion according to
[55], b breast tumor according to [77], and c blood vessel according to [56]

Fig. 10 Examples of vascular skin structures a according to [61], b according to [56], and
c according to [78]
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K is the thermal characteristic matrix of the considered body region; it
incorporates the contributions of k and x in all finite elements of the con-
sidered body region, whereas vector P represents the thermal loads, incor-
porating the effect of q [54].

(b) Optimization algorithm is used to estimate any geometrical parameter (depth,
width, and size) or thermophysical parameters like blood perfusion rate, xb,
by minimizing a fitness function involving the temperature profiles obtained
from clinical data captured by a thermal camera across the exposed skin region
to those obtained by the bioheat model simulation.

(c) The fitness function links the data from the observed thermographic temper-
ature profile to the estimated temperature profile for a given set of estimated
parameters. Several Optimization techniques have been used like pattern
search [57], and Levenberg–Marquardt algorithm [54].

Medical applications of the proposed modeling approach
Several medical IR studies have implemented the proposed white-box modeling
approach to calculate some medical indicators based on the estimated geometrical
or thermophysical parameters (Table 4 summarizes some of these studies).
However, this approach has been shown to be (i) complicated because the geometry
and properties of biological bodies vary drastically, increasing the complexity of the
bioheat transfer solution [59] and (ii) increasing the cpu processing time required
for calculating the temperature values at all mesh nodes in order to solve the bioheat
transfer equation over the entire region [9].

3.3 Semi-empirical (Gray-Box) Modeling of the Skin
Thermoregulatory System Based on Bioheat Equations
and Control System Theory

When using IR imaging for differential diagnosis of some medical disorders
especially psychological ones like autism, clinicians do not only focus on the
disease classification but usually they have a great awareness for finding dynamic
parameters that could provide a clear description of the underlying alterations in the
main thermoregulatory functions as for example, environmental heat exchange
process, vasoconstriction and/or vasodilation, and sweating actions. Such efforts
came with a main hypothesis that such dynamic parameters could provide an
important insight about the autonomic malfunctions associated with the presence of
the studied disorder and consequently provide important keys of the disease ther-
apeutic procedure. Due to the high complexity of the skin thermoregulatory system,
intuition considered in the previously presented quantitative modeling approaches,
is often not adequate as a basis for that purpose. In fact, empirically simulating the
thermoregulatory system as a negative feedback loop may lead hypothetical and
speculative linking between the model parameters and the local thermoregulatory
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actions like active rewarming and passive heat exchange [14, 20]. On the other
hand, the white-box modeling of thermoregulatory system through bioheat equa-
tions came only with a main focus of modeling the heat exchange processes, the
geometry and the anatomy of the skin tissue structure without considering the
hemostatic controlling actions, i.e., thermoregulation system associated with these
thermal processes [9, 36, 54, 55, 57, 59, 66–68]. Hence, as a contrasting option to
utilizing these modeling approaches, one can create a semi-empirical model con-
sidering the real thermoregulatory activities. Indeed, Kakuta et al. [69, 70] has
semi-empirically simulating the heat transfer processes within the human body and
their thermoregulatory actions through numerically calculating bioheat transfer
equations in combination with a control system theory. However, such model was
only applied with a main target of eliminating the influence of thermal environment
when evaluating of skin IR temperature distribution measured during several
thermal environmental conditions without focusing on studying the changes in the
thermoregulatory actions [69, 70]. In fact, since 1940, various trials have been
performed trying to elucidate parts of this issue (a bulk of reviews and books are
mentioned in [71]). The first detailed representation for the thermoregulation model
was the one proposed by Stolwijk and Hardy [72], that approximates the human
thermoregulatory mechanism could be model with a negative feedback closed loop
with two main systems, i.e., the controlling active system and the controlled passive
system. The active system predicts the thermoregulatory effector mechanisms, such
as shivering, vasomotion, and sweating. The passive system predicts the physical
heat transfer mechanisms through dividing the human body into three
segments/cylinders, i.e., head, trunk, and extremities, with two anatomical layers
(i.e., skin and core) each, which simulate the body heat transfer phenomena
occurring inside the body and at its surface.

Until this decade, Stolwijk’s model was the basis for many other thermoregu-
lation models that were aimed at predicting the mean core and skin temperature,
dynamic heat exchange, sweating rate, metabolic rate with the main application
scopes of human thermal comfort [73], and work load analysis [74]. In fact, most of

Table 4 Summary of some IR studies that used the white-box modeling approach for medical
diagnostic purposes

Study Estimated parameters Medical disorder

[54] Calculate the tumor-induced thermal contrast (TITC) from the
estimated tissue thermal properties

Breast cancer

[55] Calculate properties of the subsurface structures with the
estimated temperature distribution

Benign or
malignant lesions

[57] Estimate the location and size of the embedded tumor Breast cancer

[60] Calculate subject’s blood flow rate Stress onset
detection

[66] Calculate the doubling time of tumor volume from the
estimated values of the metabolic heat production of a tumor

Breast cancer

[66] Calculate the burn depth from the estimated change in burn
temperature

Burn tissues
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these models were mainly based on contact-sensors for collecting the measured
temperature data without using the main advantage of IR imaging, i.e., the
contact-less measuring ability. Moreover, to the best of our knowledge, none of
these models were aimed at investigating the thermoregulatory alterations due to the
transient change of the human emotional state; such application that is critical
important in the field of affective computing. Hence, as one of the first attempts to
achieve this goal, on the basis of Stolwijk model adapted by Konz et al. [75],
through one of our most interesting research activities, we propose to
semi-empirically develop a mathematical thermoregulatory model using the mea-
sured facial skin IR temperature data during the transient change of the human
emotional state [that work is under publication].

Given the large number of different available human thermoregulatory models,
the selection of Stolwijk model comes with the following reasons: (i) it is a lumped
parametric model with influential parameters that could describe the overall thermal
response of the human thermoregulatory effector mechanisms to varying inner and
outer stimuli, and (ii) it is capable of predicting the spatial skin temperature dis-
tribution of the human face, for example, the forehead’s skin temperature [76].

Implementing such a model for simulating the thermoregulatory alterations in
response to the change in the human emotional state using the facial IR temperature
data, comes with considering the following assumptions:

(i) Approximating the inputs and outputs of the facial thermoregulatory
system considering that (a) the only observable output is the facial skin
temperature measured during the subject exposure to the emotional stimuli,
(b) the basal facial cutaneous temperature (i.e., before the exposure to the
emotional stimuli) is assumed to be the system’s reference signal with a
constant value calculating by averaging its time-curve values, and head core
temperature that is considered to be constant and equals to 36.6 °C [72],
(c) the regulated system can be subjected to a outer disturbance environ-
mental heat exchange and inner physiological disturbance due to the change
in the human emotional state.

(ii) Approximating the manipulated variables in the model:

– Since, the facial IR data is collected for healthy subjects, the passive part
of the model, i.e., head’ heat capacitance equations will be considered
constant for all subjects; resulting that the overall performance of the
facial thermoregulatory system will depend only on the activity of the
regulating actions of the active system, i.e., vasomotor and sweating
actions. Besides the contribution of regulatory actions, facial skin tem-
perature (i.e., system output) is also influenced by the thermal exchange
between the facial skin and the surrounding environmental conditions.
This heat exchange depends on the change in temperature which con-
stitutes the external input to the thermoregulatory system.

– Approximating the active system: Since the subject is not going to shiver
during the exposure to the emotional stimuli, the active system will only
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be limited to simulate the alterations in the vasomotor and sweating
actions, considering the change in the metabolic activity is zero.

(iii) Approximating the passive system:

– Since the main target is to model the skin thermoregulatory system
regulating the skin temperature of the human face, the bioheat equations
of the Stolwijk passive system could be minimized to only contain those
equations that simulate the head cylinder with the core and shell layers.
These equations will be used to simulate the heat interactions from the
brain center into the facial skin.

– The passive system represents the facial heat capacitance will be
approximated with the central blood pool representing the blood circu-
lation and one cylinder with two layers, i.e., the head core and the head
skin. The head skin will be assumed to be the facial skin.

Facial skin thermoregulatory model during emotional stimuli
Figure 11 illustrates the overall architecture of the facial skin thermoregulatory
system, adapted from the previously proposed model by Stolwijk and Hardy [72]
and validated by Konz et al. [72, 75]. The model contains two main parts, i.e., the
active system and passive system. The facial thermoregulatory system contains two
main components: passive system simulating the head’ heat capacitance and the
active system simulating the facial skin thermoregulatory actions, i.e., vasomotor
actions and the sweating actions.

The passive system: (Facial skin physical passive mechanisms) is modeled with
considering the head as a cylinder with two layers, i.e., head core and head skin
(assumed to be facial skin). A central blood compartment is used to transport blood
from a central blood pool, or the heart, to each head tissue layer. Heat flows
between the head core and facial skin by conduction and both layers exchange heat
by convection with the central blood compartment. The environmental heat
exchanges with the facial skin layer through radiation, evaporation, conduction, and
convection.

For each head tissue, heat energy balance considers heat storage effects, con-
ductive heat transfer with adjacent tissue layers, convective heat transfer due to the
blood flow and basal metabolic heat generation. All skin energy balance equations
include heat losses due to convection, radiation, and the evaporation of the moisture
at the body surface.

The results of this derivation were presented in the form of 3 bioheat differential
equations by which the change in the facial skin temperature could be evaluated.

(i) The differential bioheat equation for the head core is given by

CC � dTC
dt

¼/C qc� 48 TCB � TCð ÞþM0C � KCS TC � TSð Þ � EvR � Ev ð24Þ
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where

CC ¼ the head core thermal capacitance: 3.94 kcal/°C

TC ¼ temperature of the head core

T ¼ time (hours) (/60/60 s; in order to convert an time unit from hour to second)

aC ¼ dimensionless fraction accounting for effect of countercurrent heat exchange

Pc ¼ product of density and specific heat of blood: 0.92 kcal/°C

48.0 ¼ 1/h blood flow to the core of the head; (/60/60 s)

TCB ¼ temperature of central blood compartment

0.04
ΔM

¼ fraction, in kcal/h of total shivering metabolism assigned to (muscles) core of the
head

KCS ¼ thermal conductance between core and skin of head: 2.63 kcal/h/°C; (/60/60 s)

M0C ¼ basal metabolic heat production assigned to core of head: 12.42 kcal/h; (/60/60 s)

TS ¼ temperature of head skin, approximated to be the temperature of the facial region
of interest

EvR ¼ respiratory heat loss assigned to core of head: 4.5 kcal/h (/60/60 s)

(ii) The differential bioheat equation for the facial skin is given by

CS � dTSdt ¼ KCS TC � TSð ÞþM0S � 0:09Ev0S � 0:09Ev þ aSqc

� 0:138SBF TCB � TSð Þ � AHS � H0 TS � TAð Þ ð25Þ

Fig. 11 Overall architecture of the facial skin thermoregulatory system
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where

CS ¼ the head skin thermal capacitance: 0.27 kcal/°C

M0S ¼ basal metabolic rate of the skin of the head: 0.12 kcal/h (/60/60 s)

0.09 Ev0 ¼ assigned fraction of insensible evaporative heat loss: 0.8 kcal/h (/60/60 s)

0.09 eV ¼ assigned fraction of thermal evaporative heat loss, in kcal/h; (/60/60 s)

aS ¼ factor for countercurrent heat exchange

0.138
SBF

¼ assigned fraction of total skin blood flow, in l/h; (/60/60 s)

AS � H0 ¼ product of area of the skin of the head, and environmental heat transfer
coefficient: 0.165 � 6.0 kcal/h/°C (/60/60 s)

(iii) The differential bioheat equation for the central blood compartment, that is
approximated to only simulate the fractional blood transport to the head core
and head skin tissues, is given by

CCB � dTCB
dt

¼ �aCqc� 51:3 TCB � TCð Þ � aHSqc� 0:138SBF� TCB � TSð Þ
ð26Þ

where

CCB ¼ the central blood thermal capacitance: 1.12 kcal/°C

The active system: uses temperature of each of these 3 elements as input to
modify sweat rate on the skin, blood flow rate in the skin layer. The controlling
procedure contains four steps as follows:

In the first step for the controller, the temperature error, T(N), and set temper-
ature (or neutral temperature), TSET(N), is calculated for each component (N), N
could be head core (C) or facial skin (S) component. Table 5 illustrates the
approximated values for the set/reference temperatures.

ERRORN ¼ TN � TESTN ð27Þ

The second step is to check whether the sign of the skin error is positive or
negative, that is, whether the element is warm or cold. If ERRORS is positive, it is
redefined as WARMS; if negative it is redefined as COLDS. Since the measured
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temperature will be at a region of interest from the face not the whole face, so we
present SKINR factor that is simulating the relative weight of skin inside the
selected facial region of interest (see Table 5 for knowing its approximated value).

WARMS ¼ SKINR �WARMS ð28:aÞ

COLDS ¼ SKINR � COLDS ð28:bÞ

The third step figures the controller orders to the body to: sweat on the skin layer
(SWEAT) and modify skin blood flow due to vessels vasodilation (DILAT) or
constriction (STRIC). Each command is the result of a signal from the deviation
from the set temperature values at the head core, i.e., ERROR1, and at the facial
skin (WARMS-COLDS) as shown in Eqs. 29a–c. Table 3 reports the definition and
the approximated values of the used parameters.

SWEAT ¼ CSW� ERROR1 þ SSW� WARMS� COLDSð Þ ð29aÞ

DILAT ¼ CDIL � ERROR1 þ SDIL� WARMS� COLDSð Þ ð29bÞ

STRIC ¼ �CCON� ERROR1 � SCON� WARMS� COLDSð Þ ð29cÞ

The fourth step is to take an action based on the received order. (i) Evaporation
for the skin (Ev) (as shown in Fig. 11), is basal (diffusion), Ev0 plus sweat for
cooling. (ii) The skin blood flow (SBF) (as shown in Fig. 11) contains the basal
skin blood flow (BFBS) plus the modification from (DILAT) and (STRIC). Table 6
reports the definition and the approximated values of the used parameters in
Eqs. 30a, b.

Ev ¼ Ev0s þ SKINS � 2� ERRORS=4 ð30aÞ

SBF ¼ BFBS þ SKINV � DILAT=ð1þ SKINC� STRICÞ ð30bÞ

In summary, starting with the previously illustrated step identification proce-
dures (illustrated in Sect. 3.1), the facial skin thermoregulatory system could
be evaluated by implementing the semi-empirical model defined by the set of

Table 5 Reference inputs for the facial skin thermoregulatory model

Set point Value Reference

Head core
temperature
(Tc)

36.6 °C [72]

Head skin
temperature
(Ts)

The basal facial cutaneous temperature (i.e., before the
exposure to the emotional stimuli) with a constant
value calculating by averaging its time-domain curve
values

Our research
under
submission
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Eqs. 24–30a, b with a set of dynamic parameters, i.e., H0, SKINV, SKINC, and
SKINV (defined in Table 7), characterizing, respectively, the thermoregulatory
passive heat exchange with the environment and the thermoregulatory vasomotor,
vasoconstriction and vasodilation and sweating active effector mechanisms that are
mainly controlled with the facial autonomic activity. Such dynamic parameters will
be estimated from the facial thermal IR recovery curves by solving the identification
fitness function (defined in Eq. 14) using the nonlinear least square optimization
technique [40, 41].

As a result from our research efforts, the proposed model was validated to
predict the dynamical response exhibited by the facial IR temperature signal
measured during all the elicited emotional states and transitions; providing with
that, for the first time, a great evidence that the Stolwijk model could be used to
predict the facial skin temperature during emotional stimuli. The statistical signif-
icant difference provided with the estimated values of the model parameters among
the studied groups of the emotional states and transitions elucidated that the pro-
posed model could quantitatively investigate the “transient” and “subtile” change in
the facial thermoregulatory passive and effector mechanisms, i.e., passive heat

Table 6 Symbols used in the facial thermoregulatory model

Symbol Definition Value Reference

a ¼ countercurrent heat exchange factor 1 [72]

SKINR ¼ the relative weight of skin inside the selected facial
region of interest

0.21/10 [75]

CSW ¼ head core sweating-command coefficient
(hypothalamus)

372 [75]

SSW ¼ skin sweating-command coefficient (assume skin adds
to hypothalamus)

33.7 [75]

CDIL ¼ head core vasodilation-command coefficient
(hypothalamus)

130 [75]

SDIL ¼ skin vasodilation-command coefficient (assume skin
adds to hypothalamus)

10 [75]

CCON ¼ head core vasoconstriction-command coefficient
(hypothalamus)

10.8 [75]

SCON ¼ skin coefficient-vasoconstriction command (assume
skin adds to hypothalamus)

10.8 [75]

EV0s Basal evaporative heat loss (kcal/60/60 s) 0.81 [75]

BFBS Basal skin blood flow (l/60/60 s) 3.63 [75]

Table 7 The dynamic parameters defined in the facial skin thermoregulatory model

Parameter Definition Reference

H0 Proportion to the environmental heat transfer [72]

SKINV Proportion to vasodilation of the facial skin blood vessels [75]

SKINC Proportion to vasoconstriction the facial skin blood vessels [75]

SKINS Proportion to sweating action at the facial skin layer [75]
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exchange with the environment, the vasomotor actions (vasoconstriction and
vasodilation) and sweating actions mediated with the ultradian rhythm and indi-
rectly infer the transient changes in the facial autonomic sympathetic and
parasympathetic activities during the transient change in the human emotional state.

Medical applications of the proposed modeling approach
This approach is used for investigating the facial thermoregulatory alterations in
response the transient change of the subject’s emotional state; emphasizing the
promising ability of thermal infrared imaging as a contact-less emotion recognition
tool for affective computing applications. Moreover, such modeling approach could
flexibly applicable for IR differential diagnosis of several medical disorders like
fever, studying thermal comfort, and predicting other emotional and psychological
state of the human like autism and aging cases. However, it should be point out that
the researcher should take care when considering any approximation or assumption
in order to save the realistic perspective of the approach.

4 Summary and Conclusion

This chapter presents the commonly used approaches for modeling thermal infrared
data for differential diagnosis purposes. In summary, two main modeling approa-
ches were proposed, (i) Qualitative modeling approach based on using statistical
and machine learning techniques, (ii) Quantitative modeling approach based on
performing mathematical/analytical modeling of the thermoregulatory processes by
using three main approaches: (i) empirically using automatic control theory,
(ii) non-empirically using bioheat equations and (iii) semi-empirically using both
bioheat equations and automatic control theory. Also, three main modeling
approaches based on control system theory were presented, i.e., (i-a) time domain
analysis of the thermoregulatory system’s characteristics through a direct estimation
of the closed-loop dynamic response parameters of a prototype second-order sys-
tem, (i-b) a direct identification of thermoregulatory system as a second order
system plus delay time (SOPDT) from a closed loop step response, and (i-c)
state-space representation of the thermoregulatory system as a first-order differential
equation from the experimental IR temperature curves. Table 8 summarizes the
advantages and disadvantages of each modeling approach. Such summarized
information could be a guide for the IR researcher in selecting the appropriate
modeling approach regarding his research scope and interest. However, it should be
pointed out that it is important to take care when considering the assumptions and
approximations in order to choose the appropriate modeling approach because
(i) increasing the considered assumptions and approximations may lead to hypo-
thetical and speculative linking between the model parameters and with the local
thermoregulatory actions like active rewarming and passive heat exchange, and
(ii) increasing the model complexity may require high cpu processing timing and
high research efforts for achieving the better explanation and description of
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interrelation between model parameters and the actual physiological alterations
associated with the presence of a medical disorder. In summary, with the proposed
modeling approaches, thermal infrared imaging has been demonstrated to be able to
(i) identify significant averaged and asymmetric temperature parameters that could
be used for disease classification, (ii) provide a direct functional IR indicators of the
thermoregulatory malfunctions/alternations indirectly assess the severity of func-
tional perturbation of the autonomic sympathetic and parasympathetic physiological
activations in the presence of a disease, (iii) to compute physiological information,
such as localized blood flow, cardiac pulse, and breath rate, and (iv) identify skin’s
thermal parameters, location of heat source (particularly the vessels), depth of heat
source used for defining the location and geometrical shape of the affected area,
mostly required for tumor detection, and (v) provide a clear description of the
underlying alterations in the main thermoregulatory functions as for example,
environmental heat exchange process, vasoconstriction and/or vasodilation, and
sweating actions. Hence implementing such modeling approaches highly increase
the potential ability of thermal infrared imaging to be a fascinating and promising
complementary imaging tool to the gold-standard medical imaging methods for
differential diagnosis.
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3D Dynamic Thermography System
for Biomedical Applications

G. Chernov, V. Chernov and M. Barboza Flores

Abstract 3D thermography systems that combine 3D geometric data and 2D
thermography data enable users to have a more accurate representation of the
surface temperature distribution and aid in its interpretation. A system for 3D
dynamic infrared thermography comprising two units is presented; each unit con-
sists of an off-the-shelf depth camera rigidly mounted to a FLIR thermal camera.
The units are fixed on the arms of the device that allow their placement in desired
positions near the subject. To generate a single 3D thermogram, the data obtained
from the depth cameras is registered with the images from the thermal cameras. The
process of generating a 3D thermogram is repeated several times while thermally
stimulating the surface of the subject to produce a series of 3D thermograms. The
developed system provides a number of advantages in research for biomedical
applications, such as the correct temperature measurements on curved surfaces, the
possibility to select regions of interest by taking into account the shape of the
subject and the possibility to use the 3D data to easily eliminate the background
from 2D thermograms.
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1 Introduction

Infrared (IR) thermography, as a method for functional diagnostics, is gaining more
and more traction in various resource fields. The literature survey provided by
Ammer [1] revealed that 1046 thermography related papers were published in 2015
and 206 of them were assigned to research areas related to medicine and biology.
Medical IR thermography is an imaging technique that is fast, noncontact and
radiation free, has proven useful for detecting and monitoring thermal abnormalities
at the skin surface and has been applied with some success as a natural indicator of
illness [2].

In addition to the usual passive method of thermography, dynamic IR ther-
mography has been implemented as a valuable extension of static thermography
[3]. Dynamic IR thermography is based on the introduction of external thermal
stimulation and the subsequent observation of the thermal recovery process in the
area of interest. This provides additional information about the distribution of heat
flow and the thermal processes in the area below the surface. In medicine, dynamic
IR thermography was proposed, in particular, for the detection of breast cancer [4],
for skin burn diagnostics [5], for detecting skin cancer [6] and as a promising
alternative to computed tomography angiography for preoperative perforator
mapping in breast reconstruction [7].

Standard thermograms obtained using conventional IR cameras are
two-dimensional in nature, and because of that possess some limitations. One
peculiar property of IR cameras is the effect of surface curvature on the reported
temperature, as the angle between the viewing axis and the normal of the studied
surface increases, the apparent temperature of the surface decreases [8]. This sig-
nificantly limits the precision of the measurement for surface temperature on objects
of complex shapes, such as different parts of the human body, which limits the
applicability of thermography as a tool for medical diagnostics. To overcome the
limitations and provide more accurate measurement of surface temperature, Sawicki
et al. [9] and Wiecek et al. [10] have proposed to apply multichannel image
acquisition with single thermal and two visual cameras. 3D object reconstruction
enables the possibility to calculate the normals of the surface and to compensate for
the error due to viewing angle dependent emissivity.

As of today, more than thirty 3D thermography systems are described in the
literature for application in the automotive and manufacturing industry, thermal
inspections of buildings, nondestructive testing and medicine. The systems combine
thermographic and the surface geometry data of a tested object. They differ in
several aspects such as equipment used, 3D scanning technique, calibration and
fusion method and application area. In this work we present a new 3D dynamic
infrared thermography system that allows us to generate a series of 3D thermograms
while thermally stimulating the surface of human body.
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2 3D Thermography Systems, Literature Survey

As mentioned in the introduction, 3D thermography allows for more accurate
measurements, when compared to 2D thermography. Below, a concise overview of
3D thermography systems that are or could be used for biomedical imaging
applications is presented. The overview is divided into three parts based on the type
of 3D scanners used in the proposed systems. The first part describes the systems
based on passive scanning techniques; the second and third parts are devoted to
systems based on custom and commercial active 3D scanners, respectively. The
basic characteristics of the systems together with the short description of tested
objects are chronologically summarized in Tables 1, 2 and 3.

2.1 Thermography Systems Based on Passive
3D Scanning Techniques

The straightforward and simple technique to construct a 3D temperature map
consists of a thermal stereo system, that is, a pair of thermal cameras [11–14]. 3D
coordinates of a number of points in a scene are determined by triangulation of

Table 1 Thermography systems based on passive 3D scanning techniques

Paper 3D scanning technique and equipment Test object

Aksenov
et al. [23]

Stereo range finding
(photogrammetry) with two
high-resolution color cameras

Knees of an athlete who has a knee
inflammation

Ju et al.
[24]

Stereo range finding
(photogrammetry) with two
high-resolution color cameras

A face

Ng and
Du [17]

Silhouette-based reconstruction from a
set of 2D images taken by a thermal
camera

A small car model with a heat source

Prakash
et al. [12]

Thermal stereo scanning with two
thermal cameras

A cup containing hot water

Prakash
et al. [13]

Thermal stereo scanning with two
thermal cameras

Heated cylinder with an adjustable
heating element

Prakash
et al. [14]

Thermal stereo scanning with two
thermal cameras

A laptop

Mirabella
et al. [16]

Thermal stereo scanning with two
digital reflex cameras

Twenty healthy subjects and twenty
patients with mixed arteriovenous ulcers

Sella et al.
[15]

Thermal stereo scanning (?) provided
with dual optical heads setup

Breasts of 1827 healthy and cancerous
women

Chen
et al. [19]

Silhouette/contours reconstruction
from a set of 2D images taken by a
thermal camera

A light bulb, a computer case with and a
metal container, both with an internal
heat source
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matching points. When searching for matching points between two thermal images
the isotherms of the thermal images can be used. Sella et al. [15] have presented
dual-head 3D infrared imaging that should help to providing metabolic signatures
from breast lesions. Unfortunately, the authors did not describe neither dual optical
heads setup used for thermal image acquisition nor 3D scanning technique. Later,
Mirabella et al. [16] have applied passive stereo vision for generation of a 3D model
with a thermographic texture. However, as was noted in [13], the thermal stereo
method will only work if there is a temperature gradient on the object surface,
otherwise there will be no distinctive isotherms to work with.

Table 2 Thermography systems based on active 3D custom scanning techniquesa

Paper 3D scanning technique and equipment Test object

Xiao et al.
[26]

Structured light scanning with a
structured pattern projector and a CCD
digital camera

A human forearm with a drop of warm
water

Barone
et al. [27]

Structured light scanning with a
standard multimedia video projector
and a monochrome digital camera

A hand and a foot of a diabetic patient

Cheng et al.
[30]

Structured light scanning with a
structured light binocular profilometer
consisting of one LCD projector and
two black-and-white cameras and a
color CCD camera

An aluminous workpiece, the first
author’s face, a volunteer with a skin
infection on his left leg

Barone
et al. [28]

Scanning technique based on a coded
structured light approach and a fringe
projection method with a standard
multimedia video projector and a color
digital video camera

Wound bed areas of seven different leg
ulcers

Grubišić
et al. [21]

Structured light scanning with a digital
light processing video projector and a
digital firewire camera

None presented

Yang and
Chen [29]

Structured light scanning with two
color cameras and a liquid crystal
display projector

A human face, pork surface in
hyperthermia

Sun et al.
[31]

Structured light scanning with two
visible light cameras and a digital
projector

A storage box, a rudder model and a
person’s outstretched arm

An and
Zhang [20]

Static object measurement system
based on structured light scanning with
a DLP and CMOS camera

A small statue

An and
Zhang [20]

Real-time measurement system based
on structured light scanning with a
high-speed DLP projector, a
high-speed CMOS camera and an
external timing generator

A hand and a human face

aAll systems include one IR camera for 2D thermal image acquisition
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Instead of using two thermal cameras, Ng and Du [17] have processed a
sequence of 2D thermal infrared images of an object (a small Ferrari car model with
a chemical warmer inside it) taken around the model with a 20 degree interval
between each image. They then reconstructed the 3D temperature distribution using
the rapid octree carving technique [18] to acquire the geometric information from
the silhouettes of the object. Similarly, Chen et al. [19] have proposed a 3D infrared
imaging system that uses silhouette volume intersection to reconstruct the 3D
model of objects in the thermal images.

Because of the limitations of the stereo thermal camera setup, most 3D ther-
mography systems combine a thermal camera with a 3D scanning device or system.
Over the past decades, a number of 3D shape scanning techniques have been
developed. Depending on the 3D acquisition method, the techniques can be divided
into two groups: passive and active [20, 21]. The passive techniques, focus/defocus
and stereo vision, do not require active illumination, while the active ones use
external light sources. The depth from focus/defocus technique, which is common
in photography and microscopy can not be applied to thermal imaging yet [22].
Another passive 3D scanning technique that is frequently used in 3D thermography
systems is stereo vision.

Aksenov et al. [23] and Ju et al. [24] have used two high-resolution color
cameras to generate differing views of an object. A 3D model of the object can be
built by comparing the two images and using stereo photogrammetry. The gener-
ation of a 3D thermogram is achieved by mapping the IR picture taken by the
infrared camera to the 3D model. Since the thermal camera and the stereo cameras
are calibrated together, the mapping phase is quite straightforward.

Table 3 Thermography systems based on commercial active 3D scannersa

Paper 3D scanning technique and
equipment

Test object

Scala et al.
[33]

Structured light scanning with a
Microsoft Kinect depth camera

None presented

Rangel
et al. [32]

Structured light scanning with a
Microsoft Kinect depth camera

An outstretched utility corridor

Moghadam
[34]

Structured light scanning with a
ASUS Xtion Pro Live RGB-D color
and range sensor

A torso with a right shoulder chronic
inflammation, lower limbs with a history
of injuries, a thigh with sealed wound

Müller and
Kroll [38]

Structured light scanning with a
depth sensor

A small process furnace

de Souza
et al. [39]

Structured light scanning with A 3D
Gemini scanner

A head of an asymptomatic volunteer

aAll systems include one IR camera for 2D thermal image acquisition
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2.2 Thermography Systems Based on Custom Active
3D Scanning Techniques

Among the active 3D scanning techniques, the structured light system features high
quality and reliability for 3D measurement [25]. This technique is compact, simple
and most suitable for biomedical applications.

Xiao et al. [26] developed a simple and compact surface profiling system con-
sisting of a double pinhole interferometer, in which an interference fringe pattern is
directly projected onto a human body and a CCD camera captures the reflected
fringes. A structured light scanning technique that combines phase analysis and a
triangulation method was used for the 3D surface reconstruction.

Barone et al. [27] have presented an optical system based on integrating thermal
imaging with a 3D vision machine. High quality 3D models containing both
geometry and surfaces color information were obtained with a structured light
scanner. The point cloud acquisition uses a gray code approach and structured light
generated by the projector. The texture acquisition methodology consists in the
projection of images corresponding to the decomposition of white light into primary
colors. Later, Barone et al. [28] modified the 3D thermography system by adding a
color digital video camera that enabled the simultaneous acquisition of 3D geo-
metrical data, color texture and surface temperature information of the anatomical
parts. The direct mapping of chromatic and thermal images to the 3D model is
performed by a calibration procedure spatially relating the IR detector with respect
to the video camera sensor.

The system proposed by Grubišić et al. [21] consists of a thermal camera and a
3D scanner that is in turn composed of a digital light processing video projector and
a digital camera. The 3D reconstruction component of the system developed by
Yang and Chen [29] is based on the structured light technique and uses two color
cameras that reduce the shaded area on the object surface, improve the accuracy of
the sensor, and aid in the calibrations of structured light and thermal cameras.

Cheng et al. [30] developed a system that could simultaneously provide a precise
3D true-color photograph and 3D thermogram. A structured light binocular pro-
filometer consists of an LCD projector installed between two black-and-white
cameras, which limits shadow effects due to surface occlusions. The obtained range
coordinates are mapped to 2D visual and thermal images to create 3D color pho-
tograph and 3D thermograph, respectively.

Sun et al. [31] have integrated a thermal camera into a structured light based
binocular stereo vision system and realized 3D infrared imaging by fusing the
metric information and IR information of the tested object. The registration of the
2D infrared image to the 3D point cloud was accomplished based on trifocal tensor
and bilinear interpolation.

An and Zhang [20] have developed a holistic approach to calibrate both struc-
tured light system and thermal camera under exactly the same world coordinate
system and a computational framework to determine the sub-pixel corresponding

522 G. Chernov et al.



temperature for each 3D point as well as discard those occluded points. They have
designed two 3D different thermography systems. The first system, whose 3D
scanner consists of a DLP projector and a CMOS camera was designed for static
object measurement. The second one that uses a high-speed DLP projector, a
high-speed CMOS camera and an external timing generator provides simultaneous
acquisition in real time. Testing experiments verified the accuracy of the developed
method of mutual calibration and demonstrated that the static and real-time system
systems can achieve simultaneous 3D geometric shape and surface temperature
measurement with a resolution of 1280 � 1024 points per frame and with a res-
olution of 768 � 960 pixels per frame at 26 Hz, respectively.

2.3 Thermography Systems Based on Commercial Active 3D
Scanners

An approach that has been gaining popularity in recent years is the usage of
off-the-shelf depth cameras for obtaining the 3D shape directly from the depth map
produced by these devices [32, 33]. A depth camera is a device that produces an
image in which the value of each pixel is proportional to the distance from the
camera to the object at that pixel location. In recent years, a variety of such devices
has become available commercially at a relatively low cost, for example the
Microsoft Kinect and the SoftKinetic DS325. These devices provide an accurate,
but somewhat noisy, depth image that can be used for 3D reconstruction and to
produce 3D thermograms with relatively little setup. These systems also have the
advantage of having a small, self contained package that aids portability.

Skala et al. [33] were one of the first who developed 4D thermography system
through integration of the Microsoft Kinect device and a thermal camera. The
Microsoft Kinect consists of a depth camera composed of a near-infrared projector,
near-infrared camera, RGB camera and four microphones, all rigidly mounted
together. The depth camera and RGB camera track the motion and record recon-
structed real-time 3D model of a tested object providing its 3D dynamic scanning.
Mutual calibration of the depth, RGB and thermal cameras makes it possible to
register the images and create a set of real-time 3D thermograms.

Rangel et al. [32] have presented an approach allowing automatic creation of 3D
thermal models by using a Microsoft Kinect depth camera and a thermal camera.
The cameras were arranged in a fixed way and their spatial relation was obtained by
means of a geometric calibration based on the pinhole camera model.

Moghadam [34] has described a small, portable 3D medical thermography
device consisting of a ASUS Xtion Pro Live RGB-D (color and range) sensor
(similar in concept to Microsoft Kinect) and a thermal camera rigidly attached in
close proximity and mounted on an ergonomic handle. The device is similar to the
3D thermography systems described in [35–37] and gives an operator holding the
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device the ability to take several images from multiple viewpoints. The device, in
this case, will adaptively combine temperature from multiple viewpoints by taking
into account the reliability of each individual measurement [38].

Müller and Kroll [34] have developed a handheld 3D thermography system
consisting of a thermal camera and a PrimeSense Carmine 1.09 depth sensor rigidly
attached to an acrylic frame to maintain the relative position and orientation of both
sensors. During the generation of a 3D thermogram the system is moved around the
object and multiple temperature measurements corresponding to the same point on
the object’s surface are taken. The measured temperatures are averaged with
weights depending on the distance to target, emission angle, and observation angle.

de Souza et al. [39] have developed a methodology for combining into a single
representation thermographic data measured with a thermal camera and a precise
3D spatial model generated by a 3D commercial scanner. The structure from motion
technique was applied to a set of thermal images for finding the correct thermal
camera positions and rotations in space and generating an “auxiliary mesh.” Then,
the methodology was consisted of using the auxiliary mesh as an intermediate stage
in order to aid with the projection of infrared images onto a precise 3D scanned
surface mesh.

2.4 Brief Overview of 3D Thermography Systems

Tables 1, 2 and 3 briefly describe 23 3D thermography systems designed between
2003 and today that are used or could be used for biomedical imaging applications.
All the proposed systems provide the reconstruction of a 3D model from an object
under study and its fusion with thermographic data.

All these systems use the 3D model and thermographic data only to provide a
visualization of the subject that can be freely rotated in space and viewed from any
angle. These systems do not take the geometric information provided by the 3D
model to do any kind of additional processing of the thermogram.

Almost all proposed 3D thermography systems ignore the effect of angle of
incidence, distance between the device and the subject or other factor and fuse a 3D
model with temperatures directly given by a thermal camera. There are only few
exceptions.

One attempt to use three dimensional information to create more accurate rep-
resentations of an object’s surface temperature was presented by Sawicki et al. [9].
Their proposed method involved estimating the emission angle to compensate for
the error due to viewing angle dependence of the emissivity. Aksenov et al. [23]
and Ju et al. [24] took into account the angle and distance between the object and
the thermal camera and have proposed to construct so called standardized 3D
thermograms. Vidas and Moghadam [36] have proposed a new raycasting method,
which implements a multivariable weighting scheme to accurately map temperature
and color estimates to the 3D model from multiple views. A similar idea was used
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by Müller and Kroll [34], who proposed to take multiple thermal images from
various directions and average measured temperatures taking into account relative
positioning of a camera and the test surface.

To our knowledge, none of the existing 3D thermography systems used available
3D surface information for the segmentation of obtained thermograms and selection
of ROIs.

3 Construction of a 3D Thermogram

To construct a 3D thermogram, information about surface temperature must be
combined with information about surface geometry. Surface temperature informa-
tion can be provided by thermal imaging cameras and surface geometry information
by depth cameras, the former captures a temperature map and the latter, a depth
map. Additionally, a method to relate the temperature information to the geometry
information is required. This chapter presents the basic models and calculations
necessary for this.

In computer graphics and image processing the standard way to describe a
camera is the pinhole camera model. This model relies on several parameters in
order to approximate a real world camera, and these parameters must be obtained
via a calibration procedure. In order to register together a temperature map and a
depth map, the relative positions and rotations of the cameras, also known as
camera pose, are needed, and these can also be obtained via a proper calibration
procedure. Once a frame of reference is established and all the camera poses are
known, the depth maps must be converted to a set of points from which one or more
surfaces of interest can be extracted for visualization and analysis. The surface can
then be projected onto the temperature map in order to obtain the temperatures on
the surface of the objects under study.

3.1 The Pinhole Camera Model

A camera is a device that generates images, which are two-dimensional represen-
tations of the objects that the camera can see in its field of view. Light that is
emitted or reflected by an object enters through the camera lens and is collected on
the camera sensor to form an image. When working with image processing or
computer visualization, an abstraction used to describe this behavior and to rep-
resent a camera is the pinhole camera model, this model is used to describe the
relationship between the objects in the field of view of the camera and the 2D image
produced by the camera. The components of this model are the center of projection
of the camera, known as the pinhole, the points or objects in space, known as the
scene, and the image plane, onto which the scene is projected.
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The camera and the objects that the camera is looking at are located in space and
light rays originating from the scene pass through the center of projection and land
on a point in the image plane. In order to simplify the calculations, the center of
projection, O ¼ ð0; 0; 0ÞT, is set as the origin of the coordinate system and all the
points of the scene are specified relative to this origin, this coordinate system is
known as camera space. The distance from the center of projection to the image
plane is known as the focal length, f. The image plane is perpendicular to the optical
axis of the camera, which describes the viewing direction of the camera and passes
through the center of projection. The purpose of the camera model is to describe
how a point in space, P ¼ ðX; Y ; ZÞT, is projected onto the image plane and how to
calculate its corresponding image coordinates ðu; vÞT.

If the image plane is behind the center of projection, as it would be in a pinhole
camera setup, then the image will be generated upside down, thus it is more
practical to modify the model to one in which the image plane is between the center
of projection and the scene, this model is shown in Fig. 1.

Since the model is used to describe real cameras, several things must be taken
into account. In practice, f is not enough, because the pixels are not square, so fx and
fy are introduced to describe the focal lengths along the x and y axis of the image
plane. Additionally, an image captured by a digital camera is represented in
memory as a 2D array, thus image coordinates often start at the top left corner of the
image, and in the case of certain visualization packages like OpenGL, image
coordinates start at the bottom left of the image. Thus it is necessary for the model
to account for this, an appropriate displacement must be introduced into the model,
cx and cy are used to specify the coordinates of the center of the image plane. It is

Fig. 1 Camera model: a point P is projected onto the image plane, the resulting point p is on the
intersection of the image plane and the ray connecting the point P and the center of projection O
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possible to approximate these displacements as half the image width and height in
pixels, for cx and cy respectively, however in practice the sensor is usually mis-
aligned so cx and cy need to be obtained during calibration. Furthermore, real
cameras use lenses and due to manufacturing defects the sensor is not always totally
perpendicular to the optical axis, which introduces radial and tangential distortions,
which need to be accounted for.

Thus, using the camera model and by the properties of similar triangles, the
image coordinates of the point P, u and v are calculated as follows:

u ¼ fx
X
Z
þ cx

v ¼ fy
Y
Z
þ cy

ð1Þ

The focal lengths of the camera as well as the coordinates of the center of the
image plane are known as the intrinsic camera parameters. These parameters are
usually specified as a matrix, K, that is known as the intrinsic camera matrix:

K ¼
fx 0 cx
0 fy cy
0 0 1

2

4

3

5

To use the intrinsic camera matrix, the calculations in 1 must be written as
p0 ¼ KP, which results in a p0 of the form ðx; y; ZÞT, thus to obtain the final u and
v the perspective divide must be performed:

u ¼ x
Z

v ¼ y
Z

The model described so far is based on the fact that the points to be projected are
specified relative to the camera and that the camera itself is located at the origin,
that is, the points are specified in camera space. However, points are usually
specified in a frame of reference tied to a different origin, and a camera will have its
own position and rotation in this frame of reference, which is also known as world
space. Thus, to fully describe a camera, the model needs to be extended to describe
the pose of the camera. The pose is composed of a 3 � 3 rotation matrix R and a
3 � 1 translation vector t, which together form a transformation matrix T ¼ Rjt½ �,
that is known as the extrinsic camera matrix.

Thus, a camera can be described using an intrinsic matrix K and an extrinsic
matrix T. For real cameras, these matrices are estimated using a calibration
procedure.
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3.2 Calibration and Pose Estimation

Camera calibration refers to the procedure by which the parameters of a real camera
are computed. More specifically, calibration consists of intrinsic camera calibration
and extrinsic camera calibration, also known as pose estimation. Additionally,
camera calibration must account for any image distortion introduced by the camera.
Camera calibration is performed using a calibration target. A calibration target
consists of an object with features arranged in a known pattern and easily detectable
using computer vision algorithms. Commonly used calibration targets include a
checkerboard pattern printed on a flat surface or a grid of circles, either holes or
printed, on a flat surface. Particular care must be taken when choosing a calibration
target for use with thermal and depth cameras. A flat target with a pattern consisting
of an asymmetric grid of circular holes of a fixed diameter works well for this
purpose [32], holes are visible to both a depth camera and a thermal camera, and
thermal contrast could be further enhanced by heating the target. Additionally, such
a target is easy to make. Figure 2 shows an example of a target, a rectangular board
with an asymmetric grid of circles, used for the calibration of the 3D dynamic
thermography system as it appears on a thermal camera and on a depth camera.

Both intrinsic and extrinsic calibration procedures work by detecting a known
pattern in a series of images and computing the transformations needed to achieve
the position of the pattern in the camera image. The details of the camera calibration
algorithms are complicated and beyond the scope of this work, however, a standard
software library, OpenCV, implements all the methods required to achieve reliable
camera calibration [40].

Intrinsic camera calibration needs to be performed for each camera individually.
Certain cameras, like the Creative Senz3D, have intrinsic calibration values
available, either provided by their software development kit (SDK) or in the doc-
umentation, and these values are generally enough for most applications. However,
most cameras need to be calibrated. The intrinsic calibration procedure works with
multiple images of the same pattern, taken at slightly different angles (as shown in
Fig. 3). The result of the procedure is the set of intrinsic camera parameters, which

Fig. 2 Calibration target as seen on the thermal image (left) and the depth image (right). Red dots
represent the locations of the hole centers in the calibration target as detected automatically by the
software
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are stored in the intrinsic camera matrix (K). Additionally a vector of values rep-
resenting the radial and tangential distortion of the camera is computed, and these
values are used to correct the distortion in the image.

Extrinsic camera calibration needs to be performed for each camera in the
system at the same time, in order to establish a frame of reference for the positions
of all the cameras. The procedure consists of aiming the cameras in the system
toward a known pattern, and the result of the procedure is a transformation matrix
T for each camera that gives the camera pose in space, with the pattern as the origin
of the world coordinate system.

3.3 Transforming a Depth Map to a Point Cloud

A depth camera provides information about the surface it’s pointed at in the form of
a depth map D. A depth map is an image in which each value Dðu; vÞ is directly
proportional to the distance from the camera to the surface visible at location ðu; vÞ.
In order to be able to work with these values, it is required to transform the depth
map into a collection of homogeneous points pw ¼ xw; yw; zw; 1ð ÞT in the world
coordinate system. Since the depth map consists of depth values relative to the
camera, first the values have to be transformed into points pc ¼ xc; yc; zc; 1ð ÞT in the
camera coordinate system, that is, a coordinate system whose origin is the camera
center of projection. The transformation from world coordinates to the camera
coordinate system is provided by a transformation matrix:

Td ¼ Rd td
0 1

� �
ð2Þ

Thus, pw ¼ Tdpc. The transformation matrix Td corresponds to the six degree of
freedom (6DOF) estimated camera pose for the depth camera in world space.

To calculate a point pc for each value Dðu; vÞ, some information about the depth
camera is needed. Different models of depth cameras provide different types of
depth maps and some of them require additional work to convert the value Dðu; vÞ

Fig. 3 Example images of the calibration target taken with a FLIR A320 camera used for finding
intrinsic parameters of the camera
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to an actual distance measurement. In the case of the Creative Senz3D depth
camera, each pixel value corresponds directly to the Cartesian distance zc in meters
from the camera to the surface. Once zc is known, it is possible to use the pinhole
camera model to calculate xc and yc, using the intrinsic parameters of the camera (fx,
fy, cx and cy).

Each pixel u; vð Þ with the value Dðu; vÞ corresponds to a point on the image
plane pD ¼ ðxD; yD; zDÞ, where:

xD ¼ u� cx
yD ¼ v� cy
zD ¼ f

In practice, since camera pixels are not square, the focal length f is actually two
different focal lengths fx and fy. Using this information it is possible to calculate the
point pc ¼ xc; yc; zc; 1ð ÞT with simple geometry, using the properties of similar
triangles and the fact that zc ¼ Dðu; vÞ: (Fig. 4)

xD
fx

¼ xc
zc

yD
fy

¼ yc
zc

Fig. 4 A point pc can be calculated from the value at Dðu; vÞ. The point O is the center of
projection of the depth camera, the point c ¼ ðcx; cyÞ is the center of the imaging sensor, and f is
the focal length
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It follows that, for each pixel ðu; vÞ with value Dðu; vÞ, the Cartesian coordinates
of the corresponding point pc ¼ ðxc; yc; zc; 1ÞT are:

xc ¼ Dðu; vÞ u� cx
fx

yc ¼ Dðu; vÞ v� cy
fy

zc ¼ Dðu; vÞ

Finally, the world coordinates of the point pw are calculated by the transfor-
mation pw ¼ Tdpc.

In addition to providing a depth map D, the Creative Senz3D camera also
provides a corresponding confidence map C, where the value of each pixel Cðu; vÞ
represents how confident the device is in the accuracy of the measurement at the
pixel ðu; vÞ. Thus gives a possibility to discard any pixel with the confidence value
below a certain threshold and avoid any unnecessary calculations on that particular
pixel.

3.4 Projection

Once the depth map is converted to a set of points in the world coordinate system,
the next step is to calculate to which point in the thermal image the point pw
corresponds to, as this is needed to calculate the temperature of that point. This
means that the point pw must be projected to a point on the image plane of the
thermal camera. During the calibration process, an intrinsic thermal camera matrix
Kt and an extrinsic thermal camera matrix Tt are obtained for a thermal camera.
Generally, these matrices could be used as-is to project the point pw, however this
presents a problem. Since the thermal camera is located in a different position from
the depth cameras used to obtain the point cloud and there can be multiple depth
cameras with different views, it is entirely possible that two points correspond to the
same coordinate on the thermal image. Thus, a way to determine which point is
closer to the camera is needed. Additionally, it is convenient for visualization and to
speed up processing to present the intrinsic matrix in a way compatible with
existing visualization packages, namely OpenGL. All this can be accomplished by
extending the intrinsic camera matrix Kt to a 4 � 4 projection matrix Mt

Mt ¼
fx 0 �cx 0
0 fy �cy 0
0 0 zn þ zf znzf
0 0 �1 0

2

664

3

775
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where fx, fy, cx and cy are the same as in the intrinsic camera matrix Kt and zn and zf
are the near and far clipping planes, which are constants that can be chosen as is
convenient since they do not correspond to any real property of the camera.

The projection matrix Mt maps points from coordinates relative to the camera
(camera space) to the coordinates of an image (image space). To transform the
points from world space to camera space, another transformation is needed. The
6DOF camera pose in world space is specified by the matrix Tt obtained during
camera calibration

Tt ¼ Rt tt
0 1

� �

where a Rt is the rotation of the camera relative to the world coordinates, tt ¼
ðxt; yt; ztÞT is the position of the camera in world coordinates.

In camera space, the camera is at origin and aligned with the coordinate system,
thus a transformation Tc from world space to camera space, when applied to the
camera pose Tt must be equal to I:

Tc ¼ T�1
t ¼ Rt tt

0 1

� ��1

¼ RT
t �RT

t tt
0 1

� �

Thus, to project a point pw using the camera parameters to a point ut ¼ ðut; vtÞT
on the image plane of the thermal camera, the following steps are done.

First, the point pw is transformed into the camera coordinate space:

pc ¼ Tcpw

The point in camera coordinate space must then be projected onto the image
plane of the thermal camera:

pi ¼ Mtpc

where pi ¼ ðxi; yi; zi;wiÞT. Finally, a perspective divide must be performed, thus:

ut ¼ xi
wi

vt ¼ yi
wi

and the coordinate zi=wi can be used to determine the relative depth of the points.
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3.5 Surface Reconstruction

After the data from the depth cameras is obtained, cleaned and transformed to a
point cloud, there still remains the problem of reconstructing the surface of the
subject, including the segmentation of the point cloud into various sets, like the
background, the subject and any other object of interest. Additionally, in order to
apply temperature correction, the normals of the surface must be calculated.

The first step in reconstructing the surface is to determine which points belong to
the subject and which points do not. In this particular case, this can be achieved by
means of a simple distance threshold, since the subject is closer to the camera than
any background points, thus it can be confidently said that any points farther away
from the depth camera than a certain distance do not belong to the subject. While
this simple process eliminates most of the background, there may be several outlier
points which are closer to the camera than the threshold but still don’t belong to the
subject. Points like these are removed using the tools provided by the PCL library
[41] for removal of statistical outliers.

After the point cloud is cleaned and segmented, the surface of the subject can be
calculated from the point cloud data using the moving least squares method for
surface reconstruction [42]. This method produces a set of points that is closer to
the real surface, as well as the approximate normal of the surface at each point in the
set. These point normals can be used to calculate the angle between the image plane
of the thermal camera and the normal of the surface, allowing for temperature
correction.

3.6 Temperature Correction

An IR camera absorbs photons emitted by heated surfaces and converts their energy
into electric signals of the pixels on the focal plane array in the camera. The pixel
signals (after self-calibration) are proportional to the radiance reaching the camera,
which in the classical case can be modeled as [43]:

LðTÞ ¼ seLbbðTÞþ sð1� eÞLbbðTÞþ ð1� sÞLbbðTatÞ; ð3Þ

where e is effective sample emissivity, s is the effective atmosphere transmission
coefficient, Tat and Ta are the atmospheric and radiative environment temperatures,
respectively, and T is the temperature of the surface area focused in the pixel.
LbbðTÞ in Eq. 3 presents the effective black body emittance in the spectral range of
detector:

LbbðTÞ ¼
Zk2

k1

Qbbðk; TÞdk: ð4Þ
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where

Qbb ¼ c1
k5 expðc2=kTÞ � 1½ � ;W m�2 ð5Þ

is the spectral radiant exitance for a black body given by Planck’s law, c1 ¼
3:743� 10�16W m2 and c2 ¼ 1:439� 10�2m K, the first and second radiant
constants; the wavelength and temperature are expressed in meters and Kelvin,
respectively, k1 and k2 are the are lower and upper wavelengths of the spectral
range, respectively.

The first term of Eq. 3 describes the radiation coming directly from a target
surface, which is supposed to be a gray body (that emits radiation at each
wave-length in a constant ratio to that emitted by a black body at the same tem-
perature). The emissivity of human skin is equal to 0.98 ± 0.01 between wave-
lengths of 2 and 14 lm [44]. Thus, human skin behaves as a gray body in this
wavelength region.

Any gray body reflects the IR emitted by the surroundings. The reflection
coefficient, q of an opaque surface is directly related to the emissivity:

q ¼ 1� e: ð6Þ

Thus, in accordance with Eq. 6, the reflection coefficient of human skin is equal
to 0.02 between wavelengths of 2 and 14 mkm. Therefore, if the surrounding
surfaces have sufficiently low temperature (during a medical thermography exam,
temperatures are usually close to 25 °C) the second term of Eq. 3 is negligible
relative to the first one. The third term is the IR emission of air between the target
surface and the camera. In biomedical applications, the camera is sufficiently close
to the object and the IR emission of air is negligible. In addition, the atmosphere
transmission could be considered equal to unity. Therefore, Eq. 3 can be
rewritten as

Lðk1; k2; h; TÞ
Zk2

k1

eðk; hÞc2
k5 expðc2=kTÞ � 1½ � dk: ð7Þ

Here the angle h is the angle between the surface normal and the camera
direction vector.

To evaluate integral (7) it is useful to define a lumped filter function,
f ðk1; k2; h; TÞ, as [45]

Zk2

k1

Qbbðk; TÞdk ¼ f ðk1; k2; h; TÞ
Z1

0

Qbbðk; TÞdk ¼ f ðk1; k2; h; TÞrT4; ð8Þ

where r is the Stephan–Boltzmann constant.
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By direct computation, Fuchs and Tanner [45] have shown that in the spectral
range between 8 and 13 lm the lumped filter function changes from 0.3 to 0.34 for
the temperature changes from 0 to 50 °C and, therefore, may be considered as
constant in range of biological temperatures.

In 2D medical thermography it is usually supposed that all parts of a body
surface have the same emissivity equal to 0.98 and that the temperature measured
by calibrated IR camera corresponds to the real temperature of the body surface.
This is true if all parts of a body are oriented perpendicular to the camera direction.
For an oblique oriented surface, the emissivity depends on the angle of view and the
apparent temperature of the surface of interest will differ from the real temperature.

Watmough et al. [8] were the first who estimated the errors in surface temper-
ature measurements caused by the surface curvature. Their calculations consist of
two stages. First, they found the angular dependence of the reflection coefficient and
emissivity. Considering the human skin as a dielectric material with the real
refractive index nðkÞ, the angular dependence of emissivity was described by the
formula:

eðk; hÞ ¼ 1� 1
2

b� cos h
bþ cos h

� �2

1þ b cos h� sin2 h

b cos hþ sin2 h

� �2
" #

ð9Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðkÞ2 � sin2 h

q
.

The reflection coefficient and refractive index for the normal direction ðh ¼ 0Þ
are related by well-known Fresnel equation [13, p. 51, Eq. 4.16]:

qðk; 0Þ ¼ nðkÞ � 1
nðkÞ � 1

� �2
: ð10Þ

Taking into account Eq. 6 we can relate nðkÞ to eðk; 0Þ:

nðkÞ ¼ 2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eðk; 0Þp

eðk; 0Þ � 1: ð11Þ

Substitution of eðk; 0Þ = 0.98 into Eq. 11 gives nðkÞ = 1.329 for the human
skin.

The calculation of the human skin emissivity with Eqs. 9 and 11 shows that
eðk; hÞ is almost independent of the angle up to h ¼ p=4 but thereafter the emis-
sivity decreases drastically.

To calculate the error caused by the surface curvature, Watmough et al. [8]
related the changes in the difference between the apparent temperatures, Tap to
corresponding changes of emissivity:
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DT ¼ Tapð0Þ � TapðhÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eðk; hÞ
eðk; 0Þ

n

s" #

Tapð0Þ: ð12Þ

with n ¼ C2=kT .
The temperature difference calculated with Eq. 12 depends on k and is only valid

for IR cameras with a narrow bandwidth filter. For IR cameras with a uniform
response between k1 and k2 the apparent temperature can be estimated by using
Eqs. 7 and 8. Suppose that a small area with normal angle h has real temperature
T and the emissivity is constant for wavelengths between k1 and k2. Then, the
effective black body emittance can be written as

Lðk1; k2; h; TÞ ¼ eðhÞf ðk1; k2; TÞrT4: ð13Þ

If the IR camera is calibrated with a black body and the emissivity of any surface
point of body is supposed to be equal to eð0Þ, then apparent temperature, Tap of a
point with normal angle h and the emissivity eð0Þ is defined as a temperature that
fits the equation:

Lðk1; k2; h; TÞ ¼ f k1; k2; TapðhÞ
� �

TapðhÞ
� �4

: ð14Þ

The comparison of Eqs. 13 and 14 gives

f ðk1; k2; TÞT4 ¼ f k1; k2; TapðhÞ
� �

TapðhÞ
� �4

eðhÞ ð15Þ

If the two points with angles 0 and h have the same real temperature, their
apparent temperatures can be related with Eq. 15

f k1; k2; Tapð0Þ
� �

Tapð0Þ
� �4

eð0Þ ¼ f k1; k2; TapðhÞ
� �

TapðhÞ
� �4

eðhÞ ð16Þ

Computations show that in the spectral range between 7.5 and 13.5 lm (the
long-wave atmospheric window) f ðTÞ ¼ 0:3796þ 9:760� 10�4ðT � 300Þ�
8:619� 10�6ðT � 300Þ2, where T inK. If the difference between Tapð0Þ and TapðhÞ is
less than few degrees, the lumped filter function can be considered as the constant and
Eq. 16 is simplified to

TapðhÞ ¼
ffiffiffiffiffiffiffiffi
eðhÞ
eð0Þ

4

s

Tapð0Þ ð17Þ

For IR cameras used for medical applications an emissivity value is usually
setting at 0.98 corresponding to the emissivity of human skin. In this case, the
apparent temperature Tapð0Þ for parts of a body are oriented perpendicular to the
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camera direction will coincide with real temperature Tr. The errors in surface
temperature measurements caused by the surface curvature can be found from
Eq. 17, in which Tapð0Þ is replaced with Tr:

DT ¼ Tr � TapðhÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eðk; hÞ
eðk; 0Þ

4

s" #

Tr: ð18Þ

The derived equation is similar to those obtained by Watmough et al. [8]
(Eq. 12). The only difference is the exponent of the root, which is equal to four for
cameras with bandpass filters and depends on temperature and wavelength for
narrow bandwidth filters.

The effect of the surface curvature on measured temperature for a number of
emissivities calculated with Eqs. 17 and 18 is presented in Fig. 5. The left panel
shows the relative apparent temperature respect to the temperature of normally ori-
ented surface. For emissivities higher than 0.65 the apparent temperature monoton-
ically increases as the angle h increases. For lower emissivities the non-monotonous
behavior is observed due to the non-monotonous dependence of emissivity on the
angle between the surface normal and the camera direction. The right panel shows the
difference DT ¼ Tapð0Þ � TapðhÞ calculated for Tapð0Þ = 300 K.

4 3D Dynamic Thermography System

In this section a system for taking and analyzing 3D dynamic thermograms is
presented. The system consists of structural elements and sliding and rotating joints
that allow the placement of cameras and sensors in space around the subject, at
fixed positions and angles. Two FLIR thermal cameras and two depth sensors were

Fig. 5 Decrease in apparent temperature as a function of angle of view for indicated emissivities.
Left the apparent temperature is normalized on those for the normal direction ðh ¼ 0Þ. Right the
difference DT ¼ Tapð0Þ � TapðhÞ calculated for Tapð0Þ = 300 K
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used for the image acquisition and the construction of 3D thermograms. The depth
sensors were rigidly mounted to the thermal cameras and their sensors were aligned,
forming a single unit as seen in the inset photograph in Fig. 6. Two such units are
mounted on the arms of the device and turned to face the subject of the study. Using
two sets of cameras ensures that the subject is visible from both sides simultane-
ously (Fig. 6). The system also includes a computer to run the software used to
acquire and process the 3D thermograms.

The choice of depth sensors for this application is of particular importance, since
it needs to meet two specific criteria: the acquisition speed must be fast and the
sensors must not interfere with each other, since they must operate simultaneously.
In particular on the second point, a sensor like the Microsoft Kinect V1 uses
structured light with a near-infrared projector and two such sensors operating at the
same time would cause interference and return false data. A pair of Creative
Senz3D time-of-flight sensors were chosen, due to the fact that their principle of
operation is more resistant to interference from another sensor [46].

4.1 Data Acquisition and Processing

The software of the 3D thermography system is responsible for the camera cali-
bration, data acquisition, processing and the construction of dynamic 3D
thermograms.

Fig. 6 Photograph of the 4D thermography system with two camera units mounted on rotating
arms around a subject, each camera unit (inset photograph) consists of a FLIR A320 thermal
imaging camera and a Creative Senz3D depth sensor
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Calibration is performed individually for each camera to obtain their intrinsic
matrices, and then for all the cameras in the system together to obtain the camera
poses in a unified world coordinate system. The calibration setup is shown in
Fig. 7. The calibration target used is a rectangular piece of 5 mm foamboard on
which an asymmetrical grid of circles has been cut with a laser cutter.

During the data acquisition phase, the raw thermal and depth images are
downloaded from the connected sensors. The raw data is often noisy and may have
missing values, which means that the data must be filtered to remove as much noise
as possible and compensate for any missing data. Once the quality of the incoming
data is ensured, the next phase of the process consists of the transformation of the
distance information obtained from the depth sensors into a point cloud in 3D space
and the generation of a surface based on this point cloud, as well as the projection
of the thermal images onto this surface to obtain a 3D thermogram. To perform this
step, it is essential to know the physical parameters, such as focal lengths and
distortion coefficients, of the cameras used and their locations in space relative to
each other, all of which were obtained during the camera calibration.

In order to build a 3D thermogram at a particular instant in time, and image must
be taken by each of the four cameras and transferred to a computer where the 3D
thermogram can be assembled. It is important to ensure that the four images are
taken as close as possible in time in order to provide adequate synchronization
between depth and thermal images. The FLIR A320 cameras used stream their
images over the network in an RTSP stream. Each thermal image consists of an
array of 16-bit wide unsigned integers that linearly correspond to the apparent
temperature of the target object as seen by the camera. The Creative Senz3D
cameras connect via standard USB 2.0 and the data is obtained using an SDK
provided by SoftKinetic for their DepthSense cameras. The Senz3D cameras

Fig. 7 Calibration setup used to find the intrinsic and extrinsic parameters of the camera system
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provide a stream of depth images. Each depth image consists of an array of floating
point numbers that correspond to the distance in meters to the object in that
position. The thermal images provided by the FLIR A320 cameras do not require
processing to remove the noise, however, they must be corrected for distortion. On
the other hand, depth images provided by modern time-of-flight sensors are
somewhat noisy and require some cleanup. The noise is reduced by taking multiple
depth images in succession and averaging them, and then applying a bilateral filter
to the result [47]. This treatment improves the quality of the depth image and makes
it more useful for surface reconstruction. Figure 8 presents an example visualization
of a 3D thermogram obtained by the software.

In addition to visualizing a 3D thermogram from all angles, the presence of
geometric data allows new ways to analyze a traditional thermogram. One problem
with a traditional two-dimensional thermal image is that due to low thermal contrast
it can be difficult to segment the image into various regions of interest and to
separate the background from the subject of study. Background segmentation is
achieved by projecting only the points of the subject onto a thermal image, and only
those parts of the image that fall under the projected points can be considered as
part of the subject, and the rest as part of the background. Figure 9 presents an
example of this process applied to a thermal image of a mannequin with poor
thermal contrast.

Once the subject is found on the thermal image by means of background seg-
mentation, the correct temperature of the pixels that correspond to the subject can
be calculated by taking into account the surface curvature. Each point of the subject
that was projected onto the thermogram has an associated normal in world coor-
dinates, which is be used to calculate the angle between the surface normal and the
camera direction vector of said point. Based on the position of the subject points on
the thermogram, the angle is calculated for each pixel of the thermogram that

Fig. 8 Example of a 3D thermogram taken with the system, showing the reconstruction of the
subject from different angles. Points that are white are not visible by the thermal cameras and thus
have no temperature assigned to them
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belongs to the subject, and this angle is be used to apply the temperature correction
using Eq. 18 to produce the correct temperature.

To extract areas of interest from the thermogram, a similar process to the one
used for background segmentation. Before projecting the points onto the thermal
image, the region of interest is segmented from the subject point cloud, which can
be achieved either by an operator or through simple heuristics. The key advantage
of this method is that a region of interest will often be clearly visible on the surface,
when it is not identifiable on the 3D thermogram. Figure 10 shows an example of
this process applied to the selection of the breast on a thermal image of a mannequin
with poor thermal contrast.

5 Future Work

A mannequin presents a simple object to work with, however when applying the
techniques presented in this work to a live human being, several problems arise.
A mannequin is an unmoving target, this means that several frames of a depth map
can be collected and averaged in order to help eliminate noise. On the other hand, a
human subject will find it difficult to sit still for an extended amount of time and
will invariably shift and move, thus the time available for collecting data is smaller,
which results in noisier 3D data. Additionally, commercial depth sensors produce

Fig. 9 Segmentation of the background and the subject on a thermogram of a mannequin, the
black points correspond to the extracted and projected subject

Fig. 10 Steps taken for the selection of the ROI of a breast thermogram
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relatively low resolution images, and any 3D models produced from these images
will be coarse and inaccurate, particularly for smaller body parts like feet and hands.
This problem can be solved by using the depth sensor to perform a high quality 3D
scan using the fusion of multiple depth images taken at different angles around the
object, however this would require the subject to remain still for the duration of the
scan and since it takes a relatively long time, 10 to 20 min, it is unsuitable for
dynamic thermography. A possible approach is to combine a high quality 3D scan
and register it with dynamic 3D thermograms obtained on the fly using the tech-
niques presented in this work to produce high quality dynamic 3D thermograms.

Another direction for the future of this work is the presentation of 3D thermo-
grams and their analysis in a way that is useful to a medical specialist performing
the study. The traditional way to present 3D data is with a software visualization
that allows the user to rotate and position a virtual camera at any point around the
studied object, however, this is not very useful and does not present any new
information. Studies need to be conducted to determine what kind of information is
useful to medical practitioners working with the thermograms and what is the best
way to present it.

6 Conclusion

The presence of 3D data about the surface under study has a lot of utility in research
for biomedical applications. A big advantage of 3D data is the availability of
information about the curvature and shape of the object, in particular, since the
temperature shown by a thermal camera depends on the difference between the
surface normal and the camera direction, having the surface normal means that it is
possible to calculate the correct surface temperature at a given point on the surface,
taking into account its curvature. Another advantage is the possibility to use the
information about the shape of the subject to select a region of interest for further
study taking into account the anatomy of the subject. Finally, it is possible to use
the 3D data to simply eliminate the background from a 2D thermogram. While the
presence of 3D data carries many advantages, working with more data carries
additional costs and trade-offs. The major complication in working with 3D data as
opposed to simple 2D images is that the required computing power grows expo-
nentially. Additionally, due to the fact that depth images are noisy, there has to be a
trade-off between accuracy and acquisition time, the more accurate one wants the
3D representation to be, the more depth images are needed to calculate said surface.
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