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Preface

Particulate flows are present in many natural and industrial processes. Transport of
sediment in rivers and estuaries, convection of pollutants in the atmosphere, bio-
convection of zooplankton, gravity, and turbidity currents near coastal shore, and
pyroclastic flows from volcanic eruptions are a few examples that can be
encountered in natural phenomena. In industry, processes involving flows of par-
ticles are numerous: among others, fluidized bed reactors, the treatment of waste
materials in clarifiers, food processing, and ink technologies. In all the
above-mentioned instances, proper understanding and accurate modeling of such
complex flows are crucial aspects from scientific and engineering perspectives, as
they directly impact the environment we live in. The understanding of such flows is
a daunting task for several reasons. The most straightforward is the very large
number of particles one needs to account for. Another equally significant difficulty
arises from the subtle coupling between particle–particle and particle–fluid inter-
actions: Particles have an effect on the fluid flow (and sometimes even drive it) by
exerting stresses on the fluid around them, and in turn, the fluid flow modifies the
motion of the suspended particles. This two-way coupling often makes attempts at
comprehending such flows highly difficult, other than in very simplified settings.
Particulate flows have been examined in the past in a wide variety of situations.
A very large number of studies have focused on highly viscous flows in which
inertial forces can be neglected. This low Reynolds number limit is a valid
approximation in small-scale systems or very slow flows, and is often justified
when the size of the particles involved in the process is small. In many practical
applications, however, fluid inertia cannot be neglected owing to the large system
sizes, even when the suspended particles are small. In some cases, it is of funda-
mental importance such as in pyroclastic flows or in fluidized bed reactors where
the flows are highly turbulent in spite of the microscopic size of the particles
involved. Several studies have focused on the Lagrangian properties of particles in
turbulence (e.g., Lagrangian acceleration) to gain further insight on the relevant
forces acting on isolated particles. Preferential concentration and clustering effect of
inertial particles in a turbulent flow have been also examined in many recent works.
However, collective effects in turbulent particle-laden flows have been not
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thoroughly examined, and there is a compelling need to provide a robust body of
knowledge in this active field of research. The scope of this book is therefore to
provide a state-of the-art and accessible survey of numerical approaches as well as
modeling tools for the analysis of collective dynamics of particles in flows. The
general approach is made specific through the most tractable analytically case of
low Reynolds flows but goes beyond viscous flows and tackles inertial and
turbulent flows. This book also covers the two main avenues for addressing par-
ticulate flows: one being discrete particle simulations and the other being contin-
uum two-phase modeling. In the later, the influence of particles is captured through
constitutive relations often resulting from simulations or experiments. The most
common discrete methods for the description of particle-laden flows, both in the
Stokes regime and in the inertial and turbulent regimes, are presented and dis-
cussed. Among the topics included are finite-size particles, and particles of different
shapes, in particular rod-like particles or fibers whose interest lies in part in the
availability of methods for slender bodies as well as in their importance in industrial
applications, such as the fabrication of fiber-reinforced materials and of pulp and
paper. This book provides a comprehensive overview of particulate flows, from low
Reynolds numbers to full turbulent flows and hence can be particularly attractive to
graduate students, Ph.D. candidates, young researchers, and faculty members in
applied physics, chemical engineering, and mechanical engineering. The advanced
topics and the presentation of current progress in this very active field may also be
of considerable interest to many senior researchers, as well as to industrial practi-
tioners having a strong interest in understanding the multiscale complex behavior of
such multiphase flows.

This book contains selected printouts based on the lectures given during the
advanced course entitled “Collective Dynamics of Particles: From Viscous to
Turbulent Flows.” The course was held at the International Center of Mechanical
Sciences in Udine (Italy), organized under the auspices of ERCOFTAC and with
the support of COST, through Action FP1005 “Fiber suspension flow modeling”
and ANR CoDSPiT “Collective dynamics of settling particles in turbulence.”
The contributions cover introductory concepts related to modeling and simulation
of spherical particles (Maxey and Dent, Bourgoin, Homann) and rod-like particles
(Butler) in fluid flow, and collective effects at low (Maxey and Dent, Bourgoin) and
finite particle Reynolds number (Maxey and Dent, Homann, Butler) as well as
low-flow (Maxey and Dent, Butler) and high-flow Reynolds numbers (Maxey and
Dent, Bourgoin, Homann).

The authors wish to thank all the contributors and the members of the
International Center of Mechanical Sciences, in particular Prof. Elisabeth Guazzelli,
for her continuous support and thoughtful suggestions during the preparation of this
volume.

Udine, Italy Cristian Marchioli
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Modeling and Simulation of Discrete
Particles in Fluid Flow

Martin R. Maxey and Gelonia L. Dent

Abstract A summary is given of some of the methods for modeling and simulating
the motion of small rigid particles in fluid flow. For isolated particles, or at very
low volume fractions, approximate dynamic equations for tracking the motion of the
particles can be formulated where the background flow is not modified. Even here,
interesting features of the particle motion and distribution of particles can develop
in nonuniform flows. For more complex situations, we describe the force coupling
method (FCM) as an effective representation for particles moving at low and finite
Reynolds numbers that may be applied to various dispersed multiphase flows.

1 Introduction

The study of particle motion in fluid flows relates to many different areas.
In the atmosphere, small water droplets may form by condensation from vapor in
the surrounding air and then continue to grow by sporadic collisions with other
droplets, possibly forming precipitation (Shaw 2003; Grabowski and Wang 2013).
The droplets range in size from a few microns to a millimeter or so and are trans-
ported by the turbulent air flow while settling slowly under gravity. An atmospheric
cloud of droplets may appear to be opaque but in fact the droplets are quite disperse
with a volume fraction substantially less than 0.1%. The fluid (air) forces on the
droplets create equal and opposite forces on the air flow and if the mass loading, i.e.
the relative mass fraction of droplets in a given volume, is appreciable there can be
a significant negative buoyancy on the flow. Since the density of water is about a
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2 M.R. Maxey and G.L. Dent

thousand times that of air this can easily occur and leads to a sinking motion of the
cloud and the surrounding air mass.

There is a general classification of dispersed two-phase, particle-laden flows based
on the relative volume fraction and mass loading, see Balachandar and Eaton (2010)
and references therein. The combination of both low volume fraction and low mass
loading gives one-way coupling. The overall flow is notmodifiedby the particles, they
essentiallymove in isolation, and they respond to fluid forces, such as drag, generated
by their motion relative to the local ambient flow. Weak two-way coupling occurs if
the overall flow is modified by the particles due to the mass loading but they are still
sufficiently dispersed that the volume fraction remains low and theymove in isolation
with little fluid dynamic interaction between them. Full two-way coupling describes
the general context of significant mass loading and volume fraction. One must then
consider the particles and fluid as a collective system as in a suspension flow or a
slurry flow, commonly involving solids in liquids. There are further classifications
based on the size of the particle relative to the scale of the fluid motion and the
Reynolds number associated with the particle motion.

There are numerous references covering themotion of particles in a range of inter-
esting contexts. Guazzelli andMorris (2012) provides a good overview of suspension
flows for low Reynolds number conditions. Di Carlo (2009) reviews techniques for
separating small particles or cells by size for biomedical applications relying on the
role of inertial forces. Meiburg and Kneller (2010) give a review of turbidity currents
and flows involving sediment transport in estuaries or coastal waters.

In this chapter,wefirst describe someof theways to quantify themotion of isolated
rigid particles considering mostly smaller spherical particles and the range of fluid
forces that should be considered. We then consider the motion of these particles
in simple laminar flows to illustrate how discrete particles differ from Lagrangian
fluid tracers and some of the phenomena that may arise in nonuniform flows. In
the subsequent sections we describe the force coupling method as a way to explore
particle motion in more complex situations, including the effects of fluid interactions
between particles and applications to suspension flows.

2 Motion of Isolated Particles

In the simplest situation a particle is so small that the viscous fluid forces, which
scale with the surface area of the particle, are strong enough that there is no relative
motion between the particle and the surrounding fluid. The particle then moves as
a Lagrangian fluid element. The position X(t) of such a fluid element in an incom-
pressible flow u(x, t) is then given by

dX
dt

= u(X(t), t) (1)



Modeling and Simulation of Discrete Particles in Fluid Flow 3

This concept is the basis of particle image velocimetry (PIV) (Adrian andWesterweel
2011), where the flow is seeded with a sufficient number of small tracer particles
to resolve the flow field but still maintaining a very low volume fraction and mass
fraction. We assume that the effects of Brownian motion are negligible relative to
the fluid forces and motion. The displacements of the PIV particles over short time
intervals may then be used to measure the local fluid velocity. Further, these small
spherical particles will rotate at an angular velocity � equal to half the local fluid
vorticity ω(X(t), t).

2.1 Gas–Solid Flows

The density of a solid particle is usually much larger than that of a gas and the effects
of gravitational settling or particle inertia may be significant even if the particle is
very small, essentially a point, relative to the scale of the surrounding flow. In the
absence of a flow, a small but heavy particle will eventually fall at a terminal velocity
WS given by a balance of the fluid drag force in steady motion and the force of
gravity. Buoyancy effects are negligible and using a Stokes drag law for a sphere of
radius a (Batchelor 1967) the fluid force on a particle of mass mP is,

WS = mPg/6πaμ

where g is the acceleration due to gravity and μ is the dynamic viscosity. A corre-
sponding estimate may bemadewhen the particle Reynolds number ReP = 2aWS/ν
is non-zero and where ν is the kinematic viscosity of the fluid.

More generally, we should consider the inertia of the particle and the approximate
equation of motion for a small particle, where ReP � 1, is

mP
dV
dt

= 6πaμ (u(Y, t) − V) + mPg. (2)

This gives the particle velocityV(t) and positionY(t) in terms of the force of gravity
and the Stokes drag force based on the instantaneous velocity of the particle relative
to the local fluid flow. The key assumption is that the fluid drag force comes quickly
to a quasi-steady equilibrium. This may be rewritten as

τP
dV
dt

= (u(Y, t) − V) + WS, (3)

where τP is the inertial response time of the particle τP = mP/6πaμ. So a particle
falling from rest will eventually reach the terminal fall speed on the time scale τP
and similarly the particle velocity will adjust to changes in the local flow velocity on
the same time scale. Either way τP is taken to be longer than the time for the fluid
drag force to become fully developed and reach its quasi-steady value. An important
parameter is the Stokes number St = τP/TF , the ratio of the inertial response time
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to the time scale of variation in the local ambient flow velocity u (Y(t), t). In the
limiting case of St � 1, the particle velocity is the sum of the local flow velocity
and the fall velocity,

V = u(Y, t) + WS. (4)

These equations describe the motion of solid aerosol particles or water droplets
under many conditions. The dynamic viscosity of water is some 50−60 times that
of air and a small droplet, held spherical in shape by surface tension, will largely
respond as a rigid particle. A droplet of radius a = 10µm will fall under standard
conditions at about WS = 1.2 cm s−1 and ReP = 0.016. The Stokes drag law is a
good estimate for the fluid force. The particle Reynolds number grows as a3 in this
range, but even for a droplet of radius a ∼ 25µm the error in the Stokes estimate of
the drag force is less than 5% and ReP ∼ 0.2.

2.2 Liquid–Solid Flows

When gravitational settling or particle inertia is relevant in other contexts, such as
solids in liquid flows, one needs to consider more fully the motion of a particle,
even if it is isolated. A sphere moving relative to the surrounding fluid will create
a local disturbance flow, which gives rise to fluid forces such as viscous drag or an
added-mass effect. If there is an ambient flow u(x(t), t) without any particle, this is
locally modified to become an incompressible flow v(x(t), t) that satisfies

(
∂v
∂t

+ v · ∇v
)

= g − ρ−1∇ p + ν∇2v. (5)

The boundary conditions are that v = V + � × [x − Y(t)] on the sphere, at
|x − Y(t)| = a, and v = u(x, t) as |x − Y(t)| → ∞. The flow configuration is illus-
trated in Fig. 1.

This problem can be solved approximately if the particle Reynolds number ReP
is small and the shear Reynolds number Re� = a2�/ν is small, where � ∼ U/L is
representative of the velocity gradient in the ambient flow. The key steps involved
are as follows.

• Change to a frame of reference moving with the particle: z = x − Y(t) and w =
v − V(t)

Fig. 1 Sketch of a particle
located at Y(t) in an ambient
flow u(x, t)

V(t)

u
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• Split w into the base flow w(0) = u − V and a local disturbance flow w(1)

• Solve for w(1) as an unsteady Stokes flow, where ∂w(1)/∂t is retained but w(1) ·
∇w(1) is neglected. This is most easily done using Laplace transforms for the time
dependence.

• Evaluate forces due to the base flow
• Evaluate forces from the disturbance flow using a generalized form of the Recip-
rocal Theorem, adapted for unsteady Stokes flow. This involves integration of flow
variables on the particle surface or over the particle volume.

These steps are summarized in Maxey and Riley (1983), together with references
to earlier work. Equivalent results are also given by Gatignol (1983). Basset (1888)
developed the original result for the unsteady motion of a sphere in viscous flow
without any background flow.

The resulting equation of motion for the particle is

mP
dV
dt

= (mP − mF )g + mF
Du
Dt

− mF

2

d

dt

{
V − u − 1

10
a2∇2u

}

− 6πaμ

⎧⎨
⎩Q + a

t∫
0

dQ
dτ

[πν(t − τ )]−1/2dτ

⎫⎬
⎭ (6)

The mass of fluid displaced by the particle is mF while the term Q(t) is defined as,

Q = V(t) − u(Y(t), t) − 1

6
a2∇2u (7)

For steady state motion in a uniform flow (6) reduces to a simple balance between
the resultant force due to gravity and the viscous Stokes drag force. In a nonuniform
flow, the Stokes drag law is not modified by the presence of a simple uniform shear
flow but there is a Faxen correction for the finite size of the particle in a nonuniform
flow with a quadratic variation as may arise in a Poiseuille flow, as given by (7). The
equation (6) assumes as an initial condition that Q(0) = 0.

There are several terms on the right hand side of (6) that balance the particle inertia
on the left and represent different aspects of the flow response to the particle motion.
Beyond the effect of gravity or buoyancy, the next term gives the fluid force that
the ambient flow would exert on an equivalent mass of fluid and equals the resultant
force from pressure and viscous stresses in the ambient flow. The term after this is
the effect of added mass, with a possible correction for the finite size of the particle.
The last term represents the viscous forces.

Figure2 illustrates the response to a particle accelerating from rest at a constant
rate A in the absence of an ambient flow, so that V = At . The first effect is an
essentially inviscid pressure response due to the acceleration of the surrounding
fluid about the particle. The initial primary balance of forces is between the added
mass effect, particle inertia and the applied external force. The last term, involving
Q, represents the effect of viscous forces and the vorticity layer δ(t) generated by the
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Fig. 2 Development of the
disturbance flow w(1) for a
particle accelerating from
rest at constant rate A with
no ambient flow. The initial
inviscid response of inertia
and added-mass is followed
by a developing vorticity
layer δ that diffuses by
viscous action

Later time, t

Viscous diffusion of 
vorticity layer 

At start, t = 0

Thin vortex 
layer, no-slip at 
surface

Initial potential 
flow; pressure 
field and added 
mass effect

V=At

V

t 

no-slip conditions on the particle as it gradually accelerates. The layer grows in scale
by viscous diffusion, δ ∼ √

νt . The second part of this last term is usually referred to
as the Basset history or integral term and captures the initially strong viscous shear
stress generated by the vorticity layer. Eventually, the viscous force relaxes to the
equilibrium Stokes value over a time scale of O(a2/ν). The external force required
to sustain this motion is Fext , given by

Fext = (
mP + 1

2mF
)
A + 6πμaAt

{
1 + 2a(πνt)−1/2

}
(8)

From (8) it is evident that while the vorticity layer is very thin at first, the velocityV is
also small and the initial viscous force is small. Basset (1910) gives a corresponding
result for the motion of a sphere falling from rest under gravity. The result is more
complicated but has similar features and the final adjustment to the Stokes terminal
velocity essentially decays as a(νt)−1/2.

In a gas–solid flow,mP � mF , and so the inertial response time τP � a2/ν. This
means that the viscous drag force on the small particle quickly adjusts to the Stokes
value as compared to the time scale τP on which the particle velocity is changing.
Generally the effects of added mass and the force of the ambient flow are negligible
too and so (6) reduces back to (2). For a solid particle in a liquid, the values of mP

and mF are more similar and these additional effects are more relevant. Indeed for a
small bubble, that responds as a rigid spherical inclusion, the added mass is the only
inertial term and history effects can be significant (Candelier et al. 2004).

Another way to view these different contributions of the local disturbance flow
to the fluid force on a particle is to consider the forces needed to maintain a
spherical particle in motion along a prescribed elliptic path. The path is given

as Y(t) = Re
[
Ŷ exp(iσt)

]
, with a similar expression for the velocity V(t). The

required external force is then Fext (t) = Re
[
F̂ext exp(iσt)

]
, where

F̂ext = (
mP + 1

2mF
)
iσV̂ + 6πaμ

(
1 + κeiπ/4

)
V̂ (9)

and κ2 = σa2/ν. The value of κ indicates the relative importance of the Basset
history term and the ratio of this force to that of added mass is equal to 9/κ. Indeed
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at lower frequencies σ, this history term is more important than added mass as a
correction to the particle motion. Another point to note is the direction of the forces
relative to the particle velocity. While the Stokes drag force simply acts in opposition
to the particle velocity relative to any ambient flow, both the added mass and history
term act at angles to this. With a circular path, the effects of particle inertia or added
mass act orthogonally to the particle’s path while the time lag in the viscous force,
through the history term, acts at 45◦ to the path.

Various simplifications to (6) are often used for practical reasons, such as neglect-
ing the unsteady viscous response of the Basset term. The latter can be difficult to
compute in a numerical solution and requires the retention of the particle acceleration
or dQ/dt over a long period of time. Efficient schemes for numerically computing
the Basset term have been proposed (van Hinsberg et al. 2011) and more numerical
methods have been developed recently to solve fractional-order, differential equa-
tions in general. As we consider the effects of finite Reynolds number on the particle
motion there is good reason to truncate the effect of the Basset term.

2.3 Effects of Finite Particles Reynolds Number

These results for very low Reynolds numbers are informative and useful but they
cover a limited range.More usually theReynolds numbers associatedwith the particle
motion, ReP and Re� , are not zero. This introduces other physical effects even if the
Reynolds numbers are still small or O(1).

Consider first the simple steady motion of a sphere in the absence of any other
flow. There is an increase in the viscous drag force, relative to the Stokes value, given
by the Oseen correction so that the external force needed to sustain a particle velocity
V is

Fext = 6πμaV
(
1 + 3

16 ReP
)

(10)

The usual assumption that (5) reduces to a viscous Stokes flow for ReP � 1 does not
hold at large distances from the sphere, see Batchelor (1967). Eventually in the far
field, where r ∼ aRe−1

P , the effect of flow advection must be considered and relative
to the sphere there is an axisymmetric wake structure. The specific result (10) of
Oseen (1910) is obtained by taking the sphere to be fixed and assuming a uniform far
field flow U past the sphere while the sphere itself is viewed simply as a point force
at the origin. This gives the Oseenlet response to a point force, as opposed to the
more usual Stokeslet for Stokes flow. The final result (10) comes from matching the
outer Oseenlet flow to the near-field Stokes flow past the sphere. This is summarized
by Guazzelli and Morris (2012, Chap.8), where the mass flow balance within the
wake is also described.

These corrections for the drag force in steadymotion only apply for small ReP and
beyond this one must rely on empirical correlations for the drag force or results from
direct numerical simulations of the flow. Figure3 shows the streamlines for steady,
axisymmetric flowpast an isolated sphere at Re = 2aU/ν = 10 and 40with intervals
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Fig. 3 Steady flow past a fixed sphere at Re = 2aU/ν = 10 (top) and 40 (bottom), showing the
streamlines a and vorticity contours b, from Chang and Maxey (1994), reproduced with permission

of �ψ = 0.25, as scaled by U and a. Similarly the vorticity contours are shown at
intervals of 0.25. The results are from the computations by Chang andMaxey (1994).
Immediately evident is the asymmetry of the flow from left to right as compared to
a simple Stokes flow. The vorticity contours are swept downstream even near to the
sphere and not just in the far field as in theOseenwake. Close to Re = 20, an attached
separated flowdevelops. At Re = 40 there is a small region of negative vorticity close
to the body surface, shown by the dashed line contour. Surface vorticity is important
as the viscous stresses on a rigid sphere can be determined directly from this. As the
Reynolds number increases further the flow remains axisymmetric for Re < 210, but
becomes inherently three-dimensional and eventually unsteady at higher Reynolds
numbers (Tomboulides and Orszag 2000; Jenny et al. 2004).

If the ambient flow past the sphere remains unidirectional but is now unsteady,
the local flow is still axisymmetric for low to moderate Reynolds numbers but one
must reconsider the nature of the added mass effect and other fluid forces. Numerical
computations of the flow can provide some basic answers. Figure4 shows the stream-
lines and vorticity contours for oscillatory flow past a sphere at different phases of the
oscillation cycle. The peak Reynolds number is 16.7, less than the value of 20 where
one may see separation in steady flow, yet as the flow decelerates instantaneous sep-
aration is seen in frame (d). This is a common feature of oscillating flows where local
flow reversal will occur at different locations on the sphere surface as the oscilla-
tion phase varies. Only at zero Reynolds number, for unsteady Stokes flow, is there a
simultaneous flow reversal on the sphere. An oscillating flow is characterized by both
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Fig. 4 Streamlines for an oscillating flowU (t) = −Xσ sin(σt) past a sphere, shown for X = 1.6a
and Re = 16.7, over half a cycle at a σt = π/16, �ψ = 0.1, b σt = π/4, �ψ = 0.25, c σt = π/2,
�ψ = 0.25, d σt = 3π/4, �ψ = 0.25, e σt = 15π/16, �ψ = 0.1, f σt = π, �ψ = 0.025. Values
of the streamfunction ψ are given in intervals of �ψ; positive ψ (solid lines), negative ψ (broken
line), and ψ = 0 (dashed dotted line). From Chang and Maxey (1994), reproduced with permission

the peak Reynolds number and a second parameter such as the relative oscillation
amplitude X/a, or the parameter κ.

The specific question about the general form of the added mass for a sphere was
addressed by Auton et al. (1988) and it was argued that this force is

FAM = mF

2

(
dV
dt

− Du
Dt

)
(11)

In the context of low Reynolds numbers, this form is approximately the same as in
(6), without the correction for the finite particle size and nonuniform ambient flow.
The added mass is closely associated with the pressure response as already noted.
Several studies have been made using numerical simulations to verify this result
even in contexts where there may be an attached region of separated flow. Both sharp
accelerations and decelerations of the flow in time (Rivero et al. 1991; Chang and
Maxey 1995) and the force on a sphere in a linear straining flow (Magnaudet et al.
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1995; Bagchi and Balachandar 2003) verify that (11) is correct for unsteady finite
Reynolds number flows.

The nature of the unsteady fluid forces on a sphere that is in an accelerating,
uniform flow has been investigated both in numerical simulations and theoretically,
see for example Sano (1981), Mei and Adrian (1992), Lovalenti and Brady (1993),
Lovalenti and Brady (1995), Lawrence and Mei (1995) and the references already
mentioned. Theoretical work has focused on the low Reynolds number range for
which an Oseen approximation is appropriate. A key observation is that the viscous
Basset term, and specifically the kernel within the integral, decays more quickly
than the usual t−1/2 in the long term. The Basset form is appropriate for times
t < O(a2/ν), but at later times the advection of vorticity in the Oseen wake becomes
more important than simple viscous diffusion of vorticity alone. The exact response
depends on whether the flow is accelerating from rest or if there is a large or small
step change in the velocity. These estimates for final decay of the unsteady viscous
force �F may be summarized as follows, with t scaled by a2/ν, see Lovalenti and
Brady (1993, Appendix D).

• Start from rest, �F ∼ t−2

• An established flow is brought to rest, �F ∼ t−1

• Small change in the flow, �F ∼ t−5/2 exp(−αt)
• Large change in the flow, �F ∼ t−2 exp(−βt)

The constants α, β depend on whether the flow accelerates or decelerates.
These results and those from numerical simulations have lead to several proposed

generalizations of the Basset history integral for accelerated motion in a uniform
flow as,

FH = 6πμa

t∫
0

K (t − τ )
d(V − u)

dτ
dτ . (12)

Several of the possible forms of the kernel K (t − τ ) are given by Mei and Adrian
(1994), Loth and Dorgan (2009), Ling et al. (2013) and references therein. In general
numerical simulations show too that the viscous drag force comes to an equilibrium
valuemorequickly for a rangeof non-zeroReynolds numbers thanwouldbe indicated
by the Basset result. At this late stage the adjustment in the particle velocity may be
10% or less.

2.4 Lift Forces

So far we have considered the effects of non-zero particle Reynolds number in a
spatially uniform flow. The presence of a velocity gradient in the ambient flow
introduces additional effects at finite Reynolds number, unlike Stokes flow where
there was no change in the fluid force on a sphere. At low Reynolds numbers, a
shear flow will distort the otherwise axisymmetric, outer Oseen wake and both the
vorticity and pressure distributions near the sphere are altered. The resulting fluid
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Fig. 5 Sketch of a particle
moving in a simple shear
flow, for W = U − V > 0,
and the resulting lift and drag
forces U V

FL

FD

e(1)

e(2)

force is no longer alignedwith the ambient flow relative to the velocity of the particle,
W = (u(Y(t), t) − V(t)). There is instead a drag force component FD aligned with
the relative velocity W and a so-called lift force FL orthogonal to this. The result is
that a lift force may be generated as illustrated in Fig. 5.

Saffman (1965), see also Saffman (1968), derived a theoretical estimate for
FL by modifying the usual Oseen flow analysis for low Reynolds number condi-
tions to include a uniform shear flow in the outer ambient flow. In steady motion,
the disturbance flow w(1) will now satisfy the conditions of incompressible flow,
∇ · w(1) = 0 and

(−W + (� · z)) · ∇w(1) + � · w(1) + w(1) · ∇w(1) = −∇(p′/ρ) + ν∇2w(1) (13)

The boundary conditions are that w(1) = 0 as |z| → ∞ and on the surface of the
sphere at |z| = a the flow is w(1) = −W + � × z. The ambient flow u is a simple
uniform shear flow,

u = u(Y(t), t) + � · z = (U + βz2)e(1) (14)

and is itself a solution of the Navier–Stokes equations. The process of matched
asymptotic expansions for the inner region, where |z| = O(a), gives an initial esti-
mate for the fluid force on the particle as a simple Stokes drag FD = 6πμaW.
In the outer region, Saffman assumed that the shear rate β was dominant with
ReP � Re� � 1 so that in the region where |z| = O(a)Re−1/2

� the first correction
to the flow comes from solving the Oseen problem

βz2
∂

∂z1
w(1) + βw

(1)
2 e(1) = −∇(p′/ρ) + ν∇2w(1) − 6πμaWδ(z) (15)

At this scale, the sphere appears as a localized point force acting on the fluid which
in turn generates a correction to the fluid velocity w(1) at z = 0. One may view the
particle as acquiring a drift velocity VL = 0.343Re1/2� We(2) or a lift force

FL = 6.46aμRe1/2� We(2) (16)

A good summary of Saffman’s results is provided by Stone (2000).
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There are many variations to this problem. For example Rubinow and Keller
(1961) used a similar Oseen flow and a matched asymptotic procedure to evaluate
the lift force on a sphere moving with velocity V and rotating with angular velocity
� in otherwise still fluid. The lift force is

FL = ρπa3� × V(1 + O(ReP)), (17)

with the drag force as given by (10). At low Reynolds number this lift force is smaller
in magnitude than the Saffman lift force, although both act in the same direction, for
a sphere freely rotating with the local vorticity.

Numerical simulations have supported these estimates and evaluated the forces
over a range of Reynolds numbers ReP and Re� . Bagchi and Balachandar (2002)
review much of the prior work and give numerical results for a sphere in a uniform
shear flow. They discuss the effect of whether the sphere is fixed or freely rotates in
the shear flow. In the end the data provides a set of correlations for FL as a function
of ReP and Re� . McLaughlin (1991) extended Saffman’s analysis to show that as
the ratio of Re1/2� to ReP becomes smaller the lift force is reduced and may actually
change sign. The lift force is also modified by the presence of a nearby planar wall, as
may occur in a Couette flow or Poiseuille flow (McLaughlin 1993; Asmolov 1999).

This discussion of effects arising at finite particle Reynolds number shows that
there are many possible responses of the particle motion that one should consider.
Trying to capture all of these in a single equation of motion such as (6) is a daunting
task. If we do use such an equation of motion we should be aware of the limitations.
Nevertheless this can be a productive exercise to gain a first idea as we explore
possible particle motions.

3 Isolated Particles in Simple Flows

Studying particle motion in simple, nonuniform shear flows is a valuable step in
understanding the effects of turbulence or other complex unsteady flows on particle
transport. Even if the particles are well separated and their mass loading is very low
so that the bulk flow is not altered, the distribution of the particles can be substantially
affected by the flow. We consider as a basic, two-dimensional incompressible flow
the periodic array of vortices given by the streamfunction

ψ(x1, x2) = U0L sin
( x1
L

)
sin

( x2
L

)
(18)

We choose U0 and L as the reference scales so that the velocity components are

u1 = sin(x1) cos(x2)

u2 = − cos(x1) sin(x2) (19)
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Fig. 6 Streamlines showing
the periodic array of vortices
of alternating sign given by
(18). The arrows show the
direction of the flow
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This flow is illustrated in Fig. 6, where the streamlines are shown for the range
0 ≤ x1/π, x2/π ≤ 2.

This flow pattern arises in many contexts such as the onset of Rayleigh–Benard
thermal convection with free-slip boundary conditions (Drazin and Reid 2004) and
was used by Stommel (1949) to consider the suspension of marine organisms by
convective motions near the sea surface. It is also sometimes referred to as the 2-D
Taylor–Green vortex, after the early work on a corresponding 3-D flow used to study
formation of a vorticity cascade in turbulence (Taylor and Green 1937). The flow
is characterized by strong vorticity at the center of each cell and stagnation points
with pure straining at the corners. It is an exact solution of the Euler equations for
inviscid flow and in a viscous fluidU0 decays slowly, but the flow (18) maintains the
same form. The flow can be generated in the lab through Lorentz body forces in a
conducting fluid layer above an array of permanent magnets of alternating polarity
(Kelley and Ouellette 2011; Bergougnoux et al. 2014). For theoretical work, it is rel-
atively simple to compute the motion of different particles using standard numerical
methods.

The first example is for the motion of solid particles in a gas flow, according to
(4) where there is negligible particle inertia, St = U0τP/L = 0. While Lagrangian
fluid tracers (WS = 0) will simply move along the closed streamlines of Fig. 6, a
settling particle (−W2 = W = WS/U0 > 0) may either be permanently suspended
in a closed trajectory or fall vertically along an open path. The closed paths are driven
by an upflow over one segment that is greater than W and then the particle falls and
is swept by the flow in a loop over the rest of the path. The fraction of suspended
particles varies from 100% atW = 0 to 0% ifW ≥ 1. This is illustrated in Fig. 7 and
was noted by Stommel. A key feature is that if particles are uniformly dispersed in
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Fig. 7 Trajectories of
non-inertial particles,
St = 0, in the vortex flow as
given by ψP , for (upper)
W = 0.25, where 60%
particles are suspended;
(lower) W = 0.75, 18% are
suspended. Bounding
pathline ψP = Wπ shown as
dashed curve
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the flow at the outset, they remain so. One can also define a particle streamfunction
for this motion, ψP = ψ + W1x2 − W2x1 giving V(t) in terms of a particle velocity
field v(x, t) evaluated at x = Y.

This situation changes if we introduce particle inertia, solving (3) with St > 0.
Both initial positions and velocities must be specified, and here we set the initial
velocity to be zero. Figure8 shows the positions at t = 100L/U0 for particles that are
initially arranged on a uniform grid in each cell, withW = 0.25. Remarkably, all the
particles are now settling and follow open paths. Secondly, the different trajectories
eventually allmerge into isolated preferred paths. For St = 0.2, the trajectoriesmerge
into a single path in each cell and at all points are swept by the flow in a downward
direction. The overall settling rate is increased. For St = 1 there is more particle
inertia. These particles are also swept along by the flow and all eventually settle.
There is again a merging into isolated paths, but these now have a more complex
structure. This becomes clearer if we examine the later stages of the paths for some
individual particles, as shown in Fig. 9. The paths are periodic in the vertical but the
period is now 4π instead of 2π. The particles cross vertical cell boundaries and then
cross back again. The scatter plot of Fig. 8 shows an overlay of four basic trajectories
that pass through the cells shown, corresponding to different phases.

These and other results are described by Maxey and Corrsin (1986), Rubin et al.
(1995). It should be noted that an alignment of the cells with the vertical can create
special patterns where particles collect on the vertical cell boundaries if W > 1 and
it is worth looking at the motion with both W1 and W2 non-zero.
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Fig. 8 Scatter plot at
t = 100 for the positions of
inertial particles evenly
dispersed at t = 0 on a 8 × 8
lattice in each cell,
W = 0.25: St = 0.2
(upper); St = 1 (lower)
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Fig. 9 Selected particle trajectories forW = 0.25 and St = 1. Particles start from rest atY2 = 1.8π,
within the interval 0 < Y1/π < 2

A specific feature of the St = 1 results is that the trajectories can cross, so that a
particle observed at a specific location may have different velocities depending on its
past motion. This can be understood further by considering a dense inertial particle
in a simple, stagnation point flow where u1 = αx1, u2 = −αx2. The solution to (3)
for the position Y(t) can be written as

Y1(t) = +B1 expλ1t + C2 expλ2t

Y2(t) = − 1

α
W + B2 expλ1t + C2 expλ2t (20)

where λ1 and λ2 are the roots

λ = {−1 ± √
1 − 4ατP}/(2τP) (21)

AtY = (0,−W/α) there is an equilibrium point, where the particle is suspended by
the upflow. If St = ατP < 0.25, there is no overshoot of the line x2 = −W/α for a
particle that is initially above this line. However for St > 0.25, the roots for λ are
a complex conjugate pair and overshoot can occur in either direction for particles
starting above or below this line. Thus we can expect that for low values of St
there will be no crossing of these asymptotic trajectories. Even with the crossing of
trajectories at St ∼ 1, we still find a clustering or merging of the particle trajectories
in the periodic flow (18).

This analysis for low St can be taken further and an asymptotic approximation
for (3) made as

V = v(Y, t) = u(Y, t) + WS − St

(
∂u
∂t

+ (u + W) · ∇u
)

, (22)
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where the derivatives are evaluated at Y(t). This result corresponds to a specific
choice of the initial velocity of the particle but this has limited effect on the long term
trajectory. The point is that for low St the particle velocity can be written as a specific
function of the particle position. A consequence is that for a non-settling (W = 0),
inertial particle the trajectorywill converge to the streamlineψ = 0where the particle
moves along a cell boundary (Maxey and Corrsin 1986). Another feature is that this
flow field v(x, t) is compressible. Inertia makes it harder for particles to turn corners
as it follows the flow, causing the particles to drift out of a vortex core and towards
a region of higher strain rate. This has become termed preferential concentration of
inertial particles and much has been written on the subject. The effects of particle
inertia and these dynamics on rates of particle settling in turbulence were considered
by Maxey (1987a) and by Wang and Maxey (1993) and a more recent overview
is given by Monchaux et al. (2012). Balachandar and Eaton (2010) give additional
information on the effects of preferential concentration of particles in turbulent flows.

As the effects of inertia become stronger, when St ≥ 1, other features have been
noted for particles in turbulent or random flow fields. One is the formation of caustics
among the trajectories of different particles that is linked to the crossing of their paths,
see Wilkinson et al. (2007) and references therein. With large inertia, the particles
have a more limited response to the local flow and can travel along nearly straight
paths for some distance before being caught in some region long enough for the
flow to reorient the motion (Ijzermans et al. 2010). This can be seen with the present
periodic flow (18) if one looks at the motion with tilted cells,W1 = 0. For example if
W = 0.25, St = 10 and the cells are tilted slightly at an angle of 15◦ to the vertical,
the trajectories are reminiscent of a pinball machine.

This approach of looking at particle motion in a simple, nonuniform flow may be
applied to solid particles or gas bubbles in liquid flows or to nonspherical particles
such as ellipsoids. A first idea of the response in a solid in liquid flowmay be obtained
by computing the trajectories with a simplified version of (6),

(
mP + 1

2mF
) dV
dt

= (mP − mF ) g + 6πaμ (u − V) + 3
2mF

∂u
∂t

+ mF
(
u + 1

2V
) · ∇u. (23)

This retains the effect of added-mass and buoyancy but neglects history terms and
other effects. The scaled version of this equation is

dV
dt

= 1

St
(u − V + W) + 3

2 R
∂u
∂t

+ R(u + 1
2V) · ∇u (24)

The parameter R is based on the ratio of the particlemass to themass of displacedfluid
as R = m f /(mP + 0.5mF ). Thus R = 0 for a solid particle in a gas flow, R = 2/3
corresponds to a neutrally buoyant particle. R = 2 would represent a contaminated
gas bubble, wheremP = 0 but the effect of surfactants immobilizes the liquid on the
bubble surface giving a no-slip response. Similarly the definition of Stokes number
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Fig. 10 Sample trajectories
of rising bubbles, St = 0.2,
for W = 0.75 (upper); and
corresponding scatter plot
(lower)
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is based on τP = (mP + 0.5mF )/6πaμ and W is the scaled terminal fall or rise
velocity in still fluid.

Some representative results for themotion of small gas bubbles, R = 2, are shown
in Fig. 10 for W = 0.75. There is a small degree of inertia, St = 0.2, as appropriate
for small bubbles or solids in liquids. Some of the bubbles become trapped at fixed
points, which unlike the gas–solid case, are now stable. These are equilibrium points
where the local downflow balances the buoyant rise of the bubble. A substantial
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fraction of the bubbles may be trapped in this way. Other bubbles follow open paths
rising through successive cells. Trapping of the bubbles is more prevalent at smaller
values ofW or for larger St . If we examine the corresponding scatter plot at t = 100,
we see that the freely rising bubbles merge into isolated paths as found for the inertial
gas–solid particles but now moving in the upflow region of each cell. Referring
back to (22), the corresponding result is that buoyant particles tend to collect in
regions of stronger vorticity and lower strain rate (Maxey 1987b). The recent work
by Bergougnoux et al. (2014) explores this system inmuchmore detail and compares
experimental measurements and simulations, taking fuller account of the fluctuating
fluid forces on the particles. Their focus is on the very interesting issues of how
particles respond close to neutral buoyancy, R = 2/3.

If one considers the motion of small spheroidal particles, there are further degrees
of freedomand interesting dynamics evenwithout the effects of inertia. Jeffery (1922)
showed that a spheroid in viscous flow will tend to rotate with local vorticity, much
as a sphere does, but also will tend to align so that the long axis is in the direction
of largest principal strain. A spheroid placed in a uniform shear flow exhibits the
Jeffery orbits, whereby it turns at different rates depending on its orientation in the
flow. Further, the resistance to motion along the long axis of a prolate spheroid
may be half that transverse to the axis. This means that a spheroid may not settle
vertically under gravity, depending on its orientation. If this is coupled to motion in a
nonuniform flow (18) some unusual features emerge. One is that the particle motion
may be chaotic as it tumbles and settles under gravity. There are regions of regular
motion in the flow, quasi-periodic trapping or suspension, and chaos (Mallier and
Maxey 1991; Shin and Maxey 1997).

4 Force Coupling Method

Many of the current research challenges involve suspensions of particles that are not
isolated and interact with each other or with flow boundaries. The finite size of the
particle is an issue and commonly the particle and fluid are of comparable density.
As we noted at the end of Sect. 2, it is difficult to develop an equation of motion
that encompasses all these conditions even for low Reynolds number systems. This
necessitates some form of numerical simulation of the problem posed by (5) for
the disturbance flow generated by a system of particles, the fluid forces that these
generate F(F) and a corresponding momentum equation for each particle,

mP
dV
dt

= F(F) + F(Ext). (25)

A similar equation is specified for the angular velocity � in terms of the fluid and
external torques T(F), T(Ext) on the particles and the moment of inertia IP of the
particle.
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There are several ways that this has been approached. The arbitrary Lagrangian
Eulerian (ALE) scheme of Hu et al. (2001) employs a body-fitted numerical mesh
around each particle and solves for the incompressible flow with a finite element
scheme. The mesh moves with the particles, but must be rebuilt and the data interpo-
lated to the new mesh at intervals as it becomes increasingly distorted. This can be
very accurate but is challenging to scale up to large systems. More common is some
form of fictitious domain method that is based on a fixed computational mesh for the
flow and fictitious forces are applied to the fluid tomimic the presence of a rigid body.
Examples of this are the distributed Lagrangian multiplier (DLM) schemeGlowinski
et al. (1999) and the immersed boundary method (IBM) (Uhlmann 2005; Breugem
2012). Here we outline an effective, yet simplified scheme based on a distribution of
low-order finite force multipoles acting on the fluid.

The force coupling method (FCM) is a fictitious domain scheme whereby the
presence of a particle in a flow u(x, t) is represented by a finite force monopole and
force dipole,

ρF

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= − ∂ p

∂xi
+ μ∇2ui+

∑
n

Fn
i �M(x − Yn) +

∑
n

Gn
i j

∂�D

∂x j
(x − Yn). (26)

The functions �M and �D for the monopole and dipole are given by

�(x) = (2πσ2)−3/2 exp(−x2/2σ2), (27)

where for a sphere a/σM = √
π and a/σD = (6

√
π)1/3. This is posed as a mobility

problem. The strength of the force monopole Fi is specified as

F = F(Ext) + (mF − mP)
dV
dt

+ F(Con) (28)

This replaces the momentum of the rigid body by the corresponding momentum of a
rigid fluid sphere moving with same velocityV resulting in a force F of the sphere on
the fluid.We introduce a short-range contact forceF(Con) that acts between particles to
prevent unphysical overlaps of the rigid bodies. The particle velocityV is determined
from the resulting flow,

dY
dt

= V(t) =
∫

u(x, t)�M(x − Y(t))d3x (29)

The basic details of the method are given in a series of papers (Maxey and Patel
2001; Lomholt and Maxey 2003; Liu et al. 2002).

The aim is tomatch the low-order integral moments of the flow to those that would
apply to the true motion of a rigid body in the fluid. The mobility format breaks from
the more usual resistance model and ensures a tighter coupling of particle and fluid
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momentum. The angular velocity � is found in a similar manner from the fluid
vorticity as

�i (t) = 1
2

∫
ωi (x, t)�D(x − Y(t))d3x (30)

The force dipole coefficient Gi j has a symmetric part GS
i j , commonly referred as a

stresslet, and an anti-symmetric part GA
i j that may be linked to a torque acting on the

fluid, GA
i j = (1/2)εi jkTk . The value of the torque can be set as

T = T(Ext) + (IF − IP)
d�

dt
, (31)

with an appropriate value for the fluid moment of inertia IF .
The symmetric stresslet term GS

i j is set indirectly so as to ensure that the volume-
averaged rate of strain si j for each particle is zero, thus

∫
1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
�D(x − Y(t))d3x = 0 (32)

This condition is certainly consistent with the concept of the fluid inside particle
volume responding as a rigid body. It also ensures that the stresslet does no net work.
One can evaluate the budget for the total kinetic energy in the flow domain based
on (26). For particles suspended in a flow domain D, the rate of change of the total
kinetic energy is

d

dt

∫
D

1
2ρu

2d3x =
∮

∂D
uiτi j n j dS −

∫
D
2μsi j si j d

3x

+
∑
n

F (n)
i

∫
D
ui�M(x − Y(n))d3x +

∑
n

T (n)
k �

(n)
k (33)

The second to last term of (33) can be written as
∑
n
F (n)
i V (n)

i . The last two terms

relate to the work done by the external forces and torques and the change in kinetic
energy of the rigid particles and of the fictitious fluid inside the particles. The other
terms on the right hand side are the rate of work by forces on the domain boundary
and the rate of viscous dissipation. The key point is that this is evaluated over the
whole domain, not just the region outside the particles. The fictitious fluid motion
inside the particle is dynamically relevant and as will be shown the FCM represents
a local, spatial smoothing of the dynamics.
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4.1 Stokes Flows

The FCM representation for the Stokes flow of a sphere moving steadily in otherwise
still fluid under the action of an external force F can be found analytically. The
solution of (26) with a simple monopole force consists of three parts,

ui =
(
S(1)
i j + S(2)

i j + S(3)
i j

)
Fj . (34)

These terms are,

S(1)
i j = 1

8πμr

(
δi j + xi x j

r2

)
erf(r/σ

√
2), (35)

S(2)
i j = 1

8πμr3

(
δi j − 3

xi x j

r2

)
σ2erf(r/σ

√
2), (36)

S(3)
i j = − σ2

2μ

(
δi j − 3

xi x j

r2

) σ2

r2
�M(x). (37)

The first term S(1)
i j matches a classic Stokeslet flow due to a point-force F once r/σ

is large enough that erf(r/σ
√
2) ∼ 1. The second term S(2)

i j similarly corresponds to
a potential dipole flow in the far field while the third term is a localized flow within
the sphere volume that ensures that the total flow is incompressible.

Without making an assumption about the value of σ, we can evaluate (29) as
Vi = Q0Fi/μσ and the value of Q0 is Q

−1
0 = 6π3/2. This matches the Stokes drag

resistance if we set a/σM = √
π. The exact result for Stokes flow past a rigid sphere

of radius a moving with velocity V is

ui = 3

4

aVj

r

(
δi j + xi x j

r2

)
+ 1

4
a3Vj

(
δi j − 3

xi x j

r2

)
(38)

This is a combination of a Stokeslet and a potential dipole. With the chosen value of
σM , the ratio of the coefficient of the potential dipole from FCM to the exact result
is 3/π. In general, when using multipole terms for Stokes flow, one must explicitly
add the potential dipole. Here it arises naturally and is given to a good approximation
given that this term decays quickly with r/a. In the same way, (29) gives the Faxen
correction for motion in a nonuniform flow.

Figure11 shows the streamlines of the FCM result (34) together with the profile
of the streamwise velocity component u1 against x1. This shows the close match of
u1 to the exact flow at distances r/a > 1.5 and the internal flow inside the sphere
that resembles a spherical vortex. Indeed the vorticity is smoothed out in the FCM
representation and extends into the sphere volume. Similar results for a stresslet flow
or a rotlet flow generated by a torque T show good agreement with exact results for
a single particle with the chosen values of σD (Lomholt and Maxey 2003).
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Fig. 11 Left Streamlines for FCM Stokes flow past an isolated sphere, shown as the red circle, in
a uniform flow; Right Corresponding velocity profile u1(x1, 0, 0) for FCM (dashed line) and exact
result (solid line). Reproduced from Maxey and Patel (2001) with permission (color figure online)

If we consider two spheres of equal size falling under gravity, with equal forces
on each, then in Stokes flow they will fall at the same speed and their relative position
does not change. Indeed they will fall faster together, with a larger fall speed if they
are aligned vertically as opposed to horizontally. The FCM estimates of these fall
speeds agree well with the exact results (Lomholt and Maxey 2003). If the spheres
are moving in opposing directions, due to equal and opposite forces, then the results
lose accuracy if r/a < 1.25 − 1.5 depending on the alignment of the particles. For
this we need to use correction terms, including the substantial viscous lubrication
forces generated by spheres moving with only a narrow gap between them (Dance
and Maxey 2003; Yeo and Maxey 2010a).

4.2 Finite Reyonolds Number Flows

A first question is whether the parameterizations for σM and σD chosen to match
the results of Stokes flow are still appropriate for finite Reynolds number flows. In
order to address this, we can examine the result for an Oseen flow corresponding to
the steady motion of a sphere subject to an applied force F. The flow is steady in the
frame of reference moving with the particle and we pose this as a steady, uniform
flow−V past a fixed sphere located at x = 0.Wewould expect that the corresponding
force monopole strength F would match the standard result for the drag force (10).
In this frame of reference, the Oseen flow is u′. For the FCM problem, we rewrite
this as u′ = −V + u and specify the value of F,

− ρV · ∇u = −∇ p + μ∇2u + F�M(x). (39)
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Fig. 12 Comparison of the analytic Oseen drag law (line), with the FCM estimate (stars) assuming
a/σ = √

π, plotted as a function of ReS

Thenwithout any assumptions on a/σ we can evaluate the estimated particle velocity
from the solution of this equation and from (29) as Ṽ = FQ(ReS)/μσ, where ReS =
σV/ν. The question is then what force F is needed for Ṽ to match V . For Stokes
flow Q = Q0 and with a/σ = √

π, Q0 matches the Stokes drag law. If this extends
to low Reynolds numbers in the Oseen range, then we should find that

Q0

Q(ReS)
= VS

Ṽ
= 1 + 3

8ReS
√

π (40)

Figure12 shows the comparison. There is indeed a good match for low Reynolds
numbers. The value of ReS = 0.3 corresponds to ReP = 1.06, which may be seen as
an upper value for the validity of theOseen drag lawanyway.Details of the calculation
are given by Dent (1999). The conclusion is then that the same value of σM can be
used consistently at all relevant Reynolds numbers. The result also indicates that
FCM will yield the same results as the asymptotic procedures for estimating lift and
drag forces at low but finite Reynolds numbers discussed in Sect. 2.4. FCMprovides a
continuous matching of the inner Stokes flow with the outer, finite Reynolds number
conditions.

More generally at finite Reynolds numbers we must rely on numerical tests to
establish the range of ReP and Re� for which the method is accurate. A number of
such results are given by Dent (1999) and with further results given by Liu (2004).
The conclusion is that FCM is accurate for ReP < 5, and reasonably accurate for
ReP < 10. We consider a couple of examples.

The first is a particle settling in steady motion along the centerline of a channel
at ReP of 5. At finite Reynolds numbers, inertial forces will cause the particle to
drift away from the wall and fall along the centerline. This contrasts with Stokes
flow, where the distance of the particle from the walls remains constant. Figure13,
from Liu et al. (2002), shows the profile for the streamwise velocity component u1
across the width of the channel, −5 < x2/a < 5 at various locations x1 relative to
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Fig. 13 Profiles of the
streamwise velocity of the
flow past a sphere settling
along the centerline of a
channel, comparing FCM
and DNS results at various
locations. As shown the
sphere is fixed and the walls
are moving upwards,
ReP = 5. Reproduced from
(Liu et al. 2002) with
permission
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the center of the sphere. Periodic boundary conditions are applied at x1 = 0, 30a and
x3 = −15a, 15a. The FCM results are compared to those of a resolved computation
of the flow based on the NEKTAR spectral/hp element code (SEM). At x1 = −2a
in the wake of the sphere, there is very good agreement of the two results. Inside
the particle volume there is the expected overshoot in the FCM velocity but the
two simulation results match at about 0.25a−0.5a away from the sphere surface for
x1 = 0,−a. In the SEM computation, the sphere is fixed and the channel walls move
vertically upwards with the resulting FCM velocity −V1, so we compare the FCM
monopole F to the drag force FD from SEM. This gives F/μν = 67.0 compared
to FD/μν = 66.03. The settling velocity is 70% of that for a freely falling particle
under the same force.

At finiteReynolds numbers a stresslet termGS
i j is generated even though nonemay

arise for Stokes flow. This serves to keep the FCM-flow centered on the particle and
improves the accuracy of the flow representation. A stresslet is also generated at zero
and finite Reynolds numbers if the particle is moving near a wall boundary or another
particle. For a pair of identical, freely falling particles at finite Reynolds numbers the
effects of fluid inertia cause the drafting, kissing and tumbling as noted by Fortes et al.
(1987). The particle trailing in the wake of the leading particle falls more rapidly and
catches up (kisses) before the pair then tumbles and separates. The exact sequence
depends on the initial horizontal separation of the pair. This phenomena is seen too
in the FCM simulations and has been compared with experiments (Lomholt et al.
2002).

Another useful example is to examine the forces on two spherical particles that are
fixed in a Poiseuille flow as shown in Fig. 14. The flow has periodic boundary condi-
tions at x1 = 0, 20a and x3 = −3.5a, 3.5a, with planar walls at x2 = −3.5a, 3.5a.
The two particles are coplanar and centered at x2 = 1.5 with a streamwise separation
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Fig. 14 Two particles held
fixed in a Poiseuille flow
within a planar channel,
channel height 7a, particles
centered at 2a from lower
wall, separated by 4a.
Reynolds number based on
centerline velocity is 2.45

x1=0

A B

x1=20
x2 = -3.5

x2 = 3.5

4a. Again we can compare FCM results with SEM, using a penalty method to keep
the FCM particles fixed (Liu 2004). Based on the Poiseuille flow velocity u0 at the
particle centers, ReP = 2. The drag force on the upstream particle is 5% larger than
on the second, consistent with the wake effect. There is a lift force on the upstream
particle FL/μau0 = −1.33 directed towards the centerline as one may expect. The
FCM estimate is −1.36. On the downstream particle the lift force is instead towards
the wall FL/μau0 = 0.43; the FCM estimate is 0.41. This shows how the distur-
bance flow of one particle can modify the motion of another and that estimates of
drag and lift, or equations of motion such as (6), for isolated particles need careful
interpretation. Even approximate methods such as FCM can help in understanding
the interactions of particle motion.

5 Applications to Suspension Flows

5.1 Particle Settling

Here we consider a few examples of FCM applied to the motion of freely suspended
particles. The first is the settling of randomly dispersed particles under gravity in a
homogeneous suspension. This is a topic with a long history. The theoretical problem
consists of a large number of freely suspended particles, of the same radius a, that are
denser than the fluid and so experience a net negative buoyancy force due to gravity.
The fluid is otherwise at rest and the particles start to settle from their initial, random
uniform distribution characterized by the volume fraction c. The first question is
how quickly do the particles settle on average 〈V 〉 and how does this compare to the
terminal fall speed WS of an isolated particle.

For a numerical simulation, we set up a periodic domain to model a homogeneous
system with the length L of the periodic box large compared to a. The FCM equa-
tion (26) is computed for either Stokes flow or finite lowReynolds number conditions
using a Fourier pseudo-spectral method as described by Climent and Maxey (2003).
First for Stokes flow, particle and fluid inertia are negligible, and we can compute the
resulting motion using both the force monopole and dipole terms. As noted earlier,
a contact force is needed to represent the short-range effects of solid body contacts
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where small roughness irregularities on the particle surface prevent direct contact
(Rampall et al. 1997). This preserves the void fraction of the suspension and pre-
vents the overlap of particles. Often the specific form of the contact force model is
not critical and we typically use a model that goes smoothly to zero for |Y(A) − Y(B)|
larger than Rre f but rises sharply as the particles approach contact (Dance et al. 2004).
For this type of flow with the settling of identical particles at lower volume fractions
c < 20%, viscous lubrication forces are not a significant factor.

The first condition to impose is that there is a counter-balancing uniform pressure
gradient on the fluid to support the net weight of the suspended particles. In a Fourier
scheme, this is imposed for the zero wavenumber component of the flow û(k, t) and
k = 0. Without this condition there would be no stationary equilibrium. Batchelor
(1972) pointed out that while pairwise hydrodynamic interactions between the par-
ticles may tend to increase the settling rate, their motion also creates a net updraft of
fluid to counter the volume displacement of the falling particles. Overall, there is hin-
dered settling and 〈V 〉 < WS . This condition of zero total volume flux corresponds
to setting û(0, t) = 0. Physically, it is supposed that there is some lower boundary
to which the particles would settle and stop and which would also block any flow.
This is the standard frame of reference in which sedimentation is considered. Any
non-zero value for û(0, t) would simply be a constant added to both the fluid and
particle velocities, which would not alter the relative motion from settling.

Figure15 shows the simulation results for 〈V 〉/V0 for Stokes flow as com-
pared to the experimental measurements of Nicolai et al. (1995). The value of V0

is the fall speed of a single particle in the periodic domain and differs slightly
from WS . Batchelor (1972) estimated this ratio for the hindered settling velocity
to be (1 − 6.55c + O(c2)). The curve shown is based on a standard Richardson–
Zaki correlation of the data fitted to 〈V 〉/V0 = (1 − c)4.5. The simulation results are
based on a box L = 128�x and σM = 1.5�x so that L/a = 48 approximately. Tests
were made that showed that the stresslet terms did not have much influence on the

Fig. 15 Average settling
rate of particles in a Stokes
suspension: FCM results
(circles), experiments of
Nicolai et al. (1995)
(triangles), dashed line
shows standard a
Richardson–Zaki correlation,
(1 − c)4.5. Reproduced from
Climent and Maxey (2003)
with permission
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statistical results and these were omitted from the simulations (Climent and Maxey
2003).

There is a discussion of settling in a homogeneous suspension for Stokes flow in
the review papers of Davis and Acrivos (1985), Davis (1996) and in Guazzelli and
Morris (2012). Recent results are summarized by Guazzelli and Hinch (2011). The
variation of 〈V 〉 < WS with c is a robust result with a Richardson–Zaki exponent
usually about 5 and is not sensitive to the domain size L/a. However itwas pointed out
by Caflisch and Luke (1985) that this idealized problem would lead to a divergence
in the level of particle velocity fluctuations V ′, where V ′

j = 〈(Vj − 〈Vj 〉)2〉1/2, with
increasing box size. An explanation for this is given by Hinch (1988) in terms of the
formation of large clusters that settle collectively and so give V ′/WS ∼ (cL/a)1/2.
This feature is seen too in the FCM simulations as shown in Fig. 16 for c = 0.06 as
L/a varies from 16 to 96. The circles in the figures are results for Stokes flow and the
figure also verifies the lack of variation of 〈V 〉/V0 with domain size. The increase in
V ′ with L/a is consistent with Hinch’s estimate.

The divergence of V ′ is not seen in experiments and it has been discussed how
the experiments in a container with a sharp sedimentation front that slowly descends
will differ from the idealized problem simulated numerically (Guazzelli and Hinch
2011). The aim of the FCM study (Climent and Maxey 2003) was to see how finite
Reynolds number effects wouldmodify the flow. A feature of Stokes flow is the long-
range effect of a Stokeslet flow which decays relatively slowly with distance and can
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Fig. 16 Variations of mean settling velocity (upper) and rms velocity fluctuations (lower), scaled
by V0, with domain size L/a. Results are for Stokes flow (circles) and for ReP = 5 (stars) at
c = 0.06; statistical error bars are shown for these time averages. Also shown are the scalings of
Caflisch and Luke (1985) for Stokes flow (dashed line) and Koch (1993) for ReP = 5 (solid line).
Reproduced from Climent and Maxey (2003) with permission
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contribute to cluster formation or long-range correlations in the velocities. Koch
(1993) and later Yin and Koch (2007) had noted that the long-range effects of a point
force in Oseen flow, an Oseenlet, would be much weaker. The FCM simulations in
principle should account for the particle as well as the fluid inertia through (35). Tests
verified that for 0.9 < mP/mF < 1.5, the particle acceleration is small compared to
gravitational acceleration g and so a simple constant external force is sufficient to
represent the dynamics. The particle Reynolds number ReP was varied over 0.1, 1, 5
and 10.

Figure16 shows the results for ReP = 5 and c = 0.06 as L/a is varied, where
ReP = 2aV0/ν. The mean settling rate 〈V 〉/V0 is less at higher ReP and again does
not vary with domain size. The velocity fluctuations are less too but do not increase
with domain size as they did for Stokes flow.Koch (1993) had indicated that anOseen
flow model would predict V ′/V0 ∼ {ln(L/a)}1/2 and this is shown in comparison
with the data. There may still be an increase with domain size but it is weak.

The effect of fluid inertia can also be seen by comparing the vertical sections of the
instantaneous flow, as shown in Fig. 17where c = 0.06 and L/a = 48. Visually there
is more tendency for clusters of particles to form in Stokes flow with larger spacing
between them, while at finite Re the particles are more evenly dispersed. This would
indicate less tendency for large scale overturning to develop. The drafting–kissing–
tumbling of particles in finite Re flows means that even through pairwise interactions
the microstructure is continually evolving, while in Stokes flow three-way particle
interactions are needed to change the relative configuration of the particles. Further
data shows that the average minimum distance between particles increases with Re
and the integral length scale for the fluid velocity fluctuations is shorter.

5.2 Couette Flow

A second example is shear flow in a suspension of neutrally buoyant particles at zero
Reynolds number and volume fractions of c = 0.2 − 0.4. In this context we must
pay close attention to the viscous lubrication forces between particles that are nearly
in contact. In a shear flow, particles are often moving in opposite directions either
towards each other or away and many simulation methods, including FCM, need to
make corrections for this. Figure18 illustrates the forces generated by two particles
in relative motion when the gap between them εa is small and below the resolution
of the simulation method. The estimates of lubrication forces, see Kim and Karrila
(1991), are:

F1 ∝ μa
(
V A
1 − V B

1

) 1
ε

F2 ∝ μa
(
V A
2 − V B

2

)
log ε (41)
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Fig. 17 Sample vertical
slices for Stokes flow
(upper) and ReP = 5
(lower) for the settling
particles at c = 0.06. The
particles are shown by their
area fraction intersecting the
plane together with local
fluid velocity. Reproduced
from Climent and Maxey
(2003) with permission
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This is incorporated within FCM by forming FLub = FFCM + (FLub − FFCM). This
blends the features captured by FCM with the analytical results for pairwise inter-
actions of particles. There are further terms for lubrication forces and torques as
described by Dance and Maxey (2003), Yeo and Maxey (2010a).

Guazzelli and Morris (2012) provide a good overview of the dynamics of shear
flow suspensions of non-Brownian particles. In the dilute limit, the primary effect
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Fig. 18 Sketch of the
lubrication forces between
two particles, with forces on
A due to the presence of B
and gap width εa

Gap εa

A B

for uniform shear flow is an enhanced effective shear viscosity which according to
the Einstein estimate is μe f f = μ(1 + 2.5c). Within the context of FCM, an isolated
sphere subject to an external flow with rate of strain E∞

i j will generate a stresslet
GS

i j = (20/3)πμa3E∞
i j .Adistribution of stresslets froma collection ofwell separated

particles will generate a body force density in (26) that can be written as

fi = ∂

∂x j

∑
n

�D(x − Yn)GS
i j (42)

This has the form of a divergence of a stress tensor associated with the particle phase
and

4

3
πa3

∑
n

�D(x − Yn)

is an effective local volume fraction for the particle phase. An ensemble average
of these results yields the Einstein estimate for particle-induced increase in shear
viscosity 2.5μc. Overall, the particles lead to an enhanced viscous dissipation in the
flow.

As the volume fraction of particles increases, two-particle interactions are impor-
tant and so too are lubrication forces. A uniform shear flow is the superposition a
solid body rotation and a straining flow with principal axes at 45◦ to the flow. In
the compressive direction, with negative rate of strain, the particles are squeezed
together by the flow and then separated in the extensive direction. Both will gener-
ate significant particle stresses, including normal stresses, through these lubrication
forces. It is clear then that the relative configuration of the particles is important. This
microstructure is often characterized by the pair distribution function g(r), which is
proportional to the probability density for the center of a particle being located at a
point r relative to the center of a reference particle. The dynamics and microstructure
of suspensions in uniform shear flow have been studied extensively with Stokesian
dynamics (SD) as a simulation method (Sierou and Brady 2002).

The presence of channel walls in a Couette flow can significantly alter the relative
distribution of the particles within a suspension even if the core region resembles a
uniform homogeneous shear. This is illustrated by FCM simulations of Couette flow
in which both the volume fraction of the particles and the channel width H/a are
varied (Yeo and Maxey 2010b). The simulations are set up with periodic boundary
conditions in the streamwise direction, Lx = 30a, and in the spanwise direction,
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Fig. 19 Particle void
fraction profiles in Couette
flow, H = 20a, for bulk
concentrations: c = 0.2
(solid), c = 0.3 (dashed),
c = 0.4 (dash-dot). Also
shown is c = 0.4 (dotted)
with smaller εmin.
Reproduced from Yeo and
Maxey (2010b) with
permission
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Lz = 20a. In the wall normal direction, 0 ≤ y ≤ H , a spectral element discretiza-
tion is used. The paper gives details on the implementation of the no-slip boundary
conditions at the wall in conjunction with FCM and the lubrication forces between
the wall and the particles. A short-range contact barrier is also implemented at the
wall, similar to that between particles.

Figure19 shows profiles of the local void fraction near the lower wall for bulk
volume fractions of 20, 30 and 40% for a channel of width H = 20a. The profile
is calculated as the fraction of a planar slice, at a chosen y/a, that is intersected by
particles. When ensemble averaged it indicates the likelihood of finding a particle
located relative to the wall. There is an excluded volume effect and a strong first
peak forms at y/a = 1 corresponding to a layer of particles adjacent to the wall.
There is a local minimum at y/a = 2 followed by secondary peaks at y/a = 3 and
y/a = 5. These are progressively weaker as the layering becomes less coherent. This
is a feature of flow with a smooth wall and monodisperse particles which are large
enough that Brownian motion is not a factor. Generally, the value of Rref is set so
that the minimum gap between particles corresponds to εmin = 0.005. An additional
result with εmin = 0.0005 indicates that this feature is not sensitive to the choice of
Rref .

Figure20 shows that these near-wall features are similar if the channel width H/a
is varied. The layering is more pronounced at higher bulk volume fractions.

We can also look at the pair distribution function between particles when we
choose the reference particle to be in the core of the channel or nearer to a wall.
Figure21 gives a contour plot of g(r; Y2) first when the location of the reference par-
ticle is at 8 < Y2/a < 12 close to the center of the channel. This is taken in a vertical
slice through the center of the reference particle at c = 0.4. There is an exclusion
zone r < 2a in which g = 0 and region just beyond this where the probability of
finding a second particle is high. This ring is concentrated about the compressive
principal axes for the shear flow. The segments in the extensive directions have low
probability. If the reference particle is closer to the lower wall in a region centered at
Y2 = 6a, then there is a clear influence of the wall on the lower side. The upper side
has less influence from the wall but the ring-like profile is still modified. Together
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Fig. 20 Near-wall particle void fraction profiles in Couette flow for bulk concentration c = 0.4,
channel heights: H/a = 10 (solid), H/a = 20 (dashed) and H/a = 30 (dash-dot). Reproduced
from Yeo and Maxey (2010b) with permission
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Fig. 21 Comparison of the pair distribution functions in the core of the channel, for particles
centered 8 < y/a < 12, and in the wall region, for particles centered 5.5 < y/a < 6.5. Bulk con-
centration c = 0.4, H = 20a. Light contours represent high probability. Reproduced from Yeo and
Maxey (2010b) with permission

the results suggest that near-wall dynamics may extend out to Y2/a = 7 or so. Yeo
and Maxey (2010b) provide additional details about the particle stresses including
the normal stresses.

In a further study, Yeo and Maxey (2010c) explore the Couette flow at higher
volume fractions in the dense suspension range 0.48 < c < 0.6. The ordering effect
created by the walls is even more pronounced and can extend the full width of
the channel. In fact a form of crystallization can occur depending on whether H is
commensurate with the particle diameter. If an ordered set of layers form the effective
shear viscosity is reduced, while if not it is substantially higher.
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6 Comments

The force coupling method has been used to investigate other suspension flows
including a pressure-driven Poiseuille flow (Yeo andMaxey 2011) and homogeneous
shear flow at finite Reynolds numbers (Yeo and Maxey 2013). These references also
note additional modifications of the method to speed up the computations or extend
the range of particle to fluid densities that can be covered for inertial flows. FCM
may also be applied to ellipsoidal particles at both zero and low, finite Reynolds
numbers (Liu et al. 2009). This simply requires a generalization of (27) to reflect an
ellipsoid instead of a sphere but no other modifications are needed. This works well
for moderate aspect ratios of a spheroid but would not be efficient for an elongated
shapeorfiber. FCMhas also beenused to investigate the inertialmigrationof neutrally
buoyant particles in a laminar flow within a channel of square section, relevant to
the inertial focusing of particles (Abbas et al. 2014). The discussion has focused on
FCM as a simulation method, but we have pointed to the way in which it provides a
natural framework for discussing particle stresses or for simplified dynamic models.

In the end there are many ways to model or numerically simulate particles sus-
pended in a flow. Each method has it specific range of application or set of restric-
tions. Taken together with experimental measurements, simulations present a more
compete picture of the dynamics. Reduced or simplified simulation methods are
especially helpful in isolating the essential dynamics.
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Modeling and Simulation of Finite-Size
Particles in Turbulence

Holger Homann

Abstract This course gives an introduction to the dynamics of finite-size particles
moving in laminar and especially turbulent flows. Finite-size means that their diam-
eter is larger than the smallest active scale of the carrier flow and that their slipping
velocity is not negligible. An emphasis will be on the differences in the dynamics
of these particles compared with those that are much smaller than any scale of flow
variation.We will see that the differences are substantial: The dynamics of finite-size
particles is hard tomodel, numerical simulations are challenging, large particles have
a complicated imprint on the carrier flow and their mutual hydrodynamic interactions
show rich properties.

1 Introduction

Many environmental and industrial flows are in a turbulent state. This means that
inertial effects of the gas or liquid are important which might be for example due
to high streaming velocities or low viscosities. There are various different types of
turbulent flows that are distinguished by the properties of the flowingmedium (water,
air, plasmas,…) or by the geometry and type of the boundaries (open, closed,moving,
…). However, turbulence has universal properties that motivates a systematic study
of selected flow prototypes. Results might than be applied to similar systems.

In this course we are not only dealing with turbulence but with turbulent transport
that is the motion of particles in a turbulent environment. It is not hard to imagine that
this problem appears very often in environmental and industrial settings. Examples
are themotion of pollutants in the atmosphere, the transport of organic material in the
oceans, mixing devices, pumping of particle suspension through pipes or the motion
of dust grains in protoplanetary discs.

The importance of turbulent transport for many open problems led to a intensive
study of its statistical features. It has for example been found that turbulence leads to a
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fast separation of neighboring particles and hence to very efficient mixing. Another
feature is that particles that have inertia decouple from the dynamics of the fluid
thereby creating spatial inhomogeneities called clusters. Recent studieswhere related
to turbulent fluctuations that can throw particles with high speeds against each other.
This phenomenon called caustics and has to be considered for the problem particle
collisions.

Most of the collected data and theory is on the dynamics of very small particles, so
called point-particles. This is because in applications transported particles are indeed
often much smaller than any scale of the fluid motion and because the smallness
assumption simplifies significantly their study: if a particle is much smaller than
any scales on which the flow varies and if in addition it is moving only slowly with
respect to the fluid the particle will be surrounded by a Stokes flow (see Fig. 1 (left)).
The corresponding flow structure originates only from viscous and pressure stresses
and has been calculated analytically. The Stokes flow is symmetric and the inflow
does (by definition) not vary on scales comparable to the diameter of the particle;
the inflow is said to be uniform. Any inertial effect or inhomogeneity of the fluid is
negligible in this limit and the drag on the particle is given by

dv

dt
= − 1

τp
(v − u), (1)

where u is the fluid velocity, v the particle velocity and τp = 2 ρp a2/(9 ρ f ν) its
response time (ρp is the particle density, ρ f the fluid density, a the radius of the
particle and ν the kinematic viscosity of the fluid). τp is the time that a particle
needs to relax to the velocity of the fluid and is a measure of inertia of the particle.
In the particle equation (1) the fluid velocity u means more precisely the velocity
at the position of the particle. Taken literally, this definition has of course no sense
(the fluid is sticking to the surface of the particle) but for a Stokes flow a particle is

Fig. 1 Left Stokes flow around a point-particle. Right Vorticity in a meridian plane around a finite-
size particle
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facing a flow which is uniform at distances large compared to its diameter. In Fig. 1
(left) we could take any value for u at the boundary of the shown box. The nice
thing about Eq. (1) is that it is just an ordinary differential equation for a given u.
This makes both analytic and numerical studies much simpler than studies of the
transport of finite-size particles as we will see soon. Direct numerical simulations of
turbulent point-particle suspensions can nowadays faithfully integrate the trajectories
of billions of particles. Resulting data sets provide thus the basis for high precision
statistical studies.

If one tries to model the force on bigger particles one encounters not only serious
mathematical but also conceptual problems. The computation of the force in the
point-particle approach relies (as we have seen) on the definition of a relative velocity
of the particle with respect to the fluid. This very definition is not obvious if possible
at all for a finite-size particle in turbulent flows. Particles that are larger than the
Kolmogorov scale can be surrounded by a complicated flow structure (see Fig. 1
(right)). The fluid velocity in the vicinity of the particle can vary on scales that are
smaller than the particle diameter. It is completely unclear which single velocity one
should take from Fig. 1 (right) to define a meaningful velocity seen by the particle.

Such conceptual problems are one reason why the understanding of turbulence
seededwith big particles is still in its infancy.Most of theworks rely on the generation
and exploitation of experimental or numerical data sets. But even the production
of precise data is more complicated than for suspensions of very small particles.
Numerically, one has to account for the interaction of the particle with the fluid
which requires a precise modeling of the no-slip boundary condition at the surface
of the particle and an adequate resolution of its boundary layer. Experimentally, one
has to find ways to precisely track both the motion of the large and small particles.
All this difficulties are responsible for an unpleasant situation: Even fundamental
questions such as if turbulence is enhanced or attenuated by the presence of big
particles is still under discussion. We will later come back to those open questions.

This course shall serve as an introduction to the topic of finite-size particle dynam-
ics. Finite-size here means more precisely that either the diameter is of the order or
larger than a characteristic scale of the flow (i.e. the Kolmogorov scale in turbu-
lence) or that it has an important relative velocity with respect to the fluid so that
it creates a wake. We can of course not discuss all possible flow types, open ques-
tions, numerical, experimental and analytic approaches. This is not the aim of this
course so that we will only discuss selected problems and results. The main focus
will be on the motion of finite-size particles in homogeneous isotropic turbulence.
From time to time we will also consider the dynamics of sedimenting particles in
a still fluid. This course includes a section that presents different approaches how
the motion of finite-size particles and their fluid-particle interaction can be solved
numerically. For experimental techniques the reader is asked to look at the course
of Mickaël Bourgoin. The hope is that this introduction provides sufficiently many
ideas, reflections and open questions that motivate the reader to get deeper into the
story. A good starting point would be to read the cited publications as in each case
only one or two of their results can be mentioned here.
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This course is organized as follows: We will start with a very brief introduction
to turbulence. Then, some selected numerical methods are discussed that are used
for direct numerical simulations of the transport of finite-size particles. After that,
an important place is reserved for the study of differences in the dynamics of small
and large particle. Hereby, the modification of the carrier flow by finite-size particles
will be presented. The last section deals with collective effects of many particles that
explicitly arise from a large particle diameter.

2 Basics of Turbulence

In this section we will introduce some basic properties of turbulent flows that are
important for the subsequent sections.Wewill focus on incompressible flows obeying
to the Navier–Stokes equations

∂tu = −u · ∇u − ∇ p + ν∇2u + f e, ∇ · u = 0, (2)

u denoting the velocity field, p the pressure, ν the kinematic viscosity, and f e
a possible external force maintaining the flow. The degree of turbulence can be
characterized by the Reynolds number Re = urms L/ν, L being the forcing scale
and urms the root-mean-square value of the velocity. Often also the Taylor Reynolds
number Rλ = √

15 Re is used.
One of the properties of high Reynolds number turbulence is the creation and

interaction of an enormous range of spatial and temporal scales. Let us take the
example of a cloud and assume that it has a total size of one hundred meters. Its
turbulent motion is driven at comparable scales by convection and shear. In three
dimensional turbulence the energy contained in these large scales cascades to smaller
and smaller scales. At very small scales of the order of onemillimeter the viscosity of
air transforms the kinetic energy into heat. In our cloud example we have thus a scale
separation from 100m to 1mm, thus 105 different interacting scales involved. The
largest scale is called integral scale L and the smallest scales is called Kolmogorov
scale η. The mentioned energy cascade from large to small scales is a basic property
of 3D turbulence. In between the two limiting scales (100m and 1mm) a purely
inertial transfer of kinetic energy is taking place. In this interval of scales, called
inertial range of scales, neither the particular mechanism of driving at large scales
nor the dissipation mechanism at small scales is important so that the flow is more
or less homogeneous, isotropic and approximately scale invariant.

Many scientific activities are devoted to the study of the idealized flow type of
homogeneous isotropic turbulence (HIT). In this case statistical quantities such as
velocity gradients are invariant under translation and rotations. Practically, one can
think for example of a small parcel of a cloud in a co-moving (with the average
velocity) frame of reference. In order to get a rough idea of the flow structure of
HIT a snapshot of vorticity is shown in Fig. 2. This picture is taken from a direct
numerical simulation (see subsequent section) of three-dimensional incompressible
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Fig. 2 Rendering of vorticity in a small slice of a direct numerical simulation of homogeneous
isotropic Navier–Stokes turbulence with 40963 grid points (Rλ = 730). The middle figure applies
a zoom of 4 while the right figure applies a zoom of 16 compared to the left figure

turbulence with periodic boundary conditions. One can see that HIT is composed
of regions of strong vorticity (and strong dissipation in its vicinity). Looking in
more detail into these regions (Fig. 2 (middle and right)) reveals that they consist
of entangled vorticity filaments obviously interacting with each other. The diameter
of such filaments is of the order of 10η and they belong to the smallest structures of
HIT. These filaments are also present in other types of turbulent flows.

The fact that there is no characteristic scale within the inertial range of scales
implies that scale (l) dependent quantities such as velocity differences along a sepa-
ration l

δlu = (u(x + l) − u(x)) · l/|l| (3)

behave as power laws. Indeed, the (second-order) structure function S2(l) = 〈(δlu)2〉
scales as S2(l) ∼ lζ2 within the inertial range and the extend of this spatial scaling
range can in turn be estimated from S2. Two examples of S2 are plotted in Fig. 3

Fig. 3 Left Second order structure function S2 inHIT for twodifferentReynolds numbers Rλ = 730
(Re = 35000) and Rλ = 460 (Re = 14000).Right Local slope of S2 that is its logarithmic derivative
d log(S2)/d log(r). The inertial range of scales can be defined as the interval where the local slope
of S2 is zero. Its scaling exponent ζ2 corresponds to the value of this plateau (Bitane et al. 2013)
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(left) for the simulation shown in Fig. 2 and for a simulation with a smaller Reynolds
number. The main message is that at sufficiently high Reynolds number an inertial
range of scales clearly exists but that Re has to be sufficiently high (Re ≈ 10000,
corresponding to a grid resolution of 20483 grid points).

Another important fact is that the scaling exponent ζ2 is much smaller in the
inertial range (see Fig. 3 (right)) than in the dissipation range where the flow is
smooth (ζ2 = 2). The size of the vorticity filaments can roughly be seen as a landmark
between the small and inertial range scales. Turbulence is thus not smooth withing
the inertial range of scales. However, these are the scales we are talking about if
particles are meant to be of finite-size!

In this course we will consider the transport of particles having a size equal to or
larger than the vorticity filaments. The basic equations of motion of a particle of any
size read

mp Ẍ =
∫
S
∇ · TdV =

∫
∂S

TdS, (4)

2

5
mpa

2�̇ =
∫

∂S
n × (T · dS), (5)

T being the stress tensor

T = −p I3 + ν(∇u + ∇uT ). (6)

The first equation (4) determines its translational motion and the second equation
(5) its rotation. The particle Reynolds number Rep = Dp Vp/ν usually involves
the particle diameter Dp, its relative velocity Vp and the kinematic viscosity. The
velocity u appearing in (4) is a solution to the Navier–Stokes equations (2) with
a no-slip boundary condition at the particle surface. This is a coupled non-linear
system of partial differential equation that shows the complexity of the problem.

Let us conclude this section by stressing that homogeneous isotropic turbulence is
one typeof turbulent flowonwhichphysicists often concentrate.However, one should
not forget that in real flows often a multitude of physical processes is contributing to
its evolution. Concerning a cloud, for example radiation, latent heat and electricity
play for example a role. Also there are of course other archetypal and important flows
such as convecting, rotating, pipe-, wall- and channel flows.

3 Numerical Methods for Finite-Size Particles

Finite-size particles in turbulence are surrounded by a complicated flow structure
(recall Fig. 1 (right)) for which no general analytic solution can be found. Indeed,
finding a simple equation modeling the force on such a particle in the spirit of (1) is
part of ongoing research activities. In order to get insight into the dynamics of finite-
size particles one can perform direct numerical simulations (DNS). DNS means that
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the basic equations (2), (4), and (5) are solved directly at all scales and no modeling
or simplifications are used. This is especially adequate for systems that are not well
understood. In the case of large particle dynamics this kind of simulations has become
a valuable tool because the computing power of supercomputers and the performance
of algorithm increased to such an extend that DNS of suspension of big particles are
nowadays possible.

Several different strategies have recently been proposed in order to perform DNS
of spherical particles. Most of them make use of a homogeneous grid that covers the
complete physical domain and resolves all turbulent scales. The principle idea is to
use a solver of the Navier–Stokes equations and to impose in some way the no-slip
boundary condition at the surface of the particle. Let us now mention some of those
strategies:

“Physalis”, developed by Prosperetti and Oguz (2001) and extended by Naso and
Prosperetti (2010), uses the analytic solutions to the Stokes equation for the viscous
boundary layer in the vicinity of the particle. This Stokes solution is used to prescribe
the velocity at the nearest surface points of the grid. Iteratively, the analytic stokes
solution and the outer solution on the homogeneous grid are matched. That way the
no-slip condition is imposed in an exact manner if the grid spacing is much smaller
than the viscous boundary layer.

The “Overset Grid” technique proposed by Burton and Eaton (2005b) consists
in using and matching two different grids. A spherical one encloses the particle
surface and is designed to resolve the boundary layer very accurately and a second
homogeneous grid that covers the entire domain. A third-order interpolation is used
to transfer values from one grid to the other in order to couple the two solutions.

The “force coupling”method ofMaxey and Patel (2001) solves theNavier–Stokes
equations including a body force that originates from the transported particles. This
body force is computed from a low-order multipole expansion of the force exerted by
a particle on the fluid. From this expansion they retain the monopole term including
buoyancy and forces from the displaced fluid and the dipole term including straining
and rotation effects. Due to numerical manageability they replace the Dirac delta
function by a Gaussian envelop of a width which is connected to the size of the
particle. The no-slip boundary condition is therefore only approximately fulfilled.

The “immersed boundary” approach solves the Navier–Stokes equations in the
entire domain (usually on a uniform grid) including the particles. The no-slip bound-
ary condition is imposed via additional forces acting on the fluid in the volume occu-
pied by the particles. This technique has been used together with finite-difference
schemes (Uhlmann 2005) and pseudo-spectral schemes (Homann et al. 2013). Let
us now look at the latter in more detail.

The main idea consists in combining a Fourier pseudo-spectral method for the
fluidwith an immersed-boundary technique to impose the no-slip boundary condition
on the surface of the particle. Pseudo-spectral means that spatial derivatives arising
in (2) are computed in Fourier-space while convolutions from the non-linear term
are computed in real space. A Fast Fourier Transformation (FFT) is used to switch
between the two spaces. Spectral schemes are a standard tool of DNS of HIT because
of their accuracy.
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The no-slip boundary condition at the particle surface is treated via an immersed
boundary technique. For a particle at rest this condition reads

u(x, t) = 0 for x ∈ ∂�p, (7)

for a particle at rest and center x0. Here, �p = {x : |x − x0| ≤ Dp/2} denotes the
volume occupied by the particle. The immersed boundary technique consists in intro-
ducing in the right-hand side of the Navier–Stokes equation (2) a force f b(x, t)
associated to the constraint defined by the boundary condition (7). The full problem
(2)–(7) can then be rewritten as

∂tu = L(u) + f b, ∇ · u = 0, for x ∈ �, (8)

where L(u) denotes the right hand side of (2). There are now different ways to
compute the force f b. One of them is called direct forcing method (see Fadlun
et al. 2000) and directly imposes the particle velocity to the grid points in the volume
occupied by the particle. As a uniform grid does not coincide with the particle surface
some sort of interpolation of the surface velocity to the nearest grid points has to be
used. This results in an effective smoothing of the particle surface making its surface
slightly porous.

Here might be the right place to stress today’s limits of direct numerical simu-
lations. Modern efficient numerical codes which include optimized algorithms and
parallelization run on thousands of computing cores. They use the fastest supercom-
puters in the world and consumemillions of CPU hours per simulation. Nevertheless,
the accessible parameter space is still limited. The Reynolds number of the flow is
usually of the order of one thousand and also the number of particles does not exceed
a few thousand. This is one reason why the amount of available data on this topic is
also still limited. One should mention that experiments have the advantage to reach
higher Reynolds and particle numbers but often suffer from other difficulties.

4 Finite-Size Effects of Individual Particles

In the introduction we saw that the flow structure around finite-size particles in
turbulent flows is in general different from that of point particles. However, we do
not know yet if their dynamics differ. But in fact they do. In this section we are going
to present finite-size features of particle transport that definitely distinguish large
from small particle dynamics.
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4.1 Slip Velocity

Let us start by discussing the slip velocity of large particles. Slip velocity means the
relative velocity of a particle with respect to the fluid. In the introduction we saw that
this velocity difference had a simple meaning for point particles. They are so small
that the surrounding flow is nearly uniform at large distances from the particle. In this
region, every fluid parcel is moving with the same velocity relative to the particle.
This velocity is obviously the slip velocity.

A finite-size particle in turbulence is (by definition) facing a flow that varies on
scales smaller than the particle diameter (recall Fig. 1 (right)). There is no such region
of uniform fluid velocity. However, also a big particle is somehow moving through
the fluid and creating eventually even a clearly visible wake. Theremight be therefore
at least some hope that a meaningful definition of the slip velocity exists. Because
of the turbulent fluctuations spatial averages might be a good candidate. Lucci et al.
(2010) and Kidanemariam et al. (2013) define the fluid velocity seen by the particle
to be the average velocity on a concentric shell around the particle. They take a shell
with a radius of the order of the particle diameter. The idea is that at this distance
the flow is only weakly influenced by the boundary layer of the particle. The slip
velocity is then the difference of this averaged velocity and the particle velocity.

Cisse et al. (2013) computed the shell averaged velocity as a function of the shell
radius. They introduced a two dimensional coordinate system consisting of the slip
direction and a normal direction. The slip direction 
er (t) is computed from the fluid
flux through each shell as


er (t) = 
�r (t)/| 
�r (t)|, where 
�r (t) =
∫
Sr

(

u(
x, t) − 
Vp(t)

)
· 
n d 
S, (9)

where 
u and 
Vp are the fluid and the particle translational velocity, respectively, 
n
is the unit vector normal to the shell. In other words, on each shell an average of
the direction weighted by the fluid mass flux is performed, so that 
er points in the
direction of the flux on the shell at distance r . This choice is physically motivated as
the fluid enters such a shell upstream and exits it in the wake. For a Stokes flow, 
er
would be independent of r and exactly parallel to the slip direction.

Having the direction 
er defined, one can project the velocity difference 
u − 
Vp

onto it and perform a time average to construct the mean velocity profile of the flow
relative to the particle

Urel(ρ, z) =
〈(


u(
x, t) − 
Vp(t)
)

· 
er
〉
, (10)

with z = (
x − 
Xp(t)) · 
er and ρ = [|
x − 
Xp(t)|2 − z2]1/2. The coordinates z and ρ,
which are defined at each instant of time, are in the direction of 
er and perpendicular
to it, respectively. By rotational symmetry around the axis defined by 
er , the mean
profile Urel depends on z and ρ only and not on the angle.
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Fig. 4 Left Temporal- and angle-averagedfluid relative velocity projected on the direction ofmotion
for Dp = 34η (left) and for a tracer (middle). Right slip velocity Uslip for Dp = 34η defined as
the difference between the mean relative velocity profile Urel around the particle and that around
a tracer; the two black dashed circles represent distance equal to Dp and 2Dp from the particle
surface (Cisse et al. 2013)

The relative velocity profiles (see Fig. 4 (left)) have a marked asymmetry resem-
bling the inflow and wake structure of a particle facing a uniform flow. However,
performing the same computations for a tracer particle moving in a similar flow
produces a similar velocity profile (see Fig. 4 (middle)). The problem is that a tracer
has by definition no slip velocity or wake. Indeed, the measured velocity profile is a
consequence of the intrinsic asymmetry of the longitudinal velocity increments (3)
in HIT and the specific choice of the coordinate system. In HIT, velocity differences
in the direction of the separation increase with the separation and are skewed. Cisse
et al. (2013) therefore proposed to study the difference of the mean velocity profiles
of a finite size particle and that of a tracer (see Fig. 4 (right)). This difference shows
strong variations close to the particle (up to twice its diameter) while it is approxi-
mately constant at further distances. This constant is then defined to be the average
slip velocity.

A completely different strategy to define a relative velocity is pursued by Bellani
and Variano (2012). They define a stochastic slip velocity using the variance of the
fluid and particle velocity

Urel = (〈u′2〉 − 〈v′2〉)1/2 . (11)

Here, the primes denote the fluctuations with respect to the mean u′ = u − 〈u〉. An
advantage of this definition is its simplicity and direct applicability to experiments.
However, from its very definition it is clear that this only gives an average and no
local definition.

We see from this that already the definition of slip velocity is a subtle problem
for finite-size particles. Next we will look at the modification of turbulence in the
vicinity of an individual particle.
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4.2 Modification of Turbulence

It is well known that finite-size particles in a uniform flow create a boundary layer
and wake. One may ask how this modifies the properties of the turbulent flow. How
do for example particles change the energy dissipation rate in its vicinity?

Burton and Eaton (2005a) performed 3D DNS of freely decaying HIT in which
they put one fixed particle with a diameter comparable to the Kolmogorov length
scale. By means of ensemble averages they find that the local energy dissipation
is increased close to the particle compared to the outer turbulence. The particle
displaces the fluid, creates a boundary layer and increases thereby velocity gradients.
Further away, there is some indication that at intermediate distances the dissipation
rate might be reduced. This has also been found by Naso and Prosperetti (2010) who
studied the same situation as Burton and Eaton but in stationary (forced) HIT (see
Fig. 5 (left)). A reduced energy dissipation rate means that the particle attenuates
turbulent velocity fluctuations at small scales (the energy dissipation is a small scale
quantity). The particle influences obviously scales smaller than its diameter.

Cisse et al. (2013) studied the same question but for a moving particle. They
performed numerical measurements around a neutrally buoyant (having the same
density as the fluid) sphere. Using their definition of the slip direction (see pre-
vious section) they distinguished the energy dissipation rate in the upstream and
downstream flow (see Fig. 5 (right)). In the upstream flow the dissipation is strongly
increased. Downstream, at distances from 0.2Dp to 1Dp, the dissipation is reduced
compared to the bulk turbulence. It is thus the wake of the particle that attenuates
turbulence. However, very close to the particle (in the viscosity dominated boundary
layer) the dissipation is even downstream increased.

These results concern particles moving with moderate slip velocity through the
fluid. Rough estimates of their particle Reynolds numbers range from 20 to 200. At
these speeds the wake of the particle is still laminar. But higher speeds (for bigger

Fig. 5 Energy dissipation around a finite-size particle in HIT as a function of the distance from the
particle surface. Left Data for a fixed particle (α = (r − R)/R, (Naso and Prosperetti 2010)). Right
Data for a moving neutrally buoyant particle distinguishing contributions from up- and downstream
(Cisse et al. 2013)



50 H. Homann

or heavier particles) would imply the creation of turbulent fluctuations in the wake
and those might lead to an increase of the energy dissipation rate.

Let us now turn to the drag force on a large particle facing turbulent fluctuations.
It is clear that this quantity is crucial for the possible modeling of large particle
dynamics via a simple equation such as (1).

4.3 Drag Force in Turbulent Flows

The drag force on a particle moving at a constant speed Uc (see Fig. 6) through a
fluid at rest has been studied for a long time. The corresponding drag coefficient
CD = 8 F/(ρU 2

c πD2
p) is a non-trivial function of the particle Reynolds number Rep

(see Fig. 7 (left)). Analytic results have only been obtained for small Rep. Other
formulas such as the one of Schiller and Naumann (1933)

CD(Rep) = 24

Rep
(1 + 0.15 Re0.687p ) (12)

are only reasonable fitting functions to experimental and numerical data up to a
certain Rep.

At small Rep the drag is increasing linearly (CD is decreasing) according to the
Stokes drag. From Rep ≈ 103 to Rep ≈ 105 it increases quadratically so that CD

becomes flat. Associated to these different drag regimes are specific flow patterns
around the particle. For small Rep one finds a steady, approximately symmetric
flow resembling the Stokes flow. At intermediate Rep the flow is still steady but a
recirculation region appears in the wake. In the quadratic drag regime the wake is
turbulent (see also Fig. 6). At a even higher Rep the boundary layer is said to become
turbulent (a regime that we will not consider).

We see that the drag force and the according flow patterns are already complicated
in the case of an uniform inflow. The question arises what happens if the inflow is
turbulent (see Fig. 8). Clearly, turbulent velocity fluctuations will interact with the
boundary layer and wake of the particle. The question is whether one can also apply
the empirical formula (12) to the case of a turbulent flow interacting with a particle
or will the drag force be modified?

Bagchi and Balachandar (2003) analyzed this question by means of different
numerical simulations. They either placed a finite-size particle or point particle into

Fig. 6 Volume rendering of vorticity of a uniformflowpassing a spherical particlewith Rep = 1000
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Fig. 7 LeftDrag coefficient of a spherical particle facing a uniform inflow.CD .Right Flow structure
depending on the particle Reynolds number

Fig. 8 Volume rendering of vorticity of a turbulent flow with average speedUc passing a spherical
particle with Rep = 400 and I = urms/Uc = 0.12

the same turbulent inflow. They found that already for a particle size of d/η = 1.5
only the large scale variations are correctly reproduced while the small scales are
clearly not captured (see top panel of Fig. 9). This can be understood by considering
the large scale variations as a slowly varying inflow. If the inflow velocity changes on
time-scales much larger than the time it takes the fluid to passe the particle, the latter
faces a quasi-stationary headwind. The small scale fluctuations aremore complicated
to understand and model. They are not include in standard drag correlations for
uniform inflows.

The agreement of the finite-size DNS and the point-particle simulations is getting
even worse when increasing the particle size (see middle and bottom panel of Fig. 9).
Bagchi and Balachandar (2003) checked whether this can be improved by taking
additional force terms into account. Indeed, Maxey and Riley (1983) and Gatignol
(1983) derived the equation

dv

dt
= − 1

τp
(v − u) + β

Du
Dt

−
√

3β

π τp

d

dt

∫ t

0

v − u
t − τ

dτ (13)

with β = 3/(2ρp/ρ f + 1) (ρp and ρ f being the mass density of the particle and
fluid, respectively). The second and third term on the right hand side are called
added mass term and history term, respectively. However, Bagchi and Balachandar
(2003) showed that the inclusion of the added mass and even the history term did
not improve the agreement of the point model with the finite-size simulations. This
is a bit surprising, as Daitche (2015) analyzed in detail the role of the history force
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Fig. 9 Time series of the stream-wise force component of a spherical particle facing a turbulent
inflow. Solid line DNS of a finite-size particle (top d/η = 1.5, Rep = 107; middle d/η = 3.8,
Rep = 261; bottom d/η = 9.6, Rep = 609) facing a turbulent inflow of I = 0.1. Long dashed line
Schiller and Naumann law (12). Short dashed line plus the inertial force.Dotted line plus the history
force (Bagchi and Balachandar 2003)

in a turbulent flow and found that its relative contribution compared to the Stokes
drag scales as a/η. One could have thus expected the importance of this force term
to grow with the particle size.
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Fig. 10 Left Standard deviation of the drag force in free-stream turbulence for different turbu-
lent intensities I . The lines correspond to a simple model assuming a quasi-static inflow speed.
MiddleMean drag force. Right Mean drag force this time as a function of τU /τη = particle passing
time/turbulent dissipation time scale (Homann et al. 2013)

Kim and Balachandar (2012) found indications that the drag force might be
increased in turbulent compared to uniform flow. And here, increased means beyond
that what one would expect from quasi-static changes of the inflow speed. Indeed, a
slowly varying inflow speed already leads to an increase of the average drag force due
to its non-linear dependence on the inflow speed (see (12)). The observed additional
increase, however, was within the error bars.

Let us note here that this fluid dynamical problem has three independent para-
meters: the fluid Reynolds number Re = urms L/ν, the particle Reynolds number
Rep = UcDp/ν and the turbulent intensity I = urms/Uc. Other non-dimensional
quantities such as Dp/η are consequences of them.

Later, Homann et al. (2013) redid DNS of a similar situation (fixed sphere in
turbulent headwind) and found that the standard deviation of the fluctuations of the
drag force follow approximately the prediction of quasi-static changes of the inflow
speed (see Fig. 10 (left)). The large scale fluctuations of the inflow translate into a
shaking of the particle that is captured by the quasi-static assumption. However, the
mean drag force was significantly higher than what one would expect (see Fig. 10
(middle)). From the right panel in Fig. 10 Homann et al. (2013) claimed that this
increase might be due to small scale fluctuations of the inflow: Once the drag force
is plotted as a function of the ratio of two small-scale time-scales all data collapse
to one single straight line. The two time-scales are the time it takes the flow to pass
the particle and the turbulent dissipation time scale. The mean drag force might be
increased by small scale fluctuations that modify the boundary layer in such a way
to increase the velocity gradients. Steeper gradients in turn lead to larger forces.

There are of course other situations than turbulent flows in which things change
for finite-size particles. One of them is the motion of a particle sedimenting under the
action of gravity in a still fluid. Let us look at this now. This will serve as a preparation
for the complicated case of the interaction on many sedimenting finite-size particles
discussed later.
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Fig. 11 Flow structure (vorticity) of a spherical particle sedimenting in a quiescent fluid. The
particle Reynolds number increases from left to right. Remark that the wake structure is not vertical
(Uhlmann and Dušek 2014)

4.4 Sedimenting Particles

Wewill consider the case of a single finite-size particle sedimenting in quiescent fluid.
Despite the fact that the wake structure depends on the particle Reynolds number one
finds that depending on Rep particles are not just falling along vertical lines. Indeed,
for intermediate Rep particles move on straight but oblique trajectories (see Fig. 11).
Even if the wake is steady it can give rise to a horizontal velocity. One would of
course not expect this feature for point-particle as they are (by definition) moving in
a symmetric (Stokes) flow.

5 Collective Effects of Finite-Size Particles

This section is devoted to collective effects in the particle dynamics, i.e. effects arising
from the interaction of many (at least two) particles. Let us already distinguish two
different classes of collective effects: Those simply arising from a superposition of
the imprints of individual particles onto the flow in very diluted systems and those
originating from the hydrodynamical interactions of particles.

Collective effects are worth studying because the admixture of impurities to a
turbulent flow can have a significant impact onto the flow. It is for example well
known that even a very small polymer concentration can lead to a significant drag
reduction in oil pipes. A feature used in the petroleum business. Oil with polymers is
a visco-elastic fluid for which models exists that allow for an exchange of the kinetic
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energy of the fluid and the elastic energy of the polymers. Polymers suppress large
velocity gradients and lead in this way to a drag reduction.

Finite-size particles have a more complicated imprint on the flow. In turbulent
settings its radius of influence is of the order of its diameter. This is true for neutrally
buoyant particles while other particles with higher Reynolds numbers might produce
wakes that are visible at even longer distances. It is not surprising that in suspensions
of many particles these flow modifications can have a macroscopic effect on the
flow structure. In very dilute suspensions (the simplest case) the individual particle
contributions might simply add up so that modifications can be understood from
the one-particle dynamics. But in denser suspensions particles and their respective
wakes interact with each other thereby creating new effects. The aim of this section is
to present a selection of collective effects of finite-size particles. Data and results on
this topic are still quite rare as already the understanding of the dynamics of a single
particle is lacking. So let us go step by step. Before considering a large number of
particles we will study what happens if two particles come close to each other and
interact hydrodynamically.

If two particles approach each other they squeeze out the fluid between them. This
creates a repulsive force that is called lubrication force. Particleswith smooth surfaces
cannot touch a priori because this force goes to infinity at contact. Realty, however,
might be different. The surface might be rough, van derWaals forces might act or the
fluid assumption (inter-particle distance much larger than the mean free path) might
break down. The lubrication force is also at play if close particles separate. Now,
fluid has to be squeezed in so that particles slow down by transferring their kinetic
energy to the fluid.

In the next paragraph we will see how the drag and lift forces on a particle are
affected by the presence of a second particle in its vicinity.

5.1 Two Interacting Particles

The main question of this section is what happens to the drag force on a fixed particle
in a uniform flow if a second particle comes close to it? There are two very different
possible arrangements of the particle positions. They can be on a line in stream-
wise direction or on a line perpendicular to it. In the first case we expect that the
drag on the following particle is reduced in the slipstream of the leading particle (an
experience made by cyclists and motorists). Let us now consider this configuration
in more detail.

Zhu et al. (1994) experimentally measured the drag force on two particles that are
aligned in stream-wise direction (see Fig. 12 (left)). The particles build a tandemwith
a fixed separation. They varied their distance in a uniform flow and measured the
associated drag forces. They found that the trailing particle experiences a significantly
reduced drag force that can be as small as one fifth of the drag force of an isolated
particle (see Fig. 12 (right)). The closer the particles are the smaller is the drag. The
reason for this is the wake of the leading particle in which the difference between
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Fig. 12 Left Two particles aligned in stream-wise direction.Right Drag force on the trailing particle
(Zhu et al. 1994)

the particle velocity and that of the fluid is reduced. This so called velocity deficit is
zero at the particle surface and recovering only asymptotically the inflow value. The
leading particle is entraining the fluid. The trailing particle will thus face a reduced
headwind speed that in turn reduces its drag. This is quite obvious. However, as can
also be seen in the right panel of Fig. 12, there is some non-trivial Reynolds number
dependence of this drag reduction. At small distances from the particle the drag
reduction is the larger the smaller is the particle Reynolds number. This tendency is
reversed at larger distances. The cross-over happens at approximately at a distance
of one diameter.

Before continuing let us stress the importance of this effect of drag reduction,
called wake attraction effect. It is clear that this effect has the potential to bring parti-
cles together so that for example sedimenting particles will tend to accumulate. And
it is also clear that a bunch of particles will have other dynamics than an individual
particle. We will later come back to this point.

Thework of Zhu et al. (1994) documents another interesting observation: Also the
leading particle experiences a drag reduction when a trailing particle catches up. This
reduction is quite small and reaches only ten percent at a distance of one diameter
before it is slightly reincreasing. For the leading particle it is thus beneficial to have a
particle following closely. The reason is that a part of the drag on a particle originates
from its wake generation. The trailing particle obviously modifies the boundary layer
and wake of the leading particle in such a way to reduce stresses.

Now let us come to the second configuration:Wewill put the particles side by side
instead of one after another. Kim et al. (2006) fixed two of them as sketched in Fig. 13
(left) in a uniform flow and varied their Reynolds number and distance. They report
two important findings: First, their individual drag force increases significantly for
distances smaller than one diameter. The increase is larger the closer they are. The
second particle has a sort of blocking effect on the fluid passing the first. The second
important finding is that the lift force i.e. the force between the particles varies non-
trivially as a function of the inter-particle distance. Close particles (closer than 1.5
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Fig. 13 Left Two particles aligned side by side. Right Lift force on the particles (Kim et al. 2006)

diameter) are repelled. The flow between them pushes them strongly apart. However,
particles at distances of two to twenty diameter are slightly pulled together (seeFig. 13
(right)). This attraction effect increases with the particle Reynolds number. Roughly
speaking this sounds like the Venturi effect where the static pressure decreases when
the dynamics pressure increases. However, it is not obvious why this effect inverses
at particle separations of the order of one diameter.

So far the two particles were fixed. Let us now see what happens to two sedi-
menting particles in still fluid (see Fig. 14). If they are vertically aligned the wake
attraction effect will accelerate the trailing particle to catch up the leading one. They
will collide which gives horizontal momentum to the particles and make them sepa-
rate again. Their boundary layers and wake interact in a complicated manner leading
to a tumbling motion. This dynamics is called drafting, kissing, tumbling.

Fig. 14 Interaction of a sedimenting pair of particles - drafting (a), kissing (b), tumbling (c–d)
(Prosperetti and Tryggvason 2007)
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Fig. 15 Left Instantaneous flow field including 128 particles for particle Reynolds numbers 100,
200, and 400 (from left to right). Right Drag coefficient of an individual particle and a sedimenting
cloud of 128 particles (Kajishima and Takiguchi 2002)

5.2 Sedimentation

The last paragraph introduced the important effect of wake attraction. We can expect
that it will also play an important role when many particles sediment under gravity.
This situation has been studied by Kajishima and Takiguchi (2002) who performed
DNSof 128 identical particles (same size anddensity) sedimentingunder the actionof
gravity. They found two remarkable finite-size effects: First, wake attraction leads to
the formation of clusters (see Fig. 15 (left)). Trailing particles are slip-streaming and
thus approaching the leading particles. In principle, this works for many particles
as for two particles. In consequence particles agglomerate in vertically elongated
clouds. The stability and evolution of such clusters with respect to the intrinsically
generated velocity fluctuations is a more complicated and still an open question. The
second finite-size effect is that, the average drag force experienced by sedimenting
particles is reduced if many particles are present (see Fig. 15 (right)). The wake
attraction effect gives thus rise to a collective effect in reducing the force on the
individual particles.

This drag reduction is also reflected in the sedimentation speed. Uhlmann (2005)
considered the evolution of the average vertical velocity of particles initially at rest.
He performed several DNS and varied the number of particles. A single particle
accelerates monotonously and reaches asymptotically its terminal velocity. Uhlmann
(2005) showed that a set of particles with initial positions on a regular grid passes
through different stages. Once released they accelerate as expected (see Fig. 16
(right)). Soon they reach (on average) a higher velocity than a single particle. During
this phase, the wake attraction effect reduces the drag and allows for higher vertical
velocities. However, once wake induced fluctuations make the particle deviate from
their initially regular spatial distribution their settling velocity reduces. It reduces
to values smaller than that of a single particle. The important point here is that the
particle Reynolds number (Rep ≈ 400) is sufficiently high that the particle wakes
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Fig. 16 Left Instantaneous flow field including Rep ≈ 400 particles. Right Average settling speed
as a function of time (Uhlmann 2005)

are turbulent (see Fig. 16 (left)). The particle-wake interactions lead to an increased
drag and decreased settling velocity. Uhlmann (2005) shows that a higher particle
number leads to a lower average settling speed. This is in agreement with the observa-
tion (from Sect. 4.3) that the drag force increases with increasing turbulent intensity
because a higher number of particles leads to more fluctuations (see Fig. 16 (left))
and in turn to a higher turbulent intensity.

In a later numerical work Uhlmann and Doychev (2014) focused on possible
clusters ofmany sedimenting particles. They considered twodifferent systems having
the same solid to fluid density ration of 1.5 and the same solid volume fraction of

Fig. 17 Averaged solid volume fraction conditioned on particle positions, normalized by the global
solid volume fraction. Left Ga = 121. Right Ga = 178 (Uhlmann and Doychev 2014)
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0.005 but different Galileo numbersGa = ug D/ν, ug = √|ρp/ρ f − 1|Dg. Starting
from initially random particle positions, they found that the particles do not always
agglomerate. Only the system with the higher Galileo number (Ga = 178) showed
significant particle concentrations while the simulation withG = 121 did not. This is
visualized in Fig. 17where the normalized average solid volume fraction conditioned
on the particle position is shown. This quantity is the lateral-angle averaged volume
fraction of particles surrounding a given particle in the cylindrical coordinate system
((r̃ , z̃) = (lateral,vertical)). It is normalized to the mean solid volume fraction. This
representation reveals important features about the average particle distribution seen
by individual particles. The leading particle often pulls a trailing particle very close
to it manifested by the dark disc at a distance of approximately one diameter. In the
lower Ga case (Fig. 17, left) this disc has a short shadow indicating the presence of
second trailing particle. In the higher Galileo number case (Fig. 17, right) this shadow
is not onlymuch longer but also broader showing the coordinatedmovement of many
particles and thus a cluster. The existence of the latter can also be concluded from
the lateral density profile. For Ga = 121 one does not observe an increased particle
density at the sides of the reference particle while this is the case for Ga = 178.

Their explication of these Galileo number based differences is based on the single
particle dynamics: Above a critical value ofGa = 155 the trajectory of a sedimenting
particle undergoes an instability and becomes oblique (see Sect. 4.4). They claim
that this enhanced span-wise mobility of the particles compared to that of vertically
sedimenting particles facilitates the occurrence of clusters. The idea is thus that many
particles moving on random oriented oblique paths have better chances the encounter
the wakes of other particles than particles falling simply vertically. The end of the
story is here again the wake attraction effect which make the particles catch up each
other.

The existence of these clusters has important effects on the dynamics of the
particles and also on that of the fluid. For instance, the particle motion is more
agitated in the clustering case. The standard deviation of the particle velocity is
higher which is a consequence of the wake interactions and creation of turbulence
within the clusters.

We will now turn to the interaction of many particles with a turbulent flow.

5.3 Turbulence Modulation

We have seen in Sect. 4.2 that an individual particle increases the energy dissipation
rate close to its surface while it calms turbulence in its wake. Imagine now, that we
seed our turbulent flow with many finite-size particles. How do the particles change
the turbulent flow? Do they increase or decrease the kinetic energy dissipation rate?

Cate et al. (2004) studied these questions by seeding a forced turbulent flow with
a few thousand finite-size particles that were slightly heavier than the fluid. The
volume fraction (the volume occupied by the particles compared to the total volume
of the fluid) varied from 2 to 10%. They found that the spatial distribution of energy
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Fig. 18 Left Instantaneous local energy dissipation. Right Spectrum of energy dissipation (Cate
et al. 2004)

dissipation is significantly influenced by the particles (see Fig. 18 (left)). Beside their
boundary layer they also create inter-particle structures of increased dissipation. This
could be a real collective effect in the sense that is it might be different from a simple
superposition of the imprints of individual particles.

Changes in the energy dissipation are also clearly reflected in the global dissipation
spectrum (see Fig. 18 (right)). Compared to a single phase flow (without particles)
the dissipation rate is reduced at scales larger than the particle diameter while it
is increased a smaller scales. Particles thus reduce shear at large scales while they
increase it at small scales. The authors find the analog for the scale dependent kinetic
energy. Particles transfer energy from large scales to scales of the order of the particle
diameter or smaller.

There is another interesting result in the work of Cate et al. (2004). They com-
puted the characteristic collision time scale of binary collisions and compared it to a
prediction for small particles in a turbulent flow. Their data agrees with the prediction
for small volume fraction of 2% and start to deviate at 5%. In fact, their collision
times are longer than what one expects which in turn means that collective effects
might reduce the probability of collisions.

Lucci et al. (2010) studied a case similar to the one discussed before. The main
difference is that their flow is not forced so that they investigate the influence of many
finite-size particles on decaying turbulence. They also find that the particles increase
the energy dissipation rate and that they transfer energy from large to smaller scales.
Furthermore, they find that the two-way coupling rate�p(t) = 〈ui fi 〉where f is the
force exerted by the particle on the fluid is always positive. In decaying turbulence
finite-size particle act as a source of kinetic energy while �p(t) can be positive or
negative for small particles.

Yeo et al. (2010) compared the dynamics of many finite-size particles in forced
turbulence for particles that were heavier or lighter than the fluid. They found that
heavy particles are expelled from vortex filaments while light particles are entrapped
in these structures, an observation also made for point-particles. Concerning the
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Fig. 19 Left Variance of the turbulent velocity fluctuations u2rms as a function of the particle volume
fraction; The dashed lines are u2rms(�v) = u2rms(0)(13.75�V ). Right Normalized probability den-
sity functions of acceleration components for various values of the volume fraction �V as labeled
(Cisse et al. 2015)

energy dissipation spectrum they confirm the previously discussed results. Interest-
ingly, they found that the modulation of turbulence only weakly depends on the type
of particles (light or heavy) but is dominated by the finite-size contributions to the
flow disturbances.

So far, there are very few experimental investigations on turbulence modulation
by finite-size particles. The reason are mostly technical difficulties. In a water exper-
iment Bellani et al. (2012) studied a turbulent suspension of hydro-gel particles by
means of a particle-image velocimetry technique. Hydro-gel is nearly neutrally buoy-
ant and has a refraction index close to that of water. They found that for a volume
fraction of 1.3 · 10−3 the turbulent kinetic energy is reduced by 14% compared to an
unladen flow.

Recently, Cisse et al. (2015) optically tracked themovement of tracer-like particles
transported by a von Kármán flow. For their experiments they seeded water with a
varying number of finite-size particles. For the latter they choose super-absorbent
polymer spheres whose optical index and mass density match those of water. From
the tracer dynamics they deduced that the big particles globally attenuate the fluid
turbulence. When increasing the particle occupied volume �V the turbulent velocity
fluctuations reduces as �

2/3
V (see Fig. 19 (left)). It is not surprising that the level

of turbulence decreases because this has already been observed for an individual
particle (see Sect. 4.2). What is surprising is the exponent 2/3. The authors interpret
the latter by the possibility that not all added particles (their total volume) contribute
to the turbulence reduction but only a fraction as if particles agglomerate on a surface
rather than distribute in the full volume of the flow. Unfortunately, the authors did
not track the large particles to conclude on this hypothesis. The evoked clustering is a
possible collective effect and needs further investigation especially because Fiabane
et al. (2012) have found that neutrally buoyant finite-size particles do not cluster
in homogeneous isotropic flows even if their Stokes number is large. But neutrally
buoyant particle clustering can occur in non-homogeneous flows: Machicoane et al.
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(2014) found clear evidence of preferential concentrations in a turbulent von Kármán
flow. Particles tend to stay in the vicinity of the rotating impellers and avoid the central
region of the device.

Not all statistics of the flow are affected by the presence of the finite-size particles.
Following Cisse et al. (2015), it seems that higher-order small-scale quantities are
insensitive to the addition of big particles. The normalized acceleration probability
density functions fall on top of each other irrespective of the volume fraction �V

(see Fig. 19 (right)).

6 Concluding Remarks

Let us summarize the most important findings that distinguish finite-size from point
particles.

We first begin with results for individual particles:

• Point particles have (by definition) a negligible Reynolds number and are much
smaller diameter than any characteristic scale of the flow. Their surrounding flow
profile (Stokes flow) and drag force (Stokes drag) can be computed analytically.

• Finite-size particles are surrounded by a more complicated boundary layer and
wake structure. In general, no analytic expression is known for the force on such
a particle.

– Their numerical treatment is demanding and various different strategies are
proposed to integrate the Navier–Stokes equations together with the no-slip
boundary condition at the particles surface.

– The very definition of a slip velocity with respect to the fluid and consequential
particle Reynolds number is difficult.

– The energy dissipation rate is increased very close the particle while it can be
reduced in the wake.

– Large and small scale turbulent fluctuations lead to an increase of the drag force
on the particle.

– Particles with even steady wakes can sediment under gravity on non-vertical
paths.

Let us now list collective effects arising from the mentioned finite-size effects:

• A particle entrains fluid in its wake that can reduce the drag force on a trailing
particle. This is called the wake attraction effect.

• Particles separated in cross-stream direction are repulsed from each other at very
small distances and are attracted at larger distances.

• The wake attraction effect leads to the formation of particle clusters.
• Clusters sediment on average at higher speeds than individual particles.
• Finite-size particles transfer turbulent kinetic energy from scales of the order of
the particle diameter to smaller scales.

• Collective hydrodynamic interactions might reduce the collision rate.
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In summary one can conclude that a better understanding of finite-size particle
suspension will need much more analytic, numerical and experimental efforts.

Finally, we should mention that the Reynolds number of the presented works are
quite limited and will not allow for a clear extension of the inertial range of scales.
The results will probably include finite-Reynolds number effects and might thus
change for higher Reynolds numbers. This kind of question has also to be answered
in the future.
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Some Aspects of the Collective Dynamics
of Particles in Turbulent Flows

Mickaël Bourgoin

Abstract This chapter presents some important features of collective dynamics of
particles transported by a turbulent flow. The focus is on two main processes. The
first concerns the dispersion of fluid tracers (i.e. particles which follow exactly the
flow) and revisits the classical problem of turbulent pair dispersion. It is shown,
that a simple scale-dependent iterative ballistic process accurately accounts for most
turbulent super-diffusive properties, which are explicitly related to the multi-scale
nature of turbulence via the turbulent energy spectrum. The second considers the case
of inertial particles (which are not tracers of the carrier flow) and the phenomenon
of preferential concentration, responsible for the formation of persistent particle
clusters. Tools to diagnose the presence of clustering are reviewed, together with the
main properties of clusters in turbulence and of the underlying particles/turbulence
interaction mechanisms.

1 Introduction

Particle laden turbulent flows are ubiquitous, both in natural systems (sediments,
plankton, aerosols, cloud droplets and rain, etc.) and human activities (sprays, pow-
ders, combustion, etc.). Predicting the dynamics of an ensemble of material parti-
cles dispersed and transported in a turbulent environment remains a major problem
which has motivated countless studies over more than a century. Among the many
situations where turbulent transport of particles is important, environmental issues
are worth being emphasized. The low atmosphere carries in average more than a
thousand particles per cubic centimeter (so called aerosols) with diameter ranging
from several nanometers to hundreds of micrometers. Larger (millimetric) particles,
such as rain droplets, solid debris, etc., can also be present. The global cycle of
these particles is very complex. Their origin is both natural (sand, ashes, marin
salt, iberolites, pollens, condensation of drops and droplets, etc.) and anthropogenic
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(industrial pollutants, artificial radionuclides, etc.). Larger particles sediment locally.
Smaller particles are transported accross the atmosphere (where they can undergo
several physical and chemical transformations) at planetary scale until they are even-
tually deposited. While in suspension, they play a crucial role on many atmospheric
phenomena (nucleation sites for cloud droplets, rain, scattering and absorption of
solar and terrestrial radiation, oxidant capacity of the atmosphere, etc.). When
deposited, their impact is also important with possible positive effects (as polli-
nation) but also eventual harmful consequences (change of albedo of large glaciers,
water contamination, deposition of adsorbed pollutants, respiratory health hazard,
etc.). In a global planetary balance, the atmospheric transport and deposition of parti-
cles therefore affect (directly and indirectly) Earth climate and human health among
other important contemporary challenges. Understanding the turbulent transport of
particles is therefore a topic of primary importance.

One of the main difficulties lies on the intrinsically random and multi-scale (in
space and time) nature of turbulence with which transported particles interact. Turbu-
lence is indeed characterized by a hierarchy of random motion with a wide range of
dynamical scales (called inertial range of turbulence) from the largest (and slowest)
eddies where energy is injected down to the smallest (and fastest) at which it is
dissipated by molecular viscosity. The extent of the inertial range is directly related
to the Reynolds number Re of the carrier turbulence (Re = urms L/ν ∝ (L/η)4/3 ∝
(TL/τη)

2, where urms is the turbulent fluctuating velocity, L and TL and the energy
injection length and time scale and η and τη the dissipative length and time scale).
Despite its ubiquitousness, turbulence remains one of the deepest unsolvedmysteries
of classical physics. Even if an exact theory for turbulence does a priori exist, the
strong non-linearities of Navies-Stokes equations have vanished so far all attempts to
find an analytical solution of the problem.We are therefore committed to find the best
possible description of the phenomenon in terms of an enumeration (which ought
to be as complete as possible) of the mathematical and physical properties mainly
in a statistical sense of these unknown solutions, seeking in particular for universal
behaviors. The first stone in building such a statistical description in modern his-
tory of turbulence starts with Richardson, who proposed in the 1920s a multi-scale
description of turbulence in terms of an energy cascade, where turbulence appears
as a hierarchy of random eddies with sizes ranging from the scale L where energy
is injected down to the scale η where it is dissipated by viscosity. This range of
scales defines the inertial range of turbulence. Though we know today that this cas-
cade results from the non-linear interaction of Fourier modes of the velocity field,
we are still unable to quantitatively model and predict turbulence statistics over
the entire range of inertial scales. Since 1941, Kolmogorovs ideas (refined in 1962
by Obukhov) dominate the common way to describe turbulence. Taken together,
Kolmogorov’s hypotheses state that in intense turbulence and well away from any
boundaries or singularities the statistics of turbulent flow should be universal at
length and timescales that are small compared with the injection of energy into the
flow. In Kolmogorov’s approach the mean energy dissipation rate ε then becomes the
only relevant parameter governing the dynamics of structures in the inertial range.
Since then, statistical turbulence modeling has been dominated by Kolmogorov’s
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ideas, whose 1941 hypotheses have so influenced the field that they are simply
known as the K41 phenomenology. The great utility of the K41 model lies in its
prediction of universal scaling laws (most of which simply reflect dimensional con-
straints within K41 hypothesis) for velocity increments statistics (so called structure
funcitons). Kolmogorov’s phenomenology remains the dominant angle of attack of
turbulence research. In spite of some successes (as the 5/3 turbulent spectrum, the 4/5
law or recent progresses in multi-fractal description) it is however a constative fact
that our toolbox of concepts for turbulence investigation remains incomplete and not
suited yet to produce a full understanding of the phenomenon (finite Reynolds num-
ber effects, anisotropy effects, intermittency phenomenon, turbulent transport, etc.
are, for instance, just a few of the remaining mysteries). Numerical simulations and
experimental observations have nevertheless reached today a high level of accuracy
regarding the characterization of random multi-scale properties of turbulence.

1.1 Particles in Turbulence

The situation becomes even more complex when particles are added to turbulent
flows. Depending on their size and density relative to the fluid (eventually responsible
for a finite response time of the particle due to its inertia), particles will interact with
structures of the carrier flow at different time and spatial scales.

Tracer particles. Neutrally buoyant particlesmuch smaller than the dissipation scale
η are expected to behave as actual tracers of fluid particles, as they are capable to
respond to the smallest and fastest structures of the carrier flow (such particles are
comonly used in experiments to characterize the flow itself) and their motion is ruled
by Navier-Stokes equations. The investigation of the turbulent dynamics and trajec-
tories of such particles is known as the Lagrangian description of turbulence. It has
become in the very last decade one of the most accurate methods to characterize
experimentally the multi-scale statistics of turbulence. This is to be related to the
explosive and constant improvements of high resolution and high-speed digital cam-
eras (as well as other alternative techniques, including acoustical tracking, extended
laser doppler velocimetry and instrumented particles), which has opened a new era
in fluid mechanics metrology, a situation which we could call the Lagrangian Revo-
lution (Bourgoin et al. 2014), emphasizing at the same time the renewed interest for
the Lagrangian paradigm (Toschi and Bodenschatz 2009) (with respect to the usual
Eulerian approach, where the flow is described in terms of fields rather than trajecto-
ries) and the fact that Lagrangian experimental methods are still at their infancy, but
ready to become mature. High-resolution (in space and time) 3D Lagrangian particle
tracking systems are now capable to track thousands of particles simultaneously in
highly turbulent flows (Bourgoin et al. 2006).

Inertial particles. On the contrary particles with density mismatch and/or with size
comparable to inertial turbulent eddies, do not follow the flow exactly. Such particles
(large and/or densitymismatched) are generically referred to as inertial particles. The
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exact physical mechanisms coupling the dynamics of such particles and turbulence
remains an open question and a very active field of research. Several inertial effects
have been identified for long, and are commonly interpreted in qualitative terms of
particles interacting with turbulent eddies. For instance large particles are expected
not to respond to turbulent eddies much smaller than their own size (what results in
a spatial filtering of turbulent fluctuations from the carrier flow); similarly, density
mismatch induces a finite response time of the particle (due to inertia), which inhibits
the impact of the fastest fluctuations of the carrier flow (what results in a temporal
filtering of turbulent fluctuations). However, an accurate quantitative description of
such effects is still lacking. One of the reasons is our inability to write a generic
and proper equation of motion for inertial particles in a turbulent environment. We
are therefore in the situation where turbulence by itself is a difficult problem, but
for which we do have a master equation, the Navier-Stokes equations (although we
do not have a solution), while for particles we do not even know how to write an
appropriate equation of motion accounting for the unsteady forces the flow exerces
on the particles. The formulation of the problem is however straightforward: con-
sidering a rigid dense sphere in a viscous newtonian flow verifying Navier-Stokes
equations, with no-slip boundary conditions on the sphere surface, can we formalise
the instantaneous action of the flow on the sphere? The best answer we still have
to this longstanding question was formulated successively by Basset (1888), and
later refined by Boussinesq (1903) and Oseen (1911), who examined the motion
of a sphere settling under gravity in a fluid at rest. Their analysis started from the
simplest unsteadiness situation of a sphere settling from rest in a quiescent viscous
fluid, which concerns the transient acceleration until it reaches its terminal settling
regime. The description of this simple phenomena already includes important generic
ingredients and complexities of the phenomenology of particle-flow interactions in
all classes of unsteady flows (such as turbulence). The disturbance flow produced
by the motion of the sphere was assumed to have sufficiently low Reynolds number
so that the fluid force on the sphere could be calculated from Stokes flow. Tchen
extended this work to a sphere settling under gravity in an unsteady and nonuni-
form flow, with a view already to turbulent flows. The resulting model (known as
BBOT, Basset-Boussinesq-Oseen-Tchen) has been revisited in 1983, simultaneously
byMaxey andRiley (1983) andGatignol (1983), leading to the following formulation
for the equation of motion for a particle in a flow:

mp
d �v
dt

= 3πμ f dp(�u − �v) + 1

2
m f

d(�u − �v)

dt
+ m f

D�u
Dt

+
3

2
d2p

√
πρ f μ f

∫ t

−∞
d(�u − �v)

dt

dτ√
t − τ

+ (mp − m f )�g,

(1)

where �v is the particle velocity, �u is the unperturbed carrier flow velocity field, dp

is the particle diameter, ρp is the particle density, ρ f is the carrier fluid density,

m f = ρ f π
d3
p

6 is the mass of the fluid displaced by the particle and μ f is the carrier
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fluid dynamic viscosity. The terms on the right hand side are, in order of appearance:
(i) the Stokes drag force (due to the relative velocities of particle and fluid), (ii) the
added mass force, which is purely inertial, and corresponds to the force exerted
by the displaced fluid, (iii) the pressure gradient term, which is equivalent to the
fluid particle acceleration at the position of the particle center, (iv) the history term,
which takes into account the entire history of the particle motion in the carrier fluid
up to an instant t and mainly takes into account the interaction of the particle with
its own wake and (v) the Archimedes force. The actual range of validity of this
equation is however limited as it is only valid for vanishing particulate Reynolds
number Rep = dp|�v − �u|/ν � 1 (as it assumes a Stokes flow around the particle
due to the relative velocity �v − �u between the particle and the fluid) and for particles
much smaller than the local non-uniformities of the flow (as it supposes that the
unperturbed flow velocity �u can be uniquely defined at the particle position). It
is therefore generally referred to as a point particle model. In spite of this strong
limitation, apart from some first order corrections detailed below to account for
finite Rep effects and local non-uniformities of the flow around the particle (so
called Faxen corrections), the point particle model still remains the most achieved
analytical expression we have at hands to describe particles-fluid interaction. In
its simplest implementation, the equation of motion (1) is primarily dominated by
the drag force induced by the relative motion between the particle and the carrier
flow. This simplification offers a tractable theoretical framework with an abundant
dedicated litterature (Toschi and Bodenschatz 2009) (although with an unclear range
of validity), where particles velocity is simply related to the fluid’s by the relation

d �v
dt

= τ−1
p (�u − �v). (2)

Particle inertia is then quantified by a single dimensionless number, namely the
Stokes number St , which compares the viscous relaxation time of the particle τp =
d2
p(1 + 2�)/36ν (assuming a Stokes flow around the particle) to a characteristic

time scale of the carrier flow τ f (generally taken as τη, the dissipative time-scale of
turbulence): St = τp/τη = (dp/η)2(1 + 2�)/36 (recalling that temporal and spatial
dissipative scales are related to the kinematic viscosity by ν = η2τ−1

p ). We shall
refer to this simplification as the Stokesian model. Note that this model assumes
both dp � η and Rep = dp|�v − �u|/ν � 1. The first ensures that the velocity field is
smooth and well-defined at the particle scale, hence allowing for instance to define
the velocity of the fluid at the particle position, whereas the second approximation
ensures that the relative velocity between the particle and the fluid remains small
enough to assume a linear drag.



72 M. Bourgoin

1.2 Some Important Aspects of the Collective Dynamics
of Particles in Turbulence

When many particles are transported simultaneously by the flow, they collective
dynamics is intimately related to the way they interact with the carrier turbulence.
The problem is intrinsically complex, as the random and multi-scale nature of tur-
bulence induces a non-trivial collective motion of the particles, even for the case of
passive particles in one-way coupling configuration, where the volume fraction is
low enough so that the presence of the particles do not modify the flow and particles
do not interact with each other. The situation is naturally even more intricate as the
volume fraction increases and two-way coupling effects (back reaction of the parti-
cles on the carrier flow) and four-way coupling effects (collisions between particles)
emerge. We will focus here only on the one-way coupling situation, where particles
collective dynamics is entirely controlled by the sole action of the turbulence on the
particles. Note that, although this is by essence a Lagrangian problem, where the
turbulent dynamics of the transported inclusions is naturally addressed in terms of
particles trajectories, it is also intimately related to mixing properties of turbulence,
which is generally addressed as a Eulerian problem, in terms for instance of the
concentration field of a dispersed scalar. In the course of its long history, the study of
turbulent flows always benefited from comings and goings between fields and parti-
cles, that is between an Eulerian description and a Lagrangian approach. Pioneered
in the 1920s by the G.I. Taylor (1922) and L.F. Richardson (1926), the Lagrangian
statistical formalism (where the flow is described in terms of the motion of fluid
particles along their trajectories) suffered from a lack of reliable and precise experi-
mental measurements. It is only during the last decades that new highly sophisticated
laboratory experiments (Ott and Mann 2000; Voth et al. 2002; LaPorta et al. 2001;
Bourgoin et al. 2006, 2014) (allowing to track particles in highly turbulent flows
with sufficient spatial and temporal resolution) and high-resolution direct numerical
simulations (Yeung and Pope 1989; Biferale et al. 2005) have attacked seriously the
problem of Lagrangian turbulence, and more widely, the problem of the transport of
impurities (not restricted to infinitesimal material fluid elements) by a turbulent flow
(the reader can refer to the following reviews (Toschi and Bodenschatz 2009; Bour-
goin et al. 2014) for more details on recent experimental, numerical and theoretical
advances regarding the Lagrangian approach of turbulent transport). This revival has
led to new great challenges regarding the collective motion of particles transported
in a turbulent flow, that are nowadays on the ground. The present chapter focuses on
twomain aspects of the turbulent transport of particles: (i) the turbulent dispersion of
tracer particles and (ii) the turbulent dispersion of inertial particles. In both situations
the interaction of the particles with the multi-scale properties of the carrier turbu-
lence can result in strong heterogeneities of the concentration field of particles. From
a practical point of view, this phenomenon can play a crucial role in many situations.
Particle laden flows are indeed ubiquitous, both in natural and anthropogenic flows,
an emblematic example being the atmospheric transport of particles and pollutants.
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Fig. 1 a Sketch of the dispersion of two puffs with different relative dispersion statistics (image
taken from Mann et al. 1999) (top brownian dispersion, bottom superdiffusive dispersion). b Evi-
dence of clustering of water droplets in a homogeneous isotropic turbulent flow of air (image taken
from Wood et al. 2005)

The variance of fluctuations of the scalar concentration of a substance dispersed
from a source point can for instance be related to the relative dispersion of pairs of
fluid tracers (NELKIN and KERR 1981; Sawford 2001). While a classical brownian
process will lead to a smooth gaussian diffusion, turbulence is known to behave
superdiffusively. To illustrate this, Fig. 1a shows schematically the dispersion of a
cloud of particles, assuming in one case a classical brownian dispersion and in the
other case a superdiffusive dispersion. Superdiffusion produces highly intermittent
particles distributions (which in a Eulerian approach would lead to an intermittent
concentration of a dispersed scalar field)with highly concentrated regions surrounded
by depleted zones. Though this superdiffusivity is known since the pioneering work
by Richardson in (1926), despite more than 80years of scientific inquiry into relative
dispersion (Huber et al. 2001; Sawford 2001; Richardson 1926; Batchelor 1952;
Ott andMann 2000; Biferale et al. 2005; Bourgoin et al. 2006), no clear experimental
verification of the theoretical predictions has emerged yet and it is only recently
that numerical simulations have converged toward a relatively well characterized
description of the process. Section 2 of this chapter proposes a survey on the relative
dispersion problem.

The situation is further complexified when the dispersed particles are not a fluid
tracer, but material particles, such as dust, droplets, aerosols, etc. As they disperse,
such small impurities (whose dynamics is not reducible to that of passive tracers)
can develop stronger concentration events where fractal clustering emerges even in
incompressible flow and even if a homogeneous random initial distribution of par-
ticles is prescribed (Fig. 1b). This peculiar behavior, known as the preferential con-
centration phenomenon, is directly related to the dissipative nature of the dynamics
of inertial particles (primarily related to the drag induced by the particle-fluid rel-
ative velocity, as emphasized in Stokesian models such as Eq. 2) and to the action
of the multi-scale turbulent eddies on the particles. A simple intuition of this phe-
nomenon can be understood for instance in terms of centrifugal expulsion of denser
particles out of the core of turbulent eddies. Heavy particles are therefore expected to
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preferentially cluster outside turbulent eddies. On the contrary particles lighter than
the carrier fluid will tend to preferentially the core of turbulent eddies. At the
experimental level such inhomogeneities have been known for a long time (see
Toschi and Bodenschatz 2009 for a review) and used for flow visualization (e.g.
exploiting bubble clustering inside vortex filaments). Section 3 of this chapter will
be devoted to the preferential concentration phenomenon.

2 Turbulent Dispersion of Tracer Particles

2.1 The Turbulent Pair Dispersion Problem

Molecules in a quiescent fluid spread due to molecular diffusion. If we consider a
small spherical patch of tagged molecules, this results in an isotropic and homo-
geneous growth of the patch. At a microscopic level this expansion is due to ran-
dom uncorrelated collisions induced by the thermal agitation of the molecules. At a
macroscopic level this mechanism results in a Fickian diffusion process where the
local concentration C of tagged molecules diffuses according to the simple equation
∂C/∂t = K�C , where K is the molecular diffusivity, with units [m2 · s−1]. In ele-
mentary kinetic gas theory, the connection between microscopic and macroscopic
descriptions is for instance given by the relation K ∝ lvT (with l a characteristic
correlation length of particles trajectories, typically given by the mean free path and
vT the thermal agitation velocity of themolecules). A fundamental property of such a
Fickian process concerns the linear growth with time t of the mean square separation
< �D2 >∝ Kt between any two molecules in the patch, what is generally referred
to as normal diffusion. Normal molecular diffusion alone is very inefficient to mix
and disperse usual species: for instance, molecular diffusivity of carbon dioxyde in
air is 16 · 10−6 m2 · s−1, meaning that molecules separate at a rate of only a few
millimeters per second.

A usual way to enhance mixing and dispersion consists in stirring the fluid in
order to generate large scale uncorrelated turbulent structures, which act in a similar
way (i.e. normally diffusive) as molecular diffusion, but with an enhanced diffu-
sion coefficient Kturb ∝ Lσ with L the turbulence correlation length scale and σ the
turbulent fluctuating velocity (standard deviation of the turbulent velocity field). In
atmospheric dispersion for instance, the turbulent correlation length is typically of
the order of hundreds of meters (let us take 100m as an order of magnitude) with
velocity fluctuations typically of the order of meters per second in normal conditions
(let us take 1m/s as an order of magnitude), leading to a turbulent diffusivity coeffi-
cient Kturb of the order of 30 m2 · s−1, meaning that fluid particles separate at a rate
of several meters per second, hence many orders of magnitude larger than molec-
ular diffusion. The efficiency of turbulent diffusion therefore relies on the capacity
of a substance to spread thanks to the uncorrelated motion of large scale turbulent
eddies. However, if we consider the dispersion of a patch initially much smaller
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than the turbulent correlation scale L (for instance a patch with an initial dimen-
sion within the inertial range of the carrier turbulence, hence much smaller than the
energy injection scale L , and larger than the dissipation scale η), another mechanism
is necessary to allow the patch to grow first at sufficiently large scales to eventu-
ally undergo the effect of uncorrelated turbulent diffusion. Such an inertial scale
mechanism is ensured by the super-diffusive nature of turbulence at inertial scales.
Processes where the mean square separation grows faster than in normal diffusion
(i.e. < �D2 >∝ tα, with α > 1) are called super-diffusive. Unlike normal diffusion,
super-diffusion is generally associated with an heterogeneous and a non-gaussian
growth of the spreading patch (Fig. 1).

The super-diffusive nature of turbulence was first emphasized by Lewis Richard-
son in his seminal 1926 article (see Richardson 1926). Richardson already noted
in 1926 that “a small dense cluster of marked molecules, represented by the dot in
Fig. 2(a1) which, by molecular diffusion alone, would spread through the successive
spherical clusters shown in Fig. 2(a2) and (a3), actually seldom passes through the
large spherical stage Fig. 2(a3), because it is first sheared into two detached clusters
as suggested in Fig. 2(a4). These are carried far from one another, and are likely to
be again torn into smaller pieces as in Fig. 2(a5)”. This qualitative description by
Richardson shows how turbulence acts to super-diffusively separate particles initially
packed in a small patch, in order to create sufficiently large separations where the
uncorrelated motion of turbulent eddies eventually disperses particles at large scales.

Fig. 2 a Qualitative illustration of the non-normal dispersion of a dense cluster of particles as
proposed in Richardson’s original 1926 article. b Original empirical derivation of the “4/3rd”
law by Richardson. (Both figures are taken from Richardson’s seminal article on relative disper-
sion Richardson 1926)
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Richardson gave an interpretation of turbulent super-diffusion in terms of a
non-Fickian process which could be locally modeled as a normal diffusion process,
butwith a scale dependent diffusion coefficientwhich depends on particles separation
D, according to the celebrated Richardson’s 4/3rd law: K (D) ∝ D4/3. Richardson
conjectured such a scale dependent diffusive scenario from an empirical short time,
scale by scale, analysis of local diffusion properties over a wide range of phenom-
ena, from diffusion of oxygen intro nitrogen, to the diffusion of cyclones in the
atmosphere (Richardson 1926) (Fig. 2b), such that at each scale the mean square
separation could be locally written as D2 ∝ K (D)t . It is now accepted that his
derivation of the 4/3rd law was at the same time fortuitous and the result of his
unique intuition (Sawford 2001). Richardson also showed that such a non-Fickian
diffusion resulted in a cubic super-diffusive growth of the mean square separation of
pairs of particles according to the law

〈
D2

〉 = gεt3, where ε is the turbulent energy
dissipation rate and g a universal constant since known as the Richardson constant.

2.2 Batchelor and Richardson Regimes for Pair Dispersion

Richardson’s work was later refined by Batchelor and Obukhov in the 1950s
(Batchelor 1950) thanks to Kolmogorov’s 1941 phenomenology of turbulence. In
K41 phenomenology, phenomena happening at within inertial scales of turbulence
(i.e. scales much larger than dissipative scales (so that they are not affected by viscos-
ity) and much smaller than the energy injection scale of the flow (so that they are not
affected by large scale inhomogeneities and anisotropy) are statistically controlled
by one single physical parameter, namely the mean energy dissipation rate ε. This
framework then imposes simple dimensional constraints, which have been applied
by Batchelor and Obukhov to the pair dispersion problem to show that the rate of
separation of pairs of fluid elements in turbulent flows with initial separation �D0 at
inertial scales (η � D0 � L) must obey the following scalings:

R2 =
〈 ( �D − �D0

)2
〉

=
{

S2( �D0)t
2 if t < t0 (3a)

gεt3. if t > t0 (3b)

with S2( �D0) and t0 both depend on the particles motion at scale D0. In this scenario,
themean square separationof a pair of particlesfirst growsballistically (Eq.3a) before
transiting toward a faster t3 regime (Eq.3b) as predicted by Richardson. In the early
ballistic regime (also known as the Batchelor regime), the separation rate depends
on the initial separation �D0 via the second order Eulerian structure function S2(�r) =〈|δ�r �u|2〉 estimated at the initial separation D0 (with δ�r �u the increment between two
points separated by a vector �r of the eulerian velocity field of the flow; note that
homogeneity is assumed, so that velocity increment only depends on the separation
vector). Formally speaking, the ballistic regime (Eq.3a) is nothing but the leading
term of the Taylor expansion for the mean square pair separation at short times,
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expressed in terms of the initial mean square relative velocity between particles
(Batchelor 1950;Ouellette et al. 2006). Note that such a ballistic Taylor expansion is a
general and purely kinematic relation valid for any early dispersion process and is not
limited to the case of turbulence. Specificities of turbulence appear when expliciting
the form of the structure function S2 at inertial scales, which in K41 phenomenology
is simply given (from dimensional considerations) by S2(r) ∝ (εr)2/3. This ballistic
regime is expected to hold only for times shorter than a characteristic time t0 related to
the persistence of the initial relative velocity, which for inertial scales of turbulence is
related to the eddy turn-over time at scale D0, t0 ∝ r2/3/ε1/3. Qualitatively speaking
the ballistic Batchelor regime can be seen as the result of the correlated motion of
particles evolving in a same initial turbulent eddy with characteristic size D0.

For times exceeding t0, a transition is expected towards an enhanced dispersion
regime, as predicted by Richardson. The mean square separation then grows as the
cube of time.An important specificity of theRichardson regime is that the growth rate
of pair separation does not depend anymore on the initial distance D0 between the
particles. The loss ofmemory of initial conditions is a reasonable assumption for long
term diffusion. Under this assumption, the t3 dependency can be understood in the
framework of Kolmogorov 1941 phenomenology of turbulence (Kolmogorov 1941)
(hereafter referred as K41) as a simple dimensional constraint. K41 states indeed
that for sufficiently large Reynolds number, the only relevant physical parameter for
the dynamics of turbulence at inertial scales is the average energy dissipation rate
per unit mass ε (with dimensions [m2 s−3]): D2 ∝ εt3 is then the only dimensionally
consistent relation if initial separation is forgotten.

The Richardson constant g in Eq.3b is one of the most fundamental constants
in turbulence (together with the Kolmogorov constant CK ). It plays a major role
in turbulent dispersion and mixing processes. However, in spite of its importance,
it is only recently that estimations of its value started to converge towards a well
accepted value (Sawford 2001; Salazar and Collins 2009). This is due to the
difficulty to observe experimentally Richardson’s superdiffusion (Sawford 2001;
Bourgoin et al. 2006). Until recently, best estimates for g still spanned several orders
of magnitude.Most recent high resolution direct numerical simulations seem to point
toward an estimate of g ∼ 0.5–0.6 (Bitane et al. 2012; Boffetta and Sokolov 2002)
(Fig. 3a). This value is also consistent with experiments by Ott and Mann (2000) in
homogeneous and isotropic turbulence at a moderate Reynolds number Rλ � 100,
based on Taylor micro-scale (Fig. 3b). However the procedure to extract the Richard-
son constant in these experiments has been controversial, as the authors had to intro-
duce an arbitrary virtual time origin Torigin to find a reasonable cubic fit for the
growth rate of the mean square separation < ( �D − �D0)

2 >∝ ε(t − Torigin)3. As we
will see later, such a virtual time origin can actually be justified on robust theoretical
grounds and its value shown to be also related to the Richardson constant g. Apart
from this experiment, high resolution data in well controlled laboratory experiments
is still very scarce. This is very likely due to the difficulty in accessing sufficiently
long tracks in Lagrangian measurements, allowing to unambiguously observer the
long-termcubic regimea laRichardson.Recent experiments byBourgoin et al. (2006)
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Fig. 3 Growth of themean square separation of particle pairs in: a direct numericam simulations by
Bitane et al. (2012) (time is non-dimensionalized by t0 = S2(D0)/2ε which within K41 framework
is proportional to ε−1/3D2/3

0 , different symbols correspond to different initial separations); at short
time the separation follows a ballistic regime a la Batchelor, while at long times the separation
is cubic, a la Richardson, with a transition occurring for times t � t0. b Experiments by Ott and
Mann (2000); time in this plot has been shifted by virtual time origin T0 to emphasize the cubic
behavior. c experiments by Bourgoin et al. (2006) where the ballistic regime is robustly observed,
without any adjustable parameter

report highly resolved particle tracking measurements of relative dispersion at high
Reynolds numbers (up to Rλ � 800). However only the early ballistic regime 3a was
observed, and no hint toward a cubic regime was found (Fig. 3c).

As already mentioned, in his seminal 1926 article (Richardson 1926), Richardson
empirically related such a superdiffusive regime to a non-Fickian process, with a
local diffusivity coefficient K which depends on the spatial scale D: K (D) ∝ D4/3.
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Further refinements in the framework ofK41 phenomenology extendedRichardson’s
non-Fickian phenomenology by considering also a time scale dependency of the
local diffusivity coefficient (Boffetta and Celani 2000; Klafter et al. 1987; Salazar
and Collins 2009) such that K (D, τ ) = k0εγDατβ (with the dimensional constraints
that 3α + 2β = 4 and γ = 1 − α/2). Such processes also lead to a t3 regime for
the mean square separation (the Richardson constant g is then directly related to
k0). However no clear physical interpretation for the origin of such a time/scale
dependency of the local diffusivity is still known.

In the next subsection, a simple phenomenology for pair dispersion is proposed
which elucidates many aspects of the problem, in particular regarding the origin of
the cubic super-diffusive long-term regime and its deep connection with fundamental
properties of the turbulent energy cascade (Bourgoin 2015).

2.3 A Simple Ballistic Phenomenology
of Turbulent Superdiffusion

Let consider an ensemble of particles with an initial mean square separation D2
0 .

In the short term, the particles will separate ballistically according to the kinematic
relation (3a). Let t0 be the typical duration of the ballistic initial ballistic growth.
Experimental and numerical evidence discussed in the previous section confirme
Batchelor’s suggestion that t0 ∝ ε−1/3D2/3

0 . Following Bitane et al. we will write
t ′0 = αS2(D0)/2ε, with α a non-dimensional parameter we shall call persistence
parameter as it quantifies the persistence of the ballistic regime. The main idea
behind the dispersive process proposed here is that of a ballistic cascade mechanism,
as illustrated in Fig. 4. It is based on the trivial idea that if an ensemble of particleswith
initial mean square separation �D2

0 starts to disperse ballistically, with a separation
rate S2( �D0) over a given period t ′0 after which it reaches a newmean square separation
�D1

2
, instead of considering a sudden transition toward an enhanced cubic dispersion

regime à la Richardson (as in Eq.3b), the ballistic process can instead be iterated
starting from the new mean square separation �D2

1 , with a new separation rate S2( �D1)

over a period t ′1 and so on. Thus, in this scenario the time evolution of particles mean
square separation is simply described by the iterative process:

D2
k+1 = D2

k + S2(Dk)t
2
k (Dk), (4)

where D2
k =< | �Dk |2 > represents the mean square separation of pairs after the kth

iteration step, t ′k(Dk) is a scale dependent “timeof flight” characteristic of the duration
of the ballisticmotion at step k + 1. For the case of turbulent flows, S2(Dk) and t ′k(Dk)

will be prescribed later by imposing K41 scalings.
A concrete implementation of the iterative scheme (4) requires the expressions for

the scale dependent separation rate S2(Dk) and the ballistic time of flight t ′k(Dk) tobe
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Fig. 4 Illustration of the iterative ballistic cascade for the relative separation of particles with initial
mean square separation D2

0 : at each iteration step k, the mean square separation between particles
grows ballistically from D2

k to D2
k+1 with a growth rate

√
S2(Dk), during a time lag t ′k . The overall

time required to reach separation Dk at the iteration number k is Tk = ∑k−1
j=0 t

′
j (Dj )

specified. For particles with separation in the inertial range of scales of the carrier
turbulence, under the local isotropy assumption, the structure function is known to
follow the K41 scaling:

S2( �D0) = 11

3
C2ε

2/3D2/3
0 , (5)

with D0 = | �D0| and where C2 is a universal constant with a well-known value
of approximately 2.1; as C2 is analytically related to the Kolmogorov constant
CK � C2/4 (Sreenivasan 1995) characterizing the celebrated −5/3 spectrum of
turbulent kinetic energy (E(k) = CK ε2/3k−5/3), we shall refer to C = 11

3 C2 � 7.7
as the Kolmogorov constant in the sequel.

The iterative ballistic process can now be explicitly written as

D2
k+1 = D2

k + S2(Dk)t
′2
k (Dk) with

{
S2(Dk) = Cε2/3D2/3

k
t ′k(Dk) = αtk = αS2(Dk)/2ε

, (6)

where the Kolmogorov constant C and the persistence parameter α are the only
parameters. The Kolmogorov constant being known, α is the only adjustable para-
meter of the problem. The iterative process Eq. 6 leads to a simple geometrical
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progression where {
D2

k+1 = AD2
k

t ′k+1 = A1/3t ′k
, (7)

with

A = 1 + α2C3

4
. (8)

Simple arithmetics then lead to the following relations for the growth of the mean
square separation as a function of the total time Tk = ∑k−1

j=0 t
′
j (Dj ):

D2
k = gε

[
Tk +

(
D2

0

gε

)1/3
]3

(9)

with

g =
[
2
A1/3 − 1

αC

]3

=
[
2
(1 + α2C3

4 )1/3 − 1

αC

]3

(10)

Several points are worth being noted at this point:

• Relation Eq. 9 shows that in the long term (T 
 (
D2

0/gε
)1/3

), the iteration of
elementary K41 scale dependent ballistic steps eventually builds a Richardson
cubic regime where D2 = gεT 3.

• It also shows that at intermediate times, the growth follows a similar cubic regime,
but with a negative virtual time origin Torigin = − (

D2
0/gε

)1/3
such that D2 =

gε(T − Torigin)3, what supports the empirical approach by Ott and Mann (2000)
to extract the value of the Richardson constant from short experimental tracks.

• Finally, relationEq. 10 related theRichardson constant to theKolmogorov constant
C and to the persistence parameters.

Figure5 shows the result of the ballistic phenomenology for the mean square
separation as a function of time as given by Eq.9, compared to the direct numerical
simulations by Bitane et al. (2012). The well accepted value C = 11C2/3 with C2 �
2.1 has been used for the Kolmogorov constant, while the persistent parameter has
been adjusted in order to retrieve thewell accepted value g � 0.55 for the Richardson
constant, based on Eq.10, what leads to an optimal value α � 0.12. It can be seen
that the iterative ballistic phenomenology reproduces almost perfectly the numerical
data. The first interesting observation concerns the collapse (as already noted by
Bitane et al. 2012) of the numerical data for all initial separations within inertial
scales, which is perfectly follows the prediction of the ballistic phenomenology,
both for the short term ballistic regime and the long term cubic regime. Besides, not
only the global trend of the mean square separation evolution is very well described
by the model (both for short and long term regimes), but some subtler details are
also well captured. For instance, as in the simulation, the transition between the
early Batchelor regime and the Richardson regime is robustly found to occur around
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t = t0, even if the duration of the initial ballistic iteration is t ′0 = αt0 � t0 (we recall
that α � 0.12 in the present implementation of the ballistic model). A mild slowing
down of the ballistic separation for t � t0 (prior to the transition towards the cubic
regime), present in the simulations is also captured by the iterative ballistic model.

Figure5 also shows the mean square separation of pairs measured in high resolu-
tion particle tracking experiments by Bourgoin et al. (2006). In those experiments,
only the Batchelor ballistic regime was reported, while no hint of Richardson regime
was detected. Figure5 emphasizes a possible reason for the failure in experiments to
observe the Richardson regime: the longest experimental tracks did not exceed a few
tenth of t0 while the separation needs to be tracked for at least a few t0 to reasonably
detect the transition toward the cubic regime. A simple possible strategy to improve
the chances to observe the cubic regime in experiments would simply consist in better
controlling the injection of particle pairs in order to achieve sufficiently small initial
separations, hence reducing the time t0 required for the transition to occur within
experimentally accessible tracking time.

To conclude this first part on relative dispersion of Lagrangian tracers, it should be
mentioned that the present phenomenology can be pushed event further and can be
extended to account for time asymmetry of relative dispersion (Sawford et al. 2005;
Jucha et al. 2014; Berg et al. 2006) as well as known differences between 3D and
2D turbulence (Faber and Vassilicos 2009). These aspects go beyond the scope of
the present chapter, but the interested reader can refer to the recent article (Bourgoin
2015) for more details on these extensions.
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3 Preferential Concentration of Inertial Particles
in Turbulence

Previous chapter was dedicate to the dynamics of fluid tracers, which are typically
neutrally buoyant particles significantly smaller than the dissipation kolmogorov
scale of the flow η. In the present chapter the collective motion of material particles
which do not necessarily fulfill these conditions is discussed. Such particles, with
density different than that of the carrier fluid and/or size larger than η are expected
to behave differently than fluid tracers and are generically called inertial particles.
A striking feature observed in such situation, is the trend to preferential concen-
tration, which has been reported for long (Squires and Eaton 1991; Fessler et al.
1994) and which is still thoroughly studied (Saw et al. 2008; Salazar et al. 2008;
Scott et al. 2009; Olla 2010; Bourgoin and Xu 2014). The present chapter will focus
on diagnosis of preferential concentration phenomenon and on themain known prop-
erties of clustering of inertial particles in turbulence. Possible mechanisms for the
origin of preferential concentration as well as possible impacts on the collective
dynamics of the particles (in particular regarding collective settling) will be briefly
discussed.

3.1 Diagnostics of Preferential Concentration
with Voronoï Tessellation

Until recently most usual approaches to quantify the level of clustering are based
on the pair correlation function while box counting methods are preferred to access
local concentration fields. We will focus here on a method, based on Voronoï tes-
sellation, which has been recently introduced to the field and which revealed to be
particularly well suite to investigate the preferential concentration phenomenon. A
full and detailed comparison of different methods can be found in the review by
Monchaux et al. (2012).

A Voronoï diagram is the unique decomposition of 2D space (the concept can
be generalized to N-dimensional space) into independent cells associated to each
individual particle. One Voronoï cell is defined as the ensemble of points that are
closer to a particle than to any other. Use of Voronoï diagrams is very classical to
study granular systems and has also been used to identify galaxies clusters. Voronoï
diagrams computation is very efficient with the typical number of particles per image
(up to several thousands) we have to process. Figure6a, b show a raw acquired image
as well as the located particles and the associated Voronoï diagram.

Why using Voronoï tessellations? From the definition of the Voronoï
diagrams, it appears that the area A of a Voronoï cell is the inverse of the local
2D-concentration of particles; therefore the investigation of Voronoï areas field is
strictly equivalent to that of local concentration field. Let me recall that usually
local concentration fields are obtained through box counting methods (Aliseda et al.
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Fig. 6 a A typical raw image. b Particles located in this image and the associated Voronoï diagram.
For clarity, we show only one third of the full acquired image

2002) which show several disadvantages: they are computationally inefficient and
they require to select an arbitrary length scale (the box size), whereas in Voronoï
diagrams computation, no length scale is a priori chosen and the resulting local
concentration field is obtained at an intrinsic resolution. Similarly, the pair correla-
tion function only gives global (non local) information and is also associated to the
choice of a length scale that spans the whole values of interest increasing dreadfully
the computation time. Finally, another interest of Voronoï diagrams is that as each
individual cell is associated to a given particle at each time step, thus tracking in a
Lagrangian frame the particles directly gives access to the Lagrangian dynamics of
the concentration field itself along particles trajectories. Though such Lagrangian
aspects will not be discussed here, they represent an important opening which shall
be addressed in future studies in the field.

Some relevant properties of Voronoï diagrams. Whatever the measurement
and data analysis technique used, when one refers to preferential concentration, it
is implicitly assumed that one deals with statistical preferential concentration com-
pared to the case where particles would be spatially distributed as a random Poisson
process (RPP). In order to quantify preferential concentration, the Probability Den-
sity Function (PDF) of the measured Voronoï areas for each experiment is compared
to that expected for a RPP. Main known properties of Voronoï diagrams associated to
RPP can be found in a short review by Ferenc and collaborators (2007) and references
herein. The first moment of Voronoï areas PDF has nothing to do with the spatial
organization of the particles since the average Voronoï area, A, is always identical
to the mean particles concentration. Therefore, in the sequel I will generally focus
on the distribution of the normalized Voronoï area V = A/A which is of unit mean.
The only known exact result for RPP Voronoï areas statistics concerns the second
order moment in the 2D case which is equal to < V 2 >RPP = 1.280, corresponding
to a standard deviation σRPP

V = √
< V 2 >RPP −1 � 0.53. Regarding the shape of the



Some Aspects of the Collective Dynamics of Particles … 85

PDF of Voronoï areas statistics for a RPP, no analytical solution is known (most of
the authors fit them with Gamma distributions). Ferenc and collaborators propose a
compact analytical expression involving the space dimension as a single parameter:
this analytical expression is used here as a RPP reference.

3.2 Main Properties of Preferential Concentration
in Turbulence

In this section, the use of Voronoï tessellation and the main properties of particles
clustering in turbulence is described using as reference the experimental data in
Monchaux et al. (2010), Obligado et al. (2014), obtained for water droplets in wind
tunnel with passive and active grid generated turbulence. Reynolds number in those
experiments span a broad range Rλ ∈ [70, 400]while particles Stokes number spans
the range St ∈ [0.2, 10].
Experimental Voronoï areas distributions. Figure7a displays the PDFs of the
dimensional Voronoï cells area, A, for 40 different experiments. When the dimen-
sional area A is considered, one observes that the maximum of these PDFs spans
over two decades. This evolution is representative of the average number of particles
per image (or equivalently of the global seeding concentration C0) which for the
ensemble of experiments represented goes from 50 to 5000. Note that as the average
number of particles per image decreases (i.e. as the mean Voronoï area increases),
the scatter of the right tail on these PDFs increases as a consequence of the lesser
statistical convergence. As shown in Fig. 7b, all these PDFs collapse reasonably if
we consider the centered-reduced PDF of the logarithm of normalized Voronoï areas.
This indicates that while Voronoï area PDFs of RPP are usually described by Gamma
distributions (Ferenc and Neda 2007) they are well described by a log-normal dis-
tribution for the investigated inertial. As seen on the figure, superimposition with
a log-normal distribution is almost perfect in the interval ±2σlog(V ), where σlog(V )

stands for the standard deviation of log(V ) (note that extreme PDF tails for statistics
of the logarithm of V are beyond experimentally accessible statistical convergence).
To date we do not have any theoretical interpretation of this log-normality, but this
result shows that in the limit of experimental convergence, normalized Voronoï areas
PDFs can be described with one single scalar quantity which we choose here to be
the standard deviation of the normalized Voronoï areas σV .

Quantifying preferential concentration. In Fig. 7c we present the evolution of
normalized Voronoï areas standard deviation σV as a function of Stokes number
in the wind tunnel experiments. As mentioned earlier, the standard deviation of
Voronoï areas for a RPP is analytically known to be σRPP

V � 0.53 which defines a
reference value to compare with. A standard deviation σV significantly exceeding
0.53, reveals the existence of high and low concentration events compared to the RPP
case. Oppositely, a standard deviation σV below this reference value would evidence
the tendency of particles to distribute in a more organized arrangement (σV = 0 in
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Fig. 7 a PDF of
dimensional Voronoï area A
for 40 experiments spanning
all Rλ, St and volume
loading explored. b Centered
and normalized PDF of the
logarithm of Voronoï area for
the 40 experiments from
upper figure; black dashed
line represents a gaussian
distribution. c Standard
deviation of Voronoï areas as
a function of average Stokes
number. Lines connect
different experiments for
which Reynolds number
(Error-bars represent the
dispersion between
experiments with different
C0) (color figure online)
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the limit of a perfect crystal). As seen on Fig. 7c, for the range of explored Stokes
numbers (spanning from 0.2 to almost 10) the standard deviation of the normalized
Voronoï areas always exceeds 0.57 and reaches values as high as 1.1, what shows
that preferential concentration is always present over this range of Stokes numbers,
consistentlywith former experimental andnumerical investigations. Furthermore, the
curves in Fig. 7c also show a mild peak for values of the Stokes number in the range
Stpk � 2 − 4 with a possible dependency of the peak position on Reynolds number.
However existing data does not allow to draw definitive conclusions regarding the
Reynolds number dependency, in particular for the case of large values of Reynolds
number (obtained in active grid experiments). This is due to the fact that in these
experiments, the Reynolds and Stokes number could not be varied independently.
Robust results concern however the maximum of clustering for Stokes number of
order unity (in agreement with most existing studies (Monchaux et al. 2012) as well
as the enhancement of clustering with increasing Reynolds number.

Clusters definition and identification. An important issue when it comes to inves-
tigate and characterize clustering properties of particles concerns the definition of
what a cluster is. Usual approaches consist in prescribing a threshold in local con-
centration Cc and defining clusters as patches as the connected regions where the
concentration exceeds this threshold. Voronoï tesselations are particularlywell suited
to achieve this. Voronoï areas PDFmay indeed be used to identify clusters of particles
as follows. Consider Fig. 8a which presents the Voronoï PDF for a typical experi-
ment and for a RPP. These PDFs intersect twice (which is more visible on Fig. 8b
showing the ratio of both PDFs): for low and high values of normalized Voronoï area,
corresponding respectively to high and low values of the local concentration, exper-
imental PDF is above the RPP one, while we observe the opposite for intermediate
area values. This is consistent with the intuitive image of preferential concentration:
inertial particles concentration field is more intermittent than the RPP, with more
probable preferred regions where concentration is higher than the Poisson case and
subsequently also more probable depleted regions where concentration is lower than
in the Poisson case. These intersection points Vc and Vv can be taken as an intrinsic
definition of particle clusters and voids: for a given experiment, Voronoï cells whose
area is smaller than the first intersection Vc are considered to belong to a cluster while
those whose area is larger than the second intersection Vv are associated to voids. I
insist on the fact that these thresholds are intrinsically chosen experiment wise and
so vary from one experiment to another; in particular their value depends on the
number of particles per image and their evolution with the seeding concentration C0

is find to be affine. Figure8c displays a full Voronoï diagram corresponding to one
image taken from one experiment. On this diagram, cells corresponding to clusters
(resp. to voids) have been colored in dark gray (resp. light gray) while the remaining
cells have been patched with white. It appears that dark gray cells (resp. light gray
cells) tend to be connected in groups of various sizes and shapes that are identifed
as clusters (resp. voids) whenever they belong to the same connected component.

Clusters geometry. Figure9a shows the PDFs of the area AC of clusters, normalized
by the average area

〈
AC

〉
(clusters and voids present similar geometric characteristics,



88 M. Bourgoin

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

P
D

F

10 
−2 

10 
−1 

10 
0 

10 
1 

10 
2 

10 
−1 

10 
0 

10 
1 

10 
2 

re
la

tiv
e 

P
D

F
 

η(a) (b)

(c)

Fig. 8 Away to identify clusters: a Superposition of theVoronoï areas PDF for a typical experiment
(Rλ = 85, St = 0.33, C0 = 500 particles per image); 10 continuous lines associated to ten sets of
500 UIVD are represented (dispersion is negligible) and a RPP (dotted line); b ratio of the two PDF
presented on the left figure. Vertical dash-dotted lines indicates η2 (left) and L2 (right). c colored
visualization of clusters (dark grey) and voids (light gray) (color figure online)

hence only results for the clusters will be shown). Interestingly, all PDFs collapse
onto a single curve. For large areas the PDFs of clusters area follow a power law with
an exponent close to −2 (Monchaux et al. 2010; Obligado et al. 2014). These PDFs
exhibit a clear maximum, with a peak around a most probable area Amax

C � 0.2
〈
AC

〉
,

evidencing the fact that clusters do have a typical characteristic area. Figure9b shows

the typical linear dimension
√〈

AC
〉
of the clusters normalized by the dissipation scale

η of the carrier flow, as a function of Stokes number, showing that the typical cluster
size is of the order of 10η. Finally, one important property concerns the fractal
geometry of cluster. This is evidenced by computing the joint histogram, for all
clusters of the clusters perimeter PC and of the root square of its area A1/2

C , as shown
in Fig. 9c. For non fractal structures we would expect PC ∝ A1/2

C while here the main
trend is PC ∝ Aα/2

C , with the exponentα � 2 evidencing the fractal nature of clusters.
Moreover, the almost continuum range for this exponent (ranging from ∼2 to ∼3.5)
evidence again the extreme complexity of this structures.
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Fig. 9 a PDFs of clusters area normalized by the mean. b Mean linear dimension of clusters
normalized by the dissipation scale of the flow as a function of Stokes number. c Joint histogram of
clusters perimeter and the square root of their area obtained experimentally (axes are in logarithmic
scales so that the emphasizes slopes correspond to power laws dependencies). Data in these figures
are from Obligado et al. (2014)

3.3 Origins of Preferential Concentration

The origin of preferential concentration of inertial particles in turbulence can be
understood at several levels, fromvery fundamental and generic consideration related
to the dissipative nature of particle dynamics to intuitive interactions between the
particles and the structures of the carrier turbulence. The following paragraphs briefly
address some of these aspects.
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Inertial particles in turbulence as a dissipative dynamical system. Let consider
a system whose state is described by a point �q = (q1, q2, . . .) in a given state space
�. For a dynamical system the state can evolve in time and the evolution from one
state to another follows a vectorial differential equation given by a rule f such that:

d�q
dt

= �f (�q) (11)

with �q ∈ � and with the initial condition �q(t = 0) = �q0. If now we consider an
ensemble of initial conditions, defined by an initial probability density of states
ρ(�q, t = 0), so that

∫
�

ρ(�q, t = 0)d�q = 1 and ρ(�q, t = 0)d�q represents the proba-
bility to find at t = 0 the system in a elementary volume d�q around the state �q. A
linear perturbation calculation then allows to derive the evolution equation for the
density of states ρ(�q, t) at t > 0:

Dρ

Dt
= ∂tρ + �f · �∇ρ = −ρ �∇ · �f (12)

which is nothing but a continuity equation ensuring that at all times t > 0, ρ(�q, t)

defines a probability density of states such that
∫
�

ρ(�q, t)d�q = 1. Note that
D �f ρ
Dt can

be seen as the Lagrangian derivative in the flow �f . Two important cases are then to
be distinguished depending on the value of �∇ · �f = ∂qi fi :

• if �∇ · �f = 0, then Eq.12 simply becomes Dρ
Dt = 0, which is a continuity equation

for the incompressible flow �f , so that volumes in parameter space are conserved. In
particular, if initial states are uniformly distributed (ρ(�q, 0) is constant and equal to
V−1

� = (∫
�
d�q)−1

), then the system remains uniformly distributed at all subsequent
times. This result is known as the Liouville theorem. Dynamical systems such that
�∇ · �f = 0 are called conservative.

• if �∇ · �f < 0, then Dρ
Dt > 0 and the density along the Lagrangian trajectories in the

state space eventually grows exponentially. As the integral of ρ over the whole
state space is 1, that means that the density of state in other regions must decrease.
In particular, if the initial density is uniform, this will result in the long term to
regions of high density of states and depleted regions. Dynamical systems such
that �∇ · �f < 0 are called dissipative. The resulting contraction of the state space is
then related to the existence of attractors in state space towards which the system
converges.

This simple generic mechanism can be applied to the dynamics of Lagrangian
tracers and inertial particles in turbulence:

• for Lagrangian tracers, the dynamic system is simply defined by the state variable
�q = �x , the position of the particles, the flow �f = �u being simply the fluid flow
itself, such that the dynamical system evolution equation (Eq.11) simply writes
�̇x = �u(�x, t). For incompressible flows, �∇ · �u = 0, so that in the dynamical system
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terminology the system is conservative (Eq.12 is simply then the mass conserva-
tion equation): an initially uniform distribution of particles remains uniform. As
expected Lagrangian tracers in incompressible flows do not form cluster.

• for inertial particles, on the contrary, the dynamical system is dissipative. This
can be simply understood by considering the minimal Stokesian model given
by Eq.2, where particles dynamics is coupled to that of the fluid by Stokes
drag. In that case, we can define the dynamical system based on the state vari-
able �q = (q1 = �x, q2 = �v) in position-velocity state space, the flow function
being �f = ( f1 = �v, f2 = τ−1

p (�u − �v)). It is then trivial to show that �∇ · �f =
∂q1 f1 + ∂q2 f2 = −d(τp)

−1 < 0 (with the dimension of physical space). As a con-
sequence the system is dissipative, according to dynamical space terminology, so
that an initially uniform distribution of particles will tend to contract leading to
the emergence of clusters (in position-velocity state space).

Therefore, the intimate dissiaptive nature of inertial particles dynamics already
sustains a very fundamental mathematical reason for clustering to happen in turbu-
lence (see for instance Mehlig and Wilkinson 2004; Mehlig et al. 2005; Bec et al.
2007 among others for more details). It does not tell though what the attractors in
physical space are. These directly related to the topology of the carrier flow �u and of
the response time τp (which are the two parameters defining the flow function �f ).
The clustering properties are then naturally expected to depend on the structure of
the carrier flow and the way it interacts with the particles.

The role of particle/turbulence interaction on the clustering of inertial particles
clustering. The usual intuitive interpretation of clustering of inertial particles rely on
the centrifugal expulsion of heavy particles from the core of turbulent eddies (light
particles, as bubbles in water tend in the contrary to migrate towards the center of the
eddies). As a consequence, dense particles are expected to cluster preferentially in
low vorticity regions, while light particles are expected to explore preferentially high
vorticity region (this last property being commonly used in experiment for instance
to visualize vortex filaments by seeding a flow of liquid with small gas bubbles).
This intuitive phenomenology has been formalized by Maxey (1987), in the limit of
particles with small Stokes number (St = τp/τη � 1), where at first order particle’s
acceleration can locally by assumed to be comparable to fluid’s acceleration. Then
Eq.2 implies that at first order in τp:

�v = �u − τp�a (13)

where the acceleration of the particles, d�v/dt , is locally assimilable to that of the
fluid, �a = d�u/dt . Taking the divergence of this relation, it can be shown that

�∇ · �v = −τp �∇ · �a (14)

= −τp �∇ · (�u · �∇ �u) (15)

= −τp(si j si j − 4ri j ri j ) (16)
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where si j = 1
2 (∂ j ui + ∂i u j is the flow strain tensor and ri j = 1

2 (∂ j ui − ∂i u j the vor-
ticity tensor. Note that in the last equation in Eq.18, Einstein sommation convention
is considered). This last equation shows that the velocity field �v of inertial particles
is compressible towards regions of high strain and low vorticity which particles can
be expected to explore preferentially, as intuitively expected for dense inertial par-
ticles. The case of light particles requires to take into account the extra added mass
term βD�u/ �Dt in the equation of motion of the particles, with β = 3ρ f /(ρ f + 2ρp).
Equation13 then becomes

�v = �u − τp(1 − β)�a (17)

and the divergence of �v is then:

�∇ · �v = −(1 − β)τp(si j si j − 4ri j ri j ) (18)

For dense particles (ρp > ρ f ) β < 1 so that as previously �∇ · �v < 0 in high
strain/low vorticity regions. For light particles (ρp < ρ f ) β < 1 and �∇ · �v < 0 in low
strain/high vorticity regions. Light particles then concentrate preferentially rotating
regions of the flow.

Recently, Vassilicos and collaborators proposed an alternative mechanism
(Goto and Vassilicos 2008; Coleman and Vassilicos 2009) to the usual centrifu-
gation process just described. This mechanism relies on the simple idea, that Eq.13
shows that in regions of the flow where the fluid acceleration vanishes (�a = �0)),
namely zero acceleration points, the velocity of the particles is equal to that of the
fluid. As in a first approximation the acceleration of the particles is also locally
assimilable to that of the fluid, particles stick preferentially to zero acceleration
points, with which they are swept in the flow (with locally a constant velocity, as
acceleration is null). This process, called sweep-stick mechanism therefore predicts
that particle preferentially concentrate in regions of the flow with low acceleration
(rather than low vorticity), as shown in Fig. 10. Based on numerical simulations,
the authors have shown that the centrifugation mechanism, where particles concen-
trate in low vorticity/high strain regions dominates for particles with small Stokes
number, while sweep-stick dominates for particles with moderate Stokes number.
This can be qualitatively understood, again from Eq.13, considering that when the
response time of the particles is sufficiently small �v � �u anywhere in the flow (not
only near zero acceleration points), whereas for large values of the response time, the
sticking condition �v � �u is only satisfied in regions where the acceleration is indeed
small. The sticking specificity of zero acceleration points is therefore enhanced for
highly inertial particles.



Some Aspects of the Collective Dynamics of Particles … 93

Fig. 10 Comparison of the position of inertial particles with St = 2 in numerical simulations (the
stokesian minimal model Eq. 2 is used for the equation of motion of the particles) and the position
of zero acceleration points of the carrier fluid (figure taken from Coleman and Vassilicos 2009)

4 Conclusion

The collective dynamics of particles in turbulence is a rich and complex problem. For
the case of Lagrangian tracers, the multi-scale nature of turbulence is responsible
for the rapid super diffusion of fluid parcels. We have shown that super-diffusion
can be trivially understood as a simple cascade of successive scale dependent bal-
listic steps, what offers a much simpler paradigm than the original conjecture by
Richardson of a scale dependent diffusive process. Turbulent super-diffusion directly
impacts for instance the way a cloud of particles disperses from a point source. The
rapid growth of particles separation ensures a rapid growth of the cloud towards
large scales, where efficient turbulent mixing by uncorrelated eddies eventually dis-
perses the particles much more effectively than molecular diffusion. But at the same
time this rapid growth results in important heterogeneities of the distribution of
particles at intermediate (inertial) scales, with regions of local high concentration,
separated by depleted regions (see for instance Fig. 2a.4). Practical consequences are
potentially important, if one considers for instance the release of hazardous
substances (as pollutants or contaminants): although far from the source the substance
will disperse by the uncorrelated turbulent mixing, in the vicinity of the pollution
source, puffs of high concentration can exist intermittently,where although theoverall
average concentration may remain below a given toxicity threshold, local and instan-
taneous levels can exceed the admissible limit. Such source of heterogeneities in the
concentration field of dispersed particles is entirely related to the multi scale nature
of turbulence and does not require particles to have inertia. It is only visible though
if particles are dispersed from a source initially at intermediate (inertial) scales. If
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particles are released from an initial uniformly distribution at large scales, no such
heterogeneities will appear, as a consequence of the conservative nature of particles
dynamics (using the terminology of dynamical systems). This contrasts with the case
of particles with inertia, which will experience preferential concentration and hence
the emergence of heterogeneities with persistent dense regions and depleted regions
even if they are initially released from a uniform distribution. The emergence of such
heterogeneities is believed to play an important role in many natural and industrial
systems. For instance, preferential concentration of inertial particles may enhance
the probability of collision (and hence of coalescence) of water droplets in clouds,
and hence play an important role in rain initiation. Similarly it is believed that it can
promote the agglomeration of fine particles in accretion disks, hence accelerating the
formation of planetesimals. In industrial applications, it can for instance play a role
in the coalescence of fuel droplets in diesel engines for instance, and therefore affect
the energetic efficiency, with important economical and environmental implications.
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Collective Dynamics of Particles in Viscous
Flows with an Emphasis on Slender Rods

Jason E. Butler

Abstract Basic principles that govern the viscous motion of non-colloidal particles
are described, and then the principles are applied to the analysis and simulation of the
collective motion of particles in a concentrated suspension. Though rigid spheres are
discussed in general, the dynamics of rigid rods are the focus of the given examples,
equations, and simulation methods.

1 Introduction

The accurate and reliable prediction of the collective motion of particles suspended
in fluids remains one of the key challenges of fluidmechanics, despite thewidespread
importance of the topic tomany industrial processes, such asmixing and formation of
composites, and to understanding natural phenomena, such as the creation of deltas
from the sedimentation of river silt (Larson 1999). Even the qualitative properties of
suspensions under flow continue to defy predictions in many cases (Butler 2014).

For predicting dynamics, accurate continuum-level equations would be most use-
ful due to the scales and complexities of realistic flows that are of most interest, but
these equations are not well-established for even relatively simple cases. The con-
tinuing development of accurate conceptual and numerical models requires careful
comparisons between experimental observations and simulations based upon rigor-
ously applied theories. The development of this latter approach for the purposes of
resolving questions concerning the collective motion of particles, with a focus on
rods, is the subject of this chapter.

By necessity, the conditions of the suspensions must be restricted to make some
progress; here, most of the assumptions made will be the simplest possible. The
suspending fluid is incompressible, Newtonian, and viscous. For sufficiently large
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viscosity or small particle size and flow rates, the nonlinear and time-dependent
contributions in the Navier–Stokes equations become insignificant, and the fluid
flow is governed by the Stokes equations. Hence, the fluid motion is non-inertial,
and the same assumption is made for the particle motion. The particle and fluid
motion match at every point on the surface of the particles, which are considered
rigid for all the work discussed here. The particles are also relatively large so that
colloidal effects, such as Brownian motion, are insignificant.

The general principles that govern the motion of the particles are described in
Sect. 2, and concepts that influence the collective motion of the particles, along with
some examples from themotion of spheres, are introduced (Sect. 3). The equations of
motion for a rigid, slender body are given in Sect. 4 along with example calculations
that demonstrate key features of the flows. Using the ideas of Sect. 4, a simulation
method for the dynamics of a collection of rods is developed in Sect. 5. Some exam-
ples of calculations using the method and some concluding remarks are given in
Sects. 6 and 7.

2 General Principles

A number of consequences for the allowable motions of the particles follows from
the stated assumptions regarding the properties of the fluid, particles, and rates of
flow.1 These consequences enable a number of simplifications that can be used to
advantage when constructing simulation methods and can also be used to evaluate
the plausibility of the resulting solutions.

Because of the linearity of Stokes equations, the velocities in a fluid flow can
be superimposed. Figure1 shows the example of a simple shear flow, which can be
decomposed into a rotational flow and an extensional flow. Likewise, the flow fields
reverse upon reversing the forcings, as also illustrated in Fig. 1 for flow through
a constriction, as a consequence of the linearity of Stokes equations. Both of these
consequences are useful simplifications for the purposes of calculating the fluid flows
due to the presence of multiple particles, where the velocities caused by forces acting
on the particles can be calculated independently and then added.

Additional, general consequences of the assumptions for the motion of the parti-
cles can be determined from the assumptions. Ignoring inertia, and hence accelera-
tion, of the particle means that the particle is always moving at its terminal velocity.
As the forces or velocities acting on the particle change in time (or position, as the
particle location changes in time), the particle accelerates to the new velocity infi-
nitely fast. This, together with the instantaneity of the fluid flow at all length scales
at low Reynolds number, indicates that the particle velocities can be calculated from
the instantaneous positions and forces, without needing to know the history of the
velocities of either the particles or the fluid. This results in the significant simplifi-

1A thorough and readable introduction to these concepts is available in the text by Guazzelli and
Morris (2012). Also, the text by Kim and Karrila (2005) is a useful handbook containing multiple
relationships for performing calculations on these types of suspensions.
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shear flow = rotational flow + extensional flow

High Pressure
High Pressure

Low Pressure

Low Pressure

Fig. 1 Linearity of the flows enables superposition of the velocity fields and results in flow solutions
that are reversible. For example (top), the shearing flow of a viscous fluid can be written as the sum,
in equal parts, of a rotational and planar extension flow. On the bottom, the reversibility of the flow
through a constriction upon reversing the pressure differential is illustrated

u(x)

u(x)

u(x)

u(x)
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U tot
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Fig. 2 Owing to the lack of inertia, the net motion Utot (top) of a particle at any moment in time
due to a flow field u(x) and a force F is the sum of the motions caused by each when acting alone.
Reversibility (bottom) requires that the transverse motion U⊥ of a spherical particle in a parabolic
flow field equal zero since reversing the flow direction would require that the velocity reverse sign

cation illustrated in Fig. 2 that the net motion of a particle due to multiple forces and
flows can be calculated at any moment in time by adding the steady motions caused
by each force and flow.

Analogous to the reversible properties of the fluid flow, the motion of a particle
subject to all of the restrictions listed above must also be reversible. This property
can be useful in identifying the allowable motions of particles. Figure2 illustrates
the example of a spherical particle suspended in a parabolic flow. Upon reversing the
direction of the flow field, all velocity components for the particle must also reverse,
including any velocity transverse (U⊥) to the flow field. Hence, U⊥ must be zero
since the particle is symmetric (i.e. has no mechanism for breaking symmetry upon
flow reversal).
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Fig. 3 An initially uniform suspension of spheres a transported through a tube due to a pressure-
driven flow migrates toward the centerline, leaving b a depletion region near the bounding walls.
Reversing the direction of the flow does not remix the suspension

The assumptions and associated consequences can be used to evaluate the allow-
able motions of particles, but the collective motion of concentrated suspensions seem
to violate many of the principles. For example, experiments demonstrate that shear-
ing a suspension of spheres can drive the particles from regions of high shear rate
toward regions of low shear rate. This phenomena was identified clearly by Leighton
and Acrivos (1987), though evidence of such concentration inhomogeneities in flow-
ing suspensions dates back to Karnis et al. (1966). Consider the specific case of the
transport of a concentrated suspension of spheres through a tube due to a pressure
gradient as shown in Fig. 3. Several studies (Altobelli et al. 1991; Hampton et al.
1997; Butler and Bonnecaze 1991) have verified that an initially uniform suspen-
sion of spheres will migrate to the center of the pipe, even at very low values of the
Reynolds number; simulations demonstrate the same (Nott and Brady 1994; Yeo and
Maxey 2011).

3 Origins of Collective Dynamics

The irreversible behavior illustrated in Fig. 3 is at odds with the arguments made in
Fig. 2: even though the fluid motion is linear and the motion of a single particle is
reversible, the evidence demonstrates that the collective dynamics of the particles
can be complex. There are at least two possible explanations. One is that the system
of concentrated particles is chaotic. As a result, the collective motion of the particles
is irreversible in practice, despite the fact that the governing equations are formally
reversible. The other is that additional forces, such as particle-particle contacts are
occurring in the system.
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(a) (b)

Fα

uα (xβ)uα (xβ)

u∞ (xα)

Fig. 4 Forces (a) or straining flows (b) on a particle α create an additional velocity (u′
α) on other

particles, such as particle β which is located at xβ

In fact, evidence indicates that both of these phenomena contribute to the loss of
reversibility in the collective dynamics of suspensions, where the dominant source
depends upon the specific situation. In the following, the hydrodynamic origins of
chaos are explored using a point-particle model (Sect. 3.1) of sedimenting spheres
and some additional discussion of the roles of particle contacts is given in Sect. 3.2.

3.1 Chaotic Motion Due to Hydrodynamic Interactions

One argument is that the collectivemotion of the suspensions, despite being governed
by reversible equations, are sensitive to small disturbances that magnify in time; in
other words, the particle motions are chaotic. The non-linearity, which must be
present in a chaotic system, is due to the hydrodynamic interactions between the
particles. As illustrated in Fig. 4, applying a force or a straining flow to a particle
results in a disturbance to the fluid velocity. These disturbance velocities alter the
motion of the other particles in suspension, depending on the relative positions. These
hydrodynamic interactions are non-linear and can be chaotic.

Here, a model for spheres falling through a viscous fluid is constructed as a
demonstration that the collective motion is chaotic due to the long-range hydro-
dynamic interactions. The spheres are assumed to be small in comparison to their
separation distance and are far from any boundaries. In this point-particle limit, the
rotational motion is ignored, and only the leading order contributions are retained.
The center-of-mass motion of a spherical particle is governed by a force balance,

mẍ = FD + �F, (1)

where m is the mass and ẍ is the acceleration of the particle which is located at a
position x. The left-hand side of this equation is set to zero, as the particle is non-
inertial. On the right-hand side, the drag force on the particle,FD, has been separated
from the sum of other forces, �F, that may act on the particle.

The drag force is proportional, in this limit of low Reynolds number, to the
difference in velocity of the particle, ẋ, and the fluid velocity at the position of
the particle, u (x),

FD = −R · (ẋ − u (x)) . (2)
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The proportionality is given by the resistance matrix, R. Solving for the velocity
gives

ẋ = M · (�F) + u (x) , (3)

whereM = R−1 is the mobility of the particle. For spherical particles, the mobility
is inversely proportional to the viscosity μ of the fluid, the particle radius a, and is
diagonal,

M = 1

6πμa
I. (4)

As a result, the particle motion (in the absence of fluid flows) is in the same direction
as the resultant forces,

U = 1

6πμa
(�F) , (5)

and is instantaneous: as the forces change in time, so does the velocity.
To calculate the collectivemotion of a group of particles, the fluid velocity appear-

ing in Eq.3 must include the fluid disturbance of each particle on the others. For any
particular particle α located at xα, the velocity is given by

ẋα = Mα · (�F)α + u∞ (xα) +
∑

β

u′
β (xα) , (6)

where the forces (�F)α andmobilityMα can depend on the particleα. The velocity
of the fluid, u (xα), is the sum of the fluid velocity in the absence of any particles,
u∞ (xα), and the disturbances, u′

β (xα), from all other particles β in the fluid. For a
particle β acted upon by forces �Fβ , the leading contribution to the velocity at xα is

u′
β(xα) = 1

8πμ
∣∣xα − xβ

∣∣
(
I +

(
xα − xβ

) (
xα − xβ

)
∣∣xα − xβ

∣∣2
)

· (
�Fβ

)

= G
(
xα − xβ

) · (
�Fβ

)
, (7)

where
∣∣xα − xβ

∣∣ is the magnitude of xα − xβ . The Oseen tensor, G
(
xα − xβ

)
, is

the Green’s function for Stokes equations in an unbounded fluid where the velocity
disturbance decays to zero at infinity (Guazzelli and Morris 2012; Kim and Karrila
2005). Figure5 illustrates the flow field given by Eq.7.

As a result of the disturbance velocities, the solution for the position of a particle
α in time,

xα (t) =
∫ t

t′=0
ẋα

(
xα

(
t′
)
, xβ

(
t′
))
dt′ + xα (0) , (8)
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g

F

FD = −6πμaU

Fig. 5 Illustration of the flow disturbance caused by a force F, due to gravity g for example. The
force is balanced by the drag force FD which is proportional to the velocity of the particle, U. The
motion produces a flow field (blue arrows) of the form shown. (color figure online)

depends upon the relative positions of all the particles in the suspension. This multi-
body problem for the positions is non-linear, owing to the non-linear dependence of
the interactions as defined in Eq.7, and can be chaotic.

For two particles suspended in a quiescent fluid of infinite extent, only the motion
due to the forces and the disturbance of each particle on the other needs to be con-
sidered as shown in Fig. 6. The motion is then fully described by

xα

xβ
Uβ

uα

xα − xβ

uβ

Uα

Fig. 6 Two particles sedimenting due to a force in an infinite fluid in the absence of any externally
imposed flow (u∞ = 0). If the radius of each particle and the force on each particle is the same,
then Uα = Uβ and u′

α = u′
β
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ẋα = Uα + u′
β (xα) (9)

ẋβ = Uβ + u′
α

(
xβ

)
, (10)

or more clearly,

ẋα = 1

6πμa
Fα + G

(
xα − xβ

) · Fβ (11)

ẋβ = 1

6πμa
Fβ + G

(
xβ − xα

) · Fα. (12)

The Oseen matrix is a symmetric function of the separation of the particles (i.e.
G(xα − xβ) = G(xβ − xα)), so the motion of the particles is identical if the two
particles have the same properties (radius) and are acted upon by the same force. The
relative positions remain fixed in time,

xβ (t) − xα (t) = xβ (0) − xα (0) , (13)

and hence the collective motion of two particles is not chaotic. The interactions
do alter the motion, though. A pair of spheres falls faster than a single sphere,
regardless of the relative positions for a finite separation distance; the velocity is
largest for spheres aligned with the direction of force (

[
xα − xβ

] · F is maximized)
and smallest for spheres aligned perpendicular to the force (

[
xα − xβ

] · F = 0). Also,
the pair of spheres can drift in directions perpendicular to the force, whereas a single
sphere can not in this limit of zero Reynolds number.

The alteration of the dynamics of particles due to collective motion is most often
expressed as a change in the mobility. To make that more clear, the equations for the
pair of particles is written in a more convenient format,

[
ẋα

ẋβ

]
= M ·

[
Fα

Fβ

]
, (14)

where the mobility is given by

M =
[

1
6πμa I G

(
xα − xβ

)
G

(
xβ − xα

)
1

6πμa I

]
. (15)

The solution for the dynamics of a larger number of N particles undergoing motion
due to body forces (such as gravity) can be generated by generalizing the mobility

M =

⎡
⎢⎢⎣
M11 G12 · · · G1N

G21 M22 · · · · · ·
· · · · · · · · · · · ·
GN1 · · · · · · MNN

⎤
⎥⎥⎦ , (16)
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gg
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(a) (b)

Fig. 7 Examples of the chaotic motion of sedimenting spheres. a Small perturbations in the initial
placement of three spheres produces very different results as shown by the comparison of two such
trajectories. b Experiments (left in black) and simulations (right in red) on a sedimenting cloud of
spheres exhibit chaotic dynamics (Images are courtesy of BloenMetzger, Aix-Marseille Université,
France). (color figure online)

where

Mii = 1

6πμa
I (17)

and
Gij = G

(
xi − xj

)
. (18)

Though the above equations represent a simplification of the relevant physics, they
are sufficient to demonstrate that hydrodynamic interactions drive a chaotic motion.
Examining the motion of three particles using an algorithm similar to that given
above, Janosi et al. (1997) showed that small perturbations in the initial positions of
the particles resulted in exponentially diverging trajectories; an example is shown in
Fig. 7a. Such motions are a direct evidence of chaos. For a large number of particles
that are initially placed in a spherical cloud as shown in Fig. 7b, simulations using
methods identical to those explained here predict a complex set of dynamics (Metzger
et al. 2007). Experiments of the patterns of the evolving cloudof sedimenting particles
are also shown in Fig. 7b as a comparison.

3.2 Irreversibilities Due to Contact Interactions

For the shearing flows of concentrated suspensions of spherical particles, studies
(Metzger and Butler 2010; Metzger et al. 2013) indicate that the hydrodynamic
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interactions, which are weaker in this case, are not sufficiently chaotic to explain
observations of irreversibility made in experiments on oscillating systems of parti-
cles (Pine et al. 2005). Hence, another argument is that, despite the restrictions, the
lubricating layer between particles fails to prevent contacts. Such particle-to-particle
contacts break the reversibility of the trajectories according to available evidence
(Pham et al. 2016) that compares experiments and simulations. Those simulations,
by necessity, include terms that are not in the equations developed in the previ-
ous section. Chiefly, corrections for hydrodynamic interactions at short-range, or
so-called lubrication interactions, must be calculated to give accurate trajectories
of the particles. This issue, and other corrections, are discussed thoroughly in the
literature of Stokesian dynamics (Brady and Bossis 1988).

4 Calculating the Motion of Rods

To address questions regarding whether contact interactions and chaos also influ-
ence the collective motion of more general suspensions, equations are developed for
simulating the motion of rigid rods. As in Eqs. 1–3, the motion of a rigid particle
suspended in a fluid is given by solving force and torque balances, and the inertia of
the particle is assumed to be negligible. Consequently, the balances reduce to

FD = −�F (19)

and
τD = −�τ , (20)

where FD and τD are the hydrodynamic forces and torques on the particle and �F,
and �τ are the sums of the other forces and torques acting on the particles.

The drag force FD is proportional to the difference of the particle and fluid veloc-
ity, and so consequently Eq.19 can be solved to give the center-of-mass motion of
a particle. Likewise, the angular motion is given by solving Eq.20 since τD is pro-
portional to the difference of the particle and fluid angular velocity. The next section
reviews possible models for the drag on rod-like particles.

4.1 Hydrodynamic Models for Rigid Fibers

A number of models have been used in the literature for representing the viscous
motion of a rigid rod; four examples are shown in Fig. 8. Each model incorporates a
different level of approximation for the motion, with increasing accuracy generally
resulting in the complexity of the equations.

Perhaps the simplest of models consists of two spheres, or beads, connected by a
rigid constraint. The constraining rod pictured in Fig. 8 generates no hydrodynamic
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(a) Dumbbell Model (b) Shish-kebab Model

(c) Slender-body Model (d) Ellipsoid Model

Fig. 8 Four physical models used for calculating the motion of rigid rods. a The dumbbell model
consists of two beads connected rigidly at a fixed distance. b The “shish-kebob” model is composed
of a line of beads. c The slender-body model represents the rod as a line of Stokeslets. d An exact
solution for an ellipsoidal particle is another option

resistance and the beads are typically assumed to interact only through the constraint,
not through the fluid disturbances. This dumbbell model has been used for a number
of simulations of the collective dynamics of particles and is a particularly popular
choice for modeling small, Brownian rods (Bird et al. 1971; Bitsanis et al. 1988,
1990).

The so-called “shish-kebob”model (Riseman andKirkwood1950), like the dumb-
bell model, utilizes beads connected by rigid constraints, though the beads are dis-
tributed along the entire length of the rod as shown in Fig. 8 instead of merely at the
ends of the rod. As one would expect, this model gives improved fidelity for the cal-
culation, though again the beads are assumed to interact only through the constraint,
generally.

Accurate solutions for the motion of a single ellipsoidal particle are readily avail-
able as well (Oberbeck 1876; Jeffery 1922). The singularity solution of Chwang and
Wu (1975) for an ellipsoidal particle has been used as the basis for simulations of the
collective dynamics of ellipsoids (Claeys and Brady 1993). The calculation is anal-
ogous to the well-known Stokesian dynamics method for simulating the collective
dynamics of spheres (Brady and Bossis 1988), but the algorithm is more complex to
code and is expensive to implement owing to the change of geometry.

Another option for modeling rods utilizes the hydrodynamic theory of slender
bodies (Cox 1970; Batchelor 1970). For any particle of sufficiently high aspect
ratio, slender body theory can be used to approximate the hydrodynamic forces.
To do so, the slender body is represented by a continuous line of hydrodynamic
resistance, where the resistance at each point along the line is chosen to approximate
the no-slip condition at the surface. If the cross section is non-uniform or the slender
body is curved, the equation is still applicable. For the case of a rigid, straight rod,
the equations simplify to a form that is easier to handle than that of the exact solution
for an ellipse. Of course, one is giving up accuracy by using the approximation, but
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in fact the equations are accurate for very high aspect ratio and the equations produce
the correct, qualitative behavior, unlike some of the other, simpler models.

4.2 Slender Body Equation for a Rigid Rod

The slender body equation relates the line force density, f , acting at any point r along
the length of the body to the difference between the velocity of the rod and fluid at
that point,

f (r) = 4πμ

ln(2A)

(
I − 1

2
p(r)p(r)

)
· (
ṙ(r) − u∞(r)

)
. (21)

The ratio of the total length of the body, L, and the diameter d is the aspect ratio, A,
the viscosity is μ, and the unit vector p(r) is tangent to the body at each point (r).
The line force density is proportional to the time rate of change of the position of
the line, ṙ(r) = ∂r/∂t, and the velocity of the fluid at the same point, u∞(r). These
variables and the geometry are diagrammed in Fig. 9 for clarity.

The right hand side of Eq.21 is the leading order calculation for the hydrodynamic
force acting on the particle; higher order corrections, along with detailed derivations,
can be found in Batchelor (1970) and Cox (1970). The left side is the sum of the

L

L

d(r)

d

r

x

p(r)(a)

(b)
s

p

Fig. 9 The geometry and variables describing a slender body. a For a general slender body, the
diameter d(r) can be a function of position r along the length L, so long as the diameter at every
point is much smaller than the length. The tangent to the line at each point is p(r). b The rigid rod
has a constant diameter d, where the aspect ratio A = L/d is much larger than one. The position
at any point of the centerline of the rod is given by x + sp, where s is measured from the center as
shown
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forces acting on the rod, save for the hydrodynamic force; note that f is a force per
unit length, rather than traction (force per unit area) or simply a force. The line force
density approximates the normal component of the surface traction (stress) integrated
over the perimeter of the body, at the point r.

Here, the interest is in a slender body that is straight and rigid. In this case, the
position r can be parameterized as x + sp, where the center of the rod is located
at x, the unit vector p is no longer a function of position along a rod, and s is a
local coordinate on the rod that ranges from −L/2 to L/2. These coordinates are
diagrammed in Fig. 9.

To solve for themotion of a rigid rod, Eq.21 is solved to give an explicit expression
for ṙ(r), and then use is made of the constraint that r = x + sp:

ẋ + sṗ = ln(2A)

4πμ
(I + pp) · f (x + sp) + u∞(x + sp). (22)

Note that to invert Eq.21, the identity,

(I + cpp) ·
(
I − c

1 + c
pp

)
= I, (23)

must be utilized, where c is an arbitrary constant that can not equal −1.
Typically when solving amobility or resistance problem, themoments of the force

(total force, torque, stresslet, and even higher terms) are the quantities which should
be related to the motion. To generate a simulation method analogous to Stokesian
dynamics, the effect of the total force, torque, and stresslet must be calculated.

Integrating Eq.22 over the length of the rod demonstrates that a force on the rod
results in a center of mass motion,

ẋ = ln(2A)

4πμL
(I + pp) · F + 1

L

∫ L/2

−L/2
u∞(s)ds, (24)

where the integral over s = −L/2 toL/2 shouldbeunderstood to rangeoverx − Lp/2
to x + Lp/2. The force acting on the rod is given by

F =
∫ L/2

−L/2
f (s)ds, (25)

where f (s) is the sum of the forces acting at each point on the rod.
Likewise, integrating over the length of the rod after taking the cross product of

s(p × p) with Eq.22 gives,

ṗ = −3 ln(2A)

πμL3
p × τ + 12

L3
(I − pp) ·

∫ L/2

−L/2
su∞(s)ds, (26)
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u∞

p

x

Fig. 10 Straining components of the imposed flow aligned with the rod results in no stretching (or
compressing) of the rigid body, nor any other motion of the rod. However, the straining flow does
contribute to the hydrodynamic force on the rod, and hence generates a disturbance to the velocity
of the fluid

where

τ =
∫ L/2

−L/2
p × sf (s)ds. (27)

In deriving Eq.26, the vector identity

p × (p × v) = − (I − pp) · v (28)

is utilized, where v is an arbitrary vector. Also, the change in orientation with time,
ṗ = ∂p/∂t, can have no components parallel to the orientation since the rod is rigid.
Hence, the constraint that

(I − pp) · ṗ = ṗ, (29)

or p · ṗ = 0, is employed when writing the final form of Eq.26 for the rotational
velocity ṗ.

Though the component of straining flow aligned with the rod does not generate a
motion of the particle, it does generate a stress on the rod and, hence, a hydrodynamic
force (see Fig. 10). To compute this component, Eq.22 is again integrated over the
length of the rod, but the inner product of both sides of the equation is made first
with sp. The particle velocities disappear, leaving an equality between the line force
density and velocity of the fluid,

S = − 2πμ

ln(2A)

∫ L/2

−L/2

[
sp · u∞]

ds =
∫ L/2

−L/2

[
sp · f (s)] ds. (30)
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Higher order moments of the hydrodynamic forces can be calculated in a similar
manner. However, for the purposes of simulating the collective motion of a con-
centrated suspension of rods, the linear components of the force distribution are
sufficient, as will be argued later in this document.

4.3 Motion of a Slender Rod

Three examples are brieflygiven to demonstrate key features of themotionof rods that
can be expected from solutions of the slender-body approximation. These solutions
are compared and contrasted with the expected results as well as the motions of a
sphere under similar circumstances.

In the first example, the motion of a rod falling through a quiescent fluid (u∞ = 0)
due to a body force such as gravity is examined. The rod is assumed to have a uniform
density, so that the net torque on the rod is zero and it does not rotate as it falls
under these conditions of negligible inertia. The center of mass motion due to the
gravitational force Fg (which must include buoyancy forces) is given by Eq.24,

ẋ = ln(2A)

4πμL
(I + pp) · Fg (31)

or equivalently

ẋ = ln(2A)

4πμL

(
Fg + p

(
p · Fg

))
. (32)

If the fiber is aligned with gravity or perpendicular to gravity, the velocity is solely
in that direction (see Fig. 11a). For alignment with gravity, the slender body model
predicts U‖ = 2Fg ln(2A)/4πμL, which is twice the velocity U⊥ of a fiber that is
aligned perpendicular to gravity. This factor of two difference represents an unreal-

(a) (b)

g
g

−g

U > U⊥

U

−U

Fig. 11 The properties of a single sedimenting rod. a When aligned with gravity, the sedimentation
velocity (U‖) exceeds that of the sedimentation velocity when aligned perpendicular to gravity (U⊥)
by up to a factor of two. b When aligned at an angle with respect to gravity, the rod velocity will
have components of motion that are transverse to the gravitational force; reversing the direction of
the force (gravity) must result in a reversal of the velocity
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istic, theoretical limit for the ratio of the parallel and perpendicular velocities that is
a result of the slender body model. The velocityU‖ should exceedU⊥, but predicting
the correct ratio depends upon a more quantitative model than used here, or at least
depends upon adding corrections to the leading order slender body model.

Still, the leading order calculations from the slender body model provide a good,
qualitative description of the particle motion. For example, Eq.32 correctly predicts
that a rod sedimenting at an angle with respect to gravity (see Fig. 11b) will have
components of motion that are perpendicular to gravity. This is very different from
the sedimentation of a sphere, where there can be no components of motion perpen-
dicular to the applied force for a single particle. The motion of even individual rods
consequently can exhibit dynamic trajectories that are significantly more complex
than single spheres. For example, consider the motion of a single particle falling
between two bounding walls as illustrated in Fig. 12. A spherical particle will fall
straight through the channel, though the presence of the walls will cause the sphere
to rotate with a rate that is proportional to its lateral position. The rod, however, will
drift in the channel since the presence of the bounding walls causes the rod to rotate
and then drift side-to-side as it falls (Russel et al. 1977). Importantly, the motion
of the rods for the cases shown in Figs. 11 and 12 is reversible, as required for the
motion of a rod in a viscous fluid in the limit of zero Reynolds number.

As a second example, the motion of a force and torque-free rod in a simple shear
flow is calculated. For a shear-flow of rate γ̇ with gradient in the y-direction and flow
in the x-direction,

u∞ (x) = γ̇yδx, (33)

gg

Fig. 12 Sedimentation of a particle between boundingwalls. Interactions between the walls and the
sedimenting particle cause the particles to rotate, unlike the case in an unbounded fluid. For the rod,
the rotation couples with the drift motion (see Fig. 11) to generate the side-to-side motion shown
on the left. For the spherical particle (on right), the rotation is not coupled with the center-of-mass
motion and the particle falls straight through the channel
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the center-of-mass of the rod moves with the velocity as evaluated at its center,

ẋ = γ̇xyδx, (34)

where xy is the y-component of the center position of the rod. The rotation of the rod
reduces to

ṗ = 12

L3
(I − pp) ·

∫ L/2

−L/2
sγ̇

(
xy + spy

)
δxds (35)

after substituting Eq.33 into 26 and setting τ to zero. Computing the integral and
using (I − pp) · δx = δx − pxp gives

ṗ = γ̇
(
pyδx − pxpyp

)
. (36)

The model predicts that the rod orientation does not change if the rod is aligned
in the flow-vorticity (x-z) plane (py = 0). In fact, rods aligned in this manner will
rotate through the flow-gradient plane, even as the aspect ratio becomes large. This
is another consequence of the leading order slender-body approximation that can be
corrected using the theoretical work of Jeffery (1922).

Aswith sedimentation, addingwalls demonstrates that the dynamics for the shear-
ing flow of rod-like particles is much richer than the dynamics of spherical particles,
at least in the limit of zero Reynolds. Figure13 illustrates the motion of a sphere in
a shear flow parallel to a bounding wall. For a viscous flow in the absence of inertia,
the sphere moves parallel to the wall while also rotating. In the case of a rod, the rod
canmove across streamlines, where the direction and rate of migration depends upon
the orientation (Hsu and Ganatos 1976; Park et al. 2007; Park and Butler 2009). This
motion is not a violation of the principle that particle motion must be reversible; as
shown in Fig. 13, the reversal of the flow should lead to a reversal of the migration
direction and does according to the calculations.

u∞

u∞

-u∞

U

−U

Fig. 13 The motion of a particle in a shear flow near to a bounding wall. In the limit of zero
Reynolds number, a sphere in a shearing flow near a bounding wall (top) will not migrate across
streamlines. However, a rod under similar conditions can migrate across streamlines with a velocity
that depends upon its instantaneous orientation. The motion is reversible, as shown
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u∞ = Um

H2 H2 − y2
x

ẋ = u∞(xy) + ucorr

Fig. 14 As with spheres, the motion of a rod contains a correction to the velocity at the center of
the particle for flows that are not linear. For the parabolic flow shown here, the rod moves with the
velocity of the fluid at its center, u∞(xy), and a correction ucorr due to the curvature of the flow

In linear flows, the center-of-mass motion of a rod matches the velocity of the
fluid flow as evaluated at its center-of-mass; the same is true for spheres, though it
is well known that there is a correction, referred to as Faxen’s Law, for the motion
of spheres within flows that are not linear. In this third example of particle motion,
the motion of a rod in a non-linear flow is examined. As shown in Fig. 14, the flow
field considered is a pressure-driven flow between two planar walls separated by a
distance H with maximum velocity of Um,

u∞ = Um

H2

(
H2 − y2

)
δx, (37)

where the maximum is at the center of the channel (y = 0) and the flow is in the
x-direction. Calculating the center of mass velocity of a rod, using Eq.24 and the
velocity field above, gives

ẋ = Um

H2

(
H2 − x2y

)
δx − UmL2

12H2
pyδx. (38)

The first term is the motion of the rod which corresponds to the velocity of the fluid
as evaluated at the center of the rod (i.e. u∞(xy)). The second term represents the
correction to the rod velocity due to the curvature of the flow field. The correction
slows the rod, relative to the velocity at its center, by an amount proportional to the
orientation component py; the correction is less important as the particle length L
decreases relative to the wall spacing H and is purely in the direction of the flow, as
the bounding walls are not considered in the analysis.

5 Simulating Rigid Rods

The slender body approximation can be used as the basis of simulating the collective
motion of rods, in amanner similar to the simulation of spheres using the well-known
Stokesian dynamics method (Brady and Bossis 1988). As with Stokesian dynamics,
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(a) (b)

fα (xα + sαpα)fα (xα + sαpα)

uα(x) uα(xβ + sβpβ)

Fig. 15 a The disturbance caused by a rod α can be calculated at any point x by integrating over
the length of the rod. b To calculate the motion of a rod β in the presence of the rod α, the velocity
disturbance caused by rod α can be evaluated at every point along the centerline of β and then
integrated to give the motion

the method for simulating rods should incorporate the multi-body hydrodynamics
and provide a means for evaluating the rheology. Here, such a method is described.

5.1 Hydrodynamic Interactions

For the purpose of calculating the collective dynamics of a group of rods, the influence
of themotion of one particle on anothermust be included. If the rods are non-colloidal
and the possibility of direct solid contacts is discounted, then interactions arise from
the disturbance velocity caused by the hydrodynamic forces on a rod. For example, a
point force acting on a fluid generates a motion given by Eq.7 and as shown in Fig. 5.
Recognizing that the slender-body rod is a continuous line of forces, the disturbance
velocity due to any rod α can be calculated at any point x by summing (integrating)
the disturbances created by each point over the length of the fiber,

u′
α(x) =

∫ L/2

−L/2
G

(
x − (xα + spα)

) · f (xα + spα)ds, (39)

where xα and pα are the center of mass and orientation of rod α. Furthermore as
illustrated in Fig. 15, the velocity can be calculated at any point on another fiber β.

To calculate the motion of a rod β which incorporates the hydrodynamic influence
of surrounding rods, Eqs. 24 and 26 can be altered,

ẋβ = ln(2A)

4πμL

(
I + pβpβ

) · Fβ + 1

L

∫ L/2

sβ=−L/2
u(sβ)dsβ (40)

ṗβ = −3 ln(2A)

πμL3
pβ × τ β + 12

L3

(
I − pβpβ

) ·
∫ L/2

sβ=−L/2
sβu(sβ)dsβ, (41)
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where u(sβ) has been substituted in place of u∞(sβ). The velocity represents the sum
of the background velocity, u∞(sβ), and the disturbance velocity caused by all other
particles,

u(sβ) = u∞(sβ) +
∑

α

u′
α(sβ); (42)

the summationover the disturbancevelocities should exclude the disturbancevelocity
of the rod β itself. Note that the velocities add since the fluid motion is governed by
Stokes equation, which is linear, unlike the case of a fluid motion that is governed
by the Navier–Stokes equation where finite inertia enters into the calculation.

5.2 Solving for the Collective Dynamics

Equations39–42 provide a straightforward method of calculating the collective
motion of a group of rods that are widely separated and suspended in an unbounded,
viscous fluid. Equations40 and 41 are arranged so as to evaluate the velocities explic-
itly (themobility problem) given the forces, but the equations can be inverted to solve
for the forces (the resistance problem) if the velocities are known. Likewise, the
equations can be arranged to solve so-called ‘mixed problems’, wherein a mixture of
velocities and forces are to be calculated from a combination of specified velocities
and forces. Also, the method can be utilized to solve for the motion in a variety of
geometries other than an unbounded fluid by replacing the Oseen tensor in Eq.7 with
the appropriate Green’s function. Readily available Green’s functions include those
for periodic geometries (Hasimoto 1959), for infinite plane walls (Blake 1971), and
Pozrikidis (1992) lists many more.

An important point is that even if the total force and torque are given on each
rod, the line force density is generally unknown and must be calculated as part of
the solution procedure. One approach is to discretize the length of each rod and
solve the set of equations for the force distribution and the velocity disturbance on
each rod (Mackaplow and Shaqfeh 1998). An alternative is to expand the velocity
disturbance along the length of a fiber in a Legendre polynomial and then to solve
for the line-force density (Harlen et al. 1999; Butler and Shaqfeh 2002). Retaining
only the linear terms gives the approximation

f (s) ≈ 1

L
F + 12s

L3
(τ × p + Sp) . (43)

The resulting set of equations for the motion of multiple particles is a multibody
problem which formally requires consideration of an infinite number of calculations
of the induced disturbances, much like other problems in physics which involve inter-
actions between multiple objects such as the n-body problem in celestial mechanics
(Aarseth 2003) and the many-body problem in quantum mechanics (Hunziker and
Sigal 2000). Consider the motion of only three rods, each acted upon by a force:
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the disturbance generated by the force on each rod results in a disturbance on the
other two. The presence of the disturbance on any one rod due to the other two alters
the force distribution, and this alteration of the force distribution must be consid-
ered when calculating the disturbance velocity. This cycle of reflecting the velocity
disturbances and force distributions continues endlessly and would appear to be
insolvable.

As with all such multi-body problems, simulating the collective dynamics of the
rods requires approximations, and a very convenient one is available. Each reflection
of an interaction is significantly weaker than the previous, by a factor of

1

ln(2A)

L

r
, (44)

where r is a measure of the separation distance between the rods. ForM reflections,
the change to the motion of a rod would be

(
1

ln(2A)

L

r

)M

. (45)

For widely spaced rods of high aspect ratio, the error in truncating the interactions
afterM = 2 or 3 is small. Such an approach is commonly used when simulating the
collective motion of spheres where the reflections are stronger. For spheres of radius
a, each reflectionM of the interactions contributes a velocity that scales as a fraction

(a
r

)M
(46)

of the leading contribution to the velocity (Kim and Karrila 2005).
Note that the rapid decay of the interactions given by Eq.44 is the basis of the

frequent claim that hydrodynamic interactions can be ignored in suspensions of
slender bodies. While true for relatively dilute suspensions (i.e. L/r small) for rods
as the aspect ratio goes to infinity, the approximationmust be usedwith caution. Even
in this limit of dilute concentrations, fluctuations in the concentration that generate
pairs of nearby rods can, for example, make the approximation invalid.

5.3 Example Calculation

A proof is not offered for Eq.44, but rather a demonstrative calculation is given
here using a method of reflections. The example will calculate the motion of a rod
sedimenting through a quiescent, viscous fluid in the vicinity of a second rod. The
motion of the rod of interest (α) is given by
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ẋα = ln(2A)

4πμL

(
I + pαpα

) · Fα, (47)

where Fα is the net force on the rod. The first correction to the motion of rod α is
due to the velocity disturbance caused by the force Fβ acting on the second rod,

u′
β(x,Fβ) = 1

L

∫ L/2

−L/2
G

(
x − (xβ + sβpβ)

) · Fβdsβ . (48)

This velocity disturbance should be includedwithin themotion of rodα by evaluating
the disturbance at each point along rodα and integrating along the length, as indicated
in Eq.24,

1

L

∫ L/2

−L/2
u′

β(x,Fβ)dsα =
1

L2

∫ L/2

−L/2

∫ L/2

−L/2
G

(
(xα + sαpα) − (xβ + sβpβ)

)
dsβdsα · Fβ (49)

This correction is added to Eq.48 to give an improved calculation of the motion of
the rod.

Likewise the force on rodα generates a velocity disturbance, u′
α(x,Fα), that alters

the sedimentation velocity of the rod β; the calculation is similar to that given above.
Since there is nowa (disturbance) flowon rodβ, there is an additional (hydrodynamic)
force acting on the rod which generates a stresslet S and may also cause the rod to
rotate. The force moment of interest is calculated from Eq.30,

Sβ = − 2πμ

ln(2A)

∫
sβpβ · u′

α((xα + sαpα) − (xβ + sβpβ),Fα)dsβ, (50)

where the velocity disturbance can be calculated and inserted to give

Sβ = − 2πμ

L ln(2A)
pβ ·

∫ ∫
G

(
(xα + sαpα) − (xβ + sβpβ)

)
dsαsβdsβ · Fα. (51)

This moment of the force distribution on rod β creates the next correction, or reflec-
tion, that is added to the motion of the rod of interest, α. The velocity disturbance
created by the inability of the rod β to elongate further alters the flow field experi-
enced at every point xα + sαpα by an amount of

u′
α((xα + sαpα) − (xβ + sβpβ), Sβ) =∫

G
(
(xα + sαpα) − (xβ + sβpβ)

) (
12sβ
L3

Sβpβ

)
dsβ . (52)

This velocity is integrated along the rod to give the additional contribution of
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ẋα = · · · + 12Sβ

L4

∫ ∫
G

(
(xα + sαpα) − (xβ + sβpβ)

) · sβpβdsβdsα. (53)

Each contribution to the velocity originates with the forces Fα and Fβ that act
on the two rods. Assuming that the two forces have an equivalent magnitude of F
indicates that the leading order calculation of the velocity is given by

F ln(2A)

4πμL
, (54)

as seen in Eq.47. Comparing this with the next contribution to the velocity of the
rod (Eq.49) indicates that this term is smaller by a factor of

1

ln(2A)

L

r
, (55)

since the contribution of the Oseen tensor (G, Eq. 7) scales as the inverse separation
distance of the particles, which is indicated by r. The subsequent contribution of
Eq.53 is smaller again by the same factor, as is the contribution to the motion of
rod α from each additional reflection of the hydrodynamic interactions. Continuing
the calculation as above would demonstrate the more general result that, after M
reflections, the change to the velocity of the rod is given by Eq.45.

5.4 Slender Body Dynamics

To compute the motion of multiple rods, the equations for the motion and the interac-
tions can be combined with the approximation of the line force distribution on each
rod to give a set of equations for the collective motion of the rods,

⎡
⎣Ẋ − Ẋ

∞

Ṗ − Ṗ
∞

−U∞
s

⎤
⎦ = M ·

⎡
⎣F
T
S

⎤
⎦ . (56)

In these equations, the sub-vector Ẋ contains the center of mass motions for each
rod in each direction and, for a system of two rods, would be written as

Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẏ1
ż1
ẋ2
ẏ2
ż2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (57)
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where ẋ, ẏ, and ż indicate the velocities in each direction and the subscript indicates
the particle number. The expression can be generalized easily for more particles.
Likewise, the vector Ṗ contains the rotational velocities, and F and T contain the
corresponding forces and torques on the particles.

The sub-vectors Ẋ
∞

and Ṗ
∞

in Eq.56 contain the motions due to the imposed
fluid. For example, the fourth entry in Ẋ

∞
is

1

L

∫ L/2

−L/2
u∞
x

(
x2 + sp2

)
ds (58)

and the fourth entry in Ṗ
∞

is

12

L3

(∫ L/2

−L/2
su∞

x

(
x2 + sp2

)
ds − px,2p2 ·

∫ L/2

−L/2
su∞ (

x2 + sp2
)
ds

)
, (59)

where u∞
x is the velocity in the x-direction and px,2 is the x-component of the orien-

tation for the second particle.
Unlike the other terms, there is only one entry for each particle in the sub-vectors

U∞
s and S, as seen in Eq.30. For two particles, the subvectors are

U∞
s =

[
− 2πμ

ln(2A)

∫ L/2
−L/2

[
sp1 · u∞ (

x1 + sp1
)]
ds

− 2πμ
ln(2A)

∫ L/2
−L/2

[
sp2 · u∞ (

x2 + sp2
)]
ds

]
(60)

and

S =
[
S1
S2

]
(61)

The mobility matrix M in Eq.56 is of size 7N × 7N , where N is the number
of rods. The blocks along the diagonal contain the self mobilities, which give the
motion of each rod due to the forces and torques. The off-diagonal blocks contain
the couplings between the moments of the line-force density on any rod to the other
rods in the suspension. Each of the entries inM depends only on the configuration
(position and orientation) of the multiple particles and are calculated from double
integrals over theGreen’s function, similar to those seen in the example calculation in
Sect. 5.3. The integrals can be evaluated using any numerical integration procedure,
such as Gaussian quadrature. The resulting matrix is symmetric and positive definite.

5.5 Lubrication

The above discussion and analysis of hydrodynamic interactions between rods relies
on the assumption that the rods arewidely separated. In concentrated suspensions, the
separation distance between particles can drop below a small fraction of the length,
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or even diameter, of the rods. In this case, calculating the interaction terms can be
done by performing reflections as in Sect. 5.3, but only in principal: the number
of reflections needed becomes prohibitive as the separation distance between the
particles decreases.

Instead, lubrication theory is used to estimate the interaction between closely
spaced particles. For suspensions of spheres of identical size, lubrication interactions
are relatively easy to include in simulations with high accuracy for two reasons.
Firstly, the lubrication interactions depend upon the curvatures of the surfaces and
these are constants for spheres. Secondly, the lubrication interactions between two
spheres are known exactly (Arp and Mason 1977; Jeffrey and Onishi 1984; Kim and
Mifflin 1985), and hence can be incorporated easily into the mobility matrix.

For suspensions of rods, the situation ismore problematic. The lubrication interac-
tions are a function of not only the separation distance, but also the relative alignment
and position since the curvature varies across the surface of the rods. To calculate the
limiting values, the lubrication approximations derived from the formulas of Claeys
and Brady (1989) can be used, but the curvatures of both rods must be calculated
at the points of closest approach. These analytical corrections are added to Eq.56.
The lubrication approximations are available, most naturally, in terms of a resis-
tance, rather than mobility, formulation. Hence, the mobility matrix,M, is inverted
to give the resistance matrix and then each term is added. Inverting again gives the
corrected mobility matrix which contains information about the long and short range
interactions.

5.6 Solving

Equation56 can be rearranged as needed to solve any particular set of conditions.
For a mobility problem, where the forces, torques, and flow are specified, the vector
S must first be resolved, as it is a function of the imposed flow. As with Stokesian
dynamics (Durlofsky, Brady, and Bossis 1987; Brady et al. 1988), solving for S
before resolving the motions Ẋ and Ṗ gives a multi-body solutions for the collective
motions of the particles. The motions can be solved without incorporating S, but
these solutions include only the pair interactions between the particles, at least if
lubrication has not been included in the analysis.

Once the velocities are determined, the positions can be updated using a numerical
integration. Since the equations of motion are stiff, care must be taken to retain a sta-
ble and convergent solution.Hence,when using explicit integrationmethods, the time
step must be very small. The alternative of using a fully implicit method is not practi-
cal, as for large numbers of particles the calculation times become prohibitive. Most
often, predictor-corrector methods are implemented, such as the Adams–Bashforth
method or Runge–Kutta multistep algorithms.

Though not discussed in detail here, one common goal of simulating the collec-
tive dynamics of concentrated suspensions is to calculate the rheology. Given the
positions, the rheology can be largely calculated using quantities that are already
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needed for the dynamic simulations. The calculation of the stresses for spheres, from
Stokesian dynamics simulations, are described in depth in many papers (Durlofsky,
Brady, and Bossis 1987; Brady et al. 1988; Brady and Bossis 1988). For slender
bodies, the stresses are closely related to the vector S, which is the key component
in the stresslet for each rod. Details concerning the calculation of the stresslets can
be found in Park and Butler (2009), and the influences of interparticle contacts on
the stresses can also be computed (Snook et al. 2014).

6 Collective Dynamics and Chaos

The dynamics of concentrated suspensions of rods,much like spheres, are irreversible
under flow. This is despite expectations which are based upon the restrictions that
the flows are purely viscous and the particles are non-colloidal.

Figure16 shows, as one example of irreversible dynamics of the collectivemotion,
the sedimentation of a collection of rods. Using methods described above, the gravi-
tational force that acts upon the rods and the associated velocity disturbances causes
the initially well-mixed suspension to demix in time. The instability was predicted
by Koch and Shaqfeh (1989) and confirmed numerically (Mackaplow and Shaqfeh
1998; Butler and Shaqfeh 2002). As another example, an initially spherical cloud
of rod-like particles settling due to gravity in an infinite fluid exhibits a fascinating

Fig. 16 Initial (left) image of a collection of rods in a fully-periodic box is shown. Upon application
of a gravitational field, the rods fall through the box and eventually reorganize into clusters of
particles, as shown in the image on the right
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range of dynamic patterns (Park et al. 2010), including the repeated formation and
breakup of a toroidal structure. The results are visually similar to those shown in
Fig. 7, even though the individual particles are rods instead of spheres.

In both of the above cases, suddenly reversing the direction of the gravitational
forces fails to return the particle positions and orientations to their original configu-
ration at time zero. The breaking of the reversibility is, in this case of sedimentation,
due to the chaotic motion of rigid rods. For spheres moving due to a net body-force,
it is well established (Janosi et al. 1997) that the dynamics are effectively irreversible
due to chaos, even though the equations describing the motion are reversible.

For sheared suspensions, of otherwise force-free particles, the question of the
origin of irreversibilities is more difficult to discern. Studies (Metzger and Butler
2010; Metzger et al. 2013) indicate that the hydrodynamic interactions in sheared
suspensions of spheres are chaotic, but comparisons of models with experimental
data (Pham et al. 2015) indicate that additional sources of irreversibility are needed
to explain the observations. One prominent possibility is that collisions between
rough particles exert an additional displacement. Like suspensions of spheres, studies
indicate that the dynamics of sheared suspensions of rods are irreversible and that
unique structures can be generated by oscillating the flow (Franceschini et al. 2011).
To reproduce the observations from simulations, similar to those described here,
requires including short-ranged interparticle forces (Snook et al. 2012); Fig. 17 shows

Fig. 17 Initial (top) and final (bottom) visualizations of an oscillated suspension of rods confined
between two bounding walls at high concentration. After multiple oscillations, the rods organize
and align with the vorticity direction
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an example from the simulations, where the initially random suspension organizes
into an aligned one.

7 Concluding Comments

Direct investigations into the chaotic, collective motion of rods are still lacking and
need to be performed, though it is increasingly clear that the viscous motion of con-
centrated, non-colloidal suspensions is irreversible. Methods and analyses, such as
those described here,will aid in revealing the keymechanisms that control suspension
dynamics and rheology. Also, there are many opportunities for improving simula-
tion capabilities and, perhaps most importantly, using simulations and experimental
validations to assist in the generation of macroscopic equations for the accurate
prediction of suspension dynamics.
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