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Preface

High-throughput real-time imaging and vision systems for capture and identification
of fast phenomena are among the most essential tools for scientific, industrial,
military, and most importantly biomedical applications. The key challenge in these
instruments is the fundamental trade-off between speed and sensitivity of the
measurement system due to the limited signal energy collected in each measurement
window. Based on two enabling technologies, namely, photonic time stretch and
optical amplification, several novel high-throughput optical measurement tools are
recently developed for applications such as volumetric scanning, vibrometry, and
flow cytometry. Here, we introduce time stretch imaging, a high-content computer
vision system developed for big data acquisition and analysis of images. Time
stretch imaging is able to capture quantitative optical phase and intensity images
simultaneously, enabling accurate surface inspection, volumetric scans, defect
detection, cell analysis, and cancer diagnostics.

We further describe a complete artificial intelligence pipeline for time stretch
microscopy that performs optical phase measurement, image processing, feature
extraction, and classification. Multiple biophysical features such as morphological
parameters, optical loss characteristics, and protein concentration are measured on
individual biological cells. These biophysical measurements form a hyperdimen-
sional feature space in which supervised learning is performed for cell classification.
The technology is in clinical testing for blood screening and circulating tumor
cell detection, as well as studying lipid-accumulating algal strains for biofuel
production. By integrating machine learning with high-throughput quantitative
imaging, this system achieves record-high accuracy in label-free cellular phenotypic
screening and opens up a new path to data-driven diagnosis.

Furthermore, we explained a real-time image compression technique performed
in the optical domain to solve the big data challenge created by ultrafast mea-
surement systems. Many ultrafast and high-throughput data acquisition equipment,
including time stretch imaging, produce a torrent of data in a short time, e.g.,
several gigabytes per second. Such a data volume and velocity place a burden on
data acquisition, storage, and processing and call for technologies that compress
images in optical domain and in real-time. As a solution, we have experimentally
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demonstrated warped time stretch, which offers variable spectral-domain sampling
rate, as well as the ability to engineer the time-bandwidth product of the signal’s
envelope to match that of the data acquisition systems. We also show how to
design the kernel of the transform and, specifically, the nonlinear group delay
profile governed by the signal sparsity. Such a kernel leads to smart detection
with nonuniform spectral resolution, having direct utility in improvement of data
acquisition rate, real-time data compression, and enhancement of ultrafast data
capture accuracy.

Los Angeles, CA, USA Ata Mahjoubfar
Claire Lifan Chen

Bahram Jalali
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the phase component of this analytic form is extracted. (d)
An unwrapping algorithm is used to fix unrealistic phase
jumps, and the result shows an approximately linear phase
increase. (e) If the phase component of the interferometer
fringe frequency is removed, the phase induced by cells in
optical pulse can be seen. (f) Many of these line images
generated from subsequent frames are used to form a
spatial map of optical path difference in two dimensions,
which is used for cell characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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Fig. 5.3 Calibration with NIST traceable beads. Polystyrene
beads with a NIST traceable diameter of 5 �m are used
to calibrate the image processing algorithm for size
measurements. (a) A custom designed image processing
algorithm in CellProfiler software is used to find the beads
in spatial map of optical path difference and measure the
diameter. (b) Histogram of bead diameters demonstrates
the measured size distribution has an expected mean of
5 �m and a standard deviation within the range of optical
resolution limit. (c) Since all the beads are made out of the
same material, the coefficient of variation for refractive
indices (0:014=1:57 D 0:89%) is much smaller than that of
diameters (0:405=5:06 D 8:00%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Fig. 5.4 Cell classification based on size and protein concentration
measurement by Coherent-STEAM; images of (a) SW480
and (b) OTII cells taken by Coherent STEAM setup show
that they are spherical. (c) Scattering plot of cell protein
concentration versus diameter is shown for OTII (blue)
and SW480 (green) cells. (d) Comparison of the ROC
curves of size measurement only (purple line) to that of
simultaneous size and protein concentration measurement
(orange line) shows significant improvement in sensitivity . . . . . . 40

Fig. 6.1 Time stretch quantitative phase imaging (TS-QPI) and
analytics system. A mode-locked laser followed by a
nonlinear fiber, an erbium doped fiber amplifier (EDFA),
and a wavelength-division multiplexing (WDM) filter
generate and shape a train of broadband optical pulses.
Box 1: The phase shift and intensity loss at each location
within the field of view are embedded into the spectral
interference patterns using a Michelson interferometer.
Box 2: Time stretch dispersive Fourier transform.
Box 3: Big data analytics pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Fig. 6.2 Comparison of the interferograms measured by optical
spectrum analyzer and time stretch dispersive Fourier
Transform; (a) Optical spectrum of the signal after
quantitative phase imaging (box 1 in Fig. 6.1) and before it
enters the amplified time stretch system (box 2 in Fig. 6.1).
The interference pattern in spectral domain is measured by
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an optical spectrum analyzer. (b) With time stretch, the
interference pattern in spectral domain is linearly mapped
into time. The baseband intensity envelope is slightly
modified by the wavelength-dependent gain profile of the
Raman amplifier. The inserts in panels a and b show the
zoomed-in spectrum and waveform in the dashed black
boxes, respectively. Clearly, the single-shot interferogram
measured by Raman-amplified time stretch dispersive
Fourier Transform has a higher signal-to-noise ratio
compared to that captured by optical spectrum analyzer . . . . . . . . . . 48

Fig. 6.3 PDMS microfluidic channel mounted on a highly
reflective surface with near-infrared dielectric coating; The
microfluidic device consists of a hydrodynamic focusing
region and an imaging region targeted by the interrogation
rainbow flashes in TS-QPI system. (a) Sample solution
with suspended cells is fed into the channel through the
sample inlet, and deionized water as the sheath fluid is
injected through the sheath inlet. At the hydrodynamic
focusing region, the sheath pressure focused the sample
at the center of the channel by narrowing its flow width
from 200 µm to about 40 µm with a sheath to sample
volume ratio of 3:1. (b) The pattern of the mask used to
imprint microfluidic channel design on silicon wafer with
photoresist. The circles are inlet and outlet reservoirs . . . . . . . . . . . . . 51

Fig. 6.4 Left: screenshots of the video of OT-II hybridoma
T-lymphocytes flowing in a microfluidic channel; The cells
are aligned at the center of the channel by hydrodynamic
focusing. Optical path difference measured at four of the
interrogation points on the rainbow flash is shown as a
function of time in the right panels. Right: screenshots of
the video of SW-480 colon cancer epithelial cells flowing
in a microfluidic channel; The cells are aligned at the
center of the channel by hydrodynamic focusing. Optical
path difference measured at four of the interrogation points
on the rainbow flash is shown as a function of time in the
right panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Fig. 6.5 Quantitative optical phase and loss images of OT-II (blue)
and SW-480 (green box) cells; The optical loss images of
the cells are affected by the attenuation of multiplexed
wavelength components passing through the cells. The
attenuation itself is governed by the absorption of the light
in cells as well as the scattering from the surface of the
cells and from the internal cell organelles. The optical loss
image is derived from the low frequency component of the
pulse interferograms. The optical phase image is extracted
from the analytic form of the high frequency component
of the pulse interferograms using Hilbert Transformation,
followed by a phase unwrapping algorithm. Also,
supplementary Videos 1 and 2 show measurements of
cell-induced optical path length difference by TS-QPI
at four different points along the rainbow for OT-II and
SW-480, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Fig. 6.6 (a) Pairwise correlation matrix visualized as a heat map.
The map depicts the correlation between all major 16
features extracted from the quantitative images. Diagonal
elements of the matrix represent correlation of each
parameter with itself, i.e., the autocorrelation. The subsets
in box 1, box 2, and box 3 show high correlation because
they are mainly related to morphological, optical phase,
and optical loss feature categories, respectively. (b)
Ranking of biophysical features based on their AUCs in
single-feature classification. Blue bars show performance
of the morphological parameters, which includes
diameter along the interrogation rainbow, diameter
along the flow direction, tight cell area, loose cell area,
perimeter, circularity, major axis length, orientation, and
median radius. As expected, morphology contains most
information, but other biophysical features can contribute
to improved performance of label-free cell classification.
Orange bars show optical phase shift features, i.e., optical
path length differences and refractive index difference.



List of Figures xxi

Green bars show optical loss features representing
scattering and absorption by the cell. The best performed
features in these three categories are marked in red . . . . . . . . . . . . . . . 62

Fig. 7.1 Spectral components of Coherent-STEAM signal. For a
Coherent-STEAM setup with long enough arms’ length
mismatch the spectrum of the output signal shows two
separate spectral bands. The low frequency components
correspond to the intensity of the sample, while the high
frequency components contain the phase information in
addition to the intensity information of the cells . . . . . . . . . . . . . . . . . . 68

Fig. 7.2 Analog preprocessing of Coherent-STEAM signal. The
analog signal processing system for reducing the data
rate of Coherent-STEAM is essentially a quadrature
down-conversion unit. I and Q outputs and their
corresponding spectra show that the down-conversion
is effective in reducing the bandwidth and the required
sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Fig. 7.3 Digital signal processing system for acquisition of analog
preprocessing unit outputs. This system is built with simple
blocks such as argument calculator, unwrapper, and first in,
first outs (FIFOs), which can be performed in real-time . . . . . . . . . . 69

Fig. 7.4 Sample images acquired by the analog preprocessing
system. Both phase and intensity images for two different
sets of OT-II hybridoma T cells in flow are shown . . . . . . . . . . . . . . . . 70

Fig. 8.1 Machine learning pipeline. Information of quantitative
optical phase and loss images are fused to extract
multivariate biophysical features of each cell, which are
fed into a fully connected neural network. The neural
network maps input features by a chain of weighted sum
and nonlinear activation functions into learned feature
space, convenient for classification. This deep neural
network is globally trained via area under the curve (AUC)
of the receiver operating characteristics (ROC). Each ROC
curve corresponds to a set of weights for connections to
an output node, generated by scanning the weight of the
bias node. The training process maximizes AUC, pushing
the ROC curve toward the upper left corner, which means
improved sensitivity and specificity in classification . . . . . . . . . . . . . . 74
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Fig. 8.2 Classification of white blood cells (OT-II) and cancer
cells (SW-480) by TS-QPI label-free features; (a) Training
process of the neural network leads to improvement
of classification accuracy over generations of genetic
algorithm. In addition to multivariate analysis using all 16
biophysical features extracted from the TS-QPI quantitative
images (blue curves), we also show training process
by three single features. Red, green, and orange curves
represent the best biophysical feature in each category,
morphology, optical phase, and optical loss, respectively.
The values represent average balanced accuracy among
training datasets at the end of optimization. Clearly, the
final achievable accuracy by multivariate classification
is considerably higher than that of single features. (b)
For each case, we show 5 ROC curves for different test
datasets. The gray diagonal line shows results of random
guess classification. Multivariate analysis based on TS-QPI
images (blue curves) shows significant improvement
in classification sensitivity and specificity. The fact
that the classifiers remain almost unchanged during the
five iterations of cross validation shows consistency
and robustness of the classifiers. (c) To visualize the
multivariate classification results, data points are depicted
in the space of the first two PCA components . . . . . . . . . . . . . . . . . . . . . 77

Fig. 8.3 Three-dimensional scatter plot based on size, protein
concentration, and attenuation of OT-II and SW-480
cells measured by TS-QPI. The green and blue dots are
two-dimensional (2-D) projections of cell data points on
the planes containing only two of the biophysical features.
The cell protein concentration corresponds to the mean
refractive index difference of the cell (Refractive index
feature in Table 6.2). The attenuation is a feature describing
the optical intensity loss caused by cell absorption
(Absorption-1 feature in Table 6.2). Comparison of 2-D
scatter plots reveals that additional biophysical features (in
this case mainly protein concentration) serve to classify the
cell types more accurately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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Fig. 8.4 Classification of algal cells (Chlamydomonas
reinhardtii) based on their lipid content by TS-QPI. (a)
Three-dimensional scatter plot based on size, protein
concentration, and attenuation of the cells measured by
TS-QPI, with 2D projections for every combination of two
features. Inset: Conventional label-free flow cytometry
using forward scattering and side scattering is not enough
to distinguish the difference between high-lipid content
and low-lipid content algal cells. TS-QPI is much more
effective in separating the two algae populations. (b) ROC
curves for binary classification of normal and lipid-rich
algae species using ten-fold cross validation; blue curves
show the classifier performance using all 16 biophysical
features extracted from the TS-QPI quantitative images.
Red, green, and orange curves show the classifier decision
performance using only the best biophysical feature in each
category: morphology (Diameter-RB in Table 6.2), optical
phase (OPD-1 in Table 6.2), and optical loss (Absorption-2
in Table 6.2). The label-free selection of algal strains
improves as more biophysical features are employed . . . . . . . . . . . . . 79

Fig. 8.5 (a) The learning curves of the training and test datasets
in the tumor cell detection. Larger number of training
data points decreases the cross entropy of the test dataset,
which means the classifier is performing more accurately.
However, the trend is opposite for the training dataset
because with a larger number of training data points fitting
error accumulates. The discrepancy of the training and test
errors, i.e., generalization error, decreases up to N Š 850,
which is the necessary training data size for achieving
final performance in our TS-QPI demonstration with deep
learning neural network. (b) Comparison of multiple
machine learning classification techniques based on the
biophysical features extracted from the label-free cell
images captured by TS-QPI. Our AUC-based deep learning
model (DNN C AUC) has both the highest accuracy and
consistency against support vector machine (SVM) with
Gaussian kernel, logistic regression (LR), naive Bayes, and
conventional deep neural network trained by cross entropy
and backpropagation (DNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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Fig. 8.6 Principal component analysis (PCA) on the multivariate
data set produced by time stretch quantitative phase
imaging. (a) Upper bar chart shows accuracy of
classification by each individual principal component, and
lower bar chart shows the percentage of the total variance
explained by each principal component, accounting for the
variability expressed in the data. As expected, principal
components with larger variability do not necessarily give
high accuracy in classification. (b) Cumulative accuracy.
The value at each data point corresponds to the number of
PCA components retained in order to achieve that total
explained variance. In order to reduce the number of
input features and decrease computation time, a subset
of the PCA components can be used for classification.
The classification accuracy improves as the total variance
retained in the subset of PCA components goes up. . . . . . . . . . . . . . . . 82

Fig. 8.7 (a) The implementation of the k-fold cross-validation here
splits data points into training, validation, and test subsets.
In each iteration, one fold is used for fine tuning the
learning model (validation dataset) and another fold is used
for evaluation of the final results (test dataset), while rest of
the data points are used for training (training dataset). The
final reported results are aggregate of the outcomes from
the test datasets. (b) A suitable regularization parameter, �,
balances the trade-off between overfitting (variance) and
underfitting (bias) and minimizes the cross entropy of the
validation dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Fig. 9.1 Illustration of warped stretch transform in imaging. (a) The
field of view consists of a cell against the background such
as a flow channel or a microscope slide. Illumination by
an optical pulse that is diffracted into a one-dimensional
rainbow maps one dimension of the space into the optical
spectrum. The other dimension is scanned by the cell
flow through the rainbow. In the conventional time stretch
imaging (STEAM), the spectrum is linearly mapped into
time using a dispersive optical fiber with a linear group
delay. The temporal waveform is then sampled by a
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digitizer with fixed sampling rate resulting in uniform
spatial sampling. But uniform spatial sampling generates
superfluous data by oversampling the sparse peripheral
sections of the field of view. (b) Similar functionality can
be achieved in STEAM by using a nonlinear group delay
profile in the spectrum-to-time mapping process resulting
in a nonuniform sampling of the line image, assigning
more pixels to the information-rich central part of the field
of view and less to the low-entropy peripherals.. . . . . . . . . . . . . . . . . . . 90

Fig. 9.2 Warped stretch transform in imaging inspired by biology
and art. (a) The human vision is a form of warped imaging
system where high sampling resolution is needed in the
central vision while coarse resolution can be tolerated in
the peripheral vision. (b) The reconstruction is similar to
anamorphic art where the drawn shape is a stretched and
warped version of the true object yet the viewer sees the
true object upon reflection from a curved mirror. In our
system, this unwarping operation is a nonlinear mapping
using the inverse space-to-frequency-to-time mapping
transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Fig. 9.3 Linear and warped (anamorphic) stretch transforms.
The linear group delay profile results in uniform
frequency-to-time mapping (orange plots), whereas
the warped group delay profile results in nonuniform
mapping (blue plots). (a) A nonlinear group delay with
the same dispersion (slope) at the center of the spectrum
as linear case, but shorter total group delay, leads to high
sampling resolution in the center of the spectrum and lower
resolution at the wings. This keeps the image quality at
the central part of the field of view intact, while reducing
the quality at the sparse peripheral regions where uniform
stretch would have produced redundant samples. (b)
A nonlinear group delay profile with higher dispersion
(slope) at the center of the spectrum than the linear case,
but same total group delay over the bandwidth, leads to a
higher spectral resolution in the center of the spectrum and
lower resolution at the wings (compare the spectrums). The
gray curves show the analog waveforms before sampling
for the purpose of comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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Fig. 9.4 Simulations illustrate the effect of warped stretch transform
on a two-dimensional image. The analog reshaping of the
image performed in the optical domain by the warped
stretch transform is emulated here in the digital domain.
(a) The transformation consists of nonuniform stretch
in the horizontal direction with the warp stretch profile
shown in Fig. 9.3. (b) A sample image with 28,001,672
pixels and 4.46 MB file size is used as the input. (c)
The image is stretched nonuniformly and down-sampled
with a compression ratio of 14. (d) A uniform stretch
with down-sampling can achieve the same file size
but the image quality is dramatically lower. (e) While
down-sampling is not an issue for the sparse peripherals, it
is problematic for the information-rich central part. (f) The
reconstruction of the nonuniformly stretched image. (g)
The information-rich region at the center is well preserved
while maintaining the same sampling rates . . . . . . . . . . . . . . . . . . . . . . . 94

Fig. 9.5 Experimental setup used in proof-of-concept demonstration
of optical data compression via warped time stretch
imaging. A train of broadband optical pulses was generated
at 1550 nm central wavelength with a repetition rate of
36.129 MHz and a pulse width slightly less than 100 fs.
The laser pulses were temporally stretched to about 1 ns
by a dispersion compensating fiber and amplified by an
erbium-doped fiber amplifier (EDFA). The bandwidth
over 1541–1561 nm was selected by a wavelength division
multiplexing (WDM) filter. The pulses passed through
an optical circulator and were coupled to free-space part
of STEAM setup with a fiber collimator. There, a pair of
diffraction gratings generates a one-dimensional rainbow
with each wavelength component imaging a different
location at the target. The spectrally encoded rainbows are
reflected and coupled back into the fiber, carrying the image
information. The nonuniform space-to-frequency-to-time
mapping is achieved with a warped chirped fiber Bragg
grating (CFBG). After optical image amplification by
another EDFA, different wavelength components are
detected serially by a single-pixel photodetector and
acquired by an analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . 96
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Fig. 9.6 Proof-of-concept experimental setup. (a) The test sample
reflected one-dimensional rainbow illumination pulses,
which are used to perform time stretch imaging at a scan
rate of 36 MHz. The field of view determined by the length
of the rainbow was 5 cm and covers the width of the
target. The vertical direction was scanned by mechanical
translation at 0.5 mm per step. (b) The warped stretch
transform leading to nonlinear spectrum-to-time mapping
is performed by a custom chirped fiber Bragg grating with
sublinear group delay (GD) profile. This profile gives
higher group delay dispersion at the center frequency and
reduced dispersion at the wings of the bandwidth . . . . . . . . . . . . . . . . 97

Fig. 9.7 Proof-of-concept experimental results. (a) If we use a
linear group delay profile with the same dispersion as
that of the warped stretch at the center frequency and a
single pulse per image line, the image data size would be
24.3 kB (55,345 measured pixels). (b) The single-pulse
reconstructed image based on the waveform nonlinearly
stretched by the chirped fiber Bragg grating has an obvious
warping effect at the center of the field of view (letter “S”)
(18,945 measured pixels). (c) The single-pulse unwarped
reconstructed image data size is 8.3 kB achieving about
three times optical image compression (18,945 measured
pixels). (d, e and f) When many pulses (722 pulses here)
are averaged to form each horizontal line image, the
images’ quality improve only slightly over Fig. 9.7a–c,
proving high signal-to-noise ratio of our camera even
in single-pulse capture mode. The number of measured
pixels used in the formation of Fig. 9.7d is 72,255,345, and
for Fig. 9.7e, f is 72,218,945. The temporal durations of
the waveforms corresponding to each horizontal line in
Fig. 9.7a–f are 27.7 ns, 9.5 ns, 9.5 ns, 20.0 �s, 6.8 �s, and
6.8 �s, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Fig. 10.1 Linear and warped time stretch dispersive Fourier
transforms. In linear time stretch (orange plots), a linear
group delay profile with significant group delay over the
signal bandwidth is used as the kernel to delay various
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spectral components differently, but with a constant group
delay dispersion. If the input signal is a pulse train, pulse
spectra are linearly mapped to the silent times in between
the pulses. In contrast, a nonlinear group delay profile
(blue plots) with varying group delay dispersion over
the bandwidth (different slopes) can stretch the signal
spectrum nonlinearly, in which parts of the spectrum are
stretched more than the others. This can be used, even
with a constant rate sampler, to increase the spectral
resolution at regions of the bandwidth where higher
resolution is required and to reduce the resolution where
the spectral features are sparse (see blue bars). In this way,
the spectrum is warp stretched into a waveform with the
same temporal duration as the linear profile, but smaller
bandwidth. In other words, for signals with spectral
sparsity, the envelope time bandwidth product can be reduced . . . 103

Fig. 10.2 Group delay design based on spectrotemporal sparsity at
the spectrum peripheries. (a) Envelope of the electric field
of an input optical signal. (b) The spectrum magnitude
of the input envelope. (c) Spectrogram of the spectrum
magnitude formed by short-term Fourier transform. (d) If
a temporally dispersive element with a linear group delay
profile over the optical bandwidth is used to stretch the
input optical field, (e) the spectrum maps uniformly to
temporal envelope of the electric field. (f) Spectrogram of
the envelope waveform amplitude resembles that of the
spectrum magnitude. (g) If a nonlinear group delay profile
with lower dispersion at the sides of the bandwidth is used
to stretch the optical pulse, (h) the spectrum is nonlinearly
mapped to the electric field envelope in time. (i) The
spectrogram of the electric field envelope amplitude after
the nonuniform dispersion shows that a shorter temporal
window is required to capture the waveform with the same
acquisition bandwidth. The green and blue dot-dash boxes
in Fig. 10.4f, i show the acquisition time and bandwidth,
and those in Fig. 10.4c show the effective bandwidth for
linear case and nonlinear kernel design, respectively . . . . . . . . . . . . . 105
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Fig. 10.3 Spectral sampling resolution of time stretch dispersive
Fourier transform tuned for the spectrum center. (a)
Spectral resolution limits for the linear group delay profile
and the acquisition system of Fig. 10.2d–f. The overall
spectral sampling resolution of the linear time stretch is
independent of the envelope optical frequency and limited
by the ambiguity in the frequency-to-time mapping of the
dispersive Fourier transform. (b) The spectral sampling
resolution of the linear group delay profile magnified ten
times (for visual clarity) and overlapped on the profile. (c)
Spectral resolution limits for the nonlinear group delay
profile and the acquisition system of Fig. 10.2g–i, unlike
the linear stretch, depend of the envelope optical frequency.
(d) Magnified spectral sampling resolution of the warped
time stretch overlapped on its group delay profile clearly
shows the ambiguity grows at the spectrum peripheries
DFT dispersive Fourier transform, PD photodetector, ADC
analog-to-digital converter, Total overall spectral sampling
resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Fig. 10.4 Group delay design based on spectrotemporal sparsity
at the spectrum center. (a) Envelope of the electric field
of an input optical signal. (b) The spectrum magnitude
of the input envelope. (c) Spectrogram of the spectrum
magnitude formed by short-term Fourier transform. (d) If
a temporally dispersive element with a linear group delay
profile over the optical bandwidth is used to stretch the
input optical field, (e) the spectrum maps uniformly to
temporal envelope of the electric field. (f) Spectrogram
of the envelope waveform amplitude resembles that of
the spectrum magnitude (shown in Fig. 10.4c). (g) If a
nonlinear group delay profile with lower dispersion at the
center of the bandwidth is used to stretch the optical pulse,
(h) the spectrum is nonuniformly mapped to the electric
field envelope in time. (i) The spectrogram of the electric
field envelope amplitude after the nonuniform dispersion.
The green and blue dot-dash boxes in Fig. 10.4f, i show the
acquisition time and bandwidth, and those in Fig. 10.4c
show the effective bandwidth for linear case and nonlinear
kernel design, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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Fig. 10.5 Spectral sampling resolution of time stretch dispersive
Fourier transform tuned for the spectrum peripheries. (a)
Spectral resolution limits for the linear group delay profile
and the acquisition system of Fig. 10.4d–f. The overall
spectral sampling resolution of the linear time stretch
is independent of the envelope optical frequency and
limited by the Nyquist bandwidth of the analog-to-digital
converter. (b) The spectral sampling resolution of the linear
group delay profile magnified ten times (for visual clarity)
and overlapped on the profile. (c) Spectral resolution limits
for the nonlinear group delay profile and the acquisition
system of Fig. 10.4g–i. (d) Magnified spectral sampling
resolution of the warped time stretch overlapped on its
group delay profile clearly shows the ambiguity grows at
the spectrum center
DFT dispersive Fourier transform, PD photodetector, ADC
analog-to-digital converter, Total overall spectral sampling
resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Fig. 10.6 Design of an ideal group delay profile based on
spectrotemporal sparsity and input signal chirp. (a)
Envelope of the electric field of an input optical signal.
(b) The spectrum magnitude of the input envelope. (c)
Spectrogram of the spectrum magnitude formed by
short-term Fourier transform. (d) To perform uniform
frequency-to-time mapping, a linear group delay design
minus the input signal chirp should be used to stretch the
input optical field. (e) The spectrum maps uniformly to
temporal envelope of the electric field by the total group
delay profile. (f) Spectrogram of the envelope waveform
amplitude resembles that of the spectrum magnitude
(shown in Fig. 10.6c). (g) If a nonlinear group delay
profile is designed based on the blue dot-dash contour in
Fig. 10.6c and the input signal chirp, (h) the spectrum is
nonlinearly mapped to the electric field envelope in time.
(i) The spectrogram of the electric field envelope amplitude
after the nonuniform dispersion. The green and blue
dot-dash boxes in Fig. 10.6f, i show the acquisition time
and bandwidth, and those in Fig. 10.6c show the effective
bandwidth for linear case and nonlinear kernel design,
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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Fig. 10.7 Spectral sampling resolution of time stretch dispersive
Fourier transform designed for ideal exploitation of the
spectrotemporal sparsity. (a) Spectral resolution limits
for the chirp compensated linear group delay profile and
the acquisition system of Fig. 10.6d–f. (b) The spectral
sampling resolution of the linear group delay profile
minus chirp magnified ten times (for visual clarity) and
overlapped on the profile. One tenth of the overlay width
at each group delay corresponds to the set of the optical
frequencies that are captured at the same delay and are
indistinguishable in the temporal waveform. (c) Spectral
resolution limits for the nonlinear group delay profile and
the acquisition system of Fig. 10.6g–i, unlike the linear
stretch, depend of the envelope optical frequency. (d)
Magnified spectral sampling resolution of the warped time
stretch overlapped on its group delay profile
DFT dispersive Fourier transform, PD photodetector, ADC
analog-to-digital converter, Total overall spectral sampling
resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Fig. 10.8 Design of an ideal group delay profile for a signal with
asymmetric spectrum about the carrier frequency. (a)
Envelope of the electric field of an input optical signal.
(b) The spectrum magnitude of the input envelope is
asymmetric. (c) Spectrogram of the spectrum magnitude
formed by short-term Fourier transform. (d) To perform
uniform frequency-to-time mapping, a linear group delay
design minus the input signal chirp should be used to
stretch the input optical field. (e) The spectrum maps
uniformly to temporal envelope of the electric field by the
chirp-corrected linear group delay profile. (f) Spectrogram
of the envelope waveform amplitude resembles that of
the spectrum magnitude (shown in Fig. 10.8c). (g) If a
nonlinear group delay profile is designed based on the blue
dot-dash contour in Fig. 10.8c and the input signal chirp,
(h) the spectrum is nonuniformly mapped to the electric
field envelope in time. (i) The spectrogram of the electric
field envelope amplitude after the nonuniform dispersion.
The green and blue dot-dash boxes in Fig. 10.8f, i show the
acquisition time and bandwidth, and those in Fig. 10.8c
show the effective bandwidth for linear case and nonlinear
kernel design, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



xxxii List of Figures

Fig. 10.9 Spectral sampling resolution of time stretch dispersive
Fourier transform designed according to the
spectrotemporal sparsity for a signal with asymmetric
spectral features. (a) Spectral resolution limits for the
chirp compensated linear group delay profile and the
acquisition system of Fig. 10.8d–f. (b) The spectral
sampling resolution of the linear group delay profile
minus chirp magnified ten times (for visual clarity) and
overlapped on the profile. (c) Spectral resolution limits
corresponding to the nonlinear group delay profile and the
acquisition system of Fig. 10.8g–i. The overall spectral
sampling resolution is limited by the Nyquist bandwidth
of the analog-to-digital converter. (d) Magnified spectral
sampling resolution of the warped time stretch overlapped
on its group delay profile clearly shows the ambiguity
grows at the regions of the spectrum that do not contain
sharp spectral features
DFT dispersive Fourier transform, PD photodetector, ADC
analog-to-digital converter, Total overall spectral sampling
resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Fig. 10.10 Spectrotemporal resolution of time stretch dispersive
Fourier transform vs short-time Fourier transform and
wavelet transform. (a) In linear time stretch, the spectral
resolution is uniform, and the temporal resolution is same
as the input pulse width. (b) In warped time stretch, the
spectral resolution is nonuniform as discussed earlier,
and the temporal resolution is again same as the input
pulse width. (c) For analysis of continuous-time signals,
virtual time gating can be used for both linear and warped
stretch transforms. (d) In addition, for virtually time
gated warped time stretch transform, the gates can have
different distributions of nonuniform spectral resolutions.
(e) Short-time Fourier transform can also be used to
digitally generate the spectrotemporal distribution of an
already acquired signal, but its bandwidth is limited to that
of the electronic acquisition system. (f) The bandwidth of
digitally implemented wavelet transform is also restricted
to the electronic acquisition bandwidth, but its temporal
resolution can be nonuniform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



List of Tables

Table 6.1 Resolution limiting factors in TS-QPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 6.2 List of extracted features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 8.1 Performance comparison of different classification algorithms .. . . 84

xxxiii



Part I
Time Stretch Imaging



Chapter 1
Introduction

High-throughput measurement instruments are indispensable tools to acquire large
volume of data for detection and classification of rare events. Enabled by the
photonic time stretch, a new class of instruments with record throughputs have led
to the discovery of optical rogue waves, detection of rare cancer cells with record
accuracy, and the highest analog-to-digital conversion performance ever achieved.

Here, we work toward introducing time stretch quantitative phase imaging
(TS-QPI) [3], a high-throughput label-free imaging flow cytometer developed
for analyzing large population of cells. Label-free cell analysis is essential to
personalized genomics, cancer diagnostics, and drug development as it avoids
adverse effects of staining reagents on cellular viability and cell signaling. However,
currently available label-free cell assays mostly rely only on a single feature and lack
sufficient differentiation. Also, the sample size analyzed by these assays is limited
due to their low throughput. However, TS-QPI is able to capture quantitative optical
phase and intensity images simultaneously, enabling high-content cell analysis and
phenotypic screening.

We further developed a complete machine learning pipeline that performs
optical phase measurement, image processing, feature extraction, and classifi-
cation. Multiple biophysical features such as morphological parameters, optical
loss characteristics, and protein concentration are measured on individual cells.
These biophysical measurements form a hyperdimensional feature space in which
supervised learning is performed for cell classification. The technology is in clinical
testing for blood screening, as well as lipid accumulating algal strains for biofuel
production. By integrating machine learning with high-throughput quantitative
imaging, this system achieves record high accuracy in label-free cellular phenotypic
screening and opens up a new path to data-driven diagnosis.

Furthermore, the instrument’s ultrahigh throughput creates a big data challenge.
TS-QPI, as well as many other ultrafast measurement system, produces a large
volume of data in a short time in the order of tens of Terabytes per hour. Such
a data firehose places a burden on data acquisition, storage, and processing and
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4 1 Introduction

calls for technologies that compress images in optical domain and in real-time. As
a solution, we have demonstrated, for the first time, real-time image compression
performed in the optical domain. Called as warped time stretch [4–6], this technique
offers variable rate spectral domain sampling, as well as the ability to engineer the
time-bandwidth product of the signal’s envelope to match that of the data acquisition
systems. We also show how to design the kernel of the transform and specifically,
the nonlinear group delay profile governed by the signal sparsity. Such a kernel
leads to smart detection with nonuniform spectral resolution, having direct utility in
improvement of data acquisition rate, real-time data compression, and enhancement
of ultrafast data capture accuracy.

In Chap. 2, an introductory background on photonic time stretch imaging,
dispersive Fourier transform, and label-free cell classification is given.

Chapter 3 shows how time stretch imaging can be employed in nanometer-scale
optical path length measurements. As a demonstration of the applications, acoustic
vibrations on the surface of a Silicon wafer are captured. Chapter 4 extends this
capability to laser scanners and enables them to achieve ultrafast volumetric three-
dimensional inspection.

In Chap. 5, we demonstrate a high-throughput label-free cellular imaging system
using time stretch quantitative phase imaging (TS-QPI). Label-free cell analysis
is essential to personalized genomics, cancer diagnostics, and drug development
as it avoids adverse effects of staining reagents on cellular viability and cell
signaling. However, currently available label-free cell assays mostly rely only on a
single feature and lack sufficient differentiation. Also, the sample size analyzed by
these assays is limited due to their low throughput. Here, with TS-QPI, quantitative
optical phase and loss images of suspended cells are captured simultaneously at
flow speeds as high as a few meters per second. This system enables analyzing large
population of cells with spatial information, filling the technological gap between
flow cytometry and microscopy.

In Chap. 6, a data processing and image analysis pipeline has been developed
for time stretch quantitative phase imaging. It performs signal processing, optical
phase demodulation, image recognition, and feature extraction on large amount of
cell images. Multiple biophysical attributes such as morphological features, optical
loss characteristics, and protein concentration are measured on individual cells. The
pipeline combining with TS-QPI is in clinical testing for blood screening and has
also been applied to classification of high lipid-content algal cell strains for biofuel
development.

Chapter 7 outlines and analyzes a data acquisition system for time stretch
imaging that enables big data recording at rates of few gigabytes of images per
second.

We further expanded the data analytics into a complete machine learning pipeline
in Chap. 8. In addition to optical phase measurement, image processing, and
feature extraction, the multivariate biophysical features form a hyperdimensional
feature space in which supervised learning is performed for cell classification.
By integrating artificial intelligence with high-throughput quantitative imaging, we
achieve record high accuracy in label-free cellular phenotypic screening and open a
new path to data-driven diagnosis.
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Furthermore, as a solution to the challenges in storage and analysis created
in the big data volume acquired by the ultrahigh throughput instruments, we
demonstrated a real-time optical image compression technique. In Chap. 9, the
introduced method exploits the sparsity of the image generated with time stretch
microscopy, and then reduces the number of samples and the amount of data in
the experiments by several times. This data compression performed in the optical
domain, also known as warped time stretch or warped stretch transform, functions
as a nonuniform sampling technique before analog to digital conversion in time
stretch camera, addressing the big data predicament in such systems.

In Chap. 10, we further explore optical data compression technique and show
how to design the kernel of the warped stretch transform and specifically, the
nonlinear group delay profile governed by the signal sparsity. With the designed
kernels, the warped stretch transform offers variable rate spectral domain sampling,
as well as the ability to engineer the time-bandwidth product of the signal’s envelope
to match that of the data acquisition systems. Such a kernel leads to smart detection
with nonuniform spectral resolution, having direct utility in improvement of data
acquisition rate, real-time data compression, and enhancement of ultrafast data
capture accuracy.



Chapter 2
Time Stretch

Time stretch is the leading technology in ultrafast big-data acquisition. Here we
introduce time stretch technique and highlight its applications in the context of
imaging.

2.1 Time Stretch Imaging

High-throughput optical sensing are indispensable tools to acquire large data
sets for detection and classification of rare events. As noninvasive instrument,
high-speed optical sensing are widely used in scientific, industrial, military, and
biomedical applications. However, as the acquisition speed increases, the signal
energy collected in single measurement drops. This leads to a reduction in the
signal-to-noise ratio of the measurement, which ultimately limits the resolution and
sensitivity of the sensing or imaging application. For optical instrument like camera,
one way to collect more photons in each measurement is to increase the intensity of
the illumination or the interrogation light, but this is often undesirable in biological
applications because the biological samples can easily get damaged by the intense
light, especially when an objective lens is focusing the light on the specimen.

Enabled by the photonic time stretch and optical amplification, a new class of
instruments with record throughputs have led to the discovery of optical rogue
waves, detection of rare cancer cells with record accuracy, and the highest analog-
to-digital conversion performance ever achieved. One example of these instruments
is the time stretch microscopy, an imaging and sensing modality that features
continuous operation at about 100 million frames per second and shutter speed of
less than a nanosecond.

Telecommunication systems routinely generate, capture, and analyze data at rates
exceeding billions of bits per second. Interestingly, the scale of the problem is
similar to that of blood analysis. With approximately 1 billion cells per milliliter
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of blood, detection of a few abnormal cells in a blood sample translates into a
“cell error rate” of 10�12, a value that is curiously similar to the bit error rate
in telecommunication systems. This suggests that data multiplexing, capture, and
processing techniques developed for data communication can be leveraged for
biological cell classification.

Time stretch dispersive Fourier transform is a method for real-time capture
of ultra wideband signals. It allows acquisition of single shot optical spectra
continuously and at tens to hundreds of million frames per second. It has led to
the discovery of optical Rogue waves [7] and, when combined with electro-optic
conversion, to record analog-to-digital conversion performance [8]. Combination of
the telecommunication technique of wavelength division multiplexing (WDM) and
the time stretch technique [9], the time stretch camera known as STEAM [10–16]
has demonstrated imaging of cells with record shutter speed and continuous
throughput leading to detection of rare breast cancer cells in blood with one-in-
a-million sensitivity [16–20]. A second data communication inspired technique
called fluorescence imaging using radio frequency-tagged excitation (FIRE) is a
new approach to fluorescent imaging that is based on wireless communication
techniques [21]. FIRE has achieved real-time pixel readout rates one order of
magnitude faster than the current gold standard in high-speed fluorescence imaging
[21]. Producing data rates as high as one tera bit per second, these real-time
instruments pose a big data challenge that overwhelms even the most advanced
computers [22]. Driven by the necessity of solving this problem, we have recently
introduced and demonstrated a categorically new data compression technology
[23, 24]. The so-called Anamorphic (warped) Stretch Transform is a physics based
data processing technique that aims to mitigate the big data problem in real-time
instruments, in digital imaging, and beyond [22–26]. This compression method is
an entirely different approach to achieving similar functionalities as compressive
sensing [27, 28] and is more amenable to fast real-time operation.

The operating principle of time stretch imaging is shown in Fig. 2.1. First,
the object image is encoded in the spectrum of ultrafast optical pulses. Then,
pulses are stretched in time by dispersive Fourier transformation, so that different
wavelength components reach a single-pixel photodetector at different times. The
time stretch function allows ultrafast image frames to be digitized in real-time.
Images are optically amplified before detection and digitization to overcome the
thermal noise. The basic principle of time stretch imaging (STEAM) involves
two steps both performed optically. In the first step, the spectrum of a broadband
optical pulse is converted by a spatial disperser into a rainbow that illuminates
the target. Therefore, the spatial information (image) of the object is encoded
into the spectrum of the resultant reflected or transmitted rainbow pulse. A one-
dimensional or two-dimensional rainbow is used to acquire a line-scan. The 2D
image is obtained by scanning the one-dimensional rainbow in the second dimension
or by a two-dimensional rainbow. In the second step, the spectrum of the image-
encoded pulse is mapped into a serial temporal signal that is stretched in time to
slow it down such that it can be digitized in real-time [9]. This optically amplified
time stretched serial stream is detected by a single-pixel photodetector and the
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Fig. 2.1 Operating principle of time stretch imaging. The key innovations in STEAM that enable
high-speed real-time imaging are photonic time stretch for digitizing fast images in real-time and
the optical image amplification for compensating the low number of photons collected during the
ultra-short shutter time

image is reconstructed in the digital domain. Subsequent pulses capture repetitive
frames. The laser pulse repetition rate corresponds to the frame rate and the temporal
width of the pulses corresponds to camera’s shutter speed (exposure time). The key
innovations in STEAM that enable high-speed real-time imaging are photonic time
stretch for digitizing fast images in real-time and the optical image amplification
for compensating the low number of photons collected during the ultra-short shutter
time [29].

2.2 Cell Classification Using Time Stretch Imaging

Using time stretch imaging, we demonstrated high-throughput image-based screen-
ing of budding yeast and rare breast cancer cells in blood with an unprecedented
throughput of 100,000 particles/s and a record false positive rate of one in a
million [30]. Our first rare cancer cell detection method was based on imaging metal
beads conjugated to cells expressing specific surface antigens [30]. However,
when downstream operations such as DNA sequencing and subpopulation regrowth
are desired, the negative impacts of biomarkers on cellular behavior are often
unacceptable.



10 2 Time Stretch

2.3 Label-Free Phenotypic Screening

Phenotypic screening has been the basis for the discovery of new drugs and has
also been widely used in biological research. High-throughput label-free cellular
imaging leads to large scale and high dimensional phenotyping of cells in their nat-
ural conditions without biomarkers, enabling applications in circulating tumor cell
detection when certain biomarkers are absent [31], as well as downstream analysis
for studying the stochasticity in gene expression [32].

Imaging flow cytometry overcomes the throughput bottleneck in microscopic
imaging as well as the low-content issue in conventional flow cytometry, making it
a perfect candidate for label-free phenotypic screening. When combined with image
analysis [33], it enables recognizing and quantifying multiple informative measures
of cells, including morphology, protein localization, cell cycles, DNA content, etc.

2.4 Warped Time Stretch for Data Compression

Using warped group delay dispersion, it has been shown that one can reshape
the spectro-temporal profile of optical signals such that signal intensity’s time-
bandwidth product is compressed [22–26]. The compression is achieved through
time stretch dispersive Fourier transform in which the transformation is intentionally
warped using an engineered group delay dispersion profile. This operation causes a
frequency-dependent reshaping of the input waveform. Reconstruction (decoding)
method depends on whether the information is in the spectral domain amplitude, or
in the complex spectrum. In the time stretch camera, the image is encoded into the
amplitude of the spectrum of a broadband optical pulse, and reconstruction consists
of a simple nonuniform time-to-frequency mapping using the inverse of the warped
group delay function.

To illustrate the concept in the context of time stretch imaging, we can consider
a microscopic field of view consisting of a cell against a background such as a flow
channel or a microscope slide (Fig. 2.2). In the time stretch imaging, the object is
illuminated by an optical pulse that is diffracted into a 1-D rainbow. This maps
the 1-D space into the optical spectrum. The spectrum is then linearly mapped
into time using a dispersive optical fiber with a linear group delay. The mapping
process from space to frequency to time is shown in Fig. 2.2a. The linearly stretched
temporal waveform is then sampled by a digitizer resulting in uniform spatial
sampling. This uniform sampling generates redundant data by oversampling the
sparse peripheral sections of the field of view. Such a situation evokes comparison
to the mammalian eye where central vision requires high resolution while coarse
resolution can be tolerated in the peripheral vision. In the eye, this problem is solved
through nonuniform photoreceptor density in the retina. The Fovea section of the
retina has a much higher density of photoreceptors than the rest of the retina and is
responsible for the high resolution of central vision.
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Fig. 2.2 Illustration of warped-stretch transform in imaging. (a) In conventional time stretch
imaging (STEAM), the spectrum-to-time mapping is uniform, and the pixels are assigned equally
distanced across the field of view. (b) Using a nonlinear group delay profile in the spectrum-to-time
mapping process results in a nonuniform sampling of the line image, assigning more pixels to the
information-rich central part of field-of-view and less to the low-entropy peripherals

We solve this problem by nonuniform mapping of spectrum into time via a
warped group delay. The warped (anamorphic) space to frequency to time mapping
is illustrated in the dotted box in Fig. 2.2b. After uniform sampling in time, this
leads to higher sampling density in the central region of the field of view and lower
density in the sparse peripheral regions. The reconstruction is a simple unwarping
using the inverse of the group delay.
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Chapter 3
Nanometer-Resolved Imaging Vibrometer

Conventional laser vibrometers are incapable of performing multi-dimensional
vibrometry at high speeds because they build on single-point measurements and
rely on beam scanning, significantly limiting their utility and precision. Here we
introduce a laser vibrometer that performs high-speed multi-dimensional imaging-
based vibration and velocity measurements with nanometer-scale axial resolution
without the need for beam scanning. As a proof-of-concept, we demonstrate real-
time microscopic imaging of acoustic vibrations with 1 nm axial resolution, 1200
image pixels, and 30 ps dwell time at 36.7 MHz scan rate.

3.1 Introduction

Laser vibrometry is a powerful tool for measuring surface vibrations and
displacements in a noncontact and noninvasive manner. It has been used in a diverse
range of scientific [34, 35], industrial [34–37], and biomedical [34, 36, 38, 39]
applications. Common industrial applications include nondestructive inspection
and diagnosis of aircraft components, musical instruments, hard disk drives,
microelectromechanical systems (MEMS), and automotive brakes [34–36].
Furthermore, laser vibrometers are widely employed in biological research and
clinical environments for diagnosis of tympanic membranes [38, 39], observation
of insect communication [34, 36], and evaluation of dental instruments [34, 36].

Unfortunately, conventional methods for laser vibrometry such as laser Doppler
vibrometry [34–39] are unable to perform imaging based vibration measurements
at high speeds. This is because their operation builds on single-point measurements
and relies on beam scanning for multi-dimensional laser vibrometry. In other
words, the scan rate of conventional multi-dimensional laser vibrometers (also
called scanning vibrometers) is limited by that of laser scanners although the single-
point measurement itself is fast (on the order of �10 MHz or higher). Currently,
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the maximum scan rates provided by commercially available laser scanners (e.g.,
galvanometric mirrors [40] and acousto-optic deflectors [41]) are �100 kHz in
1D line scans and �1 kHz in two-dimensional (2D) raster or spiral scans. This
speed limitation significantly restricts the utility and precision of laser vibrometers,
especially in high-speed vibrometry applications including MEMS devices and
impact analysis [34–36].

Efforts have been made to mitigate the speed limitation in multi-dimensional
laser vibrometers. One of the popular methods is the illumination of the target
with multiple laser beams [42, 43], but the number of image pixels is significantly
limited (typically up to �10) [42, 43] by the complexity and cost of the required
optical components (e.g., multiple lasers, interferometers, and photodetectors).
Another type of vibrometer that does not require beam scanning relies on the use
of an array detector, i.e., the complementary metal–oxide–semiconductor (CMOS)
camera [44], and hence its scan rate is limited by the frame rate of the camera (up
to �10 kHz) [44] and also the trade-off between the number of pixels and frame
rate.

In this chapter, we propose and demonstrate a laser vibrometer that overcomes
the limitations in the conventional multi-dimensional laser vibrometers and achieves
high-speed imaging-based surface vibration measurements with nanometer-scale
axial resolution at �100 times higher scan rates than the conventional methods.
This method is an extension of the recently developed ultrafast imaging technology
known as serial time-encoded amplified imaging/microscopy (STEAM) [10, 45, 46]
to depth-resolved multi-dimensional imaging. By stretching in time a spectrally
coded image, this method does not require beam scanning for multi-dimensional
vibrometry. Furthermore, the superior temporal resolution of this method also
enables multi-dimensional velocimetry as the velocity of the surface can be obtained
from the axial position of the surface. The method’s fast shutter speed (dwell time)
ensures nearly instantaneous frame acquisition and eliminates image blurring. As a
proof-of-concept, we demonstrate real-time depth-resolved imaging of acoustic
vibrations up to 30 kHz with 1 nm axial resolution, 1200 image pixels, and 30 ps
dwell time at 36.7 MHz scan rate.

3.2 Experimental Demonstration

An experimental apparatus of the proposed method, which we refer to as STEAM
vibrometry, is shown in Fig. 3.1. The optical source is a mode-locked femtosecond
pulse fiber laser with a pulse repetition rate of 36.7 MHz. After supercontinuum
generation in a highly nonlinear fiber and band-pass filtering, a nearly flat spectral
shape with �20 nm bandwidth centered at 1590 nm is produced for target illumina-
tion. A pair of diffraction gratings with 1100 lines/mm spatially disperses the pulses
along a 1D line, which are directed toward the vibrating target. The reflected pulses
are interfered with the reference pulses in a Michelson interferometer, resulting in
the spectral interference between the test and reference pulses. Here the lateral
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Fig. 3.1 Schematic of the STEAM vibrometer. The principle of the method is three-fold: (1)
encoding of the lateral and axial coordinates of the target into the different frequencies and
corresponding amplitudes of a spatially dispersed broadband pulse which spectrally interferes with
a reference pulse, (2) amplified dispersive Fourier transformation in which the spectrum is mapped
into a temporal waveform, time stretched so that it can be digitized in real time, and simultaneously
amplified in the optical domain, and (3) Hilbert transformation on the detected pulse in the digital
domain to extract the axial information of the target

and axial coordinates of the target are encoded into the different frequencies
and corresponding amplitudes of each back-reflected spatially dispersed pulse,
respectively. This situation may be better understood by interpreting the optical
configuration in such a way that multiple continuous-wave lasers are incident onto
different spatial coordinates of the target in a shared Michelson interferometer with
their longitudinal modes locked.

The interferometrically combined pulses return to the same optics, but are
directed via an optical circulator toward the amplified dispersive Fourier transformer
(ADFT) [10, 45, 47] in which a dispersive fiber with �1200 ps/nm dispersion is
optically pumped by four continuous-wave lasers with �100 mW of optical power
at 1470, 1480, 1480, and 1490 nm for distributed Raman amplification. In the
dispersive medium, the spectrum of each interfered pulse is stretched and converted
into an amplified temporal waveform. This ADFT process is critical for high-speed
laser vibrometry because the optical amplification before photon-to-electron conver-
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sion overcomes the fundamental trade-off between sensitivity and speed [10, 47].
The pulses are captured by a high-speed photodiode with 15 GHz bandwidth and
digitized by a real-time oscilloscope with 16 GHz bandwidth and 50 GS/s sampling
rate. Hilbert transformation is applied in the digital domain to each spectrally
interfered pulse to obtain the axial information of the target at multiple points along
the 1D line. Each pulse acquires one scan and the pulse repetition rate corresponds
to the scan rate (frame rate) of the STEAM vibrometer.

3.3 Theoretical Study of the Vibrometer Performance

The basic capabilities of the STEAM vibrometer (i.e., image pixel number, axial
resolution, and dwell time) can be estimated from the parameters of its components.
First, the number of image pixels on the target (N) is found from the total dispersion
in the dispersive fiber (D D �1200 ps/nm), the optical bandwidth (�� D 20 nm),
and the sampling rate of the digitizer (fdig D 50 GS/s) to be N D jDj����fdig D 1200

while the number of resolvable points is about 200 from the spectral resolution of the
ADFT process [18]. Second, the axial resolution is given by the dynamic range (bit
depth) of the digitizer. The axial resolution (�z) can be found from the expression,
0:5 sin.2 � k � �z/ D 2�n, where k is the wavenumber [k D 2�=.1590 nm/] and
n is the bit depth of the digitizer (n D 8 bits), to be �z D 0:99 nm. Finally, the
dwell time is estimated from the bandwidth of each subpulse (20 nm=�200) and the
time-bandwidth product to be �30 ps (assuming that the subpulses are transform
limited).

3.4 Experimental Results

We evaluated the basic performance of the STEAM vibrometer. In Fig. 3.2a, the
temporal waveform of a single interfered pulse captured by the photodiode is
compared with the optical spectrum measured by a conventional optical spectrum
analyzer. This verifies the equivalence of the two waveforms and hence validates the
STEAM vibrometer. As shown in Fig. 3.2b, repetitive pulses (scans) detected by the
photodiode indicate that the STEAM vibrometer operates at 36.7 MHz scan rate.

To show the utility of the STEAM vibrometer, we monitored the performance
of an acoustic speaker. For better sensitivity, a thin reflective plate was attached to
the diaphragm of the acoustic speaker. The speaker was driven up to 30 kHz (nearly
its upper frequency limit). Figure 3.3 shows the 30 kHz surface vibration of the
diaphragm captured by the STEAM vibrometer with �1 nm axial resolution (which
agrees with our estimated axial resolution of 0.99 nm).

In addition to the amplitude of the surface vibration, we also obtained the velocity
of the diaphragm from the axial coordinates of the surface as shown in Fig. 3.4. The
Doppler frequency shift in the frequency comb lines caused by the acoustic vibration
(�830 Hz frequency shift) is negligible.



3.5 Conclusion 19

Fig. 3.2 Basic performance of the STEAM vibrometer. (a) Temporal waveform of a single
interfered pulse captured by the photodiode in comparison with the optical spectrum measured
by a conventional optical spectrum analyzer. (b) Repetitive pulses (scans) with a time interval of
27.2 ns detected by the photodiode indicating that the STEAM vibrometer operates at 36.7 MHz
scan rate

3.5 Conclusion

In summary, we proposed and demonstrated an optical system that performs
high-speed multi-dimensional imaging-based vibrometry and velocimetry with
nanometer-scale axial resolution without the need for beam scanning. As a
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Fig. 3.3 Surface vibration of
the acoustic diaphragm
captured by the STEAM
vibrometer with �1 nm axial
resolution and �30 ps dwell
time. The diaphragm was
driven to vibrate at 30 kHz

Fig. 3.4 Axial velocity of the
acoustic diaphragm obtained
by the STEAM vibrometer.
The diaphragm was driven to
vibrate at 30 kHz (the same as
in Fig. 3.3)

proof-of-concept, we showed real-time 1D imaging of fast acoustic vibrations
with 1 nm axial resolution, 1200 image pixels, and 30 ps dwell time at 36.7 MHz
scan rate. While we performed 1D cross-sectional imaging in this proof-of-principle
demonstration, the technique can naturally be extended to 2D by using a 2D spatial
disperser [10, 48].



Chapter 4
Three-Dimensional Ultrafast Laser Scanner

Laser scanners are essential for scientific research, manufacturing, defense, and
medical practice. Unfortunately, often times the speed of conventional laser scanners
(e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many appli-
cations, resulting in motion blur and failure to capture fast transient information.
Here, we present a novel type of laser scanner that offers roughly three orders
of magnitude higher scan rates than conventional methods. Our laser scanner,
which we refer to as the hybrid dispersion laser scanner, performs inertia-free
laser scanning by dispersing a train of broadband pulses both temporally and
spatially. More specifically, each broadband pulse is temporally processed by time
stretch dispersive Fourier transform and further dispersed into space by one or
more diffractive elements such as prisms and gratings. As a proof-of-principle
demonstration, we perform 1D line scans at a record high scan rate of 91 MHz
and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of
105 kHz. The method holds promise for a broad range of scientific, industrial,
and biomedical applications. To show the utility of our method, we demonstrate
imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry
with real-time throughput that conventional laser scanners cannot offer due to their
low scan rates.

4.1 Introduction

High-speed multidimensional laser scanning technology has numerous applications
in research [44, 49–55], manufacturing [49–51, 56–60], defense [49, 50, 56, 57, 60],
and biomedicine [44, 49, 52–54, 61–63] for sensing and imaging of moving objects
and dynamic processes. Low scan rates cause motion blur in images or missing fast
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transient phenomena in sensing. Also, high-speed scanning capability is needed in
high-throughput analysis of a large number of objects or a wide field of view in a
reasonable duration of time [12, 49–51, 55, 60–63].

Various types of laser scanners have been developed over the past few decades.
The most commonly used type of laser scanners including MEMS scanners [40]
is based on beam steering by galvanometric mirrors. However, their linear scan
rates because of inertia are limited to about 10 kHz. If two of these scanners are
aggregated to perform 2-dimensional (2D) raster scans, the overall raster scan rate
is limited to about 100 Hz. Another type of laser scanner is based on diverting laser
beams by acousto-optic deflectors (AODs). They are about one order of magnitude
faster than galvanometric mirror scanners in both linear and 2D raster scans [41, 49].
Finally, a combination of a frequency-tunable laser and diffractive optics can be used
to form a laser scanner at scan rates comparable to AODs [64, 65].

Recently, we have demonstrated a new type of inertia-free ultra-fast laser
scanner that can achieve about three orders of magnitude faster scan rates than
the conventional methods [13]. The operation principle of this method, namely the
hybrid dispersion laser scanner (HDLS), is based on probing different points of
a target with frequency components of a linearly chirped broadband optical pulse
at different times. In this chapter, we present results from our demonstration of
linear scans at 90.8 MHz, 2D raster scans at 105.4 kHz, and 3D scanning surface
vibrometry with nanometer axial resolution.

4.2 Principle of Hybrid Dispersion Laser Scanner

The concept of HDLS relies on the transformation from spectral to temporal and
spatial domains, respectively (Fig. 4.1). First, by a process called dispersive Fourier
transformation [10, 45, 47, 66, 67] based on group-velocity dispersion, the spectra
of broadband optical pulses of a mode-locked laser are mapped into temporal
waveforms. Then, a spatial dispersive element such as a diffraction grating or a
virtually imaged phased array (VIPA) maps the spectrum of chirped pulses onto
a line over the object such that different wavelength components hit the target at
different positions and times. The reflected or scattered light from the target is
then detected by a single-pixel photodetector. Wavelength components of each laser
pulse perform one linear scan, and therefore, the scan rate is same as the repetition
rate of the mode-locked laser. A complementary scanner for other axis can be added
to achieve 2D raster scans with HDLS.

Based on the HDLS concept described, we designed and implemented a multi-
dimensional laser scanner in the industrially and biomedically important spectral
range of 800 nm (Fig. 4.2). A Ti:Sapphire femtosecond mode-locked laser with a
repetition rate of 90.8 MHz generates a train of broadband optical pulses centered at
814 nm. The process of wavelength-to-time mapping is performed with two pairs of
prisms followed by a dispersive fiber. Pulses are then collimated into free space and
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Fig. 4.1 Concept of HDLS. HDLS operation relies on two high-speed mapping processes. First,
the spectrum of each broadband optical pulse generated by a mode-locked laser is mapped to
time. This wavelength-to-time mapping is performed by a temporal dispersive element such as a
dispersive optical fiber or prism pair. Next, wavelength-to-space transformation is used to direct
each wavelength component of the optical pulse to a unique point on the target. Overall, a one-
to-one mapping between time and space is formed. Therefore, each point in HDLS’ field of view
is sampled with an individual wavelength component of the optical pulse at a specific time. The
repetition rate of the mode-locked laser determines the sampling rate of the HDLS

scanned in the vertical direction by an acousto-optic deflector at 105.4 kHz. A pair
of diffraction gratings performs the wavelength-to-space mapping, which is the key
to fast scanning capability of HDLS at 90.8 MHz in the horizontal direction.

Different wavelength components of each laser pulse hit the target at different
times, such that a single-pixel photodetector can be used to measure their reflections.
The electrical signal of the photodetector corresponding to the waveform of the
reflected optical pulses is captured by a high-speed digitizer (50 GS/s, 20 GHz
bandwidth oscilloscope) (Fig. 4.3a). Digital waveforms are processed and combined
in Matlab to generate multi-dimensional scan profiles. To validate the wavelength-
to-time mapping implemented by the prism pairs and dispersive fiber, the spectrum
of the reflected pulses from a fixed target is measured with a conventional spectrum
analyzer and compared to the waveforms captured by the oscilloscope (Fig. 4.3b).
Good agreement between them confirms that we can measure the spectral informa-
tion of laser pulses at the pulse repetition rate of the mode-locked laser that is well
beyond the scan rate of conventional spectrum analyzers.

4.3 Applications of Hybrid Dispersion Laser Scanner

In order to visualize the operation of the HDLS, we scanned a high-reflective
substrate with letters “UCLA” engraved on it, and compared the results side-by-
side with an image taken by a regular CCD camera (Fig. 4.4). For this experiment,
the target was 90ı rotated around the illumination axis with respect to the images
shown, so that the vertical scans in the image are performed by the HDLS while
horizontal scans in the image are implemented by the AOD.
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Fig. 4.2 HDLS experimental setup. In a 2D demonstration of laser scanning with the HDLS,
optical pulses generated by a mode-locked Ti:Sapphire laser with a center wavelength of 814 nm
and a repetition rate of 90.8 MHz are dispersed in time using two pairs of prisms and a dispersive
fiber. Pulses are deflected in the vertical direction using an acousto-optic deflector (AOD) at
105.4 kHz. Subsequently, the spectrum of each pulse is mapped onto a horizontal line using a
pair of diffraction gratings. A combination of the vertical deflection and horizontal mapping leads
to a 2D raster scan on the target. The pulse reflection off the surface of the target is converted via
an optical circulator to an electrical signal using a single-pixel high-speed photodetector. This
is possible due to the prior wavelength-to-time mapping, so that each wavelength component
reaches the photodetector at a unique time, and the information of different points of the target
are not overlapped. A 50 GS/s digitizer acquires the electrical signal from the photodetector, which
corresponds to the spectrum of the optical pulses. After correction for the background envelope,
the spectrum of each pulse reveals one horizontal line scan image of the target. Stacking up many
of these line scans in accordance with the AOD scan frequency leads to a 2D raster scan of the
target

Combining the HDLS with an interferometer, we performed 3D surface pro-
filometry or 2D surface vibrometry (Fig. 4.5). Here we used a Michelson inter-
ferometer to encode phase delays of different points on the target into wavelength
components of the illumination pulses. The interferograms are then captured in time
and analyzed offline by Hilbert transformation to extract the phase variations, which
correspond to the axial positions. Our experimental setup enables an axial resolution
of 0.4 nm at a scan rate of 105.4 kHz. As an illustrative demonstration, we captured
vibrations of a reflective diaphragm oscillating at 1 kHz (Fig. 4.6).

Finally, as an example of the HDLS’ biomedical utility, we demonstrated high-
precision high-throughput flow cytometry using the HDLS. Low spatial resolution
of conventional flow cytometers causes a considerable number of false positive
events that result in statistical error in subpopulation analysis. For instance, they are
not effective for detection of multiple cells (i.e., doublets, triplets, etc.) (Fig. 4.7a).
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Fig. 4.3 Wavelength-to-time mapping with dispersive Fourier transformation. (a) Optical pulses
reflected off the target corresponding to horizontal line scans at different deflection angles of the
AOD are measured by a high-speed photodetector. The period of the horizontal scans is about
11 ns, which corresponds to the mode-locked laser’s pulse repetition rate (90.8 MHz). (b) Good
agreement between the amplitude of the photodetector signal measured with the digitizer (shown
in blue) and the power spectrum measured with a conventional optical spectrum analyzer indicates
the demonstration of the wavelength-to-time mapping using the prism pairs and dispersive fiber in
the 800 nm band

Fig. 4.4 Imaging with the HDLS. (a) Image of the word “UCLA” engraved on the surface of a
reflective substrate captured by a CCD camera. (b) Image of the same sample captured by the
HDLS. The word “UCLA” is clearly shown

We used inertial focusing microfluidic technology [68] to precisely align otherwise
randomly positioned cells in a single stream with no need for sheath flow (Fig. 4.7b).
The microfluidic channel is custom-made on a substrate dielectric mirror from
thermoset polyester (TPE) for stability, robustness, and increased precision of cell
focusing. HDLS pulses scan the stream of cells, and the forward scattering is
reflected back by the substrate mirror for measurement.

We tested the performance of the HDLS and conventional flow cytometer
for size-based identification of white blood cells and MCF7 breast cancer cells
(Fig. 4.8a). Since the HDLS flow cytometer is more precise in distinguishing mul-
tiple cells, e.g., doublets, the count of white blood cells that have unusually larger
size is reduced, and therefore, the false positive rate decreases. This improvement
in size-based classification of MCF7 breast cancer cells from white blood cells is
more evident in comparison of receiver operating characteristic (ROC) curves of
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Fig. 4.5 3D surface profilometry or 2D surface vibrometry with the HDLS. 2D raster scans by the
HDLS are used in conjunction with a Michelson interferometer to perform 2D surface vibrometry.
A beamsplitter splits scan pulses into two arms. Optical pulses in one arm hit the target, and the
light in the other arm (reference arm) is reflected intactly by a mirror. Reflected pulses from both
arms are combined at the beamsplitter and form an interference pattern. If the reflectivity of the
vibrating target is not changing rapidly, Hilbert transformation can be used to extract the relative
optical phase of each wavelength component. Therefore, variations of the optical path length at
each wavelength component are measured and used to form 3D surface profiles of the vibrating
sample at a scan rate of 105.4 kHz with 0.4 nm axial resolution

the HDLS and conventional flow cytometer (Fig. 4.8b). We observed that for the
same specificity, the sensitivity of our method is significantly higher than that of the
conventional flow cytometer.
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Fig. 4.6 Surface vibration captured by the HDLS. Frames from 3D scans of a vibrating diaphragm
by the HDLS show a period of nanomechanical vibrations at 1 kHz. Only one of every ten scans is
shown here
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Fig. 4.7 Comparison of conventional and HDLS flow cytometers. (a) In regular flow cytometry,
a single interrogation beam covers the desired field of view in the channel. Therefore, it does
not efficiently differentiate multiple cells such as doublets. In HDLS flow-cytometer, diffraction
limited wavelength components of the interrogation beam cover the required field of view, and
extract high-resolution spatial information of the sample. HDLS data can be used to identify
abnormalities, e.g., multiple cells and result in a lower statistical error. (b) In our demonstration of
HDLS flow cytometer, an inertial focusing microfluidic channel with a dielectric mirror substrate
is used to order randomly distributed cells into a single stream. The microfluidic device was
fabricated using standard replica molding methods in thermoset polyester (TPE) to ensure stability.
HDLS scan pulses are focused on the stream. Forward-scattered light from the cells is reflected by
substrate mirror and collected by an objective lens
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Fig. 4.8 Experimental results of HDLS flow cytometer. (a) Identical samples of white blood
cells and MCF7 breast cancer cells are measured separately with conventional and HDLS flow
cytometers. There is a considerable overlap in forward scattering range of these cell types for
a conventional flow cytometer. However, this overlap decreases significantly for HDLS flow
cytometer measurements because white blood cell multiples are not identified as MCF7 cancer
cells. (b) Receiver operating characteristic (ROC) curves based on identification of white blood
cells and MCF7 breast cancer cells show that without sacrificing throughput, HDLS flow cytometer
achieves higher specificity and sensitivity than a conventional flow cytometer



Part III
Biomedical Applications



Chapter 5
Label-Free High-Throughput Phenotypic
Screening

Flow cytometry is a powerful tool for cell counting and biomarker detection in
biotechnology and medicine especially with regards to blood analysis. Standard flow
cytometers perform cell type classification both by estimating size and granularity
of cells using forward- and side-scattered light signals and through the collection
of emission spectra of fluorescently labeled cells. However, cell surface labeling
as a means of marking cells is often undesirable as many reagents negatively
impact cellular viability or provide activating/inhibitory signals, which can alter the
behavior of the desired cellular subtypes for downstream applications or analysis.
To eliminate the need for labeling, we introduce a label-free imaging-based flow
cytometer that measures size and cell protein concentration simultaneously either
as a stand-alone instrument or as an add-on to conventional flow cytometers.
Cell protein concentration adds a parameter to cell classification, which improves
the specificity and sensitivity of flow cytometers without the requirement of cell
labeling. This system uses coherent dispersive Fourier transform to perform phase
imaging at flow speeds as high as a few meters per second.

5.1 Introduction

Cell protein content measurement can be used in many biomedical applications such
as blood doping detection [69], infection monitoring [70], drug development and
screening [71], studies of necrosis and apoptosis [72, 73], cell cycle progression
and differentiation [74–76], and in cancer diagnostics [77–79]. Current methods
for cell protein concentration measurement include electrical methods based on
dielectrophoresis [80], mechanical methods based on microchannel cantilevers [69],
and optical methods based on scattering patterns [81], emission spectra of external
cavity lasers [82], and holographic and phase microscopy [83–86]. These methods
are either inherently too slow for high-speed flow cytometry applications or require
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feedback mechanisms [44] to provide necessary precision. Furthermore, size-based
classification can also be used for label-free identification of cells of interest
in a suspension stream [87]. However, due to significant overlap of size ranges
between most mammalian cells, size-based technologies require additional layers of
parametric gating to be useful as a diagnostic tool [88]. It is known that the refractive
index of a cell is proportional to its protein content [89]. As such, the simultaneous
measurement of refractive index and size of cells would be predicted to provide two
independent parameters for cell classification.

In this chapter, we propose a fast and high-precision optical cell density and
size measurement method based on serial time-encoded amplified microscopy
(STEAM) [10]. STEAM is a continuous imaging technique that captures tens of
million frames-per-second with sub-nanosecond shutter speed. However, earlier
versions of STEAM were dependent on cell labeling due to low intensity contrast of
individual cells [30]. Here, we introduce a new configuration of STEAM capable of
high-speed phase microscopy and demonstrating label-free single-cell classification
and diagnostics. In addition, we demonstrate a new design of STEAM that mini-
mizes loss and chromatic aberration, decreases polarization sensitivity, and results
in a smaller footprint [90]. In contrast to previous implementations of STEAM,
which were based on refractive optics, the new design employs reflective optics.

The basic principle of STEAM involves two steps both performed optically.
In the first step, the spectrum of a broadband optical pulse is converted by a
spatial disperser into a rainbow that illuminates the target. Therefore, the spatial
information (image) of the object is encoded into the spectrum of the resultant
reflected or transmitted rainbow pulse. A 1D rainbow is used in flow imaging as
the flow causes the cell to be scanned in the second dimension. In the second step,
the spectrum of the image-encoded pulse is mapped into a serial temporal signal
that is stretched in time to slow it down such that it can be digitized in real-time [9].
This optically amplified time stretched serial stream is detected by a single-pixel
photodetector and the image is reconstructed in the digital domain. Subsequent
pulses capture repetitive frames, hence the laser pulse repetition rate corresponds to
the frame rate of STEAM and the shutter speed (exposure time) corresponds to the
temporal width of the pulse. The key innovations in STEAM that enable high-speed
real-time imaging are photonic time stretch for digitizing fast images in real-time
and the optical image amplification for compensating the low number of photons
collected during the ultra-short shutter time.

The contrast limitations of label-free single-cell imaging of STEAM led us to
develop a derivative of STEAM, referred to as Coherent-STEAM, to capture phase
images of cells in flow. We use a Michelson interferometer to map the phase
image of cells into the spectrum of broadband optical pulses. This phase imaging
technique exploits the fast shutter speed of STEAM to freeze path length fluctua-
tions of interferometer arms and attains nanometer phase resolution with no need for
feedback stabilization of the interferometer [12, 13, 16]. We use Coherent-STEAM
to measure the refractive index of individual cells in an imaging flow cytometer by
simultaneous measurement of size and total optical phase-shift induced by the cells.
As an example, we use our label-free STEAM-based cell classifier to distinguish
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OT-II T cell hybridoma from SW480 epithelium cancer cells. We show that adding
protein concentration to size as an additional classification parameter increases
accuracy and specificity in flow cytometry.

5.2 Experimental Setup

A mode-locked fiber laser generates pulses at 1565 nm with a repetition rate
of 36.128 MHz and a pulse width slightly less than 100 fs (Fig. 5.1). Pulses
are spectrally broadened with a highly nonlinear fiber to approximately 100 nm
bandwidth [91]. A short dispersion compensating fiber with an overall dispersion
of 60 ps/nm is used to temporally broaden pulses to 1.2 ns, so an erbium doped fiber
amplifier (EDFA) can amplify them without any distortion. Amplified pulses enter
a coarse wavelength division multiplexing (WDM) filter, and the output of 1591 nm
channel is used to shape laser pulses with a considerably flat spectrum over 1581–
1601 nm bandwidth. These pulses pass through an optical circulator and are coupled
to free-space with a fiber collimator.

Free-space laser pulses are linearly polarized with quarter- and half-wave plates,
and then they are spatially dispersed with a pair of reflection diffraction gratings, so
that each wavelength component of the collimated beam is positioned at a different
lateral point similar to a rainbow. A pair of 90ı off-axis parabolic gold-coated
mirrors with 152.4 and 25.4 mm reflected focal lengths are used to form a beam
reducer that shrinks the rainbow beam six times. Parabolic gold-coated mirrors are
used to minimize loss, aberration, and polarization sensitivity. In addition, a 15ı
off-axis parabolic gold-coated mirror with 635 mm reflected focal length and a 0.4
numerical aperture long working-distance objective lens further shrink the rainbow
to about 130 �m field of view. Using reflective optics, we managed to improve
the signal-to-noise ratio by about 9 dB. A beam splitter is used to form two arms
of a Michelson interferometer. Different wavelength components of the rainbow
are focused on a mirror in the reference arm and on the reflective substrate of a
microfluidic device in the sample arm. Cells hydrodynamically focused at the center
of the channel flow at a velocity of 1.3 m/s. The rainbow pulses pass through the
cells and are reflected back by the mirror substrate of the microfluidic device. The
total bandwidth of the pulses interrogating the cells in our Coherent STEAM is
less than 20 nm centered at 1590 nm, giving a negligible fractional bandwidth of
1.3%. Therefore, the color-dependency of absorption is very small and can be easily
neglected. The reflected pulses from the microfluidic device and reference mirror
interfere at the beam splitter and return to the fiber, where they are directed with the
optical circulator to an amplified time stretch system.

The amplified time stretch system is a combination of a Raman amplifier and
a dispersive fiber to perform dispersive Fourier transform [9]. Four Raman pump
lasers at 1450, 1470, 1490, and 1505 nm are used to amplify the signal for about
15 dB over the whole optical bandwidth uniformly. The dispersive fiber chirps and
stretches each pulse in time to about 27 ns. So, different wavelength components
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Fig. 5.1 Optical setup of Coherent-STEAM. A Coherent-STEAM setup is formed by combination
of STEAM and a Michelson interferometer. A pair of diffraction gratings generates a 1D
rainbow with different wavelength components imaging different points on the cells flowing in
a microfluidic channel. A pellicle beam-splitter and two identical long working-distance objective
lenses are used to form the interferometer for phase measurement. Back apertures of objective
lenses are fully illuminated with each wavelength component of the broadband mode-locked laser
pulses to ensure diffraction-limited resolution. An amplified time stretch system chirps, stretches,
and amplifies each pulse, so that different wavelength components reach the photodetector serially.
A very shallow microfluidic channel with hydrodynamic focusing is designed and fabricated to
align cells within the focal depth of the system
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Fig. 5.2 Digital signal processing of Coherent-STEAM. (a) The photodetector output signal is
digitized and recorded by an ADC. This signal shows sequential laser pulses. (b) Each pulse
is saved separately as a frame for further processing. (c) The analytic form of high-frequency
components of each pulse is generated using Hilbert transformation, and the phase component of
this analytic form is extracted. (d) An unwrapping algorithm is used to fix unrealistic phase jumps,
and the result shows an approximately linear phase increase. (e) If the phase component of the
interferometer fringe frequency is removed, the phase induced by cells in optical pulse can be
seen. (f) Many of these line images generated from subsequent frames are used to form a spatial
map of optical path difference in two dimensions, which is used for cell characterization

reach the photodetector serially. An analog-to-digital converter (ADC) with a
sampling rate of 50 GSps and 20 GHz bandwidth is used to acquire the output signal
of the photodetector.

The photodetector output signal, I.t/, is digitized and recorded by the ADC
(Fig. 5.2a). This signal shows sequential laser pulses. Each pulse is used to form one
line image. Therefore, the boundaries of pulses are determined precisely, and each
pulse is saved separately as a frame for further processing (Fig. 5.2b). The analytic
form of each pulse is generated using Hilbert transformation after the low frequency
components corresponding to intensity variations are filtered out [92]. The phase
component of this analytic form is extracted, while its amplitude component is
discarded (Fig. 5.2c). Because the phase varies over a wide range (much larger than
2� radians), it shows unrealistic discontinuities. An unwrapping algorithm is used to
fix these discontinuities, and the result shows an approximately linear phase increase
over the time for each pulse or frame (Fig. 5.2d). The unwrapping algorithm adds
multiples of ˙2� to make the absolute jumps between consecutive samples in a
frame smaller than � radians when they are greater than � radians. If the linear
component of the phase, which corresponds to the fringe (modulation) frequency,
fm, due to the interferometer arms’ length mismatch, and the background phase level,
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'0, are subtracted, the phase shift induced by the cells in the optical pulse can be
observed (Fig. 5.2e); i.e.

�'.t/ D unwrap.arg.IBP.t/ C j � OIBP.t/// � 2�fmt � '0 (5.1)

in which IBP.t/ is a band-pass filtered form of I.t/ with only spectral features
modulated at fm, and OIBP.t/ is the Hilbert transform of IBP.t/. Many phase line
images generated from subsequent frames are combined to form a spatial map of
optical path difference (OPD) in two dimensions (Fig. 5.2f). Since we know the
mapping of space to time from the rainbow characteristics and flow speed, OPD at
each point is calculated as

OPD.x; y/ D �.x/

2�
�'.x; y/ (5.2)

where x and y are coordinates in the rainbow and flow directions, respectively; �.x/

is the wavelength at position x along the rainbow; and �'.x; y/ is the phase shift
induced by the cell at point .x; y/.

Spatial map of optical path difference can be used to extract the refractive index
contrast between the cell and the surrounding liquid. If the thickness of the cell at
point .x; y/ is t.x; y/,

OPD.x; y/ D 2�ncell � t.x; y/ (5.3)

where �ncell D ncell � nliquid in which ncell and nliquid are the refractive indices of the
cell and the surrounding liquid, respectively. The factor 2 is to account for the fact
that each wavelength component passes the cell twice in Michelson interferometer.
If we integrate Eq. (5.3) over the area of the cell, we can derive an average refractive
index contrast, which corresponds to protein concentration of the cell:

�ncell D
’

cell OPD.x; y/ dx dy

2Vcell
(5.4)

where Vcell D ’
cell t.x; y/ dx dy is the volume of the cell. Most of the cells relax to a

spherical shape when they are released from substrates and brought into suspension
[93, 94]. Therefore, if we know the diameter of the cell, dcell, we can estimate its
volume as Vcell � �d3

cell=6.

5.3 Results and Discussion

Spherical polystyrene beads with a NIST traceable diameter of 5 �m are used to
calibrate the image processing algorithm for size measurements. A custom designed
algorithm in CellProfiler software [33] is used to detect the beads or cells in spatial
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Fig. 5.3 Calibration with NIST traceable beads. Polystyrene beads with a NIST traceable diameter
of 5 �m are used to calibrate the image processing algorithm for size measurements. (a) A
custom designed image processing algorithm in CellProfiler software is used to find the beads in
spatial map of optical path difference and measure the diameter. (b) Histogram of bead diameters
demonstrates the measured size distribution has an expected mean of 5 �m and a standard deviation
within the range of optical resolution limit. (c) Since all the beads are made out of the same
material, the coefficient of variation for refractive indices (0:014=1:57 D 0:89%) is much smaller
than that of diameters (0:405=5:06 D 8:00%)

map of optical path difference (Fig. 5.3). Bead or cell diameter is measured along the
rainbow direction to eliminate size measurement inaccuracies caused by fluctuations
of flow speed (Fig. 5.3a). Due to limited optical resolution of the setup, the bead
or cell edges are blurred, generating a small phase signal outside of the diameter
bars. The diameter along the rainbow direction is equal to the diameter along
the interrogation optical beam for spherical-shape beads or cells in suspension,
including the samples in our experiments.

Histogram analysis of bead diameter distribution for more than one hundred
beads with corresponding Gaussian fit to measurements demonstrates that the
measured size distribution has a standard deviation of 0.4 �m and an expected mean
of 5 �m (Fig. 5.3b). The broadening in the distribution is caused by the limited
lateral optical resolution of the Coherent-STEAM setup. This resolution is measured
by the knife-edge method and is about 2.5 �m. Therefore, the standard deviation of
the bead size distribution is well below the optical resolution.
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We also measured the refractive index contrast of each bead and the surrounding
liquid using Coherent-STEAM. Assuming that the refractive index of water is 1.317
at the 1581–1601nm bandwidth, we derived the refractive index of the beads using
Eq. (5.4). Analysis of the bead refractive indices and corresponding Gaussian fit
demonstrates that the beads have a mean refractive index of 1.57 with a standard
deviation of 0.014 (Fig. 5.3c). We observe that the coefficient of variation for the
bead refractive indices is 0.89%, which is much smaller than the coefficient of
variation for the bead diameters (8.00%). This is expected because all the beads
are made out of the same material, while their diameter measurements are effected
by dispersity of the size and limited spatial resolution of the setup.

We used the calibrated Coherent-STEAM setup to measure cell diameter and
refractive index contrast (as a measure for protein concentration) simultaneously.
Different types of cells have different mean diameters and protein concentrations;
however, both of these parameters have a broad range of variations for each cell type.
We see that identification of cells is more specific using both of these parameters
simultaneously, instead of each individually. Images of OTII (Fig. 5.4a) and SW480
(Fig. 5.4b) cells taken by Coherent STEAM setup demonstrate that the cells are
spherical in the microfluidic channel. In Fig. 5.4c, scattering plot of cell protein
concentration (refractive index difference) versus diameter is shown for these cells.
Using points in a normal range of protein concentration and sliding the detection

Fig. 5.4 Cell classification based on size and protein concentration measurement by Coherent-
STEAM; images of (a) SW480 and (b) OTII cells taken by Coherent STEAM setup show that they
are spherical. (c) Scattering plot of cell protein concentration versus diameter is shown for OTII
(blue) and SW480 (green) cells. (d) Comparison of the ROC curves of size measurement only
(purple line) to that of simultaneous size and protein concentration measurement (orange line)
shows significant improvement in sensitivity
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limit along the depicted direction (perpendicular to the optimum classification line),
a receiver operating characteristic (ROC) curve is generated (Fig. 5.4d). Comparing
the ROC curve of individual parameters (e.g., size measurement only) to that of
simultaneous measurement, it becomes obvious that the detection sensitivity has
improved considerably.

5.4 Conclusion

In summary, we demonstrated a new type of imaging flow cytometry based
on coherent stretched-time-encoded amplified microscopy, which is capable of
classifying cells in flow rates as high as a few meters per second. Coherent-STEAM
measures size and total optical path difference of cells simultaneously and extracts
the refractive index, which corresponds to the protein concentration of the cells,
as an additional parameter for classification. As illustrated in our experimental
results, separation of two cell types was significantly enhanced by adopting the
additional protein concentration parameter generated by Coherent-STEAM. We will
continue our work with real-time signal processing and cell identification on field-
programmable gate arrays (FPGAs) for classification of more than two cell types.



Chapter 6
Time Stretch Quantitative Phase Imaging

Label-free cell analysis is essential to personalized genomics, cancer diagnostics,
and drug development as it avoids adverse effects of staining reagents on cellular
viability and cell signaling. However, currently available label-free cell assays
mostly rely only on a single feature and lack sufficient differentiation. Also,
the sample size analyzed by these assays is limited due to their low throughput.
Here, we integrate feature extraction and deep learning with high-throughput
quantitative imaging enabled by photonic time stretch, achieving record high
accuracy in label-free cell classification. Our system captures quantitative optical
phase and intensity images and extracts multiple biophysical features of individual
cells. These biophysical measurements form a hyperdimensional feature space in
which supervised learning is performed for cell classification.

6.1 Background

Flow cytometry is a powerful tool for large-scale cell analysis due to its ability
to measure anisotropic elastic light scattering of millions of individual cells as
well as emission of fluorescent labels conjugated to cells [95, 96]. However, each
cell is represented with single values per detection channels (forward scatter, side
scatter, and emission bands) and often requires labeling with specific biomarkers for
acceptable classification accuracy [95, 97]. Imaging flow cytometry [98, 99] on the
other hand captures images of cells revealing significantly more information about
the cells. For example, it can distinguish clusters and debris that would otherwise
result in false positive identification in a conventional flow cytometer based on light
scattering [33].

In addition to classification accuracy, another critical specification of a flow
cytometer is its throughput. Indeed high throughput, typically 100,000 cells per
second, is needed to screen a large enough cell population to find rare abnormal
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cells that are indicative of early stage diseases. However there is a fundamental
trade-off between throughput and accuracy in any measurement system [29, 100].
Additionally, imaging flow cytometers face a throughput limit imposed by the speed
of the CCD or the CMOS cameras, a number that is approximately 2000 cells/s
for present systems [30]. Higher flow rates lead to blurred cell images due to the
finite camera shutter speed. Many applications of flow analyzers such as cancer
diagnostics, drug discovery, biofuel development, and emulsion characterization
require classification of large sample sizes with a high-degree of statistical accuracy
[101]. This has fueled research into alternative optical diagnostic techniques for
characterization of cells and particles in flow.

In previous chapter, a label-free imaging flow-cytometry technique based on
coherent optical implementation of the photonic time stretch concept [17] has been
presented. This instrument overcomes the trade-off between sensitivity and speed
by using Amplified Time stretch Dispersive Fourier Transform [9, 47, 102]. In time
stretched imaging [10], the object’s spatial information is encoded in a spectrum
of laser pulses within a pulse duration of sub-nanoseconds (Fig. 6.1). Each pulse
representing one frame of the camera is then stretched in time so that it can be
digitized in real-time by an electronic analog-to-digital converter (ADC). The ultra-
fast pulse illumination freezes the motion of high-speed cells or particles in flow
to achieve blur-free imaging. Detection sensitivity is challenged by the low number
of photons collected during the ultra-short shutter time (optical pulse width) and
the drop in the peak optical power resulting from the time stretch. These issues

Fig. 6.1 Time stretch quantitative phase imaging (TS-QPI) and analytics system. A mode-locked
laser followed by a nonlinear fiber, an erbium doped fiber amplifier (EDFA), and a wavelength-
division multiplexing (WDM) filter generate and shape a train of broadband optical pulses. Box
1: The phase shift and intensity loss at each location within the field of view are embedded into
the spectral interference patterns using a Michelson interferometer. Box 2: Time stretch dispersive
Fourier transform. Box 3: Big data analytics pipeline
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are solved in time stretch imaging by implementing a low noise-figure Raman
amplifier within the dispersive device that performs time stretching [10, 17, 29].
Moreover, warped stretch transform [103] can be used in time stretch imaging
to achieve optical image compression and nonuniform spatial resolution over the
field-of-view [104]. In the coherent version of the instrument, the time stretch
imaging is combined with spectral interferometry to measure quantitative phase
and intensity images in real-time and at high throughput [19]. Integrated with a
microfluidic channel, coherent time stretch imaging system in this work measures
both quantitative optical phase shift and loss of individual cells as a high-speed
imaging flow cytometer, capturing 36 million images per second in flow rates as
high as 10 m/s, reaching up to 100,000 cells per second throughput.

On another note, surface markers used to label cells, such as EpCAM [105],
are indispensable tools for cell classification. However, they are unavailable in
some applications; for example, melanoma or pancreatic circulating tumor cells
(CTCs) as well as some cancer stem cells are EpCAM-negative and will escape
EpCAM-based detection platforms [31]. Furthermore, large-population cell sorting
opens the doors to downstream operations, where the negative impacts of labels
on cellular behavior and viability are often unacceptable [106]. Cell labels may
cause activating/inhibitory signal transduction, altering the behavior of the desired
cellular subtypes, potentially leading to errors in downstream analysis, such as DNA
sequencing and subpopulation regrowth. In this way, quantitative phase imaging
(QPI) methods [92, 107, 108] that categorize unlabeled living cells with high accu-
racy are needed. Coherent time stretch imaging is a method that enables quantitative
phase imaging at ultrahigh throughput for noninvasive label-free screening of large
number of cells.

In this work, the information of quantitative optical loss and phase images are
fused into expert designed features, leading to a record label-free classification
accuracy when combined with deep learning (details about deep learning can be
found in next chapter). Image mining techniques are applied, for the first time, to
time stretch quantitative phase imaging to measure biophysical attributes including
protein concentration, optical loss, and morphological features of single cells at
an ultrahigh flow rate and in a label-free fashion. These attributes differ widely
[87, 109–111] among cells and their variations reflect important information of
genotypes and physiological stimuli [112].

6.2 Time Stretch Quantitative Phase Imaging

6.2.1 Overview

The application of time stretch quantitative phase imaging (TS-QPI) to imaging
flow cytometry has been recently demonstrated in our group [17]. Broadband
optical pulses from a mode-locked laser were firstly conditioned in fiber optics and
then spatially dispersed in free-space optics with a pair of reflection diffraction
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gratings creating 1-D “rainbow flashes” (Fig. 6.1). Each one of rainbow flashes
was composed of all the wavelength components distributed laterally over the field
of view. These flashes illuminated the target as in traditional photography, but in
addition, rainbow flashes targeted different spatial points with distinct colors of
light, resulting in space-to-spectrum encoding. Rainbow pulses were then split into
the two arms of a Michelson interferometer. Different wavelength components of
the rainbow flash traveled parallel to each other but individually focused on the
mirror in the reference arm or on the reflective substrate of a microfluidic device in
the sample arm. In the sample arm, the cells in the microfluidic channel were
hydrodynamically focused [113, 114] into the rainbow’s field of view and flowed
perpendicular to the rainbow flash. Reflected pulses from the microfluidic device
and the reference arm were recombined and coupled back into the fiber, optically
amplified and linearly chirped through Raman-amplified time stretch dispersive
Fourier transform (TS-DFT) system. An amplified time stretch system that utilizes
a low-noise distributed Raman amplifier within dispersive fiber with a net optical
gain of approximately 15 dB enables high-sensitivity detection at high speeds. An
ultrafast single-pixel photodetector transformed instantaneous optical power into
an electrical signal and subsequently, an analog-to-digital converter (ADC) samples
and quantizes the signal. Acquired data are passed down to processing stages for big
data analytics. The interference between time-shifted linearly chirped pulses creates
a beat (fringe) frequency, which can be adjusted via the interferometer arm length
mismatch.

In Fig. 6.1 Box 1, the pulse train is spatially dispersed into a train of rainbow
flashes illuminating the target as line scans. The spatial features of the target are
encoded into the spectrum of the broadband optical pulses, each representing a one-
dimensional frame. The ultra-short optical pulse illumination freezes the motion
of cells during high-speed flow to achieve blur-free imaging with a throughput of
100,000 cells/s. The phase shift and intensity loss at each location within the field
of view are embedded into the spectral interference patterns using a Michelson
interferometer. In Box 2, the interferogram pulses were then stretched in time so
that spatial information could be mapped into time through time stretch dispersive
Fourier transform (TS-DFT), and then captured by a single pixel photodetector and
an analog-to-digital converter (ADC). The loss of sensitivity at high shutter speed
is compensated by stimulated Raman amplification during time stretch. In Box 3a,
the time-domain signal carrying serially captured rainbow pulses is transformed
into a series of one-dimensional spatial maps, which are used for forming line
images. The biomass density of a cell leads to a spatially varying optical phase shift
(Box 3b). When a rainbow flash passes through the cells, the changes in refractive
index at different locations will cause phase walk-off at interrogation wavelengths.
Hilbert transformation and phase unwrapping are used to extract the spatial phase
shift. Decoding the phase shift in each pulse at each wavelength and remapping
it into a pixel reveal the protein concentration distribution within cells (Box 3c).
The optical loss induced by the cells, embedded in the pulse intensity variations,
is obtained from the amplitude of the slowly varying envelope of the spectral
interferograms. Thus, quantitative optical phase shift and intensity loss images are
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captured simultaneously. Both images are calibrated based on the regions where
the cells are absent. Cell features describing morphology, granularity, biomass, etc.
are extracted from the images. These biophysical features are used in a machine
learning algorithm for high-accuracy label-free classification of the cells (Box 3d).

The photodetected time stretched pulses, each representing one line scan, are
converted to analytic signals using Hilbert transformation [115] and the intensity
and phase components are extracted. The phase component is a fast oscillating
fringe (carrier frequency), caused by the interference of the linearly chirped pulses
arriving from the reference and signal arms in the Michelson interferometer. Acting
as a radio-frequency (RF) carrier whose frequency is set by the user adjusted arm
length mismatch, the fringe frequency is modulated when the optical path length in
the sample arm is changed by the arrival of a cell. This frequency shift and the
accompanying phase change are used to measure the optical path length of the
cell. Since the phase varies over a wide range (much larger than 2� radians), an
unwrapping algorithm is used to obtain the continuous phase profile. The phase
profile contains an increasing term with time, corresponding to the fringe (beat)
frequency and the phase shift induced by the cell. By eliminating the background
phase component, the cell-induced phase shift is extracted. The second component
in the waveform is a lower frequency envelope corresponding to temporal shape of
the optical pulse. The amplitude of this envelope provides information about optical
loss caused by transparency, surface roughness, and inner organelle complexity.

6.2.2 Imaging System

Broadband optical pulses from a mode-locked laser (center wavelength D 1565 nm,
repetition rate D 36.6 MHz, pulse width � 100 fs) are broadened using a highly
nonlinear fiber to approximately 100 nm bandwidth with a spectral range up to
1605 nm. These broadband pulses are then linearly chirped to nanosecond pulse
width by a short dispersion compensating fiber (DCF) of 60 ps/nm, so that an
erbium doped fiber amplifier (EDFA) can amplify them with minimal distortion.
A coarse wavelength division multiplexer (WDM) filters the pulses from 1581 nm
to 1601 nm, where the spectrum is reasonably flat. Therefore, the total bandwidth of
the pulses interrogating the cells in our setup is less than 20 nm centered at 1591 nm,
giving a negligible fractional bandwidth of 1.3%. These filtered pulses then pass
through an optical circulator and are coupled to free-space with a fiber collimator.

Free-space laser pulses were linearly polarized with quarter- and half-wave
plates, and then spatially dispersed with a pair of reflection diffraction gratings,
so that each wavelength component of the collimated beam was positioned at a
different lateral point similar to a line flash rainbow. A beam reducer shrank the
rainbow beam six times with a pair of 90 degree off-axis parabolic gold-coated
mirrors with reflected focal lengths as 152.4 mm and 25.4 mm, respectively. Next, a
15 degree off-axis parabolic gold-coated mirror with 635 mm reflected focal length
and a long working-distance objective lens with 0.4 numerical aperture further
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Fig. 6.2 Comparison of the interferograms measured by optical spectrum analyzer and time
stretch dispersive Fourier Transform; (a) Optical spectrum of the signal after quantitative phase
imaging (box 1 in Fig. 6.1) and before it enters the amplified time stretch system (box 2 in
Fig. 6.1). The interference pattern in spectral domain is measured by an optical spectrum analyzer.
(b) With time stretch, the interference pattern in spectral domain is linearly mapped into time. The
baseband intensity envelope is slightly modified by the wavelength-dependent gain profile of the
Raman amplifier. The inserts in panels a and b show the zoomed-in spectrum and waveform in
the dashed black boxes, respectively. Clearly, the single-shot interferogram measured by Raman-
amplified time stretch dispersive Fourier Transform has a higher signal-to-noise ratio compared to
that captured by optical spectrum analyzer

shrank the rainbow to about 130 µm in width, i.e., field of view. Reflective optics
with parabolic gold-coated mirrors is used in our experimental demonstration to
minimize loss, aberration, and polarization sensitivity. The rainbow flashes were
then split into the two arms of a Michelson interferometer by a beam splitter.
In the sample arm, the rainbow pulses pass through the cells and are reflected
by the reflective substrate of the microfluidic device. In the reference arm, a
dielectric mirror reflected the rainbow with a length mismatch with the sample
arm causing spectral interference fringes (Fig. 6.2a). Cells are hydrodynamically
focused at the center of the channel flow at a velocity of 1.3 m/s. The reflected
pulses from reference and sample arms were recombined at the beam splitter,
compressed by the two diffraction gratings and coupled back into the fiber. These
return pulses were spectrally encoded by the spatial information of the interrogation
field of view. Then they were redirected by the optical circulator to a Raman-
amplified time stretch dispersive Fourier Transform (TS-DFT) system followed by
a 10 Gb/s photodetector (Discovery Semiconductors DSC-402APD). An analog-
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to-digital converter (Tektronix DPO72004C) with a sampling rate of 50 GS/s and
20 GHz bandwidth is used to acquire the output signal of the photodetector, which
is a series of spectral interferograms mapped into time (Fig. 6.2b).

6.2.3 System Performance and Resolvable Points

Lateral resolution of time stretch camera is decided by the limiting factor among
Abbe diffraction limit of the objective lens, spectral resolvability of the diffraction
grating pairs, spectral resolution in amplified dispersive Fourier transform, the
photodetector rise-time and bandwidth, and the sampling rate of the back-end
digitizer. Details of the limiting factors of lateral resolution and evaluation of these
factors for our TS-QPI system can be found in Table 6.1. Field of view (FOV) is the
area covered by the interrogation rainbow when the rainbow pulses hit the imaging
plane. The rainbow pulse width is decided by the optical bandwidth selected from
the laser source, ��, the magnification factor of the objective lens, the focal length
of the other lenses and parabolic mirrors, as well as the dimensions and blaze angles
of the diffraction gratings.

The resolution of phase measurement along axial direction is determined by the
effective number of bits (ENOB) of the digitizer and affected by the noise of laser
source. Since pulse-to-pulse intensity and phase fluctuations are small, noise from
laser source is not the limiting factor in our phase measurements. Supposing the
ENOB of the digitizer is N, the minimum detectable optical path length difference
�L can be estimated as

1

2
sin

�
4��L

� C ��=2

�

D 2�N (6.6)

where � is the central wavelength of light, and �� is the optical bandwidth.
In our system, ENOB of the analog-to-digital converter is 5. Thus, the OPD
resolution along the axial direction is about 8:0 nm, corresponding to refractive
index difference down to the order of 0:001 for cellular level measurements.

6.2.4 Microfluidic Channel Design and Fabrication

The Polydimethylsiloxane (PDMS) microfluidic channel is custom-designed so that
it could fit into the reflective optics design. Cells are hydrodynamically focused
[113, 114] at the center of the channel flowing at a velocity of 1.3 m/s. The
microfluidic device consists of a hydrodynamic focusing region and an imaging
region targeted by the interrogation rainbow flashes in TS-QPI system. At the
hydrodynamic focusing region, the sheath pressure focused the sample at the center
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Table 6.1 Resolution limiting factors in TS-QPI

System Lateral

category Component Number of resolvable points resolution

Free-space
optics

Diffraction
gratings Ngrating D ��

ı�grating
D ��=

�

� � d

m � 2w0

�

(6.1)
where �� is the optical bandwidth, � is the
central wavelength, m is the order of
diffraction, w0 is the beam waist, and d is
the groove spacing

3:09 µm

Lenses and
mirrors NAbbe D FOV

ıxdiffraction
D FOV
�

�C��=2

2�NA

�

(6.2)
where FOV is field of view, NA is
numerical aperture of the objective lens

2:00 µm

Time stretch Group delay
dispersion NDFT D ��

ı�
D ��

� �
q

2
DLf �c

(6.3)

where D is the group velocity dispersion, Lf

is the dispersive fiber length

0:73 µm

Electronic
back-end

Photodetector
bandwidth NPD D �t

ıt
D DLf ��

0:35=B
(6.4)

where B is the bandwidth of the
photodetector

0:28 µm

ADC
sampling rate

NADC D DLf ��fADC (6.5)

where fADC is the sampling rate of digitizer

0:10 µm

of the channel by narrowing its flow width from 200 µm to about 40 µm with a
sheath to sample volume ratio of 3:1. The dimension of the channel was chosen
as 200 µm (width) � 25 µm (height) so that the cells will be imaged within depth
of focus with a narrow lateral distribution. The size of the entire PDMS channel
is optimized for fitting on a 2-inch diameter dielectric mirror with sufficient space
at the edges to achieve strong bonding. The thickness of the channel top layer is
optimized for stabilizing peek tubes performance reliability while accommodating
the working distance of the objective lens.

The PDMS microfluidic channel (Fig. 6.3) is fabricated using standard soft
lithography. The mask was designed in AutoCAD and printed with a resolution
down to 1 µm. Then a 4-inch silicon wafer was spin-coated with 75 µm thickness
of a negative photoresist (SU-8 from MicroChem) and was exposed under the
mask using an aligner. After post-exposure baking, the wafer was developed at
room temperature, rinsed with isopropyl alcohol (IPA), and placed in a petri dish.
A PDMS mixture (Sylgard 184 Silicone Elastomer, Dow Corning) was poured onto
the patterned wafer, degassed in a vacuum chamber for 30 min, and cured at 80 ıC
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Fig. 6.3 PDMS microfluidic channel mounted on a highly reflective surface with near-infrared
dielectric coating; The microfluidic device consists of a hydrodynamic focusing region and an
imaging region targeted by the interrogation rainbow flashes in TS-QPI system. (a) Sample solution
with suspended cells is fed into the channel through the sample inlet, and deionized water as the
sheath fluid is injected through the sheath inlet. At the hydrodynamic focusing region, the sheath
pressure focused the sample at the center of the channel by narrowing its flow width from 200 µm
to about 40 µm with a sheath to sample volume ratio of 3:1. (b) The pattern of the mask used to
imprint microfluidic channel design on silicon wafer with photoresist. The circles are inlet and
outlet reservoirs

for 1 h. Once cured, the PDMS channel was cut out and peeled off from the master
wafer. We used 1:25 µm diameter hollow needle to punch the inlet and outlet holes.
The punched PDMS channel was then cleaned with nitrogen gun and magic tape
(3M), treated with oxygen plasma (Enercon Dyne-A-Mite 3D Treater) for 2 min, and
bonded to a 2-inch diameter broadband dielectric mirror (Thorlabs BB2-E04) for
obtaining high reflectance from channel substrate at near infrared spectral window.
Finally microtubes (PE-50 tubing, 0:023 � 0:038 in) with steel catheter couplers
(Instech, 22 ga �15 mm) are connected to the inlet and outlet punctures.

6.2.5 Coherent Detection and Phase Extraction

Unlike in conventional heterodyne detection, which uses a narrowband continuous-
wave signal as the local oscillator or reference, the coherent detection in our time
stretch system uses an unmodulated copy of the original optical input, which is a
broadband optical pulse train [116, 117].

Since the spectrum is mapped into space by diffraction gratings, the complex
field at any specific spatial location within the field of view is a narrowband optical
wave. As the envelope of the optical wave varies slowly in time compared to
the period of the optical electromagnetic wave and the time mismatch between
the reference arm and the sample arm, we employ slowly varying envelope
approximation in our analysis. The complex envelope of the input electric field,
QEin.!; tp/, is split into two arms of the Michelson interferometer at the beam splitter.

Here, ! is the optical frequency of the input signal, which corresponds to the spatial
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location x being interrogated by the optical wave at this frequency (i.e., spectral
encoding of the object image). tp specifies the time when each rainbow flash reaches
the beam splitter, corresponding to the p-th incoming pulse. Note that QEin.!; tp/ can
be simplified as QEin.!/ when pulse shape is stable from pulse to pulse. The light
split into the two arms of the Michelson interferometer can be expressed as

Into the sample arm:

QEs.!; tp/ D p
Tb QEin.!; tp/

Into the reference arm:

QEr.!; tp/ D i
p

1 � Tb QEin.!; tp/

(6.7)

where Tb is the power transmission ratio of the beam-splitter. Optical intensity in the
sample arm will be altered by the absorption and scattering of imaged cells, as well
as that of the microfluidic channel and buffer solution. Not only the electric field
amplitude after passing through semitransparent objects will be modulated by the
optical attenuation in the sample arm, but also the optical path length difference will
lead to a phase shift, �'c.x; tp/, induced by refractive index change from the object
along the interrogation beam. Thus, the complex fields of the light waves coming
back to the beam splitter become

From the sample arm:

QEs.!; tp/ D Ts.!/Tc.x; tp C td/
p

Tb.!/Rm.!/ QEin.!; tp/

� exp
n
i
h

� !

c
� 2.L C �L/ � �'c.x; tp/

io

From the reference arm:

QEr.!; tp/ D i
p

1 � Tb.!/
p

Rm.!/ QEin.!; tp/

� exp
�
�i

!

c
� 2L

�

(6.8)

where L is the length of reference arm, and �L is the arm length mismatch between
two arms. Rm.!/ is the wavelength-dependent reflectance of the reflective substrate
of the microfluidic channel and the dielectric mirror in the reference arm. td is
the time delay during which rainbow flash travels from the beam splitter to the
sample cell, td D L0C�L

c . Ts.!/ is power transmittance of the surrounding buffer
solution and microfluidic channel, and Tc.x; tp C td/ is spatial power transmittance
of cells at location x along the rainbow when being illuminated at time tp C td.
Both

p
Ts.!/ and

p
Tc.x; tp C td/ affect the optical field twice as each rainbow flash

passes through the cell twice. Since the td is much smaller than the time scale of the
envelope variations caused by the cell flow, we can approximate Tc.x; tp C td/ to be
Tc.x; tp/ to synchronize with QEin.!; tp/ without sacrificing accuracy.



6.2 Time Stretch Quantitative Phase Imaging 53

The total electric field at each wavelength or optical frequency after two arms of
the interferometer recombine at the beam splitter becomes

QEo.!; tp/ D Ts.!/Tc.x; tp/Tb.!/
p

Rm.!/ QEin.!; tp/

� exp
n
i
h
�!

c
� 2.L C �L/ � �'c.x; tp/

i o

� Œ1 � Tb.!/�
p

Rm.!/ QEin.!; tp/ exp
h
�i

!

c
� 2L

i

D p
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�
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2!L

c

�
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n
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n
i
h
�2

!

c
�L
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i o
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o
:

(6.9)

Based on the spectral encoding setup, we know spatial information has been
encoded into spectrum,

Tc.x; tp/ ) Tc.!; tp/ (6.10)

�'c.x; tp/ ) �'c.!; tp/ (6.11)

The intensity envelope then becomes

QIo.!; tp/ / QE�
o .!; tp/ QEo.!; tp/

D
n
Œ1 � Tb.!/�2 C T2

b .!/T2
c .!; tp/T2

s .!/
o
Rm.!/

� j QEin.!; tp/j2 � 2Œ1 � Tb.!/�Tc.!; tp/Tb.!/Rm.!/

� Ts.!/j QEin.!; tp/j2cosŒ2!�L=c C �'c.!; tp/�

(6.12)

During time stretch, each frequency component ! or wavelength � will be one-
to-one mapped into time domain. We define the relative time delay of � compared
to the central wavelength, �c, as ti, which is usually called intra-pulse time delay.
Written in terms of �, Eq. (6.12) can be simplified as

QIo.�; tp/ / Ib.�; tp/ C Ii.�; tp/cos

�
4��L

�
C �'c.�; tp/

�

(6.13)

where Ib.�; tp/ is the background or baseband intensity envelope, and Ii.�; tp/ is the
interference or intermediate intensity envelope:
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Ib.�; tp/ D
n
Œ1 � Tb.�/�2 C T2

b .�/T2
c .�; tp/T2

s .�/
o

� Rm.�/j QEin.�; tp/j2
(6.14)

Ii.�; tp/ D �2Œ1 � Tb.�/�Tc.�; tp/Tb.�/Rm.�/

� Ts.�/j QEin.�; tp/j2
(6.15)

Linear time stretch maps frequency domain into time domain by

ti D D.� � �c/Lf : (6.16)

where �c is the central wavelength and Lf the length of the dispersive fiber. D is
the group velocity dispersion, that is, the temporal pulse spreading, �ti, per unit
bandwidth, ��, per unit distance traveled. Thus the temporal samples of the energy
flux absorbed at the photodetector are the intra-pulse concatenation of spectral
samples followed by inter-pulse concatenation of pulse waveforms:
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where cat! and cat# mean horizontal and vertical concatenations, respectively.

Each QIo.t.n/
i ; t.m/

p / expresses the nth spectral (spatial) pixel at the mth pulse (line
image). Applying Eq. (6.16) to Eq. (6.13),

QIo.t.n/
i ; t.m/

p / / Ib.t.n/
i ; t.m/

p / C Ii.t
.n/
i ; t.m/

p /

� cos

"
4��L � DLf

t.n/
i C D�cLf

C �'c.t
.n/
i ; t.m/

p /

#
(6.18)

Therefore, the time stretched temporal waveform corresponding to each line scan
image consists of two features [19]: One is Ib.t.n/

i ; t.m/
p /, a temporal envelope of the

time stretched optical pulse at baseband frequencies. The amplitude of this envelope
corresponds to the temporal shape of the optical pulse and its deviations caused
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by the object transmission as in brightfield microscopy. It provides information
about optical loss, i.e., light absorption and scattering caused by surface roughness,
granularity, and inner cell organelle complexity.

The second term in Eq. (6.18) (with cosine component) is a fast oscillating fringe,
caused by the spectral interference of the pulses multiplexed between the sample and
the reference arms in the Michelson interferometer. This term can be separated by
a bandpass filter, and its envelope can be derived by a nonlinear envelope detection
technique. Here we used a moving minimum/maximum filter to extract the envelope.
After normalization to the envelope, the cosine component

Ic.t
.n/
i ; t.m/

p / D cos

"
4��L � DLf

t.n/
i C D�cLf

C �'c.t
.n/
i ; t.m/

p /

#

(6.19)

is used for calculation of the object phase shift, �'c.x; tp/. The first term in cosine
causes the interferogram fringe pattern. Since ti � D�cLf , it can be approximated as

4�DLf �L

ti C D�cLf
Ñ �fiti C 'i0 (6.20)

where 'i0 is an initial phase constant, fi is the fringe frequency:

fi Ñ
4��L

�2
cDLf

(6.21)

As seen in Fig. 6.2b, the fringe frequency, fi, in our setup is about 4.7 GHz
determined by the optical path length mismatch between the interferometer arms.

The instantaneous phase of Ic.t
.n/
i ; t.m/

p / can be readily retrieved from its analytic
representation given by Hilbert transform, H:

†Ic.t
.n/
i ; t.m/

p / D arg
h
Ic.t

.n/
i ; t.m/

p / C j � HfIc.t
.n/
i ; t.m/

p /g
i

D 4�DLf �L

t.n/
i C D�cLf

C �'c.t
.n/
i ; t.m/

p /
(6.22)

Here arg means the argument of a complex number. A one-dimensional phase
unwrapping algorithm followed by background phase removal gives the object
phase shift,

�'c.t
.n/
i ; t.m/

p / D unwrapf†Ic.t
.n/
i ; t.m/

p /

� †Ic.t
.n/
i ; t.empty/

p /g
(6.23)

where t.empty/
p corresponds to an empty pulse when no cell is in the field of view, i.e.,

background phase. The unwrapping algorithm used in our processing acts when the
absolute phase difference between two consecutive samples of the signal is greater
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than or equal to � radians, and adds multiples of 2� to the following samples in
order to bring the consecutive samples phase difference in the acceptable range of
�� to � .

To perform combined quantitative phase and loss imaging, the phase derived by
Hilbert transformation should be corrected to eliminate the artifacts caused by the
intensity variations induced by the passing cells. Most cells of interest in clinical
or industrial applications have a diameter 3–40 µm, when suspended in fluid. Given
the field of view and the period of the interrogation rainbow pulses are 130 µm
and 27 ns, respectively, the time duration of the instantaneous intensity change
induced by the single cells in each laser pulse is about 0.6–8:3 ns, which will bring
in frequency components up to about 1.6 GHz. Compared to the higher frequency
components at 4.7 GHz corresponding to the interference fringes, the frequency of
intensity variations is small (<1.6 GHz), and in this scenario, our method remains
robust to separate the two electrical spectral components for optical loss and phase.

6.2.6 Cell Transmittance Extraction

One of the greatest advantage of TS-QPI is its ability to extract the cell transmit-
tance, Ts.�/, without prior knowledge of the transmittance of the solution, Ts.�/,
that of the beam-splitter, Tb.�/, and the reflectance of substrate of the microfluidic
channel, Rm.�/. During measurements when there is no cell in the field of view
(empty frames), Eq. (6.15) becomes

Ii.�; t.empty/
p / D �2Œ1 � Tb.�/�Tb.�/Rm.�/

� Ts.�/j QEin.�; t.empty/
p /j2

(6.24)

In addition, the signal from only the reference arm can be recorded by blocking
the sample arm:

Ir.�; tp/ D Œ1 � Tb.�/�2Rm.�/j QEin.�; tp/j2 (6.25)

Combining Eqs. (6.14), (6.24), and (6.25), and assuming that the input electric field
pulse shape, j QEin.�; tp/j, is invariant to tp, the cell transmittance can be derived as

Tc.�/ D �2
p

Ir.�; tp/ � .Ib.�; tp/ � Ir.�; tp//

Ii.�; t.empty/
p /

(6.26)

Please note that the values of Ir.�; tp/, Ib.�; tp/, and Ii.�; t.empty/
p / are directly mea-

sured by TS-QPI, and no prior knowledge of Tb.�/, Ts.�/, Rm.�/, and j QEin.�; tp/j is
needed to calculate the cell transmittance.
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6.2.7 Image Reconstruction

We reconstruct both quantitative brightfield and phase-contrast images simultane-
ously from single-shot frequency-multiplexed interferometric measurements. The
envelope and phase of the time-domain signal QIo.t.n/

i ; t.m/
p / were firstly mapped into

series of spatial information QIo.x.n/; t.m/
p /, forming a line scanning brightfield image

and phase contrast image, illuminated by the optical pulse at time tp. This is because
within each optical pulse, the spatial information is mapped one-to-one into spectral
domain, x.n/ ! �n, and spectrum is stretch in time, �n ! t.n/

i , where t.n/
i is the

relative group delay time of each frequency component within a pulse with respect
to the central wavelength. These line-scan images based on QIo.x; t.1/

p /, QIo.x; t.2/
p /,

QIo.x; t.3/
p /, . . . were then cascaded into a two-dimensional image corresponding to

QIo.x; y/, where the second dimension y is the spatial mapping of time lapse based on
object flow speed.

The optical path length difference image can be calculated by the phase shift line
scans as

OPD.x.n/; y.m// D �.t.n/
i ; t.m/

p /

2�
�'c.t

.n/
i ; t.m/

p / (6.27)

On the other hand, if the axial thickness of the cell at reconstructed image pixel
.x; y/ is d.x; y/,

OPD.x; y/ D 2Œncell.x; y/ � nsolution.x; y/� � d.x; y/ (6.28)

in which ncell and nsolution are the refractive indices of the cell and the surrounding
buffer solution, respectively. The factor 2 is to account for the fact that each
wavelength component passes the cell twice in Michelson interferometer.

If we integrate Eq. (6.28) over the area of the cell, we can derive an average
refractive index contrast for the cell, which corresponds to the average protein
concentration of the cell:

�ncell D ncell � nsolution D
’

cell OPD.x; y/dxdy

2
’

cell t.x; y/dxdy
(6.29)

where
’

cell t.x; y/dxdy is the volume of the cell obtained from its lateral diameter,
d, as V � �d3=6.

The unit net change of intensity envelope variations induced by the cell is
obtained from the amplitude of the slowly varying envelope feature of the inter-
ferogram as

�Ib.�; tp/ D T2
b .�/T2

s .�/.1 � T2
c .�; tp//

Œ1 � Tb.�/�2 C T2
b .�/T2

s .�/
(6.30)
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Fig. 6.4 Left: screenshots of the video of OT-II hybridoma T-lymphocytes flowing in a microflu-
idic channel; The cells are aligned at the center of the channel by hydrodynamic focusing. Optical
path difference measured at four of the interrogation points on the rainbow flash is shown as
a function of time in the right panels. Right: screenshots of the video of SW-480 colon cancer
epithelial cells flowing in a microfluidic channel; The cells are aligned at the center of the channel
by hydrodynamic focusing. Optical path difference measured at four of the interrogation points on
the rainbow flash is shown as a function of time in the right panels

It gives the temporal and spatial information of the combined effects from absorp-
tion and scattering:

Iloss.x
.n/; y.m// D �Ib.�n; t.m/

p / (6.31)

It gives the temporal and spatial information of the combined effects from
absorption and scattering (Fig. 6.4).
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6.3 Image Processing Pipeline

6.3.1 Feature Extraction

The decomposed components of sequential line scans form pairs of spatial maps,
namely, optical phase and loss images (Fig. 6.5). These images are used to obtain
biophysical fingerprints of the cells [29, 118]. With domain expertise, raw images
are fused and transformed into a suitable set of biophysical features, listed in
Table 6.2, which the deep learning model further converts into learned features for
improved classification.

The feature extraction operates on optical phase and loss images simultaneously,
including object detection, segmentation, and feature measurement, as well as
clump identification, noise suppression, etc. As an example of the expert designed
features, the average refractive index, used as a measure of protein concentration
[119], is obtained by dividing the integral of the optical path length by the cell
volume. Since cells in suspension relax to a spherical shape (due to surface tension)
[93, 94], an independent measure of cell diameter can be obtained from its lateral
dimension for volume estimation.

Fig. 6.5 Quantitative optical phase and loss images of OT-II (blue) and SW-480 (green box) cells;
The optical loss images of the cells are affected by the attenuation of multiplexed wavelength
components passing through the cells. The attenuation itself is governed by the absorption of
the light in cells as well as the scattering from the surface of the cells and from the internal
cell organelles. The optical loss image is derived from the low frequency component of the
pulse interferograms. The optical phase image is extracted from the analytic form of the high
frequency component of the pulse interferograms using Hilbert Transformation, followed by a
phase unwrapping algorithm. Also, supplementary Videos 1 and 2 show measurements of cell-
induced optical path length difference by TS-QPI at four different points along the rainbow for
OT-II and SW-480, respectively
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Table 6.2 List of extracted features

Feature name Description Category

Diameter-RB Diameter along the interrogation rainbow. It is insensitive to flow
rate fluctuation. For higher accuracy, it is calibrated by the spatial
nonuniform distribution of rainbow wavelengths

Morphology

Diameter-FL Diameter along the flow direction. It is sensitive to flow rate
fluctuation, but can be a candidate parameter for monitoring flow
speed and channel condition

Morphology

Tight area Total number of pixels in the segmented region in the phase image Morphology

Perimeter Total number of pixels around the boundary of each segmented
region

Morphology

Circularity 4�Area=Perimeter2 Morphology

Major axis Considering the cell as elliptical in lateral imaging plane, the length
of the major axis of the ellipse with a normalized second central
moment same as the cell

Morphology

Orientation Angle between the flow direction and the major axis of the cell
elliptical shape

Morphology

Loose area Total number of pixels in the expanded segmented region for
measurement of the pixel intensities

Morphology

Median
radius

The median distance of any pixel in the object to the closest pixel
outside of the object

Morphology

OPD-1 Integrated optical path length difference within the entire
segmented area (cell), calibrated by the power distribution within
different wavelength components of the incident laser pulses

Optical
phase

OPD-2 Integrated optical path length difference within the entire
segmented area (cell). In addition to the calibration of OPD-1, it is
calibrated by the pulse-to-pulse fluctuations within a 1 µs detection
window

Optical
phase

Refractive
index

The mean refractive index difference between the object and the
surrounding liquid (buffer solution), which is calculated based on
OPD-2 and size measurement. Refractive index difference for cells
is proportional to their protein concentration

Optical
phase

Absorption-1 Mean absorption coefficient within the entire segmented area (cell).
It is calibrated by the power distribution within different
wavelength components of the incident laser pulses and by the
pulse-to-pulse fluctuations within a 1 µs detection window. This
parameter corresponds to an absorption-dominant model for the cell

Optical loss

Absorption-2 Mean absolute absorption coefficient within the entire segmented
area (cell). It is calibrated by the power distribution within different
wavelength components of the incident laser pulses and by the
pulse-to-pulse fluctuations within a 1 µs detection window. This
parameter corresponds to an absorption-dominant model for the cell

Optical loss

Scattering-1 Mean optical loss within the entire segmented area (cell). It is
calibrated by the power distribution within different wavelength
components of the incident laser pulses and by the pulse-to-pulse
fluctuations within a 1 µs detection window. This parameter
corresponds to a scattering-dominant model for the cell

Optical loss

Scattering-2 Mean absolute optical loss within the entire segmented area (cell).
It is calibrated by the power distribution within different
wavelength components of the incident laser pulses and by the
pulse-to-pulse fluctuations within a 1 µs detection window. This
parameter corresponds to a scattering-dominant model for the cell

Optical loss
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The high-content image analysis and cell screening pipeline is implemented by
combining multiple informatics tools, namely CellProfiler for image processing [33,
120], MySQL/MangoDB for database, Matlab for machine learning, and Javascript
for interactive visualization. First of all, image noise reduction and smoothing have
been performed, which can remove artifacts that are smaller than optical resolution
limit. For object segmentation, we use the Otsu’s thresholding method. Once objects
are identified in the image, morphology of each single cell can be described by area,
diameter, uniformity, aspect ratio, perimeter, number of surrounding clumped cells,
etc.

The capability to identify clumped cells from single large cells greatly reduces
the misclassification rate in imaging flow cytometry compared to traditional flow
cytometry. Intensity peaks of pixel brightness within each object are used to
distinguish clumped objects. The object centers are defined as local intensity
maxima in the smoothed image. Retaining outlines of the identified objects helps
validate and visualize the algorithm. In the next step, we discard the objects touching
the borders of the image, i.e., the edges of the field of view and data acquisition time
window. However, the chance of cells showing up at the edges is very low due to
hydrodynamic focusing. We are also capable of excluding dust, noise, and debris
by neglecting the objects that are too small or their aspect ratio is too extreme to be
a cell.

6.3.2 Multivariate Features Enabled by Sensor Fusion

In feature extraction, one of the most important advantages of optical loss and phase
fusion is its robustness and insensitivity to axial defocusing [121] caused by the
limited depth-of-focus of the objective lens and variations of the cell alignment
in microfluidic channel. Diffracted photons have little chance to be influential in
phase images. This makes the size measurements in optical phase images relatively
accurate and consistent, more suitable than direct size measurements in optical
loss images for extraction of scattering and absorption features. Among different
features, size measurement is particularly important as it is used by itself in many
technologies [87, 122–124].

The large data set captured by TS-QPI provides sufficient statistical character-
istics for cell analysis based on biophysical features. Since cells from even the
same line or tissue exhibit variations in size, structure, and protein expression levels
[32, 125, 126], high accuracy classification can only be achieved by a model tolerant
to these intrinsic variations On the other hand, the feature extractor must reflect
the intricate and tangled characteristics caused by extrinsic variations, e.g., drug
treatment [112], cell cycles, rare cell types, labeling, and transcription rate [127].

A total of 16 features are chosen among the features extracted from fusion of
optical phase and loss images of each cell. Features that are highly correlated do
not provide unique information. Pairwise correlation matrix among these features is
shown as a heat map in Fig. 6.6a. Diagonal elements of the matrix are correlation of
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Fig. 6.6 (a) Pairwise correlation matrix visualized as a heat map. The map depicts the correlation
between all major 16 features extracted from the quantitative images. Diagonal elements of the
matrix represent correlation of each parameter with itself, i.e., the autocorrelation. The subsets in
box 1, box 2, and box 3 show high correlation because they are mainly related to morphological,
optical phase, and optical loss feature categories, respectively. (b) Ranking of biophysical
features based on their AUCs in single-feature classification. Blue bars show performance of
the morphological parameters, which includes diameter along the interrogation rainbow, diameter
along the flow direction, tight cell area, loose cell area, perimeter, circularity, major axis length,
orientation, and median radius. As expected, morphology contains most information, but other
biophysical features can contribute to improved performance of label-free cell classification.
Orange bars show optical phase shift features, i.e., optical path length differences and refractive
index difference. Green bars show optical loss features representing scattering and absorption by
the cell. The best performed features in these three categories are marked in red

each feature with itself, i.e., the autocorrelation. The subset of the features in Box
1 shows high correlation among morphological features. Also, the subset features
in Box 2 and 3 are correlated as they are mainly related to optical phase shift and
optical loss, respectively.

As a representation of our biophysical features in classification, Fig. 6.6b shows
classification accuracy based on each single feature arranged in descending order.
The features are color coded into three categories: morphology, optical phase,
and optical loss, to describe the main type of information provided by each. The
figure provides valuable insight into the relative importance of each category of cell
features and suggests that morphological features carries the most information about
cells, but at the same time, significant additional information is contained in optical
phase and loss measurements.
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6.3.3 System Calibration

To calibrate the imaging system and image processing pipelines for size mea-
surement, 5 µm polystyrene beads (from Polysciences, Inc.) with NIST traceable
particle size standards were analyzed. Size measurement of the polystyrene beads
had a distribution with 5:06 µm expected mean and 0:5 µm standard deviation. The
broadened standard deviation was within the range of optical resolution limit and
was caused mainly by performing object recognition on resolution limited images.
Due to limited optical resolution of the setup, the edges of bead or cell are blurred,
generating distribution of point spread functions in optical phase and loss images
outside of the cell boundaries. In order to maximize the accuracy in morphological,
phase, and loss measurements, after object segmentation we expanded the object
boundaries by 2:5 µm (optical resolution of the setup measured by knife-edge
method), which serve as loose boundaries, indicating the area within which the pixel
intensities are measured and integrated in phase and loss images.

6.4 Conclusion

The multiplexed biophysical features thus lead to information-rich hyper-
dimensional representation of the cells for label-free classification with high
statistical precision. In the next chapter, we further improved the accuracy,
repeatability, and the balance between sensitivity and specificity of our label-
free cell classification by a novel machine learning pipeline, which harnesses
the advantages of multivariate supervised learning, as well as unique training by
evolutionary global optimization of receiver operating characteristics (ROC).
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Big Data and Artificial Intelligence



Chapter 7
Big Data Acquisition and Processing
in Real-Time

Coherent-STEAM is a quantitative phase microscopy technique for label-free
analysis of up to 100,000 cells per second in flow. Here, we introduce a data
acquisition scheme that enables interruptionless storage of Coherent-STEAM cell
images. Our proof of principle demonstration is capable of saving 10.8 TB of cell
images in an hour, i.e., pictures of every single cell in 2.7 mL of a sample.

7.1 Introduction

In Coherent-STEAM system, the output signal of the photodetector usually has
a very large bandwidth in the order of a few GHz. Based on Nyquist theorem,
an analog-to-digital converter (ADC) with a sampling rate of at least twice the
bandwidth is required to capture this signal without aliasing. If we want to
capture images of every single cell in a sample, all of the ADC output samples
should be recorded on a storage unit. For example, to capture and process the data
for the Coherent-STEAM setup, the minimum sampling rate of the photodetector
signal is 12 GS/s. If the bit-depth of the ADC is 8 bits, the acquisition system should
handle storage of 12 GB of data per second. To ease the storage requirement by a few
times, we purpose analog preprocessing of Coherent-STEAM data. Our technique
is based on using telecommunication radio-frequency (RF) components to convert
the photodetector output signal into a set of lower bandwidth signals with only the
quantitative phase and intensity information, so that the sampling rate of the required
ADCs can be much smaller. As a result, the storage units can handle logging these
lower rate signals at real-time. Also, by parallel processing of the stored data, we
would be able to retrieve the phase and intensity images in real-time and use them
for cell sorting.

© Springer International Publishing AG 2017
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7.2 Technical Description of the Acquisition System

We have previously [19] shown that if the arms’ length mismatch in Coherent-
STEAM interferometer is chosen long enough, one can see two separate features
in the spectrum of the system output corresponding to intensity and phase com-
ponents of the cells (Fig. 7.1). By filtering out the high-frequency features and
down-converting them to baseband, we should be able to reconstruct intensity and
phase images of the cells.

We purpose a quadrature phase demodulation scheme to perform the analog
preprocessing on Coherent-STEAM signals (Fig. 7.2). First, the photodetector
output signal is bandpass filtered and split into two paths. These signals are mixed
with two sinusoidal signals that are 90ı phase-shifted with respect to each other.
The frequency of the sinusoidal signals is approximately at the center of the
high frequency features of Coherent-STEAM setup, which is set by the arms’
length mismatch (in our example about 5 GHz). Mixers shift the high-frequency
component containing the phase and intensity information to lower frequencies
close to baseband forming in-phase, I.t/, and quadrature, Q.t/, demodulation
components (I/Q demodulation).

Finally, the baseband components, which now contain the sample’s phase and
intensity information, can be filtered out and digitized with two ADCs (Fig. 7.3) that
have a considerably smaller sampling rate than what was required before the down-
conversion. In our demonstration, the sampling rate was reduced from 12 GS/s to
1.5 GS/s. In addition, since the outputs are mixed with 90ı phase-shifted sinusoidal
signals, the phase and intensity of the signal can be respectively derived by simple
calculations as

�' D unwrap

�

arg

�
I.t/

Q.t/

��

; (7.1)

�I D
p

I.t/2 C Q.t/2; (7.2)

Fig. 7.1 Spectral components of Coherent-STEAM signal. For a Coherent-STEAM setup with
long enough arms’ length mismatch the spectrum of the output signal shows two separate spectral
bands. The low frequency components correspond to the intensity of the sample, while the high
frequency components contain the phase information in addition to the intensity information of the
cells
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Fig. 7.2 Analog preprocessing of Coherent-STEAM signal. The analog signal processing system
for reducing the data rate of Coherent-STEAM is essentially a quadrature down-conversion unit.
I and Q outputs and their corresponding spectra show that the down-conversion is effective in
reducing the bandwidth and the required sampling rate

Fig. 7.3 Digital signal processing system for acquisition of analog preprocessing unit outputs.
This system is built with simple blocks such as argument calculator, unwrapper, and first in, first
outs (FIFOs), which can be performed in real-time
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where I.t/ and Q.t/ are the in-phase and quadrature-phase outputs of the analog
preprocessing unit as shown in Fig. 7.2.

7.3 Big Data Acquisition Results

We tested the applicability of our method with a preliminary setup. To generate
90ı phase-shifted sinusoidal signals, we used a signal generator connected to a
90ı hybrid coupler. The I.t/ and Q.t/ outputs of the analog signal processing
system are captured with two 1.5 GS/s analog-to-digital converters. These signals
are down-converted in frequency domain and about eight times slowed-down in time
compared to the original Coherent-STEAM output (Fig. 7.2). This down-conversion
happens for consecutive line images at real-time. Also, with careful design, both
channels can have the same group delay, and edges of the pulses in two channels
can align in time.

Figure 7.4 shows a few intensity and phase cell images captured by our
continuously recording big data acquisition system. The setup can acquire 10.8 TB
of these images over a course of an hour-long experiment, which corresponds to
pictures of every single cell in 2.7 mL of the suspended cells sample. The storage
unit is a RAID 0 array of hard disk drives that are written and read in parallel to
provide superior access speed. To capture larger data sizes, the system can be easily
expanded by increasing the number of hard disk drives in the array or using larger
hard drives.

Also, the required digital signal processing for derivation of sample phase-shift
from the outputs of the analog signal processing system, I.t/ and Q.t/, can be

Fig. 7.4 Sample images acquired by the analog preprocessing system. Both phase and intensity
images for two different sets of OT-II hybridoma T cells in flow are shown
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easily implemented on an FPGA. Figure 7.3 shows a suggested design for such an
FPGA unit. One can see that it only requires implementation of basic blocks such as
argument calculator, unwrapper, and first in, first outs (FIFOs). This is a direct result
of transferring the cumbersome and calculation intensive operations of the phase
recovery algorithm (such as Hilbert transformation) to the analog preprocessing
unit. This way, the FPGA output signal can be directly used to control a cell sorter
in our label-free imaging flow cytometer.

7.4 Conclusion

In summary, we used quadrature phase demodulation technique to reduce the
sampling rate required for capturing Coherent-STEAM signals, decrease the amount
of data that is generated, and facilitate the data processing. As a proof of principle,
we showed an acquisition system capable of continuously recording 10.8 TB of
phase and intensity images.



Chapter 8
Deep Learning and Classification

As demonstrated in previous chapters, our TS-QPI system captures quantitative
optical phase and intensity images and extracts multiple biophysical features of
individual cells. In this chapter, we use these biophysical measurements to form
a hyperdimensional feature space in which supervised learning is performed for
cell classification. We show that TS-QPI not only overcomes the throughput
issue in cellular imaging, but also improves label-free diagnosis by integration of
sensing multiple biophysical features. We also compare various learning algorithms
including artificial neural network, support vector machine, logistic regression,
and a novel deep learning pipeline, which adopts global optimization of receiver
operating characteristics. As a validation of the enhanced sensitivity and specificity
of our system, we show classification of white blood T-cells against colon cancer
cells, as well as lipid accumulating algal strains for biofuel production. This system
opens up a new path to data-driven phenotypic diagnosis and better understanding
of the heterogeneous gene expressions in cells.

8.1 Background

Deep learning refers to methods for extraction of patterns and knowledge from rich
multidimensional datasets. While it is extensively used for image recognition and
speech processing, its application to label-free classification of cells has not been
exploited.

Here, we further improved the accuracy, repeatability, and the balance between
sensitivity and specificity of label-free phenotypic screening by a novel machine
learning pipeline, which harnesses the advantages of multivariate supervised learn-
ing, as well as unique training by evolutionary global optimization of receiver
operating characteristics (ROC). To demonstrate sensitivity, specificity, and accu-
racy of multi-feature label-free flow cytometry using our technique, we classified

© Springer International Publishing AG 2017
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(1) OT-II hybridoma T-lymphocytes and SW-480 colon cancer epithelial cells, and
(2) Chlamydomonas reinhardtii algal cells (herein referred to as Chlamydomonas)
based on their lipid content, which is related to the yield in biofuel production. Our
preliminary results show that compared to classification by individual biophysical
parameters, our label-free hyperdimensional technique improves the detection accu-
racy from 77.8% to 95.5%, or in other words, reduces the classification inaccuracy
by about five times.

8.2 Machine Learning

Neural networks are a flexible and powerful bioinspired learning model, which
perform layers of nonlinear feature transformations, learned from the training data
[128–130]. The transformations morph the input data with weighted sums and
nonlinear activation functions into feature spaces more suitable for classification.
Shown in Fig. 8.1 is a unique feedforward neural network learning model that
is globally trained by the objective of improving receiver operating characteristic
(ROC). The learning algorithm introduced here maximizes the area under ROC
curve (AUC), which is a global indicator of the classifier performance on the entire

Fig. 8.1 Machine learning pipeline. Information of quantitative optical phase and loss images
are fused to extract multivariate biophysical features of each cell, which are fed into a fully
connected neural network. The neural network maps input features by a chain of weighted sum
and nonlinear activation functions into learned feature space, convenient for classification. This
deep neural network is globally trained via area under the curve (AUC) of the receiver operating
characteristics (ROC). Each ROC curve corresponds to a set of weights for connections to an
output node, generated by scanning the weight of the bias node. The training process maximizes
AUC, pushing the ROC curve toward the upper left corner, which means improved sensitivity and
specificity in classification
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training dataset [131–133]. The global training of the neural network, although
computationally costly, results in a classifier more robust, repeatable, and insensitive
to imbalance among classes. For the purpose of end-to-end supervised learning
with AUC whose gradient is not well behaved, we employed the heuristic genetic
algorithm (GA), which is resilient to discontinuities of the cost function and being
trapped in local minima during optimization.

The network is composed of multiple hidden layers, which automatically learn
representations of the data at different levels of abstraction, and thus is considered
a form of deep learning [134, 135]. Each layer performs a linear combination on its
inputs from the previous layer and operates a nonlinear function on the weighted
sums. The output of the node j in layer l C 1, denoted by z.lC1/

j , is generated from
inputs x1, x2, . . . , xN as

z.lC1/
j D h

�
a.lC1/

j

�
D h
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(8.1)

Here a.lC1/
j is the linear combination of inputs, and !

.l/
ji are the weights of the

linear combination. The summation runs over Nl, the total number of nodes in the
layer l, and L is the total number of hidden layers. x.l/

0 is the bias node in layer l,
conventionally 1. Some popular choices for the nonlinear activation function h.�/
include logistic sigmoid function h.a/ D 1=.1 C exp.�a//, hyperbolic tangent
function tanh.a/, and commonly used in deep learning, rectified linear unit (ReLU)
h.a/ D max.0; a/. In our learning model, we use ReLU, which typically speeds
up the supervised learning process of deep neural network by inducing sparsity and
preventing gradient vanishing problem.

For a trained classifier in hyperspace, receiver operating characteristics (ROC)
curve describes the sensitivity and specificity of a classifier collection that includes
nonlinear classifiers scaled in the direction of their normal vector field. In a deep
learning network, this is equivalent to shifting the weight of the bias node in the
last hidden layer. ROC highlights the trade-off between sensitivity and specificity
(Fig. 8.1), and the area under ROC (AUC) provides a quantitative robust measure
of classifier performance [136–139]. Choosing a large value for the weight of the
bias node results in high sensitivity; however this sacrifices the specificity leading
to large number of false positives. As a way to visualize the impact of the threshold
on classification accuracy, a classifier that accurately separates the classes will have
an ROC curve that approaches the upper left corner. Conversely, a random guess,
corresponding to accuracy of 50% in binary classification will have an ROC that is a
diagonal line. The AUC parameter serves as an effective analysis metric for finding
the best classifier collection and has been proven to be advantageous over the mean
square error for evaluating learning algorithms [140].
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To prevent overfitting in our deep learning model, we added a regularization term
to the AUC-based cost function. Our regularization term is defined as mean square
of all the network weights, excluding the weight of the bias nodes. Therefore, the
overall cost function, cost.!/, that is minimized by the genetic algorithm is

cost.!/ D .1 � AUC.!//
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(8.2)

where � is the regularization parameter, which controls the trade-off between
overfitting (variance) and underfitting (bias).

8.3 Applications

8.3.1 Blood Screening: Demonstration in Classification
of OT-II and SW-480 Cells

In previous chapter, the multiplexed biophysical features extracted from ultra-
fast cellular imaging using TS-QPI lead to information-rich hyper-dimensional
representation of the cells. In contrast to single-feature approaches [31, 87, 123],
our label-free cell classification enabled by TS-QPI and multivariate analysis
offers considerable improvements in detection sensitivity and accuracy for cancer
diagnosis (Fig. 8.2). To demonstrate the application in circulating tumor cell (CTC)
detection, we used OT-II hybridoma T cells as a model for normal white blood cells
and SW-480 epithelial colon cancer cells. The features described in Table 6.2 were
measured by our TS-QPI system for the aforementioned cells. Figure 8.3 shows
three of these features in a three-dimensional (3D) scatter plot, attributed to size,
protein concentration, and attenuation. The 2D projections on the three orthogonal
planes are also shown. It is clear that additional dimensions improve distinguishment
among different cell types compared to individual features.

A five-fold cross-validation methodology is applied on the dataset to split
data points into training, validation, and test subsets. Figure 8.2a shows progress
in label-free classification depicted by balance accuracy as the learning model
evolves over GA generations. Blue curve shows the classification balanced accuracy
of the test dataset using all sixteen biophysical features extracted from the TS-
QPI images. To highlight the improvement by hyperdimensional feature space
of TS-QPI, we also show the balanced accuracy curves based on several single
features: cell diameter for morphology, integral of cell’s optical path difference for
optical phase information, and cellular absorption for optical loss in near-infrared
window. Although these three biophysical features individually perform the highest
accuracy among morphology, optical phase, and optical loss groups respectively, as
previously shown in Fig. 6.6b, our multivariate deep learning classifier outperforms
them. In addition, receiver operating characteristic (ROC) curves for each fold are
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Fig. 8.2 Classification of white blood cells (OT-II) and cancer cells (SW-480) by TS-QPI label-
free features; (a) Training process of the neural network leads to improvement of classification
accuracy over generations of genetic algorithm. In addition to multivariate analysis using all
16 biophysical features extracted from the TS-QPI quantitative images (blue curves), we also
show training process by three single features. Red, green, and orange curves represent the best
biophysical feature in each category, morphology, optical phase, and optical loss, respectively. The
values represent average balanced accuracy among training datasets at the end of optimization.
Clearly, the final achievable accuracy by multivariate classification is considerably higher than that
of single features. (b) For each case, we show 5 ROC curves for different test datasets. The gray
diagonal line shows results of random guess classification. Multivariate analysis based on TS-QPI
images (blue curves) shows significant improvement in classification sensitivity and specificity.
The fact that the classifiers remain almost unchanged during the five iterations of cross validation
shows consistency and robustness of the classifiers. (c) To visualize the multivariate classification
results, data points are depicted in the space of the first two PCA components

generated based on the test subsets (Fig. 8.2b) and reveal the superior sensitivity and
specificity of multivariate classifier. Also, the small variations of the ROC curves
among different folds show the consistency of the classification performance for
different test datasets. To visualize the hyperspace decision boundary, OT-II and
SW-480 data points are shown in first and second principal components analysis
(PCA) components (Fig. 8.2c).

8.3.2 Biofuel: Demonstration in Algae Lipid Content
Classification

Microalgae are considered one of the most promising feedstock for biofuels [141].
The productivity of these photosynthetic microorganisms in converting carbon
dioxide into useful carbon-rich lipids greatly exceeds that of agricultural crops.
Worldwide, research and demonstration programs are being carried out to develop
the technology needed to expand algal lipid production as a major industrial process.
Selecting high-yield microalgae with fast growth factors are essential in biofuel
production industry. Because algae differ greatly in size and structure, cell size alone
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Fig. 8.3 Three-dimensional scatter plot based on size, protein concentration, and attenuation of
OT-II and SW-480 cells measured by TS-QPI. The green and blue dots are two-dimensional (2-
D) projections of cell data points on the planes containing only two of the biophysical features.
The cell protein concentration corresponds to the mean refractive index difference of the cell
(Refractive index feature in Table 6.2). The attenuation is a feature describing the optical intensity
loss caused by cell absorption (Absorption-1 feature in Table 6.2). Comparison of 2-D scatter plots
reveals that additional biophysical features (in this case mainly protein concentration) serve to
classify the cell types more accurately

provides insufficient information for cell classification. Here we show that adding
optical phase and loss data, obtained by the phase contrast time stretch imaging flow
cytometer, to size data enables algal cells to be distinguished on the basis of lipid
content.

To test our apparatus for its ability to separate algal cells with high and low-
lipid content, we exploited the starch-null sta6 strain of Chlamydomonas. This
strain is deleted for sta6 [142] (encoding the small subunit of ADP-glucose-
pyrophosphorylase), and when nitrogen-deprived accumulates more lipid than
wild-type [143–146]. Chlamydomonas reinhardtii strains used were cw15 (nit1
NIT2 mtC�) and sta6 (cw15 nit1 NIT2 arg7-7 sta6-1::ARG7 mtC), available as
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CC-4568, CC-4348 respectively from the Chlamydomonas resource center (CRC)
[147]. Cells were grown in tris-acetate-phosphate (TAP) medium supplemented
with arginine (100 µg mL�1). Cultures were grown in Innova incubators (New
Brunswick Scientific, Edison, NJ) at 24 ıC, agitated at 180 rpm with continuous
light (95 µmol m�2 s�1, 6 cool white fluorescent bulbs at 4100 K and 3 warm
white fluorescent bulbs at 3000 K per incubator). To induce lipid production,
cells were cultured to mid-log phase in regular TAP prior to deprivation of N
by transfer to ammonium-free (i.e., nitrogen-free) TAP medium, as described
previously [146]. Briefly, cells subjected to nitrogen deprivation were grown to
4 � 106 cells mL�1 and collected by centrifugation at 1006 �g for 5 min at room
temperature. The supernatant was discarded, and the cells were washed in nitrogen-
free TAP. Cells were then resuspended in nitrogen-free TAP to a final cell count of
2 � 106 cells mL�1. Cell densities were determined using a hemocytometer.

Comparison of the two strains therefore provides an ideal setup to test our
ability to distinguish lipid-content phenotypes. Figure 8.4a shows the 3D scatter
plot showing the three principle physical features for the two algae populations.
Here, the optical loss category of the features plays a dominant role in label-free
classification. In Fig. 8.4b, we show ROC curves for binary classification of these

Fig. 8.4 Classification of algal cells (Chlamydomonas reinhardtii) based on their lipid content by
TS-QPI. (a) Three-dimensional scatter plot based on size, protein concentration, and attenuation
of the cells measured by TS-QPI, with 2D projections for every combination of two features.
Inset: Conventional label-free flow cytometry using forward scattering and side scattering is not
enough to distinguish the difference between high-lipid content and low-lipid content algal cells.
TS-QPI is much more effective in separating the two algae populations. (b) ROC curves for
binary classification of normal and lipid-rich algae species using ten-fold cross validation; blue
curves show the classifier performance using all 16 biophysical features extracted from the TS-
QPI quantitative images. Red, green, and orange curves show the classifier decision performance
using only the best biophysical feature in each category: morphology (Diameter-RB in Table 6.2),
optical phase (OPD-1 in Table 6.2), and optical loss (Absorption-2 in Table 6.2). The label-free
selection of algal strains improves as more biophysical features are employed
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populations. Blue curves show the classifier performance using all 16 physical
features extracted from the TS-QPI images. Red, green, and orange curves show the
classifier decision made using only the three major biophysical features: diameter
for morphology (Diameter-RB in Table 6.2), optical path length difference for
optical phase (OPD-1 in Table 6.2), and absorption for optical loss (Absorption-2 in
Table 6.2). Our multivariate deep learning using TS-QPI is far more accurate than
individual biophysical characteristics for selection of algal strains.

8.4 Further Discussions in Machine Learning

8.4.1 Learning Curves

To show the effect of the training dataset size in the performance of the learning
model, the learning curves for the training and test datasets of the tumor cell
detection are analyzed (Fig. 8.5a). The test learning curve shows that as the number
of training data points increases, the test error reduces and the model performance
improves. On the other hand, the training error contrastingly increases for a larger
number of training examples because it is more difficult for the learning model to fit
many training data points than a few. The discrepancy of the training and test errors
is the generalization error of the learning model [128]. Notice that beyond N Š 850

the generalization error do not decrease, and the learning curves converge to their
ultimate performances. In other words, N Š 850 training data points are required to
accomplish target achievable performance for the deep learning model used here.

Multiple machine learning techniques [129, 134, 148, 149] for multivariate label-
free cell classification are compared using our TS-QPI tumor cell detection dataset
(Fig. 8.5b). The mean accuracies of all learning models are beyond 85%, reflecting
the advantages of simultaneous hyperdimensional biophysical features that TS-QPI
provides for label-free cell classification. Furthermore, the interquartile range of the
balanced accuracy (shown with box plot) is the smallest for the regularized AUC-
based deep learning model, which confirms its consistency and repeatability are the
best among learning methods.

8.4.2 Principal Component Analysis (PCA)

As shown in Fig. 6.6a and b, many of the 16 features are correlated and not all
measured features in the data set produced by the time stretch quantitative phase
imaging have the same amount of information. That result suggests that it may
be possible to reduce the 16-dimensional data set to a smaller set of uncorre-
lated orthogonal dimensions without significantly compromising the classification
accuracy. In that spirit, we have used principle component analysis (PCA) for
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Fig. 8.5 (a) The learning curves of the training and test datasets in the tumor cell detection.
Larger number of training data points decreases the cross entropy of the test dataset, which means
the classifier is performing more accurately. However, the trend is opposite for the training dataset
because with a larger number of training data points fitting error accumulates. The discrepancy
of the training and test errors, i.e., generalization error, decreases up to N Š 850, which is the
necessary training data size for achieving final performance in our TS-QPI demonstration with deep
learning neural network. (b) Comparison of multiple machine learning classification techniques
based on the biophysical features extracted from the label-free cell images captured by TS-QPI.
Our AUC-based deep learning model (DNNCAUC) has both the highest accuracy and consistency
against support vector machine (SVM) with Gaussian kernel, logistic regression (LR), naive Bayes,
and conventional deep neural network trained by cross entropy and backpropagation (DNN)

dimensionality reduction and computation speed-up. The PCA algorithm finds
an alternative lower dimension space such that variance of data projected onto
this subspace is maximized along subspace dimensions. Figure 8.6a shows the
percent of the variance in data explained by each component (lower chart). The
key observation is that most of the variance can be accounted for by the first
two principle components. The upper portion of the plot shows the accuracy
for binary classification using each of the principle components. Interestingly,
the first component with the highest explained variance is not necessarily the
most important component for classification. Therefore, a priori intuition about
the physical significance of the features in the case here is superior to PCA in



82 8 Deep Learning and Classification

Fig. 8.6 Principal component analysis (PCA) on the multivariate data set produced by time
stretch quantitative phase imaging. (a) Upper bar chart shows accuracy of classification by each
individual principal component, and lower bar chart shows the percentage of the total variance
explained by each principal component, accounting for the variability expressed in the data. As
expected, principal components with larger variability do not necessarily give high accuracy in
classification. (b) Cumulative accuracy. The value at each data point corresponds to the number of
PCA components retained in order to achieve that total explained variance. In order to reduce the
number of input features and decrease computation time, a subset of the PCA components can be
used for classification. The classification accuracy improves as the total variance retained in the
subset of PCA components goes up

eliminating dimensions that do not provide high value in classification. By revealing
the structure in data that best explains the variance, PCA achieves data compression
via dimensionality reduction.

PCA components act as the input features for the classification algorithm.
As number of PCA components retained increases, the classification accuracy
improves while computation time increases (Fig. 8.6b). The value at each data point
corresponds to the number of PCA components retained in order to achieve that total
explained variance. In order to reduce the number of input features and decrease
computation time, a subset of the PCA components can be used for classification.
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The classification accuracy improves as the total variance retained in the subset of
PCA components goes up. Nearly 90% accuracy can be achieved with the first three
PCA components. The small deviation among accuracies of data points with the
same number of PCA components is due to variations in random data partitioning.
Since accuracy is the main concern here, we employ all 16 biophysical features,
rather than dimensionality-reduced PCA components.

8.4.3 Cross Validation

The k-fold cross validation implemented here splits data points into training,
validation, and test subsets (Fig. 8.7a). For each iteration, one fold is used as test
data, one for validation, while the other folds are used during training process. After
initially trained, the performance of the network is analyzed by the validation data to
fine tune the neural network architecture and regularization parameter. Figure 8.7b
shows that either a too small or a too large regularization parameter, �, increases
network error due to overfitting or underfitting, respectively. Therefore, there is a
suitable range of regularization parameter for each learning model.

Fig. 8.7 (a) The implementation of the k-fold cross-validation here splits data points into training,
validation, and test subsets. In each iteration, one fold is used for fine tuning the learning model
(validation dataset) and another fold is used for evaluation of the final results (test dataset), while
rest of the data points are used for training (training dataset). The final reported results are aggregate
of the outcomes from the test datasets. (b) A suitable regularization parameter, �, balances the
trade-off between overfitting (variance) and underfitting (bias) and minimizes the cross entropy of
the validation dataset
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Once the network architecture and regularization parameter are chosen and
optimized based on the validation data, the learning model performance is finally
verified by the test fold, which has never been used before in this iteration. The
process of training in each iterations is independent, so each iteration has no prior
knowledge about the chosen learning models in other iterations. The final reported
results are aggregate of the performance for different test datasets.

8.4.4 Computation Time

Our deep learning technique uses AUC as the cost function and performs training via
genetic algorithm. Since AUC is calculated based on the entire dataset, the genetic
algorithm is employed as a global optimization method [150]. Thus, our technique
has inherently higher accuracy and repeatability compared to conventional deep
learning and other classification algorithms studied here. However, the global
optimization in our algorithm sacrifices the computation time. The performance of
balanced accuracy and computation time of different classification algorithms are
compared in Table 8.1.

8.4.5 Data Cleaning

Data cleaning includes two steps. Firstly, Hotelling’s T-squared distribution is
calculated and the top 2% of the extreme data was set as outliers due to experimental
or object recognition errors. Secondly, debris discrimination is performed; any data
point with negative phase shift was considered as either air bubble, flow turbulence,
or object recognition errors.

Table 8.1 Performance comparison of different classification algorithms

Algorithm

Averaged
balanced
accuracy
(%)

Standard
deviation of
balanced
accuracy (%)

Computation
time (s)

Deep neural network trained by
AUC

95.5 0.9 365.6

Deep neural network trained by
cross entropy

94.4 2.1 4.7

Logistic regression 93.5 0.9 0.8

Support vector machine 93.4 1.0 1.7

Naive Bayes 88.7 1.6 2.8
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8.5 Conclusion

Time stretch quantitative phase imaging (TS-QPI) is capable of capturing images
of flowing cells with minimal motion distortion at unprecedented rates of
100,000 cells/s. TS-QPI relies on spectral multiplexing to capture simultaneously
both phase and intensity quantitative images in a single measurement, generating a
wealth of information of each individual cell eliminating the need for labeling with
undesirable biomarkers. Here, we summarized the information content of these
images in a set of 16 features for each cell, and performed classification in the
hyperdimensional space composed of these features. We demonstrated application
of various learning algorithms including deep neural networks, logistic regression,
naive Bayes, as well as a new training method based on area under the ROC curve.
The results from two experimental demonstrations, one on detection of cancerous
cells among white blood cells, and another one on identification of lipid-rich algae,
show that classification accuracy by using the TS-QPI hyperdimensional space is
more than 17% better than the conventional size-based techniques. Our system
paves the way to cellular phenotypic analysis as well as data-driven diagnostics,
and thus is a valuable tool for high-throughput label-free cell screening in medical,
biotechnological, and research applications.



Part V
Data Compression



Chapter 9
Optical Data Compression in Time Stretch
Imaging

Time stretch imaging offers real-time image acquisition at millions of frames per
second and subnanosecond shutter speed, and has enabled detection of rare cancer
cells in blood with record throughput and specificity. An unintended consequence of
high-throughput image acquisition is the massive amount of digital data generated
by the instrument. Here we report the first experimental demonstration of real-
time optical image compression applied to time stretch imaging. By exploiting the
sparsity of the image, we reduce the number of samples and the amount of data
generated by the time stretch camera in our proof-of-concept experiments by about
three times. Optical data compression addresses the big data predicament in such
systems.

9.1 Background

Big data is a broad and popular topic today. The traditional definition refers to
the massive amount of data generated in banking, social media, healthcare, and
by networked sensors known as the “internet of things.” However, big data is
also a challenge in biomedical and scientific instruments [22]. High-throughput
real-time instruments are needed to acquire large data sets and to detect and
classify rare events. Examples include the time stretch camera [10–12, 15–17,
19, 20, 46, 151, 152]—a MHz-frame-rate bright-field imager, and the fluorescence
imaging using radio frequency-tagged excitation (FIRE)—an ultra-high-frame-
rate fluorescent camera for biological imaging [21]. The record throughputs of
these instruments have enabled the discovery of optical rogue waves [7], the
detection of cancer cells in blood with false positive rate of one cell in a million
[30], and the highest performance analog-to-digital converter ever reported [8].
These instruments produce a torrent of data that overwhelms their data acquisition
and processing backend. For example, the time stretch imager captures images at
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roughly one hundred million scans per second with each scan containing about
one thousand samples [13, 14]. Assuming each of these samples is digitized with
a typical 8 bits of accuracy, time stretch microscopy (STEAM) produces 0.8 Tbit of
data per second. Detecting rare events such as cancer cells or rogue signals requires
that data be recorded continuously and for a long time to catch the rare events.
The need to compress massive volumes of data in real-time has fueled interest in
nonuniform time stretch transformation that takes advantage of sparsity in physical
signals to achieve both bandwidth compression and reduction in the temporal length
[22–26]. The aim of this technique is to transform a signal such that its intensity
matches not only the digitizer’s bandwidth, but also its temporal record length. The
latter is typically limited by the digitizer’s storage capacity.

9.2 Warped Stretch Imaging

The basic principle of time stretch imaging (STEAM) involves two steps both
performed optically. In the first step, the spectrum of a broadband optical pulse is
converted by a spatial disperser into a rainbow that illuminates the target. Therefore,
the spatial information (image) of the object is encoded into the spectrum of the
resultant reflected or transmitted rainbow pulse. A one-dimensional rainbow is
used to acquire a line-scan and two-dimensional image is obtained by scanning the
rainbow in the second dimension. For imaging of particles in flow, the motion causes
scanning in the second dimension while the rainbow position is fixed (Fig. 9.1).

Fig. 9.1 Illustration of warped stretch transform in imaging. (a) The field of view consists of
a cell against the background such as a flow channel or a microscope slide. Illumination by an
optical pulse that is diffracted into a one-dimensional rainbow maps one dimension of the space
into the optical spectrum. The other dimension is scanned by the cell flow through the rainbow.
In the conventional time stretch imaging (STEAM), the spectrum is linearly mapped into time
using a dispersive optical fiber with a linear group delay. The temporal waveform is then sampled
by a digitizer with fixed sampling rate resulting in uniform spatial sampling. But uniform spatial
sampling generates superfluous data by oversampling the sparse peripheral sections of the field
of view. (b) Similar functionality can be achieved in STEAM by using a nonlinear group delay
profile in the spectrum-to-time mapping process resulting in a nonuniform sampling of the line
image, assigning more pixels to the information-rich central part of the field of view and less to the
low-entropy peripherals
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In the second step, the spectrum of the image-encoded pulse is mapped into a
serial temporal signal that is stretched in time to slow it down such that it can be
digitized in real-time [9]. This optically amplified time stretched serial stream is
detected by a single-pixel photodetector, and the image is reconstructed in the digital
domain. Subsequent pulses capture repetitive frames. The laser pulse repetition rate
corresponds to the frame rate, and the temporal width of the pulses corresponds to
camera’s shutter speed (exposure time). The key innovations in STEAM that enable
high-speed real-time imaging are photonic time stretch for digitizing fast images
in real-time and optical image amplification for compensating the low number of
photons collected during the ultra-short shutter time [29].

Using warped group delay dispersion, it has been shown that one can reshape
the spectro-temporal profile of optical signals such that signal envelope’s time-
bandwidth product is compressed [22–26]. The compression is achieved through
time stretch dispersive Fourier transform in which the frequency-to-time mapping
is intentionally warped, using an engineered group delay dispersion profile, to
match the sparsity of the image. This operation causes a frequency-dependent
reshaping of the input waveform. Reconstruction (decoding) method depends on
whether the information is in the spectral domain amplitude, or in the complex
spectrum. In the time stretch camera, the image is encoded into the amplitude of
the spectrum of a broadband optical pulse, and reconstruction consists of a time-
to-frequency mapping using the inverse of the measured or simulated group delay
profile followed by a frequency-to-space mapping. The compression ratio depends
on the group delay characteristics and the sparsity of the image [25, 26]. This method
offers similar functionality as compressive sampling [18, 27, 28, 153–156] albeit it
achieves it via an entirely different approach, namely by reshaping the analog image
using warped time stretch dispersive Fourier transform.

9.3 Optical Image Compression

To illustrate the concept in the context of time stretch imaging, we can consider a
microscopic field of view consisting of a cell against a background such as a flow
channel or a microscope slide (Fig. 9.1a, b). In the time stretch imaging, the object
is illuminated by an optical pulse that is diffracted into a one-dimensional rainbow.
This encodes one dimension of space into the optical spectrum. The spectrum is
then linearly mapped into time using a dispersive optical fiber with a linear group
delay. The mapping process from space-to-frequency-to-time is shown in Fig. 9.1a.
The linearly stretched temporal waveform is then sampled by a digitizer resulting
in uniform spatial sampling. This uniform sampling (also depicted in Fig. 9.1a)
generates redundant data by oversampling the sparse peripheral sections of the field
of view.

Such a situation evokes comparison to the mammalian eye where central
vision requires high resolution while coarse resolution can be tolerated in the
peripheral vision (Fig. 9.2a). In the eye, this problem is solved through nonuniform
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Fig. 9.2 Warped stretch transform in imaging inspired by biology and art. (a) The human vision
is a form of warped imaging system where high sampling resolution is needed in the central vision
while coarse resolution can be tolerated in the peripheral vision. (b) The reconstruction is similar
to anamorphic art where the drawn shape is a stretched and warped version of the true object yet
the viewer sees the true object upon reflection from a curved mirror. In our system, this unwarping
operation is a nonlinear mapping using the inverse space-to-frequency-to-time mapping transfer
function

photoreceptor density in the retina. The Fovea section of the retina has a much
higher density of photoreceptors than the rest of the retina and is responsible for
the high resolution of central vision.

We solve this problem by nonuniform mapping of spectrum into time via a
warped group delay. An example of the warped space-to-frequency-to-timemapping
is illustrated in the dotted box in Fig. 9.1b. After uniform sampling in time (by a
conventional digitizer), this leads to higher sampling density in the central field
of view and lower density in the sparse peripheral regions. This is often desirable
in cell screening and imaging in microfluidic channels with focusing mechanisms.
In these channels, the cells arrive along a few predetermined lanes. By far the
most common case is a single lane aligned to the center of the channel, which
is typically achieved via hydrodynamic focusing [80]. However, cells or particles
may occasionally appear in peripheral regions of the flow channel. Since the
probability of this occurring is low, it would be wasteful to assign high sample
density to these peripheral regions. One does need to image these regions albeit
with coarse resolution for monitoring rare or abnormal events. In the meantime, the
higher sample density in central part of the field of view improves the accuracy of
determining cellular morphology, and that of biophysical cell measurements such
as cellular protein concentration, which have been previously demonstrated with
the time stretch imaging modality [17, 19].

The reconstruction is a simple unwarping using the inverse of the group delay.
This operation is analogous to the anamorphic art, where the drawn shape is a
stretched and warped version of the true object, yet, the viewer sees the true object
upon reflection of the painting from a curved mirror (Fig. 9.2b [157]). In the case
where the sparsity characteristic of the target is not known, or changes dynamically,
a shift of central field of view is needed. Similar to the movement of the eyeball
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in the mammalian eye, an active mechanism such as a beam steering mirror can be
used to relocate the central field of view, and perform the dense sampling in the
region of interest.

Different nonlinear group delay profiles result in various types of warped
frequency to time mappings. The linear group delay profile results in uniform
frequency-to-time mapping (orange plots), whereas the warped group delay profile
results in nonuniform mapping (blue plots). In both the linear and the warped stretch
cases, the stretched waveform is uniformly sampled in time and digitized by an
analog-to-digital converter. The amount of linear dispersion is chosen such that
the fast features of the waveform are sufficiently slowed down in time to achieve
Nyquist sampling. Figure 9.3a shows a nonuniform group delay profile, which has
the same dispersion (slope) as the linear profile in the center of the spectrum, but
reduced dispersion at wings. This profile results in data compression by reduction
of the overall time duration of the stretched pulses and the number of samples at the
expense of lowered spectral resolution in peripheral regions of the spectrum. Here
the digital file size, determined by the overall number of samples, is significantly
reduced (compare the waveforms). In other words, data is compressed in optical
domain by exploiting its sparsity. Figure 9.3b shows another nonuniform group
delay profile, which has the same overall time duration and number of samples as the
linear case. This profile redistributes the spectral samples to achieve higher spectral
resolution in information-rich central region of the spectrum and lower resolution in
sparse peripherals. Here the file size determined by the overall number of samples
in the waveform and the acquisition time remains unchanged.

Fig. 9.3 Linear and warped (anamorphic) stretch transforms. The linear group delay profile results
in uniform frequency-to-time mapping (orange plots), whereas the warped group delay profile
results in nonuniform mapping (blue plots). (a) A nonlinear group delay with the same dispersion
(slope) at the center of the spectrum as linear case, but shorter total group delay, leads to high
sampling resolution in the center of the spectrum and lower resolution at the wings. This keeps the
image quality at the central part of the field of view intact, while reducing the quality at the sparse
peripheral regions where uniform stretch would have produced redundant samples. (b) A nonlinear
group delay profile with higher dispersion (slope) at the center of the spectrum than the linear case,
but same total group delay over the bandwidth, leads to a higher spectral resolution in the center
of the spectrum and lower resolution at the wings (compare the spectrums). The gray curves show
the analog waveforms before sampling for the purpose of comparison
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Fig. 9.4 Simulations illustrate the effect of warped stretch transform on a two-dimensional image.
The analog reshaping of the image performed in the optical domain by the warped stretch transform
is emulated here in the digital domain. (a) The transformation consists of nonuniform stretch
in the horizontal direction with the warp stretch profile shown in Fig. 9.3. (b) A sample image
with 28,001,672 pixels and 4.46 MB file size is used as the input. (c) The image is stretched
nonuniformly and down-sampled with a compression ratio of 14. (d) A uniform stretch with down-
sampling can achieve the same file size but the image quality is dramatically lower. (e) While
down-sampling is not an issue for the sparse peripherals, it is problematic for the information-rich
central part. (f) The reconstruction of the nonuniformly stretched image. (g) The information-rich
region at the center is well preserved while maintaining the same sampling rates

To help visualize the analog image reshaping performed by warped dispersive
stretch and to show how it leads to data compression in imaging, we emulate
its effect on a two-dimensional image. As shown in Fig. 9.4a, the image is first
stretched and then uniformly down-sampled to achieve data compression, followed
by reconstruction (unstretch). By using a nonlinear stretch, the reconstructed image
is equivalent to a nonuniformly down-sampled image. Figure 9.4b shows the
original image as if it was generated by a linear dispersion and uniform stretch.
It corresponds to an image formed by a linear stretch followed by Nyquist rate
sampling. Figure 9.4c is the result of nonuniform stretching of the original image
in the horizontal direction. The chosen image has higher density of features in the
central portion than in the periphery. The warp profile is as indicated in Fig. 9.3b
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where the peripheral regions are stretched less than the center. Figure 9.4d is the
linearly stretched image after 14:1 down-sampling and reconstruction. The warped
stretch profile used here is as shown in Fig. 9.3b causing the sides to be squeezed
relative to the center. Hence more samples are assigned to the center than the wings.
As it can be seen in the zoomed-in Fig. 9.4e, down-sampling has resulted in a loss
of resolution. On the other hand, Fig. 9.4f is the nonuniformly stretched image after
14:1 down-sampling followed by reconstruction. The resolution is higher at the
center where information is rich and lower at the sides where information is much
less and relatively not important. Although the final image size is the same, the
nonuniformly stretched image has much higher quality in the non-sparse center of
field of view (Fig. 9.4g).

Big data problems also appear in light scattering based flow cytometry. There the
instrument measures the angular dependence of laser light scattered by particles in
flow. The angular scattering profile of microscopic particles significantly depends
on their morphological parameters, such as size and shape, and this dependency
is widely used in flow cytometry for particle classification [95]. Recently a
new spectrally encoded angular light scattering method capable of measuring the
continuous angular spectrum has been reported [158]. The warped time stretch
optical data compression technique demonstrated here can also be used for real-
time data compression in such optical systems.

9.4 Experimental Design and Results

The experimental setup used for our proof-of-principle demonstration of optical
image compression is shown in Fig. 9.5. A mode-locked fiber laser generated pulses
at around 1550 nm with a repetition rate of 36.129 MHz and a pulse width slightly
less than 100 fs. A short dispersion compensating fiber with an overall dispersion of
10 ps/nm was used to temporally broaden pulses to about 1 ns, so that an erbium-
doped fiber amplifier (EDFA) can amplify them without any distortion. Since the
output spectrum of EDFA is sensitive to the input polarization, a polarization
controller was used to change the polarization of the input pulses to EDFA.
The polarization was tuned in such a way that the output amplified pulses had
relatively symmetric spectrum around 1550 nm. Amplified pulses then entered a
coarse wavelength-division multiplexing (WDM) filter, and the output of 1551 nm
channel was used to shape laser pulses with a considerably low noise floor over
1541–1561nm bandwidth. These pulses passed through an optical circulator and
were coupled to free-space with a fiber collimator.

Free-space laser pulses were linearly polarized with quarter- and half-wave
plates, and then they were spatially dispersed with a pair of reflection diffraction
gratings, so that each wavelength component of the collimated beam was positioned
at a different lateral point similar to a rainbow. The width of the rainbow depended
on the size of the second diffraction grating and the distance between two diffraction
gratings, and the height of the rainbow depended on the beam size from the fiber
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Fig. 9.5 Experimental setup used in proof-of-concept demonstration of optical data compression
via warped time stretch imaging. A train of broadband optical pulses was generated at 1550 nm
central wavelength with a repetition rate of 36.129 MHz and a pulse width slightly less than 100 fs.
The laser pulses were temporally stretched to about 1 ns by a dispersion compensating fiber and
amplified by an erbium-doped fiber amplifier (EDFA). The bandwidth over 1541–1561 nm was
selected by a wavelength division multiplexing (WDM) filter. The pulses passed through an optical
circulator and were coupled to free-space part of STEAM setup with a fiber collimator. There, a
pair of diffraction gratings generates a one-dimensional rainbow with each wavelength component
imaging a different location at the target. The spectrally encoded rainbows are reflected and
coupled back into the fiber, carrying the image information. The nonuniform space-to-frequency-
to-time mapping is achieved with a warped chirped fiber Bragg grating (CFBG). After optical
image amplification by another EDFA, different wavelength components are detected serially by a
single-pixel photodetector and acquired by an analog-to-digital converter (ADC)

collimator. In this setup, the total bandwidth of the pulses interrogating the target is
limited to about 10 nm centered at 1551 nm because of the clipping of the rainbow at
the edges of the second diffraction grating. The horizontal field of view, which was
dictated by the width of the rainbow, was 5 cm. Different wavelength components
of the rainbow reached a reflective object. Each pulse of the mode-locked laser
generates one rainbow, which captures one line image across the field of view.
The rainbow components located at the target were reflected back (Fig. 9.6a) and
returned all the way back to the fiber, where they were directed with the optical
circulator to an amplified time stretch system (Fig. 9.5). The nonlinearly dispersed
pulses with chirped group delay profile are captured by a 10 GHz-bandwidth single-
pixel photodetector and digitized in real-time. An analog-to-digital convertor (ADC)
with a sampling rate of 20 GSps and 7 GHz bandwidth was used to digitize the
output signal of the photodetector. To achieve warped stretch, we used a fiber Bragg
grating with customized chirp profile, whose performance was studied in [24] and
is shown in Fig. 9.6b.

The two-dimensional image was reconstructed by stacking spectrally encoded
horizontal line images at different steps of the vertical scan. If instead of the fiber
Bragg grating, a dispersive fiber with linear group delay was used, the reconstructed
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Fig. 9.6 Proof-of-concept experimental setup. (a) The test sample reflected one-dimensional
rainbow illumination pulses, which are used to perform time stretch imaging at a scan rate of
36 MHz. The field of view determined by the length of the rainbow was 5 cm and covers the width
of the target. The vertical direction was scanned by mechanical translation at 0.5 mm per step.
(b) The warped stretch transform leading to nonlinear spectrum-to-time mapping is performed by
a custom chirped fiber Bragg grating with sublinear group delay (GD) profile. This profile gives
higher group delay dispersion at the center frequency and reduced dispersion at the wings of the
bandwidth

image from one pulse per horizontal line was as shown in Fig. 9.7a. But, for the
case of a fiber Bragg grating, since each line-scan is warped, the warping of the
image is observed in the horizontal direction (Fig. 9.7b). This effectively means that
the central area (letter “S”) is sampled with higher resolution than the peripherals
(letters “A” and “T”). With the unwarping algorithm derived from the reverse
dispersion profile, the uniform image was successfully reconstructed with a reduced
data acquisition time and number of samples (Fig. 9.7c). Compared to the case of
the linear group delay (Fig. 9.7a), an image with comparable quality is generated
with only one-third of the data size (Fig. 9.7c). We note that the reconstruction is
an intensity-only operation and does not require optical phase retrieval. Images
with improved quality can be generated by averaging many pulses to form each
horizontal line image. However, this reduces the frame rate of the time stretch
camera. Figure 9.7d–f shows such images formed by averaging 722 pulses for
each horizontal line. Although the image quality is slightly better using averaging,
but in our demonstration, the signal-to-noise ratio even in single-pulse acquisition
mode (Fig. 9.7a–c) is high enough that the target features are clearly recognizable,
and there is no need for averaging. This is due to the relatively high pulse-to-
pulse stability of the STEAM setup. Warped group delay profiles used here are
only a few cases of the unlimited variety of nonlinear space-to-frequency-to-time
mappings that can be integrated into time stretch imaging, each corresponding to
their unique nonuniform sampling patterns. As another example, Fig. 10.1 shows
the nonlinear frequency-to-time mapping profile that is designed for a microfluidic
channel with two focal regions (cell flow lanes), a common case in inertial focusing
[68, 159]. The profile shown here is designed to have two high-resolution sampling
areas corresponding to where the cells are confined. Three low-resolution sampling
regions provide coarse resolution in the peripherals regions between the cell flow
lanes. The nonuniform mappings can even be reshaped dynamically based on
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Fig. 9.7 Proof-of-concept experimental results. (a) If we use a linear group delay profile with
the same dispersion as that of the warped stretch at the center frequency and a single pulse
per image line, the image data size would be 24.3 kB (55,345 measured pixels). (b) The single-
pulse reconstructed image based on the waveform nonlinearly stretched by the chirped fiber Bragg
grating has an obvious warping effect at the center of the field of view (letter “S”) (18,945 measured
pixels). (c) The single-pulse unwarped reconstructed image data size is 8.3 kB achieving about
three times optical image compression (18,945 measured pixels). (d, e and f) When many pulses
(722 pulses here) are averaged to form each horizontal line image, the images’ quality improve
only slightly over Fig. 9.7a–c, proving high signal-to-noise ratio of our camera even in single-pulse
capture mode. The number of measured pixels used in the formation of Fig. 9.7d is 72,255,345,
and for Fig. 9.7e, f is 72,218,945. The temporal durations of the waveforms corresponding to each
horizontal line in Fig. 9.7a–f are 27.7 ns, 9.5 ns, 9.5 ns, 20.0 �s, 6.8 �s, and 6.8 �s, respectively

relatively slower transitions in the sparsity characteristics of the image, in other
words, alterations in the information rich areas of the image. To achieve such a
functionality, the group delay profile of the dispersive element should be tunable and
controlled by a feedback mechanism. In terms of tunable dispersion, Chromo-Modal
Dispersion (CMD) offers wide tunability, broad spectrum, and low loss [160].

Furthermore, warped stretch imaging is not limited to using warped group
delay to perform nonlinear space-to-frequency-to-time mapping. It can also be
achieved by nonuniform space-to-frequency mapping, e.g., warped rainbows, where
rainbow frequency components are not equally spaced. This can be implemented by
frequency-dependent spatial dispersers such as custom-designed diffraction gratings
and virtually imaged phased arrays.
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9.5 Conclusion

Real-time optical image compression is needed to address the fundamental chal-
lenges in acquiring and storing the large amount of data generated in high-speed
imaging. Here, we have demonstrated one such technique applied to time stretch
imaging. Using warped group delay dispersion, we achieved warped stretch imaging
in such a way that the information-rich central vision is sampled at a higher
sample density than the sparse peripheral vision. Most notably, this was done
using a uniform electronic sampler, i.e., without adaptive or dynamic control over
the electronic sampling rate. A three-time image compression was achieved in
experimental proof of concept demonstration. Our nonuniform sampling technique
could offer one route to taming the capture, storage, and transmission bottlenecks
associated with big data.



Chapter 10
Design of Warped Stretch Transform

Time stretch dispersive Fourier transform enables real-time spectroscopy at the
repetition rate of million scans per second. High-speed real-time instruments rang-
ing from analog-to-digital converters to cameras and single-shot rare-phenomena
capture equipment with record performance have been empowered by it. Its warped
stretch variant, realized with nonlinear group delay dispersion, offers variable-rate
spectral domain sampling, as well as the ability to engineer the time-bandwidth
product of the signal’s envelope to match that of the data acquisition systems. To
be able to reconstruct the signal with low loss, the spectrotemporal distribution
of the signal spectrum needs to be sparse. Here, for the first time, we show how
to design the kernel of the transform and specifically, the nonlinear group delay
profile dictated by the signal sparsity. Such a kernel leads to smart stretching
with nonuniform spectral resolution, having direct utility in improvement of data
acquisition rate, real-time data compression, and enhancement of ultrafast data
capture accuracy. We also discuss the application of warped stretch transform in
spectrotemporal analysis of continuous-time signals.

10.1 Overview

Time stretch dispersive Fourier transform [9, 66, 161] addresses the analog-to-digital
converter (ADC) bottleneck in real-time acquisition of ultrafast signals. It leads to
fast real-time spectral measurements of wideband signals by mapping the signal into
a waveform that is slow enough to be digitized in real-time. Combined with temporal
or spatial encoding, time stretch dispersive Fourier transform has been used to create
instruments that capture extremely fast optical phenomena at high throughput. By
doing so, it has led to the discovery of optical rogue waves [7], the creation of a
new imaging modality known as the time stretch camera [10], which has enabled
detection of cancer cells in blood with record sensitivity [17, 30, 151], a portfolio of
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other fast real-time instruments such as an ultrafast vibrometer [12, 16], and world
record performance in analog-to-digital conversion [8, 162]. The key feature that
enables fast real-time measurements is not the Fourier transform, but rather the time
stretch. For example, direct frequency-to-time mapping can be replaced by phase
retrieval [102] or coherent detection after the dispersion [117] followed by back
propagation.

Using warped group delay dispersion as a photonic hardware accelerator [103],
an optical signal’s intensity envelope can be engineered to match the specifications
of the data acquisition back-end [24–26]. One can slow down an ultra-fast burst of
data, and at the same time, achieve data compression by exploiting sparsity in the
original data [104]. Also called anamorphic stretch transform [24, 25], the warped
stretch transform performs a nonuniform frequency-to-time mapping followed by a
uniform sampler. The combined effect of the transform is that the signal’s Fourier
spectrum is sampled at a nonuniform rate and resolution. By designing the group
delay profile according to the sparsity in the spectrum of the input signal, more
samples are allocated to the information-rich portions of the spectrum and fewer
to the information-sparse regions where they would be redundant. The only prior
information needed is the sparsity of the signal’s spectral features, i.e., information
about the ensemble of the signal spectrum. No instantaneous feature detection is
required as long as the signal’s spectral sparsity is within the design range. As a
primary application, the utility of this method has been recently demonstrated in
real-time optical image compression [104].

In conventional time stretch dispersive Fourier transform, a linear group delay
profile is used to impose a nonzero constant group delay dispersion over the full
bandwidth of the optical signal as shown in Fig. 10.1 (orange color). This profile
as the kernel of the transform generates a linearly increasing frequency-dependent
temporal shift across the bandwidth, which maps the optical spectrum into a
temporal waveform detectable with a single-pixel photodetector. In other words,
temporal dispersion stretches the optical signal in time into its Fourier transform.
If the optical signal is a train of ultrafast pulses such as the output of a mode-
locked laser, the spectrum of each individual pulse is mapped into a temporal
waveform filling the gaps between pulses. To analyze the signal in digital domain,
an analog-to-digital converter (ADC) samples the output of the photodetector at
a constant rate, which can be interpreted as a uniform Fourier domain sampling
of the signal spectrum. It is important to note that the value of each sample of
the temporal waveform corresponds to the integral of the optical spectrum over
a spectral resolvable window. For a linear group delay profile, the width of this
spectral window is fixed, and it does not change over the bandwidth (see orange
stripes in Fig. 10.1).

A warped time stretch dispersive Fourier transform is achieved by a nonlinear
group delay profile as the kernel of the transform, which imposes a frequency-
dependent group delay dispersion onto the spectral components. An example of
a nonlinear group delay profile is shown in blue plots of Fig. 10.1. Here, the optical
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Fig. 10.1 Linear and warped time stretch dispersive Fourier transforms. In linear time stretch
(orange plots), a linear group delay profile with significant group delay over the signal bandwidth is
used as the kernel to delay various spectral components differently, but with a constant group delay
dispersion. If the input signal is a pulse train, pulse spectra are linearly mapped to the silent times
in between the pulses. In contrast, a nonlinear group delay profile (blue plots) with varying group
delay dispersion over the bandwidth (different slopes) can stretch the signal spectrum nonlinearly,
in which parts of the spectrum are stretched more than the others. This can be used, even with a
constant rate sampler, to increase the spectral resolution at regions of the bandwidth where higher
resolution is required and to reduce the resolution where the spectral features are sparse (see blue
bars). In this way, the spectrum is warp stretched into a waveform with the same temporal duration
as the linear profile, but smaller bandwidth. In other words, for signals with spectral sparsity, the
envelope time bandwidth product can be reduced

spectrum is mapped nonuniformly to time, stretching parts of the spectrum more
than the other. In the example shown, the dispersion (slope of the group delay
profile) in the central and peripheral parts of the spectrum is smaller than the
linear profile, leading to a stretch which is less than the linear profile. However,
the profile has also two regions of high dispersion, which map the spectrum into
a longer and more-detailed temporal waveform compared to the linear case. It is
a remarkable fact that uniform sampling of the warped time stretch output signal
corresponds to nonuniform sampling of the spectrum with a frequency-dependent
spectral resolvable window (see blue stripes in Fig. 10.1).
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10.2 Kernel Design

The warped time stretch dispersive Fourier transformation can be contemplated as
a spectrotemporal operation, where its effectiveness in capturing spectral details is
dictated by the sparsity and the redundancy of the input signal spectrum. Namely,
sparsity in the spectrum is the attribute that influences and guides the design of
the group delay dispersion profile. Note that the traditional notion of sparsity, i.e.,
sparsity in time or spectrum, is not pertinent here. Instead, sparsity here refers to
the absence of the spectral features, i.e., abrupt variations of spectrum magnitude.
The spectrum only needs to be feature-sparse; it does not need to be narrowband or
contain limited number of spectral components.

We describe the spectrotemporal operation of the warped time stretch with a
set of examples. Without loss of generality, we initially assume that any chirp
in the input signal is negligible compared to the applied group delay dispersion
chirp; for example, the total temporal duration of each pulse is much shorter
than the overall group delay of the dispersion profile over the pulse bandwidth.
In Fig. 10.2a, the envelope of an optical field as the input signal of the stretch
transform is shown. The spectrum of this envelope (Fig. 10.2b) has fast variations
in the central region (feature-dense) and is relatively smooth in the wings (feature-
sparse). The spectrum of the envelope can also be viewed as the spectrum of the
input optical field downshifted to baseband. To examine the local properties of
the spectrum, we use the short-term Fourier transform of the spectrum and form
the spectrogram of the spectrum. This is equivalent to viewing the spectrum as a
temporal waveform and plotting its short-time Fourier transform (Fig. 10.2c). As a
result, the horizontal axis is the input frequency and the vertical axis is the local
frequency of the variations in spectrum magnitude. We call this the frequency of
spectrum, which corresponds to the period of variations in the spectrum magnitude
or the temporal distance of frequency components of the signal. Here, the window of
the short-term Fourier transform is slid over the envelope frequencies for the input
envelope spectrum magnitude, and the Fourier transform of the signal in the window
gives the local frequencies of spectrum. At the center of the spectrum magnitude,
there are fast oscillations (see Fig. 10.2b), which result in high frequencies of
spectrum. Hence, the local frequency bandwidth is broad in the central region
and narrow in the wings (Fig. 10.2c). A linear group delay profile (Fig. 10.2d)
performs conventional time stretch dispersive Fourier transform, in which the
spectrum is uniformly mapped into a temporal waveform (Fig. 10.2e). The short-
time Fourier transform of this temporal waveform (Fig. 10.2f) resembles that of
the spectrum (Fig. 10.2c). To reduce the required acquisition bandwidth or time
duration (memory), the spectrotemporal distribution of the signal can be reshaped by
a nonlinear group delay profile as a filter, whose characteristics conform to the local
frequency patterns. In the regions where the spectrum magnitude has fast variations,
the filter should present a high group delay dispersion (slope) resulting in larger
stretching in time than the slow varying regions of the spectrum magnitude. For
the signal spectrum shown in Fig. 10.2b, a desired group delay profile is shown
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Fig. 10.2 Group delay design based on spectrotemporal sparsity at the spectrum peripheries.
(a) Envelope of the electric field of an input optical signal. (b) The spectrum magnitude of the input
envelope. (c) Spectrogram of the spectrum magnitude formed by short-term Fourier transform.
(d) If a temporally dispersive element with a linear group delay profile over the optical bandwidth
is used to stretch the input optical field, (e) the spectrum maps uniformly to temporal envelope
of the electric field. (f) Spectrogram of the envelope waveform amplitude resembles that of the
spectrum magnitude. (g) If a nonlinear group delay profile with lower dispersion at the sides of
the bandwidth is used to stretch the optical pulse, (h) the spectrum is nonlinearly mapped to the
electric field envelope in time. (i) The spectrogram of the electric field envelope amplitude after the
nonuniform dispersion shows that a shorter temporal window is required to capture the waveform
with the same acquisition bandwidth. The green and blue dot-dash boxes in Fig. 10.4f, i show the
acquisition time and bandwidth, and those in Fig. 10.4c show the effective bandwidth for linear
case and nonlinear kernel design, respectively

in Fig. 10.2g. The frequency-to-time mapping and temporal stretching are warped
in such a manner that the sparse wings of the spectrum are squeezed relative to
the dense central region (Fig. 10.2h). The sparse wings are squeezed in so that
they occupy a shorter time duration after the frequency to time mapping. This is
desirable as the sides of the spectrum magnitude do not have fast oscillations, and
to capture them with a limited acquisition bandwidth, there is no need to stretch
them as much as the central part. Essentially, warped stretch avoids overstretching
of the spectrum peripheries unlike the linear profile (see Fig. 10.2e). As a result,
the reshaped spectrotemporal distribution (Fig. 10.2i) has the same bandwidth as
the linear case, but a compressed time duration (compare dot-dashed boxes of
Fig. 10.2f, i). We will show that the blue dot-dashed box in Fig. 10.2i, which depicts
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the acquisition time-bandwidth limit, translates into a frequency-dependent effective
bandwidth on the frequency of spectrum as shown with the blue dot-dash contour
in Fig. 10.2c, and the spectrotemporal feature sparsity of the signal can be used to
reduce the envelope acquisition time-bandwidth product in time stretch dispersive
Fourier transform.

Upon uniform temporal sampling, the nonuniform mapping of warped stretch
causes the information dense portion of the spectrum to effectively receive higher
sampling resolution than the information sparse regions, leading to nonuniform
spectral sampling. The local spectral sampling rate is basically designed to match
the signal’s spectrum sparsity. We note that this nonuniform sampling is performed
not by a hard-to-reach variable rate sampler, but with a uniform sampler preceded
by warped spectrotemporal reshaping. This approach offers similar functionality as
compressive sensing [28, 154] albeit it achieves it via an entirely different approach,
namely that of warped time stretch dispersive Fourier transform. If the input signal
is significantly chirped, the group delay profile should correspond to the difference
between the desired profile for the transform limited version of the input signal
(inverse Fourier transform of the input signal spectrum modulus) and the chirp of
the input signal.

10.2.1 Spectral Resolution

The resolution of the nonuniform spectral sampling is determined by the sampling
resolution of the temporal waveform and the spectral resolution of dispersive Fourier
transform. More specifically, the resolution of the spectral sampling using time
stretch dispersive Fourier transform is the maximum of resolution limits imposed
by the temporal resolution of the photodetector, the bandwidth of the analog-
to-digital converter, and the ambiguity in the frequency-to-time mapping of the
dispersive Fourier transform. The temporal resolution of the samples is itself
limited by the photodetector electrical bandwidth and the Nyquist bandwidth of the
analog-to-digital converter. If we assume a resistor-capacitor circuit model for the
photodetector output and use its 10–90% rise time as the temporal resolution [163],
the photodetector spectral resolution limit is
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where �g.!/ is group delay profile and BPD is the electrical bandwidth of the
photodetector. Also, the resolution limit in Fourier domain set by the Nyquist
bandwidth of the analog-to-digital converter [164], BADC, is
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The spectral resolution of the dispersive Fourier transform imposed by ambiguity in
frequency-to-time mapping is
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which is derived by stationary phase approximation [47]. Finally, the overall spectral
sampling resolution is limited by the largest of these three at each frequency.
Therefore,

ı!Total.!/ D maxfı!PD.!/; ı!ADC.!/; ı!DFT.!/g (10.4)

Clearly, the resolution of the nonuniform spectral sampling is frequency-dependent
for a nonlinear group delay profile. Figure 10.3a, c shows the spectral resolutions
and their limiting components for both the linear and the nonlinear group delay
profiles of Fig. 10.2, respectively (photodetector and analog-to-digital converter
Nyquist bandwidths are 14.5 GHz). In low group delay dispersions, temporal
resolution limits, ı!PD or ı!ADC, are mainly the limiting factors, whereas in
high group delay dispersions, the resolution of the dispersive Fourier transform
dominantly limits the spectral resolution. The spectral sampling resolution can also
be translated into an effective bandwidth, B! , for the frequency of spectrum. This
effective bandwidth, calculated as

B!.!/ D 0:5

ı!Total.!/
(10.5)

is shown with dot-dashed lines in Fig. 10.2c. The effective bandwidth illustrates
whether the characteristics of the group delay profile match the spectrotemporal
sparsity of the signal, and it proficiently guides the profile design. Figure 10.3b, d
shows the group delay profiles of Fig. 10.2 overlaid with their spectral resolutions.
The widths of the curves at each frequency correspond to ten times the spectral
resolution. One tenth of the overlay width at each group delay corresponds to
the set of the optical frequencies that are captured at the same delay and are
indistinguishable in the temporal waveform. The magnification factor, ten, is used
to make the subtle changes in spectral resolution more noticeable next to the
group delay profile, which prominently determines it. The overall spectral sampling
resolution of nonlinear group delay profile and the acquisition system is limited by
the ambiguity in the frequency-to-time mapping of the dispersive Fourier transform
at the center of the spectrum and by the Nyquist bandwidth of the analog-to-digital
converter at the peripheries of the spectrum.



108 10 Design of Warped Stretch Transform

Fig. 10.3 Spectral sampling resolution of time stretch dispersive Fourier transform tuned for the
spectrum center. (a) Spectral resolution limits for the linear group delay profile and the acquisition
system of Fig. 10.2d–f. The overall spectral sampling resolution of the linear time stretch is
independent of the envelope optical frequency and limited by the ambiguity in the frequency-
to-time mapping of the dispersive Fourier transform. (b) The spectral sampling resolution of the
linear group delay profile magnified ten times (for visual clarity) and overlapped on the profile.
(c) Spectral resolution limits for the nonlinear group delay profile and the acquisition system of
Fig. 10.2g–i, unlike the linear stretch, depend of the envelope optical frequency. (d) Magnified
spectral sampling resolution of the warped time stretch overlapped on its group delay profile clearly
shows the ambiguity grows at the spectrum peripheries
DFT dispersive Fourier transform, PD photodetector, ADC analog-to-digital converter, Total
overall spectral sampling resolution

As another example, we consider a test signal with opposite sparsity compared to
that shown in Fig. 10.2. Figure 10.4 shows a signal that is sparse in the central region
of the spectrum and feature-dense in the wings. The group delay profile that matches
this waveform has higher dispersion, i.e., temporal stretch factor, in the wings.
Here, the required acquisition bandwidth is lower for the warped group delay case
compared to the linear case. Essentially, the warped profile avoids overstretching of
the spectrum center and understretching of the spectrum peripheries, unlike linear
profile (see Fig. 10.4e). The spectrogram of the electric field envelope amplitude
after the nonuniform dispersion shows that the power at high frequencies is squeezed
toward the lower frequencies, and a smaller acquisition bandwidth is required to
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Fig. 10.4 Group delay design based on spectrotemporal sparsity at the spectrum center. (a) Enve-
lope of the electric field of an input optical signal. (b) The spectrum magnitude of the input
envelope. (c) Spectrogram of the spectrum magnitude formed by short-term Fourier transform.
(d) If a temporally dispersive element with a linear group delay profile over the optical bandwidth is
used to stretch the input optical field, (e) the spectrum maps uniformly to temporal envelope of the
electric field. (f) Spectrogram of the envelope waveform amplitude resembles that of the spectrum
magnitude (shown in Fig. 10.4c). (g) If a nonlinear group delay profile with lower dispersion at
the center of the bandwidth is used to stretch the optical pulse, (h) the spectrum is nonuniformly
mapped to the electric field envelope in time. (i) The spectrogram of the electric field envelope
amplitude after the nonuniform dispersion. The green and blue dot-dash boxes in Fig. 10.4f, i
show the acquisition time and bandwidth, and those in Fig. 10.4c show the effective bandwidth for
linear case and nonlinear kernel design, respectively

capture the waveform with the same temporal sampling duration (blue dot-dash
box). This time-bandwidth limit translates into a frequency-dependent effective
bandwidth for the frequency of spectrum as shown with the blue dot-dash region
in Fig. 10.4c. Figure 10.5 shows the nonuniform spectral resolution corresponding
to this group delay design (photodetector and analog-to-digital converter Nyquist
bandwidths are 10.5 GHz). The overall spectral sampling resolution of warped
stretch transform is limited by the ambiguity in the frequency-to-time mapping
of the dispersive Fourier transform at the peripheries of the spectrum and by the
Nyquist bandwidth of the analog-to-digital converter at the center of the spectrum.
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Fig. 10.5 Spectral sampling resolution of time stretch dispersive Fourier transform tuned for
the spectrum peripheries. (a) Spectral resolution limits for the linear group delay profile and the
acquisition system of Fig. 10.4d–f. The overall spectral sampling resolution of the linear time
stretch is independent of the envelope optical frequency and limited by the Nyquist bandwidth
of the analog-to-digital converter. (b) The spectral sampling resolution of the linear group
delay profile magnified ten times (for visual clarity) and overlapped on the profile. (c) Spectral
resolution limits for the nonlinear group delay profile and the acquisition system of Fig. 10.4g–i.
(d) Magnified spectral sampling resolution of the warped time stretch overlapped on its group
delay profile clearly shows the ambiguity grows at the spectrum center
DFT dispersive Fourier transform, PD photodetector, ADC analog-to-digital converter, Total
overall spectral sampling resolution

10.2.2 Group Delay Profile Design

The concept of effective bandwidth can be used to design an ideal group delay
profile that maximally exploits the spectrotemporal sparsity of a signal. Given an
acceptable signal-to-noise ratio (a tolerable spectrotemporal power loss level, e.g.,
the noise floor of the spectrogram), the important features of the spectrogram can be
contoured. At each envelope frequency, the maximum frequency of spectrum on the
contour line corresponds to the desired effective bandwidth, B! , for the ideal group
delay profile. It follows from Eqs. (10.1)–(10.3), and (10.5) that the dispersion of
the group delay profile is

ˇ
ˇ
ˇ
ˇ
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ˇ
ˇ
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Since the ideal desired group delay profile is monotonic, it is easily derived as

�g.!/ D
Z ˇ
ˇ
ˇ
ˇ
d�g.!/

d!

ˇ
ˇ
ˇ
ˇ d! (10.7)

The spectrogram that is used here to design the ideal group delay profile does not
display the effect of the input signal chirp because it is formed from the spectrum
magnitude. If the input chirp is not negligible, it must be subtracted from Eq. (10.7)
to get the total group delay profile, which performs the desired frequency-to-time
mapping. Figure 10.6a shows a chirped input signal with a spectrum magnitude
(Fig. 10.6b) same as that of Fig. 10.4b. The spectrogram is contoured at �30 dB

Fig. 10.6 Design of an ideal group delay profile based on spectrotemporal sparsity and input
signal chirp. (a) Envelope of the electric field of an input optical signal. (b) The spectrum
magnitude of the input envelope. (c) Spectrogram of the spectrum magnitude formed by short-
term Fourier transform. (d) To perform uniform frequency-to-time mapping, a linear group delay
design minus the input signal chirp should be used to stretch the input optical field. (e) The
spectrum maps uniformly to temporal envelope of the electric field by the total group delay profile.
(f) Spectrogram of the envelope waveform amplitude resembles that of the spectrum magnitude
(shown in Fig. 10.6c). (g) If a nonlinear group delay profile is designed based on the blue dot-
dash contour in Fig. 10.6c and the input signal chirp, (h) the spectrum is nonlinearly mapped to the
electric field envelope in time. (i) The spectrogram of the electric field envelope amplitude after the
nonuniform dispersion. The green and blue dot-dash boxes in Fig. 10.6f, i show the acquisition time
and bandwidth, and those in Fig. 10.6c show the effective bandwidth for linear case and nonlinear
kernel design, respectively
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of the peak power density (blue dot-dash line in Fig. 10.6c), which specifies the
required effective bandwidth of the frequency of spectrum for an ideal group delay
profile. We compare using a linear design for the group delay profile (Fig. 10.6d)
with designing the ideal group delay profile according to the effective bandwidth by
Eq. (10.7) (Fig. 10.6g). The region of the spectrogram with power density 30 dB less
than the peak power density is contoured with a blue dot-dash line. This contour
is considered as the necessary effective bandwidth to design an ideal group delay
profile. In either case, the chirp of the input signal is subtracted from the group
delay design to cancel the effect of the input chirp. Thus, the total group delay
profiles preserve the desired forms of frequency-to-time mappings (Fig. 10.6e, h).
The spectrum is nonlinearly mapped to the electric field envelope in time in such a
way that the acquisition time is minimized for the set acquisition bandwidth (8 GHz)
and the enforced spectrotemporal accuracy level (�30 dB). Clearly, the power in
the sparse regions of the spectrogram is concentrated by the nonlinear profile
(Fig. 10.6i) compared to that by the linear profile (Fig. 10.6f), which corresponds to
a reduction in the required acquisition time and bandwidth. Essentially, the warped
profile ideally avoids overstretching of the spectrum center and understretching of
the spectrum peripheries, unlike the linear profile (see Fig. 10.6e). Figure 10.7 shows
the spectral resolution of the linear and warped stretch transforms with the profiles
in Fig. 10.6 (photodetector and analog-to-digital converter Nyquist bandwidths are
10.5 GHz). The overall spectral sampling resolution of the linear time stretch is
independent of the envelope optical frequency and limited by the Nyquist bandwidth
of the analog-to-digital converter, while the overall spectral sampling resolution of
nonlinear time stretch is limited by the Nyquist bandwidth of the analog-to-digital
converter. The linear profile has a uniform resolution across the bandwidth, whereas
the resolution of the nonlinear profile is frequency-dependent and designed to match
the sparsity of the spectrotemporal distribution.

To further show the applicability of our design method, we consider a signal
(Fig. 10.8a) with asymmetric spectrum about the carrier frequency (Fig. 10.8b).
This corresponds to a signal with complex temporal envelope (in Fig. 10.8a,
we are showing the absolute value of the complex envelope). Using our design
algorithm, the spectrogram is contoured at �30 dB of the peak power density (blue
dot-dash line in Fig. 10.8c), specifying the required effective bandwidth of the
frequency of spectrum for an ideal group delay profile. Note that this contour also
becomes asymmetric about the carrier frequency. If we use a chirp-compensated
linear group delay profile (Fig. 10.8d), the spectrum to time mapping would be
uniform. Of course, this results in an asymmetric temporal waveform (Fig. 10.8e),
which resembles the input signal spectrum (Fig. 10.8b). The vertical flip is due
to higher frequencies receiving larger group delays, lagging more behind. The
frequencies higher than the center frequency experience relatively positive group
delays meaning they lag behind the center frequency. The spectrogram of the
temporal envelope shows the same type of flip (Fig. 10.8f). If we use the nonlinear
group delay profile designed with our technique (Fig. 10.8g) to stretch the signal
nonuniformly (Fig. 10.8h), compared to the linear case (Fig. 10.8f), a shorter time
duration and a smaller acquisition bandwidth are sufficient (Fig. 10.8i). Clearly, even
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Fig. 10.7 Spectral sampling resolution of time stretch dispersive Fourier transform designed for
ideal exploitation of the spectrotemporal sparsity. (a) Spectral resolution limits for the chirp
compensated linear group delay profile and the acquisition system of Fig. 10.6d–f. (b) The spectral
sampling resolution of the linear group delay profile minus chirp magnified ten times (for visual
clarity) and overlapped on the profile. One tenth of the overlay width at each group delay
corresponds to the set of the optical frequencies that are captured at the same delay and are
indistinguishable in the temporal waveform. (c) Spectral resolution limits for the nonlinear group
delay profile and the acquisition system of Fig. 10.6g–i, unlike the linear stretch, depend of the
envelope optical frequency. (d) Magnified spectral sampling resolution of the warped time stretch
overlapped on its group delay profile
DFT dispersive Fourier transform, PD photodetector, ADC analog-to-digital converter, Total
overall spectral sampling resolution

in the case of a signal with asymmetric spectrum, the design algorithm leads to a
nonlinear group delay profile, which efficiently reduces the time-bandwidth product
of the envelope by warped stretch transform. For the group delay profiles shown
in Fig. 10.8, the spectral resolutions of the linear and warped stretch transforms are
depicted in Fig. 10.9. The overall spectral sampling resolution of the linear time
stretch is independent of the envelope optical frequency and limited by the Nyquist
bandwidth of the analog-to-digital converter. The linear profile has a fixed resolution
across the bandwidth (Fig. 10.9a, b), but the resolution of the nonlinear profile is
frequency dependent (Fig. 10.9c, d). For example, the algorithm has designed the
nonlinear profile in such a way that it allocates better resolution to the parts of the
spectrum that contain fast variations (feature-dense regions).
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Fig. 10.8 Design of an ideal group delay profile for a signal with asymmetric spectrum about
the carrier frequency. (a) Envelope of the electric field of an input optical signal. (b) The spectrum
magnitude of the input envelope is asymmetric. (c) Spectrogram of the spectrum magnitude formed
by short-term Fourier transform. (d) To perform uniform frequency-to-time mapping, a linear
group delay design minus the input signal chirp should be used to stretch the input optical field.
(e) The spectrum maps uniformly to temporal envelope of the electric field by the chirp-corrected
linear group delay profile. (f) Spectrogram of the envelope waveform amplitude resembles that of
the spectrum magnitude (shown in Fig. 10.8c). (g) If a nonlinear group delay profile is designed
based on the blue dot-dash contour in Fig. 10.8c and the input signal chirp, (h) the spectrum is
nonuniformly mapped to the electric field envelope in time. (i) The spectrogram of the electric
field envelope amplitude after the nonuniform dispersion. The green and blue dot-dash boxes in
Fig. 10.8f, i show the acquisition time and bandwidth, and those in Fig. 10.8c show the effective
bandwidth for linear case and nonlinear kernel design, respectively

10.2.3 Simulation Model

We used a discrete-time complex-envelope simulation model for the analysis
of warped stretch transform. The carrier frequency is assumed to be 200 THz,
resembling an optical wavelength of 1:5 µm. The signal spectra are downshifted
from carrier frequency to baseband, easing the required temporal resolution of the
simulations. The temporal and spectral resolutions at baseband simulations are set
at 0.1 ps and 150.15 MHz, respectively. The output complex envelope spectrum,
eEout.!/, is calculated as the product of the input complex envelope spectrum,
eEin.!/, and the impulse response of the downshifted dispersion profile:
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Fig. 10.9 Spectral sampling resolution of time stretch dispersive Fourier transform designed
according to the spectrotemporal sparsity for a signal with asymmetric spectral features. (a) Spec-
tral resolution limits for the chirp compensated linear group delay profile and the acquisition system
of Fig. 10.8d–f. (b) The spectral sampling resolution of the linear group delay profile minus chirp
magnified ten times (for visual clarity) and overlapped on the profile. (c) Spectral resolution limits
corresponding to the nonlinear group delay profile and the acquisition system of Fig. 10.8g–i. The
overall spectral sampling resolution is limited by the Nyquist bandwidth of the analog-to-digital
converter. (d) Magnified spectral sampling resolution of the warped time stretch overlapped on its
group delay profile clearly shows the ambiguity grows at the regions of the spectrum that do not
contain sharp spectral features
DFT dispersive Fourier transform, PD photodetector, ADC analog-to-digital converter, Total
overall spectral sampling resolution

eEout.!/ D H.!/ � eEin.!/ (10.8)

Here, ! is the modulation frequency, and the impulse response, H.!/, is a
frequency-dependent phase shift filter;

H.!/ D exp fj'.!/g (10.9)

where the phase shift, '.!/, corresponds to the integral of the group delay
profile; i.e.,

'.!/ D
Z

�g.!/d! (10.10)
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Furthermore, linear interpolation is employed to generalize designed group delay to
arbitrary frequencies. If any, the chirp of the signal is derived by a moving-window
short-time Fourier transform.

10.2.4 Spectrograms

Spectrograms depend on the estimation method of power spectral density, e.g.,
the window size of the short-term Fourier transform. If the width of the short-
time Fourier transform window is reduced, the time resolution of the spectrogram
improves, but its frequency resolution degrades. For the frequency-of-spectrum
spectrogram, these changes in window size alter the effective bandwidth contour and
lead to variations in the design of the group delay profile. In other words, the width
of the spectral window should be small enough to capture localized fluctuations of
the spectral sparsity, but not too narrow to overestimate the effective bandwidth.
Alternatives to spectrogram, for example instantaneous frequency estimated from
the analytic form of the signal calculated by the Hilbert transformation, can also
be used to determine the required effective bandwidth and design the group delay
profile.

10.3 Discussion

The nonuniform sparse Fourier domain sampling described above may be used
for data compression. This works when some frequencies carry more information
than others. Such frequencies are coded with fine resolution preserving features
of spectrum at these frequencies. On the other hand, less important frequencies are
coded with a coarser resolution. Naturally, some of the finer details of less important
frequencies will be lost in the coding.

The information of interest is usually encoded into the magnitude of the
spectrum, therefore a simple unwarping of the time-to-spectrum map is sufficient
for reconstruction. For a more general case where the information is contained in
both the amplitude and phase, reconstruction requires either coherent detection or
recovery of phase from amplitude measurements. The input signal is then recovered
by simulation of back propagation through the dispersive profile (filter). Generally
known as a phase retrieval method, there are numerous digital algorithms available
for recovering the complex amplitude from intensity-only measurements [165, 166].

The reconstruction accuracy and lossy nature of this compression have been
analyzed previously [26]. The system reshapes the spectrotemporal structure of
the signal such that nearly all the signal energy is within the bandwidth of the
photodetector and the real-time digitizer of the acquisition system. Because of
the limited resolution of dispersive Fourier transform by ambiguity in frequency-
to-time mapping, the limited bandwidths of the photodetector and the digitizer,
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and the limited resolution of the digitizer, as measured by its effective number of
bits (ENOB), the reconstruction will never be ideal, and therefore, this is a lossy
compression method. In general, for any time-limited pulse, the spectrum is not
bandlimited, and the signal reconstruction will suffer from the loss of out-of-band
spectral components in the acquisition system. If the temporal width of the input sig-
nal is small enough, so that the spectral resolution is sufficient for capturing details
of the input signal spectrum (i.e., in the far field), the bandwidth limitations imposed
by the acquisition system can be considered as a frequency-dependent effective
bandwidth on the input signal frequency of spectrum as shown in Figs. 10.2c, 10.4c,
10.6c, and 10.8c. The effective bandwidth interpretation facilitates the design of
group delay profile for a set of target signals with known spectral characteristics
and determines the minimum amount of loss in the compression process.

As a consequence of dispersion, temporal features are transformed and slowed
down in time. The amount by which a particular temporal feature is stretched
is proportional to the bandwidth of the feature and the overall dispersion over
the bandwidth. Fast temporal features have larger bandwidth, and as a result,
they are transformed and stretched more than slow temporal features. This feature
selective stretch has been referred to as a type of self adaptivity through which the
output adapts to the input even when the transfer function of the system is static [22].

The group delay dispersion profile is designed according to the spectral sparsity
of the input signal as described, i.e., smart stretching. Beyond that, the group delay
is static; in other words, it does not need to be dynamically varied according to the
instantaneous behavior of the signal. This is why the time stretch dispersive Fourier
transform and its warped counterpart were called self-adaptive [22]. However,
if the spectral characteristics of the signal slowly varies over time, a feedback
mechanism can be used to adapt the group delay profile, and subsequently the
effective bandwidth to the sparsity requirements. The sophisticated group delay
profiles designed by our algorithm can be readily implemented by chirped fiber
Bragg grating (CFBG) technology [24, 104]. Another implementation option is to
use chromo-modal dispersion (CMD) device [103, 160], which uses the large modal
dispersion of multimode waveguides in conjunction with the angular dispersion
of diffraction gratings to create huge chromatic dispersion. For either technology,
the implemented group delay profile will have some deviations from the design.
A numerical study of the tolerance to profile nonidealities is performed previ-
ously [25].

Time stretch dispersive Fourier transform maps the spectrum of the pulses
in a burst-mode signal to the silent intervals in between them. In order to use
the time stretch transform for the acquisition of the spectrotemporal evolution of
a continuous-time signal, the signal needs to be segmented into multiple pulse
trains in a process, which is called virtual time gating [167]. The pulse trains are
independently dispersed by linear or warped time stretch systems in parallel, and
the acquired signals are digitally stitched together to reveal the spectral features
of the continuous-time signal as it varies with time. If the temporal duration of
each time gate window is very small, that is, the sliced segments of the continuous-
time signal are very short, the resolution of the linear or warped dispersive Fourier
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transform can be limited by the bandwidth of the gating window. Also, the temporal
durations of the time gate windows can be different.

For burst mode signals, time stretch dispersive Fourier transform takes advantage
of the empty intervals between pulses to map their spectra into temporal waveforms
and captures the signals with a bandwidth far beyond the acquisition bandwidth of
the electronic back-end, e.g., analog-to-digital converter and photodetector. Linear
time stretch dispersive Fourier transform acquires the spectrum of each pulse with
uniform spectral resolution up to frequencies far beyond the electrical acquisi-
tion bandwidth of the analog-to-digital converter and photodetector (Fig. 10.10a).
Warped time stretch dispersive Fourier transform has the same properties as its
linear counterpart, but its spectral resolution is not uniform across the bandwidth
(Fig. 10.10b). This nonuniformity can be designed to match the spectrotemporal
sparsity of the signal and therefore increase the spectral resolution at desired
frequencies under the same envelope time-bandwidth product. Both linear and
warped time stretch dispersive Fourier transforms can be used in conjunction
with virtual time gating technique for acquisition of the continuous-time signals
(Fig. 10.10c, d). In virtually time gated warped stretch transform, gates can have
dissimilar group delay profiles corresponding to different distributions of the
nonuniform spectral resolution and be suitable for various types of spectral sparsity
(Fig. 10.10d). The temporal durations of the gates should not be very short to
limit the spectral sampling resolution, but can be different. In virtually time gated
time stretch transform, all of the gates (shown with different colors) have the
same uniform spectral resolution if identical dispersions and back-end electronics
are used.

Spectrotemporal characteristics of a signal can also be analyzed digitally by
capturing the signal using an analog-to-digital converter and performing short-time
Fourier transform or wavelet transform on the samples. However, in these cases, the
maximum frequency that can be measured is limited by the electronic acquisition
bandwidth (Fig. 10.10e, f). The wavelet transform can also generate nonuniform
temporal resolution for the spectrotemporal distribution of the signal while keeping
the spectral resolution fixed (Fig. 10.10f).

10.4 Conclusion

Time stretch dispersive Fourier transform is an indispensable tool for acquisition and
analysis of the wideband signals at frequencies far beyond the acquisition bandwidth
of the electronic back-end, i.e., digitizer and photodetector. The more general form
of it, warped time stretch, offers nonlinear mapping of spectrum to time, which leads
to a nonuniform sampling of the spectrum. We analyzed the spectral resolution
of the warped time stretch dispersive Fourier transform and defined an effective
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Fig. 10.10 Spectrotemporal resolution of time stretch dispersive Fourier transform vs short-time
Fourier transform and wavelet transform. (a) In linear time stretch, the spectral resolution is
uniform, and the temporal resolution is same as the input pulse width. (b) In warped time stretch,
the spectral resolution is nonuniform as discussed earlier, and the temporal resolution is again
same as the input pulse width. (c) For analysis of continuous-time signals, virtual time gating
can be used for both linear and warped stretch transforms. (d) In addition, for virtually time
gated warped time stretch transform, the gates can have different distributions of nonuniform
spectral resolutions. (e) Short-time Fourier transform can also be used to digitally generate the
spectrotemporal distribution of an already acquired signal, but its bandwidth is limited to that of the
electronic acquisition system. (f) The bandwidth of digitally implemented wavelet transform is also
restricted to the electronic acquisition bandwidth, but its temporal resolution can be nonuniform

bandwidth for the transform, which guides the design of a proper group delay
profile based on the spectral sparsity of the signal. Finally, linear and warped time
stretch transforms are compared to other methods such as wavelet transform for
spectrotemporal analysis of continuous-time signals.



Chapter 11
Concluding Remarks and Future Work

In summary, we demonstrated a new type of imaging flow cytometry based
on coherent stretched-time-encoded amplified microscopy, namely time stretch
quantitative phase imaging (TS-QPI), which is capable of classifying cells with
minimal motion distortion at unprecedented rates of 100,000 cells/s. TS-QPI
relies on spectral multiplexing to capture simultaneously both phase and intensity
quantitative images in a single measurement, generating a wealth of information of
each individual cell eliminating the need for labeling with undesirable biomarkers.

To further improve the accuracy and repeatability in label-free phenotypic
screening, we introduced a novel machine learning pipeline to label-free cell
classification, which harnesses the advantages of multivariate feature detection
and deep learning. We demonstrated application of various learning algorithms
including deep neural networks, logistic regression, naive Bayes, as well as a new
training method based on evolutionary global optimization of receiver operating
characteristics (ROC). The results from two experimental demonstrations, one
on detection of cancerous cells among white blood cells, and another one on
identification of lipid-rich algae, show that classification accuracy by using the
TS-QPI hyperdimensional space is more than 17% better than the conventional size-
based techniques. Our system paves the way to cellular phenotypic analysis as well
as data-driven diagnostics, and thus is a valuable tool for high-throughput label-free
cell screening in medical, biotechnological, and research applications.

Furthermore, we demonstrated real-time optical data compression applied to time
stretch imaging. This technique provides a solution to the challenges in acquiring
and storing the large amount of data generated in high-speed imaging. Using
nonlinear group delay dispersion, we achieved warped stretch imaging in such a way
that the information-rich central vision is sampled at a higher sample density than
the sparse peripheral vision. Most notably, this was done using a uniform electronic
sampler, i.e., without adaptive or dynamic control over the electronic sampling rate.

© Springer International Publishing AG 2017
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A three-time image compression was achieved in experimental proof of concept
demonstration. Our nonuniform sampling technique could offer one route to taming
the capture, storage, and transmission bottlenecks associated with big data.

Finally, we demonstrated how to design the kernel of time stretch transform
for acquisition and analysis of the wideband signals at frequencies far beyond the
acquisition bandwidth of the electronic back-end, i.e., digitizer and photodetector.
We analyzed the spectral resolution of the warped time stretch dispersive Fourier
transform and defined an effective bandwidth for the transform, which guides the
design of a proper group delay profile based on the spectral sparsity of the signal. In
addition, linear and warped time stretch transforms are compared to other methods
such as wavelet transform for spectrotemporal analysis of continuous-time signals.

For future work, we recommend implementation of deep learning on cell images
to enhance the object recognition and feature extraction in addition to manual
feature design. We also suggest integrating information of genomics, proteomics,
and phenomics to have better understanding of genotype-to-phenotype mapping.
This will enable immediate personalized diagnosis with less complicated tests at
phenotypic level.



References

1. Jalali, B., Mahjoubfar, A., & Chen, C. L. (2015). High-throughput biological cell clas-
sification featuring real-time optical data compression. 2015 49th Annual Conference on
Information Sciences and Systems (CISS) (p. 7086896). IEEE.

2. Mahjoubfar, A., Chen, C. L., Lin, J., & Jalali, B. (2017). AI-augmented time stretch
microscopy. In SPIE BIOS (pp. 100760J–100760J). Washington, DC: International Society
for Optics and Photonics.

3. Chen, C. L., Mahjoubfar, A., Tai, L.-C., Blaby, I. K., Huang, A., Niazi, K. R., & Jalali, B.
(2016). Deep learning in label-free cell classification. Scientific Reports, 6, 21471.

4. Mahjoubfar, A., Chen, C. L., & Jalali, B. (2015). Design of warped stretch transform.
Scientific Reports, 5, 17148.

5. Chan, J. C. K., Mahjoubfar, A., Chen, C. L., & Jalali, B. (2016). Context-aware image
compression. PloS One, 11(7), e0158201.

6. Chan, J. C. K., Mahjoubfar, A., & Jalali, B. (2016). Optics-inspired context-aware image
compression using warped stretch transform. In 2016 IEEE Photonics Society Summer
Topical Meeting Series (SUM) (pp. 214–215). New York: IEEE.

7. Solli, D. R., Ropers, C., Koonath, P., & Jalali, B. (2007). Optical rogue waves. Nature,
450(7172), 1054–1057.

8. Ng, W., Rockwood, T., & Reamon, A. (2014). Demonstration of channel-stitched photonic
time stretch analog-to-digital converter with enob > 8 for a 10 ghz signal bandwidth.
In GOMACTech (p. 26.2). Washington, DC: US Department of Defense.

9. Goda, K., & Jalali, B. (2013). Dispersive fourier transformation for fast continuous single-
shot measurements. Nature Photonics, 7(2), 102–112.

10. Goda, K., Tsia, K. K., & Jalali, B. (2009). Serial time-encoded amplified imaging for real-time
observation of fast dynamic phenomena. Nature, 458(7242), 1145–1149.

11. Zhang, C., Xu, Y., Wei, X., Tsia, K. K., & Wong, K. K. Y. (2014). Time-stretch microscopy
based on time-wavelength sequence reconstruction from wideband incoherent source. Applied
Physics Letters, 105(4), 041113.

12. Mahjoubfar, A., Goda, K., Ayazi, A., Fard, A., Kim, S. H., & Jalali, B. (2011). High-speed
nanometer-resolved imaging vibrometer and velocimeter. Applied Physics Letters, 98(10),
101107.

13. Goda, K., Mahjoubfar, A., Wang, C., Fard, A., Adam, J., Gossett, D. R., Ayazi, A., Sollier, E.,
Malik, O., Chen, E., et al. (2012). Hybrid dispersion laser scanner. Scientific Reports, 2, 445.

14. Yazaki, A., Kim, C., Chan, J., Mahjoubfar, A., Goda, K., Watanabe, M., & Jalali, B. (2014).
Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning. Applied Physics
Letters, 104(25), 251106.

© Springer International Publishing AG 2017
A. Mahjoubfar et al., Artificial Intelligence in Label-free Microscopy,
DOI 10.1007/978-3-319-51448-2

123



124 References

15. Wei, X., Lau, A. K. S., Xu, Y., Zhang, C., Mussot, A., Kudlinski, A., Tsia, K. K., & Wong,
K. K. Y. (2014). Broadband fiber-optical parametric amplification for ultrafast time-stretch
imaging at 1.0 �m. Optics Letters, 39(20), 5989–5992.

16. Mahjoubfar, A., Goda, K., Wang, C., Fard, A., Adam, J., Gossett, D. R., Ayazi, A., Sollier,
E., Malik, O., Chen, E., et al. (2013). 3D ultrafast laser scanner. In SPIE LASE (pp. 86110N–
86110N). Washington, DC: International Society for Optics and Photonics.

17. Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2013). Label-free high-
throughput cell screening in flow. Biomedical Optics Express, 4(9), 1618–1625.

18. Chen, H., Weng, Z., Liang, Y., Lei, C., Xing, F., Chen, M., & Xie, S. (2014). High speed
single-pixel imaging via time domain compressive sampling. In CLEO: Applications and
technology (pp. JTh2A–132). Washington, DC: Optical Society of America.

19. Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2014). Label-free high-
throughput imaging flow cytometry. In SPIE LASE (pp. 89720F–89720F). Washington, DC:
International Society for Optics and Photonics.

20. Lau, A. K. S., Wong, T. T. W., Ho, K. K. Y., Tang, M. T. H., Chan, A. C. S., Wei, X.,
Lam, E. Y., Shum, H. C., Wong, K. K. Y., & Tsia, K. K. (2014). Interferometric time-
stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 �m. Journal
of Biomedical Optics, 19(7), 076001–076001.

21. Diebold, E. D., Buckley, B. W., Gossett, D. R., & Jalali, B. (2013). Digitally synthesized
beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nature Photonics,
7(10), 806–810.

22. Jalali, B., & Asghari, M. H. (2014). The anamorphic stretch transform: Putting the squeeze
on ‘big data’. Optics and Photonics News, 25(2), 24–31.

23. Asghari, M. H., & Jalali, B. (2013). Anamorphic transformation and its application to time–
bandwidth compression. Applied Optics, 52(27), 6735–6743.

24. Asghari, M. H., & Jalali, B. (2014). Experimental demonstration of optical real-time data
compression. Applied Physics Letters, 104(11), 111101.

25. Jalali, B., Chan, J., & Asghari, M. H. (2014). Time–bandwidth engineering. Optica, 1(1),
23–31.

26. Chan, J., Mahjoubfar, A., Asghari, M., & Jalali, B. (2014). Reconstruction in time-bandwidth
compression systems. Applied Physics Letters, 105(22), 221105.

27. Bosworth, B. T., & Foster, M. A. (2014). High-speed flow imaging utilizing spectral-
encoding of ultrafast pulses and compressed sensing. In CLEO: Applications and technology
(pp. ATh4P–3). Washington, DC: Optical Society of America.

28. Valley, G. C., Sefler, G. A., & Shaw, T. J. (2012). Compressive sensing of sparse radio
frequency signals using optical mixing. Optics Letters, 37(22), 4675–4677.

29. Mahjoubfar, A., Goda, K., Betts, G., & Jalali, B. (2013). Optically amplified detection
for biomedical sensing and imaging. Journal of the Optical Society of America A, 30(10),
2124–2132.

30. Goda, K., Ayazi, A., Gossett, D. R., Sadasivam, J., Lonappan, C. K., Sollier, E., Fard, A. M.,
Hur, S. C., Adam, J., Murray, C., et al. (2012). High-throughput single-microparticle imaging
flow analyzer. Proceedings of the National Academy of Sciences, 109(29), 11630–11635.

31. Kling, J. (2012). Beyond counting tumor cells. Nature Biotechnology, 30(7), 578–580.
32. Kærn, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression:

From theories to phenotypes. Nature Reviews Genetics, 6(6), 451–464.
33. Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin,

D. A., Chang, J. H., Lindquist, R. A., Moffat, J., et al. (2006). Cellprofiler: Image analysis
software for identifying and quantifying cell phenotypes. Genome Biology, 7(10), R100.

34. Castellini, P., Martarelli, M., & Tomasini, E. P. (2006). Laser doppler vibrometry: Develop-
ment of advanced solutions answering to technology’s needs. Mechanical Systems and Signal
Processing, 20(6), 1265–1285.

35. Broch, J. T. (1980). Mechanical vibration and shock measurements. Copenhagen: Brüel &
Kjær.



References 125

36. Drain, L. E. (1980). The laser doppler techniques (Vol. 1, 250pp.). Chichester, Sussex, New
York: Wiley-Interscience.

37. Arnott, W. P., & Sabatier, J. M. (1990). Laser-doppler vibrometer measurements of acoustic
to seismic coupling. Applied Acoustics, 30(4), 279–291.

38. Goode, R. L., Ball, G., Nishihara, S., & Nakamura, K. (1996). Laser doppler vibrometer (ldv).
Otology & Neurotology, 17(6), 813–822.

39. Huber, A. M., Schwab, C., Linder, T., Stoeckli, S. J., Ferrazzini, M., Dillier, N., &
Fisch, U. (2001). Evaluation of eardrum laser doppler interferometry as a diagnostic tool.
The Laryngoscope, 111(3), 501–507.

40. Conant, R. (2002). Micromachined mirrors (Vol. 12). Berlin: Springer.
41. Pape, D. R., Goutzoulis, A. P., & Kulakov, S. V. (1994). Design and fabrication of acousto-

optic devices. New York: Dekker.
42. Zheng, W., Kruzelecky, R. V., & Changkakoti, R. (1998). Multichannel laser vibrometer

and its applications. In Third International Conference on Vibration Measurements by
Laser Techniques: Advances and Applications (pp. 376–384). Washington, DC: International
Society for Optics and Photonics.

43. Fu, Y., Guo, M., & Phua, P. B. (2010). Spatially encoded multibeam laser doppler vibrometry
using a single photodetector. Optics Letters, 35(9), 1356–1358.

44. Popescu, G., Ikeda, T., Goda, K., Best-Popescu, C. A., Laposata, M., Manley, S., Dasari,
R. R., Badizadegan, K., & Feld, M. S. (2006). Optical measurement of cell membrane tension.
Physical Review Letters, 97(21), 218101.

45. Goda, K., Tsia, K. K., & Jalali, B. (2008). Amplified dispersive fourier-transform imaging for
ultrafast displacement sensing and barcode reading. Applied Physics Letters, 93(13), 131109.

46. Qian, F., Song, Q., Tien, E.-K. Kalyoncu, S. K., & Boyraz, O. (2009). Real-time opti-
cal imaging and tracking of micron-sized particles. Optics Communications, 282(24),
4672–4675.

47. Goda, K., Solli, D. R., Tsia, K. K., & Jalali, B. (2009). Theory of amplified dispersive fourier
transformation. Physical Review A, 80(4), 043821.

48. Tsia, K. K., Goda, K., Capewell, D., & Jalali, B. (2010). Performance of serial time-encoded
amplified microscope. Optics Express, 18(10), 10016–10028.

49. Marshall, G. F., & Stutz, G. E. (2011). Handbook of optical and laser scanning. Boca Raton,
FL: CRC.

50. Fujii, T., & Fukuchi, T. (2005). Laser remote sensing. Boca Raton, FL: CRC.
51. Dotson, C., Harlow, R., & Thompson, R. L. (2003). Fundamentals of dimensional metrology.

Albany, NY: Thomson Learning.
52. Göbel, W., Kampa, B. M., & Helmchen, F. (2006). Imaging cellular network dynamics in

three dimensions using fast 3d laser scanning. Nature Methods, 4(1), 73–79.
53. Pawley, J. (2010). Handbook of biological confocal microscopy. Berlin: Springer.
54. Denk, W., Strickler, J. H., Webb, W. W., et al. (1990). Two-photon laser scanning fluorescence

microscopy. Science, 248(4951), 73–76.
55. Weitkamp, C. (2006). Lidar: Range-resolved optical remote sensing of the atmosphere.

Springer Science & Business.
56. Schwarz, B. (2010). Mapping the world in 3d. Nature Photonics, 4(7), 429–430.
57. Sinha, A. (2010). Vibration of mechanical systems. Cambridge: Cambridge University Press.
58. Pelesko, J. A., & Bernstein, D. H. (2002). Modeling mems and nems. Boca Raton, FL: CRC.
59. Osten, W. (2006). Optical inspection of microsystems. Boca Raton, FL: CRC.
60. Horn, B. (1986). Robot vision. Cambridge, MA: MIT.
61. Hoffman, A., Goetz, M., Vieth, M., Galle, P. R., Neurath, M. F., & Kiesslich, R. (2006).

Confocal laser endomicroscopy: Technical status and current indications. Endoscopy, 38(12),
1275–1283.

62. Tárnok, A., & Gerstner, A. O. H. (2002). Clinical applications of laser scanning cytometry.
Cytometry, 50(3), 133–143.



126 References

63. Vacca, G., Junnarkar, M. R., Goldblatt, N. R., Yee, M. W., Van Slyke, B. M., & Briese, T. C.
(2009). Laser rastering flow cytometry: Fast cell counting and identification. In SPIE BiOS:
Biomedical optics (pp. 71821T–71821T). Washington, DC: International Society for Optics
and Photonics.

64. Yaqoob, Z., & Riza, N. A. (2004). Passive optics no-moving-parts barcode scanners. IEEE
Photonics Technology Letters, 16(3), 954–956.

65. Boudoux, C., Yun, S., Oh, W., White, W., Iftimia, N., Shishkov, M., Bouma, B., & Tearney,
G. (2005). Rapid wavelength-swept spectrally encoded confocal microscopy. Optics Express,
13(20), 8214–8221.

66. Kelkar, P. V., Coppinger, F., Bhushan, A. S., & Jalali, B. (1999). Time-domain optical sensing.
Electronics Letters, 35(19), 1661–1662.

67. Chou, J., Boyraz, O., Solli, D., & Jalali, B. (2007). Femtosecond real-time single-shot
digitizer. Applied Physics Letters, 91(16), 161105–161105.

68. Carlo, D. D. (2009). Inertial microfluidics. Lab on a Chip, 9(21), 3038–3046.
69. Grover, W. H., Bryan, A. K., Diez-Silva, M., Suresh, S., Higgins, J. M., & Manalis, S. R.

(2011). Measuring single-cell density. Proceedings of the National Academy of Sciences,
108(27), 10992–10996.

70. Mrema, J. E., Campbell, G. H., Miranda, R., Jaramillo, A. L., & Rieckmann, K. H.
(1979). Concentration and separation of erythrocytes infected with plasmodium falciparum
by gradient centrifugation. Bulletin of the World Health Organization, 57(1), 133.

71. Chun, J., Zangle, T. A., Kolarova, T., Finn, R. S., Teitell, M. A., & Reed, J. (2012). Rapidly
quantifying drug sensitivity of dispersed and clumped breast cancer cells by mass profiling.
Analyst, 137(23), 5495–5498.

72. Martin, S. J., Bradley, J. G., & Cotter, T. G. (1990). Hl-60 cells induced to differentiate
towards neutrophils subsequently die via apoptosis. Clinical & Experimental Immunology,
79(3), 448–453.

73. Wyllie, A. H., & Morris, R. G. (1982). Hormone-induced cell death. purification ad properties
of thymocytes undergoing apoptosis after glucocorticoid treatment. The American Journal of
Pathology, 109(1), 78.

74. Wolff, D. A., & Pertoft, H. (1972). Separation of hela cells by colloidal silica density gradient
centrifugation i. separation and partial synchrony of mitotic cells. The Journal of Cell Biology,
55(3), 579–585.

75. Maric, D., Maric, I., & Barker, J. L. (1998). Buoyant density gradient fractionation and flow
cytometric analysis of embryonic rat cortical neurons and progenitor cells. Methods, 16(3),
247–259.

76. Bista, R. K., Uttam, S., Wang, P., Staton, K., Choi, S., Bakkenist, C. J., Hartman, D.J., Brand,
R. E., & Liu, Y. (2011). Quantification of nanoscale nuclear refractive index changes during
the cell cycle. Journal of Biomedical Optics, 16(7), 070503–070503.

77. Bosslet, K., Ruffmann, R., Altevogt, P., & Schirrmacher, V. (1981). A rapid method for
the isolation of metastasizing tumour cells from internal organs with the help of isopycnic
density-gradient centrifugation in percoll. British Journal of Cancer, 44(3), 356.

78. Phillips, K. G., Kolatkar, A., Rees, K. J., Rigg, R., Marrinucci, D., Luttgen, M., Bethel, K.,
Kuhn, P., & McCarty, O. J. T. (2012). Quantification of cellular volume and sub-cellular
density fluctuations: Comparison of normal peripheral blood cells and circulating tumor cells
identified in a breast cancer patient. Frontiers in Oncology, 2, 96.

79. Phillips, K. G., Velasco, C. R., Li, J., Kolatkar, A., Luttgen, M., Bethel, K., Duggan, B.,
Kuhn, P., & McCarty, O. (2012). Optical quantification of cellular mass, volume, and density
of circulating tumor cells identified in an ovarian cancer patient. Cancer Molecular Targets
and Therapeutics, 2, 72.

80. Gupta, V., Jafferji, I., Garza, M., Melnikova, V., Hasegawa, D. K., Pethig, R., & Davis, D. W.
(2012). ApostreamTM, a new dielectrophoretic device for antibody independent isolation and
recovery of viable cancer cells from blood. Biomicrofluidics, 6(2), 024133.



References 127

81. Tycko, D. H., Metz, M. H., Epstein, E. A., & Grinbaum, A. (1985). Flow-cytometric light
scattering measurement of red blood cell volume and hemoglobin concentration. Applied
Optics, 24(9), 1355–1365.

82. Liang, X. J., Liu, A. Q., Lim, C. S., Ayi, T. C., & Yap, P. H. (2007). Determining refractive
index of single living cell using an integrated microchip. Sensors and Actuators A: Physical,
133(2), 349–354.

83. Rappaz, B., Marquet, P., Cuche, E., Emery, Y., Depeursinge, C., & Magistretti, P. (2005).
Measurement of the integral refractive index and dynamic cell morphometry of living cells
with digital holographic microscopy. Optics Express, 13(23), 9361–9373.

84. Curl, C. L., Bellair, C. J., Harris, T., Allman, B. E., Harris, P. J., Stewart, A. G., Roberts, A.,
Nugent, K. A., & Delbridge, L. (2005). Refractive index measurement in viable cells using
quantitative phase-amplitude microscopy and confocal microscopy. Cytometry Part A, 65(1),
88–92.

85. Lue, N., Choi, W., Popescu, G., Yaqoob, Z., Badizadegan, K., Dasari, R. R., & Feld, M. S.
(2009). Live cell refractometry using Hilbert phase microscopy and confocal reflectance
microscopy. The Journal of Physical Chemistry A, 113(47), 13327–13330.

86. Gorthi, S. S., & Schonbrun, E. (2012). Phase imaging flow cytometry using a focus-stack
collecting microscope. Optics Letters, 37(4), 707–709.

87. Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schütze, K., Capron, F., Franco, D.,
Pazzagli, M., Vekemans, M., et al. (2000). Isolation by size of epithelial tumor cells: A new
method for the immunomorphological and molecular characterization of circulating tumor
cells. The American Journal of Pathology, 156(1), 57–63.

88. Di Caprio, G., Schaak, D., & Schonbrun, E. F. (2013). Hyperspectral microscopy of flowing
cells. In Imaging systems and applications (pp. IM4E–3). Washington, DC: Optical Society
of America

89. Barer, R., & Joseph, S. (1954). Refractometry of living cells part i. Basic principles. Quarterly
Journal of Microscopical Science, 3(32), 399–423.

90. Fard, A. M., Mahjoubfar, A., Goda, K., Gossett, D. R., Di Carlo, D., & Jalali, B. (2011).
Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imag-
ing of transparent media. Biomedical Optics Express, 2(12), 3387–3392.

91. Boyraz, O., Kim, J., Islam, M. N., Coppinger, F., & Jalali, B. (2000). Broadband, high-
brightness 10-gbit/s supercontinuum source for a/d conversion. In Conference on Lasers and
Electro-Optics, 2000. (CLEO 2000) (pp. 489–490). New York: IEEE.

92. Ikeda, T., Popescu, G., Dasari, R. R., & Feld, M. S. (2005). Hilbert phase microscopy for
investigating fast dynamics in transparent systems. Optics Letters, 30(10), 1165–1167.

93. Revel, J. P., Hoch, P., & Ho, D. (1974). Adhesion of culture cells to their substratum.
Experimental Cell Research, 84(1), 207–218.

94. Whur, P., Koppel, K., Urquhart, C. M., & Williams, D. C. (1977). Substrate retention of
fractured retraction fibres during detachment of trypsinized bhk21 fibroblasts. Journal of Cell
Science, 24(1), 265–273.

95. Shapiro, H. M. (2005). Practical flow cytometry. New York: Wiley.
96. Watson, J. V. (2004). Introduction to flow cytometry. Cambridge: Cambridge University Press.
97. Perfetto, S. P., Chattopadhyay, P. K., & Roederer, M. (2004). Seventeen-colour flow cytome-

try: Unravelling the immune system. Nature Reviews Immunology, 4(8), 648–655.
98. Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V., & Morrissey, P. (2007). Cellular

image analysis and imaging by flow cytometry. Clinics in Laboratory Medicine, 27(3),
653–670.

99. Basiji, D. A., & Ortyn, W. E. (2001). Imaging and analyzing parameters of small moving
objects such as cells. US Patent 6211955.

100. Razavi, B. (1995). Principles of data conversion system design (Vol. 126). New York: IEEE.
101. Zanella, F., Lorens, J. B., & Link, W. (2010). High content screening: Seeing is believing.

Trends in Biotechnology, 28(5), 237–245.
102. Solli, D. R., Gupta, S., & Jalali, B. (2009). Optical phase recovery in the dispersive fourier

transform. Applied Physics Letters, 95(23), 231108.



128 References

103. Jalali, B., & Mahjoubfar, A. (2015). Tailoring wideband signals with a photonic hardware
accelerator. Proceedings of the IEEE, 103(7), 1071–1086.

104. Chen, C. L., Mahjoubfar, A., & Jalali, B. (2015). Optical data compression in time stretch
imaging. PLoS One, 10(4), e0125106.

105. Gires, O., Klein, C. A., & Baeuerle, P. A. (2009). On the abundance of epcam on cancer stem
cells. Nature Reviews Cancer, 9(2), 143–143.

106. Boddington, S. E., Sutton, E. J., Henning, T. D., Nedopil, A. J., Sennino, B., Kim, A., &
Daldrup-Link, H. E. (2011). Labeling human mesenchymal stem cells with fluorescent
contrast agents: The biological impact. Molecular Imaging and Biology, 13(1), 3–9.

107. Popescu, G. (2011). Quantitative phase imaging of cells and tissues. New York: McGraw
Hill.

108. Pham, H. V., Bhaduri, B., Tangella, K., Best-Popescu, C., & Popescu, G. (2013). Real time
blood testing using quantitative phase imaging. PloS One, 8(2), e55676.

109. Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N., & Altan-Bonnet, G. (2008).
Variability and robustness in t cell activation from regulated heterogeneity in protein levels.
Science, 321(5892), 1081–1084.

110. Sigal, A., Milo, R., Cohen, A., Geva-Zatorsky, N., Klein, Y., Liron, Y., Rosenfeld, N., Danon,
T., Perzov, N., & Alon, U. (2006). Variability and memory of protein levels in human cells.
Nature, 444(7119), 643–646.

111. Friebel, M., Do, K., Hahn, A., Mu, G., et al. (1999). Optical properties of circulating human
blood in the wavelength range 400–2500 nm. Journal of Biomedical Optics, 4(1), 36–46.

112. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., & Sorger, P. K. (2009). Non-genetic
origins of cell-to-cell variability in trail-induced apoptosis. Nature, 459(7245), 428–432.

113. Knight, J. B., Vishwanath, A., Brody, J. P., & Austin, R. H. (1998). Hydrodynamic focusing
on a silicon chip: Mixing nanoliters in microseconds. Physical Review Letters, 80(17), 3863.

114. Lee, G.-B., Chang, C.-C., Huang, S.-B., & Yang, R.-J. (2006). The hydrodynamic focusing
effect inside rectangular microchannels. Journal of Micromechanics and Microengineering,
16(5), 1024.

115. King, F. W. (2009). Hilbert transforms (Vol. 2). Cambridge: Cambridge University Press.
116. Buckley, B. W., Madni, A. M., & Jalali, B. (2013). Coherent time-stretch transformation for

real-time capture of wideband signals. Optics Express, 21(18), 21618–21627.
117. DeVore, P. T. S., Buckley, B. W., Asghari, M. H., Solli, D. R., & Jalali, B. (2014). Coherent

time-stretch transform for near-field spectroscopy. IEEE Photonics Journal, 6, 3300107.
118. Driscoll, M. K., Albanese, J. L., Xiong, Z.-M., Mailman, M., Losert, W., & Cao, K. (2012).

Automated image analysis of nuclear shape: What can we learn from a prematurely aged cell?
Aging (Albany NY), 4(2), 119

119. Barer, R., Ross, K. F., & Tkaczyk, S. (1953). Refractometry of living cells. Nature, 171(4356),
720.

120. Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-A., Logan, D. J., Madden, K. L.,
Ljosa, V., Rueden, C., Eliceiri, K. W., & Carpenter, A. E. (2011). Improved structure,
function and compatibility for cellprofiler: Modular high-throughput image analysis software.
Bioinformatics, 27(8), 1179–1180.

121. Spadinger, I., Poon, S. S. S., & Palcic, B. (1990). Effect of focus on cell detection and
recognition by the cell analyzer. Cytometry, 11(4), 460–467.

122. Adams, A. A., Okagbare, P. I., Feng, J., Hupert, M. L., Patterson, D., Göttert, J., McCarley,
R. L., Nikitopoulos, D., Murphy, M. C., & Soper, S. A. (2008). Highly efficient circulating
tumor cell isolation from whole blood and label-free enumeration using polymer-based
microfluidics with an integrated conductivity sensor. Journal of the American Chemical
Society, 130(27), 8633–8641.

123. Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., Smith, M. R.,
Kwak, E. L., Digumarthy, S., Muzikansky, A., et al. (2007). Isolation of rare circulating
tumour cells in cancer patients by microchip technology. Nature, 450(7173), 1235–1239.

124. Gossett, D. R., Weaver, W. M., Mach, A. J., Hur, S. C., Tse, H. T. K., Lee, W., Amini, H., &
Di Carlo, D. (2010). Label-free cell separation and sorting in microfluidic systems. Analytical
and Bioanalytical Chemistry, 397(8), 3249–3267.



References 129

125. Maheshri, N., & O’Shea, E. K. (2007). Living with noisy genes: How cells function reliably
with inherent variability in gene expression. Annual Review of Biophysics and Biomolecular
Structure, 36, 413–434.

126. Zangle, T. A., Teitell, M. A., & Reed, J. (2014). Live cell interferometry quantifies dynamics
of biomass partitioning during cytokinesis. PloS One, 9(12), e115726.

127. Johnston, I. G., Gaal, B., das Neves, R. P., Enver, T., Iborra, F. J., & Jones, N. S. (2012).
Mitochondrial variability as a source of extrinsic cellular noise. PLoS Computational Biology,
8(3), e1002416.

128. Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning from data. Seattle:
AMLBook.

129. Bishop, C. M., et al. (2006). Pattern recognition and machine learning (Vol. 4). New York:
Springer.

130. Boddy, L., Morris, C. W., Wilkins, M. F., Tarran, G. A., & Burkill, P. H. (1994). Neural
network analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry,
15(4), 283–293.

131. Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30(7), 1145–1159.

132. Powers, D. M. (2011). Evaluation: From precision, recall and f-measure to roc, informedness,
markedness and correlation. Technical Report.

133. Huang, J., & Ling, C. X. (2005). Using auc and accuracy in evaluating learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 17(3), 299–310.

134. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
135. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,

61, 85–117.
136. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology, 143(1), 29–36.
137. Ling, C. X., Huang, J., & Zhang, H. (2003). Auc: A statistically consistent and more

discriminating measure than accuracy. In IJCAI (Vol. 3, pp. 519–524).
138. Cortes, C., & Mohri, M. (2004). Auc optimization vs. error rate minimization. Advances in

Neural Information Processing Systems, 16(16), 313–320.
139. Liu, Z., & Tan, M. (2008). Roc-based utility function maximization for feature selection

and classification with applications to high-dimensional protease data. Biometrics, 64(4),
1155–1161.

140. Verrelst, H., Moreau, Y., Vandewalle, J., & Timmerman, D. (1998). Use of a multi-
layer perceptron to predict malignancy in ovarian tumors. Advances in Neural Information
Processing Systems, 10, 978–984.

141. Merchant, S. S., Kropat, J., Liu, B., Shaw, J., & Warakanont, J. (2012). Tag, you’re it!
chlamydomonas as a reference organism for understanding algal triacylglycerol accumula-
tion. Current Opinion in Biotechnology, 23(3), 352–363.

142. Zabawinski, C., Van Den Koornhuyse, N., D’Hulst, C., Schlichting, R., Giersch, C., Delrue,
B., Lacroix, J.-M., Preiss, J.-M., & Ball, S. (2001). Starchless mutants of chlamydomonas
reinhardtii lack the small subunit of a heterotetrameric adp-glucose pyrophosphorylase.
Journal of Bacteriology, 183(3), 1069–1077.

143. Work, V. H., Radakovits, R., Jinkerson, R. E., Meuser, J. E., Elliott, L. G., Vinyard,
D. J., Laurens, L. M. L., Dismukes, G. C., & Posewitz, M. C. (2010). Increased lipid
accumulation in the chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and
increased carbohydrate synthesis in complemented strains. Eukaryotic Cell, 9(8), 1251–1261.

144. Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamy-
domonas starchless mutant defective in adp-glucose pyrophosphorylase hyper-accumulates
triacylglycerol. Metabolic Engineering, 12(4), 387–391.

145. Goodenough, U., Blaby, I., Casero, D., Gallaher, S. D., Goodson, C., Johnson, S., Lee, J.-H.,
Merchant, S. S., Pellegrini, M., Roth, R., et al. (2014). The path to triacylglyceride obesity in
the sta6 strain of chlamydomonas reinhardtii. Eukaryotic Cell, 13(5), 591–613.



130 References

146. Blaby, I. K., Glaesener, A. G., Mettler, T., Fitz-Gibbon, S. T., Gallaher, S. D., Liu, B., Boyle,
N. R., Kropat, J., Stitt, M., Johnson, S., et al. (2013). Systems-level analysis of nitrogen
starvation–induced modifications of carbon metabolism in a chlamydomonas reinhardtii
starchless mutant. The Plant Cell Online, 25(11), 4305–4323.

147. Laudon, M. (2015). Chlamydomonas Resource Center, University of Minnesota. Online.
148. Zhu, Y.-N., Ji, F., Liu, F., Tian, Z.-Q., Zhou, C., & Mahjoubfar, A. (2016). Data mining

application in smart meter quality control. In Fuzzy system and data mining: Proceedings
of FSDM 2015 (pp. 369–374). Amsterdam: IOS.

149. Suthar, M., Mahjoubfar, A., Seals, K., Lee, E. W., & Jalali, B. (2016). Diagnostic tool for
pneumothorax. In 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)
(pp. 218–219). New York: IEEE.

150. Zhu, Y., Jian, J., Wu, J., & Yang, L. (2013). Global optimization of non-convex hydro-thermal
coordination based on semidefinite programming. IEEE Transactions on Power Systems,
28(4), 3720–3728.

151. Chen, C., Mahjoubfar, A., Huang, A., Niazi, K., Rabizadeh, S., & Jalali, B. (2014). Hyper-
dimensional analysis for label-free high-throughput imaging flow cytometry. In CLEO:
Applications and technology (pp. AW3L–2). Washington, DC: Optical Society of America.

152. Wong, T. T., Lau, A. K. S., Ho, K. K. Y., Tang, M. Y. H., Robles, J. D. F., Wei, X., Chan, A. C.
S., Tang, A. H., Lam, E. Y., Wong, K. K. Y., et al. (2014). Asymmetric-detection time-stretch
optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Scientific
Reports, 4, 3656.

153. Nichols, J. M., & Bucholtz, F. (2011). Beating nyquist with light: A compressively sampled
photonic link. Optics Express, 19(8), 7339–7348.

154. Bosworth, B. T., & Foster, B. T. (2013). High-speed ultrawideband photonically enabled
compressed sensing of sparse radio frequency signals. Optics Letters, 38(22), 4892–4895.

155. Liang, Y., Chen, M., Chen, H., Lei, C., Li, P., & Xie, S. (2013). Photonic-assisted multi-
channel compressive sampling based on effective time delay pattern. Optics Express, 21(22),
25700–25707.

156. Chen, Y., Yu, X., Chi, H., Jin, X., Zhang, X., Zheng, S., & Galili, M. (2014). Compressive
sensing in a photonic link with optical integration. Optics Letters, 39(8), 2222–2224.

157. Wikimedia Commons YY (2007). An artwork by István Orosz.
158. Adam, J., Mahjoubfar, A., Diebold, E. D., Buckley, B. W., & Jalali, B. (2013). Spectrally

encoded angular light scattering. Optics Express, 21(23), 28960–28967.
159. Di Carlo, D., Irimia, D., Tompkins, R. G., & Toner, M. (2007). Continuous inertial focusing,

ordering, and separation of particles in microchannels. Proceedings of the National Academy
of Sciences, 104(48), 18892–18897.

160. Diebold, E. D., Hon, N. K., Tan, Z., Chou, J., Sienicki, T., Wang, C., & Jalali, B. (2011). Giant
tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Optics
Express, 19(24), 23809–23817.

161. Coppinger, F., Bhushan, A. S., & Jalali, B. (1998). Time magnification of electrical signals
using chirped optical pulses. Electronics Letters, 34(4), 399–400.

162. Gupta, S., & Jalali, B. (2008). Time-warp correction and calibration in photonic time-stretch
analog-to-digital converter. Optics Letters, 33(22), 2674–2676.

163. Liu, J.-M. (2005). Photonic devices. Cambridge: Cambridge University Press.
164. Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-time signal processing. Englewood

Cliffs, NJ: Prentice Hall.
165. Walmsley, I. A., & Dorrer, C. (2009). Characterization of ultrashort electromagnetic pulses.

Advances in Optics and Photonics, 1(2), 308–437.
166. Jaganathan, K., Oymak, S., & Hassibi, B. (2012). Recovery of sparse 1-d signals from the

magnitudes of their fourier transform. In International Symposium on Information Theory
Proceedings (ISIT) (pp. 1473–1477). Cambridge, MA: IEEE.

167. Han, Y., & Jalali, B. (2005). Continuous-time time-stretched analog-to-digital converter array
implemented using virtual time gating. IEEE Transactions on Circuits and Systems I: Regular
Papers, 52(8), 1502–1507.



Index

A
Acoustic, 4, 16, 18, 20
Acousto-optic deflector (AOD), 23, 24
Activation function, 75
Algal, 3, 4, 74, 77–80
Amplified dispersive Fourier transformer

(ADFT), 17, 18
Analog preprocessing, 67, 69–71
Analog-to-digital conversion, 3, 8, 102
Analytics, 4, 45, 46
Anamorphic, 8, 11, 92, 93, 102
Anamorphic stretch transform, 102
Area under ROC (AUC), 74, 75, 85
Artificial intelligence, 4
Artificial neural network, 74–77
Axial, 16–20, 22, 24, 26, 49, 57, 61

B
Backpropagation, 81, 102, 116
Balanced accuracy, 76, 77, 80, 84
Baseband, 48, 53, 54, 68, 104, 114
Beam scanning, 15, 16, 19
Bias, 74–76, 83
Big data, 3–5, 8, 44, 67–71, 89, 95, 99,

122
Biofuel, 3, 4, 44, 74, 77–80
Biomarker, 9, 10, 43, 85, 121
Biophysical, 3, 4, 45, 47, 59, 61–63, 74, 77–81,

83, 92
Biosensing, 7
Blood screening, 3, 4, 76–78
Burst mode, 117, 118

C
Cancer diagnostics, 3, 4, 33
CCD, 23, 25, 44
Cell analysis, 3, 4, 43, 61
Cell assays, 3, 4
Cell labeling, 34
Cell signaling, 3
Cellular imaging, 4, 76
Cellular viability, 3, 4
Chirp, 35, 36, 96, 97, 104, 106, 111–116
Circulating tumor cell (CTC), 10, 45, 76
Classification, 3, 4, 7–9, 25, 33–35, 40, 41,

43–45, 47, 59, 61–63, 73–85, 95, 121
Clinical testing, 4
Coherent, 41, 44, 45, 121

detection, 51–56, 102, 116
Coherent-STEAM, 34, 36, 37, 39–41, 67–69,

71
Complementary metal–oxide–semiconductor

(CMOS), 16, 44
Compression, 4, 5, 8, 10, 45, 91, 94, 116,

117
Compressive sensing, 106
Cross entropy, 81, 84
Cross-validation, 77, 83

D
Data cleaning, 84
Data compression, 4, 5, 8, 10–11, 82, 89–99,

102, 116, 121
Data processing, 4, 8, 71
Data-driven diagnosis, 3, 4

© Springer International Publishing AG 2017
A. Mahjoubfar et al., Artificial Intelligence in Label-free Microscopy,
DOI 10.1007/978-3-319-51448-2

131



132 Index

Decision boundary, 77
Deep learning, 45, 59, 73–85, 121, 122
Deep neural network, 74, 75, 81, 84, 85,

121
Dispersive Fourier transform, 4, 8, 10, 17, 21,

25, 33, 35, 44, 48, 49, 91, 101–104,
106–110, 113, 115–119

Doppler frequency, 18
Down-conversion, 69
Down-sampling, 94, 95
Drug development, 3, 4, 33

E
Effective number of bits (ENOB), 49, 117
Electronic back-end, 50, 118, 122
Encoding, 17, 46, 52, 53, 78, 101
Entropy, 81, 84
Envelope frequency, 47, 110
Evolutionary, 63, 73, 121

F
Feature extraction, 3, 4, 59, 61, 122
Feature space, 3, 4, 74, 76
Feature transformation, 74
Fiber Bragg grating, 97
Field of view (FOV), 10, 11, 22, 23, 28, 35,

45–46, 48–51, 55, 56, 61, 90–93, 95–98
Field programmable gate arrays (FPGA), 41,

71
Flow cytometry, 10, 24, 28, 33, 35, 41, 43–45,

61, 73, 79, 95
Fluorescence imaging using radio frequency-

tagged excitation (FIRE), 8, 89
Forward scattered, 28

G
Generalization error, 80, 81
Genetic algorithm, 77, 84
Genomics, 3, 4, 122
Global optimization, 63, 73, 84, 121
Group delay profile, 4, 5, 11, 90, 93, 96–98,

102–118, 122

H
Hardware accelerator, 102
HDLS. See Hybrid dispersion laser scanner

(HDLS)
Heuristic, 75
High-throughput, 3, 4, 7, 9, 10, 22, 24, 33–41,

85, 89, 121

Hilbert transform, 38, 55
Hilbert transformation, 17, 18, 24, 26, 37, 46,

47, 56, 59, 71, 116
Hybrid dispersion laser scanner (HDLS),

22–29
Hydrodynamic focusing, 49, 51, 58, 61, 92
Hyperdimensional, 3, 4, 74, 76, 80, 85, 121

I
Image analysis, 4, 61
Image compression, 4, 5, 45, 91–95, 98, 99,

102, 122
Image recognition, 4, 73
Image reconstruction, 57–59
Imaging flow cytometer, 3, 34, 45, 71
Imaging flow cytometry, 10, 41, 43, 44, 61
Inertia-free, 21, 22
Inertial focusing, 25, 28, 97
In-phase, 70
Interferometer, 24, 34, 36, 37, 45, 53, 55
Interruptionless storage, 67
I/Q demodulation, 68

K
Kernel design, 104–116

L
Label-free, 3, 4, 10, 33–41, 44, 45, 47, 62, 63,

71, 73, 74, 76, 77, 80, 81, 85, 121
Laser Doppler vibrometry, 15
Laser scanner, 4, 15, 21–29
Learning curve, 80–81
Light scattering, 43, 95
Logistic regression, 81, 84, 85, 121

M
Machine learning, 3, 61, 74–77, 80–84, 121

pipeline, 3, 4, 63, 74, 121
Mapping, 10, 11, 22–25, 38, 46, 57, 90–93,

96–98, 101, 102, 105–109, 111, 112,
114, 116, 118, 122

Michelson interferometer, 16, 17, 26, 34–36,
38, 44–48, 51, 52, 55, 57

Microalgae, 77, 78
Microfluidic channel, 25, 28, 36, 40, 45, 46,

49–52, 58, 61, 92
Microscopy, 4, 5, 7, 34, 41, 45, 121
Morphology, 10, 47, 60–62, 76, 77, 79, 80, 92
Motion blur, 21
Multivariate, 4, 60–63, 73, 74, 76, 77, 80, 82,

121



Index 133

N
Naive Bayes, 81, 84, 85, 121
Neural network, 74–76, 81, 83–85, 121
Noninvasive, 7, 15, 45
Nonlinear, 5, 11, 16, 35, 44, 47, 55, 74, 75, 90,

92–94, 96–98, 102–105, 107–115, 118,
121

Nonuniform sampling, 5, 11, 90, 97, 99, 103,
106, 118, 122

Nonuniform time stretch, 90
Nyquist bandwidth, 106, 107, 109, 110, 112,

115
Nyquist theorem, 67

O
Optical amplification, 7, 17
Optical data compression, 5, 89–99, 121
Optical path difference, 37–39, 41, 58, 76
Optical rogue waves, 3, 8, 89, 101
Overfitting, 76, 83

P
Parallel processing, 67
Peripheral vision, 10, 91, 92, 99, 121
Personalized genomics, 3, 4
Phase extraction, 51–56
Phase unwrapping, 46, 59
Phenotypic screening, 3, 4, 10, 33–41, 73
Principal component analysis (PCA), 80–83
Protein concentration, 4, 33, 35, 38, 40, 41, 45,

46, 59, 61, 77, 78, 80, 92

Q
Quadrature phase, 70

demodulation, 68, 71
imaging, 3, 4, 43–63, 82, 85

R
Rainbow flash, 46–49, 51, 52, 58
Raman, 17, 35, 44–46, 48
Rare cancer cell, 3, 7, 9
Rare event, 3, 7, 89, 90
Receiver operating characteristic (ROC), 25,

29, 41, 63, 74, 75, 77
Rectified linear unit (ReLU), 75
Refractive index, 34, 38, 40, 41, 52, 57, 59, 60,

62, 78
Regularization, 76, 83, 84

Resolution, 4, 7, 16, 22, 34, 45, 50, 91, 102,
122

Resolvable window, 102, 103

S
Sampling, 4, 5, 10, 11, 90–94, 96, 97, 99, 102,

103, 106, 116, 118, 122
rate, 18, 23, 37, 49, 50, 67–69, 71, 90, 94,

96, 99, 106, 121
Scan rate, 15, 16, 18–24, 26, 97
Sensitivity, 7, 8, 18, 26, 29, 34, 35, 40, 41,

44–46, 48, 61, 63, 73–77, 101
Sensor fusion, 60–62
Serial, 8, 16, 34, 91
Serial time-encoded amplified microscope

(STEAM), 8, 9, 11, 16–20, 34, 36, 40,
90, 91, 96, 97

Short-term Fourier transform, 104, 105, 109,
111, 114, 116

Shutter time, 9, 34, 44, 91
Side scattered, 33
Signal to noise ratio, 7, 35, 48, 97, 98, 110
Sparsity, 4, 5, 75, 90–93, 98, 102–113,

115–119, 122
Specificity, 26, 29, 35, 63, 73–77
Spectral resolution, 4, 5, 18, 49, 93, 103,

106–115, 117–119, 122
Spectrogram, 104, 105, 108, 110–112, 114,

116
Spectroscopy, 101
Spectrotemporal, 10, 91, 104–107, 109–113,

115–119, 122
Statistical, 24, 28, 44, 61, 63
Supervised learning, 3, 4, 63, 75
Support vector machine (SVM), 81, 84
Surface vibration, 18, 20, 27

T
Telecommunication system, 7, 8
Terabyte, 3
Time-bandwidth product, 5, 18, 106, 113, 118
Time stretch camera, 8, 10, 49, 89, 91, 101
Time stretch imaging, 4, 7–10, 44, 45, 78,

89–99
Time stretch quantitative phase imaging

(TS-QPI), 4, 44, 45, 49–51, 56, 59, 61,
76–80, 85, 121

Training, 73, 74, 76, 77, 79–81, 83–85, 121

U
Ultrafast, 3–5, 8, 16, 21–29, 46, 101, 102
Underfitting, 76, 83, 84



134 Index

V
Vibrometer, 15–20, 102
Virtually imaged phased array (VIPA), 22, 98
Virtual time gating, 117–119

W
Warped stretch imaging, 90–91, 99, 121

Warped stretch profile, 108
Warped stretch transform, 5, 8, 11, 45, 90, 92,

94, 97, 101–119
Warped time stretch, 4, 5, 10–11, 91, 95, 96,

102–104, 106, 108, 110, 113, 115,
117–119, 122

Wavelet, 118, 119, 122
Wideband, 8, 101, 118, 122


	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Part I Time Stretch Imaging
	1 Introduction
	2 Time Stretch
	2.1 Time Stretch Imaging
	2.2 Cell Classification Using Time Stretch Imaging
	2.3 Label-Free Phenotypic Screening
	2.4 Warped Time Stretch for Data Compression


	Part II Inspection and Vision
	3 Nanometer-Resolved Imaging Vibrometer
	3.1 Introduction
	3.2 Experimental Demonstration
	3.3 Theoretical Study of the Vibrometer Performance
	3.4 Experimental Results
	3.5 Conclusion

	4 Three-Dimensional Ultrafast Laser Scanner
	4.1 Introduction
	4.2 Principle of Hybrid Dispersion Laser Scanner
	4.3 Applications of Hybrid Dispersion Laser Scanner


	Part III Biomedical Applications
	5 Label-Free High-Throughput Phenotypic Screening
	5.1 Introduction
	5.2 Experimental Setup
	5.3 Results and Discussion
	5.4 Conclusion

	6 Time Stretch Quantitative Phase Imaging
	6.1 Background
	6.2 Time Stretch Quantitative Phase Imaging
	6.2.1 Overview
	6.2.2 Imaging System
	6.2.3 System Performance and Resolvable Points
	6.2.4 Microfluidic Channel Design and Fabrication
	6.2.5 Coherent Detection and Phase Extraction
	6.2.6 Cell Transmittance Extraction
	6.2.7 Image Reconstruction

	6.3 Image Processing Pipeline
	6.3.1 Feature Extraction
	6.3.2 Multivariate Features Enabled by Sensor Fusion
	6.3.3 System Calibration

	6.4 Conclusion


	Part IV Big Data and Artificial Intelligence
	7 Big Data Acquisition and Processing in Real-Time
	7.1 Introduction
	7.2 Technical Description of the Acquisition System
	7.3 Big Data Acquisition Results
	7.4 Conclusion

	8 Deep Learning and Classification
	8.1 Background
	8.2 Machine Learning
	8.3 Applications
	8.3.1 Blood Screening: Demonstration in Classification of OT-II and SW-480 Cells
	8.3.2 Biofuel: Demonstration in Algae Lipid Content Classification

	8.4 Further Discussions in Machine Learning
	8.4.1 Learning Curves
	8.4.2 Principal Component Analysis (PCA)
	8.4.3 Cross Validation
	8.4.4 Computation Time
	8.4.5 Data Cleaning

	8.5 Conclusion


	Part V Data Compression
	9 Optical Data Compression in Time Stretch Imaging
	9.1 Background
	9.2 Warped Stretch Imaging
	9.3 Optical Image Compression
	9.4 Experimental Design and Results
	9.5 Conclusion

	10 Design of Warped Stretch Transform
	10.1 Overview
	10.2 Kernel Design
	10.2.1 Spectral Resolution
	10.2.2 Group Delay Profile Design
	10.2.3 Simulation Model
	10.2.4 Spectrograms

	10.3 Discussion
	10.4 Conclusion

	11 Concluding Remarks and Future Work

	References
	Index

