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Preface

Throughout his career, Dr. Nirmal K. Bose, a world-renowned expert whose
research was heavily focused on multidimensional signals and systems theory,
conducted a great deal of research and published many articles on high-resolution
reconstruction of blurred and noisy images and processing of noisy images [1].
In 1983, Dr. Bose published a pioneering book entitled Applied Multidimensional
Systems Theory [2]. The first edition of his book emphasized new research results
that had been emerging over the previous decade, where considerable activities had
been witnessed in the area of multidimensional systems theory, motivated by the
variety of applications embracing multidimensional signal processing (M-D DSP),
variable-parameter and lumped-distributed network synthesis, stiff differential sys-
tems, and continuous as well as discrete nonlinear systems characterized via the
Volterra series.

At the time the first edition of this book was published, the need to introduce
mathematical and computational tools supporting this subject matter in graduate
curricula of most universities was becoming very apparent. Because no textbooks
were available on M-D DSP in the 1980s, lectures in seminar courses, workshops,
and continuing education offerings had been organized from a couple of edited
books and a variety of research papers published in scattered journals. The emphasis
at that time was based on the documentation of results considered to be of a
fundamental nature leading to interdisciplinary applications in several areas of
engineering, mathematics, and science. Both the progress that was being made
and the existing difficulties in extending or adapting established one-dimensional
techniques to the multidimensional situation were emphasized.

The fact that progress in the area of multidimensional systems theory was
dependent to a great extent on the interaction between mathematicians, computer
scientists, and engineers was emphasized as a reader progresses through the book. It
is also noteworthy that soon after the first edition of Dr. Bose’s book was published
in 1982, a new textbook was published in 1984 by Dudgeon and Mersereau [3]
emphasizing algorithms and hardware structures to use rapidly emerging multidi-
mensional digital signal processing. Many graduate instructors used both of these
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vi Preface

textbooks in order to combine a detailed mathematical background with the rapidly
evolving use of 2-D DSP technologies in many high-tech areas such as X-ray
imaging, MR imaging, radar imaging, and ultrasound imaging.

In 2009, Dr. Nirmal Bose took his sabbatical leave from Penn State University
and spent a great deal of his time developing the second edition of Applied
Multidimensional Systems Theory. He worked closely with his M.S. student, Mr.
Umamahesh Srinivas, who assisted him with his editorial revisions and entered
all of the revised materials into LaTeX computer files. During the fall semester
of 2009, Umamahesh’s interactions with Nirmal Bose led him to the conclusion
that the manuscripts for the second edition of the revised book were moving toward
completion, although at that time Dr. Bose had not yet signed a contract with a
publisher for his revised edition. Unfortunately, in November of 2009, Dr. Nirmal
Bose passed away suddenly due to an unexpected heart attack, so at that time the
new edition of his book was not published. This current second edition entitled
Applied Multidimensional Systems Theory is a moderately edited revision of his
second edition manuscript. Dr. Nirmal Bose has been retained as the primary author,
and the book is being published in honor of his lifelong career accomplishments.

When revising the original manuscript to produce the second edition, Dr. Bose
made a major effort to remove some of the detailed mathematical theory that was
not particularly useful to students and instructors using the textbook for graduate
courses, to revise the presentation of portions of the theory to make it more
readable for students, and to introduce some new topics that were emerging as
multidimensional DSP topics in the interdisciplinary fields of image processing.
In this second addition, Chaps. 1 and 2 introduce essentially the same materials that
were presented in the first edition, although considerable revisions were included
to make the materials more accessible to students. Also, Dr. Bose inserted the new
topic of “Gröbner Bases” which is now included in this edition. The second edition
contains a new Chap. 3 entitled “Multidimensional Sampling,” much of which was
contained in the first edition but was not highlighted as a special chapter. The third
and fourth chapters of the first edition have been combined into a single Chap. 4 that
has been renamed “Multidimensional Digital Recursibility and Stability.”

In the new edition, Chap. 5, entitled “2-D FIR Filters, Linear Prediction, and 2-D
IIR Filters,” places a considerable amount of emphasis on 2-D digital filter design
to lead students to more efficiently use the mathematical theory underlying the
practical areas of 2-D DSP filtering applications. Much of this material was included
in the first edition’s Chap. 6 entitled “Additional Applications,” although the second
edition highlights these concepts in much more practical and useful ways. Finally,
in the second edition, the new Chap. 6 entitled “Wavelets and Filter Banks” is an
important new material not previously published. This is a reflection on the fact that
wavelet theory emerged from mathematical communities in the 1990s and beyond
and is now a central portion of multidimensional DSP theory and applications.

The Editorial Committee established to oversee the publication of the second
edition consists of Umamahesh Srinivas, Apple Inc., Constantino Lagoa, Penn-
sylvania State University; and Kenneth Jenkins, Pennsylvania State University.
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In particular, the Preface was written and edited by the entire Editorial Committee,

As mentioned previously, Dr. Umamahesh Srinivas was Nirmal’s M.S. student at
Pennsylvania State University who worked on the second edition manuscript that
was near completion at the time of Nirmal’s passing. Dr. Constantino Lagoa is a
professor of electrical engineering at Penn State who spent many days during his
early career working with Nirmal in the Departmental Area Committee on Circuits,
Communications, and Control and taught many of the same courses that Nirmal
taught over the years. Constantino’s area of expertise is focused in the Control
Systems Area, so his point of view is strongly connected to multidimensional signals
and system theory, but his perspective of Nirmal’s research and teaching was from
a different technical direction.

The first time Kenneth Jenkins met Dr. Bose was in Tokyo, Japan, in 1979 where
they both participated in the International Symposium on Circuits and Systems.
It was memorable that Nirmal Bose led a small group of CAS attendees to an
Indian restaurant so they could sample the Japanese version of Indian cuisine.
The next time that Kenneth and Nirmal met was when they worked together on
a conference program committee in Philadelphia in 1987. During this era, Kenneth
began teaching a portion of a graduate course at the University of Illinois from the
first edition book Applied Multidimensional Systems Theory. Then in 1999, when
Dr. Jenkins joined Penn State as the Department Head of Electrical Engineering,
he learned all the details of Dr. Bose’s array of international activities, including
delivering plenary lectures around the world, traveling to Germany for several
summers on Humbolt Fellowships, and working with a broad array of international

Dr. Bose was a truly international scholar. Born in Calcutta (presently Kolkata),
India, on August 19, 1940, Nirmal Bose received a B.Tech. degree from IIT Kharag-
pur, India, in 1961. Thereafter, he traveled to Cornell University, Ithaca, New York,
for graduate education, where he received a master’s degree in electrical engineering
in 1963, and then in 1967, he received a Ph.D. degree at Syracuse University. After
a short stint at Princeton, he then went to the University of Pittsburgh as an assistant
professor and rose to full professor of electrical engineering and later held a joint
appointment with the Department of Mathematics and Statistics. At Pittsburgh he
first wrote papers that showed his interests outside the traditional domain of circuit
theory and in broader areas of system theory and mathematics. It was during this
period that ideas for multidimensional systems slowly began to germinate, and
during this time, he pursued interests in discrete mathematics, graph theory and
related routing, and layout problems of large-scale integrated circuits.

Since the field of digital signal processing had come of age in the 1980s
and faculty members at many universities were teaching courses on the topic, he
consolidated his class notes in the undergraduate (senior)-level textbook Digital
Filters: Theory and Applications, published by North-Holland Elsevier, NY, 1985
[4]. Around this point of time, the field of multidimensional systems and signal
processing began to become somewhat diverse, and the many topics in which he

and the committee members’ editorial efforts were focused on the six chapters.

graduate students. He was an international scholar who brought worldwide visibility
to the Electrical Engineering Department at Penn State University.
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published with students and colleagues are multidimensional approximation theory,
model reduction, and filter design. In April 1991, he guest edited a second special
issue of the Proceedings of the IEEE on “Multidimensional Signal Processing” in
order to assess the status of the field since publication of the first Proceedings of the
IEEE special issue on the topic in 1977.

In 1986, Dr. Bose moved from the University of Pittsburgh to Pennsylvania State
University, where over the years he held several endowed professor positions. Here,
at first, he devoted considerable time in developing laboratory and curriculum in
digital signal processing in the EE Department with the help of younger colleagues.
He also turned his attention toward more practical areas. An example of the latter
was his interest in the burgeoning field of neural networks in which he taught
courses, gave plenary lectures at international conferences, and was the principal
author of a book entitled Neural Network Fundamentals with Graphs, Algorithms
and Applications, coauthored with P. Liang and published by McGraw-Hill Book
Company, NY, in 1996 [5]. Also in the early 1990s, Dr. Bose worked with Kluwer
Academic Publishers to create a new journal entitled Multidimensional Systems and
Signal Processing, for which he served as the founding editor-in-chief.

Dr. Bose authored, coauthored, or edited 15 books, published special issues of
several journals in engineering and mathematical disciplines, contributed about 25
chapters in edited books, and authored or coauthored more than 150 journal papers.
He was an elected fellow of the IEEE, served in various positions in IEEE Circuits
and Systems Society including serving on the CAS Board of Governors, served
in the editorial board of the Transactions, and served as the chairperson for its
education committee. He was the recipient of the IEEE third Millennium Award
in 2000, and in 2007 the IEEE Circuits and Systems Society honored him with the
CAS Society Education Award. A list of Ph.D. dissertations supervised by him until
2006 shows that he had advised 30 Ph.D. students in addition to many more M.S.
thesis students. He also served as an education advisor to the government of India
for the United Nations.

On the personal side, Dr. Bose was a kind and gentle person who had high ethical
standards from which he never deviated. Lastly, it is important to highlight that Dr.
Bose was an intellectual giant in his field. His work was highly published and highly
referenced in the literature, and he was highly recognized by numerous awards and
honors bestowed upon him by his profession. It is in his honor that the second
edition of this textbook is being published, and it is with great respect that the
Editorial Committee would like to thank the Bose family for all the support they
have provided to make this honorable publication possible. The views expressed in
this book are Dr. Bose’s own and the editors do not take responsibility for them nor
do they assume full responsibility for any errors and omissions.
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Chapter 1
Multivariate Polynomial Fundamentals
for Multidimensional Systems

1.1 Introduction

The subject of multidimensional systems is concerned with a mathematical frame-
work for tackling a broad range of paradigms whose analysis or synthesis require
the use of functions and polynomials in several complex variables. Its applications,
which may range from the processing of spatial and temporal signals of diverse
physical origin to the design of linear discrete multidimensional control systems,
are already plentiful. The areas of image processing, linear multipass processes,
iterative learning control systems, lumped-distributed network synthesis, nonlinear
system analysis via multidimensional transforms and geophysical signal processing
have benefited from the tools available in the theory of multidimensional systems
[2, 6]. Progress towards the use of the theory in problems of very recent origin like
multidimensional convolutional coding for communications has been increasing at a
rate which is becoming increasingly difficult to track because of the wildly scattered
nature of the voluminous publications by researchers from several disciplines, who
are contributing to this area. This book aims to promote interaction between a
broad spectrum of scientists and engineers so that not only are theoretical results
developed to their fullest possible extent but also clear exposition and interpretation
are provided for these results to become useful to practitioners in distinct but related
disciplines. The presentation is intended to be concise but complete.

Research that had been started and conducted in the areas of multivariate network
realizability theory (since about 1960), two-dimensional digital filters (since about
1970) and multidimensional transform analysis of nonlinear systems representable
by Volterra series that outdates the preceding two areas just cited was included
within a framework that was christened multidimensional systems in June 1977,
when a Special Issue, guest edited by the author, was published by The Proceedings
of the IEEE. A fertile arena for application of the developed theoretical results in
multidimensional systems is multidimensional signal, image, and video processing.

© Springer International Publishing AG 2017
N.K. Bose, Applied Multidimensional Systems Theory,
DOI 10.1007/978-3-319-46825-9_1
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2 1 Multivariate Polynomial Fundamentals for Multidimensional Systems

Another Special Issue of The Proceedings of the IEEE was guest edited by
this author in April 1990 and this one was devoted exclusively to the topic of
multidimensional signal processing. The reader may wish to read the opening paper
[7] in that Special Issue to grasp the fundamental limitations as well as scopes
for generalizations of one dimensional signal processing theory in various spatio-
temporal signal processing applications.

Some of the fundamental difficulties which either complicate the development
of resources for meeting the needs of diverse applications or are responsible for
limiting the scopes of attempts at naive generalizations of one-dimensional (1-D)
results to the corresponding n-dimensional (n-D) situations have been recognized
during the past several decades. Considerable analytical resources are required
to go from 1-D to 2-D results and even after the associated bottlenecks are
circumvented, the subsequent generalization from 2-D to 3-D may not be routine.
While discussing the n-D real Euclidean space Rn, Daniel Asimov [8] correctly
states that “strictly on their own merits, higher-dimensional spaces tend to blur
together into multidimensional sameness.” He goes on to remark that “it is often
among low-dimensional spaces that the most dramatic transitions take place: as the
number of dimensions rises, fundamental properties suddenly flash into existence
or vanish forever, never to change again.” This remark is dramatically illustrated by
the celebrated conjecture made in 1904 by the distinguished French mathematician,
Henri Poincaré, on a possible simple test to classify all three-dimensional manifolds.
Though this conjecture remains unsettled to this day, its generalization was first
solved in the case of n-dimensional manifolds in 1960 for n � 5 and in 1982
for n D 4 by ingenious innovative methods. The reader will encounter similar
twists and turns in the journey through increasing dimensions within the scope and
framework of the topics in this text. The undeniable challenge and the promised
reward have propelled the subject-matter to a state of maturity that guarantees a
continuing proliferation of increasingly complex and diversified nature of activities
in the area.

It is important that the reader be exposed to the fundamental distinguish-
ing mathematical features whose frequent deployment in the later chapters are
anticipated. This will provide the background for comprehending the specialized
results introduced and discussed as needed in later chapters. Every attempt will
be made to strike a judicious balance between brevity and clarity of exposition.
Where necessary, the understanding of a complicated concept will be facilitated
by carefully selected illustrative examples. Nevertheless, the reader is expected to
be capable of attaining a level of mathematical maturity possessed by first-year
graduate students in algebra and analysis.

1.2 Multivariate Polynomials, Ideals, and Varieties

The reader is referred to [9] for the development of the theory of algebraic curves
from introductory modern algebraic geometry, which contains in a more general
but abstract setting the relationships between polynomial ideals and affine varieties
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presented here as relevant prerequisites for material in the subsequent sections and
chapters of this book. Let R be a commutative ring with identity. Let RŒz1; z2; : : : ; zn�

denote the polynomial ring in n variables z1; z2; : : : ; zn with coefficients over
R. This totality of polynomials in z1; z2; : : : ; zn over R forms a commutative ring
with respect to the operations of ordinary multiplication and addition. The ring
RŒz1; z2; : : : ; z.n�1/�Œzn�, denotes the commutative ring obtained by adjoining zn to
the commutative ring RŒz1; z2; : : : ; z.n�1/�. Each element of RŒz1; z2; : : : ; z.n�1/�Œzn�

is said to be a n-variate polynomial expressed in recursive canonical form in the
main variable zn whose coefficients are .n� 1/� variate polynomials from the ring
RŒz1; z2; : : : ; z.n�1/�. Any element of the ring

RŒz1; z2; : : : ; zn� D RŒz1; z2; : : : ; z.n�1/�Œzn�

is a finite sum of terms of the generic form, ak1;k2;:::;kn zk1
1 zk2

2 : : : z
kn
n , where

k1; k2; : : : ; kn are nonnegative integers and ak1;k2;:::;kn is the coefficient multiplying
the monomial zk1

1 zk2
2 : : : z

kn
n of degree k1 C k2 C : : : C kn. The greatest degree

of the monomials in a polynomial is called the total degree of the polynomial.
A polynomial, each of whose monomials is of the same degree, is called a
homogeneous polynomial or, synonymously, a form. Any polynomial can be
uniquely expressed as a finite some of forms whose degrees range from zero up to
the total degree for the polynomial.

Example 1.1. Let R D Z, the commutative ring of integers. Consider the polyno-
mial, a.z1; z2; z3/ 2 ZŒz1; z2; z3�, specified to be

a.z1; z2; z3/ D z31z
3
2z
3
3 C 9z31z

3
2z3 � z21z

3
2z
3
3 C 8z1z

2
2z
3
3 C 1:

As an element of ZŒz1; z2�Œz3�; a.z1; z2; z3/ is

a.z1; z2; z3/ D .z31z32 � z21z
3
2 C 8z1z

2
2/z

3
3 C 9.z31z32/z3 C 1:

On the other hand, a.z1; z2; z3/, viewed as an element of ZŒz1�Œz2; z3�,is

a.z1; z2; z3/ D .z31 � z21/z
3
2z
3
3 C .9z31/z

3
2z3 C .8z1/z

2
2z
3
3 C 1:

Next, suppose that the ring R contains no zero-divisors, i.e., R is an integral
domain. Then, RŒz1; z2; : : : ; zn� is also an integral domain (or domain). Furthermore,
the total degree of the product of two non-zero polynomials from RŒz1; z2; : : : ; zn�

is the sum of the total degrees of each polynomial if R is an integral domain. Also,
in that case every unit of RŒz1; z2; : : : ; zn� is a constant and a unit of R. Suppose
that the integral domain R is also an unique factorization domain (UFD) so that any
element belonging to it is either an unit or has an unique representation (up to units)
as a product of primes, where each prime belongs to the UFD. Then RŒz1; z2; : : : ; zn�

is also an UFD, whose primes are referred to as irreducible polynomials. A set of
elements of an UFD is said to be relatively prime if no prime in the UFD divides
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all of them. A polynomial over an UFD is primitive if its coefficients in the chosen
representation are relatively prime. A product of primitive polynomials is primitive.
Furthermore, a primitive polynomial is a prime polynomial or irreducible if it is not
divisible by any nonconstant polynomial of lower total degree. The integral domain
R is called a field if every element of R other than 0 is invertible. If R is a field then
RŒz1; z2; : : : ; zn� is an UFD. A polynomial belonging to such an UFD can be uniquely
factored, as a product of a finite number of irreducible or prime polynomials and an
element of K.

A n-variate polynomial, a.z1; z2; : : : ; zn/ in the n complex variables z1; z2; : : : ; zn

will now be assumed to have its coefficients in an arbitrary but fixed field K.
Each of the irreducible factors is guaranteed to be of degree 1 when n D 1

and K is the algebraically closed field of complex numbers; in that situation a
polynomial of degree d has exactly d factors, a fact referred to as the “fundamental
theorem of algebra.” In the complementary situation, the irreducible factors may
not be of total degree 1. For example, when K is the finite field Zq of integers
0; 1; : : : ; .q � 1/ for a positive prime integer q, there exists irreducible univariate
polynomials of any arbitrary but fixed degree. This fact is used to advantage in the
construction of algebraic codes. When n > 1, it has been shown that the set of
reducible polynomials has measure zero and almost any multivariate polynomial is
irreducible.

Let K be any field and z01; z
0
2; : : : ; z

0
n be a set of n-tuples of elements of K, and let

a.z01; z
0
2; : : : ; z

0
n/ denote the element of K obtained by substitution of z01; z

0
2; : : : ; z

0
n

for z1; z2; : : : ; zn in a polynomial a.z1; z2; : : : ; zn/. If a.z01; z
0
2; : : : ; z

0
n/ D 0, then the

n� tuple; .z01; z
0
2; : : : ; z

0
n/, is called a zero of the polynomial a.z1; z2; : : : ; zn/. The set

of all zeros defines the zero-set, which is an (affine) algebraic set associated with
a.z1; z2; : : : ; zn/. More generally, the intersection and finite union of any collection
of algebraic sets are algebraic sets. An algebraic set may be the union of several
smaller algebraic sets; otherwise, it is called irreducible. In fact, any algebraic set
is expressible as a finite union of irreducible algebraic sets. An irreducible (affine)
algebraic set is called an (affine) variety.

Definition 1.1. A real (or complex) algebraic variety is a point set V(S) in real
n-space Rn (or complex n-space Cn) of the common zeros of a set S of polynomials
with coefficients in R (or C).

Example 1.2. Consider the set of m polynomials, each of degree k.

fi.z1; z2; : : : ; zm/ D .zi � 1/ : : : .zi � k/; i D 1; : : : ;m:

The above set of polynomials defines a zero-dimensional variety of precisely km

points.

Let A � R, where, as before, R is a commutative ring with identity. Then the set
of all elements of R each of which is expressible as a sum

P
akrk, where ak 2 A and

rk 2 R, is an ideal. When the number of elements in A is finite, the ideal so generated
is said to be finitely generated with the as

i as basis. When the ideal is generated by
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a single element of A, it is said to be a principal ideal. When K is a field, every ideal
I in KŒz� is principal and the greatest common divisor of I generates I. An ideal I
of R is proper if I ¤ R and a proper ideal I is maximal if it is not contained in any
larger proper ideal. The residue class ring of R modulo I is written R/I and this is a
set of equivalence classes of elements in R with reference to I.

Definition 1.2. An ideal R1 of the ring R is prime (primary) if, for any r1 2
R; r2 2 R, the conditions r1 r2 2 R1, and r1 62 R1, imply r2 (some positive power
of r2) is in R1.

A principal ideal is prime if and only if the unique generating element is
irreducible. A proper ideal I in R is prime (maximal) if and only if R/I is an
integral domain (field). A primary ideal need not be a power of a prime ideal to
which it belongs. Also, a power of a prime ideal need not be primary (this fact
is used in a later chapter to show the invalidity, in general, of polynomial matrix
primitive factorization when the number of independent complex variables is greater
than 2). Let I denote the ideal generated by any set S of multivariate polynomials in
KŒz1; z2; : : : ; zn�, where K is any field. Then, V.S/ D V.I/, which implies that every
algebraic set is equal to V(I) for some ideal I.

Definition 1.3. The polynomial ideal I.Q/ of a point set Q � Rn (or Q � Cn) is
the set of polynomials which vanish in Q. If f and g are polynomials in I.Q/, so is
f C g and so is � f for any polynomial �. Any set S of polynomials defines a variety
V D V.S/I S generates an ideal I consisting of linear combinations of elements
of S with polynomial coefficients and S � I.V.S//;Q � V.I.Q//;V.I.V.S/// D
V.S/; I.Q/ D I.V.I.Q///.

The division algorithm, originating with Euclid, is crucial to many of the
nice features of analysis and synthesis in 1-D system theory. A principal ideal
domain (PID) is necessary for the division rule to be applicable. Unfortunately,
RŒz1; z2; : : : ; zn� is a PID if and only if R is a field and n D 1. A PID is a
special case of a Noetherian ring, which is defined to be one whose every ideal
is finitely generated. Much of the theory of polynomial rings is concerned with the
question regarding how much of the nice properties of a Euclidean domain (which
is, necessarily, a PID) can be recovered for non-Euclidean rings. One classical result
is the Hilbert Basis Theorem, which states that if R is a Noetherian ring, then the
multivariate polynomial ring RŒz1; z2; : : : ; zn� is also Noetherian.

Next, consider the situation when either K is an algebraically closed field (and,
therefore, this field is infinite) or K1 is an algebraically closed extension field of
K (in the complementary situation). The existence of such a K1 for any field K
is guaranteed by the axiom of choice. For our discussion here, we choose K1 D
C, the algebraically closed field of complex numbers. The set of zeros of any n-
variate polynomial, in that case, is uncountably infinite. Furthermore, as a significant
departure from the univariate polynomial case, the zero-set of a n-variate polynomial
is unbounded and belongs to continuous algebraic curves instead of being composed
of isolated zero points. In fact, no polynomial (or, for that matter, no holomorphic
function) of more than one complex variable has any isolated zeros. One can prove,



6 1 Multivariate Polynomial Fundamentals for Multidimensional Systems

using an advanced result known as the Weierstrass Preparation Theorem, that the
zero-set of a non-constant analytic function in Cn, the n-fold Cartesian product of
C, is a complex hypersurface of dimension .n � 1/, except on a singular set of
lower dimension. The well-known fact that the zero-set of a polynomial (or, for that
matter, a holomorphic function) in one complex variable (that is, n D 1) is discrete
(that is, a set of complex dimension 0) becomes, then, a valid specialization of this
multivariate result.

Example 1.3. The zero-set of the polynomial,

a.z1; z2/ D z21z
2
2;

is a one-dimensional complex surface (note that here n D 2), except at the point
.0; 0/ (which is zero-dimensional), of intersection of the two hyperplanes,

˚
.z1; z2/ 2 C2 W z1 D 0

�
and

˚
.z1; z2/ 2 C2 W z2 D 0

�
:

Next, the reader is prepared for an important theorem due to Hilbert on
zeroes of multivariate polynomials which supplies the precise relationship between
algebraic sets and polynomial ideals. For this, it is convenient to have the following
fundamental definitions from algebraic geometry. Most of the results in algebraic
geometry are over the field of complex numbers though some results are also
available over the field of real numbers [10].

Definition 1.4. Let R be a ring, I an ideal of R. Then the set

ff 2 R W f r 2 I for some nonnegative integer rg
is called the radical of I and is denoted by rad.I/.

The Hilbert Nullstellensatz characterizes the radical of an ideal I of
KŒz1; z2; : : : ; zn�, as the set of all polynomials that vanish at every zero of I in
Kn

1, where K1 is any specified algebraically closed extension of K.

Theorem 1.1 (Hilbert Nullstellensatz). Let K be a field, K1 an algebraically
closed extension of K, and f, g1; g2; : : : ; gr 2 KŒz1; z2; : : : ; zn�. For all z 2
Kn
1; g1.z/ D g2.z/ D : : : D gm.z/ D 0 implies f .z/ D 0, if and only if there

exists a positive integer r such f r belongs to the ideal generated by the n-variate
polynomials gk; k D 1; 2; : : : ;m.

Interplay between geometric notions and algebraic concepts is provided by the
correspondence between prime ideals and irreducible varieties (if I is a prime ideal,
then V(I) is irreducible), radical ideals and affine algebraic varieties (if I is a radical
ideal, the I(V(I))D I), and maximal ideals and points. It should be noted that though
the results of Hilbert just quoted are very powerful, they were of limited scope
during the early years of multidimensional systems. In applications, constructive
procedures are very often needed and the development of computational tools for
algorithmic implementation of existential results in polynomial algebra has met with
considerable success in recent years.
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1.2.1 Multivariate Polynomial Factorization

Let D be an UFD and express a.z1; z2; : : : ; zn/ 2 DŒz1; z2; : : : ; zn� in recursive
canonical form in the main variable, say zn, of degree dzn D mn, as

a.z1; z2; : : : ; zn/ D
mnX

knD0
akn.z1; z2; : : : ; zn�1/zkn

n ;

where akn.z1; z2; : : : ; zn�1/ 2 DŒz1; z2; : : : ; zn�1� for kn D 0; 1; 2; : : :mn. In this
representation, the content of a.z1; z2; : : : ; zn/ is the greatest common divisor
(gcd) of the set of polynomial coefficients fakn.z1; z2; : : : ; zn�1/g. The polynomial
a.z1; z2; : : : ; zn/ 2 DŒz1; z2; : : : ; zn�1Œzn�� is primitive if it does not have a nontrivial
factor in DŒz1; z2; : : : ; zn�1�.

Unique factorization is known to hold in the ring of integers, in the ring of
polynomials in one or more variables with coefficients in a field, in the ring of
p-adic integers, and in the ring of all formal power series in one or more variables,
again with coefficients in a field. The conjecture suggested by the last two cases, that
unique factorization holds in any local ring, was reduced to the case of dimension
3 by Nagata [11] and then was proved in this difficult case by Auslander and
Buschbaum using techniques of homological algebra [12].

1.3 Multivariate Rational Functions

The field of quotients formed from any two elements (for which this quotient
is defined) in the polynomial ring KŒz1; z2; : : : ; zn� over a field K (recall that
this polynomial ring is a UFD) is denoted by K.z1; z2; : : : ; zn/ and is called
the field of n-variate rational functions in the independent complex variables or
indeterminates z1; z2; : : : ; zn over K. Thus, like in the univariate case, a multivariate
rational function is defined to be a quotient of a numerator polynomial and a non-
zero denominator polynomial. A rational function is said to be in reduced form
provided the numerator and denominator polynomials are coprime i.e. devoid of
any nontrivial (degree zero) common factor. In the univariate case that is equivalent
to the absence of any common zero in the two polynomials. However, in the
multivariate case the zero-set of two coprime (relatively prime) polynomials may
intersect. In that case the corresponding rational function is said to have a type
of singularity referred to as the nonessential singularity of the second kind. The
zero-set of the denominator polynomial of a rational function in reduced form that
excludes the subset of zeros which constitute the nonessential singularities of the
second kind comprise a type called the nonessential singularity of the first kind.
Rational functions do not have any essential singularity.
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Example 1.4. The bivariate rational function, z1
.z2�1/ , is in reduced form and has a

nonessential singularity of the second kind at location .0; 1/ in complex 2-space.
The nonessential singularities of the first kind are uncountably infinite and occur at
.a; 1/; a ¤ 0 and .0; b/; b ¤ 1.

The bivariate rational function, 1
.z1Cz2/

has a nonessential singularity of the
second kind at .1;1/ but no such singularity in any compact domain.

The number of nonessential singularities of the second kind in a bivariate rational
function is finite; that is not so in a rational function of three or more complex
variables. For n-variate rational functions in n complex variables, the locus of this
type of singularity is of real dimension .2n � 4/ in a space of real dimension
2n; therefore, these singularities cannot disconnect the space. In the n D 2 case,
therefore, these singularities occur as isolated points. Denote the zero-set of a
function f .z/ 2 K.z1; z2; : : : ; zn/ by Z(f). The following theorem is useful.

Theorem 1.2. Suppose that n > 1, A.z/ and B.z/ are coprime polynomials in the n
complex variables z D .z1; z2; : : : ; zn/, A.0/ D B.0/ D 0, and � is a neighborhood
of Cn. Then

1. Z.A/
T
� is not a subset of Z.B/

T
�I

2. if f .z/D A.z/
B.z/ and � 2 C, then there exists a point z 2 � such that B.z/ ¤ 0 and

f .z/ D � .

The proof for the above theorem is available in Rudin [13].

1.4 Relative Primeness

Definition 1.5. An element b.z1; z2; : : : ; zn/=a.z1; z2; : : : ; zn/ in I.z1; z2; : : : ; zn/

(or K.z1; z2, : : : ; zn// will be said to be of reduced form if polynomi-
als b.z1; z2; : : : ; zn/, a.z1; z2; : : : ; zn/ are relatively prime in IŒz1; z2; : : : ; zn�

(or KŒz1; z2; : : : ; zn�), i.e., are devoid of common polynomial factors other than
units.

1.4.1 Tests for Relative Primeness

To test for n-variate polynomial relative primeness, using the classical results based
on the theory of resultants, the numerator and denominator polynomials are each
written in recursive canonical form in the main variable, say z1:
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b.z1; z2; : : : ; zn/ D
r1X

kD0
bk.z2; z3; : : : ; zn/z

k
1

a.z1; z2; : : : ; zn/ D
m1X

kD0
ak.z2; z3; : : : ; zn/z

k
1:

(1.1)

Without any loss of generality, it may be assumed that the polynomial sequence
fb0; : : : ; br1 ; a0, : : : ; am1g is devoid of a common factor. It is also assumed that
bk’s and ak’s belong to a unique factorization domain DŒz2; z3; : : : ; zn�, and that
br1.z2; z3; : : : ; zn/ ¤ 0 and am1 .z2; z3; : : : ; zn/ ¤ 0; r1 > 0; m1 > 0. Form the
matrix R of order r1 C m1 involving bk’s and ak’s, the indeterminates not being
shown for brevity, as follows.

R D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

br1 br1�1 � � � b1 b0 0 0 � � � 0
0 br1 br1�1 � � � b1 b0 0 � � � 0
0 0 br1 br1�1 � � � b1 b0 � � � 0

: : : : : : : : : : : : : : : : : : : :

0 0 � � � 0 br1 br1�1 � � � b1 b0
0 � � � 0 am1 am1�1 � � � � � � a1 a0

: : : : : : : : : : : : : : : : : : : :

0 am1 am1�1 � � � � � � a1 a0 � � � 0
am1 am1�1 � � � � � � a1 a0 0 � � � 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

(1.2)

R is referred to as a Sylvester or inner matrix.

Theorem 1.3. With am1 ¤ 0; br1 ¤ 0; r1 > 0; m1 > 0; b.z1; : : : ; zn/ and
a.z1; : : : ; zn/ in (1.1) are relatively prime if and only if the resultant det R ,
r.z2; z3; : : : ; zn/ ¤ 0. It is assumed that the sequence fb0; : : : ; br1 ; a0; : : : ; am1g is
devoid of a common factor.

Proof. Observe that because the sequence fb0; : : : ; br1 ; a0; : : : ; am1g is devoid of a
common factor, any factor common to the two given polynomials must involve the
variable z1. Consequently, the given polynomials in (1.1) have a nonconstant com-
mon factor if and only if there exist two polynomials f .z1; : : : ; zn/ and g.z1; : : : ; zn/

such that

f .z1; : : : ; zn/a.z1; : : : ; zn/ D g.z1; : : : ; zn/b.z1; : : : ; zn/ (1.3)

with

ız1 Œf .z1; : : : ; zn/� < ız1 Œb.z1; : : : ; zn/� (1.4)

ız1 Œg.z1; : : : ; zn/� < ız1 Œa.z1; : : : ; zn/�:
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After writing all polynomials in recursive canonical form in the main
variable z1, (1.3) leads to a system of equations which has a nontrivial
solution for f .z1; : : : ; zn/; g.z1; : : : ; zn/ if and only if det R � 0. Therefore
a.z1; : : : ; zn/; b.z1; : : : ; zn/ are relatively prime if and only if det R ¤ 0.

The above result is a generalization of the result for the n D 1 case
[14, pp. 83–85]. Note that det R � 0 also when am1 � 0 and br1 � 0. The test
for absence of common factor in fb0; : : : ; br1 ; a0; : : : ; am1g is a special of the result
just given in the sense that a lesser number of indeterminates are involved.

Other tests for relative primeness are also available [6]. Some of these tests, along
with schemes for g.c.f. extraction when polynomials are not relatively prime, will
be discussed later in this chapter.

1.4.2 Primitive Factorization Algorithms for g.c.f. Extraction

Without any loss of generality, it can be assumed that the set of bk’s and the set of
ak’s in (1.1) each have no common factors. In case this assumption of primitivity
with respect to main variable z1 in a.z1; z2; : : : ; zn/ and b.z1; z2; : : : ; zn/ is not
satisfied, the content of each can be found by applying repeatedly the test to be
discussed here on the .n�1/-variate polynomials .a0; a1; : : : ; am1/ when finding the
content of a.z1; : : : ; zn/. It is well known that

g.c.f..a; b/ D fg.c.f.Œcont.a/; cont.b/�g fg.c.f.Œpp.a/; pp.b/�g; (1.5)

where ppŒ�� denotes the “primitive part of [�].” Therefore, unless stated otherwise the
given polynomials in (1.1) will be assumed to be primitive.

1.4.2.1 Multivariate g.c.d. Extraction from the Sylvester Matrix

Running parallel to the established results in the single-variable case, the innerwise
[15] matrix Œ4.a; b/i;j� associated with (1.1) is written as follows:

Œ4.a; b/i;j� ,

2

6
6
6
6
6
6
6
6
6
4

am1 am1�1 am1�2 � � � am1C1�i�j

0 am1 am1�1 � � � am1C2�i�j

0 0 am1 � � � am1C3�i�j

: : : : : : : : : : : : :

0 0 br1 � � � b3Cr1�i�j

0 br1 br1�1 � � � b2Cr1�i�j

br1 br1�1 br1�2 � � � b1Cr1�i�j

3

7
7
7
7
7
7
7
7
7
5

: (1.6)

In (1.6), there are i rows containing the ak’s, j rows containing the bk’s, and ai �
0; i < 0; bj � 0; j < 0. Next, consider the following n-variate subresultant:
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4.a; b; z1/i;j � det

2

6
6
6
6
6
4

am1 am1�1 � � � am1C2�i�j zi�1
1 a

0 am1 � � � am1C3�i�j zi�2
1 a

: : : : : : : : : : : : :

0 br1 � � � b3Cr1�i�j zj�2
1 b

br1 br1�1 � � � b2Cr1�i�j zj�1
1 b

3

7
7
7
7
7
5

(1.7)

obtained by replacing only the last column in (1.6) by the last column defined
in (1.7). The new column can be expanded as follows:

4.a; b; z1/i;j D f .z1; z2; : : : ; zn/a.z1; z2; : : : ; zn/

Cg.z1; z2; : : : ; zn/b.z1; z2; : : : ; zn/ (1.8)

where the degrees in z1 of f .z1; : : : ; zn/ and g.z1; : : : ; zn/ are, respectively i � 1
and j � 1. Using the fact that the g.c.f. of two primitive polynomials is primitive,
the result stated next follows. Note that detŒ4.a; b/r1;m1 � is the resultant of the two
polynomials in (1.1).

Theorem 1.4. Suppose for two primitive n-variate polynomials, a.z1; z2; : : : ; zn/

and b.z1; z2, : : : ; zn/ in (1.1), the associated Œ4.a; b/i;j� and 4.a; b; z1/i;j are as
defined in (1.6), (1.7). Also, define4.a; b/i;j � detŒ4.a; b/i;j�. Then if,

4.a; b/r1;m1 � 4.a; b/r1�1;m1�1 � � � � � 4.a; b/r1�jC1;m1�jC1 � 0 (1.9)

and

4.a; b/r1�j;m1�j ¤ 0; (1.10)

then g.c.f. .a; b/ is of degree j in z1 and,

g.c.f..a; b/ � ppf4.a; b; z1/r1�j;m1�jg: (1.11)

Conversely, if g.c.f.a; b/ is of degree j in z1 then it is given by (1.11), and (1.9)
and (1.10) are valid.

The proof of the above theorem can be constructed from the arguments given a
priori.

Example 1.5. It is required to extract the g.c.f. from

a.z1; z2; z3/ Dz22z
4
1 C .z32 C 2z22z3/z

3
1 C .1C z32z3 C z23z

2
2/z

2
1

C .z2 C 2z3/z1 C .z2z3 C z23/

b.z1; z2; z3/ D.z2 C z43/z
2
1 C .2z53 C z2z

4
3 C 2z2z3 C z22/z1

C .z63 C z2z
5
3 C z2z

2
3 C z22z3/;

if they are not relatively prime.
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Considering z1 as the main variable,

contfa.z1; z2; z3/g D g.c.f.fa4; a3; a2; a1; a0g
contfb.z1; z2; z3/g D g.c.f.fb2; b1; b0g

The fact that contfa.z1; z2; z3/g D 1 is verifiable by inspection, since a4 D z2 � z2,
a0 D z3.z2C z3/ are relatively prime. Also, contfb.z1; z2; z3/g D g.c.f.fb2; b1; b0g D
.z2 C z43/. Therefore,

g.c.f.Œcont.a/; cont.b/� D 1: (1.12)

With respect to the main variable z1

ppfa.z1; z2; z3/g D a.z1; z2; z3/

ppfb.z1; z2; z3/g D z21 C .z2 C 2z3/z1 C .z2z3 C z23/

For ppfa.z1; z2; z3/g and ppfb.z1; z2; z3/g, the matrix corresponding to (1.6) is
formed. It is found that 4Œpp.a/; pp.b/�2;4 � 0, implying that pp.a/ and pp.b/ are
not relatively prime. Also,

4Œpp.a/; pp.b/�1;3 � 0
4Œpp.a/; pp.b/�0;2 D 1 ¤ 0;

implying that the degree in z1 of the g.c.f. of pp.a/ and pp.b/ is 2. The g.c.f. of pp.a/
and pp.b/ is

g.c.f.Œpp.a/; pp.b/� D pp det

�
0 ppfbg
1 z1ppfbg

�

D z21 C .z2 C 2z3/z1 C .z2z3 C z23/

D .z1 C z2 C z3/.z1 C z3/:

(1.13)

Using (1.5), it follows from (1.12) and (1.13) that

g.c.f.Œa.z1; z2; z3/; b.z1; z2; z3/� D .z1 C z2 C z3/.z1 C z3/

1.4.2.2 Multivariate g.c.d. Extraction from the Bezout Matrix

Remember that, without loss of generality, a.z1; z/ and b.z1; z/ are primitive in
KŒz�Œz1�, and a not too interesting trivial case is avoided by requiring a0.z/ and b0.z/
to be not zero polynomials. For the sake of brevity, ak.z/, bk.z/ will be denoted
simply by ak and bl and let

jakblj D akbl � albk: (1.14)
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Associate the Bezout matrix B.a; b/ below with the polynomials in (1.1). B.a; b/ is
symmetric and square of order m1, where without loss of generality, r1 � m1.

B.a; b/ D

2

6
6
4

ja0b1j ja0b2j ja0b3j � � �
ja0b2j ja0b3j C ja1b2j ja0b4j C ja1b3j � � �
ja0b3j ja0b4j C ja1b3j ja0b5j C ja1b4j C ja2b3j � � �
� � � � � � � � � � � �

3

7
7
5 (1.15)

Fact 1.1. The nullity of B.a; b/ is equal to the partial degree in the main variable
z1 of the greatest common divisor of a.z1; z2/ and b.z1; z2/.

Suppose that the rank of B.a; b/ is r, so that its nullity is .m1�r/. Next, define the
matrix C.a; b/ of order r in (1.16) below. For the sake of brevity, the matrix in (1.16)
has been written to correspond to the case when r D 3.

C.a; b/ D
2

6
4

ja0b1j ja0b2j ja0b3j C ja0b4jz1
ja0b2j ja0b3j C ja1b2j ja0b4j C ja1b3j C .ja0b5j C ja1b4j/z1
ja0b3j ja0b4j C ja1b3j ja0b5j C ja1b4j C ja2b3j C .ja0b6j C ja1b5j C ja2b4j/z1

3

7
5

(1.16)

Fact 1.2. The greatest common divisor of the primitive multivariate polynomials
a.z1; z/ and b.z1; z/ is given by the primitive part in KŒz�Œz1� of the determinant of
matrix C.a; b/.

The proof may be constructed by exploiting the relationship between a Sylvester
matrix and a Bezout matrix. The two are linked through a nonsingular linear
transformation matrix whose elements belong to KŒz�.

Example 1.6. Consider bivariate polynomials a.z1; z2/ and b.z1; z2/ shown below
to be elements of RŒz2�Œz1�.

a.z1; z2/ D z2 C .z2 C 1/z1 C z21

b.z1; z2/ D 1C .z2 C 1/z1 C z2z
2
1

Clearly, m1 D r1 D 2 and

a0.z2/ D z2; a1.z2/ D z2 C 1; a2.z2/ D 1
b0.z2/ D 1; b1.z2/ D z2 C 1; b2.z2/ D z2:

Clearly, both are primitive in RŒz2�Œz1�.
The Bezout matrix B.a; b/ for this case is,

B.a; b/ D
�

z22 � 1 z22 � 1
zn
2 z22 � 1

�
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The nullity of B.a; b/ is 1 and its rank is 1. The partial degree in z1 of the g.c.d.,
therefore, is 1. The g.c.d. can be computed to be

ppŒja0b1j C ja0b2jz1� D ppŒ.zn
2/C .z22 � 1/z1�

D .z1 C 1/

Example 1.7. It is required to find the common zeros of the two polynomials below.
The polynomials are written in RŒx2�Œx1�.

f .x1; x2/ D .x2 C 1/x21 C .2x2/x1 C x32 (1.17)

g.x1; x2/ D x21 � 6x1 � 3x22 (1.18)

The resultant matrix for the two polynomials is:

R.x2/ D

0

B
B
@

.x2 C 1/ 2x2 x32 0

0 .x2 C 1/ 2x2 x32
0 1 �6 �3x22
1 �6 �3x22 0

1

C
C
A

Then the resultant det R.x2/ D �x42.4x2 C 3/2 has zeros at x21 D 0; x22 D � 34 .
Consider, first, x21 D 0. Then, f .x1; 0/ D x21; g.x1; 0/ D x21 � 6x1 and gcd

Œf .x1; 0/; g.x1; 0/� D x1. Therefore there is a common zero at (0,0).

For x22 D � 34 , g.x1;� 34 / D x21 � 6x1 � 27
16

, f .x1;� 34 / D x21
4
� 3

2
x1 � 27

64
. gcd

Œf .x1;� 34 /, g.x1;� 34 /� D x21 � 6x1 � 27
16

has zeros at x10 D 3 C 3
4

p
19 and x20 D

3� 3
4

p
19. Therefore, the common zeros are at .3C 3

4

p
19;� 3

4
/ and .3� 3

4

p
19;� 3

4
/.

Note that the subresultant obtained by calculating the determinant of the .2 � 2/
submatrix obtained after deletion of the bordering columns and rows of R is
.�8x2 � 6/, which is zero when x2 D � 34 D x22. This justifies the degree of
gcdŒf .x1;� 34 /; g.x1;� 34 /].

1.5 Holomorphic Functions in Several Complex Variables

Complex analysis in several complex variables is done on Cn, the n-dimensional
vector space over the complex space C. Topologically, Cn is the real Euclidean
space R2n. The terms analytic and holomorphic are synonymous for complex-valued
functions of complex variables. In function theory of real or complex variables, the
descriptor analytic is associated with the feasibility for power series representation
of a function while holomorphic signifies differentiability. We summarize here
results which can be viewed as generalizations of their univariate counterparts as
well as several distinguishing features in the analyticity (holomorphicity) theory of
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several complex variables (n > 1) that complicate matters in the use of such theory
in applications of concern to us. Typical examples of holomorphic functions are
polynomials and rational functions considered in the previous two sections.

A fundamental and deep theorem due to Hartogs unifies various definitions for
holomorphic functions in several complex variables into an equivalent one.

Theorem 1.5 (Hartogs). Let � � Cn be an open set and suppose that f is a
function in n complex variables that maps� into C. Suppose that for each arbitrary
but fixed set of the .n � 1/ complex variables, z1; : : : ; zi�1; ziC1; : : : zn; i D 1: : : : n,
the function, f .	/ D f .z1; : : : ; zi�1; 	; ziC1; : : : zn/, is an univariate holomorphic
function. Then the function f is continuous on �.

The appropriate counterpart of the above theorem does not hold in the case of
analytic functions of several real variables.

Definition 1.6. A complex-valued function f .z/ defined in some open set � � Cn

is said to be holomorphic (analytic) in � if and only if f .z/ is analytic in each
variable separately.

A convergent power series in several complex variables is another example of
an holomorphic function for which the determination of the largest domain of
holomorphy is, in general, a hard problem [16].

Definition 1.7. The convergence domain of a power series is the set of points like
z0 such that the power series is absolutely convergent in a neighbourhood of z0.

Unlike the univariate case, where the domain of convergence of a power series
is always an unit disc, there is no such simple geometrical configuration for the
domain of convergence of a power series in several complex variables.

Definition 1.8. The set of points in Cn where a n-variate power series is absolutely
convergent constitutes the Reinhardt domain or the region of analyticity of the
function represented by the power series.

The Reinhardt domain is, in general, greater than the convergence domain and
depends only on the magnitudes of the n independent complex variables (which
implies that the domain is in Rn). The Reinhardt domain is also logarithmically
convex in the sense that it is mapped onto a convex domain in Rn by the mapping
zi �! log zi, for i D 1; 2; : : : ; n.

According to the Riemann Mapping Theorem, every proper simply connected
open subset� � C is biholomorophic to the unit disc in the sense that there exists a
holomorphic function that maps� bijectively (one-to-one and onto) to the unit disc.
There is no such canonical domain like the unit disc in Cn, when n � 2. Therefore,
analysis of holomorphic functions of several variables depends on the domain in
question. Two extensively studied domains in Cn are the ball,

B.z0; r/ D fz 2 Cn W jz � z0j < rg;
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and the polydisc,

Dn.z0; r/ D fz 2 Cn W jzi � z0i j < rg ; i D 1; : : : ; n:
Let U denote the unit disc D1.0; 1/ and let NU denote the closure of U. NUn denotes
the closure of the polydisc

Dn.0; 1/ , Un D U �U : : : � U:

The distinguished boundary of the polydisc is

Tn , fz 2 Cn W jz1j D jz2j D : : : D jznj D 1g:
The polydisc algebra is fundamental in the analysis and design of a class of
multidimensional discrete-space systems characterized by the linear and shift-
invariance properties.

A consequence of Definition 1.6 is that a holomorphic function in � � Cn

is necessarily continuous in � and also continuously differentiable in the 2n real
variables, xk; yk, where

zk D xk C yk for k D 1; 2; : : : ; n:

An analytic function can be expanded as a power series in the neighbourhood of
a point where it is well-defined by calculating the value of the function and its
derivatives at that point. Furthermore, it is easy to see that every univariate analytic
function is equivalent to a polynomial in the neighbourhood of a critical point.
Norman Levinson proved an analogous result for functions of two variables [17].
Interestingly, Hassler Whitney has given examples of analytic functions of three
variables that are not equivalent to a polynomial in the neighbourhood of a critical
point [18]. For one such example, consider the trivariate function,

a.z1; z2; z3/ D z1z2.z1 � z2/.z1 � z2z3/.z1 � z2 exp z3/:

It has further been shown [19] that a function f .z1; : : : ; zn�1; zn/may be transformed
into a polynomial in zn with coefficients that are analytic functions of the other
indeterminates. However, it cannot in general (say with n D 2) be transformed into
a polynomial.

Let the real and imaginary parts of the complex variable zi be xi and yi; i. e.
zi D xi C j yi. Define two operators below.

ı

ızi
D 1

2

�
ı

ıxi
� j

ı

ıyi

�

and

ı

ı Nzi
D 1

2

�
ı

ıxi
C j

ı

ıyi

�

:
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Then, the preceding definition leads to the following theorem, which is the
counterpart of the Cauchy-Riemann conditions in the univariate case.

Theorem 1.6. A continuously differentiable function f .z/ in n complex variables
denoted by z is holomorphic if and only if

ı

ı Nzi
D 0; i D 1; : : : ; n:

Let u.z; Nz/ and v.z; Nz/ be the real and imaginary parts of a complex-valued
n-variate holomorphic function f .z/. Then, for i; k D 1; 2; : : : ; n, the plurihar-
monic conditions on the functions u.z; Nz/ and v.z; Nz/ are, respectively, given below.

ı2u.z; Nz/
ıziıNzk

D 0; (1.19)

and

ı2v.z; Nz/
ıziıNzk

D 0; (1.20)

Recalling that zi D xi C j yi; i D 1; 2; : : : ; n, introduce the operator,

�i D ı2

ıx2i
C ı2

ıy2i
(1.21)

An harmonic function f .z/ is one for which

nX

iD0
�i D 0: (1.22)

A n-harmonic function is defined next.

Definition 1.9. A continuous complex function f .z/ in an open subset of Cn is
called n-harmonic if it is harmonic in each of the complex variables separately i.
e. �if D 0, for i D 1; 2; : : : ; n.

Clearly, the classes of harmonic and n-harmonic functions coincide if and only if
n D 1.

A univariate holomorphic function f .z/ in any given domain in the complex plane
is not continuable to the exterior of the domain if all the boundary points of the
domain are singularities of f .z/. The boundary then is called the natural boundary
of f .z/. The counterpart of the univariate result that for any open set in the complex
plane there exists an analytic function whose natural boundary is the closure of this
open set (and, therefore, the function cannot be analytically continued to a larger
open set) does not hold in the several variable case. For an elementary discussion of
this complex phenomenon and proofs of some of the consequences relevant in our
interest, quoted below, see [16].
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Fact 1.3. If f .z/ is a holomorphic function in n complex variables z on a sub-
domain of Cn, n > 2, then f .z/ has no isolated zeros.

Fact 1.4. Let f .z/ be a holomorphic function on a bounded sub-domain of Cn,
n > 2. Then the zero-set of f .z/ is either empty or non-compact there.

We have already discussed the consequences of the preceding two facts in
the special case of multivariate polynomials. There are some results in univariate
complex analysis, like the maximum-modulus principle that generalize naturally to
the several complex variable case.

Fact 1.5. If � � Cn is an open smoothly bounded domain and f .z/ is a non-
constant function which is continuously differentiable on the closure N� of � and
holomorphic on�, then the maximum modulus of f .z/ occurs on the boundary of�.

In the univariate case, the image of a function is not always contained in the
image of that function evaluated on the boundary of �. The situation is just the
opposite in dimensions two and higher. With regard to other properties, subtle
differences could occur when proceeding from 1-D to 2-D, and also from 2-D to
3-D. Consider, for example, the Hadamard product,

C.z/ D
1X

kD0
akbkzk ;

of two power series,

A.z/ D
1X

kD0
akzk ; B.z/ D

1X

kD0
bkzk

in one complex variable. Then, under certain restrictions [20], the singularities of
C.z/ can be characterized with sufficient completeness from those of A.z/ and B.z/
i. e. the sets of singularities A, B, C of A.z/; B.z/, and C.z/, respectively, satisfy
C � A B. This is particularly true for the class of univariate rational functions,
in which case the Hadamard product of two power series each having a rational
representation also has a rational function representation. Significant differences
occur in the bivariate and trivariate cases. In the bivariate case, the Hadamard
product of two power series, each of which has a rational function representation,
is known to have, in general, not a rational but an algebraic function representation
while there are fundamental differences between the properties of the Hadamard
product of rational functions of two and three variables [21].
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1.6 Gröbner Bases

The topic of this section is concerned with a certain type of basis for polynomial
ideals which provides an algorithmic method for solving a number of computability
and decidability problems concerning the ideal; for example, given a multivariate
polynomial f .z/ and an ideal I specified by a finite number of generators, one
can perform computations in the original polynomial coefficient field to decide
constructively whether or not f .z/ belongs to I. This author’s interest in Gröbner
bases originated during the nineteen eighties when Professor Buchberger, a former
student of Gröbner, visited the University of Pittsburgh as an invitee of the author.
On realizing the relevance of Gröbner bases to multidimensional systems theory, this
author’s invitation to contribute a survey chapter on the subject in a book [6] was
gladly accepted by Bruno Buchberger. The highly readable Chap. 4 in [6] is strongly
recommended to the readers of this text. Another worthwhile reading is a recent text
[22], where computational algorithms for the fast construction of such bases are
extensively documented. It is worth mentioning as a historical fact that the algorithm
developed by Buchberger for the solution of a problem on the multivariate analog
of the Euclidean algorithm posed by Gröbner led to the naming of Gröbner bases
by the humble student in deference to his respected teacher. Justifiably, subsequent
researchers have, sometimes, referred to Gröbner bases as Gröbner–Buchberger
bases. Many computational problems that are extremely difficult for polynomial
ideals generated by arbitrary bases are very easy for polynomial ideals generated by
Gröbner bases. One instance of particular interest in this text is a formula expressing
the greatest common divisor of a set of polynomials of several variables in terms of
a Gröbner basis of the ideal generated by them [23].

Let a polynomial ring involving indeterminates z1; z2; : : : ; zn over an arbitrary but
fixed base field K of coefficients be denoted by

R D KŒz1; z2; : : : ; zn�:

A monomial zi1
1 zi2
2 : : : z

in
n will be called a term whose degree is i1C i2C : : : in. Define

an order <T on the terms as follows: xi1
1 � � � xin

n <T xj1
1 � � � xjn

n if and only if
deg .xi1

1 � � � xin
n / < deg .xj1

1 � � � xjn
n / or deg .xi1

1 � � � xin
n / D deg .xj1

1 � � � xjn
n / and

i1 D j1; : : : ; ik D jk; ikC1 > jkC1 for some k with 1 � kC 1 � n. The next example
illustrates an order <T defined on the terms.

Example 1.8. 1 < z1 < z2 < z3 < z21 < z1z2 < z1z3 < z22 < z2z3 < z23
< z31 < z21z2 < z21z3 < z1z22 < z1z2z3 < z1z23 < z32
< z22z3 < z2z23 < z33 < z41 < : : :.
The above shows an admissible linear ordering of monomials. This could be

lexicographical, graded lexicographical etc.
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1.6.1 Notations

In the following notations t denotes a term, taken to be a monomial zi1
1 zi2

2 � � � zin
n of

degree i1 C i2 C � � � C in and f , g, are polynomials in KŒz�. Coef .t; f / denotes the
coefficient (possibly zero) of the term t in f . Occ.t; f /, or t occurs in f , if and only if
Coef .t; f / ¤ 0. These notations and others to be used here are listed next.

Coef .t; f / , coefficient of the term t in polynomial f (possibly 0).
Occ.t; f /  ! Coef .t; f / ¤ 0.
Hcoef .f / , Coef .Hterm.f /; f /.
Head.f / , Hcoef .f /Hterm.f /.
Rest.f / , f � Head.f /.
Mult.zi1

1 zi2
2 � � � zin

n ; z
j1
1 zj2
2 � � � zjn

n /;  ! i1 � j1; i2 � j2 : : : ; in � jn.

LCM.zi1
1 zi2
2 � � � zin

n ; z
j1
1 zj2
2 � � � zjn

n /; , zmax.i1;j1/
1 zmax.i2;j2/

2 � � � zmax.in;jn/
1 .

In the following notations F denotes a finite sequence ff1; f2; : : : ; frg of polyno-
mials.

L.F/ , length of the sequence ff1; f2; : : : ; frg.
Mterm.t;F/  ! 9fi 2 F; fi ¤ 0, such that Mult.t;Hterm.fi//.
Normalf .g;F/  ! 8t with Occ.t; g/;:Mterm.t;F/.

Let F D ff1; f2g D fz31z2z3 � z1z2; z1z2z23 � 2z23g. Then,

Head.f1/ D z31z2z3; Head.f2/ D z1z2z23,
LCM.Head.f1/;Head.f2// D z31z2z

2
3,

Rest.f1/ D �z1z2; Rest.f2/ D �2z23.

Next, a reduction procedure is defined following the introduction of the following
notations.

f 	 >.1/F;t;i g  ! 1 � i � L.F/; fi ¤ 0;Occ.t; f /;Mult.t;Hterm.fi//, g D
f � a � s � fi, where a D Coef .t;f /

Hcoef .fi/
; s D t

Hterm.fi/
.

f 	 >.1/F g  ! 9 t; i such that f 	 >.1/F;t;i g.
f 	 >F g  ! 9 f0; : : : ; fk 2 KŒz; k � 0, such that f0 D f ; fk D

g; fi 	 >F
.1/ fiC1; i D 0; : : : ; .k � 1/. (Notice that f D g is included here. If

f 	 >F g, then f M-reduces to g).
f 	 >F g.  ! f 	 >F g and Normal f(g, F). (That is, g is a normal form of f

with respect to F).
f rsucc

F g  ! 9 h such that f 	 >F h; g 	 >F h.
Spol.f ; g/ , Hcoef .g/ � LCM.Hterm.f /;Hterm.g//

Hterm.f / � f�
Hcoef .f / � fz/jpt LCM.Hterm.f /;Hterm.g//

Hterm.g/ � g.

If F D ff1; f2; : : : ; frg is a finite sequence of polynomials, fj1; j2; : : : ; jkg are
integers with 1 � ji � L.F/, then HF.fj1; j2; : : : ; jkg/ denotes the LCM of the head
terms of ffj1 ; fj2 ; : : : ; fjkg.
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Consider the polynomial ring R D KŒz1; z2; : : : ; zn�. A system of generators of
an ideal I � R is called a Gröbner basis if the leading monomials of its elements
generate the same ideal in R as the leading monomials of all the polynomials in
I. The notion of a Gröbner basis admits a number of equivalent reformulations
and serve as the foundation of the whole of constructive commutative algebra. Let
R D QŒz1; z2; z3�, where Q denotes the field of rationals. Let F D ff1; f2g denote a
sequence of two polynomials,

f1 D z22 C z2z1 C z21; f2 D z22z1 C 1:

Then, the polynomial f D z1f1 � f2 2 Id.F/, the polynomial ideal set up by the
two polynomials in the sequence F of polynomials. However, f D z2z21Cz31 �1 is in
normal form modulo ff1; f2g with respect to every term order since the head terms,
z22 and z22z1 have been lifted to their least common multiple z22z1 and subtracted so
that the head monomials formed in f cancel out.

Gröbner basis algorithms are based on the significant fact that if the finitely many
differences of the kind illustrated in the above example all reduce to zero then every
polynomial in Id.F/ reduces to zero to make F a Gröbner basis, as defined next. The
theorem below summarizes several equivalent definitions for Gröbner bases.

Let F D ff1; f2; : : : ; frg be a sequence of polynomials. The following conditions
are equivalent and each provides a definition for Gröbner bases.

1. g 2 Id.F/  ! g	 >F 0.
2. For 1 � i < j � L.F/, Spol.fi; fj/ 	 >F 0.
3. h 	 >Fg; h 	 >Ff ) g D f .
4. 81 � i < j � L.F/; 9 sequence i D j1; j2; : : : ; jk D j, such that

HF.j1; j2; : : : ; jk/ D HF.i; j/

and

Spol.fj1 ; fj.lC1/
/ 	 >0; l D 1; 2; : : : ; .k � 1/:

f 	 >.1/F g ) .f C h/ rsucc
F .gC h/.

Proof. f 	 >.1/F;t;i g  ! g D f � a � s � fi; where a D Coef .t;f /
Hcoef .fi/

; s D t
Hterm.fi/

.

• Case (a): Coef .t; h/ D 0. Then, f C h 	 >F
.1/gC h.

• Case (b): Coef .t; h/ D �Coef .t; f /. = Then, Coef .t; f C h/ D 0 and f C
h 	 >.1/gC h.

• Case (c): Neither of above. Let,

Oh D f C h � Coef .t; f C h/

Hoef .fi/
� s � fi; Qh D gC h � Coef .t; gC h/

Hcoef .fi/
� s � fi:
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Then, Oh D Qh and f C h r1gC h.

f � g 	 >F 0 ) f rsucc
F g.

Proof. By induction on the number of 	 >.1/ steps needed to reduce f �g to zero.

� Case (a): f � g D 0. Then M-reduction is possible in zero steps. Then f � g and
f rsucc

F g.
� Case (b): f � gC h0r.1/h1r.1/h2r.1/ : : : htC1 D 0 .

It is easy to show that f � g 	 >.1/ h1 ) 9f .1/; g.1/ such that

f	 >f .1/; g	 >g.1/; h1 D f .1/ � g.1/:

By induction hypothesis, f .1/ rsucc
F g.1/.

Therefore, f rsucc
F g.

Theorem 1.7. The following conditions are equivalent:

g 2 < f1; : : : ; fr > ) g 	 >F 0 (1.23)

For 1 � i < j � L.F/; Spol.Fi;Fj/	 >F 0 (1.24)

h	 >hsucc
1 ; h	 >hsucc

2 ) h1 D h2 (1.25)

F1;F2; : : : ;Fr is called a Gröbner basis (for< F1; : : : ;Fr >) if (1.23) is satisfied.
If F1; : : : ;Fr is a Gröbner basis for the ideal I D< F1; : : : ;Fr >, then to determine
whether or not a given polynomial f is in I one M-reduces f to normal form which
by (1.25) is unique; if this normal form is zero then f is clearly in I by the definition
of M-reduction; if it is not zero then f is not in I by (1.23). To M-reduce a polynomial
to normal form successively eliminate M-terms t from f by executing a step of the
form f �>F;t;i g until no M-terms are left. To do this in the most efficient way, eliminate
at each step the highest M-term t with respect to the ordering< T; it is clear that in
a finite number of steps a normal form will be reached.

The above discussion, of course, assumes that F1; : : : ;Fr form a Gröbner basis
for I. Given an arbitrary set of polynomials F1; : : : ;Fr, the following algorithm gives
a method for constructing a Gröbner basis G1; : : : ;Gm such that< F1; : : : ;Fr >D<
G1; : : : ;Gm >.

Algorithm 1.1. Let Fi D Gi; i D 1; : : : ; r.

Initial conditions W G D fG1; : : : ;Grg;B D f.i; j/ W 1 � i < j � L.G/g:

(We consider B as a set of unordered pairs). Suppose at a particular point in the
algorithm, G D G1; : : : ;G`, (` D L.G/)

If B D 0 stop.
If not, choose .i; j/ 2 B, form Spol.Gi;Gj/, reduce this to normal form with

respect to G and denote the resulting polynomial by G`C1. (Note that this polynomial
is not necessarily unique because normal forms are not unique unless G is a
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Gröbner basis). If G`C1 ¤ 0 redefine G to be the set G1; : : : ;G`;G`C1 and B to
be the set .B n f.i; j/g/ [ f.k; `C 1/ W 1 � k � `g and continue to the next step. If
G`C1 D 0 just set B D nf.i; j/g and continue to the next step.

This algorithm terminates in a finite number of steps (see proof below) and at the
end one has a set of polynomials fG1; : : : ;Gmg which satisfy (1.24) and therefore
form a Gröbner basis for

< G1; : : : ;Gm >D< F1; : : : ;Fr >

Note that by keeping track of the calculations one can find Aij 2 KŒx�, i D
1; : : : ;m, j D 1; : : : ; r such that

Gi D
rX

jD1
AijFj; i D 1; : : : ;m: (1.26)

Then, given a polynomial f 2 KŒx�, if we keep track of calculations in reducing f
to normal form and we find that f	 >G0, we can compute ai 2 KŒx�, i D 1; : : : ;m
such that f DP aiGi. (1.26) will then give us f in terms of the Fi’s:

f D
mX

iD1

rX

jD1
aiAijFj

The algorithm (1.1) can be refined to weed out certain unnecessary calculations
and a strategy may be adopted for selecting pairs .i; j/ from B. We state just one
such modification (for proofs and further details see [24] and [25]).

Theorem 1.8. At any step in the algorithm, given .i; j/ 2 B, if there exists u with
1 � u � L.G/ and i ¤ u ¤ j such that .i; u/ … B, .u; j/ … B and Hterm.Gu/ divides
LCM.Hterm.Gi/; Hterm.Gj//, then

Spol.Gi;Gj/	 >G0
succ:

Theorem 1.8 suggests (see [25, p. 12]) the strategy of choosing .i; j/ 2 B such
that LCM.Hterm.Gi/;Hterm.Gj// is a minimum with respect to the ordering< T.

Before we illustrate the construction of Gröbner bases with an example, we
present the proof for the termination of the algorithm; this is done purely for the
convenience of the reader because the original proof may be inaccessible to some.

Theorem 1.9. Termination proof (Buchberger [26, §3.2]).

In the algorithm, each time we add a new polynomial to G it is in normal form
with respect to the existing polynomials in G. Therefore, if we consider the sequence
of headterms of elements of G, it is clear that we will obtain (except for the first few
headterms belonging to the initial polynomials) a sequence t1; t2; t3; : : : of terms
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such that tj is not a multiple of ti for j > i. Buchberger calls such a sequence an
M-sequence (M-Folge). The proof will be complete if we show that any M-sequence
is finite. This is proved by induction on the number of variables n. If n D 1 the result
is trivial. Assume it is true for n < N and consider an M-sequence which begins with
the term xI1

1 � � � xIN
N . If xv11 � � � xvN

N is another element of the sequence then vi < Ii for
at least one i .1 � i � N/.

For each k-tuple .vi1 ; : : : ; vik with 1 � k � N, 1 � i1 < i2 < � � � < ik � N and
0 � vij < Iij j D 1; : : : ; k, let S.vi1 ; : : : ; vij / denote the subsequence of terms in the
M-sequence such that the exponent of xij is vij , j D 1; : : : ; k, and the exponent of
xr is � Ir for r … fi1; : : : ; ikg. Then it is clear that the M-sequence is partitioned into
the S.vi1 ; : : : ; vik/’s which are finite in number.

If we consider a particular subsequence S.vi1 ; : : : ; vik /, the sequence obtained
by eliminating xi1 ; : : : ; xik from each term is also an M-sequence because xij has
exponent vij for every term in S.vi1 ; : : : ; vik /, j D 1; : : : ; k. Since k � 1 we conclude
by the induction hypothesis that S.vi1 ; : : : ; vik / is finite. The original M-sequence is
therefore partitioned into a finite number of finite sums and consequently it is finite
itself.

In the following example, f1
�atGi
�> g will represent f	 >.1/G g and g D f � atGi

where a is a constant and t is a term. Let

F1.x1; x2/ D G1.x1; x2/ D x21x
2
2 � 2x1x

2
2 � 2x1x2 C 4x1 C 4

F2.x1; x2/ D G2.x1; x2/ D x1x2 � x1 � 2x2

spol.G1;G2/ D G1 � x1x2G2 D x21x2 � 2x1x2 C 4x1 C 4
�x1G2

	 > x21 C 4x1 C 4succ D G3

Recall that G3 is in normal form i.e. no term of G3 is a multiple of the head terms of
Gi, i < 3.

G3 D G1 � x1.x2 C 1/G2

At this point B D f.1; 3/; .2; 3/g. Select .2; 3/ because

LCM.x1x2; x
2
1/ < T LCM.x21x

2
2; x

2
1/:

spol.G2;G3/ D x1G2 � x2G3 D �6x1x2 � x21 � 4x2

C6G2

	 > � x21 � 16x2 � 6x1

CG3

	 > �16xnx1 C 4succ D G4



1.6 Gröbner Bases 25

G4 D .x1 C 6/G2 C .1 � x2/G3 D .1 � x2/G1 C .x1x22 C 6/G2

At this point B D f.1; 3/; .1; 4/; .2; 4/; .3; 4/g; select .2; 4/.

spol.G2;G4/ D G2 C x1
16

G4 D 1

8
x21 � 2x2 � 3

4
x1

C 1
8
G3

	 > � 2x2 � 1
4

x1 C 1

2

� 1
8
G4

	 > 0succ D G5

Now B D f.1; 3/; .1; 4/; .3; 4/g; select .3; 4/. .3; 2/ … B, .2; 4/ … B and
LCM.HtermG3;HtermG4/ D x21x2 which is divisible by HtermG2, so by 1.8,
Spol.G3;G4/	 > 0succ.

Similarly .1; 2/ … B, .2; 3/ … B and LCM.HtermG1;HtermG3/ D x21x
2
2 which is

divisible by HtermG2 , so Spol.G1;G3/	 >0succ. Finally .1; 2/ … B, .2; 4/ … B and
HtermG2 divides LCM.HtermG1;HtermG4/ so Spol.G1;G4/	 >0succ.

At this point B is empty and the algorithm terminates. The basis generated is

G1 D x21x
2
2 � 2x1x

2
2 � 2x1x2 C 4x1 C 4

G2 D x1x2 � x1 � 2x2

G3 D x21 C 4x1 C 4
G4 D �16xnx1 C 4

We could in fact delete G1 and G2 from the basis and remain with a Gröbner basis
generating the same ideal because their headterms are multiples of other headterms
in the basis (see [27, 28] for this and other results on minimality and uniqueness for
Gröbner bases).

Continuing the example, we ask whether .x1C 2/.x1C x2C 3/ is in < G1;G2 >.

.x1 C 2/.x1 C x2 C 3/ D x21 C x1x2 C 2x2 C 5x1 C 6
�G3
�> x1x2 C 2x2 C x1 C 2
�G2
�> 4x2 C 2x1 C 2
C 1
4G4
�>

3

2
x1 C 2

succ

¤ 0
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So, .x1 C 2/.x1 C x2 C 3/ …< G1;G2 >.
However, .x1 C 2/.2x1 C 2x2 C 3/ is in < G1;G2 > because

.x1 C 2/.2x1 C 2x2 C 3/ D 2x21 C 2x1x2 C 4x2 C 7x1 C 6
�2G3
�> 2x1x2 C 4x2 � x1 � 2
�2G2
�> 8x2 C x1 � 2
C 1
2G4
�> 0succ

Furthermore

.x1 C 2/.2x1 C 2x2 C 3/ D 2G3 C 2G2 C 1

2
G4

D 2.G1 � x1.x2 C 1/G2/C 2G2 � 1
2
..1 � x2/G1

C.x1x22 C 6/G2/

D 1

2
.3C x2/G1 � 1

2
.x1x

2
2 C 4x1x2 C 4x1 C 2/G2:

We conclude this section by saying a bit about a vector version of Gröbner
bases. Let

ei D

2

6
6
6
6
6
6
6
6
6
6
6
4

0
:::

0

1

0
:::

0

3

7
7
7
7
7
7
7
7
7
7
7
5

 ith position ei 2 Km:

We define a v-term (vector term) to be something of the form eit where t is a
scalar term in the previous sense and 1 � i � m. We place an ordering on the
v-terms as follows: eit < T ejs if t < T s or when t D s, i < j.

Any vector polynomial f 2 KmŒx� can be written uniquely as a linear combination
of v-terms. We denote the highest term of f 2 KmŒx� with respect to the above
ordering by Hterm.f / and its coefficient by Hcoef .f /. In general we denote the
coefficient of a v-term � (=eit) in a vector polynomial f by Coef .�; f /. We say a
v-term � is a multiple of a v-term � if � D eit, � D eis and t is a multiple of s -
denote this by Mult.�; �/. Define a reduction procedure with respect to a sequence

F D fF1;F2; : : : ;Frg; F` 2 KmŒx�
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by f �>
�;F;j

.1/g if � occurs in f with non-zero coefficient,

Fj ¤ 0

Mult.�;HtermFj/

g D f � Coef .�; f /

Hcoef .Fj/
� t

s
� Fj

where � D eit, HtermFj D eis.
As in the scalar case one can also introduce the notations f	 >Fg and f	 >Fgsucc.

Finally, let f ; g 2 KmŒx�, Htermf D eit, Htermg D ejs then

Spol.f ; g/ ,
(

0 if i ¤ j
Hcoef .g/ � LCM.s;t/

t � f � Hcoef .f / � LCM.s;t/
s � g if i D j

It is then interesting to note that the proofs of Bachmair and Buchberger for
the scalar case go through mutatis mutandis for the vector case with the above
definitions. In particular we have that 1.23, 1.24, and 1.25 are valid in the vector
case where now fF1; : : : ;Frg denotes the KŒx�-submodule of KmŒx� generated by
F1; : : : ;Fr. Also we can construct an algorithm similar to 1.1 which will terminate
after a finite number of steps and yield a vector Gröbner basis. For further techniques
involving computation with polynomial ideals, see Seidenberg [29].

1.6.2 Algorithms for Construction of Gröbner Bases

Problem Given a finite sequence of polynomials F, find another sequence of
polynomials G such that,

Ideal(F)D Ideal (G), and G is a Gröbner basis.

Basic Algorithm
Starting conditions: G WD F; B WD f.i; j/ W 1 � i < j � L.F/g.
While 9 .i; j/ 2 B
Do:

h WD Spol.gi; gj/ I H D Normalf .h/

If h ¤ 0; then G WD .G; h/ ;B W B
[
f.i;L.G/ W 1 �< LG � 1 g

B WD B � fI; Jg
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Although it seems that in general one is adding more members to G and B as one
progresses, one can in fact show that the algorithm terminates in a finite number of
steps. At the termination of the algorithm, a Gröbner basis results.

Example 1.9. Let us continue the previous example with the lexicographic order-
ing,

1 < z1 < z2 < z21 < z1z2 < z22 :

Here,

g1 D f1; g2 D f2 ; g3 D Spol.g1; g3/ D z2z
2
1 C z31 � 1:

Spol.g1; g3/ D z21g1 � z2g3 D z41 C z2 , g4:

Spol.g2; g3/ D z1g2 � z2g3 D �z31z2 C zf z/jp1C z2:

Spol.g2; g3/C z1g3 D z41 C z2:

Spol.g1; g4/ D z41g1 � z22g4 D z2z
5
1 C z61 � z32:

Therefore,

Spol.g1; g4/ 	 >g4 z61 � z32 � z22z1	 >g4 � z32 � z22z1 � z2z
2
1	 >g10:

It can be verified that g1 ; g2 ; g3 ; and g4 form a Gröbner basis using arguments
described next for a different ordering.

If the lexicographic ordering is changed to,

1 < z2 < z1 < z22 < z1z2 < z21 ;

then it can be shown that the Gröbner basis is composed of polynomials
g1 ; g2 ; and z42�z1�z2. Note that this is justifiable from the following calculations.

Spol.g2; g3/ D z22g2 � z1g3 D z21 C z1z2 � z22 	 >g1 D 0:
Spol.g1; g3/ D z42g1 � z21g3 	 >g3 0 	 >g1 0 :

Also, obviously

Spol.g1; g3/ 	 >g3 0 :

Example 1.10. It is given that the starting conditions for application of the algo-
rithm for construction of the Gröbner basis are:

G W g1 D f1 D z31z2z3 � z1z
2
3; g2 D f2 D z1z

2
2z3 � z1z2z3; g3 D f3 D z21z

2
2 � z23:

B W f.1; 2/; .1; 3/; .2; 3/g:
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The lexicographic ordering is standard as in the beginning of this example.
Therefore, the head terms of g1; g2, and g3 are, respectively, z31z2z3 ; z1z22z3, and z21z

2
2.

Spol.g2; g3/ D z1g2 � z3g3 D �z21z2z3 C z33 , �g4:

Improved Form of Basic Algorithm For each .i; j/ 2 B, check to see if

9 i D j1 D j2; : : : ;D jk D j with HG.j1; j2; : : : ; jk/ D HG.i; j/

and

8l; 1 � l < k; .jl; jlC1/ … B:

If such a sequence can be found, then .i; j/ can immediately be eliminated from B
and upon termination a Gröbner basis results. This algorithm suggests the strategy
of choosing .i; j/ 2 B with HG.i; j/ minimal with respect to the ordering.

Example 1.11. For the lexicographic ordering induced by z1 < z2, consider the two
starting polynomials,

g1 D 2z21z2 C 3z1 C 1;
g2 D 3z22z1 C 2z2 C 2:

3z2g1 � 2z1g2 D 9z1z2 C 3z2 � 4z1znz1

D 5z1z2 C 3z2 � 4z1

D g3

5gnz1g3 D 15z1 C 5 � 6z1z2 C 8z21
C2g3�! 4z1z2 C 6z2 C 8z21 C 7z1 C 5
D g4

4g3 � 5g4 D 12z2 � 16znz2 � 40zn
1z1 � 25

D �18znz21 � 51zn

D g5
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gi’s with Hterm dividing z21z2 : g1 g3 g4 g5
Hcoef vector : 2 5 4 -18

Basis for vectors orthogonal to 0 4 -5 0

Hcoef vector 0 2 2 1

5 -2 0 0

-2 0 1 0

�2g1 C z1g4 D �6z1 � 2C 6z1z2 C 8z31 C 7z21 C 5z1

�2g3Cg4�! 8z31 C 15z21 C 14z1 C 3
D g7

We now see g6.D �5g7/ is obsolete and we eliminate it from the basis.

gi’s with Hterm dividing z31z2 : g1 g3 g4 g5 g7
Hcoef vector : 2 5 4 -18 8

Basis for vectors orthogonal to 0 4 -5 0 0

Hcoef vector 0 2 2 1 0

5 -2 0 0 0

-2 0 1 0 0

-4 0 0 0 1

�4z1g1 C z2g7 D �12zn
1z1 C 15z21z2 C 14z1z2 C 3z2

�3z1g3�! �12z21 � 4z1 C 15z21z2 C 14z1z2 C 3znz21z2

�9z1z2 C 12
D 5z1z2 C 3z2 � 4z1
�g3�! 0

gi’s with Hterm dividing z1z
2
2 : g2 g3 g4 g5

Hcoef vector : 3 5 4 -18

Basis for vectors orthogonal to 6 0 0 1

Hcoef vector -3 1 1 0

-4 0 3 0
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�3g2 C z2g3 C z2g4 D 9z22 C 8z21z2 C 3z1z2 � z2 � 6
�4g1�! 9z22 C 8z21z2 C 3z1z2 � zn � 8z21z2

�12z1 � 4
D 9z22 C 3z1z2 � znz1 � 10
Cgng4�! 9z22 � 10znz21 � 30zn

D g8

gi’s with Hterm dividing z1z22 : g2 g3 g4 g5 g8
Hcoef vector : 3 5 4 -18 9

Basis for vectors orthogonal to -3 1 1 0 0
Hcoef vector -4 0 3 0 0

6 0 0 1 0
-3 0 0 0 1

�4g2 C 3z2g4 D �8z2 � 8C 18z22 C 24z21z2 C 21z1z2 C 15z2

�2g8�! �8z2 � 8C 24z21z2 C 21z1z2 C 15z2 C 20z2

C32z21 C 60z1 C 40
D 24z21z2 C 21z1z2 C 27z2 C 32z21 C 60z1 C 32
�12g1�! 21z1z2 C 27z2 C 32z21 C 24z1 C 20
�5g3Cg4�! 18z2 C 40z21 C 51z1 C 25
Cg5�! 0

�3g2 C z1g8 D �6z2 � 6 � 10z1znz31 � 30zn
1z1

C2g3�! �16z31 � 30zn
1z1 � 6

C2g7�! 0

6g2 C z1z2g5 D 12z2 C nz31z2 � 51z21znz1z2

C5z2g7�! �51z21z2 � 25z1z2 C 12z2 C 12C 75z21z2

C70z1z2 C 15z2
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D 24z21z2 C 45z1z2 C 27z2 C 12
�12g1�! 45z1z2 C 27znz1
�9g3�! 0

gi’s with Hterm dividing z21z
2
2 : g1 g2 g3 g4 g5 g8

Hcoef vector : 2 3 5 4 -18 9

Basis for vectors orthogonal to 0 3 1 1 0 0

Hcoef vector 0 -4 0 3 0 0

0 6 0 0 1 0

0 -3 0 0 0 1

0 0 4 -5 0 0

0 0 2 2 1 0

5 0 -2 0 0 0

-2 0 0 1 0 0

gi’s with Hterm dividing z31z2 : g1 g2 g3 g4 g5 g7 g8
Hcoef vector : 2 3 5 4 -18 8 9

Basis for vectors orthogonal to 0 3 1 1 0 0 0

Hcoeff vector 0 -4 0 3 0 0 0

0 6 0 0 1 0 0

0 -3 0 0 0 0 1

0 0 4 -5 0 0 0

0 0 2 2 1 0 0

5 0 -2 0 0 0 0

-2 0 0 1 0 0 0

-4 0 0 0 0 1 0

Groebner basis is:

g1 D 2z21z2 C 3z1 C 1
g2 D 3z22z1 C 2z2 C 2
g3 D 5z1z2 C 3z2 � 4z1

g4 D 4z1z2 C 6z2 C 8z21 C 7z1 C 5
g5 D 18z2 C 40z21 C 51z1 C 25
g7 D 8z31 C 15z21 C 14z1 C 3
g8 D 9zn

2z2 � 16z21 � 30z1 � 20
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Note: 1. We can eliminate g1; g2 from basis because any reduction in

g1; g2 can be done via g3; g4.

2. Can modify g8:

g8
Cg5�!9z22 C 8z2 C 24z21 C 21z1 C 5

Final reduced basis is:

h1 D 5z1z2 C 3z2 � 4z1

h2 D 4z1z2 C 6z2 C 8z21 C 7z1 C 5
h3 D 18z2 C 40z21 C 51z1 C 25
h4 D 8z31 C 15z21 C 14z1 C 3
h5 D 9z22 C 8z2 C 24z21 C 21z1 C 5

1.6.3 Properties and Some Uses

The solution of the problem posed in the previous subsection by application of the
improved version of the basic algorithm eventually led to an algorithm referred to
as the Gröbner-Buchberger (GB) algorithm [22]. This algorithm that computes a
vector space over ground field K of the residue class ring

KŒz1; z2; : : : ; zn�

Ideal.F/
;

where F is a finite subset of the multivariate polynomial ring KŒz1; z2; : : : ; zn�, has
the following properties.

1. Ideal (F) = Ideal GB(F).
2. GB(F) is a unique reduced Gröbner basis G of Ideal (F) with respect to the chosen

term order.
3. GB makes possible effective computations in the residue class ring defined

above.

The algorithm has many uses as explained though the examples below.

Example 1.12. It is required to decide whether a specified Ideal (F) is principal.
Proceed as follows

1. Apply the algorithm GB to compute G D GB.F/.
2. Then Ideal (F) is principalD ” G consists of exactly one element.
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Example 1.13. It is required to decide whether a finite subset F of the multivariate
polynomial ring KŒz1; z2; : : : ; zn� is solvable.

Proceed as follows

1. Apply the algorithm GB to compute G D GB.F/.
2. F is solvable ” 1 … G.

Example 1.14. Given a finite subset F of the multivariate polynomial ring
KŒz1; z2; : : : ; zn� , it is required to compute the i � th elimination ideal,

Ideal.F/
\

KŒz1; z2; : : : ; zi�:

Proceed as follows

1. Apply the algorithm GB to compute G D GB.F/, with respect to the chosen
lexicographic ordering.

2. Then,

Ideal.F/
\

KŒz1; z2; : : : ; zi� D Ideal. G
\

KŒz1; z2; : : : ; zi�/:

Example 1.15. It is required to enumerate all ideals in the multivariate polynomial
ring KŒz1; z2; : : : ; zn� , i. e.

find F1; F2; : : : ; Ideal .Fi/ 6D Ideal .Fj/ ;
V

I

W
j I D Ideal .Fj/ .

Proceed as follows

1. Enumerate all reduced GB

Example 1.16. It is required to determine whether or not a finite subset F of the
multivariate polynomial ring KŒz1; z2; : : : ; zn� has infinitely zeros.

Proceed as follows

1. Compute G D GB.F/.
2. F has infinitely many zeros” no polynomial of the form zj

iC : : : 9G, for some
i.

Example 1.17. Given a finite subset F of the multivariate polynomial ring
KŒz1; z2; : : : ; zn� , it is required to find B, the linearly independent basis for vector
space, KŒz1;z2;:::;zn�

Ideal.F/ .
Proceed as follows:

1. Compute G D GB .F/.
2. B D fŒzi1

1 : : : zin
n � jzi1

1 : : : zin
n is not a multiple of a head term of a polynomial

in Gg.
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Table 1.1 Summary of certain mathematical features that influence multidimensional signal
processing

Item
no. Topics Properties

1 Zero-set S of n-variate polyno-
mial p.z/ D p.z1; z2; � � � ; zn/

S D fz D .z1; z2; � � � ; zn/jp.z/ D 0g is unbounded when
n > 1 and bounded when n D 1

2 n-variate holomorphic function No holomorphic function has any isolated zero when n > 1.
In particular, zeros of n-variate polynomials lie on contin-
uous algebraic curves when n > 1 and are isolated when
n D 1

3 n-variate irreducible rational
functions

Have only nonessential singularities. Only in the case when
n > 1, nonessential singularities of the second kind occur,
which are always isolated and finite in number only when
n D 2

4 Partial-fraction expansion of
rational functions

Every n-variate rational function can be represented as a
sum of fractions whose denominators contain at most n
irreducible factors each. Construction of the representation
is complicated due to the need for Hilbert’s Nullstellensatz

5 Division algorithm and
continued-fraction expansion

Holds in a principal ideal ring. The set of n-variate poly-
nomials, when n > 1, does not constitute such a ring. The
pseudo-division algorithm, however, enables the greatest
common divisor to be constructed

6 n-dimensional residues In the n > 1 case, the problem of computation of integrals of
a closed holomorphic form over closed n-D surfaces cannot
always be solved completely; sometimes it is only possible
to reduce the dimension of the integral

7 Solution of n-D difference
equations by the z-transform

In the n > 1 case, it is possible that a n-D difference equation
with a specified initial set might have a unique solution,
which might not be computable directly by the z-transform
method

8 Convolutional solution for n-D
difference equations

In the n D 1 case, a linear shift-invariant system charac-
terized by a constant coefficient difference equation with
zero initial conditions has a convolutional solution. In the
n > 1 case, additional constraints on the system, besides
linear shift-invariance, is necessary to guarantee this

9 Sum of squares representation
of nonnegative definite forms

Under all nonnegative real forms of even order n in m
variables, there are always some that cannot be written as a
finite sum of squares of real forms. The only exceptions are
the following three cases: (a) n D 2, m arbitrary (quadratic
form), (b) m D 2, n arbitrary (binary form), and (c) n D 4,
mD 3

10 Irreducible n-variate polyno-
mials

When n > 1, almost all polynomials are irreducible

11 Classical n-D spectral factor-
ization

When n > 1, finite order spectral factors do not exist, in
general

12 Unisolvence of functions in Rn When n D 1, unisolvent systems are plentiful; when n > 1

the situation is vastly different

(continued)
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Table 1.1 (continued)

Item
no. Topics Properties

13 n-D state-space models When n > 1, distinction has to be made between local and
global state-space models. In general, the global state-space
models are not finite-dimensional

14 Continuous positive-definite
function in n-variables

For arbitrary n, every continuous positive-definite function
is the Fourier transform of a finite positive measure. The
converse assertion is also true

15 Fourier analysis over com-
pact Abelian groups

As the torus Tn, the distinguished boundary of the unit
polydisc Un, is a compact Abelian group, an analysis that
depends on group properties of a circle that generalize
naturally



Chapter 2
Multivariate Polynomial Positivity
(Nonnegativity) Tests

2.1 Introduction

In a variety of systems theory problems ranging from tests from Lyapunov stability,
existence of limit cycles in nonlinear systems, existence of an operating point for
a nonlinear circuit, the output feedback stabilization problem, multidimensional
filter stability tests (see Chap. 4), tests for multivariate positive realness in electrical
network realizability theory, etc., it is required to test a specified polynomial in
several real variables for global or nonglobal positivity (nonnegativity). The topics
of this chapter, dealing with the question of existence of such tests, followed
by their actual construction depend a lot on the results of elementary decision
algebra. Section 2.2 is, therefore, devoted to a concise exposition of the theory
underlying the procedure for deciding the solvability in a real-closed field of a finite
system of polynomial equations and inequalities with rational coefficients. For the
development of this topic as a part of mathematical logic, the reader is referred to
[30]. Here the discussion of the foregoing topic is centered around the quantifier
elimination algorithm of Tarski [30] using a notion introduced by Cohen [31], the
method of Seidenberg using the theory of resultants [32], and a cylindrical algebraic
decomposition scheme for quantifier elimination developed by Collins in 1975 [2].
This last technique was also independently pursued by Bose and Modarressi, who
used the theory of resultants to develop an algorithm for testing a multivariate
polynomial for global positivity as reported in 1976 [2].

Section 2.3 is devoted to existing procedures for testing a specified multivariate
polynomial with integer coefficients for global positivity (because then the test
may be implementable with infinite precision if desired, subject to availability of
sufficient computational resources, and also because the global positivity property of
a polynomial with rational coefficients may be inferred with absolute certainty after
performing a global positivity test on another polynomial with integer coefficients).
The test based on the use of resultant-subresultants (inner determinants) to provide
a computationally feasible quantifier elimination algorithm for real-closed fields

© Springer International Publishing AG 2017
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is amply illustrated by several nontrivial examples. The other tests considered
are those which ultimately require a test for existence of a real solution to a
number of multivariate polynomial equations in an equal number of indeterminates.
Counterparts of all these tests, required to determine whether a specified multivariate
polynomial having integer coefficients is globally nonnegative, are discussed in
Sect. 2.4. Multivariate polynomial non-global positivity tests are considered in
Sect. 2.5, and illustrative nontrivial examples are again given to familiarize the
reader with the technicalities involved in actually carrying out such tests. In
Sect. 2.6, the important problem of invariance of the positivity property under fluctu-
ation of the original coefficient values is considered. Besides offering other benefits,
this type of result will enable one to infer with absolute certainty the positivity
property of a polynomial with real coefficients from a positivity test implementable
with infinite precision on another polynomial with integer coefficients.

It is hoped that after studying this chapter the reader will be able to apply the
procedures to solving physically motivated problems characterized by multivariate
polynomials which must be tested for global or non-global positivity or non-
negativity.

2.2 Elementary Decision Algebra

The decision problems for various mathematical theories and the related problems
of definability have been of interest to mathematicians for more than half a century.
The decision problem for a field is the problem of determining whether or not the
set of true sentences of the field is recursive. If that set is recursive, the field is
decidable; if not, the field is undecidable. The known decidable fields are: (a) any
finite field; (b) any real-closed field; and (c) any algebraically closed field. Some
of the known undecidable fields are the rational field, any finite extension of the
rational field, and fields elementarily equivalent to any of these.

Among the known decidable fields, real-closed fields are decidable by Tarski’s
decision method, which gives a recipe for deciding in a finite number of steps the
solvability of a finite system of multivariate polynomial equations and inequalities
with rational coefficients. Tarski’s result [30] is concerned with the question of how
to decide elementary statements about real fields by means of a recursive procedure.
It was shown that the theory of real-closed fields is decidable and complete.
Before stating and proving Tarski’s theorem, certain preliminaries required will be
introduced next.

It is well known that in Sturm’s theorem the number of distinct roots of a single-
variable polynomial which fall within any given real interval may be determined
through a process rational in the coefficients [33]. (Multiple roots can also be
handled by such elementary devices as extraction of the greatest common factor
from the given polynomial and its derivative, etc.) In 1922, Gummer presented a
procedure using Sturmian sequences to determine the relative arrangement of roots
for a system of univariate polynomials in any specified real interval, subject to the
restrictions that the endpoints of the interval are not roots and that each root in the
interval is of multiplicity one.
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2.2.1 Real Root Ordering of Univariate Polynomial System

Consider two univariate polynomials f .x1/ and g.x1/. Let ˛ denote the roots of
f .x1/, and ˇ the roots of g.x1/ in a given real interval .a; b/. Assume that the
endpoints for the interval are not roots of f .x1/ and g.x1/, and that all the real
roots of f .x1/ and g.x1/ in .a; b/ are simple roots. Writing down the roots within
.a; b/ in ascending numerical order, suppose one obtains ˛˛˛ˇˇ˛ˇˇˇ˛ˇ. The ˇ’s
effect a certain partitioning of the ˛’s, which in this example is (3, 0, 1, 0, 0, 1,
0). The solution of the problem at hand consists in determining the number of ˛ ’s
in the successive groups. Gummer solved this problem by use of several Sturmian
sequences generated from f .x1/, g.x1/, and their derivatives, and observance of sign
variation and permanence of these sequences for values of x1 D a and x1 D b. The
details of the algorithm are quite cumbersome, and its main points are best illustrated
through an example. It is assumed that f .x1/ has no roots in .a; b/ in common with
any of the polynomials belonging to the Sturmian sequence generated from g.x1/.

Example 2.1. Suppose the real roots of f .x1/ D x31 C 3x21 � 3x1 � 1 and those of
g.x1/ D x21 � 4x1 � 7 are to be ordered on the real line, i.e., .a; b/ D .�f ; f /, by
rational operations. Let g0.x1/ D g.x1/, f0.x1/ D f .x1/, g1.x1/ D dg0.x1/=dx1,
and f1.x1/ D df0.x1/=dx1. Here, g1.x1/ D 2x1 � 4 and f1.x1/ D 3x21 C 6x1 � 3.
Since the positive constants do not affect the sign, let g1.x1/ D x1 � 2 and f1.x1/ D
x21 C 2x1 � 1 be considered. The Sturmian sequence , SŒg0.x1/; g1.x1/�, for g0.x1/
is generated through a division process: SŒg0.x1/; g1.x1/� D fg0.x1/; g1.x1/; g2.x1/g,
where g1.x1/ D x1 � 2, and g2.x1/ D C1 (again the positive multiplicative constant
dropped). Now, G1.x1/ D g0.x1/:g1.x1/, and G2.x1/ D g1.x1/:g2.x1/ are computed:

G1.x1/ D .x21 � 4x1 � 7/.x1 � 2/ D x31 � 6x21 C x1 C 14
G2.x1/ D .x1 � 2/.1/ D x1 � 2

To simplify, one can subtract from the Gi’s, the product of any polynomial times
f0.x1/. Denoting G1.x1/� f0.x1/ by G1.x1/, one obtains

G1.x1/ D �9x21 C 4x1 C 15
G2.x1/ D x1 � 2

Also, G12.x1/ D G1G2 D g0g1g1g2 D g0g21g2 can be computed, and since g21 does
not contribute to its sign, it is taken as G12.x1/ D g0.x1/g2.x1/:

G12.x1/ D x21 � 4x1 � 7

Define, within the same sign for all x1, H0.x1/ D f1.x1/, H1.x1/ D G1.x1/f1.x1/,
H2.x1/ D G2.x1/:f1.x1/, and H12.x1/ D G12.x1/:f1.x1/. Here one has

H0.x1/ D x21 C 2x1 � 1
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H1.x1/ D �17x21 C 28x1 � 1
H2.x1/ D �3x21 � 2x1 C 3

H12.x1/ D x21 � 12x1 C 1

It must be noted that the product of f0.x1/ and any polynomial can also be subtracted
from the Hi’s for the sake of degree reduction, without affecting the results.
The Sturmian sequences SŒf0.x1/;H0.x1/�; SŒf0.x1/;H1.x1/�; SŒf0.x1/;H2.x1/� and
SŒf0.x1/;H12.x1/� are now generated. For the example at hand, these are, within the
same sign for all x1,

SŒf0.x1/;H0.x1/� D f.x31 C 3x21 � 3x1 � 1/; .x21 C 2x1 � 1/; .x1/; .C1/g
SŒf0.x1/;H1.x1/� D f.x31 C 3x21 � 3x1 � 1/; .�17x21 C 28x1 � 1/;

.�83x1 C 23/; .�1/g
SŒf0.x1/;H2.x1/� D f.x31 C 3x21 � 3x1 � 1/; .�3x21 � 2x1 C 3/;

.8x1 � 3/; .�1/g
SŒf0.x1/;H12.x1/� D f.x31 C 3x21 � 3x1 � 1/; .x21 � 12x1 C 1/;

.�11x1 C 1/; .C1/g

If V.i/.a/ D var fSŒf0.a/;H.i/.a/�g, where var denotes the number of sign variations,
and M.I/ D V.I/.a/� V.I/.b/, one has

V0.�1/ D 3; V1.�1/ D 2; V2.�1/ D 0; V12.�1/ D 1
V0.1/ D 0; V1.1/ D 1; V2.1/ D 3; V12.1/ D 2

M0 D V0.�1/� V.1/ D 3
M1 D V1.�1/� V1.1/ D 1
M2 D V2.�1/� V2.1/ D �3

M12 D V12.�1/ � V12.1/ D �1

M0 D V0.�1/� V.1/ D 3
M1 D V1.�1/� V1.1/ D 1
M2 D V2.�1/� V2.1/ D �3

M12 D V12.�1/� V12.1/ D �1

Now the distribution function E.t/ is formed, where

2kE.t/ D
X

.j/

M.j/.1C t/k�s.1 � t/s;
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where k is the highest index of gi.x1/, and s is the number of elements in .j/ (taken
as 0 for M0), e.g., s D 2 for M12. For this example k D 2, and one finds

E.t/ D 1

4
Œ3.1C t/2 C .1C t/.1 � t/ � 3.1C t/.1 � t/ � .1 � t/2�

Arranging E.t/ in descending powers of t, one has

E.t/ D t2 C 2t:

The coefficients of powers of t in E.t/ give the number of ˛’s between the
consecutive ˇ’s, except for the outlying ˇ’s. Hence, so far one has ˛ˇ˛˛. To find
the number of outlying ˇ’s one has to find � and 	 where,

� D varfSŒg0.a/; g1.a/�g
	 D varfSŒg0.b/; g1.b/�g

Define � 0 as the highest power of t in E.t/ and 	0 as the lowest power of t in E.t/.
For the example at hand, � D 2, � 0 D 2, 	 D 0, and 	0 D 1. Then the number of
ˇ’s on either side of the string found from coefficients of t in E.t/ is given by � � � 0
as the number of ˇ’s on the left-hand side of the string, and by 	0�	 as the number
of ˇ’s on the right-hand side of the string. Here one has

� � � 0 D 2 � 2 D 0
	0 � 	 D 1 � 0 D 1:

Hence the final ordering is given by ˛ˇ˛˛ˇ.

The procedure of Gummer was generalized to the case of multiple zeros by
Meserve, using strategies exactly similar to those in Sturm’s theorem for multiple
zeros. Meserve also obtained other results related to the content of a finite system of
univariate polynomial inequalities.

2.2.2 Tarski’s Theorem in Elementary Decision Algebra

Several definitions are in order before the enunciation of the main theorem. The
treatment closely parallels Cohen’s development and proof [31] of Tarski’s main
result.

Definition 2.1. A set S is given with certain relations M˛ defined on S. Each M˛

is a subset of the direct product of S with itself N˛ times for some integer N˛ .
An elementary statement .sentence/ about the M˛ is a statement formed by using
the logical symbols denoting elementary operations on and elementary relations
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between real numbers:
T

(conjunction, and); bigcup (disjunction, or); (negation,
not);) (implication);, (equivalence); = (equal); symbols for variables x1; x2; � � � ,
which exclusively represent real numbers; universal and existential quantifiers,8; 9,
respectively; and the relation symbols M˛ .

Algebraic equations and inequalities are among what are dubbed formulas of
elementary algebra, and by combining equations and inequalities by logical expres-
sions listed in Definition 2.1, arbitrary sentences of elementary algebra can be
constructed. These sentences can, of course be true or false. Two sentences of
elementary algebra follow; the first is true, but the second is false:

(a) For every ak, k D 0; 1; 2; � � � ; n;with an 6D 0 and n an odd positive integer, there
exists an x1 such that

Pn
kD0 akxk

1 D 0.
(b) 0 > .1C 1/C .1C 1C 1/.
Definition 2.2. A decision method for a class S of sentence is a method by means
of which it is always possible to decide in a finite number of steps whether any
prescribed sentence S1 belongs to the class S. A decision problem for a class S is the
problem of finding or constructing a decision method for S.

Definition 2.3. A field K is called formally real if the only relations of the formPm
kD0 a2k D 0 are those for which every ak D 0, where ak 2 K and m is a

nonnegative integer.

The field of rational numbers, any field which is a purely transcendental
extension of the field of rational numbers, and the field of rational functions in
several indeterminates with coefficients in the field of rational numbers are all
examples of formally real fields. It is simple to show that any field of nonzero
characteristic, e.g., a finite field, cannot be formally real. Any formally real field
can be ordered. The field axioms involve the following relations:

R1.x1; x2; x3/ � .x1 C x2 D x3/; R2.x1; x2; x3/ � .x1:x2 D x3/; (2.1)

which follow the well known axioms concerning closure, associativity, commutativ-
ity, distributivity, inverses, identities, etc. A real-closed field, defined next, has more
axioms.

Definition 2.4. A field K is called real-closed if K is formally real and no proper
algebraic extension of K is formally real. (An algebraic extension is the field K.˛/
formed by adjoining a root of a polynomial with coefficients in K.)

The field of real numbers is a real-closed field. Any real-closed field can be ordered
in one and only one way. The axioms of a real-closed field are essential to the
understanding of the decision problem for real fields and are given next.

Fact 2.1. The axioms of a real-closed field K are: (a) The axioms for a field. (b)
The order axiom, which involves over and above the relations given in Eq. (2.1) a
third relation

R3.x1; x2/ � .x1 < x2/: (2.2)
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The inequality in (2.2) represents an ordering, and 0 < x1; 0 < x2 implies that 0 <
x1x2, and 0 < x1Cx2. Also, for any element x in K, one and only one of the relations
x D 0; x > 0;�x > 0, holds. (c) The closure property, which states that for a m1th
degree polynomial, .m1 > 0/, f .x1/ 2 KŒx1�, if given that x1 < x2 and x1; x2 2 K it
is true that f .x1/ < 0 and f .x2/ > 0, then 9x3 with x1 < x3 < x2 f .x3/ D 0.

As K is real-closed, KŒ
p�1� is algebraically closed, so that f .x1/ splits into linear

and quadratic irreducible factors over K. Quadratic factors are of the form

x21 C cx1 C d D
�

x1 C c

2

�2 C
�

d � c2

4

�

;

where because of irreducibility d > c2=4. Therefore, sign changes come only from
linear factors which go to zero between x1 D a and x2 D b.

Definition 2.5. Let x1; x2; � � � ; xn be variables whose common domain is a Boolean
algebra B. Then, a function f .x1; x2; � � � ; xn/ built up from these variables and from
elements of B by a finite number of application of the operations

T
,
S

, and negation
is called a Boolean function of x1; x2; � � � ; xn.

Definition 2.6. A polynomial relation P.x1; x2; � � � ; xn/ is a Boolean function of a
finite number of relations of the form

a.x1; x2; � � � ; xn/ > 0; where a.x1; x2; � � � ; xn/ 2 ZŒx1; x2; � � � ; xn�;

where Z is the ring of integers. (In the original presentation of Tarski, relations of
the form a.x1; x2; � � � ; xn/ D 0, were also included.)

Tarski’s decision method is based on a procedure for eliminating quantifiers
and therefore the observation summarized next is important, though not difficult
to confirm.

Fact 2.2. All elementary statements occurring in the theory of decision problem for
real fields can be reduced to the form, .Q1x1/.Q2x2/ � � � .Qixi/P.x1; x2; � � � ; xn/ (a
standard prenex formula), where the Qi’s are the universal or existential quantifiers
.i � n/, and P.x1; x2; � � � ; xn/ is a polynomial relation and is quantifier-free.

Fact 2.3. It is possible to obtain, via use of rational operations only, the ordering
of the zeros in any real interval of a system of univariate polynomial equations,
irrespective of the multiplicity of the roots present.

Cohen’s proof of Tarski’s theorem on decision procedure for real fields dwells
heavily on the concept of effective real-valued functions, which is considered next.

Definition 2.7. A real-valued function f .x1; x2; � � � ; xn/ is effective if there is a
primitive recursive procedure which to every polynomial relation P1.y; xnC1; xnC2;
� � � ; xm/ assigns a polynomial relation P2.x1; x2; � � � ; xn; xnC1; xnC2; � � � ; xm/ such
that

P1.f .x1; x2; � � � ; xn/; xnC1; � � � ; xm/$ P2.x1; x2; � � � ; xn; xnC1; � � � ; xm/:
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The notion of primitive recursive procedure required in the above discussion is
very briefly discussed next. For additional details, the reader is referred to standard
texts on the theory of computation [34]. Functions computable by programs for a
universal calculator are called partial functions.

Definition 2.8. Let n be a nonnegative integer, let g be a partial function of n
variables (a function of zero variables is a constant), and let h be a partial function
of n C 2 variables. A partial function f of n C 1 variables is said to be defined by
primitive recursion from g and h provided that

f .x1; x2; � � � ; xn; 0/ D g.x1; � � � ; xn/

f .x1; � � � ; xn; xnC1 C 1/ D h.x1; � � � ; xn; xnC1; f .x1; � � � ; xnC1//: (2.3)

These recursion equations determine f .x1; � � � ; xn; xnC1/ if the following conditions
are satisfied: (i) If f .a1; � � � ; an; anC1/ is defined, then so is f .a1; � � � ; an; b/ for all
b � anC1 and all instances of the recursion equation corresponding to values b �
anC1 are satisfied by f; (ii) f is undefined in all other cases.

Some well known primitive recursive (and therefore computable) functions are
sum, product, power, modified difference (defined for x1; x2 as jx1�x2j), and signum
function (denoted as sgnx1, which has values �1, 0, 1 according as x1 < 0; x1 D
0; x1 > 0, respectively). In Definition 2.7, effective functions, like computable
functions, are closed under composition.

Fact 2.4. f .x1; � � � xn/ is effective if there is a primitive recursive function which
assigns to every m a polynomial relation P.c0; � � � ; cm; x1; � � � ; xn; y/ such that

P.c0; � � � ; cm; x1; � � � ; xn; y/$ y D sgn.cmf m C � � � C c0/:

Definition 2.9. Let a.x1/ be a polynomial in a single indeterminate. By a graph for
a.x1/ is meant a k-tuple x11 < x12 < � � � < x1k such that in each open interval of
the form .�1; x11/; .x11; x12/; � � � ; .x1k;1/; a.x1/ is monotonic. By the data of the
graph is meant the k-tuple .x11; � � � ; x1k/ along with sgn( a.x1i//; i D 1; 2; � � � ; k,
sgn( a.x11 � 1/), and sgn( a.x1k C 1/).

The following lemmas are required for proof of the main theorem to follow.

Lemma 2.1. A graph for the univariate polynomial

a.x1/ D
m1X

kD0
akxk

1

is defined by 2m1 effective functions of the coefficients ak’s, namely x1k, sgna.x1k/

for k D 1; 2; � � � ;m1 � 1; sgna.x11 � 1/, and sgn.x1.m1�1/ C 1/, with x11 < x12 <
� � � < x1.m1�1/ forming a graph for a.x1/.
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Lemma 2.2. For the univariate polynomial

a.x1/ D
m1X

kD0
akxk

1

there are m1C1 effective functions of the ak’s, namely r and b11 < b12 < � � � < b1m1 ,
such that b11; b12; � � � ; b1r are all the (real) roots of a.x1/.

Proof. The proofs for the above Lemmas 2.1 and 2.2 rest on the principle of
mathematical induction. When m1 D 1, the lemmas are trivially true. Now, assume
that both lemmas are true for all values greater than 1 but less than a given m1. To
prove Lemma 2.1, consider the derived polynomial a0.x1/ D da.x1/=dx1, whose
real zeros lie among b11; b12; � � � ; b1.m1�1/, which by Lemma 2.2 (as the degree
of da.x1/=dx1 is less than m1) are effective functions of the coefficients of a.x1/,
and effective functions are known to be closed under composition). By a similar
reasoning, as sgn x1 is an effective function, and b1k, 1 � k � m1 � 1 are effective
functions of the coefficients of a.x1/, the functions sgn a.b1k/, 1 � k � m1 � 1, sgn
a.b11 � 1/, and sgn a.b1.m1�1/ C 1/ must be effective. Therefore the 2m1 effective
functions of the ak’s, namely b1k, sgn a.b1k/.1 � k � m1 � 1/, sgn a.b11 � 1/, and
sgn a.b1.m1�1/ C 1/, form the data of a graph for a.x1/.

To prove Lemma 2.2, let x11 < x12 < � � � < x1.m1�1/ be effective functions of the
ak’s defining a graph for a.x1/, as is known to be possible from proved Lemma 2.1.
By examining sgn a.x1k/, 1 � k � m1 � 1, sgn a.x11 � 1/, and sgn a.x1.m1�1/ C 1/
it is possible to determine the number of real roots of a.x1/ (this is also known
to be possible by rational operations on the coefficients of a.x1/ via use of Sturm’s
theorem [35]). In each of the open intervals .�1; x11/; .x11; x12/; � � � ; .x1.m1�1/;1/,
there can be at most one real root of a.x1/, and it is required to prove that these roots
are effective functions of the coefficients of a.x1/. Consider the case of one possible
root at x1 D b1i in the interval .x1i; x1.iC1//. Before use of Fact 2.4, it is sufficient to
show that if a polynomial is given to be of the form

c.x1/ D
mX

kD0
ckxk

1;

then sgn c.b1I/ is an effective function of the ak’s and ck’s. Based on arguments
involving division of polynomials, clearly only the case m < m1 need be considered.
Then, invoking Fact 2.3, it is possible via rational operations to order the real roots
of c.x1/ and a.x1/. This will lead to the determination of sgn c.b1I/, which therefore
must be an effective function of the ck’s and ak’s. Consequently, by Fact 2.4 the
root x1 D b1I must be an effective function of the ak’s. Similar arguments can be
advanced for any other root of a.x1/, and the proof of Lemma 2.2 is now complete.
Tarski’s theorem is stated next.
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Theorem 2.1. If P.x1; x2; � � � ; xn/ is a polynomial relation, n > 1, then it is possible
to find via a primitive recursive procedure a polynomial relation T.x2; � � � ; xn/

such that

.9x1/P.x1; x2; � � � ; xn/$ T.x2; x3; � � � ; xn/ (2.4)

If n D 1, there is a primitive recursive procedure which decides, .9x1/P.x1/.
Proof. From Definition 2.6 it is evident that P.x1; x2; � � � ; xn/ is a Boolean function
of a finite number of relations of the form aI.x1; x2; � � � ; xn/ > 0. The polynomial
aI.x1; x2; � � � ; xn/ can be written in recursive canonical form in the main variable
x1. Then from Lemma 2.2 for any fixed .n � 1/-tuple .x20; x30; � � � ; xn0/ the roots
of aI.x1; x20; � � � ; xn0/ are effective functions of x20; � � � ; xn0, and by Lemma 2.1
an effective graph for aI.x1; x20; � � � ; xn0/ can be found. Therefore, by examining
the various possibilities associated with the .n � 1/-tuple .x2; x3; � � � ; xn/, one can
determine what the various possibilities are for the sequence {sgn aI.x1; x2; � � � ; xn/}
for an arbitrary n-tuple .x1; x2; � � � ; xn/. This in turn implies that a polynomial
relation T.x2; x3; � � � ; xn/, satisfying (2.4) can be found.

Theorem 2.1 summarizes a quantifier-elimination algorithm. From it follows the
fact that the algorithm may accept as input any standard prenex formula of the form

.Q1x1/.Q2x2/ � � � .Qixi/P.x1; x2; � � � ; xn/

and supply as output an equivalent standard quantifier-free formula T.xiC1,
xiC2; � � � ; xn/. Though the proof of Tarski’s theorem as outlined above is
conceptually neat and elegant, its actual implementation is likely to be
computationally involved, as is the case with Tarski’s original proof. A simple
yet nontrivial example illustrating this fact can be found in [36–39]. In fact, it can
be shown that if r is the number of multivariate polynomials occurring in a prenex
input formula and if m is the maximum degree of any such polynomial in any
variable, then the maximum computing time needed to implement the quantifier-
elimination algorithm of Tarski is exponential in both m and r, for a fixed n.

2.2.3 Seidenberg’s Procedure

This procedure also works by successive reduction of the number of variables.
However, the multivariate polynomial equality/inequality sets have a different form.
Consider the following set of polynomials, where x for brevity denotes the n-tuple of
variables .x1; x2; � � � ; xn/ and the polynomials belong to QŒx1; x2; � � � ; xn� (Q, here,
is the field of rational numbers):

f˛.x/; ˛ D 1; � � � ; r˛I gˇ.x/; ˇ D 1; � � � ; rˇ
h� .x/; � D 1; � � � ; r� I kı.x/; ı D 1; � � � ; rı: (2.5)
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The decidability question is: “Is there a real n-tuple x in a real-closed field K
containing Q which satisfies

f˛.x/ D 0; gˇ > 0; h�.x/ � 0; kı.x/ ¤ 0; (2.6)

where the subscripts ˛; ˇ; �; ı range over all the associated integers indicated
in (2.5)?” Obviously, one has

kı.x/ ¤ 0$ k2ı .x/ > 0: (2.7)

Also, it is clear that

h�.x/ � 0$ h�.x/ D 0orh� .x/ > 0 (2.8)

f˛.x/ D 0; ˛ D 1; 2; � � � ; r˛ $
rX̨

˛D1
f 2˛ .x/ D 0 (2.9)

gˇ.x/ > 0$ x2nC1gˇ.x/ D 1: (2.10)

In (2.10), xnC1 is another indeterminate. Using (2.7), (2.8), and (2.9), it is seen
that x satisfies (2.6) if and only if it satisfies at least one of a number of sets of
equation-inequalities of the following type:

f .x/ D 0; gˇ.x/ > 0; ˇ D 1; 2; � � � ; r.1/ˇ: (2.11)

(Each inequality hgamma.x/ � 0 doubles the number of such sets.)
Using (2.9), (2.10) and (2.11) it is evident that x satisfies (2.6) if .x; xnC1; � � � ; xnCn1 /

satisfies any one of a number of polynomial equations of the type

f
�.x; xnC1; � � � ; xnCn1 / D 0; n1 � r.1/ˇ: (2.12)

In (2.12), xnC1; � � � ; xnCn1 are n1 additional indeterminates necessitated by equiva-
lences of the type (2.10). In (2.12), if 1 � k � n
 then x satisfies (2.6) if and only if
.x; xnC1; � � � ; xnCn1 / satisfies

n
Y

kD1
f
� .x; xnC1; � � � ; xnCn1 / D 0: (2.13)

As

gˇ.x/ > 0$ �gˇ.x/ < 0 (2.14)

and

h� .x/ � 0$ �h� .x/ � 0; (2.15)

the following statement is true:
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Fact 2.5. The answer to a decidability question on the existence of an n-tuple in a
real-closed field satisfying any n-variate polynomial equality/inequality set involv-
ing signs, D; <;>;�;�; and ¤ can be obtained by answering the decidability
question on the existence of an .nCn1/-tuple, n1 � 0, in a real-closed field satisfying
a single .nC n1/-variate polynomial equation.

Seidenberg’s starting point is the replacement of an initially prescribed equal-
ity/inequality set with a single equality. It must, however, be borne in mind that
from the computational standpoint this strategy might not be the most efficient.
Seidenberg also gives a procedure for concluding for a prescribed pair of n-variate
polynomials fn.x/; gn.x/ belonging to QŒx1; x2; � � � ; xn� (where Q may denote other
formally real fields besides the field of rational numbers and gn may be absent) that

fn.x/ D 0; gn.x/ ¤ 0 (2.16)

holds for some real n-tuple x if and only if one of a finite set of equations of the type

fn�1.x1; � � � ; xn�1/ D 0; gn�1.x1; � � � ; xn�1/ ¤ 0 (2.17)

holds for some real .n � 1/-tuple .x1; � � � ; xn�1/. The sets of fn�1; gn�1 in (2.17) are
computable from fn and gn in (2.16) by rational operations (involving operations
of addition, subtraction, multiplication, and division only) and fn�1; gn�1 belong
to QŒx1; x2; � � � ; xn�1�. Further, to within an inessential bijective transformation, if
.x10; � � � ; x.n�1/0/ is a solution to (2.17), then there is a solution to (2.16) of the
form .x10; � � � ; xn0/. This means that, knowing a particular solution to any of the sets
in (2.17), one can construct a solution of (2.16) by factoring a univariate polynomial
fn.x10; � � � ; x.n�1/0; xn/ in the variable xn and checking which real zero xn D xn0

yields gn.x10; � � � ; xn0/ ¤ 0.
Seidenberg proceeded by first giving a decision procedure for determining

whether a bivariate polynomial f .x1; x2/ 2 QŒx1; x2� has a zero in a real-closed field
K containing Q (the case when K is the field of real numbers is of immediate interest
to us). The procedure is based on the following facts.

Fact 2.6. Let f .x1; x2/ 2 QŒx1; x2� � KŒx1; x2�. Then, if f .x1; x2/ D 0 has a solution
in K, it has a solution in K with x21 C x22 minimum; i.e., there is a pair .x10; x20/ in
K satisfying f .x1; x2/ D 0 which is nearest to the point (0, 0).

Fact 2.6 can almost immediately be established when K is the field of real
numbers; for proof of its validity when K is an arbitrary real-closed field, see [33,
pp. 300–303], or [32, pp. 370–371]. Prior to stating Fact 2.7, it is necessary to define
the notion of simple and singular points on plane algebraic curves.

Definition 2.10. A point .x10; x20/ on f .x1; x2/ D 0 is simple if and only if

 

.frac@f .x1; x2/@x1/.x10;x20/ ;

�
@f .x1; x2/

@x2

�

.x10;x20/

!

¤ .0; 0/:

Otherwise, the point .x10; x20/ will be called singular.
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Fact 2.7. Let f .x1; x2/ 2 QŒx1; x2� � KŒx1; x2�. Let .x10; x20/ 2 .K;K/ be a point of
intersection of f .x1; x2/ D 0 and a circle. Assume that .x10; x20/ is simple and that
the tangent to f .x1; x2/ at .x10; x20/ has points interior to the circle. Then f .x1; x2/ D
0 has points interior to the circle.

The proof of Fact 2.7 can be found in [33, pp. 302–303], [32, p. 371]. The tangent
line to the curve f .x1; x2/ D 0 at a simple point .x10; x20/ is given by

�
@f

@x1

�

.x10;x20/

.x1 � x10/C
�
@f

@x2

�

.x10;x20/

.x2 � x20/ D 0: (2.18)

Fact 2.8, to be stated next, is trivially true when .x10; x20/ is a singular point or
when .x10; x20/ coincides with the center, .x11; x21/.

Fact 2.8. Let f .x1; x2/ 2 QŒx1; x2�. If f .x1; x2/ D 0 has a solution in K, then the
equations

f .x1; x2/ D 0

and

g.x1; x2/ D .x2 � x21/
@f

@x1
� .x1 � x11/

@f

@x2
D 0

have a common solution in K for any x11; x21 2 K.

Fact 2.8 provides the key to determining whether or not f .x1; x2/ D 0 has
a solution in K. When K is the real-closed field of real numbers, the following
approach for determining whether or not f .x1; x2/; g.x1; x2/ has a common solution
in K is almost self-evident. Without any loss of generality, f .x1; x2/ and g.x1; x2/will
be assumed to be relatively prime (a common factor, if present, could be similarly
treated, after extraction, as the given polynomial f .x1; x2/). Let r1.x1/; r2.x1/ be,
respectively, the resultants after writing the two bivariate polynomials f .x1; x2/ and
g.x1; x2/ in recursive canonical form, first with x2 as main variable and then with x1
as main variable. Since r1.x1/ � 0.r2.x2/ � 0/ if and only if f .x1; x2/ and g.x1; x2/
have a common factor of positive degree in x2.x1/, here by assumption, r1.x1/ 6�
0; r2.x2/ 6� 0. It is simple to establish that common zeros of f .x1; x2/; g.x1; x2/ in
K can only come from the zeros of r1.x1/ and r2.x2/ in K. By Sturm’s theorem it
is possible to determine within arbitrary accuracy the finite set of pairs comprised
of all possible combinations of zeros in K—one of r1.x1/ and the other of r2.x2/.
Each such pair can then be substituted to check whether it is a point on f .x1; x2/ D
0; g.x1; x2/ D 0. Other variants in the use of Sturm’s theorem to decide whether
f .x1; x2/ has a zero in K via use of Fact 2.8 can be found in [32, pp. 366–368].

Before extending the decidability problem under discussion to polynomials in
more than two indeterminates, Seidenberg gave a procedure to decide for the
existence of solutions in K for f1.x1; x2/ D 0; g.x1/ ¤ 0 in terms of existence of
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solutions in K for f .x1; x2/ D 0, where f1.x1; x2/; f .x1; x2/ 2 QŒx1; x2� � KŒx1; x2�
and g.x1/ 2 QŒx1� � KŒx1�. This was done as follows: Without any loss of
generality, f1.x1; x2/ and g.x1/ can be taken to be relatively prime (if not, the g.c.f.
can be extracted from g.x1/ and the polynomial coefficients in x1 of f1.x1; x2/, after
writing it in recursive canonical form with x2 as main variable). Also, assume that
f1.x1; x2/ D 0 and g.x1/ D 0 do not meet on line x2 D 0. Otherwise choose as
the new x1-axis the line x2 D x21, where x21 is greater than any real root of the
resultant r.x2/ of g.x1/ and f1.x1; x2/ written in recursive canonical form with x1 as
main variable). Define

f .x1; x2/ � f1.x1; x2g.x1// (2.19)

Then, if a pair .x10; x20/ satisfies f .x1; x2/ D 0, then f1.x10; x20g.x10// D 0; g.x10/ ¤
0, because f1.x1; 0/ and g.x1/ are relatively prime. Again if a pair .x10; x20/ satisfies
f1.x1; x2/ D 0; g.x1/ ¤ 0, then f .x10; x20Œg.x10/��1/ D 0. These results are
summarized in the following lemma.

Lemma 2.3. Let g.x1/ 2 QŒx1� � KŒx1�; f1.x1; x2/ 2 QŒx1; x2� � KŒx1; x2�. Without
loss of generality, assume that g.x1/ and f1.x1; x2/ are relatively prime (of course,
each can be assumed to be of nonzero degree in x1, to avoid the trivial case), and
furthermore assume that f1.x1; 0/ and g.x1/ are relatively prime. Then f1.x1; x2/ D
0; g.x1/ ¤ 0 has a solution in K if and only if f .x1; x2/ D 0 (with f .x1; x2/ defined
in (2.19)) has a solution in K.

The above scheme can be extended to apply to multivariate polynomial equali-
ties/inequalities by treating all but two of the indeterminates as parameters, where
each parameter belongs to a real-closed field. This extended result is summarized in
the following theorem.

Theorem 2.2. Let f .t1; t2; � � � ; trI x1; x2/ 2 QŒt1; t2; � � � ; trI x1; x2� and g.t1; t2; � � � ;
trI x1/ 2 QŒt1; t2; � � � ; trI x1�, where Q is the field of rational numbers. Then, it is
possible to determine in a finite number of steps involving rational operations a finite
set of pairs of polynomials .fk.t1; � � � ; trI x1/; gk.t1; � � � ; tr//, with fk.t1; � � � ; trI x1/ 2
QŒt1; � � � ; trI x1�, gk.t1; � � � ; tr/ 2 QŒt1; � � � ; tr�, k D 1; 2; � � � ; s, such that for each
ti D ti0 in a real-closed field K; i D 1; 2; � � � ; r,

f .t10; � � � ; tr0I x1; x2/ D 0; g.t10; � � � ; tr0I x1/ ¤ 0 (2.20)

is solvable for x1; x2 2 K if and only if one of the following conditions is solvable
for x1 in K:

fk.t10; � � � ; tr0I x1/ D 0; gk.t10; � � � ; tr0/ ¤ 0: (2.21)

A detailed discussion leading to the proof of this theorem is contained in
[33, pp. 308–312] and the interested reader is referred to the excellent treatment
given there. Theorem 2.2 leads to the result stated next, which in essence is a
generalization of the classical theorem due to Sturm.
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Theorem 2.3. Consider any collection fCg of polynomial equality/inequality
sets involving signs, D; >;<;�;�; and ¤, where each polynomial belongs to
QŒt1; � � � ; trI x1; � � � ; xn� (again Q is the field of rational numbers). Then, it is
possible to determine in a finite number of steps a finite collection of finite sets
fCjg of polynomial equations and inequalities of the same type, in the parameters
t1; � � � ; tr alone, such that the collection fCg has a solution in a real-closed field K
for the indeterminates x1; x2; � � � ; xn with the parameters ti set at, say, ti D ti0 2 K
for i D 1; 2; � � � ; r, if and only if the r-tuple .t10; � � � ; tr0/ satisfies all the conditions
of one of the sets fCjg.
Proof. From Fact 2.5, it is sufficient to consider the solvability in K of a polynomial
equation of the type

f .t1; t2; � � � ; trI x1; � � � ; xn/ D 0; (2.22)

where f .t1; � � � ; trI x1; � � � ; xn/ 2 QŒt1; � � � ; trI x1; � � � ; xn� and ti 2 K; i D 1; 2; � � � ; r
are parameters. It will be shown via the principle of mathematical induction that
there exist a finite number of polynomials gk.t1; � � � ; tr/ 2 QŒt1; � � � ; tr�; k D
1; 2; � � � ; s and an equal number of polynomials fk.t1; � � � ; trI x1/ 2 QŒt1; � � � ; trI x1�
such that for ti D ti0 2 K; i D 1; 2; � � � ; r, the equation in ( 2.18) with each
ti specialized to ti0 has a solution in K if and only, if for at least one k in k D
1; 2; � � � ; s,

fk.t10; � � � ; tr0I x1/ D 0; gk.t10; � � � ; tr0/ ¤ 0

has a solution in K, where fk.t1; � � � ; trI x1/; gk.t1; � � � ; tr/ are computable in a finite
number of steps via rational operations.

The preceding statement is trivially true for n D 0; n D 1, and the truth of the
statement for the n D 2 case follows from Theorem 2.2. Assume that the statement
is valid for n � 1 variables xi; i D 1; 2; � � � ; n � 1, where n > 2. With x1 treated as
a parameter, polynomials fk1.t1; � � � ; trI x1; x2/; gk1.t1; � � � ; trI x1/; k D 1; 2; � � � ; s1,
can be computed such that for any specialization, ti D ti0 2 K; i D 1; 2; � � � ; r; x1 D
x10 2 K, the equation

f .t10; � � � ; tr0I x10; x2; � � � ; xn/ D 0

has a solution in K if and only if at least one of the equality/inequality

fk1.t10; � � � ; tr0I x10; x2/ D 0; gk1.t10; � � � ; tr0I x10/ ¤ 0;

for k D 1; 2; � � � ; s1 has a solution in K. It then follows that for any ti D ti0 2 K; i D
1; 2; � � � ; r, ( 2.18) with each ti specialized to ti0 has a solution in K if and only if,
for some k in k D 1; 2; � � � ; s1,

fk1.t10; � � � ; tr0I x1; x2/ D 0; gk1.t10; � � � ; tr0I x1/ ¤ 0 (2.23)
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is solvable in K. Direct use of Theorem 2.2 then leads to a finite set of polynomials
fk1j.t1; � � � ; trI x1/; gk1j.t1; � � � ; tr/; j D 1; 2; � � � ; jk, obtainable in a finite number of
steps via rational operations for each k in k D 1; 2; � � � ; s1 in (2.10), such that the
equality/ inequality set in (2.10), has a solution in K if and only if at least one of the
equality/ inequality sets of the form,

fk1j.t10; � � � ; tr0I x1/ D 0; gk1j.t10; � � � ; tr0/ ¤ 0 (2.24)

has a solution of K, where j D 1; 2; � � � ; jk. Solvability in K of (2.20) can be decided
via rational operations in a finite number of steps by making use of the classical
theorem due to Sturm. The proof of the theorem is now complete.

It has been shown that if r is the number of multivariate polynomials occurring
in a prenex input formula and if m is the maximum degree of any such polynomial
in any variable, then the maximum computing time required to implement Seiden-
berg’s decision procedure is, like Tarski’s scheme, exponential in both r and m, for
a fixed n.

2.2.4 Collins’ Procedure

This quantifier elimination algorithm accepts as input any standard prenex formula
of the form

.Q1x1/.Q2x2/ � � � .Qixi/P.x1; x2; � � � ; xn/ (2.25)

(where P.x1; � � � ; xn/ is a quantifier-free standard formula constructed from atomic
formulas involving signs, D; >;<;¤;�; and;�, and each .Qixi/ is either an
existential or universal quantifier) and as output produces an equivalent standard
quantifier-free formula T.xiC1; � � � ; xn/. It has been shown that the maximum
computing time of the procedure is dominated by

.2m/2
.2nC8/

r2
.nC6/

l3s;

where m is the maximum degree of any polynomial (in JŒx1; � � � ; xn�, where J is any
commutative ring with identity, e.g., the ring of integers) in any variable xi in the
prenex input formula, n is the number of variables, r is the number of polynomials
occurring in the input formula, l is the maximum length of any coefficient belonging
to J in the formula, and s is the number of atomic formulas from which the
input prenex formula is constructed. If fp1; � � � ; prg is the set of all polynomials
occurring in (2.25), the procedure establishes that there is a decomposition of the
n-dimensional real space Rn, into a finite number of disjoint connected sets called
cells, in each of which each polynomial in the set fp1; � � � ; prg is sign invariant.
These cells are cylindrically arranged with respect to each of the n variables, and
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their boundaries are the zeros of certain polynomials derivable in a finite number
of steps from the polynomials in fp1; � � � ; prg. These polynomials, whose zeros
determine the boundaries of the cells, are the result of successive projections of
a set of polynomials in k�1 indeterminates, for k D n; n�1; � � � ; 2. The cylindrical
arrangement of cells is ensured by a condition called delineability of roots, defined
next.

2.3 Sum of Squares (SOS) Representation and Robust
Optimization

There has been a surge of interest during the last decade in the topics of semidefinite
programming, semialgebraic sets (defined by multivariate polynomial equations,
inequations and inequalities), robust optimization and sum-of-squares represen-
tation of classes of nonnegative definite multivariate polynomials and forms for
applications in analysis and synthesis of control systems.

Definition 2.11. A basic semialgebraic set is a subset of Rn defined by a finite
number of polynomial equations and inequalities.

Example 2.2. (1)

	

.x1; x2/ 2 R
2

ˇ
ˇ
ˇ
ˇ
x21
32
C x22
22
� 1; x21 � x2 � 0




(2)

f .x/ 2 RŒx�; f .x/ > 0;8x; x , .x1; : : : ; xn/

Approaches for (2) include:

1. Elementary decision algebra methods (A. Tarski, Seidenberg, Collins, N. K.
Bose, B. D. O. Anderson, E. I. Jury), already discussed in this chapter.

2. Gram matrix method (N. K. Bose, C. C. Li, M. D. Choi, T. Y. Lam, B. Reznik)
[40].

3. Sum of squares (SOS) representation, when possible to do (SOSTOOLS,
SEDUMI), because positive multivariate polynomials or forms may not always
be representable as a sum of squares or forms.

4. Semidefinite programming to test feasibility of algebraic sets (C.N. Delzell
(1980), P. A. Parrilo, B. Sturmfels) [41, 42].

5. Global lower bound approach (N. Z. Shor) [43].
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2.3.1 SOS Decomposition by Gram Matrix Method

[40, 44–46].

Fact 2.9. A multivariate real coefficient polynomial p.x/ in n real variables x ,
.x1; : : : ; xn/ and of total degree 2d is a SOS if and only if it is representable as

p.x/ D vTQv, where the
�

nCd
d

�
vector of monomials,

vT D .1 x1 x2 : : : xn x1x2 : : : : : : xd
n/

and Q is a symmetric PSD (positive semidefinite) matrix.

2.3.1.1 Nonnegativity of a Polynomial f.x/ on an Algebraic Variety

Let hi.x/ D 0 be constraints and let I denote the polynomial ideal I D
hh1.x/; : : : ; hl.x/i. Then, there exist polynomials 	i.x/ 2 RŒx� such that f .x/ CP

i 	i.x/hi.x/ is a SOS in n-variate polynomial ring RŒx� if and only if f .x/ C I
is a SOS in the quotient ring RŒx�=I: Under these equivalent conditions, f .x/ is
nonnegative on the real variety fx 2 R

njhi.x/ D 0;8ig [47, pp. 187–188].

Example 2.3. This example is considered in [47, pp. 187–188], where some errors
that occur are corrected below.

Is f .x/ D 10 � x21 � x2 nonnegative on x21 C x22 � 1 D 0? I D hx21 C x22 � 1i in
this case of one constraint equation, h.x/ D x21 C x22 � 1 is the Gröbner basis of the
corresponding ideal

10� x21 � x2 D . 1 x1 x2 /

0

@
q11 q12 q13
q12 q22 q23
q13 q23 q33

1

A

0

@
1

x1
x2

1

A

D q11 C q22x
2
1 C q33x

2
2 C 2q12x1 C 2q13x2 C 2q23x1x2 (2.26)

In the quotient ring RŒx�=I,

f .x/. mod I/ D .q11 C q22/C .q33 � q22/x
2
2 C 2q12x1 C 2q13x2 C 2q23x1x2

D 9C x22 � x2 , vTQ1v; (2.27)

where v denotes the vector in Fact 2.9 above corresponding to this example and

Q1 D
0

@
9 0 �1=2
0 0 0

�1=2 0 1

1

A D LTL;L D
�
3 0 �1=6
0 0
p
35=6

�
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) 10 � x21 � x2 �
�
3 � x2

6

�2 C 35

36
x22.mod I/

) f .x1; x2/ is a SOS on RŒx1; x2�=I

Therefore, SOS on quotient ring RŒx�=I is needed, where I D hhi.x/iliD1 is the
ideal generated by equality constraints. The computations can be effectively done in
RŒx�=I after computing the Gröbner basis for I [47].

2.3.2 Positivstellensatz

A concept central in real algebraic geometry (like Hilbert’s Nullstellensatz in
complex algebraic geometry) is stated next.

Theorem 2.4 (Stengle’s Positivstellensatz (1974)). Given polynomials

ff1; : : : ; frg; fg1; : : : ; gkg and fh1; : : : ; hlg in x D .x1; : : : ; xn/;

the following are equivalent:

1.

8
<

:
x 2 R

n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

fi.x/ � 0; i D 1; 2; : : : ; r
gi.x/ ¤ 0; i D 1; 2; : : : ; k
hi.x/ D 0; i D 1; 2; : : : ; l

9
=

;

is the empty set.
2. There exist polynomials f 2 (cone generated by ff1; : : : ; frg), g 2 (cone generated

by fg1; : : : ; gkg), and h 2 (cone generated by fh1; : : : ; hlg) such that f Cg2Ch D
0.

Comments

1. The multiplicative monoid M generated by fgigkiD1 is the set of all finite products
of gi’s including 1. e.g.

M.g1; g2/ D fgk1
1 ; g

k2
2 jk1; k2 2 ZC [ f0gg

2. The cone generated by ffigriD1 is

P.f1; : : : ; fr/ D
(

s0 C
lX

iD1
sibijl 2 ZC; si 2 †n; bi 2 M.f1; : : : ; fr/

)

where†n denotes the set of SOS polynomials in n-variables. Note that f 2i si 2 †n

as well.
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3. Positivstellensatz gives a characterization of the infeasibility of polynomial
equations and inequalities over the reals.

The Positivestellensatz (P-satz) is useful because it provides a characterization of
the infeasibility (refutation) of a system of polynomial equations and inequalities in
conjunction with polynomial SOS and is beginning to be used in control theory [42].



Chapter 3
Multidimensional Sampling

3.1 Introduction

Digital filtering is used to process discrete data, obtained either from sampling
continuous signals or in some other manner. Its range of application is extensive,
including the processing of geophysical, biomedical, television and video, sonar,
and radar data. Most of the discussion in this chapter applies to multidimensional
problems, though for brevity in exposition the 2-D problem will be emphasized. In
cases where brevity is not sacrificed, the results will be stated in the general n-D
format, and situations where the generalization from the n D 2 case cannot be made
in a straightforward manner, will be identified. This philosophy will be adhered to
not only in this chapter but also in the rest of the book.

Various strategies exist to sample band-limited multidimensional signals. Con-
sistent with current practice, parentheses and square brackets are used, respectively,
around continuous variables and discrete integer-valued indices. Rectangular sam-
pling of a 2-D analog waveform ga.x1; x2/ produces the discrete signal (k1; k2 are
integer valued)

gŒk1; k2� D ga.k1X1; k2X2/;

where X1 and X2 are the horizontal and vertical uniform sampling periods along each
of the two orthogonal axes, generating an uniform orthogonal sampling raster. Let
F and IF denote, respectively, the Fourier transform and inverse Fourier transform
operators. The 2-D Fourier transform of ga.x1; x2/ is

Ga.�1;�2/ , FŒga.x1; x2/�

D
Z 1

�1

Z 1

�1
ga.x1; x2/e

�j.�1x1C�2x2/dx1dx2:

© Springer International Publishing AG 2017
N.K. Bose, Applied Multidimensional Systems Theory,
DOI 10.1007/978-3-319-46825-9_3

57
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It will be assumed that ga.x1; x2/ is such that Ga.�1;�2/ exists. There are a number
of sets of sufficient conditions on ga.x1; x2/ each of which guarantees existence
of the integral above, and the theory of multidimensional Fourier transformation
both in its classical and in its distributional sense (generalized Fourier transform
of generalized functions) is richly documented in the literature [48]. The inverse
Fourier transform relation is

ga.x1; x2/ , IFŒGa.�1;�2/�

D 1

.2�/2

Z 1

�1

Z 1

�1
Ga.�1;�2/e

j.�1x1C�2x2/d�1d�2:

If ga.x1; x2/ is bandlimited to a band-region D2, then

Ga.�1;�2/ D 0; .�1;�2/ … D2;

and the support of Ga.�1;�2/ is then said to be D2. Bandlimitedness implies
square integrability of the signal spectrum Ga.�1;�2/: In the case of a rectangular
band-region, D2 is the Cartesian product of the open intervals .��1c; �1c/ and
.��2c; �2c/ for some �1c > 0 and �2c > 0: In the case of a low-pass rectangular
band-region, for ga.x1; x2/ to be exactly recoverable from the array fgŒk1; k2�g, the
inequalities

X1 � �=�1c; X2 � �=�2c

must hold (equalities hold for the 2-D counterpart of the Nyquist rate for temporal
signals and will be referred to as such). In [49, 50] it is shown that rectangular
sampling is a special case of a more general sampling strategy by which a
bandlimited waveform is sampled on a nonorthogonal sampling raster. A special
case of this general strategy is discussed in [51], where a hexagonal sampling raster
is the subject of concern because of its relevance in phased array antennas.

The 2-D Fourier transform of the discrete array (bisequence or, for brevity,
sequence may be considered to be acceptable in place of array) fgŒk1; k2�g is defined
for notational brevity in terms of Œ!1; !2�T , ! as

G.e�j!1 ; e�j!2/ , G.!/ D
1X

k1D�1

1X

k2D�1
xŒk1; k2�e

�j.k1!1Ck2!2/:

G.!/ is obtained by evaluating the 2-D z-transform G.z1; z2/, to be defined later, of
sequence fgŒk1; k2�g at z1 D e�j!1 ; z2 D e�j!2 . It may be assumed that ga.x1; x2/ is
sampled so that no aliasing occurs, i.e., ga.x1; x2/ must be exactly recoverable from
the sampled bisequence fgŒk1; k2�g.

Indeed, then it is possible to show that from the output bisequence of the filter,
a continuous function having Fourier transform Ga.�1;�2/, may be constructed.
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If fgŒk1; k2�g whose Fourier transform is G.e�j!1 ; e�j!2/ is filtered by a linear
shift-invariant (LSI) 2-D digital filter having wavenumber response H.e�j!1 ; e�j!2/

(which is defined to be the 2-D Fourier transform of the unit impulse response
fhŒk1; k2�g of the 2-D digital filter), then the output bisequence has the product
H.e�j!1 ; e�j!2/G.e�j!1 ; e�j!2/ for its Fourier transform. The overall design prob-
lem of a multidimensional recursive digital filter involves the various phases of
approximation, realization, stabilization and stability, design optimization, and error
analysis. The stability problem will be discussed here.

3.2 Multidimensional Sampling

In one and multidimensional signal processing, a continuous-space/time signal is
usually represented and processed by its discrete samples. For a bandlimited signal,
the classical Whittaker-Shannon-Kotelnikov (WSK) sampling theorem provides an
exact representation from its uniformly spaced samples with sampling rate higher
than or equal to the Nyquist rate along each of the mutually orthogonal space/time
axis. For the sake of brevity in exposition and notation, the multidimensional
sampling strategies are illustrated by discussing, initially, the two-dimensional case.
Rectangular sampling leading to the reconstruction formula (referred to as the WSK
sampling theorem) for recovery of the analog signal from its discrete samples is a
routine generalization of 1-D results [52]. Rectangular sampling is neither the most
general nor the most efficient way to sample multidimensional signals. Hexagonal
sampling, which is more efficient than rectangular sampling, takes after the rods and
cones in the human eye that are arranged in a honeycomb (hexagonal) fashion. Grasp
of steps leading to reconstruction of rectangularly sampled signals, is, however,
indispensable in applications and for appreciation of difficulties in generalization
to the non-rectangular and nonuniform sampling cases.

Unless mentioned otherwise, the signals may be assumed to belong to the Paley-
Wiener space B�c

2 of bandlimited functions whose Fourier transforms are square-
integrable (Lp space, with p D 2), and for the derivation of the WSK theorem, the

support of the Fourier transforms is in �c , Œ��1c; �1c� � Œ��2c; �2c� : When
the Fourier transform contains delta functions associated with harmonic signals,
this assumption is violated; however, the WSK reconstruction formula holds by
sampling at a rate higher than the Nyquist rate, though the sampling series may not
exhibit pointwise convergence (convergence in the distributional sense is possible).
The reconstruction formula then holds by letting the Fourier transform have compact
support in the Cartesian product, .��1c; �1c/� .��2c; �2c/ of two open intervals.

Besides the rectangular sampling pattern, the other sampling pattern, commonly
used, is the hexagonal sampling pattern. Hexagonal sampling, to be discussed also
in this chapter, is synonymous, subject to a scaling factor, to descriptors interlaced
or quincunx.
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3.2.1 Rectangular Sampling

Consider a spatial bandlimited analog signal g.x1; x2/ related to its Fourier transform
G.f1; f2/, where�i D 2�fi for i D 1; 2, by the following relations:

FŒg.x1; x2/� , G.f1; f2/

D
Z 1

�1

Z 1

�1
g.x1; x2/expŒ�j2�.f1x1 C f2x2/�dx1dx2:

g.x1; x2/ D IFŒG.f1; f2/�

D
Z 1

�1

Z 1

�1
G.f1; f2/expŒj2�.f1x1 C f2x2/�df1df2:

The following properties of the 2-D analog delta functional ı.x1; x2/, which is
actually a generalized function, are useful for deriving the reconstruction formula
from a sufficient number of sampled values. These properties are easy to justify by
using the theory of distributions for generalized functions and the interested reader
might wish to consult [53, 54].

Fact 3.1. The direct product of the functionals ı.x1/ and ı.x2/ is ı.x1; x2/.

Proof. Use the property of distributions that: The direct product, f .x1/ �g.x2/ of two
distributions f .x1/ and g.x2/ is another distribution that can be defined with respect
to testing function �.x1; x2/ by

< f .x1/ � g.x2/; �.x1; x2/ > ,< f .x1/; < g.x2/; �.x1; x2/ >>

< ı.x1/ � ı.x2/; �.x1; x2/ > D< ı.x1/; < ı.x2/; �.x1; x2/ >>
D< ı.x1/; �.x1; 0/ >
D �.0; 0/
D< ı.x1; x2/; �.x1; x2/ >

ı.x1/ � ı.x2/ D ı.x2/ � ı.x1/ D ı.x1; x2/:

ut
Property 1. This property follows from the fact that the direct product of the 1-D
delta functional with itself is a 2-D delta functional [53, p. 116] and the scaling
property of 1-D delta functional,

ı.˛1x1; ˛2x2/ D 1

j˛1˛2jı.x1; x2/;

where ˛1; ˛2 are constants.
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Noting that the Fourier transform of the unit step function u.x1/ is�
�ı.x1/C 1

jw1

�
, the Fourier transform of the 2-D unit step u.x1; x2/ D u.x1/u.x2/

is
�
�ı.w1/C 1

jw1

� �
�ı.w2/C 1

jw2

�
D �2ı.w1;w2/C �

j

h
ı.w1/

w2
C ı.w2/

w1

i
� 1

w1w2
:

Property 2. This property follows from the fact that the support of the direct
product of two distributions is the Cartesian product of their supports [53, p. 118],
so that the brush functional on the left side may be expressed as in the right side of
the equation below with the help of Property 1.

comb.˛1x1/comb.˛2x2/ D 1

j˛1˛2j
1X

k1D�1

1X

k2D�1
ı

�

x1 � k1
˛1
; x2 � k2

˛2

�

;

where the comb functional is defined as

comb.x/ ,
1X

kD�1
ı.x� k/:

The Fourier transform of comb(x) is

1X

kD�1
ı.f � k/ D 2�

1X

kD�1
ı.! � 2�k/:

Property 3. This property follows from the 1-D counterpart of Property 1 and the
fact that the Fourier transform of an equi-spaced train of delta functionals with
spacing X1 and unit weighting is another such train [54, pp. 67–68] with spacing
1

X1
and weighting 1

X1
:

F

�

comb

�
x1
X1

��

D X1comb.X1f1/

Property 4. This property follows from the fact that the Fourier transform of a
product separable function is the product of their Fourier transform and after setting
X1 D 1 in Property 3.

FŒcomb.x1/comb.x2/� D comb.f1/comb.f2/

The sampled function

gs.x1; x2/ D comb

�
x1
X1

�

comb

�
x2
X2

�

g.x1; x2/ (3.1)

generated after sampling g.x1; x2/ by multiplying it appropriately as shown above,
where X1 and X2 are the positive-valued spatial sampling periods, has a Fourier
transform,
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Gs.f1; f2/ D F

�

comb

�
x1
X1

�

comb

�
x2
X2

��


 
 G.f1; f2/ (3.2)

which is expressed as a 2-D convolution of the Fourier transforms of the sampling
signal and the original signal. Using Properties 3 and 4, one gets

F

�

comb

�
x1
X1

�

comb

�
x2
X2

��

D X1X2comb.X1f1/comb.X2f2/ (3.3)

Subsequently, using Property 2,

X1X2comb.X1f1/comb.X2f2/ D
1X

k1D�1

1X

k2D�1
ı

�

f1 � k1
X1
; f2 � k2

X2

�

(3.4)

and from (3.2) and (3.3) via use of (3.4), the spectrum or Fourier transform of the
sampled function is

Gs.f1; f2/ D
1X

k1D�1

1X

k2D�1
G

�

f1 � k1
X1
; f2 � k2

X2

�

(3.5)

Thus the spectrum of gs.x1; x2/ is the replication of the spectrum of g.x1; x2/ at each
point, . k1

X1
; k2

X2
/, for all integer values of k1 and k2, in the .f1; f2/-plane. Suppose that

the bandlimited function g.x1; x2/ has a Fourier transform G.f1; f2/ whose support is
strictly inside the rectangle defined by

� Fi < fi < Fi; i D 1; 2 (3.6)

This rectangle is the smallest rectangle that completely encloses the region of the
wavenumber space (i.e. .�1;�2/-space, where �i D 2�fi; i D 1; 2) where G.f1; f2/
is nonzero. Then perfect reconstruction of g.x1; x2/ is possible from the sampled
function gs.x1; x2/ provided the sampling intervals are no greater than

Xi D 1

2Fi
; i D 1; 2 (3.7)

associated with the Nyquist rate. The reconstruction formula is obtained via analog
low-pass filtering of Gs.f1; f2/. Define a function,

rect.x/ D
	
1; jxj � 1

2

0; otherwise:
(3.8)

Then,

FŒrect.x/� D sinc.f / , sin.�f /

�f
(3.9)
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Imagine an analog filter with a transfer function,

H.f1; f2/ D rect

�
f1
2F1

�

rect

�
f2
2F2

�

(3.10)

Provided Eq. (3.7) is satisfied, then

Gs.f1; f2/rect

�
f1
2F1

�

rect

�
f2
2F2

�

D G.f1; f2/ (3.11)

Denote the inverse Fourier transform of H.f1; f2/ by h.x1; x2/. Then,

h.x1; x2/ D 4F1F2sinc.2F1x1/sinc.2F2x2/ (3.12)

The space-domain counterpart of (3.11) can be expressed as a 2-D convolution:
�

comb

�
x1
X1

�

comb

�
x2
X2

�

g.x1; x2/

�


 
 h.x1; x2/ D g.x1; x2/ (3.13)

The equation below can be verified to be true.

2Y

iD1
comb

�
xi

Xi

�

g.x1; x2/

D X1X2

1X

k1D�1

1X

k2D�1
g.k1X1; k2X2/ı.x1 � k1X1; x2 � k2X2/ (3.14)

Therefore, the reconstruction formula, obtained from use of (3.14) in (3.13) is

g.x1; x2/ D 4F1F2X1X2

1X

k1D�1

1X

k2D�1
g.k1X1;k2X2/

2Y

iD1
sinc.2Fi.xi � kiXi// (3.15)

By sampling at the Nyquist rate along each axis

�ic , 2�Fi D �

Xi
; i D 1; 2

the reconstruction formula in (3.15) can be expressed in the more compact form,

g.x1; x2/ D
1X

k1D�1

1X

k2D�1
g

�

k1
�

�1c
; k2

�

�2c

� 2Y

iD1
sinc

�
�ic

�

�

xi � ki
�

�ic

��

:

(3.16)

For alternate proofs of the WSK sampling result in (3.16), see Problems 1 and 2.
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3.2.2 Arbitrary Periodic Sampling Rasters

The real-valued and nonsingular sampling matrix V is of order 2 in the 2-D case. V
is formed from its linearly independent column vectors, v1 and v2 as

Definition 3.1. Let k D Œk1 k2�T be a vector of integers. The set of all sample points
Vk obtained from all integer linear combinations of the columns of the sampling
matrix V is called the lattice generated by V and denoted by LAT (V).

V D Œv1jv2�:
An analog signal ga.x1; x2/ , ga.x/ (again in vector notation, x D Œx1 x2�T ), after
sampling on a raster, becomes the discrete signal,

gŒk1; k2� , gŒk� D ga.Vk/:

Let ga.x/ be a bandlimited analog signal whose CFT is Ga.�/. Then

ga.x/ D 1

4�2

Z 1

�1

Z 1

�1
Ga.�/e

j�T x d�;

ga.Vk/ , gŒk� D 1

4�2

Z 1

�1

Z 1

�1
Ga.�/e

j�T Vk d�:

After defining ! D VT�, the previous equation becomes,

gŒk� D 1

jdet Vj4�2
Z 1

�1

Z 1

�1
Ga..V

T/�1!/ej!T k d!:

The Fourier transform of the bisequence gŒk� D ga.Vk/ is

G.e�j!1 ; e�j!2/ , G.!/ D
X

k1

X

k2

gŒk�e�j!T k

On integrating over the .!1; !2/-plane as an infinite series over square areas, each
of size 2� � 2� ,

gŒk� D 1

4�2

Z �

��

Z �

��
1

jdetVj
X

`1

X

`2

Ga..V
T/�1.! � 2�`//ej!T ke�j2�`T kd!

where ` D Œ`1 `2�
T is an integer-valued vector. Since e�j2�`T k D 1, therefore

comparing the above equation with the inverse discrete Fourier transform

gŒk� D 1

4�2

Z �

��

Z �

��
G.!/ej!T kd!
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of G.!/, it follows that

G.!/ D 1

jdetVj
X

`1

X

`2

Ga..V
T/�1.! � 2�`//

The sampling density or the number of samples per unit area is proportional to
1=jdetVj. Define FPD (V) to be the fundamental parallelepiped, defined as

FPD.V/ W fVx j x D
�

x1
x2

�

; 0 6 x1; x2; < 1g

Let LAT (V) denote the set of all sample points Vk, where k is an integer-valued
vector. The Fourier transform of the sampled signal is

G.VT�/ D 1

jdetVj
X

k

X
Ga.� � Uk/ (3.17)

where the reciprocal lattice or polar lattice or aliasing matrix U satisfies the
constraint,

UTV D 2�I2 (3.18)

with I2 being the identity matrix of order 2.
The term on the left-hand side of (3.17) can be interpreted as a periodic extension

of Ga.�/ obtained from copies of this bandlimited spectrum of the analog signal by
shifting its origin to the points of LAT (U). This periodic extension is reflected in
the property,

G.VT.�C Uk// D G.VT�C 2�k/ D G.VT�/ (3.19)

The last equality in the previous equation follows because the Fourier transform
G(!) of the bisequence xŒk� is 2�-periodic in !1 as well as in !2, and k D Œk1 k2�T

is an integer-valued vector.
The sampling and aliasing matrices, V D VR and U D UR, respectively, in the

case of the rectangular sampling raster considered in this subsection are,

VR D
�

X1 0
0 X2

�

; UR D
"
2�
X1

0

0 2�
X2

#

: (3.20)

When the sampling matrix is a diagonal matrix, the type of sampling lattice
characterizing the sampling process is called separable. The generalization of
rectangular sampling to n-D is routine and the sampling matrix in that case is a
diagonal matrix of order n.
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Example 3.1. Let the sampling matrix be

V D
�
1 �1
1 2

�

LAT (V) is partially shown by the filled dots in Fig. 3.1a. V is not unique and could
be replaced by a matrix VE, where E is an integer-valued unimodular matrix, i.e. its
determinant, +1 or �1, is a unit in the ring of integers.

Then, the aliasing matrix is

U D 2�.V�1/T D 2�

3

�
2 �1
1 1

�

LAT (U) is shown partially in Fig. 3.1b by the filled dots.

� D
�
�1

�2

�

D .V�1/T! D 1

3

�
2 �1
1 1

� �
!1
!2

�

The spectrum of the bandlimited analog signal ga.x/ is shown by the diamond-
shaped region in Fig. 3.1c. The support of the Fourier transform of the sampled
signal G.!/ D G.VT�/ is shown in Fig. 3.1d as a replication of Ga.�/ at every
lattice point of LAT (U), in the (�1;�2) plane. Finally, support of G.!/ in the
(!1; !2) plane is shown in Fig. 3.1e and it is clear that low-pass filtering of the
baseband, �� 6 !i 6 �; i D 1; 2, will lead to the reconstruction of ga.x/ from its
samples at LAT (V) in Fig. 3.1a.

The hexagonal sampling process to be discussed next has a nonseparable
sampling lattice.

3.2.3 Hexagonal Sampling

The anisotropy of the spatial angular frequency (wavenumber) response of the
human visual system can be exploited by using a non-orthogonal sampling pattern
with a reduced sampling density. Wavenumber responses with passbands in the
shapes of a parallelogram, particularly a diamond, and hexagon are suitable for the
sampling structure conversions of video signals.

For hyperspherical bandlimited functions in n-D wavenumber space, the problem
of reconstruction from spatio-temporal samples over a sampling lattice having
the smallest sampling density is linked to the geometrical problem of enclosing
hyperspheres with a regular polytope, which along with its copies can tessellate
the wavenumber space without overlaps and gaps. Hexagonal sampling provides
the optimal sampling scheme for signals bandlimited over a circularly symmetric
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Fig. 3.1 (a) Sampling lattice LAT (V); (b) aliasing lattice LAT (U); (c) analog signal spectrum
Ga.�/; (d) sampled signal spectrum in (�1;�2); (e) sampled signal spectrum in (!1; !2)
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region in wavenumber space in the sense that exact reconstruction of the analog
waveform requires the lowest sampling density [51]. The sampling raster in this
case is defined as

gŒk1; k2� D ga

�
2k1 � k2

2
X1; k2X2

�

(3.21)

where X1 and 2X2 are the horizontal and vertical sampling intervals. Alternate rows
of the hexagonal sampling raster are identically positioned and the odd-numbered
rows are shifted horizontally one-half sample interval with respect to the even-
numbered rows. The sampling points are the corners and centers of hexagons that
tessellate the spatio-temporal space. It is straightforward to verify that the sampling
matrix VH of the hexagonal sampling raster is

VH D
�

X1 X1
X2 �X2

�

: (3.22)

The interlaced lattice of a hexagonal sampling pattern is often called a quincunx
sampling pattern, because a group of five samples resembles the pattern of dots
representing the number 5 on the side of a die (in conformity with the interpretation
of quincunx as an arrangement of five symbols in a square or rectangle with
one symbol at each corner and the remaining in the middle). Quincunx sampling
reduces, in a simple manner, the amount of data while preserving perceptual image
quality to a great extent. If X1 D 2X2; i. e. if the intervals between two horizontal and
vertical samples are equal, then a quincunx lattice may be viewed as a rectangular
lattice rotated through 45ı.

For the analog 2-D signal ga.x1; x2/ to be exactly recoverable from samples
in (3.21) it must be bandlimited within a hexagonal band-region R. With R and
its shifted replicas, a tiling without gaps and overlaps of the wavenumber space
becomes possible, like in the case of a rectangular band-region.

Let Ga.�1;�2/ be the Fourier transform, hexagonally bandlimited to a region R,
of the 2-D continuous signal ga.x1; x2/. The support of Ga.�1;�2/ is shown by the
hexagonal region around the origin in Fig. 3.2a.

G.�1;�2/, the periodic extension of Ga.�1;�2/, shown in Fig. 3.2b, is given by:

G.�1;�2/ D Ga.�1;�2/ 
 
 D.�1;�2/

where for the hexagonal case

D.�1;�2/ D
1X

k1D�1

1X

k1D�1
ı.�1 � k1.2w1 C w3/;�2 � 2k2w2/

C
1X

k1D�1

1X

k2D�1
ı

�

�1 �
�

k1 C 1

2

�

.2w1 C w3/;�2 � .2k2 C 1/w2
�
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Fig. 3.2 Sampling densities for a circularly symmetric low-pass signal with rectangular and
hexagonal tessellations in wavenumber space
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Obviously, the region R and D.�1;�2/ depend on each other. R is chosen so
that it can enclose one fundamental period of G.�1;�2/ and so that its periodic
extension tessellates the wavenumber space without either overlaps or gaps. If
these conditions are met then R represents an admissible tiling. Clearly, a circularly
symmetric bandlimited Ga.�1;�2/, when periodically extended, cannot represent
an admissible tiling but it can be embedded in a hexagonal region, which can
represent a tiling that is admissible. In that case the periods are seen to be defined
by (from Fig. 3.2a and we call the equality signs to prevail at the Nyquist density,
formally defined next)

X1 � 4�

2w1 C w3
; X2 � �

w2
: (3.23)

Definition 3.2. For a specified spectral support, the Nyquist density results from
maximally packed unalised replication of the signal’s spectrum at the lattice points
generated by the aliasing matrix U.

Since D.�1;�2/ depends on R, the density of samples of g.x1; x2/ is inversely
proportional to the area of R. From G.�1;�2/ and D.�1;�2/ the signal ga.x1; x2/
can be reconstructed from

ga.x1; x2/ D X1X2

1X

n1D�1

1X

n2D�1
g

�
2n1 � n2

2
X1; n2X2

�

�

�

x1 � 2n1 � n2
2

X1; x2 � n2X2

�

(3.24)

where

�.x1; x2/ D 1

4�2

Z Z

R
expŒj.x1�1 C x2�2/�d�1d�2:

The function �.x1; x2/ acts as the impulse response of a low-pass filter whose
wavenumber response has unit value over region R. However, it is very difficult to
integrate over a hexagonal region, and the reconstruction formula can become quite
complicated. We refer the interested reader to [51] for more on hexagonal sampling
and systems.

The reduction in sampling density in the case of a hexagonal sampling raster
over a rectangular sampling raster for circularly symmetric bandlimited analog
signals may be justified easily by considering the signal ga.x1; x2/to have a Fourier
transform support RG defined by

Ga.�1;�2/ D
	
1 ;�2

1 C�2
2 < w2; .�1;�2/ 2 RG

0 ;�2
1 C�2

2 � w2; otherwise:
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The support RG can be enclosed within a square of side 2w and within a regular
hexagon, each of whose six sides is of length 2wp

3
. From (3.20), it is clear that

jdetVRj D �2

w2
:

From Fig. 3.2a, for the regular hexagon, w2 D w;w1 D 3w and w3 D 2w=
p
3, in this

case. Therefore, at the Nyquist rate, from Eq. (3.23), the hexagonal sampling and
aliasing matrices, V D VH and U D UH , respectively, which satisfy the constraint
in (3.18), are

VH D
"

�

w
p
3

�

w
p
3

�
w

�
�w

#

; UH D
�

w
p
3 w
p
3

w �w

�

:

Therefore,

jdet VHj
jdet VRj D

2p
3

The sampling density is proportional to 1=jdet Vj, when V is the sampling matrix.
Thus by taking the ratio of jdet VHj and jdet VRj, it can be seen that hexagonal
sampling requires about 13.4 % less sample points to represent the same circularly
symmetric bandlimited analog signal. In other words, for a specified sampling
density, a hexagonal arrangement of samples can handle 13.4 % more bandwidth.
Hexagons as well as rectangles can both provide admissible tiling in the sense
that both can cover the wavenumber space without aliasing and holes as illustrated
in Fig. 3.2b and 3.2c, respectively. Clearly, for a circularly symmetric bandlimited
spectrum of a signal, enclosing regular hexagons can be more tightly packed than
enclosing squares in an unit area where higher tightness is associated with a larger
number of the basic blocks in that area. Since the area of a regular hexagon, each of
whose sides is 2w=

p
3, is smaller than the area of the square, each of whose sides

is 2w (both embed a circle whose diameter is of the same length 2w as the side
of the square) more hexagons than rectangles can be packed in the wavenumber
space. This implies that a hexagon gives a tighter packing than a rectangle, or,
equivalently the hexagonal raster sampling rate is lower than that of a rectangular
raster. We conclude that hexagonal sampling requires less samples per unit area than
rectangular sampling to completely represent a signal bandlimited over a circular
region.

The efficiency of a sampling lattice depends on the area of support, R of the
bandlimited signal, when R has the admissible tiling property. The only regular
polygons that possess this property are equilateral triangles, squares and regular
hexagons. Since the circular region RG cannot tile the wavenumber space without
holes and overlaps, the efficiency cannot be expressed only in terms of RG. In that
situation one finds an extended region RE of area, say, R0 with the admissible tiling
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property that also encloses RG. Efficiency may then be defined by C=R0 (where C
is the area of the corresponding circular region RG). The highest efficiency that a
triangular scheme could achieve when the circularly bandlimited spectrum support
is of radius r is

�r2

3
p
3r2
D :604;

which is the lowest among the three regular polygons endowed with the admissible
tiling property. Furthermore, tessellation of the wavenumber space with triangles
require rotation in addition to shifting, a scheme which is difficult to implement.
The corresponding efficiencies when the admissible tiling is done by a rectangular
(actually, a square) and a regular hexagon are, respectively, 78.5 % and 90.8 % as
shown in Fig. 3.2d and 3.2e.

The effect of sampling a spatiotemporal signal on a spatiotemporal lattice is to
replicate the spectrum of the original signal on a reciprocal lattice in wavenumber
space, as has been illustrated for rectangular and hexagonal lattices in the case of
2-D signals. It has been seen that to reconstruct the original signal from samples,
the replicated copies of the spectrum should not overlap and cause aliasing. The
theory of sampling multidimensional signals on lattice was presented by Petersen
and Middleton [50] and exploited in [55] for video systems. The current relevance
of video technology necessitate the inclusion, albeit brief, of multidimensional
sampling within the framework of lattice and sublattice theory in the subsequent
subsection.

Example 3.2. Consider the bandlimited 2-D spatial signal, whose support of the
Fourier transform is shown in Fig. 3.3a.

To find the minimum sampling density for perfect reconstruction from
uniformly-spaced samples when the signal is rectangularly sampled, enclose the
wavenumber domain support in Fig. 3.3a in the manner shown in Fig. 3.3b. Then,
the optimum sample spacing is

Xi D �

4�
D 1

4
m/sample, for i = 1, 2.

Thus, the sampling density associated with the Nyquist rate along each axis is

1

X1X2
D 16 samples/m2:

In case of hexagonal sampling, enclose the wavenumber domain support within a
hexagon as shown in Fig. 3.3c. In this case,

X1 D 4�

2w1 C w3
D 4�

12� C 4� D
1

4

X2 D �

w2
D �

4�
D 1

4
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Fig. 3.3 Minimum sampling densities for different tessellations in Example 3.2
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Fig. 3.4 The hexagonal,
interlaced, quincunx sampling
pattern. Note that around each
sample are six other samples
forming a hexagon. The basic
quincunx pattern is shown by
the five samples enclosed by
the square in solid lines that
result when X1 D 2 D 2X2

So, the sampling density given by 1=jdetVj, is 16 samples/m2, where

V D
� X1

2
X1
2

X2 �X2

�

is the sampling matrix generated by the two vectors shown in Fig. 3.4. This
illustrates that more than one sampling geometry may yield the sampling rate
associated with that corresponding to the Nyquist rate along each axis. However,
in 2-D this sampling rate may not be the absolute minimum as is justified below.
Since the difference in area between wavenumber domain support in Fig. 3.3a and
the enclosing square in Fig. 3.3b is the same as the difference of the area in Fig. 3.3a
from the enclosing hexagon in Fig. 3.3c, it is expected that the sampling densities
in both cases will be the same for this problem. To obtain the absolute minimum
sampling density for this problem, it is necessary to enclose the hexagonal support
R in Fig. 3.3a with the smallest region that will tile the plane. In this case, R itself
will tile the plane as shown in Fig. 3.3d. The impulse train D.�1;�2/ that creates
this periodic repetition of the signal Fourier transform is

D.�1;�2/ D
1X

k1D�1

1X

k1D�1
ı.�1 � 12�k1;�2 � 8�k2/

C
1X

k1D�1

1X

k2D�1
ı

�

�1 �
�

k1 C 1

2

�

12�;�2 � .2k2 C 1/4�
�
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The inverse Fourier transform of D.�1;�2/ can easily be verified to be

d.x1; x2/ D X1X2
8�2

X

k1

X

k2

�
1C .�1/k1Ck2

�
ı

�

x1 � k1X1
2
; x2 � k2

�

This can be thought of as having two terms: one corresponding to the one term in the
square bracket and another corresponding to the .�1/k1Ck2 term in the same square
bracket. The resulting sampling raster is shown by the filled dots in Fig. 3.3d.

From above it is clear that

X1 D 2�

6�
D 1

3
; X2 D 2�

8�
D 1

4

which provides the absolute minimum sampling density of 12 samples/m2.

This minimum sampling density is obtained as 1=jdetVj, where

V D
� X1

2
X1
2

X2 �X2

�

D
�
1
6

1
6

1
4
� 1
4

�

so that jdetVj D X1X2 D 1
12

.
An alternate way to find the minimum sampling density is to write down the U

matrix from Fig. 3.3d. To wit,

U D
�
6� 0

4� 8�

�

Then, a sampling matrix (non-unique) V1 can be found from the constraint

VT
1 U D 2�I2

VT
1 D

2�

48�2

�
8� 0

�4� 6�
�

D
�

1
3
0

� 1
6
1
4

�

Note, that V1 ¤ V but jdetV1j D jdetVj D 1=12. So, the minimum sampling
density = 12.

3.2.4 n-D Sampling

In analog television the sequence of frames are sampled in vertical (spatial) and
temporal directions using horizontal scanning with either an interlaced or progres-
sive scanning raster. Two of the three spatiotemporal dimensions are discretized
and the samples are not quantized in amplitude. In digital television, the horizontal
spatial dimension is also sampled leading to a 3-D spatiotemporal discrete signal
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with a 3-D spectrum and with three-component discrete values for representation
of color in an appropriate color space. Processing and coding of video signals
require conversion between different sampling lattices used in different television
standards and multidimensional filtering for picture quality improvement among
other multidimensional analysis and synthesis approaches. The sampling process in
n-D can be represented as a lattice defined as the set of all linear combinations over
integers of n basis vectors v1; v2; : : : ; vn (each of whose elements is an integer), in
the matrix V that characterizes the sampling process.

V D Œv1 v2 : : : vn �

In certain applications the elements of V belong to the ring of integers and,
therefore, the set of unimodular matrices over this ring has for its elements the
matrices whose determinants are ˙1: This occurs, for example, when extending
multiresolution analysis from 1-D to n-D [56]. A specific sampling pattern may not
be represented by an unique matrix V: For a specified V the corresponding lattice,
Lat; is the set of all vectors generated by

Lat
4D Vk; k 2 Zn:

An input cell is comprised of a set of points such that the disjoint union of its copies
shifted to all lattice points yields the input lattice, which may be downsampled
(decimated) or upsampled (interpolated). The magnitude of the determinant of
V; jdetVj; is the volume of the unit cell, which in turn is the reciprocal of the
sampling density. The reciprocal lattice is the Fourier transform (spectrum) of the
original lattice and its points represent locations at which replication of the spectrum
occurs in the wavenumber space. The matrix, U; characterizing the reciprocal lattice
satisfies the constraint

UTV D .2�/In:

In the case of a downsampler if xŒk� denotes the input n-D sequence, then the output
n-D sequence

yŒk� D xŒVk�;

has for its Fourier and z-transforms, the following expressions

Y.!/ D 1

jdetVj
X

k2VT
c

� � �
X

X..VT/�1.! � 2�k/ (3.25)

Y.z/ D 1

jdetVj
X

k2VT
c

� � �
X

X.WV�1 .2�k/ ı zD�1

/ (3.26)
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3.2.4.1 Multidimensional Digital Analog Transformation

Analogue to the 1-D case discussed in the text [4], the multidimensional digi-
tal/analog (analog/digital) transformation can be efficiently implemented by the
Q-matrix method. We focus on the trivariate case and the trend in the general case
in obvious. Consider the trivariate polynomial,

B .z1; z2; z3/ D
N1X

k1D0

N2X

k2D0

N3X

k3D0
akzk1

1 zk2
2 zk3

3 ;

k , .N1 � k1/ .N2 C 1/ .N3 C 1/C .N2 � k2/ .N3 C 1/C .N3 � k3/C 1:
substitute zi D siC1

si�1 , i D 1; 2; 3; in B.z1; z2; z3/ and the objective is to compute
the numerator of the rational function polynomial D.z1; z2; z3/ resulting from the
transformation,

D.z1; z2; z3/ D
N1X

k1D0

N2X

k2D0

N3X

k3D0
ak

 
3Y

iD1
.si � 1/Ni�ki .si C 1/ki

!

:

First, we compute the term in the parenthesis in the preceding expression for each
3-tuple .k1; k2; k3/ associated with the relevant k. The mechanics of the procedure
can best be illustrated by the example considered by Bose and Jury [57] using their
original approach. Their example considers the trivariate polynomial to be written
in recursive canonical form, with z1 taken to be the main variable, as

B .z1; z2; z3/ D .4z2z3 C z2 � z3/ z21 C z2z3z1 C z3:

Then, the coefficients in the above expression are written in recursive canonical
form with z2 as the main variable and, subsequently the nested form for B .z1; z2; z3/
emerges,

B .z1; z2; z3/ D ..4z3 C 1/ z2 � z3/ z21 C z3 .z2/ .z1/C z3:

Here, the partial degrees in the three variables z1; z2; z3 are N1 D 2; N2 D 1;

N3 D 1. Consider the 3-tuple .k1; k2; k3/ to be set, quiet as (2,1,1) so that k D 1

and the quiet column of the transformation matrix Q will be obtained from the
coefficients of the polynomial product .s1 C 1/2 .s2 C 1/ .s3 C 1/. The coefficients
can be computed efficiently by convolution of powers involving same variable
factors and Kronecker product across variables. To wit, the calculation involves the
computation of

f1; 1g 
 f1; 1g ˝ f1; 1g ˝ f1; 1g D f1; 1; 1; 1; 2; 2; 2; 2; 1; 1; 1; 1g :
Including the zero-coefficient monomials, there are twelve monomials in

B .z1; z2; z3/, which can be arranged by a lexicographical ordering with z1 > z2 > z3
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as z1z2z3; z21z2; z21z3; z21; z1z2z3; z1z2; z1z3; z1; z2z3; z2; z3; 1. Therefore, the
remaining 11 columns of the 12 � 12 Q matrix can be computed similar to the first
column and the coefficient vector of D .s1; s2; s3/, after the same lexicographical
ordering of the monomials, become d D Qb, where the coefficient vector,

b D Œ4 1 � 1 0 1 0 0 0 0 0 1 0�T

Note that the lacunary nature of B .z1; z2; z3/ induces sparsity in the b vector as
a result of which only the first three columns, the fifth column, and the eleventh
column of Q need only be calculated.

3.3 Conclusions

The WSK sampling theorem generalizes to multidimensions in several ways. The
most straightforward and routine generalization involves uniform sampling along
each of the spatio-temporal dimensions when the function g.x1; x2; : : : ; xn/ is
bandlimited to the hyper-rectangle defined by the Cartesian product of the intervals
.��ic; �ic/; i D 1; 2; : : : ; n. The possibility of sampling along nonorthogonal
directions opens up possibilities for other types of generalizations. The sampling
and reconstruction strategies involve the sampling matrix V and the aliasing matrix
U, which depend on each other in accordance with the constraint equation

UTV D 2�In;

whose 2-D counterpart was seen in (3.18). The more general sampling rasters
are considered with emphasis on hexagonal sampling. The exposition clarifies the
relationship of minimum sampling density and tessellation of the wavenumber space
without overlap and gaps (admissible tiling) by using a generic tile or period cell
that encloses the spectrum of the analog bandlimited signal and its copies. The
geometry of the sampling lattice depends on the tile shape (admissible tiling being
only possible for only special-shaped period cells). In multidimensions (n-D) the
sampling geometry corresponding to the sampling density (associated with Nyquist
rate) for reconstruction without aliasing may be nonunique and also not necessarily
minimum for n > 1:

The WSK sampling theorem has been generalized along various other directions.
The reconstruction of a multivariate bandlimited function from irregularly spaced
sample points has been a subject of recent research [58]. The reconstruction
technique uses the fact that bandlimited functions satisfy a reproducing formula
based on the convolution operation as in the WSK result. A sampling theorem for
wavelet subspaces has been given for the 1-D case in [59]. There the multiresolution
analysis of L2.R/ corresponds to the subspaces B2

m�
2 , m 2 Z , the set of integers.

A straightforward n-D generalization would be the building of a multiresolution
analysis and wavelet bases in L2.Rn/ as the tensor product of a multiresolution
analysis in L2.R/. In L2.R2/, it leads to a ladder of subspaces that are direct products
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of the ladder of closed subspaces in the 1-D case and then product separable
wavelets are necessary to complete the analysis as in the 1-D case. However, a more
general way of extending the sampling theorem to n-D involves the use of a dilation
matrix with integer-valued entries each of whose singular values has a magnitude
greater than unity.

Most of the multidimensional sampling algorithms rely on results from the
bandlimited case, which may lead to unnecessarily high computational load,
particularly for those classes of signals that could be represented by a finite number
of samples. Sampling schemes and reconstruction formulae for certain classes of
non-bandlimited multidimensional signals are now being developed.

3.4 Problems

1. For a square-integrable function, g.x/ 2 L2.�1;1/, in the real variable
x and having Fourier transform G.�/ bandlimited to the interval defined by
��c < � < �c, the following reproducing property is known to hold for an
arbitrary but fixed value x0 of the variable x.

�c

�

Z 1

�1
g.x/

sin.�c.x � x0//

�c.x � x0/
dx D g.x0/

Define,

�mn.x1; x2/ , Sn.�1.x1 � m�

�1

//Sn.�2.x2 � n�

�2

//

where Sn(x) , sin x
x .

(a) Show that

I ,
Z 1

�1

Z 1

�1
�mn.x1; x2/�kl.x1; x2/dx1dx2 D �2

�1�2

ıkmıln

where ıkm is the Kronecker delta function which is unity-valued when k D m
and zero otherwise.

(b) Now let g.x1; x2/ 2 L2.�1;1/� L2.�1;1/. Suppose that the Fourier trans-
form G.�1;�2/ of g.x1; x2/ is bandlimited so that the support of G.�1;�2/ is

Supp .G.�1;�2// D f.�1;�2/ j ��1c < �1 < �1c;��2c < �2 < �2cg
Expand g.x1; x2/ in series

g.x1; x2/ D
1X

mD�1

1X

nD�1
cmn�mn.x1; x2/



80 3 Multidimensional Sampling

Show that,

cmn D �10�20

�2

1Z

�1

1Z

�1
g.x1; x2/�mn.x1; x2/dx1dx2

(c) Calculate the double integral in part (b) as an iterated operation using the
reproducing property and arrive at the reconstruction formula in (3.15) for the
case of rectangular sampling.

2. Prove the reconstruction result in (3.15) by applying the steps indicated below.

(a) For a fixed x2 D x20, expand g.x1; x2/ as a function of x1, since it is bandlimited
to the interval ��1c < � < �1c; by the 1-D WSK sampling theorem.

g.x1; x20/ D
1X

k1D�1
g.k1

�

�1c
; x20/Sn.�1c.x1 � k1

�

�1c
//

(b) Similarly, expand as follows the function in the variable x2,

g.k1
�

�1c
; x2/ D

1X

k2D�1
g.k1

�

�1c
; k2

�

�2c
/Sn.�2c.x2 � k2

�

�2c
//

after realizing that g.x1; x2/ as a function of x2 for a fixed value of x1 is
bandlimited to the interval ��2c < � < �2c:

(c) Combine the results in the previous two parts to get the result wanted.

3. Use the reproducing property in Problem 1 to arrive at its 2-D counterpart,

1Z

�1

1Z

�1
g.x1; x2/

sin.�1c.x1 � x10//

�.x1 � x10/

sin.�2c.x2 � x20//

�.x2 � x20/
dx1dx2 D g.x10; x20/

when the square integrable bivariate function g.x1; x2/ 2 L2.�1;1/2 is bandlim-
ited to the region defined by ��1c < �1 < �1c;��2c < �2 < �2c:

(a) Show that the reconstruction result in (3.15) can be arrived at directly by
applying the preceding reproducing property.

(b) Show that the following result holds

1X

k1D0

1X

k2D0

sin2.k1a1 C b1/

.k1a1 C b1/2
sin2.k2a2 C b2/

.k2a2 C b2/2
D �2

a1a2

for arbitrary but fixed real values of the parameters a1, a2, b1, b2 and ja1j � �;
ja2j � �:



Chapter 4
Multidimensional Digital Filter Recursibility
and Stability

4.1 Introduction

Given a continuous signal, acquired through sensors for subsequent sampling and
discrete spatio-temporal processing, it may be assumed that, the sensed signal
ga.x1; x2/, in the 2-D case, is sampled so that no aliasing occurs, i.e., ga.x1; x2/
must be exactly recoverable from the sampled bisequence fgŒk1; k2�g. Indeed,
then it was shown in the previous chapter, how from the output bisequence of
the filter a continuous function having Fourier transform Ga.�1;�2/, may be
constructed. If fgŒk1; k2�g whose Fourier transform is G.e�j!1 ; e�j!2/ is filtered
by a linear shift-invariant (LSI) 2-D discrete filter having wavenumber response
H.e�j!1 ; e�j!2/ (which is defined to be the 2-D Fourier transform of the unit impulse
response fhŒk1; k2�g of the 2-D digital filter) then the output bisequence has the
product H.e�j!1 ; e�j!2/G.e�j!1 ; e�j!2/ for its Fourier transform. The overall design
problem of a multidimensional recursive digital filter involves the various phases of
approximation, realization, stabilization and stability, design optimization, and error
analysis. The stability problem will be discussed here first.

4.2 Recursible LSI Systems and Basic Tools
for Their Stability Analysis

Stability properties in this chapter are studied with respect to linear shift-invariant
systems, defined next.

© Springer International Publishing AG 2017
N.K. Bose, Applied Multidimensional Systems Theory,
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Definition 4.1. A 2-D discrete system characterized by the operator TŒ:� is said
to be linear if and only if for arbitrary inputs x1Œk1; k2�; x2Œk1; k2� and any complex
constants c1; c2,

TŒc1x1Œk1; k2�C c2x2Œk1; k2�� D c1TŒx1Œk1; k2��C c2TŒx2Œk1; k2��: (4.1)

If yŒk1; k2� D TŒxŒk1; k2��, the system characterized by TŒ:� is shift-invariant if and
only if

yŒk1 � k0; k2 � l0� D TŒxŒk1 � k0; k2 � l0�� (4.2)

for all xŒk1; k2�, with k0; l0 arbitrary integers. The system satisfying both the above
properties is linear shift-invariant (LSI).

The mathematical tool used in the study of multidimensional LSI systems is
the multidimensional z-transform. In the case of 2-D systems, the z-transform of
a sequence fxŒk1; k2g is defined to be:

ZŒxŒk1; k2�� , X.z1; z2/ ,
1X

k1D�1

1X

k2D�1
xŒk1; k2�z

�k1
1 z�k2

2 : (4.3)

An alternative definition replaces z�k1
1 z�k2

2 with wk1
1 wk2

2 in (4.3), but no essen-
tial conceptual difference arises due to these two possibilities. The expository
advantages of working with the complex variables w1 , z�11 ;w2 , z�12 is
context-dependent and this will be borne in mind in the text. In combinatorial
studies, X.z1; z2/ is referred to as a generating function. The values of z1; z2 for
which the double summation in (4.3) converges absolutely constitute the region
of convergence, referred to as the Reinhardt domain. This domain is completely
specified by the magnitudes jz1j; jz2j, respectively, of the complex variables z1; z2.

The inversion formula associated with (4.3) is:

xŒk1; k2� D 1

.2�j/2

I

C1

I

C2

X.z1; z2/z
�1�k1
1 z�1�k2

2 dz1dz2: (4.4)

In (4.4), the closed contours C1;C2 must be in the region of convergence of X.z1; z2/
in (4.1). The Reinhardt domain must be specified before the sequence xŒk1; k2� may
be uniquely calculated from its z-transform X.z1; z2/.

Any 2-D LSI system is completely specified by its impulse response

hŒk1; k2� D TŒıŒk1; k2��;

where the 2-D unit impulse function is

ıŒk1; k2� D
	
1; if k1 D k2 D 0
0; otherwise
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The output yŒk1; k2� of any 2-D LSI system with impulse response sequence
fhŒk1; k2�g and specified input fxŒi1; i2�g is given by the 2-D discrete convolution

yŒk1; k2� D
1X

i1D�1

1X

i2D�1
xŒi1; i2�hŒk1 � i1; k2 � i2�: (4.5)

The input-output relationship of a 2-D LSI system is defined by a difference
equation of the form

X

i1

X

i2

bŒi1; i2�yŒk1 � i1; k2 � i2� D
X

i1

X

i2

aŒi1; i2�xŒk1 � i1; k2 � i2�: (4.6)

.i1; i2/ 2 Ib .i1; i2/ 2 Ia

where Ib (output mask) and Ia (input mask) denote, respectively, the finite area
regions of support for arrays fbŒi1; i2�g; faŒi1; i2�g. With bŒ0; 0� D 1, (4.6) can be
written as

yŒk1; k2� D
X

i1

X

i2

aŒi1; i2�xŒk1�i1; k2�i2��
X

i1

X

i2

bŒi1; i2�yŒk1�i1; k2�i2� (4.7)

.i1; i2/ 2 Ia .i1; i2/ 2 Ib

.i1; i2/ ¤ .0; 0/
Definition 4.2. Recursibiltiy (recursive computability) is defined to be a property
of certain difference equations which allows one to iterate the equation by choosing
an indexing scheme so that every output sample can be computed from outputs that
have already been found, from initial conditions, and from samples of the input
sequence. In that case, the system characterized by the difference equation is said to
be recursively computable (recursive).

In discussing the recursibility of a 2-D difference equation, it is helpful to develop
a generalization of the 1-D concept of the one-sided sequence. Recall that fhŒn�g is
said to be right-sided with respect to some integer n1 if

hŒn� D 0 for n < n1

A left-sided sequence hŒn� with respect to some integer n2 is one for which

hŒn� D 0 for n > n2

A one-sided sequence is a sequence which is either right-sided or left-sided. Let
us now introduce the concept of “one-sided” 2-D array.

Definition 4.3. Let H1 be a line passing through the origin of the .k1; k2/ plane. Let
H1h be a half-line starting at the origin (but not including the origin) and proceeding
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along H1 in either of two possible ways; clearly, H1h is contained in H1. Let H2h

denote either of the two half-planes defined by the line H1 but not including the
line H1. A 2-D array or bisequence fbŒk1; k2�g is one-sided if a line H1, a half-line
H1h, and a half-plane H2h can be found such that bŒk1; k2� D 0 for all values of
.k1; k2/ lying on H1h and H2h. Such an array is said to be one-sided with respect to
the line H1.

An array fbŒk1; k2�g is one-sided if, for example,

bŒk1; k2� D 0 for k1 < 0 and for k1 D 0; k2 < 0

Note that, for the most part, the support of fbŒk1; k2�g is on “one side” of
the ordinate where k1 D 0. We will also consider the arrays generated by
reflecting a one-sided array in either of both axes and rotating a one-sided
array by 90, 180, or 270ı to be one-sided. In this manner, seven additional
examples of one-sided arrays are generated from the original bŒk1; k2�. They are
bŒk1;�k2�; bŒ�k1; k2�; bŒ�k1;�k2�; bŒk2; k1�; bŒk2;�k1�; bŒ�k2; k1�; and bŒ�k2;�k1�.

Consider next a line H1 through the origin of the plane at any arbitrary angle 

with respect to the abscissa. An equation describing such a line is

k1sin
 � k2cos
 D 0 (4.8)

The array fbŒk1; k2�g whose support excludes the region described below is one-
sided with respect to the line generated by rotating the abscissa by an angle 
 .

bŒk1; k2� D 0 for
k1sin
 � k2cos
 < 0
k1sin
 � k2cos
 D 0
k1cos
 C k2sin
 < 0

The mirror-image set of the above one-sided arrays is generated by reflection
with respect to the line in (4.8) and is described by the bisequence,

bŒk1; k2� D 0 for
k1sin
 � k2cos
 > 0
k1sin
 � k2cos
 D 0
k1cos
 C k2sin
 > 0

These two sets of arrays whose supports are described in the preceding two
equations may be considered analogous to the two sets (right-sided and left-sided)
of sequences which are one-sided with respect to the origin. We are now ready to
formalize the definition of one-sidedness.

Recursibility (also referred to as being recursible or having a recursible form) is
defined as a property of certain 2-D difference equations which allows one to iterate
the equation (that is, choose an indexing scheme) such that any point yŒk1; k2� may
be calculated from a set of initial conditions and an input array.
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Clearly, we must carefully pick the way we move the output mask around so as
not to cover an output point which has not yet been calculated. Also, the input mask
imposes no such constraint if we have the entire input before starting. Intuitively, if
the hole in the output mask, which indicates the output point we are calculating at
the moment, is in the middle or even on the edge of the mask, we cannot increment
k1 and k2 in such a way as to be able to calculate yŒk1; k2� for all values of .k1; k2/.
Therefore difference equations with such output masks are not recursible. However,
if the hole is on a corner of the mask, then there is no problem in iterating the
difference equation.

Example 4.1. (a) Consider the difference equation

yŒk1; k2� D xŒk1; k2� �
2X

l1D1

2X

l2D�2
aŒl1; l2�yŒk1 � l1; k2 � l2�

�
2X

l2D1
aŒ0; l2�yŒk1; k2 � l2�

The input mask is very simple since its form is not important if the entire input
is known beforehand; the output mask has a jog in it and the output hole is
at the jog. Because of this, we may sweep the output mask along successive
columns until we have generated all the output points of interest. The equation
is recursible.

(b) Consider the difference equation

yŒk1; k2� D xŒk1; k2� � 1
2

yŒk1 � 1; k2� � 1
4

yŒk1; k2 � 1�

Here, aŒ0; 0� D 1; aŒ1; 0� D 1
2
; aŒ0; 1� D 1

4
; all other coefficients are zero.

The array fbŒk1; k2�g is one-sided. Actually, the equation may be iterated in an
infinite number of ways.

A recursively realizable representation based on the concept of one-sidedness is
possible in the n-D (n > 2) case also. Heuristically, a n-D sequence fbŒk1; � � � ; kn�g,
where f.k1; � � � ; kn/g is a subset of Zn is one-sided with respect to the origin
H0 if there exists an .n � 1/-D hyperplane Hn�1passing through H0 such that
fbŒk1; � � � ; kn�g lies on one side of Hn�1 inclusive, and within Hn�1 there exists an
.n � 2/-D hyperplane Hn�2 such that fbŒk1; � � � ; kn�g \ Hn�1 lies on one side of
Hn�2 inclusive, etc., down to H0. Again, the n-D counterpart of (4.7) is recursively
realizable if and only if the weighting sequence fbŒk1; � � � ; kn�g associated with the
output mask is one-sided. Though causality is not an intrinsic property of spatial
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n-D systems,1 a recursible n-D system can be described as causal (causality being
interpreted as distinction between “past” and “future” in the spatial processing) with
respect to some subset of the set of all orderings of Zn.

4.3 Weak Causality and Recursibility

Eising [61, pp. 70] defined a causality cone Cc as an intersection of two half-plane,
Hp;r and Hq;t, where

Hp;r D f.x1; x2/ W px1 C rx2 � 0; .x1; x2/ 2 R
2g

Hq;t D f.x1; x2/ W qx1 C tx2 � 0; .x1; x2/ 2 R
2g

and p, q, r, t are nonnegative integers satisfying pt � qr D 1. Furthermore, Eising
defined a 2-D filter to be weakly causal if the support of its impulse response
fhŒk1; k2�g is contained within a closed convex cone C in R

2 (i.e., suppfhŒk1; k2�g �
C), satisfying,

(i) C\.�C/ D fŒ0; 0�g (this condition merely implies that the cone makes an angle
of less than � atŒ0; 0�)

(ii) Q1 � C, where Q1 denotes the first quadrant. Eising also showed that there
exists a Cc such that for any weakly causal filter, C � Cc. For the sake of
brevity we denote Cc by Hp;q;r;t , where p, q, r, t are integers defined above.

H1;0;0;1 is the first quadrant, Q1. A filter with support of its unit impulse response
in Q1 is called causal. A weakly causal filter can always be implemented recursively
as will be justified here. It is important to note that if Z denote the set of integers
and Z

2 , Z � Z (Cartesian product of Z with itself) then there exists a map

� W .Cc \ Z
2/ , Sp;q;r;t ! Q1 \ Z

2 D S1;0;0;1

given by

�Œm; n� D ŒpmC rn; qmC tn�; m; n 2 Sp;q;r;t

which is bijective, because the matrix of transformation

�
p r
q t

�

is unimodular. Sp;q;r;t

is a semigroup under addition with .0; 0/ as “identity”, which is generated by .t;�q/
and .�r; p/. The points Œt;�q� and Œ�r; p� in Cc are mapped by � to points Œ1; 0� and

1Editorial note: The property of causality of n-D systems arising from modelling of physical
phenomena is strictly dictated by the physics of the problem (and is thus an intrinsic property),
the details of which have been recently elaborated in [60].
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Œ0; 1�, respectively, in Q1. Suppose that the mapping

� W Sp;q;r;t ! S1;0;0;1

is given by

�H.˛; ˇ/ D
1X

k1D0

1X

k2D0
h
�
��1Œk1; k2�

�
˛�k1ˇ�k2

where �Œm; n� is as specified above. Then, it will be proved, after an example, that
the isomorphism � can be described by the substitutions

z1 D ˛pˇq; z2 D ˛rˇt

with inverse

˛ D zt
1z
�q
2 ; ˇ D z�r

1 zp
2

Example 4.2. Consider the transfer function of a digital filter

H.z1; z2/ D Y.z1; z2/

X.z1; z2/
D 1

1C 0:5z1z�12 C z�11 C z�12 C z�21 z2

It is stated that the filter is not of the quarter-plane type.2 Cross-multiplication
leads to

.1C 0:5z1z
�1
2 C z�11 C z�12 C z�21 z2/Y.z1; z2/ D X.z1; z2/

The unit impulse response sequence fhŒk1; k2�g may be found if it is possible
to implement the following difference equation (that follows from the preceding
equation after replacing the input by the unit impulse), recursively, with zero
boundary conditions.

hŒk1; k2� D ıŒk1; k2� � 1
2

hŒk1 C 1; k2 � 1� � hŒk1 � 1; k2�
�hŒk1; k2 � 1�� hŒk1 � 2; k2 C 1�;

where ıŒk1; k2� represents the 2-D unit impulse. The output mask is obtained from
the indices of the terms in the difference equation, as shown in Fig. 4.1.

2Editorial note: Quarter plane type filters are discussed later (cf. Fig. 4.3).
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(k1 + 1 , k2 - 1)

(k1 - 2, k2 + 1)

(k1 - 1, k2 )

(k1 , k2- 1)

(k1, k2 )

k1

k2

Fig. 4.1 Output mask; cross denotes present point and filled dots are associated with past points.
Note that the output mask has an interior angle less than 180ı at the corner containing the present
point

In order to implement the desired recursion mark as coordinates in the Œk1; k2�-
plane the integer 2-tuples Œn1; n2� that can be associated with each monomial,
z�n1
1 z�n2

2 ; occurring in the denominator function of H.z1; z2/. A sector, where past,
present and future points in the ordering, required to implement the recursion, are
identified in Fig. 4.2.

The sector, bounded by lines OA ( x1 C x2 D 0) and OB( x1 C 2x2 D 0),
extending from the origin O D Œ0; 0� in the Œx1; x2�-plane, which forms an angle
of less than 180ı at vertex O, contains the region of support of the filter impulse
response. A causality cone, H1;1;1;2 contains the support of this unit impulse response
of the filter. fhŒk1; k2�gmay be computed recursively as follows. First, obtain hŒk1; k2�
on the boundaries OA and OB of the wedge (or sector or cone). Computation along
OA is carried out recursively as

hŒ0; 0� D ıŒ0; 0� � 0:5hŒ1;�1�� hŒ�1; 0� � hŒ0;�1�� hŒ�2; 1� D 1
hŒ�1; 1� D ıŒ�1; 1� � 0:5hŒ0; 0�� hŒ�2; 1� � hŒ�1; 0� � hŒ�3; 2� D �0:5
hŒ�2; 2� D 0:25 : : : : : : hŒ�k; k� D .�0:5/k; k > 0
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Future

Present

(2,-1)

(-1,1)
Past

C(1,0)

C´(0,1)
D´

D

A

O(0,0)O(0,0)

B

k1

k2

Fig. 4.2 Parallelogram containing past (recursively computed) points with the present point at one
corner in the region of support of the unit impulse response. The region of support is only within
the wedge created by the lines OA and OB (forming an angle less than 180ı at O)

Similarly, computation along OB leads to

hŒk1; k2� D hŒ2k;�k� D .�1/k; k > 0

Therefore, the values at points on the boundaries of the wedge are

hŒ�k; k� D .�1
2
/

k

; k � 0

and

hŒ2k;�k� D .�1/k; k > 0:

The values at the interior of the wedge can subsequently be computed by moving the
output mask sequentially along lines parallel to the boundaries. One way of doing



90 4 Multidimensional Digital Filter Recursibility and Stability

Fig. 4.3 Wedge support to First Quadrant Quarter Plane (FQQP) support

this is as follows. In Fig. 4.2, proceed with the output mask from C downwards to
the right along the dashed line indicated. Then, proceed from C0 upwards to the left.
Subsequently, move sequentially, the mask from D downwards to the right, from D0
upwards to the left and continue the procedure.

The transformation from wedge support to first quadrant quarter-plane support is
described in Fig. 4.3. Choose p; q; r; t to be non-negative integers such that pt�qr D
1. Z denotes the set of integers, Z2 , Z � Z. Then consider the index map

� W Cc \ Z
2 ! Q1 \ Z

2

described by

�Œm; n� D ŒpmC rn; qmC tn�

Then,

�Œt;�q� D Œpt � qr; 0� D Œ1; 0�
�Œ�r; p� D Œ�prC pr;�qrC pt� D Œ0; 1�

The fact that .t;�q/ and .�r; p/ generate Sp;q;r;t D .Cc \ Z
2/ follows from the fact

that � given above is a semigroup isomorphism so that for Œm; n� 2 Sp;q;r;t; �Œm; n� ,
Œh; k� D hŒ1; 0�C kŒ0; 1�.



4.3 Weak Causality and Recursibility 91

The unimodular transformation matrix relates vectors Œk1; k2�T , Œl1; l2�T by

�
k1
k2

�

D
�

p r
q t

� �
l1
l2

�

and it has an inverse,

�
p r
q t

��1
D
�

t �r
�q p

�

so that past-present-future points can be defined with respect to a parallelogram, two
of whose sides lie on OA and OB. The matrix inverse is associated with the inverse
index map

��1 W Q1 \ Z2 ! Cc \ Z2

is described by

Œl1; l2�
T D ��1Œk1; k2� D Œtk1 � rk2;�qk1 C pk2�:

The wedge filter transfer function is of the form

H.z1; z2/ D
X X

hŒ`1; `2�z
�`1
1 z�`22 (4.9)

S

where S denotes the support of the unit impulse response fhŒ`1; `2�g. The FQQP
filter, after applying the transformation � is described by

�H.˛; ˇ/ D
1X

k1D0

1X

k2D0
hŒtk1 � rk2;�qk1 C pk2� ˛

�k1 ˇ�k2

D
X X

hŒ`1; `2� .˛
�1/p`1Cr`2 .ˇ�1/q`1Ct`2

S

D
X X

hŒ`1; `2� .˛
pˇq/�`1 .˛rˇt/�`2 : (4.10)

S

Comparing Eqs. (4.9) and (4.10)

z1 D ˛pˇq; z2 D ˛rˇt (4.11)
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The preceding set of equations may be inverted and the constraint pt � qr D 1

applied to get

˛ D zt
1z
�q
2 ; ˇ D z�r

1 zp
2 (4.12)

Thus, if H.z1; z2/ is a wedge filter transfer function, with the wedge defined by
positive integers p; q; r; t; as described above, then H.zp

1z
q
2; z

r
1z

t
2/ is a FQQP filter

transfer function.
Consider the wedge filter transfer function expressed in the form

H.z1; z2/ D 1

1 � C.z1; z2/

where C.z1; z2/ is associated with a recursible output mask. For example, consider
the case when

H.z1; z2/ D 1

0:5z1z�12 C 1C 0:85z�11 C 0:1z�11 z�12 C 0:5z�21 z2

Then the wedge support of the unit impulse response is determined from a subset of
cardinality 2 in the set of indices .k1; k2/ associated with the monomials z�k1

1 ; z�k2
2 in

C.z1; z2/ D �0:5z1z
�1
2 � 0:85z�11 � 0:1z�11 z�12 � 0:5z�21 z2

This subset generating the two vectors is shown in Fig. 4.4. The output mask can
also be easily generated and has its interior angle at the corner containing the present
point to be less than 180ı. Clearly, p D 1; r D 1; q D 1; t D 2; pt � qr D 1. It is
possible to expand H.z1; z2/ as a formal power series

H.z1; z2/ D 1

1 � C.z1; z2/
D
1X

kD0
ŒC.z1; z2/�

k

It is quite easy to confirm that the support of the wedge filter unit impulse response
is contained in the wedge determined by the output mask associated with the
denominator of H.z1; z2/.

H.z1z2; z1z
2
2/ D

1

1C 0:5z�12 C 0:5z�11 C 0:85z�11 z�12 C 0:1z�21 z�32

4.4 Stability

For stability studies and stability testing (the primary objectives in this chapter) the
following fact is necessary.
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Fig. 4.4 The wedge support for the filter unit impulse response

Fact 4.1. A 2-D LSI system is BIBO stable3 if and only if its impulse response
sequence fhŒk1; k2�g is absolutely summable, i.e., fhŒk1; k2�g 2 l1.

Example 4.3. Consider the z-transform below of the unit impulse response
fhŒk1; k2�g of a filter

H.z1; z2/ D 1C
1X

kD1

1

100k3
.zk
2 C z�k

2 /z
�1
1

hŒk1; k2� D

8
<̂

:̂

1; k1 D k2 D 0
1

100jk2j3 ; k1 D 1; k2 ¤ 0
0; otherwise

To determine if the filter is BIBO stable, proceed as follows.

3Editorial note: The concept of Bounded-Input-Bounded-Output (BIBO) stability is more prob-
lematic and its use far more controversial in dimensions higher than one (cf. brief note at the end
of this chapter). It may be noted that BIBO stability has not been defined in this text, but FACT 4.1
can itself be adopted as a definition. Alternatively, Definition 3.7 from the 1982 version of this
book may be adopted, which essentially states that a system is BIBO stable if any bounded input
fxŒk1; k2�g 2 `1 produces a bounded output fyŒk1; k2�g 2 `1.
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1X

k1D�1

1X

k2D�1
jhŒk1; k2�j D 1C

X

k2¤0

1

100jk2j3

D 1C 1

50

1X

kD1

1

k3

< 1C 1

50

1X

kD1

1

k2

< 1C 1

50

�2

6
<1

The unit impulse response is absolutely summable and, therefore, the filter is BIBO
stable. In fact, it is easy to show that the infinite series

P1
kD1 1

kp converges if and
only if p > 1. For this, consider the improper integral,

Z 1

1

1

xp
dx D lim

b!1
b1�p � 1
1 � p

D 1

p � 1 ; p > 1

The improper integral converges when p > 1.

Rigorous proof of Fact 4.1 can be given for the first quadrant quarter-plane case.
In [62] the stability criterion of n-dimensional filters is derived in a somewhat
general setting. The numerator and the denominator of the filter transfer function
are each considered to be power series with absolutely summable coefficients, i.e.,
the sequence of coefficients in each power series is assumed to be in l1. Then, for
an input sequence in l1, conditions are investigated for the output sequence to be
in l1 in terms of absolutely summable denominator power series of the filter. It is
noted that the convolution of two sequences in l1 is also in l1. (The convolution
of two sequences is associated with the operation of multiplication of their z-
transforms.) Consider index sets belonging to the set S D Z˛
Pˇ
N� , where ˛; ˇ; �
are nonnegative integers and Z;P;N, respectively, represent the sets of integers,
nonnegative integers, and non-positive integers. The denominator power series

B.z1; � � � ; zn/ D
X

.k1;��� ;kn/2S/

� � �
X

bŒk1; k2; � � � ; kn�z
k1
1 zk2

2 � � � zkn
n

is the z-transform of the sequence fbŒk1; � � � ; kn�g. Let l1.S/ denote the sequences
fbŒk1; � � � ; kn�g defined on S which satisfy,

P
k1
� � �Pkn

jbŒk1; � � � ; kn�j < 1, with
convolution as multiplication. If fbŒk1; � � � ; kn�g 2 l1.S/, then 1=B.z1; � � � ; zn/

is stable if and only if there exists faŒk1; � � � ; kn�g 2 l1.S/ such that A.z1; � � � ,
zn/B.z1; � � � , zn/ D 1, where A.z1; � � � ; zn/ is the z-transform of faŒk1; � � � ; kn�g; that
is, the problem of stability is equated to the problem of invertibility in l1.S/. The
space l1.S/ is a commutative Banach algebra with identity (with convolution as
multiplication) and its dual is known to be l1.S/. The main result will be given
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as Theorem 4.1 here; it rests on the use of a Tauberian theorem proved by Wiener,
which is stated first.

Fact 4.2. Let C be a commutative Banach algebra with identity, and let C1 be its
dual. An element c 2 C is invertible if and only if the equation �.c/ D 0 is not
satisfied by any homomorphism � in C1.

Theorem 4.1. Let S D Z˛ 
Pˇ 
N� ; ˛CˇC� > 0 and let fbŒk1; � � � ; kn�g 2 l1.S/,
where k1; � � � ; kn 2 S. Then the filter with transfer function 1/ B.z1; � � � , zn/ (where
B.z1; � � � ; zn) is the z-transform of fbŒk1; � � � ; kn�g has a convolution inverse in l1.S/
if and only if B.z1; � � � ; zn/ ¤ 0 for

jzjj
8
<

:

D 1 ; if Rj D Z
� 1 ; if Rj D P
� 1 ; if Rj D N

and 1 � j � n, where Rj is the range of kj.

The proof of Theorem 4.1 can be found elsewhere. A special case, quite
commonly encountered, will be stated and proved later in Theorem 4.2, using
elementary arguments. However, several consequences of the result just given are
worth discussing. The following definition is necessary.

Definition 4.4. An n-D LSI system will be called lp-stable, 1 � p � 1, provided
any input sequence fxŒk1; � � � ; kn�g 2 lp to the system produces an output sequence
fyŒk1; � � � ; kn�g 2 lp.

BIBO stability is, thus, equivalent to l1-stability in the sense of this definition. Since
the convolution of two sequences, each in l1.S/, is also in l1.S/ and the convolution
of a sequence in l1.S/ with a sequence in l1.S/ is in l1.S/, it follows from Fact 4.1
that for LSI systems the conditions for l1-stability and l1-stability are identical
(only a finite input sequence to the system need be considered). In fact it has been
concluded that for time-invariant systems l1-stability, l1-stability, and lp-stability,
1 < p < 1, conditions are all equivalent and are each equivalent to the condition
that the impulse response sequence of the system belong to l1. In addition, it has
been shown in [63] that l1-stability and l1-stability together imply lp-stability, 1 �
p � 1, for very general classes of systems. The usefulness of Theorem 4.1 arises
from the realization that a general stability criterion based on the requirement that
the impulse response sequence be in l1.S/ becomes verifiable via algebraic tests for a
broad class of filters encountered in practice. Note that when a filter characterized by
1=B.z1; � � � ; zn/ satisfies the appropriate stability condition, depending on the index
set S, the change from an unity numerator to any other with coefficient sequence in
l1.S/ does not alter the stability property. However, as will be substantiated in the
next section, stable filters exist with a nonunity numerator and a denominator not
satisfying the appropriate condition in Theorem 4.1.

Finally, some caution must be exercised in interpretation and application of
Theorem 4.1. The support of fbŒk1; � � � ; kn�g may be different from the support of
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faŒk1; � � � ; kn�g whose z-transform A.z1; � � � ; zn/ is the inverse of the z-transform of
fbŒk1; � � � ; kn�g. This is the case when one or more of the indices of fbŒk1; � � � ; kn�g
have a range Rj � Z.

4.5 Stability Properties of Quarter-Plane Filters

The impulse response of a quarter-plane filter has support in one of the four
quadrants. For first quadrant quarter-plane filters, (4.5) specializes to

yŒk1; k2� D
m1X

i1D0

m2X

i2D0
aŒi1; i2�xŒk1 � i1; k2 � i2�

�
n1X

i1 D 0
i1 C i2 ¤ 0

n2X

i2D0
bŒi1; i2�yŒk1 � i1; k2 � i2� (4.13)

The recursion equations for the second, third, and fourth quadrant filters are sim-
ilar to (4.13), except that yŒk1�n1; k2�; yŒk1�n1; k2�n2�; yŒk1; k2�n2�; respectively,
appear on the left-hand side of the equation and bŒn1; 0�; bŒn1; n2�; bŒ0; n2� are all
nonzero (and can set equal to 1, like bŒ0; 0� D 1 in (4.13). The impulse response
of the ith quadrant quarter-plane filter is in the ith quadrant for i D 1; 2; 3; 4. The
two most common orders of computation for the first quadrant filter are row by row
from left to right and bottom to top, and column by column from bottom to top
and left to right. Of course, the output sequence is independent of the chosen order
of computation. First quadrant filters are said to recurse in the CC direction and,
second, third, and fourth quadrant filters are said to recurse, respectively, in the �C,
��, andC� directions.

On taking the 2-D z-transform of (4.13) with bŒ0; 0� D 1, and zero boundary
conditions, one obtains

H.z1; z2/ D Y.z1; z2/

X.z1; z2/
D

Pm1
i1D0

Pm2
i2D0 aŒi1; i2�z

i1
1 zi2
2

1CPn1
i1D0;i1Ci2¤0

Pn2
i2D0 bŒi1; i2�z

i1
1 zi2
2

(4.14)

Since the denominator polynomial of H.z1; z2/ in (4.14) is nonzero in some
neighborhood f.z1; z2/ W jz1j < 
 jz2j < 
g of .0; 0/, the function H.z1; z2/ is analytic
and has a power series expansion in such a neighborhood:

H.z1; z2/ D
1X

i1D0

1X

i2D0
hŒi1; i2�z

i1
1 zi2
2 (4.15)
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It is necessary only to study the stability properties of first quadrant filters
because of the following result.

Fact 4.3. A transfer function H.z1; z2/ can be realized as a stable second, third,
or fourth quadrant filter if and only if H.z�11 ; z2/;H.z�11 ; z�12 /, or H.z1; z�12 /,
respectively, can be realized as a stable first quadrant filter.

4.5.1 Transform Domain Formulation

Proper subset of the unit polydisc, in the case n > 1, is defined as

� , f.z1; � � � ; zn/ W jz1j � 1; jz2j D 1; � � � ; jznj D 1g

The following stability theorem is important.

Theorem 4.2. The 2-D system described by the transfer function in (4.14) is BIBO
stable if

B.z1; z2/ , 1C
n1X

i1 D 0
i1 C i2 ¤ 0

n2X

i2D0
bŒi1; i2�z

i1
1 zi2
2 ¤ 0; in U

2
(4.16)

Proof. If B.z1; z2/ ¤ 0 in U
2
, then by continuity of B.z1; z2/ there exists a larger

open bidisc U2
1C
 , f.z1; z2/ W jz1j < 1 C 
; jz2j < 1 C 
; 
 > 0g such

that B.z1; z2/ ¤ 0 in U2
1C
 . Consequently, H.z1; z2/ in (4.14) is analytic in U2

1C
 ,
implying that

P1
i1D0

P1
i2D0 hŒi1; i2�z

i1
1 zi2
2 in (4.15) is absolutely convergent in U2

1C
 .
This implies that the sequence fhŒk1; k2�g 2 l1, and the proof is complete.

Theorem 4.2 was given earlier by Shanks, except for the fact that the condition

B.z1; z2/ ¤ 0 in U
2

for unity numerator was also necessary. It has been shown
subsequently that with non-unity numerators,

H1.z1; z2/ ,
A1.z1; z2/

B.z1; z2/
D .1 � z1/8.1 � z2/8

2� z1 � z2
(4.17)

is BIBO stable, while

H2.z1; z2/ ,
A2.z1; z2/

B.z1; z2/
D .1 � z1/.1 � z2/

2� z1 � z2
(4.18)

is BIBO unstable, even though in each case the denominator polynomial B.z1, z2/

¤ 0 in U
2

except at z1 D z2 D 1, at which point both H1.z1; z2/ and H2.z1; z2/
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have nonessential singularities of the second kind. It is, therefore, apparent that, in
contrast to the 1-D case, the numerator polynomial of the filter transfer function can
influence the BIBO stability property in the n > 1 case. A necessary condition for
BIBO stability is stated next.

Fact 4.4. If H.z1; z2/ is the transfer function of a BIBO stable 2-D LSI filter, then

H.z1; z2/ has no poles in U
2

(i.e., no nonessential singularities of the first kind

(NSFK) in U
2
) and no nonessential singularities of the second kind (NSSK) in U

2

except possibly on T2.

Recall that the number of NSSK’s of a bivariate rational function with coprime
numerator and denominator is always finite. It is possible to establish whether
or not nonessential singularities of the second kind on Tn exist in an n-D filter
transfer function H.z1; � � � ; zn/, n > 1. However, resolution of the stability problem
in general due to the presence of such singularities remains difficult. The test for

B.z1; z2/ ¤ 0 in U
2

in (4.16) is simplified via the result given next.

Theorem 4.3. The bivariate polynomial B.z1; z2/ ¤ 0 in U
2

if and only if:

.i/B.0; z2/ ¤ 0; jz2j � 1

.ii/B.z1; z2/ ¤ 0; jz1j � 1; jz2j D 1

Proof. The “only if” part obviously holds, and the “if” part is proved here. Let
z1 D f .z2/ be the algebraic function obtained from B.z1; z2/ D 0. Condition (i)
implies that f .z2/ ¤ 0 for jz2j � 1. It is known that for a nonconstant algebraic
function f .z2/ ¤ 0 for jz2j � 1, the minimum value of the modulus jf .z2/j for
jz2j � 1 cannot occur when jz2j < 1. This coupled with the implication of condition
(ii) that jf .z2/j > 1 for jz2j D 1 leads to the fact the jf .z2/j > 1 if jz2j � 1. Hence

B.z1; z2/ ¤ 0 in U
2
.

Alternative Proof. Again, the proof for the “if” part is considered, as the “only if”
part is trivial. Define

N.z1/ D 1

2�j

I

jz2jD1
@B.z1; z2/

@z2
ŒB.z1; z2/�

�1dz2

For any fixed z1 D z10 in jz1j � 1;N.z10/ is the number of z2-zeros of B.z10; z2/
in jz2j � 1. Condition (ii) implies that N.z1/ is continuous in jz1j � 1. Also, for
any fixed z1;N.z1/ is integer-valued, and therefore must be a constant in jz1j � 1.
Condition (i) implies that N.0/ D 0. Hence N.z1/ D 0; jz1j � 1, implying that

B.z1; z2/ ¤ 0 in U
2
, as was to be proved.

The first proof for the Theorem 4.3 is based on arguments advanced by Davis.
Other proofs have also been advanced. Several comments are in order. First, the

theorem holds for functions analytic on U2 and continuous on U
2
, and not merely
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for polynomials. Second, the theorem is the key to the proof by induction of a similar
result valid for n-variate polynomials, stated next.

4.6 Algebraic 2-D Stability Tests

The test requires the polynomial B.w1;w2/ in the complex variables w1 and w2 to be

tested for absence of zeros in U
2 W f.w1;w2/ W jw1j 6 1 and jw2j 6 1g. It has been

established that

B.w1;w2/ ¤ 0 in U
2  ! (a) B.w1; 0/ ¤ 0; jw1j 6 1 and

(b) B.w1;w2/ ¤ 0; jw1j D 1; jw2j 6 1

Test for criterion (a) in the preceding equivalence requires the application of a 1-D
test procedure. As a digression, one such procedure is reviewed for generalization
to test for criterion (b). Now,

mX

iD0
aiw

i
1 ¤ 0; jw1j 6 1 !

mX

iD0
am�iw

i
1 ¤ 0; jw1j > 1

where, the coefficients, in general are complex-valued.
The generating rows are the first two rows in the table below and the first column

is the pivot column.

Pivot N & S
Column Condition

a0 a1 a2 � � � am�2 am�1 am

ˇ
ˇ
ˇ am

a0

ˇ
ˇ
ˇ < 1

a�m a�m�1 a�m�2 � � � a�2 a�1 a�0

Generated b0 b1 b2 � � � bm�2 bm�1
ˇ
ˇ
ˇ bm�1

b0

ˇ
ˇ
ˇ < 1

Rows b�m�1 b�m�2 b�m�3 � � � b�1 b�0
c0 c1 c2 � � � cm�2

ˇ
ˇ
ˇ cm�2

c0

ˇ
ˇ
ˇ < 1

c�m�2 c�m�3 c�m�4 � � � c�0
:::

:::
:::

:::

Each generated row has elements from left to right obtained by taking 2 � 2 matrix
determinants of matrices formed with the pivot column and one other column,
starting from the last. Thus,
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b0 D
ˇ
ˇ
ˇ
ˇ

a0 am

a�m a�0

ˇ
ˇ
ˇ
ˇ D ja0j2 � jamj2; b1 D

ˇ
ˇ
ˇ
ˇ

a0 am�1
a�m a�1

ˇ
ˇ
ˇ
ˇ ; � � � ; bm�1 D

ˇ
ˇ
ˇ
ˇ

a0 a1
a�m a�m�1

ˇ
ˇ
ˇ
ˇ

and so on. To test for B.w1;w2/ ¤ 0; jw1j 6 1; jw2j 6 1, first write B.w1;w2/ in
recursive canonical form in the main variable w2 i.e.

B.w1;w2/ D
nX

kD0
ak.w1/w

k
2

Form the generating rows as in the 1-D case.

a0.w1/ a1.w1/ a2.w1/ � � � an�2.w1/ an�1.w1/ an.w1/
an.w1/ an�1.w1/ an�2.w1/ � � � a2.w1/ a1.w1/ a0.w1/

The overbar denotes complex conjugation of the term below it. Note that on jw1j D
1;w1 D w�11 . Therefore, the first element of the first generated row is

b0.w1;w1/ D a0.w1/a0.w1/ � an.w1/an.w1/

which is always real-valued. Therefore, on jw1j D 1; b0.w1;w�11 / must be express-
ible in the form

b0.w1;w1/ D b0.w1;w
�1
1 / D

X

kD0
b1k.w

k
1 C w�k

1 /

D
X

kD0
b1k cos k


where w1 may be parameterized on jw1j D 1 as ej
 so that .w1 C w�11 /=2 D
cos 
 , x1.

The Chebyshev polynomial of the first kind and nth order is

Tn.x/ D cos.n cos�1 x/ D cos n
; 
 D cos�1 x

The recurrence relation below generates all Tn.x/; n > 1.

TnC1.x/ � 2xTn.x/C Tn�1.x/ D 0;T0.x/ D 1;T1.x/ D x

Therefore,

b0.w1;w
�1
1 / D

X

kD0
b1kTn.x/
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Since
ˇ
ˇ
ˇ

an.w1/
a0.w1/

ˇ
ˇ
ˇ < 1 on jw1j D 1  ! �1 6 x 6 1, all we need to do is test for

positivity:
P

kD0 b1kTn.x/ > 0;�1 6 x 6 1. This is easy to do and is repeated on
the first element of each generated row.

Example 4.4.

A.w1;w2/ D 12C 6w1 C 10w2 C 5w1w2 C 2w22 C w1w
2
2

Is A.w1;w2/ ¤ 0; jw1j 6 1; jw2j 6 1

A.w1; 0/ D 12C 6w1 ¤ 0jw1j 6 1 EASY

Condition (ii) is now to be checked

A.w1;w2/ D .12C 6w1/C .10C 5w1/w2 C .2C w1/w
2
2

D
2X

kD0
ak.w1/w

k
2

where a0.w1/ D 12C 6w1, a1.w1/ D 10C 5w1, a2.w1/ D 2C w1. Recalling that
on jw1j D 1;w�1 D w�11 , the generating rows are

12C 6w1 10C 5w1 2C w1
2C w�11 10C 5w�11 12C 6w�11

b0.w1;w�11 / b1.w1;w�11 /

b1.w1/;w�11 b0.w0;w�11 /

B0B0 � B1B1

where B0 D b0.w1;w�11 / , .12 C 6w1/.12 C 6w�11 / � .2 C w1/.2 C w�11 / and

B1 D b1.w1;w�11 / , .12C 6w1/.10C 5w�11 / � .2C w�11 /.10C 5w1/. Now,

b0.w1;w
�1
1 / D 144� 4C 36� 1C 72.w1 C w�11 /� 2.w1 C w�11 /

D 175C 140x1; where x1 D T1.x1/ D w1 C w�11
2

Clearly, 175C 140x1 > 0;�1 6 x1 6 1. Similarly, noting that B1 D 125C 100x1,

B0B0 � B1B1 D .175C 140x1/.175C 140x1/ � .125C 100x1/.125C 100x1/
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) B0B0 � B1B1 > 0;�1 6 x1 6 1

) A.w1;w2/ ¤ 0; jw1j D 1; jw2j 6 1

Finally, A.w1;w2/ ¤ 0; jw1j 6 1; jw2j 6 1.

Fact 4.5. The n-variate polynomial B.z1; � � � ; zn/ ¤ 0 in U
2

if and only if:

.a/ B.0; 0; � � � ; 0; zn/ ¤ 0; jznj � 1

.b/ B.0; 0; � � � ; zn�1; zn/ ¤ 0; jzn�1j � 1; jznj D 1
:::

.m/ B.0; z1; � � � ; zn�1; zn/ ¤ 0; jz2j � 1;Tn
kD3fjzkj D 1g

.n/ B.z1; z2; � � � ; zn�1; zn/ ¤ 0; jz1j � 1;Tn
kD2fjzkj D 1g

A more general version of Theorem 4.3 is stated and proved next.

Theorem 4.4. The bivariate polynomial B.z1; z2/ ¤ 0 in U
2

if and only if:

.i/ B.z10; z2/ ¤ 0; for any z1 D z10; jz10j � 1; jz2j � 1

.ii/ B.z1; z20/ ¤ 0; for jz1j � 1; for any z2 D z20; jz20j D 1

.iii/ B.z1; z2/ ¤ 0; in T2 , f.z1; z2/ W jz1j D 1; jz2j D 1g:

Proof. The proof for the “only if” part is trivial. To prove the “if” part, let N.z20/ be
the number of zeros in z1 of B.z1; z20/ that fall in jz1j � 1. Then, from (ii) and (iii),
one has

N.z20/ D 1

2�j

I

jz1jD1
@B.z1; z20/

@z1
ŒB.z1; z20/�

�1dz1 (4.19)

For arbitrary but fixed z2 on jz2j D 1, an expression for N.z2/ can be written
similar in form to (4.19). It is possible to conclude (as in Theorem 4.3) that N.z2/
is continuous on jz2j D 1, which along with the fact that N.z2/ is integer-valued for
any fixed z2 implies that N.z2/ D N.z20/ D 0 (from (ii), N.z20/ D 0), jz2j D 1.
Therefore

b.z1; z2/ ¤ 0; jz1j � 1; jz2j D 1:

This is identical to condition (ii) in Theorem 4.3. Also, condition (i) is identical to
condition (i) in Theorem 4.3. The proof of the theorem is complete.
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Example 4.5.

N.w1;w2/ D w32 C 2w2w1 C .1C w2/w
2
1 2 RŒw2�Œw1�

D.w1;w2/ D �3w22 � 6w1 C w21 2 RŒw2�Œw1�

R.w2/ D

2

6
6
4

1C w2 2w2 w32 0

0 1C w2 2w2 w32
0 1 �6 �3w22
1 �6 �3w22 0

3

7
7
5

det R.w2/ D �w42.4w2 C 3/2 D 0 ) w2 D 0;� 34 .
For N D 0, D D 0, we must have w2 D 0, or w2 D � 34 .
When w2 D 0, w21 � 6w1 D 0 and w21 D 0, as w1 D 0.
When w2 D � 34 ,

w21
4
� 3w1

2
� 27
64
D 0

w21 � 6w1 � 27
16
D 0

! w21 � 6w1 � 27
16
D 0 ! w1 D 3˙ 3

p
19

4

Therefore NSSK are at .0; 0/, .3C 3
4

p
19;� 3

4
/ and .3 � 3

4

p
19;� 3

4
/.

Example 4.6.

D.z�11 ; z�12 / D 1 � 0:5z�11 � 1:5z�12 C 1:8z�11 z�12 C 0:6z�22 � 0:72z�11 z�22
C0:5z�21 � 0:75z�21 z�12 C 0:29z�21 z�22

D.z�11 ; 0/ D 1 � 0:5z�11 C 0:5z�21 ¤ 0; jz�11 j � 1
C.z2/ D z22D.z

�1
1 ; z

�1
2 / D .0:6 � 0:72z�11 C 0:29z�21 /C

.�1:5C 1:8z�11 � 0:75z�21 /z2C

.1 � 1:2z�11 C 0:5z�21 /z22
Schur-Chon-Matrix on jz1j D 1

C.z1/ D
"

c11.z1/ c12.z1/
c21.z1/ D c�12..z�1 /�1/ D Œc12..z�1 /�1/�� c11.z1/

#
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C.z1/ D

2

6
6
4

1:7275� 1:1592.z1 C z�11 / �0:3z�21 C 1:08z�11 � 1:6215
C0:326.z21 C z�21 / C1:098z1 � 0:315z21

�0:3z21 C 1:08z1 � 1:6215 1:7275� 1:1592.z1C z�11 /
C1:098z�11 � 0:315z�21 C0:326.z21 C z�21 /

3

7
7
5

C.1/ D
�
0:0611 �0:0585
�0:0585 0:0611

�

> 0

det C.z2/ D 0:6938� 0:5593.z1 C z�11 /C 0:287.z21 C z�21 /�
0:0862.z31C z�31 /C 0:0118.z41 C z�41 /

x1 D z1 C z�11
2

D cos 


det C.z2/ D 0:6938� 2Œ0:5593.T1.x1//C 0:287.T2.x1//�
0:0862.T3.x1//C 0:0118.T4.x1//�

D 0:143334� 0:60148x1C 0:95963x21 � 0:689587x31C 0:188416x41

(since T1.x/ D x, T2.x/ D 2x2 � 1, T3.x/ D 4x3 � 3x, T4.x/ D 8x4 � 8x2 C 1)
Roots of C.z1/ on jz1j D 1 occur for values of x1 at:

0:912134˙ j0:214885; 0:917824˙ j0:154509

(Using Mathematica; you may use MAPLE(VAX), MATLAB, etc.)
Therefore C.z1/ is positive definite on jz1j D 1. FILTER STABLE
(b) Same as (a) except 0:29z�21 z�22 ! 0:25z�21 z�22
By Mathematica, the elements of the Schur-Cohn matrix are

C11.z1/ D 1:7491� 1:188.z1 C z11/C 0:35.z21 C z�21 /; jz1j D 1
C12.z1/ D �0:3z�21 C 1:08z�11 � 1:6515C 1:17z1 � 0:375z21 D C21.z

�1
1 /

C22.z1/ D C11.z1/

det C.z1/ D 0:633662� 0:508837.z1C z�11 /C 0:257351.z21C z�21 /�
0:0756.z31 C z�31 /C 0:01.z41 C z�41 /

D 0:13896� 0:564074xC 0:869404x2 � 0:6048x3C 0:16x4
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Roots on jz1j occur at values of x D z1Cz�1
1

2
D cos 
 at 0:799659 2 Œ�1; 1�,

0:919511˙ j0:325741,1:14132. Therefore C.z1/ is not positive definite on jz1j D 1.
UNSTABLE FILTER

The proof of Theorem 4.4 can also be given via use of algebraic function
theory instead of the Cauchy principal value theorem. A proof based on algebraic
topological approach using arguments from homotopy theory4 has also been given.
The generalization of Theorem 4.4 to n dimensions is stated next.

Fact 4.6. The n-variate polynomial B.z1; � � � ; zn/ ¤ 0 in U
2

if and only if:

(i) For any z10; z20; � � � ; zn0 such that jzr0j D 1; r D 1; � � � ; n, and for all i, i D
1; � � � ; n;B.z1; � � � ; zn/ ¤ 0, when zr0 D zr; r ¤ i; jzij � 1.

(ii) B.z1; � � � ; zn/ ¤ 0, in Tn , f.z1; � � � ; zn/ W jz1j D 1; � � � ; jznj D 1g.
A variant of Fact 4.6 is given next, where a test for zeros in the distinguished

boundary of the polydisc is required but the n single-variable tests are replaced by
one single-variable test. (Of course, the polynomial, in general will be of higher
degree.) The proof uses arguments from homotopy theory and is given elsewhere.

Fact 4.7. The n-variate polynomial B.z1; � � � ; zn/ ¤ 0 in U
2

if and only if:

.i/ B.z1; z1; � � � ; z1/ ¤ 0; jz1j � 1

.ii/ B.z1; z2; � � � ; zn/ ¤ 0; on Tn:

In fact, condition (i) of Fact 4.7 can be replaced by

B.zk1
1 ; z

k2
1 ; � � � ; zkn

1 / ¤ 0; jz1j � 1
for any fixed integer ki > 0; i D 1; � � � ; n. It may be noted that Fact 4.7 follows from
Fact 4.6, using a specialization of a result, which states that when B.z1; z2; � � � ; zn/ ¤
0 on Tn and Bj.z1/ D B.1; 1; � � � ; 1; z1; 1; � � � ; 1/ (z1 in the jth place) and kj is the
number of zeros of Bj.z1/ in jz1j � 1, then B.z1; z1; � � � ; z1/ has k1 C k2 C � � � C kn

zeros in jz1j � 1.
Before discussing another procedure to test for absence of zeros of B.z1; z2/ in

U
2
, some facts concerning 1-D sequences will be introduced. Assume that b.k1/ is

a finite sequence of real numbers, b.˛/; � � � ; b.ˇ/, with ˛ � ˇ; ˇ > 0, and b.˛/ ¤
0; b.ˇ/ ¤ 0. A polynomial possibly in z1; z�11 (z�11 powers are present when ˛ < 0),

B.z1; z�11 / ,
Pˇ

k1D˛ b.k1/z
k1
1 can be formed which has m1 D m1i C m10 zeros

(counting multiple zeros and zeros at infinity), where

m1i D jmin.0; ˛/j; m10 D max.0; ˇ/:

4Editorial note: Use of homotopy in such contexts is a manifestation of the simple fact that zeros of
a polynomial are continuous functions of coefficients of the polynomial. More comments on notes
at the end of chapter.
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When B1.z1; z�11 / has no zeros on jz1j D 1, it is possible to define on Œ��; pi�
a continuous odd phase function associated with the Fourier transform of the
sequence. This phase function contains no linear phase component if and only if
B1.z1; z�11 / has exactly m1i zeros inside and m10 outside jz1j D 1. If the unit circle
jz1j D 1 is defined to be a Nyquist contour, the preceding phase condition implies
that the Nyquist plot does not encircle or pass through the origin. The following
result is true.

Fact 4.8. The bivariate polynomial B.z1; z2/ ¤ 0 in U
2

if and only if: (i) B.z1; 1/
and B.1; z2/ have no linear phase terms on jz1j D 1; jz2j D 1, respectively. (ii)
B.z1; z2/ ¤ 0 on T2.

This result is true for any type of recursively computable filter, with output masks
of various shapes. More will be said about the result in the discussion of the stability
of a general recursive filter. It has been shown that these conditions are equivalent
to the imposition of certain restrictions on the phase of the Fourier transform of the
array fbŒk1; k2�g with which B.z1; z2/ is associated. Let

B!1 D
X

k2

 
X

k1

bŒk1; k2�e
�j!1k1

!

zk2
2 :

To ensure continuity, the phase function �.!1; !2/ is defined as

�.!1; !2/ D Im

�Z
@B!1.z2/

@z2
ŒB!1.z2/�

�1dz2

�

C �.!1; 0/; (4.20)

where the contour integral starts at z2 D 1 and traverses the unit circle to z2 D e�j!2 .
�.!1; !2/ is referred to as the unwrapped phase, with proper choice of �.!1; 0/ as
in (4.21) below.

The following theorem linking the phase function to stability of a 2-D filter has
been found to be useful in the construction of efficient numerical tests.

Theorem 4.5. The bivariate polynomial B.z1; z2/ ¤ 0 in U
2

if and only if the
unwrapped phase is continuous, odd, and periodic.

Proof. If the phase is continuous, odd, and periodic, then B.z1; z2/ ¤ 0 on T2

follows from the definition of �.!1; !2/ in (4.20). Moreover, as a specialization,
the phase of B.zk1

1 ; z
k2
1 /, where k1; k2 are nonnegative integers, must be continuous,

odd, and periodic, implying in particular that B.z1; 1/ and B.1; z2/ have continuous,

odd, and periodic phases. Invoking Fact 4.8, then, B.z1; z2/ ¤ 0 in U
2
.

When B.z1; z2/ ¤ 0 in U
2
, �.!1; !2/ can be defined as in (4.20). The constant

�.!1; 0/ is defined as follows:

�.!1; 0/ D
�Z !1

0

.@BI=@!1/BR � .@BR=@!1/BI

B2R C B2I
d!1

�

!2D0
(4.21)
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where BR;BI represent, respectively, the real and imaginary parts of B.e�j!1 , e�j!2/.
With �.!1; 0/ chosen as in (4.21), �.!1; !2/ in (4.20) is guaranteed to be continuous
and odd. So �.!1; !2/ D ��.!1; !2/. Using elementary arguments from complex
variable theory, it can be shown, furthermore, that

�.!1; !2 C 2�/ D �.!1; !2/C 2�k!2

�.!1 C 2�; !2/ D �.!1; !2/C 2�k!1 ;

where k!1 ; k!2 are, respectively, independent of !2; !1 and are actually constants.
Then

�a.!1; !2/ D �.!1; !2/ � k!2!2 � k!1!1;

where the phase function �a.!1; !2/ associated with the finite-extent shifted array
fbŒk1 C k!1 ; k2 C k!2 �g is continuous, odd, and periodic. The proof of the theorem
is now complete, after the observation that the polynomial B.z1; z2/ associated with

fbŒk1; k2�g is nonzero in U
2

(see Theorem 4.1).

The tests for zeros of B.z1; z2/ ¤ 0 in U
2

which involve the test for zeros of
B.z1; z2/ in T2 along with other single-variable tests are all special cases of a theorem
proved by Rudin using homotopy theory, and summarized next. See reference for a
simple proof of this result.

Theorem 4.6. The bivariate polynomial B.z1; z2/ ¤ 0 in U
2

if and only if:

(i) BŒf1.z1/; f2.z1/� ¤ 0 in jz1j � 1, where f1.z1/ and f2.z1/ are some continuous

(not necessarily holomorphic) mappings of U
1

into U
1

and of T1 into T1

with positive winding number of the unit circle with respect to the origin, i.e.,
Indf1.ei
 / > 0, Indf2.ei
 / > 0, 0 � 
 � 2� . (“Ind” denotes “index” or
“winding number”.)

(ii) B.z1; z2/ ¤ 0 in T2.

This theorem is actually independent of the number n of variables and applies
not only to polynomials but also to the class of all continuous complex functions
on the closure U

n
of Un whose restriction to Un is holomorphic. The theorem can

be applied to generate other tests, almost at will. Of course, such tests may not be
computationally efficient for actual implementation. One such test is stated next.

Fact 4.9. The bivariate polynomial B.z1; z2/ ¤ 0 in U
2

if and only if

B.z1; z1e
j˛/ ¤ 0 in U

1
; for all ˛ in 0 � ˛ � 2�:

It may be noted that a result paralleling the one just stated applies in the test for
zeros of B.z1; z2/ in U2:

Fact 4.10. The bivariate polynomial B.z1; z2/ ¤ 0 in U2 if and only if

B.z1; z1e
j˛/ ¤ 0 in U1; for all ˛ in 0 � ˛ � 2�
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A LSI n-dimensional recursive filter is characterizable by a transfer function,

H.z1; z2; � � � ; zn/ D A.z1; z2; � � � ; zn/

B.z1; z2; � � � ; zn/

where H.z1; z2; � � � ; zn/ is viewed as a rational function of z1, z2, � � � , zn, z�11 , z�12 , � � � ,
z�1n (recursible filters include causal and weakly causal filters). For notational con-
venience, the z-transform H.z1; z2; � � � ; zn/ of an n-D sequence, fhŒk1; k2; � � � ; kn�g,
will be defined as a power series involving the superposition of the products of
monomials of the type zk1

1 ; z
k2
2 ; � � � ; zkn

n and the generic element, hŒk1; k2; � � � ; kn�,
of the sequence. Physically, the indeterminates z1; z2; � � � ; zn are the respective
delay variables along the spatial or temporal directions of sampling during the
analog to digital conversion of a multidimensional spatio-temporal signal. In the
case of first quadrant quarter-plane filters, A.z1; z2; � � � ; zn/ and B.z1; z2; � � � ; zn/ are
polynomials. Since a ring isomorphism maps a weakly causal filter onto a first
quadrant quarter-plane filter, A.z1; z2, � � � ,zn/, B.z1, z2, � � � ; zn/, will be understood
to be relatively prime polynomials in the delay variables z1, z2, � � � , zn unless
mentioned otherwise.

For a first quadrant quarter-plane digital filter, characterized by H.z1, z2, � � � , zn/,
which is assumed to be holomorphic around the origin (this is assured by assuming
B.0; 0; � � � ; 0/ ¤ 0/, thereby permitting a Taylor series expansion,

H.z1; z2; � � � ; zn/ D
1X

k1D0
� � �

1X

knD0
hŒk1; � � � ; kn�z

k1
1 � � � zkn

n (4.22)

the investigation into BIBO stability reduces to the determining of conditions under
which the sum

1X

k1D0
� � �

1X

knD0
jhŒk1; � � � ; kn�j (4.23)

converges. Absolute convergence implies that hŒk1, � � � , kn�’s are uniformly bounded,
i.e. there exists a constant K such that, jhŒk1; � � � ; kn/j � K, k1, � � � , kn = 0; 1; 2; � � � .
It is well-known that convergence of (4.23) implies uniform convergence in U

n

of (4.22) which in turn implies that H.z1; � � � ; zn/ is holomorphic in Un and
continuous in U

n
. Also, if H.z1; � � � ; zn/ is holomorphic in a neighborhood of

U
n
, then (4.23) converges. In the n D 1 case, for a rational function, H.z1/ D

ŒA.z1/�=ŒB.z1/�, it is simple to establish that (4.23) with n D 1 is absolutely
summable if and only if the polynomial B.z1/ ¤ 0; jz1j � 1. This fact does not
generalize in the n > 1 case and B.z1; � � � ; zn/ ¤ 0 in U

n
is only a sufficient

condition for BIBO stability of H.z1; � � � ; zn/.
For an arbitrary rational function H.z/, the problem of determining conditions

for BIBO stability in the presence of a finite number of nonessential singularities of
the second kind on Tn is complex and, at present, no general solution is available.
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Dautov clarified the problem in the 2-D case by showing that for a certain class of
denominator polynomials B.z/, H.z/ D A.z/=B.z/ is BIBO stable if and only if it

can be continuously extended to U
2

from U2; furthermore, he conjectured that this

is true for any B.z/whose only zeros in U
2

are on T2 and these are also zeros of A.z/
(note that in the 2-D case the finiteness condition for the number of common zeros
on Tn is automatically satisfied). Of course, H.z/ can never be extended analytically
to U

n
when there is a nonessential singularity of the second kind at z D z.0/ 2 Tn

since in any open neighborhood of z D z.0/;H.z/ will always be unbounded and
therefore Riemann’s analytic continuation theorem will not apply. However, if H.z/
extends continuously to U

n
one can take limits from any direction from within U

n

to achieve the same result. The example given next shows a rational function H.z/
which is analytic in U2, has a nonessential singularity of the second kind at z D
.1; 1/ and does not extend on U

2
to a continuous function.

Example 4.7. Let,

H.z1; z2/ D .z1 � 1/n C .z1 � 1/.z2 � 1/C .z2 � 1/n
.z1 C z2 � 2/2

n >> 1. For .z1; z2/ D .ej
 ; ej�/ 2 T2,

H.ej
 ; ej�/ D .ej
 � 1/n C .ej
 � 1/.ej� � 1/C .ej� � 1/n
.ej
 � 1C ej� � 1/2

Then, the limit as 
 ! 0 along the line � D 0 is 0, but the limit as 
 ! 0 along the
line 
 D � is 1/4.

Through a series of neatly constructed examples, Goodman, in a prize-winning
paper [64], was the first to point out difficulties in the prevailing concept of BIBO
stability for multidimensional filters. In addition to other results, he showed that

H.z1; z2/ D .1 � z1/m.1 � z2/n

2 � z1 � z2
; m � 0; n � 0 (4.24)

is BIBO unstable when m D n D 1, and BIBO stable when m D n D 8. For the case
when m D n D 1 it is clear that H.z1; z2/ does not extend on U

2
to a continuous

function, since

lim
z1!1

H.z1; z1/ D lim
z1!1

.1 � z1/2

2.1� z1/
D 0

while

lim
x!1H.1� x2 C jx; 1 � x2 � jx/ D lim

x!0
x4 C x2

x2
D 1:
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For 1-D filters characterized by a rational transfer function H.z1/ with a power
series expansion about z1 D 0 given by

H.z1/ D
1X

k1D0
hŒk1�z

k1
1 ;

the impulse response sequence fhŒk1�g is known to satisfy the following properties
in order that the filter might be BIBO stable:

(a)

lim
k1!1

jhŒk1�j D 0
(b)

1X

k1D0
jhŒk1�jp <1; for any p � 1

(c)

lim
k1!1

sup.jhŒk1�j/1=k1 < 1

(d)

jhŒk1�j � crk1 ; 0 � c <1; 0 < r < 1:

These conditions are all equivalent, and each is necessary and sufficient for
BIBO stability of the filter.

Consider, now a 2-D first quadrant filter characterized by a rational transfer
function, with the following power series expansion about z1 D 0; z2 D 0:

H.z1; z2/ D A.z1; z2/

B.z1; z2/
D
1X

k1D0

1X

k2D0
hŒk1; k2�z

k1
1 zk2

2

It is assumed that B.0; 0/ ¤ 0 and A.z1; z2/ and B.z1; z2/ are relatively prime
polynomials. It will be shown that significant differences occur here from the 1-D
case. It has been proved that the unstable filter with transfer function

H.z1; z2/ D .1 � z1/.1 � z2/

2 � z1 � z2
(4.25)

having nonessential singularities of the second kind at z1 D z2 D 1 has a square
summable impulse response, i.e., fhŒk1; k2� 2 l2, and therefore, also,

lim
k1;k2!1

hŒk1; k2� D 0 (4.26)
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It has also been shown that the unstable filter transfer function

H.z1; z2/ D 2

2 � z1 � z2
(4.27)

devoid of nonessential singularities of the second kind on T2, has an impulse
response which trails off of zero as in (4.26). However, the impulse response
associated with H.z1; z2/ in (4.27) is not square summable. To determine the class of
2-D filter transfer functions for which counterparts of 1-D properties hold, assume
that the rational transfer function H.z1; z2/ is devoid of nonessential singularities of
the second kind on T2.

Theorem 4.7. Consider L to be defined as follows:

L D lim
k1;k2!1

sup jhŒk1; k2�j1=.k1Ck2/ (4.28)

where hŒk1; k2�’s are the coefficients of the power series expansion about z1 D 0,
z2 D 0 of H.z1; z2/. Then the filter characterized by H.z1; z2/ is BIBO stable if and
only if L < 1.

Proof. “If” part. From the definition of L, for any 
; 0 < 
 < 1; jhŒk1; k2� � ŒL.1C

/�k1Ck2 for all but a finite number of pairs .k1; k2/. If L < 1, it is possible to choose

 such that L.1 C 
/ < 1. Consequently,

P
k1

P
k2
jhŒk1; k2�j < 1 and the filter is

BIBO stable.

“Only if” part. Since the filter is BIBO stable, it follows from Fact 4.1 thatP
k1

P
k2
jhŒk1; k2�j < 1. It is known that for an absolutely convergent double

series, the limit

Wn.�/n!1 ,
X

k1

X

k2

jhŒk1; k2�j; �Œk1; k2� < n

exists for any admissible function �Œk1; k2� acting on the indices k1; k2 in fhŒk1, k2�g
(for example, �Œk1; k2� could be k1 C k2), and this limit is independent of �Œk1; k2�.
Therefore, it is possible to infer using standard results for 1-D sequences that

lim
k1;k2!1

sup jhŒk1; k2�j1=.k1Ck2/ < 1;

and the proof of the theorem is complete.
From Theorem 4.7 it also follows that

jhŒk1; k2�j � crk1Ck2 ; 0 � c <1; 0 < r < 1:

when L < 1. The case when L D 1 leads to instability and the locations of the
unstable singularities are restricted by the assertion made next.
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Fact 4.11. In (4.28), if L D 1, the rational function H.z1; z2/ characterizes an
unstable filter and the sources of instability may only occur in one of the following
three regions:

(i)

jz1j D 1; z2 arbitrary (4.29)

(ii)

jz2j D 1; z1 arbitrary (4.30)

(iii) At points z1 D z10; z2 D z20 where

H.z10; z20/ D 1; jz10j D 1; jz20j D 1: (4.31)

The fact that if L D 1, then no unstable singularities of H.z1; z2/ occurs in U2

can be substantiated as follows. The results of Theorem 4.7 suggest that if L D
1;H.z1; z2/ has unstable singularities in jz1j � 1; jz2j � 1. Let z1 D z01r; z2 D
z02r; 0 < r < 1. Then

H.z1; z2/ D H.rz01; rz02/ D
1X

k1D0

1X

k2D0
hŒk1; k2�r

k1Ck2 .z01/k1 .z02/k2

clearly,

lim
k1;k2!1

sup.jhŒk1; k2�jrk1Ck2 /1=.k1Ck2/ D rL < 1:

Therefore, from Theorem 4.7, H.z1; z2/ has no unstable singularities in the open
bidisc U2. The proof for restriction of the unstable singularities to the regions
described in (4.29)–(4.31) can be completed by the reader. The following theorem
satisfies the objectives sought for exposition in this section.

Theorem 4.8. If the rational function H.z1; z2/ does not belong to the class
satisfying (4.31), then the following conditions are equivalent and each is necessary
and sufficient for BIBO stability of the filter characterized by

H.z1; z2/ D
1X

k1D0

1X

k2D0
hŒk1; k2�z

k1
1 zk2

2

(i)

jhŒk1; k2�j � crk1Ck2 ; 0 � c <1; jrj < 1
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(ii)

1X

k1D0

1X

k2D0
jhŒk1; k2�jp <1; for any p � 1

(iii)

lim
k1;k2!1

jhŒk1; k2�j ! 0

(iv)

lim
k1;k2!1

sup.jhŒk1; k2�j/1=.k1Ck2/ < 1:

It is recalled that H.z1; z2/ has been assumed to be devoid of nonessential
singularities of the second kind on T2. Furthermore, conditions (i) and (iv) are each
necessary and sufficient for BIBO stability in general, though conditions (i) and (iii)
each carry different implication from its 1-D counterpart.

This result has a direct extension to the n > 2 case. For a rational function
H.z1; � � � ; zn/ to be outside the class satisfying the n-variate counterpart of (4.29)–
(4.31), it must be devoid of nonessential singularities of the first kind on Tn.

Several further comments and observations pertaining to the n D 2 (or n > 2)
case can be made. Though a bounded impulse response, i.e., jhŒk1; k2�j < K <

1;8 k1; k2, does not imply BIBO stability of H.z1; z2/ D A.z1; z2/=B.z1; z2/, it
does imply that B.z1; z2/ ¤ 0 in U2. This can be substantiated as follows. Since
jhŒk1; k2�j < K < 1 8 k1; k2, the power series

P1
k1D0

P1
k2D0 hŒk1; k2�z

k1
1 zk2

2 is
absolutely convergent in U2, implying that H.z1; z2/ has no nonessential singularity
of the first kind in U2 ( and therefore no nonessential singularity of the second kind
in U2). Hence B.z1; z2/ ¤ 0 in U2. However, the converse if false. For example, in

H.z1; z2/ D 1=.1� z1z2/
2;

B.z1; z2/ ¤ 0 in U2. However,

hŒk1; k2� D
	
0; if k1 ¤ k2
k1 C 1; if k1 D k2

becomes unbounded as k1 and k2 approach infinity.
Some of the results discussed in this section are summarized in Table 4.1. The

reader is advised to try to prove the last three statements in the table. For brevity, the
similarities and differences from the univariate case have been identified via detailed
exposition of the n D 2 case. Naturally, the main conclusions in Table 4.1 apply for
the n > 2 case also.
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Table 4.1 Summary of Algebraic 2-D Stability Tests

B.z1; z2/ ¤ 0 in U
2 ( =

) BIBO stability

B.z1; z2/ ¤ 0 in U
2 � T2

(
) =

BIBO stability

fhŒk1; k2�g 2 l1 , BIBO stability

fhŒk1; k2�g 2 l2
(
) =

BIBO stability

lim
k1;k2!1

hŒk1; k2�! 0
(
) =

BIBO stability

B.z1; z2/ ¤ 0 in U2 (
) =

jhŒk1; k2�j � K <1; 8k1; k2

jH.z1; z2/j � K <1inU2 ( =

) fhŒk1; k2�g 2 l2

B.z1; 0/ ¤ 0; jz1j � 1 ( =

)
P1

k1D0 jhŒk1; k2�j <1; 8k2

B.0; z2/ ¤ 0; jz2j � 1 ( =

)
P1

k2D0 jhŒk1; k2�j <1; 8k1

H.z1; z2/ D A.z1 ;z2/
B.z1 ;z2/

=
P1

k1D0

P1

k2D0 hŒk1; k2�z
k1
1 zk2

2

4.6.1 Advanced Notes

The distinguished boundary (referred to also as the torus) Tn of the open unit
polydisc Un is a compact Abelian group under the operation of the component-
wise multiplication and as such carries a Lebesgue measure mn.Tn/ D .2�/n. The
polydisc algebra A.Un/ is the class of all continuous complex functions on the
closure NUn of Un whose restriction to Un is holomorphic. Several BIBO stability
conditions in multidimensional signal processing emerge as special cases of a
theorem due to Rudin for functions belonging to the class A.Un/ [13, Theorem 4.7.2,
p. 87]. This theorem essentially states that every value assumed on Un by a function
belonging to A.Un/ is already assumed on a small subset K [ Tn of NUn, for
K D �. NU/ where � D .�1; : : : ; �n/ is a continuous map of NU into NUn, which
carries T into Tn such that for a loop E in T the winding number Ind.�joE/ > 0 for
j D 1; 2; : : : ; n. Further simplifications on the subset K, which have appeared in the
signal processing literature, also follow directly by choosing �j.	/ D 	; 1 � j � n,
or indirectly from the result that if a function f 2 A.Un/ has no zeros on Tn,
fj.	/ D f .1; : : : ; 1; 	; 1; : : : ; 1/ (	 in jth place) and kj is the number of zeros of
fj in U, then f .	; : : : ; 	/ has k1 C : : :C kn zeros in U.
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4.7 General Recursive Filters

For the non-quarter plane digital filter whose transfer function is

H.z1; z2/ D Y.z1; z2/

X.z1; z2/
D 1

1C 0:5z1z�12 C z�11 C z�12 C z�21 z2
; (4.32)

the unit impulse response fhŒk1; k2�g is recursively computable with zero-boundary
conditions from the 2-D difference equation

hŒk1; k2� D ıŒk1; k2� � 1
2

hŒk1 C 1; k2 � 1� � hŒk1 � 1; k2�
�hŒk1; k2 � 1�� hŒk1 � 2; k2 C 1�:

The support, Sp;q;r;t
4D suppfhŒk1; k2�g, of the impulse response is in the causality

cone H1;1;1;2 defined by the intersection of the two half-planes,

H1;1 W x1 C x2 � 0 and H1;2 W x1 C 2x2 � 0:

It is important to note that if Z denotes the set of integers and Z2
4D Z � Z, then

there exists an index map

� W Hp;q;r;t \ Z2 ! Q1 \ Z2;

from the causality cone Hp;q;r;t with support Sp;q;r;t to the first quadrant quarter-plane,
Q1 with support S1;0;0;1.

The map referred to is bijective i.e. isomorphic (one-to-one and onto) and is
described by the relation,

Œn1; n2� D �Œk1; k2� D Œpk1 C rk2; qk1 C tk2�: (4.33)

The associated inverse map is

Œk1; k2� D ��1Œn1; n2� D Œpn1 � rn2;�qn1 C pn2�: (4.34)

Clearly,

�Œt;�q� D Œpt � qr; qt � qt� D Œ1; 0�

�Œ�r; p� D Œ�prC pr;�qrC pt� D Œ0; 1�
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which implies that points Œt;�q� and Œ�r; p� in Hp;q;r;t are mapped to points Œ1; 0�
and Œ0; 1�, respectively, in Q1.

Quarter plane transfer function obtained from the image of the map is

OH.z1; z2/ 4D
1X

n1D0

1X

n2D0
hŒ��1Œn1; n2��z�n1

1 z�n2
2

where ��1Œn1; n2� is defined in (4.34). Then

OHŒz1; z2� D
1X

n1D0

1X

n2D0
hŒtn1 � rn2;�qn1 C pn2�z

�n1
1 z�n2

2

D
XX

suppfhŒk1;k2�ghŒk1; k2�z
�.pk1Crk2/
1 z�.qk1Ctk2/

2

D
XX

suppfhŒk1;k2�g
hŒk1; k2�.z

p
1z

q
2/
�k1 .zr

1z
t
2/
�k2

D H.zp
1z

q
2; z

r
1z

t
2/:

Notice that for notational convenience, the definition here of the z-transform

involves positive powers of the indeterminates, w1
4D z�11 , w2

4D z�12 . Therefore,

OHŒz1; z2� D
XX

suppfhŒk1;k2�g
hŒk1; k2�.z

p
1z

q
2/
�k1 .zr

1z
t
2/
�k2

D
XX

suppfhŒk1;k2�ghŒk1; k2�.w
p
1w

q
2/

k1 .wr
1w

t
2/

k2 :

The transfer function in the complex variables w1, w2 of the first quadrant quarter-
plane filter obtained from H.z1; z2/ in (4.32) is

GŒw1;w2� D 1

1C 0:5z1z�12 C z�11 C z�12 C z�21 z2

ˇ
ˇ
ˇ
ˇ z1Dw�1

1 w�1
2

z2Dw�1
1 w�2

2

D 1

1C 0:5w2 C w1w2 C w1w22 C w1

Apply first-quadrant quarter-plane stability test on G.w1;w2/ i.e. check whether

or not A.w1;w2/ ¤ 0, jw1j � 1, jw2j � 1, where A.w1;w2/
4D 1 C 0:5w2 C

w1 C w1w2 C w1w22. Clearly A.�1; 0/ D 0, which implies that G.w1;w2/ is BIBO
unstable. Consequently, H.z1; z2/ in (4.32) is also a BIBO unstable general support
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recursive digital filter. Indeed, from (4.32) it is straightforward to show that along
the boundaries of the causality cone that provides the region of support of the filter,

hŒ�k; k� D .�1
2
/

k

; k � 0

hŒ2k;�k� D .�1/k; k � 0:

Subsequently, it is easy to show after some algebraic manipulation

hŒ�k; kC 1� D �3
4
.kC 1/.�1

2
/k; k � �1

hŒ2kC 1;�k� D 1

2
k.�1/k; k � 0:

hŒ�k; kC 2� D
�

�15
2
C 27

4
.3C k/

9

4
.3C k/2

�

.�1
2
/kC3; k � �2

hŒ�k; kC 3� D
�

�27
2
C 153

8
.4C k/� 27

4
.4C k/2 C 9

8
.4C k/3

�

.�1
2
/kC4

k � �3

etc. Better still, plot the impulse response hŒk1; k2� by setting up recursive computa-
tion on (4.32) and see how it builds up, especially in the first quadrant.

4.8 2-D Complex Cepstrum

OxŒk1; k2� D 1

.2�/2

Z 2�

0

Z 2�

0

ln X.w1;w2/e
j.w1k1Cw2k2/dw1dw2

OX.w1;w2/ D ln X.w1;w2/ must be continuous, differentiable, and doubly periodic
and the function and the function ln X.z1; z2/ must be analytic in some region of
convergence OR, where R � OR � T2, with R the Region Of Convergence (ROC) of
X.z1; z2/. The function,

OX.w1;w2/ 4D ln jX.w1;w2/j C j�.w1;w2/;

where

X.w1;w2/ D jX.w1;w2/j C ej�.w1Cw2/
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is continuous and differentiable if �.w1;w2/ is the unwrapped phase. It can be
shown that , in general, this unwrapped phase function is the sum of a doubly period
phase function and a function linear in w1 and w2.

For the sake of simplicity, but without loss of generality, we assume that xŒk1; k2�
is of finite support, so that

X.w1;w2/ D
X

k1

X

k2

xŒk1; k2�e
�j.w1k1;w2k2/

is a trigonometric polynomial. First, consider

Aw1 .z2/ D X.w1;w2/
ˇ
ˇ w1fixed

ejw2!z2

D
X

k1

X

k2

xŒk1; k2�z
�k2
2 e�jw1k1

as an univariate polynomial in z�12 . Viewed as a rational function in z2, Aw1 .z2/ will
have poles inside jz2j � 1 only at z2 D 0. This may be removed by multiplication
with an appropriate power N2 of z2 to form the polynomial in z2,

Cw1 .z2/ D zN2
2 Aw1.z2/:

Now, let us define the phase function

�.w1;w2/ D Im

Z ejw2

z2Dej0D1
A0w1.z2/
Aw1.z2/

dz2 C �.w1; 0/

where the univariate phase function �.w1; 0/ is the phase as a function of w1 for
w2 D 0. Letting,

X.w1; 0/ D XR.w1; 0/C jXI.w1; 0/;

�.w1; 0/ D
Z w1

0

 
@XI
@w1

XR � @XR
@w1

XI

X2R C X2I

! ˇ
ˇ
ˇ
ˇ
w2D0

dw1

By constructing �.w1;w2/ in this manner, we are assumed that �.w1;w2/ is
continuous and odd(�.w1;w2/ D �.�w1;�w2/), and we can write

�.w1; 2�/ D Imf
I

A0w1 .z2/
Aw1 .z2/

dz2g

D Imf
I �

�N2z
�1
2 C

C0w1 .z2/
Cw1 .z2/

�

dz2g

D �2�N2 C 2�r2:



4.8 2-D Complex Cepstrum 119

The last equation follows from application of residue theorem where r2 is the
number of roots (including multiplicities) of Cw1 .z2/ and, therefore, of Aw1.z2/
inside the unit circle, jz2j � 1. If we let kw2 D r2 � N2, then

�.w1;w2 C 2�/ D �.w1;w2/C 2�kw2

Similarly, we can derive that

�.w1 C 2�;w2/ D �.w1;w2/C 2�kw1

What remains to be shown is that kw2 is not a function of w1 and kw1 is not a function
of w2. If we examine the roots of Cw1 .z2/, which are also the roots of Aw1.z2/, as we
continuously vary the parameter w1 from 0 to 2� , we discover that the roots move in
a continuous manner. Thus, for a root to move from inside to outside the unit circle
(or vice versa), it must lie on the unit circle, jz2j D 1, for some value of w1. This,
however, violates the hypothesis X.w1;w2/ ¤ 0. Therefore, given a continuous odd
function �.w1;w2/ such that

�.w1;w2 C 2�/ D �.w1;w2/C 2�kw2

�.w1 C 2�;w2/ D �.w1;w2/C 2�kw1

�.w1;w2/ D ��.�w1;�w2/;

we can subtract the linear phase component

�L.w1;w2/ D kw1w1 C kw2w2

to give the remaining term

�A.w1;w2/ D �.w1;w2/� �L.w1;w2/

Setting, kw2 ! K2, kw1 ! K1, the sequence

yŒk1; k2� D xŒk1 � K1; k2 � K2�

which is a shifted version of xŒk1; k2� has a Fourier transform,

Y.w1;w2/ D X.w1;w2/e
�j.w1K1Cw2K2/

Consequently, the unwrapped phase of Y.w1;w2/ is �.w1;w2/ � w1K1 � w2K2, is
continuous and double period, and Y.w1;w2/ satisfies the conditions necessary to
define the complex cepstrum OyŒn1; n2�.
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4.8.1 Example

It is required to calculate the cepstrum OhŒk1; k2� of the unit impulse response
sequence of a 2-D digital filter whose transfer function is H.z1; z2/ D 1

1�az�1
1 �bz�1

2

,

jaj C jbj < 1. For the sake of brevity in notation set z�11 ! w1, and z�12 ! w2.

jaj C jbj < 1 implies that H.w1;w2/
4D 1

1�aw1�bw2
is analytic in the unit bidisc

NU2 4D jw1j � 1, jw2j � 1.

OhŒk1; k2� D Z�1 ln ZfhŒk1; k2�g
OhŒk1; k2� D 1

.2�j/2

I

jw1jD1

I

jw2jD1
ln

�
1

1 � aw1 � bw2

�

w�.1Ck1/
1 z�.1Ck2/

2 dw1dw2

D 1

.2�j/

I

jw2jD1
1

wk2C1
2

"
1

.2�j/

I

jw1jD1
ln

�
1

1 � aw1 � bw2

�
1

wk1C1
1

dw1

#

dw2

Let 1 � aw1 � bw2 D 0, jw2j D 1, w1 D 1�bw2
a . Since

1 <
1 � jbj

a
and jw2j D 1;

jw1j > 1 � jbw2j
jaj > 1:

ln

�
1

1 � aw1 � bw2

�

is analytic in NU2;

1

.2�j/

I

jw1jD1
ln

�
1

1 � aw1 � bw2

�
1

wk1C1
1

dw1

D 1

k1Š

dk1

dwk1
1

�

ln

�
1

1 � aw1 � bw2

��ˇ
ˇ
ˇ
ˇ
w1D0

D ak1

k1.1 � bw2/k1

OhŒk1; k2� D 1

.2�j/

I

jw2jD1
1

wk2C1
2

�
ak1

k1.1 � bw2/k1

�

dw2
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Since jbj < 1, 1 � bw2 D 0) jw2j D j 1b j > 1.

OhŒk1; k2� D ak1

k1.k2Š/

dk2

dwk2
2

�
1

.1 � bw2/
k1

�ˇ
ˇ
ˇ
ˇ
w2D0

D .k1 C k2 � 1/Š
k1Šk2Š

ak1bk2 ; k1 � 0; k2 � 0; k1 C k2 ¤ 0

4.9 Phase Unwrapping

Consider the n-D sequence fxŒk�g whose Fourier transform

XF.w/
4D X.ejw1 ; : : : ; ejwn/;

is obtained by evaluating the z-transform X.z1; : : : ; zn/ of fxŒk�g on Tn.

Definition 4.5 (Unwrapped Phase). For an n-dimensional signal fxŒk�g $ XF.w/
such that XF.�/ ¤ 0 for some � D .�1; : : : ; �n/ 2 Œ0; 2��n, the unwrapped phase

X.w�/ at w� D .w�1 ; : : : ;w�n / 2 Œ0; 2��n is defined as


X.w�/
4D 
X.�/C

nX

kD1

Z w�
k

�k

Imf .X
.k/
F .wk//

0

X.k/F .wk/
gdwk

where functions X.k/F .wk/ for kC 1; : : : ; n are given by

X.1/F .w1/
4D XF.w1; �2; : : : ; �n/

X.k/F .wk/
4D XF.w

�
1 ; : : : ;w

�
k�1;wk; �kC1; : : : ; �n/ for k D 2; : : : ; n:

and .X.k/F .wk//
0 denotes their derivative. All integrals here are defined by Lebesgue

integral.

The phase unwrapping computation of a n-D signal can be reduced the com-
putating of integrals of certain univariate functions as is evident from the Lemma
next.

Lemma 4.1. Under the same assumptions of the preceding Definition, let

min`
4D minfn`jk D Œk1; k2; : : : ; kn� 2 Supp.x/g for ` D 1; 2; : : : ; n

Y.z1; : : : ; zn/
4D z�min1

1 : : : z�minn
n X.z1; : : : ; zn/
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Define Y.k/F .wk/.k D 1; : : : ; n/ in the same way as X.k/F .wk/ in the preceding

Definition. Then the one dimensional signals fy.k/.nk/g $ Y.k/F .wk/.k D 1; : : : ; n/
satisfy

Supp.y.k// � fnk 2 Zj0 � nkg

jSupp.y.k//j � jSupp.x/j <1

and


X.w�/ D 
X.�/C
nX

kD1

(

mink.w
�
k � �k/C

Z w�
k

0

Im

 
.Y.k/F .wk//

0

Y.k/F .wk/

!

dwk

�
Z �k

0

Im

 
.Y.k/F .wk//

0

Y.k/F .wk/

!

dwk

)

:

A new approach to the stability of multivariate polynomials, with respect to a
unit polydisc, was advanced in [37] as a special case of an algebraic characterization
of the exact multidimensional unwrapped phase. The proposed phase unwrapping
algorithm was also applied to the classical problem concerned with the zero
distribution, with respect to the unit circle, for an arbitrary complex coefficient uni-
variate polynomial without encountering the plethora of singular cases. By applying
the theory of Cauchy indices, a symbolic algebra based analytic expression was
also provided for the unwrapped phase (and, consequently, zero distribution with
respect to the imaginary axis) associated with any complex coefficient characteristic
polynomial of a continuous-time system [38]. The proposed algorithms in [37] and
[38] do not require any zero-finding and, very importantly, force the singular case
problem in all division algorithm based procedures, to be absent.

4.10 Conclusions

While two-dimensional systems theory was understood well prior to 1985, the
possibilities and intrinsic difficulties in n-D, n � 3 have been understood more fully
during the last twenty years or so. This is largely due to the progress in n-D, n � 3
polynomial matrix theory and matrix fraction descriptions on one hand [6, 39, 65]
and the behavioral approach on the other [66–68].

The zero set of a multivariate polynomial is unbounded and, often it is necessary
to determine whether or not a specified polydomain (or its complement) is zero-free
for a polynomial. In [69], the zero set of a multivariate polynomial is enclosed by
unions and intersections of unbounded sets. Two additions to the extensive literature
on implementation of 2-D stability tests are available in [70] and [71]. A member
of the class A.Un/ qualifies as the transfer function of a normal (first quadrant
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BIBO-stable linear shift-invariant) filter if it has finite norm (defined as equivalent to
the filter being BIBO-stable). The work of Dautov [72] suggested the conjecture that
all rational functions in A.Un/, including those that have nonessential singularities
of the second kind (NSSK) on Tn, have finite norm. Youla [73] advanced a system-
theory motivated proof of Rudin’s result that every element belonging to the special
class of all-pass functions in A.Un/ is rational, devoid of NSSK on Tn and of finite
norm. In a recent paper [74], it was proved that a rational multivariate first quadrant
quarter-plane digital filter transfer function, analytic on the open polydisc, is BIBO-
stable if and only if it has a uniform extension to the distinguished boundary of the
polydisc.

Appendix: Editorial Note

Since the writing of the 1982 edition of the text, significant developments on
characterization of stability of n-D (n � 2) systems, their tests, and robustness,
including a variety of new applications of these concepts, have emerged. Since the
literature on this topic is large we only point to key references on each of these
developments.

A. The relevance of BIBO stability has been questioned on the basis of various
considerations, and a set of stability criteria all of which coincide with BIBO
stability in the 1-D case, but are different in n-D (n � 2) have been proposed.
For example, passive circuit theoretic considerations gave rise to previously
unidentified classes of stable multidimensional polynomials with zeros on the
distinguished boundary. The so called scattering Hurwitz (Schur), reactance
Hurwitz (Schur) and the immittance Hurwitz (Schur) polynomials, introduced in
[A1] below, can all have different zero-structures on the distinguished boundary,
and feature as the denominators (and numerators) of multidimensional scattering
functions, reactance functions and immittance functions in pursuing generaliza-
tions of passive circuit theory to multidimension.5 Properties of these classes of
stable polynomials and their relevance to signals and systems are extensively
discussed in and related other publications:

[A1] A. Fettweis and S. Basu, New results on multidimensional stable poly-
nomials - Part I: Continuous case, IEEE Trans. Circuits Syst., vol. 34,
pp. 1221–1232, 1987.

5For terminological convenience we refer to polynomials devoid of zeros in the poly-disc, arising in
discrete domain considerations, as the Schur polynomials, whereas the polynomials devoid of zeros
in the poly-halfplane arising in continuous domain considerations as the Hurwitz polynomials.
Correspondingly, we also talk about distinguished boundary of the poly-disc (denoted by Tn in the
present text), or of the poly-halfplane.
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[A2] S. Basu and A. Fettweis, New results on stable multivariable polynomials
- Part II: Discrete case. IEEE Trans. Circuits Syst., vol. 34, pp. 1257–1270,
November 1987.

[A3] S. Basu, New results on stable multidimensional polynomials - Part III:
State space interpretations. IEEE Trans. Circuits Syst., vol. 38, no. 7, July
1991.

B. Homotopy arguments, as a technique borrowed from analytic function theory,
have been mentioned for proofs of Theorems 4.4 and 4.6. However, it was
shown later that by carefully using the elementary fact that zeros of a polynomial
are continuous functions of coefficients of the polynomial, an entire gamut of
equivalence results including Theorems 4.3–4.6 and Facts 4.5–4.9, and several
yet further results not mentioned here, can indeed be proven. The success of
this elementary yet powerful technique, while nascent in several references
mentioned here, is most convincingly demonstrated in:

[B1] S. Basu and A. Fettweis, Simple proofs of some discrete domain stability
related properties of multidimensional polynomials, Int. J. Circuit Theory
Applns., vol. 15, pp. 357–370, 1985.

C. Robustness of stability of polynomials is a topic that emerged from the
original work of Russian scientist V. L. Kharitonov much later than 1982,
and was subsequently investigated in the multidimensional context by several
researchers, including N. K. Bose himself. Here, the invariance of the stability
property of a polynomial (e.g., the Hurwitz or the Schur property mentioned
earlier) under coefficient perturbation is the topic of interest. While the relevant
literature is large, an early comprehensive treatment of the multidimensional
case appears in:

[C1] S. Basu, On boundary implications of stability and positivity properties
of multidimensional systems, Proc. IEEE, Special Issue on Multidimen-
sional Signal Processing (Editor N. K. Bose), vol. 78, no. 4, pp. 614–626,
May 1990.

In this vein, a more recent treatment of robust stability, from which the
interested reader can delve deeper into the topic, is a publication by V. L.
Kharitonov himself:

[C2] J. A. Torres-Munoz, E. Rodriguez-Angeles, and V. L. Kharitonov, On
Schur Stable Multivariate Polynomials, IEEE Trans. Circuits Syst.-I:
Regular papers, vol. 53, no. 5, May 2006.

D. As for algebraic tests for stability (cf. Sect. 4.6 of this chapter), while early work
was motivated by demonstrating “decidability” of the problem, i.e., existence of
an algorithm that terminates in a finite number of steps, little attention was paid
to computational complexity of the algorithms involved(cf. reference [3.37] in
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the 1982 edition). Indeed, early algorithms were of exponential complexity, and
subsequent considerations of complexity eventually led to a new generation of
algorithms for 2-D stability test, the best known being the O.n4/ algorithm due
to Yuval Bistritz, the details of which are available e.g., in:

[D1] Y. Bistritz, Stability Testing of 2-D Discrete Linear Systems by Telepo-
lation of an Immittance Type Tabular Test, IEEE Trans. Circuits Syst.-I:
Fundamental Theory Applns., vol. 48, no. 7, July 2001.

[D2] Y. Bistritz, Real polynomial based immittance type tabular stability
test for two dimensional discrete systems, Circuits Systems and Signal
Processing, vol. 22, no. 3, pp. 255–276, 2003, Birkhauser, Boston.

E. The surprising connection between stable multivariable polynomials arising in
circuits and systems theory on the one hand and statistical mechanics, network
reliability and the theory of matriods on the other, was first exploited in [E1]
below and appeared in the definitive paper [E2, Theorem 3.4 and Lemma 3.5]
by following results from [A1] above. Assuring reliability of a network with
probabilistic edge weights can be formulated as a problem of examining the
roots of a so called reliability polynomial in the unit poly-disc. In statistical
mechanics, critical phenomena exhibited by a system described by, say, an Ising
model is determined by zeros of the associate partition function, which could
be a polynomial in several variables, and in the theory of matriods the set
of bases for matriods of certain types can be associated with coefficients of
multivariable (stable) Hurwitz polynomials. Since the publication of [E2] there
has been considerable activity in statistical mechanics, and combinatorial graph
algorithms along these lines, and it has been conjectured [E2, E3] that stability
results on multivariable polynomials may be further useful for investigating a
long list of open problems in the area.

[E1] E. H. Lieb and A. Sokal, A general Lee-Yang Theorem for one-component
and multicomponent Ferromagnets, Communications in Mathematical
Physics, vol. 80, pp. 153–179, Springer-Verlag, 1981.

[E2] Y.-B. Choe, J. G. Oxley, A. D. Sokal, and D. G. Wagner, Homoge-
neous multivariate polynomials with the half-plane property, Advances in
Applied Mathematics, vol. 32, Issues 1–2, pp. 88–187, Jan.-Feb. 2004.

[E3] A. D. Sokal, The multivariable Tutte polynomial (alias Potts model) for
graphs and matroids, Surveys in Combinatorics, Bridget S. Webb (ed.),
London Mathematical Society Lecture Note Series, pp. 173–226. 2005.



Chapter 5
2-D FIR Filters, Linear Prediction and 2-D IIR
Filters

5.1 Introduction

The technical field of image processing began during the latter half of the nineteenth
century in the early days of chemical photography. Image processing then branched
into the evolving fields of radio wave transmission and X-ray technology during the
early twentieth century. Based on this evolutionary trend image processing became
highly interdisciplinary during the twentieth century and has continued to quickly
move forward during the twenty-first century. 2-D FIR filters are widely used in
image processing because the feasibility of generating zero-phase or linear phase
characteristics controls phase distortion due to the importance of phase in image
processing.

5.2 Similarities and Differences with 1-D FIR Counterparts

In this section, feasibility of generalizations or lack of it is discussed and substan-
tiated with respect to popular 1-D methods like window-based, frequency-sampling
scheme, and the equiripple Parks-McClellan method [75] for designing FIR filters.

5.2.1 Windowing Scheme

Fact 5.1. If w.x/ is a good symmetrical 1-D window, then w

�q
x21 C x22

�

is a good

circularly symmetrical 2-D window.

© Springer International Publishing AG 2017
N.K. Bose, Applied Multidimensional Systems Theory,
DOI 10.1007/978-3-319-46825-9_5
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The preceding fact has been used to design a good circularly symmetric
2-D window from a good symmetrical 1-D window [3, 76]. The approximation is
especially good in 2-D FIR filter design if the support of the window transform is
much smaller than the extent of band-limitedness of the low-pass 2-D circularly
symmetric wavenumber response. In particular, let the ideal 2-D circularly symmet-
ric wavenumber response be defined by

H


ej!1 ; ej!2

�
, H.!1; !2/ D

	
1; !21 C !22 6 B2

0; otherwise

Let the transform of the 2-D window which is used to truncate the 2-D impulse
response, h.x1; x2/; be W.!1; !2/. Then, the actual wavenumber response is given
by the 2-D convolution

F.!1; !2/ D H.!1; !2/ 
 
W.!1; !2/

Clearly, if the “width” of W.!1; !2/ is much smaller than the “width” of H.!1; !2/,
F.!1; !2/ becomes essentially the convolution of W!1; !2/ and a 2-D impulse
function. Therefore, if

w.x1; x2/ D w

�q
x21 C x22

�

then 1
2�

F.!1; !2/ is approximately of the functional form F

�q
!21 C !22

�

.

5.2.2 Frequency-Sampling Scheme

In 1-D, the Lagrange formula gives a polynomial P.z/ of degree n which interpolates
over .n C 1/ distinct points z0; z1; : : : ; zn. Specifically, if the frequency samples at
z0; z1; : : : ; zn are specified by,

P.zk/ D wk; k D 0; 1; : : : ; n; then

P.z/ D
nX

kD0
wk`k.z/; where

`k.z/ D
Q

i¤k.z � zi/
Q

i¤k.zk � zi/

Thus, given .n C 1/ distinct points z0; z1; : : : ; zn and .n C 1/ values w0;w1; : : : ;
wn, there exists a unique polynomial Pn.z/ of degree n for which Pn.zi/ D wi;

i D 0; 1; : : : ; n.
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In 2-D, a similar interpolation is possible. In particular, let z0; z1; : : : ; zn be .nC1/
distinct points. Let w0;w1; : : : ;wm be a second such set of .mC 1/ points. Set

P.z/ D
nY

iD0
.z � zi/

Q.w/ D
mY

jD0
.w � wj/

Pj.z/ , P.z/=.z � zj/

Qk.w/ , P.w/=.w � wk/

The .mC 1/.nC 1/ polynomials,

`jk.z;w/ ,
Pj.z/Qk.w/

Pj.zj/Qk.wk/

satisfy

`jk.zr;ws/ D ıjr ıks

Hence,

P.z;w/ D
nX

jD0

mX

kD0
�jk`jk.z;w/

is a polynomial of degree 6 mC n which satisfies the .mC 1/.nC 1/ interpolation
conditions

P.zj;wk/ D �jk; j D 0; 1; : : : ; n; and k D 0; 1; : : : ;m

Thus, frequency sampling 2-D FIR filters can be designed.

5.2.3 Optimal Equiripple FIR Filters

The Park-McClellan method for optimal (in the minimax sense) 1-D FIR filter
design is based on the validity of uniqueness of best approximation (Haar condition).
This condition provides uniqueness of best approximation, a useful criterion (for
convergence) in iterative implementation via the Remez exchange algorithm. The
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Haar condition does not hold, in general, in the 2-D case. Namely, let the powers in
two variables z;w be listed as follows: P0.z;w/ D 1;P1.z;w/ D z;P2.z;w/ D
w;P3.z;w/ D z2;P4.z;w/ D zw;P5.z;w/ D w2;P6.z;w/ D z3; : : :. It is not
always possible, having been given n arbitrary distinct points .xj;wj/, to find a linear
combination of P0; : : : ;Pn�1 that takes on preassigned values at these points.

5.2.4 A Transformation Method for Design
of Multidimensional FIR Filters

Let H.ej!1 ; ej!2/ , H.!1; !2/ be the Fourier transform (FT) of the unit impulse
response sequence hŒn1; n2�. The zero-phase condition, up to signs, is described by

hŒn1; n2� D h�Œ�n1;�n2�; H.!1; !2/ D ŒH.!1; !2/��

A transformation method for design of zero-phase 2-D filters from a prototype 1-D
zero-phase filter has been developed based on a 1-D to 2-D frequency transformation
[77]. To reduce notational clutter, real-valued sequences are assumed. The FT of a
real-valued sequence fhŒn�gNnD�N , of length 2N C 1, satisfying the even-symmetry
condition, hŒn� D hŒ�n�, for n D 1; 2; : : : ;N, is

H.ej!/ D H.!/ D
NX

kD0
aŒk� cos k! D

NX

kD0
aŒk�Tk.cos!/ (5.1)

where aŒ0� , hŒ0�; aŒk� D 2hŒk�; k D 1; 2; : : : ;N. The previous equation can be
rewritten as

H.!/ D
NX

kD0
bŒk� cosk ! (5.2)

where the coefficients bŒk� are obtained from coefficients aŒk� by applying the
inverse Chebyshev matrix transformation. To wit, for N D 4, and x , cos!, the
Chebyshev recursion gives

2

6
6
6
6
6
4

T0.x/
T1.x/
T2.x/
T3.x/
T4.x/

3

7
7
7
7
7
5

D

2

6
6
6
6
6
4

1 0 0 0 0

0 1 0 0 0

�1 0 2 0 0

0 �3 0 4 0

1 0 �8 0 8

3

7
7
7
7
7
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6
6
6
6
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7
7
7
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which following inversion of the lower-triangular matrix yields (for brevity, Tk.x/ is
written below as Tk),

2

6
6
6
6
6
4

1

x
x2

x3

x4

3

7
7
7
7
7
5

D

2

6
6
6
6
6
4

1 0 0 0 0

0 1 0 0 0
1
2
0 1
2
0 0

0 3
4
0 1
4
0

�3
8
0 1
2
0 1
8

3

7
7
7
7
7
5

2

6
6
6
6
6
4

T0
T1
T2
T3
T4

3

7
7
7
7
7
5

D

2

6
6
6
6
6
4

T0
T1

1
2
.T0 C T1/

1
4
.3T1 C T3/

1
8
.3T0 C 4T2 C T4/

3

7
7
7
7
7
5

To design a 2-D zero-phase filter from a 1-D prototype in (5.1), McClellan
applied the transformation

cos! , F.!1; !2/ D tŒ0; 0�C tŒ1; 0� cos!1 C tŒ0; 1� cos!2 C tŒ1; 1� cos!1 cos!2:
(5.3)

For an arbitrary but fixed ! in the baseband, �� 6 ! 6 � , consider the following
function and derivative,

cos!2 D cos! � tŒ0; 0� � tŒ1; 0� cos!1
tŒ0; 1�C tŒ1; 1� cos!1

@.cos!2/

@.cos!1/
D �tŒ0; 1�tŒ1; 0�C tŒ1; 1�tŒ0; 0� � tŒ1; 1� cos!

.tŒ0; 1�C tŒ1; 1� cos!1/2
(5.4)

For fixed !, cos!2 is either a monotone increasing or a monotone decreasing
function of cos!1 because the sign of @.cos!2/

@.cos!1/
does not change as cos!1 varies

from �1 to +1. The plot of cos!2 versus cos!1 and, therefore, of !2 versus !1 is
either monotonically increasing or monotonically decreasing as a function of the
parameter !.

With properly chosen values of the parameters, the monotonically decreasing
set of contours lead to circularly symmetric approximants. These approximants are
better in the vicinity of origin and suitable for approximating low-pass circularly
symmetric wavenumber characteristics. On the other hand, the monotonically
increasing set of contours are suitable for the design of fan filters. The shapes of
the contours in the two cases are shown in Fig. 5.1. McClellan calculated the set of
parameters based on the conditions imposed in the transformation to satisfy the
response characteristics of the filter types. For example, for the design of low-
pass circularly symmetric filter response, it is necessary that ! D 0 maps to
.!1; !2/ D .0; 0/, and ! D � maps to .!1; !2/ D .�; �/. On imposition of these
constraints to the transformation in (5.3), the following set of equations emerges.

1 D tŒ0; 0�C tŒ1; 0�C tŒ0; 1�C tŒ1; 1�

�1 D tŒ0; 0� � tŒ1; 0� � tŒ0; 1�C tŒ1; 1�
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Fig. 5.1 Plot of monotonically decreasing and monotonically increasing contours that approxi-
mate (a) low-pass circularly symmetric filter characteristics and (b) fan filter characteristics
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Therefore, tŒ0; 0� C tŒ1; 1� D 0 and tŒ1; 0� C tŒ0; 1� D 1. Note that from (5.4),
jtŒ1; 1�j 6 jtŒ0; 1�j and, interchanging the roles of !1, and !2, it then follows that
jtŒ1; 1�j 6 jtŒ1; 0�j. An acceptable choice of parameters satisfying the constraints
above is

tŒ0; 1� D tŒ1; 0� D tŒ1; 1� D �tŒ0; 0� D 1

2

To design fan filters, the transformation in (5.1) is required to map ! D 0 to
.!1; !2/ D .0; �/, and ! D � to .!1; !2/ D .�; 0/. The resulting equations are

1 D tŒ0; 0�C tŒ1; 0� � tŒ0; 1� � tŒ1; 1�

�1 D tŒ0; 0� � tŒ1; 0�C tŒ0; 1� � tŒ1; 1�

An acceptable choice of parameters for the design of fan filters is

tŒ0; 0� D tŒ1; 1� D 0; tŒ1; 0� D �tŒ0; 1� D 1

2

Note that the transformation in (5.1) must satisfy the condition

� 1 6 F.!1; !2/ 6 1; �� 6 !i 6 �; i D 1; 2 (5.5)

The plot F.!1; !2/ D K, where K is a constant, generates a locus of points in the
.!1; !2/-plane called isopotentials. A contour plot is defined to be several of these
isopotentials. A contour plot of F.!1; !2/ looks identical in shape to the contour
plot of the 2-D wavenumber response

H.ej!1 ; ej!2/ , H.!1; !2/ D
NX

kD0
aŒk�TkŒF.!1; !2/� (5.6)

The value of H.!1; !2/ on a particular isopotential depends on both F.!1; !2/ (i.e.
the parameters tŒ0; 0�; tŒ1; 0�; tŒ0; 1�; tŒ1; 1�) and aŒk�’s, the 1-D filter coefficients.
Therefore, shape depends on the parameters and value depends on both parameters
and the 1-D filter unit impulse response. Note that if a F.!1; !2/ does not satisfy the
restriction in (5.3), then the modified one given by,

OF.!1; !2/ D 2

Fmax � Fmin
F.!1; !2/ � Fmax C Fmin

Fmax � Fmin
(5.7)

does and it has the same isopotential as F.!1; !2/.
The 2-D and higher dimensional generalizations of the original McClellan

transformation have appeared in various forms. A 2-D generalization of F.!1; !2/
in (5.3) is

F.!1; !2/ D
MX

mD0

NX

nD0
tŒm; n� cos m!1 cos n!2 (5.8)
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which was extensively studied by Mecklenbrauker and others, especially with
respect to hardware implementation [5.3]. The hardware realization is facilitated
by the first kind Chebyshev polynomial recursion

TkŒF.!1; !2/� D 2F.!1; !2/Tk�1ŒF.!1; !2/� � Tk�2ŒF.!1; !2/�

The 2-D filter as described by

H.ej!1 ; ej!2/ , H.!1; !2/ D hŒ0�C
NX

kD1
2hŒk�TkŒF.!1; !2/�

is obtained after replacing cos! by F.!1; !2/ in the prototype 1-D frequency
response,

H.ej!/ , H.!/ D hŒ0�C
NX

kD1
2hŒk�Tk.cos!/

The modular realization, suitable for implementation in VLSI is shown in Fig. 5.2
when N D 7. This structure can be expanded or reduced very easily and the
generic block F.z1; z2/ is realized from the transformation parameters while the
transversal taps are set by the 1-D FIR filter. It is also noteworthy that the McClellan
transformation that maps a 1-D prototype to a computationally efficient 2D FIR filter
has also been used to realize computationally efficient adaptive 2D FIR digital filters
where the adaptive computations are based on updating the tap weights of the 1-D
prototype [78].

Dudgeon used a 3-D generalization of the form

F.!1; !2; !3/ D 1

4
. cos!1 C cos!2 C cos!3C

cos!1 cos!2 C cos!1 cos!3 C cos!2 cos!3C
cos!1 cos!2 cos!3 � 3/

in the use of multidimensional FIR filter design based on McClellan-type transfor-
mations for beam-forming and digital array processing.

Fig. 5.2 The generic form of modular realization for the N D 7 case
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5.3 Fan, Directional, and Velocity Filters

A fan filter is a 2-D filter whose passband region is limited by two straight boundary
lines passing through the origin that can point to arbitrary direction. 2-D signals
often exhibit certain orientation in space called directions. When a particular signal
contain components with a given direction, its Fourier transform also contain high
amplitude components in a well defined direction. This property can be exploited by
the fan filter to either pass or reject a signal depending on whether its wavenumber
spectrum is along the pass-direction of the filter. The concept of velocity filtering
arose from array processing of seismic signals and the underlying principles are
common to those in directional filtering except with a different interpretation for the
sequences under consideration. Again, velocity filtering can be implemented with
fan filters as discussed next.

Velocity filters are essentially unique in seismology (velocity-tuned spatial filters,
have, however been designed to detect motion in an image sequence by using the
phase information from the output of such filters) since the velocity of propagation
is not constant for all waves [79, 80]. In radar, radio astronomy and to a large extent
also in sonar, the velocity is essentially constant. Velocity filters provide a means
to discriminate signals form noise or other undesired signals due to their different
apparent velocities. Thus, the use of velocity filters makes it possible to enhance
even signals occupying the same frequency ranges as those due to noise or undesired
signals. Subsurface ground formation can be explored by the seismic reflection
method. A seismic wave generated by an explosion of dynamite near the surface
travels through different paths to different sedimentation layers and, subsequently,
returns to the surface after reflection by the interfaces. A linear or rectangular
array of sensors at the surface records the reflected seismic traces. The seismic
waveforms consist of two distinct components: a component due to reflections from
the subsurface formations and a surface component, usually referred to as ground
roll. The required information is embedded in the reflected component. The ground
roll component is transmitted along the surface of the earth and its presence is
highly undesirable. An interesting property of the surface wave is that its velocity is
significantly lower than that of the reflected wave. Velocity filtering can be applied
to attenuate these undesirable signals.

Velocity filtering, here, will be performed by multidimensional filters included in
the array processing scheme. Apparent velocity (see the velocity filtering example
below, if unfamiliar with this term) of arriving signals depends upon the wave type,
source location and structure beneath recording site. The typical signal and noise
characteristics are summarized next.

(a) Teleseismic signals: These are assumed to propagate coherently across the array.
Observed apparent velocities usually lie above 8 km/s (P-waves) and above
4 km/s (S-waves). P-waves show predominant frequencies around 1 Hz while
S-waves usually have lower peak frequency.

(b) Microseismic noise: Propagate with velocities from about 2.5 to 4 km/s. Dom-
inant frequencies occupy a broad low frequency range. Depending upon the
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Fig. 5.3 Idealized distribution of the signal and noise components in the frequency vs wavenum-
ber plane. Space sampling �x D 0:8 km and time sampling �t D 0:1 s are typical

distance to the source and sensor spacing, some portions of microseismic noise
may propagate coherently across the array.

(c) Incoherent noise: Various human activities (factories, traffic, construction),
action of wind, smaller water basins, etc., generate high frequency noise
above 1 Hz. Corresponding apparent velocities vary for different sources, but
in general have low values, around 1 km/s. For sensor spacing larger than
several kilometers, it is most likely that the high frequency noise propagates
incoherently across the array, irrespective of whether the location of the noise
source is inside or outside the array pattern.

(d) Signal-generated noise: This is noise generated by the desired signal itself in the
vicinity of the sensor as multiple reflections and mode conversions. It occupies
a wide range of apparent velocities, depending upon the local structure and it
may propagate coherently across the array.

In Fig. 5.3, P-waves with apparent velocities in the range from 8 km/s to infinity
occupy the triangular zone labeled “signal zone.” All kinds of coherent noise with
apparent velocities between 2.5 and 4 km/s are distributed within the wedge marked
“coherent noise.”

5.3.1 Example of Implementation of Velocity Filtering

Consider the geometry shown in Fig. 5.4a. A line array of (N C 1) equispaced
detectors are positioned. A signal source is located at a distance d0 from the first
detector. Denoting by s.t/, the signal generated by the signal source, and ignoring
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(f)

Signal Source
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−π

π
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Fig. 5.4 The setting up of velocity filtering problem. (a) Signal and linear array of detectors; (b)
typical signal trace; (c) outputs from the l and lC 1th sensor; (d) pattern in (x,t)-plane generated
by two signals travelling with velocities v1; v2; v2 < v1; (e) pattern in (k–f) plane generated by the
signals in (d); (f) velocity discrimination facilitated by fan-filtering

any attenuation by the medium of propagation, the output signal from the lth detector
is denoted by

s.l; t/ D s

�

t;
d0 C ld

v

�

; l D 0; 1; : : : ;N

where v is the velocity of propagation. Figure 5.4b shows a typical 2-D trace
generated by the linear array of detectors, where the temporal and spatial variables
are denoted by t and x, respectively. The trace is composed of the output signals
from the detectors. The output from the lth detector is the source signal delayed
by d0 C ld=v; l D 0; 1; : : : ;N. Figure 5.4c shows the output signals from two
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consecutive detectors. Since tan 
 D 1=v, therefor the velocity v increases as 

tends to 0; when v decreases, 
 approaches �=2. Translating the discussion to a
2-D framework, the angle formed by a fast travelling signal (high velocity) with the
positive t-axis is small while the similar angle formed by a slowly travelling signal
(low velocity) is large as in Fig. 5.4d. Figure 5.4e displays the orientations in the
.f ; k/ plane. Separations in the .f ; k/ plane of the high and low velocity regions are
shown in Fig. 5.4f.

5.3.2 1-D Arrays for Velocity Filtering

Consider a 1-D array and horizontal wave propagation parallel to the line of sensors.
An adequate separation of the signal from the ambient noise may be achieved by
velocity filtering by which the pass and rejection zones become defined as straight
lines through the origin in the .f ; k/-plane. Besides sampling there are no other
limitations upon frequency and wavenumber intervals. Provided that the coherent
noise occupies a region in the .f ; k/-plane that differs from that of the signal, the
velocity filtering performs a perfect discrimination against the coherent noise. The
f–k pie slice filter is probably the most common type of filter in surface seismic data
processing, in spite of some drawbacks like time and space domain ringing due to
the creation of steps in 2-D filter cut-offs.

Assume that it is desired to pass waveforms with wavenumbers within the
range,�jf j=V � k � jf j=V . Outside this wavenumber range all waveforms are
rejection. The 2-D transfer function is then defined as:

H.f ; k/ D
(
1; � jf jV � k � jf jV
0; elsewhere.

(5.9)

The time-space impulse response of the filter may be expressed in terms of the
inverse 2-D Fourier transform of H(f,k).

h.t; x/ D
Z 1

�1

Z 1

�1
H.f ; k/ exp.|2�.ft � kx//dfdk: (5.10)

Due to the periodicity of H.f ; k/ in wavenumber, we must limit ourselves to the
resolvable wavenumber band only:

� kN � k � kN : (5.11)

It follows from the basic relation,

f D Vk (5.12)
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that for a given apparent velocity V and frequencies jf j > VkN in the .f ; k/-plane, we
leave the primary and enter the complementary pass zone. Therefore, the frequency
limits for a meaningful transfer function are:

� fN � f � fN ; (5.13)

where

fN D VkN D V

2�x
: (5.14)

Having established the value of the folding frequency fN , the sampling period �
which preserves all information within the frequency band .�fN ; fN/ becomes:

�t D 1

2fN
: (5.15)

The last equation also shows that the apparent out-off velocity satisfies:

V D fN
kN
D �x

�t
: (5.16)

For any signal to pass through this velocity filter, the apparent velocity must be
equal to or higher than V , i.e. for a given sensor spacing the signal move-out � must
satisfy the condition,

� � �t: (5.17)

Introducing the finite limits ˙fN , ˙kN , we have

h.t; x/ D
Z fN

�fN

Z kN

�kN

H.f ; k/ exp.|2�.ft � kx//dfdk: (5.18)

It may be expected intuitively that the sharpness between the pass and rejection
zones increases and the amplitude of side lobes decreases with an increasing number
of array sensors.

5.3.3 Velocity Filtering Example

The linear array of sensors in Fig. 5.5a is used for recording a shock wave, s.t; x/
where t is time and x is the distance measured from the center of the array. The shock
wave propagates with an apparent (move-out) velocity, V D v= sin �, on the earth’s
surface along the array line, where it is assumed that the plane wavefronts, travelling
across the array sites at an angle � with the horizontal, approach with a velocity v,
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Fig. 5.5 Velocity filtering with a linear array of sensors. (a) Linear array of sensors. (b) Energy
distribution (at zero temporal frequency) v/s spatial frequency. (c) Main energy distribution lines
of received shock wave in .f ; k/-plane. (d) Highpass velocity filter. (e) Bandpass velocity filter
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and successively excite individual array sensors. The seismic signal, therefore, may
be describable by

s.t; x/ D
	

s


t � x

V

�
; jxj 6 xm

0; jxj > xm

Clearly, s.t � .x=V// is a shifted version of s.t/ , s.t; 0/, the seismic record at
the spatial origin; the shift equals x=V and represents the delay between the wave
recorded at the center of the array and that recorded at a distance x from the center.

The Fourier transform

H.f ; k/ D
Z 1

�1

Z 1

�1
s.t; x/e�j2�.ftCkx/dt dx

(it is assumed that the shock wave is measured continuously in Œ�xm; xm�) is the 2-D
spectrum of s.t; x/ and f is the ordinary “temporal” frequency in Hertz, while the
“spatial” frequency k is also referred to as the wavenumber. Let y D t � .x=V/ so
that t D yC .x=V/.

H.f ; k/ D
Z 1

�1

Z 1

�1
s.y/e�j2�Œf.yC x

V /Ckx�dydx

D
Z 1

�1
s.y/e�j2� fydy

Z xm

�xm

e�j2�
�

f
VCk

�
xdx

D S.f /
sin
h
2�
�

f
V C k

�
xm

i

�
�

f
V C k

�

Let f .t1; t2/  ! F.!1; !2/ be a 2-D Fourier transform pair. Then the counterpart
of Parseval’s theorem for the 2-D case is:

E D
Z 1

�1

Z 1

�1
jf .t1; t2/j2dt1dt2 D 1

4�2

Z 1

�1

Z 1

�1
jF.!1; !2/j2d!1d!2

where E is the total signal energy. The spectrum, F.!1; !2/ gives the energy
distribution. In this case, define

jH.f ; k/j2 , G.f ; k/:

For any fixed f , G.f ; k/ is considered. For example, when f D 0, G.0; k/ has a
typical shape given in Fig. 5.5b. Clearly, the main energy distribution is concentrated
around .f=V/Ck D 0 on the .f ; k/-plane and the width of the band between the first
two maxima is 1=xm, as is apparent from Fig. 5.5c. By shifting G.0; k/ by integer
multiples of f=V along the frequency axis we can obtain a family of surfaces.
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Assume that it is desired to pass only waveforms with wavenumbers within the
range, �.jf j=V/ < k < .jf j=V/. The transfer function of the so-called fan filter
(pie-slice filter) required for the purpose is

H.f ; k/ D
(
1; � jf jV < k < jf jV
0; otherwise:

H.f ; k/ defines a high-pass velocity filter which passes signals with apparent
velocities of magnitude greater than V and rejects signals with lower velocities.

The shaded region in Fig. 5.5d, defined by �.jf j=V/ < k < .jf j=V/, is obtained
by taking the intersection of regions, �.jf j=V/ < k and .jf j=V/ > k.

Consider a velocity pass range from V1 to V2 with a center velocity Vc. The filter
which meets these specifications is a band-pass velocity filter. Rotation in the .f ; k/-
plane followed by a high-pass filtration may be used to replace band-pass filtering.
The band-pass filter shown in Fig. 5.5e can be converted back to a high-pass filter
by rotating anti-clockwise by 1

2
.˛1 C ˛2/.

The result so far is based on the assumption of continuous spatial measurement.
If that assumption is not made, it can be shown that

H.f ; k/ D 2S.f /
mX

pD1
cos

�

2�

�

kC f

V

�

p�x

�

How does the above expression change if there is an additional sensor located at the
array center? That is, consider the case when there is an odd number, 2m C 1, of
sensors.

5.3.4 Impulse Response of Fan Filter

hŒn1; n2� D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

f1Œn1; n2�; n1 D 0; n2 D 0
f2Œn1; n2�; n1 ¤ 0; n2 D 0
f3Œn1; n2�; n1 C an2 ¤ 0; n1 C bn2 D 0
f4Œn1; n2�; n1 C an2 D 0; n1 C bn2 ¤ 0
f5Œn1; n2�; otherwise:

Where,

f1Œn1; n2� D .a � b/B2

4�2
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f2Œn1; n2� D .a � b/B2

2�2n21
.n1Bsin.n1B/C cos.n1B/� 1/

f3Œn1; n2� D 1

2�2n2

�
1� cos Œ.n1 C an2/B�

n1 C an2

�

f4Œn1; n2� D 1

2�2n2

�
cos Œ.n1 C bn2/B�� 1

n1 C bn2

�

f5Œn1; n2� D 1

2�2n2

�
1� cos Œ.n1 C an2/B�

n1 C an2
C cos Œ.n1 C bn2/B/� 1

n1 C bn2

�

:

Note that it is not possible to have both n1Can2 D 0 and n1Cbn2 D 0, since this
would imply that a D b, which cannot be true since it is given that�1 < a < b < 1.
a D b corresponds to the trivial case where the Fourier transform reduces to zero
for all !1; !2, which would also mean that hŒn1; n2� D 0 for all n1; n2.

5.3.5 Summary of 1-D Case

Parametric method of AR modelling is linked to linear prediction. Consider the 1-D
case of a real discrete-time zero-mean WSS random process xŒn�. By orthogonality
principle (applied to the least mean-square method),

E

("

xŒn� �
NX

iD1
hŒNI i�xŒn � i�

#

xŒn � k�

)

D
"

rŒk� �
NX

iD1
hŒNI i�rŒk � i�

#

D 0; 1 6 i 6 N (5.19)

The optimum mean-square prediction error is given by PN below:

PN D E

8
<

:

"

xŒn� �
NX

iD1
hŒNI i�xŒn � i�

#29=

;

D
"

rŒ0� �
NX

iD1
hŒNI i�rŒ�i�

#

(5.20)
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The preceding set of equations in (5.19) coupled with (5.20) lead to the Yule-
Walker system (rŒi� D rŒ�i�)

2

6
6
6
4

rŒ0� rŒ1� � � � rŒN�
rŒ1� rŒ0� � � � rŒN � 1�
:::

rŒN� rŒN � 1� � � � rŒ0�

3

7
7
7
5

2

6
6
6
4

1

�hŒNI 1�
:::

�hŒNIN�

3

7
7
7
5
D

2

6
6
6
4

PN

0
:::

0

3

7
7
7
5

(5.21)

The .N C 1/ equations can be solved for the .N C 1/ unknowns, hŒNI 1�; : : : ;
hŒNIN�;PN . Levinson’s algorithm is an efficient way to implement the solution and
the Levinson update scheme can be used to calculate the parameters of higher order
predictors. A classical result in 1-D that does not fully generalize to 2-D is stated
next.

Fact 5.2. Assume that the covariance matrix in the preceding Toeplitz system of
equations is positive definite. Then,

(a) There is a unique solution for PEF coefficients fhŒNI 1�; : : : ; hŒNIN�g and PEF
variance PN

(b) PN > 0

(c) The PEF

HN.z/ D
"

1 �
NX

iD1
hŒNI i�z�i

#

is minimum phase i.e. the magnitudes of its poles and zeros are less than one.

5.3.6 2-D Counterpart

The notation is simplified to avoid clutter because you are now familiar with it, i.e.
hŒk1; k2� is to be interpreted as hŒN1I k1;N2I k2�. Then,

xŒn1; n2� D
XX

hŒk1; k2�xŒn1 � k1; n2 � k2�C wŒn1; n2�

.k1;k2/2A

where wŒn1; n2� is a white noise process with variance �2. Suppose that the mask A
is such that

suppfhŒk1; k2�g D f0 6 k1 < N1 and 0 6 k2 < N2g n f0; 0g
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Multiply both sides by x�Œn1 � l1; n2 � l2� and apply the expectation operator
to get

RxŒl1; l2� D
XX

hŒk1; k2�RxŒl1 � k1; l2 � k2�

C E fwŒn1; n2�x�Œn1 � l1; n2 � l2�g ; (5.22)

where RxŒl1; l2� is the autocorrelation sequence. Note,

EfwŒn1; n2�x�Œn1 � l1; n2 � l2�g
D
X

i1

X

i2

h�AŒi1; i2�E fwŒn1; n2�w�Œn1 � l1 � i1; n2 � l2 � i2�g

where fhAŒi1; i2�g is the impulse response of the IIR filter relating, ideally, wŒn1; n2�
to xŒn1; n2� by convolution. Since wŒn1; n2� is a white noise process, therefore,

E fwŒn1; n2�w�Œn1 � l1; n2 � l2�g D �2ıŒl1; l2�

E fwŒn1; n2�x�Œn1 � l1; n2 � l2�g D
1X

i1D�1

1X

i2D�1
h�AŒi1; i2�ıŒl1 C i1; l2 C i2�

D �2h�AŒ�l1;�l2�

Therefore, Eq. (5.22) can be written as,

RxŒl1; l2� D
XX

hŒk1; k2�RxŒl1 � k1; l2 � k2�C �2h�AŒ�l1;�l2�: (5.23)

.k1;k2/2A

Since the IIR filter has FQQP mask for denominator coefficients, a FQQP impulse
response fhAŒi1; i2�g is assumed. Restricting attention to the case when,

0 6 l1 < N1 and 0 6 l2 < N2 D suppfhŒk1; k2�g [ f0; 0g

we have (since hŒ0; 0� D 1) from (5.23),

RxŒl1; l2� D
1X

k1D0

1X

k2D0
hŒk1; k2�RxŒl1 � k1; l2 � k2�C �2ıŒl1; l2�

.k1;k2/¤.0;0/

The above system may be written in matrix form

Ra D b (5.24)
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where

a D Œ1 � hŒ1; 0� � � � � hŒN1 � 1; 0�� hŒ0; 1� � � � � hŒN1 � 1;N2 � 1��TN1N2�1
(after row-by-row scan starting from bottom row from left-to-right);

b D Œ�20 � � � 0 � � � � � � 0�TN1N2�1;

R is Hermitian of order N1N2 � N1N2:

If R is non-singular, then,

a D R�1b:

The above system of equations in (5.24) also results from a linear prediction
formulation.

OxŒn1; n2� D
XX

hŒk1; k2�xŒn1 � k1; n2 � k2�

.k1;k2/2A

where the prediction coefficients result from minimization of the error variance

�2 D E
˚jxŒn1; n2� � OxŒn1; n2�j2

�

Clearly,

Number of parameters to be determined = N1N2
Number of known autocorrelation points = .2N1 � 1/.2N2 � 1/
Number of independent autocorrelation points = 2N1N2 � N1 � N2 C 1
If the covariance matrix is positive definite, then there is a unique solution for the
filter coefficients and �2 is always positive, as it must be. But the filter is not always
minimum phase. Moreover, even if the filter is minimum phase, it can be shown
that the transformation between the covariance matrix and the parameters is not
invertible. Specifically, an infinite number of different positive definite covariance
matrices can generate the same parameters.

5.4 Design of Multidimensional IIR Filters

5.4.1 A Spectral Transformation Method for Design
of Multidimensional IIR Filters

The rectangular wavenumber response,

H.ej!1 ; ej!2/ , H.!1; !2/ D
	
1; j!ij 6 !ci < � for i D 1; 2
0; otherwise
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has a separable unit impulse response

hŒn1; n2� D 1

4�2

Z !c1

�!c1

Z !c2

�!c2

ej!1n1 ej!2n2 d!2 d!1

D
�

sin.!c1n1/

�n1

��
sin.!c2n2/

�n2

�

which is of infinite extent. The unit impulse response of the filter with circularly
symmetric wavenumber response

H.ej!1 ; ej!2/ , H.!1; !2/ D
	
1; !21 C !22 6 !2c < �

2

0; otherwise

is also of infinite extent but non-separable. In particular,

hŒn1; n2� D 1

4�2

Z Z

ej.!1n1C!2n2/ d!2 d!1

.!1;!2/2Œ!21C!226!2c �

is convenient to evaluate after using the transformation,

!1 D ! cos 
; !2 D ! sin 
:

The determinant of the Jacobian matrix

J D
�
@!1
@!

@!1
@


@!2
@!

@!2
@


�

D
�

cos 
 �! sin 

sin 
 ! cos 


�

is det J D !. Therefore, the expression for hŒn1; n2� can be rewritten in polar form as

hŒn1; n2� D 1

4�2

Z !c

0

Z 2�

0

! ejŒ!.n1 cos 
Cn2 sin 
/� d! d


Let n1 D n cos�, n2 D n sin� so that � D tan�1 n2
n1

to get

hŒn1; n2� D 1

4�2

Z !c

0

Z 2�

0

ej!n cos.
��/ d
 d!

D 1

2�

Z 2�

0

! J0.!
q

n21 C n22/ d!

where Jm.x/ is the Bessel function (after Friedrich Wilhelm Bessel (1784–1846)) of
the first kind and m-th order,

Jm.x/ D 1

�

Z �

0

cos.m
 � x sin 
/ d
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so that

J0.x/ D 1

�

Z �

0

cos.x sin 
/ d


D 1

2�

Z 2�

0

cos.x sin 
/ d
 D 1

2�

Z 2�

0

cos.x cos 
/ d


Using the fact that

x J1.x/ jbxDaD
Z b

a
x J0.x/ dx

hŒn1; n2� D !c

2�

J1.!
q

n21 C n22/
q

n21 C n22

Circularly symmetric filter response was approximated by the transformation
technique for FIR filters in the previous chapter. In this chapter, the frequency
transformation technique for design of a 2-D IIR filters uses the result quoted next.
First, the characterization of a 2-D all pass function is given.

Definition 5.1. A real coefficient rational function expressible in reduced form as

F.z1; z2/ D
dY

jD1

 

z
n1j

1 z
n2j

2

Pn1j

k1D0
Pn2j

k2D0 ajŒk1; k2�z
�k1
1 z�k2

2
Pn1j

k1D0
Pn2j

k2D0 ajŒk1; k2�z
k1
1 zk2

2

!

is a bivariate all pass function. If the denominator of F.z1; z2/ is devoid of zeros

outside the closed unit bidisc U
2
, when z�11 and z�12 are the delay variables, then

F.z1; z2/ is a stable (in the BIBO sense, and, in this case, also structurally) all pass
function. When d D 1, a basic all pass block is realized and when d > 1, this basic
block is cascaded d times.

Fact 5.3. Let H.z1; z2/ be the transfer function of a stable 2-D FQQP digital filter. If
F1.z1; z2/ and F2.z1; z2/ are stable 2-D all pass functions, then, the transformations
of the unit delay variables according to

z�11 �! F1.z1; z2/; z�12 �! F2.z1; z2/

in H.z1; z2/ result in a filter H.F�11 .z1; z2/;F�12 .z1; z2// which is stable.
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Fig. 5.6 Portions of
wavenumber responses of
(from inside out) aster,
diamond, circularly
symmetric and square
wavenumber responses

ω2

ω1

(ωc,ωc)

5.4.1.1 Diamond Shaped Filter

In the method of spectral transformation, a 2-D IIR filter is designed from a 1-D
IIR filter. Let H.z/ represent a 1-D causal and stable IIR filter. Two-dimensional
filters with diamond shaped wavenumber responses are known to preserve better,
the horizontal and vertical details, in comparison to circularly symmetric and square
separable filters having equivalent maximum cut-off frequency .!c; !c/. The human
visual system is more sensitive to horizontal and vertical orientations than diagonal
ones. The diamond-shaped wavenumber response can be considered as a special
case of aster shaped response as illustrated in Fig. 5.6.

The 1-D causal prototype filter, say, is a low pass filter with cutoff at �=2
radians/s. We design a 2-D filter

H1.z1; z2/ D H.z1/H.z2/

H2.z1; z2/ D H.z1z2/H.z1z
�1
2 /

Then, H1.z1; z2/ must be stable and FQQP recursible. The magnitude of wavenum-
ber response of H2.z1; z2/ approximates a diamond shaped wavenumber response.
For plotting purposes, the ideal responses are used. Note that z1z2 and z1z�12 are
all pass functions. Therefore, if the delay variables in H.z1; z2/ are transformed
according to

z�11 �! z�11 z�12 ; z�12 �! z�11 z2

then, H2.z1; z2/ results. Since z�11 z�12 and z�11 z2 are stable all pass functions with no
non-essential singularities of the second kind on T2, 1-D stability of H.z/ implies
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Fig. 5.7 (a) The support of the wavenumber magnitude response of H.z1z2/; (b) the support of
the wavenumber magnitude response of H.z�1

1 z2/ and (c) the realized diamond shaped response
obtained by cascading H.z1z2/ and H.z�1

1 z2/

the 2-D stability of not only H1.z1; z2/, but also H2.z1; z2/. Furthermore, if H.z/
is causal, then H1.z1; z2/ is FQQP causal, H.z1z2/ is FQQP and H.z�11 z2/ is fourth
quadrant quarter plane causal. The magnitude responses of H.z1z2/ and H.z�11 z2/ are
sketched in Fig. 5.7a, b. The support of these responses are identified by the shaded
area. It is then clear that when H.z1z2/ and H.z�11 z2/ are cascaded, the resulting
transfer function H2.z1; z2/ realizes a diamond shaped pass band.

We design another 2-D filter HT.z1; z2/ by

Ht.z1; z2/ D H1.z1; z2/H2.z1; z2/

What is the approximate magnitude of the wavenumber response of HT.z1; z2/?

5.4.2 Whitening Filter and Wiener Filter

The support of the unit impulse response sequence of a 2-D asymmetric half-plane
filter can be ordered as follows. For any two pair Œm1;m2�, its past is the set of points

fŒk1; k2� W k1 D m1; k2 < m2I k1 < m1; �1 < k2 <1g

and its future is the set of points

fŒk1; k2� W k1 D m1; k2 > m2I k1 > m1; �1 < k2 <1g

After totally ordering the points in the support of the impulse response, if Œk1; k2� is
in the past of Œm1;m2� use the notation

Œk1; k2� < Œm1;m2� or Œm1;m2� > Œk1; k2�:
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Consider the whitening filter process,

wŒm1;m2� D
X

.k1;k2/

X

�.0;0/
hŒk1; k2�xŒm1 � k1;m2 � k2� (5.25)

EfwŒm1 C k1;m2 C k2�ŒwŒm1;m2�g D �2ıŒk1; k2�; (5.26)

where hŒk1; k2�; xŒm1;m2� are, respectively, the unit impulse response of the linear
shift-invariant whitening filter and an input zero-mean real-valued discrete random
process. Furthermore, wŒm1;m2� is the desired zero-mean real-valued white-noise
process, with autocorrelation function, �2ıŒk1; k2�:

Substitute the first equation into the second and move the expectation operator
inside the summations (assuming this is possible to do in case of infinite sums) so
as to operate on the random variables setting up the random field to get (hŒk1; k2� is
not a random variable)

�2ıŒm1;m2� D
X

.k1;k2/

X

�.0;0/

X

.l1;l2/

X

�.0;0/
hŒk1; k2�hŒl1; l2�rŒm1 � k1 C l1;m2 � k2 C l2�;

(5.27)
where

rŒk1; k2� D EfxŒm1 C k1;m2 C k2�xŒm1;m2�g (5.28)

Taking the z-transform of both sides of (5.27) after multiplying left and right
hand sides by z�m1

1 z�m2
2 and summing over Œ�1;1� � Œ�1;1� i.e. the Z � Z

index set, one gets

�2 D S.z1; z2/H.z1; z2/H.z
�1
1 ; z

�1
2 /; (5.29)

where S.z1; z2/$ rŒk1; k2� are z-transform pairs.
To solve the preceding equation for H.z1; z2/; it is required to consider the

spectral factorization problem. In the univariate counterpart, an unique minimum-
phase solution of finite order can be constructed for a rational power spectral density
that is positive-valued on the unit circle. In the bivariate case, significant differences
occur because of the fact that a minimum-phase spectral factor H.z1; z2/ of finite
order does not exist, in general.

5.4.2.1 Properties of Whitening Filter H.z1; z2/

A. H.z1; z2/ is unique to within a multiplicative constant.

Proof. Suppose it is possible to have two solutions given by

S.z1; z2/ D �2

H.z1; z2/H.z�11 ; z�12 /
D O�2
OH.z1; z2/ OH.z�11 ; z�12 /:

(5.30)
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Then,

OH.z1; z2/�2
H.z1; z2/

D H.z�11 ; z�12 / O�2
OH.z�11 ; z�12 /:

(5.31)

The left-hand side of above is a weakly causal filter while the right-hand side
is a weakly anticausal filter. Clearly, this is possible only if each side of the
equation is a constant. Therefore,

OH.z1; z2/ D cH.z1; z2/ (5.32)

where c is a constant.

B. H.z1; z2/ is proportional to the least-squares linear prediction error filter for
xŒk1; k2� given the infinite past.

Proof. Normalize the whitening filter as follows.

HN.z1; z2/ D 1

hŒ0; 0�
H.z1; z2/

D Œ1 �
X

.k1;k2/

X

>.0;0/

hN Œk1; k2�z
�k1
1 z�k2

2 �
(5.33)

where

S.z1; z2/ D �2N

HN.z1; z2/HN.z�11 ; z�12 /
and �2N D

�2

h2Œ0; 0�:
(5.34)

Cross-multiplying,

HN.z1; z2/S.z1; z2/ D �2N

HN.z�11 ; z�12 /
: (5.35)

Taking the inverse z-transform and using the fact that the right-hand side is a
weakly anticausal filter, we have

rŒm1;m2� �
X

.k1;k2/

X

>.0;0/

hN Œk1; k2�rŒm1 � k1;m2 � k2� D �2NıŒm1;m2�

.m1;m2/ � .0; 0/
(5.36)

or

EfŒxŒk1; k2� �
X

.l1;l2/

X

>.0;0/

hN Œl1; l2�xŒk1 � l1; k2 � l2��xŒk1 �m1; k2 � m2�g

D �2NıŒm1;m2�; .m1;m2/ � .0; 0/:
(5.37)
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The above equation satisfies the orthogonality principle which says that
HN.z1; z2/ operates on the random process xŒk1; k2� to produce a white-noise
process that is uncorrelated with all past values of xŒk1; k2�:

5.4.2.2 The 2-D Wiener Filtering Problem

We observe a signal xŒk1; k2�, which is the sum of a message, sŒk1; k2� and noise
nŒk1; k2�. We model the message and noise as a wide-sense stationary random
process and we assume that the power density spectra are known. The problem is
to design a filter G.z1; z2/ which will give the optimum linear least-squares estimate
for the message. 2-D Wiener filtering is of interest in image processing as well as
array processing.

The classical solution to the problem involves first finding the minimum phase
whitening filter for the observed signal by solving the corresponding spectral fac-
torization problem. The idea is that the optimum filter G.z1; z2/ can be represented
as the product of the whitening filter H.z1; z2/ and some other filter Ha.z1; z2/.

H.z1; z2/ operates on the random process xŒk1; k2� to produce a white-noise pro-
cess that is uncorrelated with all past values of xŒk1; k2�. Therefore, the orthogonality
principle is satisfied; so H.z1; z2/ is the least squares prediction error filter for
xŒk1; k2� given the infinite past. It was seen that

S.z1; z2/ D �2

H.z1; z2/H.z�11 ; z�12 /
;

where H.z1; z2/ is the 2-D z-transform of fhŒk1; k2�g.

5.4.2.3 Spectral Factorization and Hilbert Transform

The method for obtaining the spectral factorization via the Hilbert transform is
applicable when the rational power spectrum density, analytic in some neighbour-
hood of T2, obtained by evaluating S.z1; z2/ on T2, is strictly positive on T2: That is

S


ejw1 ; ejw2

�
> 0 for all w1;w2

induces a factorization of the type

S.z1; z2/ D G.z1; z2/G.z
�1
1 ; z

�1
2 /;

where G.z1; z2/ will be shown to be spectral factor. Given a positive “analytic”
spectrum, it can be shown that the complex logarithm of the spectrum is analytic
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in some neighborhood of T2. Therefore, S.z1; z2/ has a Laurent series expansion in
that region:

log S.z1; z2/ D
1X

k1D�1

1X

k2D�1
rŒk1; k2�z

�k1
1 z�k2

2

where

rŒk1; k2� D rŒ�k1;�k2� D
�
1

2�j

�2Z Z

T2
zk1�1
1 zk2�1

2 log S.z1; z2/dz1dz2:

The decomposition,

log S.z1; z2/ D C.0; 0/C C.z1; z2/C C.
1

z1
;
1

z2
/;

is possible, where

C.0; 0/ D rŒ0; 0� > 0;

C.z1; z2/ D
XX

.k1;k2/>.0;0/
rŒk1; k2�z

�k1
1 z�k2

2 :

Therefore, S.z1; z2/ can be expressed in the form

S.z1; z2/ D eC.0;0/A.z1; z2/A.z
�1
1 ; z

�1
2 /

where

A.z1; z2/ D eC.z1;z2/

D
1X

kD0

1

kŠ
ŒC.z1; z2/�

k

D
h
1C

XX

.k1;k2/>.0;0/
rŒk1; k2�z

�k1
1 z�k2

2

i
:

Since C.z1; z2/ is analytic, it follows that A.z1; z2/ is analytic as well and from the
series expansion it is weakly causal. A.z1; z2/ is analytic minimum phase because
its inverse, A�1.z1; z2/ D expŒ�C.z1; z2/� is also analytic and weakly causal. The
spectral factor G.z1; z2/ is then identified to be a constant multiplier of A.z1; z2/.

Consider a 2-D PSD S.z1; z2/

S.z1; z2/ D
NX

k1D�N

MX

k2D�M

rŒk1; k2�z
�k1
1 z�k2

2

D G.z1; z2/G.z
�1
1 ; z

�1
2 /
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where

G.z1; z2/ D
XX

.k1;k2/�.0;0/gŒk1; k2�z
�k1
1 z�k2

2

G.z1; z2/ D G�1.
1

z1
;
1

z2
/S.z1; z2/;

and

G�1.z1; z2/ D
XX

.k1;k2/�.0;0/�Œk1; k2�z
�k1
1 z�k2

2 :

Then, it follows that

G.z1; z2/

D
XX

.k1;k2/�.0;0/�Œ�k1;�k2�z
�k1
1 z�k2

2

"
NX

k1D�N

MX

k2D�M

rŒk1; k2�z
�k1
1 z�k2

2

#

D
hXX

.k1;k2/�.0;0/
�Œ�k1;�k2�z

�k1
1 z�k2

2

i

hXX

.�N;�M/�.k1;k2/�.N;M/rŒk1; k2�z
�k1
1 z�k2

2

i
:

Therefore, G.z1; z2/, in this case, takes the form,

G.z1; z2/ D
XX

.0;0/�.k1;k2/�.N;M/gŒk1; k2�z
�k1
1 z�k2

2 :

Note that you have to get S.z1; z2/ and �2 by spectrum estimation.

Example. Consider the power spectral density function S.z1; z2/, which is the z-
transform of the autocorrelation sequence, frŒk1; k2�g.

S.z1; z2/ D
XX

rŒk1; k2�z
�k1
1 z�k2

2

D cC �z2 C z�12
�C �z1 C z�11

�
; c > 4:

Clearly, S.z1; z2/ > 0 on T2. Consider,

S.z1; e
jw2 / D .cC 2 cos w2/C



z1 C z�11

�
;

which for an arbitrary but fixed w2 has a spectral factorization of the form,

S.z1; e
jw2 / D .A.w2/z1 C B.w2//C



A.w2/z

�1
1 C B.w2/

�
;

A.w2/B.w2/ D 1; A2.w2/C B2.w2/ D cC 2 cos w2 > 0:
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Therefore, combining the constraints in the last line,

A4.w2/ � .cC 2 cos w2/A
2.w2/C 1 D 0;

which from the implicit function theorem must have a solution that satisfies,

2A2.w2/ D cC 2 cos w2 C
p
.cC 2 cos w2/2 � 4 ;

where the right-hand side is guaranteed to be positive so that the solution A.w2/ is a
real-valued periodic function of w2. By Fourier series expansion

A.w2/ D
1X

k2D�1
gk2e

jk2w2 ; gk2 D g�k2 ;

where the gk’s are the Fourier coefficients so that S.z1; z2/ has a spectral factor of
infinite order in z2 and finite order in z1. This can be further justified by noting that
the z-transform pair,

k1rŒk1; k2� $ �z1
@

@z1
S.z1; z2/ D z�11 � z1

S.z1; z2/

implies that

rŒk1; k2� D r1Œk1 � 1; k2� � r1Œk1 C 1; k2�

where by taking 1-D z-transform at a time,

1X

k2D�1
r1Œk1; k2�z

�k2
2

4D
1X

k2D�1

 1X

k1D�1
k1rŒk1; k2�z

�k1
1

!

z�k2
2 D z�11 � z1

S.z1; z2/
:

Therefore, for an arbitrary but fixed integer k1

rŒk1; k2� D rŒk1;�k2�;

consistent with the constraint on the Fourier coefficients of A.w2/.
Note that in the factor, A.w2/ C B.w2/z�11 , since A.w2/ is real valued, therefore

the support of the sequence fhŒk1; k2�g in

S.z1; z2/ D H.z1; z2/H.z
�1
1 ; z

�1
2 /

H.z1; z2/
4D
XX

hŒk1; k2�z
�k1
1 z�k2

2

D
1X

k2D�1
gk2z
�k2
2 C 1

1P
k2D�1

gk2z
�k2
2

z�11 ;
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is, necessarily,

suppfhŒk1; k2�g D fŒk1; k2� W k1 D 0; k2 D 0; 1; : : : ;1I
k1 D 1; k2 D �1; : : : ;�1; 0; 1; : : : ;1g:

Indeed, arguments can be completed to show that H.z1; z2/ is spectral factor.

5.4.2.4 The 2-D Complex Cepstrum

OxŒk1; k2� D 1

.2�/2

Z 2�

0

Z 2�

0

ln X.w1;w2/e
j.w1k1Cw2k2/dw1 dw2:

OX.w1;w2/ D ln X.w1;w2/ must be continuous, differentiable, and doubly periodic
and the function ln X.z1; z2/ must be analytic in some region of convergence OR,
where R � OR � T2, with R the ROC of X.z1; z2/. Clearly, the complex cepstrum
exists only if X.w1;w2/ ¤ 0 on the torus (distinguished boundary of the unit bidisc.
Furthermore, a bisequence xŒk1; k2� that has a real and stable OxŒk1; k2� is said to have
a valid complex cepstrum. The function,

OX.w1;w2/ 4D ln jX.w1;w2/j C j�.w1;w2/;

where

X.w1;w2/ D jX.w1;w2/j C ej�.w1;w2/

is continuous and differentiable if �.w1;w2/ is the unwrapped phase. It can be
shown that , in general, this unwrapped phase function is the sum of a doubly period
phase function and a function linear in w1 and w2.

For the sake of simplicity, but without loss of generality, we assume that xŒk1; k2�
is of finite support, so that

X.w1;w2/ D
X

k1

X

k2

xŒk1; k2�e
�j.w1k1Cw2k2/

is a bivariate trigonometric polynomial. First, consider

Aw1 .z2/ D X.w1;w2/
ˇ
ˇ w1fixed

ejw2!z2

D
X

k1

X

k2

xŒk1; k2�z
�k2
2 e�jw1k1

as an univariate polynomial in z�12 , parametrized by w1. Viewed as a rational
function in z2, Aw1 .z2/ will have poles inside jz2j � 1 only at z2 D 0. This
may be removed by multiplication with an appropriate power N2 of z2 to form the
polynomial in z2,

Cw1 .z2/ D zN2
2 Aw1.z2/:
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Now, let us define the phase function as a contour integral, for an arbitrary but
fixed w1.

�.w1;w2/ D Im
Z ejw2

z2Dej0D1
A0w1.z2/
Aw1.z2/

dz2 C �.w1; 0/

where the univariate phase function �.w1; 0/ is the phase as a function of w1 for
w2 D 0. Letting,

X.w1; 0/ D XR.w1; 0/C jXI.w1; 0/;

�.w1; 0/ D
Z w1

0

 
@XI
@w1

XR � @XR
@w1

XI

X2R C X2I

! ˇ
ˇ
ˇ
ˇ
w2D0

dw1

Then, �.w1;w2/, is continuous and odd(�.w1;w2/ D �.�w1;�w2/), and we can
write

�.w1; 2�/ D Im

	I
A0w1.z2/
Aw1.z2/

dz2




D Im

	I �

�N2z
�1
2 C

C0w1 .z2/
Cw1 .z2/

�

dz2




D �2�N2 C 2�r2:

The last equation follows from application of residue theorem where r2 is the
number of roots (including multiplicities) of Cw1 .z2/ and, therefore, of Aw1.z2/
inside the unit circle, jz2j � 1. If we let kw2 D r2 � N2, then

�.w1;w2 C 2�/ D �.w1;w2/C 2�kw2

Similarly, we can derive that

�.w1 C 2�;w2/ D �.w1;w2/C 2�kw1

What remains to be shown is that kw2 is not a function of w1 and kw1 is not a function
of w2. If we examine the roots of Cw1 .z2/, which are also the roots of Aw1.z2/, as we
continuously vary the parameter w1 from 0 to 2� , we discover that the roots move in
a continuous manner. Thus, for a root to move from inside to outside the unit circle
(or vice versa), it must lie on the unit circle, jz2j D 1, for some value of w1. This,
however, violates the hypothesis X.w1;w2/ ¤ 0. Therefore, given a continuous odd
function �.w1;w2/ such that

�.w1;w2 C 2�/ D �.w1;w2/C 2�kw2

�.w1 C 2�;w2/ D �.w1;w2/C 2�kw1



5.4 Design of Multidimensional IIR Filters 159

�.w1;w2/ D ��.�w1;�w2/;

we can subtract the linear phase component

�L.w1;w2/ D kw1w1 C kw2w2

to give the remaining term

�A.w1;w2/ D �.w1;w2/� �L.w1;w2/

Setting, kw2 ! K2, kw1 ! K1, the sequence

yŒk1; k2� D xŒk1 � K1; k2 � K2�

which is a shifted version of xŒk1; k2� has a Fourier transform,

Y.w1;w2/ D X.w1;w2/e
�j.w1K1Cw2K2/:

Consequently, the unwrapped phase of Y.w1;w2/ is �.w1;w2/ � w1K1 � w2K2, is
continuous and doubly periodic, and Y.w1;w2/ satisfies the conditions necessary to
define the complex cepstrum OyŒn1; n2�.



Chapter 6
Wavelets and Filter Banks

6.1 Historical Results Leading up to Wavelets

Denote by L2Œ0; 2��, the space of classes of functions that are square-
integrable on Œ0; 2��. The sequence of functions 1=

p
2�; cos x=

p
�; sin x=

p
�;

cos 2x=
p
2�; sin 2x=

p
2�; : : : forms an orthonormal basis for L2Œ0; 2��.

6.1.1 Trigonometric Fourier Series (1807)

Let f .x/ be 2�-periodic. Then

f .x/ D a0 C
1X

kD1
.ak cos kxC bk sin kx/

a0 D 1

2�

Z 2�

0

f .x/ dx

ak D 1

�

Z 2�

0

f .x/ cos kx dx

bk D 1

�

Z 2�

0

f .x/ sin kx dx

Paul Du Bois-Raymond (1873) constructed a continuous 2�-periodic function of the
real variable x, where its Fourier series diverged at a given point. Henri Lebesgue
showed the space L2Œ0; 2�� of functions that are square-summable on the interval
L2Œ0; 2�� has a Fourier series which converges to f in the sense of the quadratic
mean.
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Modification of definition of convergence by replacing partial sum Sn.x/ with
Cesaro sums �n D ŒS0C� � �C Sn� 1�=n makes everything fall in place, overcoming
the drawback pointed out by Du Bois-Raymond concerning Fourier’s assertion that
any 2�-periodic function converges pointwise to its Fourier series.

6.1.2 Exponential Fourier Series (1807)

Any function f 2 L2Œ0; 2�� has expansion

f .x/ D
1X

nD�1
cnejnx;

where

cn D 1

2�

Z 2�

0

f .x/e�jnx dx:

Convergence:

lim
M;N!1

Z 2�

0

jf .x/ �
NX

nD�M

cnejnxj2 dx D 0:

Fact 6.1. Every 2�-periodic square integrable function is generated by a superpo-
sition of integral dilations wx.x/ D w.nx/ of the basis function w2.x/ D ejx. From
the orthonormal property of fwng, it follows that

1

2�

Z 2�

0

jf .x/j2 dx D
1X

nD�1
jcnj2

Definition 6.1. Let s.x/ D P1
nD1 un.x/ be an infinite sum of a sequence of

functions that converge to s.x/ for each value of x in Œa; b�. Denote the partial sum
and pointwise remainder by

sn.x/ D u1.x/C u2.x/C � � � C un.x/

rn.x/ D s.x/ � sn.x/:

Then ordinary convergence is defined as: lim rn.x/ D 0, because lim sn.x/ D s.x/.

Definition 6.2. The series
P1

nD1 un.x/ is uniformly convergent in the interval Œa; b�
if for each 
 > 0, there is a number N independent of x such that jrn.x/j < 
 for all
n > N.
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The next question is: How do we represent a function f .x/ in space L2.R/, i.e.R1
�1 jf .x/j2 dx <1? The answer is to look for small waves or wavelets to generate

L2.R/. For L2.R/, seek mother wavelet .x/with integral shifts .x�k/; k 2 Z; and
dilation (for frequency bands) to give  .2jx � k/; j; k 2 Z

C.

6.1.3 Haar System (1909)

Does there exist another orthonormal system h0.x/; h1.x/; : : : ; hn.x/; : : : defined on
Œ0; 1�, such that for any function f .x/ continuous on Œ0; 1�, the series

1X

kD0
hf ; hkihk.x/; where hf ; hki D

Z 1

0

f .x/hk.x/ dx

converges uniformly to f .x/ on Œ0; 1�?
Haar’s solution is given next.

h.x/ D
8
<

:

1; 0 � x < 1=2
�1; 1=2 � x < 1
0; otherwise

For n � 1, write n D 2j C k; j � 0; 0 � k < 2j. Note that the index n ranges over
all positive integers.

 n.x/ , 2j=2h.2jx � k/ D h.j; k; x/

Supp
n
 n.x/ , h.j; k; x/

o
is In D Œk2�j; .kC 1/2�j�

To complete the set, define �.x/ , 1 on Œ0; 1/.
Then, the sequence f�.x/;  1.x/; : : : ;  n.x/g is an orthonormal basis for L2Œ0; 1�

(Fig. 6.1).

6.1.4 Gabor STFT Transform

This is in contrast to Fourier transform, where the expansion is done by functions
like e�j!t which are not time-limited, but highly localized in frequency. Recall
that a Fourier series results from integer dilations of ejt while a Fourier transform
occurs from non-integer dilations of ejt. The STFT of the function p.t/ involves
multiplication by a sliding window w.t � ˇ/ to localize the time domain data. The
STFT then is

PSTFT.!; p/ D
Z 1

�1
p.t/w.t � ˇ/e�j!tdt:
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1

0

n=0

Haar(0,0,x)

n=1

1

0

-1

Haar(1,0,x)

n=2

0

-

Haar(1,1,x)

n=3

0

-

Haar(2,0,x)

n=4

Haar(2,1,x)

n=5

2

0

-2

2

0

-2

Haar(2,2,x)

n=6

Haar(2,3,x)

n=7

1 1

1 1

1 1

1 1

1/2

1/2

1/2

1/2

1/4

1/4

3/4

3/4

2

0

-2

2

0

-2

n = 2j + k, 0 

x x

x x

x x

x x

n(x) = h(j,k,x) vs. (x)

(x) (x)

(x)

(x)(x)

(x)

x x

k < 2j

Fig. 6.1 Note that  .2jx � k/ is obtained from  .x/ by a binary dilation of 2j and a dyadic
translation of k=2j
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The problem here is that localization in time by a narrow window, the localization
in the frequency domain is compromised by the uncertainty principle. To obtain the
original signal back, assume, without loss of generality, that w.0/ ¤ 0, so that after
setting ˇ D t

p.t/w.0/ D 1

2�

Z 1

�1
PSTFT.w; t/e

j!td!

Observe that to recover p.t/ from PSTFT , it is not required to know w.t/ for all t.
Gabor (1946) attempted to develop a methodology for localizing a function in time
and frequency. This allows tracking the frequency content of a signal by observing
the response in certain narrow frequency bands.

6.1.5 Continuous Gabor-Like Transforms (CGT)

CGT is described in terms of a representation of a signal with respect to all the
translations and modulations of a fixed-size window function q 2 L2.R/nf0g. In
fact, it is conventional to impose more constraints on q so that q 2 L1

T
L2. We can

show that

q.t/ 2 L2.R/ and tq.t/ 2 L2.R/ (6.1)

) t1=2q.t/ 2 L2.R/) q.t/ 2 L1.R/) Oq.!/is continuous.

For good time as well as frequency localization, we impose the further restriction
that

! Oq.!/ 2 L2.R/ (6.2)

Gabor used the Gaussian window

q˛.t/ D 1

2
p
�˛

e�t2=4˛

Q˛.!/ , Oq˛.!/ D 1

2
p
�˛

�r
�

1=4˛

�

e�!2=4˛.1=4˛/ D e�!2

) Oq˛.0/ D
Z 1

�1
q˛.t/dt D

Z 1

�1
q˛.t � ˇ/dt D 1; ˇ 2 R

Center:
1

kq˛k2
Z 1

�1
tjq˛.t/j2dt D 0
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Define a family fq˛.t/g of Gaussian window functions.

q˛.t/ D 1

2
p
�˛

e�t2=4˛ (6.3)

Recall the identities,

Z 1

�1
e�at2dt D

r
�

a

and

Z 1

�1
e�p2 t2˙qtdt D

Z 1

�1
e.�pt˙q=2p/2eq2=4p2dt D eq2=4p2

p
�

p
(6.4)

kq˛k2 D
Z 1

�1
1

4�˛
e�t2=2˛dt D 1p

8�˛
(6.5)

the time width �t is defined to be

.�t/
2 D 1

kq˛k2
�Z 1

�1
t2jq˛.t/j2dt

�

(6.6)

Integrate by parts to show that the integral within square brackets in the above
equation evaluates to

1

4�˛

Z 1

�1
t2e�t2=2˛dt D

r
˛

8�
(6.7)

Substituting the last equation in the equation preceding it, one gets

�2
t D ˛ (6.8)

The Fourier transform Q˛.!/ of q˛.t/ is

Q˛.!/ D
Z 1

�1
1

2
p
�˛

e�t2=4˛e�j!tdt

and applying to this the identity in (6.3)

Q˛.!/ D 1

2
p
�˛

e�!2˛
p
4�˛ D e�!2˛

kQ˛.!/k2 D
Z 1

�1
e�2!2˛d! D

r
�

2˛
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Therefore, the frequency width, �! , defined by

�2
! D

1

kQ˛.!/k2
Z 1

�1
!2jQ˛.!/j2 D

r
2˛

�

Z 1

�1
!2e�2˛!2d! (6.9)

But, using (6.7)

Z

!2e�2˛!2d! D �=˛

4�.1=4˛/

Z

!2e�
!2

2.1=4˛/ d!

D �

˛

r
1

4˛

1

8�

which, following the substitution in (6.9) yields

�2
! D

1

4˛
:

Therefore,

�2
t�

2
! D

1

4
:

Fact 6.2. According to Uncertainty Principle, for functions p.t/ 2 L1 \ L2

�2
t�

2
! �

1

4

The above is based on the following expression for energy function E.

E D
Z 1

�1
jp.t/j2dt D 1

2�

Z 1

�1
jP.!/j2d!:

6.1.6 Introduction to Continuous-Time Wavelets

The CWT has deep mathematical roots in the work of Albert P. Calderon. The
Calderon identities allow one to give integral representations of many natural
operators by using simple pieces of such operators. These pieces, which are
essentially spectral projections, can be chosen in clever ways and have proved to be
of tremendous utility in various problems of numerical analysis, multidimensional
signal processing, video data compression, and reconstruction of high resolution
images and high quality speech (from their degraded counterparts). The multires-
olution method (in progressive transmission) decomposes high resolution images
into a hierarchy of pieces or components, each more detailed than the next. Thus,
the multiresolution approach, which is based on the wavelet theory of successive
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approximations provides the mechanism for transmitting various grades of images
depending upon the quality of reconstruction sought and the limitations set by
channel capacity as well as the need for compatibility with existing receivers like
HDTV.

To the family of Gabor transforms fq˛.t/g, introduce the time-shift parameter ˇ
to get

q˛;ˇ.t/ D 1

2
p
�˛

e�.t�ˇ/2=4˛

A property not possessed by the window function q˛;ˇ.t/, which can span any
function p.t/ for all possible choices of the parameters ˛ and ˇ, is with respect
to its average value, which is non-zero, i.e.

Z 1

�1
q˛;ˇ.t/dt ¤ 0

A dilation or scaling parameter is needed so that the window adjusts its duration
according to the frequency. For a fixed window duration, when p.t/ is a high
frequency signal, many cycles are captured by the window, whereas if p.t/ is a
low frequency signal, only very few cycles are within the same window. Thus, the
accuracy of the estimate of the Fourier transform is poor at low frequencies and
improves as the frequency increases. Other limitations of the Gabor transform are
that it does not give rise to an orthonormal signal representation and does not provide
a stable reconstruction. Consider, next the window function of the form,

wa
˛;ˇ.t/ D ˛�a=2w.˛�a.t � ˇ//; a > 0; ˛ 2 R

C; ˇ 2 R

The Fourier transform of wa
˛;ˇ is

Wa
˛;ˇ.!/ D ˛a=2ejˇ!W.˛a!/

where W.!/ is the Fourier transform of w.t/. In particular, when a D 1, then w1˛;ˇ.t/
will be long and of low frequency for ˛ > 1 and will be of short and high frequency
for ˛ < 1. Suppose that w.t/ 2 L2 is centered at t D t0 and its “time-width” is �t.
Then, the window function, w1˛;ˇ.t/ has center at ˇC ˛t0 and its time-width is ˛�t.
Suppose that W.!/ is centered at ! D !0 > 0 and its frequency width is�! . Then,
the window function and, consequently, the wavelet transform

WTp.˛; ˇ/ D
Z 1

�1
p.�/w1˛;ˇ.�/d� D

Z 1

�1
p.�/w

�
t � ˇ
˛

�

d�

provides local information in the frequency domain over the interval
�
!0
˛
� �!

2˛
;

!0
˛
C �!

2˛

�
. The quality factor Q of the bandpass filter, then, is

Q D Center Frequency

Bandwidth
D !0=˛

2�!=2˛
D !0

�!
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which is independent of the scaling factor ˛. Thus, the sequence of bandpass filters
are constant-Q filters. The inverse wavelet transform is

p.t/ D 1

CW

Z 1

�1

Z 1

�1
WTp.˛; ˇ/w˛;ˇ.t/

d˛

˛2
dˇ

where ˛ > 0, where the admissibility constant CW satisfies

CW D
Z 1

�1
jW.!/j2
j!j d! <1

6.1.7 Generalized Parseval and Resolution of Identity in CWT

Mother Wavelet  .t/ 2 L2.R/ and, for rigour in the derivations it is also
assumed that  .t/ 2 L1.R/ (the former assumption allows a Hilbert space and
the latter assumption makes the Fourier transform of  .t/ continuous and permits
interchanging the order of integration).

Scaled and dilated version for ˛ 2 Rnf0g; ˇ 2 R; 2m 2 R
CSf0g, is

 ˛;ˇ.t/ D j˛j�m 

�
t � ˇ
˛

�

(6.10)

k ˛;ˇ.t/k2 D j˛j�2m
Z 1

�1
j 
�

t � ˇ
˛

�

j2 dt D j˛j1�2mk .t/k2 (6.11)

)  ˛;ˇ.t/ 2 L2.R/:

The wavelet  .t/ must satisfy the admissibility condition, i.e.

C D
Z 1

�1
j‰.!/j2
j!j d! <1; ‰.!/ , O .!/ D FT. .t//:

The above condition is satisfied by forcing ‰.!/ to have sufficient decay as
j!j ! 1 and

O .0/ D
Z 1

�1
 .t/ dt D 0:

It is convenient, as noted above, to take  .t/ 2 L1.R/
T

L2.R/.  .t/, which is
oscillatory by previous equation, behaves as the impulse response of a bandpass
filter that decays. The continuous wavelet transform (CWT),

CWTf .˛; ˇ/ W L2.R/ �! L2.R
2/
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of a function f .t/ 2 L2.R/ onto a time-scale space L2.R2/ is given by the ANALYSIS
FORMULA

CWTf .˛; ˇ/ D h ˛;ˇ.t/; f i , j˛j�m
Z

R

 �
�

t � ˇ
˛

�

f .t/ dt (6.12)

The RESOLUTION OF IDENTITY gives the SYNTHESIS FORMULA

f .t/ D 1

C 

Z 1

�1

Z 1

�1
CWTf .˛; ˇ/ ˛;ˇ.t/

d˛dˇ

˛2
(6.13)

Henceforth, WLOG, take m D 1=2 and recall then

1

2�
O ˛;ˇ.!/ D j˛j

�1=2

2�

Z 1

�1
 

�
t � ˇ
˛

�

e�j!t dt:

D ˛j˛j�1=2
2�

e�jˇ! O .˛!/ (6.14)

WLOG, restrict attention to real-valued wavelets. Then, from standard Fourier
transform theory (generalized Parseval),

CWTf .˛; ˇ/ D
Z 1

�1
f .t/ ˛;ˇ.t/ dt D 1

2�

Z 1

�1
Of .!/ �̨;ˇ.!/ d! (6.15)

Equation (6.15) follows after noting that

CWTf .˛; ˇ/ D
�
f .t/ 
  ˛;ˇ.�t/

�
tDˇ

But, from Eq. (6.14)

O ˛;ˇ.!/ D ˛j˛j�1=2e�jˇ! O .˛!/ (6.16)

From (6.16) and (6.15),

CWTf .˛; ˇ/ D 1

2�

�Z 1

�1
Of .!/ O �.˛!1/ejˇ!1 d!1

�
˛

j˛j1=2 (6.17)

For another function g.t/ 2 L2.R/

CWTg.˛; ˇ/ D 1

2�

�Z 1

�1
Og.!1/ O �.˛!1/ejˇ!1 d!1

�
˛

j˛j1=2 (6.18)
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From (6.17) and (6.18),

) I ,
Z 1

�1

Z 1

�1
CWTf .˛; ˇ/CWT�g .˛; ˇ/

d˛dˇ

˛2

D 1

.2�/2

�Z 1

�1

Z 1

�1
d˛dˇ

Z 1

�1

Z 1

�1
d!d!1 Og�.!1/Of .!/ O �.˛!/ O .˛!1/ejˇ.!�!1/

�
1

j˛j
Define,

H.!; !1; ˛/ , Og�.!1/Of .!/ O �.˛!/ O .˛!1/

Interchanging the order of integration (Fubini’s Theorem),

I D 1

.2�/2

�Z 1

�1
d˛

Z 1

�1

Z 1

�1
d!d!1 H.!; !1; ˛/

Z 1

�1
ejˇ.!�!1/ dˇ

�
1

j˛j
The problem of reducing double (or multiple) integrals plays an important role in
classical analysis. In the Lebesgue integration theory, the key result along these lines
is Fubini’s Theorem, basic in the theory of multiple integration, which asserts that
if the double integral exists then so do the iterated integrals and, moreover, that they
are equal.

But,

lim
B!1

Z B

�B
ejˇ.!�!1/dˇ D lim

B!1 2�
sin.! � !1/B
�.! � !1/ D 2�ı.! � !1/

) I D 1

.2�/

�Z 1

�1
d˛
Z 1

�1

Z 1

�1
d!d!1 H.!; !1; ˛/ı.! � !1/

�
1

j˛j

D 1

.2�/

Z 1

�1
d˛

j˛j
Z 1

�1
d! Og�.!/Of .!/j‰.˛!/j2

D
Z 1

�1
j‰.x/j2
jxj dx

1

2�

Z 1

�1
Og�.!/Of .!/d!; x D ˛!

D C hf .t/; g.t/i:

In the above expression whenever f D g the function C .f ; g/ defines the norm of
f .org/ in the Hilbert space of the space CWT for f .t/ 2 L2.R/. Note that this Hilbert
space is also an RKHS.
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6.1.8 The Derivation of the ICWT

Here, we present a shorter proof based on the fact given next.

Fact 6.3.

hg.t/; f .t/i D hf .t/; g.t/i D 1

C 

Z 1

�1

Z 1

�1
CWTf .˛; ˇ/CWT�g .˛; ˇ/

d˛dˇ

˛2

Choose

g�.t/ D 1

2
p
�˛

e�t2=4� ; � > 0

g�.t/
FT
 ! e��!2

It can be strictly proved with mild restrictions on f .t/: (f .t/ is continuous and f .t/ 2
L1 suffices) that

lim
�!0C

Z 1

�1
f .t � x/g� .x/ dx! f .t � 0/ D f .t/

Consider now the limit of the RHS of the equation in the preceding Fact as given in
the above equation

1

C 
lim
�!0C

Z 1

�1

Z 1

�1
CWTf .˛; ˇ/h ˛;ˇ.x/; g�.t � x/i� d˛dˇ

˛2

D 1

C 

Z 1

�1

Z 1

�1
CWTf .˛; ˇ/ ˛;ˇ.t/

d˛dˇ

˛2

D lim
�!0hf .t/; g� .t � x/i

D f .t/

Thus, the inverse CWT is obtained.

6.1.9 Noble Identities

For filter bank implementation to generate discrete-time wavelets and for per-
fect reconstruction from analysis and synthesis bank of filters, downsampling,
upsampling, filtering are required. Interchange of filtering and downsampling
operations, as well as upsampling and filtering operations are crucial in efficient
implementations (e.g. polyphase filter banks to be described later). Here, simple
proofs are advanced to prove such identities, referred to as Noble identities.
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Consider a special case when the unit impulse response sequence fhŒn�g gener-
ated by a rational, possibly non-causal, transfer function H.z/ has .N � 1/ zeros
between each pair of nonzeros. Then, there exists a filter unit impulse response
fgŒn�g such that gŒn� D hŒnN�;8n, and H.z/ D G.zN/.

6.1.9.1 First Noble Identity

G.z/.# N/ D .# N/G.zN/

Proof. Downsampling by positive integer N converts the input sequence xŒk� to
xŒkN�. Then, the filter G.z/ produces, for the left hand side,

vŒl� D
X

k

gŒk�xŒN.l � k/�

Since H.z/ D G.zN/ uses the Nth sample of the input, therefore this filter generates,

vŒl� D
X

k

gŒk�xŒl � Nk�

In the right hand side, this filtering operation is followed by downsampling which
replaces l by Nl to give the same output as in the first case (left hand side). The
first noble identity allows decimation to precede filtering, because one is tempted
to filter the input signal first by an anti-aliasing filter to avoid potential aliasing
due to decimation. The goal for interchange of expander and interpolating filter is
to perform filtering before upsampling (more efficient due to reduced number of
filtering operations). Consider the special case when the interpolating filter F.z/$
f Œn� has .N � 1/ zero coefficients between each pair of non zeros. Then, there exists
a filter with unit impulse response gŒn� D f ŒnN�;8N i.e. F.z/ D G.zN/

6.1.9.2 Second Noble Identity

." N/G.z/ D G.zN/." N/

It is easy to prove after noting that the second Noble identity is the dual of the first
Noble identity. We state without proof another commutativity result.

Fact 6.4. Given integers M � 2;N � 2, the identity ." M/.# N/ D .# N/." M/
holds if and only if M and N are relatively prime. In that case, V D ." M/.# N/
has components

uŒk� D
	

xŒkN�; if k is divisible by M
0; otherwise.
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6.1.10 Upsampling and Downsampling Operations
in z-Domain

Given v D .# 2/x and u D ." 2/v, the z-transform of v and u are

V.z/ D 1

2

�
X.z1=2/C X.�z1=2/

�

U.z/ D 1

2
ŒX.z/C X.�z/�

Proof.

u D ." 2/v$
	

uŒ2k� D vŒk�
uŒ2kC 1� D 0

Therefore,

U.z/ D
X

uŒk�z�k D
X

uŒ2k�z�2k

D
X

vŒk�z�2k D V.z2/

v D .# 2/x$ vŒk� D xŒ2k�

Form an auxiliary sequence,

fwŒk�g D .: : : xŒ0� 0 xŒ2� 0 : : : /

Then

.# 2/x D .# 2/w

W.z/ D 1

2

X

k

xŒk�z�k C 1

2

X

k

.�1/kxŒk�z�k

D 1

2
ŒX.z/C X.�z/�

V.z/ D
X

k

xŒ2k�z�k

since,

v D .# 2/x$ vŒk� D xŒ2k�
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Furthermore, from the construction of wŒk�, it follows that

V.z/ D
X

k

wŒ2k�z�2k D
X

k

wŒk�z�k=2 D W.z1=2/

D 1

2
ŒX.z1=2/C X.�z1=2/�

U.z/ D V.z2/ D 1

2
ŒX.z/C X.�z/�

Generalization Given v D .# N/x and u D ." N/v, the z-transforms of v and u
are

V.z/ D 1

N

N�1X

kD0
X


z1=Nej2�k=N

�

U.z/ D 1

N

N�1X

kD0
X


zej2�k=N

�

6.1.11 General LP and Orthonormal PR QMF Filter Banks
with Lattice Realization

First, we start with LP and then proceed to orthonormal filter banks. For both H0.z/
and H1.z/ to have the same lengths (EVEN) and be linear phase, one, say H0.z/
must be symmetric while the other must be anti-symmetric. Let L be the common
filter length. Then,

H0.z/ D z�.L�1/H0.z
�1/;H1.z/ D �z�.L�1/H1.z

�1/

6.1.11.1 Polyphase Decompositions

H0.z/ D H00.z
2/C z�1H01.z

2/ D z�.L�1/H0.z
�1/

D z�.L�1/
�
H00.z

�2/C zH01.z
�2/
�

D z�.L�2/
�
H01.z

�2/C z�1H00.z
�2/
�

H1.z/ D H10.z
2/C z�1H11.z

2/ D z�.L�1/H1.z
�1/

D �z�.L�1/
�
H10.z

�2/C zH11.z
�2/
�

D �z�.L�2/
�
H11.z

�2/C z�1H10.z
�2/
�
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The Polyphase Matrix, then, becomes

Hp.z/ D
�

z�L=2C1H01.z�1/ z�L=2C1H00.z�1/
�z�L=2C1H11.z�1/ �z�L=2C1H10.z�1/

�

D z�L=2C1
�
1 0

0 �1
� �

H01.z�1/ H00.z�1/
H11.z�1/ H10.z�1/

�

D z�L=2C1
�
1 0

0 �1
� �

H00.z�1/ H01.z�1/
H10.z�1/ H11.z�1/

� �
0 1

1 0

�

We focus the realization aspects with respect to orthonormal filter banks using
paraunitariness. The synthesis filters satisfy

G0.z/ D H1.�z/; G1.z/ D �H0.�z/

Thus, alias cancellation, linear phase, and also excellent attenuation (plus the
convenience of VLSI implementable lattice realization) is obtained.

We now work towards a canonic structure for orthonormal FIR 2-channel filter
bank that has a lattice implementation and is highly modular. We have seen that
2-channel PR linear phase FIR filter banks that are also orthogonal are not possible
if the length exceeds 2. To construct orthogonal filters, the paraunitary condition
must be satisfied by the polyphase matrices in the filter bank. To wit, for the
polyphase analysis matrix (we restrict attention, without loss of generality, to the
real coefficients case).

Hp.z/H
t
p.z
�1/ D Ht

p.z
�1/Hp.z/ D 1

A paraunitary matrix is unitary on jzj D 1. Recall that a matrix U is unitary if

UUH D UHU D I

where the superscript H denotes a “complex conjugate transpose” or “Hermitian
conjugate”. An orthonormal matrix is a real valued unitary matrix. The basic
building blocks of a paraunitary matrix of order 2 are the rotation matrix and
the delay matrix. These simple building blocks, each having a lattice realization,
are cascaded and the result is a paraunitary matrix of the higher order that has a
lattice realization. To wit, a Hl

p.z/ of degree l is related to Hl�1
p .z/ of degree l � 1

generically by

Hl
p.z/ D

�
cos 
l � sin 
l

sin 
l cos 
l

� �
1 0

0 z�1
�

Hl�1
p .z/

Analysis is easy, but even synthesis of Hl
p.z/ is possible by adaptation of “Richards’

theorem” (N.K. Bose, “Digital Filters”, 1985, pp. 227–231).
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Suppose that the analysis and synthesis filters in the orthonormal filter bank are
each of order N D 2J C 1. Then, the step-down algorithm proceeds as follows:

Algorithm 6.1. Step-down Algorithm

(a) Initialization: HJ
0.z/ , H0.z/ Alternating flip ) HJ

1.z/ D H1.z/ D
�z�.2JC1/H0.�z�1/

(b) Stepdown: For m D J; J � 1; : : :

.1C ˛2m/H.m�1/
0 .z/ D H.m/

0 .z/ � ˛mH.m/
1 .z/

.1C ˛2m/z�2H.m�1/
1 .z/ D ˛mH.m/

0 .z/C H.m/
1 .z/

) H.m�1/
1 .z/

H.m�1/
0 .z/

D z2
˛m �

�

�H
.m/
1 .z/

H
.m/
0 .z/

�

�

�˛m
H
.m/
1 .z/

H
.m/
0 .z/

�

C 1

Example 6.1. Let us design a Daubechies maximally flat filter D2.

P.z/ D H0.z/H0.z
�1/ D .1C z�1/k.1C z/kR.z/;

where,

R.z/ D R.z�1/; R.ej!/ � 0;

R.z/ D
k�1X

lD�.k�1/
r.l/z�l; r.l/ D r.�l/

Here, where k D 2, R.z/ is of the form

R.z/ D azC bC az�1

Since P.z/C P.�z/ D 2, it follows that

R.z/ D � 1
16

zC 1

4
� 1

16
z�1; R.ej!/ � 0;8!

After spectral factorization

H0.z/ D 1

4
p
2

h
.1Cp3/C .3Cp3/z�1 C .3 �p3/z�2C

.1 �p3/z�3
i
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h0Œn� W! 1

4
p
2

�
1Cp3 3Cp3 3�p3 1 �p3 0 0 �

h0Œn � 2� W! 1

4
p
2

�
0 0 1Cp3 3Cp3 3 �p3 1 �p3 �

hh0Œn�; h0Œn � 2�i D .3 �p3/.1Cp3/C .3Cp3/.1 �p3/ D 0:

6.1.12 Projection Operator-Based Approach

Mm.K/ denotes the space of square matrices of size m, taking its coefficients over
a field K. Likewise, Mm`.K/ is the space of m-by-` rectangular matrices. Here, the
field K will denote either R or C. Note that the coefficients of the polynomial matrix
elements may belong to any arbitrary but fixed field like a finite field, which is not
of characteristic zero.

Let M be a singular matrix of Mm.K/ (or not of full rank in Mml.K/) of rank
r < m. The image of M forms a subspace W of Km. There is a bounded linear map
P satisfying P2 D P (idempotent) from Km onto W and P is called a projection
operator. The columns of P are the projections of the standard basis vectors and W
is the image of P. Form T D MM�, where M� is the Hermitian conjugate of M. Note
that T is a self-adjoint operator and Im.T/ D Im.M/. Now, define the characteristic
polynomial associated with T, as �T.x/. M, and hence T, being of rank r implies that
�T.x/ D x.m�r/Q.x/, where Q.0/ ¤ 0. Then Q.T/

Q.0/ is the projection operator on T’s

kernel and P D I � Q.T/
Q.0/ is the projection operator on T’s image. A square matrix P

is an orthogonal projection matrix iff P2 D P D P�, where the complex conjugate
transpose P� of P denotes the adjoint of the matrix P. In particular, for all matrices
A and B such that Im.A/ � Im.M/ and Im.B/ � Im.M/?

PA D A ; PB D 0
Let A.z�1/ be a (m � m) paraunitary polynomial matrix of exact degree d (i.e.

Ad ¤ 0/ in:

A.z�1/ D
dX

iD0
z�iAi ; A�.Nz�1/ D

dX

iD0
z�iA�i

The paraunitary property yields A�.Nz�1/A.z/ D I, from which we can derive
a system of quadratic equations in terms of the coefficient matrices. One of these
equations is A�0Ad D 0. Since Ad ¤ 0, therefore rank.A0/ < m and A0?Ad. This
enables ones to define a projection matrix P associated with A0, verifying also that
PAd D 0.

Theorem 6.1. If P is the projection matrix associated with A0, then PC.I�P/z�1is
a paraunitary left factor of the paraunitary matrix A.z�1/.
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Proof. The paraunitariness of PC .I � P/z�1 follows from:

.PC .I � P/Nz�1/�.PC .I � P/z/

D .P� C .I � P�/z�1/.PC .I � P/z/

D P2 C Pz� P2zC Pz�1 � P2z�1 C I � 2PC P2

D PC Pz� PzC Pz�1 � Pz�1 C I � 2PC P

D I

The inverse of this paraunitary factor is evidently PC .I � P/z.

Furthermore, P C .I � P/z�1 is a left factor of A.z�1/ as justified next. Let
A.z�1/ D A0CA1z�1C : : :CAdz�d . Then we can factor PC.I�P/z�1 and compute
the remainder by left-multiplying A.z�1/ with the inverse factor PC .I � P/z.

.PC .I � P/z/A.z�1/

D PA0 C PA1z
�1 C : : :C PAdz�d

C A0zC A1 C : : :C Adz�dC1�
� PA0z � PA1 � : : : � PAdz�dC1

Since PA0 D A0, we can compute the term with positive power of z, as

A0z� PA0z D 0:
Moreover since PAd D 0, therefore the remainder is a polynomial matrix in z�1 of
reduced degree d�1. Note that the computation of a factor in this approach depends
only on the constant term of the matrix.

Theorem 6.2. Let A.z�1/ be a m � m paraunitary matrix with polynomial degree
one, and A0 its constant coefficient. Then

rank.A0/ D r, det.A.z�1// D ˙z�.m�r/

Proof. A being of polynomial degree one, apply the factorization algorithm.

A.z�1/ D ŒPC .I � P/z�1�R

then,

R D PA0„ƒ‚…
C .I � P/A0„ ƒ‚ …

zC PA1„ƒ‚…
z�1 C .I � P/A1„ ƒ‚ …

A0 0 0 A1

R D A0 C A1 D A.1/
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Define L D PC .I�P/z�1, then det.A.z�1// D ˙det.L/, since A.1/ is unitary. Also
note that A0 D PA.1/ and since A.1/ is non-singular, rank.A0/ D rank.P/.

Lastly, since P is an orthogonal projection operator, there exists a matrix Q, non-
singular, such that, if rank.P/ D r,

P D Q�1

0

B
B
B
B
B
B
B
@

1

: : :

1

0

: : :

0

1

C
C
C
C
C
C
C
A

Q

with r ones on the diagonal of the central matrix. Since I D Q�1Q, therefore,

L D PC .I � P/z�1

D Q�1

0

B
B
B
B
B
B
B
@

1

: : :

1

z�1

: : :

z�1

1

C
C
C
C
C
C
C
A

Q

Since det.L/ D ˙z�.m�r/, the following equivalence is obtained:

det.A/ D ˙z�.m�r/” det.L/ D ˙z�.m�r/

” rank.P/ D r” rank.A0/ D r

The algorithm, summarized in the next subsection, works with sequential reduction
of polynomial degree though the determinantal degree may reduce by more than 1
(determinantal degree reduces by 1 when rank P , r equals m � 1). When the
projection matrix is of lower rank (< m � 1), further determinantal factorization
would still be possible to arrive at the atomic factorization.

Note: The product of two atomic factors is a factor, of determinantal degree two,
and, in the general case, of polynomial degree one. This later case corresponds to
a low-rank constant coefficient matrix. It is also a case when factorization is very
simple.

In general, low-rank constant coefficient matrices correspond to matrices whose
columns and rows can be rearranged into a block-diagonal matrix. Then a first step
to factorization is to separate those blocks by a simple factorization. Also note that
after this factorization, the constant coefficient matrix of the remainder will be of
rank m � 1.
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6.1.13 Algorithm in m-Channel Case

The main interest of the projection algorithm is the simplicity of computation it
offers in case of matrices of higher dimensions. The algorithm can be written in a
few simple steps.

For an m-by-m matrix A.z�1/ , A, the algorithm is described by the steps below.

Algorithm 6.2. Initialize A.1/ D A. Then, until A.k/ becomes an ‘elementary’
factor, do the following steps for k D 1; 2; : : :
(a) Define by M.k/ the constant coefficient matrix of A.k/.

(b) Define T.k/ , M.k/M�.k/ and �T.x/ D det.T.k/ � xI/.

(c) Define r D rank.M.k//.D rank.T.k///, then form Q.k/.x/ D x.r�m/�T.x/

(d) P.k/ D I � Q.k/.T/
Q.k/.0/

.

(e) L.k/.z�1/ D P.k/ C .Im � P.k//z�1
(f) R.k/.z�1/ D L.k/.z/A.k/.z�1/
(g) A.kC1/ D R.k/.z�1/
(h) 	 If order (polynomial degree) of R.k/.z�1/ is 1 then stop
	 Else go to step 1

After the algorithm terminates, the factorization is given by A D L.1/ : : : L.k/R.k/

6.1.13.1 Examples

Example 6.2. In the two-channel case, the computation of the projection matrix is
simplified to be:

P D A0A�0
Tr.A0A�0 /

;

which has Hermitian symmetry and is, equivalently, orthogonal. Indeed the charac-
teristic polynomial becomes: �T.x/ D x.x� Tr.T// and then Q.T/ D T � Tr.T/ � I,
Q.0/ D �Tr.T/,

P D I � Q.T/

Q.0/
D T

Tr.T/

Note that in the two-channel case, A0 is always of rank 1, which since m D 2 is
also m�1 (where m is the order of the matrix). Therefore, there is no ‘low-rank case’
contrary to what could take place in the general case. Hence the polynomial degree
(order) of the matrix is equal to the degree of the determinant and also exactly equal
to the number of factors we can obtain. Therefore this factorization is coherent with
the result obtained by Vaidynathan and Hoang for the 2-channel case.
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Example 6.3. Here is an example for 3 � 3 matrices i.e. m D 3:

A.z�1/ , A D

0

B
@

1�z�1

2
z�1�z�3

4
z�1C2z�2Cz�3

4
1Cz�1

2
z�1�2z�2Cz�3

4
z�1�z�3

4

0 1Cz�1

2
1�z�1

2

1

C
A

Let P.k/;L.k/ and R.k/ denote respectively, the projection matrix, the associated
left-factor and remainder at the kth iteration. Then, from M.1/, the constant matrix in
A, form T.1/ D M.1/M�.1/.

T.1/ D 1

4

0

@
1 0 0

1 0 0

0 1 1

1

A

0

@
1 0 0

1 0 0

0 1 1

1

A

�

D 1

4

0

@
1 1 0

1 1 0

0 0 2

1

A

and clearly, r D 2, �T .x/ D �x.x2 � xC 1
4
/ , Q.1/.T.1// D �T2.1/ C T.1/ C 1

4
I

P.1/ D 4T.1/ � 4T2.1/ D
1

2

0

@
1 1 0

1 1 0

0 0 2

1

A

L.1/ D P.1/ C .I3 � P.1//z
�1

D 1

2

0

@
1C z�1 1 � z�1 0
1 � z�1 1C z�1 0
0 0 2

1

A

R.1/ D L�1.1/A D

0

B
@

0 z�1�z�2

2
z�1Cz�2

2

1 0 0

0 1Cz�1

2
1�z�1

2

1

C
A

We can repeat this procedure one more time and get,

T.2/ D
0

@
0 0 0

0 1 0

0 0 1
2

1

A

P.2/ D 3T.2/ � 2T2.2/ D
0

@
0 0 0

0 1 0

0 0 1

1

A
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L.2/ D P.2/ C .I3 � P.2//z
�1 D

0

@
z�1 0 0
0 1 0

0 0 1

1

A

R.2/ D L�1.2/R.1/ D

0

B
@

0 1�z�1

2
1Cz�1

2

1 0 0

0 1Cz�1

2
1�z�1

2

1

C
A

After this last step, we obtain the following elementary factorization:

A D L.1/L.2/R.2/

where the matrices on the right-hand side have been generated above.

6.2 Extension to the Multivariate Case

The approaches in algorithmic theory of polynomial ideals and modules for
multivariate polynomial matrix factorization, unimodular matrix completion (and its
variants) are intimately linked to the problems faced in multidimensional multiband
filter bank design.

Let z D .z1; z2; : : : ; zn/ and let Kq�pŒz� D Kq�pŒz1; z2; : : : ; zn� be the ring of
.q � p/ n-variate polynomial matrices whose elements have coefficients in the field

K of complex numbers. Let C 2 Kq�pŒz� be the composite matrix C
4D ŒA j B�;

of normal full rank where without loss of generality, q � p: Let OG 2 Kq�qŒz� be
a greatest left common factor (GLCF) of A and B (assuming OG exists). Note that
OG is restricted to be a square matrix as required in matrix-fraction descriptions of
rational matrices in multidimensional system theory. For some n-variate polynomial
matrices A1 and B1;

C
4D ŒA j B� D OGŒ A1 j B1 �: (6.19)

Furthermore, it is assumed that the determinant of OG equals the greatest common
factor (gcf) of the major determinants of C (this is needed because primitive
factorization is not possible, in general, in n-D, n > 2 [2, pp. 64–65]). This fact is an
implicit requirement for Eq. (6.20) below and is explicitly noted here for the sake of
clarity. It is clear from Eq. (6.19) that all columns of C belong to the module (over
the polynomial ring KŒz�) generated by the columns of OG. When the reduced minors
(minors after gcf extraction) of C have no common zero, there exists a polynomial
matrix H [2] such that,

Œ A1 j B1 �H D I: (6.20)
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Consequently, using Eqs. (6.19) and (6.20) one can write

OG D OGŒ A1 j B1 �H D CH: (6.21)

From Eq. (6.21), the columns of OG also belong to the module generated by the
columns of C: Therefore, the columns of OG and the columns of C generate the same
module over the polynomial ring KŒz�: Let G 2 Kq�sŒz�; q � s; have its columns
formed from the Gröbner basis of the module generated by columns of C:

6.2.1 Algorithm A: Algorithm for Multivariate Matrix
Factorization

Given a normal full rank matrix C 2 Kq�pŒz�, its GLCF, OG (if it exists), is computed
as follows.

Algorithm 6.3. � Step 1. Compute the set of reduced q � q minors or reduced
major determinants of C. If the reduced minors have no common zeros then
proceed to Step 2; otherwise use the method in [81] to compute the GLCF in
the bivariate case only.

� Step 2. Compute a Gröbner basis for a module generated by all columns of C
using any ordering. Denote the matrix whose columns are the elements of this
Gröbner basis by G D Œg1 g2 : : : gs�. Select a maximal set fgp.1/; gp.2/; : : : ; gp.q/g
of q linearly independent elements (over the field K.z/ of rational functions),
where the set of subscripts fp.i/gqiD1 is a permutation of a subset of cardinality q
of the set f1; 2; : : : ; sg:

� Step 3. If all columns of C belong to the module generated by the column vectors
gp.1/; gp.2/; : : : ; gp.q/; then OG is formed by using the maximal set of linearly
independent elements of the Gröbner basis module computed in Step 2 and
the algorithm is terminated. Otherwise, the algorithm cannot find a GLCF (see
Example in next subsection).

6.2.2 Remarks and Examples

Remark 6.1. The maximal set of linearly independent elements of the Gröbner
basis, computed in Step 2 of Algorithm A, consists of q polynomial vectors, where
q is the number of rows of C: This will produce the right number of column vectors
but these column vectors may only generate a proper submodule of the column
space of C: Therefore, this set is not necessarily a minimal generating set for the
column space of C and, hence, may not serve as a GLCF (because the columns of a
GLCF must generate the column space of C).



6.2 Extension to the Multivariate Case 185

Example 6.4. The reduced minors of the factorable matrix C 2 K2�3Œz�; shown
below, are zero-coprime.

C D
2

4 z1z22z3
z21z

2
3 C z3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

0 �z21z
2
2 � 1

�z3 �z31z3 � z1

3

5 4D OGŒ A1 j B1 �

D
��z21z

2
2 � 1 z1z22z3
�z1 z3

�
2

4 z31z
2
2z
2
3

z41z
2
2z3 C z21z3 C 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�z1z22z3 �z41z
2
2z3 C 1

�z21z
2
2 � 1 �z31.z

2
1z
2
2 C 1/

3

5

Using degree reverse lexicographical ordering with z1 
 z2 
 z3; the matrix G
whose columns are the reduced Gröbner basis vectors of the module generated by all
columns of C is calculated (by the program SINGULAR [82]) to be G D Œg1 g2 g3�;
where g1 D Œ 0 z3 �T ; g2 D Œ z3 0 �T ; and g3 D Œ .z21z

2
2 C 1/ z1 �T : However, here

the GLCF OG cannot be computed using Algorithm A, because no proper linearly
independent subset of G can generate the column space of C: Note that though the
columns of OG generate the same module as the columns of C; it cannot be derived
from G by applying the algorithmic theory of Gröbner basis.

In general, the construction of OG will depend on the validity of a conjecture
advanced in [83].1

Conjecture 6.1. Let d be the greatest common divisor of all major determinants of
C 2 Kq�pŒz�: If the reduced minors of C have no common zeros in Kn; then C can be
factored as C D OGC0 with C0 2 Kq�pŒz� being ZLP, OG 2 Kq�qŒz� and det OG D d:

The preceding conjecture is proved for the case p D q C 1 [83], the condition
satisfied in the above example.

Definition 6.3. Let N be a set of integers and let a vector v D .v1; : : : ; vp/
T 2

Kp�1Œz� for some p 2 N : Then v is called a unimodular column vector if its
components generate KŒz� i.e. if there exist g1; : : : ; gp 2 KŒz� such that v1g1 C
: : : C vpgp D 1I a matrix A 2 Kq�pŒz� is called a unimodular matrix if its major
determinants generate the unit ideal in KŒz�:

Remark 6.2. OG is unique upto multiplication by unimodular matrices. Hypothesize
that C D OG1

�
A1 j B1

� D OG2

�
A2 j B2

�
: Then det OG1 and det OG2 each must

divide the greatest common factor of the major determinants of C: Since the sets

1In preparing this part of the book, Professor N.K. Bose either was unaware of some further
development on this conjecture, or did not manage to update this part when he was suddenly
passing away in 2009. In fact, the conjecture had been proved by several researchers shortly after it
was posed in 1999. The additional references on this conjecture and related topics are now included
in the Appendix of this chapter for the convenience of the readers while not affecting the original
writing style of Professor Bose.
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of major determinants of ŒA1jB1� and ŒA2jB2� are both zero-coprime, therefore
det OG1; det OG2 must each be the greatest common factor of the major determinants of
C: Therefore, det OG1 D ˛ det OG2; ˛ 2 K: Furthermore, there exists a H 2 Kp�qŒz�
such that

CH D OG1

�
A1 j B1

�
H D OG1 D OG2

�
A2jB2

�
H
4D OG2U:

U must be unimodular because det OG1 D ˛ det OG2; ˛ 2 K:

Remark 6.3. If the reduced minors of C have common zeros, then the algorithm
will never find a GLCF even if it exists. This follows because OG is generated by the
elements of the Gröbner basis of the module generated by the columns of C; which
implies that

OG D CX; X 2 Kp�qŒz�:

Since a GLCF is assumed to exist and the reduced minors of C have common zeros,
therefore, C D OGC1; C1 2 Kq�pŒz�; where the major determinants of C1 have
common zeros. Since OG is nonsingular, OG D CX D OGC1X implies C1X D Iq;

which contradicts the inference made earlier about the major determinants of C1

having common zeros.

6.2.3 Constructive Aspects of Unimodular Completion

Serre’s conjecture [84] is known to be equivalent to the unimodular matrix comple-
tion question: can a row of a finite number of zero coprime n-variate polynomials
belonging to the ring KŒz1; z2; : : : ; zn� be completed to a square matrix over the same
ring with a nonzero determinant in K? D. Quillen and A. Suslin [84] independently
proved this conjecture. Several constructive procedures for independently verifying
the following theorem was advanced later.

Theorem 6.3 (Quillen-Suslin). Let A be a unimodular q � p matrix (q � p) over
KŒz�: Then there exists a unimodular p � p matrix U over KŒz� such that

AU D Œ Iq j 0q�.p�q/ �: (6.22)

An heuristic algorithm based on syzygy computation which, though not universally
applicable is usually computationally attractive, was advanced by Park. The main
problem of the syzygy-based heuristic algorithm is the lack of an effective procedure
for finding a minimal syzygy basis.
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6.2.4 Algorithm for Computing a Globally Minimal
Generating Matrix H

Definition 6.4. A syzygy module Syz.A/ of the q�p matrix A D � a1 � � � ap
�
;where

a1; : : : ; ap 2 Kq�1Œz�; is finitely generated [27, Ch.3]. Let h1; : : : ;hs 2 Kp�1Œz� form
a generating set (syzygy basis) of Syz.A/, then the matrix H D �

h1 � � � hs
�

is
called a generating matrix of Syz.A/; (or the kernel representation of A) implying
that AH D 0 (H D ker.A/ D fh 2 Kp�1Œz�

ˇ
ˇ Ah D 0q�1g ).

In order to compute the globally minimal syzygy basis, the following propositions
due to Lin [85] are required.

Proposition 6.1. Let A 2 Kq�pŒz� be of rank q; with q < p and let r D p � q. The
syzygy basis, Syz.A/ of A has a generating matrix of minimal dimension p � r; r �
s i.e. a generating matrix is globally minimal if and only if there exists a minor
right prime (MRP)(i.e. the major determinants of H form a set of relatively prime
polynomials) matrix H 2 Kp�rŒz� such that AH D 0q�r:

Proposition 6.2. Let A 2 Kq�pŒz� be of rank q; with q < p: H1 2 Kp�sŒz� be a
generating matrix of Syz.A/; with s > r; then Syz.A/ has a generating matrix of
dimension p � r if and only if H1 can be factored as H1 D HE for some H 2
Kp�rŒz�;E 2 Kr�sŒz� with H being MRP.

Algorithm 6.4. Algorithm for computing H of Syz.A/; A 2 Kp�qŒz�:

� Step 1. Compute a set of syzygy bases of A, using the algorithm in [27, Ch.3].
Denote the corresponding generating matrix by H1 2 Kp�sŒz�: If s D p � q then
H D H1, otherwise proceed to the next step.

� Step 2. If possible, eliminate the columns of H1 which are linearly dependent
(with coefficients in KŒz�), so that the remaining columns are linearly indepen-
dent. Let H2 denote the matrix formed by these remaining columns. If H2 contains
exactly p � q columns then H D H2, otherwise proceed to the next step.

� Step 3. Pick one of the p � .p� q/ submatrices of H2; denoted by H3 then apply
the algorithm for matrix factorization presented in Sect. 6.2, since the reduced
minors of H3 are guaranteed to be zero-coprime. Assume that the factorization
yields H3 D H4E; for some polynomial matrix E: Then, set H D H4 and
terminate.

Example 6.5. Given a matrix A D Œ z21z
2
2 C 1 z21z3 C 1 z1z22z3 �; the goal is to

compute a 3 � 3 unimodular matrix whose first row is identical to A:
First, by using the program SINGULAR [82], a Gröbner basis of the module

generated by columns of A; with respect to the degree reverse lexicographical
ordering z1 
 z2 
 z3; is f1g and a 3 � 1 polynomial matrix B such that AB D 1 is
B D Œ 1 �z21z

2
2 z31 �

T : In Step 2, the generating matrix of Syz.A/ is H1 D Œh1 h2 h3 �;
where, h1 D Œ z21z

2
3 C z3 �z3 �z31z3 � z1 �

T ; h2 D Œ z1z22z3 0 �z21z
2
2 � 1 �T ; and

h3 D Œ z21z3 C 1 �z21z
2
2 � 1 0 �T :
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Since h1;h2;h3 are linearly independent, H2 D H1: It can be verified that none
of the three set of two columns of H1 can be used to form a MRP matrix. By using
the n-D primitive factorization algorithm [83] on submatrix H3 formed by the first

two columns of H2; the following factor H can be extracted, H3
4D �

h1 h2
� D

H4E; where,

H
4D H4 D

2

4
z41z

2
2z3 C z21z3 C 1 z31z

2
2z
2
3

�z21z
2
2 � 1 �z1z22z3

�z31.z
2
1z
2
2 C 1/ �z41z

2
2z3 C 1

3

5 ; E D
�

z3 z1z22z3
�z1 �z21z

2
2 � 1

�

:

The matrix H is indeed MRP and AH D 01�2: By Proposition 6.1, H is a globally
minimum generating matrix of Syz.A/: The unimodular matrix C and its associated
inverse NA are C D .B

ˇ
ˇ H /; and

NA D C�1

D
2

4
z21z

2
2 C 1 z21z3 C 1 z1z22z3

z61z
4
2z3 � z21z

2
2 C z41z

2
2z3 z61z

2
2z
2
3 C z41z

2
2z3 � 1 z51z

4
2z
2
3 � z1z22z3

�z71z
4
2 � 2z51z

2
2 � z31 �z71z

2
2z3 � z51z

2
2 � z51z3 � 2z31 1 � z61z

4
2z3 � z41z

2
2z3

3

5 :

Appendix: Additional References Related to Conjecture 6.1

Note that Conjecture 6.1 was also posed as “A generalization of Serre’s conjecture”
in a joint paper by Z. Lin and N. K. Bose in the following paper:

Z. Lin and N. K. Bose, “A generalization of Serre’s conjecture and some related
issues,” Linear Algebra and Its Applications, Vol. 338, pp. 125–138, Nov. 2001.

Solutions to Conjecture 6.1, using different methods, have been presented in the
following papers:

[A1] J. F. Pommaret, “Solving Bose conjecture on linear multidimensional sys-
tems,” in Proceedings of the European Control Conference, pp. 1853–1855,
September 2001.

[A2] V. Srinivas, “A generalized Serre problem,” J. Algebra, vol. 278, pp. 621–627,
Aug. 2004.

[A3] M. Wang and D. Feng, “On Lin-Bose problem,” Linear Algebra and Its
Applications, Vol. 390, pp. 279–285, Oct. 2004.

[A4] A. Fabiánska and A. Quadrat, “Applications of the Quillen-Suslin Theorem to
Multidimensional Systems Theory,” INRIA Rep. 6126, 2007.

[A5] J. Liu, D. Li, L. Zheng, “The Lin-Bose Problem,” IEEE Transactions on
Circuits and Systems II: Express Briefs, Vol. 61, pp. 41–43, 2014.
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