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God has given two great presents to man:
work and tears. Without work, there would be
no progress in the world. The tears of sorrow
comfort a man in his distress, while the tears
of joy accompany him, soothing his passage
from birth to grave.

Joshua Pelleg
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Preface

This textbook on creep in ceramics is unique since all other treatments of the
subject appear only as a part of the general concept of mechanical properties in
materials. A collection of papers on creep in brittle materials was published in 1989,
containing a set of papers on MgO and Si3N4 ceramics. Also, a chapter dealing with
creep can be found in the book published in 2014 by Springer: Mechanical
Properties of Ceramics, providing a taste of this important subject, both in theory
and in regard to its practical technological applications. Creep is an important
deformation process in ceramics, as in other materials. Although no theoretical
basics have yet been formulated for creep phenomena, leaving those working in the
field to rely solely on experimental observations, they should be aware that physical
laws govern the complex deformation mechanism in materials exposed to creep
conditions.

This textbook has two parts. Part I contains 11 chapters. Chapter 1 introduces the
basic concept of creep. Chapter 2 describes the general mechanism of creep.
Chapter 3 presents the relation of creep to diffusion. Chapter 4 provides a general
consideration of creep in ceramics. Chapter 5 discusses creep in single-crystal
ceramics and creep testing methods. Chapter 6 describes creep in nanoceramics,
followed by creep rupture in Chap. 7. Superplasticity is considered in Chap. 8.
Chapter 9 deals with creep and recovery, while the empirical relations related to
creep are discussed in Chap. 10. Part I concludes with Chap. 11 on design for creep
resistance.

Part II covers creep deformation in technologically important ceramics. The six
ceramics most commonly encountered in various technological applications were
selected to represent creep in ceramics. These are three oxide ceramics: Al2O3

(alumina) in Chap. 12; MgO (magnesia) in Chap. 13; and ZrO2 (zirconia) in Chap.
14; followed by two carbides: SiC (silicon carbide) in Chap. 15 and BC (boron
carbide) in Chap. 16; and concluding with the important silicon nitride ceramic,
Si3N4 in Chap. 17.

Practical exercises are not given in this textbook, since each lecturer tends to
provide his/her own preferred problems, which the students are expected to solve.
The author of this book is also not inclined to republish exercises existing in prior
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textbooks. Suffice it to say that those interested in creating and/or solving new
problems in the field should be encouraged to do so for everyone’s benefit.

My gratitude to all the publishers and authors for their permission to use and
reproduce some of their illustrations and microstructures. Thanks to Ethelea
Katzenell of Ben Gurion University for improving the English.

Finally, without the tireless devotion, understanding and unlimited patience of
my wife Ada, it would be difficult to imagine the completion of this book, despite
my decades of teaching the mechanical behaviors of materials. Her helpful attitude
was instrumental in inspiring its writing.

Here, it is impossible for me not to mention my gratitude to my grandparents for
the education they gave me where I spent my childhood and adolescence; they
ascended to Heaven in fire, not unlike Elijah the Prophet, though not having been
called by God.

Beer Sheva, Israel Joshua Pelleg
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Chapter 1
What Is Creep?

Abstract The concept of creep as presented originally by Andrade is discussed in
this chapter. The conventional three stages of creep and the relevant equations are
indicated. Creep rate as a function of the important parameters shown in the
equation below summarizes the effects

_e ¼ f r; t;Tð Þ

of stress, time, and temperature. Creep at some stress and temperature is time
dependent.

1.1 General Concept of Creep

Historically, about a century ago, Andrade was among the first, if not the first, to
pioneer and systematically study the concept of creep in metals. He called it a
‘viscous flow in metals’ and indicated: “that for a lead wire, loaded well beyond the
elastic limit, the extension, after some time, becomes proportional to the time, or the
flow becomes viscous in character. The rate of this viscous flow varies with the
load.” The method adapted to measure creep is to load a wire (or rod) axially and
measure the extension with time at a constant stress. However, one must apply a
constant load, maintained at constant temperature, and record the stain over a
certain period of time. Modern, universal testing machines are commercially
available and provide:

(i) Load measurement and control;
(ii) Extension measurement and control;
(iii) Time measurement;
(iv) Temperature measurement and control facilities;
(v) A chamber for controlled environmental and test conditions;
(vi) A computer for data acquisition and control; and
(vii) A testing apparatus equipped with grips, preventing slippage and excessive

stress.
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Andrade also classified creep. Creep occurs in three stages: primary creep
(stage I); secondary creep (stage II); and tertiary creep (stage III). Stage I occurs at
the beginning of a creep test. This creep is mostly characterized as ‘transient creep’,
which does not occur at a steady rate. Resistance to creep increases until stage II is
reached. In stage II, the rate of creep becomes steady or almost steady. This stage is
also known as ‘steady-state creep’. In stage III, the creep rate begins to accelerate as
the cross-sectional area of the specimen decreases due to necking or until internal
voiding decreases the effective area of the specimen. If the test is allowed to
proceed, fracture will occur, often referred to as ‘rupture’.

The first relations expressing extension under constant stress were formulated
based on Andrade’s results from the extension of lead (Pb) wires, given as:

l ¼ l0ð1þ bt1=3ÞexpðjtÞ ð1:1Þ

where l is the length at time t. l0 is about the original constant length, β expresses
creep at a rate diminishing rapidly with time, hence its term as ‘transient’ or ‘β
creep’. The creeping portion which proceeds at a constant rate (steady-state creep)
is also known as being ‘quasi-viscous creep’ or ‘κ creep’.

Creep curves are stress- and temperature-dependent, thus the three parameters
that determine creep rate: time, temperature and stress, may be expressed by:

_e ¼ f r; t;Tð Þ ð1:2Þ

Temperature is an important parameter of creep in general and especially in
ceramics. Since most ceramics are intended for high-temperature applications,
guidelines are essential for understanding the limitations, if appreciable creep
deformation is to be eliminated. Commonly, ceramics at high temperatures are
ductile. For ceramics with low-temperature ductility, creep may occur at*0.5Tm or
may even set in at lower temperatures. The homologous temperature, defined in
terms of the melting point, Tm, serves as an efficient demarcation point between
low-temperature and high-temperature creep, given as:

homologous temperature ¼ T
Tm

ð1:3Þ

T is a relevant temperature of application and expressed (together with Tm) on the
absolute scale. Low-temperature creep below *0.5Tm is considered to be governed
by a nondiffusion-controlled mechanism, whereas high-temperature creep, above
0.5Tm, is diffusion controlled. Stress (load), time and temperature act simultane-
ously, determining the creep rate as expressed in Eq. (1.2). When resistance to creep
in ceramics is an essential prerequisite in high-temperature applications (preventing
the risk of creep failure during their lifetime) high Tm ceramics are advisable. Some
ceramics with very high melting points are: MgO (2798 °C), Al2O3 (2050 °C) and
SiC, that will be discussed later in this book.
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In order to eliminate grain boundary creep and grain boundary sliding,
single-crystal ceramics are suggested for practical use in many applications, such as
turbine blades, etc. In the next section, some basic relations are presented.

1.2 Basic Concepts

Most of the many equations describing creep given in the literature follow in the
wake of Andrade’s empirical concept that one may express the variation of strain
over time as:

e ¼ e0 1þ bt1=3
� �

exp jtð Þ ð1:2aÞ

which is equivalent to Eq. (1.1). When κ = 0, β creep is obtained and Eq. (1.2a)
may be expressed as:

e ¼ e0 1þ bt1=3
� �

ð1:2bÞ

Equation (1.2b) represents transient creep, indicating a decreasing creep rate
over time, since it is function of time. However, when β = 0 in Eq. (1.2a), one
obtains:

e ¼ e0 exp jtð Þ ð1:4Þ

which is κ creep and represents a stationary state. Differentiating Eqs. (1.2b) and
(1.4) with respect to time results in Eqs. (1.5) and (1.6), respectively:

de
dt

¼ _e ¼ 1
3
e0bt

�2=3 ð1:5Þ

and the creep rate from Eq. (1.4) is:

_e ¼ Ke0 exp jtð Þ ¼ je ð1:6Þ

Clearly, the last term in Eq. (1.6) is the consequence of expressing the value of
Eq. (1.4) in the second term.

Figure 1.1 is a schematic creep curve illustrating a constant load creep curve, and
the constant stress curve is shown by the dashed line extension of the secondary creep.

All three stages of the conventional creep curve are shown in Fig. 1.1a.
Furthermore, an instantaneous stain on loading is also indicated. The variation of
the strain rate in the three stages is illustrated in Fig. 1.1b. One can see from this
illustration that, in the primary creep, the creep rate is continuously decreasing
(hence its name ‘transient creep’), while, in the secondary creep, the rate is constant
(hence its name ‘steady-state creep’) and finally, in the tertiary creep, the creep rate
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is accelerating (hence it is also known as ‘accelerated creep up to fracture’. The
‘constant creep rate’ is the minimum creep rate, which is an important design
parameter and its magnitude is temperature- and stress-dependent. Two criteria of
the minimum creep rate are commonly applied to alloys: (a) the stress needed to
produce a creep rate of 0.1 × 10−3%/h (or 1% in 1 × 104 h) and (b) the stress
needed to produce a creep rate of 0.1 × 10−4 %/h, namely 1% in 100 × 103 h,
which is about 11.5 years. Criterion (a) is used for turbine blades, while (b) is
usually applied to steam turbines.

Clearly, there is interest avoiding all forms of creep while a component is exposed
to some temperature. Therefore, it is of utmost importance to evaluate the threshold
stress and temperature, the additional time factors below which creep will not occur.
Norton [8] attempted to determine this threshold by suggesting a relation based on the
observation that a constant stress produces a constant secondary creep rate, given as:

_e ¼ Arn ð1:7Þ

In this equation, A and n are experimentally determined constants that are
functions solely of temperature. The effect of temperature on the shape of the creep
curve under constant stress is illustrated in Fig. 1.2a. The standard creep curve
shown in Fig. 1.2a, may be obtained experimentally only at certain temperatures.
At high and low temperatures, only segments of the curve can be observed. Note
that line B is similar to the conventional creep curve often shown in many
textbooks.

A similar case is one in which the temperature is kept constant while the stress is
varied. σ3, which is greater than σ2, represent the often shown creep curve with all
three stages. The reason for observing only two stages of the creep curve at low
temperatures (or stress) is that creep strain did not produce the accelerated creep

Fig. 1.1 a A schematic creep
curve along the lines of
Andrade showing three stages
of creep and an instantaneous
elongation on application of
load. A constant stress curve
is incorporated in the overall
illustration, indicated by the
dashed line extension;
b Schematic strain rate plot
versus time; Pelleg,
Mechanical Properties of
Materials, Springer, 2013
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during the time interval of the load application, a desired goal for the extended
lifetime of the material since at this stage a steady-state creep rate prevails in the test
specimen (or the material in use).

1.3 Additional Empirical Relations

Many formulae were originally presented for the strain time curves of creep in
metallic materials, among which Andrade’s formula seems to have attracted much
attention, but it has not been possible to find a satisfactory explanation. Therefore,
empirical equations had to be found, each expressing the behavior of a specific
material of special interest. Andrade had determined the entire creep curve, as seen
in Fig. 1.1, for several materials and (for lead in particular) he showed the differ-
ence obtained between constant load and constant stress, also indicated in Fig. 1.1.

Since creep is a thermally activated process, the minimum secondary-creep rate
may be described by an Arrhenius equation (see [9]) as:

de
dt

¼ _e ¼ A exp� Q0 � ar
kT

� �
ð1:8Þ

Here, A and α are constants and Q0 is the activation energy for creep at zero
stress. A is also known as the ‘frequency’ or ‘pre-exponential factor,’ as in the
nomenclature for diffusion. An additional expression for the creep rate, where the
stress and temperature terms are separated, is given as:

Fig. 1.2 Strain-time creep curves: a the shape of creep curves; A the standard creep curve (see
Fig. 1.1a); B a creep curve at low temperature and stress and; C a high temperature and high stress
curve; b schematic creep curves at a constant temperature with variable stress. Note that σ3
represents the standard creep curve with all three stages. Pelleg, Mechanical Properties of
Materials, Springer, 2013

1.2 Basic Concepts 7



_e ¼ Brn exp� Q
kT

� �
ð1:9Þ

In Eq. (1.9), the stress affects the frequency factor, B, while Q has the same
meaning as Q0 in Eq. 1.8.

Many experimental data indicate that the creep rate, in its early stages, may be
expressed by a function suggested by Cottrell as either:

dc
dt

¼ _c ¼ At�n ð1:10Þ

or

de
dt

¼ _e ¼ Bt�n ð1:11Þ

A(B) and the exponent, n, are constants with 0 ≤ n ≤ 1. Equation (1.10) may
also be expressed in logarithmic terms and many transient regimes of creep curves
may be fitted to a logarithmic law when n = 1. In the extreme case, when n = 1,
which is often observed experimentally, one obtains the logarithmic creep law as:

c ¼ a ln t t[ 1ð Þ ð1:12Þ

Note that Eq. (1.10) adequately describes the experimental creep data, since the
creep rate.in the primary stage (transient) decreases over time, as shown in the
schematic illustration in Fig. 1.1b. Various values of n, in the range 0–1, may be
observed experimentally, but, very frequently, the value of 2/3 is preferred. Thus,
Eq. (1.10) may be rendered as:

dc
dt

¼ _c ¼ At�2=3 ð1:13Þ

An integration of Eq. (1.10a) yields the equation for strain as:

c ¼ bt1=3 ð1:14Þ

Equation (1.13), representing transient creep, is often referred to as ‘β-creep’ or
‘Andrade creep’, since Andrade was the first to show that it applies to many
materials. The creep behavior obeying Eq. (1.12) is often called ‘α’ or ‘logarithmic
creep.’ Often, the instantaneous non-creep strain is also taken into account, sug-
gesting an equation [10] in the form of:

c ¼ c0 þ a lnðbtþ 1Þ ð1:15Þ

with α and β being constants. Figure 1.3 schematically illustrates logarithmic creep
curves at various stresses.
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It was seen in Fig. 1.1a that stage II creep is linear, thus the function describing
this region must also be linear. Much of the creep data is expressed by functions
taking this linear contribution into account as:

c ¼ c0 þ bt1=3 þ jt ð1:16Þ

Equation (1.15) is a combination of the instantaneous strain, γ0, Eq. (1.13) and
the linear contribution of second stage creep, κt [4], and it well describes many
creep experiments. Usually, especially in experiments performed at high tempera-
tures, transient and steady-state creep occur together. A graphic expression of
Eq. (1.15), namely the combination of these stages, is seen in Fig. 1.4, without the
instantaneous, non-creep strain, γ0, obtained upon loading.

In tertiary creep, the strain and strain rate increase until fracture occurs. In
ceramics, tertiary creep is usually not recorded, but, if the test is continued long
enough, a tertiary creep may develop. In metals, entering stage III occurs when
there is a reduction in the cross-sectional area due to necking or internal void
formation. In ceramics, it is void formation, in the form of pores or flaws, which
effectively causes a reduction in area. Thus, tertiary creep is significant in ceramic
engineering, because it is often associated with the formation of structural insta-
bility, as indicated by void and/or crack formation, leading to failure-by-fracture.

Fig. 1.3 Logarithmic
creep. The lines are shown for
different stresses

Fig. 1.4 A graphic
presentation of Eq. (1.15)
without γ0, obtained from the
combination of transient
(γI = βt1/3) and steady-state
(γII = κt) creeps
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The onset of tertiary creep occurs at the end of steady-state creep. It is easier to
locate the onset of tertiary creep from the _e� t relation than from e� t, as seen in
Fig. 1.1b, since the location of the deviation from the minimum creep rate is well
defined. It is clear that the minimum creep rate parameter must limit allowable
stress in practice, in order to prevent the onset of tertiary creep. In light of the
minimum creep rate concept, the attention in experimental creep investigations is
focused on steady-state creep, where it is constant over an extensive period of time.
Generally in ceramics, tertiary creep is relatively short and sometimes even absent.

Several investigators have shown that the starting time of tertiary creep and
rupture life are related in various alloys according to the relation (e.g., [6]):

t2 ¼ Atar ð1:17Þ

where tr is the rupture life, t2 is the starting time of the tertiary creep, and A and α
are constants, often *1. Equation (1.16) is one of many expressions for creep, in
general, and for tertiary creep, in particular, and is widely used for various materials
under consideration for high-temperature applications. Other expressions are
common in creep studies, such as for power, and for exponential and logarithmic
functions. For example, these three functions are shown respectively as:

eIII ¼ _emintþAtg ð1:18Þ

eIII ¼ h3ðexp½h4t� � 1Þ ð1:19Þ

eIII ¼ �ðln½1� C_emint�Þ=C ð1:20Þ

In these expressions for tertiary creep without a primary stage, min represents the
minimum creep rate and A, g, θ3, θ4 and C are parameters. Creep curves having
higher applied stresses, with pronounced tertiary stages, may be successfully
described by all three equations. Dobeš has indicated that the calculated value of
g (*7–10) is higher than the one proposed by Graham and Walles (g = 3).
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Chapter 2
General Mechanisms of Creep

Abstract The general creep mechanism is discussed in this chapter, which is
classified as: (i) dislocation slip; (ii) climb; (iii) grain-boundary sliding; and
(iv) diffusion flow caused by vacancies. The relevant relations and illustrations are
included. These provide the basic understanding of creep.

Before discussing creep specifically in brittle materials, ductile materials, single
crystals and polycrystals, it is important to consider the general creep mechanisms
observed acting in materials. There are several basic mechanisms that may con-
tribute to creep in materials (including ceramics). The various classifications of
these mechanisms are not always the same and sometimes they are more detailed or
combined, depending on the points being emphasized. The classification used here
is somewhat arbitrary, but follows a pattern commonly found in the literature:

(i) dislocation slip;
(ii) climb;
(iii) grain-boundary sliding; and
(iv) diffusion flow caused by vacancies.

(i) Creep by Dislocation Slip

Actually, creep types (i) and (ii) may be combined under the general heading of
‘dislocation creep’, but there is merit in separating the two different types: slip
(glide) and climb. Creep takes place as a result of dislocation motion in a crystalline
specimen by movement known as ‘slip’ (glide). As a result of such dislocation
motion through a crystal, one part of the dislocation moves one lattice point along a
plane known as the ‘slip plane’, relative to the rest of the crystal. The slip plane
along which the dislocation motion takes place separates both parts of the crystal.
For dislocation motion to occur, the bonds between the atoms (ions, in the case of
nonmetallic materials) must be broken during the deformation. Deformation by
creep, which can be an important contributor to overall deformation, occurs only in
certain circumstances. Creep by dislocation glide occurs over the entire range of

© Springer International Publishing AG 2017
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temperatures, from low (basically absolute zero) to the melting temperature,
although at low temperatures its contribution may be insignificant. The afore-
mentioned factors expressed by Eq. (1.2) are important factors in creep deforma-
tion. At high temperatures, however, creep can occur at stresses less than the yield
stress. The stresses needed to drive dislocation glide are on the order of a tenth the
theoretical shear strength of *G/10. Glide-by-slip strengthens materials as they
deform. In primary creep, stress is constant, while strain increases to a certain extent
(see Fig. 1.1a) over time, but the strain rate decreases (Fig. 1.1b), until a minimum
strain rate is achieved. This minimum strain rate, on a strain-time plot, represents
steady-state creep.

At lower stresses, the creep rate is lower and becomes limited by the rate at
which the dislocations can climb over obstacles by means of vacancy diffusion.
Since a dislocation may be pinned by various obstacles, further deformation that of
creep, must also occur by means of climb (discussed in the next section).

(ii) Climb

During dislocation motion, the creep rate is limited by the obstacles resisting
dislocation motion. The obstacles resisting the motions of dislocations harden
(strengthen) the material. High temperatures acting during deformation induce
recovery processes. During steady-state creep, strain increases over time. The
increased strain energy stored in the material, due to deformation, together with
the high temperature, provide the driving force for the recovery process. As such,
there is a balance between the processes of work hardening and recovery.
Recovery involves a reduction in dislocation density and the rearrangement of
dislocations into lower energy arrays, such as subgrain boundaries. For this to
occur, dislocations must climb, as well as slip, and this, in turn, requires atomic
movement or self-diffusion within the lattice. Hence, it is often said that the
activation energies for self-diffusion and for creep are almost the same. Vacancies
must be located at a site where climb is supposed to occur, to enable climb by
means of a vacancy-atom exchange. As the temperature increases, the atoms gain
thermal energy and the equilibrium concentrations of the vacancies in the metals
increase exponentially. The number of vacancies, n, (see, for example, Damak and
Dienes) is given as:

n ¼ N exp �EF

kT

� �
ð2:1Þ

This same concept of the steady-state creep-rate mechanism of dislocation climb
was suggested by Mott. He assumed that the rate‐controlling process is the diffusion
of the vacancies. It is assumed in Mott’s analysis that the rate-controlling process is
the diffusion of the vacancies between the dislocations creating vacancies and those
destroying them. The concentration of vacancies along a dislocation line is deter-
mined by setting the change in the free energy caused by a decrease or increase in
the number of vacancies equal to the change in the elastic energy occurring during
dislocation climb. The creep equation that results from this analysis is:
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_e ¼ Cra exp � Q
kT

� �
; ð2:2Þ

where C and α are constants,Q is the activation energy (equal to the self-diffusion) of
creep, σ is the stress, and kT has its usual meaning. A value for α is indicated as
α * 3 to 4. This same creep-rate relation was given in Eq. (1.9), reproduced here as:

_e ¼ Brn exp� Q
kT

� �
ð1:9Þ

No theoretical treatment of creep seems to exist that leads to a creep rate as given
by Eqs. (2.2) or (1.9). Mott had developed a theory leading to Eq. (2.2) in which he
stated that Eq. (2.2) is valid in the stress range from the critical shear stress to a
stress about equal to 108–109 dynes/cm2. At larger stresses, the creep rate increases
much more rapidly with stress. For a derivation of this equation, the reader is
referred to Mott’s work on the subject.

In Eq. (2.1), N is the number of lattice sites and EF is the energy of vacancy
formation. The activation energy, Q, for the jump rate, J, is given by the sum of the
energy of vacancy formation and the vacancy’s energy for motion,
EM ; ðQ ¼ EF þEMÞ:

J ¼ J0 exp � Q
kT

� �
ð2:3Þ

J0 represents the respective entropies. The diffusion coefficient, D, may be given
as:

D ¼ D0 exp � Q
kT

� �
ð2:4Þ

D0, the pre-exponential factor, is equivalent to J0, and Q is the overall activation
energy for self-diffusion. The rate of steady-state creep increases with temperature,
as does the essential number of vacancies for effective vacancy-atom exchange for
climb.

(iii) Grain-Boundary Sliding (GBS)

Different grains and grain-sizes play significant roles in the strengthening
(work-hardening) mechanisms given by the Hall–Petch relation as:

ry ¼ r0 þ kyffiffiffi
d

p ; ð2:5Þ

where σy is the yield stress, σ0 represents the resistance to dislocation glide, ky is a
measure of the dislocation pile-up behind an obstacle (a grain boundary, for
example) and d is the size of the grain. The various grains and their sizes are
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important variables characterizing the microstructure of polycrystalline materials.
Grain-boundary movement plays a significant role in the characteristic behaviors of
materials in regard to creep. Basically, grain-boundary sliding (GBS) is a process in
which grains slide past each other along their common boundary. It has also been
observed that sliding may occur in a zone immediately adjacent to the grain
boundary (Wadsworth et al.).

In primary creep, the required stress increases due to work hardening (which
also acts in steady-state creep, but is balanced by various recovery processes).
Decreasing the grain size should strengthen a material, according to the Hall–
Petch relation. Thus, for continued deformation, higher stress is required. It may
be expected that materials with small grain sizes will show better creep resistance,
while increasing grain size should cause an increased creep rate (for example, the
secondary-creep rate). This is attributed to the decrease in boundary barriers with
increasing grain size (less strengthening media exists, because there are less
grain-boundary obstacles). However, this is true as long as no undesirable pro-
cesses occur at the grain boundaries. For instance, large-grained materials with a
small number of grain boundaries are low sources of vacancies and, therefore,
dislocation climb will be reduced compared to small-grained materials. Thus, one
can see that grain size in creep has a dual effect, because a small grain size
strengthens the ceramics, since the large number of grains act as barriers to
dislocation glide. Nonetheless, in large-grained ceramics with fewer boundaries,
fewer vacancies are emitted, which are prerequisites for creep deformation by
climb; therefore, this situation has reduced creep. Note that a suitable choice of
grain size in ceramics is critical for achieving the best compromise regarding good
creep resistance.

Major structural changes occur at the start of tertiary creep. Damage is initiated by
the formation of multi-shaped cavities (in metals, either wedge-shaped or rounded
cavities are observed). Wedge-shaped cavities are primarily seen at grain boundaries
and their coalescence is the unmistakable sign that creep rupture will occur. It is
believed that GBS is a prerequisite for the nucleation of voids and cavities and that it
occurs when a sufficiently high stress concentration develops to create new surfaces.
Cavity formation increases with increasing strain at high temperatures. The stresses
causing GBS are the shear stresses acting on the boundaries. Whether void formation
is associated with/or a consequence of GBS has not yet been completely determined,
since the experiments found in the literature seem to support both concepts. In
Fig. 2.1, cavities at two-grain boundary junctions may be seen in ABC-SiC. The
term ‘ABC-SiC’ refers to SiC which has been hot-pressed with additions of Al, as
well as B and C. This material has been shown to have an ambient temperature
fracture toughness as high as 9 MPa m1/2 with strengths of *650 MPa (among the
highest strength property reported for SiC).

One of the concepts regarding GBS is associated with the presence of an
amorphous grain-boundary film along the boundaries between the grains. More
specifically, this film has often been termed a ‘glassy phase’ and considered
responsible for GBS. This glassy film may be fully crystallized after heat treatment
at high temperature for an appropriate time. Clearly, such crystallization of the
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grain-boundary phase would minimize softening and GBS, which would, in turn,
cause an increase in strength. As stated previously, the microstructure has a major
impact on the creep properties. Creep cavitation may appear at high temperatures in
grain boundaries. Cavities are observed on the tensile side, but not on the side under
compression. Cavities usually form both at two-grain and multiple-grain junctions.
GBS induces cavitation during creep. Thus far, there are no conclusive data proving
that GBS is the driving force for the nucleation and growth of creep cavities,
although a number of studies have concluded that cavity nucleation is, in fact,
induced by GBS. GBS has been the subject of numerous investigations, in light of
the importance of grain boundaries for many aspects of material applications.
Understanding the physics of the complex behavior of grain boundaries is of great
interest in regard to: grain growth, crystallization and recovery deformation, to
mention just a few topics. A general review of the properties of grain boundaries
may be found, for example, in the work of Valiev, et al. Here, GBS is of interest in
order to gain better practical and theoretical understanding. Illuminating research
results on GBS may be observed in metals. The instructive photo below (Fig. 2.2)
was taken of a Mg-0.78%Al alloy strained to 2.49% at a temperature of 473 K and
under an applied stress of 17.2 MPa.

The evidence of GBS is the displacement of the scratch lines during creep
testing. The above figure shows scratch lines displaced across a grain boundary;
transverse markings are inscribed perpendicular to the tensile axis. Clear offsets
may be seen in the transverse marker line in this Mg-0.78%Al alloy. The tensile
axis in this experiment is horizontal. An alternate method for evaluating GBS is by
means of interferometry. An example of the offsets of the same alloy, as revealed by
interferometry, is visible in Fig. 2.3. Chan and Page have developed a model
describing creep-induced transient-cavity growth by assuming that cavity growth is
governed by the two competing processes–transient creep and sintering. According
to this model, the rate of cavity growth is described as:

Fig. 2.1 Transmission
electron micrograph of
ABC-SiC showing
grain-boundary cavities at
two-grain junctions on the
tensile edge of a specimen
crept at 1400 °C for 840 h
under 200 MPa. Chen et al.
[5]. With kind permission of
Elsevier
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_R ¼ 33RGðnÞ
4p2

_essðt=tcÞm � 4p
33

cs
gl

� �
ð1=n� 0:9nÞ

� �
ð2:6Þ

with

n ¼ R=1 ð2:7Þ

G n�ð Þ ¼ 2
ffiffiffi
3

p � 0:667pn2

0:96n2 � ln n� 0:23n2 � 0:72
ð2:8Þ

In Eq. (2.6), R is the cavity radius, _ess is the steady-state creep rate, t is the creep
time, tc is the characteristic time, m is an exponent ranging from −0.5 to −0.6, γ is
the surface energy, η is the viscosity parameter, and 2l is the center-to-center cavity
spacing. Note that the first term within the bracket in Eq. (2.6) is the transient creep

Fig. 2.2 Grain-boundary
sliding revealed by the
boundary offsets in a
transverse marker line in a
Mg-0.78%Al alloy tested
under creep conditions at
473 K under a stress of
17.2 MPa. From Bell and
Langdon [1], reproduced from
Langdon [9]. With kind
permission from Springer
Science and the author

Fig. 2.3 Offset revealed by
interferometry in a Mg-0.78%
Al alloy pulled to an
elongation of 1.5% at 473 K
under a stress of 27.6 MPa.
From Langdon, Mater. Sci.
Eng., A166, 67 (1993),
reproduced from Langdon [9].
With kind permission from
Springer Science and the
author
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rate, _etr , while the second term is the sintering rate, _s. From Eq. (2.6), it is evident
that the transient creep rate, _etr , drives cavity growth, whereas the sintering rate
term, _s, drives cavity shrinkage. In addition, imposing parameters to reach a state of
equilibrium between _etr and _s would result in a condition of zero cavity growth.
Therefore, a critical value of _essð_ecrÞ may be determined by setting R = 0 in
Eq. (2.6), which defines no-growth behavior as follows:

The viscosity parameter is given by:

gl_ecr
cs

¼ 4p
33

ð1=n� 0:9nÞ ð2:9Þ

g ¼ 1
132

d3kT
hDbX

ð2:10Þ

This no-growth boundary is shown in Fig. 2.4 as the solid line. In addition,
cavities exhibit continuous growth in region I, where _scr > _str, and the cavities will
shrink when the opposite is true (region II).

Equation (4) in Fig. 2.9 is given here as Eq. 2.9.
A quantitative estimate of the contribution of GBS to overall strain, ξ, used by

Tan and Tan following Langdon’s proposal, is:

n ¼ eGBS
et

ð2:11Þ

et is the total strain at high temperatures, expressed as:

et ¼ eg þ eGBS þ edc ð2:12Þ

Fig. 2.4 Comparison of the
predicted (--) and
experimentally observed
conditions for zero cavity
growth: (□) Lucalox, 1600 °C;
(■) AD99, 1300 °C, and for
cavity growth; (○) Lucalox,
1600 °C; (•) AD99, 1150 °C.
Region I represents cavity
growth and region II, cavity
shrinkage. Blanchard and Chan
[2]. With kind permission of
JohnWiley and Sons. (Lucalox
and AD99 are aluminas)
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eg is the strain in the grain, due to processes taking place within the grain; εGBS is
the strain due to GBS; and εdc is the strain due to diffusion creep. In practice,
experiments are often performed with a negligible contribution of diffusion creep
and, thus, Eq. (2.12) reduces to:

et ¼ eg þ eGBS ð2:13Þ

Damage leading to failure, in the form of stress rupture, is initiated by void and
crack formation. The tertiary creep, per se, is a sign that some sort of structural
damage has occurred. Round or wedge-shaped voids, known as ‘r-type cavities’ and
‘w-type cavities’, are seen at first along grain boundaries and, when they coalesce,
creep fracture occurs. As indicated above, the mechanism of void formation is
associated with GBS and occurs due to shear stresses acting along the boundaries.

A commonly used illustration of a w-type crack initiation by GBS, its formation
and growth (first presented by Chang and Grant, and found in almost every pub-
lication) is shown in Fig. 2.5. Another configuration for the initiation of inter-
granular cracks (somewhat more complex) is shown in Fig. 2.6.

A number of w-crack configurations have been experimentally observed at triple
points. Wedge-type crack formation at triple points was initially suggested by Zener
as early as 1948. According to Zener, at sufficiently high temperatures, grain
boundaries behave in a viscous manner and, when near triple points under an
applied tensile stress, wedge-type cracks develop due to the high stress concen-
tration. Specifically, Zener was among the first to suggest the concept that frac-
turing is a consequence of plastic deformation, which is required for crack
formation. His schematic illustration is shown in Fig. 2.7, where a crack can be
nucleated at a dislocation site.

In Fig. 2.7b and c, the coalescence of two or three dislocations is illustrated,
producing an increase in the size of the crack. The concept of crack origin at
dislocation sites has been addressed and modified by various researchers. In
essence, Zener suggested that cracks nucleate at dislocation pile-ups, where suffi-
cient stress develops for the nucleation of cracks.

A dislocation model for spontaneous microcrack formation was also presented
by Stroh, who calculated the elastic energy associated with wedge deformation.
Stroh also determined that the nucleation of a wedge crack was due to the pile-up of
dislocations on a slip plane. In Fig. 2.8, the 2D crack dislocation of a giant Burgers
vector, nb, with length, c, extending to a barrier, may be seen. His expression for
the elastic energy associated with wedge deformation is:

We ¼ Gn2b2

4pð1� vÞ ln
4R
c

ð2:14Þ

in which G is the shear modulus (modulus of rigidity), nb is a giant Burgers vector,
with n being the number of dislocations comprising the giant vector, and R—the
bounding radius in the stress field. The surface energy term, 2γsc, may be added to
obtain the total energy of the system as:
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Ws ¼ Gn2b2

4pð1� vÞ ln
4R
c

þ 2csc ð2:15Þ

By differentiating Eq. (2.15) with c, the critical length, cmin, may be found:

@Ws

@c
¼ 0 ð2:16Þ

cmin ¼ G
n2b2

4pð1� vÞ
1
2cs

ð2:17Þ

In polycrystalline solids, the typical values of b, G, ν and γs are, respectively,
(Sarfarazi and Ghosh.): b = 2 × 10−8 cm; G = 1012 dynes/cm2; ν = 1/3; and
γs = 103 dynes/cm, which gives for cmin:

Fig. 2.5 Schematic representation of a w-type crack formation initiated by GBS. From Ref. [4]
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cmin ¼ 2:4� 10�8 ð2:17aÞ

According to the theoretical presentation of Wu et al., a wedge crack may be
formed by the insertion of extra material to create the head of a crack. An extra

Fig. 2.6 Schematic views showing a more complex intergranular crack initiation by GBS. From
Ref. [4]

Fig. 2.7 A schematic illustration of Zener’s idea, explaining how a crack of atomic
dimensions can nucleate at dislocation sites; here, the growth of a crack is initiated by the
coalescence of two or three dislocations (See: Mechanical Properties of Ceramics, Joshua
Pelleg, Fig. 6.81)
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plane, present above a positive-edge dislocation, may serve as the source of a
wedge crack. This is Stroh’s idea, based on Zener’s original concept.

GBS may be considered as a deformation mechanism above 0.5Tm. The strain
rate is important to the type of failure caused by GBS. It has been shown that r-type
cavities transform into w-types with increased strain rate, leading to transgranular
fracture with increasing strain rate (Gandhi and Raj).

Alloying additions may decrease the tendency for w-type cavity formation. Both
cavity types are the results of GBS (Raj). GBS may produce grain-boundary (inter-
granular) cracking when the grain’s interior is stronger than its boundaries. GBS can
be reduced by adding intergranular particles or by serrated grain boundaries. These
serve as obstacles to GBS, apparently due to an increase in friction between the
boundaries. Cavities have been seen to form at grain and phase boundaries prefer-
entially at interfaces or triple points. The process of cavitation, associated with GBS
and cavity nucleation, probably occurs at points of stress concentration in the sliding
boundaries or interfaces. Creep failure occurs by the nucleation, growth and coales-
cence of creep cavities at the boundaries predominantly perpendicularly oriented to
the applied stress. An increase in the number of cavitated boundaries over
creep-exposure time supports a mechanism of continuous cavity nucleation and
growth. Some believe, on the basis of experimental observations, that there are
probably preexisting cavities, voids or pores, previously introduced by the forming
processes that are actually responsible for creep cavitations in engineering alloys
during long-term service at low stresses and elevated temperatures.Many experiments
show that GBS is a necessary condition for cavity nucleation. GBS is a key factor not
only in the growth of preexisting voids, but also in nucleating voids for cavity
formation.

In many polycrystalline ceramics at elevated temperatures, GBS contributes
significantly to the total strain. GBS can be markedly reduced by introducing
additional phases, which form precipitates (such as nitrides, carbides, borides,
etc.) at the grain boundaries. Another method for improving creep resistance in

Fig. 2.8 Nucleation of a
wedge crack due to pile-up
dislocations on a slip plane
(Stroh’s model). Sarfarazi and
Ghosh [15]. With kind
permission of Elsevier
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materials is by the formation of serrated grain boundaries. Serrated grain
boundaries are effective in improving creep-strength properties and do not permit
continued creep by GBS when stress is applied at high temperatures. The effect
of serration is equivalent to the ‘self-locking’ of the sliding process, resulting
from creep deformation. Thus, materials with irregular, serrated grain boundaries
have improved resistance to creep-crack growth when compared to those with
smooth grain boundaries. This is explained as a consequence of the difficulty of
GBS and the increase in the path of grain-boundary diffusion. The strengthening
mechanisms of serrated grain boundaries are principally the result of: (1) the
inhibition of GBS; (2) the retardation of grain-boundary crack initiation, caused
by the decrease in stress concentration at grain-boundary triple points as a result
of the decrease in GBS length and; (3) dynamic recovery at the serrated
boundaries.

To summarize this section, note that GBS may account for 10–65% of the total
creep strain, depending on the alloy and the conditions of its use in service (tem-
perature, load, etc.). Its contribution to creep strain increases with rising temperature
and stress and with reduced grain size. Above *0.6 Tm, the grain-boundary region
is thought to have lower shear strength than the grains themselves, probably due to
the looser atomic packing at the grain boundaries. GBS may be reduced by
introducing precipitates or grain-boundary serrations, which resist GBS and sig-
nificantly reduce cavity formation of the types indicated above (which is a major
factor in creep failure).

(iv) Diffusion Flow Caused by Vacancies

This mechanism of creep involves diffusion and various models have been sug-
gested for diffusion-assisted creep. As such, it will be discussed in Chap. 3.
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Chapter 3
Creep and Its Relation to Diffusion

Abstract Creep occurs at some temperature and thus as being thermally activated
is associated with diffusion. Almost every creep equation incorporates a diffusion
coefficient in the relation. Creep can occur in grain boundaries also (Coble creep)
and therefore lattice- or grain-boundary diffusion coefficients are indicated in the
relations depending on the main creep involved in the process.

Diffusion flow by vacancies must be considered, since the mechanism of creep
depends on both temperature and stress. The various methods detailed below
involve some sort of diffusion occurring with vacancy-atom exchange. This may
occur either by lattice diffusion or grain-boundary diffusion, or both may be
involved. Bulk-diffusion-assisted creep occurs during the processes listed in (a)–(d)
below, where the kinetics of atom-vacancy exchange occurs due to lattice diffusion.
Afterward, creep, involving grain-boundary diffusion, will be considered (e).

(a) Nabarro-Herring creep;
(b) climb, in which the strain is actually obtained by climb;
(c) climb-assisted glide, in which climb is a mechanism allowing dislocations to

bypass obstacles;
(d) thermally activated glide via cross-slip;
(e) Coble creep, involving grain-boundary diffusion.

Before entering into a detailed discussion of the above lists and based on what
has been said thus far on the subject, briefly summarized: (a) creep in materials,
namely time-dependent plastic deformation, may occur during mechanical stresses
well below the yield stress and (b) in general, two major creep mechanisms char-
acterize the time-dependent plastic-deformation process—dislocation creep and
diffusion creep. However, it must be emphasized that even dislocation creep cannot
be separated completely from diffusion phenomena, since climb, for example, is
associated with the vacancies required for climb. Now, a detailed discussion of
paragraphs (a)–(d) follows.

© Springer International Publishing AG 2017
J. Pelleg, Creep in Ceramics, Solid Mechanics and Its Applications 241,
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3.1 Nabarro-Herring Creep

One type of creep, in which creep is diffusion controlled, is Nabarro-Herring
creep. In this type of creep, atoms diffuse through a lattice, causing grains to
elongate along the stress axis. Mass transport (i.e., the diffusion of atoms) takes
place in regions ranging from lower to higher tensile stress. A common illus-
tration may be seen in Fig. 3.1. This schematic figure illustrates the flow of
vacancies and atomic movements as induced by tensile stress, σ. During creep
deformation, vacancy-atom exchanges take place to and from the grain bound-
aries. One would expect that, during creep under tension, atoms would tend to
diffuse from the sides of the specimen in the direction shown in Fig. 3.1 (a
counterflow of vacancies), causing the sides to lengthen. Assume that local
equilibrium of the vacancy concentration exists at the boundaries of the crystal
when no stresses are acting on it. Also note that grain boundaries serve as
vacancy sources or sinks. In this mechanism, lattice diffusion occurs within the
grain and the creep rate (strain rate) is assumed to be proportional to the vacancy
flux. See below that the strain rate is inversely proportional to the square of the
grain size [5, 13, 14]. In Eq. (2.1), the number of vacancies is given. Equation (2.
1), in terms of vacancy concentration at equilibrium, is given as:

n
N

¼ C0
v ¼ expð� EF

kT
Þ ð3:1Þ

The energy needed to create a vacancy under acting stress is given by:

EF þ rV ð3:2Þ

Fig. 3.1 The Nabarro-Herring concept of creep: a a schematic of vacancy and mass flow; b the
elongated grain in the tensile-axis direction after mass flow
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V is the atomic volume (here, it is the volume of a vacancy) and EF is defined by
Eq. (2.1). There is a small concentration difference in the vacancies between the
faces of AB and BC in the above figure, where tensile and compressive stresses are
acting, respectively. Denoting the vacancy concentrations at the respective faces as
CV+ and CV− and their difference as ΔC, one may write for each of them, by means
of Eqs. (3.1) and (3.2), respectively:

Cþ
v ¼ exp�ðEF � rV

kT
Þ ¼ C0

v expð
rV
kT

Þ ð3:3Þ

C�
v ¼ exp�ðEF þ rV

kT
Þ ¼ C0

v expð�
rV
kT

Þ ð3:4Þ

DC ¼ Cþ
v � C�

V ¼ a
V

expð� EF

kT
Þ expðrV

kT
Þ � expð��rV

kT
Þ

� �� �
ð3:5Þ

Clearly, in this relation, EF was replaced by Eq. (3.2). Equations (3.3) and (3.4)
represent the local equilibrium concentrations under tension and compression (see
Fig. 3.1a). Recalling that

sinh x ¼ 1
2
expðxÞ � expð�xÞ½ � ð3:6Þ

Equation (3.5) may be rewritten as

DC ¼ 2a
V

expð�EF

kT
Þ sinh rV

kT

� �
¼ 2r

V
C0
v sinhðrV

kT
Þ ð3:7Þ

where CV
0 = exp(−EF/kT) and EF is the energy of vacancy formation in the absence

of stress.
As indicated, there is a flow of atoms from the tensile to the compressed faces

and an opposite flow of vacancies. When a concentration gradient exists, diffusion
flux will occur. This flux of vacancies may be expressed as

J ¼ �DVrC ¼ � aDVðDCÞ
d

ð3:8Þ

DV is the diffusion coefficient of the vacancies and α is a geometrical factor.
The corresponding transport of matter occurs in the opposite direction and pro-
duces a creep strain under the applied stress. In a unit time, Jd2, atoms in the
crystal leave the faces under compression and are added to the faces under ten-
sion. (Recall that J is the number of atoms in a unit time per unit area; thus,
multiplying this value by the square of the grain size, d, one gets the number of
atoms per unit time). Consequently, the grain lengthens in the tensile-axis
direction and gets thinner in the transverse direction. The change in grain size may
be written as:
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Dd ¼ ðJd2ÞV
d2

¼ JV ; ð3:9Þ

where V is the atomic volume (often given as Ω). The strain rate is given as:

_e ¼ Dd
d

¼ JV
d

ð3:10Þ

An expression for the strain rate, given by Eq. (3.11), is obtained by substituting
the value of Δd from Eq. (3.9) into Eq. (3.10), followed by inserting J from
Eq. (3.8) into Eq. (3.10) to get

_e ¼ aDVDC
d

V
d
¼ aDVDCV

d2
ð3:11Þ

With Eq. (3.7) substituted into Eq. (3.11), it is possible to write

_e ¼ 2b
V

DVV
d2

expð� EF

kT
Þ sinhðrV

kT
Þ ð3:12Þ

For small values of stress, and since the nominator is always smaller than the
denominator, the quotient is small and sinh (σV/kT) = σV/kT. Substituting this value
into Eq. (3.12), one obtains

_e ¼ 2bDV

V
C0
V
rV
kT

ð3:13Þ

DV is the diffusion coefficient of the vacancies and DVCV
0 is DS, the self-diffusion

coefficient. Thus, Eq. (3.13) may also be expressed as

_e ¼ 2bDS

d2
rV
kT

ð3:14Þ

More exact calculations, in terms of shear strain (i.e., γ = 2b/d) and macroscopic
shear stress, τ, (i.e., σ = βτ and β is close to unity and recalling that the shear stress
at 45° is given by s ¼ r

ffiffiffi
2

p
) gives

_cS ¼
32abDSsV

pd2
1
kT

ð3:15Þ

This relation defines a simple, ideal, viscous solid. One sees that increasing grain
size reduces creep rate. Creep-rate change is proportional to d−2. Nabarro-Herring
creep is a low-stress and high-temperature process.

A somewhat alternate method for showing that _e/ 1
d2 follows. Based on

Eq. (3.1) through (3.4), the difference in concentration may be expressed as
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DC ¼ Cþ
V � C�

V ¼ a
V

expð� EF

kT
expðrV

kT
Þ � expð��rV

kT
Þ

� �� �
ð3:16Þ

The flux of the vacancies, going from the tensile to the compressive regions, is

JV ¼ �DV
DC
Dx

ð3:17Þ

where Δx is the distance in the x direction, so that ΔC/Δx is a gradient. Bear in mind
that the atomic flux, J, is in the opposite direction to the vacancy flux, JV, and,
therefore, DΔC = −DVΔCV. In our case, the diffusion distance is l.

Stress is not constant along the grain faces, therefore, the diffusion paths are
shorter near the corners. Due to stress relaxation, one may assume that r ¼ brS at
distance d/4 from the boundaries (when σS is the macroscopic shear stress and β is
nearly unity). The length of the diffusion path through this point is l ¼ p=2 d=4ð Þ.
The atomic flux across the area of a single atom is given by

J ¼ aDV
DC
l

¼ aDV
8DC
pd

ð3:18Þ

The previous expression is the result of substituting for the value of l = π/2(d/4).
DV is the diffusivity of the vacancies. One may rewrite Eqs. (3.9) and (3.10) as

Dd ¼ ðJd2ÞV
d2

¼ JV ð3:19Þ

e ¼ Dd
d

¼ JV
d

ð3:20Þ

Substituting from Eq. (3.17) for J yields:

_e ¼ aDV
8DC
pd

V
d

ð3:21Þ

and from Eq. (3.17):

DC ¼ 2a
V

expð� EF

kT
Þ sinh rV

kT

� �
¼ 2r

V
C0
v sinhðrV

kT
Þ ð3:7Þ

When the argument in the hyperbolic function is small, as mentioned earlier, it is
equal to the argument itself; thus, for the strain rate, one may write

_e ¼ 16a
DVC0

V

pd2
rV
kT

¼ 16aDS

pd2
rV
kT

ð3:8Þ

DS is the self-diffusion coefficient and is equal to CV
0DV. Again, the strain rate is

proportional to d−2.
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One sees in Eqs. (3.15) and (3.8) that the strain rate is linearly proportional to the
stress and inversely proportional to the grain size. In Eq. (3.15), the expression is
given in terms of shear strain and macroscopic shear stress. The above expressions
explain why large-grained materials are preferential for creep applications at high
temperatures.

As mentioned previously, one of the bulk-diffusion-assisted creeps occurs in the
Nabarro-Herring model, though the Coble creep mechanism is also diffusion
assisted. As such, the interpretation of creep results is, to a large extent, chosen by
the researchers.

3.2 Climb—Dislocation Creep

Bulk-diffusion-assisted creep occurs in the processes listed above, namely in
(b) climb; (c) climb-assisted glide and; (d) thermally activated glide via cross-slip.
All these are obviously associated with dislocation motion. High stress, below yield
stress, causes creep by conservative dislocation motion, namely by dislocation glide
within its slip plane. This readily occurs at high temperatures above 0.3 Tm in pure
metals and at about 0.4 Tm in alloys, where the dependence on the strain rate
becomes quite strong. For ceramics, T > 0.4 − 0.5 Tm (K). A formulation used for
such creep is

_c� rS
G

	 
n
ð3:22Þ

where n has a value of 3–10 in high-temperature regimes. Since n is in the
exponent, this creep is referred to as “power-law creep.” At high temperatures,
obstacle-blocked dislocations can climb, not only glide. If gliding dislocations are
blocked by some obstacle, climbing may release them to move on until they meet
another obstacle, where the same process is repeated. Climb is performed by the
diffusion of vacancies through the lattice or along the dislocation core, diffusing
into or out of the dislocation core. By climbing, dislocations change their slip
planes, enabling them to bypass their obstacles. Dislocation glide is responsible
for most strain, while the average dislocation density is determined by the climb
step in the deformation process. This mechanism is known as “climb-controlled
creep.”

3.3 Climb-Controlled Creep

At relatively high stresses, beyond the elastic region or the shear moduli, creep is
controlled by dislocation-glide movement and by glide in adjacent planes following
climb. Real materials contain various internal obstacles (such as dislocations) or
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external ones (introduced intentionally, such as solutes and particles, or uninten-
tionally by the fabrication process), which block dislocation glide in their respective
slip planes. Dislocation motion is also hindered by the crystal structure itself,
namely by crystal resistance (an internal obstacle). At high temperatures,
obstacle-blocked dislocations may be released by dislocation climb. Creep arises as
a consequence of climb, when further deformation by glide is enabled by means of
vacancy-atom exchange. The creep rate is a function of several factors, usually
given as

X
_e ¼ f ðr; T ; S;GS;PÞ

S is the structure, GS is grain size and P represents the material properties, such
as the lattice parameter, atomic volume, etc. Vacancies increase with increasing
temperature and are likely to diffuse into dislocations, thus, decreasing the overall
free energy of the system. By the diffusion of vacancies to locations at which
dislocations are blocked by obstacles, climb becomes possible, letting the dislo-
cations bypass those obstacles. Climb allows further glide in an adjacent slip plane
to occur and, by such deformation, creep strain arises.

A steady-state-based model for edge-dislocation climb [5, 13] was suggested
by Weertman. He assumed that strain hardening occurs whenever dislocations are
hindered in their motion by some obstacle and pileup behind it. The dislocations
beyond the barrier, such as a Lomer-Cottrell lock, may escape by climbing.
However, climbing beyond Lomer-Cottrell barriers leads to the generation of new
dislocation loops and to a steady-state creep rate (which is applicable to
face-centered cubic (FCC) and body-centered cubic (BCC) structures, but not to
hexagonal close-packed (HCP) ones). Weertman also suggested that edge dislo-
cations with opposite signs, gliding on parallel slip planes, would interact and pile
up when a critical distance of 2r between them is not exceeded. In such a case, as
in the prior case, dislocations might escape from the piled up array by means of
climb. Dislocation pile-ups lead to work hardening, whereas climb is a recovery
process. A steady state is reached when the hardening and recovery rates are
equal. The creep rate will, therefore, be controlled by the rate at which disloca-
tions can climb. This climb mechanism requires the creation of vacancies or their
destruction at the obstacle-blocked dislocations (in this case, at the pile-up) in
order to maintain the equilibrium concentration required to satisfy the climb rate.
At the tip of a pile-up dislocation, a nonvanishing, hydrostatic stress, ±σI, may
develop, exerting a force on the dislocation in a normal direction to the slip plane
and causing a positive (up) or negative (down) climb. Vacancies are absorbed
where the stress is compressive and are created where the stress is tensile.
A change in vacancy concentration develops in the vicinity of the dislocation line,
and a vacancy flux is established between the segments of the dislocations, acting
as sources or segments of sinks.

The vacancy concentration, Ce, in equilibrium with the leading dislocation in the
pile-up, is given by
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Ce ¼ C0 exp
�2Lr2Sb

2

GkT

� �
ð3:23Þ

2L is the length of the dislocation pile-up, and C0 is the equilibrium concen-
tration of the vacancies in a dislocation-free crystal. The vacancy concentration at a
distance, r, from each pile-up is assumed to be equal to C0. The rate of climb, _X, is
given (Garofalo) as

_X ¼ 2C0DVr2SLb
4

GkT
ð3:24Þ

DV is the vacancy-diffusion coefficient and 2Lb2σS
2/GkT < 1.

When self-diffusion occurs due to the vacancy mechanism, C0DV may be
replaced by

C0DV ¼ DS ¼ v
b
expðDS

R
Þ expð�DH

RT
Þ ð3:25Þ

and _X is given by

_X ¼ 2r2SLb
3

GkT
v expðDS

R
Þ expð�DH

RT
Þ ð3:26Þ

ΔH is the activation energy for self-diffusion, ν is a frequency factor, and S is an
entropy term. Equation (3.26) is obtained under the assumption that vacancies are
easily destroyed or created and that an equilibrium concentration exists between
pile-ups of dislocations. However, the diffusion of flux vacancies may be different
in specific climb processes.

In an additionalmodel createdbyWeertman, the rate of dislocation climb is also given
by Eqs. (3.24) or (3.26) and the steady-state creep-rate model, in this case, becomes

_c ¼ NAb
_X
2r

ð3:27Þ

N is the density of the dislocations participating in the climb process (or the density
of the sources), A is the area swept out by a loop in a pile-up, and 2r is the separation
between those pile-ups. The stress necessary to force two groups of dislocation loops
to pass each other on parallel slip planes must be greater than Gb

4prS
(in terms of shear

stress). When this relation is satisfied, an estimate for r may be made

r ¼ Gb
4prS

ð3:28Þ

The probability, p, of blocking the dislocation loops generated from one source by
means of loops emanating from three other sources is given as
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p ¼ 8pNL2r
3

¼ 2NL2Gb
3rS

ð3:29Þ

Using Eqs. (3.24) and (3.27)–(3.29) and setting p = 1 and A = 4π/2, the creep rate
at low stresses becomes

_cS ¼
Cp2r4:5S DSffiffiffiffiffiffi
bN

p
G3:5kT

ð3:30Þ

C is a numerical constant in the order of 0.25 and DS is the coefficient of
self-diffusion. Equation (3.30) has been substantiated experimentally for pure metals
to a greater extent than other theoretical relations. Exceptions to the exponent 4.5
were obtained, but this value is very close to the observed experimental values.

3.4 Thermally Activated Glide via Cross-Slip

Edge dislocations climb when their motion is hindered. The nonconservative motion
of screw dislocations is by cross-slip, since they cannot climb. The ease of cross-slip
is stacking-fault-dependent. Materials with high stacking fault (SF) energy cross-slip
readily, but not so when the SF energy is low. For screw-oriented dislocations, the
Burgers vector is parallel to the dislocation line and, therefore, it can move in any
plane in which it lies (in isotropic materials). In real crystals (which are in most cases
anisotropic), screw dislocations may favor those planes with the lowest energy.
Cross-slip can occur without diffusion, but thermal activation helps cross-slip
movement from the original to other slip planes. Climb and cross-slip are recovery
processes. Recall that steady-state creep is a deformation process, balanced by work
hardening and dynamic recovery. The temperature-dependence of creep is

_e� exp�ðQc

kT
Þ ð3:31Þ

One of the known equations for steady-state creep, indicating stress dependence [4] is

_es ¼ Arn exp�ðQcðrÞ
kT

Þ ð3:32Þ

Here, Qc is the activation energy for (stress-dependent) creep and n is the stress
exponent. A similar expression may be given for climb-controlled creep:

_es ¼ Arn exp�ðQc

kT
Þ ð3:33Þ

But in this case, expressed by Eq. (3.33), Qc is independent of applied stress [4].
At lower temperatures, cross-slips made by screw dislocations are the means by
which obstacles in the slip plane may be bypassed.
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Since the study of cross-slip is more informative in single crystals, many
experiments have been performed on single crystals with various structures. For
instance, in order to investigate the glide system in FCC metals, Al single crystals
were deformed by compression parallel to [00I] at temperatures between 225 and
365 °C and at strain rates between 9 × 10−6 and 9 × l0−4/sec [8]. (Note that Al
has high SF energy and readily cross-slips). Their stress-strain curves exhibit
three stages, which have been correlated with observations of slip lines and
dislocation structures. The unique observation was that, after a small percentage
of deformation cross-slips of a

2 h1�10i, screw dislocations from the {111} to the
{110} planes occurred, that might be responsible for the {110} slip. Stage I
deformation occurs, as expected in FCC metals, on the {111} planes, but, after a
small deformation, slip on the {110} plane sets in once the stress reaches the
critical value, σ110. This stress is thermally activated and decreases with tem-
perature increase. It is not clear why dislocations cross-slip on the {110} planes,
rather than on the {111} planes (as is usually the case), though several expla-
nations have been proffered. An activation energy for the creep rate, _e, of
28 kcal/mol, determined at a constant stress of σ110, is close to the reported
cross-slip in Al. It is likely that these observations are compatible with the
mechanism of cross-slip by screw dislocations from the {111} to the {110}
planes and that a SF which is stable at high temperatures stabilizes slip in the
{110} plane. The possibility of a SF in the {110} plane is explained on geo-
metrical grounds and the dislocation proposed is expressed as

a
2
½110� ¼ a

12
½110� þ a

3
½110� þ a

12
½110�

SF energy, which determines the separation of the partial dislocations, improves
creep resistance if it is low. Contrary to the high SF energy observed in Al (in which
cross-slip or climb occurs readily), in low-energy SF materials with large separa-
tion, cross-slip by creep or climb is suppressed. This was observed by Suzuki et al.
in their work on Mg-Y alloys with added zinc. The addition of small amounts of Zn
has a beneficial effect on creep resistance, because it widens the separation between
the partials by decreasing the SF energy. The average separation of partials in this
alloy is given as

dS ¼ Gb1b2
8pc

2� v
1� v

� �
1� 2v cosð2aÞ

2� v

� �
; ð3:34Þ

where dS is the separation width between the partials, γ is the SF energy, ν is the
Poisson ratio, and α is the angle between the total Burgers vector and the dislo-
cation line. A large SF energy drop was calculated, compared with pure magne-
sium. Mg alloys are being used for more and more applications in which the
components are subjected to elevated temperatures. Consequently, research is
being focused on the development of alloys able to withstand high stresses at
temperatures up to 300 °C, depending on the application. Thus, for example, in
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other Mg alloys, improved creep properties are produced by the addition of rare
earth alloys [9]. At low temperatures, a climb mechanism for edge dislocations
exists, whereas, at higher temperatures, the cross-slip mechanism of screw dis-
locations is believed to operate. The opinions regarding the cross-slip mechanism
are not unanimous, but a majority of the researchers support it. Whether the acting
mechanism is climb or cross-slip, it is most likely that the beneficial effect of
alloying stems from the fact that they both widen the separation between the
partials.

During the discussion on cross-slip, metals were considered as examples of its
effect on creep. However, it is necessary to emphasize that those examples were
provided to clarify the process that might occur at high temperatures, when creep is
sometimes unavoidable. Yet, partial dislocations and SFs occur in structures other
than metals, such as in ceramics. This will be considered in the next chapter devoted
to creep in ceramics.

The activation energy for cross-slipping is rendered by Schoeck and Seeger as

_e ¼ C exp� DH0 � c lnð rrcÞ
kT

� �
ð3:35Þ

ΔH0 is the energy for cross-slip, σc is the critical resolved shear stress, σ is the
applied stress, and C and c are constants. A model of creep controlled by cross-slip
from the {111} to the {100} plane in the temperature range of 530–680 °C over the
stress range of 360–600 MN m−2 was found to be in good agreement with the
experimental results. The energy for forming a restriction between the partials,
namely to recombine the Shockley partials, was evaluated on the basis of Dorn’s
expression (Dorn) (see also [6] for the creep mechanism at intermediate tempera-
tures in Ni3Al).

Poirier pointed out that when the cross-slip and climb of dislocations operate at
the same time, _e may be written as

_e ¼ _ecross�slip þ _eclmb ¼ _e01
r
l

� �n1

exp �Q1

kT

� �
þ _e02

r
l

� �n2

exp �Q2

kT

� �
ð3:36Þ

The subscripts and superscripts 1 and 2 refer to cross-slip and climb, respec-
tively. Dislocation motion must overcome significant structural barriers or the
dislocation must cross-slip or climb past obstructions. At the lower temperatures,
dislocation cross-slip and climb both occur; at the higher temperatures, dislocation
climb becomes a rate-controlling mechanism and classic values of the stress
exponent (n = 4.5) are obtained. The creep-activation energy is that of diffusion.

In general, creep at temperatures below 0.5 Tm is not thought to occur by means
of the lattice-diffusion-controlled mechanism.

Seldom does a lone creep mechanism operate at any given time. Creep mech-
anisms may operate simultaneously (in parallel) or independently. For both
mechanisms, one may write
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_e ¼
X
i

_ei ð3:37Þ

or

1
_e
¼

X
i

1
_ei

ð3:38Þ

In the case of parallel creep mechanisms, the fastest mechanism will dominate
the overall creep, whereas when they operate in sequence, the slowest process
controls creep deformation.

3.5 Coble Creep, Involving Grain-Boundary Diffusion

Coble creep is also a type of diffusion creep, but involves grain-boundary diffusion.
The diffusion of atoms along grain boundaries produces a change in dimensions,
due to the flow of the material. Of the two kinds of self-diffusions in polycrystalline
materials, the one occurring at low temperatures is grain-boundary dominated,
whereas lattice diffusion occurs at high temperatures. Figure 3.2 is an illustration of
ideal grain structure, showing the flow of atoms along the boundaries under the
influence of a tensile stress. In a polycrystalline matrix, the grain shape is not as
indicated in Fig. 3.2 (for an ideal structure), but varies in orientation, making it
difficult to analyze.

Fig. 3.2 Seven grains are
shown in a two-dimensional
hexagonal array before creep
deformation. Following
diffusion, the grains elongate
in one direction and decrease
perpendicularly to the tensile
axis. A void formation
develops between the grains,
but GBS, which may
accompany this process,
removes these voids
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Coble, in his original paper, used a spherical grain (apparently following the
Nabarro-Herring approach for lattice-controlled-diffusion creep). In Coble’s
analysis of creep, a spherical grain was used once again. Based on the exper-
imental results for Al2O3, where it was observed that the Al ion-diffusion
coefficient is larger by orders than that of oxygen ions and, since the creep rate
in lattice-controlled diffusion is limited by the least mobile species, it was
expected that the O2− species would determine the rate of creep. Coble sug-
gested that grain-boundary diffusion, rather than lattice diffusion, might control
creep deformation. He proposed that Al diffuses in the lattice and O2− in the
grain boundaries, where its diffusion coefficient is enhanced in comparison with
the values in the lattice. It was assumed that the spherical grain maintains
a constant volume and, thus, the areas of the vacancies at the source and the
sink must also be equal (grain boundaries may act as sources or sinks for
vacancies). The average gradient of the spherical grain, with a radius, R, is
given as DC

ðRp=2Þ. The problem is to evaluate the concentration gradient at the 60°

boundary, which for equal areas of rotational symmetry, lies at 60° below the pole
of a hemisphere.

For steady-state creep, where Fick’s law applies, the flux at the 60° boundary is

Jvac sec�1 ¼ DVN
DC

ðRp=2Þ
� �

ðWÞ2pR sin 60 ð3:39Þ

Here, DV is the diffusion coefficient of the vacancies in the boundary; N is a
proportionality constant relating the average vacancy gradient, ΔC/(Rπ//2), and the
maximum gradient, 1=Rðdc=dhÞh¼60; W is the effective boundary width and;
(2πRsin60) is the length of the zone in which the diffusion flux is at maximum.
Thus, the cross-sectional area for diffusion is 2πRWsin60. After a detailed and
lengthy evaluation of the relevant parameters, Coble arrived at the final equation for
creep rate, given as

_e ¼ 148rðDbWÞa30
ðGSÞ3kT ð3:40Þ

where a0
3 (=Ω) is the atomic volume of a vacancy. For lattice diffusion, the

expression [2] is

_e ¼ 10rðDLXÞ
ðGSÞ2kT ð3:41Þ

Other expressions are given for Coble’s creep, the difference being in the
coefficient representing the assumptions in each case (in Coble and Guerard it is

_e ¼ 150rðDbWÞ
ðGSÞ3kT ). Thus, by writing the coefficient as a constant, the common

expression is
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degb
dt

¼ _e ¼ A
rXDgbd
l3kT

ð3:42Þ

The subscripts refer to the grain boundaries. Ω is the atomic volume (of a
vacancy), δ is the grain-boundary width, and l is the grain size. (In Nabarro-
Herring, grain size was denoted by d). The DS in Eqs. (3.14) and (3.15) is
replaced, in Coble’s equation, by Dgbδ. Factor 1/l represents the density of the
cross-section of the grain boundaries per unit area. Hence, δ/l is the cross-
sectional area of the grain boundaries per unit area. In a realistic structure, A
depends on grain structure and on how the average grain size is determined.
Creep by grain-boundary diffusion has a stronger dependence on grain size than
on lattice diffusion. In terms of shear strain and shear stress (Rieth et al.) the
expression is

_c ¼ 42DS
pdsX
d3kT

ð3:43Þ

Here, d is equivalent to l and DS to Dgb. When creep deformation is influenced
by both lattice- and grain-boundary diffusion, an expression may be derived as
follows. Equation (3.8) may be written with the same designations used in
Eq. (3.42) as

2_e ¼ 16aDSrX
pl2kT

1þ Ap
16a

Dgbd
lDS

� �
ð3:44Þ

Designating that 16α/2π = B and Aπ/2 × 16α = C gives

_e ¼ BDSrX
l2kT

1þ CDgbd
DSl

� �
ð3:45Þ

An expression for creep may be given in terms of shear-strain rate and shear
stress, when both lattice- and grain-boundary diffusion are involved in the defor-
mation. For most polycrystalline materials, diffusion in grain boundaries is more
rapid than in the lattice.

To summarize this section, it may be stated that in Coble creep the atoms diffuse
along the grain boundaries and elongate the grains along the stress axis. This causes
Coble creep to have stronger grain-size dependence than Nabarro-Herring
creep. Since the grain boundary is the controlling diffusion mechanism in Coble
creep, the process occurs at lower temperatures than Nabarro-Herring creep does.
Coble creep is still temperature dependent and, as the temperature increases, so does
the grain-boundary diffusion. It also exhibits a linear dependence on stress, as does
Nabarro-Herring creep. Coble creep and Nabarro-Herring creep can take place in
parallel, so that actual creep rates may involve both components and both diffusion
coefficients.
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Chapter 4
Creep in Ceramics

Abstract Creep rate in ceramics is smaller than in metals but experimental evi-
dence indicates similar creep behavior between them. Metals and ceramics exhibit
diffusion creep with n = 1 at low stresses and n * >3 at high stresses. Creep,
both in metals and ceramics in the steady state, is diffusion controlled and the
homologue temperature of T/Tm, regarding the diffusion coefficient, also applies to
both materials. One of the reasons for the smaller creep rate is related to the
diffusion rate, which is smaller in ceramics than in metals at the same homologue
temperature. The diffusion-controlled creep rate in ceramics has a higher activa-
tion energy, Q, than in metals causing a slower creep rate. There is an advantage
of using single crystal due to the absence of grain boundaries. Further, one should
choose

(i) materials with high melting points;
(ii) the use of strongly bonded ceramics; and
(iii) alloying for dislocation pinning.

Modern technology needs structural materials for a wide range of high-temperature
applications. Ceramic materials possess a unique combination of great strength and
resistance to oxidation at high temperatures, which are important properties for
engineering applications. Creep at these temperatures is very significant not only for
understanding the mechanisms involved, but also for assuring product longevity
during use, based on experimental evaluations of the creep performance of mate-
rials. The study of creep in ceramic materials lagged behind that of metals and
alloys, mainly because of the disbelief in their practical use, due to the inherent
brittleness of most ceramics and their susceptibility to thermal shock. However,
their high-temperature strength and good resistance to corrosive and oxidizing
atmospheres outweighed their deficiencies. Creep in individual ceramics, such as
alumina magnesia, etc., will be discussed later on in separate chapters, but this
chapter provides a general overview of the subject accompanied by some specific
examples.
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Some of the key distinctions between deformation in ceramics and deformation
in metals include the facts that ceramics are typically brittle and have many pre-
existing flaws that control their mechanical responses; also in ceramics, viscous
glassy phases can coexist with crystalline phases as part of the same microstructure.
Nonetheless, ceramics are excellent materials for engineering applications in
extreme environments, because they retain mechanical strength at high tempera-
tures and in harsh chemical environments. Therefore, experimental data and theo-
retical information are both of utmost importance.

Creep is a deformation which occurs by some form of dislocation motion. Even
climb or cross slip, associated with dislocation motion, require the presence of
vacancies at sites where climb is occurring. The arrival of such vacancies involves
their diffusion, in order to enable climb to happen. Thus, diffusion phenomena
cannot be ignored in high-temperature creep. Unlike metallic systems, in ceram-
ics, the presence of two atoms (or rather ionic species) is involved in the diffusion
process, further complicating the analysis of the creep data. Since the cations and
anions both participate in the diffusive process, it is necessary to consider
ambipolar diffusion and mass transport along parallel diffusion paths. ‘Ambipolar
diffusion’ is the diffusion of positive and negative species with opposite electrical
charges. In the case of ionic crystals, the fluxes of the diffusing species are
coupled.

An objective of selecting engineering materials or developing new materials is
to slow down dislocation motion, as much as possible—more specifically, to
retard climb as long as possible, in order to reduce creep and, thus, ensure a long
lifetime of service. The techniques used to study creep in ceramics and to record
the findings have been borrowed from numerous experimental researches in
alloys. As such, the generally accepted method for recording the results of a creep
test in ceramics is by plotting strain versus time, as shown schematically in Fig. 1.
1a. As in the alloys, in ceramics, temperature and stress both affect the shapes of
the creep curves.

There is no universal creep behavior which characterizes all high-temperature
structural ceramics. The dominant creep mechanism may vary from ceramic to
ceramic. As observed in Fig. 1.1, transient creep decreases over time up to the point
at which no more extension occurs under the effect of the load. This is a result of the
equilibrium between strain hardening and thermal softening (creep). Creep curves
are analyzed according to the usual, general constitutive law for high-temperature
steady-state creep, as done by Bretheau et al. [3]. Here, for example, is an equation
for zirconia:

_e ¼ A
lb
kT

r
l

� �n b
d

� �p pO2

p�O2

" #m

exp � Q
kT

� �
; ð4:1Þ

where A is a dimensionless constant, b is the Burgers vector, d is the grain size
(relevant for polycrystals), and p�O2

is a reference oxygen partial pressure.
Deformation and diffusion mechanisms determine the parameters n, p, m,
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and Q. Changes in σ, T, or pO2 may be determined experimentally from the vari-
ation of _e. p is the exponent of the inverse grain size; for single crystal, p = 0. The
dislocation substructures were obtained by transmission electron microscopy
(TEM). Standard grain-boundary analysis was carried out to determine the Burgers
vectors of isolated dislocations. The 3D nature of the dislocation arrangement was
determined using stereo pairs obtained with g = (220). Dislocation densities in the
foils were determined by standard means. The steady-state creep rate versus 1/T is
shown in Fig. 4.1

The above figure suggests two deformation regimes, namely two operating
mechanisms with a transition in the 1400–1450 °C range. A least-square fit for both
these regimes gives Q = 6.2 ± 0.4 eV and Q = 7.7 ± 0.4 eV at T ≤ 1400 °C.
Figures 4.2 and 4.3 show the dislocation substructures. These deformed samples
exhibit different dislocation substructures at ‘low’ and ‘high’ deformation temper-
atures. At 1300 °C, the dislocation density, ρ, was high (*1013 m−2) and showed
substantial dislocation reactions and node formation (Fig. 4.2). The grain-boundary
analysis (not shown in the figure) revealed that most of the dislocations had a
Burgers vector b = ½[110] and existed along the (001) primary slip plane.
However, the stereo pair in Fig. 4.2 indicates that some dislocations, belonging to
the primary slip plane, changed slip planes to lie along the ð�111Þ and ð1�11Þ planes,
indicating that a significant amount of cross-slip occurred during that deformation.
In other experiments, cross-slip was also observed in samples deformed at tem-
peratures as low as 400 °C under hydrostatic confining pressure. At 1500 °C, the
dislocation density is lower (ρ * 5 × 1011 m−2). A stereo pair (Fig. 4.3) shows
that many dislocation segments are perpendicular to the (001) primary slip plane;
these segments lie on the (100) and (010) planes. All six (110) Burgers vectors are
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Fig. 4.1 Steady-state creep
rate, normalized to a stress of
100 MPa, plotted as a
function of reciprocal
temperature.
Martinez-Fernandez et al.
[20]. With kind permission of
John Wiley and Sons
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present, indicating that numerous slip systems have been activated; however, the
low dislocation density indicates that significant recovery has occurred and that
diffusion must be reasonably rapid at this temperature.

An equation was obtained by Cannon and Langdon for the steady-state
creep rate:

Fig. 4.2 Stereo pair of transmission electron micrographs of dislocation substructure in specimen
crept at 1300 °C. Martinez-Fernandez et al. [20]. With kind permission of John Wiley and Sons

Fig. 4.3 Stereo pair of transmission electron micrographs of dislocation substructure in specimen
crept at 1500 °C. Martinez-Fernandez et al. [20]. With kind permission of John Wiley and Sons
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_e ¼ ADGb
kT

b
d

� �p r
G

� �n
: ð4:2Þ

The symbols which are common to Eqs. (4.1) and (4.2) have the same meaning.
G is equivalent to μ, indicating free energy; A is a parameter which is a constant
derived from the need to take into account the effects of structural variables, such as
grain shape. The expression for D, the known form seen in earlier chapters, is
reproduced here as

D ¼ D0 exp �Q=RTð Þ: ð2:4Þ

The steady-state creep rate, according to Nabarro-Herring, if the vacancies flow
through the grains of the lattice, is

_e ¼ BlXDlr
d2kT

; ð4:3Þ

whereΩ is the atomic volume and Bl is a constant. The subscript l refers to the lattice.
Equation (4.3) is the same as Eq. (3.13). Ω replaces V, Dl is equivalent to Dv, and Bl

stands for 2bC0
v . The calculated values of B1 range from *12 to 40, for different

experimental conditions, but Herring obtained Bl = 13.3 for polycrystals with
complete grain-boundary relaxation tested under uniaxial tension. Using the values
of Bl = 13.3 and Ω = 0.7b3, Eq. (4.3) may be expressed in the form of Eq. (4.2) as:

_e ¼ 9:3
DlGb
kT

b
d

� �2 r
G

� �
: ð4:4Þ

If the vacancies flow along the grain boundaries, the process of Coble creep may
be used and the steady-state creep rate is given by

_e ¼ 150XdDgbr
pd3kT

: ð4:5Þ

This relation is equivalent to Eq. (3.40), given in Chap. 3. Here, δ is the effective
width of the grain boundary for vacancy diffusion and Dgb is the grain-boundary
diffusion coefficient. G is the shear modulus. The other symbols have their usual
meanings. With a value for the atomic volume, expressed in terms of the Burgers
vector, b as Ω = 0.7b3, Eq. (4.5) may be rewritten in the form of

_e ¼ 33:4Dgb
d
b

� �
b
d

� �3 r
G

� �
: ð4:6Þ

Note that, in Eq. (4.6), d in the denominator is cubed, whereas in Eq. (4.4), d is
squared. Thus, a comparison between them indicates that Coble creep is preferable
to Nabarro-Herring creep when the grain size is very small, since p (see Eq. (4.2)) is
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3 and 2 for the Coble and Nabarro creeps, respectively. Furthermore, the Cobble
creep is also preferable at lower temperatures, because the respective activation
energies, Qgb < Ql, determine the respective values of Dgb and Dl. Nonetheless,
since the Coble and Nabarro-Herring creeps operate independently, their respective
rates are additive and one may write a relation given as follows for the total creep:

_e ¼ 9:3
DlGb
kT

b
d

� �2 r
b

� �
1þ 3:6

Dgb

Dl

d
d

� �� �
: ð4:7Þ

The coefficient before the last term in the square brackets is clearly the result of
dividing 33.4 by 9.3.

The creep rate in ceramics is more complicated than in metals, because a ceramic
is composed of two species, an anion and a cation. Both must move in concert
during the deformation in order to preserve the atomic ratios, namely their stoi-
chiometric ratio in the stoichiometric composition of the ceramic. Relevant equa-
tions, such as Eq. (4.7), should be combined for the chemical species comprising
each specific ceramic, as given by Cannon and Langton [7] in the wake of Gordon,
and shown below:

_e ¼ 9:3 1=að Þ Dc lð Þ þ 3:6Dc gbð Þ dc=dð Þ� 	
 �
= 1þ b

a

� �
DcðlÞ þ 3:6Dc gbð Þ dc=dð Þ� 	
Da lð Þ þ 3:6Da gbð Þ da=dð Þ

� 
� �

� Gb
kT

� �
b
d

� �2 r
G

� �
: ð4:8Þ

The subscripts “a” and “c” stand for anion and cation, respectively, and the
symbols α and β represent their respective valences. Equation (4.8) is practically
simplified, because of the large difference in the respective diffusion coefficients of
the species of the ceramics. As a consequence, the observed creep rates are
determined by the movement of the slower diffusing species along the faster dif-
fusion path.

It has been observed that the slower moving species does not always control the
rate of the creep process. Usually, the anion is considered as the slower diffusing
species in oxide ceramics, while the cations are the faster moving species. However,
in some oxide ceramics, the anion is the faster moving species and creep is con-
trolled by the cation, such as in the case of Al2O3, where Al controls the rate of
creep. Similar observations have been seen in MgO, BeO, etc. Thus, one cannot
generalize and predict, a priori, whether the diffusion of the anion or the cation will
control the creep rate in materials. Exemplary graphic presentations of creep rates
for various materials appear as plots of _ekT=DGbð Þ d=bð Þ2 versus σ/G in Figs. 4.4
and 4.5. In each case, the diffusion coefficient was selected to provide the best fit
with the theoretical model. Usually, the best fit was obtained for the fastest-
diffusing species through the crystal lattice. The data selected for these illustrations
are for materials with n = 1.

The various values for each material appearing in Figs. 4.4 and 4.5 and the
parameters used to construct these figures are listed in Table 4.1, with additional
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information for graph construction not considered in this book. Among the
parameters used and appearing in the above equations for the materials, D, G, and
b are included. G, in the above equations, was estimated using

G ¼ G0 � DGð ÞT; ð4:9Þ

where G0 was obtained by extrapolation from high temperature to absolute zero and
ΔG is the variation of the shear modulus per degree Kelvin.

Note in the figures that the data differ by an order or two from the Nabarro-
Herring line (presented as a dashed line in Fig. 4.5). The authors of Table 4.1
mention three reasons for this deviation from the theoretical Nabarro-Herring
line: (1) the experimental testing methods were different; (2) impurities influ-
enced the diffusion coefficients and, thus, the creep rates; and (3) there were
small deviations in stoichiometry in some of the materials used in the
experiments.

Some ceramics exhibit a stress exponent in the n * 3–5 range and creep rates
independent of grain size. This was interpreted, as previously in the case of creep in
metals, as being due to the intragranular motion of dislocations. This motion is
explained in terms of the glide and climb of intragranular dislocations, occurring
when they pile up and the climb process is rate-controlling. Following Weertman,
Cannon and Langdon gave the steady-state creep rate as
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_e ¼ B2XDlr4:5

G3:5M0:5b3:5kT
; ð4:10Þ

where M is the concentration of the active dislocation and B2 is a constant in
the range of 0.015– 0.33 Weertman [36], due to the decomposition of the pile-ups
into groups of dislocation dipoles. By assigning a value of B2 = 0.2, Eq. (4.10)
reduces to

_e ¼ 0:14
b‘1:5M5:5

DlGb
kT

� �
r
G

� �4:6
: ð4:11Þ

In Eq. (4.11), Dl is the lattice diffusion coefficient, which applies above a
temperature of 0.5Tm, but breaks down at lower temperatures, where pipe diffusion
along the dislocation cores is dominant. Therefore, experimental data were obtained
at temperatures above 0.6T and using lattice diffusion coefficients for the slower
moving species.

For n ffi 3, two possible mechanisms should be considered. One, mainly for
metallic solid solutions, relates to the glide and climb process controlled by glide
(mainly because of the solute atom atmosphere surrounding dislocations, which is
dragged by their motion). For steady-state creep (Weertman; Mohamed and
Langdon), this process gives
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_e ¼ p 1� lð ÞkT ~Dr3
6e2cb3G4 : ð4:12Þ

In Eq. (4.12), e is the solute–solvent size difference and c is the concentration of
solute. ~D is the solute interdiffusion coefficient and μ is Poisson’s ratio. Using
μ = 0.34, Eq. (4.12) reduces to

_e ¼ 0:35
e2c

kT
Gb3

� �
~DGb
kT

� �
r
G

� �3
: ð4:13Þ

Now, most ceramics with n ffi 3 do not contain solutes; thus, solute-atmospheric
dragging is irrelevant.

If creep is controlled by dislocation climb from Bardeen–Herring sources, the
creep rate Nabarro [22] is given by

_e ¼ B3pXDlr3

G2b2kT
; ð4:14Þ

where B3 is a constant having a value Weertman [37] of *0.1. With this value,
Eq. (4.14) reduces to

_e ¼ 0:22
DlGb
kT

r
G

� �3
ð4:15Þ

The data for ceramics where n * 5 are assembled in Figs. 4.6 and 4.7, while for
ceramics with n * 3 they appear in Figs. 4.8 and 4.9. The stress exponent, n * 5,
suggests that the rate-controlling mechanism in creep is dislocation climb. In
Figs. 4.8 and 4.10, the dashed line represents dislocation climb, according to the
prediction in Eq. (4.15). Note that, in Fig. 4.9, the experimental agreement of BeO
and SiC and, in Fig. 4.10, that of yttria-stabilized ZrO2 fit well with the predicted
theoretical lines.

It was observed in metals, deformed by power-law creep with n * 5, that grains
become divided into subgrains with very small angles, typically >2. It has been
established that the average grain size, λ, is inversely related to the applied stress.
Measurements show that the normalized subgrain size may be expressed as

k
b
¼ 1

r
G

� ��1
: ð4:16Þ

λ has a value of 20 for metals. For the investigated ceramics, shown in Fig. 4.11,
a value of 20–30 for λ is indicated higher than that of metals.

The dislocation density within the subgrains in metals, ρ, varies with stress
squared. The normalized dislocation density, bρ2, is given as

bq2 ¼ W
r
G

� �
: ð4:17Þ
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Here, Ψ is a constant having a value close to unity for all metals. The validity of
this relation was tested for some ceramics and it was concluded that the agreement
between metals and ceramics is very good. Figure 4.12 illustrates plots according to
Eq. (4.17). Another point of importance is GBS in ceramics and its contribution to
creep. This contribution is usually expressed as the ratio egbs=et, where εgbs is the
strain due to GBS and εt is the total strain. An analysis of published data for metals
shows that the magnitude of εgb/εt tends to increase with decreasing stress and/or
decreasing grain size. This concept has evaluated for only a few ceramics, namely
in two sets of Al2O3 and MgO each. These results are summarized in Fig. 4.13.
Although very few results are currently available for ceramics, the data confirm
that, as in metals, sliding increases in importance at the lower stress levels and also
with a decrease in grain size.

The experimental information indicates the similarities between the creep
behaviors of ceramics and metals. Both metals and ceramics exhibit diffusion creep
with n = 1 at low stresses and dislocation creep with n * >3 at high stresses. Creep,
both in metals and ceramics in the steady state, is diffusion controlled and the
homologue temperature of T/Tm, regarding the diffusion coefficient, also applies to
both materials. Moreover, the creep rate in ceramics is smaller than in metals. One of
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rate plotted against
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Springer. References [67]
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the reasons for this is related to the diffusion rate, which is smaller in ceramics than in
metals at the same homologue temperature. Directly related to the diffusion-
controlled creep rate is the higher activation energy, Q, required in ceramics (higher
than in metals), causing a slower creep rate. Furthermore, in both types of materials,
an inverse relation exists between the subgrain size and the applied stress (Eq. 4.16),
and the dislocation density within the subgrains varies with σ2. The major differences
in creep between the two substances (metals and ceramics) are (a) the enhanced role
of diffusion creep and (b) the division of creep behavior into two categories during
power-law creep, with stress exponents of *5 and *3, for ceramics.

4.1 Creep in Single-Crystal Ceramics

The is much interest in single-crystal ceramics for creep-resistant applications, as
for use in turbine blades, giving them the mechanical advantage of being able to
operate at much higher temperatures than polycrystalline ones. Creep is a common
cause of failure in turbine blades and is, in fact, their life-limiting factor. When the
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temperature of a material under high stress is raised to a critical point, its creep rate
quickly increases. A single-crystal structure is able to withstand creep at higher
temperatures than a polycrystalline structure can, due to the absence of grain
boundaries. Grain boundaries are areas in a microstructure where many defects and
failure mechanisms start, leading to creep. The lack of grain boundaries inhibits
creep and prevents GBS from occurring. Nonetheless, creep still occurs in
single-crystal turbine blades, caused by different high-temperature mechanisms.
Alas, pure ceramics, in general, are brittle, which hampers their use, although they
may become less brittle at high temperatures. Nevertheless, some ceramics, par-
ticularly Si3N4, is of interest for high-temperature use. This ceramic is one of the
many high-performance ceramic materials available to designers. It has a number of
desirable properties that make it attractive to the aerospace industry:

(a) low density: 3.2 g/cm3, compared with *8 g/cm3 in superalloys;
(b) high hardness: 1800 kgf/mm, compared with 800 kgf/mm in steel;
(c) high strength at high temperatures: in some grades of Si3N4, strength decreases

only at temperatures in excess of 1200 °C.

These properties make Si3N4 an ideal material for use at high temperatures,
especially when weight is critical and high resistance to wear and erosion is required.
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Since, in single crystal, no grain boundaries exist, creep may be described as the
movement of dislocations through the crystal structure. Such movement is
accommodated by slip along preferential planes. Thus, an additional factor (besides
load, temperature and time) must be considered, namely the orientation of the
crystal. Also, the possibility of twinning, resulting from homogeneous shear, may
occur. In highly symmetric cubic structures, such as pure MgO, many planes are
available for slip. At low temperatures, slip occurring along (100) planes in the
[110] direction is usually indicated as (100) [110]. At high temperatures, where
creep deformation is significant, slip occurs either on (001) [110] or (111) [110],
resulting in five independent slip systems.

Generally, the slip systems that become operative and the stresses required at
high temperatures depend on the bond strength of the particular ceramic material.
Slip occurs at low temperatures and relatively low stresses in weakly bonded
crystals, such as NaCl, while in strongly bonded materials, such as in the covalently
bonded TiC, high temperatures and high stresses are required.

In single crystal with lower symmetry than cubic crystals, less slip systems are
available for slip; for example, in the hexagonal Al2O3, only two independent slip
systems exist. The slip systems are 0001f g 1120h i.
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For measurable creep in a single crystal to occur, a dislocation must either be
present or created. The energy required for forming, initiating, and moving dislo-
cations by slip is supplied by stress and temperature. Clearly, the pinning of dis-
locations by obstacles blocking their motion decreases creep. A decrease in creep
may also be achieved by the addition of certain additives, some forming solid
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solutions; the alloying and addition of various elements also reduces the creep by
pinning dislocations.

Summing up this section on creep resistance, when choosing engineering
materials (including ceramics), the following should be taken into account:

(i) the potential use of single-crystal ceramics;
(ii) the use of materials with high melting points;
(iii) the use of strongly bonded ceramics; and
(iv) alloying for dislocation pinning.

The advantage of using single crystal is the absence of grain boundaries. In
polycrystals, dislocation sliding is not a significant factor, because the random
orientation of the individual grains making it difficult for dislocations to pass from
one grain to an adjacent one. Thus, no GBS occurs, which enhances creep in
polycrystalline materials. Recall that the diffusion rate of ions and vacancies
through crystalline structures in grains and grain boundaries controls the creep rate
together with GBS. In fact, GBS is often associated with porosity, which is a key
factor in crack initiation (at triple points) leading to fracture. Cavities are shown in a
micrograph obtained by TEM (Fig. 4.14) in a silicon nitride ceramic (Si3N4) crept
at 1100 °C for 500 h under 80 MPa.

The cavities are at two triple-grain junctions. Strain contrast is visible in the
micrograph along two grain boundaries attributed to GBS. Evidence of GBS
between two grains is shown in Fig. 4.15 and, consequently, a gap develops
between these grains.

Evidence also exists that the GBS and cavity formation, in addition to stress
relaxation through nucleation of dislocations at the strain whorls, act together to
produce a much shorter creep life to failure at high temperatures. The occurrence of
dislocations in some silicon nitride grains is shown in Fig. 4.15. The silicon nitride
was crept at 1295 °C for 3.95 h under 80 MPa. These dislocations are close to the
grain boundaries and certain ones started from the grain boundaries and extended

Fig. 4.14 Cavities in GS44
crept at 1100 °C for 500 h
under 80 MPa. Wei et al.
[38]. With kind permission of
Elsevier
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into the grains. Dislocation pile-ups are also observed. Figure 4.16 shows dislo-
cation pile-ups and Fig. 4.17 illustrates arrays of dislocations in the silicon nitride
grain, whereas Fig. 4.18 indicates those dislocations originating at the grain
boundaries. The dislocation images shown in Fig. 4.18 extend into the silicon
nitride grain. Additionally, in Fig. 4.19, dislocations emanate from the grain
boundaries and a strain whorl is visible at the grain boundary, as well. The
observations made from Figs. 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19 indicate that, in
addition to the diffusional processes, dislocation nucleation and dislocation motion

Fig. 4.15 Direct evidence of grain boundary sliding leaving gaps between two grains of silicon
nitride. Wei et al. [38]. With kind permission of Elsevier

Fig. 4.16 Dislocation arrays
in a silicon nitride grain of
GS44 crept at 1275 °C under
80 MPa. Wei et al. [38]. With
kind permission of Elsevier
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Fig. 4.17 Dislocation
pile-ups in some silicon
nitride grains of GS44 crept at
1275 °C under 80 MPa for
3.95 h. Wei et al. [38]. With
kind permission of Elsevier

Fig. 4.18 Dislocations
observed in GS44 crept at
1275 °C under 80 MPa
showing a number of
dislocations originated from
the grain boundaries. Wei
et al. [38]. With kind
permission of Elsevier

Fig. 4.19 Strain whorl at the
grain boundary and
dislocations starting from the
grain boundary observed in
GS44 crept at 1275 °C under
80 MPa. Wei et al. [38]. With
kind permission of Elsevier
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are alternate mechanisms for stress relaxation at grain boundaries during
high-temperature creep. Nevertheless, the major creep strain in silicon nitride is not
the dislocation mechanism, although it does relieve the interlocking stresses,
enabling GBS and promoting more rapid stress rupture during high-temperature
creep.

In regard to the contribution of dislocation motion, plastic deformation may be a
plausible mechanism, but not as the major creep strain, because a large density of
dislocations was observed only locally, in merely a few silicon nitride grains.

The strain, due to dislocation motion, may be written as

_e ¼ qbx; ð4:18Þ

where ρ is the density of the dislocations, b is the Burgers vector, and x is the
average distance that a dislocation moved.

Recall, from Chap. 1, that

_e ¼ f ðr; t; TÞ: ð1:2Þ

A more detailed expression for _e may be

_e ¼ Aðr; T ; S; eÞrn exp �DHc r; T; S; eð Þ
RT

� �
: ð4:19Þ

The preferential use of single-crystal materials is highlighted in all the above
figures and texts, confirming that GBS and pore formation at triple points on grain
boundaries cannot occur in single-crystal applications.
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Chapter 5
Testing Methods for Creep

Abstract The major techniques for collecting creep data are as follows:

(a) tensile creep testing;
(b) compressive creep testing;
(c) flexural (bend) testing for creep; and
(d) impression (hardness) creep testing.

The results of the creep test are plotted as strain versus time to obtain a curve
characterizing it. Often a creep power law relates creep strain to the applied stress.
In ceramics a creep test at constant load and temperature is generally performed at
prolonged times, because of the bond character in ceramics. Creep tests are often
performed by compressive loading to eliminate growth of cavities and their opening
and thus creep rate is slower compared to tension. In ceramics which are inherently
brittle flexural tests are preferable since machining of test specimens is difficult and
also because the tendency to break in the grips when test is performed by tension.

With the growing use of ceramics in industry (for numerical and scientific appli-
cations) comes the increasing demand for the characterization and quantification of
their properties. This may be achieved by improving the testing techniques, in order
to yield more exact information, as required for design purposes, safety analyses,
quality control, and basic scientific understanding. In this chapter, the various
ceramic creep testing methods are discussed, with a focus on the relative advantages
and disadvantages of each type of test. The major techniques for collecting creep
data are as follows:

(a) tensile creep testing;
(b) compressive creep testing;
(c) flexural (bend) testing for creep; and
(d) impression (hardness) creep testing.

© Springer International Publishing AG 2017
J. Pelleg, Creep in Ceramics, Solid Mechanics and Its Applications 241,
DOI 10.1007/978-3-319-50826-9_5
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5.1 Tensile Creep Testing

Nowadays, special machines may be purchased for conducting tensile creep
experiments and tests. Generally, a creep test is performed using a tensile specimen,
to which a constant stress is applied. Surrounding the specimen is a thermostatically
controlled furnace. The temperature is controlled by a thermocouple attached to the
specimen, usually in the gage length. The extension of the specimen under load is
measured with a very sensitive extensometer. Modern tensile testing machinery is
equipped with a high-temperature furnace and has an integrated slide table for use
with a non-contacting laser extensometer. A creep tester of this kind is illustrated in
Fig. 5.1.

The results of the creep test are plotted as strain versus time to obtain a curve, as
schematically illustrated in Fig. 1.1a. An experimental curve, resembling Fig. 1.1a,
is shown for Si3N3 in Fig. 5.2. The relation between the steady-state creep rate and
the stress used in analyzing the creep data in Si3N4 is given in Eq. (4.19) and is
reproduced here as

_e ¼ Aðr; T ; S; eÞrn exp� DHcðr; T; S; eÞ
RT

� �
: ð4:19Þ

Fig. 5.1 Special Series 2330
Lever Arm Creep Tester
designed for tensile testing of
ceramic specimens. Features
include a high-temperature
furnace and integrated slide
table for use with
non-contacting laser
extensometer. With kind
permission of R. Antolik of
Applied Test Systems Inc.
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At elevated temperatures, >*1000 deformation is controlled by GBS. No evi-
dence of deformation within the grains was observed in Figs. 5.3 and 5.4. The
micrographs indicate, however, that deformation and failure during creep are a
direct result of the deformation and failure of the grain-boundary glassy phase. In
these micrographs, grain separation and extensive cavitation are seen.
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Fig. 5.2 Strain–time curves,
hot-pressed Si3Na, creep tests
in He. Kossowsky et al. [9].
With kind permission of
Springer

Fig. 5.3 Replica transmission micrographs of fracture surfaces. a Tensile specimen, room
temperature test; b creep specimen, 1260 * C test, near center of specimen; c same specimen as
in b in rough area of fracture. Bars ≡ 1 μm. Kossowsky et al. [9]. With kind permission of Springer
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A number of specimen designs and gripping techniques for tensile testing have
been used on ceramic materials. Various specimens may be used, such as simple,
flat dog-bone-shaped, rectangular or round ones. Flat dog-bone specimens usually
have holes drilled at each end of the specimen. The gripping of the specimens
should have good alignment, avoiding the possibility of bending. Gripping tech-
niques may be characterized by the temperature of the grips used to apply the load
to the specimen. Thus, a hot-grip design for the loading fixture or a cold-grip
design, where the tensile specimens extend outside the furnace and are gripped at
or slightly above room temperature, are both in use in tensile creep tests. A major
concern in tensile tests is the degree of alignment of the tensile specimen, to
eliminate or reduce bending to *1% or less. A description of an experimental
ceramic tensile creep testing technique, discussing tensile test specimens and the
method of attaching them to the grips, is found in the work of Carrol et al. [2].
Bending is calculated by:

Fig. 5.4 Transmission electron micrographs of creep specimen. a Dislocation network, 1149 °C,
70.5 MN m−2; b dislocation tangles, 1149 °C, 82.7 MN m−2; c grain-boundary separations,
1260 °C, 70.5 MN m−2; d extensive cavitation, 1260 °C, 82.7 MN m−2. Bars ≡ 1 μm. Kossowsky
et al. [9]. With kind permission of Springer

%bending ¼ e1 � e0
e0

� 100: ð5:1Þ
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In Eq. (5.1), ε1 is the elastic strain measured from one face of the gage section
and ε2 is the elastic strain measured from the opposite face. ε0 is the average strain
determined by (ε1 + ε2)/2.

Creep may occur at low temperatures, even at room temperatures, depending on
the ceramic material. Thus for example, the most widely used piezoelectric ceramic,
lead zirconate titanate (PZT), shows time-dependent deformation (creep) under both
electric and mechanical loading. The primary interest here is in mechanical loading.
The tensile load of a servohydraulic machine was transferred to a test piece
(rectangular-shaped, with bore holes at both ends). The analysis was performed in
accordance with

ec tð Þ ¼ etotal tð Þ � r
E

� �
� ep ¼ etotal tð Þ � etotal 0ð Þ; ð5:2Þ

where εtotal is the measured strain and εp is the plastic (time-independent) strain
contribution. E ≅ 60–70 GPa.

In Fig. 5.5, the spontaneous and time-dependent strains after loading appear in
(a) and the reductions of the strains after unloading are found in (b).
Creep curves are illustrated logarithmically at various loads in Fig. 5.6.
Straight lines are observed; they are characteristic of primary creep behavior.

Single creep tests are shown in Fig. 5.7 for σ = 15.4 MPa.
Stress influences creep deformation. A creep power law relates creep strain to

stress, as indicated in Eq. (5.3):

ec ¼ Brntm: ð5:3Þ
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Fig. 5.5 Tensile creep curve for σ = 25 MPa: a deformations under load; b back deformations after
unloading (unpoled material). The circles indicate the end of spontaneous deformations. (Note poled
or unpoled material refers to electric loading.) Fett and Thun [4]. With kind permission of Springer
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A plot, according to this relation of creep strain as a function of stress, is
illustrated in Fig. 5.8, with m = 0.27; n = 1.52; B = 2.7 × 10−7 (MPa)−ns−m. The
exponent, n, results from a plot of creep strain versus stress, as indicated for a
certain time (here 120 s).

The method for determining creep properties (or stress relaxation behavior) in
ceramics is to subject a ceramic specimen to prolonged, constant tension (or
compression) at a constant temperature. The deformation is recorded at specified
time intervals and a plot of the creep strain versus time is constructed. The slope of
the curve at any point is the creep rate. If the test is carried out to failure, the time
for rupture is recorded. If the specimen does not fracture within the test period,
creep recovery may be measured. Stress relaxation may be measured as follows: a
specimen is deformed a given amount and the decrease in stress over a long period
of exposure at constant temperature is recorded. (For detailed creep testing pro-
cedure, the American Standard Test Method (ASTM) should be consulted.)

5.2 Compressive Creep Testing

Creep tests performed under uniaxial conditions, such as tension or compression,
are advantageous, because the analyses of the uniform stress results may be simpler.
However, in tensile stress applications, cavities have a considerable effect on
creep. Materials (including ceramics) creep at much faster rates when exposed to
tension, than under compression, as shown in Fig. 5.9.
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Fig. 5.6 Creep strains as a
function of time (unpoled
material). Fett and Thun [4].
With kind permission of
Springer
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Ceramics are usually much stronger under compression than under tension.
Cavitation contributes significantly to creep strain during tensile tests, while, under
compressive loads, the cavitation effect is almost completely suppressed. With
increased tensile creep, the volume fraction of the cavities increases linearly. Under
low stresses, the tension–creep rate increases linearly, while under high stress it
increases exponentially. Contrary to this observation, the creep rate increases linearly
in compression creep tests. The tests at 1430 °C, shown in the above figure, were
performed at stresses of 40–300 MPa. All brittle materials contain a certain popu-
lation of small crack materials (or cavities) having different sizes, orientations, and
geometries. The variation in these features affects the strength of the material,
especially most ceramics, which are inherently brittle at low or room temperatures.
Because of the variation in the features of brittle ceramics, ceramics with average
strength are rarely used in design applications. The distribution of flaws is critical,
since plastic deformation rarely occurs at room temperature. At high temperatures,
deformation can occur. As such, to produce creep, ceramics are usually loaded under
compression. The deformation of crystalline ceramics depends on the achievement of
dislocation motion, which is more difficult than in metallic materials.

High-temperature creep curves tested under compression are illustrated in
Figs. 5.10 and 5.11 in SiAlON. ‘Syalons’ are ceramics based on the elements
silicon (Si), aluminum (Al), oxygen (O), and nitrogen (N).

The Syalons are the solid solution of silicon nitride (Si3N4) and exist in three
basic forms. They are a special class of ceramics, high-temperature refractory
ceramics, characterized by high strength, good thermal shock resistance, excep-
tional corrosion resistance, and resistance to wetting by molten ferrous metals.
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For the creep analysis of the above SiAlONs, the following equations are
relevant:

e ¼ h1 1� eb2t
� �þ h3 eh2t � 1

� � ð5:4Þ

e ¼ h1 1� eh2t
� �þ h3h4t; ð5:5Þ

where θ1 and θ3 scale the primary and tertiary stages with respect to strain, while θ2
and θ4 are rate parameters which quantify the curvatures of the primary and tertiary
components, respectively. ε and t are strain and time, respectively. Note that there is
a difference in the creep curves of the tested SiAlONs. In Syalon 101, the creep
strain increased and the time to failure decreased systematically with increasing
stress at the same temperature. Equation (5.4) describes the normal creep curves
recorded at high temperatures with creep ductile materials, whereas Eq. (5.5) is
used when only decaying primary curves are found in the experiments done on
creep brittle ceramics.

When primary creep curves are analyzed according to Eq. (5.5), it is not possible
to determine the tertiary parameters, θ3 and θ4, separately, but only their product,
θ3θ4. Once θ1, θ2, and θ3θ4 have been obtained for each creep curve of Syalon 101,
the results in Figs. 5.13 and 5.14 demonstrate that the θ parameters vary system-
atically with stress and temperature, i.e., the lnθi values (where i = 1, 2, 3, 4)
increase linearly with increasing stress at each temperature. Each curve, such as the
one found in Fig. 5.11, is well represented by Eq. (5.5), and the θ values vary
consistently with stress and temperature, as shown in Figs. 5.12 and 5.13. These θ
relations provide a comprehensive description of the shapes of the individual creep
curves and of the dependence of the creep curve shape on the test conditions.

The results in Fig. 5.13 show that the stress/lnθ2 plots at different creep tem-
peratures can be superimposed onto a single line by means of the temperature
compensation of θ2 using an Arrhenius term with an activation energy of approx-
imately 430 kJ mol−1.

Additional compressive creep stress examples of Si3N4 are illustrated below.
Figure 5.14 compares creep in several materials.

5

5

4

3

2

1

0 200 400 600 800
Time (ks)

S
tr

ai
n

1000 1200

4 2

1
3

(%
 ) °°

Fig. 5.11 Creep curves for
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As indicated earlier, the interest in Si3N4-based ceramics was motivated by the
expectation that they might be suitable for high-temperature applications in gas tur-
bines, in transportation, and in power generation. Figures 5.10 and 5.14 indicate
primary and secondary creep curves that are visible after initial, rapid creep, which
then decreases continuously (primary creep) after loading, until steady-state creep is
reached. The creep rate, as a function of stress, is shown in Fig. 5.15 for the same
ceramics shown in Fig. 5.14. Some tests, those designated as ‘reaction bonded silicon
nitride’ (RBSN) and ‘hot-pressed silicon nitride (HPSN), were allowed to proceed at a
constant strain rate to the tertiary (accelerated creep) stage, leading to fracture.

Equation (1.9), seen above and rewritten here, was used to analyze the stress
dependence of the creep rate:

_e ¼ Brn exp�ðQ
kT

Þ: ð1:9Þ
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With kind permission of
Elsevier
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In Fig. 5.15, this relation is expressed graphically.
The temperature dependence of the creep rate is shown in Fig. 5.16. The stress

exponent taken from Eq. (1.9) was 2.1, 2.2, 2.3 and 2.4 for the investigated
ceramics. The activation energy for creep, Q, was *650 kJmo1−1 for both the
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RBSN and the HPSN samples, and somewhat higher for the SiC and SiAlON
specimens—730 and 850 kJmo1−1, respectively. As repeatedly indicated, several
variables influence creep strength, even when tested under the same conditions. The
most important of these variables are the impurity level, the amount of pores, pore
size, pore shape, pore distribution, and the experimental atmosphere.

According to the Norton–Bailey equation for stain hardening/strain softening
during creep, it is a function of temperature, stress, and creep strain, given as

_ecr ¼ KðTÞ � rn � eacr: ð5:6Þ

In the above equation, K is a function of temperature, “n” is the stress, and “a” is a
creep-strain exponent. In primary creep strain, hardening occurs and “a” is negative,
while it is positive in tertiary creep and may be associated with strain softening.
Steady-state creep (secondary creep) is represented by a = 0. The measured strain is
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Fig. 5.16 Temperature-dependence of the secondary creep rate (_es) for samples of reaction-bonded
and hot-pressed silicon nitride, a SiAlON (z = 1) and sintered silicon carbide for compression creep
tests carried out at 238 MN m−2. Birch and Wilshire [1]. With kind permission of Springer
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elastic (creep deformation). In order to obtain the creep strain, the elastic (instan-
taneous) strain should be subtracted from the total strain measured, giving

ecr ¼ etot � r
E
: ð5:7Þ

The contribution of the elastic strain (the second term) is obtained from the ratio
of the applied stress and Young’s modulus. To learn the method for identifying the
parameters of the Norton–Bailey creep law, the reader may consult the work of Jin
et al. [8] The end result is given by

ecr;iþ 1 ¼ e1�a
cr;i þ 1� að Þ � K � rniþ 1 þ rni

� � � tiþ 1 � tið Þ
2

� �1=1�a

: ð5:8Þ

In the subscripts i + 1, the i of strain and stress refers to the respective time
steps.

Magnesia–chromite bricks (56.6 wt%MgO, 25.5 wt%Cr2O3) were used for
these creep measurements and analyzed in Eqs. (5.6)–(5.8). Figures 5.17, 5.18
and 5.19 illustrate creep curves at various temperatures and stresses.

The smooth lines in Figs. 5.17, 5.18 and 5.19 illustrate the inverse estimation of
the results. The curves in Figs. 5.17, 5.18 and 5.19 indicate that they are
primary-stage creep curves, since the values of “a” are negative at all the test
temperatures. A typical three-stage curve is obtained at 1400 °C under a load of
9 MPa, as illustrated in Fig. 5.20. In Fig. 5.21, the normalized parameters are
shown versus the number of iterations. Note the poor initial creep law parameters
given (K is 0.1 MPa−n s−1; n is 20; and “a” is −20). A steep decrease of the residual
is observed for the first 12 iterations and, after 20 iterations, the optimized creep law
parameters are found with sufficient accuracy.

The Norton–Bailey creep parameters are listed in Table 5.1.
In the case of secondary creep, the exponent of creep strain, “a,” was zero and

only the value of K2σ
n2 could be inversely calculated from this curve. At the third

Fig. 5.17 Total strain/time
curves of burnt magnesia–
chromite bricks from
experiments (fluctuating ones)
and inverse estimations
(smooth ones) at
1100–1300 °C. Jin et al. [8].
With kind permission of
Elsevier
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stage, both a3 and K3σ
n3 were inversely estimated. The corresponding creep law

parameters are listed in Table 5.2.
In summary, it is possible to state that the measurements reveal that, at elevated

loads, all three creep stages may be observed. Besides increasing the load, the

Fig. 5.18 Total strain/time
curves of burnt magnesia–
chromite bricks from
experiments (fluctuating ones)
and inverse
estimations (smooth ones) at
1400–1550 °C. Jin et al. [8].
With kind permission of
Elsevier

Fig. 5.19 Total strain/time
curves of alumina castable
from experiments (fluctuating
ones) and inverse
estimations (smooth ones) at
1200–1500 °C. Jin et al. [8].
With kind permission of
Elsevier

Fig. 5.20 A total strain/time
curve of burnt magnesia–
chromite bricks from the
experiment and inverse
estimation including three
creep stages at 1400 °C under
9 MPa. Jin et al. [8]. With
kind permission of Elsevier
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temperature and loading time may also produce the three stages of creep. In
addition, the effect of certain impurities on the stages of creep is a significant factor
for improving creep resistance.

5.3 Flexural (Bend) Tests

Tensile testing for creep in ceramics is problematic, especially in brittle ceramics
(and most ceramics are brittle), because
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Fig. 5.21 The convergence
behavior of the Levenberg–
Marquardt method for inverse
identification of the creep
parameters. Jin et al. [8]. With
kind permission of Elsevier

Table 5.1 Norton–Bailey creep law parameters of burnt magnesia chromite bricks corresponding
to different temperatures. Jin et al. [8]. With kind permission of Elsevier

T(C) L–M GRG L–M GRG L–M GRG

K(MPa−nS−1) n a

1100 1.18 × 10−16 0.71 × 10−16

1200 2.77 × 10−16 1.72 × 10−16 2.86 2.91 −1.80 −1.85

1300 2.33 × 10−15 1.47 × 10−15

1400 1.24 × 10−11 –

1500 2.20 × 10−10 – 3.20 – –1.04 –

1550 7.27 × 10−9 –

L–M Levenberg–Marquardt method
GRG Generalized Reduced Gradient method

Table 5.2 Norton–Bailey creep law parameters of three stages of burnt magnesia–chromite
bricks. Jin et al. [8]. With kind permission of Elsevier

Creep law parameter a1 K1rn1ðs�1Þ a2 K2rn2ðs�1Þ a3 K3rn3ðs�1Þ
Value −1.04 1.44 × 10−8 0 1.47 × 10−6 6.3 1.58 × 104
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(a) specimen preparation is difficult, due the absence of plasticity and, thus,
unattainable by means of common machining procedures; and

(b) any small misalignment of the specimens in the grips may cause fracture in the
vicinity of the grips, due to eccentricity.

After concerted attempts to solve the problem of ceramic tensile testing using
pin-loaded specimens and a laser extensometer technique, a relatively uniform
agreement about the reliability of tension tests was reached; nevertheless, the
preferred and most reliable tests are by compression or bending (flexural) tests.
Flexural-creep tests have several advantages:

(a) easy preparation of the specimens;
(b) relative ease of experimental design; and
(c) low costs, as a consequence of (a)–(b).

Therefore, many creep experiments employ flexure tests. There are two common
testing methods, depending on the loading method. Three- and four-point bending
tests are in general use, as indicated in Fig. 5.22.

The specimens are rectangular and without notches. The four-point bend setup is
illustrated in Fig. 5.22 for two cases: for the loading spans of L/2 and L/3.
The applied force (downward arrows) is compressive by nature, resisted by the
tensional force (upward arrows). Thus, the longitudinal stresses at the lower sur-
faces (convex) in the specimens are tensile and compressive at their upper surfaces
(concave). As a consequence, a calculable bending moment develops. A large
variety of machines are available for flexural tests, such as MTS, Instron, Universal
Testing Machine, etc. It is reasonable to believe that stress and strain are propor-
tional to the distance from the neutral axis. The neutral axis is shown in the
schematic specimen of Fig. 5.23 (at half of h).

The following relations apply to the L/2 span (see Figs. 5.23 or 5.22a). The load
is clearly applied at L/2, expressed as

rf ¼ 3P L� Lið Þ
2tc2

: ð5:9Þ

Fig. 5.22 Schematic bend test configurations: a three point, b four point. Pelleg [11]
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Often in the literature (e.g., Ponraj and Iyer) [12], this relation is given along
with Terwilliger et al. [13] as

r ¼ 3
2

L� að ÞF
bh2

: ð5:10Þ

Here, σ(≡ σf); L is the distance between the support points; F (≡ P) is the applied
load; a (≡ Li) is the distance between the load points; b (≡ t) is the width; and
h (≡ c) is the height of the bar. Following the beam’s elastic deformation, the strain,
ε, in the outermost fiber from the measured deflection is

e ¼ 6hx
L� að Þ Lþ 2að Þ ; ð5:11Þ

where x is the deflection. Differentiating Eq. (5.11) with respect to time results in

_e ¼ 6h _x
L� að Þ Lþ 2að Þ ¼ Kh _x: ð5:12Þ

This equation is often used to calculate the strain rate, _e, from themeasured deflection
rate at load points. A typical creep curve is shown in Fig. 5.24, and the four-point
creep test specimen, with and without the deflection, appears in Fig. 5.25.

Equation (5.9) may be obtained by considering Fig. 5.23 as follows (Pelleg)
[11]. The fracture stress, σf, is determined by

rf ¼ Mc
I

ð5:13Þ

I ¼ 2tc3

3
: ð5:14Þ

Replacing I in Eq. (5.13), it may be rewritten as

rf ¼ 3M
2tc2

; ð5:15Þ

where M is the bending moment, c is half the specimen width, t is the thickness, and
I is the moment of inertia of the cross-sectional area. Lists of the moments of inertia

Fig. 5.23 Schematic bend
test, rectangular bar. Pelleg
[11]
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of plane figures and areas are found in the literature and also in the appendix of
Timoshenko’s [14] book. Basically, the plane under consideration is divided into
small pieces and the contribution of each individual piece to the moment of inertia
is evaluated by integration:

I ¼ bh3

12
� tð2cÞ3

12
¼ 2tc3

3
: ð5:16Þ

Since I is the moment of inertia of the cross-sectional area, expressing the
moment as the force times the lever allows Eq. (5.13) to be modified as
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Fig. 5.24 Typical creep
curve of siliceous porcelain
tested at 850° C at a stress
level of 38 MPa. Ponraj and
Iyer [12] With kind
permission of Springer

Fig. 5.25 Typical four-point
bend-creep test specimens:
(bottom) before testing and
(top) after testing. Ponraj and
Iyer [12] With kind
permission of Springer

rf ¼
2P L

2 c
2tc3
3

¼ 3PL
2tc2

: ð5:17Þ
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Below, a method for evaluating the inertia is presented:

Note the final relation for the inertia obtained above and shown in Eq. (5.16).
When considering the notation in Fig. 5.23, Eq. (5.14) may be obtained. Both
values for inertia, bh3

12 and I ¼ 2tc3
3 from Eq. (5.14) are indicated in Eq. (5.16).

Equation (5.17) gives the flexural strength for the three-point test of a rect-
angular bar. In the above relation, a force is acting on a lever of size L/2 (1/2
of the bar at the support) and this force is supported or balanced at the two
supporting points marked by the arrows close to the ends of the rectangular
bar (i.e., M = PL force x arm), which yields the same answer as given in
Eq. (5.17).
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A four-point bend test setup is illustrated in Fig. 5.26 for two cases: for the
loading spans at L/2 and at L/3.

The following relations apply to the L/2 span, using Eq. (5.15) with the
appropriate substitution for M as

rf ¼ 3M
2tc2

¼ 3P L
2

2tc2
¼ 3PL

4tc2
: ð5:18Þ

Using Eq. (5.15) again, the L/3 span, shown in Fig. 5.26b, may be written as

rf ¼ 3M
2tc2

¼ 3P L
3

2tc2
¼ PL

2tc2
: ð5:19Þ

In the general case, when the loading span is different from L/2 or L/3 in a
four-point bend test, the stress is given as

rf ¼ 3P L� Lið Þ
2tc2

: ð5:20Þ

Equation (5.20) is obtained in a manner similar to other bend test relations,
namely

rf ¼ 3M
2tc2

¼ 3PðL� LiÞ
2tc2

: ð5:21Þ

The equations expressing the flexural strength, σf, actually represent the highest
stress of the ceramics at the time of rupture. While tension or compression tests of
metals are commonly used to characterize and development new materials for
design purposes, bend tests of ceramics are the preferred test method. The flexural
strength of a ceramic is dependent on its inherent properties, especially flaws and
crack sizes (common features in ceramics). Variations in crack size, crack distri-
bution, and the nature of such cracks cause a natural scatter in test-sample results,
requiring the testing of several test specimens in order to get a statistical value for
the inherent flexural strength.

Fig. 5.26 Rectangular beams in a four-point bending test: a loading span L/2; b loading span L/3.
Note that the loading span may be different from L/2 or L/3. In that case, it is customary to denote
the load span as Li
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Note the relation between three and four-point bend tests and test specimen size.
It is expected that the specimens having a larger volume will show a lower modulus
of rupture than smaller sized specimens, since there is a higher probability that more
defects (microcracks, for example) will exist in larger specimens. Therefore, test
specimens must be standardized. The lower modulus of rupture in four-point bend
tests, as opposed to three-point bend tests, is a consequence of the size effect.

It was indicated above that various creep testing facilities are available on the
market. An Instron 5581 testing machine was used to obtain the creep curves shown
in Fig. 5.27.

In Fig. 5.28, the additional flexural creep of Si3N4 at 1400 °C under 100 MPa is
compared to a bend test of SiAlON under the same conditions. In Figs. 5.27 and
5.28, flexural-creep strain–time curves, obtained in air at a 1300–1400 °C tem-
perature range and under stress levels ranging from 50 to 150 MPa, are illustrated.

Recall that the four-point bending-creep method involves supporting a test bar
on two supports near its ends, heating it to the required, constant, elevated tem-
perature, while applying a force to two symmetrically spaced loading points located
between the support points, and then recording the deflection of the test bar over
time (see Fig. 5.26a).

The steady-state creep rates were analyzed by Norton’s equation, given as
previously indicated and rewritten here as

ess ¼ Arn exp
�Q
RT

� 	
: ð5:22Þ

Equation (5.22) was used to obtain the stress and temperature dependences of
the creep strain versus time curves (Figs. 5.27 and 5.28). Obviously, the afore-
mentioned parameters in Eq. (5.22) are A the constant; σ the stress; Q the apparent
activation energy; and n the stress exponent. By linear fitting of the strain rate
versus stress, the stress exponent, n, is determined to be n = (1.6 ± 0.13) under the
applied stress in the 50–150 MPa range (see Fig. 5.29a). From the plot of the strain
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stress b. Uludag and Turan [15] With kind permission of Elsevier
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rate versus 1/RT, the activation energy of creep under a flexural load was deter-
mined to be in the 1300–1400 °C temperature range as (692 ± 37) kJmol−1. This is
shown in Fig. 5.29b.

5.4 Indentation (Hardness) Tests

As stated above, ceramics are increasingly applied where good wear, high strength,
and creep resistance are prerequisite material properties. Long-term behavior over a
relatively long operating lifetime is expected from these materials and, therefore,
their evaluation by appropriate tests is mandatory. Indentation hardness technique,
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Fig. 5.29 a Stress and b temperature dependence of the steady-state creep rate of as-received α/β–
SiAlON composite at a constant temperature of 1400 °C and under a constant stress of 100 MPa.
Uludag and Turan [15]. With kind permission of Elsevier
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under sufficiently prolonged loading, is perhaps one of the simpler and less-
expensive methods for collecting data to support estimations of the useful working
lives of ceramics under loads (high stress) either at low or high temperatures. It is
worth mentioning that various instrumented facilities are commercially available for
the performance of indentation tests. Usually, microhardness tests or nanoindenta-
tions are performed on ceramics to eliminate crack development under the load.

The term ‘microhardness testing’ usually refers to static indentations made by
loads of 1 kgf or less. The “Baby Brinell” hardness test uses a 1-mm carbide ball,
while the Vickers hardness test employs a diamond with an apical angle of 136°,
and the Knoop hardness test uses a narrow rhombus-shaped diamond indenter. In
most cases, the test surface must be highly polished. The smaller the force applied,
the higher the required metallographic finish. Microscopes with a magnification of
around 500× are required to accurately measure the indentations produced.
Furthermore, note that microhardness in ceramics is employed in cases where a
“macro”-hardness test is not possible. Testing microhardness may also be useful
when ceramic coatings must be evaluated for creep resistance. In fact, high-
temperature tests are often referred to as ‘hot-hardness tests.’

Microhardness is measured by taking the depth of the penetration of the indentor
as a function of load. This enables the determination of the deformation under the
load of indentations under increasing, fixed (stable), and decreasing loads over time.
A schematic diagram of the variation of the load over time is shown in Fig. 5.30.
This load increased monotonically up to 5 N, while the penetration depth of the
indentor was measured as a function of that load, reaching a value of 3.19 mm.
Then, at a fixed load of 5 N, the depth of penetration of the indentor (Δh) was
measured as a function of time (see Fig. 5.30b). The load and the penetration depth
of the indentor were registered on an X–Y recorder. Measurements were made at the
start of the creep and the depth of penetration was measured after 10, 20, 30, and
60 s and, subsequently, every 60 s up to 600 s (see the enlargement taken from
Fig. 5.30b). A Vickers pyramid indentor was used, and the unrelaxed microhard-
ness was calculated by

HV ¼ 0:3784P
h2

; ð5:23Þ

where P is the load (N) and h is the measured depth of penetration (mm).
This relation is a consequence of the following (Pelleg) [11]. Hardness, H, is

defined as the ratio of the applied load to the projected area of indentation and is
generally expressed as

H ¼ a
P
d2

; ð5:24Þ

where d is the size of the measured impression with α, the indenter constant, taking
the indenter geometry into consideration. The Vickers indenter has an angle of
ϕ = 136° between the two opposite faces. The Vickers hardness is defined as the
load divided by the surface area of the pyramid-shaped indentation (impression).
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This area is simple to evaluate from the geometry of the shape of the indentation,
which requires measuring the diagonals and using the known angle between the two
opposite faces. These two diagonals are measured on the screen of the Vickers tester
and their average is used in the diamond pyramid hardness (DPH) formula. The area
of the sloping surface of the indentation is calculated as shown in Fig. 5.31 and the
steps are also shown for deriving the expression for the DPH measurements.

Thus, DPH is given (see Fig. 5.31) using the sine of the half angle of the Vickers
indenter as

DPH ¼ 2P sin /=2ð Þ
d2

¼ 1:854P
d2

: ð5:25Þ

The 0.02 mm increase in the load of the experimental tests and, recalling that
h ≡ d, yields the following results:

HV ¼ 0:3784P
h2

¼ 0:3784P
d2

; ð5:26Þ

which is equivalent to Eq. (5.23).
The ceramics investigated were Si3N4 and AlN and the increase in the pene-

tration depth of the indentor is illustrated for both in Fig. 5.32.
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Creep under nanoindentation is shown for SiCNs in Fig. 5.33. These plots
represent the averaged data from at least five individual measurements, after dis-
carding the data that showed large deviations from the average behavior. For
convenient comparison of the displacements values, the initials h and t of all curves
have been aligned to zero.

Here, creep is a consequence of plastic deformation and strain hardening. Details
of the analysis in terms of the power law

r ¼ b_em ð5:27Þ
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Fig. 5.32 Plots of relative
depth of penetration (ht/ho)
versus time, where ht is the
depth of penetration at a time
t and h0 is the initial depth of
penetration. (*) Si3N4-1 at a
fixed load of 5 N, (O) Si3N4-
2 at a fixed load of 5 N, (□)
A1 N at a fixed load of 5 N,
(+) Si3N4-1 at a fixed load of
2 N and (x) Si3N4-2 at a
fixed load of 2 N. Yurkov
[17]. With kind permission
of Springer
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expressed in terms hardness (indentation) as

H ¼ b_em ð5:28Þ

may be found in the communications of Janakiraman; Han and Tomozawa [6]; and
Grau et al. [5].

In Eqs. (5.27) and (5.28), σ is the flow stress, _e is the strain rate, and m is the
strain rate sensitivity. In Eq. (5.28), H has been set equal to the flow stress, σ, and
uses the strain rate relation.

Materials that are relatively strong at low (room) temperatures may fail at high
temperatures over time, as is observed in the case of creep, for example. Failure due
to the time-dependent deformation (creep) of a material, when subjected to a
constant load or stress, is accelerated at high temperatures. There is another simple,
low-cost method for measuring hardness (in order to evaluation strength) that may
be used instead of tensile, compressive, or flexure tests. The Hall Petch equation,
which relates strength to the grain size in a specimen, is rewritten here as

r ¼ r0 þ kffiffiffi
d

p ; ð5:29Þ

where σ0 and k are the material constants. This relation may also be adopted to
assess hardness:

H ¼ H0 þ kffiffiffi
d

p : ð5:30Þ

The strength and hardness of materials decrease as the temperature increases.
Therefore, in many applications involving high temperatures, it is critical to know
the material properties at the service temperatures, particularly for predicting the

Fig. 5.33 Plots of hold-time
creep displacement from
Berkovich nanoindentation of
Si–C–N ceramics. Closed and
open symbols represent data
from constant load hold
segments at Phold = 525 and
500 mN, respectively.
Janakiraman and Aldinger
[7]. With kind permission of
John Wiley and Sons
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service lifetime. ‘Hot hardness’ measurements are simpler, require smaller speci-
mens, and are more cost effective than performing high-temperature tension,
compression, or flexural tests.

Hot microhardness may be measured by a special tester—a Nikon QM Hot
Microhardness Tester—as is used, for instance, at Arkansas University. This tester
enables the observation and microhardness measurement of a variety of materials,
such as metals, alloys, ceramics, composites, and even coatings at any temperature
ranging from room temperature to about 1200 °C. It has been used for conducting
tests on carbide cutting tool samples. Vickers hardness tests were conducted on
the samples with a 500 g load at temperatures ranging from room temperature to
800 °C. These studies demonstrated that the hot microindentation technique is a very
sensitive method for detecting and defining deformation mechanisms in structural
materials at high temperatures. Figure 5.34 illustrates plots of hardness versus 1/T.

The deformation of materials at elevated temperatures is often described by a
phenomenological equation in the following form:

_e ¼ Arn exp � Q
RT

� 	
; ð5:31Þ

where Q is the activation energy of deformation expressing the creep rate; A and
n are the material constants. Since the rate of loading, _e, of the indenter in a
hardness test is preset to a constant value, and considering the proportionality
between hardness and applied stress, Eq. (5.31) may be modified as (Fig. 5.34)

Hn
V
/ A exp

QH

RT

� 	
; ð5:32Þ

where HV stands for Vickers hardness. QH is the activation energy needed for
deformation by indentation (hardness), which is usually determined from the slope
of the hardness versus 1/T plot.

Fig. 5.34 Plot of Vickers
hardness against inverse of
absolute temperature. The
change in the slope of the
lines suggests a change in the
dominant deformation
mechanism as temperature is
increased. Reference [3].
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Like other instrumented equipment for performing mechanical tests, hot
indentation (hardness) instrumented facilities are also commercially available for
application in creep studies. Figure 5.35 illustrates such a hot microhardness tester.

Such hot hardness units enable the observation and measurement of a variety of
materials, such as metals, ceramics, and composites at temperatures ranging from
room temperature to *1200 °C. The equipment includes a power source and a
vacuum control module. The facility allows for the setting of the indentation time,
and control of the temperature, indenter furnace, and vacuum chamber. The various
modules in the unit are detailed in Fig. 5.35
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Chapter 6
Creep in Nanoceramics

Abstract Modern interest in nanosized specimens is a result of their possessing
outstanding strength, superior hardness, and good fatigue resistance. This chapter is
unique since no other book discusses the mechanical properties—including creep—
of nanoceramics. All the tests performed in macro-sized material are used to
evaluate the properties of nanosized ceramics. Thus results were collected by ten-
sion tests, compressive test, flexural, and hardness tests. The unique properties of
nanoceramics are discussed in this chapter.

6.1 Introduction

Nanoceramics have been extensively studied over the past decades. The interest in this
subject is associated with the many important properties of nanomaterials, in general,
and of nanoceramics, in particular. One very important property exhibited by many
nanomaterials is superplasticity (discussed later on in Chap. 8), which is probably due
to the very small grain size (submicron, often in the 50 nm range). The consolidation
techniques of the raw materials and their production methods generally determine the
mechanical, physical, and other properties of the manufactured ceramics. This is
especially true in the case of nanoceramics, since the distribution of the phases in
composite ceramics, for example, and their location relative to the commonly found
microcracks are decisive factors in obtaining strong, fracture-resistant substances.
Nanoceramics show excellent physical, chemical and mechanical properties which
generally desirable for various technological applications.

With regard to the study of creep and mechanical properties, nanoceramics are
known to possess outstanding strength, superior hardness, and good fatigue resis-
tance (Kuntz et al.; Mukhopadhyay and Basu; and Andrievski and Glezer). Since the
properties of solids (and nanoceramics are no exemption) depend on chemical
composition, atomic structure and microstructure, nanomaterials may exhibit prop-
erties (among them creep) that are very different from those of conventional poly-
crystalline materials, depending upon their method of production. As such, glassy
phases are often observed in nanocrystalline structures resulting from their
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production method. Significantly improved creep resistance in nanoceramics may be
obtained by eliminating the glassy phases at the grain boundaries via an appropriate
production method. The formation of the glassy phase is associated with the presence
of oxygen; the amount of distributed oxygen determines the amount of the glassy
phase. Often, the oxygen is not distributed homogeneously in the grain boundary
regions. Generally, creep behavior is tested by compression, rather than tensile
testing, so as to avoid cavitation by crack formation. The next section discusses the
creep testing of nanoceramics, providing some technologically important exemplars.

6.2 Testing of Nanoceramics

In the past decades, much effort has been devoted to the production of serviceable
nanoceramics, expected to exhibit advanced mechanical properties useful for
functional applications. The prerequisite for such nanoceramic structures is that
they be produced without pores, cracks, and other flaws. To this end, modern
production techniques have been developed in hopes of achieving such flawless
structures. Another reason for striving to produce sound nanoceramics is the
expectation that some of them may exhibit ductile properties, alongside high
strength (which is absent in bulk ceramics). This anticipation is due to the fact that
the fundamental behavior of nanostructures is quite different from that of bulk; in
very small-sized structures, surface and atomistic properties dictate their perfor-
mances. Thus, the study of nanoscale ceramics is an inevitable step toward
understanding experimental observations. Note that, in order to facilitate the den-
sification of nanoceramics and to solve other production problems, additives are
usually incorporated into their nanostructures.

In general, all the test results are dependent on the grain size. The strength of
materials, including ceramics, increases with the decrease in grain size and also
when the structures are small, as in nanocrystals. This strengthening in small-sized
structures is associated with the restriction of dislocation motion. (Note that when
no dislocations are involved in deformation, high strength at a level approaching the
theoretical strength is required to induce strain in the test specimen). Unlike con-
ventionally sized test specimens, in which ductility usually decreases with increased
strength, nanocrystalline-sized specimens show high strength combined with good
elongation. Moreover, such nanospecimens may reach high values of plasticity,
which, in some ceramics, may lead to superplastic behavior before fracture. Here,
some of the testing methods discussed in earlier chapters with regard to macroscale
materials will be reviewed in regard to nanomaterial behaviors. The nanoceramics
considered are not necessarily monolithic, since various additives are incorporated
into the specimens to improve and enhance their strength properties, as reflected by
their improved creep resistance.

But before discussing the various nanoceramic creep tests, a brief review on the
nanostructure is in order. A frequently presented illustration representing a typical
nanostructure may be seen in Fig. 6.1. Since nanocrystalline materials are typically

94 6 Creep in Nanoceramics



less than *100 nm (1 nm = 10−9 m = 10 Å), their grain sizes are so small that a
major part (or even all) of the microstructural volume consists of interfaces, mostly
in the form of grain boundaries.

The next section on creep resistance in nanoceramics will start with the topic of
compressive creep testing, which is the most common approach for avoiding pre-
mature fracture (failure) due to cavitation.

6.2.1 Compressive Evaluation of Creep

An example of the compressive testing of nanoceramics for high-temperature creep
may be illustrated by yttria tetragonal zirconia (YTZ) nanocrystals (Lorenzo-Martín
et al.). The usual motivation for such experiments is the desire to induce greater
ductility in the ceramics and also to improve their sinterability. Another incentive is
to test the possibility of obtaining superplasticity (discussed below in Chap. 8) by
the reduction of grain size under the application of high strain rates. GBS is con-
sidered to be the principal mechanism during high-temperature deformation. As in
the case of bulk ceramics, the results of the variation of strain over time are
analyzed by the use of the high-temperature creep equation in ceramics, given as:

Fig. 6.1 Reproduced from
Fig. 1 of Jiang and Weng,
according to Schiøtz et al.;
a molecular dynamic
simulation of grains and grain
boundary in a nano-grained
copper, showing the grain
boundary has finite volume
concentration. Jiang and
Weng [6]. With kind
permission of Elsevier

_e ¼ A
Gb
kT

r� r0
G

� �n
D0 � Q

kT

� �
; ð6:1Þ
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whereG is the shearmodulus of theYTZ polycrystals, σ is the applied stress, andD0 is
the pre-exponential factor of the diffusion coefficient of the diffusing specimen
controlling plasticity. A, n and Q are empirical parameters, where n is related to the
stress exponent andQ is the activation energy. These three parameters are functions of
grain size. In the above equation, n expresses the sensitivity to stress changes, while
Q reflects the temperature changes. Equation (6.1) is an additional, similar, empirical
equation to those indicated in earlier chapters (e.g., Chap. 4). The parameters, n and
Q, define the mechanism of the creep rate, as seen in Eq. (6.1). The stress exponent
may be evaluated from the stress changes at a fixed temperature according to:

n ¼ ln _e2=_e1ð Þ
ln r2=r1ð Þ ð6:2Þ

_e2 and _e1 are the steady-state strain rates before and after the stress change, under
identical conditions of strain and temperature. From the temperature changes under
a constant load, the activation energy may be determined by:

h ¼ kT1T2
DT

ln
_e2T2
_e1T1

� �
ð6:3Þ

Evaluations of n (Eq. 6.2) and Q (Eq. 6.3) were performed for nanocrystal YTZ
with different contents of glassy phase. Figure 6.2 shows creep curves with 10%
glassy phase in the YTZ.

Table 6.1 lists the values of n and Q with different amounts of glassy phase. The
activation energies in all samples, including the pure one, are much higher than the
Q * 550 kJ/mol obtained by the same authors in an earlier work in submicron-sized
samples. This has been explained as follows: (a) the accommodation mechanism is
different in the submicron specimens than in the nanosized ones. It involves Zr and Y
cation bulk diffusion, which is no longer the case in nanoscale YTZ. Here, the
accommodation mechanism is still unclear; and (b) the GBS is different in the two
types of specimens; it is lower than the 5 MPa obtained from extrapolation from the
measured values in the submicron specimen to the nanometric scale. The threshold
stress has a1/d-dependence on the grain size in the submicrometric scale. This
dependence predicts that the smaller the grain size, the higher the threshold stress will
be. In YTZ, the threshold stress is as high as 160 MPa for d of *50 nm.

The microstructures of YTZ, before and after deformation, with 5% glassy states
are shown in Fig. 6.3.

Apparently, no changes in grain size or grain shape are observed between the
as-received and the deformed specimens. Furthermore, neither cavitation, nor dis-
location activity are detected; thus, the microstructure does not seem to have
changed. Yttrium segregation to grain boundaries is observed in all the samples to a
level of 0.7 ± 0.5 mol% in the pure YTZ polycrystalline samples and to 0.9 ± 0.5
in the impure ones.

The threshold stress affects the strain exponent, n, and if sufficient deviation
from n * 2 exists it could be measured. The measured stress exponent is given by:
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Fig. 6.2 Creep curve of nanocrystalline Y-ZTP with 10 wt% glassy phase. The curves illustrate
calculation of (a) the stress exponent, n, and (b) the activation energy, Q. Lorenzo-Martín et al. [8].
With kind permission of Elsevier [The P in Y-TZP stands for polycrystalline specimens]

Table 6.1 n and Q for the
different sets of samples.
Lorenzo-Martín et al. [8].
With kind permission of
Elsevier

Sample n Q (kJ/mol)

Pure 2.0 ± 0.4 680 ± 20

5% glassy phase 1.8 ± 0.5 690 ± 20

10% glassy phase 2.3 ± 0,5 710 ± 40

15% glassy phase 2.3 ± 0.4 740 ± 20

The impurity content does not change the mechanical properties,
as displayed
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n ¼ 2
r

r� r0
; ð6:4Þ

which can be deduced from Eq. (6.1). For Y-TZP, the measured value of n is 2.3.
Apparently, the cation segregation in grain boundaries is associated with the higher
activation energies in the nanoceramic crystals. Moreover, this also predicts the
small threshold stress for plastic deformation (creep in the present case) in nanoscale
specimens. This may be explained by the effect of cation segregation at the grain
boundaries, causing non-compensated charge density, with the consequence that
local electric fields are created, capable of changing the mass transport of the charged
species, and, in turn, leading to changes in the diffusion coefficient [see Eq. (6.1)].

For further details on the effect of yttria segregation in grain boundaries and its
effect on the mechanical properties tested by compression in YZTP, the original
research may be consulted. In addition, note that the amount of the glassy phase,
which is dependent on the amount of oxygen and its distribution, had only a small
effect on the activation energy in the *50 to 60 kJ mol−1 range, as seen in Table 6.1.

For technological purposes, most of the nanoceramics contain various additives,
often to such an extent that they become composite nanostructures, rather than
monolithic ceramics. Therefore, it is of interest to consider one such important
composite structure, such as silicon nitride/silicon carbide (S–C–N) nano-
nanocomposite (studied by Wan et al.).

In this case, compressive stress was applied during the creep test. The test
specimens were in the form of a 19 mm disk, 3–4 mm thick. Figure 6.4 shows the

Fig. 6.3 TEM micrographs showing the microstructure of the Y-TZP with 5 wt% glassy phase:
a as received and b after deformation. Lorenzo-Martín et al. [8]. With kind permission of Elsevier.
The P in Y-TZP stands for polycrystalline specimens
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analysis of the initial S–C–N powder, having a nominal composition of Si1.00 C1.55

N0.81 O0.17. As mentioned earlier, a glassy phase can be induced by the presence of
oxygen, which is a consequence of surface oxidation due to handling in air. The
oxygen diffused into the specimens from their surfaces during the high-temperature
processing. The amount of the glassy phase is oxygen dependent. The glassy phase
may be observed in Fig. 6.5b. In this figure, a structure without a glassy phase is
also shown for comparison. The mean particle size of the powder used for the
sintering is *1 μm, by scanning electron microscopy (SEM) evaluation. TEM
reveals that the grain size of the composite decreases with the decrease in the
amount of additive, which is associated with a transition from a micro–nano- to a
nano–nano-type structure. The grain size varies when sintered without additives at

Fig. 6.4 Transmission electron microscopy (TEM) observations of Si3N4-SiC. a Sintered with
8 wt% Y2O3 at 1600 °C for 10 min, micronanostructure, b Sintered with 3 wt% Y2O3 at 1600 °C
for 10 min, nano-nano structure, c Sintered with 1 wt% Y2O3 at 1600 °C for 10 min, nano-nano
structure, d Sintered without additive at 1600 °C for 30 min, nano-nano structure. Wan et al. [18].
With kind permission of John Wiley and Sons
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Fig. 6.5 High resolution transmission electron microscopy (HRTEM) analysis of the grain
boundary of the nano–nano composite (no additive, 1600 °C/30 min sintered) a glass-free grain
boundary, b grain boundary containing glassy layer, c triple junction. Wan et al. [18]. With kind
permission of John Wiley and Sons
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1600 °C: for 10 min the grain size is 27 nm; for 30 min it is 40 nm (see Fig. 6.4d).
The two phases comprising the composite, namely Si3N4 and SiC, have equal grain
size and are randomly mixed, as indicated in Fig. 6.6 by electron energy loss
spectroscopy (EELS). EELS reveals that oxygen is present in almost all the grain
boundary regions. Only a small amount of glassy phase may be observed. In the
ceramic under consideration, the oxygen was not homogeneously distributed in the
grain boundary regions, some having more than others.

Most of the glassy grain boundary phase exists at multigrain junctions (e.g., see
Fig. 6.5c). To avoid common complications, compression creep tests were con-
ducted to examine the creep behavior of the nano–nano composites, rather than
tensile creep tests, that are likely to induce cavitation. The steady-state creep of the
nano–nano composites at various temperature and stress levels is shown in Fig. 6.7
by a plot of strain as a function of time. It is interesting to compare the results
assembled in Fig. 6.6 for the nano–nano composites with those of microcrystalline
Si3N4. Observe the very high creep resistance of the nano–nano ceramics and that
the strain, as a function of time, is stress- and temperature-dependent.

The creep rate evaluated by the compression testing of the nano–nano ceramics is
compared with other silicon nitride ceramics in Fig. 6.8. Specimens designated as
C- and D-group nanoceramics, with various Y2O3 content, show higher creep

Fig. 6.6 Electron energy loss spectroscopy (EELS) analysis of the component elements in the
Si3N4–SiC nanocomposite sintered at 1600 °C for 30 min without additive. Wan et al. [18]. With
kind permission of John Wiley and Sons
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resistance than the A group. Note that a specimen without any yttria also appears
among the D-group specimens evaluated by Wan et al. These D-group specimens,
with and without yttria, show the highest creep resistance and represent the transition
from micro-nano to nano-nano ceramics. This creep strength improvement is the
consequence of the reduction of the oxygen-dependent glassy phase. Also note that
the specimen in the D-group without yttria additive has a grain size in the 30–50 nm

Fig. 6.7 Compression creep strain time curves for one of the nano-nano composites (1 wt%
Y2O3, 1600 °C/10 min sintered). Wan et al. [18]. With kind permission of John Wiley and Sons

Fig. 6.8 Comparison of the compression creep property of nanocomposites with those of existing
silicon nitride ceramics (additive in weight percentage unless specified, molecular formula
simplified for clarity. For instance “6YO” in figure legend stands for “6 wt% Y2O3”). Wan et al.
[18]. With kind permission of John Wiley and Sons
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range. In order to obtain an improved nanoceramic, the oxygen should be distributed
at the interfaces to prevent the formation of a glassy phase.

A phenomological equation equivalent to Eq. (1.9) was used to describe the
steady-state creep deformation in the Si3N4–SiC composite, given as:

_e ¼ A
rn

dp
exp � Q

RT

� �
ð6:5Þ

The experimentally determined stress exponent, n, and the activation energy, Q,
for various silicon nitride ceramics are in the range of n = < 1 − > 3 and Q = 300–
1200 kJ/mol. The spread in these values is even higher when the creep test is
carried out by tensile deformation, because the strain rate and the stress data are
affected by cavitation. The grain size dependence, p, is in the range of 1–3, which is
an indication of strong creep rate dependence on the grain size. As the grain size

Table 6.2 Activation energy for diffusion process in the Si3N4/SiC system. Wan et al. [18]. With
kind permission of John Wiley and Sons

Medium Diffusing
particle

Temperature
range (°C)

Activation
energy (kJ/mol)

Note References

α-Si3N4 Si 1400–1600 199 Self-diffusion Kunz et al.53

N 1200–1410 233 Lattice diffusion Kijima and
Shirasaki54

Si NA NA Grain boundary
diffusion

NA

N NA NA Grain boundary
diffusion

NA

β-S13N4 Si 1490–1750 390 Lattice diffusion (β
with some α)

Batha and
Whitney35

N 1200–1410 777 Lattice diffusion Kijima and
Shirasaki54

Si NA NA Grain boundary
diffusion

NA

N NA NA Grain boundary
diffusion

NA

β-SiC Si 1960–2260 911 Lattice diffusion Ziegler
et al.2

Si 2010–2270 612 Grain boundary
diffusion

Hon et al.56

C 1860–2230 841 Lattice diffusion Ziegler
et al.2

c 1855–2100 564 Grain boundary
diffusion

Hon and
Davis57

In GB of
HPSN

Si/N 1450–1550 448 Grain boundary
diffusion

Ziegler
et al.2

(10 wt%
Y203)

Si/N 1550–1760 695 Grain boundary
diffusion

Ziegler
et al.2
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decreases, the creep rate is expected to increase by about 1–3 orders of magnitude,
from micron size (50–1000 nm) to nanosize. Table 6.2 assembles the activation
energies of the diffusion processes in various specimens, since they are relevant to
diffusion-controlled creep. However, all these values are higher than the activation
energy of *205 kJ/mol found in nanoceramics (for example with 1 wt% yttria
additive), which may indicate the action of a different creep mechanism in the
nanocomposite than in microcrystalline silicon nitride. This exceptionally high
creep resistance is believed to be a consequence of the prevention of the inter-
granular glassy phase formation by the dispersive distribution of the oxygen.

6.2.2 Tensile Testing of Creep

It has been observed that the creep resistance of nanoceramics may be greatly
improved by additives. To achieve such a substantial improvement, those additives
must be nanosized particles and dispersed in the grain boundaries of the ceramic
matrix. For example, the dispersal of 5 vol% SiC nanoparticles into an alumina
ceramic matrix, increases the room temperature fracture strength by more than three
times (Ohji et al.). Furthermore, the achieved high strength was maintained up to
1200 °C, suggesting that this ceramic has good creep resistance. Monolithic alu-
mina may be compared with alumina/17% silicon nanocomposite powder at
1200 and 1300 °C, tested at 50 and 150 MPa. Figure 6.9 compares both at 1200 °C
under a stress of 50 MPa. The observed creep life in the nanocomposite was 10
times longer (150 h and 4% creep strain at fracture) than in the monolith (see
Figs. 6.9 and 6.10). A large number of microcracks were also observed. The
monolithic ceramic consists of primary, steady state and a small (barely visible)
tertiary creep.

Fig. 6.9 Tensile creep curves
of the monolith and
nanocomposite at 1220 °C
and 50 MPa. Slight
accelerated creep and
steady-state creep were
present in the monolith, while
they were little observed in
the nanocomposite. Ohji et al.
[11]. With kind permission of
John Wiley and Sons
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Compared with the monolith, the nanocomposite has a lifetime of 1120 h under
the same test conditions (1200 °C and 50 MPa), while the creep strain was only
0.5%, which is eight times smaller. Furthermore, the nanocomposite showed little
steady-state creep and no microcracks were observed via optical microscopy. The
superior strength of the nanocomposite was also observed during flexural creep
testing.

The steady-state creep rates of the monolith and of the nanocomposite ceramics
are compared in Fig. 6.10. The steady-state creep rate of the nanocomposite
is about three orders of magnitude lower under tension than the monolith
(the flexural creep rate is 3–4 orders of magnitude lower). The stress exponent of
the monolith is *2.2 under tension (2.9 in the flexural test). In the case of the
nanocomposite, the data points under tension were widely scattered and, there-
fore, not identified.

In order to inhibit creep, it is important to carry out observations on fractured
surfaces. One of the most characteristic changes of the microstructure during creep

Fig. 6.10 Stress-dependence of steady-state or minimum creep rates in the tension (closed
symbol) and the flexure (open symbol) for the monolith and the nanocomposite. The temperature is
1200 °C. The stress exponent for creep rate is 2.2 for the monolith and 3.1 for the nanocomposite
in tension, and 2.9 for the monolith and 2.2 for the nanocomposite in flexure. Ohji et al. [11]. With
kind permission of John Wiley and Sons
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is a rotation of the intergranular silicon carbide particles, which accompanies GBS
and small cavity formation around the particles (Fig. 6.11a). Figure 6.12, shows the
occurrence of intergranular crack propagation the alumina–alumina grain boundary,
where small cavities formed around the SiC particles as a result of the GBS. The
nanoparticle was transgranually fractured when the crack propagated through the
boundary.

The intergranular small cavities, which are generated by the plunging of the
interfacial particles, weaken the interfacial bonding and induce crack formation at
the grain boundaries.

In an additional work on Al2O3 composite, the tensile creep results of Ohji et al.
were substantiated by Thompson et al. It was found that, in nanocomposites of
alumina containing 5 vol% SiC tested in air at 1200–1300 °C at a stress level of
100 MPa, the creep rate of Al2O3 is reduced by 2–3 orders of magnitude by SiC.
The test was performed at a constant load. It was observed that no primary or
secondary stages are present and only tertiary creep exists. The excessive cavitation
observed is associated with SiC particles that are located at the Al2O3 grain
boundaries, which ultimately lead to failure by creep rupture. The reduction of
creep rate is associated with the inhibition of GBS by the SiC particles located at the
grain boundaries. For the reduction of the tensile creep of fully dense Al2O3, 5 vol%
SiC is sufficient. In Fig. 6.13a, the well-developed tertiary creep and the stress
rupture of the Al2O3–SiC nanocomposite are illustrated, while in Fig. 6.13b, the
strain rate versus the total strain is shown.

Fig. 6.11 Transmission electron micrographs of microstructures of the nanocomposite tested at
1300 °C and 50 MPa in tension, showing examples of rotating and plunging of intergranular
silicon carbide particles and associated cavity formation. The stress direction is indicated by
arrows. Ohji et al. [11]. With kind permission of John Wiley and Sons
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The temperature step tests at 50 °C intervals, using single test specimens,
are illustrated in Fig. 6.14 as strain rates versus strain in the temperature range of
1200–1300 °C.

Comparing the strain rates at constant strain in the temperature interval indicated
in the form of an Arrhenius plot provides the activation energy for creep at various
strains from the slopes in Fig. 6.15.

The Arrhemius relation is expressed, for the present case, as:

Fig. 6.12 Transmission electron micrograph of a trace of intergranular crack propagation. The
sample was tested at 1220 °C and 100 MPa in tension. Note the transgranular fractured
nanoparticle. The stress direction is indicated by an arrow. Ohji et al. [11]. With kind permission
of John Wiley and Sons

_e ¼ f eð Þ exp � Q
RT

� �
ð6:6Þ
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where f(ε) represents the strain-dependence of the strain rate and the others are the
usual symbols. In Fig. 6.15, the lines are parallel, indicating that the creep mech-
anism did not change within the investigated temperature range.

6.2.3 Flexural (Bending) Testing of Creep

As an example of flexural testing, the technologically important
silicon-nitride-based ceramics may be cited, since they exhibit outstanding
mechanical and thermomechanical properties at high temperatures and are used in
various structural applications, particularly in energy conversion systems, engines,
turbines, etc. As mentioned above, SiC additives are an important compositional
part in silicon nitride, dispersed as nanoparticles in the matrix. Recent experiments
reveal that the microstructure and the high-temperature strength of Si3N4+SiC
nanocomposites are strongly influenced by the nucleation step of the nanoparticles
before full densification and that the high-temperature strength is improved only
when the SiC nanoparticles are located intergranulary. The characteristic
microstructures of the C-derived nanocomposites prepared by the optimized pro-
cessing route (Dusza et al.) appear in Fig. 6.16.

The composite nano- and submicron-sized SiC particles, distributed intragran-
ularly between the Si3N4 grains, are in the 40–150 nm size range. All the materials
contained the same volume fraction of Y2O3 additives and were prepared by the
same processing steps (Dusza et al.) to enable the study of the influence of SiC
nanoparticles on the creep behavior of Si3N4. In the four-point bending tests, the
inner and outer span lengths were 20 and 40 mm, respectively. A silicon carbide
fixture was used, and the loading was performed in air in the 1200–1450 °C

Fig. 6.13 Creep rupture of Al2O3–SiC nanocomposite at 1250 °C (100 MPa tensile stress). a Plot
of strain versus time, displaying a well-developed tertiary stage; and b strain rate plotted as a
function of total strain. Solid line represents the strain rate derived from the data shown in
Fig. 6.11a; the open circles are strain rate data obtained at 1250 °C during two separate
temperature step tests. Thompson et al. [16]. With kind permission of John Wiley and Sons
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temperature range, with the outer fiber stress of 50–150 MPa. The deflection of the
specimens was recorded continuously during the creep tests, from which the strain
(taken to be the creep strain, ε) was calculated as a function of time. From the creep,
ε, versus t, the creep rate was evaluated from the slope of the plots. Norton’s
equation, shown as Eq. (6.7), was used to describe the steady-state creep rate as
follows:

_e ¼ Arn
1
dm

exp � Qc

RT

� �
ð6:7Þ

Here, A is a constant that depends on the specific material and the
microstructure; n and m are the stress and grain size exponents, respectively;

Fig. 6.14 Series of strain-rate-strain plots from a single specimen that was step-tested at 100 MPa
tensile stress, shown at 50 °C intervals; the solid lines are polynomial fits to the data. Thompson
et al. [16]. With kind permission of John Wiley and Sons
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d is the grain size; and σ represents the stress. The creep deformations of both
materials were characterized by both primary and steady-state (secondary) creep,
without tertiary creep. Up to 1300 °C, only minimum creep deformation was
observed in the composite ceramics. However, pronounced creep was observed
at 1350 °C and above it. In spite of the fact that the grain size was larger in the

Fig. 6.15 Arrhenius plot of strain rates at a tensile stress of 100 MPa, as a function of total strain.
Strain rates were extracted from the polynomial fits shown in Fig. 6.12. The apparent activation
energy is calculated to be 840 ± 5 kJ/mol. Thompson et al. [16]. With kind permission of John
Wiley and Sons

Fig. 6.16 Characteristic microstructure of the carbon-derived nanocopmposite, a scanning
electron microscopy—plasma etched, b transmission electron microscopy. The intragranularly
located SiC particles are not visible in Fig. 2a and appear as an intergranular phase. Dusza et al.
[3]. With kind permission of John Wiley and Sons
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nanocomposites, compared to the monolithic ceramics, their creep resistance was
significantly higher. The monolithic and the nanocomposite are compared in
Fig. 6.17 at 1350 °C. The stress exponents of the substances tested for creep
were 0.8–1.25 and 1.0–2.0 in the monolithic and nanocomposite ceramics,
respectively.

The respective activation energies for creep are 480 and 372 kJ/mol for the
nanocomposite and the monolithic specimens, respectively.

TEM observations indicate that the main phase in both materials is β-Si3N4 and a
small amount of α-Si3N4 is also present. In addition to the Si3N4 (and SiC in the
composite) in both the monolithic and the composite materials, some additional
crystalline phases were detected, which were mainly YSiO2N and Y2Si3O3N4. The
volume fraction of these phases increases during the creep test, mostly in the
nanocomposites. The glassy phase rapidly undergoes complete crystallization
during creep within the multigrain junction, but complete devitrification of the
intergranular phase was not observed. TEM and high-resolution TEM (HREM)
observations revealed that, due to the intergranularly located SiC particles and the
crystallized glassy phase, there are no glassy-phase triple points present in the
microstructure of the composite (Fig. 6.18) and there is no equilibrium thickness of
the intergranular phase between the Si3N4/Si3N4 grains and Si3N4/SiC grains. The
average thickness of the intergranular glassy phase between the Si3N4/SiC is
approximately 15 A, as shown in Fig. 6.19, but with a favorable orientation; no
boundary phase is present.

Fig. 6.17 Comparison of the creep deformation of monolithic silicon nitride and the C-derived
nanocomposite. Dusza et al. [3]. With kind permission of John Wiley and Sons
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In addition to Fig. 6.17, characteristic creep curves of the nanocomposite,
obtained by stepwise loading at various temperatures and at stresses in the 50–
150 MPa range, are shown in Fig. 6.20.

As previously mentioned, the creep deformations of both materials were char-
acterized by primary and steady-state (secondary) creep, without tertiary creep.

The influence of the applied stress on the creep rate is illustrated in Fig. 6.21,
which was used to evaluate the stress exponent.

TEM observation of the crept nanocomposite specimen did not reveal cavitation
over the temperature range investigated, but above 1400 °C, limited cavitation was
observed in the monolitthic ceramics. The role of the SiC particles is significant in
hindering grain growth in the silicon nitride, but what seems to be more crucial is
the interlocking of the Si3N4 grains, preventing GBS. This may be seen in the
schematic Fig. 6.22.

In closing, it may be stated that the creep resistance of Si3N4 (in the experiments
referred to as monolithic) is improved by the addition of intergranular SiC particles
that modifying the creep mechanism by: (a) limiting the grain growth in the Si3N4

and (b) hindering its GBS.

Fig. 6.18 Triple point and
Si3N4/SiC grain boundaries in
the carbon-derived composite
with different thickness of the
intergranular phase between
Si3N4 and SiC. Dusza et al.
[2]. With kind permission of
John Wiley and Sons

Fig. 6.19 Si3N4/SiC grain
boundaries in the
carbon-derived
nanocomposite. Dusza et al.
[2]. With kind permission of
John Wiley and Sons
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6.2.4 Indentation (Hardness) Testing of Creep

Other than in polymers, not much information is available on creep and hardness
testing in general, and there is little specifically on nanoceramics. Nevertheless, the
characterization of creep deformation by indentation is of interest, as from theo-
retical works, such as the article: “Analysis of indentation creep” by Stone et al. and
the report: Computer-Aided Multi-Scale Design of SiC–Si3N4 Nanoceramic
Composites for High-Temperature Structural Applications by Tomar and Renaud.
The characterization of creep is very important for high-temperature applications,
regardless if the material is macrodimensioned or nanoscaled. As a matter of fact, in
miniature devices, creep is even more critical, due to the very small dimensions and
the generally lower temperature of the applications. Again, creep failure occurs in

Fig. 6.20 Creep deformation
at different temperatures and
stresses. Dusza et al. [2]. With
kind permission of John
Wiley and Sons

Fig. 6.21 Figure 14
determination of the stress
exponent of the C-derived
nanocomposite. Dusza et al.
[2]. With kind permission of
John Wiley and Sons
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materials exposed, for prolonged time periods, to loads below the elastic limit,
basically involving an increase in length in the direction of the applied stress. Creep
deformation can occur at ambient temperature in low melting materials, which is
quite unlikely in ceramics, where the deformation is so slow that it is barely
detected (if at all) and, therefore, insignificant. However, in high-temperature
applications, deformation at a given load, even in ceramics, is likely unless the
component has been safely designed to avoid the potential, premature failure.

Testing is generally carried out in air at atmospheric pressure. But if it is nec-
essary to produce creep data for materials that react with air, they may be tested in a
chamber containing an inert atmosphere, such as argon, or in a vacuum. If a
material is meant to serve in an aggressive environment, then the testing should be
carried out in a controlled environment simulating the intended service conditions.

Coming back to creep indentation tests, one good example is the case of creep in
Si–C–O ceramics (Gan and Tomar). In their experiments, both the sample and the
indenter tip were heated to the required testing temperature. Parts of the setup, which
must be kept at room temperature, are isolated by heat shields. The tests were per-
formed at 6 different temperatures: room temperature, 100, 200, 300, 400, and 500 °C.

The tip radius of the nanoindenter is approximately 20 nm and that of microin-
denter is approximately 200 nm. Both indenters are of the Berkovich type. During
these tests, the samples were mounted on the indentation stage using glue.
Indentation locations were selected randomly on the sample surfaces. In each chosen
location, the tests were performed in either a 3 by 3 matrix or in a 4 by 4 matrix
pattern, with equal longitudinal and transverse spacing between each indentation
spots of approximately 5 μm in the nanoindentation and 20 μm in the microin-
dentation. The nanoindentation depths were in the range of 200–500 nm and the

Fig. 6.22 Schematic of the monolithic Si3N4 (a) and nanocomposite (b) microstructure with the
intergranularly located SiC particles, which interlock the Si3N4 grains and prevent the grain
boundary sliding. Dusza et al. [3]. With kind permission of John Wiley and Sons
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microindentation depths were in the range of 1–3 μm. At such depths, the effect of
the tip radius, as well as of the substrate, is negligible. The projected area of the
nanoindenter is approximately 0.5 μm2 and of the microindenter is approximately
5 μm2. Figure 6.23 shows an example of the procedure used to extract the inden-
tation creep data. The creep deformation profile is extracted from the dwell period at
the peak load (see Fig. 6.23b). The dwell period may affect the creep data. A number
of dwell periods were tried. A dwell period of 500 s was chosen, based on con-
vergence in the measurements. Indentation profiles were imaged before and after the
tests to ensure that similar surface conditions exist before and after the tests. At each
load, more than nine independent indentations were performed.

During the experiments, care was taken to minimize thermal drift by allowing
thermal equilibrium to be reached. Such drift might occur if the stability of the
indentation equipment is not maintained during the measurements, resulting in a
shift in the measured indentation depth away from the actual value as a function of
time. For the minimization of the thermal drift and its measurement, one is referred
to the work of Gan and Tomar. Note that, during the calculation of the creep data,
the thermal drift rate is multiplied by the dwell time and, then, the result is sub-
tracted from the measurement. The following steps, involved in the evaluation of
creep, have been borrowed from the measurement of plastic indentation in metals
and alloys. The modulus and hardness were calculated using the Oliver–Pharr
method. A typical indentation unloading curve (seen in Fig. 6.23a), may be
described by the Oliver–Pharr method as:

P ¼ A h� hfinal
� �m ð6:8Þ

Fig. 6.23 a A typical nanoindentation profile showing b how the creep data is extracted and
c how the thermal drift rate is extracted. Gan and Tomar [5]. With kind permission of Elsevier
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Here, A and m are material constants; hfinal is the indentation depth after com-
plete unloading; hc is the contact depth at the maximum load, Pmax, which corre-
sponds to the total indentation depth, hmax. These are written as:

hc ¼ hmax � e
Pmax

S
ð6:9Þ

where S is the stiffness. In this case, stiffness is the initial unloading stiffness (SP).
Parameter ε is a correction factor; ε = 1 for a spherical tip and ε = 0.75 for a
Berkovich tip. The area of contact is calculated as a function of contact depth for
the Berkovich indenter as:

Ac ¼ 3
ffiffiffi
3

p
h2c tan

2 65:3 � 24:5h2c ð6:10Þ

The reduced modulus is given by:

1
Er

¼ 1� m2i
Ei

þ 1� m2s
Es

ð6:11Þ

υ is Poisson’s ratio and E is the elastic modulus. The subscripts i and s represent the
indenter tip and specimen, respectively. For the diamond tip, vi = 0.07 and
Ei = 1141 GPa. Er may be obtained by Sneddon’s solution as:

Er ¼
ffiffiffi
p

p
2

Sffiffiffiffiffi
Ac

p ð6:12Þ

The stiffness, S, is calculated as follows:

S ¼ dP
dh

ð6:13Þ

P is the applied load and h is the displacement of the indenter. S is represented
by the slope of the indentation curve upon unloading. A correction is required
(Ngan et al.), since the elastic modulus calculated in this way can be greatly affected
by creep in particular under the following conditions: when the tested material is
soft, or the holding time is short, or the peak load is large, or if the unloading rate is
slow. The corrected elastic stiffness is:

1
Se

¼ 1
S
�

_hh
_Pu

� �
1

1� _Ph= _Pu
ð6:14Þ

_hh is the creep rate at the end of load holding; _Ph is the load-decaying rate
at the end of load holding; and _Pu is the unloading rate. In the case of constant load
holding, _Ph is zero. The effect of creep may be corrected along with Feng and
Ngan as:
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C ¼
_hhSe
_Pu

		 		 ð6:15Þ

Replacing S by Se in Eqs. (6.9) and (6.12), the elastic modulus may be calculated
by Eq. (6.11), thus taking the creep effect into account. Hardness is given as:

H ¼ Pmax

24:5h2c
ð6:16Þ

The strain rate is given by a power law as:

_e ¼ Arn exp � Q
RT

� �
ð6:17Þ

The stress exponent, n, is an indication of the creep mechanism, which may be
obtained from a plot of _e versus σ. The power law relation is valid when the
homologous temperature is <0.57Tm. The strain rate, stress, and indentation depth
are related by:

_e�
_h
h
and r / P

h2
ð6:18Þ

The derivation of the strain rate requires differentiation of the h(t) curve, which
may be seen in Fig. 6.24.

The data are scattered around the fitted line. The fitting function used for h(t) in
the experiments is:

h tð Þ ¼ hi þ atb þ kt ð6:19Þ

Figure 6.25 plots the hardness data corresponding to the moduli plots. As seen on
the nanoscale, the trend for the elastic moduli (shown in the work of Tomar) is
repeated for the hardness values. A clear trend emerges from the nanoindentation data
regarding the increase in the Meyer’s exponent with the increase in temperature. The
microindentation hardness trend is opposite to the trend observed in the case of
microindentation elastic moduli–hardness decreases as the temperature rises. In
addition, hardness diminishes with the increase in the peak indentation load, signi-
fying the strain softening of the material. The reduction of hardness with increased
temperature is attributable to stronger TiSi2 particles pressing into the relatively softer
SiCO matrix, getting progressively softer as the temperature increases at the micro-
scale. At the nanoscale, not enough contact area is available to have such an effect.

Apart from the influence of strain hardening or softening, material pileup around
the indent and indentation creep may also contribute to observed indentation
hardness behavior. The creep depth, as a function of dwell time, at three different
temperatures and two different nanoindentation and microindentation peak loads, is
illustrated in Fig. 6.26.
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Creep data is normalized by subtracting the initial depth of each creep test. For
comparison, the plots also show the uncorrected thermal drift, as well as the cor-
rected data. The effect of thermal drift correction is the highest at the highest
temperature and at the nanoscale. The creep depth vs. time plots reached a steady
state within first 100 s of the plotting in all the cases. The effect of temperature is to
increase the creep rate. The temperature effect is more pronounced on the micro-
scale, than on the nanoscale. This trend is particularly strong when transitioning
from 250 to 500 °C.

The stress exponent and creep strain rate, as functions of temperature and
peak-indentation load on both length scales, are shown in Fig. 6.27.

The nanoscale stress exponent is in the 4–5 range, indicating a
dislocation-climb-related creep deformation mechanism occurring by means of the
bulk or pipeline diffusion of dislocations. This exponent decreases with the increase
in temperature, marking the transition of the mechanism from that of dislocation

Fig. 6.24 Illustration of stress exponent calculation. a The creep raw data file was plotted and
fitted using Eq. (6.17); and b the equivalent strain rate and stress, based on the fitted data. The
horizontal line is used to calculate the steady-state stress exponent. Gan and Tomar [5]. With kind
permission of Elsevier

Fig. 6.25 a Nanoindentation hardness and b microindentation hardness of Si–C–O coatings as a
function of temperature and maximum indentation load. Gan and Tomar [5]. With kind permission
of Elsevier
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climb to that of diffusion. On the microscale, the stress exponent is considerably
higher, indicating that the primary mechanism of deformation is volumetric den-
sification. Such a transition suggests a rapid change of mechanism–from linear
diffusion flow to the power law mechanism (e.g., climb) and eventually to
rate-insensitive plastic flow (dislocation glide), as the indentation size moves
toward the microscale. The creep strain rate generally increases as a function of the
increase in temperature, as well as with increasing peak indentation load.

In the case of microscale measurements, the indenter covers an area that is
approximately 10 times larger than the nanoindenter area. At the microscale, since
hardness diminishes and the creep strain rate increases with the increase in tem-
perature, the strain rate sensitivity index (the constant, k, in r ¼ b_ek) indicates strain
softening. These same analyses reveal strain hardening also at the nanoscale.

The low-temperature creep deformation strain rate,_e, of materials may be
expressed by an Arrhenius-type flow function, given as:

Fig. 6.26 Indentation depth (original and thermal drift corrected) as a function of time at different
temperatures in the case of a nanoindentation test at the peak load of 300 mN, b nanoindentation
test at the peak load of 500 mN, c microindentation test at the peak load of 750 mN, and
d microindentation test at the peak load of 1000 mN. Gan and Tomar [5]. With kind permission of
Elsevier

_e ¼ _e0 exp �DG rð Þ
kBT


 �
ð6:20Þ
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Here, _e0 is the reference strain rate, which is a function of the type of material,
stress level, and microstructure; DG is the activation energy for creep or other
rate-dependent processes; and kB and T have the usual meaning. The parameter, _e0,
is proportional to the concentration of elementary defects that cause plastic strain.
The sensitivity of the strain rate to stress is mainly determined by the DG term. The
thermal activation volume (V*) is expressed by the partial derivative of DG with
respect to stress, r, approximated by:

V� � kBT
@ ln _e
@r

je;T ð6:21Þ

In Fig. 6.28, plots of the thermal activation volume, calculated as a function of
temperature, peak indentation load and length scale, are shown as an example of
indentation creep.

The creep deformation mechanism relates to the microstructure of the discussed
ceramic material, which has TiSi2 particles, with higher melting points, embedded in
a Si–C–O matrix, with a lower melting point. As the temperature increases, the
matrix softens, particles slide, and particle rearrangement contributes to the defor-
mation mechanism. The effect of these factors is more pronounced at the microscale,
due to the higher surface area sampled.

Fig. 6.27 a Stress exponent as a function of load during nanoindentation creep measurements,
b stress exponent as a function of load during microindentation creep measurements, c creep strain
rate as a function of load during nanoindentation creep measurements, and d creep strain rate as a
function of load during microindentation creep measurements. Gan and Tomar [5]. With kind
permission of Elsevier
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In addition to the creep exponent and the creep strain rate measured by inden-
tation, the properties investigated include the elastic modulus and hardness. At the
nanoscale, the deformation mechanism is dominated by dislocation climb and
diffusion. Overall, analyses reveal that both indentation creep and the capability of
strain hardening determine the length-scale-dependent indentation behavior in the
material system. The effect of temperature is to introduce strain hardening at the
nanoscale level and strain softening at the microscale level.
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Chapter 7
Creep Rupture

Abstract Creep—a time-dependent deformation—occurs below its yield strength
usually at elevated temperatures. Creep terminates in rupture if steps are not taken
to bring it to a halt. The purpose of creep rupture tests is to determine the
time-to-failure. For such tests higher stresses are applied until the specimen frac-
tures. The objectives of the tests are to determine the minimum creep rate at stage II
creep and to evaluate the time at which failure sets in. Such information is essential
so that the proper ceramics will be selected to eliminate failure during service and to
assess the time period of safe use during high-temperature applications. Creep
rupture (failure) is the objective of this chapter.

7.1 Introduction

Creep is a time-dependent deformation of a material under an applied load that is
below its yield strength. It most often occurs at elevated temperatures, but some
materials creep at room temperature. In ceramics intended for high-temperature
applications, room temperature creep seldom, if ever, occurs. Therefore, there is
concern regarding creep in ceramics at elevated temperatures. Creep terminates in
rupture, if steps are not taken to bring it to a halt. Basically, creep rupture tests are
used to determine the elapsed time-to-failure. Generally, higher stresses are used for
creep rupture testing than in conventional creep tests, which are carried out until the
specimen fractures.

The objectives of the respective tests are to determine the minimum creep rate at
stage II creep, on the one hand, and to evaluate the time at which failure sets in, on
the other. Such information is essential so that the proper ceramics will be selected
to eliminate failure during service and to assess the time period of safe use during
high-temperature applications, when structural stability is essential. Various cera-
mic components operate at high temperatures and may experience creep. As in
creep testing, stress rupture testing involves the same testing elements (for example,
a tensile specimen) and is performed under a constant load (or stress) at a constant
temperature. Not surprisingly, creep failures may appear ductile or brittle, due to the
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nature of ceramics, but they are all temperature-dependent. Cavities, believed to be
responsible for cracking by cavity coalescence, may be either r-type or w-type and
either transgranular or intragranular (see Chap. 2). Figure 7.1 shows a schematic
illustration (based on the earlier illustrated schematic creep curve in Chap. 1),
showing where creep damage starts.

The location of the creep damage coincides with the place of origin of the
tertiary creep and represents the minimum creep rate. This is one of the thoughts
regarding the time at which cavitation develops (either as microcavities or voids).
However, there are experimental indications (density measurements) that inter-
granular cavities may be observed before tertiary creep sets in and they may be well
developed at the end of second-stage creep. Creep data for general design use are
usually obtained under conditions of constant uniaxial loading and constant tem-
perature. Test results are usually plotted as strain versus time-to-rupture. The
experimental data indicate that, of the great variety of creep curves described by
various laws, their shape is near-linear when the data are presented on a log-strain
vs. log-time basis. Time is expressed in hours. Very often, instead of using the
rupture time, the time until reaching a steady state or minimum creep is preferred,
because then a much shorter period of testing time is needed to collect the creep
data. Creep rupture in technologically important ceramics will be considered in
Part B of this book.

7.2 Elements of Creep Rupture

Stress rupture is the sudden and complete failure of a material held under a definite
constant load (or stress) for a given period of time at a specific temperature. In stress
rupture testing, loads may be applied by tensile bending, flexural, biaxial, or

fracture

Creep damage starts

time

ε

S
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X
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Fig. 7.1 A schematic creep
curve. εf and tf are the strain
and time-to-creep failure.
Reference [1]
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hydrostatic methods. It is essential to predict the lifetime to stress rupture in order to
know the applicability of each ceramic. An accepted method for predicting long-
evity until stress rupture is the Monkman–Grant (MG) relationship, which has been
applied to various materials, among them the ceramic, silicon nitride. The MG
relationship states that the rupture life, tf, is uniquely related to the minimum creep
rate (secondary creep), _es. The basic element of the MG relationship may be
described by the following equation:

tf ¼ K _esð Þbi ; ð7:1Þ

where K and b are constants. This advantageous equation has been applied to both
metals and ceramics, because of its relatively short test duration. Another advantage
is that it has often been observed to be temperature-independent. All that is needed
in order to estimate failure-by-rupture for a new set of conditions is the value of the
secondary creep rate. This is a relatively brief procedure, since the time required to
reach the secondary creep rate is only a small portion of the failure time (namely of
the overall testing time). A modified MG equation has been suggested, given as

ln tf
� � ¼ b0 þ b1 ln _esð Þþ b2

T
; ð7:2Þ

where b0 and b2 are constants. A comparison of Eqs. (7.1) and (7.2) shows that the
first and last terms in Eq. (7.2) are equal to ln(K) in Eq. (7.1). Equation (7.1) is
plotted on a log–log scale as shown in Fig. 7.2. Using this modified equation, one
can obtain the time-of-failure of the secondary creep, as shown in Fig. 7.3.
Equation (7.2) was modified due to the fact that when the stress rupture life was
plotted against the minimum creep rate on a log–log scale, the data were found to be
stratified with respect to temperature in such a way as to suggest that K in Eq. (7.1)
is an increasing function of temperature.
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Fig. 7.2 Temperature
dependence of the Monkman–
Grant lines correlated with an
additional temperature term
(Eq. 7.2). Menon et al. [2].
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The data may be correlated with an additional temperature term, specifically with
an inverse function of temperature, which may be used to correlate the data plotted
in Fig. 7.2. The data collapsed to a temperature of 1533 K. Figure 7.3 shows the
prediction from Eq. (7.3) for the individual temperatures, along with the unmodi-
fied data. The values for b0, b1, and b2 in Eq. (7.2) for NT154 silicon nitride are
15.87, −1.53, and −4.2 × l04, respectively. Note that b2 is negative, which means
that rupture life increases with an increase in temperature for the same creep rate
value.

The stress, σ, is uniquely related to 1/T at a constant value for creep rate, _es, by
the following relation:

ln _esð Þ ¼ lnðAÞþ n ln
r
E

� �
� Q

R

� �
1
T

� �
; ð7:3Þ

where A and n are, respectively, a constant and a stress exponent of the applied
stress, r, with E being the Young’s modulus. The secondary creep rate is usually
modeled through temperature- and stress-dependent terms, using an
activation-energy approach:

_es ¼ A
r
E

� �n
exp � Q

RT

� �
: ð7:4Þ

Equation (7.3) is the logarithmic expression of Eq. (7.4). This is basically
Eq. (1.9) shown again, except that instead of having the stress ratio with the
Young’s modulus, only the stress is indicated as
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_e ¼ Brn exp� Q
kT

� �
ð1:9Þ
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This is because the relation between σ and T, through the strain rate, _es, means
that the stress rupture may also be expressed by the stress term as

ln tf
� � ¼ c0 þ c1 ln _esð Þþ c2 ln

r
E

� �
ð7:5Þ

This relationship of the rupture life (as time-to-failure) to the secondary creep
rate is plotted in Fig. 7.4.

The values of c0, c1, and c2 are, respectively, −27.79, −1.27, and −2.71. Note
that c2 is negative, which indicates that rupture life decreases with an increase in
stress for the same value of creep rate (Eq. 7.5). Figure 7.5(a–d) show SEM frac-
tographs of NT154 showing crack initiation and growth region in internal initiations
in specimens tested at 1477, 1533, 1644, and 1673 K. The creep failure is localized
in a well-demarcated region, with subcritical crack growth (SCG) observable on the
fracture surface.

The arrows indicate the periphery of the SCG region, which is circular in
shape. This region is known as the ‘slow crack growth region.’ Beyond this
region, a mirror-like region is seen, which is indicative of fast fracture. The
SCG-zone measurement resulted in a quantity, r

ffiffiffi
a

p
, where ɑ is the radius of the

zone, which is approximately constant for a variety of stresses and temperatures,
indicating that the failure occurs when the SCG grows to a size corresponding to a
constant stress intensity. In Fig. 7.6, a typical failure, initiated at the surface,
appears in a SEM fractograph of a specimen tested at 1644 K. The fast fracture
emanates from the region (mirror-like in appearance) in which the SCG meets the
surfaces.

The rupture time, as a function of creep rate, is shown in Fig. 7.7. The failure
process associated with crack advancement occurs by diffusion of the material away
from the crack tip. The crack-growth rate, da/dt, is a function of temperature and the
local stress, σloc, at the crack tip, given as
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Fig. 7.5 SEM of subcritical crack growth zones in specimens tested at a 1477 K/325 MPa/68 h;
b 1533 K/295 MPa/560 h; c 1644 K/180 MPa/19 h; d 1673 K/150 MPa/80 h. Note the circular
shape of the SCG regions, all internally initiated. Menon et al. [2]. With kind permission of John
Wiley and Sons

Fig. 7.6 SEM of the fracture surface in a surface-initiated failure. The radiating features,
indicative of fast fracture, start at the junction where the periphery of the SCG region meets the
surface of the specimen (where the larger arrow points). Menon et al. [2]. With kind permission of
John Wiley and Sons
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da
dt

¼ A1 exp � Q0

RT

� �
f rlocð Þ; ð7:6Þ

where A1 is a constant and, here, Q′ is the activation energy for matter transport
away from the crack tip. Assume that Q′ equals Q, the activation energy for matter
transport involved in creep. Let the stress-dependent function, f(σloc), be expressed
by a power law of the type (σ)z. When the stress exponent n equals z, a unique MG
relationship is obtained. Tip blunting and general material degradation ahead of the
crack tip does not affect these calculations.

An integral,

Z
da

da=dtð Þ
	 


; ð7:7Þ

integrated from an initial flaw size at a0 to the final crack length, af, provides a value
for the time spent in crack propagation, tp, given as

tp ¼ A2 exp
Q
RT

� �
rð Þ�zf 0 a0ð Þ; ð7:8Þ

where A2 is a constant and f′(a0) is a function of the initial flaw size. Equation (7.8)
may be rearranged to provide an expression similar to Eq. (7.5), as follows:

tp ¼ A3 _esð Þ�1 r
E

� � n�zð Þ
; ð7:9Þ

where a3 is a constant, as seen from a comparison with Eq. (7.5), where
z > n. When n = z, i.e., when the stress dependence of the failure mechanism is the
same as that of creep, Eq. (7.5) becomes similar to the original MG relationship
and, if z > n, stratification of the MG lines may be expected. The variation of stress
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over time-of-failure at various temperatures is shown in Fig. 7.8. Thus, lower
stresses at higher temperatures should result in longer lives, or alternately, higher
stresses at lower temperatures should result in shorter lives than a correlation with
creep rate alone would predict.

In addition, the prediction of failure strength, as a function of temperature, is
shown in Fig. 7.9, based on the modified MG relationship (Eq. 7.2). The data show
a change in slope between the two regimes, i.e., at <1.589 K and at >1589 K.
A change in slope in a plot of stress versus failure time is often taken as an
indication of a possible change in the failure mode (Fig. 7.8).

In the above discussion, it was indicated that the MG relationship is applicable to
the prediction of the stress rupture life of NT154 silicon nitride, as a function of
temperature or stress and that the original MG equation may be modified for
application to rupture-life prediction (e.g., of NT154). The MG lines may be
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explained based on crack growth. The results point to a failure process in which the
crack dependence on stress is greater than that required for creep.

As indicated earlier, creep is a time-dependent deformation and, therefore,
failure in ceramics may also show time-dependent. As such, this failure may be
considered as a delayed failure, because, in the accepted application, the fracture is
not expected to occur suddenly. Notably, two mechanisms lead to failure: (a) slow
crack growth and (b) creep rupture. In (a), slow crack growth, initiated by a pre-
existing flaw, continues until a critical crack size is reached, causing catastrophic
failure. The failure is ‘catastrophic,’ since a manufactured part is designed for
long-term use; (b) creep rupture is a bulk damage that occurs in the material. Void
nucleation and their coalescence lead to eventual macrocracks, which then propa-
gate to failure by fast fracture. The successful application of advanced ceramics
depends on the proper characterization of material behavior and the use of an
appropriate design and manufacturing techniques. It is essential for the prediction of
reliable ceramic service lifetimes under creep conditions to have knowledge of fast
fracture and SCG. Modern techniques have developed ceramics for
high-temperature applications that are highly resistant to creep deformation. For
instance, special ceramics have been produced for turbine engine components with
a service lifetime on the order of 10,000–30,000 h (usually at low stresses). It is
general practice to add additives to the monolithic ceramics in order to increase the
stress level. Techniques have been developed for predicting the lifetimes of ceramic
structural components operating under creep conditions, where creep rupture might
set in.

Again, a MG creep rupture criterion or its modification may be used to predict
the cumulative damage. Si3N4 continues to provide a good example of creep
rupture. Table 7.1 summarizes tests performed on hot-pressed Si3N4. Whisker-
strengthened composite Si3N4 is included. Some of the illustrations compare
these systems. The Si3N4undeformed and superplastically deformed specimens
were doped with 3% alumina and 5% yttria. The resulting composite was rein-
forced with 20 wt% SiC whiskers. The powder from these components was
hot-pressed at 1750 °C in a nitrogen atmosphere. The whiskers were 10–100 μm
long, with a diameter of 0.1–1.0 μm. A glassy phase was present continuously
around the silicon nitride grains. The thickness of the glassy phase between two
grains typically ranged from 1 to 3 nm. The glassy phase in the silicon nitride is
shown in Fig. 7.10. Tensile creep testing was applied to the cylindrical specimen
(25 mm long and 2.8 mm in diameter). Tensile creep is the most frequently used
stress, but loading by other stresses are also used in creep tests (compressive,
torsional). The elongation (change in the distance) was measured by an optical
extensometer. These creep experiments were conducted in air and performed at
1200, 1250, 1300, and 1350 °C, with applied stresses ranging from 70 to
250 MPa, as indicated in Table 7.1. The creep curves at 1200 °C are shown in
Fig. 7.11.

Failure is seen at this temperature at 250 MPa, in the transient creep range; at
200 MPa and at lower stresses, the results showed the steady state, but at 1300 °C,
signs of accelerated creep are observed, as shown in Fig. 7.12. Substantial
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accelerated creep exists at 1350 °C, as shown in Fig. 7.13. The accelerated creep
rate at 1350 °C causes creep rupture under 70 MPa in the specimen, associated with
microcracks distributed throughout the entire specimen. In Fig. 7.14, the spread of a
crack is illustrated. These microcracks reduce the overall cross section of the
specimen and, thus, the load-bearing capacity is also reduced with the consequent
accelerated failure (creep rupture).

Cracks are usually associated with accelerated creep (namely tertiary creep). The
creep curves of SiC-whisker-reinforced silicon nitride are similar to those of the
monolithic curves (Fig. 7.15). Note that the transient part of the curves in Fig. 7.15

Table 7.1 Summary of creep tests for hot-pressed silicon nitride. Ohji and Yamauchi [3]. With
kind permission of John Wiley and Sons

Test temperature
(C)

Stress
(MPa)

Minimum strain rate
(l/s)

Life
(h)

Total strain
(%)

Note

Monolith

1200 250 5.0 × 10−8 45 1.0 1

1200 250 4.4 × 10−8 40 0.9 1

1200 250 4.1 × 108 51 1.0 1

1200 200 1.8 × 10−8 148 1.4 2

1200 150 8.2 × 10−9 202 1.0 2

1200 150 7.5 × 10−9 350 1.6 2

1200 100 1.4 × 10−9 4

1200 70 5.0 × 10−10 3280 0.8 2

1250 100 5.8 × 10−9 360 1.3 2

1300 150 1.6 × 10−6 2 1.1 3

1300 100 4.1 × 10−8 12 1.4 3

1300 70 8.7 × 10−8 25 1.4 3

1300 70 7.2 × 10−8 19 1.2 3

1350 70 8.1 × 107 4 2.7 3

1350 40 9.0 × 10−8 55 3.4 3

Composite

1200 250 4.0 × 108 56 1.0 1

1200 200 1.6 × 10−8 95 0.9 2

1200 200 1.5 × 10−8 132 1.1 2

1200 200 1.4 × 10−8 195 1.5 2

1200 150 4.8 × 10−9 254 0.8 2

1200 100 8.0 × 1010 4

1200 100 6.4 × 1010 4

1250 100 3.1 × 10−9 605 1.1 2

1300 100 2.5 × 10−7 14 1.4 3

1350 70 8.2 × 10−7 6 2.9 3

1350 40 1.2 × 10−7 48 3.2 3

Notes 1 Fracture in a transient creep regime. 2 Fracture in a steady-state creep regime. 3 Fracture in
an accelerated creep regime. 4 Interrupted before fracture
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Fig. 7.10 Typical example
of glassy phase between two
silicon nitride grains. Lattice
fringe spacing is 0.66 nm.
Ohji and Yamauchi [3]. With
kind permission of John
Wiley and Sons
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Fig. 7.11 Creep curves of
monolithic hot-pressed silicon
nitride at 1200 °C. While the
failure occurred in the
transient creep regime at
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is the same as that in the monolithic. The departure of the reinforced composite
from the monolithic occurs in the steady state.

The strengthening of the whiskers is apparent in the reduced creep strain of the
composite. However, the observed effects of the whisker reinforcement on creep
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Fig. 7.12 Creep curves of
monolithic hot-pressed silicon
nitride at 1300 °C. Signs of
accelerated creep appear at the
ends of the creep curves. Ohji
and Yamauchi [3]. With kind
permission of John Wiley and
Sons
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Fig. 7.13 Creep curves of
monolithic hot-pressed silicon
nitride at 1350 °C. Both creep
curves showed substantial
accelerated creep regimes.
Ohji and Yamauchi [3]. With
kind permission of John
Wiley and Sons

Fig. 7.14 Crack in polished
gauge section of a specimen
tested at 1350 °C, 70 MPa.
This kind of crack was
observed only in specimens
which exhibited accelerated
creep regimes. Ohji and
Yamauchi [3]. With kind
permission of John Wiley and
Sons
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resistance are not so large, when compared with those reported for SiC-
whisker-reinforced silicon nitride and alumina (Ferber, Chokshi, Lin).

As on several occasions in earlier chapters, the steady-state creep rate is gen-
erally given by Eq. (7.4):

de
dt

¼ Arn exp � Q
RT

� �
ð7:4Þ

For the sake of convenience, the known parameters are re-indicated: ε is the
creep strain, t is the time, A is a constant, σ is the stress, n is the creep exponent, Q is
the apparent activation energy, R is the gas constant, and T is the absolute tem-
perature. The stress–strain relation is plotted in Fig. 7.16. The creep exponents
obtained from the best-fit straight lines are in the range of 3–5. The creep rate (log
scale), as a function of inverse temperature, is shown in Fig. 7.17. The activation
energies evaluated for the monolithic and whisker-reinforced specimens are 1065
and 1190 kJ mol−1, respectively.

The MG relationship was also used for this composite to evaluate the
time-to-failure [given above in Eq. (7.1)], but rewritten somewhat differently here,
yet with the same meaning, as
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Fig. 7.15 Creep curves of
whisker-free (monolithic) and
whisker-reinforced
(composite) hot-pressed
silicon nitride at 1200 °C and
100 MPa. The tests were
interrupted at l000 h. Ohji and
Yamauchi [3]. With kind
permission of John Wiley and
Sons
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C ¼ tf
de
dt

� �m

; ð7:1Þ

where C is a constant, tf represents time-to-failure, and m is a strain-rate exponent.
The collected data forms an almost straight line, with an exponent m = 1, regardless
of stress and temperature, as shown in Fig. 7.18.

The fractured surface after creep failure is illustrated in Fig. 7.19. The SEM
shows a fractured surface at 1200 °C and 250 MPa exhibiting slow crack growth,
originating from a preexisting flow (Fig. 7.19a).
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Fig. 7.17 Temperature
dependence of the
steady-state creep rate. The
activation energy is
1065 kJ/mol for the
monolithic material (■) and
1190 kJ/mol for the
composite material (●) at
100 MPa, and 1032 kJ/mol
for the monolithic material at
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[3]. With kind permission of
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Creep damage zones on the fractured surface are shown in Fig. 7.19b, but, in
both figures, a flat, mirror-like region is also present. In Fig. 7.19a, the fracture
surface indicates a slow crack region. The creep-damage zone tends to appear in the
steady- and (accelerated) tertiary-creep stages, whereas the slow crack region
(originating from a preexisting flow) is associated with transient creep. The
creep-damage zone seems to be produced by the linkage of a number of
grain-boundary microcracks of facet-sized cavities. Thus, it can be suggested that
steady-state creep stage is associated with cavity formation.

The time-to-failure (fracture), tf, in a creep test (Eq. 7.1, rewritten) may be
related to

tf ¼ Ar�N ; ð7:10Þ

where A and N are constants. Here, the exponent N determines the stress-dependent
lifetime of the specimen. As such, creep fracture consists of three aspects: (a) the
formation of a facet-sized cavity, (b) the coalescence of a facet-sized microcrack,
and (c) the coalescence (or growth) of the microcracks into a critical-sized
macrocrack (being the creep-damage zone). Based on these three aspects, the total
time-to-failure is

tf ¼ tp þ tml þ tm2: ð7:11Þ

In this equation, tp is the time of facet-sized cavity formation; tml is the time of
the facet-sized cavity coalescence into a microcrack; and tm2 is the time it takes the
microcrack to grow into a macrocrack. As previously stated, the total failure time is
dependent on both tm1 and tm2. It was observed that, at 1200 °C, the specimens
ruptured in the steady-state stage of creep and only facet-sized cavities occasionally
or rarely appeared, while microcracks could not be detected at 1350 °C. It seems

Fig. 7.19 Fracture surfaces of tensile creep specimens. a 1200 °C, 250 MPa and b 1300 °C,
100 MPa. Ohji and Yamauchi [3]. With kind permission of John Wiley and Sons
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that a critical-sized crack forms in such a short time that microcracks and macro-
cracks are rarely produced. Thus, tm1 and tm2 are negligibly small compared to tp,
which is almost equal to tf. At 1350 °C, however, the cavity coalesces up to a
microcrack, thought further crack growth is decreased by crack blunting or by grain
(or whisker) pull-out. As such, the contribution of tm1 and tm2 to tf is significant. The
time required to create a facet-sized cavity may be considered under two conditions:
(a) a constrained condition, where cavity formation is isolated and constrained by
the surrounding grains, or (b) an unconstrained one, where cavitation occurs uni-
formly throughout the microstructure. Under the constrained condition, a product of
tp and dε/dt depends primarily on the geometric parameters and is relatively
independent of the material transport mechanism. In contrast, tp, under the
unconstrained condition, is mechanism-sensitive and is a function of the applied
stress and the viscosity. If the product of tp and dε/dt is determined by the geometric
parameters (the initial thickness of the glassy phase, the grain-boundary length, the
hole radius at nucleation, and the half spacing between the holes), the validity of the
MG relationship, irrespective of temperature and stress, explains creep rupture
without accelerated creep. Thus, specimen lifetimes follow the MG relationship,
except for fractures with large, accelerated creep regimes. Fractures with large,
accelerated creep deviate from the predicted line, due to the appreciable time for
crack coalescence, i.e., the sum of tm1 and tm2.
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Chapter 8
Superplasticity

Abstract Some materials are capable of undergoing large tensile extension of the
order of hundreds and even thousands of percent. These superplastic materials are
strong and ductile at low temperatures and exhibit high plasticity at high temper-
atures. They deform without showing necking. The large plastic extension enables
fabrication into intricate shapes by simple forming process which is quite important
in the case of ceramics where usually machining is a difficult process. A much
investigated ceramics is the Y-TZP which can show an extension over *100%.
Structural considerations are grain size, grain boundaries and cavitation.
Fine-grained ceramics can be superplastic at elevated temperatures.

8.1 Introduction

Some metals and alloys are capable of enduring large, tensile extension on the order
of hundreds and even thousands of percent. Such materials, called ‘superplastic’,
are generally strong and ductile at low temperatures and exhibit high plasticity (and
low strength) at high temperatures, which enables their fabrication into intricate and
complex shapes by means of simple forming processes. The creep resistance of
these materials may be introduced after some post-forming treatment. Considerable
attention has been devoted to the study of superplasticity, not only because of the
forming capability of such materials, but also due to the effects of such phenomena
on their mechanical properties. Lately, there has also been a rise of interest in
exploring the possibility of superplasticity specifically in ceramic materials. Y-TZP,
among the first ceramics studied for superplasticity, showed an extension over
100% [9, 10]. This observation initiated a great interest in the possibility of
obtaining superplastic characteristics in other ceramics and regarding the potential
application of ceramic components in high-temperature applications.
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8.2 The Principles of Superplasticity

The atoms in ceramic materials are held together by chemical bonds. The two
most common chemical bonds in ceramic materials are covalent and ionic,
which are responsible for their brittleness (unlike metallic bonding in metals).
Despite the common knowledge that ceramics are mostly brittle materials,
almost without plastic deformation at ambient temperatures, some fine-grained
ceramics can be superplastic at elevated temperatures. An illustration of
superplasticity in ceramics appears in Fig. 8.1, showing an elongation of over
470%.

Some of the requirements for superplasticity may be classified as—(a)
mechanical and (b) structural. The mechanical requirement pivots around plastic
stability and the structural one is considered with the grain size, grain boundaries
and cavitation. When (a) and (b) are satisfied during deformation, superplastic
behavior can be anticipated in some ceramics, just as in metals and alloys, where
superplasticity was first observed and studied. One of the first ceramics exhibiting
superplasticity was Y-TZP. Tensile-test curves of Y-TZP, with two-yttria content, is
illustrated in Fig. 8.2, and the properties and crystalline phases of the Y-TZP
materials are summarized in Table 8.1. Ce additives are included both in the curve
and in Table 8.1.

In the last column of Table 8.1, t and c stand for tetragonal and cubic, respec-
tively. As known, polycrystalline materials generally break under tension after a
modest (usually less than 50%) elongation. Under superplastic conditions of tensile
testing, however, very high elongations, of more than 500% or, in specific cases,
even higher, may be obtained.

Usually superplasticity is attained in the low-strain range, from 10−5 to 10−3 s−1.
In commercial applications, there is interest in forming a component at
high-strain rates, on the order of 10−2–10−1 s−1. However, in the case of ceramic
materials, superplastic deformation has been restricted to low-strain rates on the

Fig. 8.1 Undeformed and superplastically-deformed Si3N4 specimens. An elongation of over
470% is noted (Reprinted with permission from J. Ceram. Soc. Japan). Wakai et al. [9]. With kind
permission of Elsevier
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order of 10−5–10−4 s−1 for most oxides and nitrides [6], with the presence of
intergranular cavities leading to premature failure. In ceramics, high-strain-rate
superplasticity (HSRS) requires a small initial grain size, enhanced diffusivity,
the suppression of dynamic grain growth, a low defect content and an homoge-
neous microstructure. Furthermore, HSRS may be induced by doping Y-TZP,
with the aim of suppressing cavitation damage during deformation, as realized by
post-deformation microstructure. Thus, it was observed that a composite ceramic
material consisting of tetragonal zirconium oxide, magnesium aluminate spinel
and alumina phases exhibits superplasticity at strain rates up to 1 s−1 and this
composite also attains a large tensile elongation, exceeding 1050%, with a strain
rate of 0.4 s−1 [6]. The deformed microstructure of the material indicates that this
superplasticity is due to a combination of limited grain growth in the constitutive
phases and the intervention of dislocation-induced plasticity in the zirconium
oxide phase.

Plastic stability was mentioned above as one of the prerequisites for super-
plasticity. Deformation under tension may be expressed as:
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Table 8.1 Properties of ZrO2 polycrystals adopted for experiments. Wakai [11]. With kind
permission of Elsevier

Material composition Density (g cm–3) Grain size (μm) Phase

2Y 2 mol% Y2O3 6.04 0.55 t

3Y1 3 mol% Y2O3 6.07 0.51 t + c

3Y2 3 mol% Y2O3 6.07 0.50 t + c

4Y 4 mol% Y2O3 6.03 0.75 t + c

6Y 6 mol% Y2O3 5.95 5.5 c

12Ce 12 mol% CeO2 6.22 1.9 t
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r ¼ K _em exp ðceÞ ð8:1Þ

γ is the strain-hardening exponent, m is the strain-rate sensitivity index and K is a
coefficient. Hart has indicated that the following relation (8.2) should be satisfied
for tensile instability and uniform elongation by:

mþ c� 1 ð8:2Þ

To have superplasticity (large elongation), high values of m, m > 0.3, are
required when γ = 0. This means that the necking rate is slow. The relation for
creep during a diffusion-controlled process (see Chap. 4, Eq. (4.2), for example)
may be given as:

_e ¼ AGb
kT

b
d

� �p r
G

� �n
D0 exp � Q

RT

� �
ð8:3Þ

Rewriting the familiar parameters from Eq. (8.3): G is the shear modulus, b is
the Burger’s vector, d is the grain size, n is the stress exponent (n = 1/m), p is the
exponent of the inverse grain size, D0 is the frequency factor and A is a dimen-
sionless coefficient. Clearly, k and Q are the Boltzmann’s constant and the acti-
vation energy, respectively. The stress exponent for creep for fine-grained ceramics
was found to be 1–3, when 3 is for dislocation glide and climb, while 1 is related to
diffusional creep, corresponding to 0:3\m� 1 and, thus, satisfying the require-
ments for uniform elongation. Usually, fine-grained ceramics fracture under tension
and are not superplastic. One of the models developed for superplasticity involves
GBS accommodated by diffusion. Ashby and Verral developed such a model and
gave the following:

_eD100
X

kTd2
r� 0:72C

d

� �
DL 1þ 3:3dDgb

dDL

� �
ð8:4Þ

Γ is the grain-boundary free energy. The assumption in Eq. (8.4) is that the
grain-boundary surface is a perfect source and sink for vacancies. If this assumption
is not satisfied, the diffusional creep is controlled by the interface reaction:

_ei ¼ B
r2

d
ð8:5Þ

The altered stress exponent may be explained by the assumption that the
total-strain rate, _et, is expressed as:

1
_et
¼ 1

_eD
þ 1

_ei
ð8:6Þ

According to Eq. (8.6), the mechanism of superplasticity is GBS, accomodated
by interface-reaction-controlled diffusion.
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In two-phase composites, flow behavior is different than that in single-phase
materials, particularly when the creep properties of the second-phase grains differ
markedly. A much-investigated composite is Y-TZP with Al2O3 additives. The
deformation of the composite, in which the second-phase grains are uniformly
distributed among the matrix grains, is explained by means of a rheological model.
The flow (non-Newtonian) of the matrix is expressed as:

_e ¼ Arn ð8:7Þ

Chen’s rheological prediction was that the constitutive equation for the com-
posite containing spherical inclusions of volume fraction, p, should become:

_e ¼ ð1� pÞqArn ð8:8Þ

q being an exponent. Since the superplasticity of Y-TZP and the
interface-reaction-controlled diffusion creep of fine-grained A12O3 were expressed
by a stress exponent of 2, the stress exponents of about 2 (for the composites) were
consistent with the rheological model. From a rheological point of view, super-
plastic flow may be expected in a wide spectrum of ceramic composites with
various second-phase grains.

Coming back to Y-TZP, Fig. 8.3 shows the effect of alumina additives to
TZP. The composite ZrO2/Al2O3 has been considered as a model material for
studying superplasticity in two-phase composites. The addition of Al2O3 reduces
elongation (see Fig. 8.3) and, as the amount increases, a further decrease in
elongation is observed. Superplastic elongation (more than 120%) may be
achieved by composites containing 86 vol.% of A12O3 at 1550 °C, as shown in
Fig. 8.3. The stress exponent was around the value of 2, being high at an inter-
mediate volume fraction of A12O3, but decreasing to slightly lower values at both
high and low volume fractions. The activation energy of the composites changed
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from 550 to 700 kJ/mol when the AI2O3 content increased to more than 50 vol.%,
as seen in Fig. 8.4.

In summary, the strain rate of a composite was given in Eq. (8.7), while the
strain rate for the rheological model with spherical grains is found in Eq. (8.8). The
interface-reaction-controlled diffusional creep in fine-grained A12O3 polycrystals
was affected by the dispersion state of the ZrO2 particles. A small amount of ZrO2

particles at the grain boundaries reduced the creep rate and increased the activation
energy for creep. Small-grained ceramics are essential for superplasticity, and
further reduction of the grain size to a nanometer level can enhance superplasticity,
with the prospect of forming ceramics more effectively.

HSRS is essential for industrial applications, such that further studies are
desirable for the enhancement of knowledge on advanced ceramic engineering
materials, especially in regard to the factors limiting the strain rate of superplastic
deformation. As mentioned above, intergranular cavitation and dynamic grain
growth are among those factors of considerable interest. Furthermore, in the case of
ceramic materials, reduction of the initial grain size, enhanced diffusivity, sup-
pressed dynamic grain growth, an homogeneous microstructure and a reduced
number of residual defects are essential for HSRS. Some of this will be presented
below.

Ideally, superplastic deformation may be expressed by the stress–strain rate
equation given as:

_e ¼ A exp � Q
RT

� �
rnd�p ð8:9Þ

Equation (8.9), for a certain stress and temperature, means that the strain rate can
be increased by decreasing the grain size. For example, decreasing the grain size to
0.32d–0.46d for a value of p of 2–3, increases the strain rate by a factor of 10.
Similarly, an increase in the term of A exp(−Q/RT) enhances diffusion along the
grain boundaries and within the grains and, thus, enhances the strain rate. More
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additives (doping) with different valences, enhance diffusion and also have an effect
on grain growth, stress concentration and relaxation during deformation. In
Eq. (8.9), no consideration is given to the microstructural changes; however, such
changes, which are observed during superplastic deformation (like cavitation), are
of great importance. Note the cavitation in Fig. 8.5 during the Y-TZP superplastic
deformation. Cavitation leads to premature failure and degrades the
post-deformation strength. It is believed that intergranular cavitation occurs due to
the stress concentration, as a consequence of microstructural inhomogeneity and of
the chemical composition in composites. However, also in monolithic ceramics,
grain size and shape are not always homogeneously distributed. Thus, stress dis-
tribution, chemical potential and, consequently, GBS and grain accommodation,
associated with diffusion, also become inhomogeneous, leading to breakdown in
local regions. As such, the stress concentrations cannot be sufficiently relaxed.
Those regions are multiple grain junctions and phase boundaries, in which cavity
nuclei are frequently observed after superplastic deformation (Fig. 8.5b). It is
possible to estimate [3] the relaxation length, Λ, over which grain-boundary dif-
fusion can relax the stress concentrations caused by the deformation, as follows:

Fig. 8.5 Intergranular cavitation during superplastic tensile deformation. Cavity nucleation at
multiple junctions in a 3Y-TZP; b 10-vol.% ZrO2 (3Y)-dispersed Al2O3 and; c micrometer-sized
cavities grown from cavity nuclei and pre-existing defects in 3Y-dispersed Al2O3. The tensile axis
is horizontal. Hiraga et al. [4]. With kind permission of Elsevier
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K
d
¼ L

d

� �1=½1�sðn�1Þ = 3�
ð8:10Þ

L is the characteristic diffusion length and s is the extent of the stress singularity
at the triple junction in the absence of diffusion. L is given as:

L ¼ dDbrX
kBT _e

� �1
3

ð8:11Þ

Clearly, δDb is the product of the grain-boundary coefficient and its width, which
is known to be proportional to exp(−Q/RT). Ω is the atomic volume. Figure 8.6
indicates the critical grain size over which stress concentration may be relaxed by
grain-boundary diffusion. For a detailed evaluation see [3]. Figure 8.6 shows that
the critical grain size for a given temperature decreases rapidly with an increase in
the strain rate.

The estimation indicates that the critical grain size at T = 1400 °C is 0.26 μm for
ordinary superplasticity at a strain rate of 10−4 s−1, whereas it is reduced to 0.06 μm
for HSRS at 10−2 s−1. Furthermore, this figure suggests that, for a certain constant
grain size, the critical temperature, Tc, for sufficient stress relaxation increases with
strain rate. For instance, for dc = 0.2 μm, Tc increases from 1400 to 1600 °C as the
strain rate increases from about 2 × 10−4 to 10−2 s−1. In addition, enhanced dif-
fusion is also indicated in the figure below. Note that enhanced diffusion increases
the critical grain size for a given strain rate. Specifically, when grain-boundary
diffusivity increases by a factor of 50 at 1400 °C, the critical grain size increases
from 0.06 to 0.2 μm at 10−2 s−1. This estimation also shows that enhanced diffu-
sion, by factors of 10 and 50, correspond to increases in the critical temperature by
about 100 and 200 °C, respectively. In fact, when the width of grain-boundary
product with the boundary diffusion is 50δDb, stress relaxation at 102 s−1 is

Fig. 8.6 Estimation of the
critical grain size over which
grain-boundary diffusion can
relax stress concentrations
caused by deformation.
Hiraga et al. [4]. With kind
permission of Elsevier
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expected to become sufficient at a grain size of d = 0.2 μm, even at 1400 °C. Thus,
grain-size reduction, suppressed grain growth and enhanced diffusion are essential
for achieving sufficient stress relaxation and suppressed cavity nucleation during
high-strain-rate deformation. Summarizing this aspect of cavity formation, one can
state that the probability of cavity nucleation depends on grain-boundary diffusivity,
surface energy, γs, grain-boundary energy, γb, and geometrical factors, such as the
dihedral angle between the grain facets. For a fixed grain size, for example, the
probability of cavity nucleation decreases with increasing δDb and γs, and with
decreasing γb.

As inferred from the above, to reduce cavitation, it is essential to suppress
dynamic grain growth, in order to maintain a lower level of flow stress (Eq. 8.9) and
a shorter length of grain facet to be relaxed by diffusion (Eq. 8.10). A model for
dynamic grain growth, which agrees with experimental data, gives the differential
of grain size during deformation as the sum of the dynamic and static components,
which are expressed by the first and second terms of the right-hand side, respec-
tively, of Eq. (8.12), given below as:

dðdÞ ¼ adðdeÞþ k
m
d1�mðdtÞ ð8:12Þ

where a is a constant dependent on the grain-shape and grain-size distribution, and
m and k are the grain-growth exponent and kinetic constant, respectively, of the
static grain-growth law, dm � dm0 ¼ kt, where t is the heating time. Under an initial
condition of d = d0 at ε = 0, Eq. (8.12) yields the following equation for the
constant displacement-rate loading:

d ¼ dm0 exp ðameÞþ k exp ðeÞ � exp ðameÞf g
_e0 ð1� amÞ

� �1=m
ð8:13Þ

Equation (8.12) implies that the grain size for a given strain becomes smaller
with a reduction in the initial size and with an increase in the deformation rate. In
addition, the experimental data indicate that the value of α for superplastic defor-
mation is insensitive to chemical compositions. α is about 0.5–0.6 for various oxide
materials, such as ZrO2–Al2O3, ZrO2-spinel-Al2O3, ZrO2(3Y) and superplastic
metals, Zn–Al. Such data, used with Eq. (8.13), suggest that the mechanism of
dynamic-growth rate may be estimated from k and m. Consequently, it is essential
to suppress the static grain growth by grain-boundary pinning and/or dragging.
Highly-limited grain growth may be expected in a microstructure consisting of three
or more phases, where the amount of each phase is similar. This situation is ben-
eficial for achieving suppressed grain growth, since grain growth occurs by the
migration of such grain boundaries and/or by the growth of grains through inter-
phase boundary diffusion.

For a given combination of chemical composition, grain size and relative den-
sity, superplastic properties may vary with differences in the homogeneity of the
microstructure or the number of fine residual defects, which have negligibly small
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volume and, hence, have little effect on the relative density. A typical example is
shown in Fig. 8.7 for 10 vol.% ZrO2 (3Y)-dispersed Al2O3 [5]. For a grain size of
0.45 mm and a relative density of 99.5%, the tensile ductility of a material prepared
by conventional dry processing (D in the figure) was about half that of a material
prepared by colloidal processing (designated in the figure as C). This difference is
the result of enhanced cavity damage, due to accelerated grain growth. The former
is a consequence of the higher density of fine residual defects, while the latter is the
result of less effective grain-boundary pinning by ZrO2. Both of these arise from the
agglomeration of ZrO2 and Al2O2, which is process-dependent.

Table 8.2 lists ceramics in which HSRS may be attained.
Factors necessary or desirable for attaining HSRS are shown in the first column

of Table 8.3. The second column summarizes the relationship between these factors
and superplastic deformation or cavitation. The third column indicates the depen-
dence of these factors on the process, P, chemical constituents, C, and phases, Ph.
For a given combination of chemical constituents and phases, factors (a), (b),
(d) and (e) are strongly process-dependent, particularly in composites. Note that
some of the factors listed in Table 8.3 appear to conflict with each other. The
additive should simultaneously enhance grain refinement and second-phase pin-
ning. By the use of additives and the doping of Y-TZP and composites synthesized
from ZrO2, Al2O3 and MgO2, HSRS may be attained with a tensile ductility of 300–
2500% at a strain rate of 0.01–1.0 s−1. The deformed microstructure in the ZrO2

revealed the spinel grains’ dense intragranular dislocations and the
dislocation-related substructures, such as sub-boundaries (Fig. 8.8). Such disloca-
tion substructures and grain elongations were not found in undeformed materials.

Fig. 8.7 Process-dependence
of a tensile ductility and
b accumulated cavity damage
in 10-vol.%-ZrO2 (3Y)-
dispersed Al2O3 [5]. Colloidal
processing and conventional
dry processing are designated
as C and D, respectively.
Hiraga et al. [4]. With kind
permission of Elsevier
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Elongation along the stress axis was also observed in the spinel grains of the
MgAl2O4-dispersed 3Y-ZrO2 in Fig. 8.9. These observations indicate that the
grains in these phases may not be perfectly rigid, namely that these grains may
deform to some extent by dislocation mechanisms during high-strain-rate loading.

Table 8.2 Oxide ceramics exhibiting high-strain-rate superplasticity. Hiraga et al. [4]. With kind
permission of Elsevier

Material Prerequisites _e ðs�1Þ ef ð%Þ T ð�CÞ Ref.

20Al2O3–ZrO2(3Y)
a (b), (c) 0.04 300 1650 [19]

5SiO2–ZrO2(2.5Y)
b (b), (e)–(g) 0.01 360 1400 [48]

2CaO–2TiO2–ZrO2(3Y)
c (b), (c) 0.01 400 1400 [49]

0.2Al2O3–ZrO2(3Y)
a (a), (c)–(e) 0.03 370 1450 [50]

3(Y2O3,MgO)–97
(Zr0.95Ti0.05)O2

b
(a), (c)–(e) 0.01, 0.01 220, 300 1350, 1450 [57]

0.2Mn3O4–0.3Al2O3–

ZrO2(3Y)
b

(a), (c)–(e) 0.01 600 1450 [58]

40ZrO2(3Y)–
30spinel-Al2O3

c
(a)–(d), (h)d 0.01, 0.08,

1.0
500, 2500,
390

1500, 1650,
1650

[59–61]

30MgAl2O4–ZrO2(3Y)
c (a)–(d), (h)d 0,02, 0.7 660, 250 1450, 1550 [62–65]

amass%
bmol%
cvol.%
dSee Table 8.1

Table 8.3 Microstructural and compositional conditions for attaining high-strain rate superplas-
ticity. Hiraga et al. [4]. With kind permission of Elsevier

Prerequisites Relationship with superplastic
deformation or cavitation

Notea

(a) Reduced initial grain size Strain rate, stress relaxation, cavity
nucleation (processing-dependent)

P, C, Ph

(b) Suppressed dynamic grain
growth

Stress concentrations, cavity nucleation
(second-phase pinning and dragging:
processing-dependent)

P, C, Ph

(c) Enhanced diffusivity Strain rate, stress relaxation, cavity
nucleation (doping of aliovalent cations)

C, Ph

(d) Homogeneous microstructure Dynamic grain growth, cavity nucleation
(processing-dependent)

P, Ph

(e) Reduced residual defects Damage due to micrometer-sized
cavities (processing-dependent)

P, C, Ph

(f) Low cb and high ca Cavity nucleation (grain-boundary
segregation)

C, Ph

(g) Enhanced accommodation
(by a viscous phase)

Cavity nucleation (glass-phase
dispersion, intergranular Si-segregation)

C, Ph

(h) Additional accommodation
(by limited intragranular plasticityb)

Cavity nucleation [relates to (c) and (d)] C, Ph

aDependence on processing (P), chemical compositions (C) and phases (Ph)
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Another observation shows the cavitation behavior in Fig. 8.10: (a) indicates
elongated cavities along the stress axis, with some small amount of micrometer
sized cavities remaining in the matrix. Such a microstructure is obtained when
cavity nucleation is suppressed during the growth of residual defects during
deformation. If cavity nucleation is active (observed in conventional materials), a
large number of micrometer-sized voids grow from pre-existing defects (Fig. 8.5c)
during superplastic deformation. The void growth, normal to the stress axis, is
followed by coalescence and microcracking, as seen in Fig. 8.10b. Stress concen-
tration and cavitation may be suppressed by adding Si4+ and, thereby, enhancing
HSRS.

Fig. 8.8 Dislocation substructures observed in a ZrO2 and b spinel grains of ZrO2-spinel-Al2O3

superplastically deformed at 1500 °C and at *0.2 s−1. Hiraga et al. [4]. With kind permission of
Elsevier

Fig. 8.9 Comparison of grain shape in MgAl2O4-dispersed ZrO2 a before and b after superplastic
deformation. While the white zirconia grains are equiaxial after deformation, the dark spinel
grains are noticeably elongated by deformation. The tensile axis is horizontal. Hiraga et al. [4].
With kind permission of Elsevier
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Chapter 9
Creep and Recovery

Abstract The rate of decrease in deformation after load removal, following a long
application during a creep experiment is discussed in this chapter. Constant tem-
perature must be maintained in such experiments in order to eliminate the contri-
butions of thermal expansion (contraction). Monolithic ceramics typically do not
possess the elevated-temperature toughness required for safety-critical designs. For
this reason, a considerable amount of effort has been devoted to the development of
ceramics reinforced with continuous fibers. Most of the ceramics for various
applications are usually in composite forms (and contain various additives in
specified amounts), depending on their use for a definite purpose. A knowledge of
creep-strain recovery behavior may be used to increase the lifetimes of components
subjected to sustained- and cyclic-creep load.

The recovery of mechanical properties is the ‘work-hardening’ (or ‘cold-work’)
rate, which is temperature-dependent. Work hardening involves a thermal-recovery
process, superimposed on an thermal deformation process. The above generality
applies to creep and its recovery, since creep is a specific sort of a deformation
process. Thus, interest is focused on the rate of decrease in deformation after load
removal, following a long application during a creep experiment. Constant tem-
perature must be maintained in such experiments in order to eliminate the contri-
butions of thermal expansion (contraction). Monolithic ceramics typically do not
possess the elevated-temperature toughness required for safety-critical designs. For
this reason, a considerable amount of effort has been devoted to the development of
ceramics reinforced with continuous fibers. Most of the ceramics for various
applications are usually in composite forms (and contain various additives in
specified amounts), depending on their use for a definite purpose. As such, one has
to consider the possibility that the various components and the matrix do not
necessarily deform or recover simultaneously during a test period. Hence, in this
chapter, consideration is given preferentially to composite materials. One exem-
plary composite ceramic is the silicon carbide Nicalon fiber/calcium aluminosilicate
matrix. The Nicalon fiber serves as a reinforcing agent in this ceramic. Nicalon is a
ceramic multi-filament silicon carbide fiber (Nippon Carbon Co. Ltd., Japan) of
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homogeneously composed ultra-fine beta-SiC crystallites and an amorphous mix-
ture of silicon, carbon, and oxygen. This fiber has excellent strength, retains its
properties at high temperatures, and is highly resistant to oxidation and chemical
attack.

The fiber content of this ceramic matrix was 40% Nicalon. An important aspect
of the development of matrix cracking in continuous-fiber-matrix composites is that
creep stress rupture will not necessarily occur, since the possible fiber bridging often
has sufficient creep strength to transfer loads across the crack faces. (Nicalon was
also used as whiskers in other experiments). This additive improves ceramic
toughness and reliability. The redistribution of the stress, between the matrix and the
fibers, has a significant effect on the overall creep behavior and on microstructural
damage occurring during creep. The damage modes in fiber-reinforced ceramics
have been classified by Holmes and Chennant, according to the use of a creep rate
mismatch ratio (CMR), defined as the ratio of the creep rate of the fibers to that of
the matrix:

CMR ¼ _ef
_em

: ð9:1Þ

Clearly, _ef and _em are the strain rates of the fiber and the matrix, respectively. For
composites with CMR <1, periodic fiber rupture can occur during long-duration,
tensile- or flexural-creep loading. This happens as a result of the redistribution of
the stress from the matrix to the more creep-resistant fibers. For composites with
CMR >1, matrix fracture has been identified as a characteristic creep-damage mode
for tensile and flexural loading. The redistribution under stress, from the fibers to
the matrix, occurs during creep loading. The composite was hot-pressed at 0″
panels, with either 16 or 32 plies and as 2D panels with a [0/90]4s ply layup (16
plies). The specimens, shown in Fig. 9.1, had a gage length of 33 mm and the
thickness was about 3.0 mm for the 16-ply panels and 6.0 mm for the 32-ply
panels.
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Fig. 9.1 Monotonic tensile
behavior of [O]16 and [0/90]4S
Nicalon SIC/CAS-II
composites at 20 and
1200 °C. The experiments
were conducted in high-purity
argon (≤10 ppm O2) at a
loading rate of 100 MPa/s.
Wu and Holmes [1]. With
kind permission of John
Wiley and Sons
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All creep experiments were conducted at 1200 °C. At this temperature, the
matrix will contribute little to the overall creep resistance of the composite and most
of the load is concentrated in the fiber. The creep experiments of the [O]32 speci-
mens were conducted at nominal stresses of 60, 120, 200, and 250 MPa (these
stresses ranged from 13 to 52% of the monotonic strength at 1200 °C). The strain
recoveries of the unloaded composites that survived 100 h at a stress of 2 MPa were
evaluated (temperature maintained at 1200 °C). The experimental recovery test
conditions appear in Table 9.1, indicating the effects of the fiber its layup, the strain
and strain rates and the respective recoveries. In addition, the effect of cycle
duration on strain recovery was examined.

Curves of strain versus time and strain rate versus stress are shown in Fig. 9.2
for the 16- and 32-ply unidirectional specimens. There is no apparent, significant
influence of the number of plies on tensile creep for 200 MPa shown in Fig. 9.2a.
Furthermore, no stress rupture was observed in the 32-ply specimens between 60

Table 9.1 Summary of loading histories and experimental results. Wu and Holmes [1]. With kind
permission of John Wiley and Sons

Fiber
layup

Loading history e100h ð%Þ _e100h ðs�1Þ Rcr;100h ð%Þ Rt;100h ð%Þ

[0]16 200 MPa/100 h 3.38 2.2 × 10−8

[0]32 120 MPa/100 h 1.36 1.1 × 10−8 23 32

[0]32 60 MPa/100 h + 2 MPa/l00 h 0.58 4.6 × 10−9 27 33

[0/90]4S 60 MPa/100 h + 2 MPa/100 h 0.59 4.0 × 10−9 49 56

[0/90]4S 60 MPa/100 h + 2 MPa/100 h 0.55 2.7 × 10−9 45 52

[0/90]4S 60 MPa/100 h + 2 MPa/100 h 0.62 3.9 × 10−9 51 56

[0/90]4S 60 MPa/40 min + 2 MPa/40 min 57/80a 73/70a

aTwo 40-min cycles (first cycle/second cycle)
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Fig. 9.2 a Total strain versus time for [0l6− and [O]32− Nicalon SiC/CAS-II composites crept at
1200 °C in high-purity argon. b Stress dependence of 50- and 100-h creep rate for the unidirectional
specimens. The experiment with the 32-ply specimen was stopped at 50 h to investigate
creep-damage accumulation. Wu and Holmes [1]. With kind permission of John Wiley and Sons
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and 200 MPa after exposure to 100 h experiments. Increasing the creep stress to
250 MPa resulted in stress rupture at about 70 min (Fig. 9.2). The strain rate
dependence on stress is shown in Fig. 9.2b for the indicated times for the 32-ply
unidirectional specimens.

The strain recovery that occurs after cyclic creep is shown in Fig. 9.3. Two
methods can be used to indicate recovery, Rcr and Rt, which stand for the creep
recovery ratio and the total strain recovery ratio, respectively. The strain recovery
behavior of 32-ply specimens, which were crept at stresses of 60 and 120 MPa for
100 h and then unloaded to a stress of 2 MPa and held for 100 h, is shown in
Fig. 9.3a.

Rcr is defined as the creep strain recovered during a particular unloading cycle,
ecr;R, divided by the creep strain for the cycle, ecr : Rcr ¼ ecr;R=ecr. Rt is defined as
the total strain recovered within a particular cycle εel,R + εcr,R divided by the total
accumulated strain, εt : Rt = (εel,R + εcr,R)/εt. As may be seen in Table 9.1, the creep
strain recovery ratio, Rcr, for specimens crept at 60 MPa is 27%, while for the
percentage for those at 120 MPa is 23%. Note that the 0°/90° composite has about
the same amount of strain accumulation as the 0° composite, but much more
recovery (Fig. 9.3a). In Fig. 9.3b, the recovery of 0°/90° composite crept at
60 MPa is shown. The creep recovery values are also indicated in this figure.
Furthermore, it may be seen, by comparing the 100-h-creep/100-h-recovery
experiments, that the strain recovery is much higher for shorter durations of the
creep cycle (Fig. 9.3b). In the first cycle, Rcr = 57% and Rt = 73% and in the
second cycle, these ratios were 80 and 70%, respectively (note that Rt decreases as
the accumulated strain increases).

Figure 9.4 shows a schematic representation of the load transfer in a composite
system, where the matrix has a lower creep resistance than the fibers, indicating a
redistribution of the axial stress. On application of a creep load, the stress increases
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Fig. 9.3 Isothermal tensile-creep and creep strain recovery behavior of Nicalon SiC/CAS-I1
composites at 1200 °C (the total strain is shown): a cyclic-creep behavior of [O]32 and [0/90]4S
composites. The creep rate of the [0/90]4S composite was similar to that of the unidirectional
composite; b short-duration cyclic-creep behavior of [0/90]4S composites. The recovery-creep strain
is similar for both cycles; however, because of a reduction in transient creep, Rcr increased
significantly for the second cycle.Wu and Holmes [1].With kind permission of JohnWiley and Sons
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in both the fiber and the matrix. At a later stage (following full load application), the
stress in the matrix relaxes, while it continues to increase in the fibers, since the load
is transferred to the more creep-resistant fibers. Upon unloading, elastic contraction
causes residual compression the matrix and residual tension in the fibers, until, at a
later time, creep strain recovery results in the relaxation of both these residual
stresses: compressive in the matrix and tensile in the fibers. This is shown
schematically in Fig. 9.4. After concluding this experiment, it may be stated that the
application of creep loading to a composite ceramic tends to emphasize the dif-
ference in the stress distribution between its various constituents, while the recovery
of the system tends to diminish those differences.

Parallel changes occur in the structure: (a) grain growth in the fibers and
(b) phase changes in the matrix. Moreover, no fiber and matrix fractures occurred in
the specimens subjected to 100 h creep at 60 MPa and 100 h recovery, but cavity
formation was observed in the matrix, generally located in the fiber-rich regions of
the microstructure (Fig. 9.5).

Increasing creep stress to 120 MPa resulted in limited matrix microcracking and
in fiber fracture, attributed to the inhomogeneous distribution of the fibers. This is
based on the observation that microcracking occurred in those regions of specimens
that were matrix-rich. After 100 h creep at 200 MPa, periodic fiber fracture and
void formation in the matrix occurred with only random matrix microcracking. The
periodic fiber fracture, in the absence of matrix fracture, was attributed to the
redistribution of stress from the matrix to the more creep-resistant fibers. This
creep-damage mode is considered to be a fundamental damage mechanism in

Fiber
i=fiber, matrix

v(i) (i)σ ∑ σ

σ

σ

ε ε=

σ
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(Applied)
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Creeping

Loading Unloading
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Fig. 9.4 Schematic representation of the redistribution in axial stress between the fibers and
matrix during tensile creep and creep recovery. The curves assume that the fibers have a higher
creep resistance and elastic modulus than the matrix. During creep, the fiber stress progressively
increases, while the matrix stress relaxes. Upon unloading, the stress in the fibers and matrix
decreases. Note that the initial loading and unloading transients have been expanded for clarity.
The actual stresses in the fibers and matrix during loading and unloading will depend upon the
constitutive law and volume fraction of each constituent. Wu and Holmes [1]. With kind
permission of John Wiley and Sons
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composites, where the creep rate of the matrix significantly exceeds that of the
fibers.

The creep recovery in a SiC-fiber-Si3N4-matrix composite (a technologically
important ceramic) is considered in the following. Tensile-creep, cyclic-creep and
creep recovery experiments performed on this composite are of great interest. These

Fig. 9.5 Microstructural damage found after creep at 1200 °C: a, b Periodic fiber fracture observed
after 100 h at 200 MPa (the specimen did not fail). The arrows show the locations of periodic fiber
fracture along one of the fibers. c, d Matrix fracture and rupture of bridging fibers observed after
70 min at 250 MPa (themicrographswere taken approximately 5 mm from the failure location of the
specimen). Wu and Holmes [1]. With kind permission of John Wiley and Sons
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experiments consider the SiC matrix, as in the previous case, but here the fiber is
different. As such, the following experiments complement the earlier ones. Again,
the test temperature is 1200 °C in air. The cyclic-creep strain recovery is of con-
siderable interest, because the prior creep strain can be recovered to a high value.
Furthermore, matrix cracking in continuous-fiber composites does not necessarily
result in rupture, since bridging fibers have sufficient creep strength to transfer loads
across the crack faces in whisker-reinforced ceramics.

The applied stresses by tensile loading of the composites are 0, 60, 75, 90, 150,
200, and 250 MPa. A zero-load experiment was performed to ascertain whether a
change in gage-section length, caused by relaxation of processing-related residual
stresses or the closure of matrix porosity, would influence the strains measured
during the creep and strain recovery experiments conducted at higher stresses
(for example, a volume contraction caused by additional sintering might lower the
apparent creep rate or be confused with creep strain recovery). The loading and
unloading used in the sustained-load (tensile) and cyclic-creep experiments were
performed at the rate of 100 MPa/s. More stress-increment experiments (during
which the creep stress was increased in small steps) were also performed to
determine the stress dependence of the creep rate. The creep stress was increased
in 10-MPa increments from 60 to 80 MPa, followed by 20-MPa increments to
100 and 120 MPa. The cyclic-creep experiments and creep recovery were per-
formed at 1220 °C, with various hold times at the creep stress of 200 MPa
and recovery stress of two MPa. Specimens were loaded and unloaded at a rate
of 100 MP/s between these two stresses. These cyclic-creep/creep recovery
experiments are summarized in Table 9.2. The loading histories of the composites
and their corresponding, idealized strain responses are schematically shown in
Fig. 9.6a, b.

One may define the amount of strain recovered after unloading the specimen
either as (a) the total strain recovery ratio or (b) the creep strain recovery ratio. As
shown in Fig. 9.7, the total strain recovery ratio is the sum of the elastic and creep
strains recovered in a given cycle, i.e., (εel.R + εcr.R) divided by the total accumu-
lated strain, εt, including the elastic strain that exists before unloading or

Rt ¼ eel:R þ ecr:Rð Þ=et: ð9:2Þ

Table 9.2 Loading histories used in the cyclic-creep/creep recovery experiments. Holmes et al.
[2]. With kind permission of John Wiley and Sons

Creep per cycle (s) Recovery per cycle (s) Total cyclesa Total test duration (h)

300 0 2384 200

300 300 1192 200

180,000 (50 h) 0 4 200

180,000 (50 h) 180,000 (50 h) 4 400

720,000 (200 h) 90,000 (25 h) 1 125
*In all cases, the creep stress was 200 MPa and the recovery stress was 2 MPa
aNote that the loading and unloading transients were approximately 2 s each (100 MPa/s)
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The creep strain recovery ratio for a specific cycle is defined as

Rcr ¼ ecr:R=ecr: ð9:3Þ

In Eq. (9.3), the elastic strain in loading and unloading is not included. Nearly
linear behavior was obtained (see Fig. 9.8) in a composite at 1200 °C under a
loading rate of 100 MPa/s.

Tensile-creep curves at various stresses from 0 to 200 MPa are shown in Fig. 9.9
and for 250 MPa in Fig. 9.10. Isothermal exposure at 1200 °C for 200 h under zero
load produced no detectable change in specimen gage length (shown in Fig. 9.9) for
the strain versus time curve, indicating that processing-related residual stresses were
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Fig. 9.6 Cyclic-creep experiments. a Schematic representation of the cyclic-loading histories
examined and b idealized strain response. For all cyclic-creep experiments, the creep stress (σmax)
was fixed at 200 MPa and the recovery stress (σmin) at 2 MPa. The loading and unloading ramps
were prefixed at 100 MPa/s. Holmes et al. [2]. With kind permission of John Wiley and Sons
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Fig. 9.7 Definition of the total strain recovery ratio (Rt) and creep strain recovery ratio (Rcr) used
to quantify the amount of strain recovery during the cyclic-creep experiments. Holmes et al. [2].
With kind permission of John Wiley and Sons

160 9 Creep and Recovery



low. This means that the strain measured under the experimental test conditions is a
consequence only of creep and creep recovery. As shown in Fig. 9.9, transient
creep is present at all the stress levels, but its extent increases with stress becoming
more pronounced (see, for example, the 200 MPa line and the 250 MPa plot in
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Fig. 9.8 Typical 1200 °C monotonic tensile behavior of the 0° SCS-6 SiCf/Si3N4 composite used
in the present investigation (the composite was hot-pressed at 1700 °C for 2 h at 30 MPa). For
comparison, the monotonic tensile behavior of an earlier 0° SCS-6 SiCf/Si3N4 composite, processed
by a dry-powder layup approach is shown (hot-pressed at 1700 °C for 1 h at 70 MPa). To minimize
time-dependent phenomena, the monotonic tension experiments were conducted in air at a constant
loading rate of 100 MPa/s. The UTS and Young’s modulus were 385 MPa and 280 ± 10 GPa of
the composite, respectively. Holmes et al. [2]. With kind permission of John Wiley and Sons
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Fig. 9.9 Typical tensile-creep curves for sustained loading of 0° SCS-6 SiCf/Si3N4 at stresses
from 0 to 200 MPa. In all cases, specimens were loaded to the creep stress at a rate of 100 MPa/s.
The creep curves include the instantaneous elastic strain that occurred during specimen loading (at
200 MPa, the elastic strain was approximately 0.07%). At 60 MPa, the creep rate was below
10−12 s−1. Holmes et al. [2]. With kind permission of John Wiley and Sons
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Fig. 9.10). The strain following transient creep also increases with the stress level.
One can assume that the parts of the curves following transient creep represent
steady-state creep, referred to by the authors as a ‘quasi-steady-state region.’

The creep lives of composites with brittle matrices increase with slower loading
rates (as seen in Fig. 9.10). Thus, their lifetimes were 118 and 167 h for the faster
and slower loading rates, respectively. The failure mechanism occurs by periodic
fiber fracture during long-duration tensile loading. Load transfer from the matrix to
the fibers (which are more creep-resistant) causes a progressive increase in fiber
stress, causing fiber fracture. This is expected to occur in composites, in which the
creep rate of the matrix is greater than that of the fiber.

The extent of recovery is appreciable in cyclic-creep loading. In Fig. 9.11,
cyclic-creep behavior is shown for various loading and unloading histories (see the
summary in Table 9.2). The introduction of a rapid unloading and reloading cycle,
every 50 h (Fig. 9.11a), without a recovery hold period, did not introduce transient
creep on reloading; the prior creep rate was immediately re-established and con-
tinued from the place of unloading (see Fig. 9.11b).

A significant change in primary-creep behavior was found for the shorter
duration 300-s-creep/300-s-recovery cycles (Fig. 9.11c). For this loading history,
the duration of transient creep was reduced to less than 20 h, versus roughly 70 h
for sustained creep at 200 MPa. The insets in Fig. 9.11c show the creep behavior of
the composite at selected times.

The amount of strain recovery was influenced by cycle’s duration. For example,
creep strain recovery ratios approaching 80% were observed during long-duration
(50-h-creep/50-h-recovery) creep cycles between stress limits of 200 and 2 MPa
(Fig. 9.12).
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Fig. 9.10 Tensile-creep curves found for sustained loading of 0° SCS-6 SiCf/Si3N4 at 230 MPa.
To examine the influence of initial stress relaxation in the matrix on creep life, specimens were
loaded to 250 MPa at either 0.25 or 100 MPa/s (see Inset). Loading slowly to the creep stress
allows the matrix stress to relax, decreasing the likelihood of matrix fracture and dramatically
increasing creep life. Holmes et al. [2]. With kind permission of John Wiley and Sons
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Fig. 9.11 Isothermal (1200 °C) cyclic-creep behavior of 0° SCS-6 Sif/Si3N4. Specimens were
cycled between stress limits of 200 and 2 MPa. For loading histories with a finite recovery hold
time, the total strain recovery and creep strain recovery ratios (Rt = (εel.R +εcr.R)/εt, and Rcr = εcr.R/
εcr, respectively) are shown adjacent to the creep curves. a 50-h creep/50-h recovery. b 50-h
creep/0-s recovery. c 300-s creep/300-s recovery. d 300-s creep/0-s recovery. Holmes et al. [2].
With kind permission of John Wiley and Sons
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Fig. 9.12 Comparison of the accumulated creep strain and tensile-creep rate for sustained loading at
200 MPa and long-duration cyclic loading (50-h creep/50-h recovery) between stress limits of 200
and 2 MPa. Only the loading portions of the cyclic-creep curve are shown (the recovery segments
were deleted, and the resulting curves were shifted to the left to allow a comparison of creep strain
accumulation to be made for an equivalent time at the creep stress of 200 MPa). Holmes et al. [2].
With kind permission of John Wiley and Sons
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Fig. 9.13 Comparison of the accumulated creep strain and creep rate for sustained loading at
200 MPa and for short-duration cyclic loading (300-s creep/300-s recovery and 300-s creep/0-s
recovery). For the cyclic-creep experiments, only the traces of the strain versus time curves
obtained at the creep stress of 200 MPa are shown. As in Fig. 9.12, the recovery segments of each
cycle have been removed to allow a comparison of accumulated creep strain to be made for an
equivalent time at the creep stress of 200 MPa. Holmes et al. [2]. With kind permission of John
Wiley and Sons

Table 9.3 Summary of loading histories and experimental resultsa. Holmes et al. [2]. With kind
permission of John Wiley and Sons

Loading history Total
cycles

Avg creep rateb

(s−1)
Total strain (%)
(at 200 h)

Rt (%)
(first/last cycle)

60 MPa, 200 h 1 <10−12 0.04

75 MPa, 200 h 1 2.8 × 10−10 0.06

90 MPa, 200 h 1 3.8 × 10−10 0.09

90 MPa, 200 h 1 3.9 × 10−10 (at
100 h)c

0.07 (at 100 h)

150 MPa, 200 h 1 5.4 × 10−10 0.14

200 MPa, 200 h
(+25-h recovery)

1 8.6 × 10−10 0.27 45 (1 cycle)

200 MPa, 200 h
(+25-h recovery)

1 8.3 × 10−10 0.26 46 (1 cycle)

250 MPa, (100 MPa/s) 1 Failed at ≈210 s e (200 sÞ � 0:12

250 MPa (100 MPa/s) 1 Failed at ≈402 s e (400 sÞ � 0:12

250 MPa (0.25 MPa/s) 1 2.9 × 10−9 (failed
at 118 h)

e (118 hÞ � 0:42

250 MPa (0.25 MPa/s) 1 1.8 × 10−9 (failed
at 167 h)

e (167 hÞ � 0:41

Cyclic 300 s/0 s 2384 7.8 × 10−10 0.30 ≈0/0

Cyclic 300 s/300 s 1192 2.5 × 10−10 0.13 90/58

Cyclic 300 s/300 s 1192 2.3 × 10−10 0.12 92/60
(continued)
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For the same stress limits, the creep strain recovery ratio increased to 90% during
shorter (300-s-creep/300-s-recovery) creep cycles (Fig. 9.13). In fiber-reinforced
composites, the recovery process is assisted by the residual-stress state that
develops in the composite upon specimen unloading. The extent of primary creep
was significantly reduced during cyclic loading with a finite recovery hold time.
Under sustained creep loading at 200 MPa, primary creep persisted for approxi-
mately 70 h. In the case of cyclic loading with a 300-s hold at 200 MPa, followed
by rapid unloading and reloading (without a recovery hold time), the duration of
primary creep was, again, roughly 70 h. These results may be compared with less
than 20 h of primary creep, observed for cyclic loading with a 300-s hold at
200 MPa, followed by 300 s of recovery per cycle (Table 9.3).

A knowledge of creep strain recovery behavior may be used to increase the
lifetimes of components subjected to sustained- and cyclic-creep load. More detailed
information on the SiCf/Si3N4 system may be found in the work of Holmes et al.
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Table 9.3 (continued)

Loading history Total
cycles

Avg creep rateb

(s−1)
Total strain (%)
(at 200 h)

Rt (%)
(first/last cycle)

Cyclic 180,000 s/0 s 4 8.5 × 10−10 0.26 ≈0/0

Cyclic
180,000 s/180,000 s

4 e (200 hÞ ¼ 0:20 61/50

e (400 hÞ ¼ 0:26
aAll cyclic-creep experiments were conducted in air at 1200 °C between stress limits of 200 and
2 MPa. The creep rates for the stress-increment experiment conducted between 60 and 120 MPa
are given in Fig. 9.8
bAverage creep rate between 100 and 200 h: at 100 h if failure occurred in under 200 h.
cEquipment failure at 100 h
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Chapter 10
Empirical Relations

Abstract Stress rupture and creep life are particularly important for preventing
catastrophic failure. The knowledge on this important subject is based on empirical
concepts. Even Andrade’s creep relations are based on empirical observations.
Several empirical relations are considered in this chapter. These are the Larson-
Miller parametric method, the Monkman–Grant relationship, the Sherby-Dorn
parametric method, the Orr-Sherby-Dorn approach, and the Manson-Haferd
parameter. Appropriate relations and illustration of these empirical methods to
evaluate creep life are the subject of this chapter.

Most of the creep relations, even those of Andrade, are basically empirical relations,
including the MG creep concept and its modifications (as previously discussed in
Chap. 7). As such, the major empirical relations relating to creep phenomena
deserve a brief, dedicated discussion. Stress rupture and creep life are particularly
important for preventing catastrophic failure. To this end, the emphasis here is on
experimentally supposed and well-analyzed empirical concepts, rather than on
fundamental physical principles.

10.1 The Larson-Miller Parameter (LMP)

The “Larson-Miller relation” or “Larson-Miller parameter” (LMP) is basically an
extrapolation of creep experimental data. In essence, it originates in their idea that
the creep rate, r, may be described by any Arrhenius-type equation expressed as

r ¼ Aexp �DH
RT

� �
; ð10:1Þ

where A is a constant and ΔH is the activation energy of the creep. Expressing
Eq. (10.1) in logarithmic form gives

ln r ¼ lnA� DH
RT

ð10:2Þ
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Rearrange the above to obtain

DH
R

¼ T ðlnA� ln rÞ ð10:3Þ

Since creep is an inverse time-dependent process, another equation may be
written in terms of time as

Dl
Dt

¼ A0 exp �DH
RT

� �
ð10:4Þ

And again, taking the logarithm on both sides results in

ln
Dl
Dt

� �
¼ lnA0 � DH

RT
ð10:5Þ

Equation (10.5) may then be rewritten as

DH
R

¼ lnA0 � ln
Dl
Dt

� �
T

¼ lnA0 � ln ðDlÞþ ln ðDtÞ½ �T
ð10:6Þ

or:

DH
R

¼ ln
A0

Dl
þ ln ðDtÞ

� �
T ð10:7Þ

Write ln A0
Dl ¼ B, so that Eq. (10.7) becomes

DH
R

¼ T Bþ ln ðDtÞ½ � ð10:8Þ

This is now the same as the LMP, which is a parametric relation used to
extrapolate experimental data on creep and creep rupture, given by

LMP ¼ T ðCþ log tÞ ð10:9Þ

This is significant, since rupture lifetime is impractical to assess in a laboratory.
C was found to be in the range of 20–22, typically *20. This value of C seems
to be applicable to many cases and materials, but deviations from this value have
been observed. Selecting a proper value, which may be determined for a material
of interest, can narrow-down the scatter problem (quite common in ceramic
experiments). Equation (10.9) is a stress-dependent, temperature-compensated
rupture-life function. Here, t is the stress rupture time (in hours).

When using this relation, it is assumed that the activation energy is independent
of the applied stress, and it may be used to evaluate the difference in rupture life
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with the difference in temperature for a given stress. Note that, in LMP, time is
expressed in hours and T in Rankine degrees. The LMP, P, is one of the useful
parameters used for predicting creep life in metallic materials. Its basic assumptions
are that m = 1 and Q is a function of stress. It has also been applied to ceramics.
One such example is the SiC-fiber-reinforced SiC. The LMP was used to correlate
the stress–temperature-life relationship in SiC/SiC composites, by means of the
expression given in Eq. (10.10), reproduced as

P ¼ ðCþ log trÞ ð10:10Þ

where T is in K, and tr is the time to rupture (as indicated earlier in hours). It was found
that data at different temperatures fall on the same line with the best fit, when the
constant,C, is between 5 and 10 (in metals C * 20). Figure 10.1 shows the relation of
stress to the LMP with C being 7. Note that, for monolithic silicon nitride, C = 30–40,
depending on the grade of the silicon nitride. For oxides, it ranges from 10 to 22. In
order to use the LMPmethod, a family of stress-rupture curves is required, representing
different test temperatures for a give material. These then re-plotted on a revised
temperature-compensated time axis, i.e., the LMP. The family of curves chosen is
superimposed on a single, master curve, as illustrated in Fig. 10.1 for SiC/SiC.

10.2 The Monkman-Grant Relationship (MGR)

The Monkman-Grant relationship (MGR) uses an exponential relationship, given as:

tr _e
m ¼ CM�G ð10:11Þ

The MGR relates the minimum creep rate or steady-state strain rate and time to
fracture, tr, m, and C are material constants, m being the strain-rate exponent. (The
subscript was dropped). Rewrite Eq. (10.11) on a logarithmic scale as
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log tr ¼ �m log _eþ logC ð10:12Þ

The MGR provides a method for creep-life prediction not only for metals and
alloys, but also for ceramics. Figure 10.2 shows the MGR straight line for the
SiC/SiC composite.

In this figure, the steady-state creep-strain rate versus time to rupture is shown.
The data fall into a straight line, i.e., fit the MGR, indicating that m = 0.72. Using
the MGR, the creep life can also be calculated, according to Eq. (10.11), if the
steady-state creep rate is known. The exemplar for creep-life prediction is Si3N4

(Fig. 10.3).
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As may be inferred from the above, the advantage of using the MGR is that,
once the relationship is established from short-term lab tests, all that is needed for
the estimation of failure time for a new set of conditions is the value of the
secondary-creep rate. The tests are relatively short, because the secondary-creep
stage, in general, comprises only a short portion of the creep-failure time. For a
detailed and extensive discussion on stress rupture and more information on the
MGR, the reader is referred to Sect. 7.2 above.

10.3 Sherby-Dorn Parametric Method

Lifetime predictions are essential for industrial applications. The Sherby-Dorn
parametric method is basically an empirical Norton power law (see Chap. 5, Eq. 5.22)
for obtaining the dependence of σ on temperature-normalized lifetime, Θ, as

log r ¼ A� 1
n
logH ð10:13Þ

One immediately recognizes that the Norton Eq. (5.22), reproduced here, can be
easily brought to the form of Eq. (10.13):

ess ¼ Arn exp
�Q
RT

� �
ð5:22Þ

Θ from Eq. (10.13) is given as

H ¼ tf exp ð� Q
RT

Þ ð10:14Þ

A and Q are parameters, the latter being an activation energy of creep and the
former is a material constant; tf is the failure time.

A logarithmic plot of Eq. (10.13), of logσ versus logΘ, yields a curve with an
intercept of A and a slope of the inverse exponent, i.e., 1/n. One example of such a
plot is for two oxide-dispersion-strengthened Nickel-base superalloys–MA 754 and
MA 6000 (Fig. 10.4).

Often, the Sherby-Dorn method appears in the literature as

PSD ¼ log h ¼ log tf � log e
R

Q
T

ð10:15Þ

where PSD is the Sherby-Dorn parameter and Q is assumed to be independent of
stress and temperature. According to this method, a number of tests are run at
various temperatures and stresses to determine the time to failure and the activation
energy, Q. A universal plot is then constructed of the stresses as a function of PSD.
An allowable stress to failure combined with temperature, namely PSD, may be

10 Empirical Relations 171

http://dx.doi.org/10.1007/978-3-319-50826-9_7
http://dx.doi.org/10.1007/978-3-319-50826-9_5


determined from the curve. Schematic experimental results and the universal curve
are shown in Fig. 10.5.

It would be illuminating to show the actual use of the Sherby-Dorn technique,
regardless of whether the example is for an alloy, such as a certain Al–Mg alloy.
The stress-PSD relation is found to be

r ¼ f ðPSDÞ ¼ �11:3PSD�124 ð25� r� 85 MPaÞ ð10:16Þ

The objective is to determine the allowable stress to give, say 2000 h lifetime at
200 °C (473 K). With the values of activation energy 150,500 Jmol−1,
R = 8.314 J/mol K, tf = 2000 h and T 473 K. PSD is calculated as −13.21.
Substituting this value into (10.16) provides the allowable stress as 25 MPa.
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10.4 The Orr-Sherby-Dorn (OSD) Approach

The Orr-Sherby-Dorn (OSD) parameter, POSD, is given as

POSD ¼ tr exp � Q
RT

� �
ð10:17Þ

which can be basically formulated differently in a logarithmic manner as

lnPOSD ¼ ln tr � Q
RT

ð10:18Þ

or rearranging the logarithmic form as

log t ¼ logPOSD þ 0:434
Q
RT

ð10:19Þ

with the symbols having their usual meanings. Note, however, tr, which expresses
the time to rupture, may also indicate the time needed to reach a given creep rate,
just before stress rupture occurs. This relation has been mostly applied to metals and
alloys, and much less to ceramics, although the literature frequently indicates that it
may be applied to ceramics and polymers, as well.

Like the LMP, the OSD method assumes that log t is a linear function of 1/T, as
schematically illustrated in Fig. 10.6 [Eqs. (10.18) and (10.19) or (10.20)]:

h ¼ t exp ð�DH
RT

Þ ð10:20Þ

Fig. 10.6 A schematic
presentation of OSD creep
method for obtaining the
parameter
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Equation (10.20) is the same as Eq. (10.17), with θ being POSD and ΔH being
Q. Also note that in Eqs. (10.1) and (10.2), expressing the LMPs r and
A is equivalent to POSD and t, respectively. The expressions (10.1) and (10.20)
represent the LM parameters. In Fig. 10.6, the logt versus 1/T plots are parallel
isostress lines each curve for one specific stress value, like Dorn’s concept,
who assumes that only one creep process is actually operating at some high
temperature.

Note that the OSD technique is based on Norton’s empirical power law for
obtaining the dependence of σ on the lifetime, θ, expressed as

log r ¼ A� 1
n
log h ð10:21Þ

The OSD parameter is stress dependent, and a master curve for this relation has
to be created. In order to determine an empirical model for this relation, creep data
are used to find the best fit between stress and the OSD parameter. For instance, a
Ni-based superalloy, often used at high temperatures, in which creep conditions
prevail, may be considered. Figure 10.7 (following OSD parametric creep-life
prediction) presents a temperature-compensated, creep rupture lifetime diagram for
Ni-based alloys. The master curves shown in this figure are based on the experi-
mental results (shown in Fig. 10.8).

In Fig. 10.8 the variation of stress with rupture time for creep and hot tensile
tests are presented. Note the excellent compatibility of the tensile data with those of
the creep. Also the variation of creep rupture time with temperature is required.
Such illustrations are shown in the work of dos Reis Sobrinho and de Oliveira
Bueno and the reader of interest can turn to their paper.
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The minimum creep rate and also the tensile test data as a function of OSD
parameter are shown in Fig. 10.9. The results are very similar to those obtained
with the analysis considering the rupture times. The authors dos Reis Sobrinho and
de Oliveira Bueno claim on the basis of their experimental results that hot tensile
data can also be used as a very helpful complement in the determination of
parameterization curves for creep data.

The OSD approach involves a time-temperature constant, POSD, based on the
linear relationship of logt versus 1/T. In this approach, the initial premise of the
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Fig. 10.9 The
parameterization curves for
minimum creep rate using
creep and CSR data. based on
the log(tr) versus 1/T diagram.
dos Reis Sobrinho and de
Bueno Oliveira [13]. With
kind permission of Dr. Levi
de Oliveira Bueno
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LMP has been modified such that the constant CLM (C in Eq. 10.9) becomes a
function of stress, and PLM (in Eq. 10.9 LMP) becomes a constant. Based on these
assumptions, the LMP Eq. (10.9) can be re-arranged to yield the Orr-Sherby-Dorn
equation as given in Eq. (10.22):

POSD ¼ f ðrÞ ¼ log tf � COSD = T ð10:22Þ

where POSD and COSD are the Orr-Sherby-Dorn parameter and constant, respec-
tively. In Eq. 10.19 COSD ≡ 0.434 Q/R.

This method is claimed to be a better approach for providing a creep rupture
prediction method than the other parametric method.

10.5 The Manson-Haferd Parameter (MFP)

Another modification of the LMP, the Manson-Haferd parameter (MFP) has been
proven to be more applicable to some materials than the LMP. One such example is
the 9% Cr steels. The MHP may be expressed as

PMH ¼ f ðrÞ ¼ log tr � log ta
T � Ta

ð10:23Þ

PMH is the MHP, and tr is the rupture duration (in hours). Constructing a family
of curves at different stresses indicates that they terminate at the same point, which
determines logta and Ta. A schematic illustration of logtr versus T is shown in
Fig. 10.10.

Fig. 10.10 Schematic
diagram of the MHP model.
Individual plots for each
stress
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As seen in Eq. (10.23), unlike the LMP approach, two constants are required in
the MHP method. It seems that the MHP approach is more accurate, since the
variation of C = 20, given in the LMP is eliminated in the MHP technique.
Furthermore, when plotting experimental creep data on the PMH versus stress curve,
they seem to fall on a single curve, a master curve, as seen in Fig. 10.11. The MHP
method was specifically developed to improve the LMP method (especially in
regard to the fixed value of the constant C).

Note that, in the above figures, CSR stands for “constant-strain rate.” Note that
the MHP method relates time to temperature for a given stress, assuming that the
algorithm of time varies linearly with temperature at a constant initial-stress con-
dition. Recall that the LMP method plots time against 1/T (Eq. 10.9), rather than
versus T, as in the MHP approach. PMH is composed of two constants relating time
to temperature, thus, possibly giving this model better sensitivity to the time–
temperature relationship.

Regarding the schematic curves in Fig. 10.10, the experimental creep data of HK
40 steel, 25Cr-20Ni alloy (an austenitic Fe–Cr-Ni alloy) are collected and listed in
Table 10.1 and then plotted at each stress, as shown in Fig. 10.12. The MHP linear
time–temperature relationship was developed not only for stress rupture, but also to
mark the time to a given creep-strain level, specifically the second stage and
minimum creep rate. A minimum creep-rate curve appears in Fig. 10.13. The MHP
approach, like the LMP method, assumes that steady-state creep is dominated by
power-law behavior.

Thus, the MHP intends to remedy the uncertainty found in the LMP approach.
The parameters of PMH (Eq. 10.23) and LMP (Eq. 10.9) are graphically derived
from the intersection point of the extrapolated isostress lines, when plotted on a log
of minimum creep rate versus absolute temperature (the MHP method), instead of

Fig. 10.11 The
parameterization curves for
creep and CSR tensile data
based on the log tr versus T
diagram: Manson-Haferd
model. dos Reis Sobrinho and
de Bueno Oliveira [13]. With
kind permission of Dr. Levi
de Oliveira Bueno
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the inverse temperature (LMP approach), respectively. The intersection point then
determines the constants ta and Ta in Eq. (10.23). It is claimed that the MHP method
may be used for a variety of materials.

Table 10.1 Results from rupture time in steel. Latorre [5]. With kind permission of CT&F—
Ciencia, Tecnología y Futuro

Sample Service
time
Hr,000

Stress-applied
Mpa

Temperature
K

Rupture
time, tr
hours

Final
deformation
mm/mm

Minimum
creep hr−1

7S–1 74 27 1198 337.9

7S–2 74 27 1223 149

7S–4 74 27 1273 37.3

2–21 74 27 1148 2429.0 0.060 0.0000027

14–9 88 27 1173 534.4 0.296 0.000197

7N–5 74 27 1198 347.9

7N–6 74 27 1223 126.9

7N–7 74 27 1248 109.4

7N–8 74 27 1273 40.3

2–28 74 30 1098 7323.8

2–27 74 30 1148 1516.1 0.067 0.00000114

2–26 74 30 1198 237.2 0.109 −0.00156

2–23 74 30 1248 36.8 0.034 0.0001438

2–25 74 30 1273 23.9 0.144 0.0016

2–20 74 35 1123 991.2 0.158 0.00000888

14–11 88 35 1148 350.4 0.328 −0.000026

14–12 88 35 1198 56.6 0.246 0.00241

14–14 88 35 1223 27.8 0.0136

14–16 88 35 1248 11.8 0.290 0.00734

2–24 74 35 1273 9.0 0.187 0.00009859

2–30 74 38 1173 117.6 0.041 0.0006434

2–29 74 38 1223 30.6 0.042 0.0017435

2–32 74 38 1248 12.6 0.066 0.000542

14–10 88 42 1123 263.7 0.328 0.015928

2–19 74 42 1148 213.1 0.149 0.003354

14–17 88 42 1173 46.3 0.242 0.00747

14–l3 88 42 1198 20.5 0.301 0.0173

14–15 88 42 1223 10.7 0.341 0.00359

2–22 74 42 1248 14.4 0.132 0.0001247

2–37 74 50 1098 327.1 0.070 0.0010142

2–36 74 50 1148 70.2 0.160 0.00521

2–33 74 50 1198 21.8 0.219 0.0114

2–34 74 50 1223 8.4 0.222 0.0176

2–35 74 50 1248 4.8 0.160 0.022

14–18 88 60 1173 7.0 0.384 0.000372

2–31 74 60 1098 168.7 0.180
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Fig. 10.12 Manson-Haferd model, PMH. Calculation, data and nomenclature in Table 10.1.
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CT&F—Ciencia, Tecnología y Futuro

Fig. 10.13 The
parameterization curve for
minimum creep rate using
creep and CSR data based on
the log (tr) versus T diagram.
dos Reis Sobrinho and de
Bueno Oliveira L [13]. With
kind permission of Dr. Levi
de Oliveira Bueno
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10.6 Summary

This chapter reviewed the several most commonly used empirical and parametric
approaches to creep. Most of the experimental data are taken from metals and alloys,
which have been extensively used for creep resistance. Much less experimental data
has been reported in the open literature, despite the fact that the tendency in modern
technology is to use ceramic materials, which are expected to exhibit excellent creep
resistance up to elevated temperatures. Even so, the researchers in the field, and
particularly those who were proposing their parametric and empirical relations,
claim that the relationships are valid for a large variety of materials, including
ceramics and polymers. The obvious interest in creep-resistant ceramics comes from
the turbine production industries and the field of aviation. Although the primary
intent of this chapter was to indicate the parametric relationships in ceramic mate-
rials, to discuss their use, and to compare the merits and difficulties in predicting
component lifetimes under creep deformation, it was convenient to provide some
classic examples from metallic materials. This is justified by the realization that there
is no universal approach, based on theoretical grounds, so one must rely heavily on
experimental results in order to understand creep behavior under various conditions,
and especially at high temperatures. In light of the absence of a theoretically-founded
approach, the aforementioned parametric methods become even more significant for
creep-resistant design and manufacturing.
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Chapter 11
Design for Creep Resistance

Abstract In the absence of theoretical fundamentals for creep, one has to rely on
experimental creep data in order to develop creep-resistant alloys and design
components for service-lifetime evaluation. New designs must be based on
extensive experimentation performed on a variety of materials, while applying all
manner of possible work conditions while keeping in mind that creep consists of
three stages.

In the absence of theoretical fundamentals for creep, one has to rely on experi-
mental creep data in order to develop creep-resistant alloys and design components
for service-lifetime evaluation. Again, general and universal designs for
creep-resistant material development do not exist yet. Therefore, new designs must
be based on extensive experimentation performed on a variety of materials, while
applying all manner of possible work conditions. This objective is very difficult to
obtain for several reasons, the main obstacles being the facts that: (a) creep has
three stages, (b) the test materials may be metallic, ceramic or polymeric, and
(c) there many potential work conditions to be tested: different temperatures, service
durations, environments, structures, types of deformation, applied loads, etc. in
varying combinations. As such, this short chapter will present several proven design
concepts.

11.1 The Stages of Creep

From the descriptions of creep in the earlier chapters, particularly of the different
creep stages, it is clear that one should avoid using components in which tertiary
creep is active. At this stage, the strain rate increases exponentially with stress. The
necking of specimens occur with fracture setting in. A desirable component design
should favor primary creep, with its relatively high initial creep rate that diminishes
with increasing exposure time, leading to second-stage creep, in which the creep
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rate in the specimen is balanced by work hardening and reaches its minimum creep
rate. The minimum creep rate is a constant creep rate, which is an important design
parameter; its magnitude is temperature-and stress-dependent. Two criteria of
minimum creep rate are commonly applied to alloys: (a) the stress needed to
produce a creep rate of 0.1 × 10−3%/h (or 1% in 1 × 104 h) and (b) the stress
needed to produce a creep rate of 0.1 × 10−4%/h, namely 1% in 100 × 103 h,
which is about 11.5 years. The first criterion is used for turbine blades, while the
second is usually applied to steam turbines. (For more discussion on minimum
creep rate see Chap. 1). To the best of this author’s knowledge, no such criteria are
given for ceramics in the literature. But it is logical to expect an almost unlimitedly
high lifetime from ceramics, the very reason for choosing ceramics to operate at
high temperatures under loads. The objectives of proper creep tests are to determine
the minimum creep rate at stage II creep, on the one hand, and to evaluate the time
at which failure sets in, on the other. Such information is essential, so that the
proper ceramics will be selected to prevent failure during service and to evaluate the
time period of safe use in high-temperature applications, in which structural sta-
bility is essential. By making the proper choice, good ceramic components may be
selected, capable of operating at various conditions of high temperature and creep
deformation.

11.2 The Material

In general, the structures of materials differ. Metallic materials are not the same as
ceramic or polymeric ones. Even within the same class of materials, there are
different structures that may be changed at will by certain treatments. There are
differences between grains—their sizes, shapes, distributions may differ—as well
as their nature (crystalline or amorphous), and even their dislocation content may
be altered from its natural state after modification following deformation.
Nonetheless, since creep is a slow, time-dependent deformation process, dislo-
cation motion must be involved in some of the creep processes. The vacancy
content in a material is also associated with creep; even the contents of these
vacancies are different in the various materials. In short, creep is different for each
material.

As such, material designs must take into account the effects of dislocations on
creep. Low-dislocation-content materials should be selected for creep resistance. In
particular, the occurrence of dislocation slip and climb may be reduced, if the
proper materials are chosen. Ceramics make a good choice. In fact, vacancy content
is not only dependent on the material chosen, but also on the component’s service
temperature. Vacancy-assisted creep occurs in Coble creep (grain-boundary
diffusion) and in the Nabarro-Herring creep, as well, which is vacancy-diffusion-
controlled. Designers must be familiar with the properties of dislocations and
vacancy contents and with their distributions in the structure, as well as the
expected changes that may occur in the wake of long-term exposure to stress and
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temperature. A good designer is an expert regarding the roles of dislocations,
vacancies, and the various obstacles that hinder dislocation motion, such as: grain
boundaries (in polycrystalline materials), precipitates, solutes, and impurity parti-
cles, and strain fields, resulting from other dislocations or pile-ups, that also retard
dislocation motion. Recall that dislocations may glide (leading to slip in their
planes), climb, and cross-slip; by successfully hindering or overcoming such
motions—the creep-resistance and the lifetime of a material are increased.
Furthermore, different types of vacancies in ceramics carry different charges; each
existing or formed vacancy must be balanced to preserve neutrality. For example,
even in oxide ceramics, oxygen vacancies may exist. There is a correlation between
dislocation climb and the vacancy content. The ability of a dislocation to climb
requires that vacancies be present in its immediate vicinity. Thus, for effective, ideal
creep design, developed materials should have low-dislocation and vacancy
contents.

11.3 Various Conditions

Materials exposed to creep operate under various conditions of temperature,
time, structure, and environment, as well as being affected by the type of defor-
mation process in action. Some of these factors are briefly and generally considered
below.

11.3.1 Temperature

Generally, creep is related to a material’s melting point, Tm. The potential expo-
sure temperature applied, to avoid creep failure, depends on the melting point of
the tested material. The higher the melting point, the longer the expected lifetime.
Ceramics are characterized by high-melting points; thus, ceramic components are
frequently used for design purposes. The idea of choosing high-melting point
materials is a consequence of the fact that diffusion processes are related to
temperature-dependent vacancy concentrations. The rate of diffusion (or
self-diffusion) is slower in high-melting materials. As a general rule, the demar-
cation temperature for creep is 0.5Tm; however, a safe temperature for avoiding
creep is usually stated as 0.3Tm. Creep below or at 0.5Tm is termed ‘low tem-
perature creep,’ and since diffusion is relatively lower at such temperatures, the
creep occurring at this temperature interval is not diffusion, but rather to other
mechanisms associated with creep. Despite the extreme importance of avoiding
creep, creep-related failure, and lifetime-extending material design for
creep-resistance still rely mainly on parametric methods or on short experimental
tests, since no theoretical functions are available yet due to the complex nature of
creep.
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11.3.2 Time

As indicated many times earlier, creep is a time-dependent deformation. Fortunately
for designers, failure in brittle materials does not occur suddenly (as it does under
tension and other types of deformation). Over time, creep strain develops in a
material exposed to some stress at the temperature of application, depending on the
duration of exposure. In order to better visualize the creep process, remember that
stress and temperature determine the creep rate. The creep rate may be given by the
known function, _e ¼ f ðt; T ; rÞ, which tells the designer that time, temperature, and
stress must be considered as acting in concert, if a successful creep-life is to be
attained.

11.3.3 Structure

Creep is a complex type of deformation that depends on many parameters, thereby
complicating the prediction of a material’s lifetime. One such parameter is the
structure of the material. The same material may begin as an amorphous material
yet end up as a single crystal. The wide spectrum of structural variation within the
same material imposes a challenge for designers, not only in choosing the design
material, but also when determining its best structural type for the intended
application.

Microstructural changes in a material can occur during exposure to certain
temperatures, especially in the long-term, as in the case of creep, even in the
absence of an applied stress. Such changes are accelerated and magnified when
stress acts simultaneously with temperature over time. Designers must be aware of
these potential, microstructural changes occurring under creep conditions (due to
temperature, time, and stress) when selecting their creep-resistant material.
Structural stability may be improved by introducing certain additives to ceramic
materials, which a priori strengthens them even before exposure to creep condi-
tions. These additives, such as solutes, have a stress field associated with them, thus
hindering dislocation slide and climb motions. Additionally, the dispersion of
insoluble, hard constituents (mostly as precipitates) throughout the material struc-
ture, such as oxides, nitrides, or carbides (usually high-melting) also hinder dis-
location motion.

Moreover, one should not forget the importance of grain size in polycrystalline
structures. Designers must be familiar with the effects of grain size, in general, and
regarding creep, in particular. While small-grained structures are known to
strengthen materials, effective creep processes prefer large-grain sizes.
Extrapolating the grain size to such an extent that only one grain is present—the
single-crystal case—represents, therefore, the culmination of creep resistance. The
contradictory effect of grain size, regarding strength and creep resistance, results
from the fact that the very large number of grain boundaries of the small grains are
sources of vacancies. Vacancies generated at grain boundaries are responsible for
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climb, which is a major creep mechanism. Reducing the grain size diminishes the
generation of vacancy formation by climb, thus producing more effective creep
resistance. At the extreme, one-grained materials (single crystals) are the best
performing structures. Thus, when polycrystalline structures are chosen (perhaps
due to cost considerations), a compromise must be struck between the strengthening
effect of small-grain size and the desire to improve creep resistance by the use of a
large-grained structure (to reduce the number of vacancies required for climb).
Nevertheless, and in spite of cost considerations, single crystals are used for special
applications, as in turbine blades. Wherever possible, directionally solidified
structures replace single-crystal structures. More consideration should be given to
the orientation of the single crystals.

11.3.4 Environment

A material designer should be thoroughly familiar with each specific ceramics of
interest; there are no general shortcuts. Roughly speaking, ceramic materials can be
oxide and non-oxide ceramics. Non-oxide ceramics include technologically
important carbides and nitrides, each responding differently to environmental effects.
Materials operating at ambient conditions are influenced mainly by oxygen and
moisture that depend on the operational temperature. The only common feature of a
wide range of ceramics, each of which responds uniquely, is that their strength
properties and corrosion resistance are environmentally sensitive. One of the most
widely investigated effects on ceramics is the deleterious influence of H2O on their
properties; H2O is harmful to all ceramics, irrespective of whether they are oxide or
non-oxide ceramics. Crack propagation in ceramics is influenced by environmental
phenomena and, therefore, one of the many techniques for understanding those
environmental effects is by the investigation of crack propagation, which is envi-
ronmentally sensitive for predicting lifetimes (the time-to-failure). The adverse effect
of oxygen contamination in non-oxide ceramics, such as in carbides and borides, is
well documented. An example to be cited is TiB2. In this case, even during the
processing and densification of the TiB2 [1], oxygen is very harmful. Thus:

(i) oxygen promotes grain coarsening in hot pressing at 1400–1700 °C and limits
the maximum attainable density. Be2O3 is formed, which can be reduced by
the addition of C;

(ii) in case of pressureless sintering at 1700–2050 °C, oxygen remains as titanium
oxides, increasing grain and pore coarsening, and limiting the attainable
density. To inhibit abnormal grain growth, the total oxygen content of the
powder should be limited to less than 0.5 wt% O, or strong reducing additives
must be added to remove the TiOx below 1600 °C.

The adverse effects of oxygen contamination on densification in other non-oxide
ceramics (SiC, B4C, etc.) are similar. When, for example, SiC is oxidized, a layer of
SiO2 is formed.
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Oxide ceramics, such as YTZ [2] are susceptible to humid environments and
water vapor over a temperature range of 65–500 °C, but, in aqueous solutions, the
effect is more catastrophic at lower temperatures and over shorter times.

Hydrothermal corrosion over the 65–500 °C temperature range has been
observed in silicon–nitride ceramics. The experimental observations on aging
indicate that water or water vapor enhance the tetragonal-monoclinic transformation.

In summary, some examples of the effects of major ambient components
(oxygen, water vapor) have been briefly presented. Designers should become
familiar with their effects on creep resistance and utilize them in their designs for
material longevity. Even ceramic materials that are very important for
high-temperature applications are likely to be influenced by the harmful effects of
the environment during their long-term exposures when loaded under creep con-
ditions. Furthermore, care must be taken not to expose these ceramic components to
harmful environmental effects during their manufacture from their respective
powders.
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Part II
Creep in Technologically

Important Ceramics

In light of the information currently available in the literature, most of the general
observations about creep will now be discussed in regard to a few significant,
selected ceramics. As such, Chaps. 12–14 are devoted to the oxide ceramics: Chap.
12 discusses creep in alumina; Chap. 13—magnesia; and Chap. 14—zirconia.
Then, chosen from among the carbide ceramics, SiC and BC are the topics of
Chaps. 15 and 16. Finally, Si3N4 is considered in Chap. 17.
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Chapter 12
Creep in Alumina (Al2O3)

Abstract Creep in alumina and alumina composites are discussed in this chapter.
Relevant relations for creep specifically related to this technologically important
ceramic are presented. Both polycrystalline and single crystal experimental details
are considered. Creep tests in tension and compression are noted. Steady state creep
rate is indicated and the parameters Q (activation energy), p (grain size exponent),
and n (stress exponent) were evaluated.

12.1 Creep in Alumina

As indicated earlier in Chap. 4, the steady-state creep rate was given by Eqs. (4.1) and
(4.2). This relation was also used by Chokshi and Porter and presented in Eq. (12.1),
with G as the shear modulus, instead of the μ found in Eqs. (4.1) and (4.2):

_e ¼ AGb
kT

D0 exp � Q
RT

� �
b
d

� �p r
G

� �n
ð12:1Þ

A is a dimensionless material constant, b is Burger’s vector, Doexp(-Q/RT)
represents the diffusion coefficient, p is the inverse grain size exponent, d is the
grain size, and n is the stress exponent, σ being the stress. Equation (12.1) suggests
a diffusion-controlled creep mechanism. The creep mechanism and rate of its
control are usually determined experimentally by evaluating the values of Q, p and
n, and by comparing the resulting values with the theoretical one. It has been
claimed that there are indications in fine-grained alumina that, under typical
experimental conditions, n * 1 to 2 and p * 2 to 3. Various rate-controlling
mechanisms have been suggested for creep, among them a diffusion-controlled
creep process (Folweiler), GBS (Fryer and Roberts), and interface-controlled dif-
fusional creep mechanisms (Cannon et al.), and so on. In Eq. (12.1),
diffusion-controlled creep is indicated.

Figure 12.1 shows several creep rate curves at various stresses. These curves
relate to polycrystalline alumina specimens doped with 0.25% MgO. The
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as-received material had a uniform grain size and no glassy phase was observed by
TEM. The determined grain size was 1.6 ± 0.15 μm. The specimens were
deformed by four-point flexure with outer and inner spans of 19 and 6.4 mm,
respectively. In addition to the measurements made at 1673 K, creep measurements
were performed at other temperatures as well, in order to evaluate the activation
energy for creep in alumina. To evaluate the stress exponent strain rate versus
stress, plots were constructed from the creep curves in Fig. 12.1. These plots are on
a logarithmic scale and are exhibited in Fig. 12.2 for 1673 K. In Fig. 12.1,
second-stage creep for the stresses 19.8 and 6.8 MPa are not observed.

Equation (12.1) indicates that, for a given stress and temperature, the creep rate
decreases with an increase in grain size. This explains why large grain size mate-
rials are preferentially used to decrease the creep rate. In fact, single crystals make
the most desirable applications for better creep resistance, thought they are costly.

The apparent activation energy for creep was evaluated from experiments per-
formed at a constant stress of 75 MPa at three temperatures of 1623, 1673, and
1723 K, respectively. A typical plot was constructed for the steady-state creep rate
versus the inverse temperature, as seen in Fig. 12.3.

From the Arrhenius plot of Fig. 12.3, the apparent activation energy is
expressed as:
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Fig. 12.1 The variation of
strain rate with strain for
polycrystalline alumina
deformed at a temperature of
1673 K, d = 1.6 μm. Values
of strain rate, σ, (o) 135 MPa,
(□) 75.5 MPa, (Δ) 50.7 MPa,
(◊) 19.8 MPa and (∇)
6.20 MPa. Chokshi and
Porter [5]. With kind
permission of Dr. Chokshi
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Qa ¼ �R
@ ln _e
@ð1=TÞ ð12:2Þ

The true activation energy is evaluated from:

Qt ¼ �R
@ lnD
@ð1=TÞ ð12:3Þ

D is given as D0exp(−Q/RT), as expressed in Eq. (12.1). The true activation
energy evaluated is 635 kJ mol−1. It is apparent from Fig. 12.1 that transient creep
extends to *1% strain, after which the creep rate decreases. Following primary
stage creep, a well-developed second-stage creep is observed at high stresses. The
stress exponent determined is 1.9. The experimental creep rate was higher than that
of the Coble creep, as seen in Fig. 12.2. Thus, the creep mechanism in fine-grained
alumina is diffusion controlled.

2 × × 10-8

10-7

10-6

10-5

10-4

5 × × 10-3

(sec-1)ε
.

σ (MPa)
1.0 10 102 103

1.9

1

Fig. 12.2 The stress–strain rate relationship for polycrystalline alumina deformed at a temperature
of 1673 K, d = 1.6 μm. (- - -) Nabarro-Herring [14, 20], ( ) Coble [22]. Chokshi and Porter
[5]. With kind permission of Dr. Chokshi
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12.2 Creep in Alumina Composite

As previously stated certain selected materials are often toughened (improving their
general and mechanical properties and performance) for use as composites.
Alumina is no exception and various alumina-based composites are in practical use,
such as zirconia-toughened alumina (ZTA) composite. Equation (12.1) was also
used to analyze the creep data of alumina-toughened zirconia (ATZ), the only
difference being in the grain size exponent, indicated by the symbol m, rather than
p. The experimental values of m, p, and Q (Eq. 12.2) are:

0�m� 3; 0:7� n� 3:30Q� 295� 840 kJ mol�1

It was found that rate-controlling creep mechanisms are either the lattice
mechanism or the boundary mechanism. The lattice mechanism is intergranular,
grain size independent, meaning that the exponent m equals 0, while the boundary
mechanism involves grain size-dependent grain boundaries, where m is 1–3.
Theoretically, it is possible to identify the active creep mechanism by analyzing the
creep data for m, n, Q and D0; however, in practice, this is difficult to do, since the
mechanism also depends on composition and microstructure, making additional
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Fig. 12.3 The variation in steady-state strain rate with reciprocal temperature for polycrystalline
alumina deformed at 75.5 MPa. Q = 625 ± 70 kJ mol−l. Chokshi and Porter [5]. With kind
permission of Dr. Chokshi
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mechanisms possible. Such mechanisms were discussed in Chap. 3 and were also
observed in alumina polycrystals.

Alumina and ATZ composite are compared below and Table 12.1 summarizes
the details of the specimens discussed below. Information on zirconia is included as
well. Creep tests were performed under varying stresses in the range of 50–
200 MPa at temperatures up to 1400 °C in air. Flexural strengths were measured at
room temperature with a four-point bending fixture having a 36 mm outer span and
an 18 mm inner span. In order to obtain dimensional stability of all the parts of the
creep testing machine, the system was maintained for one hour at the operating
temperature before the creep tests were performed. Then, the load was increased
uniformly to the nominal value. The applied load and specimen temperature were
recorded as functions of time.

Table 12.1 Designation, composition and flexural strength of studied materials, and creep
parameters Q and n. Chevalier et al. [4]. With kind permission of Elsevier

Ceramic system Nomenclature,
preparation
conditions

Composition rf at RT
(MPa)

Q (kJ/mol) n

Alumina A, sintered
1600 °C
A1g, sintered
1650 °C
A3

Purity > 99.98%
Purity > 99.98%
Purity C99 98%
1000 ppm MgO

415 ± 10
470 ± 20
380 ± 20

630 ± 10
650 ± 20
630 ± 10

2.5 ± 0.2

Zirconia Z1, sintered
1750 °C

Mg PSZ
3% wt MgO,
purity > 99.9% Mg
PSZ

410 ± 40

Z5, sintered
1750 °C

Mg PSZ
3% wt MgO,
purity > 99.6% Mg
PSZ

620 ± 20

ZFME,
sintered 1750 °
C

Mg PSZ
4% wt MgO,
purity > 99.6% Mg
PSZ

375 ± 5 1.4 ± 0.2

ZFYT TZP
3% mol Y2O3

1000 ± 20

Zirconia-toughened
alumina

Al-10Z1,
sintered 1600 °
C

Al2O3: Al 10% vol
Zro2:Z1

540 ± 20 760 ± 20 2.5 ± 0.2

Al-10ZY3,

sintered 1600 °
C

Al2O3:Al
10% vol finer
ZrO2:Zl

430 ± 20

Al-10Z4,
sintered 1600 °
C

Al2O3: Al
10% vol finer ZrO2

(Z4)

550 ± 20

A2-10Zl,
sintered 1600 °
C

Al2O3:A2
purity > 99.6%
1000 ppm Mgo
10% vol Zro2Zl

480 ± 5
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The flexure stress on the tensile face was evaluated by the expression:

r ¼ 3PðL� lÞ
2Bw2 ð12:4Þ

P is the applied load, L the outer span, l the inner span, B the specimen width,
and w is the specimen thickness. The creep rate was measured from the deflection,
yc, at the center of the beam using Hollenberg’s method, given as:

e ¼ KðnÞyc ð12:5Þ

with:

KðnÞ ¼ 2wðnþ 2Þ
ðL� 1Þ½nþ 1� þ l2ðnþ 2Þ=2 ð12:6Þ

The constant K(n), in addition to its dependence on n, is also a function of the
spans, L and l. Hollenberg et al. have shown that, for the ratio (L/l) close to 2,
K(n) is almost insensitive to the value of n. Thus, Eq. (12.6) may be used to
evaluate ε by means of Eq. (12.5), with an approximate value of n. By iteration, a
proper value can be obtained for n, without large divergences between the final and
initially used n values. In Fig. 12.4, the steady-state creep rate is shown at 1200 °C
under a stress of 100 MPa.

The less pure alumina, A3 (see Table 12.1) indicates a higher steady-state creep
rate compared with A1 and A2, as shown in Fig. 12.4. Similarly, larger grained
alumina, A1g has a higher creep rate resistance (see Fig. 12.4). The activation
energies for the various alumina (listed in Table 12.1) were determined from the
slopes in Fig. 12.5 along with Eq. (12.2). The stress exponent, n, (Eq. 12.1) may also
be determined from the variation in the creep rate as a function of the applied stress at
the given temperature, 1200 °C (listed in Table 12.1 and shown in Fig. 12.6).

Alumina

A1g

A1 10 ZY3
A2 10 Z1
A1 10 Z4

A1 10 Z1A1

A3

Z5

Z1
ZFME

ZFYT

Steady state
creep rate

Zirconia ZTA

10-9

10-8

10-7

10-6

10-5

Fig. 12.4 Steady-state creep
rates of the 11 ceramics at
1200 °C 100 MPa. Chevalier
et al. [4]. With kind
permission of Elsevier
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The stress exponent, n, is calculated from the slope of the straight line in
Fig. 12.6 by using a least-squares method. A value of n = 2.5 ± 0.2 for A1 alu-
mina at 1200 °C is determined (listed in Table 12.1). This data on alumina is
presented for the purpose of comparing the creep properties of pure alumina with
those of ZTA composite, using data originating from tests performed in the same
laboratory, applying the same technique, by the same authors. In this case, a dif-
ferent creep behavior is also expected, as seen from the comparison of A1 alumina

100MPa
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1/T()10-4K-1)

6.66.4 6.8
10-9

10-8

10-7

10-6 A1g
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Creep rate (s-1)Fig. 12.5 Steady-state creep

rate versus 104/T with
σ = 100 MPa for Al, Alg and
A3 alumina. Chevalier et al.
[4]. With kind permission of
Elsevier
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Fig. 12.6 Steady-state creep
rate as a function of stress at
1200 °C for A1 alumina.
Chevalier et al. [4]. With kind
permission of Elsevier
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with the ZTA composite, A1-10Z1, exhibited in Fig. 12.7. The creep plot of zir-
conia is included.

This author believes that the higher creep rate of A1-10Z1, compared with that
of pure alumina, is a consequence of the higher creep rate of zirconia (as seen in
Figs. 12.4 and 12.7). Rather than increasing the creep rate of alumina, the addition
of zirconia reduces the creep resistance of the alumina. Thus, ZTA does not
improve the creep resistance of alumina ceramics. It is of interest to compare the
microstructures of the aluminas listed in Table 12.1 and illustrated in the above
Figures. The microstructures of A1 and A1-10Z1 are compared in Figs. 12.8 and
12.9. In A1 alumina, small cavities (A) appear at triple grain junctions and along
grain boundaries; cavity growth (B) and facet-sized cavities (C) may be observed.
The presence of a thin film of glassy phase at the grain boundaries and as pockets at
triple junctions are shown by TEM, as illustrated in Fig. 12.10.
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Strain (%)Fig. 12.7 Creep curves of Al
alumina, Zl zirconia and
Al-1021 zirconia-toughened
alumina at 1200 °C,
110 MPa. Chevalier et al. [4].
With kind permission of
Elsevier

Fig. 12.8 Microstructure of
Al alumina crept at 1400 °C
(ε = 2.6%) showing small
cavities at grain boundary (A),
cavity growth (B) and cavity
facets (C). Chevalier et al. [4].
With kind permission of
Elsevier
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In the ZTA, the cavities and the facet-sized flaws are already increased at
1200 °C creep, as seen in Fig. 12.9 and there were more than were found in pure
alumina. The higher creep strain indicated earlier is probably associated with the
higher degree of cavitation in the ZTA, appearing in the primary creep stage. The
addition of yttria to the ceramic (see Table 12.1, as in partially stabilized zirconia,
PSZ) did significantly deteriorate creep resistance and many long cracks appeared
on all the faces of the sample.

SEM observations showed that cracking occurs along the grain boundaries and
that the damage was homogeneously distributed within the sample. The tetragonal
zirconia polycrystal (TZP) ceramics do not show macroscopic damage, although

Fig. 12.9 Microstructure of Al-l0Z1 composite crept at 1200 °C showing the presence of
numerous cavities. Chevalier et al. [4]. With kind permission of Elsevier

Fig. 12.10 Bright field (a) and dark field (b) TEM pictures, indicating the presence of a thin
vitreous phase at grain boundary. Chevalier et al. [4]. With kind permission of Elsevier
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holes, cavities, and cracks clearly appear in SEM observations. Cracks were pref-
erentially perpendicular to the traction axis. Apparently, a general cavitation
mechanism occurs with the nucleation, growth and coalescence of cavities, which
first leads to the formation of holes and then of cracks. It is of interest to indicate the
creep rate used by Riedel and Rice for the effect of cavitation on creep, as indicated
by Chevalier et al. given by:

e ¼ es þN
2pr2

X

� �
2XdDbr
kTqðwÞ ð12:7Þ

where εs is the creep rate without cavitation, N—the volume density of cavities, r is
the cavity-tip radius, δ—the grain boundary thickness, λ is the distance between
cavities, Db—the grain boundary diffusion coefficient, Ω is the atomic volume and q
(w) = −2 lnw − (3 − w)(l − w) with w = (2 r/λ)2. Estimation of the contribution of
cavitation on creep for the A1 alumina was done by taking the following param-
eters: D = 2.7 × 10−19 m2/s; Ω = 4.2 × 10−29 m3; T = 1673 K; σ = 96 MPa;
N = 6 × l013 m−3 (measured by TEM observations); τ = 0.5 μm; λ = 6 μm;
w = l/36; q(w) = 4.28; and δ = 10−3 μm. With these values, the cavitation contri-
bution to the steady-state creep rate is *60%.

12.3 Creep in Single-Crystal Alumina

12.3.1 Compression Creep in Single-Crystal Alumina

In general, creep in single crystals is important and preferred (despite the cost) for
increasing creep resistance and eliminating GBS, in regard to the deformation mode
and the slip plane, and to determine whether a twinning mechanism is also
involved. In an α-alumina basal plane (0001) h11�20i, slip and rhombohedral ð10�11Þ
deformation twinning are the main deformation modes above 1000 °C. Clearly, slip
deformation involves dislocation glide, which is also the deformation mode in
compressive creep. Constant load was applied by compression and, since small total
strains are associated with deformation, this experiment may be considered as
having almost constant stress. A vacuum furnace was used for this creep test and
the creep rate was measured continuously. For the experimental details, one is
directed to the original work of Bertolotti and Scott.

Since basal slip is a thermally activated process, an Arrhenius-type relation may
be used, given as:

_c ¼ m exp�HðsÞ
RT

ð12:8Þ

_c is the strain rate, ν is a constant, and H(τ) is the activation energy, which is a
function of the shear stress, τ. The activation energy for basal slip in the h11�20i
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direction was evaluated in the steady-state creep region and the basal plane normal
was at 45° angles with the compression axis. The constant creep load was applied at
decreasing temperatures from 1700 to 1400 °C. The activation energy was derived
from the slope of a plot of log strain (ln _c) versus 1/T, applying a least-squares fit.
This test was performed at decreasing temperatures, since the analysis was done
assuming a constant number of dislocations. Activation energies were determined
up to a 7.5% true strain and were independent of strain over the range of experi-
ments. The relevant plot is illustrated in Fig. 12.11 and the results appear in
Table 12.2.

Figure 12.11 shows that activation energy decreases with increasing applied
stress. Three specimens indicated an agreement of slopes at 2000 psi stress.

The effect of shear stress on the measured activation energy is shown in
Fig. 12.12. The effect of resolved shear stress on the activation volume is seen in
Fig. 12.13. For the determination of the activation volume, the following relations
were used. First, a polynomial was used to fit a curve to the data:

ln _c ¼ AþB ln sð ÞþC ln sð Þ2 ð12:9Þ
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Then, the activation volume, ν*, was expressed by (Conrad et al.) as:

m� ¼ RT
@ ln _c
@s

� �
T

ð12:10Þ

The magnitude of the activation volume may be explained either by cross-slip or
by the overcoming of the Peierls–Nabarro stress–both possible mechanisms for
controlling creep. The TEM investigation does not indicate significant cross-slip
and, as such, the overcoming of a large Peirels–Nabarro stress is the most probable
mechanism in the creep of Al2O3. Large Peirels–Nabarro stresses are expected in
ionic crystals, such as Al2O3. Al2O3, grown in basal plane dislocation networks,
usually lies in the 11�20h i direction, suggesting the possibility of a large Peirels–
Nabarro stress.

Rombohedral twinning by shear stress in the ð10�11Þ plane of Al is considered to
be an additional mechanism involved in alumina creep, when the basal planes are
perpendicular to the applied compressive stress. The activation energy for rhom-
bohedral twin growth was measured from 1500 to 1700 °C, with the compression

Table 12.2 Activation energy for basal slip in Al2O3. Bertolotti and Scott [1]. With kind
permission of John Wiley and Sons

Specimen Resolved shear stress (psi) Activation energy (kcal/mol)

ST-45 1450 128

ST-43 2000 117

ST-45A 5000 94

ST-46 6500 102
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of previous investigation
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axis in the [0001] direction. For the chosen orientation, there are equal twinning
stresses on all three rhombohedral planes and no shear stress on the basal planes.
The strains used to eliminate fracture must be below 1.5% in the present case. The
results of the successful tests (without fractures) are seen in Fig. 12.14 and listed in
Table 12.3.

0
0

20

40

80

100

120

140

160

60

1.0

KRONBERG(17) LOWER YIELD, 1500OC

KRONBERG(17), UPPER YIELD, 1500OC

CONRAD, ET AL(6) SUMMARIZED DATA

2.0

RESOLVED SHEAR STRESS, T, kg/mm2

3.0 4.0 5.0 6.0

CREEP,

A
C

T
IV

AT
IO

N
 V

O
LU

M
E

, V
*/

b3

PRESENT WORK,
2 SPECIMENTS, 1500OC
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Surface damage resulting from specimen preparation may effect twin nucle-
ation even at room temperature. Therefore, careful specimen preparation must be
done. Figure 12.15 shows creep curves of identically oriented single crystals
differing only in surface preparation. As-cut specimens showed the much slower
creep than the polished ones. The orientation of these specimens was midway
between the [0001] and 20�25h i directions. Only one rhombohedral plane was
under large shear stress for twinning, whereas the basal planes were under
moderate shear stress.

The measured activation energies determine the rate-controlling mechanism
when both twinning and basal plane deformation occur. Activation energies were
measured from 1400 to 1700 °C on cut specimens oriented for concurrent twinning
and basal slip; the results are listed in Table 12.4 and the plots are shown in
Fig. 12.16.

When reviewing these experiments, it became clear that the specimen prepara-
tion induces twin nuclei, which grow during creep. As such, in specimens in which
the preparation effects were removed (by polishing) before compression, most of
the twin nuclei were also removed.

If the measured activation energy agrees with the value for basal slip and not
with twin growth (see Tables 12.3 and 12.4), then the controlling mechanism is
thought to be slip in the basal planes. The difference between unprepared and

Table 12.3 Activation energy for rhombohedral twin growth in Al2O3. Bertolotti and Scott [1].
With kind permission of John Wiley and Sons

Specimen Resolved twinning stress (psi) Activation energy (kcal/mol)

ST-38X 800 114

ST-37 1400 84

ST-28 3800 52
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Fig. 12.15 Creep curves for
identically oriented Al2O3

crystals at 1500 °C. Numbers
in parentheses are resolved
basal plane shear stresses in
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prepared specimens (i.e., polished) is explained on the basis of the relation between
the basal planes and the twin-matrix interface. There are three possible basal plane
slip vectors of h11�20i, but only one is common to both the twin and the matrix.
Screw dislocations having this Burgers vector can cross-slip through the interface,
but the other h11�20i dislocations are effectively blocked. Therefore, the slower
creep rate might be expected for the twinned crystals. The resolved twinning stress
is considerably larger than the resolved basal plane shear stress in this orientation,
yet the basal plane is rate controlling. Thus, basal slip is expected to be the
rate-controlling mechanism at high temperatures for all but a few orientations in
which the shear stress is very small or zero.

Table 12.4 Activation energy for creep in Al2O3 oriented for basal slip and rhombohedral twin.
Bertolotti and Scott [1]. With kind permission of John Wiley and Sons

Specimen Resolved basal plane shear stress (psi) Activation energy (kcal/mol)

ST-55 1000 131

ST-54 2000 125

ST-57X 3000 114

ST-54A 5000 104
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Appreciable deformation can occur by twinning. Crack formation and fracture in
Al2O3 is associated with twinning. Nucleation of cracks can occur by intersecting
twins. The controlling factor is whether the concentrated stress at the twin inter-
section is large enough to propagate the crack. A microstructure showing cracks at a
twin intersection is visible in Fig. 12.17. Twins produced in as-cut specimens are
usually formed after minor compression and grow thicker during continued loading.

When only one set of parallel twin planes is operating, twins may grow to
several hundred micrometers. It was observed that twins formed after fracture
looked different than those formed during creep. The former tend to be narrow and
tapered (incoherent), while the latter are thicker and not tapered. An example of
both these types of twins are shown in Fig. 12.18.

The fracture-produced twins are blocked by the creep-produced twins present
before fracture. The experimental information indicates that 1700 °C anneal does
not eliminate the surface damage that initiates twinning (twins were observed in
creep of as-cut specimens annealed at 1700 °C after diamond sawing).

To summarize this section on compressive creep—both dislocation glide and
rhombohedral twinning contribute to creep in Al2O3. In the 1400–1700 °C tem-
perature range, basal-slip-controlled creep occurred whenever there was significant
shear stress on these planes. Overcoming the Peirels–Nabarro stress is the most
probable rate-controlling mechanism. In specimens properly oriented for twinning,
only rhombohedral twinning may also be a significant mode of deformation.
Specimen surface preparation plays a key role in determining creep behavior, since
twins nucleated by surface abrasion grow under applied shear stress. As indicated,

250μm

Fig. 12.17 Cracks formed by
intersecting twins at 1500 °C.
Compression axis is vertical.
Bertolotti and Scott [1]. With
kind permission of John
Wiley and Sons
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the intersection of twins on two rhombohedral planes may cause catastrophic failure
due to crack nucleation. When basal slip and rhombohedral twinning occur con-
currently, the creep rate is controlled by basal plane slip, but the presence of twins
may substantially reduce the creep rate.

It may be of interest to note the illustration of the stereographic projection and
the shear sense for h10�11i twinning. Figure 12.19 illustrates the shear sense for
rhombohedral twinning.

The shear sense for rhombohedral h10�11i twinning is such that twinning in
alumina should occur when the basal planes are perpendicular to an applied
compressive stress. Symmetry conditions require that the second undistorted plane,
K2, be rotated clockwise while twinning.

100μm

Fig. 12.18 Tapered twins
observed after fracture in
compressive creep at 1500 °C.
The tapered twins resulting
from fracture intersect a thick
twin formed during creep.
Bertolotti and Scott [1]. With
kind permission of JohnWiley
and Sons
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The geometries of the twin and basal planes for this orientation are shown in the
stereographic projection in Fig. 12.20.

12.3.2 Tensile Creep in Single-Crystal Al2O3

Generally creep is more critical at high temperatures than at relatively low or room
temperatures. Clearly, this depends on the material’s melting point, the magnitude
of the load and the expected lifetime. Therefore, conventionally, there is an interest
in high-temperature creep. In this section, the subject is creep under tensile load.
Creep tests at high temperatures encounter some problems: (a) maintaining the
sample at the test temperature; (b) applying the stress; and (c) measuring the
extension (strain) of the specimen exposed to the high-temperature creep test. As
such, it is important to either have on hand or to design proper apparatus for
performing these creep tests under tension. Figures 12.21 and 12.22 show tensile
machines that are appropriate for creep testing and have efficient tensile grips. For a
detailed description of a relevant experimental setup, consult the original work of
Wachtman and Maxwell.
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Fig. 12.20 Stereographic
projection of crystal
orientation for concurrent
twinning and basal slip. Scott
[21]. With kind permission of
John Wiley and Sons
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A sapphire (α-Al2O3) creep curve obtained under constant load is illustrated in
Fig. 12.23. Under 300 kg/cm2 resolved shear stress, after a 142 h test, the rod did
not deform plastically. However, when the load was increased to 400 kg/cm2, creep
deformation began after 50 h and a total elongation of 1.96% occured after 435 h.
All three creep stages are seen in Fig. 12.23. Successive creep curves at 1100 °C
are shown in Fig. 12.24. A set of selective creep curves are shown in Fig. 12.25, to
show the extremes of behavior at 1000 °C. All these figures indicate increasing
creep rates initially, and all those samples that did not break within the first 100 h
showed eventually decreasing creep rates.

Studies of slip lines and orientation changes during deformation indicated that
the geometry of plastic deformation in ceramic oxide single crystals is the same as
that found in metals. It has also been shown that slip deformation in sapphire takes
place on the (0001) plane in the h11�20i direction, as indicated in the case of
α-alumina under compression on the basal plane (in Sect. 12.3.1 above).

Fig. 12.21 Creep furnace for tests on sapphire rods in tension. The top and bottom of the heating
chamber are closed with Fiberfrax, which effectively retards heat loss without constricting
movement of the sapphire rod. Details of platinum gauge are shown at right. Wachtman and
Maxwell [22]. With kind permission of John Wiley and Sons
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Moving on to tensile creep tests of single-crystal creep under tension, it is of
interest to focus on the steady-state creep in alumina. At high temperatures, plastic
deformation is accompanied by recovery. If the recovery rate is sufficiently fast, it
will balance the work-hardening rate and a steady state develops, providing the

Fig. 12.22 Grips for tensile
tests on sapphire rods.
Wachtman and Maxwell [22].
With kind permission of John
Wiley and Sons
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Fig. 12.23 Creep curve for sapphire rod SR69 in tension at 1000 °C (400 kg/cm2 resolved shear
stress). Wachtman and Maxwell [22]. With kind permission of John Wiley and Sons
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conditions for steady-state creep. Currently, the belief is that dislocation generation
and motion are associated with plastic deformation in steady-state
creep. (a) Dislocation climb involves the transport of material and, thus, the acti-
vation energy for steady-state creep is approximately equal to that of self-diffusion.
When dislocation climb becomes so rapid that it is no longer rate controlling, other
mechanisms of steady-state creep are proposed. Two important mechanisms under
consideration are (b) a microcreep mechanism and (c) the motion of dislocation
lines over Peierls stress hills. In (b), dislocation motion is hindered by an atmo-
sphere of imperfections or impurities, and the velocity of dislocation motion is
proportional to the force exerted on them. The activation energy for steady-state
creep, according to this mechanism, is usually the same as that required for the
diffusion of the relevant impurities or imperfections. Here, the dislocation motion
over the Peierls stress hills is the rate-controlling mechanism. The activation energy
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Fig. 12.24 Successive creep curves for sapphire rod SR55 in tension at 1100 °C.
A 0.69 × 108 kg/cm2, B 0.93 × l03 kg/cm2, C 1.23 × 103 kg/cm2 (sample broke in cool
portion). Wachtman and Maxwell [22]. With kind permission of John Wiley and Sons
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Fig. 12.25 Creep curves for saphire in tension at 1000 °C. A SR51, 0.92 × 103 kg/cm2, B SR49,
0.80 × 103 kg/cm2, C SR44, 1.01 × 103 kg/cm2, D SR40, 0.84 × 103 kg/cm2, E SR44,
1.20 × 103 kg/cm, F SR38, 1.06 × 103 kg/cm2, G SR44, 1.50 × l03 kg/cm2. Wachtman and
Maxwell [22]. With kind permission of John Wiley and Sons
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for steady-state creep is determined by the Peierls force of the material. In non-
metals, such as alumina, the Peierls stress is high and it may be expected that the
Peierls stress mechanism is the rate-controlling mechanism.

A typical creep curve for sapphire is shown in Fig. 12.26. The steady-state creep
rate depends on the stress at a constant temperature and on the temperature at
constant stress. Such dependencies appear in Figs. 12.27 and 12.28. Figure 12.27 is
a plot of a constant temperature, 1823 K, as a function of resolved shear stress,
while Fig. 12.26 shows the steady-state creep rate as a function of temperature.

Having already referred to steady-state mechanisms, now they may be inspected

(a) The Dislocation Climb Mechanism

One may assume that during high-temperature creep by means of a dislocation
climb mechanism, a dislocation can climb perpendicular to the slip plane via
vacancy diffusion. A further assumption is that equilibrium is established along the
dislocation lines during climb. As such, (according to Chang following Weertman)
for the steady-state creep rate one obtains:
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Fig. 12.26 Typical creep
curve, sapphire
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Chang [3]. With kind
permission of AIP Publishing
LLC

100
SAPPHIRE (1823 °K)
RUBY (1823 °K)

10

1
0.1 1.0

RESOLVED SHEAR STRESS (108 dynes/cm2)

‘‘S
T

E
A

D
Y

- 
S

TA
T

E
” 

C
R

E
E

P
 R

A
T

E
 (

10
-7

/s
ec

)

10.0

Fig. 12.27 ‘Steady-state’
creep rate versus applied
resolved shear stress, sapphire
and ruby (1823 K). Chang
[3]. With kind permission of
AIP Publishing LLC

210 12 Creep in Alumina (Al2O3)



_e ¼ 6p2ms2
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where ν is the vibrational frequency of a vacancy, τ is the resolved shear stress, μ is
the rigidity modulus, b is the Burgers vector length of a dislocation, ΔS is the
entropy, ΔH is the activation energy for self-diffusion, and M is the average density
of the Frank-Read sources. T and k have their usual meanings of ‘absolute tem-
perature’ and the ‘Boltzman’s constant,’ respectively.

When the jog formation energy is high, so that equilibrium vacancy concen-
tration cannot be maintained along the dislocation lines (due to the presence of only
a few jogs), steady-state creep is given by:
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L is the half-width between the Frank-Read sources, ΔS* and ΔH* are the sums
of the entropies and the activation energies for self-diffusion and jog formation,
respectively. Equation (12.11) is applicable when the probability that a jog exists in
a dislocation segment of length L is greater than unity. Expression sinhx ffi x is
applicable when (x ≪ 1) is satisfied and when the applied stress is on the order of
108 d/cm2. Then, Eq. (12.11) may be simplified as:

_e ¼ 72:4
m2b3s9

k2T2l7M

� �1=2

exp
DS
k

� �
exp �DH

kT

� �
ð12:11:1Þ

According to Eq. (12.11.1) at constant temperature:

_e ¼ cons tan tðsÞ9=2 ð12:11:2Þ

The constant being:

cons tan t ¼ 72:4
m2b3

k2T2m7M

� �1=2

exp
DS
k

� �

while at constant stress:

_e ¼ cons tan tð Þ 1
Tl7=2

exp �DH
kT

� �
ð12:11:3Þ

The constant is clearly given by:

cons tan t ¼ 72:4
m2b3s9

k2M

� �1=2

exp
DS
k

� �

The plot of Eq. (12.11.2) appears in Fig. 12.27. The slope derived for sapphire
(single crystal alumina is 4.5, which agrees well with the expected value of 9/2.
Regarding Eq. (12.11.3), throughout these experiments, T and τ are negligibly small
and, as such, the equation becomes:

_e ffi cons tan tð Þ exp �DH
kT

� �
ð12:11:4Þ

The plot of this function was shown in Fig. 12.28, yielding a value of
ΔH = 7.8 eV for alumina. The activation energy for self-diffusion, measured
indirectly from sintering data is 7.0–7.8 eV. The activation energy for the dif-
fusion of oxygen in Al2O3 is 7.5 eV. Thus, it appears that the activation energy
for steady-state creep in Al2O3 single crystals is almost equal to that of
self-diffusion. This suggests that the steady-state creep mechanism in Al2O3

single crystals is probably the dislocation climb mechanism. In order to use

212 12 Creep in Alumina (Al2O3)



Eq. (12.11.1), the density of the Frank-Read sources, M, and the entropy term,
Δs/k, are required. Assuming the respective values of M * 1011 cm−3 and
Δs/k * 20, one obtains a reasonable agreement between the experiments and the
theories.

(b) The Viscous-Drag Mechanism

The viscous drag mechanism represents the hindering effect of imperfections on
dislocation motion. Since the activation energy of steady-state creep is high, a
viscous drag mechanism in dislocations versus impurities is unlikely. It is more
likely that lattice imperfections act as dragging points, hindering dislocation
motion. An example of such a mechanism is given in Fig. 12.29, which illustrates a
moving dislocation.

The mean distance between the dragging points is l, b is the Burgers vector, and
τ is the resolved shear stress. The steady-state creep rate may be expressed as:

_e ffi 2kKb2m0 exp �DF
kT

� �
sinh

lb2s
kT

� �
ð12:13Þ

K is the total free length of dislocation per unit volume (106 em−3); b is the
Burgers vector (8.22 × 10−8 cm); ΔF is the free energy of activation; ν0 is the
vibrational frequency of an atom (1013/s); k is Boltzmann’s constant
(1.38 × 10−16 ergs per deg); and λ is a correction factor converting shear strain to
tensile strain ((3/2))1/2 for rods with a basal plane inclined at 30° from the rod axis.
Expressing ΔF as ΔH-TΔS and sinh (lb2τ/kT) as ffi 1/2exp(lb2τ/kT) for lb2τ ≥ kT,
Eq. (12.13) to be written as:

_e ffi kKb2m0 exp
DS
k

� �
exp �DHþ lb2s

kT

� �
ð12:14Þ

A plot of Eq. (12.14), as log _e versus τ at constant temperature, should provide
the slope:

l

b

τ

Fig. 12.29 Moving
dislocations with dragging
points. This schematic
drawing follows Chang [3]
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lb2=kT ð12:14:1Þ

and an intercept (extrapolated to zero) of:

log kKb2m0
� 	þ DS

k

� �
� DH

kT

� �
ð12:14:2Þ

A plot of log _e versus 1/T at a given stress, instead of τ, yields a slope of:

�DHþ lb2s
kT

ð12:13:1Þ

and an intercept (extrapolated to 1/T = 0) of:

log kKb2m0
� 	þ DS

k
ð12:13:2Þ

The mean dragging distance, l, may be obtained from Eq. (12.14.1). Quantity
ΔH may be evaluated using Eqs. (12.14.1) and (12.13.1) and also independently
from the difference in Eqs. (12.13.2) and (12.14.2). Knowing ΔH enables the
determination of ΔS/k, either from Eq. (12.14.2) or (12.13.2).

The facts that the main distance between the dragging points is on the order of
hundreds of angstroms and that the activation energy should be the same as for
self-diffusion makes this mechanism doubtful at present, until future research
proves the validity of findings based on this mechanism.

(c). The Peierls Stress Mechanism

According to Weertman, in cases where the Peierls mechanism is controlling
creep, steady-state creep may be expressed as:

_e ffi 12s5c2a2

l6b5M

� �=2

exp � Q
kT

� �
exp

psQ
2s0kT

� �
ð12:15Þ

where a is the distance between the Peierls hills, Q is the barrier to dislocation climb
over the Peierls hills, and τ0 is the Peierls force. Seeger relates Q and τ0 by:

Q� 4ab
p

� �
2ls0ab
5p

� �1=2

ð12:16Þ

It is difficult to evaluate the Peierls force, τ0. Assuming that Q is equal to
ΔH (experimental: 7.8 eV), Eq. (12.16) provides for a Peierels force
of *2 × 109 d cm−2. This value is about a factor of 107–108 higher than the value
calculated by means of Eq. (12.15), suggesting that the Peierls stress mechanism is
not rate controlling in the steady-state creep of Al2O3 single crystals.

214 12 Creep in Alumina (Al2O3)



12.4 Creep Rupture in Alumina

Certainly, failure by rupture can occur when specimens are exposed to tensile or
flexural loads. Such failures and the various responses of specimens to various
stresses should be studied and understood. At the core of rupture, and/or other
types of creep failure, are cracks which nucleate, grow and ultimately leading to
fracture. The interest in these properties is a consequence of the desire to
develop structural ceramics for high-temperature applications having lifetimes
of many thousands of work hours. Tests for such extended periods are not
practical and, therefore, creep components are designed for short-term tests
(long-term tests are costly). Thus, the factors controlling the propensity
for creep rupture are of great interest for an understanding of the basic creep
process. It is known that Al2O3, by itself, is not ideal for high-temperature
applications and that the use of various additives is common (examples are
considered later on). It is easier to gain a fundamental understanding of
creep, failure and even microstructure without involving complications caused,
for instance, by alloying. To this end, the next section considers unalloyed
Al2O3.

These experiments on hot-pressed alumina were performed at lower tempera-
tures and strain rates than in earlier ones (Dalgleish et al.; Johnson) to eliminate
short-time failure and to extend the creep test procedure. Two kinds of specimens
were used, one with 0.3% MgO, to aid sintering (termed AVCO) and a second
having only 200 ppm MgO. Both had a residual porosity of <0.05% and the grains
were equiaxial, without detectable grain-boundary glass. Flexural and tensile tests
were performed in air and deformation was monitored continuously by exten-
someters. Most of the experiments were performed by the application of a single
stress to fracture but, in some tests, incremental stress changes were applied in order
to determine the creep-test exponent. Some compressive tests were also performed.
To eliminate swelling due to trapped gas, the tests were performed at 1250 °C and
below (at 1350 °C gas trapping occurs). In Fig. 12.30, flexural creep results are
shown for both alumina-type materials. Typical creep curves are seen for flexural
creep tests at 1150 °C.

The outer tensile strain, ε, is calculated from the 3-point probe displacements
using the analysis of Hollenberg et al. The stress at steady state is:

r ¼ 2nþ 1
3n

rel ð12:17Þ

where n is the stress exponent: for ARCO it is 1.8 ± 0.2 and for the AVCO
alumina it is 2.0 ± 0.2. The creep rate data are plotted in Fig. 12.31.

Power law creep was observed with the indicated exponents and the activation
energies are 390 and 480 kJ mol−1 for the ARCO and AVCO aluminas, respec-
tively. The failure strain, at about 175 MPa, sets in leading to fracture in flexure
tests, as shown in Fig. 12.32.
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Flexural stress rupture in both aluminas occurred at very low strains, under
1%, within very short times (typically less than 2 h); results are plotted in
Fig. 12.33.

Furthermore, tests were done applying tensile stress at 1250 °C. As opposed to
bend tests, in these experiments, the creep curves showed very little evidence of
primary creep. This may be seen in Fig. 12.33. Also very little tertiary creep is
observed before failure. The steady-state creep data are summarized in Fig. 12.35.
These data were obtained from both fixed stress and stress change tests. The stress
exponent for tensile creep is 1.8, the same as that obtained from the compression
and flexural tests (Fig. 12.34).

The failure strains, both true failure strain and longitudinal strain, as functions of
strain, are illustrated in Fig. 12.36. These strains are:

.004

200 MPa

175 MPa
150 MPa

100 MPa

.06

point

AVCO HPA  

bending4

1150°C

point
AVCO HPA  

bending4
1150°C

190MPa

.002
ε

ε

0

.03

0
0 120000. 240000

0 1000

t (s)

t (s)

(a)

(b)

2000

Fig. 12.30 Flexural creep
curves in AVCO alumina at
(a) high stresses and
(b) intermediate stresses. The
strain and steady-state stresses
are calculated for a stable
neutral axis and a stress
exponent of 2.0. Robertson
et al. [20]. With kind
permission of John Wiley and
Sons

ef ¼ ln
A0

Af

216 12 Creep in Alumina (Al2O3)



10-5

10-6

(s-1)

10-7

10-8

80 150
σ (MPa)

ε

(s-1)

ε

(a)

(b)
σ (MPa)

100 200

80 150100 200

10-5

10-6

10-7

10-8

point
AVCO HPA  

bending4
1150°C

point
ARCO HPA  

bending4
1150°C

.

.

Fig. 12.31 Flexural creep
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and:

ef ¼ ln
lf
l0

The failure strain is about 9% at high stresses but, at lower stresses, it increases
to 17%.

The stress rupture results may be seen in Fig. 12.37.
Two regimes may be seen in Fig. 12.37. At the two highest stresses, there is a

relation of the form tf * σ−m, where the stress exponent is m * 2.5, while at the
lowest stress range, it is *1.8 and the time to failure is longer. The stress levels to
failure in these two regimes are 80 and 55 MPa, respectively, and between
them lies a region in which the time-to-failure increases rapidly with decreasing
stress. Stress rupture is a consequence of crack nucleation, its growth leading to
fracture. A sequence of micrographs of high-temperature creep rupture appear in
Fig. 12.38.
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A ceramic material may contain pre-existing flaws of sufficient size, so that the
initial stress intensity factor, Ki, is greater than the threshold intensity factor, Kth,
and when cracks tend to blunt, they lead to thickening without significant growth.
In this case, creep rupture is considered to be controlled by crack growth with a
consequent short life to rupture. However, when the initial flaws are small and
blunting occurs, rupture becomes controlled by creep damage. This creep rupture
duality is illustrated schematically in Fig. 12.39.

The concept of duality in stress rupture was also indicated in a hot-pressed
Al2O3/1/4MgO tested at 1250–1300 °C by flexure at a constant peak stress in air.
This is shown in Fig. 12.40, where the stress, σ, is plotted against the rupture strain,
εf. The separation of the results indicated in Fig. 12.40 into two groups is obvious:
the first group exhibits failure strains of *≤ 1%, while in the second group
shows *≥ 8%.

It has been also observed that the rupture strain in the specimens that exhibit
large deformation before failure varies with the stress as a simple product, as
illustrated in Fig. 12.41.

SEM micrographs of the failure modes discussed above are seen in Fig. 12.42.
Damage observation by a series of SEM micrographs are illustrated in

Figs. 12.43, 12.44, 12.45, 12.46, 12.47 and 12.48. In Fig. 12.43 the flaw consisted

Fig. 12.38 Scanning electron micrographs of sequence involved in high-temperature rupture,
showing a crack initiation at large-grained heterogeneity, b coplanar crack propagation into
damage zone, c shear band formation at arrested crack, and d failure by damage coalescence across
shear bands. Dalgleish et al. [9]. With kind permission of John Wiley and Sons
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of either a large-grained region (A) or a region beneath the tensile surface. A region
of cavity damage is seen around the failure origin in (B), which contains isolated
cavities (on the two grain interfaces). This may indicate creep crack growth prior to
rupture. However, shear bands were observed on the fracture surface seen in
Fig. 12.45. These nucleated on both the tensile side and side surfaces at a strain
of *≥ 3%. The number of shear bands increased with strain. Most of the bands
were found to initiate at large-grained microstructural heterogeneities as seen in
Fig. 12.44.

Once the shear bands were formed, they extended rapidly to a distance of � 3R,
R being the heterogeneity radius. Thereafter, further growth was minimal. With
more increase in strain beyond *4%, cracks were propogated across the bands (see
Fig. 12.45). It was also observed that the large-grained heterogeneities were subject
to cracking at very small strains (≤1%). Suggestions were put forward that prior
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Fig. 12.41 Plot of product of stress and failure strain, σεf, as a function of stress, σ, for large-strain
failures, revealing that the product is approximately constant in this failure regime. As seen in the
figure, σεf is � 20 MPa. Dalgleish et al. [9]. With kind permission of John Wiley and Sons

Fig. 12.42 Scanning electron micrographs of failures in two regimes of behavior: a short-term
failure, showing that rupture occurs from a single flaw with no evidence of creep damage, and
b long-term failure, showing rupture by coalescence of creep damage across shear bands.
Dalgleish et al. [9]. With kind permission of John Wiley and Sons
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cracking might be involved in the shear-band initiation process. Appreciable coa-
lescence of the damaged shear bands was observed, as seen in Fig. 12.47. This
coalescence occurred either as interband coalescence (Fig. 12.47a) or as coales-
cence with an edge crack (Fig. 12.47b). Failure surfaces indicate that the shear
bands that caused rupture are approximately normal to the tensile surface, visible in
Fig. 12.48.

Concerning rupture, crack growth may be described in the crack propagation
region, where Ki > Kth, given as:

da
dt

¼ m0
K
Kc

� �n

ð12:18Þ

ν0 and n are material and temperature-dependent parameters, respectively (as dis-
cussed earlier). Creep-crack growth in linear material predicts that n � 1 and ν0 is
given by:

m0 ¼ F z; k=lð Þ=gZ ð12:19Þ

η is the viscosity of the material, z is the grain facet in the damage zone, λ is the
spacing between cavities, l is the grain facet length, and F is a function plotted in

Fig. 12.43 Scanning electron
micrographs of a
large-grained failure origin in
stress-controlled rupture
regime: a large-grained zone;
b slow-growth regime outside
large-grained zone, showing
cavities on two-grain
interfaces. Dalgleish et al. [9].
With kind permission of John
Wiley and Sons
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Fig. 12.49. At a test temperature of 1300 °C, the ν0 for alumina, when z � 1 and
λ/l = 1/10, was determined to be 2 × 10−8 m s−1.

K ¼ 2=
ffiffiffi
p

p� 	
r

ffiffiffi
a

p ð12:20Þ

The lifetime is predicted to vary according to:

tf ¼
ffiffiffi
p

p
Kc

ffiffiffi
p

p
Kc

2r

� �
� ffiffiffiffiffi

a0
p� �

=rm0 ð12:21Þ

or:

tfrffiffiffiffiffi
a0

p ¼ A=r
ffiffiffiffiffi
a0

pð Þ � B ð12:22Þ

with A = π/Κc
2/2ν0 and B ¼ ffiffiffi

p
p

Kc=m0 which are material parameters. The short life
failure data are shown in Fig. 12.50 and are compared with predicted rupture times
(2 × 10−8 m s−1) obtained from crack growth measurements. The predicted rupture
time consistently exceeds the measured values.

Fig. 12.44 Scanning electron micrographs of shear band nuclei, showing a large-grained region
and b nickel-rich zone. Dalgleish et al. [9]. With kind permission of John Wiley and Sons

224 12 Creep in Alumina (Al2O3)



It can thus be concluded, in regard to the dual creep rupture concept, that
creep-damage-controlled creep rupture at stress intensities below the crack-blunting
threshold is characterized by a simple failure law of σεf = constant. At stress
intensities above the blunting threshold, creep rupture is determined by the growth
of pre-existing flaws in the material.

Fig. 12.46 Cavities on
two-grain interfaces within
large-grained region.
Dalgleish et al. [9]. With kind
permission of John Wiley and
Sons

Fig. 12.45 Note that number density of bands increases with increase in strain. Sequence of
scanning electron micrographs indicating development of shear bands with strain. Dalgleish et al.
[9]. With kind permission of John Wiley and Sons
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12.5 Superplasticity in Al2O3

Before discussing superplasticity specifically in Al2O3, one may review the
essential structural prerequisites for superplasticity as summarized by Nieh et al.
Due to dynamic grain growth, it is unlikely to obtain superplasticity in pure Al3O3

Fig. 12.48 Failure surface
indicating that shear bands
form approximately normal to
tensile surface and at � π/3 to
strain axis. Dalgleish et al.
[9]. With kind permission of
John Wiley and Sons

Fig. 12.47 Coalescence of
shear bands just before
rupture, showing a interband
coalescence and
b coalescence with specimen
edge. Dalgleish et al. [9].
With kind permission of John
Wiley and Sons
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without dopants or alloying. Various charge-carrying dopants, such as Ti4+, Mn2+,
Zr4+, etc., are aded to the basic alumina. Often, ZrO2 is used as an additive to
alumna to obtain superplasticity by hindering grain growth and, thus, imparting
microstructural stability. Superplastic deformation may be expressed as:

_e ¼ A
rn

dp
ð12:23Þ

As indicated in earlier equations [for example Eq. (8.9)], _e is the strain rate, σ
is the stress, d is the grain size, and n and p are the stress and the grain
size exponents, respectively. A is a temperature-dependent and diffusion-related
coefficient. For superplastic ceramics, n an p are between 1 and 3. According to
Eq. (12.23), superplasticity is encouraged by small grain size and an increasing
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Fig. 12.49 Plot of predicted trends in crack velocity with damage zone size. Dalgleish et al. [9].
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diffusion rate (A is diffusion-related). Although low-temperature sintering does not
cause significant grain growth, the accepted method is by the use of various
additives. MgO and ZrO2 are successfully applied in alumina. Mg ions and zir-
conia particles effectively pin the grains, thus inducing superplasticity in the
alumina ceramics up to a level of 100% engineering strain at 1450 °C. Zirconia,
however, is the best additive for alumina, achieving very high superplasticity of up
to a 550% elongation. So far, even an elongation of 850% has been reported in
alumina-based ceramics (Kim et al.). Superplastic alumina is compared with its
undeformed state in Fig. 12.51.

12.5.1 High-Temperature Superplasticity

The composition of the (alumina-based) spinel after sintering was Al2O3-10 vol%
ZrO2-10 vol% spinel. During these experiments, tensile tests were carried out in the
1400–1500 °C temperature range in a vacuum. The as-sintered ceramic is shown in
a SEM micrograph in Fig. 12.52.
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Fig. 12.50 Plot of failure
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material. Dalgleish et al. [9].
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Wiley and Sons
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The gray grains are Al2O3 and the ZrO2 and spinel phases are white and dark
particles, respectively. The ZrO2 particles are located at the quadruple junctions
of the matrix grains, while the spinel particles among the matrix grains. The
average radius of the Al2O3 grains is 0.25 mm, and those of the ZrO2 and spinel
particles are 0.09 and 0.18 mm, respectively. HRTEM observation revealed
(Fig. 12.53) that no amorphous phases exist along the Al2O3/Al2O3 grain
boundaries or Al2O3/ZrO2 and Al2O3/spinel interphase boundaries in the
as-sintered material.

Undeformed

230 % (8.3x10-5s-1/1400 oC)

370 % (8.3x10-5s-1/1450 oC)

850 % (5.0x10-4s-1/1500 oC)

10 mm

Fig. 12.51 Undeformed and
superplastically deformed
specimens. Kim et al. [16].
With kind permission of
Elsevier

Fig. 12.52 As-sintered
microstructure. “A”, “Z” and
“S” represent Al2O3, ZrO2

and spinel grains,
respectively. The dihedral
angle between Al2O3/spinel
interphase boundaries is
smaller than that between
Al2O3/Al2O3 grain boundary
and spinel/Al2O3 interphase
boundary, as indicated by
arrows. Kim et al. [16]. With
kind permission of Elsevier
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The results of various experiments on static grain growth at 1400–1500 °C are
plotted in Fig. 12.54. Static grain growth may be expressed as:

Rm � Rm
0 ¼ kt ð12:24Þ

Here, R is the average grain radius, R0 is the initial radius, m is the grain growth
exponent, k is the rate constant (proportional to grain-boundary mobility and
grain-boundary energy), and t is the annealing time. The value of m for alumina is
4. The slopes of the lines in Fig. 12.54 are k/R4

0 and their temperature dependence
give the activation energy as Qg = 588 kJ mol−1.

Tensile stress–strain curves of the alumina spinel are shown in Fig. 12.55 for
three initial strain rates at 1500 °C. Also shown for comparison is a curve of Al2O3-
10 vol% ZrO2. At the lower strain rates, almost no strain hardening is observed
after the yield stress. Also note that with increasing strain rate (and flow stress

Fig. 12.53 TEM micrograph
of Al2O3/ZrO2 interphase
boundary. Kim et al. [16].
With kind permission of
Elsevier
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increase), the strain decreases. Moreover, it seems that the alumina spinel has
a lower flow stress than Al2O3-10 vol% ZrO2 at the same strain rate
(8.33 × 10−3 s−1), but the elongation is higher.

The strain-rate dependence of tensile elongation is shown for 1400–1500 °C in
Fig. 12.56. The dispersion of ZrO2 and spinel particles leads to enhanced super-
plasticity The maximum tensile elongation reached 850%, which is the largest
elongation ever reported in Al2O3-based ceramics. The dispersion of these phases is
very effective in suppressing both static and dynamic grain growth. In the present
material, the kinetic constant for static grain growth and the rate constant of
dynamic grain growth were lower than those in Al2O3-10% ZrO2 by 40 and 27%,
respectively. α depends on several factors, such as grain shape and grain size
distribution. A value for α = 0.9 was determined for Al2O3-10% ZrO2. Dynamic
grain growth is given by Eq. (12.25):
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Fig. 12.55 Typical
stress-strain curves at
1500 °C. The dotted curve is
for Al2O3-10 vol% ZrO2. Kim
et al. [16]. With kind
permission of Elsevier
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dR ¼ k
m
R1�mdrþ aRde ð12:25Þ

where ε is the strain and α is the rate constant for dynamic grain growth. By
knowing the parameters in Eq. (12.25) and integrating, one can predict dynamic
grain growth. By using the measured Al2O3 grain sizes and fitting Eq. (12.25) to
these values, a value of α = 0.43 was obtained. Taking this value, a plot for
dynamic grain growth may be constructed as indicated in Fig. 12.57. The values of
m = 4 and k = 9.9 × 10−31 at 1500 °C are reasonable for the grain sizes, regardless
of the strain rate variations.

For smaller values of α and k from Eqs. (12.24) and (12.25), for a given value of
m, the dynamic and static components (grain size) decrease. This is the objective of
the spinel particle dispersion (10 vol%), with the consequent decrease of α by 27%
and of k by 40%. The suppression of dynamic grain growth enhances
superplasticity

The creep deformation (as described in one of the earlier chapters) is described
by:

_e ¼ A
rn

Rp exp
Q
RgT

� �
ð12:26Þ

where _e is the strain rate, σ is the stress, Q is the apparent activation energy, Rg is
the gas constant, T is the absolute temperature, A is a proportional constant, and
n and p are the stress and grain size exponents, respectively. The stress exponent
may be obtained by the slope of the log(ε) − log(σ) plot for the same grain size. By
using Eq. (12.26), the grain size exponent may be evaluated from the slope of a plot
of log rn

_e

� 	
versus log (R), as illustrated in Fig. 12.58.

For n = 2.2, evaluated from the plot in Fig. 12.58 and for σ < 30 MPa and
_e\10�3s�1, one gets Fig. 12.59 for the ratio r22

_e as a function of R.
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growth behavior at 1500 °C.
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The slope in the linear part of the curves is 3.2 for the aforementioned condi-
tions, indicating that the choice of n = 2.2 is reasonable. The deviation from lin-
earity is due to growing cavitation damage. Note that for _e[ 10�23s�1, the shape
and location of the r22

_e − R curve is different than those of _e\10�3s�1, and the
linear portion does not exist, as in Fig. 12.59.

Superplastic deformation is associated with GBS, simultaneous grain growth and
grain elongation. However, grain boundary elongation is regarded as having a small or
negligible effect in alumina, since the aspect ratio remains small (less than 1.5). The
limited grain elongation during superplastic deformation is related to grain boundary
migration and grain growth. High grain boundary mobility restricts grain elongation.
The microstructure of a deformed alumina-based ceramic may be seen in Fig. 12.60.

The elongation occurring in grain boundaries is diffusion controlled during GBS in
order to maintain microstructural continuity. The major role of the dispersed ZrO2 and
spinel particles is the inhibition of grain-boundary migration. The shape of the ZrO2
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particles depends on their location, as seen in Fig. 12.60. Those grains that are along
the Al2O3/Al2O3 boundaries are elongated (Al2O3 matrix phase is gray grains, while
the ZrO2 and spinel phases appear as white and dark particles, respectively), while
those that are embedded in the Al2O3 grains are equiaxed. The observed elongation of
Al2O3 grains along the stress axis seems to be associated with grain-boundary dif-
fusion. Particles of ZrO2 along grain boundaries are associated with GBS, contrary to
those ZrO2 particles within the Al2O3 grains. The relative stability of the ZrO2 par-
ticles in the equiaxed Al2O3 grains is an indication that neither lattice diffusion nor
intragranular dislocation motion in the Al2O3 grains is the primary deformation
mechanism. Indeed, grain-boundary diffusion is the primary deformation mechanism.
The small or negligible dislocation concentration within the Al2O3, confirmed by
TEM observations, experimentally support the above determination.

Experiments have shown that concurrent cavitation, particularly cavity inter-
linkage in the direction normal to the stress axis, limits the tensile ductility of
superplastic ceramics. The role of the simultaneous dispersion of ZrO2 and spinel
particles is to suppress cavity formation during tensile deformation. Suppressed
cavity formation retards cavity interlinkage in the direction perpendicular to the
stress axis, resulting in elongated cavities and, thereby, leading to large tensile
elongation of the alumina-based 10 vol% zirconia and 10 vol% spinel ceramics.
Thus, grain-boundary diffusion and cavity elongation are associated with super-
plasticity in these alumina-based ceramics.

12.5.2 Low-Temperature Superplasticity

Again, Eq. (12.23) also describes superplasticity at the lower temperatures. The
low-temperature creep reported here is for two alumina-based composites: (a) 1 mol%
Ti4+ and 1 mol% Mg2+, with additional dopants of 1000 ppm ZrO2, 1000 ppm MgO

Fig. 12.60 Deformed
microstructure (560%) at
8.33 × 10−4 s−1 and at
1500 °C. The stress axis is
vertical. Kim et al. [16]. With
kind permission of Elsevier
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and 500 ppm Y2O3, and (b) is the same as (a) except with 3 mol% ZrO2. The purpose
of the MgO and Y2O3 additives is to improve microstructural homogeneity and to
retard grain growth. The 0.1% zirconia (1000 ppm) is intended to establish a baseline
to account for the very strong hardening effect in this system, while the 3% zirconia is
meant to pin grain-boundary particles. SEMmicrographs of the Ti4+- andMg2+-doped
alumina ceramics appear in Fig. 12.61 (for experimental details see Xue and Chan).

Cavity formation is observed in the alumina containing 0.1% ZrO2, but not in the
3% ZrO2, as seen in the above figure, in (c) and (d), respectively. Grain growth is

Fig. 12.61 SEM micrographs of Ti/Mn-doped alumina. As-sintered specimens a 0.1% ZrO2 and
b 3% ZrO2. Deformed specimens with c 0.1% ZrO2, ε = −0.64. The compression axis is marked
by hollow arrows in b and d and representative ZrO2 particles in b and d are indicated by small
solid arrows (z). Examples of cavities in c are also marked by small solid arrows. Xue and Chan
[24]. With kind permission of John Wiley and Sons
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much more pronounced in the specimen containing 0.1% ZrO2. This difference may
account for the more pronounced strain hardening and also for the cavity formation.
In Fig. 12.62, the stress–strain curves obtained under compression at 1300 °C and
at a strain rate of 3 × 10−4 s−1 for the two alumina-based composites are shown.

It seems that this grain growth occurs during deformation—it is dynamic grain
growth—which is more pronounced than static grain growth, as a result of
annealing. Strain hardening is observed in both specimens, but it is particularly
pronounced in the 0.1% zirconia ceramic. The addition of 3% zirconia to the
ceramic effectively retards both static and dynamic grain growth.

The strain rate and the flow stress are related in Fig. 12.63 on a logarithmic
scale. Despite the difference indicated in Fig. 12.62, the deformation behavior of
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the two composites is identical, as observed in Fig. 12.63—the single line repre-
senting both composites. The effect of temperature on the stress rate versus stress is
shown in Fig. 12.64.

The inverse temperature dependence of the strain rate at 40 MPa for the 3%
ZrO2 containing alumina is illustrated in Fig. 12.65. The activation energy evalu-
ated from the slope in this figure is 728 kJ/mol, which is much higher than the one
obtained for pure alumina (460 kJ/mol). The superplastic behavior of this ceramic
is illustrated in Fig. 12.66, by stretching the 3% Zr-alumina ceramic by means of
punch displacement.
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The ceramics under consideration still possessed a fine microstructure with a
grain size of *0.8 μm after the superplastic stretching. To improve its high-
temperature creep resistance, postforming annealing was performed to coarsen its
microstructure. Annealing at 1650 °C (for 4 h) increased the grain size to 23 μm
(Fig. 12.67).

The creep rate of a specimen annealed in 1400 °C is compared with that of the
as-sintered one at 1350 °C (shown in Fig. 12.68). It is known that the
charge-compensating dopants, Ti4+ and Mn2+, have a higher solubility in alumina
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Fig. 12.67 SEM micrograph
of a polished and thermally
etched Ti/Mn-doped alumina
specimen with intergranular
and intragranular ZrO2

particles (annealed at 1650 °C
for 4 h). Xue and Chan [24].
With kind permission of John
Wiley and Sons
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and that they significantly enhance the diffusion/deformation process during sin-
tering and deformation. Codoping of these constituents increases the strain rate by a
factor of 70. In addition, their effect on grain growth may be controlled by adding
3 mol% ZrO2, which acts as pinning agent. By the addition of these constituents,
superplastic alumina may be obtained with a forming capability of 100% strain by
biaxial tension at temperatures as low as 1250 °C. Furthermore, it was found that
annealing increases creep resistance by a factor of 2000 (seen from the extrapo-
lation of the as-sintered specimen to 1400 °C, Fig. 12.64). This stretchability
demonstrates the feasibility of the superplastic forming of alumina ceramics, even at
low temperatures.

12.6 Creep in Nano-Alumina

Technological interest lies in composite alumina, rather than in monolothic alu-
mina, due to the desire to obtain improved properties, such as improved creep
resistance. Nowadays, nanostructures are of great technological interest. Often,
nanostructured or nano-alumina is also strengthened by incorporating various
additives into the monolithic alumina. To this end, one often used additive is SiC, in
various forms. The addition of SiC to nano-alumina improves its overall properties,
especially creep resistance, since ceramics are intended for high-temperature
applications. Now, the tensile creep behavior of nano-alumina with SiC additives
will be discussed and compared with that of monolithic alumina.

The tested nanocomposite had 17 vol% SiC and was prepared by hot pressing
the powders at 1800 °C in a nitrogen atmosphere under an applied pressure
of 30 MPa for 1 h. A high temperature was required for the sintering, since
the presence of SiC nanoparticles suppresses densification and grain growth.
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The monolithic alumina was hot pressed at 1500 °C, so that the grain sizes of the
two components were equal. Tensile creep tests were performed for both the
alumina-7 vol% SiC composite and for the monolithic alumina at 1200–1330 °C at
50–150 MPa. Excellent creep resistance was obtained in the nanocomposite,
compared to the monolithic alumina. The improvement in creep resistance, in terms
of the minimum creep rate, was manifested by a lower creep rate by * three orders
and an increased creep lifetime of about 10 times that of the monolithic alumina.
Compared to the accelerated creep observed in the monolith, the composite showed
only transient creep to failure. Rotating and plunging the SiC nanoparticles into the
alumina matrix increased the creep resistance with GBS.

Flexural creep tests were also performed in air at 1200 °C at 100, 150 and
200 MPa. The specimens for the flexure tests were 2 and 3 mm thick and wide,
respectively. They were loaded in a four-point flexure fixture with inner and outer
span lengths of 10 and 30 mm, respectively. The applied stress and the resulting
strain were calculated from the load and displacement relation. The tensile creep
curves tested at 1200 °C for both the monolith and the composite are compared in
Fig. 12.69.

The curve of the monolith consists of primary, steady-state, and a very small
tertiary creep regimes (while very little was observed in the composite). The
monolith’s lifetime was *150 h and *4% creep strain at fracture, with a large
number of observed microcracks. The composite, however, had very good creep
resistance and its creep strain at fracture was only 0.5%. No microcracks were
detected by optical microscopy. The composite also achieved better creep resistance
in the flexural creep test.

The stress dependencies of the monolith and composite are compared in
Fig. 12.70. In this figure below, note that the flexural creep test indicates that the
flexural creep rate is smaller than the tensile creep rate under the same applied
stress. The TEM microstructure of the crept and fractured nanocomposite is shown
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Fig. 12.69 Tensile creep
curves of the monolith and
nanocomposite at 1200 °C
and 50 MPa. Slight
accelerated creep and
steady-state creep were
present in the monolith, while
they were little observed in
the nanocomposite. Ohji et al.
[19]. With kind permission of
John Wiley and Sons
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in Fig. 12.71. In (a), it shows the rotation of SiC particles accompanied by GBS and
the formation of small cavities around the particles. The strain-contrast contours
formed may be observed at the corners (top right and top left) of the particle and
also small cavities produced between a particle and an upper grain. The SiC par-
ticles seem to penetrate into the other grains, consequently producing a greater
pinning effect. Thus, larger creep resistance results and the creep remains in its
transient stage. More evidence of rotating and plunging intergranular SiC particles
and associated cavity formation is given in Fig. 12.71b. Traces of intergranular
crack propagation are seen in Fig. 12.72. The crack formed propagates at the
alumina–alumina grain boundary, where small cavities formed around the SiC
particles as a consequence of GBS. Note that some dislocations are also seen, as are
small transgranular cracks in the crept specimens around the transgranular
nanoparticles. It was suggested that these features form during the cooling down
from the sintering temperature, rather than during creep.

In conclusion, one can summarize the effect of SiC additive as follows. The
creep resistance of the nanocomposite was excellent, compared to that of the
monolithic nano-alumina, as attested by Figs. 12.69 and 12.70. In a more recent
work, the significantly improved mechanical properties of this nano-alumina
composite at high temperatures has been substantiated, far outdoing the monolithic
nano-alumina. The SiC content was only 5%, but MgO was also added as a sin-
tering aid. Fabrication was done by pressureless sintering and post hot isostatic
pressure (HIP). The density of the composite after sintering and with a different
MgO content is found in Fig. 12.73. In the Al2O3/SiC composite (unlike the
monolithic alumina), the open pores disappear at a bulk density of *90%, as
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500μm 1μm

Fig. 12.71 Transmission electron micrographs of microstructures of the nanocomposite tested at
1300 °C and 50 MPa in tension, showing examples of rotating and plunging of intergranular
silicon carbide particles and associated cavity formation. The stress direction is indicated by
arrows. Ohji et al. [19]. With kind permission of John Wiley and Sons

2μm

Fig. 12.72 Transmission
electron micrograph of a trace
of intergranular crack
propagation. The sample was
tested at 1200 °C and
100 MPa in tension. Note the
transgranular-fractured
nanoparticle The stress
direction is indicated by an
arrow. Ohji et al. [19]. With
kind permission of John
Wiley and Sons
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shown in Fig. 12.74. Therefore, the densification for before its use was >90%, and
could be achieved by the combined fabrication by pressureless sintering and HIP
(see Fig. 12.75). The microstructure of the Al2O3/SiC composite, before and after
HIP) is illustrated in Fig. 12.76. The effect of the MgO additive may also be seen in
Fig. 12.76a and b. It is evident that MgO sintering promotes densification.
A number of closed pores remained although the sintering was done at a high
temperature (1800 °C).

Following HIP, complete densification occurred, whether MgO was present or
not, and the grain sizes were the same as seen in Fig. 12.76c and d. HIP treatment
of Al2O3/SiC produces an homogeneous distribution of the SiC particles both
within the Al2O3 grains and within the grain boundaries, as indicated in
Fig. 12.77.
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The fracture strength, as a function of the MgO content, before and after HIP, is
shown in Fig. 12.78. The pre-HIP fracture strength increased with the MgO content
and sintering temperature, owing to the increase in the sintered density. Apparently,
the HIP produces the significant effect, since a high fracture strength of 1 GPa was
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Fig. 12.76 SEM micrographs of thermally-etched Al2O3/5% SiC nanocomposites sintered at
1800 °C for 2 h:awithoutMgO, beforeHIP;bwith 0.1%MgO, beforeHIP; cwithoutMgO, afterHIP;
d with 0.1% MgO, after HIP. Jeong and Niihara [14]. With kind permission of John Wiley and Sons
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achieved, regardless of the presence or absence of MgO in the Al2O3/SiC
nanocomposite (see Fig. 12.78).

The strength improvement due to the HIP treatment is also related to the fracture
mode indicated in Fig. 12.79. Accordingly, the fracture surface of the sintered
ceramics exhibit both intergranular and transgranular fracture. The HIP-treated
Al2O3/SiC showed complete transgranular fracture. Bridging at a crack site is
considered the primary strengthening mechanism in a ceramic nanocomposite. This
mechanism leads to a very high crack-growth resistance curve (R curve). Crack

250 nm

Fig. 12.77 TEM image of
Al2O3/5%SiC/0.1%MgO
nanocomposite fabricated by
pressureless sintering at
1800 °C for 2 h and
subsequent HIP treatment at
1600 °C for 1 h under
150 MPa. Jeong and Niihara
[14]. With kind permission of
John Wiley and Sons
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extension through the nearest SiC particles, induced by thermal residual tension,
causes a bridging mechanism to operate effectively, even at a small SiC volume
fraction of 5%, as in the current experimental results.

Thus, one can conclude that a composition of as low as 5% SiC (with a small
amount of MgO as a sintering aid) and by the application of HIP, may be con-
sidered a favorable processing method resulting in high-strength nanocomposites.
Clearly, the above composite is only one example of the many possible additives
that may be effectively used with nanostructure alumina. It was chosen because it
has been frequently used in creep resistance studies and there is ample proof that it
improves nanostructured alumina.
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Chapter 13
Creep in MgO

Abstract MgO and MgO composite (MgO�Al2O3) are discussed in this chapter.
The value of the stress exponent determined as n = 3.3 suggests a dislocation model
as the rate-controlling creep mechanism. In the absence of glide the dislocation
motion is that of climb, which is the rate-controlling mechanism. Knowledge of the
structure is of great importance for understanding the creep deformation mechanism
in the power law range. It is revealed that the typical dislocation structure of
creep-deformed MgO is qualitatively very similar to that of creep-deformed metals
and that the grains are divided into well-defined subgrains. Creep in polycrystalline
and single-crystal MgO are considered in this chapter and the experiments were
performed by tensile, compressive and flexural tests. Creep rupture, superplasticity,
and nano-MgO are important sections of this chapter.

One of the early expressions for creep at high temperatures via a vacancy-controlled
mechanism (supposedly determined by the stress-directed lattice diffusion of
vacancies) was given by Nabarro-Herring as:

_e ¼ B
d2

Xr
kT

DL ð13:1Þ

where B is a constant*10 for equiaxed polycrystals, Ω is the atomic volume, DL is
the lattice self-diffusion coefficient, QL is the lattice diffusion activation energy, and
σ and d have their usual meanings of applied stress and grain diameter, respectively.
Recall that:

DL ¼ D0 Lð Þ exp �QL

kT

� �
ð13:2Þ

The diffusion path may be along the grain boundaries. For such a case, Coble
gave the expression:

_e ¼ 150
p

rWX
d3kT

DGB ð13:3Þ
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where DGB is the grain-boundary diffusion coefficient andW is the width of the grain
boundary. A similar equation to Eq. (13.2) may be given for DGB with the
grain-boundary subscripts GB. Agreement has been found between the calculated
values and those for cation diffusion in some oxide ceramics, such as Al2O3, Be oxide,
MgO, etc. However, other creep studies on ceramic polycrystals have shown that the
creep rate obeys a power law, rather than linear stress dependence, suggesting a
glide-and-climb mechanism for dislocations. In that case, Weertman provided:

_e ¼ Arn

kT
exp �Qc

kT

� �
ð13:4Þ

Exponent n is a constant–4.5, A is a constant that sometimes depends on tem-
perature, and Qc is the activation energy for creep. Several, contradictory results on
creep in MgO appear in the literature, sometimes in regard to porous or impure
MgO; therefore, in the experiments described below, only poreless, high-purity
MgO is used to determine the creep rate-controlling mechanism at a temperature of
*0.5 Tm, i.e., 1200 °C. The creep curves tested at 1200 °C are shown in Fig. 13.1
at various, constant loads in the 500–20,000 psi range and the strain–time curves
are recorded for each case. Figures 13.1, 13.2 and 13.3 refer to the smallest grain
size—11.8 μm. Figure 13.1 shows primary and secondary creep, tested under
compression. No accelerated creep stage is observed, since the test had to be
terminated early to eliminate fracture. The steady-state creep was plotted versus
stress as indicated in Fig. 13.2.

All the points of the small specimen lie on the same line, independent of grain
size, with a slope of n = 3.3. In order to determine the activation energy according
to Eq. (13.5), the temperature was cyclically changed by *25 °C at strain incre-
ments of *0.02, so that the structure could be assumed to remain constant:
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Fig. 13.1 Creep curves for MgO specimens of smallest grain size (11.8 μm), tested in
compression at 1200 °C. Langdon and Pask [13]. With kind permission of Elsevier
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Qc ¼ @ ln _e
@ �1=RTð Þ �

R ln _e2=_e1ð Þ
T2 � T1ð Þ=T1T2 ð13:5Þ

_e1 and _e2 are the instantaneous creep strain rates immediately after each temperature
change from T1 to T2. The average activation energy obtained was 51 ± 5 kcal
mol−1. The scatter of the experimental points is a consequence of the fact that
thermal equilibrium was not attained immediately after the *25 °C temperature
changes (increase or decrease). It seems from Fig. 13.2 that diffusional creep is not
the mechanism acting in polycrystalline MgO (despite existing evidence to the
contrary), since the following criteria are not satisfied: (a) the slope of the line gives
n = 3.3 and not unity, and (b) there is no grain size dependence in the 11.8–52 μm
range. Calculations made (Langdon and Pask) at constant stress and temperature for
two strain rates and grain diameters are given for the lattice and grain-boundary
diffusion as:

_e1
_e2

¼ d2
2

d21
lattice diffusion ð13:6Þ

_e1
_e2

¼ d32
d31

grain boundaey diffusion ð13:7Þ
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Fig. 13.2 Steady-state creep
rate versus stress for MgO
specimens of grain size
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Langdon and Pask [13]. With
kind permission of Elsevier
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Also, the use of experimentally observed values to draw the lines of slope n = 1
through the points indicates great discrepancy in the experimental data and the
diffusional models. The value of n = 3.3 for the stress dependence (see Fig. 13.2)
suggests a dislocation model as the rate-controlling creep mechanism. Dislocation
climb and glide (Weertman) require n = 4.5. Using Weertman’s model as:

_e
D

¼ 3p2r2

2 2ð Þ0:5G2b2
sinh

3ð Þ0:5r2:5b1:5
8G1:5M0:5kT

 !
ð13:8Þ

G is the shear modulus (*0.4 E, where E is Young’s modulus), b is the Burgers
vector, andM is the number of Frank-Read sources cm−3 (M0.5 = 0.526ρ0.76, where ρ
is the dislocation density). Taking ρ = 108 dislocations cm−2 and b = 3 × 10−8 cm,
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arising from Nabarro-Herring diffusional creep (for d = 11.8 μm and 33 μm respectively), a
dislocation glide/climb mechanism, and the dislocation climb model formulated by Nabarro
(N) and reanalyzed by Weertman (W). Langdon and Pask [13]. With kind permission of Elsevier
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_e
D was calculated. Figure 13.3 shows the results with the experimental points calcu-
lated by taking the extrinsic lattice diffusion of O2− and the predictedNabarro-Herring
creep for d = 11.8 and 33 μm. The authors indicate that the dislocation
glide-and-climb model breaks down at high stresses because of the sinh term in
Eq. (13.8). The breakdown stress may be estimated by setting the sinh term to unity.
With this procedure, Weertman’s model is valid up to *1.5 × 109 dynes cm−2. By
assuming that the lattice diffusion of O2− is rate controlling, the experimental results
show better agreement with dislocation mechanisms than with diffusional creep, as
indicated in Fig. 13.3. Thus it may be concluded, based on the experiments of
Langdon and Pask, that some form of dislocation motion, such as climb (in the
absence of glide) is the rate-controlling mechanism for creep, rather than the
stress-directed diffusion of vacancies.

Furthermore, regarding the dislocation concept as a rate-controlling mechanism of
creep (where the creep rate dependence on stress follows a power law), the stress
exponent varies in the 2.3–4.0 range. The measured activation energies were 46,
111 ± 12 and 51 ± 5 kcal mol−1. The knowledge of the structure is of great
importance for understanding the creep deformation mechanism in the power law
range. TEM investigations provided this information, as shown in Figs. 13.4 and 13.5

It is revealed that the typical dislocation structure of creep-deformed MgO is
qualitatively very similar to that of creep-deformed metals and that the grains are
divided into well-defined subgrains. No entanglements or pile-ups are observed in
the subgrains in the three-dimensional dislocation network (Fig. 13.4). The dislo-
cation density inside the subgrains was measured. When a random dislocation
distribution is assumed, the volume density cm/cm3 is twice the area density (i.e.,
dislocations/cm2). For creep-deformed metals, the relation found is:

q ¼ r2

b2G2 ð13:9Þ

Fig. 13.4 Typical dislocation structure. In a, loops, L, and bowed-out dislocation, b, are visible.
Bilde-Sörensen [5]. With kind permission of John Wiley and Sons
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The plot of volume density versus load shows a reasonable agreement with
Eq. (13.9), as seen in Fig. 13.6.

These creep experiments were conducted under compression at <5 × 10−5 torr.
The load varied from 2.5 to 5.5 kgf/mm2 and the temperature from 1300 to 1460 °C.
The secondary creep rate was fitted to:

_e ¼ Kra ð13:10Þ

The evaluated values of α are: 2.6 ± 0.6 at 1300 °C, 3.5 ± 0.6 at 1400 °C and
3.7 ± 0.7 at 1460 °C. The relation used to describe creep in MgO is given as:

Fig. 13.5 Subgrain boundary
consisting of hexagonal
network. Bilde-Sörensen [5].
With kind permission of John
Wiley and Sons
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_ekT
bDG

� �
¼ A

r
G

� �a
ð13:11Þ

And is plotted in Fig. 13.7. The self-diffusion coefficient of the O2− ion was used
for D. A stress exponent of 3.3 ± 0.3 was estimated from Fig. 13.7. This exponent
did not vary with temperature. As such, an actual value of 3.2 for the stress
exponent was used to calculate the activation energy for creep by this mechanism,
giving a value of 76 ± 12 kcal/mol. The creep rates of the specimens with grain
sizes of 100 and 190 μm did not vary significantly. This was surprising, since large
grain-sized specimens are required for creep resistance. Consequently, no appre-
ciable GBS is expected and processes of diffusion along grain boundaries do not
contribute significantly to the creep rate, based on this model.

One can, thus, conclude that within the range of the investigated parameters,
several processes may be operating simultaneously; however, the main cause for
creep deformation is a combined climb-and-slip process.

13.1 Creep in Composite MgO

Relatively few data are available in the literature on this important subject.
One such composite is the MgAl2O4 spinel, often written as MgO�Al2O3, obtained
from the reaction between MgO and Al2O3 at *1200–2000 °C and pressures of
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1.0–4.0 GPa. In a recent publication [18], MgO�Al2O3 was prepared by
plasma-spark sintering at 1100–1200 °C with an applied pressure of 120–200 MPa
and a dwell time of 2 h. Creep curves were obtained, as illustrated in Fig. 13.8. The
plot shows the creep strain versus time. Each creep curve consists of three regions.
At each temperature, the first segments are shallow, showing almost no significant
creep strain. Softening, with increased applied stress, may be seen even at the lower
temperature. The increase in slope (dashed line) is an indication of creep strain
change (increase). From these slopes, the strain rates may be evaluated and their
variations with the pressure may be seen in Fig. 13.9. As indicated earlier, the main
interest is in the values of the stress exponent, which (as previously indicated) is
usually obtained from:
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Fig. 13.8 Creep curves for
spinel under pressure of
120–200 MPa in the
1100–1200 °C range. The
dashed lines indicate change
of the slope. Ratzker et al.
[18]. With kind permission of
Mr. Ratzker for the authors
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_e ¼ Arn exp � Q
RT

� �
ð13:12Þ

Equation (13.12), in logarithmic form, yields:

ln _eð Þ ¼ lnAþ n lnðrÞ � Q
RT

ð13:13Þ

and a plot of this equation may be seen in Fig. 13.10. The values of the stress
exponent at each temperature are listed in Table 13.1. These values are higher than
n ≅ 1, which may indicate that several processes operate concurrently in creep
deformation; however, the main form of creep deformation here is a combined
climb-and-slip process. The authors consider GBS to be the creep mechanism,
however, they admit that dislocation slip-and-climb may be additional processes
accommodating GBS.

Equation (13.12) or its logarithnic form also enables the determination of
the activation energy for creep. A plot of the activation energy versus stress appears
in Fig. 13.11 and Table 13.2 lists the activation energies at various stresses. Note
that the activation energy increases with the decrease in the applied stress, as
expected.

The microstructures of polished and thermally etched specimens before and after
creep, obtained by high-resolution SEM (HRSEM), are shown in Fig. 13.12.
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tested under 120, 150 and
200 MPa. Ratzker et al. [18].
With kind permission of
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Table 13.1 Values of the
stress exponent at various
temperatures. Ratzker et al.
[18]. With kind permission of
Mr. Ratzker for the authors

Temperature (°C) Stress exponent (n)

1100 3.48 ± 0.1

1150 2.64 ± 0.26

1200 1.87 ± 0.15
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The equiaxed grain size increases with creep deformation from 250 to 400 nm,
without any change in the equiaxed shape of the grains, possibly indicating GBS as
a main creep mechanism. In order to obtain more data on creep in spinel, HRTEM
structures were acquired (see Fig. 13.13).

The HRTEM images confirmed (attested by the formation of triple points) that
GBS is one mechanism of creep in spinel. Dislocations may also be involved at
higher stress levels (Fig. 13.13c, d), accomodating GBS.

Although title of this section is “Creep in Composite MgO,” this is as good a
place as any to consider an example of an additive that produces solid solutions.
Recall that composite materials are usually mixtures of two or more components,
each of which gets different properties than it had originally. In contrast, although
the starting materials in a solid solution each have different properties, the final
product is not a mixture, for example, as in the case of the MgO–Fe2O3 solid–
solution system.

By vacuum hot-pressing solid solutions of polycrystalline MgO and
MgO-Fe2O3 with 0.10–8.08 wt% Fe2O3, specimens were fabricated very close to
the theoretical density [20]. Creep testing was performed in air and in the tem-
perature 1000–1400 °C range at stresses of 50–550 kg cm−2, but steady-state
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Fig. 13.11 Apparent activation energy as a function of stress. Ratzker et al. [18]. With kind
permission of Mr. Ratzker for the authors

Table 13.2 Apparent activation energies for polycrystalline magnesium aluminate spinel. Ratzker
et al. [18]. With kind permission of Mr. Ratzker for the authors

Applied stress (MPa) Activation energy (Q) (kJ/mol)

120 526 ± 35

150 465 ± 50

200 387 ± 36
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creep was not reached even after 50 h creeping. Hot-pressed specimens of MgO,
with and without doping by Fe2O3, are shown in Fig. 13.14 and after creep testing
in Fig. 13.15.

The symbols of the specimens in Figs. 13.14 and 13.15 are indicated in
Table 13.1. The initial grain sizes in the undoped specimens (18–19 μm) are
considerably larger than in the doped specimens (1–5 μm). Subnormal grain
growth and irregular distribution were encountered in the hot-pressed, undoped
oxide (Fig. 13.14a). A nonuniform distribution of iron was observed in the
heavily doped samples, namely, 0.94, 2.95 and 8.08% Fe2O3. At lower doping
concentrations (0.10 and 0.48%), no segregation was observed. Grain growth
occurred during annealing and creep, but the grain distribution became more
uniform, as seen in the MgO (undoped) specimen in Fig. 13.15a after annealing
and in (b) after the creep test. Porosity was not found in the hot-pressed speci-
mens but, after annealing, pores coalesced to a size visible to optical microscopy.
These pores are located at grain boundaries or triple points as seen in
Fig. 13.15b.

Details of the stress change experiments, including densities, temperatures, grain
sizes, and stress exponents are listed in Table 13.3. The maximum stress in the
outer fiber, σ, of a beam is given for creep by the calculation:

Fig. 13.12 HRSEM images of the spinel samples before creep (a); after creep at 1100–1200 °C
(4% strain) under 120 (b); (7% strain) 150 (c) and (13% strain) 200 MPa (d). Compression
direction is marked. Ratzker et al. [18]. With kind permission of Mr. Ratzker for the authors
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r ¼ 3
2
L� a
bh2

F
2Nþ 1
3N

� �
ð13:14Þ

Note that here N (≡n) stands for the stress exponent. L is the distance between
the supporting points; the distance between the load points, F (≡P), gives applied
load; and b and h are the width and height of the specimen, respectively. Recall that
the applied stress is flexural. For N = 1, Eq. (13.14) reduces to:

Fig. 13.13 HRTEM images of spinel samples after deformation at 1100–1200 °C. Under
120 MPa (4% strain) triple-point voids and displaced triple points are shown (a); under
200 MPa (13% strain) grain separation and sliding along the grain boundaries (b) and
dislocations (c) are shown. A weak-beam dark field (WBDF) image for g = 440 shows the high
dislocation density within the grain after creep in response to 200 MPa pressure (d); the selected
area diffraction pattern is presented in the insert (e). The examined cross-sections were
perpendicular to the compression axis. Ratzker et al. [18]. With kind permission of Mr. Ratzker
for the authors
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r ¼ 3
2
L� a
bh2

F ð13:15Þ

When a beam under four-point loading is elastically deformed, the strain in the
outer fiber is given by measuring the deflection at the load points (x) as:

e ¼ 6h
L� að Þ Lþ 2að Þ x ð13:16Þ

Differentiating Eq. (13.16) with respect to time, t, one gets the creep rate by:

Fig. 13.14 Typical microstructures of hot-pressed specimens. a Undoped MgO (U-G) with
GSavg ≈ 19.4 μm (× 250) and b 0.48% Fe2O3 (D-D) with GSavg ≈ 4.7 μm (× 690). Terwilliger
et al. [20]. With kind permission of John Wiley and Sons

Fig. 13.15 Typical microstructures after annealing and creep a Undoped MgO (U-H) annealed
9 h at 1300 °C (×200) and b undoped MgO (U-G6) creep-tested ≈75 h at 1400 °C (×450).
Terwilliger et al. [20]. With kind permission of John Wiley and Sons
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_e ¼ 6h
L� að Þ Lþ 2að Þ _x ¼ Kh _x ð13:17Þ

Clearly, _x is the defection rate. Figure 13.16 shows the deflection rate versus the
creep time of MgO, compared to that of the solid solution with 0.48% Fe2O3.
Initially, the creep rate decreases rapidly and, later on, it slowly decays. An
accelerating creep region was observed in specimens containing 2.95 and 8.08%
Fe2O3. In such specimens, where there was straining to fracture, oriented voids
were formed at the grain boundaries perpendicular to the tensile direction of the
stress, thereby decreasing the cross-sectional area remaining for load bearing. There
have been suggestions that voids form at grain boundaries during GBS.

The stress exponent, N (≡n), was determined using the dependence of the strain
rate on the stress (load). By changing the load and measuring the change in creep
rate, N was evaluated as follows:

Table 13.3 Stress exponents from stress change experiments. Terwilliger et al. [20]. With kind
permission of John Wiley and Sons

Specimen

Undoped
U–G–1 342–492 1300

1400

1.91
1.22
2.86
1.74

Avg
2.38

Avg

Avg

3.63

Avg
1.05

1.05

2.55
2.81
3.26
2.36
3.81
3.76
3.32

1.31
0.79
1.19
0.59
1.17
0.82
1.11
1.43

2.48
0.89

0.86
1.24

1300

1400

1400
1300

1300
1200

379–440
440–530
365–389
387–439
396–450
433–491
491–433
380–431
331–476
476–431

394–552
315–490
169–284
284–420
420–535
535–420
149–306
306–413

445–492
149–241

228–326
148–258

U–G–2

U–H–1
U–H–2
U–H–3
U–H–4

U–H–5

D–A–1

D–A–2
D–B–1

D–B–2

D–C–2

D–F–2
3.597

3.557

3.577
3.558

3.580

3.571

D–F–1

0.10%

0.48%

2.95% Fe
2
O

3

Densitya

(g/cm1) (kg/cm2)

Stress Stress
Stress

Approx
size at
change

grain
exponent,

N
rangeb Temp.

(°C) (μm)

D–C–1
Fe

2
O

3

Fe
2
O

3

23–29

40
40

40

45

55

20
14
36
40
50
60
36
50
12
12
12

10
10

20

aTheoretical density of pure MgO assumed to be 3.584 g/cm3

bFirst number is stress before weight change; second is stress after weight change

N ¼ log _x2 � log _x1
log r2 � log r1

ð13:18Þ
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The value of _x2 was determined by extrapolation. The extrapolated value appears
in Fig. 13.17. This procedure eliminated the effect of the transient and permitted the
values of _x1 and _x2 to correspond to the same time. The resultant stress exponents
are listed in Table 13.3.

Stress exponent, N, increased significantly as grain size increased in the undoped
specimens, indicating that dislocation creep probably predominates in relatively
large-grained (23–55 μm) MgO, although direct metallographic evidence for dis-
locations was not observed in the work reported here. The stress exponents of most
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Fig. 13.17 Stress change experiments on undoped creep specimen at 1300 °C. Terwilliger et al.
[20]. With kind permission of John Wiley and Sons
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Fig. 13.16 Comparison of best-fit curves and deflection rate data for typical creep experiments.
Terwilliger et al. [20]. With kind permission of John Wiley and Sons
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doped specimens is unity (see Table 13.3). This indicates the presence of a viscous-
or diffusion-creep mechanism. The strain rate is reciprocally related to a power of
the grain size. An equation for a viscous mechanism is:

_e ¼ k01r
GSm

¼ k1
GSm

ð13:19Þ

The grain size (GS) exponent is m = 1–3, depending on the acting creep
mechanism. Grain growth is a given as:

GSn � GSn0 ¼ knt ð13:20Þ

From Eqs. (13.19) and (13.20), one may derive an expression of the form:

_e ¼ C1

tþC2ð Þp ð13:21Þ

with:

p ¼ m
n

ð13:21aÞ

C1 ¼ k1
knð Þp ð13:21bÞ

C2 ¼ GSn0
kn

ð13:21cÞ

When C2 in Eq. (13.21) is small, it reduces to:

_e ¼ C1

tp
ð13:21dÞ

The values of the time exponents vary within the p = 0.33–1.5 range, as a
function of the creep and grain growth mechanisms. Using the deflection data and
Eq. (13.21), the values of C1, C2, and p may be calculated. An initial value of C2

is assumed and then a linear regression is performed according to Eq. (13.22),
given as:

log h _xið Þ ¼ �plog ti þC2ð Þþ logC0
1 ð13:22Þ

One immediately realizes that this equation is obtained by expressing the strain
rate found in Eq. (13.21) as _e ¼ Kh _x (from Eq. 13.17), then writing C1

K ¼ C0
1 and

expressing the resulting equation in a logarithmic form. In the iteration, C2 is varied
until the standard deviation, r̂; becomes a minimum. This iteration is performed
according to:
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r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 log h_xið Þ � logC0
1 þ plog ti þC2ð Þ	 


n

2
s

ð13:23Þ

The deflection, x, may be obtained by integrating Eq. (13.22):

x ¼ C1

h

� �
ln

t
C2

þ 1
� �

for p ¼ 1 ð13:24Þ

and:

x ¼ C0
1=h

1� pð Þ tþC2ð Þ1�p þC1�p
2

h i
for p 6¼ 1 ð13:24aÞ

Note that in Eq. (13.24) the logarithmic term is ln. The parameters determined
by Eqs. (13.24) and (13.24a) are summarized in Table 13.4.

Observe that, in the undoped specimens, p is smaller than in those containing
Fe2O3, except in 8.08% Fe2O3. The small value of p in the unalloyed specimens of
MgO may indicate creep by dislocation motion, whereas, in the 8.08% Fe2O3

Table 13.4 Comparison of parameters calculated from deflection and deflection rate (best-fit)
data. Terwilliger et al. [20]. With kind permission of John Wiley and Sons

Specimen Stress
(kg/cm2)

Temp.
(°C)

p C0
1 ðcm2hp�1Þ

Deflection rate
(best-log fit)
calculation

From
log-deflection-time
plots

Deflection
rate (best-fit)
calculation

From
semi-log-deflection
time plots

Undoped

U-F-5 216 1200 0.61 0.55 1.18 × 10−3

U-G-3 277 1300 0.53 0.49 3.25 × 10−4

U-H-5 380 1400 0.35 0.38 1.58 × 10−3

0.10% Fe2O3

D-A-3 178 1200 1.10 1.17 × 10−3 9.20 × 10−4

D-A-5 225 1300 0.97 1.98 × 10−3 2.09 × 10−3

D-A-6 294 1300 0.86 0.80 9.50 × 10−4

D-A-2 169 1400 0.61 0.60 4.94 × 10−4

0.48% Fe2O3

D-C-3 291 1300 0.89 1.68 × 10−3 2.54 × 10−3

D-C-1 445 1300 0.98 8.50 × 10−3 9.10 × 10−3

0.94% Fe2O3

D-E-1 137 1200 0.69 0.55 6.96 × 10−4

D-E-2 239 1300 0.93 3.17 × 10−3 7.8 × 10−3

D-E-3 316 1400 0.75 0.71 6.09 × 10−3

8.08% Fe2O3

D-G-2 134 1100 0.64 0.58 1.19 × 10−3

D-G-3 162 1200 0.40 0.36 2.41 × 10−3
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specimens, the formation of voids may explain the low p values. Figures 13.18 and
13.19 show the time-deflection relation.

Grain growth occurring during creep in MgO and in specimens containing Fe2O3

at 1300 and 1400 °C are shown in Fig. 13.20. The graph in Fig. 13.20 uses
Eq. 13.20 with n = 2 at 1300 °C and 3 at 1400 °C. Thus, squared and cubic growth
relations are indicated in the plots of Fig. 13.20. Growth in undoped MgO follows a
squared growth relation.

In essence, the interest in the use of additives in MgO solid solution is a con-
sequence of the following:

(a) The presence of Fe ions in solid solutions in this system inhibits non-viscous
contributions (i.e., by dislocations) to creep and promotes viscous creep;

(b) The addition of Fe2O3 enhances viscous creep, either by grain boundaries or
by lattice diffusion;

(c) The rate of grain growth is greatly depressed during MgO creep.

Thus, by adding the appropriate components, such as Fe2O3 (the representative
example discussed in this section), to solid solutions of MgO, grain size may be
controlled during creep, enabling the consequent design of better creep-resistant
ceramics. Since MgO is considered to be one of the significant ceramics for
high-temperature applications, it is very important to collect all the relevant
information to that end.
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13.2 Creep in Single-Crystal MgO

Generally, creep tests may be performed by the application of stress via com-
pression, tension, or deflection. This section will deal with the various types of tests
that are available to do so.

13.2.1 Compression Creep in Single-Crystal Magnesia

Experiments were performed on single-crystal MgO by compressive deformation
parallel to 〈100〉 up to 69% strain at temperatures between 1573 and 1773 K. The
creep apparatus used for these experiments is shown in Fig. 13.21.
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Fig. 13.19 Representative
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deflection versus time.
Terwilliger et al. [20]. With
kind permission of John
Wiley and Sons
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Table 13.5 lists pertinent data for the ten creep-tested specimens under uniaxial
compression at constant force, F of 220–440 N. The deformation was calculated
from the displacement data and corrected for apparatus compliance. The stress was
calculated by dividing the applied force by the cross-sectional area. Although F was
kept constant, the stress, σ, dropped as a function of strain. The results of these
creep experiments appear in

Figure 13.22 as the log shear-strain rate ( _cÞ versus the log-normalized

shear-stress s
l

� �
: The curves were fitted to _c; σ and T using a semi-theoretical

model for climb-controlled creep, given as:

_c ¼ lb
kT

s
l

� �n

AD0 exp � Q
RT

� �
ð13:25Þ

Strain and stress were converted to shear-strain and shear-stress in the above
equation, following von Mises’ equivalent strain rate and stress:
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Fig. 13.20 Grain growth in magnesiowustite (0.10% Fe2O3 at 1300 and 1400 °C. Terwilliger
et al. [20]. With kind permission of John Wiley and Sons

_c ¼ _e
3
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and:

s ¼ r
3

ð13:25aÞ

The shear modulus, μ, was the calculated using Eq. (13.26):

l ¼ l0 1þ T � 300
Tm

Tm
l0

dl
dT

� �� �
ð13:26Þ

Here, μ0 is the shear modulus at 300 K (taken as 125 GPa), Tm = 3125 and
Tm
l0
dl
dT

� �
¼ 0:68; the temperature dependence of shear modulus. The Burgers vector

for MgO 1
2 ð110Þ is 2.98 Å at 300 K and atmospheric pressure.

It has been established that, above 0.5 Tm, the quasi-steady-state deformation in
MgO single crystals occurs by dislocation glide and dislocation climb. Almost all

Fig. 13.21 Schematic of the creep apparatus loading column. The sample (2.5 × 2.5 mm
diameter) is located between the SiC pistons (25 mm diameter). The displacement is measured by
means of the strain cage consisting of two pairs of carbon rods that move independently and
transfer the displacement to the LVDT rod and body respectively. A passive load is applied from
the bottom and transferred to the load cell and then to the lower piston. A large furnace—not
represented—surrounds the sample and SiC pistons. White arrows indicate deformation bands
formed after 24% strain was imposed. Mariani et al. [14]. With kind permission of Elsevier. LVDT
stands for linear variable differential transformer
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the strain is a consequence of dislocation glide, while the rate of deformation is
controlled by climb. The stress exponent of 4.5 in these experiments, which is
characteristic of power law creep, confirms that dislocation climb is the dominant
creep deformation. Clearly, dislocation climb requires vacancy diffusion.

For detailed crystallographic information on slip systems, orientations and the
dynamic evolution of microstructures, interested readers may consult the work of
Mariani et al.

Table 13.5 Summary of experimental conditions and results. Mariani et al. [14]. With kind
permission of Elsevier

Sample Load
(kg)

F (N) T (K) σ
(MPa)

ε
(%)

_eðs�1Þ t (h) Comments

ps1 22 220 1673 26.8 24.4 2.2 × 10−7 63

ps2 22 220 1673 30.4 16.8 1.1 × 10−6 14.4

ps3 22 220 1673 27.3 34.8 1.3 × 10−7 119.3

ps4 33 330 1673 34.3 29.3 3.1 × 10−7 46 Sticky LVDT

ps5 44 440 1673 50.1 23.4 5.3 × 10−6 2.2 Slight buckling

ps6 44 440 1673 46.4 35.8 1.3 × 10−6 16 Buckling

ps7 22 220 1773 24.9 23.2 5.4 × 10−7 20.3 LVDT broke at end
of test

ps8 44 440 1573 49.3 25.3 3.1 × 10−7 67.4

ps9 44 440 1773 31.1 68.7 2.4 × 10−6 44.5 Thermocouple
failed

ps10 44 440 1773 49.5 21 9.6 × 10−6 1.4

F is the force, T is the temperature, σ is the stress, ε is the natural strain, _e is the natural strain rate
and t is time
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Fig. 13.22 Diagram of log10
shear-strain rate versus log10
shear-stress/shear modulus
curves obtained for
temperatures of 1573, 1673
and 1773 K. Symbols
represent experimental data,
solid lines are best-fit linear
regression curves and dashed
lines are data from Yoo et al.
2002, plotted using the value
of the stress exponent,
n = 4.5, obtained in this
study. The maximum error on
the differential stress is
±2.5 MPa. Mariani et al.
[14]. With kind permission of
Elsevier

270 13 Creep in MgO



13.2.2 Tensile Creep in Single-Crystal Magnesia

The minimum creep rate was found to be:

_e ¼ Arn exp � 4:1 eV
kT

� �
ð13:27Þ

where the activation energy for creep is 4.1 eV [8], which is basically Eq. (6.17)
above. This work relates to single-crystal MgO with a 〈011〉 axial orientation,
deformed by tensile creep at 1200–1500 °C and over a stress of 29.0–86.2 MN/m2.
The value of n = 3.8–4.5 and A = 11 × 10−2 (MN/m2)−4 s−1. Dislocation sub-
structures developing during creep have been investigated by TEM and etch-pitting
techniques. The tensile specimens had the dimensions and configuration shown in
Fig. 13.23.

All three creep stages (primary, steady-state, and tertiary) were observed in these
experiments. Figure 13.24 shows the tensile creep results, where the creep rates are
plotted versus inverse temperature (Fig. 13.24a) and stress (Fig. 13.24b).

Specimens were tested at 1400 °C to 0.1 strain for the influence of the applied
stress. The stress levels were 37.2, 44.8, 55.2, and 78.9 MN/m2. The structures of
the specimens tested at the three lowest stresses are shown in Fig. 13.25. At a stress
of 37.2 MN/m2, the dislocation density determined from the etch-pit was
ρ = 8.4 × 1011 m−2. At higher stresses (44.8 and 55.2 MN/m2), the etch-pit density
increased and bands containing a very high density of pits were observed. These
bands probably correspond to slip bands, especially at low creep strains.
Figure 13.25 illustrates the etch pits and the slip bands. The wavy nature of the
bands suggests that considerable cross-slip took place during creep. Only slip bands
corresponding to one set of orthogonal 110f g 1�10h i slip systems were observed
(Fig. 13.26).

Slip traces for {010} planes are at 45° to the tensile axis and cannot be differ-
entiated from the {110} slip traces. Slip traces for {111} slip planes would be
horizontal and vertical and were not observed. An increase in applied stress
increases etch-pit density, as expected, since the dislocation density is a function of
stress. Plots of the dislocation density versus stress and versus strain at 1400 °C are

Top View

25.54××10-2 m

2.5 ×10-3 m6.3 ×10-2 m

6.3 ×10-2 m

[011]-

[011](100)

Fig. 13.23 Tensile creep specimen configuration. Clauer and Wilcox [8]. With kind permission of
John Wiley and Sons
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seen in Fig. 13.27a, b, respectively. The density versus applied stress yields the
relation q / r2:1 and, in subgrains, q / r1:4 for [100]-oriented MgO tested under
compression. As seen in Fig. 13.27a, the dislocation density determined by etch-pit
technique (optical microscope) is in good agreement with the density determined by
the replica technique of electron microscopy. Usually, the etch-pit technique gives a
lower dislocation density than TEM, since an etch-pit may originate from more than
one dislocation.

The dislocation density increases with strain, as seen in Fig. 13.27b. At about
0.1 strain, the dislocation density appears to approach a constant value. TEM of thin
foils parallel to one of the four {110} slip planes, having equal nonzero-resolved
shear-stresses, are shown in Figs. 13.28 and 13.29. No sub-boundaries were
observed and only an extensive, relatively uniform distribution of dislocations was
present. A large number of dislocation loops are visible, which are the largest under
great stress. With an assumed foil thickness of 5 × 10−7 m, the loop densities are
2.4 × 1017 m−3 and 2.6 × 1018 m−3 at 46.9 and 86.2 MN/m2, respectively. The
Burgers vector analysis sequence in Fig. 13.29 shows that most of the loops dis-
appear (Fig. 11.39c), where g = 2�2�2: If only 〈110〉 Burgers vectors are considered
and it is assumed that slip systems with no resolved shear-stress do not operate, then
these loops have b = a/2[101] and the slip plane was either ð�101Þ or (010). It is
suggested that the creep substructure is either mainly screw dislocations on
½�101�(101), ½�101�(010) or ½�101�(111) slip systems or edge dislocations on a
½�101�(010) slip system. Furthermore, if it is assumed that all oriented dislocations
belong to the same slip system and that most of the oriented dislocations go out of
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Fig. 13.24 Dependence of creep rate of 〈011〉-oriented MgO single crystals on a temperature at
47.2 MN/m2 and b stress at temperatures indicated. Clauer and Wilcox [8]. With kind permission
of John Wiley and Sons
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contrast in Fig. 13.29c or d, then the most likely slip systems are either the [101]
(010) or the ½�101�(101) system. The trace of the ½�101�(101) on the foil (110) plane is
parallel to the ½�111� direction and, thus, any dislocation that tends to be in this
direction would be nearly in the plane of the foil and, as such, long lengths would
be observed. The long, relatively straight dislocation segments observed by TEM
suggest the possibility of a glide-controlled creep mechanism. During creep, most
dislocations are mobile and glide is controlled by a drag mechanism composed of
charged atmospheres—perhaps acting as the rate-determining element. This con-
cept originates from the possibility that dislocations in crystals have an ionic nature;

Fig. 13.25 Stress dependence of creep substructure after creep to 0.10 creep strain at 1400 °C;
(100) surfaces are shown. Bar 30 μm. a σ = 37.2 MN/m2, ρ = 8.4 × 1011 m−2; b σ = 44.8
MN/m2, ρ = 9.2 × 1011 m−2; c σ = 55.2 MN/m2, ρ = 1.3 × 1012 m−2. Clauer and Wilcox [8].
With kind permission of John Wiley and Sons
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as such, the line charge is compensated by the formation of a cloud of oppositely
charged defects. It appears that a drag process controlled by the intrinsic diffusion
of charged impurity ions may be operative.

13.2.3 Flexural (Bending) Creep in Single-Crystal
Magnesia

Experiments on bending creep in single-crystal MgO were performed in a vacuum at
the 800–1090 °C temperature range. In the vicinity of 1000 °C, creep is
rate-controlled by the cross-slip of screw dislocations, having an activation energy of
1.5 ± 0.25 eV. Above 1300 °C, creep takes place at a constant rate, with an acti-
vation energy of 5.8 ± 0.73 eV and a stress exponent of 3. This creep is attributed to
oxygen-ion-controlled edge-dislocation climb. Figure 13.30 shows a typical creep
curve obtained at l000 °C. This illustration is characteristic of transient creep. The
derivative of two curves provides the data for the log–log plot shown in Fig. 13.31.
The equation derived from the plot is an equation seen often in earlier chapters

Fig. 13.26 Etch-pit distribution and density within and without heavy bands of etch pits.
a ρ(avg) = 1.3 × 1012 m−2, bar 30 μm; b ρ = 9.2 × 1011 m−2, bar 5 μm; c ρ = 1.5 × 1012 m−2,
bar 5 μm. Arrows indicate types of regions represented by replica electron micrograph. Clauer and
Wilcox [8]. With kind permission of John Wiley and Sons
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_e ¼ At�1=2 ð13:28Þ

The above stress exponent is a result of 11 runs, and an expression for the creep
rate near 1000 °C was given as:

Fig. 13.28 Dislocation substructure in specimen after creep to 0.10 strain at 1400 °C and
86.2 MN/m2. Foil plane is (110). Clauer and Wilcox [8]. With kind permission of John Wiley and
Sons
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Fig. 13.27 a Stress dependence and b strain dependence of dislocation density determined at
1400 °C. Clauer and Wilcox [8]. With kind permission of John Wiley and Sons
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Fig. 13.29 Analysis of Burgers vectors in specimen after creep to 0.10 strain at 1400 °C and 86.2
MN/m2. Foil plane is (110). Clauer and Wilcox [8]. With kind permission of John Wiley and Sons
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_e ¼ 20t�0:5 r
r0

� �5:2

exp � 1:5
kT

� �
ð13:29Þ

The activation energy is the average of five determinations. A transition in creep
behavior was observed between 1100 and 1300 °C (activation energy plots and
time-dependent behavior). This seems to be associated with a diffusion-controlled
mechanism occurring above 0.5 Tm (i.e., 1260 °C). This mechanism is supported by
the appearance of polygonization after creep at temperatures above 1300 °C, as
indicated by the etch-pit patterns shown in Fig. 13.32. This is further supported by
the observation that the creep rate above 1300 °C was independent of time. Crystals
crept at 1000 °C showed a discrete band pattern, as indicated in Fig. 13.33.

For the determination of the activation energy, plots of the strain rate versus the
inverse temperature were constructed, like those found in Fig. 13.34. An activation
energy of 5.85 ± 0.73 eV was the average of eleven determinations made. The
obtained activation energy was independent of the stress applied in the 2000–8000
psi range.

0.4

0.2

0
40 60 100

TIME (h)
P

E
R

C
E

N
T

 C
R

E
E

P
 S

T
R

A
IN
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This activation energy value is in quite close agreement with the 5.22 eV of
oxygen diffusion in MgO, perhaps suggesting that creep is associated with the
oxygen-ion diffusion-controlled climb of edge dislocations.

Fig. 13.32 Etch pits in MgO
showing polygonized
structure after creep at
1600 °C. Edges of
photograph are along the
(100) direction (×500).
Rothwell and Neiman [19].
With kind permission of AIP
Publishing

Fig. 13.33 Etch-pit pattern
showing discrete slip bands
formed by creep of MgO at
1000 °C. Edges of
photograph are
along 〈100〉 direction (×500).
Rothwell and Neiman [19].
With kind permission of AIP
Publishing
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The stress dependence on the strain rate was obtained by plotting the creep rate
at the intersections of the different stress lines on the activation energy plots with a
constant temperature ordinate. This is shown in Fig. 13.35 by the slope of 3, from
which the stress exponent may be determined. The creep rate may be expressed as:

_e ¼ 8000r3 exp
5:85
kT

� �
ð13:30Þ

This equation suggests that creep can be described as the diffusion-controlled
climb of edge dislocations over obstacles, such as impurities or sessile dislocations.
Thus, it is assumed that this is the most likely mechanism for creep and that the
diffusion of oxygen vacancies into jogs is the rate-controlling process.
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In an earlier work at higher temperatures, steady-state creep was measured in
single-crystal MgO by means of the three-point bending deflection rate. The data
from the 1450–1700 °C temperature range show that creep is a thermally activated
process without a unique activation energy. The measured activation energy range
is 3.5–7 eV. The activation energy indicated above in Eq. (13.3) was 5.85 eV, well
within the range indicated here.

This was actually a measurement of the sample deflection rate, rather than of
the creep strain rate. The loading of samples with successively greater weights
was performed until a curve showing steady state deflection versus load was
achieved. The sample was then unloaded and the temperature raised. This same
procedure was repeated at the next temperature level and so on, obtaining the
results displayed in Fig. 13.36. Details on the deflection rates and applied loads
for particular slopes are listed in Table 13.6, which indicates that the creep rate
depends on the load in accordance with a power law, and has an exponent in the
range of 4–7.

The log of the deflection rate, as a function of the inverse temperature at constant
load, is illustrated for two samples in Fig. 13.37. From the slopes of these curves,
the activation energy was evaluated and found to be in the 3.5–7.0 eV range, as
indicated earlier. This energy range may be explained in terms of self-diffusion
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Table 13.6 Deflection rate
versus load. Cummerow [10].
With kind permission of AIP
Publishing

Curve Slopes Temp. °C

A 3.92 1704

B 4.02 1712

C 5.09 1656

D 3.94 1656

E 4.46 1605

F 5.84 1608

G 6.03 1551

H 7.08 1555

J 6.60 1503

K 7.30 1501

L 6.20 1454

M 4.73 1455
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data, if it is assumed that the creep rate is limited by self-diffusion. The range of
exponents lends some support to this theory based on edge-dislocation climb over
barriers as the rate-limiting step. This was almost the same conclusion reached by
Rothwell and Neiman, considered above, although differences in the diffusing
specimens and in the diffusion details occurring must be noted. Meanwhile, there is
no electron microscopic evidence of barriers to climb. As stated by Cummerow,
some other climb mechanism, such as the dissolution of sessile edge loops or the
nonconservative motion of jogs, may be operative.

13.3 Creep Rupture in MgO

Only limited information is available on creep rupture per se, without diverging
to discussions on various factors involved in this process, such as GBS, etc.
When considering creep rupture, a fundamental concept involved is τr, time-
to-failure by rupture under a constant load during creep testing. The time-to-
rupture basically determines the service life of a material or product. Another
important factor is the strain at which rupture occurs; thus, strain and rupture, at
some load, must be interrelated. A known empirical relation has also been applied
to creep rupture in MgO [2], relating rupture time to stress, known as a ‘power
law’, given as:

sr ¼ Arn ð13:31Þ

Furthermore, an exponential relation has been suggested for τr, relating it to
temperature:
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sr ¼ B expðbTÞ ð13:32Þ

In the above equations, A, n, B, and b are all empirical coefficients. Recall the
appearance of the creep curves in Chap. 1 for the σ constant (that depends on
temperature) and for the T constant (when load/stress) determines the creep curves.
This means that τr = f(σ, T). The rupture time is inversely proportional to the creep
rate at the steady state, _e; and τr = cons. The stress-dependent time-to-rupture of
MgO, on a logarithmic scale, is presented in Fig. 13.38.

The designation of these specimens and other pertinent parameters are shown in
Table 13.7.

The experiments were performed under constant stress in the 20–50 MPa
range and in the 1450–1550 °C temperature range. Observe in Fig. 13.38 that τr
decreases with increasing stress, as expected. Also note that the slopes of the lines
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Table 13.7 Characteristics of the Experimental Samples. Bakunov et al. [2]. With kind
permission of Springer

Batch
index

Ceramic
type

Predominant
crystal size

Apparent
density,
g/cm3

True
porosity,
%

Bending strength, MPa, at
temperature, °C

20 1400 1450 1500 1550

P-12 MgO 12 3.47 3.0 120 65 52 45 40

P-25 MgO 25 3.50 2.2 105 60 73 62 55
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as expressed on the logarithmic scale remain constant. This indicates that the
process mechanism does not change with temperature. The exponent, n, in
Eq. (13.31) equals −3. The effect of temperature on rupture time is seen in
Fig. 13.39.

Sample P-25 in Fig. 13.39b shows two branches of the curves. In the
first branch, time-to-rupture increases with increasing 1/T (or with decreasing
temperature). Beyond 1450 °C, the rupture time decreases with increasing
1/T. The authors claim that the brittle-to-ductile transition temperature
falls within the range of the experiments, since the strength reaches its
maximum value at 1450 °C, which ordinarily occurs in the presence of
plasticity.

Based on Fig. 13.39, the activation energy for rupture during creep testing was
determined from the slopes, and the values are: 460 kJ mol−1 for the P-12 speci-
mens and 440 kJ mol−1 for P-25, in the 1450–1550 °C temperature range,
respectively. The time-to-rupture at all the tested temperatures decreased with the
increase in steady-state creep, as illustrated in Fig. 13.40.

The relation between the creep before rupture, εr, and the steady-state rate is
presented in Fig. 13.41.

A power law with exponent n = −0.5 is indicated for the type of MgO ceramics
being tested. The relation between the time-to-rupture, τr, and the creep prior to
rupture is expressed on a log–log scale in Fig. 13.42. A power law function is
assumed with the exponent n = 4.
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In conclusion, relations have been presented for the time-to-fracture in
steady-state creep and applied stress; the time-to-failure by rupture and inverse
temperature; the time-to- rupture and creep rate; and also the time-to-rupture and
creep rupture, just prior to rupture.
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13.4 Superplasticity in Magnesia Composites

Ceramics, especially those exhibiting fine grain sizes, have demonstrated their
ability to form various superplastic components. The near-net-shape manufac-
turing of various components was one of the important reasons for expending a
great deal of effort to discover more and more applicable systems (metallic and
ceramic alike), that exhibit superplastic capabilities. Among the many systems,
MgO plays an important role as a partner in certain superplastic ceramics. Some of
these are superplastic spinels, based on MgO�xAl2O3, where x is 1 or 2. The
following example is a MgO-based composite—specifically, the MgO�Al2O3

ceramic (known as spinel), which has been produced by HIP and has a fine grain
size of 610 nm.

13.4.1 MgO�Al2O3

Recall that a creep rate was yielded by a number of aforementioned equations
[Eqs. (4.1), (4.2), (8.3), and (12.1)], but now grain-boundary diffusion is added as:
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_e ¼ A
Gb
kT

b
d

� �p r
G

� �n
Dl þ pd

d
DGB

� �
ð13:33Þ

in order to get the deformation associated with diffusion. A is a dimensionless
constant, G is the shear modulus, d is the grain size, σ is the stress, d is the grain
boundary, δ is the grain-boundary thickness, and p and n are the grain size and
stress exponents, respectively. Dl and DGB are the lattice and grain-boundary dif-
fusion coefficients, respectively.

Before performing creep tests, the specimens were annealed at 1380 °C to
relieve the stresses resulting from the HIP process. Then, compressive stress was
applied to the specimens under constant stress in the 15–90 MPa range and
at temperatures of 1350–1420 °C. The theoretical density of MgO�Al2O3 is
3.58 g cm−3 and the obtained densities by HIP at the respective temperatures are
listed in Table 13.8.

As may be seen in Table 13.8, at 1430 °C, the final density corresponds to the
theoretical one with zero porosity and a grain size 0.8 μm. Often Norton’s relation,
given as:

_es ¼ Arn ð13:34Þ

is used at high temperatures between the stationary strain rate and the stress, σ. The
subscript, s, in Norton’s equation indicates stationary strain. Here, A may be
associated with grain size (and other microstructural features), while the stress
exponent is an indication of the deformation process. In the case of a
diffusion-controlled mechanism, factor A is expressed in terms of the grain size
exponent, p, as:

A ¼ A0hdi�p ð13:35Þ

This same grain size exponent has already appeared in Eq. (13.33). Thus, A′, in
Eq. (13.35), takes into account any of the factors in Eq. (13.33) or any of the
equations previously indicated, such as Eq. (4.1). As such, A′ may be given as:

A0 ¼ Gb
kt

� �
bp

1
Gn

Dl ð13:35aÞ

Table 13.8 Density and
grain size developments for
different HIP conditions.
Beclin et al. [4]. With
kind permission of Elsevier

HIPing temperature (°C)

1350 1380 1400 1410 1450

Green density
(g cm3)

2.37 – 2.27 2.35 2.35

Final density
(g cm3)

3.53 3.54 3.57 3.57 3.58

Porosity (%) 1.4 1.1 0.3 0.3 0

Grain size (μm) 0.48 0.51 0.51 0.57 0.8
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By substituting the value of A′ from (Eq. 13.35a) for A from Eq. (13.35), Eq. (4.1)
is obtained. Equation (4.1) is cited, rather than Eq. (13.33), because the contribution
of grain-boundary diffusion is also included in the latter. The grain size exponent
p = 2–3. Express Eq. (13.34) in a logarithmic form, after replacing A in Eq. (13.35),
as:

ln _es ¼ lnA0 þ n ln r� p ln d ð13:36Þ

A plot of ln _es versus εs in a sample compressed at 60 MPa at 1400 °C is
illustrated in Fig. 13.43.

There is a continuous decrease in the creep rate, which indicates that strain
hardening is occurring in the sample, likely because strain-enhanced grain growth
has occurred. The true strain indicated in Fig. 13.43 is 40%, which reflects the
possibility of superplastic deformation in fine-grained spinel, in which the com-
ponents are in a 1:1 ratio. Further support for the feasibility of superplastic
deformation is the fact that no tertiary creep was observed in this ceramic
(Fig. 13.44).

Using Eq. (13.36), the stress exponent, n, may be evaluated from the depen-
dence of ln _es on σ, while keeping A constant (Eq. 13.34). Values of n have been
determined for materials with the same structure using the stress-jump method, as
illustrated in Fig. 13.49. Table 13.9 lists the stress-dependent values of n deter-
mined at 1380 °C.

The values of n are lower than 2, which is usually observed in superplastic
deformation, but similar values were observed in diffusion-controlled dislocation
climb in MgO�2Al2O3 spinels. This subject will be discussed next.
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Fig. 13.43 Continuous linear decrease of the creep rate after a transient period (T = 1400 °C,
σ = 60 MPa). Beclin et al. [4]. With kind permission of Elsevier
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Beclin et al. also investigated superplasticity in an earlier publication on
MgO�Al2O3. Basically, the same experimental technique was used as above. In
brief, the HIPed spinel had a grain size of 610 nm and uniaxial compression was
applied in the superplastic (creep) experiments. Earlier studies [16] on MgO�2Al2O3

had served as guidelines for their investigations, indicating the importance of strain
rate and temperature on fine-grained ceramics. In order to analyze creep at high
temperatures, one of the equations already given [for instance Eqs. (1.9) or Eq. (13.
37)] might be used. Note that Eq. (1.9) uses B instead of A and Q instead of H.

_es ¼ Arn exp �DH
RT

� �
ð13:37Þ

H, the activation energy, and n are characteristic of the strain rate (creep strain rate)
and the deformation process. As mentioned above, A is associated with
microstructure and its average grain size, 〈d〉. Grain size particularly effects
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Fig. 13.44 Stress jumps from which the stress exponent, n, has been deduced (T = 1380 °C).
Beclin et al. [4]. With kind permission of Elsevier

Table 13.9 Average values
of the stress exponent
obtained at different stresses
(T = 1380 °C). Beclin et al.
[4]. With kind permission of
Elsevier

σ (MPa) n 〈n〉
15 → 20 → 30 → 45 1.97

35 → 45 1.94 1.95

45 → 60 1.55

50 → 60 1.47 1.49

45 → 52 → 60 1.46

60 → 72 → 86.4 1.72

60 → 75 → 90 1.85 1.78
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diffusion-related processes. By means of Eqs. (13.35) and (13.37), one may write in
logarithmic form:

ln _e ¼ lnA0 þ n ln r� p lnhdi � DH
RT

ð13:38Þ

The dependence of ln _e on σ and T, respectively (Eq. 13.38), enables the
determination of n and ΔH. In a stress- or ΔH-jump method, the values of n or
ΔH may be evaluated by relating the change in ln _e to ln σ or T−1, so:

n ¼ D ln _esð Þ
D ln rð Þ


 �
T

ð13:39Þ

and:

DH ¼ �R
D ln _esð Þ
D DT�1ð Þ

 �

r ð13:40Þ

In Fig. 13.45, creep curves are shown: (a) the creep strain versus time, and
(b) the logarithm of the creep strain rate versus creep strain.

During this test, stress and temperature were kept constant. The applied stress
was 60 MPa. The fact that the strain rate decreased (after transient creep) is an
indication of strain hardening due to a microstructural change. Fine-grained spinel
is, thus, a good candidate for superplasticity, since a true strain of 55% is observed
in Fig. 13.45b. The original test material had fine-grained, equiaxed spinel, as
shown in Fig. 13.46a, but some grain growth had occurred.

By increasing the stress to 150 MPa, cavitation is induced in the spinel and,
therefore the decrease in density is associated with the decrease in the strain to 35%
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Fig. 13.45 Curves showing continuous linear decreasing of the creep rate after a transient
(σ = 60 MPa, T = 1723 K): a ε versus t, and b ln _e versus e. Beclin et al. [3]. With kind permission
of Elsevier
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at 1723 K. Cavity formation is a softening mechanism and, as such, works against
the strain hardening mentioned above. An important observation by SEM and
TEM was the lack of dislocations within the fine grains, and only a few rare,
individual dislocations were detected. Figure 13.46 is an illustration of fine-grained
microstructure.

The decrease in strain rate may be related to grain growth. This dynamic grain
growth is significant during superplastic deformation. Average grain growth may be
given as:

h _di ¼ _da þ _de ð13:41Þ

where _da is the stress-free grain growth rate after annealing, and _de is the
GBS-induced grain growth rate, which is responsible for the superplastic strain rate,
_e: One of the grain-growth-by-annealing models is based on the assumption
that grain-boundary velocity is driven by a mobility, Mb, by thermodynamic force
F, which is inversely proportional to the grain size, 〈d〉, to a power from 1 to 2,
given as:

1 μm

1 μm

Fig. 13.46 TEM showing
the fine-grained
microstructure: a as-pressed
and then HIPed
polycrystalline MgO.Al2O3;
b deformed sample (ε = 55%,
T = 1723 K, σ = 60 MPa).
Beclin et al. [3]. With kind
permission of Elsevier
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_da ¼ Mb � F ¼ Mb � kcbXhdi1�m ð13:42Þ

where the grain size exponent is 2 < m < 3.
At intermediate strain rates, when the strain rate, _de , is controlled by the rate of

GBS, _de from Eq. (13.41) is given as:

_de ¼ abhdi_e ð13:43Þ

When the static grain growth effects are negligible, Eq. (13.41) may be inte-
grated (h _di ¼ _de ), resulting in:

hdi ¼ d0 exp Beð Þ ð13:44Þ

Here, d0 is the pretest grain size and B = αb. Using this value, Eq. (13.38)
becomes:

ln _es ¼ lnA0 þ ln r� p ln d0 � pBe� DH
RT

ð13:45Þ

Equation (13.45) has been obtained by expressing Eq. (13.44) in logarithmic
form and substituting Eq. (13.44) for ln 〈d〉 in Eq. (13.38). The ln (〈d〉/d0), as a
function of ε for dynamic grain growth (according to Eq. 13.44) is a straight line
and is plotted for σ = 60 MPa at 1723 K in Fig. 13.47. The slope of the curve
provides B, resulting in B = 1.87.

As in their earlier work, the jump method was used to evaluate stationary-creep
dependence on σ and T (Fig. 13.44). Compression creep experiments at constant
stress and temperature are illustrated in Fig. 13.48. The jump time occurs when
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Fig. 13.47 ln 〈d〉/d0 versus ε
experimental curve showing a
linear relationship. Beclin
et al. [3]. With kind
permission of Elsevier
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ε = ε0. Table 13.10 lists the stress exponents obtained at different stresses and
temperatures.

The stress exponents listed in Table 13.10 were determined from the plots in
Figs. 13.49 and 13.36, which basically reflects Eq. (13.39), which starts with the
first jump:

n ¼ ln _es20 � ln _es10ð Þ
ln r2 � ln r1ð Þ ð13:46Þ

As seen in Table 13.10, the value of n in the 80–180 MPa stress range is
somewhat above 2. For stresses below 80 MPa, it is about n = 〈1.5〉 in the stress
range 60–35 MPa, but n = 〈1.7〉 in the stress range 30–10 MPa. The variation in
the experimental ln _e versus ln σ plot shown in Fig. 13.50 is an indication of stress
exponent variation. Figure 13.49b and Eq. (13.40) serve to determine ΔH in the
range of 1623–1723 K at a constant stress of 60 and 100 MPa (shown for 60 MPa
in the plot) by temperature jumps. An analysis of Eq. (13.40), rewritten as
Eq. (13.47), served to evaluate ΔH:

DH ¼
�R ln _es20 � ln _es10

� �
T�1
2 � T�1

1

� � ð13:47Þ
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ε0
.

Fig. 13.48 General behavior
observed in (ln _e/ε)
coordinates for a sample
deformed during a change of
σ (or T), which was carried
out when the strain was ε0.
Beclin et al. [3]. With kind
permission of Elsevier

Table 13.10 Average values
of the stress exponent
obtained at different
temperatures and stresses.
Beclin et al. [3]. With kind
permission of Elsevier

T(K) σ (MPa) 〈n〉
1623 90 → 120 → 150 → 120 → 90 2.1

1673 90 → 120 → 150 → 120 → 90 2.1

1723 60 → 90 → 120 → 150 → 180 2.0

1723 20 → 35 → 50 → 60 → 80 1.5

1723 10 → 15 → 20 → 30 1.7
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The values at 60 and 100 MPa are (647 ± 37) and (537 ± 53) kJ mol−1,
respectively. Moreover, the grain size exponent was determined from Eq. (13.45)
and B (=1.87) from the plot of ln _e versus e (Fig. 13.45b). At 1723 K and 60 MPa,
p = 2.72. The values of n, p and ΔH determined above are characteristic of the
creep mechanism.

It was seen from the creep experiments at 1623–1723 K under 20–180 PMa
that MgO�Al2O3 can be deformed superplastically to a value of about 55% strain
by compression. The measured activation energies are representative of the range
for superplastic deformation. Superplasticity is accommodated via grain-boundary
diffusion. The value of the grain size exponent obtained, being 2.72, is close to
the value of p = 3, suggesting a significant contribution by grain-boundary
diffusion.

13.4.2 MgO�2Al2O3

Unlike the case of MgO�Al2O3, a deformation of several hundred percent was
obtained in fine-grained MgO�2Al2O3, deformed at high strain rates at temperatures
of 1723–1885 K. Here, the mechanism of deformation was dislocation creep with a
stress exponent of 2.1 ± 0.4. Despite this high deformation, the grains remained
equiaxed and the evolution of the grain size was dependent only on temperature and
strain rate. The initial microstructure determined whether the material would frac-
ture or flow. An initial small grain size and supersaturated solid solution favored
ductile flow. Such ductility is attributed to dynamic recrystallization, the effect of
which is contrary to the onset of fracture. Factors promoting recrystallization also
promote ductile flow, which is a prerequisite for superplasticity.

Deformation was performed by uniaxial compression under a vacuum above
0.01 Pa. The power law, seen in Eq. (13.35), was used to characterize flow. As
mentioned above, superplastic deformation is possible if the power law expo-
nent is 1 < n < 2.5. The true stress and true strain at different initial strain rates
at 1723 and 1880 K are shown in the plots in Figs. 13.51 and 13.52, respec-
tively. In these figures, the strain is indicated by a negative sign, which is
the usual way to indicate strain under compression. The strain rate has an effect
on ductility and even on the transition from almost-brittle-to-ductile behavior.
This is indicated in Fig. 13.51 (sample CT-4, for example) and Fig. 13.52
(e.g., sample CT-10).

As indicated above, the stress exponent may be determined from a plot of ln _e
versus stress. The curves of the MgO�2Al2O3 are illustrated in Fig. 13.53, which
also lists the n values for the various temperatures. The strain is ε = –0.2 and the
equation for the strain rate, namely Eq. (13.37) is also shown. The activation energy
may be calculated by this equation or by the one shown in the figure, resulting in
Q = 460 ± 50 kJ mol−1. The plot of the strain rate (as a log strain rate) versus the
inverse temperature (Eq. (13.37), but with Q instead of ΔH) is illustrated in
Fig. 13.34.
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Again, grain size is an important factor in superplastic deformation. The grain
size effect is shown in Fig. 13.55. The grain size influence on ductility is clearly
seen in Fig. 13.55. Specimens with grain sizes 7.0 and 8.6 μm were ductile
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et al. [16]. With kind permission of John Wiley and Sons
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Fig. 13.52 Effect of deformation rate on true stress versus true strain curves at 1825 K. Panda
et al. [16]. With kind permission of John Wiley and Sons
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with true strains at about 55%, whereas the large grain-sized specimen of
d = 34 μm fractured at a strain of 6%. The variation of the flow stress with the
grain size is shown in Fig. 13.56, which decreases with the increase in grain size
(Fig. 13.54).
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Fig. 13.55 Flow curves showing effect of grain size on flow behavior; 1856 K and
_e = 7 × 10−5 s−1. Panda et al. [16]. With kind permission of John Wiley and Sons
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This suggests that diffusional creep is not the main mechanism operating. An
increase in flow stress should be observed with grain size increase, if diffusional
creep was the main creep mechanism. In fact, a dislocation mechanism is supported
by a grain size-induced variation in the flow stress. The strain rate for such a
dislocation mechanism is:

_e ¼ qmbm ð13:48Þ

ρm is the mobile-dislocation density, b is the Burgers vector, and ν is the average
dislocation velocity. However, the dislocation mobility is likely to be limited by
diffusion-controlled dislocation climb. Such a mechanism is supported by an
obtained activation energy of 460 ± 50 kJ mol−1, which is quite close the
self-diffusion coefficient of the O ion, being 443 ± 50 kJ mol−1, the
slowest-diffusing species in the spinel.

13.5 Creep in Nano-MgO

MgO polycrystalline ceramics are brittle at room temperature, but at higher tem-
peratures, in the T ≥ 0.5 Tm range, they become ductile, dislocation slip occurs and
they may strain-harden during deformation. However, nano-sized MgO is ductile
and deforms under large strains without any work hardening (as in superplastic
deformation). In Fig. 13.57, stress–strain curves at several temperatures are shown
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Fig. 13.57 Stress–strain curves recorded by compression of rectangular nc-MgO bars at constant
cross-head speed and different temperatures. The curves exhibit elastic, perfectly plastic, behavior
with no strain hardening. Specimen (A) was annealed to grow the grain size to 1 μm, and thus
exhibited brittle behavior by compression at 800 °C (arrowed solid line), compared with the
ductile behavior of its nanocrystalline counterpart specimen (dashed curve) at 800 °C.
Domínguez-Rodríguez et al. [11]. With kind permission of Elsevier

13.4 Superplasticity in Magnesia Composites 299



for nanocrystalline MgO; they indicate the possibility of making brittle MgO
ductile. The creep testing of these specimens was conducted at 100–300 MPa and at
the temperatures of 783 and 785 °C. The creep test results are shown in Fig. 13.58.
The stress exponent evaluated from the resulting curve was 2 ± 0.1. As usual, by
using the stress–strain curves (Fig. 13.57) and the value of the stress exponent, an
activation energy of (202 ± 9) kJ mol−1 was determined.

The microstructure of the equiaxed nanocrystalline grains is illustrated in
Fig. 13.59, before and after deformation. The equiaxed grains remained unchanged
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Fig. 13.58 Strain rate versus
stress in nc-MgO subjected to
compression creep tests at
730 °C (circles) and 785 °C
(triangles). This dependence
was used to determine the
stress exponent n = 2.
Domínguez-Rodríguez et al.
[11]. With kind permission of
Elsevier

Fig. 13.59 HRSEM images, using the secondary electrons, showing the surface microstructure of
the nc-MgO composed of equiaxed grains a prior to and b after the plastic deformation at 800 °C
(40% strain). No significant changes were visible after the deformation, except some
grain-boundary cavities and faceting of the surface grains which were in contact with the
compressing pad. Arrows indicate the applied load direction. Domínguez-Rodríguez et al. [11].
With kind permission of Elsevier
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after the deformation. Compare Figs. 13.59a before and 13.59b after the
deformation.

As stated above, for creep deformation related to point-defect diffusion in the
lattice and grain boundaries, the strain rate was given as Eq. (13.33), which is
reproduced here for convenience:

_e ¼ A
Gb
kT

b
d

� �p r
G

� �n
Dl þ pd

d
DGB

� �
ð13:33Þ

Surprisingly, only limited information on creep deformation in nanocrys-
talline MgO is recorded in the literature. The importance of nano-sized
ceramics is obvious, since they may attain plasticity, despite the fact that
ceramics, with few exceptions, are inherently brittle or at best semi-brittle at
room temperature.

13.6 Creep Recovery of MgO

Steady-state creep is a balance between work hardening and recovery. As such,
steady-state creep is proportional to stress to an exponent n as:

_es / rn ð13:34Þ

and stated as _e ¼ Arn: At low stresses, n * 1, and linear stress dependence may be
interpreted as grain or grain-boundary diffusion-controlled creep. At higher stress
levels, n = 2.3–4. It was believed that such high values of n are associated with
dislocation movement. Two mechanisms have been suggested for
dislocation-induced creep: (1) dislocation glide, associated with either the motion of
jogged screw dislocations (nonconservative motion) or with dislocation dragging
by a cloud of charged defects or (2) dynamic recovery by climb. Creep occurs
because strain hardening, resulting from creep deformation, is annealed out by
recovery. The existing balance of these two processes explains steady-state creep in
ceramics.

An often-used technique for studying creep involves a sudden change in the
applied stress and observation of the strain–time behavior. The aforementioned
balance of an increment of strain, dε, during a short time period, dt, by recovery, in
order to maintain a constant flow stress, is given by:

dr ¼ @r
@e

deþ @r
@t

dt ¼ 0 ð13:49Þ

Now designate �r ¼ � @r
@t ; h ¼ @r

@e and recall that de
dt ¼ _es (Eq. 13.49) may be

clearly expressed as:
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_es ¼ de
dt

¼ r
h

ð13:50Þ

Compressive creep tests were performed up to 6% strain, to avoid barreling
of the specimens. The height-to-diameter ratio of the cylindrical specimens is
critical, so the experiments were carried out at h/d = 1.5. Creep strain–time
curves are shown in Fig. 13.60; of the six runs, only three curves are shown for
clarity.

The tests were carried out at 1596 K (0.52 Tm) and 62.6 MNm−2. On
reaching the steady state, the stress was reduced by a small amount, Dr ffi 0:05r
and, after this small stress decrease, the creep rate was zero (see Fig. 13.61). This
stage continued until the creep rate reached a new steady state. When this new
steady creep rate was established at the reduced stress, the stress was again
increased by Δσ to the original stress level and the instantaneous strain, Δε,
obtained on reloading was recorded (Fig. 13.61). This procedure was repeated.
The strain–time behavior, following the series of stress decreases, was recorded
and appears in Fig. 13.61. This procedure, of making small decreases to about
*0.15σ, throughout the incubation period, Δt, is linearly related to Δσ, so that
Δσ/Δt is a constant. Thus, this ratio is a measure of the recovery, r (¼ �@r=@tÞ.
At the same time, the specimen extension, Δε, resulting from the increase in
Δσ, provides the ratio Δσ/Δε, previously designated as h. As such, Eq. (13.50)
yields _es.

See Fig. 13.62 for the relations between Δε and Δσ, and Δt and Δσ. Table 13.11
lists the predicted and experimentally observed steady-state creep rates, _es.
The coefficients of the work hardening rate and recovery rate, r, are related in
Fig. 13.63 at a temperature of 1596 K. This temperature was below the sintering
temperature and chosen so as to eliminate grain growth during creep.

In magnesia, it was found that the steady-state creep rate varies approximately as
σ3. This may be seen in Fig. 13.64 and that creep is controlled by recovery.
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Birch and Wilshire [6]. With
kind permission of Springer
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The results obtained from the steady-state creep measurements, in which n in
Eq. (13.34) is n * 3 and recovery-controlled, suggest a model in which, during the
rate-controlling creep, a 3-D dislocation network grows within the subgrains to
form dislocation sources allowing slip to occur. It might also be interesting to
compare such creep recovery data for single-crystal MgO.

Stress change experiments at temperatures above 1948 K with stresses lower
than 4 MPa have been done. Specimens were deformed by compression along
the 〈100〉 direction. As usual, the temperature was kept constant (±2 K) and
the applied stresses were in the 1.5–4 MPa range. The steady-state stress reductions
(as done in the case of single-crystal MgO), were on the order of 0.05–1.70 σA,

Table 13.11 A comparison of the predicted steady creep rate (calculated as r/h where r is the rate
of recovery and h is the coefficient of strain hardening) and the measured steady creep rate, _es, over
a range of stresses at 1596 K. Birch and Wilshire [6]. With kind permission of Springer
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where σA is the applied stress. Each stress change was followed by a period of zero
creep of duration Δt (incubation period), the length of which increased with
increasing stress reduction (see Fig. 13.65). When the stress change was sufficiently
large, negative deformation was observed (Fig. 13.65). The stress dependence of
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Fig. 13.64 The stress
dependence of the steady
creep rate of polycrystalline
magnesia at 1596 K. Birch
and Wilshire [6]. With kind
permission of Springer
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Fig. 13.65 Incubation periods following stress reductions during steady-state creep at 4 MPa and
1948 K. Ramesh et al.[17]. With kind permission of Springer
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the steady-state creep rate under the conditions indicated above appear in
Fig. 13.66. There is a transition in the stress exponent from 1, associated with low
stresses, to 3, for high stresses (shown in Fig. 13.66). The recovery parameter, Δσ/
Δt, was found to be linearly dependent on the creep rate prior to stress change, as
illustrated in Fig. 13.67.

With the large stress reductions, negative creep was observed, implying that the
stress had been reduced below the level of the internal stress—meaning that the
creep process is governed by the effective stress (σA − σi). σi represents the internal
stress developed during creep. In Fig. 13.65, this is indicated by negative strain at
Δσ = 0.56σ.

A transition in the stress exponent, from n = 1 to 3, was observed with stress as
the stress is increased. This transition is usually associated with a boundary
mechanism in polycrystalline materials. Since the subgrain diameter is inversely
proportional to the applied stress, any change in applied stress should change the
mean subgrain diameter. This might induce partial sub-boundary migration. The
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Fig. 13.66 Steady-state creep rates as a function of applied stress. ○ 2008 K; □ 1973 K;
Δ 1948 K. Ramesh et al.[17]. With kind permission of Springer
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Fig. 13.68 Dislocation
structure in the subgrain
interior of MgO after a creep
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b crept at 2.5 MPa and a
strain of 0.038 followed by
30 min recovery after
unloading to 1.98 MPa.
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microstructure of a specimen crept to a strain of 0.038 at 1.98 MPa at 1973 K is
seen in Fig. 13.68a. Inside the 300 μm subgrain, a 50 μm subgrain cell may be
observed. However, in another specimen (see Fig. 13.68b), crept under nearly the
same conditions and subsequently recovered, there is evidence of subgrain
coarsening and the straightening of curved subgrain cells is visible. The
microstructure shows dislocations blocked by subgrain boundaries and some
which have been stopped when moving backwards. Back flow most likely
involves the motion of dislocations from the interior to the boundaries. The
negative creep shown in Fig. 13.65 may, thus, be associated with the effective
stress of (σA − σi). As such, the rate-controlling process is considered to be the
rate of recovery and of the growth of the dislocation network. Following stress
reduction, there are no sources capable of producing forward creep, and an
incubation period of zero creep rate will result. Under these conditions, the direct
relationship between creep rate and Dr=Dt (recovery rate), shown in Fig. 13.67, is
obtained. The extent of the stress reduction plays a role in the relaxation of the
bowed dislocations (i.e., straightening the bowing), permitting dislocations to move
backwards after unloading.

Note after stress reduction, sub-boundaries that had been formed during creep
move, indicating their growth (as revealed by the microstructure). Clearly, these
sub-boundaries act to retard the forward movement of dislocations and to produce
creep (the relaxation period). With sufficiently large stress reductions (Δσ = 0.56σ),
the driving force provided by the internal stress, σi, causes the dislocations blocked
at the sub-boundaries to move backwards after unloading. This observation is a
possible explanation to the negative creep indicated in Fig. 13.65.
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Chapter 14
Creep in ZrO2 Zirconia

Abstract ZrO2 is a very refractory ceramic with excellent chemical inertness,
corrosion resistance up to high temperatures and low thermal conductivity; it is also
electrically conductive above*600 °C. Due to all these properties, ZrO2 has a very
broad range of applications. Both polycrystalline and single-crystal zirconia were
subject to creep tests. Alloying zirconia (composites) intends to enhance mechan-
ical strength and to improve its physical properties. Zirconia has to be stabilized for
technological applications. One of the most frequently used stabilizers is yttria.
Stabilized zirconia might be partial or fully stabilized depending on the quantity of
the stabilizer. Also in this ceramics superplasticity was observed, a section is
devoted to nano-zirconia.

14.1 Introduction

A few introductory words are in place regarding ZrO2, a very refractory ceramic with
excellent chemical inertness, corrosion resistance up to high temperatures and low
thermal conductivity; it is also electrically conductive above *600 °C. Due to all
these properties, ZrO2 has a very broad range of applications. An important feature
of zirconia is its polymorphism, which, as expected, is associated with volume
changes. Pure zirconia has three crystal phases, depending on temperature: at very
high temperatures, >2370 °C, it is cubic; at intermediate temperatures, 1170–2370 °
C, its structure is tetragonal; and at low temperatures, below 1170 °C, it is mono-
clinic. Albeit pure zirconia is not stable, so a stress-induced metastable tetragonal
phase can spontaneously transform into the more stable monoclinic zirconia.

A monoclinic transformation into the tetragonal phase is probably a
Martensitic-type transformation, contributing to ceramic toughening. The largest
volume change (increase) in the 3–5% range is associated with the tetragonal-to-
monoclinic transformation, which is very rapid and induces extensive cracking,
consequently destroying the mechanical properties of the fabricated components
during cooling and rendering the pure zirconia useless for application. Several
oxides, notably Y2O3, as well as MgO, CaO, etc., can slow down crystal structure
changes or even completely eliminate them. The resulting, stabilized structure

© Springer International Publishing AG 2017
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depends on the amount of the stabilizer and, with sufficient additives, even a
high-temperature cubic structure can be preserved at room temperature. Clearly, a
stabilized cubic structure does not undergo harmful transformations during heating
and cooling. A controlled, stress-induced volume expansion of the tetragonal-to-
monoclinic inversion is used to produce a very tough, hard, high-strength zirconia
for mechanical and structural applications.

There are several different mechanisms that lead to strengthening and toughness in
zirconias that contain tetragonal grains. Of particular interest are two strong, partially
stabilized zirconias (PSZ) (available commercially): tetragonal zirconia polycrystal
(TZP) and tetragonally stabilized zirconia (TSZ). The latter is anMgO-stabilized cubic
zirconia, containinguniformly dispersed tetragonal precipitates. The stabilizing agents
of TZP are rare earth oxides; the one most often used is yttria-stabilized zirconia. TZP
exposed to water vapor degrades rapidly at 200–300 °C, thus requiring controlled
conditions for use. Toughened zirconia is limited to use under 800 °C. The best
thermal-barrier coatings are yttria-stabilized zirconia with yttria in the 6–8% range.

This chapter will now consider the creep properties of zirconia.

14.2 Creep in Polycrystals

Because of the instability of pure zirconia, the majority of the experimental data on
creep in zirconia were gleaned from tests done on stabilized zirconia. Once again,
various stabilizing agents are used, but most commonly yttria-stabilized zirconia is
preferred. The usual, evaluated creep tests consist mainly of the application of
compressive stress (or load), thus avoiding the opening of microcracks or the
extension of pores and other flaws. There is little information available on the creep
behavior of pure zirconia, apart from those doped with various additives. It is
expected that 6 mol% (10.47 wt%) yttria-stabilized zirconia, which is on the verge
of stabilization, will transform the tetragonal structure into a distorted cubic (fluorite
structure) at *700 °C. Thus, in the temperature range of these creep experiments
(1100–1500 °C), the yttria-stabilized zirconia is expected to have a cubic fluorite
structure. Most of the experiments were performed at an initial constant load of
4860 psi with a final stress, after 5% creep compression, of 4530 psi. This
steady-state creep rate may be written as

_e ¼ Srn

dm

� �
exp � Q

RT

� �
; ð14:1Þ

where S is a structure factor. Assuming that the stress, grain size, and structural
factor remain constant, Eq. (14.1) may be rewritten in a more familiar form, as

_e ¼ A exp � Q
RT

� �
ð14:1aÞ
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Q, assumed to be constant in the tested temperature range, is obtained from a plot of
log _e versus 1/T. Figure 14.1a shows such a plot.

The best-fit line through the points, by least-square analysis, is given by
Q = 86 ± 30 kcal mol−1. The stress exponent may be determined from the plots of
creep rate versus stress. In Fig. 14.2, such a plot is shown on a logarithmic scale. Here,
data on scandia stabilization is also included. The curve for the yttria-stabilized zir-
conia shows a break in the line. The best-fit lines for yttria-stabilized zirconia give
n = 1 for the 1200–6000 psi range and n * 6–7 for 6000–10,300 psi. The reliability
of such a high value for n is questionable. The n = 1 exponent is usually associated
with cation diffusion-controlled creep. The high value of n is probably associatedwith
the cracks and likely a result of the growth and propagation of intercrystalline cracks.

Representative microstructures are shown in Fig. 14.3. Grain-boundary porosity
may be seen in both micrographs (a) and (b).

14.3 Creep in Single-Crystal Zirconia

The single crystals used to investigate creep had higher yittria stabilizer contents
than was found in the tested polycrystalline zirconias. In the case of the single
crystals, 9.4 mol% Y2O3 stabilizer was measured. This creep investigation was
conducted in the 1300–1550 °C range. This stabilization yielded a cubic zirconia
(C-ZrO2). The long axis of the specimen, which was the loading axis, was parallel
to ½�1�12�, while the other two faces were parallel to ð100Þ½0�1�1� and ð010Þ½�101�. This
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orientation provided a Schmidt factor of 0.47 for an easy fð001Þ½110�gslip system.
The other two slip systems in this family, ð100Þ½0�1�1� and ð010Þ½�101�, both have
Schmidt factors of 0.35, while the Schmidt factor for both ð�111Þ½0�11� and
ð1�11Þ½�101�, secondary slip systems, was 0.41. A constant creep load was applied
under compression to the single-crystal specimens. These test results were analyzed
by means of the steady-state creep relation [see Eq. (4.1)], given here as

_e ¼ A
lb
kT

r
l

� �n b
d

� �p pO2

p�O2

 !m

exp � Q
kT

� �
ð14:2Þ

Although the relevant parameters were listed following Eq. (4.1), they are
repeated here for the sake of convenience. A is a dimensionless constant, b is the
Burgers vector of C-ZrO2 (= 3.62 × 10−10 m), d is the grain size (only relevant for
polycrystalline materials), p�O2

is a reference oxygen partial pressure, and kT has its
usual meaning. The creep parameters, n, p, m, and Q, depend on the details of the
deformation and diffusion mechanisms. Their values may be obtained from a plot
showing the variation of the creep rate, _e, after changes in σ, T, and the partial
pressure of oxygen, p�O2

. For single crystals, the exponent p = 0. Figure 14.4 is a
plot of the creep rate variation with strain at the indicated temperatures. The
evaluated value of n and the activation energies are also shown. These dislocation
structures were characterized by TEM (Figs. 4.2 and 4.3) and discussed. The results
indicate that deformation occurs principally by the glide of a/2(110) dislocations on
the primary slip plane. Also, the creep parameters and dislocation structure suggest
that the creep mechanism changes in the temperature range investigated.

The creep parameters evaluated by the incremental changes during deformation
(Fig. 14.4) are also listed in Table 14.1.
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Fig. 14.3 Optical micrographs of polished and etched sections of yttria-stabilized zirconia.
(a) Creep strain of 0.67% with stress of 4860 psi at 1382 °C and (b) creep strain of 2.3% with
stress of 4860 psi at 1535 °C. Arrows show compression axis
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The steady-state creep rate was shown in Fig. 4.1 and also extensively dis-
cussed. In brief, it may be seen that there is a break in the _e versus 1/T line,
suggesting two mechanisms for creep at high and low temperatures with a transition
between the two regimes during the temperature interval 1400–1450 °C. The
least-squares fit of these lines yields for the activation energies Q1 = 6.2 ± 0.4 eV
at T ≥ 1450 °C and Q2 = 7.7 ± 0.4 eV at T ≤ 1400 °C.

The high-temperature creep of the single-crystal ZrO2 is also plotted in
Fig. 14.5 (with p = 0), and is compared with data on polycrystals from the lit-
erature. The slope determined was n = 4.1 ± 0.3. Figure 14.5 shows that, as
expected, the creep resistance of single crystals is better than that of polycrys-
talline ZrO2 with a similar composition at all the stresses <100 MPa. This fact is
clearly related to the effect of grain boundaries. The rate-controlling mechanism at

Table 14.1 Creep-Law Parameters (Eq. (14.2)) Determined by Incremental Changes During
Deformationa. Fernandez et al. [11]. With kind permission of John Wiley and Sons

Deformation temperature range (°C) nb Q(eV)c md

1300–1400 7.3 ± 0.5(7) 7.4 ± 0.3(5) 0(4)

1450–1550 4.5 ± 0.4(4) 6.1 ± 0.3(7) 0(4)
aThe number of determinations is indicated in parentheses
bStress exponent
cActivation energy
dPO2 exponent
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the higher temperatures is dislocation climb, which is supported by the stress
exponent, 4.5, and by the TEM observations. The high activation energy of
*6 eV (see Table 14.1) should correspond to the activation energy for the dif-
fusion of Zr or Y in c-ZrO2, but it does not agree with measured interdiffusion
data of 4.05 and 4.38 for Zr and Y, respectively. In Fig. 14.6, the diffusion of
cations, Dcat, from interdiffusion measurements is shown together with annealing
data from dislocation prismatic loops, Dloop. This diffusion data is expressed as a
single data set. After applying a least-squares fit to this set, it yields the following
equation for the diffusion coefficient in Y2O3-stabilized ZrO2 at high tempera-
tures:

D ¼ 1� 10�3 þ 0:6�10�3

�0:2�10�3

� �
exp � 5� 0:5 eV

kT

� �
m2 s�1 ð14:3Þ

At low temperatures, the rate-controlling mechanism is dislocation cross-slip,
which may be as important in controlling creep as is recovery via dislocation climb
at elevated temperatures. This is supported by the higher values of n and Q. At the
lower temperatures, n is*7.5 and Q * 7.5 eV (see Table 14.1). A high density of
dislocations and significant cross-slip are characteristic of such cross-slip-controlled
creep, along with a stress-dependent activation energy. In this case, according to
Poirier, when cross-slip and dislocation climb operate at the same time, the creep
rate is expressed as
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Fig. 14.6 Survey of
high-temperature diffusivities
in Y2O3-stabilized ZrO2 from
creep, self-diffusion, and
dislocation loop annealing
experiments. Treating these
data as a single set yields D0

of 10−3 and Q of 5 eV [see
Eq. (4.3)]. Fernandez et al.
[11]. With kind permission of
John Wiley and Sons
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_e ¼ _ecross�slip þ _eclimb ¼ _eO1

r
l

� �n1

exp
Q1

kT

� �

þ _eO2

r
l

� �n2

exp �Q2

kT

� � ð14:4Þ

In Eq. 14.4, subscripts 1 and 2 refer to cross-slip and dislocation climb, respec-
tively. The effects of the Y2O3 content on the stabilization of ZrO2 with increased
temperature have previously been presented. The amount of yttria is 21 mol% and the
temperature range is 1400–1800 °C. Again, two regimes of creep were observed in
single crystals both below 1500 °C and between 1500 and 1800 °C. A transformation
in the creep-controlling mechanism is indicated around 1500 °C—from a
glide-controlled to a recovery-controlled creep mechanism. These creep tests were
performed similarly to those done on the 9% yttria-stabilized zirconia. The stress, σ,
and the temperature, T, were changed incrementally to determine the values of n and
Q, as illustrated in Fig. 14.7.

When the controlling mechanism is diffusion, the data analysis may be
accomplished by an equation similar to Eq. (14.2):

_e ¼ A
lb
kT

r
l

� �n

D0 exp � Q
kT

� �
ð14:5Þ

Note that D0exp (−Q/kT) is D, the diffusion coefficient. The meanings of the
symbols are the same as in Eq. (14.2). Equation 14.5 is a consequence of p, the
exponent being 0 for single crystals (the term = 1 when exponent p = 0), and the
use of m = 0, the exponent of the last term for creep when not a function of pO2 at
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Fig. 14.7 Typical creep curve of 21 mol% stabilized zirconia plotted as strain rate _eð Þ versus
strain eð Þ. Garcia et al. [12]. With kind permission of Elsevier
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pressures of 10−5 atm or higher. (This was also found for c-ZrO2 polycrystals by
Dimos and Kohlstedt when _e is between 10−9 and 1 atm.) Q and n may be deter-
mined by these tests. When keeping the load constant and changing the tempera-
ture, Q may be determined, as well:

Q ¼ kT1T2
DT

ln
T2 _e2
T1 _e1

� �
ð14:6Þ

The stress exponent may be obtained by maintaining the temperature constant
and changing the load. Thus

n ¼
ln _e2

_e1

� �
ln r2

r1

� � ð14:7Þ

Suffice it to say that the activation energy may also be determined with
Eq. (14.5) by plotting ln _e versus 1/T, bearing in mind that AD0 is constant. (One
may normalize the strain rate to 100 MPa and use the value of n obtained from
Eq. (11.7)). Such a plot is shown in Fig. 14.8.

On the basis of Fig. 14.7, Q and n were evaluated. Their values are listed
in Table 14.2. This table shows the two temperature regions, above and
below 1500 °C, with the respective values of Q and n. At all the temperatures
investigated, the material showed good creep resistance with a strain rate about
10 times lower than in the 9.4 mol% zircona tested under the same conditions of
T and σ.
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Fig. 14.8 Steady-state creep rate, normalized to 100 MPa, plotted versus the reciprocal of the
temperature. The solid line represents the results obtained by Martinez et al. in the case of 9.4 mol
%-Y-FSZ [yttria fully stabilized zirconia]. Garcia et al. [12]. With kind permission of Elsevier
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TEM foils were prepared to characterize the dislocation microstructure.
Specimens of the two regions were inspected at the representative temperatures of
1400 and 1600 °C. Figure 14.9 shows the TEM microstructure of the 1400 °C
sample (the TEM microstructure at 1600 °C is not shown). A high dislocation
density was observed, causing the forming nodes to react with each other, often
pinned. Extinction studies indicate that most of the dislocations have a 1

2 1�10h i-type
Burgers vector and lie on the primary (001) slip plane. A stereopair analysis of the
(001) zone axis, using g ¼ 2�20ð Þ, showed the existence of some cross-slip. The
(111) cross-slip is seen in Fig. 14.10.

In the samples deformed at 1600 °C, two planes, (001) and (110), have been
observed by TEM, indicating: (i) the dislocation density is lower than the annealing
effect during the cooling and under the low stresses used while deforming the
samples; (ii) in both cases, very long dislocations with Burgers vector of type l/2
(110) were observed. Dislocation climb is an active mechanism in this range of
temperatures.

Table 14.2 Creep-law parameters determined by incremental changes during deformation. In
parenthesis, we have written the number of determinations considered to calculate the mean value
of the parameters shown. We have observed no difference in n and Q for positive or negative steps
of Q or T. Garcia et al. [12]. With kind permission of Elsevier

Interval of temperature (°C) Stress exponent (n) Activation energy (Q) in eV

1400–1500 °C 5.4 ± 0.4(5) 8 + 1(6)

1500–1800 °C 2.9 + 0.2(13) 5.8 + 0.5(13)

Fig. 14.9 TEMmicrograph of the primary slip plane (001), showing the microstructure at 1400 °C.
Garcia et al. [12]. With kind permission of Elsevier
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The suggested creep model for the low-temperature region (<1500 °C) and the
elevated temperature interval (>1500 °C) is based on the concept that steady-state
creep, or rather the strain rate _e is a consequence of the dynamic equilibrium
between the rates of dislocation creation and annihilation. The rate of dislocation
creation is controlled by the mean dislocation-glide velocity from the sources.
However, the annihilation process is controlled by diffusion, which is associated
with dislocation climb. The following is an expression for these two opposing
processes:

_e ¼ lb
kT

a3

1þ að Þ2
r
l

� �2 r� ri
l

� �
D ð14:8Þ

In the above relation α is the ratio of the dislocation mobilities for glide and
climb (the other symbols are as previously defined). As such

a ¼ lglide
lclimb

ð14:9Þ

For dislocation glide, α < 1, and for α > 1, climb becomes more favorable than
glide. σi was defined earlier as “internal stress.” This is the average stress exerted on
one dislocation by the others, related to σ by

ri ¼ a
1� a

� �
r ð14:10Þ

By combining Eqs. (14.8) and (14.10), one obtains

Fig. 14.10 TEM micrograph showing the dislocation microstructure in the case of a slice parallel
to the cross-slip plane (111), at 1400 °C. Rodriguez et al. [23]. With kind permission of Elsevier
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_e ¼ lb
kT

a
1� a

� �3 r
l

� �3

Ddiff: ð14:11Þ

and (see, for example, Philibert on diffusion) Ddiff. is

Ddiff ¼ DZr � DY

xZrDY þ xYDZr
ð14:12Þ

Based on the experimental results and Ddiff, A (from the creep law, Eq. (14.5))
may be evaluated by means of

A ¼ _ekT
Ddifflb

l
r

� �3
ð14:13Þ

Using Eqs. (14.5) and (14.11), and noting that Ddiff = D0(exp-Q/T), there is an
additional relation for A in terms of the mobilities’ ratio:

A ¼ a
1þ a

� �3

ð14:14Þ

A plot of α versus 1/T is shown in Fig. 14.11. Despite the great scatter, it may be
inferred from the plot that, at T > *1500 °C, α > 1 and about ≤1 at temperatures
below 1500 °C. From the definition of α (Eq. (14.9)), this means that the glide
mobility of dislocations is controlling the deformation when α < 1; and for values
>1, it means that dislocation glide becomes easier than climb, which is the limiting
step. In a mathematical analysis using Burton’s theoretical consideration, the creep
mechanism at temperatures below and above T = 1500 °C is corroborated as being
solute-drag-controlled below 1500 °C and controlled by climb above it—being the
main mechanisms controlling creep in 21 mol% Y2O3 fully stabilized ZrO2 single
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crystals. In conclusion, note that the 21 mol% zirconia is more creep resistant than
the *9 mol% stabilized zirconia.

14.4 Zirconia-Based Composite

The main reason for alloying ceramics (or materials in general) is to enhance
mechanical strength or to improve other physical properties of materials. The
additives used to do so are either in solution or as a separate phase. In most cases,
the quantities of the additives used dictate if they are going to be applied in solution
or as a second-phase precipitate. Clearly, the outcome of such additives to a
material, whether in solution or precipitated, depends on the phase relations
between the components of each specific ceramic. Virtually unlimited possibilities
exist for the addition and combination of these additives. Therefore, numerous
experimental investigations have been and are being performed in order to achieve
this practical end, as well for the sake of pure research and knowledge.

In the following section, a good example of a superplastic composite is presented
and discussed—the zirconia alumina system, which is very popular and widely
investigated.

14.4.1 Yttria-Stabilized Zirconia Alumina

Tensile creep was applied to a 3 mol% yttria-stabilized zirconia-20 wt% alumina,
which also exhibits the characteristic of superplasticity. As in all the prior cases, the
steady-state creep rate may be expressed by Eq. (4.2), reproduced here for
convenience:

_e ¼ ADGb
kT

b
d

� �p r
G

� �n
ð4:2Þ

Constant stress in the 4–100 MPa range was applied in 1600–1750 K tem-
perature range and the test was performed in air. The experimental technique used
at a constant temperature was either the application of a single stress or of
changing stresses. The specimens were two-phase materials, of zirconia and
alumina. The equiaxed grains of the as-received specimens were preserved after
annealing and had grain sizes dependent on temperature and annealing time.
An example of equiaxed grain sizes in the microstructure appears in Fig. 14.12.
The variation of strain rate with strain is shown for some specimens in Fig. 14.13.
In this figure, L stands for the grain size and the subscripts, z and a stand for
zirconia and alumina, respectively. Here, up to *10% strain represents the pri-
mary (transient) creep, which is followed by the steady state, after the decrease in
the strain.
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The variation in the steady-state creep under stress is illustrated in Fig. 14.14.
Note that the single-stress test results and the stress-change experiments fall on the
same line, indicating a good agreement between the two types of experiments with
regard to the stress application. The obtained stress exponent in Fig. 14.14 is
n = 2.8 ± 0.2 and it does not change over the strain-rate range *10−8–10−4 s−1.
The effect of temperature may be obtained, as usual, from an Arrhenius-type

Fig. 14.12 Scanning electron
micrograph of the
zirconia-20% alumina
composite with a grain size of
0.7 μm. Owen and Chokshi
[20]. With kind permission of
Springer
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relation, shown in Fig. 14.15. Constant stresses of 21 or 896 MPa were applied at
temperatures of 1598, 1665, and 1748 K, while the grain size was at a constant
level of �Lz ¼ �La ¼ 0:7 lm. Notice that increasing the temperature increases the
creep rate, as expected. The activation energies calculated for 21 and 96 MPa are
550 ± 25 and 570 ± 10 kJ mol−1, respectively.

From the variation of the strain rate with grain size, the grain-size exponent may
be evaluated at constant stress. A plot of strain rate versus grain size on a loga-
rithmic scale (Eq. 4.2) results in Fig. 14.16. The average grain-size exponent, p, is
2.1, as indicated in Fig. 14.16. Additional experiments at 96 MPa revealed that
p = 2 (Fig. 14.17).

Normalizing the data by means of the shear modulus taken from literature, a
plot can be obtained. For this purpose, the experimental values are: slope = 2.8,
p = 2, and Q = 285 (averages of a single temperature and temperature cycling are
not shown) and the use of Eq. (2.4) yield the plot shown in Fig. 14.18. In the
above, the volume averages for zirconia and alumina were used for �Lx. It is
possible to write a constitutive equation for creep in the zirconia 20 wt% alumina
composite as

_e ¼ 3:3� 0:08ð Þ � 108
Gb
kT

� �
b
�L

� �2:�0:1

� r
G

� �2:8�0:2
exp � 585� 45

RT

� �� �
ð14:15Þ
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By eliminating various possible creep mechanisms (Owen and Chokshi) and
based on the experimental data, such as n, p, activation energy magnitude, and by
preserving the equiaxed grains following creep without grain growth, and by not
observing significant dislocation activity, the conclusion, based on a detailed
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Fig. 14.17 Variation in the temperature and grain-size-compensated strain rate with the stress
normalized by the shear modulus. T (k): (□, r, ○) 1598, (Δ) 1665, (◊) 1748. �Lx ¼ ðlmÞ: (□) 0.7,
(∇) 1.3, (○) 2.1, (Δ, ◊) 0.7

30
50

= 2.7 × I0-4 S-1

Y-TZP
T= 1550OC

ELONGATION (%)

TR
U

E 
ST

R
ES

S 
(M

Pa
)

100 200 300 400

20

10

0
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75

TRUE STRAIN
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2.7 × 10−4 s−1. The flow stress exhibits a plateau over an extended range of strain. Nieh et al. [19].
With kind permission of Elsevier
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analysis of the possible mechanisms, is that creep, in this case, occurred due to a
GBS/grain rearrangement process.

14.5 Superplasticity in Zirconia

Among the superplastic ceramics, ZrO2 with Y2O3 additive also exhibits
superplastic behavior. The principal requirement is a very fine grain-sized
material on the order of <10–20 μm. The growth of the grains must be retarded
as much as possible during the forming temperatures. One of the means for
preventing grain growth is by including fine, second-phase particles and dis-
tributing them uniformly, so that they pin the grain boundaries. Another struc-
tural requirement is grain-boundary mobility, to accommodate strain changes
without grain-boundary separation under tension. Despite the many ceramics
that fulfill the microstructural requirements, only certain ceramics classify as
“superplastic materials.” Usually, the temperatures required for deformation are
above the homologous temperature, and not only compressive but also tensile
deformation may be involved. An additional requirement is having proper
strain-rate sensitivity, m—namely, m > 0.3. Recall that m appears as an expo-
nent in equation

r ¼ k _em ð14:16Þ

This equation is related to Eq. (8.7), given as

_e ¼ Arn ð8:7Þ

From this expression

r
1
n ¼ A�1

n _e
1
n ¼ k _em ð8:7aÞ

Here, k = A−1/n and m is the reciprocal of n.
Another feature of superplasticity is that the deformed material gets thinner in

a very uniform manner, without forming a neck during tensile deformation (see
Fig. 14.19). The first to report superplasticity in Y-TZP were Wakai et al. [30]
who observed superplastic behavior in fine-grained Y-TZP by both tensile and
compressive deformation. They indicated a 200% elongation at 1450 °C at a
strain rate of 2.8 × 10−4 s−1. Nieh shows an elongation >160% in his plot,
which is seen in Fig. 14.18. A comparison between the undeformed and
superplastically deformed specimens is illustrated in Fig. 14.19. The strain
rate versus the flow stress is shown in Fig. 14.20. Recall that the strain-rate
sensitivity, m, is the reciprocal of the stress exponent, n, which is defined at
constant e as
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n ¼ d ln _e
d ln r

ð14:17Þ

A stress exponent of 3 was evaluated, compared to the value of 2 obtained by
Wakai et al. [30]

Fig. 14.19 Undeformed and
superplastically deformed
Y-TZP specimens. An
elongation of over 350% is
noted. Nieh et al. [19]. With
kind permission of Elsevier
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Fig. 14.20 True strain rate as
a function of true flow stress
(at e—0.4) for Y-TZP at
1450 °C. The stress exponent
is calculated to be
approximately 3. For a direct
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Wakai et al. are included.
Nieh et al. [19]. With kind
permission of Elsevier
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14.5.1 Superplasticity in Pure ZrO2

Very limited information, if any, exists on superplasticity in pure ZrO2. This is likely
because of its instability under certain conditions. However, one could mention an
early work by Hart and Chaklader, who did explore superplasticity in pure zirconia.
The total strain that may be produced was found to depend on the density of the
ZrO2. In order to evaluate superplasticity, creep deformation was carried out with a
three-point bending device. Due to its very fast transformation, monoclinic-to-
tetragonal (between 1160 and 1205 °C), this creep deformation was carried out both
below and above the transformation temperatures under isothermal conditions.
Several typical deflection-temperature plots are shown in Fig. 14.21 for zirconia
specimens having relative densities between 0.840 and 0.915 (higher densities over
95% could not be prepared due to specimen cracking). It was assumed that defor-
mation in zirconia during the phase transformation is associated with GBS and that
porosity combined with enhanced grain ductility produces greater deformation.

The total strain depends on the relative density, which may be described by the
empirical relation

etotal ¼ A expðBPÞ ð14:18Þ

A and B are constants and P is the porosity. This is shown in Fig. 14.22, where
the log of the total deflection versus the porosity is shown.
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14.5.2 Stabilized Zirconia

As indicated earlier, there are three known phases: <1170 °C, 1170–2370 °C, and
cubic >2370 °C. The addition of some other oxides, such as magnesium oxide
(MgO, magnesia), yttrium oxide (Y2O3, yttria), calcium oxide (CaO, calcia), etc.,
stabilizes zirconia. Depending on the amount of the stabilizer, one may obtain PSZ,
stabilized tetragonal zirconia or cubic zirconia. The main aspect of pure zirconia
instability is the cracking on cooling due to volume change. The volume expansion
caused by the cubic-to-tetragonal-to-monoclinic transformation induces large
stresses, and these stresses cause ZrO2 to crack upon cooling from high tempera-
tures. By adding small percentages of yttria (the most popular stabilizer), these
phase changes are eliminated and the resulting zirconia has superior thermal,
mechanical, and electrical properties. Yttria-cubic stabilized zirconia (Y-CSZ) is
formed in solid solution with zirconia at higher concentrations of yttria than the
Y-TZP, which only has a metastable, tetragonal phase.

14.5.2.1 Partially Stabilized Zirconia (PSZ)

The addition of about 3 mol% (*5 wt%) yttria partially stabilizes polycrystalline
zirconia. Compression of the fine-grained PSZ in the 1220–1330 °C temperature
range—where the stability range is of the tetragonal phase—provided almost 100%
strain. Plots of stress versus strain at an initial strain rate of 2.4 × 10−5 s−1 at
several temperatures are illustrated in Fig. 14.23. At higher temperatures of 1297
and 1327 °C, however, at the strain rates indicated, strains approaching 100% are
observed in Fig. 14.24.

For the activation energy, one of the relations presented earlier, is rewritten
somewhat differently here as:
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Fig. 14.22 Semi-log plot of
the total deflection (dT) during
the monoclinic-to-tetragonal
transformation versus the
porosity of zirconia. Data
were corrected for the
dimensional change
associated with the phase
transformation (ΔL * 3%).
Hart and Chaklader [14].
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_e ¼ _e0
r
l

� �n

exp � Q
kT

� �
ð14:19Þ

and then rearranged as

r
l
¼ _e

_e0

� �1=n

exp
Q
nkT

� �
ð14:20Þ

From the slope of the stress versus the inverse temperature, at an initial strain of
2.4 × 10−5 s−1, the activation energy may be evaluated. The slope of Q/n = 510
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kJ mol−1. n was determined to be 1.1 ± 0.1 from the strain-rate changes at constant
temperature in the 1240–1327 °C range. Derived from the values of Q/n and n, the
activation energy is 570 ± 50 kJ mol−1. The grain size was stable and the equiaxed
shape was retained even under strains of *100%. No elongation of the grains
occurred. In Fig. 14.26, a TEM microstructural micrograph indicates grain-size
stability and shape.

The deformed specimens showed cavitation at triple-point junctions, but it was
not a general phenomenon and has taken place only at low temperatures or at
high strain rates. The conditions of deformation are listed in Table 14.3, including
the densities. Cavitation may be observed in Fig. 14.27 at the external surface
in a specimen strained to 40% at 1223 °C having an initial strain rate of
2.4 × 10−5 s−1.

Inside the specimen (from Fig. 14.27), the TEM illustration in Fig. 14.28
shows cavitation at triple points, likely initiated in the glassy phase. Cavitation
gradually disappeared as the temperature increased. At the highest experimental
temperatures, 1297 and 1327 °C, only weak cavitation was observed with the
fastest strain rate (1.2 × 10−4 s−1), as indicated in Fig. 14.28. Furthermore, note
that no dislocations are observed in the grains, which are, therefore, dislocation
free (Fig. 14.29).

In PSZ, the large strain is a consequence of GBS controlled by diffusion, while
the dislocation contribution is claimed to be negligible. Despite the cavity forma-
tion, cavities were not involved in the fracture, not even at 100% strain, since
diffusion was acting to relax the stress concentration and making the cavity shape
less sharp (i.e., blunting (rounding)) it. Grain size and shape stability were main-
tained during and after deformation.

Since only limited research on superplasticity in PSZ is available (to the author’s
best knowledge), no confirmation of the claimed mechanism may be made at
this time.

TEMPERATURE (°C)

6.3
10

20

40

80

1320 1280 1240

6.4 6.5 6.6

104/ T(k)

P
LA

T
E

A
U

 S
T

R
E

S
S

 (
M

P
a)

Fig. 14.25 Temperature
dependence of the plateau
stress for an initial strain rate
_e0 ¼ 2:4� 10�5 s�1. Duclos
et al. [8]. With kind
permission of Elsevier

14.5 Superplasticity in Zirconia 333



Fig. 14.26 TEM of a sample strained to 97% at 1327 °C. l0 = 1.2 × 10−4/s. Scale bar = 0.5 μm.
Duclos et al. [8]. With kind permission of Elsevier

Table 14.3 Deformation condition influence on the density. Duclos et al. [8]. With kind
permission of Elsevier

Test temperature (°C) Final strain (%) Initial strain rate (10−5/s) Density

As sintered – – 5.98

1223 40 2.4 5.76

1240 42 2.4 5.92

1275 45 2.4 5.98

1297 45 2.4 6.00

1297 80 2.4 5.98

1297 85 4.8 5.94

1297 82 12 5.83

1327 63 2.4 5.97

1327 86 4.8 5.98

1327 99 12 5.90
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14.5.2.2 Tetragonally Stabilized Zirconia

In this section, the subject is superplasticity in tetragonal zirconia either without any
dopants or glass-forming additives or only in small percentages. The objective is to
consider superplasticity per se in yttria-stabilized materials without other influences
on the superplastic behavior resulting from the addition of other components.
Fine-grained Y-TZP is claimed to exhibit 700% elongation before fracture
(Schissler et al.). The largest elongation-to-failure exhibited by a superplastic
yttria-stabilized zirconia reported (Nieh et al.) is *800% containing 3 mol% (*5
wt%) yttria. Those experiments conducted were in the 1623–1923 K temperature
range with strain rates in the *10−5–10−3 range. The variation in the local true
strain for specimens tested at 1823 K at different strain rates is illustrated in
Fig. 14.30. On the plot, the local true strain versus normalized distance from the
fracture tip is indicated. The stresses increased continuously until large true strains

Fig. 14.27 SEM of the external surface of a sample strained to 40% at 1223 °C. _e0 ¼ 2:4� 10�5 s�1.
Scale bar = 10 μm. Duclos et al. [8]. With kind permission of Elsevier
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of *1. At the same time, grain growth occurred, since the stress in superplastic
ceramics is proportional to the grain size, according to

r / da ð14:21Þ

In some cases, the grain size is symbolized by L. In Fig. 14.30, the variation in
local true strain with normalized distance from the fracture tip is shown for 1823 K,
as are the strain rates.

The local true strain is defined as ln(A0/Af), where A0 and Af are the initial and
final areas).

The elongation-to-failure is *320, 700, 350, and 175% at the strain rates
indicated in Fig. 14.31, respectively (2.7 × 10−5, 8.3 × 10−5, 2.7 × 10−4 and
1.7 × 10−3). The variations of the grain aspect ratio with the local true strain for
specimens tested at 1823 K and the strain rates of 2.7 × 10−5–1.7 × 10−3 are
presented in Fig. 14.31. All the points are quite close to the fitted line, with no

Fig. 14.28 TEM showing cavities in a sample strained to 40% at 1223 °C. _e0 ¼ 2:4� 10�5 s�1.
Scale bar = 0.5 pm. Duclos et al. [8]. With kind permission of Elsevier
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definite indication that the aspect ratio varies with the true strain, and the value of
the largest true strain is about 1.4. The variations (growth) in the average grain sizes
at constant temperatures and various strain rates, and at CSR and various temper-
atures, are seen in Fig. 14.32.

Cavity formation during superplastic deformation in Y-TZP was observed in the
microstructures. A SEM micrograph of a specimen tested to an elongation-to-failure
of *115% is illustrated in Fig. 14.33.

Note the cavities at the triple points. In Fig. 14.34, cavity stringers may be seen
in a specimen pulled to an elongation of *700% at 1823 K and at a strain rate of
8.3 × 10−5 s−1. In all the other specimens, where the elongation was <400%,
extensive cavity interlinkage was observed perpendicular to the tensile axis. An
illustrative example is found in Fig. 14.35. Some consequences of cavity inter-
linkage are crack formation and extension. In addition, grain growth was observed.
Deformation-enhanced grain growth appears in Fig. 14.36.

Cavitation to about 30% may be observed in superplastic deformation at the
optimum strain rate of 8.3 × 10−5 s−1, with a corresponding elongation of 30%.

Fig. 14.29 TEM of a sample strained to 82% at 1297 °C. Cavities are indicated by arrows.
_e0 ¼ 1:2� 10�4 s�1. Scale bar = 1 μm. Duclos et al. [8]. With kind permission of Elsevier
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Fig. 14.33 Scanning electron
micrograph of a polished and
thermally etched section of a
specimen tested to an
elongation-to-failure of
*115% at 1623 K and a
strain rate of 2.7 × 10−5 s−1.
Schissler et al. [24]. With kind
permission of Elsevier

Fig. 14.34 Optical
micrograph illustrating the
formation of cavity stringers
in a specimen tested to an
elongation-to-failure of
*700% at 1823 K and a
strain rate of 8.3 × 10−5 s−1.
The tensile axis is horizontal.
Schissler et al. [24]. With kind
permission of Elsevier

Fig. 14.35 Optical
micrograph illustrating
extensive cavity interlinkage
perpendicular to the tensile
axis in a specimen tested to an
elongation-to-failure of
*150% at 1723 K and a
strain rate of 2.7 × 10−5 s−1.
The tensile axis is horizontal.
Schissler et al. [24]. With kind
permission of Elsevier
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The variation in cavity formation with true strain is illustrated in Fig. 14.37.
A summary of the experimental observations regarding Y-TZP follows:

(a) An optimum elongation may be achieved in fine-grained Y-TZP at 1823 K
and at a strain rate of 8.3 × 10−5 s−1 with a grain size of *0.3 μm;

(b) Superplastic deformation is accompanied by grain growth;
(c) Cavity formation to *30% occurs mostly at triple points; and
(d) Cavity interlinkage occurs in a direction perpendicular to the tensile axis.

Thus, superplastic elongation is enhanced by: (i) high rate sensitivity; (ii) limited
simultaneous grain growth; (iii) reduced cavity formation; and (iv) hindered cavity
interlinkage transverse to the tensile axis. Based on Fig. 14.36, the grain growth
due to deformation in a superplastic ceramic may be expressed for:
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strain - dependent grain growth: �L� �L0 / _e�0:6 ð14:22Þ

temperature - dependent grain growth: �L� �L0 / � 170000
RT

� �
ð14:23Þ

Using the experimental results from Figs. 14.32 and 14.36, the kinetics of
deformation-enhanced simultaneous grain growth may be given as

�L� �L0 ¼ Ke_e�0:6 exp � 170000
RT

� �
kJmol�1; ð14:24Þ

where Λ is a constant.

14.5.2.3 Cubic Stabilized Zirconia (CSZ)

As early as 1998, Evans et al. claimed that superplasticity had not been observed in
8-mol%-yttria-stabilized cubic zirconia (8Y-CSZ), probably due to its larger grain
size and high grain-growth rates. Doping with glassy phases or other additives can
induce superplasticity in CSZ (which is a technologically important material for
fuel cell applications). For example, pure and 5 wt% colloidal silica additives were
used to produce superplasticity in cubic zirconia. In this manner, 180% true strain
(505% engineering strain) could be achieved within 1 h at 1500 °C. For the pur-
pose of comparison, several specimens were prepared in addition to the 5 wt%
colloidal silica: pure 8Y-CSZ; 1 wt% colloidal silica; and 1 wt% borosilicate glass
(composition: 83.3 mol% SiO2, 1.5 mol% Al2O3, 11.2 mol% B2O3, 3.6 mol%
Na2O3, and 0.4 mol% K2O). Tests were performed in the 1300–1500 °C temper-
ature range under compression. The objective of these additives was to limit grain
growth during the deformation while enhancing GBS. The addition of appropriate
intergranularly located phases (additives) can modify grain growth not only by
affecting grain-boundary mobility, but also the interfacial energy. Grain growth
may be expressed as

dn � dn0 ¼ 2McXt ð14:25Þ

Here, d is the instantaneous grain size at time t, d0 is the initial grain size at t = 0,
n is the grain-growth exponent, M is mobility, γ is grain-boundary energy, and Ω is
the atomic volume. The intergranular second phase may enhance superplasticity by
improving the resistance against cavity nucleation and by inducing GBS and
rotation. The silicate added in these experiments is amorphous and its purpose is to
refine the grain size and promote GBS in the Y-CSZ. A comparison of the influ-
ences of the above additives on grain size is found in Fig. 14.38. It is obvious that
the 5 and 1 wt% SiO2s are the most effective in grain-size reduction.
The microstructures of the compared additives appear in Fig. 14.39. These
microstructures clearly indicate that the most effective grain-size reduction is
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achieved by the SiO2 additives. The greatest amount of pure silica was the most
effective in limiting grain growth. High-temperature (1400 °C) deformation is also
compared between the specimens with the same components indicated above and
pure Y-CSZ by means of plots of strain rate versus stress, as shown in Fig. 14.40.
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Fig. 14.38 Comparison of the grain growth of pure 8Y-CSZ to those containing 1 wt%
borosilicate glass, 1 wt% silica, and 5 wt% silica at 1400 °C. Sharif and Mecartney [26]. With kind
permission of Elsevier

Fig. 14.39 Comparison of the initial microstructures (a) pure 8Y-CSZ, (b) 8Y-CSZ with 1 wt%
borosilicate glass, (c) 8Y-CSZ with 1 wt% colloidal silica, and (d) 8Y-CSZ with 5 wt% colloidal
silica. Sharif and Mecartney [26]. With kind permission of Elsevier
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The strain rate of borosilicate glass (■) is only slightly enhanced, compared to the
strain rate of pure 8Y-CSZ. Strain rates for the 5 wt% silica samples were about two
orders of magnitude greater than those in pure 8Y-CSZ. As indicated in earlier
equations, the steady-state strain rate (or creep rate) is reproduced here as

_e ¼ Ad�prn exp � Q
RT

� �
ð14:26Þ

One immediately recognizes that Eq. (14.26) is equivalent to Eq. (8.3), when A
from Eq. (14.26) is made equal to

A0D0Gb
kT

bp

Gn
ð14:26aÞ

To eliminate confusion, the A taken from Eq. (8.4) is indicated in Eq. (14.26a) as
A′. Here, p is the inverse grain-size exponent, n is the stress exponent, and G is the
shear modulus. A good example of plastic deformation is that of a cylinder of Y-CSZ
with 5% SiO2. The stress exponent may be determined from the slope of the plot of
the strain rate versus stress, as shown in Fig. 14.42. The stress exponents are included
in Fig. 14.42 for the indicated temperatures. The activation energy was calculated
from the slope of the strain-rate plot versus the inverse temperature (Fig. 14.42).
It was observed that the activation energy increases with increasing stress from 341
kJ mol−1 at 10 MPa to 411 kJ mol−1 at 45 MPa.
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Fig. 14.40 Comparison of
the steady-state strain rates of
various samples at 1400 °C.
Sharif and Mecartney [27].
With kind permission of
Elsevier

Fig. 14.41 Sample of
8Y-CSZ + 5 wt% silica
before deformation and after
deformation at 1450 °C.
Sharif and Mecartney [27].
With kind permission of
Elsevier
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The plots presented above provide the following observations: (i) there was
much less grain growth in 5 wt% silica containing 8Y-CSZ than in pure 8Y-CSZ;
(ii) high strain rates could be applied, such as 5 × 10−3 s−1; (iii) the total true strains
of 180%, namely the 505% engineering strain could be obtained during a 1 h
compression with a 5 wt% SiO2 additive; (iv) no significant strain hardening
occurred, so flow was not hindered; and (v) the presence of the glassy phase
promotes GBS, while minimizing grain growth. These essential features provide the
methods for achieving superplasticity in ceramics.

In a recent publication (Shirooyeh et al.), the basics of the above results were
confirmed. A maximum superplastic elongation of more than 500% was recorded at
a testing temperature of 1703 K. Also, the presence of an amorphous second phase
(5% colloidal SiO2) is effective in limiting grain growth. However, the activation
energy reported was 600–670 kJ mol−1, unlike the values reported in the work of
Sharif and Mecartney.

14.5.2.4 Composite Stabilized Zirconia

One of the most familiar additives to induce superplasticity in Y-CSZ is a stable
single-phase material formed with high Y2O3 in solid solution in Zr2O3—alumina.
The addition of finely dispersed alumina to zirconia meets some of the essential
requirements for superplasticity, namely, it suppresses grain growth during sinter-
ing and high-temperature deformation and prevents cavity nucleation. The role of
alumina is to pin the grain boundaries, thus limiting grain growth, while promoting
a high deformation rate. Rapid grain growth after annealing is seen in Y-CSZ in
Fig. 14.44. Compare Fig. 14.44 with Fig. 14.45 in regard to the limiting effect of

S
tr

ai
n 

R
at

e,
 s

-1

Stress, MPa

9 10 20 30 40

1

1.3

10-5

10-4

10-3

10-2

n = 1.71500°C
1450°C
1400°C
1350°C
1300°C

n = 1.5
n = 1.3
n = 1.3
n = 1.3
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the alumina on static grain growth after processing and annealing under the same
conditions in both cases. The initial grain size of the samples containing 10 wt%
alumina was 1.1 μm and they grew to only 2.2 μm after annealing at 1400 °C for
75 h (five times smaller than in the samples without alumina), as illustrated in
Fig. 14.46. The deformation of the samples containing the alumina below a 35 MPa
stress at temperatures above 1300 °C was quite uniform, and a specimen deformed
at 10 MPa and 1450 °C is shown in Fig. 14.47. Dynamic grain growth after 115%
strain at the high temperature of 1400 °C at 25 MPa is another example of
high-temperature deformation seen in Fig. 14.48. Using Eq. (14.26), the activation
energy for the rate-controlling mechanism may be calculated.
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Fig. 14.43 Arrhenius-type plot for calculating activation energies for high-temperature deforma-
tion of 8Y-CSZ+5 wt% silica under 10–45 MPa compressive stress. Sharif and Mecartney [26].
With kind permission of Elsevier

Fig. 14.44 Rapid static grain growth in 8Y-CSZ: (a) as hot isostatically pressed and (b) after
annealing statically for 75 h at 1400 °C. Sharif and Mecartney [28]. With kind permission of
Elsevier
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Fig. 14.45 Effect of addition of 10 wt% alumina on static grain growth of 8Y-CSZ (a) as hot
isostatically pressed and (b) after annealing statically for 75 h at 1400 °C. Sharif and Mecartney
[28]. With kind permission of Elsevier
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Fig. 14.46 Effect of addition of various amounts of alumina on static grain growth of 8Y-CSZ at
1400 °C. Sharif and Mecartney [28]. With kind permission of Elsevier

Fig. 14.47 8Y-CSZ+10 wt%
alumina samples before and
after creep at 1450 °C,
10 MPa. Sharif and
Mecartney [28]. With kind
permission of Elsevier
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The values of p and n are required for the activation energy calculation according
to Eq. (14.26). The inverse grain-size exponent, p, may be calculated from the
slope of the line obtained by plotting the strain rate, _e, versus d on a logarithmic scale.
Such a plot is shown in Fig. 14.49. A value of 2.2 was obtained for p. The stress
exponent, n, was calculated from the slope of the straight line obtained by plotting _e
versus stress, as illustrated in Fig. 14.50. The stress exponent decreased with
increasing temperature from a value of 2.1 at 1300 °C to 1.7 at 1450 °C. The values
of n at each temperature are also indicated in Fig. 14.50. A plot of the strain rate,_e
versus the inverse temperature (Fig. 14.51) enables the determination of the acti-
vation energy from the slope of the straight line. The values derived from the
Arrhenius plots at the indicated stresses vary from 683 kJ mol−1 at 10 MPa to 597
kJ mol−1 at 35 MPa. Thus, the activation energy decreases with increasing stress.

Fig. 14.48 Grain growth for
8Y-CSZ+10 wt% alumina
after total true strain of 115%
at 1400 °C, 25 MPa. Sharif
and Mecartney [28]. With
kind permission of Elsevier
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Knowing n, one may calculate its inverse value to obtain m, which varies from 0.48
at 1350 °C to 0.59 at 1450 °C. See Eq. (14.16) for the relation between stress andm.

An increase in the value of m was observed with increasing temperature. Hence, it
may be concluded that superplasticity in this ceramic is enhanced at higher temper-
atures. This indicates the diffusion dependence of the rate-controlling deformation
mechanism. In fine-grained ceramics, it has been proposed that superplasticity occurs
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with GBS, accommodated by a diffusional mechanism. The total true strain of 130%
true strain (260% engineering strain) was obtained at 1450 °C/10 MPa. The addition
of finely dispersed inert phases may be an effective way to induce superplasticity in
oxide ceramics. A similar mechanism was mentioned earlier for 3Y-TZP.

14.6 Creep in Nano-Zirconia

GBS remains a dominant deformation process during creep in both nanocrystalline
and submicron-grained zirconia. It is believed that significant segregation at the
grain boundaries reduces grain growth, the segregant being Y. It was observed that
the grain-size-compensated diffusion-creep rate was essentially the same in cubic,
tetragonal, and monoclinic zirconia. The commonly applied Eq. (4.2) is reproduced
here for the reader’s convenience and applied, in this case, to nanosized
yttria-stabilized zirconia:

_e ¼ ADGb
kT

b
d

� �p r
G

� �n
ð4:2Þ

Clearly, D = D0exp(−Q/RT). Deformation often occurs by diffusion creep,
particularly when dislocation activity is limited. The diffusion of matter may occur
via lattice (Nabarro-Herring creep) or along grain boundaries (Coble). In
Fig. 14.52, the variations in strain rate with grain size for tetragonal and cubic
zirconia are shown in the grain-size range of 0.5–10 μm. Also shown in this figure
are data from nanocrystalline monoclinic zirconia. In Fig. 14.53, theoretical pre-
dictions for Coble creep are compared with tetragonal and monoclinic zirconia
experimental data. The plot is of _e�L30 versus stress at 1273 K. �L0 is the initial grain
size in nanoscale. No difference in the creep behavior of nanocrystalline, tetragonal,
and monoclinic zirconia is observed. The experimental data are consistent with the
Coble creep model, using the grain-boundary diffusion coefficient for tetragonal
zirconia (close to the tetragonal line), although there is trend toward nonlinearity.

Recall that grain-boundary diffusion is associated with Coble creep, according to
Eq. (3.42); now below, it is expressed somewhat differently as

_eCoble ¼ 33dDGB

kT
b
d

� �3

r ð14:27Þ

During high-temperature processes, grain growth may also occur. Grain growth
may be expressed as

�LNf � �LN0 ¼ Kgt; ð14:28Þ

where Lf represents the grain sizes at time t, L0 is the initial grain size, N is the
grain-growth exponent, and Kg is a temperature-dependent constant. This grain
growth is thermally activated and, thus
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Kg ¼ K0g exp � Qg

RT

� �
ð14:29Þ

Qg is the activation energy for grain growth. N = 2–3; both values give similar
fits to the experimental data. The variation of Kg may be expressed by an Arrhenius
plot, as in Fig. 14.54.

The creep rates and diffusion coefficients are very similar for cubic, tetragonal,
and monoclinic zirconia; however, there is a very significant difference in the rates
of grain growth. The tetragonal zirconia exhibits very slow grain growth compared
with the cubic zirconia. This is due to the significant segregation of Y at the grain
boundaries in tetragonal zirconia and the lack of such segregation in monoclinic and
cubic zirconia. Furthermore, GBS is the creep mechanism in nanocrystalline and
submicron-sized grains in zirconia. The level of segregation of Y at the grain
boundaries is much reduced in nanocrystals, by about a factor of 2. Creep defor-
mation may be expressed as indicated earlier by Eq. (4.2). In order to evaluate the
transport in grain boundaries along the Coble lines, one must use the stress and
grain-size exponents, n = 1 and p = 3 and Q = QGB, respectively.

The microstructures of nanosized specimens are seen in Fig. 14.55. The varia-
tions in the strain rate during stress testing performed at 1423 K for grain sizes in
the 65–380 nm range are shown in Fig. 14.56. In addition, the theoretical Coble
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curve for diffusion creep is indicated (a). The experimental data for all the grain
sizes fall on a straight line with a slope of n ≈ 3.

Since there have been very few studies thus far on creep in nanocrystalline
zirconia, valuable supplementary experimental data are provided here, taken from
experiments performed by various researchers listed in Fig. 14.57.

The variation of strain rate with grain size, if all data for grain sizes from 65 to
380 nm are taken as one set, may be seen in Fig. 14.58. If the data are divided by
grain size, <120 nm and >120, then p = 2 ± 0.2 and p = 2.2 ± 0.4, respectively.
According to the activation energy measurements, a value of *550 kJ mol−1 was
obtained for the nanocrystalline samples. Figure 14.59 is a plot of the strain rate
versus the inverse temperature.

Fig. 14.55 Microstructures of the specimens used in this study with grain sizes of (a) 310 nm and
(b) 83 nm. Ghosh and Chokshi [13]. With kind permission of Elsevier
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Grain shape was retained after creep, remaining equiaxed and the measurements
indicate the large contribution of GBS to creep. This finding is similar to obser-
vations made of coarser grained 3Y-TZP, suggesting similar deformation mecha-
nisms. The experimental creep data for samples with grain sizes between 65 and
380 nm appear in Fig. 14.56b, in terms of the variations in the
grain-size-compensated creep rate (p = 2) with stress. There have been reports that
nanocrystalline materials are more creep resistant than the common (macroscopic)
structures, but this claim is not well proven, since it seems that nanomaterials are
not more resistant to creep deformation Mora et al. [16].
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Chapter 15
Creep in Silicon Carbide (SiC)

Abstract Silicon carbide (SiC) is a technologically important ceramic, due to its
high hardness, optical properties, and thermal conductivity. The high strength of
SiC is a consequence of the strong covalent bonds (similar to diamonds) providing
resistance to high pressures. The properties of SiC, which are similar to those of
diamonds, have opened the gem industry to this material for use as a possible
diamond substitute. However, a very important application of SiC is in micro-
electromechanical systems (MEMS), such as in wide-band gap semiconductors and
power semiconductors, due its inherent strength and durability. Creep in poly-
crystalline and single-crystal SiC is the subject of this chapter. SiC is reinforced
with fibers among them SiC fibers. Creep rupture is evaluated in a section devoted
to this subject. Superplasticity observed in SiC is also discussed.

15.1 Introduction

Silicon carbide (SiC) is a technologically important ceramic, due to its high
hardness, optical properties, and thermal conductivity. The high strength of SiC is a
consequence of the strong covalent bonds (similar to diamonds) providing resis-
tance to high pressures. The properties of SiC, which are similar to those of dia-
monds, have opened the gem industry to this material for use as a possible diamond
substitute. However, a very important application of SiC is in microelectrome-
chanical systems (MEMS), such as in wide-band gap semiconductors and power
semiconductors, due to its inherent strength and durability.

Among the strength properties, creep is an important gradient for high-
temperature applications (the subject of this chapter), but the major use and many
applications of SiC are as fiber, so consideration will also be given to its creep
property as fiber.

© Springer International Publishing AG 2017
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15.2 Creep in Polycrystals

It has been suggested (Krishnamachari and Notis) that creep in polycrystalline
silicon carbide is a Coble creep, which, as previously stated, is a grain-
boundary-diffusion creep mechanism. Creep tests in the 1573–1673 K tempera-
ture range and at stress levels of 34.47–86.19 MPa were performed by means of
four-point bending tests. Creep deformation at two stresses is illustrated in
Fig. 15.1.

In a four-point bending test, the stress-strain relation is usually evaluated from
the elasticity, giving the outer-fiber stress by:

r ¼ 1:5
L� að ÞP
bh2

ð15:1Þ

This formula clearly takes into account the specimen’s dimensions; thus b is the
sample width 0.683 cm (0.27 in.) and the total height h is 0.253 (0.1 in.). P is the
applied load, L the distance between supporting points, 3.795 cm (1.5 in.), and a is
the distance between load points, 1.265 (0.5 in.). The strain is given as:

e ¼ 6hx
L� að Þ Lþ 2að Þ ð15:2Þ

The vertical point displacement is x. The strain rate is given (derivative with respect
to time) from Eq. (15.2) as:

_e ¼ 6h _x
L� að Þ Lþ 2að Þ ð15:3Þ

T=1673 K
86.19 MPa (12,500 psi)
34.47 MPa (  5,000 psi)

0.5

0.4

0.3

0.2

0.1

0
0 600 1200 1800

TIME, sec.

%
 C

R
E

E
P

 S
T

R
A

IN
, εε

   

2400 3000 3600

Fig. 15.1 Creep deformation
of SiC. Krishnamachari and
Notis [7]. With kind
permission of Elsevier

358 15 Creep in Silicon Carbide (SiC)



A plot of strain rate versus stress allows for the determination of the stress expo-
nent, giving n = 0.9 ± 0.18 (Fig. 15.2).

The temperature dependence of the creep rate in the usual Arrhenius-type plot
is presented in Fig. 15.3 for four stresses. The apparent activation energy
is Q = (146.51 ± 25.14) kJ mol−1. Under the test conditions at the various
temperature and stress levels, the creep in SiC may be described by the
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well-known mechanisms discussed earlier and reproduced here for the sake of
convenience:

(1) Nabarro-Herring creep, which is lattice-diffusion controlled:

_eNH ¼ 13:3Xr
G2kT

D0l exp � Ql

RT

� �
ð15:4Þ

(2) Coble-creep controlled by grain-boundary diffusion:

_eCoble ¼ 47:7WXr
G3kT

D0gb exp �Qgb

RT

� �
ð15:5Þ

(3) Dislocation creep:

_ed ¼ Alb
kT

� �
r
l

� �n

D0d exp �Qd

RT

� �
ð15:6Þ

In the familiar relations above, some of the symbols must be redefined in line
with their manner of notation. Thus, here, G refers to grain size, W is
grain-boundary width, A is Dorn’s parameter, and μ is the shear modulus. The
subscripts refer to lattice (l) and grain boundary (gb). Clearly, the product of D0 exp
� Q

RT

� �
refers to the relevant diffusion coefficient.

A fractured surface is illustrated in the SEM micrograph in Fig. 15.4. Some
included particles are seen but, in general, the fractured surface is free of inclusions.

Fig. 15.4 SEM micrograph of fractured surface (×2000). Krishnamachari and Notis [7]. With
kind permission of Elsevier
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There is no indication of a second phase at the grain boundaries; thus, grain-
boundary diffusion is likely to be the creep-controlling mechanism. Deformation
maps for SiC (originally suggested by Ashby) are presented in Fig. 15.5. CSR
contours may be superimposed on the same stress-temperature space plot. In this
plot, regions of the mentioned creep mechanisms are displayed. Solving
Eqs. (15.4)–(15.6) for stress as a function of temperature is required in order to
outline the boundaries of those mechanisms. Table 15.1 shows the values necessary
to plot the SiC deformation map.

The values of DgbW for Coble diffusion, calculated from Eq. (15.5) and by a
least-squares analysis, are plotted in Fig. 15.6 and provide the following relation:

DgbW ¼ 3:3x10�9x exp � 146:51� 25:14 kJ mol�1

RT

� �
ð15:7Þ

One can see that the value of DgbW for C diffusion (shown in Farnsworth and
Coble) is not in good agreement with the present data. They are, however, in
reasonably good agreement with the extrapolated values for silicon or carbon
self-diffusion coefficients in SiC. The activation energy for creep is about half that
of Si self-diffusion in SiC, suggesting that Si-controlled grain-boundary diffusion is
the most likely creep process in SiC. The above suggestion is based on the con-
cepts: (1) the value of Coble creep is about half that of lattice diffusion (i.e.,
grain-boundary diffusion is about half that of lattice diffusion, namely, Qgb/
Ql *0.5; Atkinson and Monty [1]); and (2) the agreement between DgbW and the
extrapolated values of Si self-diffusion shown in Fig. 15.6.

Due to the other controversies found in earlier publications (excluded in this
book), it felt worthwhile to add (below) a more recent work on creep in SiC, so that
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Fig. 15.5 Deformation map for SiC (grain size 65 μm). Krishnamachari and Notis [7]. With kind
permission of Elsevier
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it might resolve the conflicting reports from the literature, shedding new light on
creep in SiC.

15.3 Creep in Single-Crystal SiC

Of the six polymorphs of SiC, the creep properties of 6H α-SiC is considered in this
section. Dislocation motion is the only mechanism available for macroscopic plastic
deformations in SiC. At about 800 °C, Niihara suggests the onset of plasticity
by basal slip on the (0001) <1120> plane as being the dominant system causing
dislocation motion. Substantial dislocation mobility within the 850–900 °C range
was observed around scratches in hot stage TEM. Very few compressive-creep data
exist for SiC, but those that do indicate that single-crystal SiC is very creep resistant
when stressed, so as not to activate basal slip; however, that basal-slip deformation
can occur at relatively low temperatures when basal slip has been activated.

Table 15.1 Materials constants for SiC required for plotting a deformation map. Krishnamachari
and Notis [7], Lane et al. [11]. With kind permission of Elsevier

Constant Value

Vacancy volume, ×1023 (cm23) 2.08a

Grain houndary Width, W × 108 (cm) 10 or 100b

Pre-exponential grain-houndary diffusion constant, D
�
gb (Silicon)

(cm2/s)

3.24 × 10−2 or
3.24 × 10−3c

Pre-exponential dislocation creep constant, Ab × 104 (cm2/s) 4.6d

Pre-exponential lattic diffusion constant for carbon diffusion,
D

�
L × 102 (cm2/s)

Limit between creep end elastic region, ×108 (s−1)

3.0e

1.0

Activation energy for grain boundary diffusion (Silicon), Qgb.
(kJ/mol)

16lf (38.5 kcal/mol)

Activation energy for lattice diffusion of carbon, QL, (kJ/mol) 590.2g (141 kcal/mol)

Activation energy for dislocation creep (carbon diffusion), Qd

(kJ/mol)
590.2h (141 kcal/mol)

Melting paint, Tm(
°K) 2.973

Stress exponent for dislocation creep, n 4.5

Grain size G (μm) 65

Shear modulus, μ × 105 (MPa) 1.52 (2.2 × 107 psi)

a = A=q Na (A: atomic weight, q: density, Na = 6.02 × 1023)
b, c: 1. W = 10 Å (similar to most metallic systems [18]) and D

�
gb(silicon) = 10 D

�
L (silicon),

where D
�
L (silicon) =|3.24 × 10−3 cm2/s obtained from the diffusion data of silicon reported by

Goshtagore [9], or
2. W = 100 Å (typical for ceramics such as Al203, [18]) and D

�
gb (silicon) = D

�
L

(silicon) = 3.24 × 10−3 (cm2/s)
Note In both cases, D

�
gb (silicon) W = 3.24 × 10−9 (cm2/s) remains the same

d [17], e, g, h; Reference [1], f: Qgb = 1/2 QL ([14. 15])

362 15 Creep in Silicon Carbide (SiC)



The electronics-grade SiC specimens were arranged so that their long axes were
parallel to the loading direction, aligned either parallel to [0001], or at 45° from it
toward the ½11�20� direction. (The Schmidt factors are 0 and 0.5 for 0001ð Þ 11�20h i
slip, respectively). The strain versus time plot is presented in Fig. 15.7. Whenever
primary creep was present, its extension was not large, but the steady-state creep
was readily observed. From the linear portion of the strain versus time plots, the
steady-state creep rate was determined by means of a linear-regression analysis.
The steady-state creep analysis of the experimental data was done according to
Eq. (13.4). A multiple-regression routine was used to fit Eq. (13.4) to the creep
data. (For those interested in multiple regression, the work of Newton and Spurrell
may be consulted.) The measured creep rates and regression fit of the data (in Fig.
15.8) indicate that Eq. (13.4) describes the data quite well. The analysis of the
flow-stress behavior for this alignment (45° from [0001]) gave a stress exponent of
3.1 ± 0.41 and an activation energy of 277 ± 24 kJ mol−1. This activation-energy
value is much lower than that of the self-diffusion of C or Si in SiC, being 714 and
697 kJ mol−1, respectively. These values indicate that the mechanism controlling
deformation is thermally assisted activation over the Peierl’s-barrier stress. Recall
that the Peierl’s barrier is important for dislocation motion; here, it specifically
refers to covalently bonded crystals, such as ceramics. This barrier is a result of the
requirement to break and restore bonds at the core of dislocations every time a
dislocation moves one atomic distance. Dislocations are thermally assisted to
overcome barrier stresses.

The creep rates for the c-axis in SiC are shown in Fig. 15.9 and listed in
Table 15.2. A regression analysis of this orientation yielded a stress exponent,
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Fig. 15.6 Temperature dependence of effective diffusion coefficients. Krishnamachari and Notis
[7]. With kind permission of Elsevier
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n = 4.93 ± 0.16, and an activation energy of 180 ± 27 kJ mol−1, which is again
smaller than the self-diffusion values of Si and C in SiC, but in agreement with
creep data measured in SiC (Carter et al. [2]), obtained by the chemical vapor
deposition (CVD) method (175 kJ mol−1).

Despite the orientation of the specimen in the c direction [0001], where
basal slip is not expected to occur, the expectation of good creep resistance
was not met–creep resistance was poor. Creep rates versus inverse temperatures
for several forms of SiC are shown in Fig. 15.10. The creep specimens were
aligned 45° from [0001], where the creep resistance was expected to be low
and it was thought that creep would occur by slip along the basal plane, as seen

Fig. 15.7 Typical strain
versus time behavior for the
45° single-crystal α-SiC creep
specimens. Corman [8]. With
kind permission of John
Wiley and Sons

Fig. 15.8 Steady-state creep
rate data for single-crystal
α-SiC measured at 45° to
[0001]. Corman [8]. With
kind permission of John
Wiley and Sons
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in Fig. 15.11 (side surfaces). Slip traces and steps may also be seen parallel
to the basal plane. In the case of specimens tested in the c direction (skewed),
slip steps parallel to the basal planes were observed (see Fig. 15.12).

Fig. 15.9 Steady-state creep rate data for [0001] aligned single-crystal α-SiC. Corman [8]. With
kind permission of John Wiley and Sons

Table 15.2 Steady-State Creep Rates for Single-Crystal α-SiC. Corman [8], Farnsworth and
Coble [12]. With kind permission of John Wiley and Sons

Specimen Orientation Stress
(MPa)

Temperature
(�C)

Creep rate
(s−1)

Cumulative
strain (%)

1 45° 100 1100 1.42 × 10−5 0.90

1000 2.91 × 10−6 1.71

1200 1.36 × 10−4 3.36

2 45° 200 1000 2.80 × 10−5 7.19

900 2.50 × 10−6 7.90

800 1.95 × 10−7 8.02

100 900 7.29 × 10−7 8.22

3 45° 50 1100 8.32 × 10−7 0.41

1000 2.65 × 10−7 0.72

1200 1.78 × 10−5 2.69

4 [0001] 200 1750 9.90 × 10−8 0.65

1850 1.42 × 10−7 1.37

1650 6.70 × 10−8 1.90

5 [0001] 400 1750 3.08 × 10−6 1.46

6 [0001] 280 1750 5.25 × 10−7 0.65

7 [0001] 140 1750 1.50 × 10−8 0.28

1650 9.15 × 10−9 0.35

1850 3.36 × 10−8 0.62
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Fig. 15.10 Creep-rate data
for several forms of SiC,
interpolated or extrapolated to
200 MPa: single crystal is
[0001] alignment; other data
from Corman [8]. With kind
permission of John Wiley and
Sons

100µm

50µm

Fig. 15.11 Reflected-light
micrographs of the surfaces of
a 45° creep specimen: top
10�10f g type face, bottom face

45° between (0001) and
11�20f g. The compression

axis is shown by the arrows.
Corman [8]. With kind
permission of John Wiley and
Sons
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From the experimental data and according to Eq. (13.4) one may write the
following:
for specimens oriented 45° between [0001] and ½11�20� directions, at 800–1200 °C
under 50–200 MPa stresses:

_e ¼ 0:155r3:32 exp � 277 kJ mol�1

RT

� �
ð15:8Þ

and for stresses parallel to [0001] at temperatures of 1650–1850 °C under stresses
of 140–400 MPa, the steady-state creep rate is:

_e ¼ 2:01� 10�14r4:91exp � 180 kJ mol�1

RT

� �
ð15:9Þ

The creep resistance is lower in single crystals than in both CVD SiC measured
under the same conditions and in polycrystalline SiC. It is not exactly known why
(under the same experimental conditions) there should be a difference in these
results. In this author’s opinion, grain boundaries, although they may be sites for
sliding, they have a dual effect: (a) GBS, which does not favor good creep resis-
tance, and (b) strengthening by blocking the easy passage of dislocations through
the boundaries. The CVD SiC, although showing a preferred orientation, still has
grains (and, consequently, grain boundaries), like polycrystalline SiC, so it is
reasonable to assume that the strengthening effect may override the GBS, due to
the greater creep resistance of the CVD together with the polycrystalline SiC
(as opposed to single crystals).

50µm

Fig. 15.12 Reflected-light micrograph of the side surface of a [0001] α-SiC creep specimen
showing slip steps parallel to the basal plane. The oblique lines are polishing scratches. The [0001]
compression axis is shown by the arrows. Corman [8]. With kind permission of John Wiley and
Sons
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15.4 Creep Results in SiC

15.4.1 Introduction

In a further attempt to resolve reported controversies regarding creep and creep
mechanisms in SiC (a very useful structural material), the following text will
present significant landmarks in the relevant experimental research, assuming that
the differences in the reported results have been caused by the different shapes and
sizes of the specimens, the various techniques involved, impurities, etc. Below,
some additional creep results are considered regarding: CVD SiC, SiC fibers, and
composite SiC (with additives to improve creep-resistant properties).

15.4.2 CVD SiC

To obtain measurable creep, the required stress and temperature must be chosen.
Specimens should be aligned, so that the deposition direction is 45° to the applied
stress axis. At this orientation, the highest resolved-shear stress on these planes
provides measurable deformations at the stresses applied at the proper temperatures.
The compressive-creep tests were performed in a protective nitrogen atmosphere,
the purpose of which was to eliminate b ! a transformation. A typical creep curve
is shown in Fig. 15.13. The steady-state creep curves versus log(σ/G) are shown in
Fig. 15.14a, b at the temperatures indicated. The activation energy for steady-state
creep is illustrated in Fig. 15.15a, b at the stresses indicated. The results indicate
that Eq. (15.10) describes creep properly, resulting in 174 ± 5 kJ mol−1:

_e ¼ A
r
G

� �n
exp � Q

kT

� �
ð15:10Þ

Fig. 15.13 Creep curve of
CVD SiC (1923 K). Carter
et al. [3]. With kind
permission of John Wiley and
Sons
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Note that A in Eq. (15.10) may be determined from a plot of log _eþ Q
2:303kT

versus log r
G

� �
, as seen in Fig. 15.16. The values of G and n are found in the

literature (Carter et al. [3]). TEM micrographs were intended to show the grain

Fig. 15.14 a Steady-state creep rate versus log (σ/G) for CVD SiC samples crept at
temperatures <1923 K; b SiC samples crept at 1923 K. Carter et al. [3]. With kind permission
of John Wiley and Sons

Fig. 15.15 Steady-state creep rate versus 104/T (K-1) for CVD SiC samples crept at a 182
MN/m2; b at 220 MN/m2. Carter et al. [3]. With kind permission of Professor Davis and John
Wiley and Sons
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size, shape, and distribution. A set of TEM micrographs appears in Fig. 15.17.
The sectioning was such that the normal to the foil was parallel to the applied
stress direction, however, a few were perpendicular. Grain growth during defor-
mation occurred in grains oriented along the preferred orientation direction of
low-angle grain boundaries, caused by gliding dislocations (that play an important
role in the deformation process). Grain growth is a direct consequence of the creep
process.

From lattice images appearing in Fig. 15.18 and from diffraction patterns; it was
determined that the primary α polytype is 6H SiC. The ratio of β to α is about 60:40,
which existed in the as-deposited material remaining after creep. The dislocations in
the large grains of the as-received material were analyzed to determine their Burgers
vectors, as shown in Fig. 15.19. Additional dislocation structures often observed in
CVD materials are seen in Figs. 15.20 and 15.21.

The dislocation tangles seen in Fig. 15.20a are also seen in the as-received and
crept material and are believed to be significantly altered during the deformation
process. Many of these dislocations were dipoles, whose formation resulted from
dislocation-dislocation interaction. The series of loops seen in Fig. 15.20b was
caused by pinching off of the dipoles. The progressive annihilation of dislocation
loops, as indicated by the decreasing diameter of the series of loops, may be
observed at the bottom left of Fig. 15.20b. In the crept SiC, slip bands were the
dominant feature at all the stresses and temperatures (see Fig. 15.21), but they were
never seen in the as-received material. A Burgers vector analysis of the dislocations
in the slip bands appears in Fig. 15.22. These dislocations are glide-dissociated,
a/2 <110>. The specific Burgers vectors seen in the slip bands are a=6 2�1�1½ � and
a=6 1�21½ �. Dislocations within a slip band are seen forming a cavity, as indicated in
Fig. 15.21b. Cavity formation occurs at grain boundaries having high angles
between the basal planes in specimens that have undergone large deformation.
A low density of cavities was observed in a deformed specimen; these cavities were

Fig. 15.16 log _eþ
Q=2:303 kT versus logðr=GÞ
for CVD SiC. Carter et al. [3].
With kind permission of
Professor Davis and John
Wiley and Sons
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formed during the creep process and appear in Fig. 15.23. One may compare the
activation energy of creep in CVD SiC (175 kJ mol−1) with the diffusions of Si or C
in α and β-SiC (which are very high). C, for example, shows about 563 kJ mol−1 for
grain-boundary diffusion in β-SiC, meaning that, in this case, the creep mechanism
is unlikely to be controlled by diffusion.

2 µm 2 µm

2 µm 0.5 µm

Fig. 15.17 Transmission electron micrographs of CVD SiC, showing a heavy faulting of
as-deposited material and b–d tremendous range of grain sizes and shapes. These micrographs
show as-crept material, but are typical of both as-received and crept material. Carter et al. [3]. With
kind permission of Professor Davis and John Wiley and Sons
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Here, the values of the stress exponents suggest that either a dislocation or GBS is
the creep-controlling mechanism. The above TEM micrographs suggest a dislocation-
glide-controlled mechanism, since they show no indication of grain-boundary activity

20 nm

20 nm

2 µm

Fig. 15.18 Transmission electron micrograph and associated electron diffraction patterns for
CVD SiC. a Lattice images of as-deposited material, which has an almost random stacking
sequence. b Micrograph of grain which grew during argon anneal; comparison of its diffraction
pattern to that of a shows that this structure is much less random. c Lattice image of material
deformed at 1973 K and 182 MN/m2; dark areas are α SiC and light areas β SiC. Carter et al. [3].
With kind permission of Professor Davis and John Wiley and Sons
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(separation or slide). The presence of slip bands seen in Figs. 15.21, 15.22 and 15.23
above prove that dislocation glide is occurring in the CVD SiC subjected to
creep. Following Weertman’s proposal [4], Carter et al [3]. suggest that, in materials
where the Peierls stress is high, SiC among them, dislocation glide may be controlled
by overcoming the Peierls stress. Dislocation glide is believed to be the creep
mechanism at low temperatures (1673–1873 K) and the rate-controlling mechanism is
the overcoming of the Peierls stress. At higher temperatures (1923–2023 K), climb

0.5 µm 0.5 µm

0.5 µm 0.5 µm

Fig. 15.19 Partial series of set of transmission electron micrographs taken for Burgers vector
analysis of as-received CVD SiC. Burgers vector of labeled dislocations are as follows: a
b = a=6 11�2½ �, b b = a=6 114½ �, c b = a=3 �1�1�1½ �, d b[110], (a) g = 13�1½ �, z ffi �211½ �; (b) g = 111½ �,
z = ffi �211½ �; (c) g = 0�22½ �, z ffi �211½ �, (d) g = �1�12½ �. Carter et al. [3]. With kind permission of
Professor Davis and John Wiley and Sons
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can occur, and the stress exponent indicates that dislocation glide/climb controlled by
climb may become the steady-state creep-controlling mechanism.

15.4.3 Creep in SiC Fibers

SiC fibers, usually in graded forms, are known as ‘Nicalon.’ The continuous length
SiC fibers are used to reinforce ceramic matrix composites (CMC) for
high-temperature structural applications. Standard grade Nicalon has optimum
mechanical properties and high-temperature performance for most applications.
With little or no oxygen in its structure, the fiber displays high stiffness, high
thermal stability, and high room temperature strength. In order to understand the

0.5 µm0.5 µm

Fig. 15.20 Transmission electron micrographs of CVD SiC after creep, showing a dislocation
tangle (deformed at 1923 K and 220 MN/m2 and b trails of dislocation loops that have pinched off
from dipole in material determined at 1823 K and 182 MN/m2. Carter et al. [3]. With kind
permission of Professor Davis and John Wiley and Sons

0.5 µm 0.5 µm

Fig. 15.21 Transmission electron micrograph of CVD SiC deformed at 2023 K and 220 MN/m2,
showing, a dislocation slip bands (dislocation density of 5.3 × 1012 m/m3) and b dislocation in
slip band forming a cavity (X) at grain boundary. Carter et al. [3]. With kind permission of
Professor Davis and John Wiley and Sons
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performance of SiC fiber in CMC, it is important to know the tensile strength and
creep-rupture properties of the multifilament tows (consisting of SiC fibers) and to
compare the multifilament behavior with single-fiber behavior under the same
conditions.

0.5 µm 0.5 µm

0.5 µm0.5 µm

Fig. 15.22 Partial series of transmission electron micrographs taken for Burgers analysis of slip
bands in sample shown in Fig. 15.21. Burgers vector analysis of labeled dislocations are as
follows: a b = a=6 2�1�1½ �, b b = a=6 1�21½ �. a g = �220½ �, z ffi 112½ �; b g = 31�1½ �, z ffi 114½ �; c
g = 13�1½ �, z ffi 114½ �; d g = 20�2½ �, z ffi 111½ �. Carter et al. [3]. With kind permission of Professor
Davis and John Wiley and Sons
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The creep-rupture measurements were made at 1200 and 1400 °C on as-produced
tows and single fibers under inert (argon) and oxidizing (air) conditions. Low oxygen
content SiC (0.5 wt%)-based fiber materials were tested for creep. Typical creep
curves for different temperatures and applied stresses tested in air are shown in the

5 µm 2 µm

0.5 µm 1 µm

Fig. 15.23 Transmission electron micrographs of crept CVD SiC, showing cavities which were
formed on grain boundaries during creep. a Material deformed at 2023 K and 220 MN/m2 showing
low volume fraction of cavities (arrowed). b, c Same material at higher magnification; specimens
were oriented such that cavities were more pronounced, which put dislocations out of contrast.
d Material deformed at 1923 K and 220 MN/m2, showing dislocations which form cavities partially
in contrast. Carter et al. [3]. With kind permission of Professor Davis and John Wiley and Sons
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usual manner of creep strain versus time in Fig. 15.24 for experimental Hi-Nicalon
fibers and Nicalon fiber (12 wt% oxygen), referred to as CGN (Nippon Carbon Inc.,
Japan). The Hi-Nicalon was found to be more creep-resistant than the CGN
throughout its entire lifetime.

In the case of the Hi-Nicalon, long steady-state creep was observed, while in the
CGN, only primary creep existed in most cases. Additional creep curves are shown
in Fig. 15.25 at various temperatures and stresses. These creep tests were performed
in an argon atmosphere, either at varying temperatures and constant stress or at
various stresses and a constant temperature of 1400 °C; the results may be seen in
Fig. 15.26. Fibers, preheated at 1600 °C, were creep tested at 1200–1550 °C and at
a constant stress of 0.45 GPa or at 1400 °C and at various stresses. The creep
results are shown in Fig. 15.27. The average time-to-failure versus temperature is
shown on a logarithmic scale in Fig. 15.28. The apparent activation energies in air
for the as-received fibers and for the preheated Hi-Nicalon were determined from
the steady-state creep versus the inverse temperature; the resulting values appear in
Fig. 15.29. The activation energies in the argon atmosphere of the as-received fibers
are lower than those in air, derived from similar plots found in Fig. 15.29, giving
193 kJ mol−1 for a stress of 0.7 GPa, and 292 kJ mol−1 for a stress of 0.45 GPa,
respectively. This analysis was once again performed using Eq. (13.4), known as
“Dorn’s equation,” reproduced here as:

Fig. 15.24 Creep curves for CGN and Hi-Nicalon fibers tested in air at a 1180–1200 °C and
0.45 GPa, b 1180 °C and 0.70 GPa, and c 1300 °C and 0.45 GPa. Bodet et al. [5]. With kind
permission of Springer Publishing Company
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Fig. 15.25 Creep curves for the Hi-Nicalon fibers tested in air for an applied stress of a 0.15 GPa,
b 0.30 GPa, c 0.45 GPa and d 0.70 GPa. Bodet et al. [5]. With kind permission of Springer
Publishing Company

Fig. 15.26 Creep curves for the Hi-Nicalon fibers tested in argon a for an applied stress
of 0.45 GPa, b at 1400 °C. Bodet et al. [5]. With kind permission of Springer Publishing
Company
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_ess ¼ Arnapp exp � Q
RT

� �
ð15:10Þ

The stress exponents in air were determined by linear-regression analysis and
were found to be in the range of 1.96–3.04; the various values in the investigated
range are indicated in Fig. 19.29b. For the heat-treated fibers tested in Ar, it was
found that the stress exponents are 1.9 and 2.0 at temperatures of 1400 and 1300 °C,
respectively. Figure 15.30 presents the Dorn plots for creep tested in an argon
atmosphere. Table 15.3 summarizes the creep experiments done on SiC fibers.

One can conclude that the experimental Hi-Nicalon (SiC fibers), which are low
in oxygen content (O wt% <0.4), have greater creep resistance than the Si-C-O
commercial Nicalon fibers tested under the same conditions in the same creep

Fig. 15.27 Creep curves for
the Hi-Nicalon fibers preheat
treated at 1600 °C for 1 h and
tested at 1300 °C in argon.
Bodet et al. [5]. With kind
permission of Springer
Publishing Company

Fig. 15.28 Effect of
temperature on the
times-to-failure of as-received
Hi-Nicalon fibers on a
logarithmic scale. The
single-sided error bars
represent one standard
deviation. Applied stress:
(Δ) 0.15 GPa, (□) 0.30 GPa,
(♦) 0.45 GPa, (▲) 0.70 GPa.
Bodet et al. [5]. With kind
permission of Springer
Publishing Company
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experiments. Hi-Nicalon also has better creep-rupture properties. However, these
fibers, when subjected to creep tests at 1400 °C in air, show ultra-plastic, localized
deformation at high stress levels. Additionally, great deformation (about 14%) is
obtained at 1500 °C in argon. Based on the stress exponents and activation energies
for creep, Bodet et al [5]. propose that the active creep mechanism functioning in
this case is a process involving the de-wrinkling of initially wrinkled carbon layer

Fig. 15.29 Dorn plots for Hi-Nicalon fibers tested in air. a Steady-state creep rate versus
reciprocal temperature at (○) 0.15 GPa, (□) 0.194 GPa, (Δ) 0.30 GPa, (♦) 0.45 GPa, (○) 0.7 GPa.
b Steady-state creep rate versus applied stress at (○) 1180 °C, (□) 1280 °C, (♦) 1300 °C, (◊)
1330 °C, (●) 1350 °C, (A) 1380 °C, (♦) 1400 °C. Bodet et al. [5]. With kind permission of
Springer Publishing Company

Fig. 15.30 Dorn plots for Hi-Nicalon fibers tested in argon. a Steady-state creep rate versus
reciprocal temperature at (○) 0.45 GPa and (□) 0.7 GPa for as-received fibers, and at (▲) 0.3 GPa,
(●) 0.45 GPa and (■) 0.7 GPa for preheat-treated fibers. b Steady-state creep versus applied stress
at (○) 1400 °C for as-received fibers, and at (■) 1300 °C and (●) 1400 °C for fibers
preheat-treated in argon for 1 h at 1600 °C. Bodet et al. [5]. With kind permission of Springer
Publishing Company
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packets into a position more nearly aligned to the tensile axis, the sliding of these
graphitic sheet-like structures, and the collapse of fiber pores.

15.4.4 Creep in SiC Composites

The most important SiC composite is the one strengthened by SiC fibers. Althouh
SiC fibers, whiskers, and particulates are commonly used to strengthen
metallic-based materials, known as “metal matrix composites” (MMC), the present
focus is directed toward a SiC matrix with SiC fiber additives, belonging to the
class of “ceramics matrix composites” (CMC).

Most ceramics are brittle, but often fiber additives induce certain amount of
ductility in the composite, which is apparently also true in the case of SiC/SiC
composites. This observation is related to a fiber-bridging effect, the consequence of
which is the redistribution of stresses around strain-concentration sites, thus
increasing toughness and reliability. As in previous chapters, the analysis of creep
data is performed by the expression of the creep rate as given in Eqs. (13.4) and
(15.10). Applying a constant tensile load produces an instantaneous strain, followed
by a time-dependent creep strain, as seen in Fig. 15.31. As previously stated,

Fig. 15.31 Tensile creep strain versus time at different stresses in argon at 1000 and 1300 °C.
a 1000 °C; b and c 1300 °C. Zhu et al. [9]. With kind permission of Elsevier
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whether all three stages of creep may be observed depends on stress and temper-
ature. Creep rate, as a function of stress, is shown in Fig. 15.32. The stress expo-
nents, in the 5–25 range, are indicated on the graph. Note that below an apparent
threshold stress the creep rate decreases at a given temperature below a detectable
level. From Eq. (15.10), an apparent activation energy may be calculated for creep.
A plot of the creep-strain rate versus the inverse temperature is illustrated in
Fig. 15.33.

As may be seen from Fig. 15.33, the apparent activation energy for creep
decreases with increasing stress and a constant value of 165 is obtained at the high
stress level of 120–180 MPa. In the lower stress range of 60–90 MPa, Q is in the

Fig. 15.32 Tensile minimum
creep strain rate versus stress
in argon at 1000, 1100, 1200
and 1300 °C. Zhu et al. [9].
With kind permission of
Elsevier

Fig. 15.33 Tensile minimum
creep-strain rate as a function
of absolute temperature.
Zhu et al. [9]. With kind
permission of Elsevier
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range of 235–1040 kJ mol−1. The apparent-stress exponent also decreases with
increasing stress, as indicated in Fig. 15.32.

15.5 Creep Rupture in SiC

As indicated above, the use of SiC is generally as fiber-reinforced CMC and,
therefore, most of the concern pivots around the SiC/SiC properties discussed
above. However, it is no less important to discussion its creep properties and to
know the work lifetime of such an CMC by evaluating its creep-rupture prop-
erties, in order to know its time-to-complete failure. This same SiC/SiC com-
posite is now considered in regard to creep rupture. It is known that when
applying a load to a specimen, an instantaneous strain is observed, followed by
the strain rate. At low temperatures, this strain is elastic and recoverable but, at
high temperatures, there is a nonrecoverable strain, creep strain, which is time-
and stress-dependent, and may terminate in the failure of the specimen. Such
failure is often referred to as “creep rupture”. Whether all three stages of creep
are observed or not depends on both the stress and the temperature, as previously
stated. A creep rupture versus time plot is shown in Fig. 15.34. Note that creep
is often thought to be composed of four stages, with “instantaneous strain”
included.

The curves were fitted to the power-law relation in Eq. (13.31), now reproduced
somewhat differently as:

tr ¼ Brn ð15:11Þ

Here, tr is the time-to-rupture and n is the stress exponent for rupture. The
derived values of n are 5.8 at 1000 °C, 4.1 at 1100 °C, 8.1 at 1200 °C, and 4.2 at
1300 °C. The steady-state creep-strain rates versus times-to-rupture are shown in

Fig. 15.34 Tensile stress
versus time-to-rupture in
argon at 1000, 1100, 1200
and 1300 °C. Zhu et al. [9].
With kind permission of
Elsevier
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Fig. 15.35. The data are quite well-defined by a straight line, but with some scatter.
The data fit the MGR, which was given above in Eq. (10.10) and reproduced here
as Eq. (15.12):

CM�G ¼ tr _e
m ð15:12Þ

Here, CM−G is the Monkman-Grant constant and m is the strain-rate exponent.
The MGR is a method for predicting the creep life of a material (in this case, the

SiC/SiC composite). Clearly, knowing the creep rate enables the evaluation of the
work lifetime, according to Eq. (15.12). Another empirical relation, useful mostly
for metals, is the Larson-Miller Parameter (LMP). This is also valid for assessing
lifetimes via Eq. (15.13), which is identical to Eq. (10.90):

P ¼ Cþ log trð Þ ð15:13Þ

A stress plot drawn according to the LMP is shown in Fig. 15.36. The value of
the constant (20 in metals) is between 5–10 for the SiC/SiC composite at the
temperatures shown in Fig. 15.36. After studying both Figs. 15.35 and 15.36, one
cannot determine which of the two parametric techniques is preferable.

15.6 Superplasticity in SiC

In the tested nanocrystalline β-SiC, additional constituents were present, due to its
fabrication and the ease of sintering. Thus, the material contained 3.5 wt% free C
and amorphous 1% B (sintering aid). The sintering was performed at 980 MPa and
1600 °C for 1 h inside a glass-encapsulated vacuum, then followed by die pressing
and cold isostatic pressing.

Fig. 15.35 Tensile minimum
creep-strain rate versus
time-to-rupture at different
stresses in argon at 1000,
1100, 1200 and 1300 °C.
Zhu et al. [9]. With kind
permission of Elsevier
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Tensile tests were performed at 1600 °C in an argon atmosphere at an initial
strain rate of 1 × 10−5–1 × 10−4 s−1. The sample preparation process resulted in
97.1% density and a 200 nm grain size. The HIPed B-, C-SiC specimens, before
and after deformation, appear in Fig. 15.37. The stress-strain curves of the
hot-pressed and HIPed specimens are shown in Fig. 15.38. In an additional
example, a sample hot-pressed at 2000 °C for 1 h under a pressure of 30 MPa
showed a superplastic elongation of >100%, whereas the hot-pressed specimen
fractured without significant plastic deformation. Here, as in other materials, grain
refinement is responsible for the superplastic deformation. The mechanism of
superplastic behavior in this SiC is claimed to be associated with B segregation at
grain boundaries promoting GBS.

However, an additional example showed the ability of a material to exhibit large
strain during the deformation process. Superplasticity > 200% has been observed

Fig. 15.37 Hipped C, C-SiC specimen before and after tensile deformation. The tensile test was
conducted at 1800 °C, and an initial strain rate of 3 × 10−5 s−1 in an argon atmosphere. The
specimen deformed uniformly, and a superplastic elongation of 140% was achieved. Shinoda et al.
[10]. With kind permission of John Wiley and Sons

Fig. 15.36 Tensile stress
versus Larson-Miller
parameter at different stresses
in argon at 1000, 1100, 1200
and 1300 °C. Zhu et al. [9].
With kind permission of
Elsevier
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for the first time in nanowires (NW) at low temperatures ≤ 80 °C. The morphology
of SiC nanowires is illustrated by SEM along with its X-ray diffraction
(XRD) structure in Fig. 15.39. The XRD pattern indicates a well-developed cubic
(3C) structure with stacking faults (SFs). The average NW length is several tenths
of a micron and its diameter is up to 150 nm. TEM shows this general morphology
in Figs. 15.40a, b in a magnified image, showing that the NW consists of two types
of intergrowth segments, 1 and 2.
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Fig. 15.38 Stress-strain curves of HIPped B, C-SiC and hot-pressed B, C-SiC. The tensile tests
were conducted at 1800 °C and an initial strain rate of 1 × 10−4 s−1 in an argon atmosphere.
HIPped, B, C-SiC exhibited superplastic elongation of 114%, because of grain refinement. On the
other hand, hot-pressed B, C-SiC fractured without plastic deformation. Shinoda et al. [10]. With
kind permission of John Wiley and Sons
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Figure 15.40c–e show the corresponding electron-diffraction patterns (EDPs)
along the zone axes [001], [−110], and [111] of area 1, respectively; and in
Fig. 15.40f–h one sees the corresponding EDPs from area 2 along the same zone
axes. HRTEM images taken along the [−110] zone axis, containing both the 3C and
ODD/HD segments of the SiC nanowire, are found in Fig. 15.41. Segment 1 has an
… ABCABC… stacking sequence, typical of a 3C structure, while segment 2 has a
disordered structure in the [111] direction, namely, a SF sequence on a (111) plane,
along the longitudinal growth axis.

Following the structural analysis, in situ tensile tests were performed in a nano
tensile-testing stage. The setup is schematically shown in Fig. 15.42. Single SiC
NWs were pulled by a bimetallic extensor and the process was recorded in situ by
SEM imaging. All the NWs showed an extremely large tensile strain (with an
average fracture strain ≥25%).

Figure 15.43a–g demonstrate the representative experiment in which a
SiC NW is suspended and clamped between the two bimetallic actuating
manipulators. The manipulator used to increase strain with increasing

200nm

[001]

[001]

[110] [111]

[111]

-

[110]
-50nm

Fig. 15.40 a Typical morphologies of the SiC NWs under TEM observation; b in a selected
piece of SiC NW showing the intergrowth feature with 3C and ODD/HD substructure
segments; c–e are the [001], [−110] and [111] zone axes. EDPs taken from area 1 of b and
f–h are the EDPs taken from area 2 of b. Zhang et al. [6]. With kind permission of John Wiley
and Sons
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temperature from 30 to 80 °C. The strain rate was estimated as *5 × 10−4.
From a series of images, the total length of the wire before extension was
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Fig. 15.41 a is the HREM
image of a SIC NW showing
the intergrowth segments of
3C and ODD/HD structures at
the atomic level. The FFT
diffraction patterns for areas 1
and 2 are shown as insets in
the left bottom corner and
right bottom corner,
respectively; b and c are the
enlarged HREM images
showing more clearly the
atomic structure of 3C and
ODD/HD structures. The
atomic structural models and
the simulated HREM images
based on these models are
overlaid in the corresponding
figures. d are the EELS
spectra for carbon K edge for
the 3C and ODD/HD
structure segments and;
e shows the EDS spectra
taken from the regions 1 and 2
of a. Zhang et al. [6]. With
kind permission of John
Wiley and Sons
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L = 25 μm while, after the tension, the elongation was T = 7 μm. Thus, the
average elongation is T/L = 28%. However, the local elongation of the SiC NW
is >200%. Looking at the white set of paired arrows, measured L0 is 1.5 μm
(Fig. 15.43b) and near the final length, lf is 4.8 μm (Fig. 15.43e) and the local
elongation is (lf – L0)/L0 is *220.

A suggestion explaining the results of this superplastic deformation relates
to an inhomogeneous structural feature in SiC NW. The TEM images shown
in Fig. 15.44a) are typical TEM images. Figure 15.44b) provides a HREM
image of a bi-structural model–one of a defect-free segment with a perfect
cubic 3C structure, while the other is highly-defective, with a high density of
SFs.

When putting a tensile load on a SiC NW specimen, the basic deformation is
a shear one, thus a resolved-shear stress is acting on the active slip systems.
For FCC SiC NW, the most favorable slip system is {111}/< 110 >, whereas for
the ODD/HD parts of the SiC NW, the slip system lies on the (111) plane, in
which the Scmidt factors are zero. Of the multiple slip systems present (see
Zhang et al. [6]), the Schmidt factor on the (11−1) plane is 0.272, with respect to
the loading axis along [111]. This means that slip was favorable on (11−1) in the
structural 3C region when the load was applied along [111] or a [−1−1−1]
orientation. The tensile process along this orientation would result in continuous
dislocation nucleation and propagation in three sets of planes: (11−1), (1−11)
and (1−1−1), with the favorable Schmidt factors. Such activity occurs within

Manipulation

Insulator
Specimen

Heating

Thermal 
bimetallic 
strips 

Fig. 15.42 a Schematic illustration of the tensile tool prior to extensile experiment with the SiC
NWs scattered on the manipulator; b the conducting extensile experiment on the SiC NWs (top
view). Zhang et al. [6]. With kind permission of John Wiley and Sons
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the region indicated by the yellow blockers shown in Fig. 15.44c. It is
inferred that continuos plastic/supeplastic flow resulted in these cubic structural
SiC NW regions to continuously transform into an amorphous state until fracture
sets in.

The superplastic flow is confined to the 3C structural region, as illustrated in
Figs. 15.46c, d between the two yellow blockers. In segments outside these yellow
blockers, the ODD/HD regions, only elastic deformation occurs.

Thus, the deformation process in SiC NW consists of three stages: dislocation
initiation, dislocation propagation, and amorphization with an additional super-
plastic flow process in its wake. By combining dislocation initiation and propa-
gation (as one activity, which includes the superplastic flow, one can generalize the
plastic flow and fracture as:

Dislocation activity ! amorphization ! superplastic amorphous flow !
fracture

Fig. 15.43 a–f In situ sequential SEM images showing extensile experiments on a elongated
SiC NW. g A high magnification back scattering electon (BSD) image showing a broken
tip. h Schematic model of the tensile deformation process. Zhang et al. [6]. With kind permission
of John Wiley and Sons
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Chapter 16
Creep in Boron Carbide (B4C)

Abstract Boron carbide is an excellent choice for high-temperature applications
because of its properties. These are high hardness, high elastic modulus high
thermal conductivity at room temperature, low thermal expansion, electrical con-
ductivity, and its very high melting point (2447 °C). Moreover, it has a large
neutron-capture cross section (*4000 barn), which makes B4C a possible candi-
date for use in nuclear reactor components. Despite all these properties, it is puz-
zling that investigations of creep are lacking in the case of B4C. A climb-glide
power-law creep model is one concept regarding the mechanism. The density of
dislocations and the presence of pileups support this creep model in B4C. It was
also suggested that vacancy diffusion model is operating during B4C creep.

16.1 Introduction

Almost no creep data are available on the technologically important B4C ceramic.
This is surprising, due to its many much-sought properties, such as hardness
(*30 Gpa), high elastic modulus (*450 Gpa), high thermal conductivity
(*40 Wm−1 K−1 at room temperature), low thermal-expansion coefficient
(*5 × 10−6 °C−1), and good electrical conductivity (*3 Ω at room temperature).
Moreover, it has a large neutron-capture cross section (*4000 barn), which makes
B4C a possible candidate for use in nuclear reactor components (properties given in
Refs.: Thévenot, Domnich et al., Ashbee, Suri et al.,). All the above, taken together
with its high melting point (2447 °C), makes this ceramic an excellent choice for
many high-temperature applications, including protective armor (it also has the
benefit of being light-weight). Despite all these properties, it is puzzling that
investigations of creep (a high-temperature deformation) are lacking in the case of
B4C.

© Springer International Publishing AG 2017
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16.2 Creep in B4C

Compressive creep experiments were performed on dense, coarse-grained B4C, in
the stress and temperature ranges of 250–500 PMa and 1600–1800 °C, respec-
tively. An argon atmosphere was used to prevent oxidation of the samples. Creep
was analyzed by means of the usual relation, see, for example, Eq. (13.37),
rewritten here once again as

_e ¼ Arn exp � Q
RT

� �
: ð16:1Þ

As is typically done in creep tests, the values of Q and n were determined for the
activation energies from jumps at constant load and, for n, the jumps were per-
formed at constant temperature. More experiments were done on specimens in
which the temperature was kept constant (at 1650 °C or 1700 °C) and the stress
varied from 250 to 500 MPa, or the stress was kept constant (at 255 MPa) and the
temperature varied in the 1600–1800 °C range. The strain rate plotted against the
total strain rate is shown in Fig. 16.1 for different stresses and temperature
conditions.

At the end of the creep test, the total deformation was 13% and homogeneous.
The specimen was intact and no transient creep was observed. The steady-state
creep was achieved instantaneously following the (stress or temperature) jump tests,
as indicated earlier. In Fig. 16.1, the activation energies are also indicated. The
values of the activation energy and stress exponent from the single plot in Fig. 16.1
were determined to be *659 kJ mol−1 and *2.7, respectively. However, more
accurate values may be determined from plots using constant stress and constant
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temperature tests. An Arrhenius-type plot of strain rate, _e versus the inverse tem-
perature, is shown in Fig. 16.2a.

The activation energy and the stress are indicated in this figure (632 kJ mol−1 and
255 MPa). The total deformation at the end of the creep test is 18%. The values of n
were determined from the plots in Fig. 16.2b, yielding n ¼ 3:1� 0:3 at 1650 °C and
n ¼ 3:0� 0:3 at 1700 °C. In Fig. 16.2b, _ess, namely, steady state creep rate, is plotted
against stress. It is interesting to see the microstructural changes in the specimens
before and after exposure to creep. The pre-creep structure is seen in the SEM
micrographs in Fig. 16.3.

With a density of 99.2%, pores with a grain size of 17 ± 3 μm are visible in the
microstructure. Twins also appear in Fig. 16.3a and b, by the surface offset
resulting from twinning. The presence of pre-creep twinning may be observed in
Fig. 16.3a and b, as confirmed by TEM bright-field images, shown in Fig. 16.4.

In Fig. 16.4a, straight-line dislocations with Burgers vector b = 〈1 1 0〉 gliding
on {1 1 1} planes are seen. A complicated substructure, located in areas with higher
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dislocation densities, is visible in Fig. 16.4b and c, resulting from dislocation
interaction from multiple slip planes and also from interaction with B4C particles.
A low density of dislocations is observed in some grains in Fig. 16.4c. The twins
are seen in all the segments of Fig. 16.4. The twinning is along the
f10�11g rhombohedral planes. Since there are three variants of this plane, the angle
between the rhombohedral planes is 65°36′. The specimens deformed to 13% did
not show any change in grain size, as indicated in Fig. 16.5a. As mentioned above,
the estimated grain size here is 17.6 ± 0.3 μm.

TEM images of B4C are found in Fig. 16.6. Straight-line dislocations are shown
in Fig. 16.6a, with Burgers vector b = 〈110〉 gliding on {111} planes.
Stereographic images and a g � b analysis reveal the presence of long cross-slipping
screw dislocation segments.

Again, the complicated substructure shown in Fig. 16.6b and c results from
dislocation interaction from multiple slip planes and from interaction with B4C
particles, as evidenced in the areas having higher dislocation densities. The twins
act as sub-boundaries and obstacles to dislocation glide. Consequently, pileups in
appreciable numbers may be observed at the twin and grain boundaries shown in
Fig. 16.6d–f. Various dislocation types are visible (partial, screw, and perfect),

Fig. 16.3 SEM micrographs of as-sintered B4C before creep testing at various magnifications:
a low-magnification overall view, b moderate-magnification view, c high-magnification view
showing pores (dashed arrows), and d high-magnification view showing the shapes of the pores
(dashed arrows) and small grains within the pores (solid arrow). Moshtaghioun et al. [4]. With
kind permission of Elsevier
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which is compatible with possible, simultaneous activity in several (111) slip
planes. The estimated overall dislocation density of B4C is 3 × 1012 m−2.

The value of the stress exponent, n * 3, is an indication of climb-glide
power-law creep, as are the additional observations of the density of dislocations,
before and after creep. The presence of pileups also suggests the action of a

Fig. 16.4 Bright-field TEM images of B4C before creep testing showing a twins and trapped small
pores at grain boundaries, b small pores within larger grains and trapped small grains within coarse
grains (inset), c dislocation debris in some grains, and d twins, with crystallographic orientation
forming variants at *65° angle. Moshtaghioun et al. [4]. With kind permission of Elsevier

Fig. 16.5 SEM images of creep-tested B4C specimen (*13% total deformation):
a low-magnification view and b higher magnification view of the same region showing a higher
incidence of the surface offsets. Moshtaghioun et al. [4]. With kind permission of Elsevier
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power-law creep mechanism in B4C. However, an additional work by Abzianidze
et al. is worthy of consideration; it suggests that another creep mechanism may also
be in play, evidenced by the much lower activation energy. As such, it is interesting
to consider the creep evaluation by means of this new approach—providing a
second observation of creep in B4C.

Equation (16.1) is used, yet again, to analyze these new experimental creep
results presented in Fig. 16.7. Here, creep is characterized by a short (10 min)
transitional creep and low values (up to 0.3%) of instantaneous deformation.

Fig. 16.6 TEM micrographs of creep-deformed B4C specimens (*13% total deformation)
showing: a straight-line dislocations with Burgers vector b = 〈1 1 0〉 gliding on {1 1 1} planes and
long cross-slipping screw dislocation segments, (b, c) areas of higher dislocation densities and the
dislocation debris, (d, e) interaction of dislocations and twins, and (f) dislocation pileups at the
grain boundaries. Arrows indicate the presence of dislocation nodes. Moshtaghioun et al. [4]. With
kind permission of Elsevier
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The creep rate versus stress relation is shown in Fig. 16.8. Note the change in the
slope, indicating two different creep mechanisms operating in B4C. The respective
stress exponents are n = 1 and n = 3. The expected mechanisms are a vacancy-
diffusive mechanism and a dislocation mechanism. The vacancy-diffusive mecha-
nism, with exponent n = 1, occurs at stress values below 90 MPa. At stresses above
90 Mpa, the dominant mechanism is dislocation creep controlled, and has an
exponent of n = 3. In Fig. 16.9, an Arrhenius-type plot is shown of the strain rate
vs. the inverse temperature. The activation energies derived from the slopes appear
in Fig. 16.9 and have the same value of 385 kJ mol−1. Note that in Figs. 16.8 and
16.9 aluminum dodecaboride is included.

If the suggested vacancy diffusion model was operating during B4C creep, under
a stress of 90 MPa, then creep should be controlled by the slowest diffusing species.
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In B4C, the carbon atoms are the slowest-moving atoms, based on the concept that
the diffusion rate of B into carbon is higher than the diffusion rate of C into boron.
This is supported by the fact that the self-diffusion of C is 382 kJ mol−1, the same
as the aforementioned 385 kJ mol−1 for the creep-activation energy in B4C.

At this stage, it is rather difficult to determine which of these two approaches to
creep in B4C is the more acceptable. Thus far, the author knows of no relevant third
publication in the open literature that could enable him to make a scholarly judg-
ment on the real creep phenomena occurring in B4C. Such a determination must be
postponed to such a time when sufficient research data will become available. This
author hopes to encourage researchers to look into this matter regarding this very
important ceramic–B4C.

References

1. Abzianidze TG, Eristavi AM, Shalamberidze SO (2000) J Sol State Chem 154:191
2. Ashbee KHG (1971) Acta Metall 19:1079
3. Domnich V, Reynaud S, Haber RA, Chhowalla M (2011) J Am Ceram Soc 94:3605
4. Moshtaghioun BM, García DG, Rodríguez AD, Padture NP (2015) J Eur Ceram Soc 35:1423
5. Suri AK, Subramanian C, Sonber JK, Murthy TSRCh (2010) Int Mater Rev 55:4
6. Thévenot F (1990) J Eur Ceram Soc 6:205

dε
/d

t, 
%

/h

4.7
0.01

0.1

1

10

100

4.9 5.1 5.3

1

2

3

4

5

6

5.5 5.7

104/T

Fig. 16.9 Steady creep rate
versus a temperature: 1 boron
carbide, under 50 MPa;
2 boron carbide, under
100 MPa; 3 aluminum
dodecaboride, density
2.37 g/cm3, under 50 MPa;
4 aluminum dodecaboride,
density 2.37 g/cm3, under
100 MPa; 5 aluminum
dodecaboride, density
2.22 g/cm3, under 50 MPa;
6 aluminum dodecaboride,
density 1.99 g/cm3, under
50 MPa. Abzianidze et al. [1].
With kind permission of
Elsevier

402 16 Creep in Boron Carbide (B4C)



Chapter 17
Creep in Silicon Nitride (Si3N4)

Abstract Si3N4 has a wide range of applications, such as in: automotive parts;
mechanical bearings; high-temperature/thermal-shock-resistant ceramics; orthope-
dic solutions; metalworking tools; electronic insulators; and diffusion barriers in
integrated circuits, to name just a few. The mechanical properties of Si3N4 play
important roles in modern technology and industry. The evaluation of creep in
Si3N4, is one of the subjects of this chapter performed by tensile and compressive
creep tests in polycrystalline Si3N4. SiC-based composites were investigated by
flexural and tensile loading of the specimens. A considerable discussion is devoted
to cavitation in silicon nitride. Sections of superplasticity, nanosize silicon nitride
and stress rupture are integral parts of this chapter. The final section deals with
creep recovery in Si3N4.

17.1 Introduction

Si3N4 exists in three crystallographic structures: α-Si3N4 (trigonal), β-Si3N4

(hexagonal), and γ-Si3N4 (cubic). The most common allotropes are the α-Si3N4 and
the β-Si3N4. They can be envisioned as consisting of layers… ABABAB … and…
ABCDABCDABCD … for the β-Si3N4 and α-Si3N4 phases, respectively. The
α-Si3N4 phase is also presented as a layered ABBA structure, emphasizing the
mirror image of the AB layers, namely BA. Although the α-Si3N4 is harder, due to
its longer stacking sequence, than the β-Si3N4, α-Si3N4 is not as chemically stable
as the β-Si3N4. At high temperatures and in the presence of a liquid phase, α-Si3N4

transforms into β-Si3N4. Therefore, it is preferable to use the more stable β-Si3N4 in
ceramic applications.

Si3N4 has a wide range of applications, such as in: automotive parts; mechanical
bearings; high-temperature/thermal-shock-resistant ceramics; orthopedic purposes;
metalworking tools; electronic insulators; and diffusion barriers in integrated cir-
cuits, to name just a few. The mechanical properties of Si3N4 play important roles
in modern technology and industry. Thus, the following will deal with the evalu-
ation of creep in Si3N4, assessing its impact on actual and potential applications.

© Springer International Publishing AG 2017
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17.2 Creep in Polycrystalline Si3N4

The creep behavior of materials differs under different loading conditions. This
section will deal with tensile and compressive creep behaviors in Si3N4 as affected
by various loading conditions.

17.2.1 Tensile Creep in Si3N4

The Silicon nitride studied here was obtained by HIP and a densification aid of 4 wt%
Y2O3 was added. This Si3N4 belongs to a class of silicon nitrides known as ‘in situ
reinforced composites,’ because its microstructure consists of large acicular β-Si3N4

grains, whose interstices are filled with small equiaxed grains and the residual silicate
densification aid. The second-phase glass in the interstitial region is almost com-
pletely crystallized, forming α-Y2S2O7 and Y5(SiO4)3N. Usually in silicon nitrides
densified with the aid of a silicate glass, an amorphous grain-boundary film (about
1 nm thick) remains on some grain boundaries after heat treatment.

The specimens were tested until failure under a single stress and at a single
temperature. In most cases, no tertiary stage was present, but a few specimens
showed definite steady-state creep. The creep rate of most specimens continued to
decrease until failure. The initial creep rate was *4 times that of the creep rate at
failure. The creep curves obtained are illustrated in the usual manner of ε versus
time in Fig. 17.1 at three temperatures and under the indicated stresses. Clearly,
higher stresses produced shorter creep strains to failure. As expected, tests at the
same stress level provided the longest strain-to-failure at the lowest temperature. To
obtain the stress exponents, a plot of strain rate _e versus stress was constructed, as
shown in Fig. 17.2. This plot includes a compression graph for comparison. The
stress exponents (even of a compression graph for comparison) are included from
all tests.

Since it is known that compression tends to close pores and expend cracks, it is
expected that compression creep will produce smaller creep strain than tensile
creep. A comparison between tensile and compressive creep results may be seen in
Fig. 17.3.

As seen, the creep rate under compression is much lower than under tension. At
a strain of 0.005 (about the final strain in compression), the creep rate under tension
is almost a 100 times greater.

17.2.2 Compressive Creep in Si3N4

Several silicon nitrides processed by different methods, together with SiALON,
are compared below by means of compressive creep tests. The main methods
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considered are the reaction bonded silicon nitride (RBSN) and the hot pressed
silicon nitride (HPSN). In RBSN, a mixture of α-Si3N4 and β-Si3N4 with *25%
cavities is obtained, while HPSN yields a fullydense material when a proper
additive is included. The additive used for HPSN-1 was 2% MgO, while in HPSN-2
it was *5% MgO. The creep curves of these nitrides are compared in Fig. 17.4.

All the curves showed primary- and secondary-creep curves. If the creep test is
allowed to continue, the steady-state creep eventually leads to accelerated failure
along with consequent failure (such a case is not shown here). The creep rate versus
stress is plotted in Fig. 17.5 and versus temperature in Fig. 17.6. The stress and
temperature dependences of the steady-state creep rate were expressed by Eq. (13.4)
above, reproduced here as:

_e ¼ Arn exp � Qc

RT

� �
ð17:1Þ

Clearly here, A contains 1/kT of Eq. (13.4) and the conversion factor from R to
k is also required. The stress exponents evaluated are 2.1–2.4, obtained from
Fig. 17.5.

The activation energy for creep is *650 kJ mol−1 for both RBSN and HPSN.
One would expect to have the same creep properties under tension and compres-
sion–that at a given applied stress, comparable creep should result. However, in
order to obtain a given creep rate under compression, the applied stress must be
about an order of magnitude higher than during a tensile-creep test under the same
conditions. The difference is claimed to be associated with crack formation at the
grain boundaries during creep. The formation of grain-boundary cavities and cracks
depends on the magnitude of the tensile stress that develops along the grain
boundaries. In compression creep, the maximum tensile stress that develops across
boundaries, parallel to the specimen axis, is about one-tenth of the applied
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compression stress. The tenfold difference in creep strength between tension and
compression may be related to the formation of microcracks that accommodate the
relative movement of the crystals, rather than GBS itself. This is believed to be the
rate-controlling mechanism in the silicon nitrides and explains differences in creep
in nitrides of various sizes, porosity levels and impurity contents. Thus, creep
resistance is influenced by the ease of GBS and crack formation, due to the presence
of the aforementioned porosity and impurity levels, which contribute to the overall
creep strain.

17.2.3 Cavitation in Si3N4

Cavity formation and expansion in HIPed silicon nitride is more critical than in
compressive creep. Under tension, the volume fraction of the cavities usually
increases linearly with strain, contributing to the strain. Under compression, there is
a tendency for pores and cavities to close; therefore, the degree of cavitation is
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smaller when testing is performed under the same conditions (stress, temperature)
as is the creep under tension. The material considered here has been indicated in
Sect. 17.2.1—it contains 4 wt% Y2O3 for densification. The presence of the cav-
ities is expressed in terms of the volume fraction in the gauge length at failure, as
shown in Fig. 17.7. The volume fraction of the cavities is expressed as:

fv ¼
qgrip � qgage

qgrip
ð17:2Þ

where ρgrip and ρgauge are the densities in the creep section and gauge section,
respectively.

In Eq. 17.2, it is assumed that all the density changes in the gauge length result
from cavitation close to the surface. A collection of TEM micrographs (in
Fig. 17.8) shows cavitation in the crept specimens at the grain boundaries. Note that
the cavities shown in Fig. 17.8 are of two types. Lens-shaped cavities are shown at
two grain boundaries at lower temperatures and the less common, large irregularly
shaped cavities appear at multigrain junctions in pockets of equiaxed,
sub-micrometer-sized grains of Si3N4 and crystalline silicate. The size distribution
of the cavities from both sections, the grip and the gauge, is illustrated in Fig. 17.9.
The volume fraction of the cavities in the specimens tested at 1400 °C and
125 MPa, as a function of strain, is shown in Fig. 17.10. The testing of some of the
specimens was interrupted before failure, while others crept to failure. The scatter in
the specimens tested to failure is quite large. However, the interrupted creep test
results show a reasonable, linear increase in the cavity-volume fraction under strain.
However, this plot does not distinguish between cavity growth and additional cavity
formation during creep. Under the same test conditions (stress, temperature),
specimens creep under a tensile load 100 times faster than under compression. This
is also reflected by the values of the stress exponent in the creep rate relation.
Recalling that the creep rate is proportional to the stress, _e / rn, one expects a
larger creep rate under tension, since 2 < n < 7, while under compression n ffi 1.
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Fig. 17.8 Transmission electron micrographs showing both small, lens-shaped cavities, as well
as the larger, more irregularly shaped cavities. a and b show the lens-shaped cavities that
formed in a specimen crept at 1370 °C under 125 MPa for 1521 h, while c and d show the
irregularly shaped, interstitial cavities that formed in the silicate phase in a specimen deformed
at 1430 °C under 125 MPa for 30 h. In both micrographs, the tensile axis is vertical. In d “C” is
a cavity and “SP’ is the silicate phase. Luecke et al. [1]. With kind permission of John Wiley
and Sons
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This is significant for cavitation, since there is a linear increase in the cavity content
with creep strain. It is possible to conclude this section on cavity formation and
growth with the following information: (a) the volume fraction of cavities increase
linearly with strain, which accounts for a substantial contribution to overall strain;
(b) there is a linear dependence of creep rate on stress; (c) cavities are formed
throughout the life of creep, but the growth of cavities contribute significantly to the
total volume of cavities at large strains; (d) cavities are more readily formed during
tensional creep than during compressional creep; (e) with increasing strain, the
number of large, multigrain-junction cavities increases; (f) furthermore, in tensile
creep, the silicon nitride grains remain essentially un-deformed and the
silicate-filled interstitial volume of the microstructure increases in volume during
deformation, leading to cavitation in the weaker silicate phase at multigrain
junctions.

The sliding of the silicon-nitride grains accommodated this expansion. Under
compressional creep, cavitation is barely possible, ruling out the possibility of the
existence of a sliding mechanism. In its stead, diffusional creep produces the
observed creep strain.

17.3 Creep in Composite Silicon Nitride

17.3.1 Introduction

As stated above, silicon-nitride-based ceramics are of great technological interest,
because they possess excellent high-temperature strength, oxidation resistance,
have low density, and a low coefficient of thermal expansion. Again, these prop-
erties are of major importance for high-temperature applications in the aerospace
industry and in turbine engines, to name just a couple of examples. However, their
inherently brittle nature and low creep resistance at high temperatures must be
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Fig. 17.10 Volume fraction
of cavities as a function of
strain for specimens crept at
1400 °C and 125 MPa, along
with the best-fit line from
Fig. 17.7. Luecke et al. [1].
With kind permission of John
Wiley and Sons
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resolved in order to make Si3N4 a plausible high-temperature structural material.
Effective improvement of Si3N4 is achieved by reinforcing it with an appropriate,
continuous fiber. Nitride-, boride- and carbide-based fibers were tested as possible
reinforcing agents. One of the most commonly used fibers for Si3N4 reinforcement
is SiC.

17.3.2 Si3N4-Based SiC Composite

17.3.2.1 Flexural Test

The addition of SiC reinforcing fibers into a Si3N4 matrix can result in a stronger
and tougher material than monolithic Si3N4, as indicated by the following experi-
ments. Four-point flexural tests were performed at temperatures of 1200–1450 °C
and at stress levels of 250–350 MPa. The tested fiber is designated as SCS-6. In
order to consolidate the composite and to facilitate its densification, sintering
additives were required; in the present case, 5 wt% Y2O3 and 1.25 wt% MgO were
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Fig. 17.11 Creep response
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30 vol% composite at
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added to the Si3N4 powder. The composite preforms were consolidated by uniaxial
hot-pressing at 1700 °C and 70 MPa for 1 h in a N2 atmosphere. (Experimental
details are found in Thayer and Yang). Creep curves, in the usual presentation of
strain vs. time, are shown for the 30 vol% SiC composite in Fig. 17.11 and com-
pared with the monolithic Si3N4.

All the curves show primary creep and steady-state creep, and some exhibit
tertiary creep leading to rupture. The results are clearly dependent on the test
conditions. The strain-rate data versus applied stress are plotted on a logarithmic
scale in Fig. 17.12.

The apparent activation energy was derived from the strain rate versus inverse
temperature plots shown in Fig. 17.13. Linear regression was applied and the
values of the activation energies are listed on the graph. For the monolithic matrix,
an activation energy of 532 kJ mol−1 was obtained in the temperature range of
1200–1350 °C. The stress applied was 100 MPa. In the case of the 30 vol% Si3N4-
SiC composite, the applied stress was 250 MPa and the temperature range, 1200–
1450 °C. The activation energy of the 20 vol% SiC was evaluated at 250 MPa and
a temperature range of 1200–1350 °C.

Reinforcement of the Si3N4 by the SCS-6 fiber resulted in a steady-state strain
rate reduction by about three orders, relative to the monolithic Si3N4. The tertiary
creep in the composite resulted from the rapid growth of microcracks, initiated from
the fiber-rupture sites. A repetitive scheme of matrix-stress relaxation/fiber
rupture/load transfer occurs in the composite by means of a synergistic effect,
which is supposed to be the basis of the improvement. The interfacial property,
between the fiber and the matrix, controls the mechanical performance of the
composite.
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17.3.2.2 Tensile Test

For the sake of comparison, here are the results of a tensile-creep test done on a
similar composite containing of 30 vol% SCS-6 fiber. This unidirectional com-
posite was tested in air at stress levels of 70–190 MPa. Steady-state creep was seen,
except at 190 MPa, where tertiary creep was observed. This composite was pre-
pared by hot pressing. A micrograph showing the fiber distribution in the
hot-pressed composite is shown in Fig. 17.14

The creep behavior of the composite at 1350 °C is shown in Fig. 17.15 for
stresses of 70, 110, and 150 MPa. The stress dependence of the apparent
steady-state creep is seen in Fig. 17.16. Fitting the steady-state creep rate to the
power law, namely _e / rn, provides a somewhat high stress exponent, n * 7, for
the HP-SiCf-Si3N4 composite.
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Fig. 17.13 Arrhenius plot of
the strain-rates for all
materials. The matrix stress
level was 100 MPa and that
of the composites was
250 MPa. Thayer and Yang
[3]. With kind permission of
Elsevier

Fig. 17.14 SEM micrograph
showing the typical fiber
distribution in the hot-pressed
SiC-Si3N4 billet studied.
Holmes [4]. With kind
permission of Springer
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Creep failure was accompanied by fiber pullout. The pullout of fibers is shown in
Fig. 17.17. In Fig. 17.18, the fiber debonding along the fiber-matrix is illustrated.
One can thus conclude that in this composite, under the conditions of tensile creep,
failure was accompanied by extensive fiber pullout and debonding along the
fiber-matrix interface.

17.4 Creep Rupture in Si3N4

Creep tests are performed to establish the lifetime of Si3N4 before failure. The
fracture or failure of the test specimens are usually referred to as ‘creep rupture.’
The specimens used for the creep tests and the creep-rupture evaluation were
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prepared by HIP. The creep and the resulting creep rupture data are presented in
Table 17.1 and the creep curves are shown in Fig. 17.20.

Based on these creep curves, a transition region may be drawn, as shown in
Fig. 17.21. In the region above the transition stress, rupture occurs. Hence, the
creep rate is high and the lifetime is short. When the creep rupture occurs below the
transition region, the creep rate may be very low, depending on the stress level and
the longevity of the creep. The models used to analyze creep rupture are: (a) the
LMP; (b) the minimum-commitment method (MCM); and (c) the MGR. Table 7.1
was constructed based on all three of these models (Fig. 17.19).

The analysis of the creep data was done using Norton’s relation, rewritten
here as:

Fig. 17.17 SEM micrographs comparing the extent of fiber pullout observed after creep failure at
a 70 MPa, tf = 794 h and b 150 MPa, tf = 34 h. Holmes [4]. With kind permission of Springer

Fig. 17.18 SEM micrograph showing debonding along the fiber-matrix interface observed after
creep failure at 70 MPa (tf = 794 h). Holmes [4]. With kind permission of Springer
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_e ¼ Arn exp � Q
RT

� �
ð17:3Þ

(a) The creep-rupture analysis, in accordance with the LMP is:

log tr ¼ B0 þ B1

T
þ B2

T
log r ð17:4Þ

B0, B1, and B2 are constants. A multivariate regression analysis was performed
on the non-arrowed data in Fig. 17.22, providing values for the constants:
B0 = −58.28; B1 = 136,600; and B2 = −20510.

(b) The MCM has the following form:

log tr þ R1 T � Tmð ÞþR2
1
T
� 1
Tm

� �� �
¼ BþC log rþDr þEr2 ð17:5Þ

The MCM is included in Fig. 17.22. Tm represents the middle temperature
(1498 K) of the temperature range used. A multivariate regression analysis pro-
vided: R1 = 0.1731; R2 = 303700; B = 87.24; C = −45.69; D = 0.1156; and

Fig. 17.19 SEM micrograph
showing the two types of fiber
fractures observed after creep
failure at 70 MPa. The rough
(porous) appearance of the
two fibers on the right-hand
side of the micrograph is
attributed to the localized
reaction of fibers with
segregated sintering oxides.
Approximately 15% of all the
fibers had a rough fracture
surface; all other fibers
showed a brittle failure mode
(e.g., fiber on left-hand side of
micrograph and in
Fig. 17.18). Holmes [4]. With
kind permission of Springer
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E = −0.9733 × 10−4. Both the experimental data and the predictions appear in
Fig. 17.22. The LMP describes a linear relation between log (stress) and log
(rupture time), whereas the MCM is not linear (see Fig. 17.22).

(c) The MGR uses a power-law relation to describe the correspondence between
creep, rupture time, and the minimum creep rate, given as:

tr ¼ A_e�p ð17:6Þ

The constants A and p are 0.0021 and 0.91, respectively, and were determined
from Fig. 17.23. The stress exponent and the activation energy of Norton’s power
law were evaluated giving 12.6 and 1645 kJ mol−1, respectively. The MGR curve
yielded a p value of 0.91.

Based on the high values derived from the data analyses for both the stress
exponents, m and n, the growth of macrocracks is probably the most dominant
mechanism of creep fracture. Recall that m is the slope of the LMP curve, with
values between 13 and 14.4. In an additional creep-rupture evaluation, a S3N4

composite containing 4 wt% yttria underwent a uniaxial tensile-creep test, per-
formed in the 1422–1673 K temperature range. In Fig. 17.24, a MGR-type relation
is shown, indicating rupture-life dependence on the secondary-creep rate. The
slopes of the lines have approximately the same values. The strain at fracture is seen
in Fig. 17.25 versus the rupture time in 17.25a and versus the stress in 17.25b. In
this figure, (a) is the total accumulated strain (excluding elastic strain) at fracture,
seen as a function of failure time; while in (b) the failure strain is shown as a

Table 17.1 Matrix for creep tests of GN-10 Si3N4
a. Ding et al. [5]. With kind permission of John

Wiley and Sons

Stress (MPa) 1150 °C 1200 °C I250 °C 1300 °C

75 D(>2238 h)d D (>1125 h)e

100 D(>1030 h)d X(1721 h)

125 D(>1031 h)b X(2996 h) X(15.2 h)

150 X(1204 h) X(135.9 h) X(0.2 h)f

175 D(>3405 h)c X(25.5 h)

200 X(203.1 h)

225 X(96.3 h)

250 X(733.8 h) X(7.5 h)

275 No test

300 X(365.4 h)
aThe numbers in parentheses indicate the duration of the lest, which is denoted either as completed
(X) or as disrupted (D)
bStress increased to 225 MPa after 1031 h of testing
cFractured at specimen buttonhead due to a power outage
dFractured at specimen shank
eStress increased to 100 MPa after 1125 h of testing
fNo meaningful creep rate available due to fast fracture
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decreasing function of stress. Typical fractures, showing the crack-growth regimes
in internal and surface initiations, are shown in Fig. 17.26a, b, respectively.

This section on creep rupture ends with the observations that cavitation occurs at
two grain boundaries and preferentially at triple junctions. As such, cavitation is an
inherent part of the creep process. Failure occurs by crack initiation and propaga-
tion. And finally, the MGR can be applied to rupture-life prediction.

17.5 Superplasticity in Si3N4

Fine-grained material is essential, but not sufficient, for superplastic behavior.
Superplasticity has been observed in various silicon nitrides. The following con-
siders the deformation behavior of hot-pressed, fine-grained β-Si3N4 in the

Fig. 17.20 Creep curves of GN-IO Si3N4 tested at a 1150 °C; b 1200 °C; c 1250 °C; d 1300 °C.
Symbols are experimental data; solid lines are curve fitting. Ding et al. [5]. With kind permission of
John Wiley and Sons
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1450–1650 °C temperature range. This deformation test is performed under com-
pression and the flow stress is expressed as a function of strain rate and temperature.
A typical curve is seen in Fig. 17.27. In the figure, a corrected curve is shown.
Corrections were required, because the experiments were performed at a constant
displacement, rather than a CSR, and because large deformations were involved.
The corrected flow stress is given as:

rc ¼ r0 exp eð Þ½ �1=n ð17:7Þ

Also note that the n values barely change with temperature. The stress exponent
is about 1 in the lower temperature region and somewhat larger in

275

250

225

200

175

150

125
CREEP
RUPTURE

TEMPERATURE (°C)

ST
R

E
SS

 (
M

P
a)

STRESS
RUPTURE

100

75
1100 1150 1200 1250 1300 1350

Fig. 17.21 In the
stress-rupture region, the
creep rate is high and the
time-to-rupture is short. As
temperature and stress
decrease below the
approximate transition region
(shaded area), the behavior
features are reversed. Ding
et al. [5]. With kind
permission of John Wiley and
Sons

100

1000

10
10-1 100 101 102 103 104 105 106 107

1200°C

1200°C

1300°C

1300°C

1250°C

1250°C

1150°C

OPEN: AS-HIPED

RUPTURE TIME (h)

ST
R

E
SS

 (
M

P
a)

CREEP RUPTURE
BEHAVIOR OF

GN10

FILLED : ANNEALED

LARSON-MILLER MODEL
MINIMUM COMMITMENT METHOD

1150°C

Fig. 17.22 Comparison of
experimental data and
predictions of the
Larson-Miller and minimum
commitment models.
Arrowed data were not
included in the regression
analysis. Ding et al. [5]. With
kind permission of John
Wiley and Sons

420 17 Creep in Silicon Nitride (Si3N4)



temperatures >1550 °C. For the activation-energy evaluation, the expression indi-
cated several times in earlier sections and reproduced here is:

_e ¼ A
dp

rn exp � Q
RT

� �
ð17:8Þ

The temperature dependence of the strain rate is plotted as an Arrhenius curve in
Fig. 17.30. σ0 stands for the corrected flow stress. The stress exponent, n, is
expressed by _e ¼ Arn. A typical set of stress–strain curves, for various strain rates,
at 1550 °C under compression is shown in Fig. 17.28. All the data shown here and
below are for true stress, true strain, and true strain rate (corrected data). After the
initial transient state, a steady state is reached for all the strain rates. The initial,
transient state reflects some elastic deformation of the sample. Note that no strain
hardening is observed in the lines of Fig. 17.28 and a large deformation strain, up
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to *55%, is obtained. Quasi-steady-state flow stresses may be determined beyond
the initial regions. The strain rate, as a function of flow stress at various tempera-
tures, is plotted on a logarithmic scale in Fig. 17.29.

The activation energies calculated from the slopes of the lines in Fig. 17.30 are
344 ± 26 kJ mol−1 at 20 MPa and 410 ± 46 kJ mol−1 at 100 MPa. Un-deformed
and deformed specimens showed (imaging analysis) that the average grain diameter
and aspect ratio changed very little after superplastic deformation. Figure 17.31
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Fig. 17.25 a Failure strain in creep-tested specimens plotted against rupture time. b Failure strain
in creep-tested specimens plotted against applied stress. Menon et al. [6]. With kind permission of
John Wiley and Sons

Fig. 17.26 Optical photographs of fracture surfaces from a an internal initiation at
1644 K/180 MPa/28 h, and b a surface initiation at 1644 K/150 MPa/75 h. Note the subcritical
crack growth (SCG) region and the mirror region that follows SCG zone. Menon et al. [6]. With
kind permission of John Wiley and Sons
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Fig. 17.27 Typical
correction curve for a
compression test at 1550 °C
and an initial strain rate of
3 × 10−4 s−1, in the
as-hot-pressed β-Si3N4

material. Zhan et al. [7]. With
kind permission of John
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Fig. 17.28 Compressive
stress–strain curves for
various strain rates of the
as-hot-pressed material at
1550 °C. Zhan et al. [7]. With
kind permission of John
Wiley and Sons

Fig. 17.29 Strain rate versus
stress at various temperatures,
under compression
(n = slope), in the
as-hot-pressed β-Si3N4

material. Zhan et al. [7]. With
kind permission of John
Wiley and Sons

17.5 Superplasticity in Si3N4 423



shows TEM photographs of (a) an un-deformed sample and (b) a sample deformed
at 1600 °C and a large true strain of −1.1.

RTEM photographs are shown in Fig. 17.32. Boundaries, oriented parallel or
perpendicular to the applied-load direction in a superplastically deformed sample,
are seen.

Contrary to some silicon nitrides, no strain hardening is observed in the β-Si3N4

and no shape change occurred because of the uniform particle-size distribution of
the original powder, and because no α-to-β phase transformation occurred.
Apparently, the grains remained equiaxed, with no grain growth, although a large
deformation was involved. The strain hardening in other silicon nitrides is attributed
to microstructural changes during deformation, such as dynamic grain growth and
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Fig. 17.30 Determination of activation energy for flow equation in the as-hot-pressed β-Si3N4

material. Zhan et al. [7]. With kind permission of John Wiley and Sons

Fig. 17.31 TEM photographs of a an un-deformed sample and b a deformed sample at 1600 °C,
with a true strain of −1.1, showing no dynamic grain growth. Zhan et al. [7]. With kind permission
of John Wiley and Sons
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α-to-β phase transformation. As mentioned above, a fine grain size is necessary, but
not sufficient alone, to cause superplasticity. Also, it is important to ensure the
stability of the fine-grained microstructure during superplastic deformation, thus
preventing dynamic grain growth and keeping the cohesive strength of the grain
boundaries high enough to sustain high ductility without fracture. The β-Si3N4 used
in these experiments has great microstructural stability and can stave off static or
dynamic grain growth. It is believed that the equiaxed grain shape remaining after a
large deformation, in the absence of dislocation activity, suggests that GBS and
grain rotation, accommodated by viscous flow, may form the mechanism of
superplasticity in β-Si3N4. This is also supported by the stress exponent of *1,
which is a Newtonian viscous flow, meaning that the strain rate is directly pro-
portional to the stress, _e ¼ Ar.

17.6 Creep in Nano-Si3N4

Limited data, if any, are available on creep in pure nano-Si3N4, despite the
extensive research devoted to evaluating properties of Si3N4 itself. However, more
information is available on the nano-Si3N4 composite. A frequently discussed
nanocomposite is the Si3N4/SiC system, the topic of this section. This system has a
high creep resistance at elevated temperatures, although a high-density material is
required for this purpose. Both of the components comprising this system are
covalent ceramics and, for high-density achievement, liquid-phase sintering is
required. Additives, such as Y2O3, Al2O3, MgO, etc., serve as sintering aids. At the
sintering temperature, the additive reacts with the silicon-oxide layer (which is
always present at the surface of the silicon nitride particles) forming a liquid phase
and, thus, promoting sintering. Upon cooling, a thin (0.5–2 nm) liquid, glassy
phase forms at the grain boundaries. This glassy phase determines the creep
behavior of the silicon-nitride composite.

Fig. 17.32 Representative HRTEM photographs of boundaries oriented a parallel and b perpen-
dicular to the applied-load direction, indicating that the grain-boundary film thickness decreased
after superplastic deformation, under compression [(!) applied stress direction during deforma-
tion]. Zhan et al. [7]. With kind permission of John Wiley and Sons
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To examine the creep behavior in this nano-nanocomposite and to avoid prob-
lems, which may arise from cavitation (generally occurring during tensile creep),
compression tests were performed. The objective of this investigation was to
determine the steady-state creep rate at various temperatures and stresses. Creep
strain–time curves for one of the nano-nanocomposites (sintered at 1600 °C/10 min
with 1 wt% yttria additive) is illustrated in Fig. 17.33.

The compression-creep tests were conducted in air in the temperature range of
1350–1450 °C applying a uniaxial constant stress, using a ‘step-stress’ technique.
The specimen was first subjected to a 50 MPa stress and, when the creep defor-
mation reached steady state, the stress was increased at 50 MPa steps and the
secondary creep rate was measured at each new stress level. TEM results are shown
in Fig. 17.34. The analysis reveals that, with decreasing additive, the grain size
decreases and there is a transition from a micro-nano to a nano–nano structure. In
Fig. 17.34a for 8 wt% Y2O3 additive, the microstructure is composed of a sub-
micron matrix of Si3N4/SiC matrix having a mean grain size of 180 and 10–30 nm
SiC particles are present as inclusion in most Si3N4 grains. This microstructure also
remained with 5 wt% Y2O3 additive, but the grain size had decreased to 130 nm.
When the yttria content is further decreased to a level of 3 wt%, both components
in this system are nano-sized and the grain sizes of the silicon nitride and the SiC
are, respectively 62 and 35 nm for the 3 and 1 wt% Y2O3 (Fig. 17.34b, c). The
grain size further decreases when no Y2O3 is added. This is shown at Fig. 17.34d,
where the grain size is 27 nm for 10 min sintering at 1600 °C and 40 nm with
30 min sintering. An elemental distribution of the nano-nanocomposite was per-
formed by EELS illustrated in Fig. 17.35.

The two constituent phases of the composite are randomly mixed with about
equal grain sizes. The important information received from the EELS analysis is
about the presence of oxygen, which is responsible for liquid-phase formation at the
boundaries and pockets, despite the absence of metal-oxide sintering phases. This is
an indication that O diffused during sintering from the particle surfaces of the

Fig. 17.33 Compression-creep strain–time curves for one of the nano-nano composites (1 wt%
Y2O3, 1600 °C/10 min sintered). wan et al. [8]. With kind permission of John Wiley and Sons
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original, amorphous powder (silica or oxynitride) into the interior of the particles
and is distributed along the grain boundaries. In Fig. 17.36, one sees HRTEM of the
grain-boundary region. It is important to note that a large number of grain
boundaries exist without the amorphous layer (Fig. 17.36a), although EELS
revealed the existence of oxygen. This is probably because the amount of segre-
gated O was insufficient to form a glassy phase. However, some bi-grain junction,
glassy layers are visible (1 nm thickness) in Fig. 17.36b. Most of the glassy
grain-boundary phase exists at multigrain junctions, as indicated in 17.36c. The
creep results from this research are compared with those from other microcrystalline
silicon-nitride ceramics in Fig. 17.37.

Fig. 17.34 Transmission electron microscopy (TEM) observations of nanocomposites of Si3N4-
SiC. a Sintered with 8 wt% Y2O3 at 1600 °C for 10 min, micro-nano structure, b sintered with
3 wt% Y2O3 at 1600 °C for 10 min, nano-nano structure, c sintered with 1 wt% Y2O3 at 1600 °C
for 10 min, nano-nano structure, d sintered without additive at 1600 °C for 30 min, nano-nano
structure. wan et al. [8]. With kind permission of John Wiley and Sons
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The activation energy may be evaluated from Eqs. (17.8) or (8.9), resulting in
205 kJ/mol for the 1 wt% Y2O3, which is significantly lower than that of the
microcrystalline Si3N4. Experimental creep data are usually compared with the
established theoretical models for their n, p, and Q values (Eq. 17.8), in order to
determine the creep-deformation mechanism. The different n values in the various
silicon nitrides in the range <1 and >3 make it somewhat difficult to compare
nano-Si3N4 and micro- or macro-sized silicon nitrides. Moreover, the activation
energy varies in the 300–1300 kJ mol−1 range and, thus again, no definitive,
universal-creep mechanism, applicable to all types of silicon nitrides, is plausible,
due to the various values that complicate such a formulation.

The further cavitation associated with tensile creep makes the above task even
more difficult. Nevertheless, and despite these discrepancies, it is generally agreed
that the steady-state creep for silicon nitride with a glassy phase proceeds by a
solution-precipitation mechanism through the amorphous grain-boundary phase
(glassy phase).

The extraordinarily high creep resistance found in the nanocomposites (as men-
tioned above) strongly suggests a fundamental change in creep mechanism. Another
indication that the creep mechanism may be different in nano-nanocomposites is the

Fig. 17.35 Electron energy loss spectroscopy (EELS) analysis of the component elements in the
Si3N4-SiC nanocomposite sintered at 1600 °C for 30 min without additive. wan et al. [8]. With
kind permission of John Wiley and Sons
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low activation energy found in these materials, only 205 kJ mol−1. A dislocation-
based mechanism for creep in silicon nitride is not a possibility, because of the strong
covalent bonds in both the Si3N4 and the SiC, and due to the high Peierls force. Also,
alternative mechanisms, based on solid-state diffusion in lattices (Nabarro-Herring)
and grain boundaries (Coble creep) are unlikely, as indicated by the diffusion data
in Table 17.2.

Fig. 17.36 High-resolution
transmission electron
microscopy (HRTEM)
analysis of the grain boundary
of the nano-nano composite
(no additive, 1600 °C/30 min
sintered). a Glass-free grain
boundary, b Grain boundary
containing glassy layer,
c triple junction. wan et al.
[8]. With kind permission of
John Wiley and Sons

17.6 Creep in Nano-Si3N4 429



Fig. 17.37 Comparison of the compression-creep property of nanocomposites with those of
existing silicon-nitride ceramics (additive in weight percentage unless specified, molecular formula
simplified for clarity. For instance, ‘‘6YO’’ in figure legend stands for ‘‘6 wt% Y2O3’’). wan et al.
[8]. With kind permission of John Wiley and Sons. Crampon et al. [9], Yoon et al. [10]

Table 17.2 Activation energy for diffusion processes in the Si3N4/SiC system. wan et al. [8].
With kind permission of John Wiley and Sons. Crampon et al. [9], Yoon et al. [10]

Medium Diffusing
particle

Temperature
range (°C)

Activation
energy
(kJ/mol)

Note References

α-Si3N4 Si 1400–1600 199 Self diffusion Kunz et al.53

N 1200–1410 233 Lattice diffusion Kijima and
Shirasaki54

Si NA NA Grain-boundary diffusion NA
N NA NA Grain-boundary diffusion NA

β-Si3N4 Si 1490–1750 390 Lattice diffusion
(β with some α)

Batha and
Whitney55

N 1200–1410 777 Lattice diffusion Kijima and
Shirasaki54

Si NA NA Grain-boundary diffusion NA
N NA NA Grain-boundary diffusion NA

β-SiC Si 1960–2260 911 Lattice diffusion Ziegler et al.2

Si 2010–2270 612 Grain-boundary diffusion Hon et al.56

C 1860–2230 841 Lattice diffusion Ziegler et al.2

C 1855—2100 564 Grain-boundary diffusion Hon and Davis57

In GB of
HPSN

Si/N 1450–1550 448 Grain-boundary diffusion Ziegler et al.2

(10 wt%
Y2O3)

Si/N 1550–1760 695 Grain-boundary diffusion Ziegler et al.2
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In all the cases indicated in Table 17.2, their activation energies are much
higher than in the nanocomposites considered here, with the low value of 205 kJ
mol−1. This low activation energy implies that, in the nano-nanocomposites, creep
is not controlled by either diffusion in silicon carbide or by the lattice diffusion in
β-Si3N4.

Summing up this section, creep deformation in covalent ceramics, such as sili-
con nitride and silicon carbide, is dominated by a solution-precipitation process via
a glassy phase at the grain-boundary regions.

17.7 Creep Recovery in Si3N4

The definition of ‘creep recovery’ is the time-dependent portion of the strain in
materials following the removal of the stress that was responsible for that strain. As
such, to get information on recoverable strain, often cyclic creep tests are per-
formed, involving the removal of stress and the observation of the recovered strain.
The time-dependent portion of the decrease in strain in a material, following the
removal of a stress that has deformed it, is shown in a schematic illustration of
recovery in cyclic-creep experiments in Fig. 17.38.

The definition of ‘total strain’ is shown in Fig. 17.39.

σ

σmax

σmin

σ

σmax

σmin

t t

t
cyclic creep without a recovery
hold time

cyclic creep with a recovery
hold time

(b) Strain History

(a) Loading History (100 MPa/s ramps)

t

ε ε

Fig. 17.38 Cyclic creep experiments. a Schematic representation of the cyclic loading histories
examined and b idealized strain response. For all cyclic creep experiments, the creep stress
(σmax) was fixed at 200 MPa and the recovery stress (σmin) at 2 MPa. The loading and unloading
ramps were performed at 100 MPa/s. Holmes et al. [11]. With kind permission of John Wiley
and Sons
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The two types of ratios used to quantify the amount of strain recovered after
unloading are: (1) total-strain recovery ratio and (2) creep strain recovery ratio.
They are both shown in Fig. 17.39 and may be expressed as:

Rt ¼
eel;R þ ecr;R
� �

et
ð17:9Þ

and:

Rcr ¼ ecr;R
ecr

ð17:10Þ

εt is the total accumulated strain and εcr, R is the creep strain recovered in a
particular cycle. Following the loading cycle, the creep behavior in Si3N4 reinforced
with SiC fibers is presented in Fig. 17.40.

One may infer from the Fig. 17.40a that, in the 50 h creep/50 h recovery cycle,
transient creep is characterized by rapid strain accumulation and a decreasing creep
rate for the first 50 h of creep. On subsequent cycles, transient creep decreased to
approximately 25 h per cycle. Rapid, repeated unloading, and reloading cycles
every 50 h (no recovery hold period) did not introduce transient creep and the prior
creep rate continued, namely was immediately reestablished (Fig. 17.40b).
A significant change is observed in the shorter 300-s creep/300 s recovery cycles,
as seen in Fig. 17.40c. In this case, the transient-creep duration was significantly
reduced (less than 20 h, compared to 70 h for sustained creep at 200 MPa). On
reloading, every indication for transient creep is seen. The insets in Fig. 17.40c
show the creep behavior at selected times. The accumulated creep strain was much
less than in the sustained creep loading at 200 MPa.

There was not much difference between the sustained and the accumulated
creep, once the recovery period was eliminated by rapid unloading and reloading
(every 300 s). The reduction in the accumulated strain was the result of strain
recovery (that occurs during 2 s unloading and 2 s reloading at a rate of
100 MPa s−1). In Figs. 17.41 and 17.42, the cyclic and sustained creeps were
loaded at 200 MPa.

ε
εcr

εcr,R

t

εθ1,R ε1,R
Rt = (εθ1,R + εcr,R)/ε1

Rcr = εcr,R/εcr

ε1

Fig. 17.39 Definition of the total-strain recovery ratio (Rt) and creep strain recovery ratio (Rcr)
used to quantify the amount of strain recovery during the cyclic creep experiments. Holmes et al.
[11]. With kind permission of John Wiley and Sons
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The cycle period has a large impact on creep behavior. In the case of the 50-h
creep/50-h recovery cycles, only a moderate reduction in accumulated creep strain
was observed (Fig. 17.41). For an equivalent time at 200 MPa, the higher fre-
quency 300-s creep/300-s recovery cycles showed great reductions in accumulated
creep strain and strain rate (e.g., at 100 h, the accumulated strain was 60% lower
and the creep rate was 43% lower than that found for sustained loading at 200 MPa,
see Fig. 17.42). The reduction in accumulated creep strain found for short-duration
cyclic loading is a consequence of the reduced duration of transient creep and the
reduction in the overall creep rate.

Significant strain recovery was observed for the loading histories with a finite
recovery hold time. For single-cycle 200-h creep/25-h recovery experiments (see
Fig. 17.43), the creep strain recovery ratio (Rcr) was roughly 50% after 2.5 h of
recovery; the total-strain recovery ratio was approximately 45–46%. A larger
recovery in creep strain has occurred during the multi-cyclic creep experiments.
Creep strain recovery ratios could reach 82% in a (four-cycle, 50-h creep/50-h)
recovery experiment.
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Fig. 17.40 Isothermal (1200 °C) cyclic creep behavior of 0o SCS-6 SiC/Si3N4. Specimens were
cycled between stress limits of 200 and 2 MPa. For loading histories with a finite recovery hold
time, the total-strain recovery and creep strain recovery ratios (Rt = (εcr,R + εχρ,P)/εt, and Rcr = εcr,
r/εcr, respectively) are shown adjacent to the creep curves. a 50-h creep/50-h recovery. b 50-h
creep/0-s recovery. c 300-s creep/300-s recovery. d 300-s creep/0-s recovery. Holmes et al. [11].
With kind permission of John Wiley and Sons
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Strain recovery provides a powerful mechanism for the reduction of
creep strain during cyclic-creep loading. In the absence of cyclic-crack growth,
the strain recovery is expected to significantly increases the life of the
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0º SiCf /Si3N4
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Fig. 17.41 Comparison of the accumulated creep strain and tensile-creep rate for sustained
loading at 200 MPa and long-duration cyclic loading (50-h creep/50-h recovery) between stress
limits of 200 and 2 MPa. Only the loading portions of the cyclic-creep curve are shown (the
recovery segments were deleted, and the resulting curves were shifted to the left to allow a
comparison of creep strain accumulation to be made for an equivalent time at the creep stress of
200 MPa). Holmes et al. [11]. With kind permission of John Wiley and Sons
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Fig. 17.42 Comparison of the accumulated creep strain and creep rate for sustained loading at
200 MPa and for short-duration cyclic loading (300-s creep/300-s recovery and 300-s creep/0-s
recovery). For the cyclic creep experiments, only the traces of the strain versus time curves
obtained at the creep stress of 200 MPa are shown. As in Fig. 17.41, the recovery segments of
each cycle have been removed to allow a comparison of accumulated creep strain to be made for
an equivalent time at the creep stress of 200 MPa
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cyclically loaded structures. The main findings of these experiments may be
summarized as:

(a) The basic damage in fiber-reinforced composites is the periodic fiber fracture
that occurs during long-duration tensile creep. This is expected to occur in
composites in which the creep rate of the matrix exceeds that of the fiber.

(b) Primary creep is significantly reduced during cyclic loading with a finite
recovery hold time. Thus, under sustained loading, primary creep persists
for *70 h, under the experimental conditions, while it can be reduced during
cyclic loading to *20 h (by means of a 300 s hold time at 200 MPa, followed
by a 300 s recovery per cycle).

(c) Knowledge of creep strain recovery behavior is essential, if the lifetime of
the composite is to be increased under sustained or cyclic loading.
Significant residual tensile stresses may develop in the component of a
composite that has a lower creep rate. A reduction in residual stresses may be
practically achieved, if a specific component of interest (with a lower creep
rate) is periodically removed from service, isothermally annealed (under zero
load), in order to remove the residual tensile stresses and accumulated creep
strain.

One cannot finish this section without considering recovery in hot-pressed, pure
silicon nitride. This creep test may be characterized by (a) persistent
non-recoverable plastic deformation and (b) a transient recoverable (viscoelastic)
deformation. There is a power-law stress exponent of n = 4 and an activation
energy of 848 kJ mol−1. The persistent creep component is time-dependent and is
described by a parabolic law, while the recoverable (viscoelastic) component is
independent of the total strain. Various creep data must be accumulated in order to
amass the relevant data from such creep experiments.

At this point, a review of some important relations, before considering the actual
recovery information, is in order.

The power law:
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Fig. 17.43 Creep-recovery
behavior of specimens
subjected to sustained tensile
creep for 200 h at 200 MPa,
followed by 25 h of recovery
at 2 MPa. After 25 h of
recovery, the total-strain
recovery ratio (Rt = εel,R + εcr,
R)/εel) was approximately
50%. Holmes et al. [11]. With
kind permission of John
Wiley and Sons
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e ¼ atb ð17:11Þ

where b is a least-square slope of a log–log plot and a is the value of strain at log
tb = 0. At constant stress, a and b are constants. From Eq. (17.11), one gets:

_e ¼ abtb�1 ¼ ced ð17:12Þ

As b approaches unity, or as t gets longer, d_e=dt is given as:

€e ¼ ab b� 1ð Þtb�2 ð17:13Þ

Another commonly used empirical expression is:

e ¼ r
k2

� �
1� e�k1k2t
� �þ k3 r� r0ð Þt ð17:14Þ

where kl,2,3 are constants at constant temperature, σ is the applied stress, and σ0 ≥ 0
is an apparent yield stress. Equation (17.14) does not apply to the observed creep
curves considered here, because no steady-state creep was observed. The activation
energy is determined from the known expression, given earlier, but reproduced here
in a different form as:

_e ¼ Af sð Þrn exp � Q
RT

� �
ð17:15Þ

where A is a constant, f(s) is some function of creep structure and, σ is the applied
stress. Q may also be evaluated experimentally from data at two temperatures by:

Q ¼
R ln _e1

_e2

� 	
1
T2

� 	
� 1

T1

ð17:16Þ

Those expressions previously used for the analysis of creep in pure Si3N4 are not
now reproduced here again.

Finally, creep strain recovery in Si3N4 is characterized by very high initial rates,
which rapidly decreased over time, as illustrated in Fig. 17.44.

The total recovered strain is *0.1% absolute strain, or roughly 5–10% of the
previous creep strain, and recovery lasted up to 30 h. When the specimen is
reloaded, the curve displays an inverse of the recovery in parallel, along with the
continued accumulation of non-recoverable plastic deformation. The results of the
strain-recovery experiments are presented in Table 17.3.

A plot of the normalized, corrected recovery rate versus the normalized, prior
creep stress at constant strain and temperature is available in Fig. 17.45. The linear
dependence, with a slope of 1.1 ± 0.2, demonstrates that the recovery phenomenon
is linear viscoelastic. The most general, and simplest, linear viscoelastic analogue

436 17 Creep in Silicon Nitride (Si3N4)



model, which predicts a creep transient and subsequent recovery, is the Kelvin–
Voight model, consisting of a spring and dashpot connected in parallel. Under a
step-loading function, σ = σoH(t), where σo is the applied stress and H(t) is a
unit-step function; the resultant strain is:

e tð Þ ¼ 1� exp � t
h

� 	h i
r0k ð17:17Þ

where h, the retardation time, equals n/k, the dashpot viscosity divided by the spring
constant. The quantity [1 − exp(−t/O)]/k is usually denoted by C(t), and is called
the ‘creep compliance function.’ Thus, Eq. (17.17) becomes:

e tð Þ ¼ C tð Þr0 ð17:18Þ

On removal of the stress, t = t′. The superposition principal demands that for
t > t′:

e tð Þ ¼ e t0ð Þ � C t � t0ð Þr0 ð17:19Þ

Accordingly, it is predicted that a plot of the ln{[ε 1ð Þ − ε(t)]/ε 1ð Þ} versus t
should be a straight line of slope = ±θ. Such a plot is found in Fig. 17.46.

The activation energy for the viscoelastic process is obtained through the tem-
perature dependence of the recovery rate. The activation energy for the viscoelastic
mechanism may be obtained by allowing:

Qv ¼ � @½ �n _C t; Tð Þ
= @
1
RT

� �� �
t¼const

¼ � @½ �n_e t:Tð Þ�= @
1
RT

� �� �
t¼const:

� �

ð17:20Þ

The natural logarithm of the recovery-strain rate vs. the reciprocal of the tem-
perature is plotted in Fig. 17.47. The resultant activation energy is
Qv = 722 ± 25 kJ mol−1 at 4 h. Figure 17.47 was taken 4 h after the load removal.
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Fig. 17.44 Strain versus time
curve for recovery at 1204 °
C; prior stress
103.3 MN m−2. Arons and
Tien [12]. With kind
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When a glass phase is present in the grain boundaries, it is assumed that GBS
and grain-boundary fluid motion vary with strain and the creep rate of the entire
composite is given by:

_e ¼ constant � r x0
x0 � yx rð Þ ð17:21Þ

Here, according to the model, any given volume of the aggregate will contain x0
number of glassy areas of which x(σ) contain voids under an applied stress, σ.

1.75

1.50

1.25

1.00

0.75

0.50

N
O

R
M

A
LI

ZE
D

 R
EC

O
VE

R
Y 

R
A

TE

NORMALIZED PRESTRESS

SLOPE = 1.1 ± 0.2

0.25

0 0.5 1.0 1.5 2.0

Fig. 17.45 Dependence of corrected recovery rate upon prior stress. Curved slope of *1 is
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If each void containing glassy regions affects y nearest-neighbor regions, such that
they have negligible resistance to deformation (compared to voidless regions), then
the voidless region must support a greater stress by a factor of x/x0 − yx(σ). Under
the assumption that GBS and grain-boundary fluid motion vary with stress, the
creep rate of the composite is given by Eq. (17.21). The stress exponent is defined
by n = ln _e/dlnσ, then given by:

n ¼ 1þ y
x0 � yx rð Þ

@x rð Þ
@r

ð17:22Þ

If the hot-pressed silicon nitride is again step-loaded after the loading-unloading
cycle has been completed, once again, the elastic strains will accumulate and the
grains will continue to slide and rearrange as before. The persistent creep defor-
mation will simply continue from where it was interrupted by the unloading
sequence.

According to the creep results (the creep part is not shown here, as was indi-
cated), it is proposed that creep deformation in hot-pressed silicon nitride is due to
relative grain motion, accommodated by grain-boundary phase flow and cavitation.
(Note that the concepts of viscous material and fluid are used in this work, which
were once considered to be characteristics of grain boundaries). The reason for
using such early terminology for creep is a consequence of the discussion about
recovery in pure Si3N4, which focused on recovery occurring during cyclic creep,
which is of practical importance for periodic loading and the examination of test
specimens and, perhaps, while heat-treating and restoring whatever strain can be
restored, before reloading them for further use.
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Thus, creep deformation is explained by GBS which is rate-controlled and
accommodated by grain-boundary phase percolation, cavitation, and void and
wedge opening.
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