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Preface

The origin of research on computational anatomy can be traced back approxi-
mately a century. The famous book On Shape and Growth by D’Arcy Wentworth
Thompson was published in 1917. Its central theme was to reveal the importance
of physical laws and mechanics as the fundamental determinants of the form and
structure of living organisms. In Chapter XVII of the book, “The Comparison of
Related Forms,” he showed that the differences in forms of related animals could be
explained by relatively simple mathematical transformations.

Modern computational anatomy is emerging as a discipline focused on the
quantitative analysis of variabilities in organ shape and the application of this
analysis to computer-aided diagnosis (CAD) and computer-aided surgery. The
spectrum of topics in computational anatomy has expanded to encompass all aspects
of intelligent segmentation, modeling, recognition and understanding of complex
three-dimensional (3D) objects, man–machine interface technologies, and other
applications. Reflecting these developments, advanced computational anatomy
provides a technical platform for a better understanding of anatomic variability, an
aid in the diagnosis of disease, and a means to simulate surgical interventions.

October 2003 saw the start of an extensive research project on CAD in med-
ical imaging, “Intelligent Assistance in Diagnosis of Multi-Dimensional Medical
Images,” in Japan. It was a 4-year research project supported by a Grant-in-Aid
for Scientific Research on Priority Areas from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT). The state-of-the-art CAD system at that
time was quite limited in its capabilities. The objective of this research project
was to develop a multi-organ, multi-disease CAD system that made full use of
human anatomical data and diagnostic knowledge of multiple diseases. The research
organization consisted of nine planned research groups and ten research groups
selected from publicly offered research plans. Almost all researchers in the area
of medical image processing in Japan joined this project. Typical conventional
CAD systems adopted two processing steps to detect specific abnormal regions on
medical images. The first one is the processing to detect candidates of suspicious
regions and the second one is to identify whether they are truly abnormal. Image
features such as film densities, shapes, textural characteristics, and so on, which are
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vi Preface

distinctive to a specific disease on medical images, are used to detect suspicious
regions. It was the abnormality-dependent approach. That is, image characteristics
used in the first processing step were dependent on the kinds of diseases. However,
we felt that the first processing step of future CAD systems whose targets are
multiple diseases of multiple organs should be to understand the normal structure
of the patient from input images, with potential ability to detect abnormal regions
as regions having structures and/or characteristics that are different from normal
ones. This fundamentally different approach was called the normality-dependent
approach. That is, the CAD system depended on the understanding of normal
organ structure and departures from those normal structures. The development of
two databases, a digital atlas of human anatomy and a digital representation of
chest and abdominal abnormalities, were set as primary targets. This project ended
in March, 2007. The resulting technologies for analysis of medical images were
improved, but had not achieved the level of sophistication of CAD technologies for
the brain, which had been a priority for a longer period of time and involved an
organ with less inter-individual variability. This provided strong motivation for us
to organize a new research project. The 5-year research project on “Computational
Anatomy for Computer-Aided Diagnosis and Therapy: Frontiers of Medical Image
Sciences” (CA project) was initiated in October, 2009. It was supported by a Grant-
in-Aid for Scientific Research on Innovative Areas from MEXT, Japan. The CA
project employed a mathematical approach to provide a computational framework
to deal with human anatomy in the chest and abdomen. The challenges consisted
of (1) development of models for representation of anatomy that cover inter-
individual variability in shape and topology and their construction through statistical
analysis of population data, (2) investigation of methodologies for precise and robust
retrieval of anatomical information from medical images, virtually equivalent to real
human body dissection, and (3) development of innovative technologies to assist
medical diagnosis and interventions based on computational anatomy. Details of
the CA project are shown on the website: http://www.comp-anatomy.org/

The CA project completed its work at the end of March 2014. It greatly
contributed to the development of advanced computational anatomy for the chest
and abdomen and its applications to CAD and surgery. The purpose of this book is to
introduce the basics and the state-of-the-art of this technology and its applications in
the chest and abdomen. It contains not only the cutting-edge technologies produced
by the CA project but also the basic mathematics and fundamentals. This book
will be helpful and informative for researchers wishing to systematically survey
the state-of-the-art in computational anatomy. We still have a long way to the final
goal, that is, to realize perfect understanding of anatomical structures of patients
from medical imageanalysis and intelligent assistance in medical diagnosis and
interventions. I believe that this book will help to accelerate computational anatomy
research.

Tokyo, Japan Hidefumi Kobatake
July 31, 2015

http://www.comp-anatomy.org/
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Chapter 1
Introduction

Yoshitaka Masutani, Sakon Noriki, Shoji Kido, Hidetaka Arimura,
Morimasa Tomikawa, Hidekata Hontani, and Yoshinobu Sato

Abstract This chapter presents the background and purpose of the computational
anatomy research field from medical (needs) and technical (seeds) perspectives. We
begin with a historical overview of the emergence of the discipline of computational
anatomy (Sect. 1.1). Then, overviews of existing fields and the potential impact of
computational anatomy on them are described (Sect. 1.2). To clarify the value of
computational anatomy from the clinical viewpoint, medical education, diagnostic
imaging, surgery, and radiation therapy are discussed, including situations that
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motivated the emergence of computational anatomy (Sect. 1.2.1). Similarly, from
the technical (computer science) viewpoint, important technological developments
providing the theoretical and algorithmic basis of computational anatomy are
explored (Sect. 1.2.2). This book mainly addresses the development of whole-body
computational anatomy, which is supported by the rapid progress of whole-body 3D
imaging technologies. Thus, the impact of whole-body imaging (Sect. 1.3.1) and its
utilization (Sect. 1.3.2) are discussed. Finally, the structure of this book is outlined
(Sect. 1.4).

Keywords Medical education • Autopsy imaging • Computer-aided diagnosis •
Radiation therapy • Computer-assisted surgery • Computer vision • Whole-body
imaging

1.1 What Is Computational Anatomy?

Yoshitaka Masutani
Faculty of Information Science, Hiroshima City University, Hiroshima, 731-3194,
Japan
e-mail: masutani@hiroshima-cu.ac.jp

Computational anatomy is an emerging discipline deriving from medical
anatomy and several other sciences and technologies, including medical imaging,
computer vision, and applied mathematics. The main focus of the discipline covers
the quantitative analysis and modeling of variability of biological shapes in human
anatomy in health and disease.

Beyond just adding numerical and quantitative information to the conventional
anatomy describing human body structures, a wide spectrum of research topics
are involved including simulation of average anatomies and normal variations,
discovery of structural differences between healthy and diseased populations,
detection and classification of pathologies from structural anomalies, and so on.

Disciplines such as morphometrics and anthropology have long been involved
with analyzing biological shapes. Among them, the book On Shape and Growth by
Thompson published a century ago [1] is regarded as the Bible for morphometrics.
It focuses on the importance of the roles of physical laws and mechanics as the
fundamental determinants of the form and structure of living organisms.

From the technical viewpoint, statistical analysis of shapes in pattern recognition
[2], computer vision [3], and artificial intelligence [4] can be regarded as one
of the origins. In the development of medical imaging research, digitizing data,
including spatial and functional relationships of anatomical structures based on
high-resolution images of a cadaver [5], was an essential step. It allowed creation
of a digital atlas, which has been widely used in medical education. In the medical
imaging research field, one of the pioneer works for computational anatomy was
initiated by a so-called digital atlas of human anatomy created from high-resolution

mailto:masutani@hiroshima-cu.ac.jp


1 Introduction 3

optical cross-sectional images of a cadaver [5], in which systematically organized
knowledge was implemented. The digital atlas is now widely used in medical
education.

An important role of computational anatomy in the clinical setting is in
computer-assisted diagnosis (CAD) and computer-assisted surgery (CAS). In
such application-oriented aspects of the discipline, one of the key demands is
computational understanding of medical images with high accuracy and robustness.
In other words, reliable and automated segmentation schemes for all organs in
medical images are necessary for detecting abnormal structures and surgical
planning. It has been a long-term challenge in medical imaging researches and
still has been exhaustively studied over time.

Before the 1990s, various automated segmentation techniques based on data-
driven approaches using simple techniques such as thresholding and voxel connec-
tivity analysis were developed and were proven to be useful within limited clinical
imaging situations.

In the 1990s, shape model-based approaches initiated by SNAKES [6] were
intensively used to overcome the drawbacks of data-driven approaches. The concept
uses parameter optimization to fit the model to the correct boundary of target organs.
Those approaches attained some success. The key to improvement is acquiring
statistics of inter-patient variations in representing shapes and image intensities of
target organs.

Recent advances in medical image segmentation have mainly been based on
using computational models based on a number of organ shape samples. The
models are statistical representations of shapes/intensity patterns, called active
shape/appearance models (ASM/AAM) [7], which are also known as statistical
shape/intensity models. Recently, several mathematical tools, such as the Rieman-
nian framework, have been successfully introduced [8], especially for statistical
analysis of anatomical structures based on medical images at the population
level. Those statistical approaches are effectively combined with machine learning
methodologies [9] to obtain more reliable results based on a vast amount of samples.

So far, one of the most successful areas for statistical analysis of image-based
anatomy is neuroimaging because of the intensive demand in this field. One of the
reasons for this success is related to the challenges involved in investigating brain
function. Free software for image analysis such as statistical parameter mapping
(SPM) [10] has pushed research in this area forward. In brain image analysis tools,
a standard brain atlas, which includes pre-segmented regions, is used. A new dataset
is registered to the template and then the pre-segmented regions can be reflected in
the data. Such atlas registration techniques can be regarded as another mainstream
method in addition to statistical shape/intensity models.

Anatomical structures with nonpathological variations, “anomalies,” can pose
problems. For example, the number of the vertebrae is frequently more or less than
the normal. That is, there is a discrete variation in the number of the vertebrae.
In addition to continuous shape variations, these noncontinuous or discrete organ
variations must also be considered in modeling anatomical structures.
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Recent achievements based on analysis of a huge number of clinical image
samples (so-called big data), including healthy volunteers and real patients, throw
new questions at us, such as “What is the definition of abnormality?”, “What is the
border between normal and abnormal?”, and “Is a given abnormality significant, or
might its workup cause more morbidity without eliminating an important disease?”.
The keys to the answers are naturally in the statistical analysis.

In an attempt to answer these questions, a computational anatomy project in
Japan was initiated in 2009, supported by a Grant-in-Aid for Scientific Research
on Innovative Areas from the Ministry of Education, Culture, Sports, Science,
and Technology, Japan [11]. As the project name “Computational Anatomy for
Computer-Aided Diagnosis and Therapy: Frontiers of Medical Image Sciences
(“Computational Anatomy” (CA) in short)” shows, it was aimed at establishing
a mathematical framework to deal with human anatomy and diseases, primar-
ily focused on the chest and abdomen, based on medical images with certain
application-oriented aspects such as CAD and surgery.

Several related research projects are found all over the world, such as the
Human Connectome Project (HCP) [12] and the Physiome Project [13]. The HCP is
intended to construct a human brain map describing the complete neural connections
of both structures and functions of intra- and intersubjects (over time). It is a long-
term project, begun in 2011, involving the collection and sharing of multimodality
images, including magnetic resonance imaging (MRI), among multiple centers.
Similarly, the Physiome (“physio-” meaning “life” and the suffix “-ome” meaning
“as a whole”) Project is aimed at providing a quantitative description of physiologi-
cal dynamics and functional behavior of the organism within anatomical structures.

Thus, computational anatomy is a developing research field involving a wide
array of sciences and technologies aimed at improving human health.

1.2 Needs, Seeds, and Solutions Around Medical Imaging:
History and Perspectives

1.2.1 Needs in Medical Education and Clinical Practice

1.2.1.1 From the Viewpoint of Medical Education

Sakon Noriki
Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui, 910-1193,
Japan
e-mail: noriki@u-fukui.ac.jp

Medical education needs to be highly structured to impart the enormous amount
of information necessary just to go on to further clinical training. The basic
framework is similar all over the world. It consists of basic sciences (e.g., anatomy,
physiology, and biochemistry) and clinical training (e.g., internal medicine, surgery)

mailto:noriki@u-fukui.ac.jp
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where skills are mastered. Anatomy is considered to be basic science but is strongly
related to and interwoven with clinical medicine [14, 15]. In fact, clinical instructors
often interact with students taking anatomy. The educational method called “image
anatomy” emphasizes the inclusion of medical imaging [16]. Image anatomy is a
method for studying anatomy, in which the nondestructively visualized human body
structures are used.

We describe the practice of human anatomy using cadaver imaging, which was
inspired by autopsy imaging (Ai), in our facility, and then review history of anatomy
education. Finally, we describe the present problems of teaching human anatomy
and the future of the relationship between anatomy education and computational
anatomy.

In Japan, the application of cadaver computed tomography (CT) imaging to
educational anatomy training is becoming a big current, and its trials are carried
out at several medical schools, where CT scanners only for the dead body are
introduced.

CT images of cadavers have been used for anatomy practice by the Faculty of
Medicine at Fukui University since 2010 [17–20]. Imaging data are acquired over
128 cm and reconstructed at 5-mm section thickness. The medical students can
refer to the CT images as well as MRI images of cadavers under dissection in the
anatomy department (Fig. 1.1). iPads connected with wireless LAN and desktop
PCs connected with school LAN are used to refer to the images (Fig. 1.2).

In Japan, this is carried out at several medical schools including Fukui, Chiba,
and Gunma Universities and is becoming more widespread with the growing
installation of computed tomography (CT) scanners in pathology departments for
postmortem examinations. An Ai conference, in which radiologists, pathologists,
and forensic specialists participate, is held so that the anatomy teaching staff can
understand the interpretation of the images. Then, the anatomy teaching staff pass
on the CT images to the students.

Human anatomy was first described by the ancient Egyptians approximately
3500 years BCE. Minute descriptions of the cranial sutures and the brain sur-
face are found in the Edwin Smith Papyrus, an ancient Egyptian medical text

Fig. 1.1 CT image (left) and MR image (right) of a cadaver chest for anatomical study
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Fig. 1.2 Students can refer to CT images on the monitor, which is put adjacent to the cadaver

from approximately 1700 BCE [21]. Hippocrates, an ancient Greek physician,
investigated the goat brain. Various findings about anatomy are described in the
Corpus Hippocraticum, which the pupils of Hippocrates edited. Though it is
told that Herophilos (335–280 BCE) and Erasistratus (304–250 BCE) dissected
the human body in ancient Alexandria, their writings have vanished. After that,
Alexandria prohibited human dissection for religious reasons, and new knowledge
about anatomy did not arise for 1000 years or more. During this period, Galen (129–
216 CE) dissected animals energetically [22]. He left inclusive and detailed anatomy
books, mostly based on dissections of apes.

There was a revival of interest in anatomy during the Renaissance. Leonard da
Vinci created human anatomical drawings, although his notebook was not published
during his lifetime [23]. In the early 1500s, the study of anatomy commenced at
the University of Bologna, and Andreas Vesalius (1514–1564) of the University of
Padua published De humani corporis fabrica (Structure of the Human Body) based
on dissections performed in 1543. This became the basis of modern anatomy.

After this, research in human anatomy advanced, and cadaver dissection became
part of medical education. At the present time, physical dissection is partly replaced
with image-based dissection, that is, image anatomy, such as Ai. The history of Ai
is described in the other section (Chapter 4.4.1) of this book. Especially “Virtopsy”
in Switzerland is actively used in the forensic field [24]. The purpose of Virtopsy
is not the education of anatomy to medical students but the investigation of the
cause of death. That is, there is little collaboration between experts in the Ai and
educational anatomy fields in countries other than Japan. Ai and its related research
areas including Virtopsy are also called “postmortem imaging (PMI).” Medical
educational reform is leading to more concentration on clinical studies and less
on basic science. In some areas, obtaining cadavers for dissection is difficult [25].
Human anatomy is considered a fundamental subject in medical education [26].
Adding imaging techniques, such as X-rays, CT, MRI, and new technologies (e.g.,
web-based learning), is becoming more common.

The “Visible Human Project,” which provides cross-sectional human body
imaging data including high-resolution optical, CT, and MR images [27–29], has
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become a resource in the study of anatomy that integrates traditional instruction
with modern CT and MRI technologies realizing a three-dimensional image (http://
www.nlm.nih.gov/research/visible/visible_human.html).

Moreover, there are reports on clinical anatomy training for nerve block anesthe-
sia using a 3D anatomy system that can display the cadaver from one’s preferred
direction and in one’s chosen depth in three dimensions [30, 31]. The advent of the
3D printer means that in addition to volume-rendered images, physical anatomical
models may now be produced. Surgeons are beginning to use these to examine
surgical procedures during preoperative planning.

In computational anatomy research, the comparison and registration of 3D
images constructed from huge and elaborate CT/MRI image datasets (internal
organs) with 3D data obtained by 3D surface scanners may be needed. A physician
speculates an internal state from the body surface and performs diagnosis and
treatment. A nurse also guesses the patient’s condition from the body surface.
Therefore, there are many points that are important to diagnose on the body surface.
Some of them are called tender points, and such pain is regarded as radiating
pain (referred pain). McBurney’s point and Lanz point are famous in the case of
appendicitis. So, if we could see through to an internal organ and an organic state
from the body surface, it would be useful for medical education. Although there
is a report in which transparency of the ranine (frog’s) skin was achieved [32], it
will likely be difficult in humans. If we could project the 3D information of the
internal organs on the surface of the body by projection mapping, this would be
useful for medical education. In addition, approaches using computational anatomy
for not only normal cadavers but also cadavers with diseases such as malformations,
tumors, and inflammation will be requested.

1.2.1.2 From the Viewpoint of Diagnostic Radiology

Shoji Kido
Department of Information Science and Engineering, Yamaguchi University,
Ube-shi, Yamaguchi, 755-8611, Japan
e-mail: kido@ai.csse.yamaguchi-u.ac.jp

Before the discovery of X-rays, physicians could not look into live human bodies
except during surgery, and the knowledge of anatomy could only be obtained
from cadaver dissection and autopsies. X-rays enabled physicians to diagnose and
treat diseases based on the findings on roentgenograms using their anatomical
knowledge. In interpreting plain radiographs, which are two-dimensional projection
images of three-dimensional structures, radiologists apply their knowledge of pro-
jected anatomy. For example, radiologists can interpret posterior–anterior mapped
view images or lateral mapped view images in chest radiographs. They must then
be able to visualize or construct the real anatomical structures from the projected
images. This requires considerable training and experience.

http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.nlm.nih.gov/research/visible/visible_human.html
mailto:kido@ai.csse.yamaguchi-u.ac.jp
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Improvements in the technology of radiography, especially oral and intravenous
contrast agents, made it possible to image previously radiolucent digestive organs
and vessels. The technique of angiography was developed in 1927, 30 years
after the discovery of X-rays, by the Portuguese neurologist Egas Moniz, who
wished to visualize cerebral circulation [33]. Angiography, which is an imaging
technique to visualize blood vessels (mainly arteries but also veins), uses contrast
materials injected into vessels to opacify them on X-ray imaging. This allows
visualization of arterial stenosis or aneurysm formation. It can visualize many types
of arteries, including cerebral arteries and coronary arteries. It can also visualize
tumor perfusion by opacifying the feeding artery or arteries. Radiologists can
diagnose stenosis of coronary arteries, which causes myocardial infarctions, as
well as brain and hepatic tumors. Angiography has developed a range of treatment
modalities including balloons and stents to treat stenoses and special catheters to
treat tumors with embolization materials.

The development of contrast agents, often combined with air or gas (double
contrast) introduced by the oral or rectal routes, enables gastrointestinal radiography
examinations such as the upper gastrointestinal (UGI) examination. UGI, which
was developed by Shirakabe and Ichikawa, visualizes the esophagus, stomach,
duodenum, and sometimes the small bowel, and the barium enema (single or
double contrast) visualizes the colon [34]. UGI and barium enema visualize the
surface mucosa by opacifying it (single contrast) or coating it (double contrast)
with contrast. Radiologists can diagnose stomach and colon diseases with these
techniques. In Japan, stomach cancer was the most common neoplasm causing
death. However, the number of deaths caused by stomach cancer has decreased,
in part because of screening examinations using UGI. New imaging techniques can
enable radiologists to diagnose diseases in more organs than was possible with plain
X-rays. The interpretation of these images requires a considerable degree of training
and experience on the part of the radiologist.

Shinji Takahashi developed what was called “rotational radiography,” which
is regarded as an early computed tomographic apparatus in 1953 [35]. Godfrey
Hounsfield furthered the concept of computed tomography (CT) in 1967 and
developed the first commercially available CT scanner. The first scan using the
commercially available CT scanner was performed in England for brain disease in
1971 [36]. Hounsfield won the Nobel Prize in medicine in 1979 for the development
of CT. CT is a technology that can produce reconstructed images in slice (section)
format of the body or brain using a computer to generate Fourier transforms or other
reconstruction algorithms. In a CT scanner, a rotating X-ray tube and detector are
located on the opposite sides of the target. The detector obtains multidirectional
attenuated X-ray data on each rotation and the computer generates an attenuation
map image. The quality of early CT images was poor, and scan times were very
long. The first brain scan required 4 min to generate only two sections and required
7 min for the calculations to generate a reconstructed image. With the advent of
CT, radiologists learned tomographic anatomy. CT images have many advantages
over plain radiographs. Most importantly, CT eliminates the superimposition of
anatomical structures. CT visualizes differences in X-ray attenuation between soft
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tissues that would all be radiolucent on plain radiography and constructs images
that are attenuation maps. Conventional radiographs can visualize structures such
as the skull and lungs in sufficient detail to allow radiologists to diagnose diseases.
However, they cannot visualize soft tissues inside the brain or bronchus. Prior to
the advent of CT, patients with brain or bronchial lesions had to be examined with
pneumoencephalography (using air as a contrast agent) or bronchography (using
barium as a contrast agent), which involved invasive procedures involving special
training for the radiologist performing them. A large proportion of radiologists’
training is now devoted to the various tomographic modalities.

High-resolution CT (HRCT) images can be obtained using a conventional CT
scanner with a high spatial reconstruction algorithm and narrow collimation to
maximize resolution. HRCT is especially important in the diagnosis of lung diseases
[37]. It can reveal minute anatomical structures with high spatial resolution. It can
improve the accuracy of diagnosis of diffuse lung diseases and small solitary pul-
monary nodules. HRCT can also reveal microanatomic structures such as secondary
lobules of lungs. Using HRCT, radiologists can distinguish among different diffuse
lung diseases such as interstitial lung diseases and chronic obstructive pulmonary
disease, for which microanatomical detail is important for diagnosis.

Spiral (helical) CT (SCT) and multi-detector CT (MDCT) can generate three-
dimensional volume data. Spiral CT was invented by Kalender in the 1980s
[38]. HRCT improves spatial resolution in the axial plane. SCT improves spatial
resolution along the long axis of the body. Spiral CT, where the X-ray tube rotates
continuously as the pallet moves through the gantry at an adjustable pitch, was
first used with one row of detectors. The number of rows has increased steadily.
MDCT can collect image data for multiple slices at once, decreasing scan time.
Current MDCT such as the Aquilion One

®
(Toshiba Medical Systems) has 320

rows of detectors and can scan a 16-cm thickness in only 275 msec. MDCT can
image minute structures with reduced motion artifact. The radiologist can obtain
anatomical information equivalent to autopsies or anatomical textbooks. Radiolo-
gists can improve the accuracy of their diagnoses using a small volume of data,
but CT examinations with multiple CT sections have caused many problems for
radiologists, resulting in misdiagnoses. To display CT and other digital modalities,
most radiologists currently use the DICOM (digital imaging and communications
in medicine) standards. DICOM is a standard for handling, storing, printing, and
transmitting digital information in medical imaging. Therefore, computer-aided
diagnosis (CAD) can be naturally integrated to clinical practice, and many CAD
algorithms have been developed. In addition, images from multiple CT sections can
help produce digital atlases, which can reveal minute structures in the human body.
VOXEL-MAN, which was developed at the University Medical Center Hamburg-
Eppendorf, is one of the more famous digital atlases [39] (Fig. 1.3). Using such
digital atlases can help radiologists learn about selected cross sections of the human
body in an interactive manner. These atlases can improve the diagnostic abilities of
radiologists.

MRI visualizes anatomy and pathology using strong magnetic fields and radiofre-
quencies to generate images. The advantage of MRI is that it does not involve
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Fig. 1.3 VOXEL-MAN 3D-Navigator: Inner Organs. http://www.voxel-man.com/3d-navigator/
inner_organs/

ionizing radiation. MRI is frequently used in the fields of pediatrics, obstetrics, and
gynecology. Functional MRI measures signal changes in the brain and can localize
brain activity. It is used in neuroscience. Diffusion-weighted MRI (DWI) measures
the diffusion of water molecules in tissues and visualizes the connectivity of white
matter. These applications are useful for diagnosis of neurological disorders and
surgical planning. Real-time MRI can provide radiologists with four-dimensional
(spatial and temporal) anatomical data. These data cannot be obtained with CT
because of ionizing radiation. These four-dimensional data can provide useful
information for diagnosis of conditions such as lung and heart disorders. The
abovementioned VOXEL-MAN also includes applications for the creation and
visualization of three-dimensional digital models of the human body using cross-
sectional images from MRI/CT. MRI and CT produce tomographic images, and
these are complementarily useful.

Endoscopy is a powerful diagnostic tool for the bronchus, stomach, colon, and
other hollow organs. However, endoscopy preparation is often burdensome for
patients and requires extensive training for endoscopists. Virtual endoscopy images
can be generated using imaging data obtained from SCT or MDCT (mainly MDCT).
Virtual endoscopy is different from the abovementioned imaging methods, because
it uses post-processing, and synthesizes virtual images. CT colonoscopy is one of
the most common virtual endoscopic examinations [40]. CT colonoscopy is less

http://www.voxel-man.com/3d-navigator/inner_organs/
http://www.voxel-man.com/3d-navigator/inner_organs/
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Fig. 1.4 Detection of abnormality in a breast by an early CAD algorithm (Ref. [43])

burdensome for patients, and it does not require endoscopy training for physicians
(but requires training in interpretation). It is expected to be useful as a screening
tool for detection of colorectal polyps. CAD algorithms exist for the detection of
polyps in CT colonoscopy [41]. Virtual bronchoscopy is also useful for diagnosis
of pulmonary diseases such as lung cancers and has value for surgical preoperative
examination [42].

CAS is one of the most important topics in current image diagnostic diagno-
sis. CAD provides the quantitative diagnostic information for the detection and
classification of tumors for breast cancer, lung cancer, colorectal cancer, and other
cancers from medical images such as CT, MRI, and mammograms. The function
of CAD is to assist radiologists and improve their diagnostic abilities; its function
will not be so-called automatic diagnosis. Early studies of CAD involved mainly
mammography and chest radiography [43, 44] (Fig. 1.4), and their goal was
detection of abnormal lesions such as those observed in breast cancer and lung
cancer. The radiographic image quality and the power of computers were not
sufficient for meaningful evaluation of CAD in the early studies [43, 44]. Imaging
technology and computer processing power have steadily increased. Various CAD
algorithms have also been developed and improved. In 1998, an American CAD
company, R2 Technology, was licensed for the first time by the US Food and Drug
Administration. This was an important event for CAD development. Radiologists
had recognized CAD systems as useful tools in image diagnosis. Subsequently,
commercially available CAD systems for detection of colon polyps were produced.

CAD has two roles. One is computer-aided detection (CADe), and the other is
computer-aided diagnosis (CADx). Quantitative imaging (QI) is a current trend in
medical analysis. To improve the value and practicality of quantitative biomark-
ers by reducing variability across patients and time, the Quantitative Imaging
Biomarkers Alliance (QIBA) was formed by the Radiological Society of North
America (RSNA) in 2007. It currently has six active technical committees: MRI,
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functional MRI, FDG-PET, CT Volumetry, COPD-Asthma, and Ultrasound. Many
QI algorithms are now installed on diagnostic workstations in departments of
radiology [45].

CAD systems currently available are for single organs and single diseases, such
as detection of calcification and masses on mammography, detection of polyps
on CT colonoscopy, and detection and classification of pulmonary nodules on
chest X-rays or thoracic CT. These algorithms are mainly based on local image
features and machine learning algorithms and are not strictly based on anatomy. This
diagnostic logic is different from that of radiologists. Radiologists usually interpret
radiographs based on local features and local and global information of anatomical
structures. In daily clinical practice, radiologists have to diagnose multiple diseases
in multiple organs. For example, in the case of lung cancer, diagnoses are based
on primary lesions in the lungs. However, radiologists must also diagnose other
pulmonary lesions such as those of diffuse lung disease, and they also need to
diagnose metastatic lesions in other organs, such as the liver or brain. In such cases,
information regarding multiple anatomical structures is needed. In the Japanese
research project entitled “Intelligent Assistance in Diagnosis of Multi-dimensional
Medical Images (2003–2007),” researchers developed many CAD algorithms for
multiple disease features and entities in multiple organs [46, 47] (Fig. 1.5). At a
symposium held in Tokyo in 2007, one of these CAD systems was demonstrated
using plug-ins developed by researchers on the common platform named “Pluto.”
Many applications of the CAD algorithms were integrated into one system on the
common platform as plug-ins.

The computational anatomical models are important for development of
local/global CAD systems. Anatomical models such as statistical atlases provide
various kinds of information about human organs [48]. Statistical atlases are already
popular in the field of neuroscience. One of them is statistical parametric mapping
(SPM) [49]. Computational anatomical models are needed for the development
of advanced CAD algorithms [50]. The diagnosis made by CAD algorithms

Fig. 1.5 Twelve organs detected by the simultaneous segmentation method (Refs. [46, 47]). Left:
Typical axial abdominal CT section with segmented liver and gallbladder. Right: Twelve segmented
organs in a 3D display
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should be based on the computational anatomy as well as the interpretation of the
radiologist. These CAD systems, using computational anatomical models, can deal
with multiple diseases in multiple organs. Moreover, the high-resolution volume
data of CT and MRI can be used to make digital atlases such as VOXEL-MAN.
Radiologists can look at selected cross sections of the human body interactively,
which they could not do previously. They can improve their knowledge of anatomy
using such digital atlases. The computational anatomical models can provide
statistical and structural information about human anatomy. Therefore, it is expected
that computational anatomy can increase radiologists’ knowledge of anatomy and
the functionalities of CAD algorithms.

1.2.1.3 From the Viewpoint of Therapeutic Radiology

Hidetaka Arimura
Department of Health Sciences, Kyushu University, Fukuoka, 812-8582, Japan
e-mail: arimurah@med.kyushu-u.ac.jp

The biological effects of radiation were investigated within a year after Wilhelm
Conrad Röntgen discovered X-rays in 1895, and then it was recognized as beneficial
effect for curing malignant tumor [51], which may be considered the beginning
of radiation therapy. What are required in radiation therapy from medical physics
point of view are (1) high conformity of dose distributions to tumor regions and (2)
accurate tumor localization and patient positioning. To achieve these requirements,
radiation therapy researchers have dedicated their efforts since around 1960 to the
development of novel technologies such as conformal radiotherapy [52], intensity-
modulated radiation therapy (IMRT) [53], real-time tracking radiotherapy (RTRT)
[54], and image-guided radiation therapy (IGRT) [55, 56].

Since radiation therapy can preserve organ function and is useful in patients,
particularly elderly patients, unsuited to surgery, it has attracted greater attention.
Consequently, this treatment modality is considerably important for developed
countries such as Japan and the United States of America, whose populations are
rapidly aging. In Japan, the percentage of older people (65 years and over) was
estimated to be around 23% in 2011 [57]. Therefore, great benefits from radiation
therapy can be provided for many patients, including elderly patients, whose quality
of life could increase.

The primary aim of radiation therapy is to deliver as high a dose as possible
to the tumor while causing as little damage as possible to normal tissues and
organs at risk (OARs) [55, 56]. The OARs are normal tissues whose radiation
sensitivity may significantly affect radiation treatment planning (RTP) and/or the
prescribed dose [58]. To achieve these goals, high-precision radiation therapy
methods have been developed, such as stereotactic body radiation therapy (SBRT),
intensity-modulated radiation therapy (IMRT), adaptive radiotherapy (ART), real-
time tracking radiotherapy (RTRT), and image-guided radiation therapy (IGRT).
These advanced techniques have recently led to impressive progress regarding the

mailto:arimurah@med.kyushu-u.ac.jp
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Fig. 1.6 Five steps of radiation therapy and examples of image engineering techniques, including
computational anatomy, in each step

precision of radiation delivery. As a result, high-precision radiation therapy has
been reported to provide outcomes comparable to surgery for some cancers [59]. In
these high-precision radiation therapies, novel methods of image analysis, including
computer graphics, image processing, and pattern recognition, play considerable
roles in improving the accuracy of radiation therapy and assisting in treatment
planning.

Radiation therapy procedure includes five steps: diagnosis, treatment plan-
ning, patient setup, radiation administration, and follow-up. Computational image
engineering techniques are employed to assist the radiation oncology staff in
decision-making at each step. Figure 1.6 describes the steps and provides examples
of image processing techniques including computational anatomy in each step.

The first step is diagnosing the cancer. Computer-aided diagnostic technologies
may be useful if the oncologist employs multiple imaging modalities. Then the
radiation oncologist and clinicians determine the radiation treatment goal, i.e.,
curative treatment or palliative treatment.

The second step involves developing the treatment plan, in which the gross tumor
volume (GTV), clinical target volume (CTV, the volume including gross tumor and
areas of likely microscopic involvement), and planning target volume (PTV, the
actual volume to be irradiated to ensure that the entire CTV receives a therapeutic
dose, assuming some target motion and other inaccuracies) are defined. A plan is
created by arranging beam paths to maximize the tumor dose and minimize the OAR
dose. Figure 1.7 depicts illustrations of a radiation treatment plan: (a) a beam’s eye
view with a GTV region and organs at risk (light blue, bladder; pink, rectum) and (b)
dose distribution images produced using CT. Image engineering techniques are used
to help define these volumes and OARs. In current clinical practice, GTV regions
have been manually delineated by radiation oncologists using treatment planning
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Fig. 1.7 Illustrations of a prostate radiation treatment plan: (a) a beam’s eye view with a
gross tumor volume (GTV) and OARs outlined (light blue, bladder; pink, rectum) and (b) dose
distribution using IMRT treatment planning

computed tomography (CT). However, the subjective manual contouring of a tumor
region is tedious and time-consuming, and its reproducibility is relatively low, which
could cause inter- and intra-observer variability [60–62]. A number of automated
contouring methods for determining the GTV have been proposed to reduce this
variability and planning time and increase the segmentation accuracy of the GTV
[63–65].

The third step is patient setup. In this step, the radiation technologist positions
the patient manually on the treatment couch as accurately as possible, often using
immobilization devices. After that, fine-tuning of target position is performed by
using image registration techniques, which register a moving image with a reference
image with respect to the target. In general, in the patient setup phase, digitally
reconstructed radiographic (DRR) images and planning CT images are used as the
reference images. An electronic portal imaging device (EPID) and cone-beam CT
(CBCT) images produced using kilovoltage or megavoltage X-rays during treatment
are employed as the moving images. Previous studies have revealed that these
techniques are effective for reducing setup error [66, 67].

The fourth step is the actual radiation treatment. A photon or particle beam is
delivered to the planning target volume (PTV) in a patient according to the treatment
plan. For tumors subject to respiratory motion such as lung and some liver cancers,
respiratory gating or fiducial markers are used to follow the target. For example, an
RTRT system has been developed, which employs pattern recognition techniques to
follow gold markers within the tumor to track it and switch the treatment beam on
and off [54].

Computational anatomy-based technologies could make it possible to develop
statistical models of events happening in tumors and human bodies as well
as mathematical prediction models of tumor or normal tissue responses during
radiation treatment. If these novel technologies were developed, they could make
large impacts on automated segmentation of GTV, CTV, and OAR and optimization
of radiation treatment planning.
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1.2.1.4 From the Viewpoint of Surgery

Morimasa Tomikawa
Department of Surgery, Fukuoka City Hospital, Fukuoka, 812-0046, Japan
e-mail: mtomikaw@surg2.med.kyushu-u.ac.jp

Medical imaging is one of the techniques that have made a great contribution
to the development of surgery. As an example, in neurosurgery it is important
for the surgeon to avoid damage to the brain structures that will cause dramatic
functional deficits (including limb paralysis, language function, and visual). An
integrated protocol of new MRI methods may, prior to the surgery, delineate
important functional areas in the brain and their vital nerve fiber connections. This
is of great help to the neurosurgeon in the planning of the operation and can also
be displayed for the neurosurgeon in the operating theater and updated during
the surgical intervention. Image-guided techniques assist with precise instrument
guidance.

Surgical navigation is in some ways the same as commonly used car navigation,
attempting to localize or determine a position in the physical space in the context of
its surroundings [68]. Surgical navigation is usually “image-based,” meaning that
imaging data such as preoperative CT or MRI images are used in the operating
room [69]. Before surgery, surgical planning can entail delineating regions of
interest within the images and producing datasets for use in the operating room.
The preoperative image data need to be matched to the current patient position
via registration, establishing a relation between the “physical” coordinate system
as defined by the patient’s reference array and the “virtual” coordinate system of
the imaging data. Modern surgical navigation systems use a stereoscopic camera
emitting infrared light which can determine the position of fiduciary reflective
marker spheres, allowing for real-time tracking. During the surgery, the marker
spheres are attached to the patient and to surgical instruments to enable an exact
localization in the space. The computer can calculate the position and orientation
of each instrument. Correct localization and virtual display of the instrument on the
computer screen is ensured by firmly attaching a reference array to the patient. The
surgeon then virtually “sees” both the current situation and the imaging datasets side
by side by volume rendering or by directly superimposing them, that is, augmented
reality visualization.

Neurosurgery was the first surgical discipline to adopt navigation and integrate it
successfully into surgical routine, followed by maxillofacial surgery, dental surgery,
and orthopedic surgery. The neurosurgical procedures supported by surgical navi-
gation range from intracranial tumor resections and frameless biopsies to pedicle
screw placement and stabilizations in the spine. In the field of thoracoabdominal
surgery (general surgery), navigation was less often employed, because open
thoracotomy or laparotomy makes target organs visible enough. However, surgical
navigation has been gradually adopted since the advent of minimally invasive
surgery (MIS), thoracoscopic or laparoscopic surgery, in the late 1980s. The benefits
of MIS to the patient have been shown in terms of reduced postoperative pain,
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lower risk of wound infection, shorter hospital stay, and quicker return to normal
physical activities. Conversely, a limited field of view, dealing with essentially
two-dimensional images, challenges to eye–hand coordination, and inability to
achieve tactile feedback are limitations. Therefore, in general surgery, new imaging
techniques for real-time enhanced laparoscopic surgical guidance are currently
the subject of research worldwide. The implementation of intraoperative imaging
methods can be of great assistance to surgeons in training, and these methods can
help to improve the safety and efficacy of MIS.

Compared with other fields of surgery, general surgery has several factors of
lower affinity with conventional surgical navigation. Deformation of soft tissues,
such as the skin and abdominal wall, can affect the accuracy of registration. The
peritoneal cavity is usually inflated with CO2 to enlarge the field, and the leakage
of gas from the port site easily changes the intraperitoneal pressure and contour
of the abdominal wall. Peristalsis can also present problems. Respiratory motion
always needs to be addressed. Because of these factors, preoperative images can
be less helpful. Although navigation accuracy is reduced for exact localization of
targets, it remains valuable for intraoperative orientation. To address these problems,
intraoperative imaging was employed over the last decade to provide the navigation
system with real-time images. Intraoperative imaging solutions can range from live
ultrasound images to intraoperative MRI (iMRI) or intraoperative CT (iCT). iMRI
offers the best soft tissue contrast among them. Figure 1.8a shows an operating room
equipped with an open-configuration MRI scanner, which is particularly suitable
for iMRI [70–72]. Figure 1.8b shows a laparoscopic image in which an anatomical
structure reconstructed from iMR images is overlaid [72] upon the patient’s image.

While iMRI is a powerful tool to achieve optimal operation control in com-
bination with the navigation, it remains the most expensive imaging option and

Fig. 1.8 Laparoscopic augmented reality visualization combined with open-configuration MRI
system [72]. (a) Laparoscopic cholecystectomy in the open MRI therapeutic room. (b) Augmented
reality laparoscopic image during a laparoscopic cholecystectomy. The laparoscopic monitor
clearly shows the augmented reality model of the common bile duct (green semitransparent area),
allowing the surgeon to avoid it during the procedure
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requires significant building costs. As a trade-off among soft tissue image quality,
versatility, and affordability, iCT has emerged. iCT allows for minimal interruption
of the surgical workflow since its scan time is significantly shorter than MRI and
patient positioning is less limited. Newer generations of portable iCT scanners are
designed specifically for intraoperative use and enable the surgeon to verify the
surgical progress and automatically update the navigation.

The current level of accuracy is acceptable for laparoscopic surgery despite
inferior accuracy compared with other fields such as neurosurgery. Although at
present it looks difficult to improve the accuracy, novel methodologies for nonrigid
registration that can account for soft tissue shifts and deformations as well as
estimation for soft tissue deformation may be realized in the future to improve the
accuracy of the surgical navigation system. Statistical and physiological modeling of
deformation patterns specific to organs will be required to improve the navigation
accuracy and to widen applicability in the future. Computational anatomy, which
may include statistical modeling of organ shapes and deformations, is expected to
be a powerful tool for this purpose.

1.2.2 Seeds and Solutions in Science, Technology,
and Engineering

Hidekata Hontani
Department of Computer Science, Nagoya Institute of Technology, Aichi, 466-8555,
Japan
e-mail: hontani@nitech.ac.jp

As described in the previous subsection, medical imaging has played an increas-
ingly prominent role in diagnosis and therapy since the 1960s. Exponentially
increasing computer power and digital imaging technology have allowed the
design of computer-aided systems, which efficiently extract information useful for
diagnosis and surgery from given medical images.

Many methods for medical image analysis have been proposed since 1960, but
research on CAD systems started in 1980 [73]. Before 1980, one of the goals
of medical image analysis was to develop automated diagnosis systems, which
were different from CAD. The automated diagnosis systems aimed to simulate the
decision-making processes of physicians, while CAD systems provide a kind of
“second opinion.” Pattern recognition techniques can be used for the simulation of
decision-making. Given input data, pattern recognition methods output symbols that
denote the decision. The automated diagnosis systems are not clinically useful until
their performances are as accurate as those of physicians.

CAD systems, on the other hand, can help physicians reading medical images
by extracting only some of the image features needed for the decision-making and
by displaying the extracted features [73–75]. It is important for CAD systems to
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Fig. 1.9 Timeline of some of the most active research topics in computer vision appeared in Ref.
[3]. Topics with asterisks are mentioned in this subsection

decrease the amount of data to be read by physicians without affecting diagnostic
accuracy. For example, a method for computing temporal subtraction images from
pairs of successive whole-body bone scans, developed by Shiraishi et al., enhances
the interval changes between a previous image and a corresponding current one and
can help physicians to distinguish new cold and hot lesions [76]. Only by enhancing
some important image features and displaying them appropriately, CAD systems
largely decrease the number of pixels the physician must carefully analyze.

The techniques for extracting useful information from given images have been
developed in computer vision since about 1960. Figure 1.9, which appeared in [3],
shows the changes in popular research topics in the field of computer vision.

Research in medical image analysis started in 1960. The main objective of the
research was to extract primitives, such as edges and skeletons, that are useful for
recovering physical properties of targets, e.g., the surfaces of the organs, from given
images. In the 1960s and 1970s, studies aiming at realizing general-purpose vision
systems were more popular than today, and many of these investigations employed
bottom-up approaches. That is, the primitives extracted from given images were
independent from targets to be described and were common to any vision system
using this approach, which roughly correspond to Marr’s 2–1/2D sketch [77, 78],
which is a rich description of object surfaces projected in given images. These
processes in early stages of visual recognition are called “early vision.”

In the 1970s, blocks world [79, 80] and generalized cylinders [81, 82] handled
models for representing the three-dimensional structure of objects. Using these
models, the primitives extracted from given images were assembled into the
descriptions of the objects. It should be noted that, different from many models
used for medical image analysis today, these models were not directly applied to
given images (i.e., matrixes of pixel values) but were applied to the general-purpose
primitives (i.e., symbolic descriptions) extracted from the images (see Fig. 1.10).
The approaches in which models of targets are directly applied to given images
became more widespread in the late 1970s.

In medical image analysis, it is important to describe the organ structures, and it
is necessary to determine the boundaries of the organs in given images. Detection
of edges, at which the pixel values rapidly change around the organ boundaries,
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Fig. 1.10 Computational architecture for a general-purpose vision system appeared in Ref. [109]
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has been an important research topic. It was supposed that an edge was one of the
primitives for general-purpose vision systems. Poggio et al. pointed out in 1985
that many problems in early vision, including edge detection, were ill-posed. Some
prior knowledge of the targets is needed to constrain the admissible solutions of the
problems and to obtain unique solutions [83, 78]. In other words, it is necessary
to apply models of the targets for the extraction of the primitives and hence it is
difficult to realize general-purpose vision systems with the bottom-up approach.

Pictorial structures [84, 85] are also used as models of targets and more
directly applied to given images to detect the targets in the images. A pictorial
structure model represents a target by a combination of components. In Fischler
and Elschlager’s work [84], the distances between pairs of the components are
represented by linking them with a spring, and the model is registered to given
images by minimizing a cost function using a dynamic programming technique. The
pictorial structures constrain the admissible locations of the components in given
images and help the stable determination of their locations.

In the 1980s, a framework of regularization was introduced for solving the
ill-posed early vision problems [78, 86]. In this framework, the early vision
problems are solved by minimizing cost functions with regularization terms, which
constrained the admissible solutions. Here, from a perspective of medical image
analysis, active contour models (ACMs) [6] and active shape models (ASMs)
[87] have played an important role. The boundaries of targets in given images
can be determined by registering these models to the images. In the registration,
cost functions with shape regularization terms are minimized. The regularization
terms in ACMs represent the smoothness and/or the curvedness of the boundaries.
The relationships between ACMs and some popular edge detectors such as those
proposed by Marr and Hildreth [88] and by Canny [89] are described in Kimmel
and Bruckstein’s work [90]. In ASMs, the shapes of the boundaries are regularized
by using statistical shape models (SSMs) constructed from sets of training data of
target shapes. The model shapes are limited by constraining them on the subspace
constructed from the training data. The ASM is one of the most fundamental
methods for segmenting organ regions in medical images [91–93]. Figure 1.11
shows examples of such training data for an SSM of the liver [94]. The approaches
that use the SSMs for the region segmentation do not aim to construct general-
purpose vision systems but to construct specific-purpose vision systems, e.g.,
CAD systems. Not only the generalization ability but also the specification is
employed for evaluating the performance of the SSMs [95]. The models used for
determining the boundaries are required to represent only those of the specific
targets. Analogous to the regularization approaches, Bayesian ones can constrain
the admissible solutions and have been more widely employed for solving the
early vision problems [83]. For example, the SSMs used for region segmentation
represent the prior probability distributions of the shapes of the target boundaries,
and the specification evaluates the accuracy of the prior distributions constructed
from the training data; an SSM with better specification corresponds to an accurate
prior probability distribution, where the contours that have specific shapes peculiar
to the target appear with higher probabilities.
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Fig. 1.11 Examples of training data for constructing an SSM for the liver (Ref. [94]). A set of
corresponding points are indicated on each of the surfaces

Markov random fields (MRFs) were employed for the representation in CV in the
1980s [96–98]. For example, Geman and Geman proposed an image segmentation
method that used an MRF model for representing the distribution of pixel labels
and that segmented given images into regions by inferring the label for each pixel
on the MRF model [97]. A Gibbs sampling technique was used in [97] for the
inference, but graph-cut techniques [99] were later widely employed for inference
on MRF models; if the MRF models satisfy some conditions, the optimal solution is
obtained by using the graph-cuts or other MRF inference algorithms such as belief
propagation [100, 101]. Many methods of energy-based segmentation in the 1990s
[102, 103] segmented images by minimizing energy functions which can be derived
from the MRF models. Pairs of an MRF model and a graph-cut technique are also
one of the most fundamental tools for image region segmentation today. ASMs
can be applied for determining the boundaries of the organs, followed by graph-
cut techniques for improving the precision of the segmentation. Specifying targets
can largely improve the performance of vision systems. It looks seriously difficult
to construct the general-purpose vision systems.

The goal of vision systems, including those for medical applications, is to
generate compact descriptions of targets from given image data by using models:
Given image data x, you describe the state of the world, w, by inferring w by
using models that represent the target world and the relationships between x and w.
The image data, x, consists of many pixel values, and the compact descriptions, w,
consist of a smaller number of numerical values or symbols. The inference is called
“recognition” when the descriptions, w, are discrete and is called “regression” when
they are continuous [104].

One difficulty that is specific to computer vision comes from the fact that, in
many cases, a large portion of each given image is not useful for the inference.
An image consists of many voxel values and not all these values contribute to the
inference. For example, to recognize characters in an image, one should first detect
the locations of the characters in the image, and only the local images around the
detected locations should be processed for the inference of the character codes. Only
the local images contribute to inferring the character codes, and other large portions
of the given image, the backgrounds, do not contribute to the inference. One has to
select appropriate portions of pixels in given image data before the final inference is
processed. Such pixel selection is not easy, especially when the targets to be inferred
and the backgrounds to be excluded can have varieties of appearances in images,
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because it is not easy to find features of appearances that can distinguish between
the targets and the backgrounds.

The variety of images of a target entity also makes the inference in computer
vision difficult. The appearance of a single 3D object, of a human face, for example,
largely varies depending on its relative pose and distance with respect to the camera
and on the lighting conditions. Occlusions also cause large varieties of appearances.
The variety among multiple target entities that should be described by an identical
description, w, also makes the problems difficult. For example, a system of human
face detection should be able to detect the face of any person. These large varieties
require high degrees of freedom (DoF) of the models to represent the appearances.
The processes of the inference are more complex and the accurate construction of
the models is more difficult when the DoF is higher.

For solving the abovementioned problems, a computer vision system, in general,
processes given images successively; at each stage, information useful for the next
process is extracted from the descriptions output by the previous process, and the
newly extracted information is described and is input to the next process. Roughly
speaking, there exist two approaches for designing such systems, the bottom-
up approach and the top-down approach. Today, top-down approaches are often
employed for realizing the practical applicability of vision systems. In the top-
down approaches, a model that specifically represents the global aspects of each
target is introduced and the processes at earlier stages are also specifically designed
for each target. The data, which are extracted at consecutive multiple stages in a
bottom-up system, are often extracted by one process at a single stage. For example,
local primitives are simultaneously extracted, while a global shape model of a target
object is registered to a given image. Most medical image processing systems are
also designed using top-down approaches.

Medical image processing is different from other image processing in the
following aspects:

1. Input images are, in many situations, three-dimensional.
2. Various kinds of targets are included in a given image, the targets are located

close together, their shapes are extremely varied, and they interact with each
other.

3. It is vital to determine the location and the boundary of each anatomical target
accurately.

The first aspect, the difference in the dimensions, means that medical images
contain a more number of voxels than pixels in conventional two-dimensional
images, and the second aspect makes the identification of the boundary of each
target (e.g., a target organ) difficult. The third aspect, the crucial importance of
the boundary determination, characterizes the research field of medical image
processing. Many computer vision systems that have been realized today do not
need to accurately determine the boundaries of targets with such a high degree
of accuracy. Character recognition systems do not detect the contours of character
strokes, face recognition systems do not detect exact face boundaries, and image
searching systems do not detect the boundaries of targets in images. Some of the
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systems, such as character recognition and face detection systems, determine a
bounding box of each target, and the appearance in the bounding box is directly
input to the final process for obtaining the final description of the targets. Others,
such as image searching systems, compute histograms of some image features, e.g.,
the “bag of features,” and do not explicitly use any information of the boundaries of
targets for the final inference. The need for highly accurate determination of object
boundaries is one of the bottlenecks in the realization of the medical computer vision
systems’ practical applicability.

One can classify the top-down methods of image segmentation into two cate-
gories: In one category, the values of the parameters of the target global models
are inferred by regression. In the other, a label of each pixel that denotes a target
ID number is inferred by recognition. One of the main methods included in the
former category is the registration of the models to given images, which include
the ASMs. As described above, the ASMs are statistical models that represent the
global shapes of targets and are generated from training data of the targets. The
variety of the global shapes is represented by a set of shape parameters, w, and the
values of w are inferred so that the resultant curves (or surfaces) are located along
the boundaries of the targets. One of the main methods in the latter, the recognition
category, is voxel label inference with the minimization of cost functions. A set of
labels that denote the target IDs is defined and a label is inferred for each voxel in
the given images. The cost functions quantitatively evaluate the appropriateness of
the labels of voxels based on the voxel values in the given images and on the label
combinations between neighboring voxels.

Both recognition and regression have been well studied in the research field of
machine learning, which is one of the most popular research topics for computer
vision today, as shown in Fig. 1.9. The progress of learning algorithms makes
it possible efficiently to construct models with higher DoF, which can represent
statistical properties of targets more accurately, from a set of larger number of
training data. For example, learning algorithms for deep neural networks have been
proposed [105, 106], and the resultant networks have demonstrated state-of-the-art
performance of pattern recognition and of regression in many applications. As the
number of medical images available for learning is monotonically increasing, the
role of learning in medical image processing is becoming more important. It should
be noted, though, that the statistical properties derived from training data are not the
only knowledge that can be used for medical image processing; such knowledge can
be provided from many existing fields, e.g., anatomy, pathology, and physics [107,
108].

Computational anatomy is a system of automatically generating medical descrip-
tions of patients from their medical images: The system consists of the algorithms
for generating the descriptions and the models used in the algorithms. In the
computer vision research field, algorithms for generating the descriptions of given
images and models used in the algorithms are studied, and their progress improves
the algorithms for medical image analysis and accelerate the development of com-
putational anatomy. Among the large variety of research topics of computer vision,
image segmentation is one of the most fundamental ones and its improvement is
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vital for CAD systems. It largely helps physicians to accurately and automatically
describe each anatomical structure in a given medical image. As described above,
image segmentation needs models of targets, and hence the segmentation of anatom-
ical structures needs computational anatomical models. This is why the algorithms
for the registration of the models to given images are more intensely studied in
medical image analysis research. Though the computational anatomical models
are useful only for segmenting medical images, the medical image segmentation
is not isolated from other research fields. The progress of machine learning and
statistical inference, for example, can directly improve the construction of statistical
anatomical models and the performance of model registration, and the progress
of computational anatomy can contribute to the development of computer vision,
especially through the development of new algorithms and models for accurately
and stably describing target regions.

1.3 Whole-Body Computational Anatomy

1.3.1 Impact of Whole-Body Imaging

Yoshinobu Sato
Graduate School of Information Science, Nara Institute of Science and Technology,
Ikoma-shi, Nara, 630-0192, Japan
e-mail: yoshi@is.naist.jp

This section discusses how whole-body imaging has influenced radiological
diagnosis, medical image analysis, medical education, and related research fields.

As a result of rapid improvement in scanning speeds and resolution of MDCT,
whole-body (or full-body) imaging is now widely available in clinical practice.
CT imaging provides high-resolution image data which precisely delineate the
anatomical structures of the whole body, and it can be regarded as the best imaging
modality for extracting and understanding macroscopic anatomical information.
Since these data may contain a huge and increasing amount of valuable information,
it is becoming difficult for radiologists and surgeons to fully utilize the information
even with currently available computer assistance. In addition, these data will be
potentially useful not only for diagnosis and therapy of the patient to be imaged in
the data but also for a wide range of basic and clinical medicine as well as other
sciences related to the human body if they are accumulated in the database and
processed as population data of human anatomy. Visible Human (VH) data [110]
influenced both the medicine and computer science research fields. VOXEL-MAN
[5, 111] is a digital (or electronic) anatomical atlas generated from VH data and
one of the most successful applications of VH data. Figure 1.12 shows VH data
processing (Fig. 1.12a) and typical visualizations of VOXEL-MAN (Fig. 1.12b, c).
The resolution of current CT data is high enough to regard anatomical identification

mailto:yoshi@is.naist.jp
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Fig. 1.12 VOXEL-MAN 3D digital atlas reconstructed from Visible Human (VH) data. (a) VH
data analysis (Ref. [111]). (b) Digital (or electronic) 3D anatomical atlas. (c) 3D reconstruction of
the vasculature, bones, chest, abdomen, and pelvis

in CT data as “virtual” dissection of the human body, similar to VOXEL-MAN
generated from VH data. Therefore, development of methodologies for automated
identification of the whole-body CT data is a key issue for fully utilizing potential
information inherent in the whole-body CT data.

Whole-body imaging has influenced radiological diagnosis. In early studies,
trade-offs between advantages and disadvantages of whole-body CT screening of
healthy individuals have been discussed, and some criticisms have been made
because of the radiation dose and limited real benefits [112]. However, in popula-
tions with illnesses and a higher pretest likelihood of positive findings, whole-body
CT combined with PET is often used for tumor staging [113]. Whole-body PET/CT
is now recognized as a useful modality to find unexpected cancers for patients in
clinical practice. Apart from cancer diagnosis, whole-body CT has been suggested
for serious trauma patients [114]. Whole-body diffusion MRI, which does not
involve any radiation, has also been shown to be potentially useful for tumor staging
[115] and nerve imaging [116]. More recently, from the technical point of view, dose
reduction is becoming possible through innovations in CT reconstruction algorithms
[117] and rapid reduction of computational cost in recent years. Therefore, in the
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Fig. 1.13 Fully automated segmentation and anatomical identification of whole-body non-
contrast CT data. (a) Original CT image. (b) Landmarks. (c) Chest, abdomen, and pelvis. (d)
Muscles. (e) Skeletal system

long run, whole-body imaging will become more advantageous, while disadvan-
tages will decrease.

Whole-body imaging is becoming more widespread and opens new research
opportunities for the medical image processing field. The concept of multi-organ
multi-disease CAD was tested by a Japanese nationwide project [47], which also
provided a strong motivation for whole-body image analysis. The importance
to computational anatomy is that this involves whole-body 3D data of a large
population, rather than of a single subject, such as VOXEL-MAN. Computational
anatomy models, which represent intersubject variability of anatomical structures,
are systematically constructed from population data, as shown in Fig. 1.13.

The computer vision research field has already developed key technologies for
modeling and recognizing anatomical structures from images. In contrast to medical
image analysis, which mainly analyzes 3D images inside the body, computer vision
deals with outer appearances of persons in addition to other real-world objects. Typi-
cal anatomical structures (or parts of the human body) addressed by computer vision
include faces, hands, and body motion. Eigenface [118], ASMs [87], and AAMs
were typical approaches developed in computer vision. They initially addressed 2D
images and then were extended to 3D domains. The morphable face model [119]
is one of these extensions and represents intersubject variability of 3D shape of
the human face. Similarly, 3D shapes and image intensity distributions of organs
and anatomical structures, such as the lung, liver, and pelvis, are modeled by 3D
versions of ASMs, SSMs, and AAMs [93]. These technologies will also be essential
for whole-body modeling. Although previous approaches assumed single-structure
modeling, the body consists of various types of structures, such as the parenchymal
organs, vessels, lymphatic system, musculoskeletal system, and nerves, which are
interrelated with each other. These structures may be well-described by using
different shape modeling schemes. The challenges of whole-body computational
anatomy models include the problem of multi-structure modeling of the different
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types of anatomical structures. It also should be congruent with the discipline of
anatomy which has been established for several hundred years. In this book, these
efforts will be described.

Education of medical students is one of the important applications of whole-
body imaging. As described before, digital or online atlases of the whole body,
such as VOXEL-MAN, are now widely available. Furthermore, whole-body autopsy
imaging realizes combined virtual and real cadaver dissection. Several papers
have evaluated the usefulness of pre-dissection autopsy imaging in the cadaver
dissection course in anatomy education [120, 121]. Automated segmentation and
anatomical identification of cadaver CT data will enhance the usefulness of
pre-dissection autopsy imaging. While conventional digital atlases represent one
subject, computational anatomy models typically represent intersubject variability
in addition to average shapes. Another potential benefit for education will be to
use whole-body parametric computational anatomy modeling, which will generate
an individual anatomy having arbitrary height, weight, and variable organ shapes
while maintaining consistent relations among anatomical structures. These models
will be effective for learning not only typical anatomy but also its variability.

The Physiome is an emerging project for comprehensive modeling of the human
body from the aspect of physiology [122]. One of the goals of the Physiome will be
patient-specific multi-scale simulations of the whole body to predict patient function
after treatment to optimize treatment planning. Whole-body imaging will provide
patient-specific anatomy required for multi-scale simulation as aimed at in the
Physiome project. In the musculoskeletal system, whole-body analysis is effective
in assessing human movement even if the patient has a problem in a specific joint.
Patient-specific biomechanical simulations of the whole musculoskeletal system
will be meaningful for preoperative prediction of postoperative patient function.
Figure 1.14 shows anatomy modeling in OpenSim [123], one of several well-
developed platforms for musculoskeletal analysis. As another example, simulation
should be performed for the entire cardiovascular and circulatory system [124].
These simulations currently require huge computational power. However, consid-
ering rapid reduction of computing cost, the problem will not be permanent. To

Fig. 1.14 OpenSim platform for subject-specific musculoskeletal simulation (Ref. [123]). (a)
Anatomy modeling. (b) Simulation
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realize these scenarios in clinical practice, patient-specific anatomical models need
to be reconstructed with sufficient accuracy and a minimum amount of burdens for
the medical staff. Therefore, patient-specific modeling from whole-body imaging
and other sensory data is regarded as an important issue in the Physiome project.

Whole-body imaging plays an important role in human anatomy modeling for
simulations of radiation dosimetry and radio-frequency wave propagation. Several
voxel and surface models were developed for this purpose [125–127]. More recently,
a whole-body statistical shape model was used to perform simulations of types of
the human body [128]. Further improvement of whole-body computational anatomy
models will contribute to more accurate, systematic, and comprehensive dosimetry
simulations.

Impacts of whole-body imaging on several domains were described, including
radiological diagnosis, medical image analysis, simulations for predictive medicine,
and dosimetry simulations. Initially, cost and radiation dose were considered to be
disadvantageous for clinical practice. However, cost and radiation dose were able to
be reduced as a result of technological developments and improvements. Therefore,
whole-body imaging will play an increasing role on simulations related to the human
body as well as radiological diagnosis. Developments in whole-body computational
anatomy and its application to subject-specific anatomy modeling will be a key issue
to fully utilize whole-body image data.

1.3.2 Toward Complete Medical Image Understanding

Yoshitaka Masutani
Faculty of Information Science, Hiroshima City University, Hiroshima, 731-3194,
Japan
e-mail: masutani@hiroshima-cu.ac.jp

Before the new discipline of “computational anatomy” emerged, medical image
understanding is central to medical imaging research. Most research has been aimed
at recognition of anatomical (and/or pathological) objects in medical images, that
is, image segmentation. As introduced later in this book, an array of techniques
has been developed. Medical image segmentation research is generally targeted
to specific organs such as the brain, lung, and liver, while several attempts at
simultaneous segmentation of multiple organs have been performed. Also in some
approaches, segmentation results of other organs are utilized to yield more reliable
extraction of main target. However, the rest of the image, outside of the organ(s) of
interest, is neglected.

By contrast, “complete medical image understanding” involves the extraction of
all the data from organs and tissues within given medical images. The motivation for
complete understanding is based on maximization of information extraction from
each clinical dataset. As radiologists are always required to read the entire image
(for instance, detection of bone metastasis in the spine is expected while reading a

mailto:masutani@hiroshima-cu.ac.jp
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Fig. 1.15 Anatomical classification: organ level (macro) to cell level (micro) (Ref. [131])

chest X-ray), computational understanding also needs to cover the entire area while,
at the same time, not devoting attention to harmless findings or “incidentalomas.”

1. Classification Completeness

Anatomical objects have been classified into vast classes of objects from organ
level to cell level (Fig. 1.15). However, when we introduce the notion of classes to
medical image understanding, the feasibility of classification strongly depends on
the spatial resolution of a given image. To achieve true completeness in classification
by covering all classes, almost infinite image resolution might be required in each
image acquisition. This is almost impossible in clinical situations, and therefore, we
need a practical solution, which is discussed later.

2. Spatial Completeness

This is quite simple. In terms of the minimum unit of medical images, voxel,
there must be no voxel unclassified. In other words, all the voxels in a given image
must be anatomically labeled (exhaustive labeling) according to the anatomical
classification including surrounding air and even artificial objects such as cannulas
or catheters. Considering the partial volume effect, a single voxel can be a mixture of
several anatomical structures, and therefore, multiple labels may need to be assigned
to a single voxel.
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3. Completeness as Correctness

As well as conventional image understanding including partial understanding of
medical images, the analysis results from complete understanding of the scheme
must be correct. That is, the anatomical label(s) must be assigned to every voxel
without errors. However, the correctness is strongly dependent on the classifications
used for anatomical labeling.

An important characteristic in classification of anatomical objects is that there
are hierarchical structures of the classes. For instance, the liver can be recognized
on several levels such as the entire liver, segments defined by Couinaud [129, 130],
tissues, and cells. Such levels of detail required in medical image understanding may
depend on the purposes, which are also restricted by spatial resolution of images.

Basically, the stance of complete medical image understanding is to make the
maximum effort to classify in as much detail as possible. However, considering the
computing time cost in clinical situations, a practical level as far as matching the
needs can be chosen. As a matter of fact, it should be achieved by the balance of
maximum detail of the classification and the correctness of the results. For example,
if we pursue only the correctness, the classification can be the two classes of “human
body” and “air (rest of the human body).” In most cases, this classification is
nonsense for any diagnostic or therapeutic purposes. Instead, cell-level classification
in CT images with a spatial resolution of submillimeter level is not feasible. In
other words, the classification completeness should be defined adaptively depending
on several factors, such as imaging modality, image resolution, purpose, and
computational cost permissible to the purpose. This is an important discussion for
practical and application-oriented aspects of computational anatomy.

The remainder of this book details complete medical image understanding,
including how to achieve the results.

1.4 Book Organization

Yoshitaka Masutani
Faculty of Information Science, Hiroshima City University, Hiroshima, 731-3194,
Japan
e-mail: masutani@hiroshima-cu.ac.jp

Computational anatomy is related to a wide variety of established disciplines
from applied mathematics to computer science, to medical sciences. To learn
the new discipline systematically in association with the related and established
disciplines is not a simple task. In this book, the authors tried to refer to established
disciplines so that readers are not required to prepare with such backgrounds.
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Following this chapter describing the introduction of the new discipline of
computational anatomy, the rest of this book is organized as follows:

Chapter 2: Fundamental Theories and Techniques
Chapter 3: Computational Anatomy Model-Based Medical Image Understanding
Chapter 4: Applied Technologies and Systems
Chapter 5: Perspectives

First, the fundamentals of theories and techniques related to computational
anatomy are systematically presented in Chap. 2. The theoretical fundamentals
cover basic and applied mathematics and statistics, while fundamental techniques
include pattern recognition, computer vision, and computer vision applied to
medical image understanding. This chapter can be a catalogue for the state-of-
the-art techniques for medical image analysis. The essence of the fundamentals
is described in minimal detail with references for further details. In addition, we
tried to describe anatomical structures from a mathematical viewpoint, including
anomaly as the discrete diversity of the structure.

In Chap. 3, based on the fundamental techniques introduced in Chap. 2, concrete
technical examples of pattern recognition and image segmentation for each structure
of regional anatomy are described in detail, from the brain to the digestive system
and from the skeleton to the abdominal organs. In this chapter, readers may
appreciate that many techniques are proposed for each anatomical structure. Next,
in addition to the theories and techniques, instances of applied systems useful
to clinical application are also presented in the chapter, which covers anatomy-
guided systems of diagnostic support and surgical navigation in Chap. 4. Finally,
perspectives on the new field of computational anatomy are discussed in Chap. 5,
covering future directions of the new discipline.
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Chapter 2
Fundamental Theories and Techniques

Hidekata Hontani, Yasushi Hirano, Xiao Dong, Akinobu Shimizu,
and Shohei Hanaoka

Abstract In this section, fundamental theories and techniques for understanding
computational anatomy are described. First, the mathematical foundations of a
signal processing and of statistics are discussed. Signal processing is the basis of
the image processing required for extracting local image features that are useful for
the identification of the organ regions in medical images, which is one of the most
important tasks in CA. A knowledge of statistics is needed for understanding the
statistical shape models (SSMs) of the organs and the registration of the models
to given medical images, which is one of the most basic techniques used for
the organ region identification. Second, model representations of the organs, e.g.,
point distribution models (PDMs), medial representations (m-reps), and nonuniform
rational basis splines (NURBS), are described. Different models, e.g., a point
distribution model (PDM), a medial representation (m-rep), or nonuniform rational
basis splines (NURBS), can be employed for representing a target organ, and a
region of a target organ in a given image can be identified by registering the
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employed model to the image: Several techniques for the model registration are also
discussed in this chapter. The performance of the organ region identification can
change depending on the employed representation and on the employed registration
technique. Finally, the difficulties posed by multiple organ registration and the
handling of anatomical anomalies are considered.

Keywords Image segmentation • Model registration • Image registration • Sta-
tistical shape model • Point distribution model

2.1 From Anatomy to Computational Anatomy

Hidekata Hontani and Yasushi Hirano

2.1.1 Introduction

Today, the dissection of human bodies rarely brings new knowledge of human
anatomy but is required for observing the anatomical structures of each patient.
One can observe the structures without dissecting the patient body by observing
detailed medical images. Imaging plays a very important role in medicine because
it enables the observation of the form and structure of the organs specific to each
living patient. For accurate assessment, one needs to identify the boundaries of the
organs and doctors, e.g., radiologists, identify the organ boundaries in images based
on the knowledge of the anatomy of human body, and imaginarily reconstruct the
3D boundaries of the organs in their heads. The imaginary reconstruction of the
organs, though, is not useful for obtaining geometric information of the organs and
for computer-aided diagnosis (CAD) systems or other clinical applications. One
needs to explicitly describe the 3D boundaries of the organs, but it is prohibitively
time consuming to describe the boundaries of the organs by manually labeling organ
regions in given images.

Computational anatomy (CA) is the study of computational methodologies for
medical image analysis, and one of the main purposes of the analysis is to accurately
and automatically segment all of the organs included in the images: The goal
is to label every voxel in the images with the name of the organ to which the
corresponding voxel belongs. For every modality with known spatial resolution, one
can generate a set of labels of the organs; one should identify their regions in the
images. Let the label be denoted by li (i D 1; 2; � � � ;M), and let the set be denoted
by L D fliji D 1; 2; � � � ;Mg where M denotes the total number of the labels. Given
a medical image and the set of the labels, L, it is required to label voxel as the name
of the corresponding organ, li. Labeling the organs in this way and identifying the
boundaries of the organs require prior knowledge of human anatomy and of image
patterns that are needed for accurate segmentation. Computational models of the
organs supply the prior knowledge for the segmentation. In the reminder of this
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section, some important topics fundamental in the medical image segmentation are
described.

2.1.2 Simple Examples

In this subsection, the outline of one of the most fundamental methods for the
segmentation of the organs in medical images, active shape model (ASM) [1], is
described along with other techniques.

2.1.2.1 Outline of ASM

The ASM segments a target organ region in a given image by registering a statistical
shape model (SSM) of the boundary of the target organ to the given image. A SSM
parametrically represents the statistical variety of the shapes of the boundary of
the target organ, and the model is registered to the given image by estimating the
values of the parameters of the SSM. One can divide the ASM algorithm into two
steps: (1) construction of a SSM and (2) registration of the SSM. The basics of
outlining the ASM are similar to those of many other methods for medical image
segmentation. Figure 2.1 shows the process of (1) construction of a SSM and of (2)
of registration.

Fig. 2.1 Flow of the construction of a SSM and of its registration to given images
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1. Cootes and Taylor [2] first employed a point distribution model (PDM) to
represent the boundary of a target. The boundary of the target organ in each
set of training images is manually labeled, and a set of corresponding points is
distributed on each of the labeled boundaries. The SSM of the PDM represents
the probability distribution of the coordinates of the points. The statistical model
has shape parameters that are the statistical random variables, and one can vary
the shape of the model by changing the values of these parameters.

2. Registration of SSM
The objective of ASM is to determine the boundary of a target region in a
new given image by registering the constructed SSM to the image. The SSM is
registered by estimating appropriate values of the parameters of the SSM. When
the SSM is registered accurately, each point on the surface represented by the
SSM is located on the voxels around which the local image pattern has some
features specific to the boundary of the target organ.

2.1.2.2 Required Techniques

SSM construction and registration require details of the following issues:

Shape representation

The method of representation of a target to be extracted from given images needs
to be determined. In addition to a point distribution model (PDM) used in [2],
other methods include medial representations (m-reps) [3], spherical harmonics
(SPHARM) boundary description [4], nonuniform rational basis splines (NURBS)
[5, 6], or a set of characterizing shape descriptors [7]. For example, the m-reps
represent a target with its medial lines and the diameters on each point of the medial
lines. Representation of objects is described in Sect. 2.3.2.

Construction of Statistical Shape Model

For the construction of SSMs using training images, each of the labeled regions or
their boundaries is represented with one of the above methods. For example, each of
the boundaries of the labeled regions can be represented using a PDM. It is necessary
to determine (1) a mathematical model to describe the space and variability of
anatomical structures, (2) a computable distance metric to measure the difference
between shapes, and (3) statistical analysis tools for the shapes. Representation
of objects is described further in Sect. 2.3.2. A diffeomorphism-based framework
provides one of the most mathematically fundamental procedures for handling these
issues, as will be described in Sect. 2.3.4: Using this framework allows generation
of an invertible function that maps one boundary surface of an organ in one training
image to another surface in a different training image. Such correspondence is vital
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Fig. 2.2 Different approaches for the registration between two shapes

to SSM construction, and many strategies other than the diffeomorphism-based
framework have been proposed for making this one-to-one correspondence. These
strategies can be classified into five categories (see also Fig. 2.2).

1. Mesh-to-Mesh Registration
A straightforward method to establish correspondence between two surfaces is to
correspond points distributed on the surfaces directory. In mesh-to-mesh strategy,
each of the boundaries is first represented using a mesh (or a set of points), and
then the meshes are registered together for the correspondence generation. For
example, a standard rigid matching algorithm such as the iterative closest point
(ICP) algorithm [8] or the softassign Procrustes [9] would be applicable. Given
two surfaces, one of the surfaces is transformed to match the other. Once the
two surfaces are matched, it is easy to generate a set of pairs of corresponding
points. Both methods accept different numbers of initial points distributed on the
surfaces, and the optimal similarity transformation from one surface to the other
surface is defined. Nonrigid registration of shapes can also be utilized (see, e.g.,
[10, 11]).

2. Mesh-to-Volume registration
In this strategy, one surface of an organ in one training image is represented
by a mesh, and it is registered not to a surface in other training image but to
a labeled organ region in other training image [12–15], where the voxel values
are equal to one (1) in the target regions and are equal to zero outside of the
regions. The key issue in this strategy is robustness of the deformable template
algorithm. Techniques to ensure this robustness include the multi-resolution
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approach [16], gradient vector flow [13], and regularization of internal energies
[12, 14, 15]. Dam et al. proposed a bootstrap approach to segment learning
data and to iteratively refine correspondences [17]. For all these approaches to
mesh-to-volume registration, homeomorphic mapping between the input shapes
is guaranteed unless the template does not fold itself in the adaptation process.

3. Volume-to-Volume Registration
Correspondence between the boundaries can be achieved by nonrigidly register-
ing the images. In this strategy, a volumetric atlas or an average of the training
images is first computed. Here, the average is defined as an image that has the
smallest bias toward any specific training image. The computed average is then
utilized to generate the correspondence. Frangi et al. describe a method to warp
the atlas to binary training volumes using multi-resolution B-spline deformation
[18]. Rueckert et al. describe a method that constructs a statistical model of the
deformation fields [19].

4. Volume-to-Volume Registration
Correspondence between the boundaries can be achieved by nonrigidly register-
ing the images. In this strategy, a volumetric atlas or an average of the training
images is first computed. Here, the average is defined as an image that has the
smallest bias toward any specific training image. The computed average is then
utilized to generate the correspondence. Frangi et al. describe a method to warp
the atlas to binary training volumes using multi-resolution B-spline deformation
[18]. Rueckert et al. describe a method that constructs a statistical model of the
deformation fields [19].

5. Parameterization-to-Parameterization Registration
In this strategy, the boundary surfaces are represented by meshes, and they are not
registered together but are registered to one base domain. Most of these methods
select a sphere as the base domain. A method proposed by Kelemen et al. uses a
spherical harmonics mapping (SPHARM) for the registration to the sphere [20].
In a method proposed by Brett and Taylor [21], all shapes are mapped to 2D disks
that are then aligned to generate the correspondence. These methods guarantee
a diffeomorphism among all datasets, but it is difficult for users to control the
resultant correspondences. Other methods have been proposed that control the
parameterization through a small set of known or assumed correspondences [22–
26].

6. Population-Based Optimization
As mentioned above, it is not easy to define good correspondence. Kotcheff and
Taylor [27] proposed a method that generates the correspondences so that the
resultant SSM has good properties: The authors defined the compactness of the
resultant model as an index of goodness. The compactness is evaluated through
the determinant of the covariance matrix. Although the method improves the
performance, the objective function minimized when the corresponding points
generated have no theoretical foundation. Using the same strategy, Davies et
al. proposed an objective function defined with the minimum description length
[28]. This objective function has a theoretical foundation, but the calculation cost
is high. Thodberg describes a simplified version of the cost function [29].
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Local Image Feature Detection

In ASM [30], edge points, at which the voxel values rapidly change, are detected,
and the model surface is deformed so that points on the surface are located at the
edges. Edges, ridges, or other local image features specific to the points on the target
boundaries must be detected in given images to enable accurate model-to-image
registration. Some details of fundamental operations for the image feature detection
will be described in Sect. 2.2.1.

Statistical Inference

Given a new image, one can register the SSM to the image by inferring the values
of the parameters of the SSM: One can deform the model by changing the values
of the parameters, and one can register the model by finding appropriate values of
the parameters that describe the shape of the target organ in the given image. One
of the most fundamental approaches for the inference of the parameter values is to
construct an objective function of the parameters in a statistical framework and to
compute the optimal parameter values that minimize (or maximize) the objective
function.

2.2 Mathematical Foundation

Hidekata Hontani and Yasushi Hirano

2.2.1 Signal Processing

Knowledge of signal processing provides a mathematical foundation for describing
the relationships between physical objects and (image) data obtained by measuring
the objects by (imaging) sensors.

2.2.1.1 Digital Images

In many cases, a medical image is defined over a bounded three-dimensional
rectangular lattice. Let a three-vector X D .X1;X2;X3/T denote a location in a real
three-dimensional bounded space, ˝ 2 R

3, and let a physical quantity distribution
in ˝ measured by an imaging system be represented by a function, f .X/: R3 7! R.
For example, one uses a computed tomography (CT) scanner to measure physical
quantities, f .X/, which, in the case of CT, are the degree of attenuation of the X-ray
beam at each location, X. In general, an image is a set of measurements obtained
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at rectangular lattice points in ˝ . Let the coordinates of each of the lattice points
be denoted by OX D Œ�1x1;�2x2;�3x3�T , where �s (s D 1; 2; 3) is the regular
interval between two neighboring lattice points along the s-th axis line and where
xs (s D 1; 2; 3) is an integer. Let x D Œx1; x2; x3�T . Then an (ideal) imaging system
captures an image, I.x/, such that

I.x/ / f . OX/: (2.1)

Each point represented by the tuple, x, is called a voxel. Let us assume that xs is
bounded as 1 � xs � Ws and that the image size is W1 �W2 �W3. Concatenating
all values, I.x/, of all voxels into one column, one obtains a D-vector, I, which is
widely used for describing an image, where D D W1 �W2 �W3.

2.2.1.2 Linear Operation

Let OŒ f � denote an operator applied to a signal f .u/ of a d-dimensional variable,
u D Œu1; u2; : : : ; ud�T . It is said to be a linear operator if it satisfies the following
conditions for any pair of signals, f .u/ and g.u/:

OŒ f .u/C g.u/� D OŒ f .u/�C OŒg.u/�; (2.2)

and

OŒaf .u/� D aOŒ f .u/�; (2.3)

where a is a scalar [30].

2.2.1.3 Convolution

Convolution between a target function and a filter function represents a linear
filtering operation. Let f .u/ denote a target (input) function and let g.u/ be functions
defined over a three-dimensional space, where u 2 R

d, and f .�/ and g.�/ are real
functions: Rd 7! R, the convolution of f .u/ and g.u/ is defined as follows:

h.x/ D f .x/ � g.x/ D
Z 1

�1
f .x1 � s1; x2 � s2; : : : ; xd � sd/g.s1; s2; : : : ; sd/ds1ds2 : : : dsD:

(2.4)

The convolution defined above is linear because it satisfies Eqs. (2.2) and (2.3).
Let an image be denoted by I.x1; x2; x3/ (1 � xi � Wi, i D 1; 2; 3) and let a filter

be denoted by G.x1; x2; x3/, where G./ is a real function: Z3 7! R. Assuming that
the value of the filter G.x1; x2; x3/ is equal to zero when x D .x1; x2; x3/ is outside
of a bounded region, V=f.x1; x2; x3/T j�Vs � xs � Vs; s D 1; 2; 3g. Then, following
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Eq. (2.4), the convolution of the image and the filter is defined as

H.x1; x2; x3/ D
V1X

i1D�V1

V2X
i2D�V2

V3X
i3D�V3

I.x1 � i1; x2 � i2; x3 � i3/G.i1; i2; i3/: (2.5)

For computing H.x/ in (2.4) at all voxels in the image, one needs values of voxels
outside of the image regions. Let R D f.x1; x2; x3/T j1 � xs � Ws; s D 1; 2; 3g
denote the domain of the image. The outside of R can be filled with zeros or
I.xout/ D I.x�

in/ can be set, where xout … R and x�
in denotes the inside voxel closest

to xout.

2.2.1.4 Cross Correlation

Let us assume that x D .x1; x2; : : : ; xd/T 2 R
d, and let us assume that f .x/ and g.x/

are real functions, Rd 7! R. Cross correlation between the two functions, f .x/ and
g.x/, is used for measuring the similarity of their waveforms and is defined as

c.x/ D f .x/ ? g.x/ D
Z C1

�1
f .x1 C s1; x2 C s2; : : : ; xd C sd/g.s1; s2; : : : ; sd/ds1ds2 : : : dsd:

(2.6)

The cross correlation is linear because it satisfies Eqs. (2.2) and (2.3). Comparing
with Eq. (2.4), it should be noted that the sign of si in the arguments of f ./ on the
right side is different, obtaining f .x/ � g.x/ D f .x/ ? g0.x/ if g0.x/ D g.�x/.

Let an image be denoted by I.x1; x2; x3/ (1 � xi � Wi, i D 1; 2; 3) and let a filter
be denoted by G.x1; x2; x3/, where G./ is a real function: Z3 7! R. Assuming that
the value of the filter G.x1; x2; x3/ is equal to zero when x D .x1; x2; x3/ is outside
of a bounded region, V=f.x1; x2; x3/T j � Vs � xs � Vs; s D 1; 2; 3g. Then, the cross
correlation of I./ and G./ is defined as follows:

C.x/ D I.x/ ? G.x/ D
V1X

i1D�V1

V2X
i2D�V2

V3X
i3D�V3

I.x1 C i1; x2 C i2; x3 C i3/G.i1; i2; i3/:

(2.7)

Let R� denote a local region around x� D .x�
1 ; x

�
2 ; x

�
3 /

T in the image domain
where x�

s � Vs � xs � xs C Vs (s D 1; 2; 3), and let the part of the image in R�
be denoted by a V1 � V2 � V3-vector, I�, which is obtained by concatenating the
voxel values, I.x/, where x 2 R�. Let G.x/ be denoted by a V1 � V2 � V3-vector, G,
which are obtained by concatenating the voxel values, G.x/, where �Vs � xs � Vs

(s D 1; 2; 3). Then the value of the cross correlation between I.x/ and G.x/ is
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nothing but the inner product between I� and G:

C.x�/ D I��G D .I�/TG D
V1X

i1D�V1

V2X
i2D�V2

V3X
i3D�V3

I.x�
1Ci1; x�

2Ci2; x�
3Ci3/G.i1; i2; i3/:

(2.8)

A normalized cross correlation,Cnorm.x�/, between I� and G is widely employed
for matching a template G to the given image I and is typically defined as

Cnorm.x�/ D I� � NI�

�I
� G �

NG
�G

; (2.9)

where NI�
and NG are the averages of I� and G, respectively, and �I and �G are

the standard deviations of them, respectively. When the template and the local
appearance are more similar, the larger value of the normalized cross correlation
is obtained. It should be noted that the value of Cnorm is invariant against a linear
change of the brightness of the image: I.x/ aI.x/, where a > 0.

2.2.1.5 Fourier Series Expansion

The Fourier series expansion is used for analyzing the frequencies of given signals.
Let x denote a D-vector where x 2 R

D and let f .x/ (RD 7! R) denote an absolutely
integrable real function that satisfies

Z
jf .x/j2dx <1: (2.10)

then, the Fourier transform of the function, F Œ f �, is defined as

F Œ f � D F.!/ D
Z

f .x/ exp.�j!Tx/dx; (2.11)

where ! D .!1; !2; : : : ; !D/
T denotes the frequencies along the axes. The original

signal, f .x/, can be recovered from F.!/ by the inverse Fourier transformation that
is defined as

f .x/ D F�1ŒF.!/� D 1

.2�/D

Z
F.!/ exp. j!Tx/d!: (2.12)

For simplicity, let us assume here that D D 1. Then, the Fourier transformation
of f .x/ is denoted by F Œ f � D F.!/, and the transformation is linear because it
satisfies (2.2) and (2.3). The Fourier transformation has the following properties.
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1. The Fourier transformation of the derivative of a function, f .x/, is given as
follows:

F

�
df

dx

�
D .�j!/F Œ f �: (2.13)

More generally,

F

�
dnf

dxn

�
D .�j!/nF Œ f �: (2.14)

As shown in Eq. (2.13), by differentiating a function, the Fourier coefficient,
F Œ f �, is multiplied by j!, and the components of higher frequencies are more
enhanced. A function, f .x/, can be differentiated by computing the inverse
Fourier transformation of �j!F.!/:

df

dx
D F�1Œ�j!F.!/�: (2.15)

2. The Fourier transformation of f .x/� g.x/, where f .x/ and g.x/ are real functions,
is given by the product of their Fourier transformations:

F Œ f � g� D F Œ f � �F Œg� D F.!/G.!/: (2.16)

Analogously, the Fourier transformation of the multiplication of two functions,
f .x/g.x/, is given by the convolution between the corresponding two Fourier
transformations:

F Œ fg� D F.!/ � G.!/; (2.17)

where F.!/ and G.!/ are the Fourier transformations of f .x/ and g.x/, respec-
tively.

3. The Fourier transformation of a shifted function is given by rotating the phase of
the Fourier transformation of the original function:

F Œ f .x � x0/� D e�j!x0F.!/: (2.18)

4. The real part of the Fourier transformation corresponds to the symmetric
component of an input function, and the imaginary one corresponds to the
antisymmetric component of the function. A real function is called symmetric
if f .x/ D f .�x/ and is called antisymmetric if f .x/ D �f .�x/.
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Let the real part and the imaginary part of the Fourier transformation, F.!/,
be denoted by ReŒF.!/� and ImŒF.!/�, respectively, where

ReŒF.!/� D
Z

f .x/ cos.!x/dx;

ImŒF.!/� D �j
Z

f .x/ sin.!x/dx;

F.!/ D ReŒF.!/�C ImŒF.!/�: (2.19)

It should be noted that cos.!x/ is symmetric and sin.!x/ is antisymmetric and
that the inverse Fourier transformations of ReŒF.!/� and of ImŒF.!/� generate a
symmetric real function and an antisymmetric real one, respectively. Let

fsymm.x/ D F�1ŒReŒF.!/��; (2.20)

fanti.x/ D F�1ŒImŒF.!/��:

Then fsymm.x/ is the symmetric real function and fanti.x/ is the antisymmetric real
function. Following Eq. (2.19) allows a unique decomposition of a target real
function, f .x/, into its symmetric and antisymmetric components as follows:

f .x/ D fsymm.x/C fanti.x/: (2.21)

The discrete Fourier transformation (DFT) is used when a given target function is
discrete and its domain is finite. Let u D .u1; u2; : : : ; uD/T denote a D-vector where
all components are integers and are bounded as 0 � us � W � 1 (s D 1; 2; : : : ;D),
and let a target real function defined over u be denoted by f .u/, where f .u/: ZD 7!
R. Then, the DFT of f .u/ is defined as follows:

F Œ f � D F.n/ D
W�1X
u1D0

W�1X
u2D0
� � �

W�1X
uDD0

f .u/ exp

�
�j2�u

Tn
W

�
: (2.22)

Here, n D .n1; n2; : : : ; nD/T is a D-vector of which all components are integer,
where ns D 0; 1; : : : ;W�1, and the frequency along the s-th axis,!s, is proportional
to ns and is given as !s D ns=W voxel�1. The inverse DFT (IDFT) can reconstruct
the input signal from F.n/ as follows:

F�1ŒF.n/� D f .u/ D 1

WD

W�1X
n1D0

W�1X
n2D0
� � �

W�1X
nDD0

F.n/ exp

�
j
2�uTn
W

�
: (2.23)

As shown in Eq. (2.22), the DFT is an inner product between a given discrete
function and a discretized complex sinusoidal function. For simplicity, assume that
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D D 1. Then the DFT is written as

F Œ f � D F.n/ D
W�1X
uD0

f .u/ exp

�
�j2�un

W

�
; (2.24)

where u D 0; 1; : : : ;W � 1 and n D 0; 1; : : : ;W � 1. Let a W-vector,
f , denote the input function, where f D Œ f .0/; f .1/; : : : ; f .W � 1/�T , and
let a W-vector, c, denote the discretized sinusoidal function, where c D
Œe�2� jn0=W ; e�2� jn1=W ; : : : ; e�2� jn.W�1/=W �T . Then F Œ f � D F.n/ D f � c D fTc.

2.2.1.6 Differentiation of Discrete Signals

A finite difference operator is applied to a given discrete function to compute
approximately the differential coefficients of a continuous function represented by
the discrete given function. Let a continuous and smooth function be denoted by
f .x/ where x 2 R, and let fn D f .n�/ (n 2 Z) denote a discrete function, where
� > 0 is a sampling interval.

The Taylor expansion of f .x/ is given as follows:

f .xC �/ D f .x/C @f

@x
� CO.�2/; (2.25)

where the positive real number, �, denotes some small perturbation.

@f

@x
D f .xC �/ � f .x/

�
C O.�/: (2.26)

Assume that x D n�. When � D �, the following difference operation is obtained:

@f

@x
.x/ ' f .xC�/� f .x/

�
D fnC1 � fn: (2.27)

Let a discrete filter be denoted by gn such that

gn D
8<
:
C1; n D �1;
�1; n D 0;
0; otherwise:

(2.28)

Then, Eq. (2.27) is a convolution between fn and gn:

@f .x/

@x
' fn � gn: (2.29)
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A different operation for the differentiation can be obtained as follows:

f .xC �/ D f .x/C @f

@x
� C 1

2

@2f

@x2
�2 CO.�3/; (2.30)

f .x � �/ D f .x/ � @f
@x
� C 1

2

@2f

@x2
�2 C O.�3/: (2.31)

Computing Eq. (2.30) minus Eq. (2.31) obtains

@f

@x
D f .xC �/ � f .x � �/

2�
C O.�2/: (2.32)

Substituting � D � obtains

@f

@x
.X/ ' fnC1 � fn�1

2
: (2.33)

The above equation can be rewritten as

@f .x/

@x
' fn � g0

n; (2.34)

where

g0
n D

8<
:
C1=2; n D �1;
�1=2; n D C1;

0; otherwise:
(2.35)

Adding Eqs. (2.30)–(2.31) obtains an operator for approximating the second deriva-
tive:

d2f

dx2
.X/ ' fn�1 � f0 C fnC1: (2.36)

As shown in (2.1), an image, I.x/, is a discrete signal obtained by measuring a
spatial distribution of some physical quantity, f .X/, at the lattice points. The spatial
differential coefficients of f .X/ can be computed approximately by convolving the
given image, I.x/, with a filter, g, for computing the finite differentiation. The finite
differentiation of an image is used for approximately computing differentials, e.g.,
the gradient at each location, and is one of the most important operations in medical
image analysis. The accuracy of the approximation of the finite differentiation
varies depending on the coefficients of the filter. It is known, for example, that one
can approximate the direction of the computed gradient vector more accurately by
applying a consistent filter [31].
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2.2.2 Fundamental Transformations

2.2.2.1 Coordinate Transformation

Let x D Œx1; x2; : : : ; xD�T and y D Œ y1; y2; : : : ; yD�T denote two D-vectors. Their
inner product is defined as

x � y D xTy D
DX
iD1

xiyi: (2.37)

Let a norm of x be defined as

kxk D
vuut DX

iD1
x2i ; (2.38)

and the angle between the directions of x and y be denoted by � . Then, xTy D
kxkkyk cos � . Two vectors, x and y, are said to be orthogonal if � D �=2. The inner
product of xTy is equal to zero if x and y are orthogonal. If kxk D 1, then x is said
to be a unit vector.

A basis of a D-dimensional space is a set of D vectors of which linear
combination can represent any D-vector in the space. Let a basis of D-dimensional
space be denoted by fu1;u2; : : : ;uDg, and let the origin of the space and a point
other than the origin be denoted by O and P, respectively. Let a D-vector, p, denote
the location of the point, P, where p D OP, and assume that the D-vector, p, is
represented by a linear combination such that

p D x1u1 C x2u2 C : : : xDuD: (2.39)

Then, Œx1; x2; : : : ; xD�T is said to be the coordinates of x under the employed basis.
Let a D � D vector that is constructed from the D basis vectors be denoted by U,
where

U D

2
666664
u1 u2 u3 : : : uD

3
777775
; (2.40)

and let x denote a D-vector such that x D Œx1; x2; : : : ; xD�T . Then, (2.39) can be
represented as follows:

p D Ux: (2.41)
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An identical point in the space can be represented by different coordinates if the
basis changes. Let a changed basis be denoted by fv1; v2; : : : ; vDg and let p D
y1v1 C y2v2 C : : : yDvD. Then,

p D Vy; (2.42)

where

V D

2
666664

v1 v2 v3 : : : vD

3
777775
; (2.43)

and y D Œ y1; y2; : : : ; yD�T . The change of the coordinates with respect to the change
of the basis can be computed from the equation, p D Ux D Vy, as follows:

y D V�1Ux D V�1p: (2.44)

It is said to be an orthonormal basis if every basis vector has a unit length and any
two of the basis vectors are orthogonal. Assume that the basis, fv1; v2; : : : ; vDg, is
orthonormal. Then the corresponding matrix, V , is orthonormal and VTV D VVT D
I, where I is a unit matrix, and y D VTUx D VTp. This means the y-th component
of the coordinates, yi, is equal to the inner product of the i-th basis vector and the
target vector.

2.2.2.2 Linear Subspace

Let S denote a set of D-vectors, S D fu1;u2; : : : ;uMg, where ui .i D 1; 2; : : : ;M/
are D-vectors and M is the number of the vectors in S. A span of S is a set of points
that is represented by a linear combination of the vectors included in S as follows:

span.S/ D fa1u1 C a2u2 C : : : aMuMjai 2 R;ui 2 Sg: (2.45)

A span of a basis is the whole space. Let a subset of a basis be denoted by Ssub. Then
span.Ssub/ is a linear subspace, and its dimension is determined by the number of
vectors included in the subset, Ssub.

2.2.2.3 Affine Transformation

A D-dimensional affine transformation is a combination of a linear mapping and a
translation and transfers a target D-vector, x, to a D-vector, y as follows:

y D AxC t; (2.46)
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where A is a D � D matrix and t is a D-vector. The former matrix, A, represents the
linear mapping of a target and the latter vector, t, represents the translation.

A linear mapping, y D OŒx�, satisfies the following conditions:

OŒx1 C x2� D OŒx1�C OŒx2�; (2.47)

OŒax� D aOŒx�; (2.48)

where x1 and x2 are D-vectors and a is a scalar. When the above conditions are
satisfied, then the following condition is also satisfied:

OŒa1u1 C a2u2 C � � � C aMuM� D a1OŒu1�C a2OŒu2�C : : : aMOŒuM�: (2.49)

Let S D fu1;u2; : : : ;uMg and let SO D fOŒu1�;OŒu2�; : : : ;OŒuM�g. Then, linear
mapping maps the linear subspace spanned, span.S/, to the other linear subspace,
span.SO/. A mapping represented as Ax is a linear one: OŒx� D Ax.

Let ei D Œ0; : : : ; 0; 1; 0; : : : ; 0�T , where only the i-th component is one and the
other ones are equal to zero, and let ui D Aei. Then,

U D AI; (2.50)

where

I D

2
666664
e1 e2 e3 : : : eD

3
777775
; and U D

2
666664
u1 u2 u3 : : : uD

3
777775
: (2.51)

Equation (2.50) shows that A D U and that the i-th column of the matrix A is
identical with ui D Aei. Linear mappings Ax preserve the shapes and sizes of targets
if and only if the mapped basis, fAe1;Ae2; : : : ;AeDg, is also an orthonormal one
and such that the mapping consists of rotation mapping and reflection mapping.
The mapping reflects targets when det.A/ < 0 and rotates when det.A/ > 0. The
features of linear mapping can be described more clearly using a singular value
decomposition of A, which will be explained below.

2.2.2.4 Singular Value Decomposition

A singular value decomposition (SVD) is powerful for analyzing matrices and for
analyzing linear mappings. Applying the SVD transforms an M � N real matrix A
into the following form:

A D U˙VT ; (2.52)
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where U is a M � N matrix of which column vectors are unit vectors and are
orthogonal to each other and V is an N � N orthonormal matrix such that

U D

2
666664
u1 u2 u3 : : : uN

3
777775
; and V D

2
666664

v1 v2 v3 : : : vN

3
777775
: (2.53)

Here, ui (i D 1; 2; : : : ;M) is a unit M-vector and uTi uj D 0 if i ¤ j, and vi (i D
1; 2; : : : ;M) is a unit N-vector and vT

i vj D 0 if i ¤ j. It should be noted that
fviji D 1; 2; : : : ;Ng is an orthonormal basis of the N-dimensional space.˙ in (2.52)
is an N � N diagonal matrix,

˙ D

2
6664

�1
�2
: : :

�N

3
7775 ; (2.54)

where the scalars, �i (i D 1; 2; : : : ;N), are called singular values. In the following
equations, it is assumed that the singular values are in decreasing order: �1 � �2 �
� � � � �N .

Let y denote an M-vector generated from an N-vector by a linear mapping such
that

y D Ax; (2.55)

where A is a M�N matrix. Applying the SVD to A, the range of the linear mapping
and of its zero-space can be derived, as will be described below. Substituting A D
U˙VT produces the following equation:

y D U˙VTx: (2.56)

The last two factors, VTx, are transforming the coordinates of x using the orthonor-
mal basis fviji D 1; 2; : : : ;Ng, as described in the Sect. 2.2.2.1. Let the new
coordinates be denoted by a N-vector, z D Œz1; z2; : : : ; zN �T D VTx. Now, the linear
mapping shown in (2.56) is represented as

y D U˙z: (2.57)

Substituting ˙ D diag.�1; �2; : : : ; �N/ and U D Œu1ju2j : : : juN �, (2.57) can be
rewritten as follows:

y D .�1z1/u1 C .�2z2/u2 C � � � C .�NzN/uN : (2.58)
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Let a set of indexes that indicates the singular values of zeros be denoted by Z D
f jjj 2 f1; 2; : : : ;Ng; �j D 0g, and let a set of indexes for nonzero singular values be
denoted by N D f jjj 2 f1; 2; : : : ;Ng; �j ¤ 0g, where Z [ N D f1; 2; : : : ;Ng
and Z \N D �. Then, the M-vectors, uj, that correspond to the nonzero singular
values, j 2 N , determine the domain of the linear map shown in (2.58): for any
input vector, x, the mapped vector, y, that is in the subspace spanned by fujjj 2 N g.
The N-vectors, vk, that correspond to the zero-singular values, k 2 Z , determine
the zero-space of A: the mapped vector, y, is always zero if the input vector, x, is in
a subspace that is spanned by the N-vectors that correspond to the nonzero singular
values, that is, x 2 span.VZ / where VZ D fvsjs 2 Z g. This is because, in (2.58),
�i D 0 for i 2 Z and zi D vT

i x D 0 for i 2 N .

2.2.2.5 Principal Component Analysis

Principal component analysis (PCA) is widely used for constructing a subspace
that approximates a distribution of training data and has a strong relationship
with the SVD mentioned above. Let a set of training data be denoted by D D
fx1; x2; : : : ; xMg where xi .i D 1; 2; : : : ;M/ are D-vectors. Let Nx denote the mean of
xi .i D 1; 2; : : : ;M/ and let an D�D covariance matrix be denoted by˙emp, where

˙cov D 1

M

MX
iD1
.xi � Ox/.x� Ox/T : (2.59)

It is clear that˙cov is a symmetric real matrix. In many cases, the intrinsic dimension
of the distribution of the training data is lower than the dimension of the datum,
D, and the PCA is used to obtain a low-dimensional subset that approximates the
distribution.

In the PCA, a set of D pairs of an eigenvalues and an eigenvector is computed
from the covariance matrix of the training data, ˙cov. Let 	i 2 R (i D 1; 2; : : : ;D)
denote the eigenvalues and let wi .i D 1; 2; : : : ;D/ denote the eigenvectors. It is
known that, given a symmetric real matrix, ˙cov, there exist D pairs of .	i;wi/ that
satisfy the following equation:

˙covwi D 	iwi; (2.60)

and that a set of the eigenvectors, fwiji D 1; 2; : : : ;Dg, is an orthonormal basis of a
D dimensional space: kwik D 1 and wT

i wj D 0 if i ¤ j. Assume that the eigenvalues
are in decreasing order, 	1 � 	2 � � � � � 	D, and let a set of the K largest (K � D)
eigenvalues be denoted by WK D fwij1 � i � Kg.

When approximating the training data using a subspace,˘ , every training datum,
xi, is projected to the subspace, and the original data are approximated the projected
data. Let Qxi denote the projected data, and let the approximation error, E.˘/, be
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defined as follows:

E.˘/ D
MX
iD1
kxi � Qxik2: (2.61)

Then, under a condition that the dimension of a subspace is fixed to K, the subspace
that minimizes E.˘/ is span.WK/, and the unit vectors, wi (i D 1; 2; : : : ;K) that
span the subspace are called the principal components of the distribution of the
training data. The projected data, Qxi, can be represented as

Qxi D z1w1 C z2ww C � � � C zKwK ; (2.62)

where zi D Œz1; z2; : : : ; zK �T is the coordinate of Qxi described based on the basis,
SK D fw1;w2; : : : ;wKg, and can be computed as follows:

zi D WT
Kxi; (2.63)

where WK is D � K matrix such that

WK D

2
666664
w1 w2 : : : wK

3
777775
: (2.64)

Substituting (2.63) to (2.62) results in

Qxi D WKzi D WKW
T
Kxi: (2.65)

When the training data follow a Gaussian distribution, then each eigenvalue
indicates the variance of the distribution along the corresponding eigenvector. Let
a D-dimensional Gaussian distribution be denoted by N .xjNx; ˙cov/, where the D-
vector, Nx, denotes the mean and the D � D matrix, ˙cov, denotes the covariance.

N .xjNx; ˙cov/ D 1

.2�/D=2.det˙cov/1=2
exp

�
�1
2
.x� Nx/T˙�1

cov.x � Nx/
�

(2.66)

From (2.60), the following equation about the covariance matrix holds:

˙covW D W
; (2.67)
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where


 D

2
6664

	1
	2
: : :

	D

3
7775 ; (2.68)

and

W D WD D

2
666664
w1 w2 � � � wD

3
777775
: (2.69)

Multiplying both sides by WT D W�1 from the right, one obtains

˙cov D W
WT ; (2.70)

and

˙�1
cov D WT
�1W; (2.71)

where


�1 D diag.1=	1; 1=	2; : : : ; 1=	D/: (2.72)

Substituting (2.71) to (2.66) results in

N .xjNx; ˙cov/ D 1

.2�/D=2.det˙cov/1=2
exp

�
�1
2
.x � Nx/TWT
�1W.x � Nx/

�
:

(2.73)

Here, let y D Œ y1; y2; : : : ; yD�T D Wx. Because fwiji D 1; 2; : : : ;Dg is an
orthonormal basis, W is a rotation matrix or a reflection matrix. Substituting y D Wx
into Eq. (2.73) results in

N . yjNy; 
/ D 1

.2�/D=2.
Q

i 	i/
1=2

exp

�
�1
2
. y � Ny/T
�1. y � Ny/

�
; (2.74)

where Ny D W Nx. Because 
�1 is a diagonal matrix, the result is

N . yjNy; 
/ D
DY
iD1

1

.2�	i/1=2
exp

�
�1
2

.yi � Nyi/2
	i

�
D

DY
iD1

N .yijNyi; 	i/: (2.75)
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The D-dimensional Gaussian distribution is a product of D one-dimensional
Gaussian distributions of yi, of which the mean is Nyi and the variance is 	i.
Here, it should be remembered that y D Wx and that y is the coordinates of x
represented using the basis, fwiji D 1; 2; : : : ;Dg. The one-dimensional Gaussian
distribution, N .yijNyi; 	i/, represents the distribution along the eigenvector, wi, and
the corresponding eigenvalue, 	i, represents the variance along the direction. The
principal components that span the subspace for the data approximation correspond
to the eigenvectors along which the distribution has larger variances.

Comparing the SVD of a matrix shown in (2.56) with (2.70), it can be seen that
U and V in (2.56) are identical with W in (2.70) and the singular values are identical
with the eigenvalues, �i D 	i.

2.2.3 Probability and Statistics: Foundations of CA

Probability and statistics are essential to CA, in which targets are represented and, in
given images, are described by their statistical models. A framework of probability
theory is employed for constructing the statistical models and for describing the
targets in given images. In this subsection, some basics of the probability theory are
described.

2.2.3.1 Sum Rule and Product Rule of Probability

First, discrete probability is described. In this case, the random variable X takes
discrete values such as x1; x2; : : : ; xn. If the frequency in the case that X takes xi is
ci, the probability that X takes xi is represented as

p.X D xi/ D ci
N
; (2.76)

where N D Pn
iD1 ci. When there is another random variable Y that represents

another aspect of the event mentioned above, Y takes values of y1; y2; : : : ; ym. The
frequency in the case that Y takes yj is dj , and the frequency in the case that X takes
xi and Y takes yj simultaneously is rij. The joint probability is described as

p.X D xi;Y D yj/ D rij
N

(2.77)

and

ci D
mX
jD1

rij: (2.78)
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Then, the following equation is derived from Eqs. (2.76), (2.77), and (2.78):

p.X D xi/ D
mX
jD1

p.X D xi;Y D yj/: (2.79)

This equation is called the sum rule of probability. Because the left side of
Eq. (2.79) means marginalization in terms of the random variable Y, it is called a
marginalprobability. Assuming that X is fixed on xi, the ratio of frequency of the
case of Y D yj to the cases of all Y is described as p.Y D yjjX D xi/. This is called a
conditional probability, because this is the probability of Y D yj under the condition
of X D xi. This conditional probability is calculated as

p.Y D yjjX D xj/ D rij
ci
: (2.80)

By substituting Eqs. (2.76) and (2.80) into Eq. (2.77), the equation is transformed as

p.X D xi;Y D yj/ D rij
N
D rij

ci

ci
N
D p.Y D yjjX D xi/p.X D xi/: (2.81)

This equation is called the product rule of probability. The probabilistic distribution
of the random variable X is denoted as p.X/, and the probability in the case that
X takes a specific value is denoted as p.xi/. By using these notations, the sum rule
and the product rule of probability are written thus: The sum rule of probability is
represented as

p.X/ D
X
Y

p.X;Y/; (2.82)

and the product rule of probability is represented as

p.X;Y/ D p.YjX/p.X/: (2.83)

Because p.X;Y/ is symmetrical with respect to the random variables X and Y,
p.X;Y/ D p.Y;X/ or p.YjX/p.X/ D p.XjY/p.Y/. By transforming this equation,
the relationship between two conditional probabilities is derived:

p.YjX/ D p.XjY/p.Y/
p.X/

: (2.84)

This relationship is referred to as Bayes’ theorem. By substituting Eq. (2.83) into
Eq. (2.82) after swapping X with Y on the right side of Eq. (2.83), the denominator
of the right side of Eq. (2.84) is written as

p.X/ D
X
Y

p.XjY/p.Y/: (2.85)
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Assuming the necessity of finding the probabilities of the random variable Y in
Eq. (2.84), p.Y/ and p.YjX/ are referred to as a prior probability distribution (or
simply, a “prior”) and a posterior probability. These probabilities are so named
because the former is a known probability before the actual value of the random
variable X is known, and the latter is known after the actual value of the random
variable X is known. When the joint probability p.X;Y/ is equal to a product of
p.X/ and p.Y/, i.e., p.X;Y/ D p.X/p.Y/ holds, the random variables X and Y are
independent. In this case Eq. (2.84) (the product rule of probability) is transformed
thus:

p.X/p.Y/ D p.YjX/p.X/; (2.86)

and hence p.Y/ D p.YjX/. This means that the probability of Y is unaffected by X,
and vice versa. When the random variables have continuous value, Bayes’ theorem
is described thus:

p.� jx/ D f .xj�/q.�/R
f .xj�/q.�/d� ; (2.87)

where x and � are random variables, p is a posterior probability density function,
q is a prior probability density function of � , and f is a likelihood function. The
denominator of the right-hand side of Eq. (2.87) is a marginal probability density
function.

2.2.3.2 Expectation and Variance

One of the most basic statistics of the distribution is an expectation. When x is
a random variable, f .x/ is a function of x, and p.x/ is a probabilistic discrete
distribution of x, the expectation of the value of f .x/ is defined as

EŒ f � D
X

p.x/f .x/: (2.88)

When p.x/ is continuous, the expectation is defined as

EŒ f � D
Z

p.x/f .x/dx: (2.89)

In this case, p.x/ is a probability density function. If a limited number of samples
are used, the expectation is approximated as

EŒ f � ' 1

N

NX
nD1

f .xn/: (2.90)
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In the case that the probabilistic distribution is conditional, the expectation also
becomes conditional, and it is referred to as a conditional expectation:

ExŒ f jy� D
X
x

p.xjy/f .x/ (discrete case), (2.91)

ExŒ f jy� D
Z

p.xjy/f .x/dx (continuous case). (2.92)

The suffix means that the expectation or the summation are calculated with respect
to x.

Another of the most basic statistics of the distribution is variance. It is defined
by the following equation:

varŒ f � D EŒ.f .x/ � EŒ f .x/�/2� D EŒ.f .x//2� � .EŒ f .x/�/2 (2.93)

The square root of variance is called the standard deviation. Assuming that there
are two random variables x and y, the covariance of x and y is calculated as

covŒx; y� D Ex;yŒ.x � EŒx�/.y � EŒ y�/� D Ex;yŒxy� � EŒx�EŒ y�: (2.94)

The value, covŒx; y�, evaluates how x and y are statistically dependent together. For
two random variable vectors x and y instead of random variables, a covariance
matrix is defined by

covŒx; y� D Ex;yŒ.x � EŒx�/. yT � EŒyT �/� D Ex;yŒxyT � � EŒx�EŒyT � (2.95)

The covariance between the components in x is calculated as covŒx� � covŒx; x�. The
diagonal components of this matrix are variance, and the non-diagonal components
are covariance.

2.2.3.3 Gaussian Distribution

The Gaussian distribution or normal distribution is important, because it can be
used as a model to simplify naturally complex phenomena. In the continuous case,
the Gaussian distribution for a single random variable x is defined by

N .xj�; �2/ D 1p
2��

exp

�
�1
2

�x � �
�

	2�
: (2.96)

where � and �2 are the mean and the variance of the distribution, respectively. The
inverse of the variance, 	 D 1=�2, is called the precision of the distribution.
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The Gaussian distribution for the random D variable, x, is given as

N .xj�; ˙/ D 1

.2�/D=2j˙ j1=2 exp

�
�1
2
.x ��/T˙�1.x � �/

�
: (2.97)

The quadratic form

�2 D .x ��/T˙�1.x � �/ (2.98)

is called the Mahalanobis distance between � and x. If ˙ is an identity matrix, the
Mahalanobis distance, �, is identical to the Euclidean distance between � and x.
˙ is a symmetric and positive semidefinite matrix. Let ui and 	i (i D 1; 2; : : : ;D)
denote the eigenvectors and their corresponding eigenvalues where 	1 � 	2 � : : : �
	D � 0. Then, the following equation is satisfied:

˙ui D 	iui .i D 1; 2; : : : ;D/: (2.99)

A set of the eigenvectors, fuiji D 1; 2; : : : ;Dg, is the orthonormal basis of the space
of x because ˙ is symmetric and positive definite:

uTi uj D
�
1; ifi D j;
0; ifi ¤ j:

(2.100)

The covariance matrix can be constructed using these eigenvectors:

˙ D
DX
iD1

	iuiuTi ; (2.101)

and its inverse matrix is obtained thus:

˙�1 D
DX
iD1

1

	i
uiuTi : (2.102)

Substituting Eq. (2.102) into Eq. (2.98) results in

�2 D
DX
iD1

y2i
	i
; (2.103)

where

yi D ui.x D �/: (2.104)
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Fig. 2.3 A level set of a Gaussian distribution

Let y D Œ y1; y2; : : : ; yD�T and U D Œu1;u2; : : : ;uD�T ; then,

y D U.x� �/: (2.105)

If all eigenvalues are positive, in other words, if the covariance matrix is positive
definite, a set of points that locate at the same Mahalanobis distance from � forms an
elliptic quadratic surface with its center located at � in a space of x. This is a level-
set surface of the Gaussian distribution. As shown in Fig. 2.3, the directions of the
axes of the surface are parallel to the eigenvectors, and their lengths are proportional
to the corresponding eigenvalues.

Although the Gaussian distribution is widely used for density models, there
are some limitations. Generally, a symmetric covariant matrix has D.D C 3/=2

independent parameters, and when D is large, it is not easy to estimate accurately
a covariance matrix from the data of a limited number of training samples and to
compute the precision matrix, i.e., the inverse of the covariance matrix. To avoid
over-fitting to the training data, a graphical lasso, for example, can be employed [32]
that uses a regularization technique for accurately estimating precision matrices.
The estimation accuracy can also be improved by approximating a covariance matrix
with smaller numbers of parameters. For instance, a diagonal matrix, ˙diag D
diag.�2i /, has only D parameters and can be used for approximating a covari-
ance matrix that has in general nonzero off-diagonal components. Representing a
covariance matrix with a diagonal matrix can avoid over-fitting, and its inverse
can be computed more easily. This approximation, though, ignores the mutual
correlations between different variables. Figure 2.4 shows examples of isocontours
of the Gaussian distributions with covariance matrices approximated by a diagonal
matrix (a) and by an isotropic matrix (b),˙iso D �2I, where I denotes a unit matrix.
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Fig. 2.4 Examples of isocontours of Gaussian distributions. (a) The covariance matrix is approxi-
mated by a diagonal matrix. (b) The covariance matrix is approximated by an isotropic matrix [33]

2.2.4 Foundations of Pattern Recognition

Computational anatomy (CA) is a system of automatically generating medical
descriptions of patients from their medical images and the medical description can
be generated by classifying each pixel in the images into one of some pre-defined
classes. This classification problem can be solved by solving a pattern recognition
problem in which, when representing data as points in a high-dimensional space,
the space must be divided into regions, each of which represents each of the classes.
A classifier then judges in which region a given data point is included and outputs
the class that corresponds to the region.

2.2.4.1 Bayes Decision Theory

The best classifier minimizes the classification error under the assumption that the
probability distributions of the data points in the space are known. Assuming only
two categories, w1 and w2, let x denote a given datum. Then, the probability of
misclassification of the data, p.errorjx/, is given as [34]

p.errorjx/ D
8<
:
P.w1jx/; if we decide w2;

P.w2jx/; if we decide w1:
(2.106)

The probability of the classification error can be minimized by selecting the
category that maximizes P.wjjx/. This selection maximizes the average probability
of misclassification for all data such that

P.error/ D
Z

P.errorjx/P.x/dx D
Z

P.error; x/dx: (2.107)
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Fig. 2.5 Block diagram of a classifier in [35]

It is called a Bayes decision theory that the average probability of the can be
minimized by following this rule:

Rule: Decide wj if P.wjjx/ is larger than P.wkjx/ for any k ¤ j.

2.2.4.2 Classifier Design

A classifier decides the class of a given input datum. Assume that there are only two
classes, w1 and w2. Then, a block diagram of such a classifier has the form shown
in Fig. 2.5. Such a classifier first computes some feature of the input data, x, and
assigns the datum to the class w1 if the sign of g.x/ is positive. According to [33],
the following three different approaches work for the construction of classifiers:

1. Construction of a Generative Model
In this approach, a posterior probability distribution of each class is computed as

P.wjjx/ D P.wj/P.xjwj/

P.x/
; (2.108)

where all of the terms on the right side are estimated from a set of training
data. Once the posterior probability distributions of all classes are computed,
a classifier can be constructed by following the Bayes’ decision theorem. This
approach is called generative because input data can be artificially generated
based on the estimated distributions.

2. Construction of a Discriminative Model
In a discriminative model approach, the posterior probability distribution of
each class is directly estimated from a set of training data, and a classifier is
constructed based on Bayes’ decision theorem.

3. Direct Construction of Classifier
In this approach, resultant classification functions output a class of an input
datum not necessarily based on the input data’s posterior probability distribu-
tions. Such classification functions can be constructed by using training data with
their desired outputs.

For example, the function g.x/ in Fig. 2.5 can be designed as follows, employing the
first or second approach:

g.x/ D P.w1jx/
P.w2jx/ � 1: (2.109)
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Classifiers are constructed from sets of training data and the training process is
called learning. A classifier has parameters whose values are estimated from a set
of training data in the learning process. In supervised learning, for example, a label
of a desired class is assigned to each set of the training data, and the parameter values
are estimated so that the outputs of the classifier are consistent with the labels. In the
first two approaches above, the parameters of the classifier describe the probability
distributions of data and of classes. In the last approach, the classification function
is parametrically represented, and the parameter values are estimated so that the
probability of the misclassification is minimized.

A flowchart of the process of classifier design is shown in Fig. 2.6, which
appeared in [35]. In the flowchart, gathered data are first normalized and/or
registered together. This important step is not easy. When a classifier of character
images is constructed, for example, images of characters should be gathered and the

Fig. 2.6 A flowchart of the process of classifier design appeared in [35]
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character images should be normalized by bounding each character with a rectangle
followed by resizing all of the rectangles to identical dimensions.

This normalization cancels the variations in character images with respect to the
locations, sizes, and patient position, and a classifier can be constructed to classify
each given character image based only on the difference of the shapes/patterns
intrinsic to each character. This normalization/registration of gathered data is
required not only for the construction of classifiers but also for the construction
of regressors. The training data of organs need to be normalized/registered when
constructing computational anatomical models that are used for medical image
analysis. To cancel the differences of the locations, sizes, and positions of patients’
bodies, the gathered training images must be non rigidly registered: Each voxel in
a training image is matched to a voxel in each of the other training images from
an anatomical point of view, or each point on the surface of a training organ region
is matched to a point on the surface of each of the other training organ regions.
For the former nonrigid registration, anatomical landmarks are essential and will
be described in Sect. 2.3.3.1. For the computation of the matching of surfaces,
diffeomorphism supplies the mathematical foundation and will be described in
Sect. 2.3.4. After normalization/registration is successfully applied to all of the data,
the next step is the process of data structure analysis followed by classification
design.

One of the main purposes of data structure analysis is to determine the repre-
sentation of targets. In [36], a representation is defined as “a formal system for
making explicit certain entities or types of information, together with a specification
of how the system does this.” The result of using a representation to describe a
given entity is called a description of the entity in that representation. Feature
extraction from measured data, for example, is a representation of the data. Applying
different representations to given measured data results in different descriptions.
For constructing recognition systems, representations that improve the separability
of the descriptions of data into different classes need to be employed. Recognition
problems or regression problems should be solved when segmenting organs in given
medical images. The performance of the segmentation also varies depending on
the representations of targets. A classifier/regressor processes the descriptions and
hence should be designed based on the representation of measured data as is shown
in Fig. 2.6.

Performance Evaluation

Figure 2.6 displays the methodology by which classification error of a designed
classifier is evaluated. The results of the evaluation are used to improve the classifier
design. Techniques appropriate for the performance evaluation are vital because
the amount of data available for the classifier learning and for the performance
evaluation is limited. If the performance of a classifier is evaluated by testing
it with a dataset that is also used for the construction of the classifier, then the
performance evaluation will be biased; in many cases, the classification error will
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be underestimated. For achieving unbiased performance evaluation, a n-fold cross
validation or a bootstrap method is employed.

n-Fold Cross Validation

First, a set of samples is divided into n subsets. Then n � 1 subsets are used for
the learning, and the remaining one subset is used for the performance evaluation.
In subsequent steps, the subsets are shuffled and combinations of learning and the
evaluation are repeated n times. Assuming that the error probability in each test step
is ei, the generalization error of the classifier is estimated as .

P
i ei/=n. When the

number of samples is equal to the number of subsets (i.e., each subset contains only
a single sample), the method is called the leave-one-out method or the jackknife
method. The leave-one-out method often results in a more satisfactory evaluation
[34], though it is more computationally complex especially when the amount of
data is large.

Bootstrap Method

A bootstrap dataset is created by randomly selecting m data from a set of the data
with replacement. Selecting the bootstrap data set B times independently enables
evaluation of the classification error as

P
i e

0
i=B, where e0

i denotes the classification
error evaluated by using the i-th bootstrap data set.

Examples of Classifiers

Many methods for constructing classifiers have been proposed. In the followings,
some of the most popular and powerful methods for the classification are briefly
described.

Decision Tree

Decision trees are represented by tree-structured directed graphs (see Fig. 2.7) [37].
A decision tree enables classification of input data through a sequence of questions
along the tree. In the tree, each internal node represents a test, and each directed
branch links a parent node to a child node and represents a result of the test at the
parent node, with each leaf node representing a class. Starting from a root node,
the data are classified by applying a test represented by the current node and by
moving toward the leaf node by pursuing each branch representing the result of the
test at each node. Several algorithms may be employed, such as classification and
regression trees (CART) [38], ID3 [37], and C4.5 [38], for constructing decision
trees from a set of training data. Regression trees can also be constructed [38] from
sets of training data for solving regression problems.
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Fig. 2.7 An example of a decision tree of Saturday morning attributes appeared in [37]. P denotes
a positive class of the mornings suitable for some activity and N denotes a negative class

Support Vector Machine (SVM)

An SVM is a method for solving two-class problems and is included in discrimina-
tive models [33, 39]. Linear classifiers classify data, x, into two categories based on
the sign of the following linear classification function:

f .x/ D wT�.x/C b; (2.110)

where �.x/ denotes a vector of which components are features extracted from the
data x, and w and b denote the coefficients of the linear function. The features to be
extracted are determined in advance at the step of the data structure analysis shown
in Fig. 2.6, and in the designing step of classifiers, the values of these coefficients are
estimated by using a set of given training data. One of the strong points of SVMs
is the ability to estimate the coefficient values by solving a convex optimization
problem: If the training data are linearly separable, then the globally optimal values
of the coefficients can be attained. Assuming that the data are linearly separable,
the convex optimization problem is derived from a criterion of the goodness of the
decision boundary, f .x/ D 0, which is a hyperplane in a feature space represented
by �.x/. Let the term margin denote the distance between the decision boundary,
f .x/ D 0, and the training data closest to the decision boundary. An SVM estimates
the values of the coefficients, which generate a decision boundary that maximizes
the margin (see Fig. 2.8). The generalization error of the resultant linear classifier
can be minimized using the strategy of the maximization of the margin. The
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Fig. 2.8 An example of a decision boundary computed by an SVM

assumption of the linear separability can be relaxed by using soft- margin techniques
[39], and nonlinear classification functions can be constructed by using a kernel trick
[40].

Random Forest

Random forest was proposed by Leo Breiman [38], and it is used for pattern
classification and regression. A random forest is an ensemble learning algorithm
consisting of decision trees as weak classifiers, hence the name of the random forest.
The procedure of the learning steps for random forest is:

1. Select m subsets from learning samples (Bootstrap sample).
2. Generate m decision trees using each subset.
3. Generate nodes until the number of the nodes reaches a specified number in the

following way:

a. Select k explanatory variables from learning samples randomly.
b. Decide split function of the node using explanatory variable which has the

best accuracy to classify learning samples and the threshold.

This procedure generates a set of decision trees that have low correlations with one
another.
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Fig. 2.9 Organization of perceptron appeared in [41]

Artificial Neural Network (ANN)

ANN is a generic name for models with the ability to solve problems by varying
the coupling strength between artificial synapses in networks. The ANN often
is capable of relatively high performance in multidimensional and nonlinearly
separable problems. One of the origins of the research in ANNs was that of a
single-layered perceptron algorithm (see Fig. 2.9) proposed by Rosenblatt in 1958
[41], which has the capability of learning classifiers only for linearly separable data
[42]. The number of layers and of the synapses of ANNs increases to achieve the
capability of learning nonlinear classifiers, as shown in the multilayered neural
network known as the neo-cognitron [43] and in a convolution neural network
(CNN) [44]. One can design all steps of image processing from image feature
extraction to the classification simultaneously by employing a multiple-layered
ANN. A serious difficulty was found, however, in training of the coupling strengths
of the synapses. A framework of back propagation was invented for training in
the 1980s [45, 46], but it did not have enough capability for appropriately varying
the coupling strengths of the many synapses. Later, several important techniques
for the training, for example, sparse coding [47] and layerwise pretraining [48],
were invented, making it much easier to construct strong nonlinear classifiers with
multilayered ANNs (Fig. 2.10).

Boosting

Boosting algorithms are used for improving the performance of any given learning
algorithm: Assuming that a given learning algorithm can construct a weak classifier
that can classify data slightly more accurately than a classifier that randomly
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Fig. 2.10 The typical architecture of a convolution neural network (CNN) appeared in [49]

determines the class of input data independently from the data, boosting algorithms
construct a strong classifier that classifies much more accurately than the weak
classifiers by combining them [34].

Assuming that a set of n training data is given and that the data can be classified
into two classes, a simple boosting algorithm constructs a strong classifier from
three weak ones as follows: Let a subset of the training data be denoted by D1 and
a classifier constructed by the given algorithm be denoted by C1. Then, applying
C1 to all of the training data, a new subset of the training data D2 is constructed
such that half of D2 are misclassified by C1, with the other half classified correctly.
Let a classifier constructed based on the new dataset D2 be denoted by C2. Next,
applyingC1 and C2 to all of the training data, the third data set, D3, is constructed by
collecting data to which the two classifiers, C1 and C2, output different classes. Let
a classifier constructed from D3 be denoted by C3. A boosting algorithm combines
the three weak classifiers, C1, C2, and C3, to construct a strong classifier.

There are many boosting algorithms. The AdaBoost algorithm is one of the most
popular ones. In the AdaBoost algorithm, weak classifiers can continue to be added
until the performance becomes sufficiently strong. The resulting strong classifier is
represented by a weighted sum of weak classifiers such that

f .x/ D
X
k

˛khk.x/; (2.111)

where ˛k is a scholar and denotes the weight and hk.x/ denotes a weak classification
function constructed by the given algorithm. The k-th weak classifier is constructed
from a set of data obtained by sampling from the training data according to the
weight of each dataset, and the weight is computed according to the classification
results of the k�1-th classifier: If the k�1-th classifier classifies the j-th training data,
xj, correctly/incorrectly, then its weight,wj, is decreased/increased, respectively. It is
known that the total training error of the resultant strong classifier can be arbitrarily
lowered by combining a large number of weak classifiers.
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2.3 Computational Anatomical Model

Hidekata Hontani, Yasushi Hirano, Xiao Dong, Akinobu Shimiz,
and Shohei Hanaoka

2.3.1 Models for Segmentation

One of the main objectives in medical image analysis is to segment given medical
images into organs. One can segment the images by determining boundaries of the
organs in the images. Organ boundaries mainly consist of edges. It is pointed out in
[50] that the concept of determining edges in given images is an ill-posed problem.
A problem is well posed if the following three conditions are satisfied:

1. The solution exists,
2. The solution is unique, and
3. The solution depends continuously on the initial data.

One can convert ill-posed problems to well-posed ones by introducing some prior
knowledge of the problems in order to restrict the class of admissible solutions. A
major technique for the restriction is regularization [50, 51].

Assuming that the objective is to detect the boundary of a target organ in a
given image, let D denote a set of edge points detected from the given image
as the candidates for points on the boundary, and let the parameter of a model
representing the surface be denoted by � . LData.�jD/ describes a cost function that
defines the error between the edge points, D, and the model surface � . In general,
edge detection often fails to detect some portions of the boundary and detects many
false candidates. It is hence very difficult to design a cost function, LData.�jD/, such
that the boundary of the target organ is delineated correctly only by minimizing it.

In the regularization technique, prior knowledge introduces some regularity of
the sizes and shapes of surfaces by adding new terms, regularization terms, to
the cost function, allowing detection of the boundary by minimizing the new cost
function, L.� ID/ D LData.�ID/ C 	Lreg.�/, where 	 controls the compromise
between the strength of the regularization and the closeness of the model to the data.
For example, an Active Contour Model (ACM) detects contours in given images
by minimizing a cost function with regularization terms that restrict the curves
represented by the model to short and smooth ones [52]. The regularization terms
are manually determined based on geometrical features of the boundaries of target
regions, and the regularization techniques work well only if all of the boundaries
have common geometric features that can be represented by the regularization terms.
It is difficult in general to find such features and to determine appropriately the
regularization terms.

More powerful strategies convert ill-posed problems to well-posed ones by
introducing a framework of the Bayes’ estimation or of the maximum a posteriori
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(MAP) estimation [53, 54], in which the class of admissible solutions is restricted
by prior probability distributions of targets. In medical image analysis, the regions
or their boundaries are determined by maximizing the posterior probability dis-
tributions which consist of the prior distributions and the likelihood distributions.
Assuming again that the objective is to detect the boundary surface of a target organ
in a given image and letting the posterior probability distribution be denoted by
p.�jD/, in the framework of the MAP estimation, the boundary can be detected
by maximizing p.�jD/. As described in ***, p.�jD/ / p.�/p.Dj�/, where p.�/
is the prior probability distribution of the model parameters and p.Dj�/ denotes the
likelihood of the parameters with respect to the given data, D. The prior distribution,
p.�/, is introduced to restrict the admissible solutions and can be constructed by
learning from sets of training data. Assuming that these probability distributions
can be represented using exponential functions such as p.�/ D exp.Fpri.	�// and
p.Dj�/ D exp.Flike.�ID//, the posterior probability distribution can be maximized
by maximizing log p.�jD/ D Flike.�ID/C	Fpri.�/, the form of which is analogous
to the cost function with the regularization terms.

There are many models that represent regions or boundaries in medical images:
For example, regions may be represented by labeling voxels in the images, and
boundaries may be represented by using parametric surface models. The statistical
models of organs represent the varieties observed among patients. Even when a
single set of training data is given for constructing an SSM, the resultant SSM
would vary with respect to the representation of the regions or of the boundaries
employed, and the performance of the image segmentation would largely depend
on the SSM. In the following section, the representation and the corresponding
segmentation methods will be described.

2.3.2 Geometrical Representation

In this section, some representations of geometrical figures such as points, curves,
surfaces, and regions (volumes) in a three-dimensional space, are described. As
described in the previous subsection, representation methods of geometric figures
in given images can be roughly classified into two categories. In the first category,
targets are represented using functions defined on an image space. In the second
category, they are represented using functions defined on the parameter space,
Sect. 2.3.2.1, with the resulting representation depicting the organ. Figure 2.11
shows some examples of different representations of an organ. An organ can
be represented by labeling the voxels inside the organ, as will be described in
Sect. 2.3.2.1, and the resultant representation represents the region with a set of
the labeled voxels as shown in the top left panel in Fig. 2.11. Another method
to represent an organ is by assigning negative values to the voxels inside the
organ volume and positive values to the outside, using a level-set function, which
implicitly represents the boundary of the region with its zero-crossing (see the
bottom left panel in Fig. 2.11); this level-set representation will also be described
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Fig. 2.11 Different representations of a target organ

in Sect. 2.3.2.1. The boundary of an organ can also be explicitly represented by
parametric functions such as spline surfaces. These parametric representations will
be described in Sect. 2.3.2.2. A set of points distributed on a target surface (see the
bottom right panel of Fig. 2.11) is also widely employed for the representation of an
organ’s surface. The distribution of the points is described by the coordinates of each
of the points, and those coordinates are the parameters of the representation. Such a
representation with the set of the points will also be described in Sect. 2.3.2.2.

2.3.2.1 Representation Using Functions of Voxels

Target regions and boundaries in images can be represented by using functions
defined on an image space. As will be described below, one of the advantages of
this category of representations is that they can straightforwardly depict topological
changes in the figures, and one of the disadvantages is that the representations are
largely redundant.

Letting x denote the coordinates of a voxel in a three-dimensional image space,
where x D Œx; y; z�T denotes the coordinates of a voxel in a given image, the figures
in the images can be explicitly represented by using discrete functions, flabel.x/ W
R
3 7! N. A value of flabel.x/ at x describes a label corresponding to each figure in

an image. Letting k D 1; 2; : : : ;K denote the label that identifies the figures, where
K is the number of target figures to be represented, a labeling function explicitly
represents the figures as

flabel.x/ D k.x/; (2.112)
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where k.x/ denotes the label of the figure to which the voxel, x, belongs. Letting
a binary function, fk.x/, denote if a voxel, Œx�, belongs to the k-th figure or not, the
figures in a given image can be represented using following vector labeling function,
fvec.x/ W R3 7! f0; 1gK such that

fvec.x/ D k.x/; (2.113)

where k D Œ f1.x/; f2.x/; : : : ; fK.x/�T . When each voxel belongs to a single figure,
then

P
k fk.x/ D 1 should be satisfied.

Continuous functions, fcont.x/ W R
3 7! R, defined on an image space can

represent figures implicitly. For example, regions, R, in a given figure can be
represented as follows:

fcont.x/
�
< T; if x 2 R;

� T; otherwise;
(2.114)

where T 2 R is a threshold. Then, the closed boundary surfaces of the regions,
R, can be represented as the voxels where the value of fcont.x/ passes through T.
For example, zero-crossings of the Laplacian of a (smoothed) image are widely
employed for the detection of edge points [55–57].

Level-set representation [58] is also widely employed for implicitly representing
surfaces in images. Let a level-set function be denoted by flevel.x/ W R3 7! R.
Surfaces in an image can be implicitly represented by the zero-crossings of flevel.x/
where the sign of the function changes. Different from the representations using
the discrete functions, you can differentiate the level-set functions and can compute
some geometric properties of the surfaces from the differential coefficients. Let a
closed surface represented by flevel.x/ be denoted by S and assume that flevel.x/ < 0
is satisfied inside S. Let the differential coefficients of flevel.x/ be denoted as
�x D @flevel=@x or as �zx D @2flevel=@z@x. Then, for example, the outward unit normal
vector at x on S, n.x/, can be obtained as follows:

n.x/ D rflevel.x/
krflevel.x/k D

1q
�2x C �2y C �2z

2
4�x�y
�z

3
5 : (2.115)

The mean curvature, �M, and the Gaussian curvature, �G, can be computed as
follows:

�M D r � rflevel.x/
krflevel.x/k D

(
.�yy C �zz/�2x C .�xx C �zz/�2y C .�xx C �yy/�2z

�2�x�y�xy � 2�y�z�yz � 2�z�x�zx

)



�2x C �2y C �2z

�3=2 ;

(2.116)
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Fig. 2.12 An example of level-set representations corresponding to topological changes. Chang-
ing a level-set function continuously enables representation of topological changes of the target
figures (These figures are appeared in [58])

�G D

8<
:
�2x


�yy�zz � �yz2

�C �2y 
�xx�zz � �2xz�C �2z 
�xx�yy � �2xy�
C2Œ�x�y.�xz�yz � �xy�zz/C �y�z.�xy�xz � �yz�xx/

C�x�z.�xy�yz � �xz�yy/�

9=
;



�2x C �2y C �2z

�2 : (2.117)

This property of level-set representation enabling direct computation of the geomet-
ric properties with the differential coefficients of the level set function is used in
the level methods for propagating surfaces [58, 59]. One of the strongest advantages
of level-set representations is the ability to represent the topological changes of the
surfaces (e.g., a single closed surface split into two surfaces) straightforwardly as
shown in Fig. 2.12.

It is often necessary to measure quantitatively the distance between figures.
This measurement is performed by comparing the values of the functions that
represent the figures at each voxel. For example, assume two regions, R˛ and Rˇ, are
represented by the binary functions, f˛.x/ and fˇ.x/, where ˛ and ˇ are the labels
of the regions, respectively. Then, the Jaccard index (JI), dJ.R˛;Rˇ/, defined below
can be employed for measuring the distance:

dJ.R˛;Rˇ/ D jR˛ \ Rˇj
jR˛ [ Rˇj ; (2.118)

where jRj denotes the number of voxels belonging to the region, R. jR˛\Rˇ denotes
the number of voxels at which f˛.x/ D 1 and fˇ.x/ D 1 are satisfied and jR˛ [ Rˇj
denotes the number of voxels where f˛.x/ D 1 or fˇ.x/ D 1 are satisfied. When

the regions are represented by the level-set functions, f .˛/level.x/ and f .ˇ/level.x/, then the
distance dlevel.R˛;Rˇ/ can be expressed as

d2.R˛;Rˇ/ D
X
x2˝
k f .˛/level.x/ � f .ˇ/level.x/k2; (2.119)
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where˝ denotes the region of interest in which the two regions are included, under
the assumption that a unique level-set function that represents a given region is
obtained.

2.3.2.2 Representation Using Parametric Functions

Parametric functions, whose values denote the coordinates in an image space, are
also widely employed for representing figures in images.

2.3.2.3 Curves

Let s denote a scholar parameter that indicates the location along a given curve,
C. Then, the curve, C, can be explicitly represented as x.s/ D .x.s/; y.s/; z.s//T W
R 7! R

3. Different from the representations described in the previous subsection,
the functions x.s/, y.s/, and z.s/ are functions of a parameter, and the values of the
functions denote the coordinates in the image. Here, assume that x.s/, y.s/, and z.s/
are represented by linear combinations of basis functions, Ci.s/ (i D 1; 2; : : : ;NB),
as follows:

x.s/ D
NBX
i

˛iCi.s/; y.s/ D
NBX
i

ˇiCi.s/; and z.s/ D
NBX
i


iCi.s/; (2.120)

where ˛i, ˇi, and 
i are scalar coefficients of the basis functions. Then, a curve
with explicit functions, x D x.sI�/canberepresentedthus W R3NB 7! R

3, where
� D Œ˛1; ˇ1; 
1; ˛2; � � � ; 
NB �

T .
One of the most popular basis functions employed for representing curves is

B-spline functions (“B” comes from basis), which are piecewise polynomials. Let
the i-th B-spline basis function of degree k in the variable, s, be denoted by Bk

i .s/.
The B-spline functions, Bk

i .s/, have the following properties: first, the functions are
not negative, Bk

i .s/ � 0, have a compact support Œui; uiCkC1�, and are k � 1 times
continuously differentiable. In addition, by convention, the B-spline functions are
constructed in a way such that they sum to 1 at all points:

NB�1X
nD0

Bk
i .s/ D 1 for all s: (2.121)

A variety of functions can have the properties described above, and a simple
example of the B-spline bases for representing closed curves is described below.
More details of the spline representations can be found in [60].
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Using the de Boor’s algorithm, the k-th order B-spline function can be con-
structed from the k � 1-th order functions (k � 1) as follows:

Bk
i .s/ D

x � ui
uiCk � ui

Bk�1
i .s/C uiCkC1 � x

uiCkC1 � uiC1
Bk�1
iC1.s/; (2.122)

and

B0i D
�
1; if s 2 Œui; uiC1�;
0; otherwise:

(2.123)

For example, the second-order .k D 2/ function,B20.s/ has the form as follows when
ui D i:

B20.s/ D

8̂
<̂
ˆ̂:

s2=2; if 0 � s < 1;
3=4� .s � 3=2/2; if 1 � s < 2;
.s � 3/� 2=2; if 2 � s < 3;
0; otherwise:

(2.124)

The graphs of the second-order functions are demonstrated in Fig. 2.13. A closed
curve can be represented by a periodic function, which satisfies x.s/ D x.s C qL/
for any integer q where L denotes the period, and L D uNB when the closed
curve is represented by NB B-spline basis functions. The basis functions should be
appropriately wrapped as shown in Fig. 2.12 for representing closed curves. Using
these NB wrapped basis functions enables the representation of closed curves as

1.0

0 2 4 s

B2(s)

B3(s) B0(s) B1(s)

B3(s)

B2(s)

Fig. 2.13 An example of the second-order B-spline functions (This figure comes from the website
of active contours)
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follows:

x.sI�/ D
NB�1X
iD0

� iB
k
i .s/; (2.125)

where � i (i D 0; 1; : : : ;NB) are three-vector, each denoting the coordinates in
an image space. The NB points whose coordinates are represented by � i are called

control points, and their coordinates, � D �
�T
1 ;�

T
2 ; : : : ;�

T
NB�1


T 2 R
3NB , are the

parameters for the representation of the curves. Changing the locations of the control
points allows changing of locations, sizes, and shapes of the curves. It should be
noted that, by changing the location of a control point, the local portion of the curve
can be deformed because each of the B-spline functions has a compact support.
Let two curves be denoted by x.sI�˛/ and x.sI�ˇ/. The distance between the two
curves, d.x.sI�˛/; x.sI�ˇ//, can be defined as follows:

d2.x.sI�˛/; x.sI�ˇ// D 1

L

Z L

0

kx.sI�˛/� x.sI�ˇ/k2ds; (2.126)

where Œ0;L� denotes the domain of s. Substituting (2.125) with (2.126) results in

d2.x.sI�˛/; x.sI�ˇ// D 1

L

Z L

0

�����
NB�1X
iD0

.�˛i � �
ˇ
i /B

k
i .s/

�����
2

ds: (2.127)

Let

bij D 1

L

Z L

0

Bk
i .s/B

k
j .s/ds: (2.128)

Then, Eq. (2.127) can be written as

d2.x.sI�˛/; x.sI�ˇ// D
X
i;j

bij
����˛i � �

ˇ
j

���2 : (2.129)

The distance between the two curves is defined as the distance between the two
corresponding parameter vectors with a metric defined by bij. It should be noted that
the metric, bij, can be determined only by the basis functions and can be computed
before figures are given. It should also be noted that the distance is defined based
on the distance between two points whose locations are indicated by the same value
of s on both curves. This means that the locations, sizes, and orientations (poses)
of curves should be normalized before the distances among them are measured and
that each of the curves should be appropriately parameterized so that corresponding
points on the curves have the same values of s.
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A Fourier series can also represent a closed curve in an explicit way. Again, let-
ting a positive scalar, L, denote the period of x.s/, where x.s/ D Œx.s/; y.s/; z.s/�T D
Œx.sC L/; y.sC L/; z.sC L/�T for any s, allows the representation of x.s/, y.s/, and
z.s/ by linear combinations of the Fourier basis functions:

x.s/ D u0 C
NB�1X
iD1

ui cos

�
2�si

L

�
C u0

i sin

�
2�si

L

�
;

y.s/ D v0 C
NB�1X
iD1

vi cos

�
2�si

L

�
C v0

i sin

�
2�si

L

�
; (2.130)

z.s/ D w0 C
NB�1X
iD1

wi cos

�
2�si

L

�
C w0

i sin

�
2�si

L

�
:

Letting the Fourier coefficients be denoted by � D Œ˛
.x/
0 ; ˛

.y/
0 ; : : : ; ˇ

.z/
L�1�T , an

explicit representation of a closed curve can be obtained such that x D x.sI�/.
Changing the value of each of the Fourier coefficients can change the amount of
the component of the corresponding frequency and can deform the whole shape of
the target curve. For example, setting the values of the coefficients corresponding to
higher frequencies to zero can smooth the target curve.

The same definition (Eq. (2.126)) of the distances between figures can be
employed, and the distances can be computed in the same way (Eq. (2.129)) even
when using different basis functions for the representation. A difference appears in
the metric tensor, B. Because of the unity and the orthogonality of the sinusoidal
basis functions, an identity matrix for the metric tensor is obtained, and hence the
following equation holds:

d2.x.sI�˛/; x.sI�ˇ// / k�˛ � �ˇk2: (2.131)

A PDM of a curve [61], C, is another example of explicit representations of
curves, where it represents a curve with a series of the coordinates of L points.
Letting i (i D 0; 2; : : : ;L�1) denote an index number for each of the points along the
curve, and letting x.i/ denote the coordinates of the i-th point, x D x.i/ is an explicit
representation of a curve. Letting a 3L-vector, uC D ŒxT.0/; xT.1/; : : : ; xT.L � 1/�T
denote the coordinates of the L points and represent the curve, the distance between
two curves represented by a PDM can be defined as

d2.x˛.i/; xˇ.i// D 1

L

L�1X
iD0
kx˛.i/� xˇ.i/k2: (2.132)

The distances between two corresponding points with identical numbers are used to
define the distance between the two curves.
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A PDM can also be represented by a linear combination of basis functions.
Letting a 3L-vector, x, denote a representation of some curves and letting 3L-
vectors, ui .i D 0; 1; : : : ;NB � 1/, denote basis functions, where NB � 3L, allows
representation of a curve with a linear combination of the basis functions as follows:

x.�/ D
NB�1X
iD0

�iui; (2.133)

where �i is a scalar and � D Œ�0; �1; : : : ; �NB �
T . Changing the values of the

parameters, � causes deformation of the shape of the curve. In many applications,
the basis functions are constructed from a set of training data, D D fx. j/jj D
1; 2; : : : ;Mg, where M denotes the number of the data: A PCA is applied to the
data set, D , and the mean of D and the eigenvectors corresponding to the largest NB

eigenvalues are selected for the basis functions. Then the variety of a target curve
can be represented by an NB-dimensional linear space as follows:

x.�/ D NxC
NB�1X
iD0

�iui; (2.134)

where Nx is the mean vector and ui denotes the eigenvectors. As described in
Sect. 2.2.3, the Mahalanobis distance between the mean shape, Nx, and a described
curve, x.�/, is given as

d.Nx; x.�// D
NB�1X
iD0

�i

	i
; (2.135)

where 	i are the eigenvalues corresponding to ui.

2.3.2.4 Surfaces

Let s and t denote scalar parameters that indicate the location along a given surface,
S. The surface, S, can be represented explicitly as x.s; t/ D Œx.s; t/; y.s; t/; z.s; t/�T W
R
2 7! R

3. Assume that x.s; t/, y.s; t/, and z.s; t/ are represented by linear
combinations of basis functions, Ci.s; t/, as follows:

x.s; t/ D
NB�1X
iD1

uiCi.s; t/; y.s; t/ D
X
i

viCi.s; t/; and z.s; t/ D
X
i

wiCi.s; t/;

(2.136)

where ui, vi, and wi are scalar coefficients of the basis functions. Then, the
surface can be represented in an explicit manner as x D x.s; tI�/, where � D
Œu0; v0;w0; u1 : : : ; vNB�1;wNB�1�T . B-spline or Fourier functions can be employed
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for the basis functions. Here, the NURBS (nonuniform rational basis spline)
functions are described because they are also widely employed for the surface
representation. Letting a B-spline function be denoted by Bk

i .s/, a NURBS function,
bki .s/, is defined as

bki .s/ D
wiBk

i .s/PNB�1
jD0 wjBk

j .s/
; (2.137)

where wj is a positive weighting coefficient, which determines the weight of the j-th
control point. Bk

i .s/ D bki .s/ when wj D 1 for all j. The NURBS functions in (2.137)
can be used as basis functions for representing curves. NURBS basis functions for
surfaces can be constructed thus:

bki;j.s; t/ D
wi;jBk

i .s/B
k
j .t/P

i0
P

j0 wi0;j0Bk
i0.s/B

k
j0.t/

: (2.138)

Letting the coordinates of the .i; j/-th control point be denoted by � i;j and letting
� D Œ�T

0;0;�
T
0;1; : : : ;�

T
NB�1;NB�1�T , a can be represented using the NURBS functions

as follows [62–64]:

x.s; tI�/ D
X
i

X
j

bki;j.s; t/� i;j D
P

i

P
j wi;jBk

i .s/B
k
j .t/� i;jP

i

P
j wi;jBk

i .s/B
k
j.t/

: (2.139)

Analogous to Eq. (2.126), the distance between two surfaces, x.s; tI�˛/ and
x.s; tI�ˇ/, can be defined as follows:

d2.x.s; tI�˛/; x.s; tI�ˇ/ D 1

S

Z Z
kx.s; tI�˛/ � x.s; tI�ˇ/k2dsdt; (2.140)

where S is a coefficient for the normalization with respect to the size of the domain
of .s; t/. Equation (2.140) can be written thus:

d2.x.s; tI�˛/; x.s; tI�ˇ// D
X
i;j

X
l;m

bi;j;l;mk� i;j � �k;lk2 D .�˛ � �ˇ/TB.�˛ � �ˇ/;

(2.141)

where

bi;j;l;m D
Z Z

bki;j.s; t/b
k
l;m.s; t/dsdt; (2.142)

and the component of the metric tensor, B, is determined by bi;j;l;m.
When lines/surfaces are represented using the B-splines or NURBS, the coordi-

nates of each point on the lines/surfaces are represented in a Cartesian coordinate
system. Other coordinate systems can also be employed for representation. One of
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m=1, n=1

m=3, n=1 m=3, n=2 m=3, n=3

m=4, n=1 m=4, n=2 m=4, n=3

m=2, n=1 m=2, n=2

a

b

Fig. 2.14 (a) The spherical coordinates. (b) Spherical harmonics functions corresponding to l D
0; 1; 2; 3, and 4

the most popular coordinate systems for non-Cartesian representation is a spherical
coordinate system, in which the coordinates of a point in a three-dimensional space
are represented with three parameters, the radial distance r, the polar angle � , and
the azimuth angle  as shown in Fig. 2.14a. Spherical harmonics form a complete
set of orthonormal functions defined on the unit sphere, on which the location
of a point can be represented by the angular components, .�;  /: Analogous to
the Fourier series that are a complete set of orthonormal functions defined on the
unit circle, the spherical harmonics can expand any square-integrable function as a
linear combination of these functions. Letting a given square-integrable function be
denoted by f .�;  / W R2 7! R and letting the spherical harmonics be denoted by
Ym
l .�;  /, where l is a nonnegative integer and m is an integer satisfying�l � m � l

enable representation of the given function as

f .�;  / D
1X
lD0

ClX
mD�l

f ml Y
m
l .�;  /; (2.143)
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where f ml denotes the complex expansion coefficients. The spherical harmonics
functions are given as follows:

Ym
l .�;  / D .�1/.mCjmj/=2

s
2lC 1
4�

.l � jmj/Š

.lC jmj/ŠP
jmj
l .cos �/eim ; (2.144)

where Pjmj
l is an associated Legendre polynomial:

Pm
l .x/ D

.�1/m.1� x2/m=2

2llŠ

dlCm

dxlCx
.x2 � 1/l: (2.145)

Given a function defined on the unit sphere, f .�/, where � D .�;  /T , allows
computation of the coefficients as follows:

f ml D
Z

�2S2
f .�/ NYm

l .�/d�; (2.146)

where NYm
l is the complex conjugate of Ym

l . Some examples of the spherical
harmonics are shown in Fig. 2.14b. Setting a two-dimensional coordinate system
.�;  / on a given simple1 closed surface allows representation of the coordinates
of each point on the surface in a Cartesian coordinate system by functions of
the angular components, .�;  /, as x D x.�;  / D Œx.�;  /; y.�;  /; z.�;  /�T .
Expanding these functions, x, y, and z, to linear combinations of the spherical
harmonics functions results in representation of the surface as

x.�; �I c/ D
1X
lD0

lX
mD�1

cml Y
m
l .�;  /; (2.147)

where c D fcml jl 2 N;�l � m � lg are the coefficients, each of which is a three-
vector, cml D .xml ; yml ; zml /T , where each of its components is computed from x.�;  /,
y.�;  /, and z.�;  /, respectively, as shown in Eq. (2.146). Changing the values
of the coefficients, cml , allows deformation of the surface. It should be noted that
the coefficients with larger values of l correspond to the higher frequencies of the
surface and to the smaller details of its shape.

A PDM [8, 65–68] represents a surface using the coordinates of the points
distributed on it: x.i/ W N 7! R

3, where i denotes an index of each of the points
on the surface. The distance between two surfaces represented by PDMs is defined
as (2.132). Examples of liver surfaces represented by PDMs are shown in Fig. 2.15.
Analogous to PDM-based curve representations shown in (2.134), surfaces can be
represented using linear combinations of eigenvalues obtained by applying a PCA

1A simple surface does not have a self-crossing point.
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Fig. 2.15 Examples of liver surfaces represented by PDMs

to a set of training surfaces for targets:

x.�/ D NxC
NB�1X
iD0

�iui; (2.148)

where Nx and ui denote the mean of the training surfaces and the eigenvalues
corresponding to the NB largest eigenvalues, respectively.

2.3.2.5 Registration Required Before Measurement or Analysis

Target figures such as curves or surfaces should be registered or normalized
appropriately before measuring the distances between them or analysis of their the
statistics. If you represent figures in different images which are represented using
functions of voxels, f .x/, the values must be compared at the corresponding voxels;
i.e., each voxel in one of the images should be mapped to a voxel in each of the
other images before the comparison. Registration of given images is hence required,
and use of anatomical landmarks is vital. Medical images can be registered by
detecting anatomical landmarks and by deforming the images so that the detected
corresponding landmarks have (approximately) identical coordinates. Landmark
detection will be described in Sect. 2.3.3.

For statistical analysis of figures, if the figures are represented using parametric
functions, x.s; tI .�//, the locations of points on the figures that have identical values
of .s; t/ that indicate the locations on the figures must be compared. For example,
when using the NURBS functions to represent surfaces, the distances among the
figures are calculated as shown in (2.140), in which the distance between two
points on different figures that have identical values of the parameters, .s; t/, is
integrated. The computed distance, therefore, is plausible from the point of view
of medical imaging only when the parameters, .s; t/, that indicate the locations
are appropriately set for each of the given figures; i.e., the points that are on
different figures and that have identical values of the parameters, .s; t/, should
appropriately correspond. The parameters, .�;  /, should correspond when employ-
ing spherical harmonics for the surface representation, and the index numbers,
i, of the points should correspond when PDMs are used for the representations.



2 Fundamental Theories and Techniques 89

When parametric functions are employed for the representation, correspondences
among given figures must be made in order to compare them and to analyze their
statistics. Several approaches for making these correspondences can be utilized [69].
Diffeomorphism-based frameworks figure prominently in this methodology and will
be described in Sect. 2.3.4.

2.3.3 Image Features and Landmarks

Local image features, like protuberances, ridges, and edges, are often detected at
early stages of image processing and are used at higher stages to arrive at compact
descriptions of targets, for example, for identifying the anatomical structures of
a patient captured in a given image. Many local image features are defined for
general purposes: edges, for example, are the locations at which the brightness
changes sharply and are detected for a variety of purposes. Many different features
have been proposed for higher-level image processing, e.g., image segmentation,
image recognition, and for landmark detection. In many medical image processing
programs, anatomical landmarks are detected first to determine the locations of the
voxels in given images. Only after detecting the landmarks can the body sizes
and shapes of the patients be normalized, allowing introduction of a coordinate
system appropriate for using computational models. For the landmark detection,
local image features that are specifically observed at each landmark location
must be designated. This may pose some difficulty if corresponding landmarks
in different patients have different appearances and because multiple locations can
have appearances similar to those of some landmarks.

2.3.3.1 Anatomical Landmarks

Anatomical landmarks are the anatomical structures that can be reliably detected
on given images of any patients and that can be used for uniquely identifying
the location in each given image [70]. It is very important for the medical image
segmentation to detect anatomical landmarks accurately because they are useful
for anatomically identifying body regions in the images and for registering organ
models to the images (see Sect. 2.3.5). One of the difficulties of automatic landmark
detection is finding a set of local structures of whose features are similar from patient
to patient. Many local structures have similar appearances, and it is difficult to find
a set of landmarks each of which can signify a single location. One approach for
handling this difficulty is to detect a set of landmarks simultaneously by using not
only the local image features of each landmark but also a model of their spatial
distributions. In the following, the methodology of this approach is described [70].

The algorithm of a method [70] that detects a set of anatomical landmarks
consists of two steps: A set of candidates for each of the anatomical landmarks
is first detected by using only its local image features and then false candidates
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are rejected using the model of the relative locations between the landmarks at the
second step. At the first step, a detector for each of the landmarks is constructed
by using a set of training data. Let the location of j-th landmark . j D 1; 2; : : : ;N/
in the i-th training image, Ii .i D 1; 2; � � � ;M/ be denoted by p j

i , which is entered
manually.

Let Iji denote a local image pattern observed in a small region centered at pji in Ii.
In cases where the region is a cube and its size is L � L � L, then Iji is represented
by a L3-vector. The detector for the j-th landmark is constructed from a set of the
local images, S j D fIji ji D 1; 2; � � � ;Mg, by applying a PCA to S j. Let a set
of eigenvectors obtained by the PCA be denoted by fv j

kjk D 1; 2; : : : ;Tjg, which
consists of Tj largest eigenvalues, f	j1 � 	

j
2 � : : : � 	

j
Tjg. Let a L3-vector, I. p/,

denote a local appearance observed around a point p in a given new image. Then
the log likelihood of the location p for the j-th landmark, p.Ij p/ D Lj. p/, can be
computed:

Lj. p/ D �
TjX
kD1

h
.v

j
k/

T.I. p/� Ij/
i2

	
j
k

; (2.149)

where Ij is the average of fIjiji D 1; 2; � � � ;Mg: Ij D P
i I

j
i=M. The likelihood of p,

l. p/, is proportional to expfLj. p/g:

lj. p/ / expfLj. p/g: (2.150)

This computation of the likelihood can be interpreted as the extraction of a feature
that is observed around the landmark, p. Unfortunately, the likelihood distribution
cannot identify the location of the j-th landmark in many cases because one can find
other anatomical structures that have the appearances similar to that of the target.
A set of multiple candidates for the j-th landmark, hence, would be obtained by
detecting the local maximums of Lj. p/ (or of lj. p/). Let the detected candidates be
denoted by c j

k .k D 1; 2; : : : ;Kj/.
At the second step, a true point is selected from the candidates fc jkjk D

1; 2; : : : ;Kjg in the given new image by using a model that represents the relative
relationships between the anatomical landmarks. Let a true position of the j-th
landmark be denoted by a three-vector, p j, and the distance between the j-th
landmark and the j0-th landmark be denoted by d jj0 . In this method [70], a model
of d jj0 is constructed for each pair of the landmarks by using the training set
of the landmarks manually extracted from all of the training images, f p j

i ji D
1; 2; : : : ;M; j D 1; 2; : : : ;Ng. Let d jj0

i D kp j
i � p j0

i k ( j ¤ j0). Then, it is
straightforward to construct a Gaussian model of d jj0 in (2.151) from the training
set:

p.d jj0/ D 1p
2�� jj0

exp

(
�1
2

.d jj0 � Nd jj0/2

.� jj0/2

)
; (2.151)
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where Nd jj0 and � jj0 are the average and the standard deviation of fd jj0

i ji D
1; 2; � � � ;Mg, respectively. A true point, Oc j, is selected for each j ( j D 1; 2; � � � ;N)
from the candidate set, fc j

kjk D 1; 2; : : : ;Kjg, by finding the number Okj for each j
that maximizes the following simultaneous probability:

p.c1k1 ; c
2
k2 ; : : : ; c

N
kN / /

Y
j

l j.c j
kj
/
Y
j¤j0

p.d jj0/; (2.152)

where d jj0 D kc j
kj
� c j

k j0
k. The final estimated location of the j-th landmark can be

obtained as Oc j D c jOkj . The model shown in (2.152) is a Markov random field (MRF)
model that can be used to estimate the arguments that maximize the probability.

2.3.3.2 Keypoints

Keypoints are points with local image features that can be used for matching
multiple images, in other words, for finding pairs of corresponding points in the
images. As opposed to anatomical landmarks, it is not necessary to have information
about the correspondence among different keypoints detected from an image.
Keypoints used for image matching are determined after the target images are
acquired, though which anatomical landmarks that are to be detected are determined
in advance. Scale-invariant feature transform (SIFT) is one of the most popular
algorithms for detecting keypoints and for describing their features. The details of
SIFT can be found in the literature [71, 72].

The SIFT algorithm consists of two steps: Keypoints are detected at the first
step and then local image features are described for each of the detected keypoints.
At the first step, not only the spatial location but also the scale are detected for
each keypoint. Here, the scale represents the size of the local structure around
the keypoint: For example, keypoints are often detected on center lines of blood
vessels, and the scale of each keypoint detected on the center line will approximately
equal to the radius squared of the blood vessel. The theoretical foundation of the
keypoint detection comes from the research field of the scale-space analysis [73].
At the second step, a histogram of the gradient directions observed in a local
region around each keypoint is computed as the image feature. It should be noted
that the histogram of the gradient directions includes some information about the
curvatures of constant-level surfaces around each keypoint because the gradients
are perpendicular to the level surfaces. Analogous to SIFT features, many other
image features that are computed based on image gradients, including histograms
of oriented gradients (HOG) [74] and Speeded Up Robust Features (SURF) [75],
can be used for image description.
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2.3.3.3 Edges and Ridges

In medical image analysis, local image features are detected from given images
in order to constrain degrees of freedom (DoF) of the locations of anatomical
structures. Though one needs to constrain three DoF for uniquely identifying the
location of each structure, image features that can constrain only one or two DoFs
are also useful for accurately segmenting organ regions in given images. Local
appearances that are invariant with respect to translation cannot constrain three DoF
of their locations. For example, a local appearance around a point on a smooth
surface is invariant with respect to translation along tangential directions and can
constrain the spatial location only along the direction perpendicular to the surface.
In this subsection, edge and ridge features are described. Edge features constrain one
DoF in given 3D images and ridge features constrain two DoFs. In this subsection,
the functions with subscripts denote the derivatives of the functions with respect to
the variables indicated by the subscripts. For example, Ix and Ixy denote Ix D @I=@x
and Ixy D @2I=@x@y, respectively.

Edges are defined as the locations where the voxel values change rapidly in one
direction and are detected because they are often observed at the boundaries of
organs. The rapid changes of voxel values can be detected by finding the locations
where the second derivatives of images are equal to zero as the magnitudes of the
first derivatives are maximal. Roughly, there are two approaches for finding such
locations. In one approach, the Laplacian of a given image is computed, and its
zero-crossings, at which the following equation holds, are detected as edges:

Ixx C Iyy C Izz D 0: (2.153)

In the other approach, the local maxima of the gradient magnitudes in directions
of the gradients are detected as edges. Let a unit vector parallel to the gradient be
denoted by �.x; y; z/, where

�.x; y; z/ D rI.x; y; z/=krI.x; y; z/k: (2.154)

Then, at the local maxima, the second derivatives along the gradient direction, �,
should be zero:

�.x; y; z/ � r .krI.x; y; z/k/ D 0; (2.155)

where r.krI.x; y; z/k/ denotes the gradient of the gradient magnitude. Computing
its inner product with � results in the directional second derivative of the gradient
magnitude. The Eq. (2.155) can be rewritten as follows:

I2x Ixx C I2y Iyy C I2z Izz C 2IxIyIxy C 2IyIzIyz C 2IzIxIzx
.I2x C I2y C I2z /

2
D 0: (2.156)
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The edge locations detected by (2.153) and by (2.156) are identical only when
the constant-level surface of I.x; y; z/ is flat. One difficulty of the edge detection
is that the values of the spatial derivatives generated by these two equations are
susceptible to image noise because spatial derivative operations enhance high-
frequency components of signals as described in Sect. 2.2.1.5, and many false
edges are detected on noisy images. Therefore, given images are smoothed to
suppress noise, usually using a Gaussian filter, g.xjt/. Once again, letting L.xjt/ D
I.x/ � g.xjt/ and replacing I� and I�� in (2.153) and in (2.156) with L� and L��,
results in increased resistance to noise in the edge detectors. One drawback of this
Gaussian smoothing is that the locations of the detected edges become inaccurate
at the locations where the constant-level surfaces have high curvatures. Nonlinear
image smoothing or edge-preserving algorithms [58, 76, 77] are often employed to
remedy this.

Ridges (or “bright tubes”) are defined as locations where the voxel values are
constant in one direction, u, and are maximum along planes perpendicular to u.
Ridges are detected on medical images because they are often associated with
curvilinear structures such as vessels and bronchi. A Hessian matrix can be used
to detect ridges:

H.x/ D
2
4Lxx.xjt/ Lxy.xjt/ Lxz.xjt/
Lyx.xjt/ Lyy.xjt/ Lyz.xjt/
Lzx.xjt/ Lzy.xjt/ Lzz.xjt/

3
5 : (2.157)

Letting the eigenvalues of H.x/ be denoted by 	1 � 	2 � 	3 and letting the
corresponding eigenvectors be denoted by e1, e2, and e3 (it should be noted that
these eigenvectors are orthogonal to each other because H.x/ is symmetric), the
Taylor expansion of L.x/ is

L.xC ı/ ' L.x/CrL.x/ � ı C 1

2
ıTH.x/ı C O.kxk3/: (2.158)

The last term on the right side can be rewritten as

1

2
ıTH.x/ı D 1

2
.	1a

2 C 	2b2 C 	3c2/; (2.159)

where a, b, and c denote the small disturbances along e1, e2, and e3, respectively,
such that a D eT1ı, b D eT2ı, and c D eT3ı. In other words, the eigenvalues 	1, 	2,
and 	3 are the second derivatives in the directions of e1, e2, and e3, respectively. At
ridge points, the largest eigenvalue is equal to zero, 	1 D 0, and the corresponding
eigenvector, e1, is parallel to the tangential direction along which the voxel values
are constant. The other two eigenvalues, 	2 and 	3, are negative and are locally
minimum along e2 and e3 because, at ridge points, the voxel values are maximum
along the plane spanned by e2 and e3. Hence, the conditions ridges should satisfy
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are

	1 ' 0; (2.160)

	2 ' 	3 	 0; (2.161)

e2 � rL.xjt/ D 0; (2.162)

e3 � rL.xjt/ D 0: (2.163)

The last two conditions reveal the locations of ridges. The scale, t, of the Gaussian
applied to smooth the input images should be determined based on the radii of the
local curvilinear structures. Assuming that a radius of a curvilinear structure is equal
to r, the scale should be equal to t ' r2, and some multiscale methods can determine
an appropriate scale for each curvilinear structure in a given image [73, 78].

2.3.4 Diffeomorphism Frameworks

CA [79] aims to develop models to understand the anatomical variability of
organs and tissues, including (a) automated construction of anatomical manifolds,
points, curves, surfaces, and subvolumes; (b) comparison of these manifolds;
and (c) the statistical codification of the variability of anatomy via probability
measures allowing for inference and hypothesis testing of disease states [80]. An
applicable framework to achieve these goals should provide: (a) a mathematical
model to describe the space and variability of anatomy, i.e., the shape space and the
transformations between shapes; (b) a computable distance metric to measure the
difference between shapes; and (c) statistical analysis tools for the shape space.

In the last decade, a diffeomorphism-based CA framework developed by A.
Trouvé [81], M. Miller [82], L. Younes [83], X. Pennec [84], D. Holm [85], S.
Durrleman [86], and their collaborators has undergone tremendous progress to
reach these goals. Existing computational frameworks developed along this road
map fall into two categories: the Riemannian manifold solution and the Lie group
solution with their corresponding terms large deformation diffeomorphic metric
mapping (LDDMM) well-known representatives [81–83, 85, 87–89] and stationary
vector fields (SVF) [90–93], respectively. Of the two, the LDDMM framework
is more mathematically fundamental and general. The SVF can be regarded as a
simpler alternative which provides better computational efficiency at the cost of
more theoretical limitations.

Taking LDDMM as a general framework of diffeomorphism-based CA, its key
components to solve the abovementioned tasks include:

• Accommodation of variation in the shape space by introducing groups of
diffeomorphic transformations carrying individual elements from one to another.

• Defining a Riemannian metric defined on the shape space to measure continuous
deformations of shapes, that is, paths in shape space. The distance between
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shapes can be defined as the length of the shortest path, in other words, the
geodesic that connects two shapes.

• Providing a Riemannian exponential map that generates the geodesic allowing
linearization of shape space. When shapes are represented as initial velocity fields
of geodesics connecting them with a fixed reference shape, one effectively works
in the linear tangent space over the reference shape. The exponential map allows
calculation of statistics in shape space.

In practice, finding the distance and the corresponding optimal curve connecting
shapes in the shape space to realize this distance is formalized as a registration prob-
lem. Once the optimal deformation curves are found, their linearized representations
can be used for statistical analysis on the shape manifold.

Sections 2.3.4.1 and 2.3.4.2 explain the LDDMM- and SVF-based image
registration and their underlying geometry. Section 2.3.4.3 sketches the basic ideas
of statistical analysis on shape space. Typical applications and future directions of
diffeomorphism-based CA are addressed in Sect. 2.3.4.4.

2.3.4.1 LDDMM Framework for Registration

General Setting

The LDDMM approach models CA as a deformation of an initial template image I 2
V by diffeomorphic transformations g 2 G, where V D fI W ˝ ! M g is a vector
space of images with domain ˝ and G is a Lie subgroup of the diffeomorphism
group Diff .˝/ on ˝ with Lie algebra g. The deformation of an image I 2 V by a
diffeomorphic transformation g 2 G is defined by a smooth map:

l W G � V ! V; .g; I/! gI (2.164)

Inner products of V and g are also defined as V and g as < �; � >VD .�; �/V��V and
< �; � >gD .�; �/g��g [94, 95].

LDDMM Diffeomorphic Registration

Given two images I0; I1 2 V , the objective of the diffeomorphic registration is to
find a curve t 7! ut 2 g that minimizes the energy

E.ut/ D 1

2

Z 1

0

< ut; ut >g dtC 1

2�2
< g1I0 � I1; g1I0 � I1 >V (2.165)

where g1 is the endpoint of the flow of ut given by

@tgt D utgt; g0 D Id; gt 2 G (2.166)
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Fig. 2.16 Deformation fields gt and deformed images gtI0 at time slot t D 0; 0:2; 0:4; 0:6; 0:8; 1:0

in a 2D LDDMM image registration

This means I0 is smoothly deformed by gt; t 2 Œ0; 1� to I1. Figure 2.16 shows an
example of a sequence of diffeomorphic registration.

Computing the derivative of the matching energy E.ut/ should result in the
optimal ut satisfying

u[t C gtI0 ˘ gtg�1
1 � D 0 (2.167)

where � D 1
�2
.g1I0 � I1/[ and the [-map on a vector space V is defined by

[ W V ! V�; .u[; v/V��V D< u; v >V (2.168)

The momentum map ˘ W T � V ! g� is defined by .I ˘ �;�/g��g D .�; ��I/V��V ,
and �� W V ! TV is the fundamental vector field generated by � 2 g [85, 94].

Geometry of LDDMM Registration

Hidden behind the complex formulae (2.164), (2.165), (2.166), and (2.167) is an
intuitive geometric picture, which helps to understand the key characteristics of the
LDDMM framework.

Riemannian structure The Riemannian structure of LDDMM can be understood
from the abstract formulation of the diffeomorphic deformation in (2.164).

• Images We can think of the vector space V as containing different types of
images encountered in CA by selecting ˝;M . The inner product < �; � >V

can be used to measure the difference between two images. For example, brain
MRI images can be represented as V D fI W ˝ ! Rg;˝ 2 R3, and the
difference between I0 and I1 is given by kI0 � I1k2 D< I0 � I1; I0 � I1 >VDR
˝
jI0.x/� I1.x/j2dx.

• Transformation Diffeomorphic transformations on V is a Lie group G 2
Diff .˝/ essentially determined by V through the image domain ˝ . A
transformation g 2 G deforms I 2 V by the action l given in (1). For intensity
MRI images, e.g., T1-weighted images, the action is gI D I ı g�1. For more
information about how transformations act on different images, the reader is
directed to [95, 96].
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• Riemannian manifold Lie group G 2 Diff .˝/ with the inner product <
�; � >g on its Lie algebra g define a Riemannian structure on G with a right
invariant metric [81, 83]. Obviously by selecting different G and <;>g, we
are in fact working on different Riemannian manifolds, which may lead to
different registration results as will be explained later.

Geodesics The objective of LDDMM registration (2.165) and (2.166) is to find
the optimal path gt 2 G continuously parametrized by time t that smoothly
deforms I0 through It D gtI0. The optimal path is defined as the path that
costs the least in time-integrated kinetic energy 1

2

R 1
0
< ut; ut >g dt for a

given error tolerance 1
2�2

< g1I0 � I1; g1I0 � I1 >V . The optimal solution given
by (2.166) and (2.167) is simply a geodesic connecting I0 and a point in the
near neighborhood of I1 determined by (2.166) and (2.167), equivalent to the
Euler-Poincaré equation [89]. It can be solved by gradient flow [87] or geodesic
shooting methods [82, 97].

Riemannian exponential and shape space linearization Besides a distance metric
on shape space, by modeling optimal transformations as geodesics, LDDMM
also linearizes the shape space to validate statistical analysis on it. Any geodesic
fulfilling differential equations (2.167) and (2.168) is uniquely determined by
I0; I1 and the initial momentum u[0 2 g� or equivalently the initial vector field
u0 2 g. Taking I0 as a common reference, any image I 2 V can be reached within
an error tolerance by a geodesic determined by a vector field u0.I/ in the vector
space g. So the Riemannian exponential map exp and its inverse log linearize the
shape space by representing any image I D gI0 2 G with u0.I/ D log.g/ 2 g
[98].

Further considerations To consolidate the foundations of the LDDMM frame-
work, the following questions also need to be answered:

• When does the geodesic provide a mathematically and physically valid
distance metric between shapes, for example, satisfying the triangle relation-
ship?

• Is the distancemetric between shapes a smooth function?Does a small change
in images lead to a small change of the distance between them?

• Does a geodesic with a limited length always exist between two shapes? Is it
unique?

• How reliable is the linearized representation of the shape space? For example,
starting from a reference shape I0, does a small deviation of the initial vector
field u0 result in a small change of the correspondent destination shape g1I0?

Answers to these questions lie in the Riemannian structure on G defined by G,
˝ , and < �; � >g, especially the curvature of the Riemannian manifold. A few
interesting facts about these questions include: [99, 100]

• In the standard LDDMM framework, the group G is set as the flow of all
time-dependent vector fields ut defined on an admissible Banach space V .
The distance metric defined there is a valid distance on GV .
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• Right-invariant L2 metric on the full diffeomorphic group Diff .˝/ leads to
vanishing geodesic distance so that any two shapes can be deformed into each
other by a deformation that is arbitrarily small with this metric.

• An H1 metric on Diff .˝/ introduces nondegenerate geodesic distance.
• For a unit n-dimensional cube Mn in Rn, the diameter (maximal geodesic

distance on the manifold) of the smooth volume-preserving diffeomorphism
group SDiff .Mn/ is finite with an L2 right-invariant metric for n � 3. And the
diameter is infinite for n D 2.

These are only a few examples to remind the readers how complex the situation
can be in the LDDMM framework with different Riemannian structures.

For more information about related topics on the LDDMM framework, such as the
metamorphosis, currents, inner and outer metrics, and curvature of the shape space,
the reader is referred to [85, 86, 88, 99].

2.3.4.2 SVF Framework

The SVF framework of CA was developed by Arsigny, Pennec [84, 90, 93, 101] as
an alternative to the LDDMM framework.

Basic Setting

Similar to LDDMM, SVF framework also works on a vector space of images V and
a Lie group of diffeomorphic transformation G with inner products on V and g. The
action of g 2 G on I 2 V is exactly as given in (2.164).

SVF Diffeomorphic Registration

The registration of two images I0; I1 is formulated in SVF framework as

E.v/ D 1

2
< v; v >g C 1

2�2
< g1I0 � I1; g1I0 � I1 >V (2.169)

where

@tgt D DR.gt/.v/ D v ı gt) gt D Exp.vt/ (2.170)

and Exp W g! G is the Lie group exponential map.
The goal of the registration formulation is to find the optimal v 2 g that generates

a smooth transformation gt to deform I0 to I1. The distance between shapes is given
by the norm < v; v >g.
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SVF vs. LDDMM

By comparing (2.169) and (2.170) with (2.165) and (2.166), we can observe that:

Lie group structure The underlying space of the SVF framework is not a Rie-
mannian manifold and there is no Riemannian metric, geodesic, or connection
involved. Instead, SVF works on the Lie group structure of G.

One-parameter subgroup The optimal curve gtI0 connecting I0 and I1 is formu-
lated by gt D Exp.vt/, which is a one-parameter subgroup of G. Different from
LDDMM, which constructs gt by integrating a time-dependent vector field ut
specified by the Riemannian metric on G, the gt of SVF is an integral curve of a
stationary vector field (the source of the term) v 2 g (2.169). Finding the optimal
v to register I0 with I1 can also be achieved by gradient flow or geodesic shooting
algorithms as in LDDMM, but in practice, the most commonly used algorithm is
the Log-Demons algorithm [91, 92].

Lie group exponential and shape space linearization Similar to LDDMM, SVF
assumes that every image I 2 V can be reached from a template image I0 by
a Lie group exponential map Exp.v.I//. The linearization of the shape space is
achieved by the Lie group exponentialExp instead of the Riemannian exponential
map exp in LDDMM, i.e., representing I D Exp.v.I//I0 2 G by v.I/ 2 g.

So, to a first approximation, SVF framework can be regarded as a simplified
alternative to LDDMM which (a) works on stationary vector fields on the tangent
space of Diff .˝/, equivalently vectors in g instead of time dependent vector fields
in LDDMM and (b) replaces the Riemannian exponential with the Lie group
exponential as explained in Fig. 2.17a, b.

The main advantage of SVF over LDDMM is that both the Lie group exponential
Exp and its inverse Log can be computed with a higher efficiency as matrix
operations than the Riemannian exp and log [92]. Another advantage of using SVF is
that the parallel transport operation for longitudinal data analysis can also be carried

Fig. 2.17 Geometry of diffeomorphic registration in LDDMM and SVF frameworks (a) LDDMM
registration between images I0 ! I1, I0 ! In and their tangent space representations on TI0M
by Riemannian exponential map. (b) SVF registration between images and their tangent space
representations on TeG D g by Lie group exponential map, where gIi 2 G and gIi I0 D Ii



100 H. Hontani et al.

out much more easily than LDDMM when the Cartan connections are selected to
define the parallel transport operation on the manifold G [93].

The main difficulty of SVF appears when we consider the existence, and prop-
erties of the optimal transformation between images are considered, as explained in
the LDDMM case. For SVF framework, we know that generally:

• The Exp map is usually not subjective, which means that not all images in G can
be reached by an Exp.v/ from a template I0.

• The optimal transformation is not smooth with regard to the images, so that a
small change in images may lead to a large change of the curve connecting them.

But even with these known theoretical obstacles, SVF framework still shows
promising performance in practical applications and plays an important role in CA
computation [101, 102]. The reader is referred to [100, 103] for more information
about the mathematical foundation of SVF.

2.3.4.3 Statistical Analysis on Shape Manifold

Statistical analysis on anatomy shapes is one of the key goals of CA. Two of the
most commonly used statistical tools are the:

Statistical shape atlas, which aims to build statistics of organ shapes across
diseases, populations, species, or ages. Its key task is to estimate representative
organ anatomies and the intersubject shape variability.

Longitudinal shape data analysis is used to model the organ development across
time, i.e., statistical analysis of the dynamic trajectories of organ shapes.

Tangent Space Statistical Shape Atlas

The abovementioned diffeomorphic registration frameworks provide two essential
components for the statistical analysis on the shape space: the distance metric
between anatomic shapes and the linearized representation of shape difference on a
vector space.

We take one of the most commonly used statistical tools, the PCA atlas of
construction of anatomic structures, as an example to explain how statistical analysis
can be carried out. Usually, it is called “tangent space PCA,” since the underlying
vector space is essentially the tangent space at the mean shape of the PCA model
[86, 104].

Given a collection of anatomic shapes S D fI0; I1; : : : ; IN�1g, the tangent space
PCA atlas consists of a mean model NI and a covariance matrix of the deviations of
the shapes from NI. The PCA model can be constructed thus:

1. The mean model NI is computed from S.
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2. The linearized shape deviation xn of In, represented by the initial vector field
un0 or its dual u[n0 for LDDMM or the stationary vector field vn for SVF, of each
shape In; n D 0; 1; : : : ;N � 1 is computed by registering NI to In.

3. The covariance matrix of fxng is computed.

In CA, the most commonly used (weighted) mean shape NI of S is the Fréchet
mean or its local version, the Karcher mean with weighting factors fwng defined as

NI D min
I

X
n

wndist
2.I; In/ (2.171)

where dist.I; In/ is a distance metric between I and In. NI in (2.171) can be found
using an iterative fixed point algorithm [90, 105, 106]. Given the mean model NI,
fxng and the covariance matrix can be easily computed to construct the generative
PCA model from S as illustrated in Fig. 2.18a. For more details about the mean
model such as its geometrical meaning, invariancy with group actions in LDDMM
and SVF frameworks, and log-domain statistics, the reader is referred to [84, 107].
A methodological discussion on statistical atlas construction can be found in [86].

Fig. 2.18 Statistical analysis of diffeomorphism-based computational anatomy (CA) (a) Tangent
space PCA model with LDDMM: NI is the Fréchet/Karcher mean of the training data; each image
Ii is represented in the vector space TNIM as u0.Ii/, and the statistical analysis is carried out on that
vector space. (b) Longitudinal data analysis in LDDMM: Three objects S1; S2; S3 are observed at
discrete time points represented as �; ı;�. Evolutionary trajectories are estimated by geodesics
for S1; S2 and a piecewise geodesic for S3. To compare trajectories of S1 and S2, the tangent
space representations of their trajectories would undergo parallel transporting u0.I

1!2
1 /; u0.I

1!2
2 /

to a common reference I0 as PT.u0.I
1!2
1 //;PT.u0.I

1!2
2 // along geodesics gI0!I1 ; gI0!I2 and

then comparison in TI0M. How this parallel transport and comparison of the piecewise geodesic
trajectory of S3 is to be achieved remains open because the parallel transport is path-dependent
[98] and there are different ways to transport u0.I2!3

3 / to TI0M
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Longitudinal Shape Data Analysis

Longitudinal shape data analysis in CA analyzes the spatiotemporal variability of
anatomic shapes to reveal dynamic development patterns of organs across diseases,
disease course, ages, genders, etc. Its key task is to provide a model of how one
individual’s trajectory changes relative to those of other subjects.

Given a longitudinal data set for a collection of N objects S D fS0; S1; : : : ; SN�1g
observed at different time slots. The observed data set for Sn includes Tn obser-

vations at time slots ft0n; t1n; : : : ; tTnn g as In D fIt
0
n
n ; I

t1n
n ; : : : ; It

Tn
n
n g. Longitudinal data

analysis should answer the following questions:

• How is the trajectory of each object evolution estimated and how is its shape
predicted at any time t from limited observations?

• How are trajectories of different objects compared?
• How can a statistical atlas of evolutionary trajectories be constructed?

Trajectory Estimation

Trajectory estimation involves finding a continuous (smooth) curve in the spatiotem-
poral shape space that best fits the observed discrete time data of a single object. In
diffeomorphism-based CA, existing solutions include:

• Geodesic trajectory Given the observed data of Sn, In D fIt
0
n
n ; I

t1n
n ; : : : ; It

Tn
n
n g at Tn

time slots, the evolutionary trajectory can be computed as a piecewise geodesic
(Riemannian geodesic or group geodesic for LDDMM and SVF, respectively)
that connects successive observed data, which can be computed by diffeomorphic
registration between successive observations by LDDMM and SVF. If there are
only two observations at t0 and t1, the trajectory is just the geodesic connecting
them. Also, such a trajectory holds a correspondent (piecewise) tangent space
representation, which might be explored for the trajectory comparison and
statistical analysis. The disadvantage is that such a greedy method may over-fit
the observed data and lose the global smoothness of the trajectory [93, 108, 109].

• Trajectory regression or interpolation Another solution is to fit a smooth time-
dependent curve simultaneously to all the observed data by kernel regression
or the first- or second-order interpolations as in [86, 110]. Such methods result
in smooth trajectories, but at a cost of losing the tangent space trajectory
representation.

Trajectory Comparison

Depending on the trajectory estimation methods, trajectories can be compared with
corresponding strategies:
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• Parallel transport When the trajectories are just simple geodesics as explained
above, comparison of trajectories can be achieved by the well-known parallel
transport operation to translate their corresponding tangent space representatives
to a common reference. But for piecewise geodesic trajectories, the problem
remains open (see Fig. 2.18b). The reader is referred to [93, 108, 111] for more
details on the parallel transport operation in LDDMM and SVF frameworks and
their relationship.

• Trajectory registration For general interpolated trajectories, in [86] a trajectory
registration strategy has been proposed to register spatiotemporally the trajectory
of one object with the observed data of the other object, resulting in an atemporal
spatial transformation � and a time wrap  , which can be used to represent the
difference between trajectories.

Spatiotemporal Atlas Construction

Similar to the statistical atlas of anatomic shapes, a spatiotemporal atlas of the
evolutionary trajectories of anatomic shapes can also be constructed. In [86, 112] a
subject-specific framework has been proposed to construct such an atlas. The basic
assumptions are:

• All the individuals in the population share a common mean evolutionary
trajectory M.t/ D �t.M0/ with �t a time-dependent spatial transformation.

• The trajectory of object Sn is a deformation of M.t/ by a spatial morphological
deformation �n and a time wrap 'n, given by In.t/ D �n.M.'n.t///.

Then the spatiotemporal atlas can be constructed as an optimization procedure to
find the optimal fM0; �t; f�ng; f'ngg to fit the observed dataset. The reader is referred
to [86, 112] for more algorithmic details and applications.

2.3.4.4 Applications and Future Works

As a computational framework on shape manifolds, diffeomorphism-based CA has
been widely used for general image registration [91, 107, 111], morphology-based
disease diagnosis [108, 113], SSA construction [90, 105, 114–116], and longitudinal
data analysis [93, 102, 112, 117] even beyond the medical image processing field
[118, 119].

Future work may be carried out on the following aspects:

• Extending the diffeomorphic registration framework of CA to various image
modalities and multimodality image registration

• Extending the applications of SSA to achieve shape segmentation, registration,
and classification
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• Building longitudinal data analysis frameworks beyond the limitations of the
framework of [112], which is essentially not a general and generative spatiotem-
poral model that can cover the variabilities of the evolutionary shape trajectories

2.3.5 Computational Anatomy and Registration

One of the most popular approaches employed for segmenting organ regions in
given medical images is nonrigid registration of organ models to the images. There
exist a huge number of model-to-image registration methods with several surveys
of the registration methods in, e.g., [69, 120]. In this section, a very fundamental
approach to registration, a MAP estimation, is described.

Many model registration methods first normalize the locations, shapes, and sizes
of the patient bodies in given images (see also Fig. 2.6) and then register the organ
models to the images. The normalization of the bodies in given images is required
for decreasing the variation of the locations, sizes, and shapes of bodies of patients
and for setting a common coordinate system to all of the training and test images.
The organ models represent the statistics of the locations and/or of the shapes of
target organs. In this section, two major statistical models of organs are explained:
the probabilistic atlases and the SSMs.

2.3.5.1 Probabilistic Atlas

Letting the regions of target organs in given images be denoted by Rt .t D
1; 2; : : : ;N/, where t denotes an index number or a label of each organ and N is
the number of the organs to be detected, allows determination of the regions, Rt, in
a given image, I.x/ W R3 7! R, by using a classifier that judges if each voxel in
the image is inside of the t-th organ or not. The optimal classifier, which minimizes
the expected error ratio, decides that a voxel is inside the region, Rt, only when the
following condition is satisfied (Sect. 2.2.3):

p.x 2 RtjI.x// > p.x … RtjI.x//; (2.172)

where p.x 2 RtjI.x// and p.x … RtjI.x// denote the posterior probability distribu-
tions. These posterior probability distributions can be computed by multiplying the
prior distributions by the likelihood distributions:

p.x 2 RtjI.x// / p.x 2 Rt/p.I.x/jx 2 Rt/;

p.x … RtjI.x// / p.x … Rt/p.I.x/jx … Rt/: (2.173)

The prior probability distributions, p.x 2 Rt/, are called the probabilistic atlas of
target organs [22, 121–123]. A probabilistic atlas of a target organ represents the
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probability of each voxel being inside of Rt and is constructed from a set of training
images in which the target organs are manually labeled. Let M denote the number
of the training images and let Ii.x/ (i D 1; 2; : : : ;M) denote the training images in
which the location, the size, and the shape of the body are normalized. Let bit.x/
denote labeled images corresponding to Ii.x/ such that

bit.x/ D
�
1; .x/ 2 Ri

t;

0; .x/ … Ri
t;

(2.174)

where t D 1; 2; : : : denotes the ID of a target organ and Ri
t denotes the region of the

target organ in Ii.x/. When the number of the training images, M, is large enough,
the probabilistic atlas can be constructed as follows:

p.x 2 Rt/ D 1

M

MX
iD1

bit.x/: (2.175)

When M is not large enough, though, a probabilistic atlas estimated by (2.175) over-
fits to the training images. For example, it often happens that the estimated prior
probability distributions have many zero values at inappropriate locations. One of
the techniques for avoiding this over-fitting blurs bi.x/ and estimates p.x 2 Rt/ as
follows:

p.x 2 Rt/ D 1

M

MX
iD1

X
v

w.v/bit.x � v/; (2.176)

where v 2 R
3 andw.v/ � 0 is a unimodal weighting function for the spatial blurring

that satisfies

X
v

w.v/ D 1: (2.177)

For example, a Gaussian function can be used for w.v/. Once p..x; y; z/ 2 Rt/ is
estimated, the prior of the voxel being outside of Rt can be estimated as p..x; y; z/ …
Rt/ D 1� p..x; y; z/ 2 Rt/. Figure 2.19 shows an example of a probabilistic atlas of
the liver.

For computing the posterior probabilities in (2.172), not only the prior probability
distribution but also the likelihood distributions are needed, p.I.x/jx 2 Rt/ and
p.I.x/jx … Rt/. Using these likelihoods, one can rewrite Eq. (2.172) as follows:

p.x 2 Rt/p.I.x/jx 2 Rt/ > p.x … Rt/p.I.x/jx … Rt/: (2.178)

The models of the conditional probability distributions, p.I.x/jx 2 Rt/ and
p.I.x/jx … Rt/, are estimated from the set of training images. For example, let
ht.Ijx 2 Rt/ (ht.Ijx … Rt/) denote the histogram of pixel values observed in (out
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Fig. 2.19 An example of an input image and of the probabilistic atlas of the liver appeared in
[124]

of) Ri
t .i D 1; 2; : : : ;M/. Then, the conditional distributions can be represented

using, e.g., Gaussian mixture models, of which parameters are estimated by fitting
the models to the histograms by means of an expectation/maximization (EM)
algorithm. Once the representations of the conditional distributions are obtained,
the likelihoods in (2.178) can be computed straightforwardly.

The segmentation method described above determines whether each voxel is
included in the region of a target organ or not based only on the location of each
voxel and on its voxel value. No image features that are obtained by observing
multiple voxels, e.g., the continuity of the regions or the shapes of the region
boundaries, are referred to for the segmentation. As a result, the boundaries of the
segmented regions can have shapes different from those of target organs. Hence,
SSMs of organs that represent the shapes of target organs are often employed for
obtaining regions consistent with the targets.

2.3.5.2 SSMs

SSMs represent the prior distributions of the boundary shapes of target organs. An
SSM is constructed from a set of training data, which are the descriptions of the
target organs in the training images. Depending on the representation employed
for the descriptions, different SSMs may result from identical training data. In this
section, MAP estimation approaches of the registration are described for some of
the representations.
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SSM with Level-Set Representation

A level-set function, ft.x/, represents organ regions in an implicit fashion [124–
126], and SSMs based on the level-set functions [126, 127] represent the statistical
varieties of the shapes of the target organs with probability distributions of the values
of ft.x/. The probability distributions are estimated from sets of the training data.
Let Rt denote the region of an organ, where t (t D 1; 2; : : : ;N) denotes the label of
organs. The region, Rt, can be represented by a level-set function, ft.x/, as follows:

ft.x/
�
< 0; if x 2 Rt;

� 0; otherwise.
(2.179)

Given a region Rt in an image, such a level-set function (2.179) can be constructed
by computing a signed distance function as described in [58]. For the construction of
the statistical models, the level-set function defined in an image space is converted
to a vector. Letting the number of voxels in an image be denoted by W, and
letting the coordinates of the k-th voxel (k D 1; 2; : : : ;W) be denoted by xk,
then the level-set function, ft.x/, can be represented using a W-vector, f t such that
f t D Œ ft.x1/; ft.x2/; : : : ; ft.xW/�T . As described above, an SSM of a target organ
is constructed from a set of training data. Letting a region of the target organ in
the i-th training image, Ii.x/, be denoted by Ri

t (i D 1; 2; : : : ;M) and letting the
corresponding level-set representation be denoted by f it, applying a PCA to the
training set, Dt D f f itji D 1; 2; : : : ;Mg allows construction of a linear SSM as
follows (see also Fig. 2.20):

Fig. 2.20 An example of a SSM for level-set representation of the spline
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Let the eigenvalues obtained by applying PCA to Dt be denoted by 	.1/t � 	.2/t �
: : : � 	

.W/
t , which are in decreasing order, and let the corresponding eigenvectors

be denoted by u.s/t .x/ (s D 1; 2; : : : ;W). The following linear model is widely
employed for an SSM:

f t.xj� t/ D Nf t.x/C
TtX
sD1

�
.s/
t u.s/t .x/; (2.180)

where Nf t is a mean vector of f it (i D 1; 2; : : : ;M), Tt < W is a positive integer, and
� t D Œ�1t ; �2t ; : : : ; �Ttt �T is a Tt-vector of the shape parameters.

As described in Sect. 2.2.3, the prior distribution of the shape parameters can be
approximated using a multivariable Gaussian function such that

p.�/ D 1

Z
exp

8̂
<
:̂

TtX
sD1

�
�
.s/
t

	2

	
.s/
t

9>=
>; : (2.181)

The covariance matrix of the Gaussian distribution in (2.181) is diagonal, and
the diagonal components consist of the eigenvalues, 	.s/t . The number of eigen-
vectors, Tt, in (2.180) can be determined as the minimum integer that satisfiesPTt

sD1 	st=
PW

sD1 	st > 
t, where 
t is a threshold less than one (1), e.g., 
t D
0:95. The linear model (2.180) constrains the level-set representation, f t, to an Tt-
dimensional subspace.

Given an image, the region of the target organ can be segmented by estimating
the values of � t in (2.180), and the estimates can be obtained by maximizing the
posterior probability distribution. Letting the MAP estimates be denoted by O� , then,

O� t D arg max
� t

log p.� tjI.x//; (2.182)

where I.x/ denotes a given image. It is difficult, though, to solve the problem (2.182)
directly.

To make the problem tractable, a latent variable, bt.x/, is introduced, where
bt.x/ D 1 if x 2 Rt and bt.x/ D 0 if x … Rt. If not only an image, I, but also bt.x/
are measured, then the problem of the estimation of � t based on p.� t; bt.x/jI.x// is
tractable. An EM algorithm is useful for the estimation.

In the EM algorithm, the parameters, � , are estimated by maximizing the
following MAP estimation problem [128]:

O� t D arg max
�

Ebt jI;� .log p.�bt.x/jI// (2.183)

D arg max
�

WX
kD1

1X
bD0

p.bt.xk/ D bjI.xk/;�/ log p.�; bt.xk/ D bjI.x// (2.184)
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where b 2 f0; 1g. The function to be maximized is the marginal distribution of
log p.� t; bt.xk/jI.x// with respect to bt.xk/. It should be noted that

log p.� t; bt.x/ D bjI.x// / log p.Ijbt.x/ D b;� t/Clog p.bt.x/ D bj� t/Clog p.� t/;

(2.185)

and that p.I.x/jbt.x/ D b;� t/ D p.I.x/jbt.x/ D b/. Here, p.I.x/jbt.x/ D 0/

and p.I.x/jbt.x/ D 1/ can be evaluated based on the histograms of the voxel
values observed outside of Rt and inside of Rt in training images, respectively.
p.bt.xk/ D bj�/ in (2.185) can be approximated by using ft.�/. Let p.bt.xk/ D 1/

and p.bt.xk/ D 0/ be abbreviated by pin and pout, respectively. Then, pin C pout D 1
holds. For the evaluation of the values of the probabilities, pin and pout, an inverse
of a logit function [128], whose definition is described below, is often introduced. A
logit function of pin is defined as follows:

gin D logit. pin/ � log

�
pin

pout

�
: (2.186)

The inverse of the logit function is given as follows:

pin D logit�1.gin/ D exp.gin/=Z; (2.187)

pout D logit�1.gout/ D 1=Z; (2.188)

where

Z D 1C exp.gin/: (2.189)

It should be noted that 0 < pin; pout < 1 and pin C pout D 1 hold and that pin D
pout D 1=2 when gin D 0. Now the values of pin and pout can be evaluated by using
the level-set function, ft.�/, as

pin D logit�1 .�ft.xj�// : (2.190)

At the boundary of the region where ft.xj�/ D 0, pin D pout D 1=2 holds and pin

monotonically increases as ft increases.
The MAP estimates shown in (2.182) can be obtained by an EM algorithm as

follows:

1. Set the initial value of the parameters: � t D �OLD
t

2. E-STEP: Compute wk.b/ D p.bt.xk/ D bjI;�OLD
t / as follows:

wk.b/ / p.Ijbt.xk/ D b/p.bt.xk/ D bj�OLD/: (2.191)
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3. M-STEP: Solve the following problem and obtain �NEW:

�NEW
t D arg max

� t

X
k

1X
bD0

wk.b/ log p.� t; bt.xk/ D bjI/: (2.192)

4. �OLD  �NEW and back to E-STEP if it is not converged.

The target function to be maximized shown in (2.192) can be rewritten as follows:

X
k

X
b

wk.b/ log p.� t; bt.xk/ D bjI/ D
X
k

X
b

fwk.b/ log p.bt.xk/ D bj�/g C log p.� t/:

(2.193)

The second term in the right side of (2.193), p.� t/, is the prior probability
distribution of � t and is given as (2.181).

In the process of the estimation of � , no candidate points of the boundaries
of target organs are explicitly extracted from given images; hence the distances
between the region boundary represented by the model and the image points
extracted as the candidates of the region boundary are not explicitly measured at
all. The fit between the region represented by the implicit function and the given
images is evaluated based on the differences in voxel values between the interior
and the exterior of each target organ. This methodology is quite different from that
employed for SSMs with explicit representation of region boundaries, which will be
described below.

SSM with NURBS Surface Representation

SSMs with explicit representation of the surfaces of target organs are also widely
employed for the segmentation of given medical images. The surfaces are explicitly
represented with some parameters, and the prior probabilities of those values are
represented by the SSMs. For image segmentation, the values of those parameters
are estimated so that the resultant surfaces fit to the boundaries of target organs
in given images. Different from the segmentation methods with implicit organ
representation, the likelihoods of the parameter values are defined based on the
distances between the model surfaces and the boundary candidate points extracted
from the given images. In the followings, SSMs that represent the surfaces with
NURBS surfaces are described.

NURBS surfaces are determined by a set of control points and a set of
basis functions. Given the set of basis functions, one can vary the shape of the
NURBS surfaces by changing the locations of the control points: The surfaces are
parametrized by the coordinates of the control points. It is not difficult to compute
the normal direction at each point on the surface, and this helps the computation of
the distances between the surface and the boundary candidates extracted from given
images along the normal directions.



2 Fundamental Theories and Techniques 111

NURBS represent surfaces thus:

x.s; t/ D
PNs�1

uD0
PNt�1

vD0 wuvbnu.s/b
n
v.t/PuvPNs�1

uD0
PNt�1

vD0 wuvbnu.s/b
n
v.t/

; (2.194)

where bn�.s/ denote B-spline basis functions of order n that are periodic over the
range 0 � s � L, wuv denote weights of control points, and the three-vectors, Puv ,
denote the coordinates of the control points. Let

Buv.s; t/ D wuvbnu.s/b
n
v.t/P

u

P
v wuvbnu.s/b

n
v.t/

: (2.195)

Then, the Eq. (2.194) can be rewritten as follows:

x.s; t/ D B.s; t/� ; (2.196)

where B.s; t/ is a 3 � 3NsNt matrix such that

B.s; t/ D
2
4B00 B01 B02 : : : BNsNt

B00 B01 B02 : : : BNsNt

B00 B01 B02 : : : BNsNt

3
5 :
(2.197)

Here, Buv D Buv.s; t/ are the products of the B-spline basis functions as
shown in (2.195), and � denotes the coordinates of all control points: � D
ŒPT
00;P

T
01; : : : ;P

T
NsNt

�T . The matrix B.s; t/ can be determined in advance, and the
shape of the surfaces can be varied by changing the values of the components of
the vector � . Figure 2.21 An example of a surface (kidney) represented by NURBS.

Fig. 2.21 An example of closed surface represented by NURBS appeared in [129]
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When the model in (2.197) is employed, the model can be registered to given images
by estimating the values of � by means of a MAP estimation or Bayesian estimation.

A NURBS-based SSM represents a prior probability distribution of � , which is
constructed from a set of training images. Assume the boundaries of target organs
in the training images are manually extracted by some experts. Letting the boundary
surface in the i-th image be denoted by Si .i D 1; 2; : : : ;M/ and letting � i denote
the parameter of NURBS describing Si, referring to the set of the parameters,
f� iji D 1; 2; : : : ;Mg, allows estimation of the prior probability distribution, p.�/.
Once the prior, p.�/, is determined, the simultaneous prior probability distribution
of the points, x.s; t/, of the NURBS surfaces can be determined.

For statistically registering the NURBS surfaces, statistical models of the
residuals between the NURBS surfaces and the corresponding candidates of organ
boundaries detected by, e.g., edge detectors, are also needed. Letting xj D x.sj; tj/
(j D 1; 2; : : : ;L) be a point of a NURBS surface and letting Qxj denote a detected
candidate point corresponding to xj, the conditional probability distributions of the
residuals, p.Qxj � xjjxj/ D p.Qxjjxj/, supply the likelihood distributions when Qxj for
each j is given. Using p.�/ and p.Qxjx/ allows computation of a posterior probability
of � as follows:

p.�jQx1; Qx2; : : : ; QxL/ / p.�/
LY
jD1

p.Qxjjxj/ D p.�/
LY
jD1

p.QxjjB.sj; tj/�/; (2.198)

where L denotes the number of the samples and it is assumed that the residuals are
determined independently. The MAP estimates of � can be obtained by maximizing
p.�jQx1; Qx2; : : : ; QxL/ in (2.198).

For example, a Gaussian distribution can be employed for representing p.�/:
The mean and the covariance matrix, N� and ˙ , can be estimated from the set of the
training parameters, f� iji D 1; 2; � � � ;Mg:

p.�/ D 1

Z
exp

�
�1
2
.� � N�/T˙�1.� � N�/

�
; (2.199)

where Z is a constant for the normalization, N� is a 3NsNt vector, and˙ is a 3NsNt �
3NsNt matrix. The likelihood can also be modeled by a Gaussian. For example:

p.Qxjjxj/ D 1

Z
exp

�
�1
2

�2i
�2
;

�
(2.200)

where �i denotes the distance between Qxj and xj measured along the direction of
the unit normal vector, nj, perpendicular to the NURBS surface at xj such that
�j D nT

j .Qxj � xj/.Then, the cost function, E.�/, which is derived from the negative
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logarithm of the posterior probability distribution, is obtained:

E.�/ / .� � N�/T˙�1.� � N�/C 1

�2

NX
jD1

˚
nT
j .B.sj; tj/� � Qxj/

�2
: (2.201)

Minimizing E.�/, the estimates, O� , that maximize the posterior probability of � can
be obtained. E.�/ has a quadratic form of � , and the computation of the minimizer
is straightforward if Qxj (j D 1; 2; : : : ;N) are fixed. Once � is updated to O� , then
the locations of xj move, and the corresponding candidate points, Qxj, change. The
registration methods, hence, iteratively minimize E.�/ and update Qxj until they are
converged.

As mentioned, a NURBS-based SSMs are constructed from a set of training data,
which are obtained by manually fitting a NURBS surface to the boundary of a
target organ in each of the training images. The number of control points should
be identical among all fitted NURBS surfaces, and each of the control points of one
NURBS surface should be corresponded to one of the control points of each of the
other surfaces. Making this correspondence is not straightforward.

The prior distribution, p.�/, is estimated based on the control points of the
training data. Different from the SSMs with implicit representation, it is guaranteed
that the surfaces represented by the SSMs are single and closed if the surfaces in
the training images are all single and closed. It is not guaranteed, though, that the
surfaces represented by the NURBS surfaces are simple: The surfaces would have
self-intersections even if all of the training surfaces are simple and have no self-
intersections. It is difficult to find the global maximum of the posterior probability,
and the algorithm described above can find only the local maximum. The estimated
parameters, O� , hence vary, depending on the initial values of the parameters, � .

SSM with PDM (Subspace Representation)

PDMs represent surfaces of target organs using sets of points distributed on them.
Letting the coordinates of the j-th point on a surface be denoted by xj 2 R

3 . j D
1; 2; : : : ;N/, a PDM represents a surface with a 3N-vector, x D ŒxT1x

T
2 : : : x

T
L �

T , and
a corresponding SSM represents the prior probability distribution of x. Combining
the prior probability distribution with the likelihood distribution of x allows com-
putation of the posterior probability distribution of x and registration of the models
to given images by estimating the coordinates of each point, xi, by maximizing the
posterior probability.

A prior probability distribution of x is estimated from a set of training data. Again
letting Si (i D 1; 2; : : : ;M) denote surfaces manually extracted by experts from the
i-th image, letting xij . j D 1; 2; : : : ;N/ denote a set of N corresponding points gen-
erated on Si, and letting 3N-vectors xi D Œ.xi1/

T.xi2/
T : : : .xiN/

T �T (i D 1; 2; : : : ;M)
denote a set of the generated corresponding points, the prior distribution of x can
be estimated from the set, fxiji D 1; 2; : : : ;Mg. Letting the prior be denoted by
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p.x/, many PDM-based SSMs including the ASMs represent p.x/ by degenerated
Gaussian functions that constrain represented surfaces to subspaces. Letting the
sample mean of the training data be denoted by Nx D .

PN
iD1 xi/=M and letting the

empirical covariance matrix of them be denoted by ˙emp such that

˙emp D 1

M

NX
iD1
.xi � Nx/T.xi � Nx/; (2.202)

a subspace for the representation is spanned by the eigenvectors of the empirical
covariance matrix. Letting the eigenvalues of the covariance matrix, ˙emp, be
denoted by 	1; 	2; : : : ; 	3L, where they are in decreasing order, 	1 � 	2 � : : :,
and letting the corresponding eigenvectors be denoted by u1;u2; : : : ;u3L, using the
eigenvectors and the mean vector, the surfaces can be linearly represented as

x D
TX

kD1
�kuk C Nx; (2.203)

where T denotes the number of the eigenvectors used for the representation and �k
denotes a weight for each eigenvector. Equation (2.203) can be rewritten as follows:

x D U� C Nx; (2.204)

where a 3N � T matrix, U, is composed of the eigenvectors as follows:

U D �u1 u2 : : : uT 
 (2.205)

and a T-vector, � , denotes the shape parameters that controls the shapes, where
� D Œ�1; �2; : : : �T �

T . The model can be registered by estimating the values of the
shape parameters, � , in (2.204).

Assuming that x obeys a Gaussian and is constrained to the subspace shown
in (2.204):

p.x/ D N .xj�;˙sub/: (2.206)

Then, the mean of the Gaussian satisfies Nx, � D Nx, and the covariance matrix,˙sub,
in (2.206) is obtained as follows:

˙sub D U˙eigenU
T ; (2.207)

where˙eigen D diag .	1; 	2; : : : ; 	T/. It is often assumed that the shape parameters
� in (2.204) obey a Gaussian distribution:

p.�/ D N .�j0; I/; (2.208)



2 Fundamental Theories and Techniques 115

Fig. 2.22 Visualization of the shape model appeared in [130]. Top row: Axial, sagittal, and
coronal views of the mean shape, a vertebra. Second row: First eigenmode of the generated
model visualized by an overlay of the mean shape and two deformed shapes according to the
first eigenvector. Third row: Mean shape and deformed shapes according to the second mode

where I denotes a unit matrix. Figure 2.22 shows an example of an SSM of a lumbar
vertebra represented by a PDM that appeared in [130]. The PDM-based SSMs are
registered to given images by estimating the values of the shape parameters, � ,
so that every point on the surface locates on the boundary of a target organ. In
the registration process, candidate points of the boundaries are first extracted from
given images, and then a corresponding point, Qxj, is selected for each of a point of
the PDM, xj. The likelihood of x is computed based on the distances between the
corresponding points, Qxj (j D 1; 2; : : : ;L), and the model points, xj. Assuming that
the residuals between xj and the corresponding candidate points Qxj obey an isotropic
Gaussian such that

p.Qxjjxj/ D 1

.2�/3=2�3
exp

�
�1
2

kQxj � xjk2
�2

�
; (2.209)
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then the posterior probability distribution, p.xjQx1; Qx2; : : : ; QxN/ can be computed as

p.xjQx1; Qx2; � � � ; QxN/ / p.x/
NY
jD1

p.Qxjjxj/: (2.210)

Substituting (2.206) and (2.209)–(2.210) and computing the negative logarithm of
the resultant posterior distribution result in the following quadratic cost function,
E.�/:

E.�/ D � log p.xjQx1; Qx2; : : : ; QxN/ D � log p.x/�
X

log p.Qxjjxj/

/ .U� � Nx/T˙�1
sub.U� � Nx/C 1

�2
kQx �U� � Nxk2; (2.211)

where Qx D ŒQxT1 ; QxT2 ; : : : ; QxTN �T . The MAP estimate that maximizes the posterior
probability in (2.210) can be obtained by minimizing the cost function,E.�/, shown
in (2.211). If the candidate points, Qx, are fixed, then the optimal parameter, O� ,
that minimizes E.�/ can be computed analytically. Once the values of the shape
parameters are updated to Q� , then the surface represented by the PDM varies and the
corresponding points, Qxj, should also be updated. The final estimates of the shape
parameters, � , are obtained by iteratively updating the shape parameters and the
corresponding points until they converge.

The statistical models shown above are constructed from the corresponding
points generated on the training surfaces, Sj (j D 1; 2; : : : ;M), and it is not easy
to generate these corresponding points. It should be noted that many methods
for generating the corresponding points on surfaces have been proposed and that
different SSMs can be constructed from an identical set of training data if different
methods for the corresponding generation are employed.

SSM with Point Distribution Model (MRF Representation)

MRF [54, 131] can be employed for representing PDM-based SSMs [66, 70,
132, 133]. With MRF, multivariable probability distributions are represented with
products of single-variable and two-variable probabilities. Let xj . j D 1; 2; : : : ;N/
denote the coordinates of the N points that represent a target surface and let
Ij D Ij.x/ denote an appearance observed in a local small region around xj in a
given image. The following equation represents an MRF model of the SSMs:

p.x1; : : : ; xN ; I1; : : : ; IN/ D
NY
jD1

p.xj/p.Ijjxj/
Y

.s;t/2C
p.xs; xt/; (2.212)
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where C is a set of pairs of indexes: .s; t/ 2 Œ1; 2; : : : ;N�2. In (2.212), p.xj/
represents the prior probability distribution of xj, p.Ijjxj/ represents the likelihood
of xj when a target image is given, and p.xs; xt/ represents the simultaneous
probability distribution of two of the points. MRF models can be represented by
using undirected graphical models, in which a node represents one of the variables
and an edge connecting two nodes represents the conditional dependencies of the
two variables. The set of the pairs, C , corresponds to a set of the edges in the
graphical model.

p.xj/, p.Ijjxj/, and p.xs; xt/ can be estimated using a set of training data, fxijji D
1; 2; : : : ;N; j D 1; 2; : : : ;Mg, where xij denotes the j-th point on the surface of a
target organ in the i-th training image. The prior distribution, p.xj/, can be estimated
directly from the set, fxijji D 1; 2; : : : ;Ng. For example, employing a Gaussian
distribution to represent p.xj/, then the mean and the covariance matrix are estimated
from the set. The simultaneous distribution, p.xs; xt/, can also be estimated from the
training set. Letting xist D Œ.xis/T ; .xit/T �T allows estimation of p.xs; xt/ from the set,
fxistji D 1; 2; : : : ;Ng. Estimating p.Ijjxj/ requires a training set of local appearances
in addition to the training set of the points. For example, letting an L3-vector, Iij ,
denote an appearance observed in a L � L � L local cube in Ii.x/ whose center is
located at xij, the conditional probability of the appearance, p.Ijjxj/, can be estimated
from a set of the appearances, fIijji D 1; 2; : : : ;Ng. The prior probability and the
likelihood do not contain shape information and can be computed without using
any information of other points. In (2.212), the statistical variety of the shape is
represented by the simultaneous probability distributions,

Q
p.xs; xt/.

Using the model shown in (2.212) allows segmentation of target organs in
given images by estimating the marginal posterior probability distribution of each
point, p.xjjI/, as follows: first, the posterior probability is temporally evaluated
without using the simultaneous probability distributions, as p0.xj/ / p.xj/p.Ijjxj/.
Employing this temporal estimate as the initial state, the posterior probability of
each point is then estimated based on the model shown in (2.212). The shape model
that is represented by the simultaneous probabilities is now explicitly used. For
this estimation, several techniques developed for inferring on undirected graphical
models can be employed, e.g., belief propagation or MCMC.

Here, it should be remembered that multivariable Gaussian functions can be
represented by products of single-variable and two-variable Gaussian functions. The
statistical model shown in (2.206), hence, can be written as follows:

p.x/ D N .xj�;˙sub/ D
Y
j

N .xjj�j; ˙j/
Y

.s;t/2C
N .xstj�st; ˙st/; (2.213)

where C D f.s; t/j.˙�1
sub/st ¤ 0g and .˙�1

sub/st denotes the .s; t/ component of a
matrix ˙�1

sub. An inverse matrix of a covariance matrix is called a precision matrix,
and its zero components correspond to the pairs of variables that are conditionally
dependent. When a multivariable Gaussian distribution is employed for the prior
probability distribution of the points of a PDM, the structure of the corresponding
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undirected graphical model, or the set of the edges, C in (2.212), is determined by
the precision matrix.

Multi-atlas

The probabilistic atlases and the SSMs are constructed from training images, in
which target organs are manually labeled. Here, a multi-atlas-based method that
uses training images more directly for the segmentation of given images is described
[134–137, 137, 138, 138–141].

A multi-atlas-based method segments target organs from given images as
follows: First, each of the training images is nonrigidly registered to a given target
image. Let Ii.x/ (j D 1; 2; : : : ;M) denote the training images and Ri

t denote the
region of a target organ in Ii.x/ and bi.x/ denote binary label images where

bi.x/ D
�
1; if x 2 Ri

t;

0; otherwise:
(2.214)

and letting the given target image be denoted by Itgt.x/, the nonrigid registration
deforms Ii.x/ so that it is aligned to the given image. Letting a two-vector, ui.x/,
denote the image coordinates obtained by the registration where Ii.ui.x// and Itgt.x/
are aligned, the deformed image is represented by Ii.ui.x//, and bi.u.x// represents
the deformed binary labeled image. Each of the deformed binary labeled images,
bi.u.x//, is an estimate of the region of a target organ in Itgt.x/.

The multi-atlas-based method, then, computes the absolute difference between
Ii.ui.x// and Itgt.x/: Di.x/ D jIi.u.x// � Itgt.x/j, and a weight, 	.x/, that is a
decreasing function of Di.x/, such that

	i.x/ D 1

Di.x/ � g.xj�2/C � ; (2.215)

where g.xj�2/ D N .xj0;˙2/ is a Gaussian filter of which variance is �2 and
� > 0. The regions indicated by the deformed binary labeled images would be more
reliable and would have larger values of 	i.x/ if the difference, Di.x/, were smaller.

Finally, the method computes a weighted average of the deformed labeled
images, bi.ui.x// (i D 1; 2; : : : ;M), as follows and classifies voxels as the inside
of the organ if the average is larger than 1/2:

S.x/ D 1

Z.x/

MX
iD1

	i.x/bi.ui.x//; (2.216)

where Z.x/ DPM
iD1 	i.x/.

The algorithm described here can be interpreted as a MAP estimation of the
region, as will be described below. It should be remembered that the single-
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atlas-based method also determines the region of a target organ by means of
MAP estimation as shown in (2.172). The difference between the multi-atlas-based
method and the single-atlas method is the model used for computing the posterior
probability distribution.

For the interpretation of the multi-atlas-based method, let us introduce a latent
variable, � , that represents the shape of the target organ in an image. For example,
the shape of the organ in bi.x/ is explicitly indicated as bi.xj� i/. As described
in (2.175), a single probabilistic atlas can be estimated by averaging all of the
binary labeled images, bi.x/. That computation of the average is nothing but
the marginalization of the binary labeled images, b.xj�/, over the latent shape
parameters as follows:

p.x 2 Rt/ D
Z

p.�/p.x 2 Rtj�/d� D
Z

p.�/b.xj�/ ' 1

M

MX
iD1

bi.xj� i/: (2.217)

In the single-atlas-based method, the posterior probability distribution of each voxel
being included in the target region is evaluated by multiplying the prior in (2.217)
by the likelihood which is defined based only on the voxel value; no information
on the organ shape is used for computing the likelihood. In the multi-atlas-based
method, the differences between the shapes are more explicitly considered in the
computation.

For a simple example, let again bt.x/ denote a binary image, where bt.x/ D 1

if x 2 Rt and otherwise bt.x/ D 0. Using the latent shape parameter, the posterior
probability distribution can be represented thus:

p.bt.x/jItgt/ D
Z

p.�jItgt/p.bt.x/jItgt;�/d�: (2.218)

Because p.bt.x/jItgt;�/ / p.Itgtjbt.x/;�/p.bt.x/j�/, p.�jItgt/, p.bt.x/j�/, and
p.Itgtjbt.x/;�/ need to be estimated for computing the posterior probability
in (2.218). The multi-atlas-based method estimates p.�jItgt/ and p.bt.x/j�/ by
the nonrigid registration between Ii.x/ and Itgt.

The nonrigid registration computes the transformation u.x/ so that the two input
images align. Once the transformation is obtained, the deformed binary labeled
image, bi.u.x//, should be an estimate of the region of the target organ in the target
image, Itgt.x/. Let the true and unknown shape parameters of the organ region in

the given image be denoted by � tgt and let � i and O� i

tgt denote the shape parameters

representing the organs in bi.x/ and in bi.u.x//, respectively, � i (i D 1; 2; : : : ;M)

obey p.�/, and O� i

tgt, which are the estimates of � tgt, obey the posterior probability

distribution, p.�jItgt/. In addition, from the definition of O� i

tgt, the following equation
can result:

p.bt.x/ D 1j O� i

tgt/ D bi.u.x// D
�
1; if x 2 Rt;

0; otherwise:
(2.219)
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The last factor to be estimated is p.Itgt.x/jbt.x/;�/. As defined above, the
label, bt.x/, is uniquely determined by the shape parameter, � , and hence

p.Itgt.x/jbt.x/;�/ D p.Itgt.x/j�/. When � D O� i

tgt, it is natural to assume that the
probability of the voxel value I.x/ being equal to Itgt.x/ decreases as the absolute

difference, D.x/ D jIi.u.x// � Itgt.x/j, increases because Ii.u.x// D Ii.u.x/j O� i

tgt/.
Following (2.215), assume that the following equation holds:

p.Itgt.x/jbt.x/; O� i

tgt/ / 	i.x/ D
1

Di.x/ � g.xj�21 /C �
: (2.220)

From the discussion above, the following equation results:

p.bt.x/ D 1jItgt.x// D
Z

p.�jItgt.x//p.bt.x/j�/p.Itgtjbt.x/;�/d� ' 1

Z

MX
iD1

	.x/bi.u.x//;

(2.221)

where Z is a normalization term. As shown in (2.216), S.x/ represents the posterior
probability distribution, and MAP estimates can be obtained by binarizing Si.x/
with a threshold 1=2.

2.3.6 CA-Based Segmentation

Organ segmentation is a central topic in the field of medical image analysis, and
a number of segmentation algorithms have been presented [142–145]. This section
focuses on segmentation algorithms of organs/tissues in a human torso based on a
CA model.

Since shape features of an organ play an important role in segmentation,
researchers have attempted to incorporate them into their segmentation frameworks.
Deformable model-based segmentation is a typical example. Pioneering works
using a deformable model were reported in the early 1970s [146–148] followed
by several epoch making works, Snakes [149], ASM [1], and active appearance
model (AAM) [150], the first of which used a local shape feature, or curvature-based
feature, to make extracted boundaries smooth and the latter two of which employed
global shape or appearance features, or CA, to make extracted shapes more accurate
anatomically. An alternative CA-based approach is atlas-based segmentation, which
was initially developed for brain segmentation of magnetic resonance imaging
(MRI) images and was then imported into organ segmentation of a human torso
from CT, positron-emission tomography (PET), and MRI images.

This section describes CA-based segmentation algorithms for organs/tissues in a
human torso starting with probabilistic atlas-based segmentation with an example of
organ segmentation of a human trunk CT volume, followed by ASM, which employs
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PDM, level-set-based segmentation with a shape prior, and ensemble learning-based
segmentation with a shape prior.

2.3.6.1 Probabilistic Atlas-Based Segmentation

A probabilistic atlas represents the existence probability of an organ at each voxel
and was originally explored in brain segmentation followed by organ segmentation
of a human torso. Details of a probabilistic atlas can be found in Sect. 2.3.5.1.
This section focuses on segmentation algorithms of organs in a human torso based
on a probabilistic atlas. A typical probabilistic atlas-based segmentation algorithm
is MAP estimation of an organ [151], in which a prior probability is defined
by a probabilistic atlas. Given a feature vector x 2 R

d, posterior probability is
represented by the following equation using Bayes’ theorem:

p.njx/ D p.xjn/p.n/
p.x/

; (2.222)

where p.xjn/ shows the likelihood of a vector x of organ n, which is widely assumed
to be a mixture of Gaussian distributions as follows:

p.xjn/ D
MX

mD1

1

.2�/L=2j˙n;mj1=2 exp

�
�1
2
.x ��n;m/

T˙�1
n;m.x ��n;m/

�
; (2.223)

where �n;m and ˙n;m are an m-th average vector and an m-th covariance matrix
of an organ n in an unseen image which can be estimated by an EM algorithm
or variational Bayes [33]. An atlas-guided EM algorithm is an optional choice to
achieve low computational cost and high accuracy [124]. Parzen window estimation
is an alternative choice to define a vector x of organ n (refer details of nonparametric
probability density function estimation to [34]). A probability (density) function is
defined by the following equation:

p.x/ D
NX

nD1
p.xjn/p.n/ (2.224)

where N is equal to number of organs to be segmented plus one that corresponds to
the background.

As mentioned earlier in this section, prior probability is given by a probabilistic
atlas which makes the segmentation results more accurate especially from the point
of view of anatomy. Figure 2.23a, b are an axial section of an original abdominal CT
volume dataset (a) with prior probability of liver, or a probabilistic atlas, in which
whiter color represents higher probability of existence of liver (b). Parts (c) and
(d) illustrate the likelihood of liver and that of background, in which numbers of
Gaussian of the mixture distributions are 2 for liver and 3 for background. Parts (e)
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Fig. 2.23 Example of maximum a posterior-based liver segmentation using a probabilistic atlas of
liver. (a) Original CT image. (b) Probabilistic atlas of liver. (c) Likelihood of liver. (d) Likelihood
of background. (e) Posterior probability of liver. (f) Posterior probability of background. (g)
Segmentation result with a probabilistic atlas. (h) Segmentation result without a probabilistic atlas
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and (f) present posterior probability of liver and that of background, respectively,
and parts (g) and (h) show segmentation results with and without the probabilistic
atlas of liver, respectively. The likelihood parts (c) and (d) tell us that the liver
is algorithmically enhanced but parts of surrounding tissues and organs, such as
muscle and pancreas, are also enhanced, which might lead to false positives in
segmentation. In contrast, the probabilistic atlas of part (b) appropriately restricts the
existence area of liver, resulting in better segmentation results of part (g) compared
with the results of part (h) (performed without the probabilistic atlas). The JIs are
0.851 for part (g) and 0.536 for (h), respectively.

Extensions of a probabilistic atlas of organs in a human torso can be found in
several papers. For example, a multi-organ probabilistic atlas can be easily derived
by normalizing probabilities of multiple organs at each voxel under constraints that
the summation of probabilities of whole organs/tissues is equal to one. Figure 2.24
presents a result of twelve-organ segmentation using a multi-organ probabilistic
atlas from a noncontrast CT volume [124, 152], in which MAP-based segmentation
using a multi-organ probabilistic atlas was followed by a multiple level-set method
with interaction mechanism between neighboring level-set functions. In [153],
probabilistic atlases of multiple organs were constructed and used in graph-cuts-
based fine segmentation, in which an energy term is defined using probabilities of
multiple organs.

A modification of a probabilistic atlas was reported in [151], where MRF
was adopted to improve prior probability. In the iterative scheme of multi-organ
segmentation, a prior probability of each voxel of interest was updated at each step
so as to reduce unnatural non-smooth boundaries, holes, and over-extracted regions
by referring to the regions of the organs neighboring to each target organ segmented
at the previous step.

Alternative important improvement for organ segmentation was a patient-specific
probabilistic atlas [154–156]. Since a conventional atlas accounts for a whole
distribution of existence probability, it is effective in describing shapes around a
mean shape but not for atypical shapes located in marginal areas of the distribution.
To improve the segmentation performance for an organ with atypical shape, patient-
specific atlases were constructed using an SSM [154], multi-atlas [155], and sparse
modeling-based [156] approaches. It was proven that a patient-specific probabilistic
atlas was effective in segmenting an organ with a typical shape to a statistically
significant degree [156].

In general, a probabilistic atlas is constructed using healthy organs or mostly
healthy organs, such as an organ with small lesions. Consequently this might not
account for an organ with large pathological lesions, which frequently change the
appearance as well as the shape of an organ radically, resulting in low posterior
probability, even though a probabilistic atlas indicates high existence probability of
a target organ. In such cases, the probability of pathological lesions might be helpful
to recover the low posterior probability of a voxel in a lesion and segment an organ
with large lesions. An algorithm was proposed [156] to construct a probabilistic
atlas of pathological lesions and a probabilistic atlas of a liver simultaneously using
sparse modeling with lesion bases. The result of applying the algorithm to livers
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Fig. 2.24 MAP-based segmentation using a multi-organ probabilistic atlas was followed by a
multiple level-set method. (a) An input noncontrast upper abdominal CT volume. (b) Multi-organ
segmentation result. The twelve target organs are the esophagus, heart, stomach, liver, gallbladder,
pancreas, spleen, left and right kidneys, inferior vena cava, aorta, and splenic vein between the
liver and spleen
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with large pathological lesions in CT volumes proved its statistical effectiveness
comparing with a conventional probabilistic atlas-based algorithm.

2.3.6.2 Active Shape Model

The ASM [1] is one of the most successful deformable models to segment a target
object, or an organ/tissue, which iterates computation of displacement vectors based
on edge information in an image and update of pose and shape parameters of a model
according to the PDM explained in Sect. 2.3.2. Details of the segmentation process
will be explained below.

An ASM requires initial location of a model which might be given by a user or
an automated or semiautomated process. Once an initial boundary is given, ASM
repetitively finds new suggested locations for model points and updates pose and
shape parameters of a model. Typically the suggested locations for model points
are searched along profiles normal to the model boundary through each model point
using a statistical model for the grey-level profile about a point. Parameters of shape
and pose, consisting of location, scale, and orientation, are updated to best fit the
new found points according to the following equation:

x D TXt;Yt ;s;� .�C V˛/; (2.225)

where TXt ;Yt ;s;� is a function of translation .Xt;Yt/, scaling s, and rotation � around
an origin. The parameters �, V , and ˛ are an average shape vector, a matrix of
eigenshape vectors, and a shape vector that corresponds to a principal component
vector. All these parameters are updated so that mean squared error between
suggested locations and model points is minimized. In the actual update process,
pose parameters are adjusted efficiently using a least-squares approach followed by
an update of shape parameters based on the updated pose parameters. In practice,
weighted adjustment for the update process and a multi-resolution scheme are
employed to achieve higher performance.

A major limitation of the ASM is caused by a local minimum problem because
it searches the best fit between edges in an image and a model using an iterative
scheme starting from an initial location. If the initial shape is far from the true
boundary of an organ, the searching process may fail. Another limitation is that
a point distribution model does not take into account gray-level statistical variation
in an organ across patients. The AAM was developed to overcome this limitation, in
which a prior model is trained using not only shape but also grayscale values, and
used for segmentation. Details can be found in [150].

ASM is not a solitary example of a segmentation algorithm that utilizes a PDM.
A number of algorithms in which a PDM plays a major role in segmentation can be
found in [142–145].
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2.3.6.3 Level Set with CA

This section describes a combination of level-set-based segmentation and an SSM
of an organ, or a statistical model of a signed distance function, called a level-set
distribution model (LSDM) in Sect. 2.3.2.

An important finding was made by Leventon [157], who introduced an LSDM
into a level-set-based segmentation algorithm consisting of following steps: Letting
a statistical shape variation of an organ be modeled by a principal component vector
˛ under the assumption that the distribution is a Gaussian distribution:

p.˛/ D 1

.2�/k=2j˙kj1=2 exp

�
�1
2

˛T˙�1
k ˛

�
: (2.226)

the segmentation algorithm finds a set of shape parameter vector ˛ and pose
parameter vector p using the following equation:

h˛MAP; pMAPi D arg max
˛;p

P.˛; pju;rI/; (2.227)

where P.˛; pju;rI/ is a posterior probability of parameters of shape and pose
given a boundary u and gradient image rI. In practice, the posterior probability
is transformed using the formula for Bayes’ theorem and several assumptions on
probabilistic distributions of parameters. The maximization is performed using a
gradient ascent algorithm. Subsequently the estimated shape and pose parameters
are incorporated into the following update equation of a geodesic active contour
[158]:

@u

@t
D g.cC �/ juj C ru � rg; (2.228)

where g is a stopping function based on image gradient, c is a constant value, and �
is the curvature of a boundary u. The updated shape of the boundary u at time tC 1
can be computed from u.t/ by

u.tC1/ D u.t/C	1 .g.cC �/jru.t/j C ru.t/ � rg/C	2


u�.t/ � u.t/

�
; (2.229)

where u�.t/ is the estimated boundary with parameter ˛MAP, pMAP and two
parameters 	1, 	2 balance the influence of the gradient-curvature model and the
shape model. The above process is repeated until convergence of deformation.

Figure 2.25 shows the segmentation results of corpora callosa from MR brain
images. The algorithm was tested on unknown sections that were not used for the
training. It is found from parts (a), (b), and (c) that the MAP estimator of shape and
pose guides the model to the true boundary. Part (d) presents the result without the
shape model, which failed in segmentation. In addition to this example, Leventon
et al. showed results of applying the algorithm to 2D slices of MR images of femur
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Fig. 2.25 Shape-based segmentation that combines level-set method with a statistical shape
model. The red curve is the zero level set of the evolving surface. The green curve is the next
step in the curve evolution. The yellow curve is the MAP estimate of the position and shape of the
curve. The cyan contour is the standard evolution without the shape influence

and corpus callosum as well as 3D CT volumes to segment vertebrae, all of which
showed successful segmentation results.

An alternative approach was presented in the paper [125], in which LSDMs for
multiple objects with neighbor constraints were employed and an energy functional
including Mahalanobis distances computed in eigenshape spaces of the models was
minimized. The proposed method was employed to extract left and right ventricles
from a 2D cardiac MR image as well as eight subcortical structures in an MRI brain
image.

In the paper [126], an implicit representation of the shape was combined with
the Chan Vese region-based energy functionals [159]. After the training phase of a
statistical shape model, the segmentation phase was carried out, in which the region-
based functional is minimized. In practice, shape parameters for the eigenshapes
and pose parameters to handle pose variations are iteratively updated to generate a
new level set that determines the segmenting curve implicitly. The image statistics
inside and outside the curve are used to compute the update function for the next
iteration, and the iterative scheme is continued until convergence is reached for
segmentation. The experimental results of left ventricle segmentation on cardiac
MRI and prostate segmentation on pelvic MRI acquired with an endorectal coil
proved that the proposed segmentation algorithm was computationally efficient and
robust to noise.
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2.3.6.4 Graph-Cuts with CA

A recent noteworthy development in image segmentation is the graph- cuts approach
[160–164], in which the global minimum for a sub-modular function of a binary
label problem is guaranteed. This section introduces techniques that incorporate a
shape prior into a graph-cuts approach in order to achieve accurate segmentation.
So far, general shape constraints, such an ellipse and a star shape, were combined
with graph-cuts [165, 166]. In addition, the paper [167] presented a new boundary
term that can take into account more general shape constraints or a compact shape
constraint in a graph-cuts segmentation. Although the above priors are general and
can be used in segmentation of a variety of objects, it might not be applicable to
more complicated shape objects. To give a specific shape constraint on graph-cuts,
a user-defined rigid template was incorporated into a graph-cuts-based segmentation
[168]. To deal with statistical variations in the shape of an organ, the papers [169,
170] derived a shape prior from an SSM.

A limitation of the above approaches is that a single shape might not account for a
shape in a given test image. A shape-based energy computed by the Parzen window
method was presented in [153], which is a population statistic-based method, but
the combinatorial problem of multiple shape information remains unsolved. The
paper [171] extended the algorithm of [169] to multi-shape graph-cuts that can take
into account multiplicity of shapes prior in the segmentation framework by using
fusion move with the quadratic pseudo-Boolean optimization (QPBO) algorithm. In
the remainder of this section, a multi-shape graph-cuts algorithm [163] is presented.
A new pairwise energy, Sp;q, for multiple shape priors was proposed and linearly
combined with the conventional graph-cuts energy:

Sp;q D min

 r
1

2
.1 � cos �Ap/;

r
1

2
.1 � cos �Aq/

!
; (2.230)

where �Ap is the angle between a vector connecting voxels p and q and a gradient
vector of a signed distance �Ap from the boundary of a shape prior Ap. The method
selects five shapes from an eigenshape space of an SSM which are similar to a
region by MAP-based segmentation. The selected shapes are forwarded to multi-
shape graph-cuts to perform segmentation with multiple shape priors. Unlike a
conventional single-shape graph-cuts, multi-shape graph- cuts use multiple labels,
each of which corresponds to a shape prior in graph-cuts-based fine segmentation.
In addition, negative labels are used for background to differentiate between
background labels and object labels. The fusion move with the QPBO algorithm
finds a combinatorial optimal solution of labels or shapes.

Figure 2.26 shows lung segmentation results from a CT volume and shape priors.
Although a single shape graph-cuts with shape 1 of part (e) led to inaccurate lung
segmentation (red arrow in part (c)), the remaining shape priors of parts (f) to (i)
corrected the segmentation as presented in part (d). Details of the algorithm as well
as the experimental results using 97 CT volumes can be found in [171].
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Fig. 2.26 Influence of shape priors on segmentation results. (a) original CT, (b) true boundary,
(c) segmentation result by a single- shape graph-cuts with single-shape prior of part (e), and (d)
segmentation result by the multi-shape graph-cuts with five shape priors of figures (e) to (i)

2.3.6.5 Ensemble Learning with CA

Ensemble learning, such as AdaBoost [172] and random forest [173], has been
prominent in recent segmentation research. Sophisticated segmentation examples
by ensemble learning have been presented so far. A possible limitation is, however,
that the segmentation result tends to be unnatural in terms of shape because the seg-
mentation is performed in dependently voxel-by-voxel. A number of methods have
been proposed to make the segmentation results natural in shape. The combination
of MRF with AdaBoost [174], Spatial Boost [175], and Spatial AdaBoost [174] are
typical examples. In [176, 177], a wide range of spatial information was employed
for segmentation of subcortical structures in brain images and shape-based retrieval
in cluttered images. However, in the context of medical image analysis, it is
important to deal with organ- or tissue-specific features in the boosting- based
segmentation.

A boosting algorithm that can take into account a target object’s specific shape
prior was presented in [178], in which a new shape loss function evaluating
directions of normal vectors of a target surface was proposed and minimized
together with a conventional error loss function in the training process. The trained
ensemble classifier was applied to extract lung fissures that are the thin pleural-
covered potential spaces separating the lung lobes. Figure 2.27 shows an original CT
image and the difference in outputs before binarization between a classifier trained
by AdaBoost and that by Shapeboost. It is found from the figure that the shape of the
algorithmically more enhanced area by Shapeboost is more similar to true fissures
than those using Adaboost. The segmentation results of graph-cuts based on the
enhanced results is satisfactory as shown in part (e).

Another alternative approach incorporates a novel shape loss function that
evaluates distance between an extracted shape and a subspace of SSM of an organ
and minimizes a total loss function including not only a conventional error loss but
also the proposed shape loss [179]. The method was successfully applied to spleen
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Fig. 2.27 Outputs of ensemble classifiers trained by boosting algorithms without and with the
proposed shape loss. (a) axial section of an original CT volume, (b) algorithmically more enhanced
lung fissures by the proposed Shapeboost and (c) by AdaBoost. (d) sagittal section of an original
CT volume and (e) algorithmically enhanced fissures by the proposed Shapeboost overlaid with
the lung lobe segmentation result using a graph-cuts algorithm with an energy term derived from
the algorithmically enhanced fissures [178]

segmentation and validated using 80 CT volumes. Details on the topic of spleen
segmentation, in which the ensemble learning is applied, can be found in Sect. 3.9.3.

2.3.7 Multiple Organs, Anomaly, and Lesions

In this section, two important tasks are described: multiple organ segmentation and
anomaly recognition. The methods described in the previous section segmented one
target organ by using its single model. Such methods would be insufficient for the
solutions because they cannot handle the two problems. First, any information on
the dependencies between the locations and shapes of the multiple organs cannot be
used if each organ is segmented independently. For example, some of the resultant
regions of the organs can overlap each other and be inconsistent with human
anatomy. Second, the models described in the previous sections cannot represent
some anatomical anomalies, such as variations in the number of some anatomical
entities. In the following section, some approaches to these issues are introduced.



2 Fundamental Theories and Techniques 131

2.3.7.1 Multiple Organs

A CA model (SSM) for multiple organs can be constructed by simply extending
an SSM for a single organ, such as a PDM [69] or an LSDM [180]. For example,
a collection of SSMs, each of which corresponds to an organ and is constructed
individually, might be a solution for an SSM for multiple organs. This simple
solution, however, suffers from an overlap problem between neighboring organs.
The relationship between neighboring organs should be incorporated to reduce
the overlap and can be modeled by connecting feature vectors, each of which
corresponds to an organ, followed by statistical analysis of the concatenated vectors
[181]. Other modeling approaches include logarithm of the odds (LogOdds) [128],
label space [182], and isometric log-ratio mapping [183], which were originally
designed for multiple objects (organs) and thus are unaffected by overlap of
neighboring organs. This section describes an SSM for multiple organs based on
PDM or LSDM followed by LogOdds and label space-based models. Note that
all of the models mentioned above are SSMs in which all shape features are
simultaneously exploited without any weight, or priority, in the modeling process. In
contrast, if features highly correlated with target organs are available, a conditional
SSM [184–188] will work, which will be also explained in this section.

1. SSM for multiple organs based on a point distribution model and an LSDM
Let x be a feature vector of M organs, which consists of feature vectors
x1; x2; : : : ; xM , each of which corresponds to each organ. Specifically, two of
the vectors consist of point coordinates of multiple organs when based on a
PDM and a signed distance function (SDF) when based on an LSDM. An
SSM for multiple organs is a statistical model of a probability distribution
of x or p.x/. Since the original feature vectors are defined in a very high-
dimensional space and might be contaminated by noise, statistical analysis is
applied to reduce dimension and noise. Let v be a shape feature vector whose
length is L and element is v1; v2; : : : ; vL, which are shape features extracted
by statistical analysis of a training data set of x, e.g., principal component
scores (PCS) extracted by principal component analysis (PCA). Consequently,
the probability density function p.x/ is approximated by p.v/. The following
equation is a probability density function if the distribution of v can be assumed
to be Gaussian:

p.v/ D 1

.2�/L=2j˙ j1=2 exp

�
� .v ��/T˙�1.v � �/

2

�
(2.231)

where � is an average vector and˙ is a covariance matrix of shape feature vector
v.

Variation in location and shape of multiple organs is an accumulation of
individual differences of an organ, resulting in a larger variation in pose and
shape. This makes model construction difficult and results in low performance.
One possible solution to handle such large variation is to separate variations in
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Fig. 2.28 An SSM of 14 organs: heart, esophagus, stomach, liver, gallbladder, pancreas, spleen,
left and right kidneys, inferior vena cava, aorta, splenic vein, portal vein, superior mesenteric vein

pose from those in shape in a statistical modeling process. One group [181]
proposed an SSM, or an LSDM, for multiple organs, in which Procrustes
alignment was applied to a training label dataset of each organ individually to
separate pose, or rotation and translation parameters, from shape. The extracted
parameter sets of rotation and translation as well as shape were analyzed by
PCA to build a rotation model, a translation model, and a shape model for
each organ. The final step was to integrate all models of multiple organs by
concatenating PCS vectors of organs into a vector followed by PCA of the
concatenated vectors. Figure 2.28 shows fourteen organs generated from nine
different parameter sets in a subspace of the proposed SSM, in which the
horizontal axis corresponds to the first PCS and the vertical axis corresponds
to the second PCS. In terms of generalization, specificity, and overlap between
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neighboring organs, the performance of the proposed algorithm was proven to be
superior to that of a multi-organ model without separation of pose and shape. The
SSM for multiple organs will be incorporated into a multi-organ segmentation
algorithm [124] to boost segmentation performance.

2. LogOdds and Label space
LogOdds is an example of a class of functions that map the space of discrete
distributions to Euclidean space and is employed for multi-organ shape repre-
sentation [128]. The multinomial LogOdds function logit PM ! R

M and the
generalized logistic operations are used to bridge between the manifold of signed
distance maps (SDMs) and the linear space of LogOdds:

Œlogit.p/�i � log

�
pi
pM

�
; (2.232)

where pi.2 Œ0; 1�/ is the i-th probability and pM.2 Œ0; 1�/ is the last entry of a
discrete distribution p.2 PM/, where PM is an open probability simplex, or the
space of discrete distributions for M labels which correspond to background label
and M � 1 object (organs) labels.
The inverse of the logit function is the generalized logistic function:

ŒP.t/�i �
8<
:

eti

1CPM
jD1 e

tj
; for i 2 f1; 2; : : : ;M � 1g;

1

1CPM
jD1

etj ; if i D M;
(2.233)

Note that logit flogit.p/jp 2 PMg is the .M � 1/-dimensional space of LogOdds
induced from PM and is equivalent to an M � 1-dimensional real vector space
that provides closed operations for addition and scalar multiplication, which is
not the case for an SDM-based model or LSDM. Pohl et al. [128] showed that the
LogOdds variant was superior to the SDM model in an experiment segmenting
20 subject brains into subcortical structures.

Label space [182] is a multi-organ shape representation that maps M organ
labels to the vertices of a regular simplex, in which a scalar label value is changed
to a vertex coordinate position in an M dimensional space. As demonstrated in
Fig. 2.29, the regular simplex is a hyperdimensional analogue of an equilateral

Fig. 2.29 The first three label space configurations. A unit interval for two labels (organ and
background), a triangle for three labels (organ 1, organ 2, and background), and a tetrahedron
for four labels (organ 1, organ 2, organ 3, and background)
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Fig. 2.30 An example of organ assignment to each vertices of a triangle

triangle with M C 1 vertices capable of being represented in M dimensions.
Figure 2.30 is an example of an assignment of two organs and background
to vertices of a triangle. Lying in a linear vector space, this space has several
desirable properties: all labels are equally separated in space, addition and
scalar multiplication are natural, label uncertainty is expressed as a weighted
combination of label vertices, and interpolation is unbiased toward any label
including the background. Malcolm et al. demonstrated that algebraic operations
may be done directly [182]. Label uncertainty is expressed naturally as a mixture
of labels, interpolation is unbiased toward any label or the background, and
registration may be performed directly.

An alternative probabilistic multi-organ shape representation is the isometric
Log-Ratio, which forms a vector space, isometric, and thus isomorphic to the
probability simplex, and results in a nonsingular covariance [183]. These authors
claimed that these properties did not exist together in any previously offered
probabilistic CA work. They demonstrated how the lack of some of these
properties degraded the results, e.g., statistical analysis using linear PCA.

The main advantages of the above multi-organ modelings are that they do not
suffer from overlap between neighboring organs. However, they sometimes result
in unnatural shapes, in particular, boundaries contacting neighboring tissues or
organs.

3. Conditional SSMfor multiple organs
When features highly correlating with a feature vector x of a target organ are
available, it is effective to model the distribution of x using a conditional SSM
[184–188], for example, a conditional SSM of gallbladder given a liver. Let organ
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1 and organ 2 be a target organ and a conditional organ, respectively. Feature
vectors of both organs are denoted by x1i and x2i .i D 1; 2; : : : ;N/, where N
is the number of training labels. Average vectors are given by �1 and �2, and
covariance matrices˙kl .k; l D 1; 2/ are computed using the following equation:

˙kl D 1

N � 1
NX
iD1
.xki � �k/.xli ��l/

T (2.234)

Average m and covariance matrix K of conditional distribution of x1 given x2,
p.x1jx2/ are given below:

m D �1 C˙12˙
�1
12 .x2 ��1/; (2.235)

K D ˙11 �˙12˙
�1
22 ˙21: (2.236)

A conditional SSM can be derived by statistical analysis of p.x1jx2/, for example,
eigenvalue decomposition of K. Variance and covariance of a conditional
probability distribution of x1 given x2, or p.x1jx2/, are smaller than those of a
probability distribution of x1 or p.x1/. Therefore, performance of a conditional
SSM of organ 1 given organ 2 is better than performance of an SSM of organ
1 without any condition. Figure 2.31 shows probabilistic atlases of a gallbladder
generated by a non-conditional SSM, or a model of p.x1/, and a conditional SSM
of a gallbladder given a liver or a model of p.x1jx2/. As shown in this figure, an
area with high probability of existence in panel (a) merged with the liver, but
did not do so in panel (b), which means that the conditional SSM appropriately
restricted the area of the gallbladder with high probability.

Fig. 2.31 Probabilistic atlases generated by two SSMs of a gallbladder. The atlases were
computed from labels reconstructed by normal random numbers generated in subspaces of SSMs
or (a) nonconditional SSM and (b) conditional SSM given a liver
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a b c d

c d

Fig. 2.32 Organ correlation graph (OCG) and OCG-based multi-organ segmentation. (a, b) OCG.
Blue and red edges indicate the directed edges from a node in Types 1 and 2, respectively. (c)–(f)
Sequential segmentation steps based on OCG. A red border indicates the nodes to be segmented.
Green color indicates segmented nodes

The selection of a condition organ given a target organ is an important
task. Okada et al. [188] proposed an organ correlation graph (OCG) which
encodes the spatial correlations among organs inherent in human anatomy as
presented in Fig. 2.32. Panels (a) and (b) show OCGs, and panels (c)–(f) present
sequential segmentation steps based on the OCG of (b) (see [189] for details
of segmentation steps). Panel (b) indicates an OCG of eight abdominal organs
(liver, spleen, left and right kidney, pancreas, gallbladder, aorta, and inferior vena
cava). This was constructed automatically based on shape predictability by partial
least squares regression (PLSR) [189] under the constraints on the three types of
organs in panel (b). A set of PDM-based conditional SSMs were constructed
from 86 CT datasets obtained with four imaging conditions. These were used in
the OCG-based segmentation, resulting in high segmentation accuracy of eight
organs.

Finally, we discuss the relationship between an SSM of p.x1; x2/ and a
conditional SSM of p.x1jx2/. The following is an equation that connects p.x1; x2/
and p.x1jx2/. p.x1; x2/ D p.x1jx2/p.x2/ where p.x2/ is a marginal distribution of
x2. As indicated by this equation, p.x1; x2/ is composed of not only p.x1jx2/ but
also p.x2/, which means that, in principle, an SSM of p.x1; x2/ is able to describe
shapes that can be represented by a conditional SSM of p.x1jx2/ and an SSM of
p.x2/. It is, however, more difficult to construct precisely and use effectively
an SSM of p.x1; x2/ than an SSM of p.x1jx2/, because of the large variance of
distribution in a subspace. It should be noted that variances of p.x1; x2/, p.x1/,
and p.x1jx2/ are decreased in the following order:

Var.x1; x2/ � Var.x1/ � Var.x1jx2/ (2.237)

where Var.x
¯
/ means variances of x. The higher the correlation between x1 and

x2, the smaller the variance of p.x1jx2/, which means that a conditional SSM
will be more effective for image analysis, such as segmentation. When using
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a conditional SSM, attention must be given to the reliability of the condition,
which might be contaminated by noise and measurement error, in particular
when the conditional features are measured by an automated process. Tomoshige
et al. [190] proposed a relaxation scheme of condition with an error model in
measurement, which is applicable to multiple organ modeling and segmentation.

2.3.7.2 Anatomical Anomaly

Definition

Many parts of the human body have a large variations in their morphology, such
as dimensions, shapes, or topologies of structures. Additionally, some anatomical
entities may or may not be present, or the number of entities may vary. In
the conventional anatomy, such variations are sometimes categorized into normal
variants and congenital abnormalities [191–193]. The former are variations that
are generally asymptomatic, even though they may predispose to pathological
conditions [191]. In other words, these variations are considered to be safely ignored
by clinicians. Conversely, congenital abnormalities are variations that are usually
symptomatic and thus are clinically significant. However, in some instances, there
are no clear-cut distinctions between normal variants and congenital abnormalities
[193].

In the context of CA, it is useful to consider another categorization of interindi-
vidual variations, that is, continuous morphological varieties and discrete anatomi-
cal anomalies (Fig. 2.33). For example, the different shapes of the liver (without any
topological change) are categorized as a continuous morphological variety, whereas
the variety of the number of the vertebrae is categorized as an anatomical anomaly.
This categorization is important in practice because of their different difficulties in
statistical modeling.

Fig. 2.33 Continuous morphological variety and anatomical anomalies
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Fig. 2.34 Alterations in the number of lumbar vertebrae

Examples of Normal Variants

In this section, several examples of frequent normal variants are presented.
Alteration of the number of vertebrae or ribs is one of the most frequent

anomalies. Usually, human beings have seven cervical (C1–C7), 12 thoracic (T1–
T12), and five lumbar (L1–L5) vertebrae, as well as 12 pairs of ribs. However,
alterations in the total number of vertebrae is as frequent as 8.2%, according
to a survey [194] (Fig. 2.34). Additionally, a transitional vertebra, which has an
intermediate shape between a lumbar and a sacral vertebra, is sometimes found.
These variants may cause difficulties in the identification and labeling of each
vertebra.

There are also variations in position and number of structures, including:

• Ureteropelvic duplication
• Abberrant right hepatic artery
• Pancreas divisum
• Cavum septum pellucidum
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Fig. 2.35 Ureteropelvic duplication (T1-weighted MR image, coronal cross- section)

The occurrence rates of these four variants are reported as 0.5–1% [195], 11–
26.5% [196], 8% [197], and 3% [198], respectively (Figs. 2.35, 2.36, 2.37, and 2.38).
Because of these high prevalences, these variants should be considered in modeling
of the corresponding organs. However, it is difficult to represent both normal and
variant subjects with a single model, because these variants accompany alterations
in topologies of the organs (i.e., the ureter, the arterial system, the pancreatic duct,
and the brain ventricles).

The branching patterns of vessels may also vary widely. The larger arteries and
veins may have normal variants with topology changes. Note that such normal
variants sometimes become a problem in surgical operations; thus it may have some
clinical impact.

Statistical Modeling of Normal Variants

Although many statistical modeling methods for continuous variations have been
introduced, few methods for discrete normal variants have been reported. Among
them, Mori et al. [199] reported a graph-based method to identify the branching
pattern of the abdominal arteries. Another work by Hanaoka et al. proposed a
method to detect anomalies of the number of vertebrae [70].
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Fig. 2.36 Pancreas divisum. The main pancreatic duct continues to the papilla duodeni minor
(arrow), not to the papilla duodeni major (arrowhead) (MR cholangiopancreatography, frontal
view)

Fig. 2.37 Aberrant right hepatic artery. The right hepatic artery (arrow) arises from the superior
mesenteric artery (arrowhead) instead of the celiac artery (Conventional angiography, frontal view)

However, as described above, it is difficult to represent both normal and variant
subjects with a single model where these variants change the topology of the target
organ. The application of a PDM to such a situation is an example. To build a
PDM, point-to-point correspondence must be established. However, the points that
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Fig. 2.38 A large cavum
septum pellucidum
(T2-weighted MR image,
axial cross-section)

are defined on an abnormal extra structure have no corresponding points in normal
subjects.

One possible solution is to build two models for normal and variant subjects.
However, collecting a sufficiently large number of variant subjects is usually not
practical. Otherwise, level-set methods [158] can be used to build a statistical shape
model with topology changes. Another promising approach is multi-atlas-based
methods [200]. Because variant and normal subjects can be combined to form a
multi-atlas in multi-atlas segmentation methods, it can handle variants with high
frequency without explicitly considering the existence of an abnormality.

Up to now, no general method has been introduced to build an SSM that can
represent both continuous (e.g., the position, dimensions, or pose) and discrete
(e.g., the branching pattern, number of objects, or topology) properties of the shape
variety. Future development of new modeling methodology is needed.
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Abstract This chapter presents examples of medical image understanding algo-
rithms using computational anatomy models explained in Chap. 2. After the
introductory in Sect. 3.1, Sect. 3.2 shows segmentation algorithms for vertebrae,
ribs, and hip joints. Segmentation algorithms for skeletal muscle and detection
algorithms for lymph nodes are explained in Sects. 3.3 and 3.4, respectively. Section
3.5 deals with algorithms for understanding organs/tissues in the head and neck
regions and starts with computational neuroanatomy, followed by analysis and
segmentation algorithms for white matter, brain CT, oral regions, fundus oculi,
and retinal optical coherence tomography (OCT). Algorithms useful in the thorax,
specifically for the lungs, tracheobronchial tree, vessels, and interlobar fissures from
a thoracic CT volume, are presented in Sect. 3.6. Section 3.7 provides algorithms
for breast ultrasound imaging, i.e., mammography and breast MRI. Cardiac imaging
algorithms in an echocardiographic image sequence and MR images as well as
coronary arteries in a CT volume are explained in Sect. 3.8. Section 3.9 deals with
segmentation algorithms of abdominal organs, including the liver, pancreas, spleen,
kidneys, gastrointestinal tract, and abdominal blood vessels, followed by anatomical
labeling of segmented vessels.

Keywords Segmentation • Head • Neck • Thoracic • Abdomen • CT • MR •
X-ray • Fundus image • OCT

A. Shimizu (�)
Tokyo University of Agriculture and Technology, 184-8588, Tokyo, Japan
e-mail: simiz@cc.tuat.ac.jp

M. Matsuhiro • Y. Kawata • N. Niki • H. Suzuki
The University of Tokushima, 770-8501, Tokushima, Japan
e-mail: mike@tokushima-u.ac.jp; kawata@tokushima-u.ac.jp; niki@tokushima-u.ac.jp;
hidenobu-s@tokushima-u.ac.jp

T. Matsubara
Nagoya Bunri University, 492-8520, Aichi, Japan
e-mail: matsubara.tomoko@nagoya-bunri.ac.jp

R. Haraguchi
Graduate School of Applied Informatics, University of Hyogo, 650-0047, Hyogo, Japan
e-mail: haraguch@ai.u-hyogo.ac.jp

T. Katsuda
Butsuryo College of Osaka, 593-8328, Osaka, Japan
e-mail: katsuda@butsuryo.ac.jp

T. Kitasaka
Aichi Institute of Technology, 470-0392, Aichi, Japan
e-mail: kitasaka@aitech.ac.jp

http://dx.doi.org/10.1007/978-4-431-55976-4_2
mailto:simiz@cc.tuat.ac.jp
mailto:mike@tokushima-u.ac.jp
mailto:kawata@tokushima-u.ac.jp
mailto:niki@tokushima-u.ac.jp
mailto:hidenobu-s@tokushima-u.ac.jp
mailto:matsubara.tomoko@nagoya-bunri.ac.jp
mailto:haraguch@ai.u-hyogo.ac.jp
mailto:katsuda@butsuryo.ac.jp
mailto:kitasaka@aitech.ac.jp


3 Understanding Medical Images Based on Computational Anatomy Models 153

3.1 Introduction

There has been tremendous progress in medical imaging of the human body
as represented by multi-detector computed tomography (CT), allowing higher
scanning speeds and higher spatial resolution than ever before. A human torso is
often scanned within a few seconds with 0.5 mm spatial resolution, which results
in between several hundred and more than one thousand image sections. Although
such CT volume includes rich information for imaging diagnosis, it forces doctors to
interpret a large number of axial images. For the purpose of assisting physicians, it is
important to develop automated image understanding algorithms of human anatomy.

This chapter presents examples of segmentation algorithms for organs/tissues
in the human body, mainly in the trunk. As is well known, by avoiding unnatural
segmentation results, a computational anatomy (CA) model that learns statistical
variations of an organ/ tissue is very helpful for segmentation. It achieves higher
segmentation accuracy than one without a CA model. Chapter 3 focuses on
algorithms of medical imaging based on CA models presented in Chap. 2. Since the
CT scanner is one of the most common imaging devices in the clinic, this chapter
mainly concerns CT data. It should be kept in mind, however, that multimodality
medical imaging devices such as PET/CT and PET/MRI are being used more and
more. This chapter also describes segmentation algorithms for these. The outline of
this chapter is as follows.

Section 3.2 discusses segmentation algorithms of the axial skeleton, i.e., the
vertebrae, ribs, followed by hip joints, all of which are the main concern in
skeleton segmentation. After reviewing automated segmentation algorithms, a
landmark detection framework based on a statistical model for whole spinal
anatomical landmarks is introduced and discussed. Subsequently, segmentation
and reconstruction algorithms of the hip joint are presented. A skeletal muscle
segmentation algorithm from CT volume data is discussed in Sect. 3.3. In Sect. 3.4,
segmentation algorithms of lymph nodes in medical images are reviewed followed
by a lymph node segmentation algorithm from abdominal CT images. Section 3.5
deals with topics in the brain, head, and neck, and it starts with computational
neuroanatomy that is a discipline focused on analyzing and modeling the anatomy of
individual brains and the structural variability across a population. In section 3.5.1,
voxel-based morphometry (VBM) and deformation-based morphometry (DBM)
are introduced. Section 3.5.2 presents algorithms for understanding white matter
from diffusion-weighted MR images (DWI) with some clinical applications. A
brain CT understanding algorithm based on a normal brain CT model is presented
for detection of intracranial hemorrhage in Sect. 3.5.3. Several oral segmentation
algorithms using statistical models and algorithms for image understanding of
fundus oculi from fundus images and retinal OCT images of retinal layers are
also described with their applications to computer-aided diagnosis in Sects. 3.5.4
and 3.5.5. Section 3.6 focuses on thoracic organs, including the tracheobronchial
tree, lungs, vessels, and fissures in a thoracic CT volume in the first half of this
section. Several segmentation algorithms of these organs followed by an anatomical
labeling process are discussed. Since breast ultrasound imaging, mammography, and

http://dx.doi.org/10.1007/978-4-431-55976-4_3
http://dx.doi.org/10.1007/978-4-431-55976-4_2
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breast MRI are used in the diagnosis and follow-up of breast cancer, computational
model-based segmentation algorithms are presented in Sect. 3.7. In Sect. 3.8, image
understanding algorithms of the heart in an echocardiographic image sequence
and MR images, and coronary arteries in a CT volume, are provided. Section 3.9
presents CA model-based segmentation algorithms of the abdominal organs, in
which a brief survey of segmentation algorithms for each organ is given followed by
details of a state-of-the-art algorithm. Multi-organ segmentation schemes based on
computational models are also described and discussed in this section. Segmentation
algorithms of the abdominal aorta and abdominal vessels are presented followed by
anatomical labeling of the segmented vessels.

3.2 Bone

Shouhei Hanaoka

Vertebrae and Ribs Segmenting the vertebrae and ribs presents a special chal-
lenge. Usually human beings have seven cervical (C1–C7), 12 thoracic (T1–T12),
and five lumbar (L1–L5) vertebrae, as well as 12 pairs of ribs. Therefore, an
ideal spine segmentation algorithm needs to detect all vertebrae, identify the
number (anatomical name) of each vertebra, and, finally, segment them. The terms
“detection,” “identification,” and “segmentation” were used first by Klinder [161],
who developed the first fully automatic segmentation method for all 24 vertebrae
from CT volume data.

Some detection, identification, and segmentation methods are listed in Table 3.1.
In the rest of this section, these three processes are separately discussed, followed
by a brief review of segmentation methods for ribs.

Detection of Vertebrae The detection phase may include preprocessing to locate
anchor structures such as the pelvis [47] or the spinal canal [321]. For example,
Yao et al. [321] used a watershed algorithm to segment the spinal column. Another
method is the generalized Hough transform (GHT) to find the spinal canal [235] or
the pelvis [47].

Several strategies can be considered for detecting vertebrae. They can be detected
directly by GHT [161], template matching [116], feature extraction, or machine
learning-based methods [124, 327].

Another strategy is to detect the intervertebral discs. For instance, Kim et al.
[154] and Hanaoka et al. [112] applied a ray-casting search algorithm, where
intervertebral discs are searched as low-density structures sandwiched between two
high-density endplates (the upper and lower surfaces of the vertebral body). Kim
also used a fence-like deformable model to segment neighboring vertebrae precisely.
Kelm et al. [193] used a marginal space learning method in which positions,
rotations, and scales of the discs are hierarchically estimated. First, candidates of
target object positions are estimated, followed by estimation of position–rotation,
and, finally, of position–rotation–scale. They expanded this marginal space learning
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to detect multiple discs. The method showed a detection success rate of 98% for
both CT and MR images.

Identification of Vertebrae Identification of all 24 vertebrae would seem to be a
very trivial task, as long as the following conditions are met: (1) the field of view of
the given image includes the whole spine, (2) the target spine has the normal number
of 24 vertebrae, and (3) all 24 vertebrae are successfully detected. Unfortunately,
these conditions are rarely satisfied. In fact, to the best of our knowledge, the
work by Klinder et al. [161] is the only one which can identify and segment all
24 vertebrae in a CT image. The method uses appearance model registration to
distinguish each vertebra. The success rate in their identification method was 95%.
This method successfully handled images with various field-of-view sizes, including
those encompassing only a part of the spine, and with various pathologies, e.g.,
scoliosis.

Ma et al. [184] introduced a method employing mean shape fitting to identify
and segment thoracic vertebrae. The success rate was 73% if only one vertebra
was segmented, but it increased to 91% when seven continuous vertebrae were
simultaneously identified.

Another method (that of Hanaoka et al. [112]) could detect 22 vertebrae,
excluding C1 and C2. The success rate of identification was no more than 60%,
because their identification method was based on a “counting-from-the-bottom”
strategy. However, it should be noted that one of the failures was due to an
anomalous number of lumbar vertebrae (the patient had six lumbar vertebrae).
According to a survey by Carrino et al. [54], no fewer than 8.2% of people have
an anomalous number of vertebrae.

Hanaoka et al. also introduced a whole-body landmark detection method [113]
which identifies landmarks for each of the 24 vertebrae. This particular method will
be discussed later.

Segmentation of the Vertebrae After detection and identification, segmentation
of each vertebra must be performed. The most popular segmentation method is
surface mesh fitting [47, 161, 184, 194]. For example, Ma et al. used learning-based
edge detection and a coarse-to-fine deformable surface mesh model to segment the
thoracic vertebrae. Klinder et al. [161] also used a surface mesh-based statistical
shape model (SSM) with an image gradient-based external energy term.

Kadoury et al. [138] recently reported a unique method in which detec-
tion/identification and segmentation are simultaneously processed. They assume
that global deformations of the spinal column will manifest similar local
deformations of the vertebrae because of the same type of pathological deviation.
Under this assumption, they modeled scoliotic spinal columns as an articulated
deformable model, embedded it into a local linear embedding (LLE) manifold, and
tried to represent local shape appearances of the vertebrae as a linear combination
of shapes of neighbor samples on the manifold. The segmentation problem is
formulated as a high-order Markov random field (MRF) and solved as a single
optimization problem.
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Štern et al., among others, modeled pathological changes in vertebral body
shapes by a parametrical shape model with 25 parameters. Carballido-Gamio et al.
[52] and Huang et al. [124] used a normalized cut method to segment vertebral
bodies. Recently Whitmarsh et al. reported a multi-atlas-based segmentation method
[308] for lumbar vertebrae with a mean distance error of no more than 0.30 mm.

Segmentation of Ribs Staal et al. [267] reported an automatic rib segmentation and
labeling method. After 1D ridges are extracted from the given image, line elements
are constructed, classified, and then grouped as rib centerlines. These centerlines are
used in the final region-growing algorithm. They reported an identification success
rate of 98.4%, excluding the first ribs. Klinder et al. [160] reported another method
with an identification success rate of 94.4% and a mean distance error of 0.36 mm.
Note that a rib detection method sometimes serves as an identification method for
thoracic vertebrae (e.g., in [116] or [208]).

Spinal Landmark Detection In this section, a landmark detection framework for
whole spinal anatomical landmarks is introduced and discussed. The framework was
developed by Hanaoka et al. [113].

The framework can determine the positions of over 100 landmarks concurrently,
taking spatial correlations of all landmark pairs into account. The outline of the
framework is illustrated in Fig. 3.1. First, a set of landmark candidate lists is gen-
erated by sensitivity-optimized single-landmark detectors. Each landmark detector
will detect its target landmark and output approximately 100 candidate positions.
Then, a Markov chain Monte Carlo (MCMC)-based combinatorial optimization
algorithm will find the most probable combination of candidate positions through
maximum a posteriori (MAP) estimation.

Input image

LM-1
Detector

…LM-2
Detector

LM-3
Detector

LM-N
Detector

LM-1
cands.

LM-2
cands.

LM-3
cands.

LM-N
cands.

…

Combinatory optimization

LM-1 LM-2 LM-3 LM-N…

Fig. 3.1 Outline of the landmark detection framework (Cands D candidates)
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Fig. 3.2 Spine with six lumbar vertebrae

The unique feature of the framework is that it can handle subjects with segmen-
tation anomalies of the spinal column. As mentioned, no fewer than 8.2% of people
have an anomalous total number of vertebrae. Such anomalies are very problematic
in both defining and detecting vertebral landmarks (Fig. 3.2). To overcome this, a
series of anomaly landmark position set converters is introduced. One converter can
convert any landmark position set in a subject with a certain type of anomaly into a
virtually normalized landmark position set (Fig. 3.3). Because of this converter, the
posterior probabilities can be calculated even in subjects with an anomalous number
of vertebrae. The framework can determine the type of anomaly in a given unseen
image by (1) applying all anomaly type hypotheses sequentially and (2) adopting
the hypothesis with the largest posterior probability.
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Fig. 3.3 Examples of spinal bone number anomalies (four or six lumbar vertebrae) and their
anomaly conversion results

Fig. 3.4 Landmark detection result in a subject with 13 (i.e., one more than normal) thoracic
vertebral bodies

Through an experiment with artificial detector outputs, the framework achieved
a 97.6% success rate in anomaly type determination. The results show the potential
of this framework to detect an anomalous number of vertebrae by trying several
anatomical variant hypotheses sequentially (Fig.3.4).

Hip Joint The hip joint consists of the femoral head (which is a part of the
femur) and the acetabulum (a part of the pelvis), with their respective articular
cartilages. The acetabulum is formed by the ischium, ilium, and pubis. SSMs and
related methods have been utilized for reconstruction and segmentation of the hip
joint from two-dimensional (2D) and three-dimensional (3D) medical imaging data.
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Main applications of early studies were on 3D shape reconstruction from sparse or
incomplete data such as 3D point data acquired in the operating room [234], 2D
X-ray images [320], and 3D ultrasound data [29]. These applications of the SSMs
were intended to statistically interpolate and extrapolate sparse and incomplete data
in order to reconstruct an approximate 3D shape when 3D CT/MR data were not
available, and they are still actively studied [330]. Even when 3D CT/MR data
are available, however, accurate 3D reconstruction from them is still not an easy
task, and SSMs play an important role, especially for automated segmentation.
Furthermore, 3D CT/MR data have more detailed information, and thus it is worth
investigating more complex statistical models of the hip joint, rather than a single
SSM of the pelvis or femur, to fully utilize these data. In this section, SSM-based
segmentation of the hip joint from CT/MR data is reviewed.

One of the earliest works on application of SSMs to CT/MR data segmentation
was done by Lamecker et al. [167]. In their study, an SSM of the single pelvis was
used, and the SSM was initialized by placing the mean shape manually, which raised
several issues. One issue is how the SSMs were automatically initialized, including
landmark detection, for this purpose. In addition, the particular issue in the hip joint
is how the consistency of the geometric relationship between the acetabulum and
femoral head was maintained. Therefore, multi-structure modeling is a key problem.
Especially for diseased hips, keeping the consistency becomes more difficult due to
joint space narrowing as well as severe deformation. In the following paragraphs,
methods for the SSM initialization are described, and then several approaches for
keeping the shape consistency are discussed.

Regarding the initialization, GHT has been successfully applied by using the
mean shape as the template to automatically determine the initial pose of the pelvis
SSM [251]. The problem of using GHT is the trade-off between computational
cost and parameter range/resolution. Another approach is to manually provide
anatomical landmarks, [106, 248]. Because the landmarks are well-localized fea-
tures, interoperator variability of the initial pose and shape parameters estimated
from the specified landmark points is expected to be small even if the landmarks
are provided manually. Therefore, more objective initialization will be possible
compared with manual specification of the pose itself. Because determination of
the pelvic coordinate system is clinically important, some methods [164, 324] use
automatic methods specific to the pelvis to determine the coordinate system, which
can be the reference frame of the SSM. Similarly, the hip joint center has been used
for initialization for a small field-of-view (FOV) MR dataset [249]. As described in
the previous section, initialization will be improved by using automatic landmark
detection in the future.

To maintain the consistency between the acetabulum and femoral head, multi-
object integrated modeling of the pelvis and femur has been investigated. The
simplest integration is simply to avoid overlap of the two SSMs of the pelvis and
femur during their fitting to the 3D data [139]. However, it overcomes only one of
the inconsistencies (although it is still effective). A more elaborate approach is to
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model joint-specific motion in addition to bone-specific shapes. Both analytical and
statistical approaches have been proposed for incorporating the articular motion. In
the analytical approach, one composite SSM of the pelvis and femur is constructed,
in which the shape and motion parameters are separately represented by assuming
that the hip joint is a ball-and-socket joint, that is, three degrees of freedom rotation
centered at the hip joint [140]. Therefore, variability of hip joint motion can be
added by the minimum numbers of parameters without reducing the ability of shape
representation by the SSM. The motion of diseased hip joints will not be a simple
rotation. In the statistical approach, the combined shape of the pelvis and femur of
each patient is regarded as a single shape, and one composite SSM of the pelvis and
femur is constructed [323]. This composite SSM includes not only shape variations
but also motion variations of the joint. Its shape and motion parameters are not
separated. One drawback is that the ability of shape variability representation is
reduced. Therefore, hierarchical modeling is combined so as to realize a coarse-fine
fitting as shown in Fig. 3.5a. Coarse fitting is first performed using the composite
pelvis and femur SSM to provide initialization for the subsequent stages, and then
finer fitting is performed by using the divided SSMs to gradually increase fitting
accuracy as well as to provide initialization for the next stage while keeping the
consistency. Furthermore, a conditional SSM are applied for further improvement
of segmentation accuracy [325]. This method was shown to be particularly effective
for CT segmentation of diseased hip joints even in the presence of joint narrowing
and severe deformation. Figure 3.5b shows a typical segmentation result.

Fig. 3.5 Segmentation of the pelvis and femur from CT images using a hierarchical SSM (H-
SSM) of the hip joint. (a) H-SSM of the hip joint. (b) Typical segmentation result
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3.3 Skeletal Muscle

Naoki Kamiya, Yoshinobu Sato

Introduction In this section, we describe an automatic recognition method for
skeletal muscle based on CA. As skeletal muscle does not undergo enhancement
in a way that makes it stand out from surrounding tissues, we focus on non-contrast
CT images, a challenge to computer recognition.

Skeletal muscle has distinct features on CT (see Fig. 3.6). Muscle is found
throughout the body and is visible in virtually all cross-sectional images. However,
the main area of interest for the physician is usually the organ observation.
Therefore, automatic analysis of skeletal muscle using a computer algorithm may
be useful for incidental findings or findings that may be overlooked.

To improve quality of life in a rapidly aging society, various estimation methods
for skeletal muscle have been devised to assess the therapeutic effects of rehabili-
tation. Solutions to accurately measure skeletal muscle in image recognition based
on CA have been described [95, 145, 146]. Recognition of knee extensor and flexor
muscles in MR images is being explored using probabilistic methodology [6]. An
SSM-based method has been used in the thigh using MRI [33]. An atlas-based
method using breast MRI is employed in the pectoral muscle regions [110].

3.3.1 Anatomical Modeling of Skeletal Muscles

Figure 3.7 shows the correspondence of the anatomical features. These features are
utilized by an anatomical modeling method. These three features details described
below.

Landmarks It is important to recognize the origin and insertion points of a muscle
in the bone as landmarks. A landmark is a one-dimensional datum indicating one
point in three-dimensional space. Various methods exist for landmark recognition.
As skeletal muscle is attached to planar configurations, if the selection of the bone
is correct, some positional error is acceptable in the shape model described below.

Fig. 3.6 Representative
features of skeletal muscle in
CT images
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Fig. 3.7 Correspondence of the anatomical features on computer

For the recognition of landmarks, we use skeleton images classified automati-
cally using an atlas derived from non-contrast CT images. This classified skeleton
image is generated by a method considering the connectivity of the skeleton [332].

Landmarks are selected by first selecting the bone from the atlas based on the
anatomical definition and then finding the most proximal point on the selected
bone for the origin and the most distal point for the insertion. Classified skeletal
image atlases and the virtual image unfolding-based method by this author and other
studies [134, 216] describe this.

Anatomical Centerlines Anatomical centerlines indicate the direction of the long
axes of the muscle fibers. Therefore, in each skeletal muscle, a pair of origin
and insertion landmarks are connected by a straight line or curve. For use as an
approximate running direction of the muscle fibers that supports recognition, there
is no serious problem even if using a straight line or low-dimensional mathematical
function.

Because of differences in height, body shape, gender, subcutaneous fat distri-
bution, and other factors, there are large individual differences in the shape of
the human body. In our experience, the geometric centerline is different from the
anatomic one. Thus, in surface skeletal muscles, it is preferable to generate a
centerline passing through multiple points placed as additional landmarks between
the origin and insertion. We select additional landmarks using the surface of the
subcutaneous fat, which is relatively easy to recognize by its low-density values.

Figure 3.8 shows anatomic centerlines generated in the identification of surface
and deep muscle.

Model Generation The modeling of skeletal muscle can involve displaying the
distribution in three-dimensional space or using an SSM to indicate the outline of
the muscle. In the recognition process, it is necessary to select whether to use both
models or to use the distribution model alone. Many muscles, such as the temporalis,
have a complicated shape that requires the distribution model. Muscles with well-
defined insertion points, belly, and attachment points, such as the biceps, can be
analyzed with the shape model.
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Fig. 3.8 Anatomic centerlines of the surface muscle and deep muscle

3.3.1.1 Muscle Distribution Model

During the generation of a muscle distribution model, there is a method using only
obtained landmarks and a method using landmarks and centerlines. The simplest
distribution model is a method for determining the muscle area using closure
landmarks. Closure landmarks are used to determine the closure region to detect
the initial region of the muscle. This is effective when the distance between the
origin and insertion is small and the shape of the muscle is simple. However, it is
not suitable when the muscles and other organs are adjacent to each other, because
the separation is difficult in the recognition process. A method using landmarks and
centerlines solves this problem. This is the technique for closure region, including
the centerline and landmarks. The closure region depends on the target muscle, but
is defined by the shape information and the statistical variance, which is obtained
by using the landmarks. This can be realized by specifically fitting a surface to
the centerline, placing auxiliary points at regular intervals on the centerlines, and
performing surface interpolation using these auxiliary points. This approach is
strongly independent of differences in body shape and is effective for recognition
of the surface muscles. Figure 3.9 shows the distribution model in the chest and
abdominal region.

3.3.1.2 SSM

The distribution model described above is intended to depict the locations of
muscles on the basis of the centerline and landmarks. However, the muscle-specific
shape is not included in the distribution model. We describe a technique for
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Fig. 3.9 Distribution model of the skeletal muscle

statistically modeling the outer shape of the muscle, expressed as a mathematical
function. We describe the modeling of the psoas major muscle, which has a
characteristic shape. SSM requires muscle area data by semiautomatic or manual
extraction of the target muscle.

The psoas major muscle is spindle shaped. It is assumed that the cross section
of the outer shape can be represented by a quadratic function that is symmetric
to the centerline. Based on this assumption, a muscle area is extracted from the
training data to determine the distance to the outer shape from each centerline.
The approximate curve of the quadratic function is fitted to the distribution of the
distance values along the centerlines. The curve generated can be the quadratic
function whose vertex is located at the midpoint of the centerline. Here it should
be noted that two parameters are present in the quadratic function, gradient alpha
and intercept beta. We define the value that represents the muscle-specific shape as
gradient alpha. The fitting parameter which accommodates individual differences
in muscle mass is defined as intercept beta. The gradients resulting from the
approximate curve fitting are saved as the shape parameters. Fitting parameters are
determined from the test data in the recognition process described later.
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We used SSMs to recognize the deeply situated psoas major muscle and the
superficially situated rectus abdominis muscle. If the modeling can be applied to
a characteristic shape, it is not limited to superficial or deep locations.

Recognition The choice of recognition method depends on the model. First, using
only the distribution model. In this pattern, it is necessary in identifying the skeletal
muscle by using a grayscale value inside and outside of the boundary. Second,
using an SSM. The SSM-based method needs, for calculating the fitting parameters,
intercept beta, which is a parameter of remaining that has not been determined in the
model building process. These parameters are calculated automatically on the test
data by generating the centerlines. For example, in psoas major muscle recognition,
where the cross section of the midpoint position of the centerline is thickest, the
maximum diameter of the muscle is determined from the test data and defines
intercept beta. Finally, it fits the model function to the landmarks and performs the
recognition of the muscle using the grayscale value from the CT image.

Ordinarily, each model is only intended to indicate a representative area or
boundary of the muscle region. Therefore, in the recognition process, as well as
in other organ recognitions, a precise extraction process is needed.

Figure 3.10 shows the recognition results of the rectus abdominis muscle and
psoas major muscle using the SSM.

Recognition of Lower Limb Muscles In the above sections, recognition methods
for relatively isolated single muscles were described. In the lower limb muscles,
multiple muscles are densely and closely interrelated and adjacent to each other.
Therefore, the above described methods may not be useful for the lower limb,
and segmentation methods suitable for densely interrelated muscles need to be
developed.

Fig. 3.10 Recognition results of the rectus abdominis muscle and psoas major muscle
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Lower limb muscle segmentation was mainly motivated by biomechanics
research. To overcome the limitations of conventional musculoskeletal biome-
chanical simulations using line segments as muscle models, precise geometries of
muscles are needed to be reconstructed. Early works used manual [39] or interactive
segmentation [106, 107] to reconstruct musculoskeletal anatomy models from MR
data to perform patient-specific simulations. More recently, attention to lower
limb muscle segmentation has been paid for diagnostic purposes, and automated
segmentation methods have been investigated. Random walks [34] and multi-atlas
segmentation [95, 301] data were used in order to deal with incomplete boundaries
among the muscle regions. MR data were usually considered to be suitable [34, 39,
106, 107, 301], but CT data have also been also utilized [95]. Figure 3.11 shows
typical results of automated segmentation of the hip and thigh muscles from CT data
[95]. In this method, the bone regions (the pelvis and femur) of the segmentation
target CT data were nonrigidly registered to the atlas data of the training dataset
for spatial normalization, and then the muscle regions were segmented. The muscle
regions were also used for spatial normalization in the next stage of the method,
and some muscles were further segmented and used for further normalization.

Conclusion We described automatic recognition methods based on CA, a general
technique of skeletal muscle recognition in non-contrast CT images using anatomic
features. We present the recognition of landmarks, construction of anatomical
centerlines, and anatomical shape model generation. The SSM describes the outer
shape of the muscle, and the distribution model indicates the existence area of the
muscle.

Fig. 3.11 Typical segmentation result of the bones and muscles in the pelvis and thigh from CT
data. (a) Input CT data, (b) segmentation of the pelvis and femurs, (c) segmentation of muscle
tissues, (d) segmentation of individual muscles
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Automatic recognition of skeletal muscle based on a CA model is robust. When
separation from other organs is difficult, the shape model provides a useful initial
region. However, this requires careful selection of the appropriate modeling function
for outer shape determination and also requires accurate extraction.

3.4 Lymph Nodes

Kensaku Mori

3.4.1 Overview of Lymph Node Segmentation on Medical
Images

The lymph nodes are part of the reticuloendothelial system. They are a vital part
of the immune system and are significant actors in many cancers, both hematologic
and solid. Typically a human has several hundreds of lymph nodes in their body.
Most of the tissues in the body, except for the brain, have specific patterns of
lymphatic drainage, with lymphatic channels draining into specific lymph node
chains. Lymph nodes may become enlarged because of immune responses to
infection/inflammation or because of infiltration with cancer cells, although tumor-
involved nodes may also be normal in size. Such lymph nodes can be observed
on medical imaging including computed tomography (CT) or magnetic resonance
imaging (MRI) images. In clinical imaging, it is important to detect lymph nodes
whose diameters are � 5 mm. Quantitative evaluation of lymph nodes is important
for diagnosis and subsequent staging after surgical, medical, and/or radiation
therapy.

Most enlarged lymph nodes can be identified as elliptical-shaped structures on
CT images. Figure 3.12 shows examples of lymph nodes observed on axial CT
slices. On contrast-enhanced CT images, these regions can be observed as foci
whose intensity values are higher than surrounding structures such as fat. In the
mediastinal area, the existing areas of the lymph nodes are almost fixed.

Several studies have been conducted for automated detection of nodes on chest
and abdominal CT images [27, 77]. The basic framework of detection consists of (a)
blob-like structure enhancement for lymph node candidate detection and (b) false-
positive reduction.

Several methods have been proposed for “initial candidate” selection: (a) the
Hessian-based method [212], (b) the directional difference filter-based method [77],
and (c) the Haar-like feature method with machine learning augmentation [27].
The Hessian-based approach tries to detect lymph node candidates by the fact
enlarged lymph nodes show a spherical or elliptical shape on CT images. The
directional difference filter method uses a similar approach. The Haar-like feature-
based approach directly computes features that enlarged lymph nodes have to extract
lymph node candidates.
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Fig. 3.12 Examples of lymph nodes depicted on axial CT slice images

A feature-based approach is generally used to avoid false positives. Several
classifiers are constructed to discriminate false-positive regions from lymph node
candidate regions. Most methods use a machine learning approach to classify true-
positive and false-positive regions.

A lymph node atlas showing the usual distribution of nodes assists in the false-
positive reduction process. Feuerstein et al. (2012) [77] used a patient-specific
mediastinal atlas to reduce false positives.

3.4.2 Overview of Lymph Node Segmentation from Abdominal
CT Images

This section introduces the lymph node extraction process on abdominal CT images.
The basic flow of abdominal lymph node detection consists of four steps: (1)
preprocessing, (2) blob-like structure enhancement, (3) initial candidate detection
from enhanced image, and (4) false-positive reduction.

3.4.2.1 Preprocessing

In this step, a Gaussian smoothing filter of kernel size ¢ is applied. Because the sizes
of enlarged lymph nodes vary, it is necessary to adjust the threshold target size. This
size control can be achieved by changing the size of the kernel of the Gaussian
smoothing filter and the size of the hypersurface fitting area explained in the next
subsection.
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3.4.2.2 Blob-Like Structure Enhancement

As stated in the previous sections, enlarged lymph nodes are spherical or elliptical
in shape, which can be described as blob-like structures. Intensity structure analysis
based on a Hessian matrix can distinguish between sheet-, line-, and blob-like
shapes. As enlarged lymph nodes may have a blob structure, a Hessian-based
blob structure enhancement filter is used. A blob structure enhancement filter was
developed by Sato and Frangi in 1999. The basic idea of this method is that specific
patterns emerge from the eigenvalues of the Hessian matrix.

The partial derivative of the intensity function f can be derived by simple numer-
ical differentiation of f or hyper-curve fitting to the function f. After computing
the Hessian matrix at (x, y, z), three eigenvalues 	1; 	2; 	3 .0 � 	1 � 	2 � 	3/ are
computed. Before applying this blob-like structure enhancement filter, the Gaussian
filter whose standard deviation is ¢ is executed. The eigenvalues obtained by
applying the Gaussian filtering of ¢ are described as 	.�/1 ; 	

.�/
2 ; 	

.�/
3 .

Although there are several variations in blob-like structure enhancement, Naka-
mura et al. (2013) [212] used the following blob-like structure enhancement filter:

for a CT voxel xD (x, y, z), the blobness value at x can be expressed as

GB .x/ D
(
j	3j �

�
	2
	3

	
 � �	1
	2

	

	1 < 0

0 otherwise
; (3.1)

where 	1; 	2; and 	3 are the eigenvalues of the Hessian matrix computed at the
voxel x. The Hessian matrix of the voxel located at (x, y, z) can be calculated by
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where f means a function that approximates intensity distribution around the point
p. The function f can be expressed as

f .x; y; z/ D ax2 C by2 C cz2 C dxyC eyzC fzxC gxC hyC lzC m; (3.3)

where a , b , c , d , e , f , g , h , l, and m are coefficients of the function. A set of these
coefficients are denoted as w. These coefficients can be obtained by solving the least
mean square problem that minimizes a residual error e defined as

e D
X

i

X
j

X
k
. f .iC x; jC y; kC z/ � I .iC x; jC y; kC z//2: (3.4)
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Optimum w is obtained as the solution of

@e

@w
D 0: (3.5)

As stated above, it is necessary to enhance lymph nodes of different sizes. If the
input image is smoothed by the Gaussian smoothing filter of kernel size ¢ , a
hypersurface fitting process is performed in the area of 3 ¢ . Blob structure-enhanced
images of different scales are generated by computing GB(x) for all voxels of the
input image.

3.4.2.3 Lymph Node Candidate Region Detection

After obtaining the blob structure-enhanced image, initial candidate regions of
lymph nodes are extracted by simply thresholding the enhanced images. However,
some lymph nodes are observed as contacting other regions like fat, muscle, and
other organs on CT images. Intensity contrasts between lymph nodes and other
structures are not high. False-positive identifications can occur in high-contrast
regions such as border areas of organs or air-containing regions. Eq. (3.1) is easily
and strongly affected by the magnitude of 	3 Œ54�. Furthermore, j	3j becomes high
in areas containing linear/tubular structures such as blood vessels. If j	3j becomes
high at a certain voxel, such a voxel has a higher possibility of false positivity.
Considering this situation, lymph node candidate region image C can be obtained as

C .x/ D
�
1 GB .x/ � TBSEand j	3j � T	3
0 otherwise

; (3.6)

where TBSE and T	3 are the threshold values for the blobness and the contrast,
respectively [212].

We obtain lymph node candidate region images for different scales (different ¢).

3.4.2.4 False-Positive Region Reduction

Lymph node candidate region images contain many false-positive regions. A typical
method of false-positive reduction is based on feature analysis. An example of a
feature value set for false-positive region reduction is summarized in Table 3.2.
A machine learning approach, such as a support vector machine, AdaBoost, or an
artificial neural network can be used for this purpose. The typical procedure of false-
positive reduction based on a machine learning approach consists of two steps: (a)
the training step and (b) the learning step. In the training step, features of true-
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Table 3.2 Feature value list for false-positive reduction

positive and false-positive regions are computed using training datasets. A set of
true-positive and false-positive regions is obtained by performing the lymph node
candidate region detection process described in Sects. 3.4.2 and 3.4.3. A classifier is
trained by features generated from training datasets. Figure 3.13 shows a flowchart
of the false-positive reduction process using a support vector machine.

After the training process of the classifier, feature values of lymph node candidate
regions are computed. These features are entered into the trained classifier to decide
whether a candidate region is or is not a lymph node.

3.4.3 Examples of Lymph Node Detection on Abdominal CT
Images

This section will show examples of the results of lymph node detection from
abdominal CT images. Acquisition parameters of these CT images are image size
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Fig. 3.13 Flowchart of false-positive reduction based on support vector machine

Fig. 3.14 Example of lymph node regions detected by Hessian-based analysis. This figure shows
examples of detected true-positive regions

512 � 512 � 401–451 voxels, pixel size 0.586–0.702 mm2, section thickness
1.25 mm, and reconstruction pitch 0.5–1.0 mm. The data from 28 cases of contrast-
enhanced three-dimensional (3D) abdominal CT examinations were processed.
These image datasets included five colorectal cancers and 23 gastric cancers. There
were 95 lymph nodes included in these images. The parameters for detection were
set as TBSED 8 and T	3 D 1:1.

Figure 3.14 shows examples of true-positive regions extracted by the method
shown in Sect. 3.4.2. As shown in this figure, Hessian-based analysis can detect
lymph nodes in the pelvis appropriately. Although the method can detect true-
positive regions from 3D abdominal CT, it also detected several false-positive
regions and false-negative regions (Figs. 3.15 and 3.16). As we can see on these
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Fig. 3.15 Example of regions detected by Hessian-based lymph node detection method. This
figure shows examples of false-positive regions

Fig. 3.16 Example of lymph nodes missed by automated method

figures, other anatomical regions such as a part of the colonic wall or residues
inside the intestine tended to be extracted as false-positive regions. The overall
performance of detection is shown in Fig. 3.17 as a receiver operating characteristics
(ROC) curve.
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Fig. 3.17 Receiver operating characteristic (ROC) curve of lymph node detection method

3.5 Brain, Head, Neck, and Eye

Hiroshi Fukuda, Yasuyuki Taki, Kazunori Sato, Kai Wu, Yoshitaka Masutani,
Takeshi Hara, Chisako Muramatsu and Akinobu Shimizu

3.5.1 Computational Neuroanatomy

Computational neuroanatomy is a discipline focused on analyzing and modeling
the anatomy of individual brains and the structural variability across a population.
The goal is not only to model normal brain structures and their variations within a
population but also to identify the morphological differences between normal and
pathological populations. The ultimate goal is to create a human brain structure
model and classify the abnormalities of the brain from structural differences. Appli-
cations are quite important in neuroscience to minimize the influence of normal
anatomic variability of the brain in functional group analysis, such as functional
mapping of the brain using functional magnetic resonance imaging (fMRI). They
are also important in diagnostic medical imaging to develop automatic algorithms
for the diagnosis of brain diseases. Modeling the shape of the brain is difficult
because of the complexity of brain morphology and the large degree of variability
in normal human brain structure. These difficulties raise the need for statistics
and computational methods to analyze curves, surfaces, and deformations. In this
section, voxel-based morphometry (VBM) and deformation-based morphometry
(DBM) will be introduced.

3.5.1.1 Voxel-Based Morphometry (VBM)

VBM was developed by Wright et al. [315] and is an automated technique that
allows evaluation of structural variations in the brain across many individuals
without visual assessment or operator-dependent manual procedures. VBM detects
differences in the local densities (tissue probabilities) of various tissue compart-
ments throughout the brain without any a priori knowledge of regional differences
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in brain structure and function [13]. Whitwell documented well on the methods of
VBM [309], and the description in this section is based on that work. In VBM,
T1-weighted MR images (T1WI) are analyzed by statistical parametric mapping
(SPM). SPM is a statistical technique developed by Friston [89, 90] for examining
differences in brain activity recorded during functional neuroimaging experiments
using technologies such as fMRI or PET. It contains design matrix software for
statistical analyses, statistical analyses, and visualization of the results, which
was created by the Wellcome Department of Imaging Neuroscience (part of the
University College London) [265]. VBM is applied not only to assess normal human
brain aging [64, 108, 314] but also to detect pathological changes in brain diseases.

1. MRI processing (spatial normalization and segmentation)

To make statistical analyses across many MRIs of different individuals with
different brain structure, preprocessing of the brain is necessary. The first process
is known as spatial normalization or anatomical standardization. It is generally
achieved by registering all images in a population into the same template image
so that they are all in the same standard stereotactic space. After this process,
an anatomical location in one subject’s MRI corresponds to the same location in
another subject’s MRI. Different algorithms can be used to perform this registration
[13, 64, 314]. The most commonly applied algorithm available in the SPM software
(described later) includes a 12-parameter affine transformation followed by a
nonlinear registration using a mean squared difference matching function [13, 265].
The template image used for the spatial normalization could be one specific MRI
scan, which is selected from a population based on defined criteria, or could
be created by averaging across a number of different MRI scans such as the
MNI152 template that was created by averaging 152 healthy brains at the Montreal
Neurological Institute (MNI). Customized templates may be created using the given
study group or a group that is matched to the study group in terms of age and disease
status. Such templates may improve the normalization of each subject in a study
group [108].

In SPM, in which a low-parameter shape transformation is performed for spatial
normalization, a step called modulation is then often necessary to correct for volume
changes during the spatial normalization step [108]. Image intensities are scaled
by the amount of contraction that has occurred during spatial normalization, so
that the total amount of gray matter remains the same as in the original image.
Then, statistical comparison of volumetric differences between scans is performed.
If the spatial normalization was precise and all the segmented images appear
identical, no significant differences would be detected in unmodulated data, and
the analysis would reflect registration error rather than volume differences. Other
techniques employ different normalization procedures that use high-dimensional
elastic transformations [64], or ELAST [250]. These procedures preserve the
volume of different tissues and do not require a separate modulation step.

Images are segmented into different tissue compartments (gray matter, white
matter, and cerebrospinal fluid (CSF)), and statistical analysis is performed sepa-
rately on either gray or white matter, depending on the target tissue to be analyzed

http://en.wikipedia.org/wiki/Statistical
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Functional_neuroimaging
http://en.wikipedia.org/wiki/Functional_Magnetic_Resonance_Imaging
http://en.wikipedia.org/wiki/Positron_Emission_Tomography
http://en.wikipedia.org/wiki/University_College_London
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Fig. 3.18 Image processing and analyses (Figure 1 of Ref. [94])

(Fig. 3.18). There are a number of ways to perform the segmentation, including
classification using voxel signal intensity combined with prior probability maps,
as in SPM. Such prior probability maps may be more unbiased when generated
from the specific population under study. However, weighting balance between
signal intensities and prior probability should be considered, when differences
in the transformation vector itself in two different populations are a matter of
concern. The accuracy of the segmentation will also depend on the quality of
the normalization. Iterative versions of normalization and segmentation methods
have been developed which enable optimization of both processes concurrently,
to improve the final segmentation [15]. In this method, the original MRI in native
space is segmented, and then the segmented images are spatially normalized to gray
matter and white matter templates to obtain optimized normalization parameters.
The method is termed “optimized VBM” [239]. Segmentation errors can occur
because of displacement of tissue and partial volume effects between gray matter
and CSF. Both are more likely to occur in atrophic brains in subjects of older age
or with degenerative brain diseases. The use of customized templates can help to
minimize some of these potential errors [108].

2. Statistical analysis

Finally, the normalized and segmented images are smoothed by convoluting
isotropic Gaussian kernel [13, 108], so that the intensity of each voxel is replaced by
the weighted average of the surrounding voxels, in essence blurring the segmented
image. The size of the smoothing kernel depends on the size of expected regional
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differences, which can vary across studies [150, 239, 311]. Smoothing before
statistical testing has three advantages. First, the smoothing has an effect of making
the data more fitted to the Gaussian field model and more normally distributed,
thus increasing the validity of parametric statistical test. Second, the smoothing
compensates for spatial normalization error and decreasing intersubject variability
[13, 242]. Third, the smoothing reduces the effective number of statistical compar-
isons and thus increases the sensitivity to detect changes by reducing the variance
across subjects, although excessive smoothing will diminish the ability to accurately
localize changes in the brain. Although these processing steps (normalization,
segmentation, and smoothing) are necessary for the analysis of data across subjects
[13, 242], they can also introduce errors and variability into the analysis, which can
reduce sensitivity. For example, VBM cannot distinguish between real changes in
tissue volume from local misregistration of images [14, 40]. It should be noted that
normalization accuracy and, thus, sensitivity will vary across regions.

Statistical analysis using the general linear model and the theory of Gaussian
random fields is performed to identify regions of gray matter or white matter that are
significantly related to the effects under study [13, 90, 91]. The analysis is a standard
t test and F test extended into all voxels in 3D space. In SPM, the design matrix
for statistical analysis is composed of two contrasts comparing the smoothed gray
matter or white matter. These analyses generate statistical maps showing all voxels
of the brain that disprove the null hypothesis and show significance to a certain p
value. These maps are often shown as color maps with the t statistic scale (Figs.
3.19, 3.20 and 3.21). Because the statistical tests are performed across a quite large
number of voxels, it is important for the results of the analyses to correct for multiple
comparisons to prevent the false-positive results by chance. The classical approach
to the multiple comparison problem is to control the family-wise error (FWE) rate
[90], and the most common way to control the FWE rate is with Bonferroni’s
correction. The more conservative method is false discovery rate (FDR) correction
[104]. The FWE correction controls the chance of any false positives across the
entire volume, whereas FDR correction controls the expected proportion of false
positives among suprathreshold voxels. A small volume correction is often used
to reduce the number of comparisons to be performed and increase the chance of
identifying significant results in particular regions of interest. This method typically
involves defining regions of interest over particular brain structures and analyzing
only these regions. The placement of these regions should be hypothesis driven and
ideally based on previous work.

3.5.1.2 Deformation-Based and Tensor-Based Morphometry

DBM [13, 17] is one of the methods to detect and analyze brain shape differences
among the brains of different populations. The deformation vector in each voxel is
computed and a deformation vector matrix or field throughout the brain is generated
by nonlinear spatial normalization, in which a brain image is transformed to a
template image, and is used to describe global or local differences in brain shape.
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A deformation field can be considered as a continuous 3D vector field denoted by
three elements (x, y, z) at each voxel. When the same template (reference) image
is used for the transformation of a series of image datasets, we obtain a series of
deformation fields—one for each image—by which we can compare the differences
between the images. For example, let us assume that there are two groups of
subjects, A and B, with different characteristics (i.e., male and female, young/old,
healthy/ill). Using the same template (reference) image, we can compute a series
of deformation vectors for the two groups. To test the significance level in different
deformations, the p value for the significance test is calculated using multivariate
analysis of covariance (ManCova) and canonical variate analysis (CVA). DBM is
fully automated (operator independent) and reproducible.

To localize structure differences between subject groups, tensor-based morphom-
etry (TBM) is used to produce a statistical parametric map of regional shape
differences. A deformation field that maps one image to another can be considered
as a discrete vector field. The Jacobian matrix of the deformation field is generated,
in which each element is a tensor describing the relative positions of the neighboring
elements. Morphometric measurements derived from this tensor field can be used
to localize regions with different brain structure. This is most often used to measure
regional volume increase/reduction [83, 103]. Statistical parametric maps of these
determinant fields can be used to compare the anatomy of subjects’ groups. Other
measurements are derived from the tensor fields.

3.5.1.3 Brain Image Database

To assess normal variations of the human brain across populations of different ages
and genders or to detect pathological differences between normal and diseased
brains, large amounts of imaging data are necessary. Recently, projects to construct
a large-scale database for human brain images have been vigorously pursued by
major neuroscience centers in Europe and the USA.

There are many groups involved in neuroimaging database development. Among
them, the International Consortium for Brain Mapping (ICBM) [127] is well known
and is one of several powerful, multicenter groups. This consortium is governed
by Professor John Mazziotta (UCLA) and is composed of four core research sites:
UCLA, MNI, the University of Texas at San Antonio, and the Institute of Medicine,
Juelich/Heinrich Heine University in Germany. In addition, data acquisition sites in
Asia (Sendai, Japan, this author’s group) [128] and Europe (France, Finland, and
the Netherlands) contribute to this international consortium.

We founded the Aoba Brain Imaging Center (ABIC) (with this author as the
project leader) in1998. At the end of this project, ABIC had collected brain MRIs of
1600 healthy Japanese. We registered the brain images together with information on
the subjects’ age, sex, height, weight, blood pressure, medical history, social history,
and other factors to construct a database [244]. The number of cases at the time of
writing is 2743 (Table 3.3).
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Table 3.3 Number of
subjects in healthy Japanese
brain MRI database

Number of subjects
Sub-database Male Female Total

Aoba-1 805 786 1591

Aoba-2 184 258 442

Tsurugaya-1 92 104 196

Tsurugaya-2 118 105 223

Children 145 146 291

Total 1344 1399 2743

All subjects were living in or around
Sendai City, Japan. Age of the subjects
ranged from 18 to 80 in Aoba-1 and -2, 70
or older in Tsrugaya-1 and -2, and from 6
to 18 in the Children sub-database

Application of VBM toMedical Imaging: GrayMatter Volume Loss in Patients
with Sub-threshold Depression VBM has been used in studies on normal brain
aging and the characterization of brain pathology. Good [108] first reported age-
related volume changes in the human brain using VBM. Taki also analyzed
age-related brain volume changes in a large number of healthy Japanese subjects
in both cross-sectional [280, 282] and longitudinal [283] designs. Baron et al.
[28], using VBM, demonstrated that patients with Alzheimer disease showed gray
matter loss in medial temporal structures, the posterior cingulate gyrus, and the
temporoparietal association cortex. Whitwell reported gray matter loss in patients
with frontotemporal lobar dementia [311] and Parkinson’s disease [310]. In the
following section, some results from our own studies will be introduced.

Depression is one of the most common psychiatric disorders in the elderly.
There are subjects who have significant depressive symptoms, but who do not
meet the criteria for major depression. However, the symptoms in these patients are
associated with deterioration of physical function, worsening of physical diseases, a
higher risk of mortality, and a higher risk of suicide, and thus, this state is considered
to be depression syndrome and is clinically important in the elderly. It is termed
“sub-threshold depression” (sD).

We assessed for differences in regional gray matter volume between community-
dwelling elderly subjects with sD and age-matched nondepressed normal subject
using VBM. We defined subjects with sD as those who scored� 15 on the Geriatric
Depression Scale and� 22 on the Mini-Mental State Examination and did not fulfill
the criteria for major depressive disorder (MDD) in the Diagnostic and Statistical
Manual of Mental Disorders IV (DSM-IV). We collected brain MRI data of 34
subjects with sD and 109 age-matched normal subjects and assessed differences in
regional gray matter volume between these two groups by applying VBM.

Only male subjects with sD had significantly smaller volumes of the medial parts
of both frontal lobes and the right precentral gyrus when compared with normal
male subjects (Fig. 3.19) [281]. There were no significant structural differences
between female subjects with sD and normal female subjects. Our study revealed
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Fig. 3.19 The areas in which gray matter volume decreases in sub-threshold depression Medial
frontal lobe and right prefrontal gyrus (Taki Y et al., J Affective Disorders 88:313–320, 2005.
Courtesy of Elsevier. Figure 1 of Ref. [281])

that community-dwelling elderly male subjects with sD showed bilateral prefrontal
gray matter volume reduction, which has been reported in elderly patients with
MDD. Unlike findings in MDD, there was no significant volume reduction in the
hippocampus. Our study implies the mechanism underlying the pathogenesis of
brain volume loss and its relationship with sD in males.

Application of DBM in Computation of Standard Brain Models for Each Age
and Sex Group DBM has been applied to assess brain shape changes in alcoholism
[53], brain atrophy [102], and Alzheimer disease [88]. We sought to generate a
Japanese standard brain model for each gender and age group (20–70 years old)
using DBM in a large number of brain MRIs of healthy Japanese [244]. Subjects
were obtained from the Aoba-1 database (Table 3.3) and were divided into age–
sex groups for each decade (1920s, 1930s, 1940s, 1950s, 1960s, and 1970s). All
were healthy, nondemented, and had no history of brain diseases. Abnormal brain
MRIs, such as those showing cerebrovascular diseases, brain tumors, or massive
white matter ischemic changes, were excluded.

Based on our previous study [244], we selected a brain MRI scan that showed
the least sum energy in the process of linear transformation into other brains in
each age–sex group. The brains in each age–sex group were used as reference brain
(R) in this study. Each brain image T in each age–sex group was coregistered with
image R of its group by a six-parameter affine transformation, and a coregistered
image T0 was generated. T0 had the same shape and size as T. The deformation
field, which transformed image R into image T0, was calculated as follows: (1)
imageR was roughly deformed to imageT0 by a 12-parameter affine transformation,
and transformed image R0 was generated. This affine transformation was converted
to a deformation field A. (2) Image R0 was deformed to image T0 by an elastic
transformation algorithm [250], and deformation field B was generated. (3) The
composition of deformation fields A and B was calculated (C D BA) [245].
C contained both the 12-parameter affine transformation and a nonlinear elastic
transformation. C was obtained for each brain image dataset of the age–sex group.
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All the deformation field Cs in the age–sex group were averaged by calculating the
mean deformation vector in each voxel and generated mean deformation field M. By
applying M to the reference image R, a brain image representing the mean shape of
the age–sex group was generated.

Deformation fields that transformed a reference brain from the 40s age group
into the brains of other age groups were calculated. In this study, a brain of a 41-
year-old male was used as R for aging simulation in male brains. The steps used
in obtaining the transformation fields were the same as those used to calculate an
averaged brain for each age group. All deformation fields were averaged; this was
termed a “deformation field of aging.” Then, we computed a different age group
brain by applying the deformation field of aging to a young reference brain (“age-
simulated brain”).

Figure 3.20 shows computed averaged brains for each age group (left) and an
age-simulated female brain (right) [94]. By visual inspection, ventricle and sulcus
enlargement, specifically of the Sylvian fissure, were observed with increasing age.
Male results were similar to those for females. Figure 3.21 (upper row) shows
deformation fields that transformed a reference brain into other age group brains.
Although the deformation field has three components for x, y, and z, only the

Fig. 3.20 Averaged brains for each age group and age-simulated brains for each age group for
males Left: averaged brains for each age. Right: age-simulated brains for each age. The images
were shown on the plane parallel to that including the AC-PC line (Fukuda H et al., In Yamaguchi
T ed.: Nano-biomedical Engineering 2012:170–190, Imperial College Press) (Figure 3 of Ref. [94])
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Fig. 3.21 Deformation matrices for aging simulation. Deformation fields for aging simulation
“40s!20s” indicate a transformation of a brain of a 41-year-old into a 20s averaged brain. Brain
images at the level of C10 mm parallel to the AC-PC line are shown (Fukuda H et al., In Yamaguchi
T ed.: Nano-biomedical Engineering 2012: 179–190, Imperial College Press) (Figure 4 of Ref.
[94])

horizontal plane values are shown by arrows. Figure 3.21 (middle row) demonstrates
age-simulated brains at theC 10 mm intercommissural (AC-PC) line level for each
age in males. A deformation field of aging transformed a young brain into an older
brain with large ventricles and sulci. However, simulated aged brains were similar
to averaged brains, although the transformation did not fully match the averaged
brains (lower row).
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3.5.2 White Matter

3.5.2.1 Brain and White Matter Anatomy

As the center of the nervous system, the brain plays an important role in human
activities of both a physical and mental nature. The brain consists of two major
components: gray matter and white matter. Gray matter is composed of neuronal
cell bodies, neuropil, glial cells, and capillaries and is located mainly on the brain’s
surface with a few millimeters of thickness as the cerebral cortex. White matter is
composed of mainly glial cells and myelinated axons, which serve as pathways for
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transmitting electrical signals within local regions of the cerebrum and from the
brain to the spinal cord to exert control over the whole body.

The connective structure of the axon fiber tracts in white matter is thought to
provide insight on complex brain function. However, noninvasive observation of
white matter fiber structures was impossible until the end of the twentieth century
using conventional imaging techniques. The advent of dMRI, which quantifies the
diffusion of water molecules in biological structures, allows for noninvasive visual-
ization of fiber tract structures in live subjects. In addition to the characterization of
normal structures of white matter, dMRI can also be used to quantify pathological
structures, such as tumors and infarctions via measurement of diffusion properties.
Thus, the use of dMRI revolutionized techniques for brain anatomy and pathology
analysis.

3.5.2.2 Diffusion MRI: A Tool for White Matter Anatomy Inference

The general term “diffusion MRI” is used for various sets of MR imaging techniques
based on the diffusion-weighted imaging (DWI). DWI is the most fundamental
technique of dMRI and has been used clinically since the mid-1980s [170]. A pair of
DWI with identical direction of motion probing gradients (MPG), often called also
as diffusion-sensitizing gradients, enables acquisition of map of diffusion coefficient
in the direction. In the late 1990s, faster imaging techniques such as echo planar
imaging (EPI) enabled multidirectional acquisition of DWI [49], which revealed the
anisotropic characteristics of water diffusion around the fiber tracts. Such diffusion
anisotropy is caused by restriction of water diffusion by the fiber structures [31]. To
determine the fiber orientation, the diffusion tensor imaging (DTI) technique was
developed, which is a simple approximation of the anisotropic diffusion coefficient
by a second-order tensor. The eigenvector corresponding to the maximal eigenvalue
of the diffusion tensor is a good estimate of fiber orientation. DTI combined with
streamline visualization techniques [68] including fiber tracking is called diffusion
tensor tractography (DTT) and provides a three-dimensional display of fiber tract
structures [32, 59, 196].

DTT is a powerful tool for navigation during minimally invasive brain neuro-
surgery as it provides information for localizing fiber tracts that must be avoided,
such as the corticospinal tract. For diagnostic purposes, tract-specific analysis (TSA)
is used to differentiate between various diseases by comparing diffusion tensor
parameters within the tract volume. One critical drawback of DTT is the well-known
problem of fiber crossing [312]. The single tensor model of the anisotropic diffusion
coefficient is not applicable to regions of fiber crossing where complex diffusion
profiles are observed.
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The most straightforward solution to overcome the fiber crossing problem
involves DWI acquisition from many MPG directions to increase angular resolution
of diffusion measurement. Following acquisition, non-tensor-based analysis of the
orientation profile of the diffusion coefficient is conducted. Alternatively, diffusion
spectrum imaging (DSI) [303] and q-ball imaging (QBI) [293] can estimate the
orientation distribution function (ODF) of fibers at each location, which represents
the likelihoods of fiber existence in each orientation. The DSI technique obtains the
probability density function (PDF) of diffused water molecules before estimating
ODF. The QBI directly estimates ODF from the profile of diffusion coefficient based
on a simple approximation using the Funk-Radon transform [293]. In ODF-based
tractography, fiber tracking is performed by following the local maxima of the ODF
profile instead of using the orientation of the maximum eigenvalue in DTT.

Furthermore, the non-Gaussianity of diffusion prompts the characterization of
tissues including pathological structures [136]. Basically, such non-Gaussianity is
available by PDF analysis and can be described simply by a parameter kurtosis,
which is obtained by diffusion kurtosis imaging (DKI). The dMRI techniques
can be regarded as imaging techniques and models for understanding the signal
values for the multiple directions and magnitudes of the MPG field. These signal
models provide useful information for various purposes, which makes dMRI
an indispensable tool for visualization and analysis of brain white matter fiber
structures.

3.5.2.3 Tractography Techniques

Similar to “angiography,” which involves images featuring blood vessels, the term
“tractography” refers to images in which the fiber tracts such as white matter fiber
bundles and muscular fibers are the focus of observation. Unlike angiography,
which is simply obtained using a contrast agent, tractography is conducted using
3D visualization techniques. The techniques of tractography can be classified into
several types, and the major categories are defined as local and global approaches.
Local approaches define the structure of fiber tracts through fiber tracking based
on local information at each voxel in diffusion tensor or ODF. Global approaches,
however, globally optimize the fiber tract shape to guarantee smoothness and/or
match it with prior information from the tract atlas. Tractography technique
development was initiated by DTT [32, 59, 196], which is classified as a local
approach. In DTT techniques, fiber tracking is performed iteratively in the diffusion
tensor field, similar to the manner of streamline visualization [268]. An example of
DTT algorithm is shown below in Fig. 3.22 and detailed as follows:

(1). Seed point configuration

Seed points, i.e., starting points for fiber tracking, are defined manually or based
on an atlas. In the manual configuration of seed points, ROI is first specified, and
then seed points are automatically placed with in the ROI.
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Fig. 3.22 Basic scheme for DTT

(2). Diffusion tensor calculation

For each seed point, a diffusion tensor is calculated with DWI signal values
including diagonalization for obtaining eigenvalues and eigenvectors. The DTT
approaches assume that fiber orientation corresponds to the orientation of maximum
diffusion coefficient obtained by the eigenvector of the maximum eigenvalues.

(3). Short step movement

Move in a short step distance along the direction of the maximum eigenvalue
of the diffusion tensor. Note that there are two directions for initial movement at
the seed point, that is, two trajectories per seed point are yielded. After the initial
movement in two ways, only one direction is selected so that the trajectory is
smoother.

(4). Iteration of tracking

Procedures (2) and (3) are repeated iteratively until tracking termination condi-
tions are satisfied. These conditions are low diffusion tensor anisotropy, large angle
of direction change, etc.

As described earlier in this chapter, the DTT based on the single tensor model
is inadequate in situations involving fiber crossing. Therefore, the ODF-based
tractography for DSI or QBI data is approaches are preferable as they have more
options to determine tracking directions based on the local maxima of ODF. This is
a natural extension of the DTT in the local approach. The local approaches of DTT
and ODF-based tractography are subcategorized as “deterministic approaches,” to
distinguish them from another branch of local approaches known as “probabilistic
approaches” [35]. In deterministic approaches, tracking is performed only once per
seed point because the trajectory is identical if the tracking scheme and termination
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Fig. 3.23 Probabilistic
tractography example

conditions are identical. In contrast, probabilistic approaches perform tracking
several times from a seed point. This is because the tracking direction changes
slightly each time a random sampling in the diffusion tensor or ODF is used as
the probability function. Consequently, higher sensitivity for minor fiber structures
occurs, resulting in false-positive structures. An example is shown in Fig. 3.23 and
is based on the notion of uncertainty of fiber direction determination [71].

The global approaches, including model-based approaches using a fiber tract
atlas, are quite different from local approaches. That is, in those approaches,
smoothness of trajectory or similarity to the prior trajectory is considered. Figure
3.24 shows an example of global approach proposed by Reisert [237].

3.5.2.4 Clinical Applications

Clinically, DTT is used for a wide range of applications for diagnostic and
therapeutic purposes. DTI remains the main dMRI technique for clinical practice
to circumvent the issue of long imaging times associated with DTT. Many clinical
applications were broadly performed for the analysis of brain development [125,
215] or change due to aging [1] and for diagnosing various types of brain disorders
[192, 202]. Examples of three applications are shown with images [188].

Neurosurgical Planning and Intraoperative Navigation

A case involving a well-demarcated tumor without perifocal edema in the left
medial temporal area is displayed in Fig. 3.25. In addition to the tumor volume,
the corticospinal tract was visualized. The posterior limb of the internal capsule was
used for tracking seed areas at the high-intensity area on the T2-weighted (b D 0)
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Fig. 3.24 Global
tractography examples [237]
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Fig. 3.25 Brain tumor. Left: 3D rendering of the pyramidal tracts, well-demarcated tumor, and
brain surface extracted from T2-weighted image data. Right: Coronal section of T2-weighted
image with tractography [188]

Fig. 3.26 Brain tumor of mild invasion: Tractography stereo pair [188]

image. The precentral sulcus can be recognized by the precentral knob sign, and
other signs are employed as the tracking target area. Significant deformation with
slight change of diffusion anisotropy in the color-encoding scheme was observed
at the tract while the patient shows only mild weakness of the arm. Figure 3.26
shows a case of left superior frontal tumor without significant perifocal edema.
The visualized pyramidal tract displays rounded deviation and minimal change of
anisotropy.

Acute Infarction

A 15-h acute infarction in the deep white matter very close to the pyramidal tract
is shown in Fig. 3.27. No significant difference in diffusion anisotropy is observed
between the sides, and the patient recovered completely.
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Fig. 3.27 Acute infarction: Stereo pair of tractography by 3D rendering including infarction
volume [188]

Abnormality of White Matter Anatomy (Agenesis of Corpus Callosum)

A case of complete agenesis of the corpus callosum without commissure fibers is
visualized via tractography in Fig. 3.28. When fiber tracking is started from the
portion where the commissure fibers are located in normal subjects, thick fibers in
the anteroposterior direction can be tracked while the Probst bundle running along
the anteroposterior axis was visualized in this case.

3.5.2.5 Perspectives

During the past decade, dMRI has drastically changed clinical procedures, primarily
neurosurgical procedures. In addition to clinical applications, the field of neuro-
science strongly benefits from dMRI. Recent research involving the “connectome”
[266] has relied heavily on dMRI as the source data in addition to functional MRI.
The increased temporal and spatial resolution provided by dMRI has the potential
to reveal more details of brain anatomy and function.

Future directions in this field involve exploring the inference of microstructures
in dMRI signals. One example is the CHARMED approach to modeling (Fig.
3.29) by Assaf et al. [19], which enables us to distinguish several components
of fiber structures and is extendable to inference of fiber dimensions [20]. Thus,
dMRI, which originally served to capture functional information pertaining to water
diffusion, is currently involved in developments which may serve to further reveal
the morphology and fine structures of the brain.
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Fig. 3.28 Complete agenesis of the corpus callosum. Top: Posterior view of 3D tract visualization.
Bottom: Stereo pair with an axial section of T2-weighted image in top view [188]

Fig. 3.29 Modeling fiber structures by CHARMED
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3.5.3 Brain CT

Background Cerebrovascular accidents (CVAs) or strokes are the main cause
of sudden death in emergency medicine [298]. MR images are often used for
the diagnosis of nonacute brain disorders, but MR scanners are used less often
in emergency situations, both because of the need to assess a patient quickly
and because of the necessity of excluding all internal and external metal before
allowing the patient into the scanner. CT is also quite effective in revealing acute
intracranial/extraaxial bleeding and fractures promptly, and so is the modality used
first in these emergency scenarios [207, 326]. Traumatic brain injury and related
strokes are caused by either ischemia or intraaxial hemorrhage. Typical extraaxial
bleeds are subarachnoid hemorrhage (SAH), epidural hematoma (EH), and acute
subdual hematoma (SDH).

Emergency medicine staff must recognize the image changes caused by these
entities on CT images and determine the treatment plans. The recognition of typical
findings of early CT sign and to exclude cerebral hemorrhage are very important for
prompt institution of therapy.

The analysis of brain image and function is widely recognized in the fields of
brain science. The technique of SPM is a sophisticated method to compare the given
brain image with a normal database voxel by voxel. Functional images using MR
and PET are analyzed by the SPM method to determine the activated area in brain
from visual or molecular stimuli [12, 16, 92, 191]. The regions are determined by
statistical comparison with the normal database.

CAD algorithms for stroke are under development. Takahashi et al. have used a
modified SPM method to obtain Z-scores, which show deviation values indicating
pixel’s abnormality, of brain CT values from patients’ scans and developed an
extraction filter to enhance cerebral infarction regions [114, 276, 277]. Nagashima
et al. developed an approach to enhance bilateral changes by comparing left and
right brain regions [209]. Novinski et al. reported a brain MR atlas that can be
applied to brain stroke diagnosis [219].

We have constructed a standardized brain CT model using normal cases collected
at an emergency hospital and developed an automated comparison technique of
patients’ CT scan images with the model. The comparison technique includes an
automated detection method for hematoma and infarcts based on the statistical value
obtained by the automated comparison method.

Normal Brain CT Model Assembling a normal brain CT model requires a voxel-
by-voxel volume deformation technique to fit all normal scans to one typical brain
shape after the regions are determined on each section. The deformation technique
with image segmentation and characterization before assembling the normal model
of brain CT is illustrated in Fig. 3.30.
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Fig. 3.30 Overview of constructing normal model of cerebral CT numbers [114]

Fig. 3.31 Correction of image inclination before standardization of cerebral region. (a) Original
brain CT image, (b) skull region extraction by using image thresholding, (c) detection of two
landmarks, (d) midline determination based on the apices, (e) tilt correction [114]

The parenchymal regions in the CT images have to be segmented before the
standardization of brain shape. Figure 3.31a shows the original brain CT image.
The skull has a clear shape and bone density. A thresholding technique is applied
to extract the skull regions. Figure 3.31b shows an example of the extracted skull
at the threshold of 84 HU. The technique is applied to every section to extract the
whole skull. Contours of the skull as shown in Fig. 3.31c are used to determine the
midline. The landmarks of frontal crest and internal occipital protuberance are used
to determine the midline. Figure 3.31d shows the midline that is estimated from
the two projections. The inclination of the midline is used to align the parenchyma
to upright direction section by section. The parenchymal regions are determined
as intracranial regions defined within skull region after the image inclinations are
aligned. A rectangular region including the cerebral parenchyma is standardized at
the same size of 350� 400 pixels section by section using a rigid image deformation
method of affine transformation. Figure 3.31e shows an example of the section after
the standardization.

The normal brain CT model is assembled as volume data to indicate the indices
of mean (M) and standard deviation (SD) to show the confidence interval of CT
values by voxel by voxel. The normal model includes two parameters of M and SD
of CT values at every location (x, y, z). The M and the SD in each voxel are obtained
by summing the normal cases voxel by voxel.
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Fig. 3.32 Normal model of CT values from 50 normal brain CT cases. (a) Mean model, (b) SD
model [114]

Figure 3.32 shows the example of M (x, y, z) and SD (x, y, z) images. The normal
model was assembled using 50 normal cases, all acquired with the same equipment
at the same emergency facility. Figure 3.32a shows a single scan of the M (x, y, z).
The corpus callosum and lateral ventricles are illustrated in this scan. The white area
in Fig. 3.32b indicates a misregistration region because of the boundary changes of
each brain surface.

Scoring Patients’ Scans Using the Brain Model The normal model expressed by
M and SD can estimate a confidence interval for the brain CT value in each voxel.
This means brain CT images of patients can be converted to Z-score maps after
the same volume deformation procedure is applied. The Z-score of a CT value of
patients at a location P(x, y, z) in the deformed images in 3D space are obtained by
using Eq. (3.7), below, with M(x, y, z) and SD(x, y, z) in the corresponding location
(x, y, z):

Z-score .x; y; z/ D fP .x; y; z/ �M .x; y; z/g =SD .x; y; z/ (3.7)

The Z-score map can depict the deviation from normal voxel by voxel. The
deviation from the normal cases can be a statistical index to show the range of the
abnormalities of the voxel.

Z-score Maps of Intracranial Hemorrhage Intracranial hemorrhage is an impor-
tant cause of impaired consciousness. Surgery is often required to evacuate the
hematoma and reduce the intracranial pressure. Fifteen abnormal CT cases were
collected from a critical care medical center. Abnormal cases included SAH, EH,
SDH, and cerebral contusion. Fourteen out of 15 abnormal cases had some irregular
regions with a high Z-score (x, y, z). One out of 15 abnormal cases did not contain
high Z-score areas.
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Fig. 3.33 Examples of original CT and Z-score images for brain hemorrhage and injury. (a)
Subarachnoid hemorrhage (SAH), (b) traumatic acute subrural hematoma (SDH), (c) acute
epidural hematoma (EH), (d) cerebral contusion, (e) normal case with absolute Z-score

Figure 3.33 shows the examples of Z-score (x, y, z) images in a scan from a
3D volume. Hematoma regions corresponding to each entity (Fig. 3.33a–d) were
highlighted according to the Z-scores (x, y, z). The Z-scores of extraaxial region in
Fig. 3.33b were not obtained because the analysis was only performed within the
intraaxial region with the image normalization. In contrast, the normal case in Fig.
3.33e shows almost no signals in the Z-score (x, y, z) image in black and white
image to indicate the absolute value of the Z-score. The boundary has high scores
because of the misregistration in the brain CT model.

Z-score Images of Cerebral Infarction Cerebral infarction is caused by pro-
longed ischemia. Currently, the only effective treatment is administration of tissue
plasminogen activator (tPA) to dissolve the thrombus, but if administered more than
3–4.5 h after onset, it may cause hemorrhage from the damaged parenchyma. If CT
screening shows hemorrhage, non-stroke pathology, or a well-demarcated CVA in
the area of interest, tPA is not administered [65, 285].

We collected 25 cases with findings verified with consensus by a group of
physician with board-certified in emergency medicine, an emergency radiology
technologist with board-certified in radiological technology, and a neuroradiologist.

Figure 3.34 shows the example of an ECS and the Z-score (x, y, z) images.
Very faint edema is observed in original CT image on Fig. 3.34 within the circle.
The Z-score map correctly indicates the region. The detection performance for
abnormalities was 90.4% true positive, with 6.4 false-positive marks per case.

Observer performance studies based on receiver operating characteristics (ROC)
curves were conducted to measure the effectiveness of our automated detection
method for abnormalities. Twenty-five abnormal cases and 23 normal cases were
used in the observer performance study. Six general physicians at an emergency
medical care center took part in the study. All of the physicians were asked to
register their certainty as to whether abnormalities existed on every case with and
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Fig. 3.34 Two examples of original CT and Z-score images for brain infarction

Fig. 3.35 Results of ROC analysis of six physicians without/with computer outputs

without the aid of the Z-score map. The average area under the ROC curves (AUCs)
was 0.891 when the Z-score maps were not shown, but improved to 0.968 when the
readers interpreted the CT images with the Z-score maps.

Figure 3.35 shows the averaged ROC curves of the six readers. We confirmed
statistical significance (p D 0.0189) between the two results based on the multi-
reader multi-case analysis method (DMB-MRMC).
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Conclusions
Z-score maps of brain CT images obtained by statistical comparison with normal
cases may help physicians in emergency medical situations to interpret important
findings caused by stroke, such as intracranial hemorrhage and cerebral infarction.
Gallagher et al. showed the statistical difference between specialists and general
readers in ER [96], but the use of the automated method may improve interpretation
performances not only of physicians but also of radiological technologists who
will be the first medical practitioners to read the patients’ images, because the
AUC was significantly improved with very high discrimination performance such
as 0.968 when the physicians referred the computer results during the interpretation.
We believe that this will improve the chances of survival for patients with life-
threatening CVAs and hemorrhage.

3.5.4 Oral/Maxillofacial Anatomy

Knowledge of oral anatomy is very important in oral and maxillofacial diagnosis
and treatment as well as in orthodontic care. In addition, dental images can be used
for diagnosis of systemic diseases. It has been suggested that mandibular cortical
width (MCW) measured on dental panoramic radiographs (DPRs) is significantly
associated with bone mineral density [69, 159], which, when significantly reduced,
may indicate osteoporosis. Measurement of MCWs on images obtained for dental
examination purposes may provide the beneficial information of disease risk with
no additional cost. In this section, a few oral segmentation methods using CA and
statistical models are briefly introduced.

Model-based segmentation of the mandible using cone beam computed tomog-
raphy (CBCT) was proposed by Antila et al. [9] for the purposes of aiding dental
and maxillofacial surgery planning and reconstructing panoramic radiographs from
CBCT images. First they created a mean statistical mandibular model surface
S using manual mandible outlines from nine dental CT reconstructions of the
mandible and 31 MR scans of the head (Fig. 3.36). A parabolic approximation for
the 3D centerline C of the mandibular arch surface was used to fix the coordinate
system, x1, x2, x3, and o, corresponding to the orthonormal basis and the origin,
respectively, of the model (Fig. 3.36). This coordinate system was used for the affine
transformation when applying the model. In the segmentation stage, global and local
affine transformations were applied to the model to capture the rough appearance
of the mandible, followed by an elastic deformation to refine the segmentation
result. The global transformation of C consisted of 3D rotation and translation
and x1–x2 scaling, which adjusted the size and shape of the mandibular arch. The
local transformation of S consisted of rotation about the tangential vectors of C
and 2D scaling in the normal planes spanned by x3 and bj, which adjusted the
orientation and shape of the surface cross section. For the elastic deformation,
control points were placed on the surface S and were iteratively adjusted by energy
minimization controlled by the surface outward normal gradient v•rI and value
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Fig. 3.36 A mean statistical mandible model surface S computed from manually delineated
mandible outlines of nine dental CTs and 31 magnetic resonance (MR) scans of the head [9]

I of the grayscale intensity. With a small number of test cases, segmentation was
successful in comparison with the manual references.

Other methods introduced here are based on or are modifications of the active
shape model (ASM) [60]. The model can be built using feature (landmark) points
of the training cases and is represented by

x D xC Pb (3.8)

where x is the mean shape, P is a set of orthogonal modes of variation, and b is a
set of shape parameters. The mean shape can be computed by n landmark points
concatenated into a 2n vector x D (x1, x2, : : : , xn, y1, y2, : : : , yn) of each training
case. P is the matrix of t most significant eigenvectors computed using principal
component analysis (PCA), whereas b is the corresponding weight vector.

Allen et al. [3] applied the ASM in determining the inferior and superior borders
of mandibular cortical bone for the purpose of MCW measurement on DPRs. The
model was built using 200 manually marked points with 50 equally spaced points
on each of the upper and lower margins of cortical bone on the right and left sides of
mandibles. Figure 3.37 illustrates the mean model and the shape variation realized
by varying the weight b1 by ˙ 3¢ . During the application of the model to a test
case, an iterative search was conducted by updating the landmarks on the basis
of the gradient along the normal to the boundary at each point. Detection of the
mandibular borders was relatively successful using ASM; however, the method had
some limitations in having lateral shifts along the borders.

Motivated by creating a model not only describing the shape but also the
texture, an active appearance model (AAM) was introduced by Cootes et al. [61].
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Fig. 3.37 A mean model of inferior and superior borders of mandibular cortical bone with its
shape variation realized by varying the weight b1 by ˙ 3¢ [3]

Fig. 3.38 Semiautomatic landmarking steps to extract jaw tissues based on the AAM [240]

The appearance model is represented by

x D xC Psc (3.9)

g D gC Pgc (3.10)

where the upper equation describes the shape as in ASM and the lower one describes
the texture. c is the set of parameters controlling the shape and texture, and g and
Pg are the mean texture vector and the matrix describing the mode of variation in
texture, respectively.

The AAM was used for automatic segmentation of jaw tissues in CT by Rueda,
et al. [240] for possible utility in oral implant surgery planning. Their aim was
to automatically segment cortical bone, trabecular bone, and the mandibular canal
on a cross-sectional view (Fig.3.38). The model was constructed using a training
set with 87 landmarks. A semiautomatic annotation is processed in five steps:
(1) thresholding to find the external contour of the cortical bone (Fig. 3.38a), (2)
defining five points of high curvature on the contour (Fig. 3.38b), (3) finding the
contour of the trabecular core (Fig. 3.38c), (4) locating the dental nerve in the
center of the mandibular canal (Fig. 3.38d), and (5) selecting the radius of the
canal (Fig. 3.38e). Using these results, landmarks are placed equally, including
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Fig. 3.39 Model landmarking for cortical bone, trabecular bone, mandibular canal, and mandibu-
lar nerve [240]

30 and 28 landmarks for the double contour of the cortical bone, 10 and 10 for
the double contour of trabecular core, 8 on the mandibular canal, and 1 on the
mandibular nerve inside the canal (Fig. 3.39). After the mean shape is extracted,
a piecewise affine warp is applied, and the intensity is sampled from the shape-
normalized images. These samples are normalized so that the effect of global
intensity variation is reduced, and the texture (gray-level) vector is obtained. In
the segmentation process, the model is used as an initial template, and a principal
component multivariate linear regression model is used to generate new images to
fit the test image. With AAM, segmentation of the cortical bones was generally
successful, while segmentation of the trabecular bone was more difficult.

To improve on the AAM, Cristinacce and Cootes [63] proposed a constrained
local model (CLM). The joint shape and texture model has the same form as the
AAM (Eqs. 3.9 and 3.10). During the iterative search, a set of templates (patches)
is generated from the model at the feature points. Based on the correlation between
the current templates and a test image, a new set of feature points is predicted where
a new set of templates will be generated. The CLM method was tested on different
types of image datasets, including MR slices of brain, photographs of human faces,
and DPRs [63]. For detecting mandibular contour on DPRs, while 78 manual points
along the mandible were used for the AAM, only 22 points were used for the CLM,
and it resulted in more stable performance.

Muramatsu et al. [206] have also proposed a model-based method in delineation
of mandibular contour on DPRs for the purpose of automatic MCW measurement.
In this method, manual contour points from the training cases (Fig. 3.40a) are
used to create a mask for the lower mandibular border (Fig. 3.40b). This mask
is used for detecting candidate edges with specific directions anticipated for the
mandible. The individual manual contours of the training cases also serve as models
from which the most similar model for a test case is selected on the basis of the
similarity score with the detected edges. Using the selected model as an initial
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Fig. 3.40 A model-based method in delineation of mandibular contour on DPRs for the purpose
of automatic MCW measurement [206]. (a) Manual contour points from the training cases, (b) a
probabilistic template for the lower mandibular border

control point, the final contour is determined by fitting the points with the active
contour models [151]. Using the proposed method, the mandibular contours of
the test cases were successfully determined with a small number of minor partial
failures in the mandibular angle.

3.5.5 Fundus Oculi

3.5.5.1 Introduction

The retinal fundus is the only part of the body where blood vessels can be observed
directly and noninvasively, allowing assessment of the effects on the vasculature
of both ophthalmic and systemic diseases, such as hypertension and diabetes.
Ophthalmologists generally examine patients’ eyes using an ophthalmoscope. It is
flexible and the examination can be done in real time; however, the findings can only
be stored in the form of drawing. Fundus photographs are widely and frequently
obtained for diagnostic records and longitudinal comparisons. Fundal photography
is well suited for mass screening of eye diseases, such as glaucoma [271], because
of its simplicity and low cost.

Because the number of qualified professionals and their time are limited, com-
puterized analysis and quantitative assessment of fundus images can be valuable.
There have been numerous studies regarding computerized image analysis of these
images. In this section, some of the methods for segmentation of retinal structures
using CA with statistical or mathematical models are briefly introduced.

Models for Segmentation of Optic Disc and Vessels on Fundus Images The
optic nerve head, also called the optic disc, is one of the main structures in the retina.
It is the site where retinal ganglion cell axons converge to form the optic nerve. It
is also the entry site for vessels supplying the retina. It is generally the brightest
region in a fundus photograph, as shown in Fig. 3.41, and serves as a landmark.
Localization and segmentation of the optic disc is essential in computerized
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Fig. 3.41 Major anatomical structures observed in a fundus photograph

analysis for the diagnosis of glaucoma, vessel tracking, and other purposes. A
number of research groups have proposed computerized methods for localization
and segmentation, including those using simple thresholding, deformable models
based on brightness and edge information, and pixel classification based on image
features, such as gray level, edge characteristics, and texture.

One method that uses an SSM for segmentation of the optic disc was proposed
by Li et al. [174]. It consists of building a point distribution model based on the
idea of an ASM [60]. For disc boundary detection, 48 landmark points, 34 of which
are evenly spread around the optic disc boundary, and the rest of which are on the
main blood vessels inside the disc, are selected. Figure 3.42 illustrates the landmark
points. The shape model was constructed by using the landmarks of eight training
cases and applying PCA. In their study, only the four largest eigenvectors were
used, which represent about 93% of the total variance of the training shapes. In
the application of the model to segmentation, the method consists of initialization,
matching point detection, and shape parameter update. The disc center location,
which is detected on the basis of the similarity to multi-scale eigendiscs, and
the mean shape (of the training cases) are used to initialize the model. For each
landmark, its matching point is searched by the first derivative of the intensity
distribution along the normal profile of the model. At the disc margin, a single pulse
can be observed, while a negative pulse followed by a positive pulse can be found
at blood vessels. In this study, two aspects were proposed for improving the original
ASM: inclusion of self-adjusting weight and exclusion of misplaced landmark
points in the update of shape parameters. Weights were adjusted by whether or not
a matching point was detected and how far it was from the model landmark point. If
it was too far, the point was not included in the parameter update. Landmarks were
iteratively updated until the error was converged.

Li et al. also used ASM for the purpose of detecting the fovea, which is located
near the center of the retina and is responsible for high-resolution central vision. In
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Fig. 3.42 Landmark points in ASM [174]

fundus images, it is observed as a dark brown circular/oval region located about two
disc diameters temporal to the disc (Fig. 3.41). In their method [174], 30 landmarks
are placed on a main vessel arch that traverses the optic disc, which are eventually
fit by a parabola to estimate the location of the fovea. The model construction
and fitting are processed in the same manner as for the disc itself. An example of
the landmarks and the fitted parabola is illustrated in Fig. 3.43. Despite the small
number of training cases, the results of a small dataset were generally satisfactory
using the modified ASM.

Fujita et al. [93] used probabilistic models for localization of the optic disc. The
idea is based on the fact that the disc is visible as a bright oval region, slightly
brighter in the temporal half than in the nasal half (Fig.3.41), and that the central
retinal artery and vein emerge from the disc and branch out to supply and drain the
retina, respectively. Using training cases, an intensity model and a vessel likelihood
model were created by registering disc centers and averaging the intensity images
and vessel detection images, as shown in Fig. 3.44. In the localization step, the
vessel score at each pixel is determined by shifting the vessel likelihood model and
multiplying it with a test image. At the pixel with the highest score, local matching
with the intensity model is performed for refinement. The method, in general, works
well on the test databases that are publicly available; however, it tends to fail on
images in which the optic disc and the major vessels are partially visible and on
images with large abnormalities.

The blood vessels are another important anatomical feature in the retina. Since
the blood vessel network in individuals is highly distinctive, it is used for personal
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Fig. 3.43 Landmark points placed on a main vessel arch and a parabola fitted to the landmark
points [174]

Fig. 3.44 An intensity model (a) and a vessel likelihood model (b) learned from a training dataset
[93]

identification, and sequential examination images are often stored and registered to
look for changes over time. In terms of disease diagnosis, vessel caliber is important
quantitative information because of its association with cardiovascular disease risk.
Therefore, not only is the detection of vessels essential but accurate determination
of vessel diameter is also important. A large number of computerized methods
for retinal vessel segmentation have been proposed. Some of these methods use
mathematical models for vessel segmentation, tracking, and measurement.

In principle, the models are based on a Gaussian function. Chaudhuri et al. [56]
proposed a matched filter that is shaped as a Gaussian curve corresponding to the
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Fig. 3.45 An example of bright lines observed along the central axis of a blood vessel (arrows)
caused by the reflection of a flash of light

cross section of a vessel. The filter is rotated through 12 angles, and the maximum
response is used for segmentation. Similarly, an amplitude-modified second-order
Gaussian filter was proposed by Gang et al. [97] for detection and measurement
of vessels. A dual Gaussian model was used by several groups [82, 99, 175, 183,
214] to take into account the central light reflex, (Fig. 3.45), which appears as
a bright line along the axis of blood vessels caused by the reflection of a flash
from a fundus camera. It is often more apparent in arteries than veins and may
affect vessel segmentation. The model can be constructed by the subtraction of
two Gaussian functions, in which one with a smaller ¢ , proportional to the width
of the central light reflex, is subtracted from one with a larger ¢ , proportional to
the width of a vessel. An example of such a model is shown in Fig. 3.46. These
models are used for segmentation, measurement of vessel width and length, and
classification of arteries and veins. To control the model with a smaller number
of parameters, a multiresolution Hermite polynomial model was proposed [302],
which is represented as

H D 
1C a


x2 � 1��G (3.11)

where G corresponds to the Gaussian function. The shape is quite similar to a dual
Gaussian model. When a D 0, H�G and the two peaks get further apart as a
becomes larger. By using the models that take into account the central light reflex,
segmentation results are generally better than those using a simple Gaussian model.
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Fig. 3.46 Dual Gaussian model constructed by the subtraction of two Gaussian functions [183]

3.5.6 Retinal OCT

Since the invention of optical coherence tomography (OCT), a number of scanning
mechanisms have been proposed to improve the resolution and scan speed [70].
In recent years, OCT has been increasingly used in ophthalmologic examinations
for diagnosis of diseases, including, but not limited to, macular degeneration and
glaucoma. The spectrum of clinical applications of OCT scanning has rapidly
widened. An endoscope, a laparoscope, and a catheter have been combined with an
OCT scanner, and their clinical usefulness was proved not only in ophthalmology
but also in cardiovascular and digestive surgery.

This section focuses on OCT for fundus examination. Quantitative measurement
of intraretinal layers in an OCT volume can be useful in the diagnosis of diseases,
such as age-related macular degeneration (AMD), glaucoma, and symptomatic
exudate-associated derangement (SEAD). Consequently, most of the image pro-
cessing algorithms developed so far for an OCT volume extract intraretinal layers
in their initial process. This section explains anatomy in a retinal OCT image and
image processing algorithms followed by CAD with OCT (see review paper [67]
for other topics).

Retinal Anatomy on OCT Figure 3.47 is a retinal tomography image centered on
the macula, scanned by an OCT scanner during a fundus examination [162]. The
retinal layers include a nerve fiber layer (NFL), ganglion cell layer (GCL), inner
plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer
nuclear layer (ONL), external limiting membrane (ELM), photoreceptor inner and
outer segments (PR IS, PR OS), and retinal pigment epithelium (RPE). The concave
part at the center of the image is the fovea. The OCT image depicts the anatomy of
about ten retinal layers to which the horizontal axis of the image is roughly parallel.
Note that the relationship between a layer in an OCT image and an anatomical
layer might not be one-to-one correspondence because of the imaging limitations of
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Fig. 3.47 (a) Ultrahigh resolution (UHR) OCT, (b, c) macular OCT images (Figure 1 of Ref.
[162])

resolution and signal-to-noise ratio (SNR). The gray values of layers are similar to
each other. In addition, vessels and hard exudates absorb and/or reflect near-infrared
light and decrease the gray values of the regions deep to them, resulting in shadows
and artifacts in the image. Consequently, it is a difficult task to recognize individual
retinal layers on OCT images. Note that Fig. 3.47 is a pseudo-color display of an
OCT image frequently used in clinical situations.

Intraretinal Layer Segmentation in OCT Retinal layer segmentation is the most
popular topic in the field of image analysis of OCT. It is, however, difficult to carry
out retinal layer segmentation owing to the low SNR. To overcome the problems
and recognize thin layers, noise reduction and prior knowledge of CA are essential.

The pioneering study of retinal layer segmentation was done by Hee [117], who
applied a one-dimensional edge detector to the A-scan direction of an OCT image
and proposed an algorithm to measure the thickness of the retinal nerve fiber layer
and the whole retina. This process is sensitive to noise because no anatomical
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features were introduced. Another study [165] presented an algorithm with an
MRF to increase its robustness against noise. Subsequently, multilayer segmentation
algorithms based on an adaptive thresholding technique, an edge detection process,
or a texture analysis have been proposed [25, 50, 74, 109, 133, 319]. To reduce
the noise, denoising algorithms, such as a complex diffusion process [105] or a
coherence-enhancing diffusion filtering [305], have been employed.

In contrast, a spline-based active contour model [204] and a level set-based
segmentation algorithm [322] achieved higher performance in segmentation than
conventional algorithms, where minimization of a shape energy defined by curvature
easily achieved a smooth surface, which is a favorable feature from the point of view
of anatomy. The mean Dice coefficient between a true and an extracted layer was
0.85.

Kajic et al. [142] proposed the use of an AAM for multilayer segmentation of
the eight layers from NFL to RPE. First, layer boundaries with relatively strong
edges, i.e., upper boundaries of NFL and CL and the lower boundary of RBE, were
found using an adaptive thresholding method followed by polynomial fitting. Using
manually segmented training cases, the shape model was constructed by sparsely
sampled distances (26 points) of eight boundaries from the top (NFL) boundary.
The texture model consisted of four features from each of eight layers, including the
mean pixel value in the original image, mean and standard deviation of the median
filtered image, and the mean of multiple scale edges sampled along the boundaries.
Rather than PCA, a neural network was used for dimensionality reduction of the
original shape feature space from 208 to 12 and the texture feature space from 32
to 2. The original AAM would generate a new image with a texture learned from
the texture variation and compute the distance between the synthesized image and
the test image. Their method, instead of a pixel-wise comparison, used the layer
boundaries produced by the model to compute texture features during optimization
and compared it to the expected texture properties of each layer. The objective
function includes a term that penalizes deviations from the boundaries determined
by the adaptive thresholding and a term from the AAM to constrain the optimization
process. In addition, instead of starting from the mean model, the most similar model
was selected based on the distance between the top and bottom boundaries as well
as the ratio of foveal pit distance to the greatest thickness, and it was used as the
initial model.

In their subsequent study, a variant of AAM was applied for segmentation of
the choroidal layer [143]. The model was constructed in a similar way but used
distances from the lower boundary of RPE rather than distances from NFL. In
addition, a blob detector was employed in the objective function. The multiple
thresholding technique was applied to detect blobs that correspond to vessel cross
sections. For optimizing the shape, the algorithm tried to maximize the ratio of
the choroidal area covered by blobs to the total area of the choroid and the
post-choroidal region. The authors concluded the method was successful for this
relatively difficult task.
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Rathke et al. [236] proposed the combination of the local appearance model and
shape model for segmentation of nine boundaries, b1, : : : , b9, or NFL, GCL C
IPL, INL, OPL, outer nuclear layer and inner segment (ONL C IS), connecting
cilia (CL), OS, RPE, and choroid. In constructing the appearance model, sample
patches s(i, j) of 3 � 15 pixels were drawn from labeled images for each of 19
classes corresponding to the ten layers and nine boundaries. Using the training
cases, a class-specific density N(s; �k,‚k

�1) for each k can be estimated with mean
parameter�k and sparse precision matrix‚k by applying a lasso penalty [87]. Given
an image I, class-conditional likelihood of Iij is defined as
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For each pixel, the local class variable mij can then be determined by
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using uniform p(mij). The shape model is constructed by the continuous height
values of all boundaries for all image columns j. When applying the model, initial
estimations of the boundary locations are made by using the appearance model and
the shape prior of column j, i.e., marginalizing out all other columns. However, they
showed that when the conditional probability was iteratively updated by using the
predictions of bj

n for other columns, the result could be improved.
Recent important studies have been based on graph cuts, which can find a

global minimum instead of the local minimum from which the active contour
model and level set models suffer. Garvin et al. [101] constructed a 3D graph in
which the spatial relationship between neighboring layers was embedded. Multiple
layers were segmented simultaneously by minimizing a defined cost function based
on edge/regional image information, a priori surface smoothness, and interaction
constraints. Six layers, or seven boundaries, were extracted from a healthy eye, and
the average surface error between extracted and true boundaries was 5.69 �m. The
same research group presented a multi-scale graph cut approach which extracted ten
layers, or 11 boundaries, with a 5.75 �m surface error (Fig. 3.48) [233].

Computer-Aided Diagnosis of Retinal OCT and Other Topics The aforemen-
tioned multilayer segmentation algorithms are useful for CAD of retinal OCT, for
example, computer-aided staging and evaluation of AMD treatment, and assessment
of SEAD and drusen [74, 75, 233]. Some studies have suggested an association of
layer’s thickness with the diseases. Dufour et al. [72] proposed the use of SSM
for detecting pathology. Drusen found in patients with AMD can be detected as
a displacement of the OS layer. The model was constructed by using a simple grid
around the fovea without requiring anatomical landmarks. The model was deformed
to fit a new segmentation result, allowing 99% of the variation encountered in
the normal training cases. For every landmark, the residual fitting errors between
the deformed model and the segmentation result were calculated, and the map of
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Fig. 3.48 Segmentation
results of 11 retinal surfaces
(ten layers). (a) X–Z image of
the OCT volume. (b)
Segmentation results, nerve
fiber layer (NFL), ganglion
cell layer (GCL), inner
plexiform layer (IPL), inner
nuclear layer (INL), outer
plexiform layer (OPL), outer
nuclear layer (ONL), outer
limiting membrane (OLM),
inner segment layer (ISL),
connecting cilia (CL), outer
segment layer (OSL),
Verhoeff’s membrane (VM),
and retinal pigment
epithelium (RPE). The stated
anatomical labeling is based
on observed relationships
with histology although no
general agreement exists
among experts about precise
correspondence of some
layers, especially the
outermost layers. (c) 3D
rendering of the segmented
surfaces (N, nasal; T,
temporal). (Figure 2 in Ref.
[233])
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abnormality measures was determined by the fitting error normalized by the natural
residual error in the normal samples.

Besides retinal layers, we can find optic nerve head and vessels as important
anatomical structures in a retinal OCT. Herzog et al. [119] proposed an extraction
algorithm for the optic nerve head in OCT images. The cup–disc ratio was evaluated
based on the extracted optic nerve head [44]. Lee et al. and Wehbe et al. [173,
304] proposed vessel segmentation algorithms from an OCT image, in which they
measured blood flow velocity based on the segmentation result [304].

3.6 Thoracic Organs

Kensaku Mori, Mikio Matsuhiro, Yoshiki Kawata and Noboru Niki

3.6.1 Bronchus and Vessels

3.6.1.1 Overview

The tracheobronchial tree is the macroscopic framework of the respiratory system.
The trachea bifurcates into two branches, the right main stem bronchus and left main
stem bronchus. Many branchings continue down to the bronchioli, which allow air
to diffuse into the alveoli, the site of actual gas exchange. Because the bronchial tree
is filled with air, it has negative density on CT. Typical CT values of the bronchial
lumen are in the range �1000 H.U. to �900 H.U. Because of the partial volume
effect, the CT value becomes higher as the branches become thinner. To segment
the tracheobronchial tree from chest CT examinations, the basic method involves
tracing the negative-density regions from the trachea, which can be easily identified,
in the direction from the center to the peripheral. There are several methods for
extracting bronchial regions. These methods can be classified into two categories:
(a) the region-growing-based method and (b) the machine learning-based method. In
the category (a), basic region growing (e.g., one threshold value in region growing)
[195] or adaptive region growing (e.g., changing threshold branch by branch) [156]
is utilized. The category (b) determines whether each voxel belongs to the bronchial
lumen or not based on features computed at each voxel. This classification is done
by morphological operation or machine learning [23]. Then the selected voxels are
connected to portray the tracheobronchial tree.

Lo et al. (2012) [181] discussed the comparison of world-representing methods
for bronchus extraction from 3D chest CT images. Their findings were based on
results of a bronchus region extraction competition held in MICCAI in 2009.
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3.6.1.2 Region-Growing-BasedMethod

Simple Thresholding This method extracts the tracheobronchial tree by tracing
dark regions on chest CT images. The seed point is set inside the trachea and the
growing process commences. When growing is performed, it is necessary to define
some conditions to determine whether the growing area is inside a lumen or not.
A simple threshold value is all that is necessary in this region. If a voxel has CT
values lower than a given threshold value t, the growing process is performed. If
not, the voxel will not be included in the queue. One issue with this method is a
selection of a threshold value. If t is too low, insufficient regions will be extracted,
and not all branches will be segmented. In contrast, higher t will cause extraction
of aerated lung outside the tracheobronchial tree. In such case, extraction explosion
occurs [195]. When drawing a graph of the number of extracted voxels, the number
rapidly increases at a certain threshold. It is possible to find such a threshold value
t by monitoring the number of extracted voxels. Figure 3.49 shows examples of
segmentation results obtained by an optimal threshold value and a threshold value
causing explosion. Because CT values of the bronchus wall become low because of
the partial volume effect, explosion easily happens. A bronchus wall enhancement
filter is sometimes applied. In this case, small leakage of regions growing, which is
much less than explosion, will happen.

Adaptive Thresholding The method shown in the previous section uses one
threshold value in the extraction of the entire tracheobronchial tree. However, as
stated before, the threshold values should be adjusted branch by branch because
of the partial volume effect of the surrounding aerated lung. The method shown
in [156] defines a volume of interest (VOI) for a bronchial branch. The growing
process is performed inside this VOI. Because the method is designed to find the
running direction of a branch, the VOI is alliteratively extended in the running
direction of a branch. Luminal region extraction is simultaneously performed inside
the VOI. If the method detects bifurcation, two VOIs are set for secondary branches
of a target branch. The threshold value of region growing is computed for each VOI.
This expansion process is performed using the breadth-first search method. Branch-

Fig. 3.49 Extraction of bronchus regions with appropriate threshold and inappropriate thresholds
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Fig. 3.50 Segmentation result of region growing with adaptive thresholding [156]

by-branch growing has another advantage in that it can detect not only bronchus
regions but also branching structures. An example of extraction obtained by this
method is shown in Fig. 3.50.

3.6.1.3 Anatomical Labeling

When constructing an application system for bronchoscope navigation or lung
nodule diagnosis, it is important to segment the tracheobronchial tree from CT while
knowing the anatomical names of each bronchial branch Fig. 3.51, which are the
terms used by clinicians.

Because the bronchi bifurcate in an almost fixed manner, it is possible to
assign anatomical names using graph matching between the input tree structure
and the graph structure of a bronchial bifurcation atlas (learning tree structure).
Mori et al. (2000/2002) [197] reported on an anatomical labeling process based on
graph matching. The matching is performed based on running direction information
and constraint of parent branches. Labeling of bronchial branches has also been
performed based on graph matching [290]. An example of bronchi branching
models is shown in Fig. 3.52.

There are many variations in branching patterns of bronchi. It is necessary to have
branching pattern atlases and to develop an algorithm to use such atlases showing
variations. Mori et al. (2005) [198] showed a method for selecting suitable atlases in
anatomical labeling. This method divides the tracheobronchial tree into five parts:



3 Understanding Medical Images Based on Computational Anatomy Models 217

Fig. 3.51 Atlas of bronchus [217]

(a) trachea, (b) right upper lobe area, (c) right middle and lower lobe area, (d)
left upper lobe area, and (d) left lower lobe area. Branching pattern databases are
created for each area. Graph matching is performed in each divided area and an atlas
removal process is introduced for choosing the best atlas in each area. Figure 3.53
shows an example of such an atlas.

Another method is based on a machine learning approach [199]. This method
computes many features for each branch name and constructs the classifier that
outputs anatomical names from input features.

Figure 3.54 shows an example of anatomical labeling.
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Fig. 3.52 Examples of bronchus branching model

Fig. 3.53 Examples of bronchus branching model atlas. This figure shows atlases of the right
middle and lower lobe area

3.6.2 Pulmonary Blood Vessels

3.6.2.1 Overview

Detailed segmentation and analysis of the pulmonary circulation are needed for
computer-assisted diagnosis or computer-assisted surgery as described in Chap. 4.
For example, adjacent pulmonary blood vessel anatomy is an important information
to include in the analysis of lung nodules detected on CT. In bronchoscopic
navigation, it is important to prevent inserting a biopsy needle into a pulmonary
artery branch during transbronchial needle biopsy (TBLB).

http://dx.doi.org/10.1007/978-4-431-55976-4_4
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Fig. 3.54 Examples of anatomical labeling of bronchi

Because pulmonary blood vessels are depicted as white regions on chest CT
images, it is possible to segment lower-order vessels by simple thresholding.
However, because of gravitational pull, the side of the lungs that is close to
the ground has relatively higher density than that on the upper side. Adaptive
thresholding or another more sophisticated approach is necessary.

3.6.2.2 Simple Thresholding

This method extracts pulmonary blood vessels based on simple thresholding.
Because pulmonary blood vessels have CT values of around �500 H.U. or more, it
would be possible to extract pulmonary blood vessels by performing a thresholding
operation inside the lung area. The lung area is also easily segmented from CT
images by simple thresholding and connected component analysis.

3.6.2.3 Line Enhancement Filter

As stated previously, Sect. 3.6.2.1 CT values of pulmonary vessels differ because
of the partial volume effect or gravity. One solution to these issues is to use a
differential filtering technique. Frangi’s “vesselness filter” [80] or Sato’s filter [243]
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Fig. 3.55 Example of pulmonary blood vessels extracted by Level set segmentation. Pulmonary
blood vessels are colored in red in this figure

are often used to enhance pulmonary blood vessels. This detection process enables
easy extraction of pulmonary vessels.

3.6.2.4 Level Set-Based Approach

This approach extracts pulmonary blood vessels by using level set segmentation.
The core part of level set segmentation is the definition of the speed function. One
approach is to use the output of the vesselness filter shown in Sect. 3.9.8. The speed
function is designed to extract pulmonary blood vessels in 3D chest CT images.
Figure 3.55 shows an example of pulmonary blood vessels extracted by level set
segmentation.

3.6.3 Lung and Pleura

With the development of CT technology, complete volumetric chest images can be
acquired over a single breath hold. With increasing resolution, the data load has
substantially increased. A lung CAD system may help radiologists to deal with
these data loads more effectively. Accurate lung segmentation is fundamental for
quantitative analysis of lungs by CAD systems.
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The lung is divided into lobes by interlobar fissures that are potential spaces lined
by visceral pleura. Extraction of the interlobar fissures is essential, because it make
it possible for a lung CAD system to determine the lung lobe of the pathology and
calculate volume rate of pathological region in the lung lobe. Clinically, extraction
of the interlobar fissure is often important to determine whether a disease affects
one or more lobes, when lobar resection is considered.

Anatomy of Lungs and Interlobar Fissures The right and left lungs are covered
by a tightly attached layer of visceral pleura. The veins, arteries, airways, and
lymphatics comprising the lung roots attach to the mediastinum in the center of
the chest (Fig. 3.56a). The entire thoracic cavity is lined by an outer layer of
pleura called the parietal pleura. A potential space is located between these two
pleural layers and can be enlarged by fluid (pleural effusion), air (pneumothorax),
or disease. The lungs consist of sections called lobes. The left lung usually contains
two lobes, the upper and lower, while the right lung usually consists of three,
the upper, middle, and lower lobes. An accessory right upper (azygous) lobe is
not uncommon, and there are other variations that are less common. These lobes
are separated by interlobar fissures lined by visceral pleura. The fissures can be
of varying depth, extending down to the lung root, or incompletely dividing the
parenchyma. Both lungs have a major fissure dividing the upper and lower lobes,
and the right lung has a minor fissure dividing the upper and middle lobes. Examples
of lung lobes are shown in Fig.3.57. The lobes are divided into pulmonary segments,
and each segment contains multiple secondary pulmonary lobules divided by thin
connective tissue septa. In pathological cases, such as pleural effusion, lung cancer,
interstitial pneumonia, and severe emphysema, features of the lungs and pleura are
usually altered. Pleural effusion in a CT image is shown in Fig. 3.56b.

Lung Segmentation Many methods for automatically extracting the lung regions
based on 3D CT volumes have been proposed [263]. As visualized on CT images,

Pleural effusionPleural effusion

(a) (b)

Fig. 3.56 CT images of (a) normal chest and (b) right pleural effusion. Red triangles point to
interlobar fissure
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Fig. 3.57 Image of lungs
viewed from outside. RUL
right upper lobe, RML right
middle lobe, RLL right lower
lobe, LUL left upper lobe, and
LLL left lower lobe. (a) Right
lung, (b) left lung

(a) (b)

the lung parenchyma, which is mostly air, is dark. This contrast between lung and
surrounding tissues is the basis of most segmentation methods [11, 45, 122, 147,
329]. In lung segmentation methods, air is extracted by gray-level thresholding.
Therefore, the lungs are identified by imposing restrictions on size and location.
Alternatively, the lung volumes can be determined by region-growing segmentation
from the trachea. The trachea is recognized as 2D circular air regions in the first
slices of the scan or as a 3D tubular air region located centrally in the upper part of
the scan. The main lung volume is separated into left and right lungs. The trachea
and main stem bronchi are removed. Morphological processes work out filling holes
and smooth borders of segmented lungs.

Such methods are known to be simple and effective for normal cases. However,
they often fail to extract lungs affected by pathologies, especially when the
pathologies involve the pleura. Pleural effusion, like that illustrated in Fig. 3.56b,
has higher density than normal lung tissue, and therefore segmentation methods
using contrast fail.

For pathological cases, segmentation methods often use the shape of the lung.
Sluimer et al. proposed a registration-based approach in which a shape template is
registered to an input CT volume [262]. They achieved significant improvements in
the segmentation of lungs with pathologies. Kido and Tsunomori proposed another
registration-based method using a template obtained from normal cases [153]. Two-
step matching improved the performance in a case with severe pleural effusion.
Hua et al. proposed a method that combines the classification process with a graph-
search algorithm [123]. The method has been shown to be effective in cases with
pathology. Nakagomi et al. proposed a graph cut-based method that can take into
account the multiple shapes generated from an SSM of the lungs. The method used
in energy term introduces neighboring structures of the lungs, e.g., the aorta and the
body cavity [210].

Interlobar Fissure Extraction The interlobar fissures are very thin and low
contrast on CT images. Simple methods such as gray-level threshold cannot extract
them. Many extraction methods have been proposed. Kubo et al. proposed a method
that extracts sheet shapes by morphology operation from the emphasis of 2D
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linear shadow images [166]. Saita et al. suggested a method that uses blood vessel
information [241]. This method classifies lobar blood vessels, whereas the region
containing the interlobar fissure is identified on the basis of the 3D distance from
the lobar blood vessel. The interlobar fissures are extracted by the emphasized
sheet shadow from the identified region. Zhang’s [328] method extracts the major
fissures using an anatomic pulmonary atlas. A ridgeness measure is applied to the
original CT image to enhance the fissure. A fuzzy reasoning system is used in
the fissure search to analyze information from three sources: the image intensity,
an anatomic smoothness constraint, and the atlas-based search initialization. Van
Rikxoort’s method uses supervised enhancement filters [297]. These filters, which
enhance interlobar fissures and suppress others, are constructed using training data.
Ukil and Reinhardt proposed a method based on the information provided by
the segmentation and analysis of the airway and vascular trees [295]. An ROI
is generated using this information, and the interlobar fissures are extracted by
enhancement using a ridgeness measure in the ROI. Pu et al. pointed out existing
methods that were problematic in the presence of pathologies and susceptible
to interindividual differences; they proposed a method using the membranous
properties of the fissures. The method creates polygons by the marching cube
algorithm. Surface shapes are extracted using multiple Laplacian smoothing from
polygons [231]. The interlobar fissures are extracted by normal vectors of surfaces
that are made by extended Gaussian image. This interlobar fissure is filled blank
spaces by average of normal vector of the surface [232]. Agarwala et al. proposed
an atlas-based segmentation approach [2]. An atlas is a set of two images: the
intensity image and its segmentation. Because segmentation obtained using an
atlas-based approach may have local errors because of local failures of the image
registration algorithm, they applied a local version of selective and iterative methods
for performance level estimation that uses local weights for fusion of the input
segmentations. Lassen et al. employ a method that uses information on blood vessels
and sheet shapes extraction using a Hessian matrix [169]. Matsuhiro proposed a
method that uses features of the interlobar fissures’ film shape that can extract
interlobar fissures from pathological cases, e.g., lung cancer, interstitial pneumonia,
and severe emphysema [189]. This method contains three extraction phases: coarse
extraction, fine extraction, and correction. Coarse extraction enhances images by
4D curvature. Film shapes are extracted from contrast-enhanced images. The
interlobar fissures’ shape extraction parameters, e.g., angles and sizes, are trained
by training case data. In these data, interlobar fissures are predetermined manually.
Coarse interlobar fissures are extracted from film shapes by these parameters. Fine
extraction is implemented in iterative enhancement around fissures. Correction is
implemented in interpolation of interlobar fissures by normal vectors. The extraction
results are illustrated in Fig. 3.58.

This section describes lung segmentation and interlobar fissure extraction meth-
ods. Developing the performance of those methods is expected. Methods that
segment pulmonary segment and secondary pulmonary lobule are expected to be
developed, too.
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(a) (b) (c)

Fig. 3.58 Extraction results of interlobar fissures. (a) Interstitial pneumonia, (b) lung cancer, (c)
hypersegmentation

3.7 Breast

Daisuke Fukuoka, Tomoko Matsubara

3.7.1 Ultrasound Imaging: Classification Methods for Masses

Breast cancer is a common cancer among women all over the world. Combined
with mammography, ultrasonography is used to suggest the degree of suspicion
of malignancy to help determine whether follow-up or biopsy are necessary.
Sonographic features that are assessed include shape, margin, echotexture, posterior
acoustic shadowing, and orientation.

Recently, various classification methods using shape and other ultrasonographic
features have been reported. Horsch et al. [121] reported a CAD method that is
based on the automatic segmentation of lesions and the automatic extraction of
four features related to the lesion: shape, margin, texture, and posterior acoustic
behavior. Chen et al. [58] reported on methodology based on fractal analysis and
k-means clustering. Other classification methods have been proposed that use the
statistical properties of echo signals [100, 253, 254, 278, 291, 292]. K-distribution
and Nakagami distribution are used for modeling the echo signals. Takemura et al.
[278] compiled a total of 208 features for discrimination, including those based on
a parameter of a log-compressed K-distribution. Their proposed system classifies
types of diseases as cancer, cyst, or fibroadenoma (a common benign entity) using
an ensemble classifier based on the AdaBoost algorithm with feature selection.
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Tsui et al. [291] examined five contour feature parameters (tumor circularity,
standard deviation of the normalized radial length, area ratio, roughness index, and
standard deviation of the shortest distance) and calculated the Nakagami parameters
estimated from the ultrasonic backscattered signals. The Nakagami parameters are
only dependent on the statistical distribution of the echo waveform and are not
affected by the echo amplitude. In another paper, Tsui et al. [292] suggested that
the Nakagami image can visualize the scattering properties of breast lesions. Figure
3.59 shows the B-mode image and the corresponding Nakagami image of a benign
breast tumor.

SSMs of Breast Ultrasound Images
Few studies have focused on SSMs of breast ultrasound images, because of the
paucity of landmarks, the deformability of the tissue, and operator dependence. To
overcome such problems, several automated whole breast ultrasound scanners have
been developed [275, 307]. Figure 3.60 shows an example of a volumetric whole
breast image, where a 16 � 16 cm2 area is scanned automatically. It is assumed that
whole breast scanning techniques will enable the construction of an SSM for the

Fig. 3.59 The B-mode (a) and Nakagami (b) images of a benign breast tumor [292]
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Fig. 3.60 An example of volumetric whole breast image (a) volumetric data in a 16 � 16 cm2

area. (b) A whole breast section view [131]

Fig. 3.61 Bilateral breast images are registered with reference to the nipple positions and skin
lines. (a) Fusion image before registration. (b) Fusion image after registration [131]

purpose of assessing symmetry, looking at lesions over time, and fusing ultrasound
images with mammograms and MR images.

Ikedo et al. [131] have reported bilateral breast comparison and registration
methods for reduction of false positives in a detection system for masses. Normal
left and right breasts in the same subject are usually architecturally symmetrical.
A mass-like area in a region is classified as normal tissue if the same position in
the other breast has a similar feature. Example sections after implementation of the
registration are shown in Fig. 3.61.

3.7.2 Mammography

Early detection of breast cancer is of fundamental importance for improved
prognosis in the treatment of the disease. Screening mammography is generically
regarded as the most effective tool for interpreting early breast cancer. Several
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ongoing studies to improve the clinical performance of mammography require the
simulation of realistic patient breast models. Screening mammography typically
involves taking two views of the compressed breast, from above (craniocaudal view
(CC)) and from an oblique or angled view (mediolateral oblique (MLO)). The breast
shape in the CC view mammograms is sometimes characterized as a semicircle or
semiellipse. Although this simplifier has proved appropriate, more sophisticated
models that include clinically realistic breast shape variations would be useful.
Feng et al. developed models of compressed breasts based on objective analysis. To
catalogue the breast shapes of clinically acquired CC and MLO view mammograms,
an automated edge detection algorithm is first used. Principal component analysis
(PCA) is performed on detected edge shapes. The principal components are
described by the eigenvectors ej, which can be obtained by calculating the following
eigenvalue problem:

cov .X/ ej D vjej; (3.14)

where cov(X) is a square covariance matrix and vj is the variance of each principal
component. The n principal components with the greatest vj are selected and their
respective ej assembles into a 100 � n principal component matrix E. The PCA
parameter vector ri for image i can be defined as follows:

ri D


ETE

��1
ET .xi � x/ ; (3.15)

The identified principal components are used for developing the breast shape
models. The PCA breast shape models of the CC and MLO mammographic views
have been found to be able to reproduce breast shape with strong fidelity. The
average distance errors (ADEs) of the PCA models of CC and MLO views based
on six principal components are 0.90 mm and 1.43 mm, respectively. Pared t-tests
of the ADE values of each image between the six-, four-, and two-component
models showed that these differences were statistically significant, and the ADE
based on the six principal components was the smallest. Histograms of the PCA
parameters for six principal components are fitted Gaussian distributions. The
authors confirmed that the six-component PCA model could generate realistic breast
shapes1.

Practically all breast cancers originate in the ductal or lobular epithelium, with
very few arising in the connective or adipose tissue. Therefore, the ductal network
is an important element of breast anatomy. Bakic et al. proposed the realistic
simulation of the breast ductal network as part of a computer three-dimensional
breast phantom. The synthetic tree model is implemented based upon the description
of ductal branching patterns of tree line structures given by ramification matrices
(R matrices). Random binary tree (RBT) is used to simulate the ductal network,

1The sentences in this paragraph are reproduced from ref. [76] by permission of 2013 American
Association of Physicists in Medicine.
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consisting of multiple lobes. The RBT model is evaluated by comparing manually
traced ductal networks in clinical galactograms and manually tracked networks of
synthetic RBTs. As a result, a root-mean-square (rms) fraction error between the R-
matrix elements corresponding to clinical and synthetic images is 41%. In addition,
it is also analyzed that the synthetic trees generated using R matrices. A comparison
of the synthetic and clinical images yields an rms fraction error of 11%. The authors
reported that these results suggest the possibility that a more appropriate model of
the ductal branching morphology may be developed2.

3.7.3 Breast MRI

MRI of the breast is increasingly used to monitor high-risk patients. Tracking
tumors in different states is useful for obtaining important clinical information.
Computational models of the deformation of the breast in different positions
are being developed. Malcolm et al. investigated the use of partial least squares
regression (PLSR) to predict breast deformation from the prone to the supine
positions [185]. Meshes of prone breast images are fitted to data segmented from
T1WI. Because of unavailability of supine MRI data in their database, the associated
supine geometrics are generated using finite element models (FEM) mechanics
simulation. PLSR trains a statistical model of deformation using the population of
associated prone and supine models from these FEM simulation results. It is clear
that the PLSR approach has the potential to be a reliable alternative to FEM because
the volume averaged geometric and relative errors between the PLSR predicted
supine models and the associated FEM solutions were 1.9˙ 0.7 mm and 12˙ 7%,
respectively. In addition, the PLSR predictions were five orders of magnitude faster
than the FEM solution.

Breast density is an important risk factor for developing breast cancer. Khalvati
et al. developed multi-atlas-based breast MRI segmentation [152]. To have a diverse
atlas, the training images with the manual segmentation for the whole breast were
first clustered based on the similarity of the corresponding phase congruency maps
(PCMs). The phase congruency of an image at location x (PC(x)) can be calculated
as follows:

PC.x/ D bE.x/� TcP
n An.x/C " ; (3.16)

where E(x) is the local energy of the image, T is a threshold to suppress the effect
of noise on the local energy of the image at that location, An presents the amplitude
of the nth Fourier component, and " is set to a small number to avoid division by
0. Afterward, group-wise registration is performed on the original images in each

2The sentences in this paragraph are reproduced from ref. [26] by permission of 2003 American
Association of Physicists in Medicine.



3 Understanding Medical Images Based on Computational Anatomy Models 229

class based on the distance map of the corresponding PCMs to create the mean
image and the corresponding mean label. For segmentation of a target image, it is
first determined which class a target image belongs to. To generate the segmentation
results, the target image and centroid of the class are aligned in order by a nonrigid
registration. The segmentation results for the entire volume were compared with the
ground truth results to evaluate the performance of this algorithm, and an average
Dice similarity coefficient (DSC) of 0.93 was achieved.

Wu et al. proposed a fully automated segmentation of fibroglandular tissue and
estimation of volumetric density using an atlas-aided fuzzy C-means (FCM-Atlas)
method. Firstly, an initial voxel-wise likelihood map of fibroglandular tissue is
produced by applying FCM clustering to the intensity space of each 2D MR slice.
To achieve enhanced segmentation, a prior learned fibroglandular tissue likelihood
atlas is incorporated to refine the initial FCM likelihood map. An updated likelihood
map u�r

ij can be calculated as follows:

u�r
ij D u�

ij � .W � A/ ; (3.17)

where u�
ij is the FCM-generated likelihood map, W represents the warping trans-

formation that deforms the standard atlas to the shape of the specific breast being
processed, and A is an overall fibroglandular likelihood atlas. The absolute volume
of the fibroglandular tissue (jFGTj) and the amount of the jFGTj relative to the
whole breast volume (FGT%) of this proposed method were compared with that
of manual segmentation obtained by two experienced breast radiologists. The
automated segmentation achieved a correlation of r D 0.92 for FGT% and r D 0.93
for jFGTj, which were not significantly different from the manual segmentation. In
addition, it was also clear that the segmentation performance was stable both with
respect to selecting different cases and to varying the number of cases needed to
construct the prior probability atlas by the additional robustness analysis3.

Segmentation of pectoral muscles is important for volumetric breast density
estimation and for pharmacokinetic analysis of dynamic contrast enhancement.
Gubern-Mérida et al. developed two atlas-based pectoral muscle segmentation
methods in breast MRI [111]. One method is based on a probabilistic model and
the other method is a multi-atlas registration-based approach. The probabilities of
the atlas are first mapped by registration process composed of two stages. The first
stage is a translation transform and the second stage is a nonrigid transform based
on B-splines registration. Subsequently, two atlas-based segmentation methods are
performed. In the probabilistic atlas-based segmentation, method 1, a probabilistic
atlas is used in a Bayesian framework and is created by computing the frequency
with which each location is labeled as pectoral muscle. The probabilistic atlas, the
tissue models, and the target are supplied to the Bayesian framework as a prior
probability P(X), conditional probability P(YjX), and a set of intensity values Y,
respectively. The Bayesian framework estimates the segmentation X that maximizes

3The sentences in this paragraph are reproduced from ref. [316] by permission of 2013 American
Association of Physicists in Medicine.
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P(X)P(YjX) and also includes a Markov random field regularization. Multi-atlas
segmentation, method 2, approaches consist of two steps after mapping all the
atlases onto the target space. First, the deformed anatomic images are compared with
the target to select the most similar atlases. The selection is based on the normalized
cross correlation similarity measure, and a ratio is calculated as follows:

ri D NCC .T;Ai ıMi/

maxjNCC


T;Aj ıMj

� ; (3.18)

where M is the mapping between the target and an atlas, j is the deformed atlas
with maximum similarity, and T is target volume. The selected deformed atlas
labels are fused to yield a single final segmentation of the patient or target image.
The probabilistic and the multi-atlas segmentation frameworks were evaluated in a
leave-one-out experiment. The multi-atlas approach performed slightly better, with
an average DSC of 0.74, while, with the much faster probabilistic method, a DSC
of 0.72 resulted. The authors stated that both atlas-based segmentation methods
have high reliability because of their DSC values being higher than the computed
interobserver variability.

3.8 Cardiac

Hidenobu Suzuki, Yoshiki Kawata, Noboru Niki, Ryo Haraguchi and Katsuda
Toshizo

3.8.1 Morphologic and Functional Modeling of the Heart

The heart functions by cycling through contraction and expansion. There is a close
association between morphology and function. Electrophysiology is also important
in cardiac function. The presence of a conduction system allows the heart to modify
its output to react to different requirements. For computational modeling of the
heart, it is necessary to consider both the morphological and functional anatomies;
however, building a model that integrates all scales (from molecular to organ) and all
phenomena (mechanics, fluid, electrophysiology, and molecular dynamics, among
others) is impossible. Clarification of the functions of interest is important.

In clinical practice, assessment of the contractile function of the left ventricle
(LV) is important for diagnosing cardiovascular disease. The most widely used
index of the LV contractile function is the LV ejection fraction (LVEF). The LVEF
is derived from end-diastolic volume (EDV) and end-systolic volume (ESV). The
LVEF can be calculated using various noninvasive cardiac imaging modalities,
including MRI, CT, SPECT, and echocardiography. Therefore, numerous segmenta-
tion techniques for the LV myocardium, including statistical techniques, have been
proposed.
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Much work is still required to gain an integrated understanding of the normal
heart. The computational modeling of the diseased heart has just begun. Because
of the complexities of cardiac structure, such as rotational myocardial fibers, and
the conduction system, a shape model is not always sufficient to represent various
disease states.

In this section, we provide some examples of morphologic and functional
modeling of the heart.

Processing Algorithms and Imaging Specific to the Heart There are several
noninvasive cardiac imaging modalities. In most modalities (CT, MRI, PET, and
SPECT), data acquisition is performed over a few heartbeats with electrocardio-
graphic (ECG) gating. Moving cardiac images can then be reconstructed using the
gated data.

For segmentation of cardiac images, it is necessary to consider several points
specific to the heart. Epicardial delineation is more difficult than endocardial
delineation because of poor contrast and fuzzy boundaries between the heart and
other tissues. Endocardial delineation needs intelligent processing because of the
presence of the papillary muscles that control the valve leaflets, and myocardial
trabeculation, which gives the endocardium its irregular surface. The right ventricle
(RV) wall is thinner than the LV wall, making segmentation more difficult. In
echocardiography, the limited field of view prevents acquisition of data including
the entire organ.

Many methods have been proposed for computational morphologic and func-
tional modeling of the heart. These methods are classified into four categories: (1)
statistical models, (2) deformable models/level set, (3) biophysical models, and (4)
nonrigid registration using basis functions [149, 284]. The use of statistical models
for segmentation has some advantages, such as robustness for regional low contrast,
intelligent processing that excludes the papillary muscles, and interpolation for
outside the field of view.

Depending on the clinical question, other MR sequences such as DTI (assessing
orientation of the myofibers), tagging imaging (assessing myocardial contraction),
and velocity encoding imaging (motion of the blood/myocardium) can be per-
formed.

Example 1: Active Appearance Motion Models Bosch et al. [41] proposed the
active appearance motion model (AAMM) technique, which allows fully automated
continuous delineation of LV endocardial contours over the heart cycle from
echocardiographic images. The AAMM describes both image appearance and object
shape within the dynamics of the heart cycle. The authors used 129 infarct patients’
echocardiographic transthoracic four-chamber sequences with manually defined LV
contours. They split the datasets randomly into a training set of 65 patients and a
testing set of 64 patients. The AAMM was generated from the training dataset. The
generated AAMM was applied to segmentation of the 64 sequences and successfully
matched 62 patients (97%). The example results are shown in Fig. 3.62. Statistical
models built by machine learning (e.g., AAMM) are useful for automatic and robust
segmentation of cardiac images.
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Fig. 3.62 Fully automated segmentation results obtained by applying the AAMM to an echocar-
diographic image sequence. (a) Initial AAMM model positioned on phase images 1, 9, and 16.
(b) AAMM match after five iterations. (c) Final match after 20 iterations. (d) Manual contours for
comparison [41]

Example 2: Modeling Contractility Wenk et al. [306] built a finite element model
(FEM) of a patient’s beating infarcted LV and measured regional myocardial defor-
mation with three-dimensional tagging MRI (Fig. 3.63). They showed evidence of
depressed contractility in the border zone of a myocardial infarction by combining
MR tagging imaging and computer simulation. The combination of biomechanical
computational modeling and noninvasive functional imaging techniques can be a
powerful methodology to clarify the mechanisms of cardiac diseases.

Example 3: Modeling Myofibers The spatial arrangement of myofibers within
the myocardium, which is termed “fiber orientation,” must be taken into account
for better understanding of cardiac electrophysiology patterns, mechanical function,
and remodeling processes in the living/modeled heart. Lombaert et al. [182] built
a statistical atlas of myofiber architecture with a human dataset of ten healthy ex
vivo hearts (Fig. 3.64). The myofibers were imaged with diffusion tensor magnetic
resonance imaging (DT-MRI). They used isolated hearts filled with hydrophilic
gel to preserve the diastolic volume. In vivo DT-MRI of a beating heart is under
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Fig. 3.63 (a) Short-axis view from 3D tagging MR image of patient LV. (b) Finite element model
with infarct (brown) and border zone (green) regions [306]

Fig. 3.64 A statistical atlas of human myofiber architecture, (left) fiber tractography of the left
ventricle, (center) close-up of the fiber orientations of a short-axis slice, (right) fiber tractography
around the left ventricular blood pool [182]

development, though the availability of isolated human hearts is extremely rare.
Therefore, their statistical myofiber model is valuable.

Example 4: Interactive Modeling for Congenital Heart Disease Congenital
heart diseases (CHD) involve developmental abnormalities of the heart and/or great
vessels present since before birth. Early treatment is often necessary. Because of
its real-time imaging capabilities, 2D echocardiography is often used to diagnose
CHD. CT and MRI are unsuitable for real-time diagnosis. 3D echocardiography is
sometimes insufficient for detailed imaging of CHD. Only an experienced physician
could diagnose from the 2D echocardiographic images based on a spatial perception
of the 3D heart; however, it is difficult to transfer the specialist’s spatial perception
of the 3D heart structure to other medical staff. There is no effective method of
communicating the condition of an individual CHD patient, and sharing the special
perception is difficult. Haraguchi and Nakao and Nakao et al. [115, 213] proposed a



234 S. Hanaoka et al.

Fig. 3.65 The heart and great vessels interactive modeling system for CHD

3D heart and great vessels rapid modeling system using echocardiographic images
with added simple interaction with the model by the operator (Fig. 3.65). They
focused on the expression in a 3D format of the disease state as seen in a mental
image by an experienced physician. Physicians can interactively construct patient-
specific heart and great vessel models within a practical time frame and share the
complex topology. This model cannot represent precise morphological information
(e.g., vessel diameters). Nevertheless, it is an example of interactive modeling that
may be useful in a particular application.

In the Future Several statistical models of the heart have been proposed for seg-
mentation and registration. These computational models are useful for automation
in determining clinically significant indices describing the disease state.

A shape model is not always sufficient to represent the various disease states (e.g.,
ischemic heart disease and dysrhythmia). The heart has a complex internal structure
(e.g., myocardial fiber direction and trabeculation) and involves various phenomena
(e.g. mechanics, fluid, and electrophysiology). Developing a biophysical model
may help produce an integrated understanding of normal and diseased hearts
[18, 129, 296].
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To improve cardiac imaging, radiological technologist skills are also required
[273, 274]. For example, in MRI, it is necessary to consider many parameters,
physical conditions (e.g., quantity of the heterotopic fat) of the patient, heart rate,
and breathing-related complicated movement, among other factors.

3.8.2 Coronary Arteries

Coronary artery disease is a major cause of death worldwide [238]. If a coronary
artery becomes narrowed or occluded owing to the buildup of plaque (e.g.,
calcium, fat, and cholesterol), or the formation of a thrombus, the blood flow to
the myocardium will be reduced. Restriction of oxygenated blood flow is called
ischemia, and the narrowing of a vessel is called stenosis.

In current clinical practice, conventional coronary angiography (CCA) via
cardiac catheterization is considered to be the gold standard imaging technique to
diagnose coronary artery disease [51]. Computed tomographic angiography (CTA)
is a potential alternative to CCA [203]. CTA is a noninvasive technique that allows
assessment of the coronary lumen and the evaluation for the presence of coronary
calcifications and other causes of stenosis [171].

Recently, non-contrast CT has been used for mass screening for lung cancer [148,
286]. CT images are also useful in the quantification of coronary calcification [30].
Coronary artery calcium is graded by Agatston score, volume, mass score, or density
[37, 62] for risk stratification for future cardiac morbidity and mortality [10].

Coronary Artery Anatomy The coronary arteries supply oxygenated blood to the
myocardium. The right and left main coronary arteries exit the ascending aorta from
ostia just above the right and left aortic valve leaflets [5]. These two branches
subdivide and traverse the epicardium. The American Heart Association (AHA)
Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging
divides the coronary arteries into 15–16 segments as shown in Fig. 3.66 [78].

Detection of Coronary Arterial Stenoses with CTA This section describes
algorithms for segmentation of coronary arteries and detection of coronary arterial
stenoses with CTA. Research on coronary artery segmentation have implemented
several methodological solutions: topological thinning [57], particle filtering [79],
graph-based analysis [272], fuzzy connectedness [300], vessel tracking and active
contours [172], minimal cost path computation [205, 226], mathematical morphol-
ogy [43], hybrid strategy using multi-scale filtering and Bayesian probabilistic
approach with level set model [318], multi-scale enhancement and dynamic balloon
tracking [333], and two-stage shape regression [247].

After segmentation, assessment for stenoses is performed. The approaches
include a 3D level set [7, 8], skeletonization and geometric analysis of a branch [57],
morphological filtering and interactive masking [42], and fuzzy distance transform
[317].
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Fig. 3.66 Segments of coronary arteries. [78] RCA right coronary artery, RV right ventricular
branch, AM acute marginal branch, PLV posterolateral ventricular branch, PDA posterior descend-
ing artery, LCA left coronary artery, LM left main coronary artery, LAD left anterior descending
artery, DIAG1 first diagonal branch, DIAG2 second diagonal branch, LCX left circumflex artery,
OM obtuse marginal branches

The segmentation algorithm by Schaap et al. is a coarse-to-fine robust shape
regression approach [247]. First, the method is initialized with an approximate
centerline [246]. The cross-sectional planes of vessels are generated based on the
centerline. Next, vessels are represented by a combination of local SSMs of the
vessels’ appearance and shape. Then, the coarse shape of the vessel is estimated
with linear multivariate regression. Finally, the vessel shape is refined with nonlinear
regression by optimizing the landmark coordinates to their most likely position.

Detection of Coronary Calcification from Non-contrast-Enhanced CT Images
This section describes detection algorithms for coronary calcifications from non-
contrast CT images which are used in mass screening for lung cancer. The
approaches of previously published methods involve a neural network [294] and
two-stage classification with feature selection [132].

For the detection of coronary calcifications from thick-section CT images
(10 mm slice thickness), Ukai et al. proposed an algorithm that is composed of
four processes [294]. First, a CT image set is divided into three volume sections
(upper, middle, and lower thirds of the heart) by a neural network (four inputs: slice
position, heart shape, scapula, CT value uniformity), which is trained using the back
propagation algorithm. Second, each section is segmented, using the information
from the adjacent lung and vertebral body. Third, the candidate regions for the
coronary calcifications are detected using a weight coefficient map consisting of
a prior probability of the location for the coronary artery as shown in Fig. 3.67.

This probability is determined based on the distribution of the coronary arteries,
which were manually segmented from 80 patients’ heart regions normalized in terms
of height and width. Finally, the artifact regions included in the candidate regions
are excluded by the diagnostic rule based on a neural network.



3 Understanding Medical Images Based on Computational Anatomy Models 237

Fig. 3.67 Weight coefficient map. (a) Weight coefficient map in upper part of the heart, (b) weight
coefficient map in middle part of the heart, (c) weight coefficient map in lower part of the heart.
The value is a prior probability of the location of the coronary artery

For the detection of coronary calcifications from thin-section CT images (3 mm
slice thickness), Isgum et al. proposed an algorithm that is composed of three
processes [132]. First, candidate objects are extracted using threshold of the
intensity and size. Second, a set of features is calculated. This set is composed
of volume, shape features (three eigenvectors, œ1, œ2, œ3), spatial features (the
coordinate system is defined by determining the smallest box around the heart),
and appearance features (maximum intensity, average intensity, derivatives (Lx, Ly,
Lz, Lxx, Lxy, Lxz, Lyy, Lyz, Lzz). Finally, candidate objects are classified into either
positive or negative objects using a two-stage classification system with a k-nearest
neighbor classifier and a feature selection scheme (sequential floating forward
feature selection[SFFS]) [135]. In this study, 14 efficient features (six spatial and
eight appearance features) were employed by the feature selection.

This section describes technologies based on computational anatomy model
for the diagnosis of coronary artery disease. Clinical applications including these
algorithms can improve the diagnostic performance of coronary artery disease.

3.9 Abdomen

Yoshinobu Sato, Akinobu Shimizu, Kensaku Mori and Takayuki Kitasaka

This section describes algorithms for analysis of the abdominal organs using
CT and MR data. Segmentation algorithms of the organs are described, and then
extraction and analysis of internal structures, that is, vessels and abnormal regions,
are discussed for the purpose of diagnosis and surgical planning assistance.



238 S. Hanaoka et al.

3.9.1 Liver

The liver is one of the most-studied abdominal organs with respect to segmentation
and further analysis. Early investigations of liver segmentation were based on slice-
by-slice 2D image processing [24, 98]. Since the development of multi-detector row
CT (MDCT) in the late 1990s, however, volume imaging of the abdomen, that is,
image acquisition with a thin-section thickness, regarded as 3D isotropic imaging,
has become popular. Therefore, liver segmentation methods based on fully 3D
image processing were developed [186, 264]. They demonstrated potential clinical
utility in tumor detection and surgical planning. Later on, two noteworthy papers
on liver segmentation were published [168, 229], in which computational anatomy
(CA) models, that is, a probabilistic atlas [229] and an SSM [168], were used as prior
knowledge of the liver shape and location to formulate the segmentation problem as
a MAP estimation based on Bayesian theorem. Representative methods for liver
segmentation typically use an SSM or a probabilistic atlas [118, 141, 331]. The
remaining part of this section describes automated liver segmentation algorithm
using CA models from upper abdominal CT data and then mentions applications
to diagnosis and surgical planning assistance.

Anatomy of Organs and Tissues Adjacent to the Liver The liver is the largest
abdominal organ, located in the right upper quadrant of the abdominal cavity,
just under the diaphragm, which separates the thoracic and abdominal cavities.
The shapes of the liver dome and right lung base are strongly constrained by the
diaphragm’s variations in contour during the respiratory cycle. The liver consists
of large right and left lobes and small caudate and quadrate lobes. The shape of
the right liver dome correlates closely with the right lung base via the intervening
diaphragm. The contour of the inferior surface of the liver contains impressions
from the right kidney, duodenum, gallbladder, and right colon. The liver is also
surrounded by the lower ribs and abdominal musculature. Although CA models
should deal with the above multi-organ relations systematically by mathematical
models, we focus on the liver and utilize these relations in a manually specified
manner in this subsection. The topic of modeling multi-organ relations will be
addressed in a subsequent subsection.

CA Models of the Liver and Their Application to Segmentation from CT
Images CA models, typically probabilistic atlases and SSMs, are represented in
the reference frame (coordinate system), which needs to be determined from input
CT volume when they are utilized. There are two main approaches to define the
reference frame, that is, an organ-centered frame and an external frame. The organ-
centered frame is defined by features inherent in the target organ, and shape priors
are represented by probabilistic atlas and the SSM. The external frame is defined
by features of external structures (such as the lungs and ribs), and both shape
and location priors are represented, where the locations of the target organ are
represented relative to the external structures.
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Fig. 3.68 Example of external reference frame for spatial normalization [222]

Figure 3.68 shows the determination processes of an example of the external
reference frame [221, 222]. The reference space is defined based on the upper
abdominal cavity, whose shape and location are constrained by the diaphragm,
bones, and abdominal musculature. To determine the reference space, an approx-
imated bounding box of the abdominal cavity is utilized, whose top plane is
constrained by the diaphragm and side planes by the bones. More specifically,
the upper plane corresponds to the axial plane tangential to the right dome of the
diaphragm (which covers the liver surface), and the four side planes correspond to
the sagittal right- and leftmost planes and the coronal front and back planes of the
musculature and ribs. The lateral and anteroposterior dimensions of the reference
space are normalized to the mean dimensions of all the patients. The right dome
of the diaphragm separates the dome of the right lobe of the liver and the base
of the right lung. Thus, it can be extracted by locating the right lung base. The
lung and bone regions are not affected by contrast agents and are well delineated
from other tissues in CT data because of their very low and very high densities,
respectively. Therefore, these regions can be segmented in a stable manner from CT
data irrespective of differences in contrast enhancement protocols. All the patient
CT volumes are translated and scaled so as to be aligned to the normalized reference
space, which defines the reference frame. This initialization process is called spatial
normalization or spatial standardization.

Once spatial normalization has been completed, CA models such as probabilistic
atlases and SSMs can be applied to the target CT data to perform segmentation.
Figure 3.69 shows a probabilistic atlas and SSM of the liver, which are represented
in the reference frame based on the bounding box approximating the upper abdom-
inal cavity. Segmentation using CA models is formulated as a MAP estimation by
combining data fidelity terms, which are typically derived from intensity models
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Fig. 3.69 Computational anatomy (CA) models of the liver. (a) Probabilistic atlas. Volume
rendering of the probabilistic atlas is displayed by assigning opacities proportional to probabilities
to voxels. (b) SSM. The shape located at the center is the mean shape, and the shape variations of
the first and second modes are indicated

or edge localization error models, as discussed in Chap. 2. Segmentation using
a probabilistic atlas is regarded as voxel-wise MAP estimation, which does not
require any initialization and nonlinear optimization (see Fig. 2.17 for typical
segmentation processes in Chap. 2). Conversely, SSM requires initial values for
the shape parameters for their nonlinear optimization. Although the average shape
is often used for the initial values for an SSM, it is desirable to combine some
methods to avoid stacking in poor local minima. Typically, edges to be fitted to
SSMs are searched for near SSM surfaces while SSMs are being fitted to input
images. The initial SSM needs to be sufficiently close to the true organ surfaces for
successful edge search. The mean shape, however, may sometimes largely deviate
from the true shape and fail to capture the true edges. To overcome this problem,
probabilistic atlas-based segmentation results can be used for initial values for SSM-
based segmentation, instead of the mean shape. Then these parameters are used for
the initial values for subsequent SSM-based segmentation [222].

The criteria for evaluating the performance of SSM are known as specificity
(property of maintaining the characteristics specific to the organ shape) and gen-
erality (property of representing any shapes accurately). Specificity and generality
are a trade-off. To overcome this, a hierarchical SSM (H-SSM) has been developed
[221, 222]. A coarse-to-fine strategy is adopted for the H-SSM, in which the top
level of SSM is first fitted, and then its estimated shape parameters are used as initial
values for subsequent fitting of sub-shape SSMs. Figure 3.70 shows an H-SSM of
the liver, in which the whole liver shape is gradually decomposed into sub-shapes
and SSMs of the sub-shapes, in addition to the whole liver shape, are constructed.
By using hierarchical SSMs, generality and specificity are better balanced. While
the top level of SSM is more specific to the liver, the lower levels of SSMs are more
accurate in terms of generality.

http://dx.doi.org/10.1007/978-4-431-55976-4_2
http://dx.doi.org/10.1007/978-4-431-55976-4_2
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Fig. 3.70 Shape decomposition for hierarchical SSMs (H-SSMs) [222]

Figure 3.71a shows the result of probabilistic atlas-based segmentation, in which
initialization was not required after the spatial normalization. Figure 3.71b shows
the result of subsequent H-SSM-based segmentation, in which the initialization
was provided by the probabilistic atlas-based segmentation result. Figure 3.71c
shows a result of graph cut refinement (described in Chap. 2) for the H-SSM-based
segmentation result. In Fig. 3.71, clear improvements of segmentation accuracy are
observed as the segmentation progresses from (a) to (c).

So far, the CA models of the liver have been generic; that is, they are assumed
to cover the variabilities in various patients except for spatial normalization. If
additional information on a patient is provided, however, we can make the CA
models to represent a patient-specific variability, in which generality and specificity
will improve by assuming conditions specific to the patient of interest. One way
to construct a patient-specific CA model is to use intermediate results during the
segmentation process [287]. In the previously mentioned method, probabilistic
atlas-based segmentation was first performed, and its result was used as an initial
state for subsequent SSM-based segmentation. In this method [287], the probabilis-
tic atlas-based segmentation result provides conditions specific to the patient, which
are used to generate a conditional SSM [66] (described in the previous section)
adaptive to the patient. The feature parameters are calculated on the gross shape
of the liver observed from the probabilistic atlas-based segmentation result, i.e.,
the object volume, the area of the projected object in the coronal plane, the 50th
percentile point of the x-coordinate, and so on. Figure 3.72 shows a schematic
diagram of the approach. Given the observed conditions as features obtained from
the target CT data, the conditional SSM is generated specifically to the given
conditions. The right bottom frame of Fig. 3.72 shows a simplified example of a

http://dx.doi.org/10.1007/978-4-431-55976-4_2
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Fig. 3.71 Segmentation of the liver from CT volume. Left: 3D shape of segmented liver region.
Distance error from the manual trace (ground truth) surface is color-coded according to the
indicated color bar. Right: Yellow and green contours denote manual trace and automated segmen-
tation, respectively. (a) Probabilistic atlas-based segmentation. (b) H-SSM-based segmentation. (c)
Graph cut refinement

conditional SSM of the liver, where the feature x0 is the lateral dimension of the
bounding box of the liver region obtained by probabilistic atlas-based segmentation.
Because the error from the width of the true liver shape is unavoidable in x0, the
error model of x0 is combined with the conventional conditional SSM so as to
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Fig. 3.72 Schematic diagram of conditional SSM generation from observed condition [287]

incorporate specificity inherent in the patient while maintaining sufficient generality.
Therefore, this conditional SSM represents the remaining ambiguity and expected
error after probabilistic atlas-based segmentation rather than inter-patient variability.
These generated conditional SSMs are shown to be particularly useful for accurate
segmentation of livers with largely deformed shapes [287].

Role in Diagnosis and Therapy of Liver Diseases Computational anatomy
approaches including machine learning are useful for characterizing diffuse and
focal liver abnormalities such as cirrhosis and tumors. Surgical planning for tumor
resection needs precise patient-specific anatomy, including relations of tumors to
vessels, and locations in anatomical segments of the liver. In the following, modeling
and application for diagnostic and therapeutic assistance are described.

Computer assistance is most commonly used to target tumors. There are two
main approaches for tumor detection and segmentation. One approach assumes pre-
segmentation of the liver region and the other does not. The former fails if the
pre-segmented liver misses the tumor region(s), which often occurs because tumors
usually have different intensity properties compared with normal tissues. The
nonsegmented approach may suffer from more false positives due to larger search
areas. In the former approach [179], inaccurate segmentation areas in the initial
conventional liver segmentation are detected by incorporating the proposed shape
ambiguity measure in subsequent level set segmentation. Figure 3.73 shows a typical
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Fig. 3.73 Segmentation of the liver and tumors [179]. Blue and yellow regions are manually
and automatically traced regions, respectively, and green regions are the overlapped regions. Red
regions denote false-positive detections by the automatic tumor segmentation

result of segmentation of the liver that includes tumors. The tumor segmentation
is performed inside the segmented liver regions. In one representative method of
the latter, ensemble learning was used for segmentation of tumor regions [257].
Recently, a robust statistics mechanism was incorporated in ensemble learning to
significantly improve tumor segmentation accuracy [260].

Liver cirrhosis/fibrosis is one of the important diseases of the liver. While
biopsy is still regarded as the method for definitive diagnosis, some noninvasive
diagnostic methods, such as ultrasound/MR elastography and blood tests, are
showing increased progress in diagnostic accuracy. Liver morphology can provide
useful diagnostic information because cirrhotic livers, which may initially enlarge,
subsequently shrink in size and are known to show characteristic shape deformations
[86] as shown in Fig. 3.74, which shows 3D visualizations of healthy (fibrosis stage
0) and cirrhotic (fibrosis stage 4) livers. The traditional quantitative imaging method
based on the ratio of the left to right lobe volumes [22] was successful to some
extent. SSMs are expected to well capture the characteristics of the organ shape, and
some successful results are reported in the brain [269]. One method to use shape
deformations for fibrosis quantification is to relate the shape parameters of SSMs



3 Understanding Medical Images Based on Computational Anatomy Models 245

Fig. 3.74 3D visualizations of liver shape (a) side view, (b) bottom view [120]. Top: Typical
cirrhotic liver (fibrosis stage 4). Bottom: Healthy liver (fibrosis stage 0)

with the fibrosis stage by using support vector regression (SVR) [120]. Accuracy in
fibrosis stage estimation improved by adopting the method using SSMs and SVR
(approximately 90% in sensitivity and specificity) [120] in comparison with the
traditional method based on the left and right lobe volumes (approximately 60–80%
in sensitivity and specificity).

Understanding patient-specific segmental anatomy of the liver is important,
especially for surgical planning for tumor resection. The computational approach to
approximating patient-specific segmental anatomy from CT images was addressed
by two seminal papers in the early 2000s [36, 252]. Selle et al. [252] demonstrated
that accurate and detailed vessel extraction and classification were critical for
accurate approximation. Several efforts for virtual reality systematization [36] and
automating the segmental anatomy approximation [228] according to the Couinaud
nomenclature have been made since these papers were published. Figure 3.75 shows
examples of automatically classified vessels and generated Couinaud liver segments
based on them [228].
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Fig. 3.75 Vessel extraction and classification of Couinaud liver segments [228]. (a) Vessel
enhancement (left) and labeling. (b) Anterior (left) and posterior (right) views of resulted
segmented anatomy

3.9.2 Pancreas

Anatomy The pancreas is located in the lesser sac deep in the upper abdomen.
It runs horizontally from liver to spleen, as shown in Fig. 3.76, and its shape
and location differ greatly between subjects. It has a specific relationship with
the surrounding vessels. The splenic vein runs along its length, and the superior
mesenteric vein runs posterior and perpendicular to the pancreas as it joins the portal
vein. All these vessels enhance with contrast (see Fig. 3.77).

Overview of Pancreas SegmentationAlgorithms Pancreatic segmentation from a
CT volume is crucial for subsequent detailed image analysis of pancreatic pathology
in a CAD system. So far, several algorithms have been proposed. One study [211]
used an algorithm that analyzed contrast-enhanced images; however, part of the
algorithm was executed manually, and it was based primarily on two-dimensional
image processing, which can degrade segmentation accuracy. A more sophisticated
automated pancreas segmentation algorithm has been presented [158], but it also
suffers from low segmentation accuracy due to large variations in the location and
shape of the pancreas. A third report [255] presented an algorithm that extracted the
pancreas as well as 11 surrounding organs simultaneously from a non-contrast CT
volume. A multi-atlas-based algorithm was proposed to extract multiple abdominal
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Liver Spleen

Pancreas

Splenic vein

Portal vein

Superior mesenteric vein 

Fig. 3.76 Anatomy of neighboring organs and vessels closely associated with the pancreas

(a) (c)(b)

Fig. 3.77 Examples of input contrast-enhanced CT volumes of the pancreas segmentation algo-
rithm (a) Early phase, (b) portal venous phase, (c) late phase

organs including pancreas [313]. Although multi-organ segmentation algorithms
might be useful for pancreas segmentation, such algorithms are explained in
Sect. 3.9.6. This section focuses on a single-organ segmentation algorithm, or an
automated pancreas segmentation algorithm uses a CA model, or an SSM, from
contrast-enhanced multiphase CT volumes [258] [259].

CA Models of the Pancreas and Their Application to Segmentation from CT
Images The inputs are three-phase CT volume data: early/arterial-, portal-, and
venous-phase volumes are presented in Fig. 3.77. Once the three-phase volumes
are aligned by a registration algorithm based on normalized mutual information
and radial basis function, segmentation of the liver and spleen is performed.
The segmentation process assigns a label to each voxel, based on MAP using
a probabilistic atlas and parameters estimated by an expectation maximization
algorithm. The portal, splenic, and superior mesenteric veins are then extracted
by a region-growing-based algorithm using location information for the extracted
liver and spleen to establish landmarks for pancreas registration between different
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subjects. An input patient volume is subsequently warped in a nonlinear fashion
with a radial basis function, such that landmarks in the input volume coincide with
those in the reference volume data. The second stage roughly extracts the pancreas
in the warped CT volume. This is based on the MAP method with a patient-specific
probabilistic atlas generated from an SSM of the pancreas or a level set distribution
model. After this rough segmentation, a morphological operation with a classifier
ensemble is performed to refine the boundary further.

The algorithm was trained using three-phase CT volumes from 98 cases whose
size was 512 � 512 � 161–261 voxels at a section interval of 1 mm. The pixel
interval in the axial direction ranged from 0.546 to 0.625 mm. To validate the
performance of the algorithm, it was applied to three-phase CT volumes from 20
test cases. Figure 3.78 shows examples of the segmentation for a test case where
the JI between the extracted pancreas and the true one was 0.560 using a MAP
segmentation step and 0.699 using a fine segmentation step. In summary, the average
JI of 20 cases was 0.579 using the fine segmentation step.

Compared with the segmentation performance in other organs, such as the
liver (see Sect. 3.9.1), the JI is relatively low. One possible reason is that since
the pancreas has a slightly lobulated texture, is closely applied to surrounding
structures, and is small in volume, the interobserver variability of segmentation
is large. In fact, the JI between two true pancreas regions manually delineated by
two independent observers (computer engineers) who have carried out studies on
medical image processing was 0.760 on average, which is much lower than that for
liver segmentation. Although the low JI of pancreas segmentation may be explained
by interobserver variability, it does not fully explain some differences between the

(a) (b) 

J.I.=69.9J.I.=56.0

:TP

:FP

:FN

(c) 

Fig. 3.78 Examples of MAP segmentation, fine segmentation, and its corresponding ground truth.
(a) Rough segment on result, (b) fine segmentation result, (c) ground truth
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segmentation performance and the JI. Variability in location, shape, and CT value
of the pancreas, as well as essential difficulties in segmentation of a deeply indented
and lobulated surface, are also contributing factors.

Computer-Aided Diagnosis in the Pancreas Pancreatic cancer is one of the major
causes of cancer-related mortality in Japan, accounting for 29,916 deaths in 2012
[55]. CT is the most widely used imaging examination for detection and staging.
CAD systems would be helpful to support the radiological interpretations and
findings.

A few algorithms for diagnosis of pancreatic lesions have been presented. One
group [130] presented an algorithm to discriminate between pancreatic ductal
adenocarcinoma and mass-forming pancreatitis based on the radiological findings
extracted by a radiologist, in which no medical image processing was performed.
A fuzzy c-means clustering-based tumor extraction algorithm was presented by
a second group [144], in which a tumor region was identified by combining the
clustering result with a simple manual input by a user. The algorithm was applied to
a few data, and the results were validated visually. A quantitative validation study
using a large database will be an important future goal in this field.

3.9.3 Spleen

Introduction The spleen is located in the left upper quadrant of the abdomen (see
Fig. 3.76) and is an important part of the reticuloendothelial system. Most of the
spleen segmentation algorithms from a CT volume have been reported as part of
the multi-organ segmentation scenario (Sect. 3.9.6). This subsection focuses on a
segmentation algorithm with a CA model, or an SSM, customized to the spleen
[261].

Machine learning is a popular technique in the field of medical image segmenta-
tion. In principle, an arbitrary machine learning algorithm, such as a support vector
machine and the AdaBoost algorithm [38, 84], can be applied to organ segmentation
where each voxel in a 3D image is classified by the algorithm as organ or
background. Because of the powerful classification performance of state-of-the-art
machine learning algorithms, this algorithm achieves higher segmentation accuracy
than conventional algorithms. The inherent weakness of machine learning-based
segmentation is, however, that voxel classification is carried out voxel by voxel,
independently, producing unnatural shapes from the point of view of anatomy. To
solve this problem, shape information has been incorporated in a machine learning-
based segmentation algorithm.

This section focuses on ensemble learning as a promising machine learning
technique, in particular a boosting algorithm, such as AdaBoost, whose performance
has been proved to be favorable in terms of not only classification accuracy but
also computational cost [38, 84]. Combining MRF with AdaBoost decreased false
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isolated connected components and holes in an extracted target region [279]. Several
papers have presented algorithms that consider shape features of a target region,
such as SpatialBoost [21] and Spatial AdaBoost [218]. Shape features used in these
algorithms are local features which do not capture global shape features. Global
shape features were introduced in the literature [4, 201]. There is, however, no
boosting algorithm that can take into account statistical shape variations of an organ.
This section presents ShapeBoost [261], which minimizes not only error loss but
also shape loss, and evaluates the accuracy of an extracted shape based on a subspace
of an SSM of the spleen.

Proposed Shape Loss Function Given a sample xi and its class label yi, the
conventional boosting algorithm AdaBoost [38, 84] generates a strong classification
function F(x), which consists of a series of weak classifiers by minimizing the
following loss function of F(x):

L .F.x// D
X

i2� exp .�yiF .xi// (3.19)

where a set � represents the entire area of the image to be processed. Because the
algorithm focuses on the error in each voxel, a surface extracted by a constructed
classifier often includes undesirable irregularity. We propose a new loss function,
given in Eq. (3.20), to make an extracted surface reasonable from the point of view
of CA:

L .F.x// DPi2� exp f�yiF .xi/C œ ln .G .F .xi//C 1/g
G .F .xi// D
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where H is a Heaviside function and � denotes a signed distance function. U is
a matrix which consists of eigenvectors of an SSM of an organ, or a level set
distribution model of the spleen in this study. W is a vector of signed distance
function of a training spleen label which includes wi. Oi is an operator that extracts
the ith element of a vector. The coefficient 	 represents the weighting between error
loss and shape loss. Intuitively speaking, shape loss G in Eq. 3.20 represents distance
between an extracted shape and a subspace of SSM, and its minimization causes the
segmentation results to be closer to the subspace, or the natural shape, in terms
of anatomy. Eventually, GradientBoost [85] was employed to minimize the loss of
function that is not a convex function, and a strong classifier for spleen segmentation
was obtained after minimization using a set of training labels.

Materials for validation were three-phase contrast-enhanced CT volumes, or
early/arterial, portal, and venous phases (see Fig. 3.77) scanned from 80 cases.
The size of the CT volume was 512 � 512 � 253–675 (voxels). A registration
algorithm based on a radial basis function with normalized mutual information
was used to align the different phase CT volumes. Spatial standardization based
on the abdominal cavity was employed to reduce variation in location of the spleen
[255]. Forty-two features were measured for weak classifiers of the ShapeBoost.
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Cross validation tests using 80 cases were carried out to validate the performance,
in which 40 cases were used for training a level set distribution model and a strong
classifier, and the constructed classifier was tested on the remaining 40 cases. The
same procedure was repeated after switching the roles of training and test.

Figure 3.79 shows examples of segmentation results where the resultant shape,
in particular, the shape of the splenic hilum (denoted by arrows), by the ShapeBoost
was more natural than that of AdaBoost, resulting in a higher JI between an
extracted spleen and a true one. The error rate decreased from 3.09 to 2.66%
on average (p < 0.01; Wilcoxon signed-rank test). After extracting a connected
component with maximum volume, average JI by ShapeBoost reached 0.764, which
was significantly higher than that by AdaBoost (p < 0.01; Wilcoxon signed-rank
test). Note that this process is a rough segmentation process which can be refined by
a graph cut-based algorithm as is done in lung and liver segmentation [210, 288].

3.9.4 Kidneys

This section deals with kidney segmentation algorithms followed by computer-aided
detection or diagnosis of kidney pathologies.

Overview of Kidney Segmentation Algorithms Several kidney segmentation
algorithms have been proposed for a non-contrast or a contrast-enhanced CT vol-
ume, such as a region-growing-based algorithm [176, 230], an algorithm based on
knowledge of organs’ location and CT values [163]. Three-dimensional deformable
model-based approaches have been proposed [137, 289] to achieve more sophisti-
cated boundaries. This section presents a 3D deformable model-based segmentation
algorithm with CA, or statistical shape feature [289].

A NURBS-based surface was employed to represent the surface of the kidney
because of its high flexibility in shape representation (see Fig. 3.80).

The following energy function was used for the segmentation:

E D Eext C !intEint D �
MU�1P
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MV�1P
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jDir .S .U;V//G� � rdI .S.U;V //j
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.x � x/t
P�1

UV .x � x/
(3.21)

where rd represents a gradient operator of gray values with difference distance
d, G¢ is a Gaussian function with standard deviation ¢ , I denotes an original
image, and * is a convolution operator. Function Dir defines the similarity between
direction of a gradient vector and that of a normal vector of the NURBS-based
surface. The second term is an internal energy which is the sum of Mahalanobis
distances from the shape feature vectors to its average. Shape feature vector x is
defined at each sampling point on the surface marked by black dots in Fig. 3.81,
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Fig. 3.79 Examples of segmentation results by ShapeBoost and AdaBoost (a) case 5, (b) case 14
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Fig. 3.80 Kidney surface represented by a NURBS function with control points (white dots) and
sampling points used for measuring shape features (black dots) (Figure 3 of Ref. [289])

Fig. 3.81 An example of kidney segmentation; initial boundary (left) and final boundary extracted
by the proposed algorithm (right)

and components of the shape feature vector are principal curvatures, or minimum
and maximum curvatures, at the sampling points. Statistical information about the
shape variation is incorporated into the deformable model via an internal energy
whose average vector x and covariance matrix †UV were computed from training
dataset of kidneys.
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Thirty-three upper abdominal CT volumes were used to evaluate the performance
of the algorithm. The size of the volume was 512 � 512 � 18–24, the resolution
was 0.625 or 0.630 mm, and the section thickness was 10 mm. Figure 3.81 shows
an example of initial boundaries of the deformable model and its segmentation
results after minimizing Eq. 3.21, in which the final state of the deformable model
succeeded in capturing the true boundaries of the kidney. When we used the internal
energy, the JI between an extracted kidney region and a true one increased by 0.028
on average from 33 cases compared with the results of the same cases without the
internal energy, resulting in a mean of 0.865.

Computer-Aided Diagnosis of the Kidneys The number of kidney cancers in
Japan is increasing every year [55]. It is desirable to detect the disease at the earliest
possible stage using state-of-the-art imaging modalities, such as MDCT, to increase
the likelihood of successful diagnosis and treatment.

Some studies described algorithms to measure clinically useful information,
e.g., volume of a kidney tumor, in which region-growing- and thresholding-based
segmentation algorithms were used to segment tumors [155, 270]. A semiautomated
tumor segmentation algorithm from multiphase CT volumes was proposed [177]
where a level set-based segmentation algorithm was presented followed by experi-
mental results using 12 tumors from ten cases. The Dice coefficient between a true
tumor and an extracted one was 0.80 on average. Figure 3.82 shows an example
of extracted tumors [177]. In the segmented lesions, the histograms of curvature-
related features were computed to quantify and classify the lesion types [177, 178].

3.9.5 Digestive Tract Segmentation

Intestinal Region: Segmentation The digestive tract includes the oropharynx,
esophagus, stomach, small intestine, colon, rectum, and anus. The system comprises
a wall surrounding a lumen. These regions are natural orphans and contain some airs
flown from the mouth.

3.9.5.1 Stomach

The stomach, and, to a certain extent, the esophagus, can be distended with extra
liquid contrast agent or with gas from a gas-forming agent administered just before
imaging. If the lumen is well distended, the luminal regions of the stomach can
be easily segmented by a simple thresholding process followed by the connected
component selection process or the region-growing process, the seed point of which
is set inside an area of gas density of the stomach. Figure 3.83 shows examples of
segmentation results of the luminal regions of the stomach.
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Fig. 3.82 An example of extracted kidney tumors; original CT slice (left upper), original CT slice
with extracted boundary (right upper), and 3D display of the extracted region (lower) (Figure 8 of
Ref. [177])

3.9.5.2 Intestine

Overview Segmentation information from the small intestine and colon can be
used for finding suspicious regions on CT or MR images. The regional segmentation
process is difficult if the segment in question is not filled with gas or radiopaque
contrast (CT) or sorbitol solution or other hyperosmotic contrast (MRI). It is
possible to instill contrast into the small intestine via nasojejunal tube (enteroclysis),
but the process is difficult and uncomfortable for the patient, so enterography with
oral contrast is preferred. It is a rule of thumb in medical imaging that luminal
distension is optimized if the lumen is temporarily occluded at both ends; the
pylorus and duodenal bulb are not completely competent valves, and the ileocecal
valve is often incompetent, making it difficult to totally distend the small bowel.
Because it is difficult to expand the entire small intestine with gas or liquid contrast,
and peristalsis empties short sections, it is more difficult for radiologists to follow
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Fig. 3.83 Example of luminal regions of the stomach. Outside views of luminal regions are
rendered

the entire course of the long–small intestine, as opposed to the shorter colon, on
a CT scan. Typically, the number of “fragments” (opacified segments separated
by peristaltic segments) of the small intestine is 20 and that of the colon is five.
The large intestine usually runs almost in a simple shape like a U shape. The
small intestines run in an unpredictable shape. Fragment connection is much more
important in the small intestine extraction from CT images than that of the colon.
Oda et al. (2014) tried to solve this issue by enumerating all possibilities of fragment
connection [220]. This method first obtains centerlines of the fragmented luminal
regions (Fig. 3.84). The i-th centerline is expressed as Ln .n D 1 � � �N/. A terminal
point and the other terminal point of the centerline Ln are expressed as v2n and v2nC1,
respectively (Fig. 3.85). For one ordered sequence of L, we compute

E D w1DC w2R; (3.22)

where D is a distance term and R is a direction term. D is described as

D D 1

N

XN

jD0
dj
bdj : (3.23)

Here N is the number of the centerlines of the fragmented luminal regions. Here we
introduce Cj . j D 0 � � �N � 2/ that expresses the connection of the centerlines.bdj is
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Fig. 3.84 Example of intestinal luminal regions and their centerlines

Fig. 3.85 Concept of fragmented region connection

the maximum distance in the connections. Direction term R is defined as

R D 1

N

XN�2
0

rj;1 
 rj;2 C 1
2

(3.24)

where rj;1 and rj;2 are running directions of the centerlines connected by Cj.
Fragments connection can be obtained by finding a set of connection minimizing
Eq. 3.22. Figure 3.86 shows an example where fragmented regions are connected
correctly by the above process.

Colon lumen segmentation is easier, given the facts that the colon is shorter
and can be opacified with contrast or distended with air in a retrograde fashion
if necessary, with the ileocecal valve at the beginning of the ascending colon
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Fig. 3.86 Example of fragmented region connection

and a rectal balloon at the end of the colon acting as plugs to allow distension.
Segmentation data on the colonic lumen can be used for eliminating processing
regions in automated polyp detection. They can also be used for computing
the centerlines of luminal segments, enabling automated fly-through inside the
lumen. Such segmentation includes the lumen and the intestinal wall. Because
peristalsis changes the luminal shape, it is difficult to employ statistical methods for
segmenting intestinal organs. It is important to connect luminal fragments. A typical
method uses the distances between the segments. Two segments are connected if the
distance between these segments is lower than a certain threshold value.

Large Intestine Threshold value t for segmenting the luminal regions is usually
set as

t D fw C fa
2

(3.25)

where fw means a CT value of the large intestine wall and fa shows a CT value of
air. Typically fw and fa are �90 H.U. and �1000 H.U., respectively.

Figure 3.87 shows an example of luminal region extraction of the colon.

1. Intestinal wall segmentation

Intestinal wall extraction from CT images is a difficult problem when we
compare intestinal wall segmentation with intestinal lumen segmentation. This is
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Fig. 3.87 Example of
luminal regions of the colon.
Outside views of luminal
regions are rendered

because normal intestinal wall in a distended segment is almost invisible on CT.
Masutani et al. tried to segment the colonic wall regions from abdominal CT images.
This method extracts the colonic wall regions in combination of thresholding and
binary image manipulations [187].

3.9.6 Multiple Abdominal Organs

Introduction In the human body, various anatomical structures are interrelated
in a complex manner. The abdomen is the most appropriate domain to address
the problem of representing multi-organ interrelationships. The pioneering work
on abdominal multi-organ segmentation by Shimizu et al. was published in 2007
[256]. Since then, several methods have been proposed [180, 223–225, 299]. In this
subsection, statistical modeling of interrelated organs is addressed, and one of the
latest works is described [225]. The organs to be segmented are the liver, spleen, left
and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava.

Basic Unit for Modeling Multiple Organs: Prediction-Based CA Models We
begin with two interrelated organs before addressing multiple organs generally. As
a typical example of two organs, we first consider the liver and gallbladder. These
two organs are closely situated, and the gallbladder handles the bile secreted by the
liver. It is desirable to represent interrelations between them in addition to the two
separate CA models. To represent two organs statistically, two approaches will be
considered, that is, joint probability representation and conditional representation.
If we consider joint representation, one possible method is to regard the two organs
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as one object. One SSM of the two organs can be represented in a hierarchical
manner similar to H-SSMs described in the previous section. With conditional
representation, the liver can be segmented in a sufficiently accurate manner by a
single-organ segmentation method, while the error in gallbladder segmentation is
typically much larger than the liver due to its small size and locational variability.
Therefore, it would be useful for CA models of the gallbladder to be conditionally
modeled under the assumption that the segmentation result of the liver is given.
Figure 3.88a shows a conventional as well as a conditional probabilistic atlas of
the gallbladder when the liver shape is given, which represents the ambiguity of its
shape and location remaining after their prediction from the segmented liver shape.
The prediction scheme is formulated using partial least squares regression (PLSR)
of the target organ (gallbladder) from the predictor organ, the liver. In this form,
the conditional probabilistic atlas is considered to represent the prediction error of
PLSR. We call it a prediction-based probabilistic atlas. The prediction error is also
represented as an SSM, which is a different form of conditional modeling and called
a prediction-based SSM. This form is applied to various interrelated organs. Figure
3.88b shows the prediction-based probabilistic atlas of the pancreas given the liver
and spleen shapes, in comparison with a conventional probabilistic atlas.

Multi-organ Computational Anatomy Modeling: Organ Correlation Graph
(OCG) To represent interrelations among multiple organs more generally, a graph
representation combining the basic units described in the above paragraph is
formulated. Figure 3.89 shows a graph representation called the organ correlation
graph (OCG). In the OCG, the basic unit is represented by nodes and directed
arcs of a graph, in which the nodes correspond to organs and the directed arcs
connect the predictor to target organs. One problem is how to find the arcs between

Fig. 3.88 Conventional and prediction-based probabilistic atlas of (a) gallbladder and (b) pan-
creas. Left: Single-organ modeling. Right: Multi-organ modeling incorporating interrelation with
the liver and spleen. P (Pan) denotes the probabilistic atlas of the pancreas while P (PanjLiv, Sp)
the probabilistic atlas of the pancreas under the condition that the regions of the liver and spleen
are known



3 Understanding Medical Images Based on Computational Anatomy Models 261

Fig. 3.89 Organ correlation graph (OCG) of the upper abdominal organs

nodes. Basically, the arcs are determined so as to minimize prediction error. For
example, the predictor organs predicting the gallbladder are selected so that the
prediction error is minimized, and the arcs are connected from the selected predictor
organ nodes to the gallbladder node. Manually defined constraints can also be
incorporated. For example, the liver is regarded as an anchor organ, and its region is
assumed to be segmented beforehand using the methods as described in the previous
section. That is, the liver can only be a predictor organ node and any arcs do not
direct to it. Conversely, the gallbladder can only be a target organ node because its
segmentation may not be accurate enough to use as one of the predictor organs.
Once the set of organ nodes and the abovementioned manually defined constraints
on them are given, the directed arcs in the OCG are determined automatically by
finding the incoming arcs to each target organ node, which minimize the prediction
error subject to satisfying these manually defined constraints. By using the OCG,
the prediction-based CA models (i.e., prediction-based probabilistic atlas and SSM)
can be generated once the regions of the predictor organs are segmented.

Multi-organ Segmentation The OCG is applied to automated multi-organ seg-
mentation. The OCG is used for generating a procedure for automated multi-organ
segmentation from abdominal CT data. The basic assumptions are as follows: (1)
The field of view (FOV) of input CT data includes the whole liver, which is the
anchor organ. (2) The intensity models of each organ and its background, which
are the probability distributions of the CT values inside and outside the organ
region, respectively, are available (or a procedure for estimating the intensity models
by using the OCG and input CT data is available). The segmentation method
at each node of the OCG is basically the same as that which was applied to
liver segmentation (described in the previous section), but the difference is that
the conventional probabilistic atlas and SSM are replaced by the prediction-based
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ones. Each organ node is prepared to start the segmentation procedure when the
segmentation results at the predictor organ nodes are obtained. The segmentation
procedures are executed at all the prepared nodes in a synchronized manner in the
OCG and repeated several times to obtain the final segmentation results at all the
nodes.

The abovementioned multi-organ segmentation method was tested using more
than 100 CT datasets obtained under four different imaging conditions in contrast
agent and CT scanner at two hospitals. The intensity models were constructed for
each imaging protocol while the same priors on shape and location were utilized for
all the datasets. Leave-one-out cross validation was performed. Figure 3.90 shows
typical results. The prediction-based priors were effective in these results. JI was
used for accuracy evaluation.

Fig. 3.90 Results of abdominal multi-organ segmentation from CT data. Table shows JI of results
of multi-organ (prediction-based) and single-organ (conventional) methods. The improvement of
segmentation accuracy was notable in the organs surrounded by red rectangles in the Table
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3.9.7 Abdominal Aorta Segmentation

Abdominal Aorta and Anatomical Models
The abdominal aorta is usually located to the left of the center of the body and
runs along the spine toward the lower abdomen, where it bifurcates. Anatomically
important arteries, such as the celiac and superior mesenteric arteries arise from the
abdominal aorta. Therefore, abdominal aortic segmentation is essential to recognize
the network of abdominal arteries.

It is easy to segment the abdominal aorta region from a contrast-enhanced CT
volume of a patient who does not suffer from aortic diseases such an aneurysm,
since the contour of the aorta is very clear. A simple region-growing method can
achieve sufficient segmentation. However, for CT volumes from a patient suffering
from an abdominal aortic aneurysm, or non-contrast-enhanced CT volumes, the
segmentation of the aorta focusing only on the intensity distribution does not
work well. It causes the lack of the aneurysm area or over-segmentation of other
surrounding organs. Model-based segmentation methods have been reported [46,
73, 157, 227, 334] to cope with these difficulties.

Since the aorta is a tubular organ, the aorta model consists of a tube surface. A
centerline of the aorta is also modeled together with a tube surface. The tube surface
is constructed by parametric surfaces such as B-spline. A surface model may also
have the appearance of the aortic contour which represents the intensity or edge
distribution at the vicinity of the contour. The distribution information is analyzed
using PCA, and the appearance is often represented as eigenvectors.

Abdominal Aorta Segmentation The region-growing approach to segmentation
becomes inaccurate in the face of abnormalities such as aortic aneurysms. There are
several approaches to maintain segmentation accuracy.

The Centerline Model and Hough Transformation First, the centerline model
of the aorta is fitted to an input CT volume. One can make a likelihood map of
the aortic centerline by detecting edges of the aorta and performing the distance
transformation to the edge voxels. The central parts of the aorta tend to have larger
distance, and the distance information is used as likelihoods of the aortic centerline.
A model fitting technique is applied which maximizes likelihoods on the centerline
model. Then, the aortic surface is recovered by performing the reverse distance
transformation using distance values on the centerline. In the recovery step, the
Hough transformation may be adopted for modification of the distance value. If
false edges are detected in the construction of a likelihood map, the distance value
on the centerline becomes smaller. The Hough transformation is thus applied to the
edge voxels, and the center points of the aorta are modified to the location which
has the maximum votes.

The Tube Surface Model The tube surface model is used to segment the aortic
surface more accurately. After the centerline model of the aorta is fitted, the surface
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model is deformed so as to fit it to the contour of the aorta. The likelihood map can
be used as the deforming energy. The appearance of the aortic contour can also be
added to the energy.

3.9.8 Abdominal Blood Vessel Segmentation

Abdominal blood vessel segmentation is an important task in CA. The basic
framework of the segmentation process can be summarized as follows: (a) simple
thresholding, (b) region growing, and (c) employment of a vessel enhancement filter.
Because the density values of abdominal blood vessels and other organs are similar,
intravenous contrast is used to enhance the vessels. Relatively large blood vessels
have very high image contrast and higher CT values; segmentation of these blood
vessels can be performed using simple thresholding techniques with some connected
components analysis.

Thresholding-Based Vessel Extraction This method extracts abdominal blood
vessel regions from 3D abdominal CT images. As stated before, contrast-enhanced
CT acquisition is performed to achieve higher density in the blood vessels.

Figure 3.91 shows an example of abdominal contrast-enhanced CT images,
which were taken in the arterial phase. Because abdominal regions are highly
contrasted areas, it is easy to segment these regions using a simple thresholding
technique followed by connected components analysis, which removes some bone
areas.

Fig. 3.91 Example of 3D-rendered view of abdominal contrast-enhanced CT image
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Region Growing The process extracts abdominal blood vessels by tracing high-
intensity regions on contrast-enhanced CT images. The first step, that of continuous
growing of regions from a given starting point, often uses spherical structure
elements. Typical growing conditions are based on intensity values. Because
abdominal blood vessels have a branching structure, growing conditions considering
such branching are also developed.

Blood Vessel Enhancement Filter The diameters of abdominal blood vessels vis-
ible on CT vary from 30 mm in size to submillimeter. Because of the partial volume
effect, the intensity of small blood vessels is lower. Also, absolute intensity values of
small blood vessels become smaller than those of large blood vessels. Thresholding
or region-growing methods may fail to detect abdominal blood vessels because of
such phenomena. This is the reason for using a blood vessel enhancement filter.
Second-order differential intensity analysis is a popular technique in enhancing
blood vessels on 3D CT images. Hessian-based analysis is widely used in the field
of medical image analysis [81, 243]. Blood vessel enhancement filtering can be
performed by the method shown in Sect. 3.4.2.2.

First a Hessian matrix H is obtained at a target point p and eigenvalues
	1; 	2; 	3 .0 � 	1 � 	2 � 	3/ are computed for a predefined scale. The blood
vessel regions are extracted as a set of voxels that satisfy

	3 � 	2 	 	3 � 0: (3.26)

There is always an array of diameters of vessels as they branch. Because the
Hessian-based approach of blood vessel region extraction is quite sensitive to the
diameter of a blood vessel, a multi-scale approach changing the ¢ in Hessian matrix
computation is performed to enable appropriate extraction. Figure 3.92 shows an
example of blood vessel regions extracted by Hessian-based analysis.

Fig. 3.92 Example of blood vessel extraction based on Hessian analysis
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3.9.9 Anatomical Labeling of Abdominal Blood Vessels

Definition In CA, anatomical labeling is important. Abdominal blood vessel
labeling can be understood as the procedure to give labels to each branch (edge)
of a graph structure representing the abdominal blood vessel network of a subject.

Let bi be a branch of the graph showing an abdominal blood vessel network. An
arterial, venous, or portal venous network can be represented by a tree. Here a set of
anatomical label classes are written as

C D fcig : (3.27)

Also a set of branches to be labeled as

B D fbig : (3.28)

Machine Learning-Based Approach One approach for anatomical labeling is to
employ machine learning [48, 190, 200].This process can be formulated as the
process that finds the suitable category of a branch bi from feature values fi of bi. It
can be written as

Li D H .fi/ : (3.29)

Of course, this approach assigns anatomical labels to each branch based on features
computed locally. Global information is not considered. A process to correct
labeling results will be necessary.

Practical Example of Anatomical Labeling As a given blood vessel region is
expressed as a tree structure, likelihoods of candidate anatomical names for each
branch in the tree structure are computed using a machine learning-based method.
Possible branching patterns are expressed in a graph called a bifurcation graph, a
graph structure that is different from the tree structure used to represent the blood
vessel region. Each node of the bifurcation graph expresses each anatomical name,
and each edge expresses a possible bifurcation. The edges are assigned weights
based on the likelihoods of the branches in the tree structure. The directed spanning
tree of the bifurcation graph represents a branching pattern. The optimum branching
pattern is obtained by computing the directed maximum spanning tree. Each branch
in the tree structure is labeled based on the branching pattern.

This algorithm was evaluated using 50 sets of abdominal CT volume data. The
recall and precision rates of abdominal arteries were 89.3% and 92.9%, and the
recall and precision rates of the hepatic portal system were 86.0% and 86.3%,
respectively. Examples of results of automated anatomical labeling are shown in
Fig. 3.93. In this experiment, 80.8% of the branching patterns of major blood vessels
that have branching variations were obtained correctly.
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(b)

(a)

Fig. 3.93 Examples of results of automated anatomical labeling. (a) Abdominal arteries. (b)
Hepatic portal system
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Abstract This chapter shows applied technologies using computational anatomy
(CA) models. CA systems based on clinical images assist physicians by providing
useful information related to diagnostic and therapeutic procedures. Such systems
include computer-aided diagnosis and computer-assisted surgery systems. A thor-
ough understanding of anatomy is essential when designing these systems. It is
important to understand how anatomical information extracted by a computer is
used. In this chapter, we introduce applications of CA in three categories: (a)
computer-aided diagnosis, (b) computer-assisted therapy and intervention, and (c)
computer-assisted autopsy imaging. The technical details of these applications are
discussed.

Keywords Computer-aided diagnosis • Computer-assisted surgery medical image
processing applications

4.1 Application and Systematization of CA

Computational anatomy (CA) has the potential to change the world of medical
imaging techniques. Its detailed analysis of anatomy holds the promise of improved
quality and precision of diagnostic imaging and therapy.

Well-designed CA-assisted medical imaging and surgical systems are beginning
to play a role in many centers. These systems are mainly classified into three
categories: (a) computer-aided diagnosis (CAD), (b) surgical assistance systems,
and (c) fusion-aid system of diagnosis and surgery.

CA aims to systematize whole-body anatomy based on medical images with
the aim of providing supporting technologies for medical image interpretation
and surgery. For example, in automated detection of lymph nodes from computed
tomographic (CT) images, anatomical structure information may reduce false-
positive regions from candidate sets of lymph nodes. The Hessian-based approach
for lymph node extraction from volumetric CT images detects many false-positive
foci in regions such as the small or large intestine. Such false-positive regions can
be easily removed if we could understand patient anatomy from CT images.

Another example is utilization of patient anatomy data from medical images in
computer-assisted intervention. Surgical navigation assistance is used widely for
efficiency and achieving optimal outcomes. A typical surgical navigation system
can show the location of a forceps in real time on three-dimensional (3D) rendered
views of a surgical patient. A surgical navigation system provides 3D rendering of
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patient anatomy, which is often called the “virtual endoscopic view,” synchronized
with endoscopic motion. If these views are color-coded to anatomical structures, the
surgical navigation view becomes much informative. Such views may streamline
surgeons’ intraoperative decisions. This review will explore new horizons of
surgical assistance.

4.2 Computer-Assisted Diagnosis

CAD has been rapidly developing over the past three decades. Using dedicated
computer systems, CAD interprets medical images and provides a “second opinion.”
The final medical decision, however, is ultimately made by a physician [1–3].
Studies on CAD systems and technology reveal that CAD improves diagnostic
accuracy of physicians and lightens the burden of increasing workload. Moreover,
CAD reduces the number of lesions overlooked because of fatigue or high volumes
of data and improves inter- and intrareader variability. CAD has been successfully
applied in a variety of clinical areas such as mammography, chest radiography
and CT, and CT colonography. All of these technologies are approved by the US
Food and Drug Administration (FDA) and are commercially available in the USA
and some other countries. These CAD systems are classified as computer-aided
detection (CADe) systems and can be differentiated from so-called computer-aided
diagnosis (CADx) systems, which evaluate conspicuous structures and determine
whether they are benign or malignant.

Enlisting the assistance of a computer to analyze medical images is not a new
idea. In fact, in 1963, Lodwick et al. investigated using a computer to diagnose bone
tumors [4]. In 1964, Meyers et al. proposed a system to automatically distinguish
normal chest radiographs from abnormal ones by measuring the cardiothoracic ratio
[5]. In 1967, Winsberg et al. employed optical scanning to detect radiographic
abnormalities in mammograms [6]. Although these earlier systems differ from
CAD as we know it today, most of these researchers were well on their way to
designing automated diagnostic systems. One of the most important years in the
history of CAD was 1998. This year marked the transition of CAD technologies
from the research phase to clinical practice with the success of ImageChecker
(R2 Technology, Inc., Sunnyvale CA, USA; later acquired by Hologic, Inc.,
Bedford MA, USA in 2006), which obtained FDA approval. ImageChecker is a
computer system intended to mark regions of interest (ROIs) on routine screening
mammograms. Today, it is estimated that more than 10,000 mammography CAD
systems are used by hospitals, clinics, and screening centers across the USA.

CAD systems target lesions in every human organ and tissue and work with
every imaging modality currently in clinical use. Many of the CAD technologies
developed to date rely on brute force. For CADe, this means systematically locating
regions displaying lesion-like features. With breast mass detection, for example,
CADe systems search for regions having the potential characteristics of a tumor by
looking for oval shapes with a certain level of contrast. Similarly, CADx systems
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measure and analyze malignancy characteristics of candidate regions (e.g., the state
of the edges) using feature values. Incorporating the new concept of CA into existing
CAD systems is very rare [7]. Regardless, new techniques are being developed and
applied, to a limited extent, to basic research in image analysis and as a component
of CAD systems.

While a number of CAD systems have been implemented for clinical use, several
technical problems exist that must be addressed. In CADe systems, false-positive
(FP) cases, where the computer erroneously detects a lesion, always exist. The FP
rates in current CADe systems are known to be five to ten times greater than those
of physicians. To further reduce the FP rate and enhance CADe performance, new
techniques must be incorporated that consider anatomical structural information
in regions surrounding candidate lesions. For example, if a CADe system can
accurately determine whether a feature found in a thoracic CT is a nodule or part
of a vessel, the FP rate can potentially be greatly reduced. For this to be possible,
a technique based on anatomical information that accurately differentiates between
the two types of vessels (arteries and veins) is required.

A more sophisticated CAD system would be one with the capability of iden-
tifying lesions across multiple organs. The system would first need to determine
where the target organ or organs are located within the image. In the case of
multiple organs, information regarding their location in relation to each other would
also be required. Techniques that can address issues such as automatic landmark
detection, a probabilistic atlas construction method, a statistical shape model (SSM)
construction method, and utilization of an anatomical knowledge database are
explained in Chap. 2. These techniques must be expressed mathematically to achieve
these goals.

It is expected that techniques based on CA will lead to the development of next-
generation CAD systems that are even more sophisticated, with the capability to
handle multiple organs and multiple diseases.

4.2.1 Detection

4.2.1.1 Lung Nodule Detection

Introduction

This section discusses CAD of lung cancer on CT images. A promising application
of computational anatomical models is the automatic detection of pulmonary
nodules as lung cancer candidates. Another application is to suggest malignancy
or benignity of nodules to support radiologists/physicians in diagnosing the dis-
ease. Other applications, including characterization of time-interval changes of
pulmonary nodules using follow-up CT images, and prognosis generation, are
important topics in the implementation of CAD in lung cancer management.

Lung cancer is the most common cause of cancer death worldwide [8, 9] . CT
is the modality of choice for lung imaging. There is abundant evidence that CT
screening with a low-dose imaging protocol improves sensitivity for identification
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of pulmonary nodules compared with plain radiography [10–12]. Research results
from the National Lung Screening Trial (NLST) revealed that screening for lung
nodules with low-dose CT (LDCT) reduced lung cancer mortality in heavy smokers
by 20% compared with plain chest radiography [13].

Recently, results of two lung cancer screening studies showed the ability of CT
to differentiate malignant from benign nodules before invasive biopsy procedures
are considered [14, 15]. In a study by Aberle et al., an analysis of NLST results
found that by the third annual screening, radiologist can distinguish malignant from
benign nodules detected on earlier screening rounds based on change over time
[14]. Since even benign nodules can increase in size, the quantitative tools in CAD
system might assist radiologists to assess the growth ratio of nodules in annual
screening. McWilliams et al. found that analyzing patient and nodule characteristics
can be used to estimate the malignant potential of pulmonary nodules detected
on baseline LDCT screening [15]. The authors created two prediction models to
determine whether a nodule detected on the first CT scan was cancerous or not.
One model consisted of the limited malignancy predictors that were significant,
and the other included additional variables thought to be associated with a higher
risk of malignancy. Analysis of nodule characteristics included nodule type (solid,
nonsolid, or part solid), whether nodule margins were smooth or spiculated, nodule
location in the lung, and presence of visible emphysema. Analyses of these
nodule characteristics were carried out by visual assessment. They concluded that
predictors in the full model included older age, female sex, family history of lung
cancer, emphysema, larger nodule size, location of the nodule in the upper lobe,
part-solid nodule type, lower nodule count, and spiculation. The readers who are
interested in the management of solitary and multiple pulmonary nodules can refer
the statement from the Fleischner Society [16]. Subjective radiologic descriptors
of pulmonary nodules are replaced by quantitative metrics that enable statistical
comparisons between features and clinical outcomes; computer-aided diagnosis for
lung nodules (CADx) has become one of the most active research areas as well as
CADe [17–25].

Generic Scheme in CADe Systems for Lung Cancer

A generic scheme in CADe systems of LDCT screening for lung cancer usually
consists of the following major steps: LDCT acquisition, preprocessing, segmenta-
tion of pulmonary structures, initial candidate detection, reduction of false-positive
(FP) detections, and lung nodule detection.

(a) LDCT acquisition: The scan and reconstruction parameters of CT are impor-
tant factors in the performance of CADe. Narrow collimation with reconstruc-
tions of thin sections is recommended to improve the detection of nodules
[26–28]. Radiation dose is a key concern [29, 30]. With the advance of
iterative reconstruction techniques, ultralow-dose chest CT with a radiation
dose comparable to that of chest radiography might be considered when
designing future screening protocols [30]. To develop, train, and validate CADe
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systems, public databases are available. The Lung Image Database Consortium
(LIDC) offers annotated chest CT scans [31]. To compare CADe systems for
nodule detection, the ANODE09 dataset is another publicly available database
in which all data were provided by the University Medical Center Utrecht and
originate from the NELSON study, the largest CT lung cancer screening trial
in Europe [32].To benchmark the performance of developed CAD systems, the
publicly available CT databases become more important [33, 34].

(b) Preprocessing: Before beginning with detection steps, some initial processing
is performed on the original CT images to remove defects caused by the image
acquisition process such as noise and to enhance the characteristics of lung
nodule candidates [25, 35–37].

(c) Segmentation of pulmonary structures: Figure 4.1 shows anatomical struc-
tures on an axial chest CT section. The segmentation of the left and right lungs
from chest CT images is performed to restrict the nodule detection to the lung
volumes. The major portion of the lungs comprises lung parenchyma that is

Fig. 4.1 Pulmonary structures on CT images. Within the thorax, the ribs enclose the lungs, and
the diaphragm lies beneath the bases of the lungs, separating the thoracic and abdominal cavities.
The mediastinum between the two lungs consists of the heart, major blood vessels, the esophagus,
and the trachea. The pulmonary arteries enter the lungs; the pulmonary veins exit the lungs. The
blood vessels, airways, and lymphatics at the root of each lung collect in the hilum and enter
the mediastinum. The lungs consist of airways, vessels, and the lung parenchyma. The left and
right lungs are usually subdivided into two lobes (the upper and lower lobes) and three lobes (the
upper, middle, and lower lobes), respectively. The five lobes are separated by fissures of varying
completeness, which are potential spaces lined by the visceral pleura. The visceral pleura covers
all the lung parenchyma, and a second layer of parietal pleura is attached to the chest wall and
the mediastinum. The lobes are further subdivided into segments, which are defined by bronchial
supply
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involved in gas exchange. Because the lung parenchyma has a lower density,
around �900 HU, than the surrounding tissue in chest CT images of healthy
subjects, many lung segmentation algorithms are based on a thresholding
approach. The threshold-based methods consist of three major steps: (1)
extraction of the preliminary lung regions using thresholding, (2) identification
of lungs and separation between left and right lungs, and (3) refinement of the
lung shapes to smooth the borders and include vessels in the segmentation result
[18, 23, 24]. When the higher densities of the abnormalities are included in the
lungs compared with the density of normal lung parenchyma, the conventional
threshold-based lung segmentation methods result in segmentation errors [24,
38]. To handle this situation, atlas-based segmentation of pathological lungs
[39], hybrid lung segmentation in which a conventional threshold-based method
and a multi-atlas-based algorithm using nonrigid registration are combined [40],
and a graph cut-based segmentation in which multiple possible shapes of lungs
can be taken into account [41] have been proposed. Segmentation methods
of vessels, airways, pleurae, lobes, segments, and ribs have been studied
[18, 24, 42]. Figure 4.2 presents some segmentation results of pulmonary
structures [42–45].

(d) Initial candidate detection: After preprocessing, initial candidate detection is
employed to locate potential lung nodules. There are many strategies to detect
nodule candidates [18–25, 32]: multiple gray-level thresholding [36, 46, 47],
fuzzy clustering and surface curvature [45], template matching [48], a model-
based image understanding technique [49], a mathematic model of anatomic
structures [50, 51], mathematical morphology [52, 53], a convergence index
filter [54], Gaussian curve fitting [55], shape-based genetic algorithm [56],
geometric model based on the analysis of the signed distance field [57], shape
index [35, 58], intensity structure enhancement [37, 59, 60], and gradient
analysis [37, 61, 62].

(e) Reduction of FP detections and lung nodule detection: The pattern features
of lesion candidates such as gray-level-based features, texture features, and
morphological features are extracted. Once a candidate’s characteristics are
obtained, the step tries to remove FPs and retain potential lung nodules. In this
procedure, classifiers are widely used [18–25, 32]. The role of the classifiers is
to determine optimal boundaries between lung nodules and non-lesions in the
multidimensional feature space, which is generated by the input features of the
candidates. There are a number of classification techniques: linear discriminant
analysis [36, 46, 54, 60–62], rule-based classifier [45, 47, 48, 53, 56, 59], 3D
MRF models [50], neural network [37, 52, 55, 63], Bayesian classifier [51],
fuzzy logic [49], shape similarity [57], support vector machine [58], and k-
nearest neighbor [35].

Table 4.1 summarizes the principal methods of lung nodule detection that are
covered in this section, looking at sensitivity, FP rate, number of nodules used
in validation, and size of nodules. The performances given are the best perfor-
mances when performances based on several conditions are included in the study
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Fig. 4.2 Examples of the segmentation of pulmonary structures. (a) Bones including ribs and
vertebrae. Color codes represent the classifications of the ribs and vertebrae. (b) Lung lobes. Green,
pink, and red represent the upper, middle, lower lobes of the right lung. Blue and yellow represent
the upper and lower lobes of the left lung. (c) Lung segments. Color codes represent the separation
of each lobe into lung segments. (d) Pulmonary vessels, trachea, and bronchi. White: trachea and
bronchi. Blue and pink represent the segmentation result of pulmonary vein and artery

description. The comparison of the results of CADe performance using different
datasets, the different natures and characteristics of the nodules, and various evalu-
ation methods [20] is of limited value. Furthermore, though the reference standard
for positive cases is thought of as a gold standard (ground truth), the determination
of a perfect gold standard is not an easy task. Because the reference standard is
usually determined by an expert panel, substantial variability has been reported
in the definition of a gold standard for identifying nodules on CT images [31].
In the ANODE09 study, a comparative study on the same dataset was performed
[32]. The performances of six CADe systems (five from academic groups and one
commercially available system) for lung nodule detection were evaluated using a
database of 55 scans and demonstrated that combining the outputs of the CADe



4 Applied Technologies and Systems 293

T
ab

le
4.
1

Su
m

m
ar

y
of

th
e

re
po

rt
ed

be
st

pe
rf

or
m

an
ce

of
C

A
D

e
sy

st
em

s
fo

r
de

te
ct

io
n

lu
ng

no
du

le
s

A
ut

ho
r

Y
ea

r

D
et

ec
ti

on
sc

he
m

es
in

it
ia

lc
an

di
da

te
de

te
ct

io
n/

FP
re

du
ct

io
n

an
d

lu
ng

no
du

le
de

te
ct

io
n

N
o.

of
no

du
le

s

C
A

D
se

ns
it

iv
it

y
(%

)
FP

ra
te

(%
)

D
at

a
(N

o.
of

pa
ti

en
ts

,
se

ct
io

n
th

ic
kn

es
s,

ra
di

at
io

n
do

se
)

N
od

ul
e

si
ze

A
rm

at
o

et
al

.[
46

]
19

99
M

ul
ti

pl
e

gr
ay

-l
ev

el
th

re
sh

ol
di

ng
/l

in
ea

r
di

sc
ri

m
in

an
t

an
al

ys
is

1
8
7

70
3/

se
ct

io
n

17
pa

ti
en

ts
,1

0
m

m
,

3.
1–

27
.8

m
m

K
an

az
aw

a
et

al
.

[4
5]

19
98

Fu
zz

y
cl

us
te

ri
ng

an
d

su
rf

ac
e

cu
rv

at
ur

e/
ru

le
-b

as
ed

cl
as

si
fie

r
2
3
0

90
2.

8/
sc

an
45

0
pa

ti
en

ts
,1

0
m

m
,l

ow
do

se
–

L
ee

et
al

.[
48

]
20

01
Te

m
pl

at
e-

m
at

ch
in

g/
ru

le
-b

as
ed

cl
as

si
fie

r
9
8

72
1.

1/
se

ct
io

n
20

pa
ti

en
ts

,1
0

m
m

,l
ow

do
se

5–
30

m
m

B
ro

w
n

et
al

.[
49

]
20

01
M

od
el

-b
as

ed
im

ag
e

un
de

rs
ta

nd
in

g
te

ch
ni

qu
e/

fu
zz

y
lo

gi
c

3
6

86
11

/s
ca

n
17

pa
ti

en
ts

,5
–1

0
m

m
,

no
rm

al
do

se
5–

30
m

m

A
rm

at
o

et
al

.[
47

]
20

02
M

ul
ti

pl
e

gr
ay

-l
ev

el
th

re
sh

ol
di

ng
/r

ul
e-

ba
se

d
cl

as
si

fie
r

5
0

80
1/

se
ct

io
n

31
pa

ti
en

ts
,1

0
m

m
,l

ow
do

se
5–

25
m

m

Su
zu

ki
et

al
.[

63
]

20
03

Su
pe

rv
is

ed
le

si
on

en
ha

nc
em

en
t

fil
te

r
ba

se
d

on
a

m
as

si
ve

-t
ra

in
in

g
A

N
N

(M
TA

N
N

)

7
1

80
.3

4.
8/

sc
an

71
pa

ti
en

ts
,1

0
m

m
,l

ow
do

se
M

ea
n,

13
.5

m
m

M
cC

ul
lo

ch
et

al
.

[5
1]

20
04

M
at

he
m

at
ic

m
od

el
of

an
at

om
ic

st
ru

ct
ur

es
/B

ay
si

an
cl

as
si

fie
r

4
3

69
.8

8.
3/

sc
an

50
pa

ti
en

ts
,2

.5
m

m
,l

ow
do

se
5–

17
.1

m
m

A
w

ai
et

al
.[

52
]

20
04

M
at

he
m

at
ic

al
m

or
ph

ol
og

y/
ne

ur
al

ne
tw

or
k

7
8

80
0.

87
/s

ec
ti

on
82

pa
ti

en
ts

,7
.5

m
m

,
no

rm
al

do
se

3–
30

m
m

G
e

et
al

.[
61

]
20

05
G

ra
di

en
ta

na
ly

si
s/

li
ne

ar
di

sc
ri

m
in

an
ta

na
ly

si
s

1
1
6

87
.9

0.
5/

se
ct

io
n

56
pa

ti
en

ts
,1

.0
–2

.5
m

m
,

3–
30

.6
m

m

B
ae

et
al

.[
53

]
20

05
M

at
he

m
at

ic
al

m
or

ph
ol

og
y/

ru
le

-b
as

ed
cl

as
si

fie
r

1
0
7

97
.2

4/
sc

an
20

pa
ti

en
ts

,1
m

m
,

no
rm

al
do

se
>
3

m
m (c
on

ti
nu

ed
)



294 K. Mori et al.

T
ab

le
4.
1

(c
on

ti
nu

ed
)

A
ut

ho
r

Y
ea

r

D
et

ec
ti

on
sc

he
m

es
in

it
ia

lc
an

di
da

te
de

te
ct

io
n/

FP
re

du
ct

io
n

an
d

lu
ng

no
du

le
de

te
ct

io
n

N
o.

of
no

du
le

s

C
A

D
se

ns
it

iv
it

y
(%

)
FP

ra
te

(%
)

D
at

a
(N

o.
of

pa
ti

en
ts

,
se

ct
io

n
th

ic
kn

es
s,

ra
di

at
io

n
do

se
)

N
od

ul
e

si
ze

K
im

et
al

.[
55

]
20

05
G

au
ss

ia
n

cu
rv

e
fit

ti
ng

/n
eu

ra
l

ne
tw

or
k

2
9
7

94
.3

0.
89

/s
ec

ti
on

14
pa

ti
en

ts
,1

.0
–5

.0
m

m
,

no
rm

al
do

se
5–

28
m

m

R
oy

et
al

.[
62

]
20

06
G

ra
di

en
ta

na
ly

si
s/

li
ne

ar
di

sc
ri

m
in

an
ta

na
ly

si
s

8
2

70
0.

28
/s

ec
ti

on
38

pa
ti

en
ts

,7
m

m
,

no
rm

al
do

se
3–

30
m

m

Y
ua

n
et

al
.[

69
]

20
06

Im
ag

eC
he

ke
r

C
T

(R
2

Te
ch

no
lo

gy
)

6
2
8

73
3.

19
/s

ca
n

15
0

pa
ti

en
ts

,1
.2

5
m

m
,

no
rm

al
do

se
>
4

m
m

M
at

su
m

ot
o

et
al

.
[5

4]
20

06
C

on
ve

rg
en

ce
in

de
x

fil
te

r/
li

ne
ar

di
sc

ri
m

in
an

ta
na

ly
si

s
5
0

90
1.

67
/s

ec
ti

on
5

pa
ti

en
ts

,5
.0

–7
.0

m
m

,
no

rm
al

do
se

3–
12

m
m

D
as

et
al

.[
64

]
20

06
Im

ag
eC

he
ke

r
C

T
(R

2
Te

ch
no

lo
gy

)
1
1
6

73
6/

sc
an

25
pa

ti
en

ts
,2

m
m

,
M

ea
n,

3.
4

m
m

N
od

ul
e

en
ha

nc
ed

vi
ew

in
g

(N
E

V
)

(S
ie

m
en

s
M

ed
ic

al
So

lu
ti

on
s)

1
1
6

75
8/

sc
an

25
pa

ti
en

ts
,2

m
m

,
M

ea
n,

3.
4

m
m

D
eh

m
es

hk
ie

ta
l.

[5
6]

20
07

Sh
ap

e-
ba

se
d

ge
ne

ti
c

al
go

ri
th

m
/r

ul
e-

ba
se

d
cl

as
si

fie
r

1
7
8

90
14

.6
/s

ca
n

70
pa

ti
en

ts
,0

.5
–1

.2
5

m
m

,
no

rm
al

do
se

3–
20

m
m

L
ie

ta
l.

[5
9]

20
08

In
te

ns
it

y
st

ru
ct

ur
e

en
ha

nc
em

en
t/

ru
le

-b
as

ed
cl

as
si

fie
r

1
5
3

86
6.

6/
sc

an
11

7
pa

ti
en

ts
,

1.
25

–5
.0

m
m

,l
ow

/n
or

m
al

do
se

4–
28

m
m

Pu
et

al
.[

57
]

20
08

G
eo

m
et

ri
c

m
od

el
ba

se
d

on
th

e
an

al
ys

is
of

th
e

si
gn

ed
di

st
an

ce
fie

ld
/s

co
ri

ng
ba

se
d

on
sh

ap
e

si
m

il
ar

it
y

1
8
4

81
.5

6.
5/

sc
an

52
pa

ti
en

ts
,2

.5
m

m
,l

ow
do

se
3–

28
.9

m
m

Y
e

et
al

.[
58

]
20

09
Sh

ap
e

in
de

x
an

d
do

t
fe

at
ur

es
/r

ul
e-

ba
se

d
fil

te
ri

ng
an

d
su

pp
or

t
ve

ct
or

m
ac

hi
ne

2
2
0

90
.2

8.
2/

sc
an

10
8

pa
ti

en
ts

,0
.5

–2
.0

m
m

,
lo

w
/n

or
m

al
do

se
–



4 Applied Technologies and Systems 295

M
ur

ph
y

et
al

.[
35

]
20

09
Sh

ap
e

in
de

x
an

d
cu

rv
ed

ne
ss

/K
-n

ea
re

st
-n

ei
gh

bo
r

1
5
2
5

8
0

4.
2/

sc
an

81
3

pa
ti

en
ts

,1
m

m
,l

ow
do

se
>
3

m
m

Y
an

ag
aw

a
et

al
.

[6
5]

20
09

L
un

g
V

C
A

R
(G

E
H

ea
lt

hc
ar

e)
2
2
9

4
0

5.
7/

sc
an

48
pa

ti
en

ts
,0

.6
25

m
m

>
4

m
m

M
es

sa
y

et
al

.[
36

]
20

10
M

ul
ti

pl
e

gr
ay

-l
ev

el
th

re
sh

ol
di

ng
/l

in
ea

r
di

sc
ri

m
in

an
t

an
al

ys
is

1
4
3

8
2
:7

3/
sc

an
84

pa
ti

en
ts

,1
.3

–3
.0

m
m

,
3–

30
m

m

Ta
n

et
al

.[
37

]
20

11
In

te
ns

it
y

st
ru

ct
ur

e
en

ha
nc

em
en

t/
ne

ur
al

ne
tw

or
k

8
0

8
7
:5

4/
sc

an
12

5
pa

ti
en

ts
,0

.7
5–

3.
0

m
m

,
3–

30
m

m

G
uo

et
al

.[
60

]
20

12
In

te
ns

it
y

st
ru

ct
ur

e
en

ha
nc

em
en

t/
li

ne
ar

di
sc

ri
m

in
an

t
an

al
ys

is

1
1
1

8
5

17
.3

/s
ca

n
85

pa
ti

en
ts

,1
.2

5–
3.

0
m

m
,

lo
w

/n
or

m
al

do
se

3–
11

5
m

m

Z
ha

o
et

al
.[

66
]

20
12

L
un

gC
A

D
V

B
10

A
(S

ie
m

en
s

A
G

H
ea

lt
hc

ar
e)

1
5
1

9
6
:7

3.
7/

sc
an

40
0

pa
ti

en
ts

,1
m

m
,l

ow
do

se
2.

3–
6.

9
m

m

G
od

oy
et

al
.[

75
]

20
13

V
D

10
A

(S
ie

m
en

s
H

ea
lt

hc
ar

e)
1
5
5

7
9

3/
sc

an
46

pa
ti

en
ts

,0
.6

7–
1.

0
m

m
,

no
rm

al
do

se
4–

27
.5

m
m



296 K. Mori et al.

systems led to performance improvement. In the system combination, the results
of multiple nodule CAD systems were combined without their internals, like the
feature values of candidates [32]. The combination method used only the findings
(coordinates and degree of suspicion for each finding) and performance information
of each system.

Figure 4.3 shows a snapshot of CADe output for lung nodule referred as a pure
ground-glass nodule (GGN) [42]. According to the Fleischner Society glossary of
terms for thoracic imaging, a GGN is defined as “a hazy increased attenuation in
the lung that does not obliterate the bronchial and vascular margins” [67]. The term
“pure GGN” represents nodules of only ground-glass attenuation on CT, whereas the
term “part-solid GGN” refers to nodules comprising both ground-glass and solid
attenuation areas [16]. The term “subsolid” nodules includes both pure GGN and
part-solid GGN [16, 68]. Subsolid nodules are increasingly being detected on LDCT
screening and have a high likelihood of representing adenocarcinomas [16, 68]
For example, Henschke and colleagues reported that 34% of detected subsolid
nodules proved malignant, while only 7% of solid nodules proved malignant [68].
However, most CADe schemes were focused on detecting solid nodules because
detecting subsolid nodules with low attenuation is not an easy task. The currently
commercially available CADe systems are designed and optimized for detecting
solid nodules and have a low sensitivity for subsolid nodules [65, 69]. Improving
detection accuracy of subsolid nodules is one of the important research areas in
CADe [20, 42, 55, 75].

Several studies have investigated the effect of CADe on clinicians’ interpretation
of CT examinations for the detection of lung nodules [52, 64, 65, 70–75]. These
studies compared the clinicians’ performances without and with CADe systems. The
assessment approaches included evaluation with use of sensitivity and FP rate, use
of ROC analysis, use of localization ROC (LROC), and free-response ROC (FROC)
analysis. The LROC and FROC analyses are categorized as location-specific ROC
analyses, which require data such as the identified location of suspected regions and
a rating for each region [77]. The LROC analysis constrains a mark-rating pair of
the most suspicious region in an image, whereas the FROC analysis can deal with an
arbitrary number of mark-rating pairs for each image [76–78]. For FROC data, either
an alternative FROC (AFROC) method or Jackknife FROC (JAFROC) method is
used for evaluating clinicians’ performance in the detection of lung nodules without
and with CADe systems [79, 80]. The AFROC method reduces FROC data to
pseudo-ROC data that can be analyzed by tools developed for ROC analysis [79].
The AFROC analysis can be used to analyze the data acquired from FOC studies.
The AFROC curve is a plot of lesion localization fraction against false-positive
fraction, and the area under the AFROC curves is used to define lesion detestability
[81]. The JAFROC method provides a figure of merit (FOM) to summarize FROC
and statistically compares the FOMs of clinician/system performances [80, 82].

Another growing research area of interest in CADe is nodule follow-up [49, 83–
86]. Kubo et al. described a comparative reading system using baseline and
follow-up 10-mm section scans of the same patients [85]. Their approach comprised
section matching, nodule matching, and quantitative evaluation steps for evaluating
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Fig. 4.3 Snapshot of CADe output for lung nodule. Detected pure ground-glass nodule is marked
with a circle. (a) Scout image (A non-tomographic image). (b) Transverse image. (c) Sagittal
image. (d) Coronal image

the growth and shrinkage of lung nodules. The section matching rate of 99.8% was
obtained through performance evaluation using CT scans for 85 patients with 198
nodules. Brown et al. described a patient-specific model, which was derived from
the segmentation results of lung architecture and lung nodules using baseline 10-
mm section scans [49]. Their model guided the segmentation of subsequent scans
for relocalization of previously detected nodules. Their pilot study reported that the
correct relocalization rate was 81% using the follow-up scans of 27 nodules. Ko
and Betke described a method to automatically detect lung nodules on a CT scan
with 5–10-mm section thicknesses and then relocalize them on follow-up scans
[83]. Their method involved global registration of baseline and follow-up scans
by translation and rotation to align the centroids of lung architecture landmarks
and applied the same transformation to the detected nodules on the baseline scan
for relocalizing the nodule on the follow-up scan. The preliminary testing for
assessment of nodule change over time was correlated between the radiologist and
the computer (Spearman rank correlation coefficient, 0.932). Lee et al. evaluated the
performance of automated matching software (LungCARE VB20, Siemens Medical
Solutions, Forchheim, Germany) of 30 metastatic patients imaged with two serial
CT scans with a 5-mm section thickness [84]. This study included 30 consecutive
enrolled patients with metastatic pulmonary nodules from a pulmonary primary
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tumor (nD 9) or a non-pulmonary primary tumor (nD 21). The overall matching
rate of a total of 210 nodules was 66.7%. In a recent study, Aoki et al. introduced
a temporal subtraction (TS) method to enhance interval changes in their CADe
scheme and assessed the effects of the TS method on radiologist performance in
nodule detection on thin-section CT images with 2-mm section thickness [86].
Their observer study reported that the average sensitivity of the eight participants
improved from 73.5% to 83.4% with an FP rate of 0.15 per case in the detection of
nodules using 30 nodules ranging in size from 5 to 19 mm.

Impact of CADe Systems on Clinicians’ Performance for Detecting Lung
Nodules on CT Images

The Imaging Physics Committee of the American Association of Physicists in
Medicine (AAPM) formed a Computer-Aided Detection in Diagnostic Imaging
Subcommittee (CADSC) to develop recommendations on approaches for assessing
computer-aided detection and diagnosis (CADe/CADx) system performance [87,
88]. The CADSC reported that these were the following major areas for assessing
CADe/CADx systems: training and test datasets, reference standards, mark-labeling
criteria, stand-alone performance assessment metrics and methodologies, reader
performance assessment metrics and methodologies, and study sample size esti-
mation [87]. In the development of CADe systems for detecting lung nodules on
CT images, not only the evaluation of a stand-alone CADe system but also the
evaluation of the effects of the CADe system on clinician accuracy is indispensable
from the viewpoint of the fundamental role of CADe systems, which is to support a
clinician who has the final responsibility to make the decision for each case.

The results of the investigation of the effect of CADe systems on clinicians’
interpretation of CT examinations that are covered in this session are briefly
summarized as follows: Awai et al. reported that average areas under the AFROC
curves without and with their CADe system were 0.64 and 0.67, respectively,
using a dataset of 50 CT examinations with ten observers [52]. The difference was
statistically significant. Li et al. reported that the average area under the ROC curve
improved from 0.76 to 0.85 for 14 radiologists with their CADe system. The LROC
curve also showed improvement using a dataset [70]. Brown et al. evaluated the
incremental effects of their CADe system using a dataset of eight CT examinations
with 202 observers at a national radiology meeting. The JAFROC analysis involving
13 observers who read all cases indicated an improvement of 22% in FOM with the
CADe system, which was not statistically significant [71]. Das et al. compared the
effectiveness of two commercial CADe systems (ImageCheker CT, R2 Technologies
and Nodule Enhanced Viewing (NEV), Siemens Medial Solutions) using a dataset
of 116 small nodules (a mean diameter of 3.4 mm) with three radiologists [64].
The sensitivities with the CADe systems were improved for all radiologists. Hirose
et al. reported that the average sensitivity improved from 39.5% to 81.0% with a
decrease in the average number of FPs from 0.14 to 0.89 per case using a dataset
of 21 patients with six radiologists [72]. The average FOM values without and
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with a commercial CADe (ZIOCAD LE version 1.15, Ziosoft Inc., Tokyo, Japan)
were 0.390 and 0.845, respectively, and the difference was statistically significant.
White et al. reported a multicenter study involving 109 patients from four sites
to evaluate the performance of CADe as a second reader. The average increase
in area under the ROC curve for ten radiologists with a CADe system (Philips
Extended Brilliance Workspace, Philips Healthcare, Enthoven, the Netherlands)
(not commercially available in the USA) was 1.9% for a 95% confidence interval
(0.8–8.0%) [73]. Sahiner et al. reported the impact of their CADe system on six
radiologists’ performance using 85 CT examinations stratified by nodule size [74].
Their study results, which evaluated the sensitivity and FOMs without and with the
CADe system, indicated that the CADe system improved radiologists’ performance
for detecting lung nodules smaller than 5 mm. Yanagawa et al. evaluated the impact
of a commercial CADe system (Lung VCAR, GE Healthcare, Milwaukee WI,
USA) on radiologists’ performance in the detection of lung nodules with or without
ground-glass opacity (GGO), using a dataset of 48 patients with three radiologists
[65]. They established the reference standard to be used in the evaluation by a
consensus panel of the radiologists. The pulmonary nodules in their dataset were
categorized into three patterns (GGO, solid, or part solid). The FOM values without
and with the CADe system were significantly different for overall patterns and solid
pattern of nodules. Godoy et al. evaluated the effect of a commercial prototype
CADe system (VD10A, Siemens Healthcare) on the detection of subsolid and solid
nodules on thin- and thick-section CT images using a dataset of 46 CT examinations
with four radiologists [75]. Their study included 155 nodules (74 solid nodules,
22 part GGNs, and 59 pure GGNs) with a 5.5-mm average diameter and used
various combinations of thick (5 mm) and thin (0.67 or 1 mm) sections. Sensitivities
for both subsolid and solid nodules were significantly improved with the CADe
system.

On the basis of these observations, there are a number of initiatives underway
to improve CADe systems for implementation and utilization in clinical practice
as a second reader for increasing the detection of lung nodules in LDCT screen-
ing.

4.2.1.2 Lesion Detection in the Abdominal Region

Local Intensity Structure Analysis

The local intensity structure analysis technique is widely used for analysis of
object structures in images. Applications of this technique to medical images were
originally proposed by Sato et al. [89] and Frangi et al. [90]. Local intensity structure
analysis technique enhances blob, line, and sheet structures in images. Blob
structure enhancement is commonly used for lesion detection in CAD. For instance,
polyp detection in the colon [91], ulcer detection in the small and large intestines
[92], and enlarged lymph node detection [93] methods were developed using the
blob structure enhancement technique. Line and sheet structure enhancements are
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used in segmentations of blood vessels and lung lobes. This technique utilizes
eigenvalues of the Hessian matrix to enhance the target structures.

Enhancement processes based on local intensity structure analysis consist of
three steps including (1) local region clipping, (2) a Hessian matrix elements
calculation, and (3) an enhancement filter value calculation. Details of each step
are described below.

In the local region clipping step, a small local region is clipped from an input
image. Local region clipping is performed for a local region centered at each voxel
in the image. Local region size is defined based on the size of the detection target.
If the detection target is a sphere of diameter 1 cm, a local region will be a square of
=1 cm or a sphere of diameter =1 cm. The local region size should be chosen so as
to include the target. A large local region size will reduce the detection performance
of the enhancement filter.

In the Hessian matrix elements calculation step, the matrix elements are calcu-
lated for each local region. The Hessian matrix is written as

H D
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The Hessian matrix elements are the second-order partial differential coefficients of
a function f . The function f represents image intensity values in the local region. The
function is obtained based on the image intensity values. For 3D medical images, a
second-order polynomial

f .x; y; zI a/ D a1x
2 C a2y

2 C a3z
2 C (4.2)

a4xyC a5yzC a6zxC a7xC a8yC a9zC a10;

can be used as the function. a D .a1; : : : ; a10/ is a coefficient vector of the
polynomial. The coefficient vector a is calculated by minimizing squared errors
between the image intensity values and the polynomial. Instead of obtaining the
function that represents image intensity values, the second-order partial differential
coefficients of the function can be directly calculated from image intensity values.
The second-order partial differential coefficients of the function are estimated from
difference values of the image.

Finally, the enhancement filter value calculation step is performed. In this step,
three eigenvalues of the Hessian matrix 	1; 	2; 	3.	1 � 	2 � 	3/ and their
corresponding eigenvectors e1; e2; e3 are calculated. The intensity structure in the
local region can be classified into blob, line, or sheet categories by checking the
magnitude relationship of the three eigenvalues. If the intensity structure in the
local region shows a blob structure, three eigenvalues have nearly equal values and
they are smaller than 0. Eigenvalue conditions of three local intensity structures are
shown in Table 4.2. A blob structure enhancement filter [89] can be defined that
gives high outputs when the eigenvalues satisfy the eigenvalue condition of the blob
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Table 4.2 Eigenvalue
conditions of three local
intensity structures [89]

Local intensity structure Eigenvalue condition

Blob 	3 ' 	2 ' 	1 � 0

Line 	3 ' 	2 � 	1 ' 0

Sheet 	3 � 	2 ' 	1 ' 0

Fig. 4.4 An example of
output of the blob structure
enhancement filter applied to
the colon including a polyp.
Red and yellow colors
indicate low and high output
values, respectively. High
output values are shown in a
blob structure

structure. The blob structure enhancement filter is given by

S.	1; 	2; 	3/ D
� j	3j .	2I	3/ �  .	1I	2/ if 	3 � 	2 � 	1 < 0;

0 otherwise;
(4.3)

where

 .	sI	t/ D
( �

	s
	t

	

if 	t � 	s < 0;

0 otherwise:
(4.4)

The blob structure enhancement filter outputs high values in blob structures.
Figure 4.4 shows an example of blob structure enhancement filter output. The
line and sheet structure enhancement filters are defined similarly based on each
eigenvalue condition. After applying the blob structure enhancement filter to all
voxels in the image, voxels having high output values of the filter can be classified
into lesion candidate voxels.
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Radial Difference Filter

For detection of small spherical targets, a radial difference filter is used. This filter is
utilized in detection of metastatic lymph nodes [94] and small liver tumors [95] from
CT images. This filter effectively detects small spherical-shaped targets. However,
detection performance of the filter for detection of large targets is not ideal because
of shape variations of the targets.

In the detection processes, the value of the radial difference filter is calculated for
each voxel in an image. The center voxel in the image is selected. Searching rays are
cast from the center voxel. For each searching ray, the different values of intensities
of the image are calculated along the searching ray direction. A voxel having a high
difference value of the intensity is selected as a point on boundary of the target. If the
center voxel is located in a spherical-shaped region, the selected points are located
on the border of the spherical-shaped region. The targets including spherical lesions
can be detected by checking positions of the selected points.

4.2.2 Quantification and Classification

4.2.2.1 Lung Cancer Prognostication Using CT Image-Based Features

Other issues in the implementation of LDCT screening for lung cancer are
overdiagnosis and disease recurrence after curative surgery on nodules detected
at an early stage. Pulmonary nodules detected on lung cancer screening include
not only aggressive lesions but also indolent lesions that may not progress to
significant disease. This overdiagnosis is a potential drawback of screening because
of unnecessary treatment, additional follow-up cost, and patient anxiety [96–98].
Patz et al. examined data from NLST to estimate the overdiagnosis rate and reported
that more than 18% of all lung cancers detected by LDCT appeared to be indolent
[98]. The authors emphasize the need for better biomarkers and imaging techniques
to determine which lung cancers are more or less aggressive for optimization of
patient care and enhancement of the value of screening. LDCT screening for lung
cancer increases the rate of detection of early-stage lung cancer [13, 14]. In NLST,
51.8% of lung cancers detected were reportedly at stage IA [13]. However, early
detection does not always guarantee cure. A significant number of early-stage lung
cancers recur even after complete surgical resection of the primary tumor and
pathological confirmation of absence of any regional lymph node metastasis [99].
In a Japanese lung cancer registry study, the five-year survival rate of patients with
stage IA lung cancer was under 80% [100]. Recent studies have demonstrated that
the use of adjuvant chemotherapy improves the survival of patients with early-stage
lung cancers [101]. A proportion of patients with stage I lung cancer have a poorer
prognosis and may benefit significantly from adjuvant chemotherapy. Therefore,
the identification of patients with early-stage lung cancer who have a higher risk for
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recurrence and who require more aggressive surveillance, or who may benefit from
adjuvant therapy, has been another target of intense investigation [102–104, 116].

In this subsection, we present an example of 3D computerized quantification
and show its association with histopathologic findings and postoperative outcomes
[102, 105, 106]. The focus of our approach is on lung cancer prognostication
on the basis of the analysis of the internal structure of a solitary pulmonary
nodule. The relationship between the subjective CT appearance of pulmonary
nodules and histopathologic findings, including the Noguchi classification [107] and
postoperative outcomes, has been investigated in several studies [108–116].

CT Value Histogram-Based Classification Framework

Volume measurement is one of several approaches to the management of pulmonary
nodules detected by CT scanning [117]. This approach often encounters cases
where nodules are volumetrically stable in spite of internal CT value variation.
These authors have attempted to develop a 3D computerized method for eval-
uating the volumetric distribution of CT values within pulmonary nodules. We
found that the analysis of CT histograms is a potentially useful method for the
quantitative classification of pulmonary nodules without requiring measurement
of the proportion of nonsolid and solid components [102, 105, 106]. In [102], we
developed a five-category classification approach based on the analysis of CT value
histograms and investigated the impact of nodule segmentation on classification
and the effect of classification on disease-free survival. We also extended the
approach to compute a histogram-based score of recurrence risk to track time-
interval changes in pulmonary nodules via variational Bayesian mixture modeling
for the features obtained from analysis of CT histograms [105, 106]. The key
contribution to the computational anatomical models is to represent the internal
structure of pulmonary nodules for computing a histogram-based risk score that
correlates with prognostic factors. The framework consists of five steps: (1) nodule
segmentation, (2) computation of a CT histogram, (3) nodule categorization by
applying the variational Bayesian model to cluster CT histograms, (4) computation
of the histogram-based risk score by using the combination of the contribution
that each category makes to describing the nodule [105, 106], and (5) prognostic
prediction using the histogram-based risk score. A schematic overview of the
prognostic prediction approach is shown in Fig. 4.5.

Statistical Analysis

We employed Cox regression analysis to assess the effect of quantitative classifi-
cation on disease-free survival with adjustments for potential confounding factors
[118], calculating the hazard ratio (HR) and the 95% confidence interval (CI).
To estimate the probabilities of disease-free survival according to the quantitative
classification, we generated disease-free survival curves using the Kaplan-Meier
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Fig. 4.5 Overview of the classification approach for prognostic prediction of lung cancer

method with a log-rank test to confirm significance [119]. All reported P values were
two sided. We defined statistical significance as p < 0:05. All statistical analyses
were performed using R (a freely available software environment for statistical
computing, version 3.0.2).

Experiments and Results

We retrospectively identified data on 454 patients with non-small cell lung cancer
(NSCLC). Each patient had undergone a preoperative thin-section CT examination
under identical settings. All patients subsequently had histologically or cytologically
confirmed NSCLC and had records containing information on the clinical and
pathological features and any recurrence of disease. Preoperative CT scans of the
entire NSCLC lesion had been acquired using multi-detector row CT scanners
(Aquilion; Toshiba Medical Systems, Tochigi, Japan) at the National Cancer Center
Hospital East.

We generated CT histograms from segmented nodules using a bin size of 15 HU
ranging from �1000 to 500 HU. The frequency value of each histogram was
normalized by the nodule volume to allow a comparison of histograms among the
nodules. From CT histograms, we extracted ten quantitative features: mean and
standard deviation of CT value, skewness, kurtosis, CT value at the peak of the
histogram, frequency of the peak of the histogram, and the 10th, 25th, 75th, and
90th percentiles (representing the CT values yielding 10%, 25%, 75%, and 90%,
respectively, of the area under the histogram from the minimum CT value). In our
study of feature selection [105], we found that the use of two features, frequency of
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Fig. 4.6 Relationship between CT value histogram-based risk score and recurrence of the lung
cancers

the peak of the CT histogram and 90th percentile, was an appropriate combination
for representing the histogram pattern.

Through applying the cluster analysis of CT histograms using the selected
features, we computed a histogram-based risk score for each lung cancer. Figure 4.6
shows the relationship between histogram-based risk score and tumor recurrence.
We selected an appropriate cutoff score for the expression of every pulmonary
nodule using X-tile plots based on the association with the patients’ recurrence-free
survival. X-tile plots provide a method to assess the association between variables
and survival [120]. We generated the X-tile plots (X-tile software version 3.6.1.
Yale University School of Medicine, New Haven CT, USA). We included those
patients with a histogram-based risk score >340 in the group at high risk of disease
recurrence (high-risk group) and those with a histogram-based risk score of �340
in the group at low risk of disease recurrence (low-risk group). Figure 4.7 shows
the multivariate Cox regression analysis. This analysis result indicated that the
classification (HR: 7.87; 95% CI: 1.75 – 35.37; P D 0:007), the pathological stage
(HR: 8.39; 95% CI: 4.15 – 16.96; P < 0:001), and the lymphatic permeation (HR:
2.02; 95% CI: 1.07 – 3.83; P D 0:03) remained significant independent factors in
disease-free survival. The disease-free survival curves for the patients with NSCLC
according to the histogram-based risk score illustrate that the five-year disease-free
survival probability for patients with NSCLC with high-risk scores was 67.3% (95%
CI, 58.7 – 77.7). The five-year disease-free survival probability for patients with
low-risk scores was 99.1% (95% CI, 97.9 – 100.0). The difference in the disease-free
survival rates between the two groups was also found to be significant (P < 0:001).
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Lymphatic permeation 

Vascular invasion 

Variables
No. of Patients Multivariate analysis

Recurrence Total HR (95% CI value

Histogram-based risk score

340  * 2 238 1.00

> 340 43 216 7.87 (1.75 - 35.37) 0.007

Pathologic stage

IA* 14 390 1.00

IB  or IIA  or  IIB  or IIIA  or IIIB 31 64 8.39 (4.15 - 16.96) <0.001

Lymphatic permeation

negative * 21 390 1.00

positive 24 64 2.02 (1.07 - 3.83) 0.03

Vascular invasion

negative * 18 351 1.00

positive 27 103 1.28 (0.66 - 2.49) 0.473

*Reference category

Histogram-based risk 
score

Pathologic stage 

Lymphatic permeation 

Vascular invasion 

≤–

Fig. 4.7 Multivariate analysis of prognostic factors. (a): Hazard ratios along with 95% confidence
intervals. (b): Multivariate analysis

Conclusion

This subsection has described a framework within which CT value histograms are
used to represent the internal structure of pulmonary nodules as a computational
anatomical model, with the aim of stratifying patients into high- and low-risk
groups. The approach has been illustrated using data from preoperative thin-
section CT images of lung cancer. This framework provides prognostic value
that complements clinicopathological risk factors and more accurately predicts
recurrence for patients with early-stage lung cancers. Because the computational
anatomical model based on CT value histograms extends naturally to benign cases,
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the framework described in this chapter might be used for other applications, such
as risk stratification of pulmonary nodules detected in LDCT screening.

4.2.3 Miscellaneous

4.2.3.1 Nonrigid Image Registration for Detecting Temporal Changes on
Thoracic MDCT Images

Introduction

Image warping is a widely used technique for image registration that deals with
geometric transformation techniques in the computer vision and image processing
fields. It was introduced for geometric correction applications based on affine
transformation, elastic deformation, and optical flow in remote sensing in the mid-
1960s. There are many techniques to detect opacities such as solid and/or GGO on
thoracic computed tomography (CT) images [121].

The temporal subtraction technique [122] is used in medical imaging to empha-
size subtle differences by subtracting a previous image from a later one. This
technique can enhance interval changes such as new lesions and/or worsening
existing abnormalities by subtracting the two image sets. Some commercial versions
have been introduced.

In temporal subtraction, the image warping technique is the most important
method for accurately deforming previous images to match current ones. When
a misregistration occurs, image artifacts will appear on the subtraction images,
often consisting of remaining normal structures such as blood vessels or airways.
Ishida et al. [123] proposed a 2D image warping method in chest radiographs
for CAD. However, in the temporal subtraction with MDCT, it is necessary to
employ a more complex and accurate 3D registration scheme. To overcome this
problem, we propose a new technique for automatic image warping to reduce
subtraction artifacts on temporal subtraction [124]. In this section, we describe the
new temporal subtraction techniques and its application to detect abnormalities such
as lung nodules on MDCT images. In the first step for image registration, we use
a global image matching technique to correct for the global displacement caused
by variations in patient positioning by use of a 3D cross correlation technique. In
the second step, a local matching technique and a 3D elastic matching technique
are used on the volume of interest (VOI). In the third step, a voxel matching
technique is applied to register the two image sets. Finally, temporal subtraction
images are generated by subtraction of the previous image from the current image.
We have applied our computerized scheme to 31 MDCT image sets, which include
examinations performed at two time points.
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Methods

The registration problem is one of the most important tasks to find the optimum
spatial transformation between two sets of features. To reduce subtraction artifacts,
we propose a new temporal subtraction method based on a voxel matching technique
by warping the previous image to match the current one [124]. Figure 4.8 shows the
overall scheme of our proposed method for temporal subtraction. The main steps
are (1) global matching, (2) local matching, (3) 3D nonlinear image warping based
on voxel matching technique, and (4) 3D image subtraction steps.

Preprocessing

In general, images generated at different patient visits can vary in voxel size. In this
study, we adjusted the voxel size on the X- and Y-axes of a previous CT image to
match that of a current CT image using linear interpolation. To segment the lung
region as a VOI, we identified a lung region in the current CT image by applying a
3D Gaussian filter before the binarization technique based on the Otsu method [125]
and a morphological filter.

Global Matching

A global matching technique was applied for the global displacement caused by
positional deviation or respiratory motion. In global matching, we perform a rigid
3D affine transformation. The transformation can be represented as Tglobal:

Tglobal D

0
BBBB@

cos �x cos �z � cos �x sin �z C sin �x sin �y cos �z sin �x sin �z C cos �x sin �y cos �z tx

cos �y sin �z cos �x cos �z C sin �x sin �y sin �z � sin �x cos �z C cos �x sin �y sin �z ty

� sin �y sin �x cos �y cos �x cos �y; tz

0 0 0 1

1
CCCCA

(4.5)

Previous CT image Current CT image

Normalization of the voxel size

Global image matching by using 2-D cross-correlation

Local image matching by using 3-D elastic matching

3-D nonlinear image warping by using 3-D voxel matching

3-D image subtraction

Fig. 4.8 Illustration of the overall scheme of the 3D temporal subtraction method [124]
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where �x, �y, and �z are the rotation around x-, y-, and z-axes, respectively, and
tx, ty, and tz are the displacement on the x-, y-, and z-axes, respectively. To obtain
the voxel pairs between the current image and the transformed previous one, a
linear interpolation is adopted. In this global matching procedure, the global shift
vector, which is obtained from the template location, with the maximum of the cross
correlation value obtained for the similarity of the current and previous images, is
shown in Eq. 4.6:

CCglobal D
P

x;y;z.Ic.x; y; z/ � NIc/.Ip.x; y; z/ � NIp/qP
x;y;z.Ic.x; y; z/ � NIc/2.Ip.x; y; z/ � NIp/2

(4.6)

Here Ic and Ip show the current and previous image, respectively. NIc and NIp are mean
values of the current and previous images, respectively.

Local Matching Based on the 3D Voxel Matching Technique

In our voxel matching technique, an image warping technique is first applied to
the current and the previous image to obtain shift vectors which represent the
extent of deformation of the previous image relative to the current image [124].
Based on these shift vectors on the current image, the previous image can be
warped to produce a temporal subtraction image. However, the temporal subtraction
image obtained by the subtraction of the warped previous image from the current
image usually contains considerable subtraction artifacts. With the voxel matching
technique, for a given location in the current image, we initially identify the
corresponding location in the warped previous image. We then search a voxel in
the previous image within a small search volume, which is called a kernel, in
order to identify the matching voxel which has a value identical or nearly equal
to the value of the given voxel in the current image. This search for the matching
voxel is repeated for all of the voxels in the current image. The warped previous
image is then replaced by the matched voxel, warped previous image in which the
voxel values are generally identical to or nearly equal to the voxel values in the
current image except for the voxel values in new lesions or changes in existing
abnormalities as shown in Fig. 4.9. The voxel matching technique is one of the
optimized registration tools for removal of the subtraction artifacts in a temporal
subtraction technique by searching the best matched voxels. In order to assess the
temporal changes in two images, the voxel matching technique can be applied to 2D
images such as chest radiographs by use of a pixel-matching method instead of the
voxel matching in 3D images.

Experimental Results

We demonstrate the effectiveness of our image registration algorithms on 31 datasets
of chest MDCT images with early and later scans of each subject. The difference in
time between the previous images and current images was in the range of 38 months.
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VOI

Template VOI

Locals hift vector

Global shift vector

Fig. 4.9 Search for local matching

Figure 4.10 illustrates the results of the use of our temporal subtraction method.
Figure 4.10a, b show the previous and current CT images with the lung nodule,
respectively. Figure 4.10c–e show the subtraction images based on the global
matching technique (using cross correlation value), local image matching (using
3D elastic matching), and with the voxel matching technique as shown in Fig. 4.8.
The temporal subtraction enhances the differences between the previous and the
current examination, caused by new or changed abnormalities. It is obvious that the
majority of the subtraction artifacts in Fig. 4.10c, d are removed in Fig. 4.10e, with
a clean and smooth background.

Discussion and Conclusion

In this subsection, we proposed a nonrigid image registration algorithm for temporal
subtraction of chest MDCT images using the voxel matching technique. Satisfactory
generation of a temporal subtraction image was achieved. To evaluate the usefulness
of the voxel matching technique for removal of subtraction artifacts, we performed
our new technique on clinical examinations without and with voxel matching. With
our new method, subtraction artifacts due to normal structures such as blood vessels
were substantially removed on temporal subtraction images. This computerized
method can enhance lung nodules on chest MDCT images without the disturbance
of misregistration artifacts. Figure 4.11 illustrates an example of generation of
a temporal subtraction image. Figure 4.11a shows the results without the voxel
matching technique. Figure 4.11b, c show registered images using commercial
software and our voxel matching technique, respectively. A brain tumor (arrow)
is enhanced on all images. However, subtraction artifacts still remain in (a) and (b).
We think this CAD system may be a useful tool in screening examinations.
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Fig. 4.10 Experimental results [124]: (a) and (b) show the original previous and current MDCT
images, respectively. (c) illustrates the temporal subtraction image based on global image matching
based on the 2D cross correlation technique. (d) shows the temporal subtraction image based on
local image matching using 3D elastic matching. (e) shows the temporal subtraction image based
on 3D nonlinear image warping using 3D voxel matching. In figure (e), most normal structures
such as airway and vessels are cleanly removed. The circle in each image shows the lung nodule
(Previous; 6.7 mm diameter, Current; 10.8 mm diameter)

(a) (b) (c)

Fig. 4.11 Temporal subtraction images from contrast medium to non-contrast medium head MR
image. A brain tumor is enhanced on the subtraction image (arrow area). (a) Without VM. (b)
Commercial version. (c) Voxel matching

4.2.4 Perspective

CA helps a computer to analyze detailed human anatomy, with the aim of sup-
plementing the work of the radiologist with the advantage of a second opinion
via automated diagnostic processes. Critical decision support will someday be
implemented by utilizing the power of CA.
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4.3 Computer-Aided Surgery and Therapy

4.3.1 Preoperative Support

CA enables us to understand the anatomy of each individual surgery patient. Such
understanding can be achieved by detailed segmentation of preoperative CT images,
to provide organ shape information that can be used for preoperative simulations
such as for procedures such as laparoscopic surgery. In the following subsections,
we will show several examples of preoperative simulations based on the CA
model.

4.3.1.1 Laparoscopic Surgery Simulation

The main goal of laparoscopic surgery simulation is classified into the following
categories: (a) surgical training, (b) surgical rehearsal, and (c) surgical procedure
planning. In surgical training, the simulator can train novice surgeons. The main
purpose of this system is to impart basic laparoscopic surgery skills such as
suturing or membrane peeling. Because this involves learning to manipulate an
endoscope or a forceps, detailed representation of patient anatomy is not necessary.
Basic representation of an organ shape is sufficient for this kind of simulation.
In surgical rehearsal, a great deal of the anatomical information of a specific
patient is required. This information can be obtained by processing multi-organ
CT segmentation data using surface rendering or volume rendering. Endoscope-
or forceps-like user interface devices are used to achieve more realistic reference
image generation.

Surgical planning and rehearsal include patient-specific anatomical information
and organ deformation simulations using individual patients’ organ morphology.
CA is crucial to accurate depiction of patient-specific organ morphology.

4.3.1.2 Example of Laparoscopic Surgery Simulation System

This subsection shows examples of laparoscopic simulation systems mainly based
on patient-specific organ models generated by CA. In this section, we show an
example of laparoscopic gastrectomy.

Organ Segmentation and Labeling

Organ regions are extracted from preoperative CT volume datasets. To enable the
algorithm to distinguish between artery and vein regions on CT images, arterial-
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Fig. 4.12 Abdominal organ segmentation for laparoscopic surgery simulation

and venous-phase data are utilized. For a gastrectomy, the following organs are
segmented: (a) artery, (b) vein, (c) liver, (d) spleen, (e) kidneys, and (f) pancreas
(Fig. 4.12). Segmentation is performed in automated or semiautomated way and
utilized for image generation (Fig. 4.13).

Virtual Pneumoperitoneum

In laparoscopic surgery, the abdominal cavity is expanded by inflation with CO2 gas.
In arthroscopic surgery simulation, such demotion should be simulated to generate
a more realistic simulation image. The abdominal wall region is extracted from CT
data and is separated from the rest of the body. Elastic modes based on a spring-
mass model are generated to simulate large deformations of the abdominal wall.
By combining n � n � n voxels into one deformation element, we allocate springs,
dampers, and masses.

Inflation force is added to all nodes located at the boundary of the abdominal wall
and the rest of the body. The deformation elements are deformed until deformation
converges. Deformation parameters are determined based on the physical properties
of a real human body. After the convergence of deformation, we deform an
original CT volume to obtain a CT volume with a pneumoperitoneum. This process
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Fig. 4.13 Simulation image generation based on segmentation results

Fig. 4.14 Example of virtual pneumoperitoneum

generates a deformed CT volume reflecting virtual pneumoperitoneum (Fig. 4.14).
By rendering deformed volume with multi-organ segmentation results, it is possible
to generate a virtual laparoscopic view (Fig. 4.15).
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Fig. 4.15 Example of laparoscopic surgery simulation

Fig. 4.16 Example of anatomical name display on simulation image

Anatomical Name Display

Anatomical labeling information gives more information for simulation. Anatomical
name overlay is also performed in generating a simulation image (Fig. 4.16).
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4.3.2 Intraoperative Support

CA also plays an important role in intraoperative assistance. Representative exam-
ples of CA in intraoperative assistance, or surgical navigation are provided in this
section.

4.3.2.1 Tracking

Tracking of the positions and the orientations of an endoscope and a forceps is vital
during interventions. There are two methods for tracking an endoscopic camera: (a)
sensor-based tracking and (b) image-based tracking. A positional tracker is mostly
used in surgical navigation because it is quite robust. Image-based tracking uses
preoperative and intraoperative images to track an endoscope.

Sensor-Based Tracking

An optical or electromagnetic tracking system is typically utilized in surgical navi-
gation (Fig. 4.17). These positional tracking systems give position and orientation in
their coordinate system S. To generate a virtual laparoscopic view corresponding to a
current real endoscopic view from preoperative CT images, it is necessary to obtain
the transformation matrix representing the relationship between two coordinate
systems C.s/ and C.c/, where C.s/ and C.c/ show the coordinate systems of the sensor
and the preoperative coordinate systems, respectively. When the position of known

Fig. 4.17 Laparoscopic surgery navigation using an optical positional sensor (Courtesy by Dr.
Yuichiro Hayashi)
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points pi in C.s/ and C.c/ is measured, the transformation matrix between the two
coordinates are obtained by solving the following equation:

T� D argmax
T
kTp.s/i � p.c/i k; (4.7)

where p.s/i and p.c/i are locations of ith known point, which are measured on CT
images and on the patient. Anatomical landmarks or fiducial landmarks attached to
a patient’s body are utilized. To obtain T, we need three points if we consider only
rotation and translation. If we obtain T�, we transform an endoscope position or a
forceps position by T� and generate a surgical assistance image.

Image-Based Tracking

This method estimates endoscopic camera motion based on image matching of the
real endoscopic camera image and the virtual endoscopic image (Fig. 4.18). It is
possible to generate a virtual view V.p;Q/ from preoperative CT data by giving a
program a viewpoint p and an orientation Q. A similarity-measure function S.A;B/,
which measures the similarity of two images of A and B, can also be generated.
Image-based tracking can be formulated as

.p�;Q�/ D argmax
.p;Q/

S.V.p;Q/;R/; (4.8)

where R means the real endoscopic image. The result of this optimization process
.p�;Q�/ gives a position and an orientation for the real endoscope camera, which is
represented in the CT coordinate system C.c/ (Fig. 4.18).

Although this is a simple formulation of image-based endoscope tracking, the
performance of this method depends heavily on the accuracy of the initial guess used
in Eq. 4.8. There are many methods for guess optimization. Mori et al. used epipolar
geometry analysis for obtaining a good initial guess. They recovered endoscopic

Fig. 4.18 Basic concept of image-based endoscope tracking
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motion only from real endoscopic images. Luo et al. introduced a stochastic process
for preventing Eq. 4.8 goes to local minima. Combination with physical sensors
shown in Sect. 4.3.2.1 is a good way to optimize the initial guess.

4.3.2.2 Intraoperative Assistance Information Image Display

Intraoperative surgical information display is an important function. There are
two methodologies: (a) synchronized display and (b) reference display. In syn-
chronized display, virtual views generated from a CA model are generated in
synchrony with endoscope/forceps movement. The reference display method shows
reference images during surgery. No synchronization with real organs is imple-
mented.

Synchronized Display

If a surgeon moves an endoscope, corresponding views are generated from tracking
results. A tip of a forceps is also displayed on a virtual view as a virtual forceps.
Anatomical names are also overlain on virtual images for helping a surgeon to
navigate patient anatomy. Figure 4.19 shows a situation where synchronized display
is performed during gastrectomy. Figure 4.20 shows an example of bronchoscope
navigation based on image registration.

Fig. 4.19 Example of surgical navigation based on synchronized display



4 Applied Technologies and Systems 319

Fig. 4.20 Example of bronchoscope navigation based on synchronized display

Reference Image Display

This display method shows reference images during surgery. Reference images
are typically prerendered before surgery and displayed on a monitor or with
an interactive display. Tablet devices are often used for reference image display
(Fig. 4.21).

Now it is possible to create 3D organ models for image display. Because a 3D
print model can be observed during surgery without any devices, it is quite an
intuitive display for a surgeon. Translucent models can represent internal structures
of an organ. Such models can assist a surgeon in making decisions regarding
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Fig. 4.21 Example of reference image display using tablet device

Fig. 4.22 Example of 3D printed organ model and utilization during surgery

resection. It is also useful for improving communications among medical staff.
Figure 4.22 shows an example of such 3D print model utilization during surgery.

4.3.3 Respective

There is no doubt that CA enhances interventional procedures by providing useful
information before, during, and after intervention, enabling the surgeon to observe
important structures that might be missed. One future plan is to connect intraopera-
tive assistance systems based on CA with robotic surgery systems. Robotic surgery
enables surgeons to operate in fields where human-operated endoscopic surgery
cannot reach. Micro-robotic surgery will allow us to perform sub-sub millimeter
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procedures. This means much more detailed information about human anatomy is
strongly required for future surgery.

4.3.4 Feasibility of Intelligent Image Analysis with CA
in High-Precision Radiation Treatment Planning

4.3.4.1 Introduction

The aim of radiation therapy is to deliver as high a dose as possible to a target (i.e.,
a malignant lesion) to kill as many malignant cells as possible while minimizing the
dose to healthy tissues or organs at risk (OAR). This requires exact localization of
the target and OARs. Delineation of the contours of the gross tumor volume (GTV),
which is defined as the visible tumor region identified in medical images, is key,
because patient positioning and the optimization of radiation treatment planning
(RTP) are performed based on the planning target volume (PTV) obtained from
GTV [126]. The OAR contours are also deeply involved in the optimization of
the RTP. To address these requirements, many computational methods based on
intelligent image analysis and/or CA have been studied with the aim of refining
segmentation of targets and assisting determination of beam directions.

In this section, the feasibility of using intelligent image analysis and/or CA as an
aid in high-precision RTP, including particle therapy, is explored.

4.3.4.2 Automated Delineation of Target Regions for Radiation Treatment
Planning

The GTV and the clinical target volume (CTV) (larger than the GTV, the CTV
defines the volume including gross tumor and areas of likely microscopic involve-
ment) are the starting points in radiation treatment planning as mentioned above.
There are two reasons why computer-assisted delineation is important:

(1) The intra- and interobserver variability of GTV delineation by radiation oncol-
ogists is plagued by low reproducibility [127–130]. Chao et al. reported that
the variation in contours in CTVs delineated by radiation oncologists is a
critical issue and that using computer-assisted methods reduced volumetric
variation and improved geometric consistency in cases of base of tongue and
nasopharyngeal cancer [130].

(2) Manual contouring is tedious and time-consuming. According to one study, the
average time saved by using a computer-assisted method is 26% to 29% for
experienced physicians and 38% to 47% for less-experienced physicians [130].

Automated contouring based on statistical CTV models is one of the approaches
to reduce the inter- and intraobserver variability in GTV or CTV contour generation.
Arimura developed a computational method for producing statistical CTV shape
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models for low-, intermediate-, and high-risk prostate cancers based on a point
distribution model, which can be used as a CTV template for automated contouring
in prostate cancer radiation treatment planning [131]. First, fifteen radiation oncolo-
gists delineated CTV contours for three risk levels. The low-risk, intermediate-risk,
and high-risk CTVs included the prostate, the prostate plus the proximal 1 cm of the
seminal vesicles, and the prostate plus the proximal 2 cm of the seminal vesicles,
respectively. The statistical CTV models for the three risk types were derived
based on principal component analysis (PCA), which statistically incorporated the
interobserver variability. CTV surfaces were triangulated using a marching cubes
algorithm. For matching the number of points on the surfaces of all CTV regions,
the number of vertices on each CTV polygonal surface was reduced to 1,000 with
quadric error metrics. All CTV regions were registered with a reference CTV using
an iterative closest point algorithm for calculation of a covariance matrix to be
employed for the PCA-based CTV modeling. CTV models of the three risk types
were produced, which consisted of a mean CTV and PCA coefficients multiplied
by eigenvectors. Figure 4.23 shows shape variations of statistical CTV models

Fig. 4.23 Shape variations of statistical CTV models produced by the first and second largest
modes for an intermediate-risk group
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produced by the first and second largest modes for an intermediate-risk group. These
computational anatomical techniques and mathematical modeling of targets and
organs may allow for adaptive target delineation during the course of radiotherapy.

A number of automated delineation methods for determining the GTV or CTV
have been proposed to reduce the inter- and intraobserver variability and planning
time, as well as to increase the segmentation accuracy of the GTV. Methods using
PET images are based on thresholding of the standardized uptake value (SUV) [132,
133]; region-growing methods also use the SUV [134]. Gaussian mixture model-
based segmentation [135], gradient-based segmentation methods [136], the fuzzy
locally adaptive Bayesian approach [137], the fuzzy c-means algorithm [138], and
model-based methods [139] have all been studied. Methods such as MR atlas-based
[140] and probabilistic atlas-based [141] segmentation have also been proposed.

Segmentation methods for GTV based on positron-emission tomogra-
phy/computed tomography (PET/CT) datasets, which include metabolic as well
as morphological information, have been assessed. A tumor’s higher rate of aerobic
glycolysis is directly quantified by 18F-fluorodeoxyglucose (FDG) PET. El Naqa
et al. developed a multimodality segmentation method using a multivalued level set
method by combining imaging data obtained from different modalities, including
PET/CT [142]. In their study, the level set method was applied to a vector image
including CT and PET images so that an energy function could be minimized
for determination of CTV regions. As a result, the corresponding Dice similarity
coefficient was 0.90 ˙ 0.02 when CT, MR, and PET images were used. We [143]
attempted to incorporate PET biological and CT morphological information on
tumor contours determined by radiation oncologists into an optimum contour
selection (OCS) framework [144] using a machine learning protocol. We have
proposed an automated method for extracting GTVs using a machine learning
classifier that accumulates radiation oncology datasets of planning CT and FDG-
PET/CT images.

Our method [143, 144] is to feed GTV contours determined by radiation
oncologists into a machine learning classifier during the training step, after which
the classifier produces the “degree of GTV” for each voxel in the testing step.
Six voxel-based image features, including voxel values and magnitudes of image
gradient vectors, are derived from each voxel using the planning CT and PET/CT
image datasets. Initially, lung tumors are extracted using a support vector machine
(SVM) that learns six voxel-based features inside and outside each tumor region
determined by radiation oncologists. The final tumor regions are determined using
the OCS approach that can be used for selection of a global optimum object contour
based on multiple delineations with a level set method around the tumor. Figure 4.24
shows an SVM output image and GTV contours that were multiply delineated using
the proposed method on the planning CT image at evolution times of 0, 2000, 3337
(optimum contour), 5000, and 6000. The proposed method achieved an average
Dice similarity coefficient of 0.84 in six lung cancer patients, while the conventional
method output was 0.78.
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Fig. 4.24 SVM output image and GTV contours that were multiply delineated using the proposed
method on the planning CT image at evolution times of 0, 2000, 3337 (optimum contour), 5000,
and 6000

Similar-Case-Based Beam Arrangements in Stereotactic Body Radiotherapy

Stereotactic body radiotherapy (SBRT) aims to administer high enough doses to
ablate a cancer while minimizing the dose to the surrounding healthy tissues by
means of multiple beam arrangements, which generally consist of a large number of
coplanar and noncoplanar beams [145]. The determination of beam arrangements
is time-consuming, and it is a demanding procedure for less-experienced treatment
planners. Treatment planners’ skills are generally developed by repeated planning
in clinical practice. The planners memorize many planning patterns as an evolving
“database,” which can be searched for past cases similar to the case under
consideration. Several studies have tried to develop computer-assisted methods for
this modality [146–149]. Commowick et al. developed a method for selection of a
template image, which is the most similar image selected with a distance between
transformations in a radiation treatment planning database and can be employed in
atlas-based segmentation [146]. Chanyavanich et al. demonstrated the usefulness
of prior treatment plans, derived from similar cases, to generate new intensity-
modulated radiation therapy (IMRT) plans in prostate neoplasms [147]. Mishra et al.
developed a case-based reasoning system, which enables the use of knowledge and
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experience gained by oncologists in dealing with new patients [148]. Schlaefer et al.
reported the feasibility of a framework of case-based beam generation for robotic
radiosurgery, which could reduce planning time while maintaining high plan quality
for typical clinical cases with similar anatomy [149].

Magome et al. also developed a method for determination of beam arrangements
based on similar cases, which proved to be helpful for making new plans in lung
cancer SBRT [150]. Beam arrangements were automatically determined based on
similar cases using the following two steps: First, the five most similar cases
to the current case were retrieved using geometrical features associated with the
location, size, and shape of the planning target volume (PTV, the CTV plus a margin
allowing for patient movement, position changes, and other variables), lung, and
spinal cord. Then, five beam arrangements for the current case were automatically
created by aligning five similar cases with the current case in terms of lung regions
by use of a linear registration technique. To evaluate the beam arrangements, five
treatment plans were manually designed by applying the beam arrangements to
the current case. The most useful beam arrangement was chosen by sorting the
five treatment plans based on several plan evaluation indices including the D95
(dose that covers 95% of the PTV), mean lung dose, and spinal cord maximum
dose. They applied the proposed method to ten test cases by searching in an RTP
database of 81 cases of lung cancer and compared the plan evaluation indices
between the original treatment plan and the corresponding most useful similar-
case-based treatment plan. The method had no statistically significant differences
from the original beam arrangements (p > 0.05) with respect to the plan evaluation
indices. This method could be employed as an educational tool for less-experienced
treatment planners. Magome et al. developed a similar-case-based optimization
method for beam arrangements in lung cancer SBRT for assisting treatment planners
[151]. The local beam direction optimization algorithm, which was developed in
their study, improved the quality of treatment plans with significant differences (p
< 0.05) in the homogeneity index and conformity index for the PTV, V10 (volume
receiving �10 Gy), V20 (volume receiving dose �20 Gy), mean dose, and NTCP
(normal tissue complication probability) for the lung.

The surrounding anatomical environments of tumors, which may affect RTP,
were not considered in the study of [151]. We developed a computational framework
of retrieving similar cases using a local gradient distribution (LGD) feature for
SBRT [152]. We assumed that the LGD feature represents the surrounding anatom-
ical environments of tumors. We adopted a local image descriptor, which was based
on scale invariant feature transform [153]. This proposed framework consists of two
steps: searching and rearrangement. In the searching step, ten cases most similar to
the current case are retrieved from the RTP database based on the shape similarity
of a two-dimensional lung region at an isocenter plane. Next, the five most similar
cases are selected using geometric features related to the location, size, and shape
of the planning target volume, the lung, and the spinal cord. In the rearrangement
step, the similarity rank of five selected cases is changed by use of the Euclidean
distance between two LGD feature vectors. This is a similarity index based on the
magnitudes and orientations of image gradients within a region of interest (ROI)
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around the isocenter. The gradient magnitude m.x; y/ and orientation �.x; y/ are
computed by the following equations based on a gradient vector (Sx.x; y/,Sy.x; y/)
obtained by a Sobel filter:

m.x; y/ D
q
Sx.x; y/2 C Sy.x; y/2 (4.9)

and

�.x; y/ D
�

tan�1 Sy.x; y/
S.x; y/

� 180
�

�
(4.10)

The histogram of 36 discrete orientations is constructed by the following
equation:

h.� 0/ D
X
x

X
y

w.x; y/ı
�
� 0; �.x; y/



(4.11)

where the weighted magnitude w.x; y/ is obtained by multiplying the gradient
magnitude by a Gaussian function with the scale estimated at the isocenter and
ı Œ� 0; �.x; y/� is the Kronecker delta. The orientation with the highest value in the
histogram h.� 0/ is considered the major orientation.

Gradient magnitudes and orientations of image gradient vectors are recalculated
for each pixel in the ROI, which is divided into 4 � 4 subregions. Figure 4.25 shows
illustrations of derivation of the LGD feature. The arrow length corresponds to the
sum of the gradient magnitudes as shown in Fig. 4.25b.

An orientation histogram weighted by the vector magnitudes is produced in each
subregion using eight bins covering 360ı, as shown in Fig. 4.25b. The orientation
histogram represents the relationship between eight orientations and the sum of

Fig. 4.25 Illustrations of derivation of the local image descriptor: (a) a CT image with an ROI
and an arrow showing the major gradient orientation, (b) magnitudes of gradient vectors in 16
subregions, (c) a local image descriptor. The arrow length corresponds to the sum of the gradient
magnitude in (b)
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gradient magnitudes by the following equation:

h.� 0/ D
X
x

X
y

m.x; y/ı
�
� 0; �.x; y/



(4.12)

Finally, an LGD feature is assembled from an orientation histogram in 16
subregions, which is composed of 128 gradient magnitude features as shown in
Fig. 4.25c. As a result, the cases, which are selected as cases similar to the test cases
by the proposed method, resemble the test cases more than those selected by the
method without the LGD features, in terms of the tumor location. This suggests
that the use of the LGD feature is important in providing similar cases to treatment
planners.

To evaluate Nonaka’s method [152], we applied the similar-case-based beam
arrangement method, which was developed by Magome et al. [150]. Figure 4.26
shows a plan generated using the original beam arrangement and five plans
determined by similar-case-based beam arrangements, which were generated using
the proposed method [152]. The method has the potential to provide superior beam
arrangements from the treatment planning point of view.

Quantitative Evaluation of the Robustness of Beam Directions for Charged
Particle Therapy

The finely adjusted dose distribution produced in charged particle therapy such
as proton or carbon ion beams is vulnerable to setup errors and/or organ motion.
We investigated the quantification of the robustness of particle beam directions
against patient setup errors in charged particle therapy [154]. Power spectral analysis
of target water-equivalent path length (WEPL) images in beam’s eye views was

Fig. 4.26 A plan obtained by the original beam arrangement (a) and five plans determined by
similar-case-based beam arrangements (b)–(f)
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employed for quantifying the robustness of the beam directions. The relationship
between the beam direction and the 0th moment of the power spectrum was derived
for estimation of the robustness of each beam direction. We applied the proposed
evaluation method to seven patients with head and neck cancer. The mean of the 0th
moment in the conventional beam directions, which were empirically selected by a
manual method, was statistically smaller than that for the avoided beam directions
(p < 0.05), which means that the conventional beam directions based on planners’
experiences and knowledge were appropriate from the theoretical point of view.
The results of this preliminary study may lead to an automated selection of beam
directions based on the relationships mentioned above.

4.4 Autopsy Imaging (Ai)

4.4.1 Past, Present, and Future of Autopsy Imaging

4.4.1.1 The Nature of Autopsy Imaging (Ai)

Cadavers can be analyzed using diagnostic imaging, which comprises one aspect
of medical assessment after death. Imaging of cadavers has also been referred to as
postmortem imaging (PMI). Ezawa et al. [155] noted that computed tomographic
(CT) imaging before autopsy was valuable, and they referred to the procedure in
Japan as autopsy imaging (Ai). Images obtained after death are variously described
as “virtopsy” in Switzerland [156] and “virtual autopsy” in France [157, 158] and
in Germany [159]. Although the descriptions and concept of Ai somewhat differ,
all involve analysis of a cadaver by CT and/or MRI to acquire postmortem medical
information.

4.4.1.2 The History of Ai

Early forensic imaging was applied to identify foreign objects in cadavers such as
bullets. A murder victim killed by a bullet was assessed using forensic radiography
in Lancashire, England in April, 1896 [160, 161]. One report describing a dissection
view in 1910 is considered an example of a chest radiographic examination of a
cadaver. Although cadavers thereafter were sporadically visualized by radiography
and photographed, the information generated in this manner was of little value, and
forensic radiology did not develop further.

The appearance and dissemination of computed tomography (CT) during the
1970s generated vast amounts of useful medical information. Imaging of cadavers
also began to attract interest, particularly from the viewpoint of crime-related
forensics and accidental death. Reports began to describe systematic postmortem
imaging during the late 1980s, when Shiotani et al. applied systematic postmortem
CT to patients in cardiopulmonary arrest on arrival (CPAOA) [162–164].



4 Applied Technologies and Systems 329

A questionnaire sent to hospitals associated with Japanese university medical
schools by the Japan Radiological Society between November and December 2010
revealed that 51% of hospitals already employed Ai. Hospitals had begun sporadic
CT assessment of patients with CPAOA, and by 2006, about 90% of hospitals in
Japan had used CT-based Ai on an emergency basis [165]. Why Ai was implemented
in this manner in Japan might be explained by the fact that a medical examiner
system had not yet been fully established and the diffusion rate of CT in Japan is
the highest in the world.

4.4.1.3 Present Status

Whether Ai can be an alternative to autopsy and determine causes of death
without dissection is controversial. This has led to comparisons of causes of death
determined by Ai and autopsy in several countries.

Fukayama et al. [166] described the value of Ai in an investigation of deaths
associated with medical treatment. That study examined the value of Ai in 165
assessments of causes of death. They judged that autopsy was not necessary in only
3% of these assessments and that the highest correlation of Ai and autopsy findings
was 20%. They also proposed classifications for pathological findings determined
by Ai alone, compared with the results of both Ai and autopsy findings. They defined
obvious pathological findings such as aortic dissection and vague conditions such
as systemic infectious disease and embolism (Table 4.3).

Roberts et al. [167] assessed 182 random adult deaths in the UK to compare
the accuracy of CT Ai, MRI Ai, and gross autopsy. The major discrepancy rates
between causes of death identified by imaging and autopsy were 32% for CT,
43% for MRI, and 30% for the consensus radiology report, which was created
by four general radiologists based on CT and MRI images. The most common
imaging errors in identification of cause of death occurred in cases of ischemic heart
disease, pulmonary embolism, pneumonia, and intra-abdominal lesions, findings

Table 4.3 The classification of disease/pathological findings by the certainty of diagnostic
imaging

Classification Disease/pathological findings

Confident Ai diagnosis Aortic dissection, aortic aneurysm, end-stage kidney disease,
pleural effusion and/or ascites, interstitial pneumonia,
pneumothorax

Possible Ai diagnosis Pericardial effusion, cardiac tamponade, pneumonia/bronchitis
(when there is no complication of pulmonary edema), subdural
hematoma, advanced liver cirrhosis/liver fibrosis

Uncertain Ai diagnosis Systemic infection (e.g., miliary tuberculosis), thrombosis,
embolism, slight liver cirrhosis/liver fibrosis, meningitis,
neurodegenerative disease, acute and old myocardial infarction,
carcinoma of unknown origin, diffuse infiltrative lesion

http://humanp.umin.jp/

http://humanp.umin.jp/
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that concurred with those described by Fukayama et al. Moreover, the major
discrepancy rate compared with autopsy was 16% among 88 deaths for which
radiologists ruled that autopsy was unnecessary.

The 10% lower discrepancy rate for CT compared with MRI suggests that CT is
more accurate than MRI in detecting causes of death. Roberts et al. also discussed
an adaptive difference between CT and MRI because CT images scan bone better
than MRI because it is density based, not simply because it has slightly higher
spatial resolution in most cases. CT is thus effective for visualizing fractures and
intracranial hemorrhages. In contrast, MRI provides greater detail of soft tissues.
They suggested that forensic situations would be better served by CT, whereas non-
forensic and pediatric situations should use MRI [168].

They concluded that the error rate was similar to that for clinical death certificates
when radiologists provided a confident cause of death and was therefore acceptable
for medicolegal purposes. However, CT and MRI frequently miss common causes
of sudden death, and unless these weaknesses are addressed, systemic errors in
mortality statistics will result if imaging replaces conventional autopsy.

One German study compared causes of death determined by CT and gross
autopsy among 162 (57%) of 285 patients who died in nine intensive care units
(ICUs) in Hamburg [159]. Among 47 (16%) autopsies that were also assessed
with Ai, the main causes of death overlooked by Ai were cardiovascular disease
(12.5%) and cancer (40%). In contrast, gross autopsy overlooked 13 traumatic
fractures and two cases of pneumothorax. Ai alone diagnosed new findings in 11
of the remaining 115 deaths. The authors concluded that Ai might be useful for
establishing diagnoses that have traditionally been identified by medical autopsy.
Ai can also at least in part prove equally instructive as gross autopsy in confirming
antemortem clinical diagnoses.

A prospective study of the ability of PMCT to determine causes of death at the
Department of Pathology at Aachen University Hospital in Germany analyzed 29
CT studies acquired before autopsy [169]. The accuracy of PMCT for determining
causes of death was 68%, with a positive predictive value (PPV) of 75%. However,
the accuracy and PPV of CT were 21% and 29%, respectively, for defining
pathogenic mechanisms. The authors considered that the combined diagnostic yield
of autopsy and CT was excellent compared with autopsy alone. These results were
similar to those of Ezawa et al. [155].

A French study compared the abilities of PMCT and autopsy to determine the
causes of unexpected death among 47 infants and children [170]. Among 18 (38.3%)
causes of death determined by autopsy alone, those also determined by CT agreed
with 15 of them. The major discrepancies between CT and autopsy findings were
associated with pulmonary analysis, and the authors concluded that the autopsy and
CT findings essentially agreed. CT is noninvasive and thus more acceptable to the
relatives of deceased children.
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4.4.1.4 Categories of Causes of Death

Ai is useful for determining causes of death to some degree. Causes of death are
classified as immediate (final disease or injury that caused death), intermediate
(disease or condition that preceded death and was responsible for the immediate
cause of death), and underlying (extant disease or condition that led to intermediate
or immediate cause of death; can exist for years before death) [171]. Most causes
of death clarified by Ai are immediate. However, underlying causes of death are
very important for medical statistics. Ai has not been evaluated in this capacity. The
ability of Ai to determine causes of death accurately needs to be further assessed by
comparing large numbers of autopsies with Ai findings.

4.4.1.5 The Future of Ai

Radiologic-pathologic correlation is important to determine the types of patholog-
ical lesions that Ai can recognize. To correlate the sites on images with lesions
identified in pathological specimens is difficult. Radiologic-pathologic correlation
has a longer history in living patients. In cadavers, pinpointing the exact location
of a lesion seen on Ai can be challenging. CA is an interdisciplinary field at the
intersection of computer science, radiology, anatomy, and pathology. The methods
of CA can be grouped into some categories: image segmentation, registration,
image-based physiological modeling, and others. Registration in particular, which
is a process that searches for the correct alignment of images and sites of the human
body, might be useful to overcome this problem. Postmortem changes are evident
in Ai. Livor mortis in the lungs is one of several changes found in the decedent. It
results in the horizontal line in the lung of Ai image. The postmortem changes in
the Ai image may be recognized by using the methods of CA, before we grossly
identify the changes in the image.

4.4.1.6 Extension of Ai Applications

Although Ai is an important tool with which to determine causes of death, it also has
other applications, as presented at a symposium entitled “Extension of the subject
matter of Ai” at the 11th Meeting of the Autopsy Imaging Academic Society in 2013
[172]. Such applications include evaluations of the systemic anatomy of cadavers for
medical education and of ancient mummified remains. We advocate a new field of
Ai that includes all of these applications, called “postmortem imagiology: autopsy
imagiology.” The advancement of autopsy imagiology will help to improve the
accuracy of causes of death determined by Ai and of evaluations of live patients.



332 K. Mori et al.

4.4.2 Premortem vs. Postmortem Body Imaging
and Computational Anatomy of Liver

4.4.2.1 Introduction

Many medical image interpretation algorithms for different organ systems have
been proposed, and some of them are closer to practical use. These algorithms
extract organs and/or important radiological findings, e.g., tumors or pneumonia,
in a medical image to assist doctors faced with an overwhelming amount of data.
A state-of-the-art CT scanner puts out several hundred section images per patient.
CT is readily available and easy to use in Japan [173]. Because Ai does not involve
radiation dosimetry, a larger number of image sections often result, compared with
clinical examinations on living patients. Medical image interpretation algorithms,
or computer-aided diagnosis, can help in this instance.

Medical image interpretation algorithms designed for living patients will work to
some extent with cadavers, but might fail in some cases. Several types of differences
are observed in postmortem CT images. For example, postmortem hypostasis
(Fig. 4.27a) that is caused by gravity and increases attenuation or CT value is a
significant finding in a CT image of a cadaver. Bronchial branches in a cadaver

Fig. 4.27 Examples of Ai-specific radiological findings (Original images courtesy of Dr.
Yamamoto from Ai Information Center)
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are often not filled with air (Fig. 4.27b). Increasing CT values in lung tissue is a
typical postmortem change (Fig. 4.27c). As time goes on after death, tissue contrast
decreases (Fig. 4.27d). Severe deformation of organs and bone fractures might be
observed in an image of a cadaver (Fig. 4.27e, f). Because conventional medical
image interpretation algorithms developed for living patients are not designed
to deal with these findings, they will fail in segmentation of organs and lesion
detection.

This and following sections focus on computational anatomy and segmentation
of the liver and lung. As with state-of-the-art segmentation algorithms for a living
patient, a CA model or a statistical shape model (SSM)-based approach [174, 175]
was employed. The SSM and algorithms are, however, reinforced to deal with
postmortem-specific shape variation. This subsection starts with description of
differences in shape between an in vivo liver and a postmortem liver.

4.4.2.2 Changes in Liver Morphology

Deformation of the liver from before to after the death is large and might not be
accounted for by an SSM trained on in vivo livers. Figure 4.28 shows the typical
shapes of an in vivo liver and that of a postmortem liver [176]. Diaphragmatic
elevation is caused by respiratory arrest, and enlargement of the right ventricle is
caused by circulatory arrest. Such deformation results in the right lobe of the liver

Fig. 4.28 Typical examples from an in vivo liver (left) and a postmortem liver (right). The red
regions indicate the true liver regions. In the postmortem liver, the right lobe was elevated owing
to respiratory arrest, and cardiac arrest caused enlargement of the right ventricle, resulting in a
downward deformation of left lobe
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migrating cephalad and the left lobe migrating caudad. The growth of gas-forming
bacteria can form an abdominal gas reservoir which pushes the liver cephalad and
deforms it.

These are some reasons why a conventional SSM learnt from in vivo liver
labels [177–179] may not delineate the postmortem liver shape accurately. One
possible solution to the problem would be to collect more postmortem liver labels to
construct an SSM. However, because of the shortage of liver labels of postmortem
CT volumes used in construction of an SSM and the large diversity of postmortem
liver shapes, an SSM learnt only from a small number of postmortem liver labels
may display limited ability.

4.4.2.3 Comparisons Between an SSM of an In Vivo Liver and That of a
Postmortem Liver

An SSM trained using in vivo liver labels was compared with one trained from
postmortem liver labels, in terms of performance in delineating postmortem livers
[176]. This study employed a level set distribution model (LSDM) [175, 180] that
does not require correspondence between boundaries of shape labels. Materials,
performance indices, and SSMs to be compared are given below followed by
experimental results:

Materials, Performance Indices, and SSMs

Datasets of 144 in vivo liver labels, L144, as well as 32 postmortem liver labels, D32,
were used. The liver labels were manually delineated on unenhanced CT volumes
of size 512� 512� 191 – 3201 voxels and were reduced to 170� 170� 170 voxels
for the sake of computational efficacy (voxel size: 2.0 mm isotropic). A spatial
standardization of liver labels was carried out before constructing SSMs so that
the gravity points of the labels were identical among the training labels.

We computed generalization and specificity of the SSMs as performance indices.
Note that generalization is a measure of the ability to describe unknown shapes and
specificity a measure of the ability to represent only valid instances of the object.
To calculate both indices, in vivo livers and postmortem livers in the database were
divided as follows: The L144 and D32 sets were randomly divided into two equally
sized subsets, named L72 and D16, respectively. In addition, two L16 subsets were
randomly selected from the two L72 subsets. This study constructed three SSMs,
namely, SSML72, SSML16, and SSMD16, that were trained from subsets L72, L16, and
D16, respectively. Performance indices of the constructed SSMs were calculated
using the L16 and D16 subsets that were not used for training.



4 Applied Technologies and Systems 335

Fig. 4.29 The sum of generalization and specificity (Fig.4c of [176])

Results and Discussion

Figure 4.29 shows the sums of generalization and specificity of SSM. Note that the
higher value indicates better performance.

From the experimental results, the following was observed:

1. The performance when applying an SSM to test labels with the same types was
always superior to those applying an SSM to test labels with different types.
For example, performance of SSMD16 evaluated by D16 was higher than that of
SSML16 evaluated by D16.

2. Another important finding is that the performance of SSML72 was improved by
increasing the number of training labels from 16 to 72. Consequently, even when
evaluating with D16, the performance of SSML72 was higher than that of SSMD16.

The first observation indicates that the performance of an SSM trained by in
vivo liver labels is suboptimal for delineating postmortem liver shapes because of
the difference in shape. This finding tells the difficulties in training a postmortem
SSM using solely in vivo liver labels. In contrast, the second observation suggests
that a larger number of in vivo liver labels would improve the performance of
the postmortem SSM to some extent. To solve the problems caused by difference
in shape between in vivo liver and postmortem one as well as the shortage of
postmortem labels, synthesis-based learning will be introduced in next section.
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4.4.3 Computational Anatomy and Segmentation
of Postmortem Liver

4.4.3.1 Introduction

As discussed in Sect. 4.4.2.3, increasing training labels that describe the
postmortem-specific shape is essential to improve the performance of a postmortem
SSM. This section presents a method that solves the abovementioned problem by
synthesizing postmortem liver labels, which is inspired by synthesis-based learning
[181]. Performance comparisons of SSMs trained using different sets of synthesized
postmortem liver labels are presented, followed by a proposal for a postmortem liver
segmentation algorithm.

4.4.3.2 Postmortem Liver SSMs Using Synthesized Postmortem Labels

Three transformations are developed to simulate the shape deformation from in vivo
livers to postmortem livers. They are categorized into a geometrical transformation
FA and two statistical transformations, FT and FTR. Details of the methods can be
found in [176].

In this study, the transformations yielded five different sets of synthesized
postmortem liver labels, or QDT from FT , QDTR from FTR, QDA from FA, QDAT from FA

followed by FT , and QDATR from FA followed by FTR, respectively. Five postmortem
liver SSMs were trained using combinations of the five synthesized liver label sets
with original postmortem liver labels, D. The relationships between the five SSMs
and the five synthesized label sets are summarized as follows. Note that the training
label sets are shown in parentheses:

• SSMDCT model (D andQDT )
• SSMDCTR model (D andQDTR)
• SSMDCA model (D andQDA)
• SSMDCAT model (D andQDAT)
• SSMDCATR model (D andQDATR)

In addition, three conventional SSMs constructed solely from original labels
were prepared for comparison.

• SSMD model (D only)
• SSML model (L only)
• SSMDCL model (D and L)

Figure 4.30 summarizes the performance of the three conventional and five
proposed SSMs in terms of the sum of generalization and specificity explained in the
previous section. It was found from the figure that most of the proposed SSMs learnt
by synthesized postmortem liver labels outperformed conventional SSMs trained
without synthesis-based learning. In particular, the D + T model achieved the highest
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Fig. 4.30 The sum of generalization and specificity (Fig.7c of [176])

score which demonstrated the superiority of the proposed statistical transformation
for synthesis-based learning.

4.4.3.3 Postmortem Liver Segmentation Algorithm with an SSM

To develop a segmentation algorithm with an SSM [182] for a postmortem liver, a
similar framework for an in vivo liver [183] was employed, but differed in an SSM-
and a MAP-based rough segmentation with a probabilistic atlas. A comparative
study of algorithms using the aforementioned eight different SSMs is also given
in this section.

4.4.3.4 Method

The proposed liver segmentation algorithm consists of three steps: (1) rough
segmentation, (2) SSM-based shape estimation, and (3) graph cuts with the esti-
mated shape. The rough segmentation is performed by a probabilistic atlas-guided
expectation maximization (EM) algorithm followed by a MAP segmentation [184],
in which probability distribution of organs’ features is assumed to be a mixture of
Gaussians. The difference from the in vivo liver segmentation algorithm [183] is
that the atlas-guided EM and MAP are repeated by updating the location of the
probabilistic atlas according to the MAP segmentation result of the previous itera-
tion. Such iteration is important to deal with the postmortem-specific deformation
of organs. Subsequently, in the shape estimation process, the most similar shape to a
MAP segmentation result is selected from an eigenshape space of an SSM. Finally,
the graph cut-based segmentation with the estimated shape is performed. The energy
function to be minimized is composed of a unary and pairwise terms. The unary term
is a negative logarithm of posterior probability of liver given a CT volume in which
a patient-specific probabilistic atlas calculated from the estimated shape is used as
a prior probability. Pairwise terms consist of a conventional boundary term and a
shape term that evaluates the difference in gradients between a segmented shape
and the estimated one.
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4.4.3.5 Results and Discussion

The same dataset of cadavers in Sect. 4.4.2 was used for validation. The segmenta-
tion accuracy was evaluated by the Jaccard index (JI) between the segmented region
and corresponding true liver label.

Figure 4.31 shows the JIs of the graph cut segmentation when using the
eight different SSMs presented in the previous subsection. The figure tells that
the segmentation using SSMDCT achieved the highest performance (average JI =
0.806). Note that SSMDCT was the only model whose segmentation performance
is significantly superior to those of all conventional SSMs (SSMD, SSML, and
SSMDCL). Here, a Wilcoxon test with a significance level of 0.05 was employed for
statistical test. It is worth mentioning that the findings from the figure and statistical
test are consistent with the conclusion of the previous subsection, where SSMDCT

was proven to be the best model.
Figure 4.32 shows examples of graph cut segmentation when using SSML and

SSMDCT , in which the contours of the regions are shown in yellow. It was found
from the figure that the shape extracted by the algorithm with SSMDCT was
obviously superior to that of SSML. The failure of SSML was explained by failure
in shape estimation which was caused by a limited ability to delineate a postmortem
liver shape.

Fig. 4.31 Box plots of the
graph cuts segmentation
performance of all eight
SSMs (Revised version of
figure 1 in [182])
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Fig. 4.32 Examples of segmentation results from the conventional SSML and from SSMDCT ,
which showed the best performance [182]

4.4.4 Postmortem Lung Segmentation

4.4.4.1 Introduction

Lung segmentation from a postmortem thoracic CT volume is a challenging task
owing to large differences not only in shape but also in appearance from a healthy
living lung. The change in appearance from in vivo lung to cadaveric one was
caused by both postmortem changes and severe pathologies, such as multiple tumors
or a large pleural effusion (see Figs. 4.33 and 4.34). One of the state-of-the-art
in vivo lung segmentation algorithms is the multi-shape graph cuts with neighbor
constraints [185]. It was reported that the algorithm achieved higher accuracy than
conventional one, in particular when applying to lung with atypical shape and
pathologies. Such in vivo lung segmentation algorithm might still be effective in
segmentation of postmortem lung to an extent. Figure 4.33 presents an example
of segmentation results for a case with moderate changes in appearance by the
previous segmentation algorithm [185]. It was confirmed that the lung boundaries
are extracted successfully by the method (JI: 0.963 [left], 0.830 [right]). It might,
however, not succeed in extracting a postmortem lung with more severe deformation
and/or changes in appearance, as in Fig. 4.34.

This subsection presents a lung segmentation algorithm for a postmortem
thoracic CT volume [186]. It is a modified version of the in vivo lung segmentation
algorithm [185]. There is twofold contribution: First, to deal with a large difference
in appearance of lung that leads to failure in rough location estimation of lung, a
robust location estimation algorithm is proposed. It uses the result of postmortem
liver segmentation explained in the previous section [182]. Second, a new adaptive
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True boundary

Segmentation (previous [179]

Fig. 4.33 Segmentation results of moderate cases. The previous segmentation algorithm [185]
succeeded in extracting the boundaries

True
boundary

Ztop & Zbottom (previous [14])
Ztop & Zbottom (proposed [15])

Segmentation (previous [14])
Segmentation (proposed [15])

Fig. 4.34 Segmentation results of severe cases with estimated top and bottom sections of the
lung. While the previous algorithm significantly failed in segmentation, the proposed algorithm
improved the lung boundaries (Revised version of figure 1 in [186])

weight between energy terms in the graph cuts is presented. It adaptively balances
between different terms according to the reliability of the rough lung segmentation
result. The results of applying the algorithm to 32 postmortem thoracic CT volumes
are presented in this subsection.
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4.4.4.2 Methodology

A thoracic CT volume is an input to the algorithm. The first step is rough
segmentation of the lung, and the second step is body cavity segmentation. Third, a
location of lung is roughly estimated, whose results are used to generate the patient-
specific shape. Finally, the multi-shape graph cuts with neighbor constraints and an
adaptive weight refine the segmentation results. The difference from the algorithm
[185] is the third step, or rough location estimation of lung, and the final step, or
fine lung segmentation with the proposed adaptive weight.

4.4.4.3 Rough Location Estimation of the Lung

This step estimates top and bottom axial slices of the lung, ztop and zbottom, where the
z axis is parallel to the craniocaudal axis. Subsequently, landmarks are automatically
defined according to the extracted axial slices and bounding box of a body cavity
extracted in the previous step. The landmarks are forwarded to a radial basis
function-based nonlinear registration between the SSM to an input volume, and the
registration results are used to generate the patient-specific shape. In the previous
method [185], ztop and zbottom slices were determined based on the result of a CT
value-dependent rough segmentation only, which frequently failed in segmentation
caused by severe pathologies and/or postmortem changes, in particular zbottom. As a
result, the estimated positions of zbottom slices would greatly deviate from the true
positions. In this study, a linear predictor of zbottom slice was presented based on the
z coordinate of the top axial slice of the liver segmentation result [182] explained in
the previous subsection. The details can be found in the paper [186].

4.4.4.4 Graph Cut-Based Fine Segmentation of the Lung

The energy function to be minimized has a unary and pairwise terms. The unary
term consists of three sub-terms: the likelihood term, the probabilistic atlas term,
and the neighbor constraint term. In the postmortem lung segmentation, it is
important to balance the probabilistic atlas term with the likelihood one, the latter of
which is calculated using the rough segmentation result. So the proposed adaptive
weights are defined by the Jaccard index between rough segmentation results and
its most similar shape generated by a lung SSM. Note that the lower JI means
more irregular shape of rough segmentation, most of which were caused by the
failure in segmentation owing to severe pathologies and/or postmortem changes.
Specifically, the JI is used as a weight for the probabilistic atlas term and (1-JI)
is for the likelihood term. The neighbor constraint term is introduced to force the
bottom surface of lung closer to top surface the liver extracted by the algorithm in
the previous section.
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4.4.4.5 Results and Discussion

The dataset of 32 postmortem CT volumes in Sect. 4.4.3 with the true lung labels
were used to demonstrate the effectiveness of the proposed algorithm. A level set
distribution model of lung [185] was trained with 40 in vivo studies. Accuracy of
the proposed linear predictor of zbottom axial slice was validated by a leave-one-
out test of 32 postmortem CT volumes. 26-connectivity was employed in the graph
cut-based fine segmentation. The performance was evaluated by JI’s between an
extracted lung region and the manually delineated true one.

Figure 4.34 shows the extracted top and bottom axial slices of lung as well
as segmentation results of the two cases, in which the lungs are affected by
severe pathologies and postmortem changes. The proposed algorithm improved
the segmentation performance for both cases, but the reasons are different from
each other. In the left-hand side case, the estimated positions of zbottom slices were
improved, and the better estimation must lead to better segmentation results (JI:
0.048!0.583). In contrast, the estimated slice positions of the right-hand side case
are roughly the same as those by the previous algorithm [185], but the boundaries
extracted by the graph cuts were improved (JI: 0.676!0.843) because of the
proposed term constrained by the extracted liver.

Average JI was improved from 0.784 (previous) to 0.845 (proposed). However,
no statistical difference was found by Wilcoxon signed-rank test for 32 cases. When
focusing on nine most difficult cases that have lower JI’s than the mean by the
previous method, statistical difference was observed. It can be concluded that the
proposed method must be effective in enhancing the performance of difficult cases.

4.4.5 Perspective

4.4.5.1 Postmortem Liver SSM and Liver Segmentation

Synthesis-based learning was successfully applied to train a postmortem liver
SSM in Sect. 4.4.3.2. The advantage of the proposed algorithm lies in the simple
simulation of the shape transformation from an in vivo liver to a postmortem one.
However, the approach may not simulate all possible shape changes, because of
absence of physical point of view. Since the performance of the SSM strongly
depends on the quality of synthesized liver labels, physics-based deformation
approaches should be applied to synthesize liver labels in the near future, such
as the finite element method (FEM)-based transformations [187]. An interesting
future topic would be comparison with an FEM-based approach and integration the
constructed SSM with a postmortem liver segmentation algorithm.

The current liver segmentation performance for a cadaver is inferior to that for an
in vivo patient [177–179, 188] owing to postmortem-specific shape deformation and
larger location variation. Extension of the EM algorithm before MAP segmentation
to estimate shape and location will be an important endeavor.
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4.4.5.2 Postmortem Lung SSM and Lung Segmentation

Unlike postmortem liver, differences in shape of a lung between an in vivo patient
and a cadaver are relatively small. Thus, the postmortem SSM was trained by only
in vivo lung labels. The shape description ability, however, might be limited, in
particular at boundaries neighboring to the liver and heart, because the boundaries
are deformed in a cadaver, as explained in Sect. 4.4.2.2. The development of a
postmortem lung SSM trained from postmortem lung labels and/or synthesized ones
is another important goal.

The most difficult problem in postmortem lung segmentation is changes in
appearance, or CT values, caused by severe pathology and/or postmortem changes.
A prior knowledge of shape and constraints by surrounding organs is necessary
to solve the problem. The proposed method in Sect. 4.4.4 employs an SSM to
provide a priori knowledge of shape. In addition, extracted body cavity, aorta,
as well as liver were used to set constraints on the shape and location of lung.
However, the segmentation performance showed in Sect. 4.4.4.5 is not sufficient
for practical use. One possible reason is that the spatial extent of pathologies and
postmortem changes are highly different among cases, which means that a priori
knowledge and constraints necessary for segmentation are on a case-by-case basis.
Thus, development of an algorithm to select appropriate constraints adaptively is
vital.

4.4.5.3 Miscellaneous Future Topics

It will be interesting to extend an SSM and a segmentation algorithm to other
organs and multiple organs in a cadaver (see Sect. 3.9.6 for in vivo multiple
organs). A comparative study of SSMs and segmentation algorithms using more
postmortem CT data is also desirable. Modeling both shape and appearance (CT
value) changes from an in vivo patient to a cadaver will be essential not only to
improve segmentation performance but also to aid in determining the cause of death
and to estimate the time after death accurately.
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Chapter 5
Perspectives

Yoshitaka Masutani

Abstract Computational anatomy (CA) is still a developing discipline. It offers
a wide variety of research areas for applications in clinical support and medical
science. The editors and the authors hope this book will serve as a guide to students
and researchers interested in this exciting new discipline.

Keywords Computational anatomy • Complete medical image understanding

In this book, fundamentals, state-of-the-art techniques, and implementation of
computational anatomy (CA) are presented. At this moment, one of the main goals
of this discipline, “complete medical image understanding,” has yet to be achieved.
This is for several reasons, including the need for more data samples, the diversity
of pathologies, and so on.

One of the difficulties in establishing theories and techniques for CA is that
consistency with conventional anatomy is necessary for physician support. There
needs to be a common language and terminology between physicians and engineers.
However, ambiguities exist; for example, the explicit boundary between the lung
and the hilum is not defined in conventional anatomy, posing difficulties for
lung segmentation. This kind of ambiguity directly affects the construction of
computational anatomy models in explicit representation of structures. Therefore, a
new framework for handling such ambiguity in conventional anatomy is necessary
and will need to be worked out in discussions among physicians, engineers, and
anatomists.

The new and notable techniques for pattern recognition generally require data
samples in the tens of thousands. However, personal medical imaging data are hard
to obtain for legal reasons, in addition to the problem of data size. This is not a
simple problem solvable by a small research community but should be considered
at the national level. In order to increase the availability of data, researchers must
show the advantages brought by the computational anatomy approach, such as safer
and lower-cost medical practices.
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New imaging modalities promise new opportunities for analyses of anatomical
structures from multiple medical specialties. Not only post-processing of given
image data but also optimization in the imaging phase should be discussed in the
context of medical image understanding.

CA has opened a wide variety of research areas including applications in clinical
support and medical science. The editors and the authors hope that this book will
help students and researchers garner further understanding of the role of CA in
medical education and practice.
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