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Preface

The disciplines of Data Science and Big Data, coming hand in hand, form one
of the rapidly growing areas of research, have already attracted attention of industry
and business. The prominent characterization of the area highlighting the essence
of the problems encountered there comes as a 3V (volume, variety, variability) or
4V characteristics (with veracity being added to the original list). The area itself has
initialized new directions of fundamental and applied research as well as led to
interesting applications, especially those being drawn by the immediate needs to
deal with large repositories of data and building some tangible, user-centric models
of relationships in data.

A general scheme of Data Science involves various facets: descriptive (con-
cerning reporting—identifying what happened and answering a question why it has
happened), predictive (embracing all the investigations of describing what will
happen), and prescriptive (focusing on acting—make it happen) contributing to the
development of its schemes and implying consecutive ways of the usage of the
developed technologies. The investigated models of Data Science are visibly ori-
ented to the end-user, and along with the regular requirements of accuracy (which
are present in any modeling) come the requirements of abilities to process huge and
varying data sets and the needs for robustness, interpretability, and simplicity.

Computational intelligence (CI) with its armamentarium of methodologies and
tools is located in a unique position to address the inherently present needs of Data
Analytics in several ways by coping with a sheer volume of data, setting a suitable
level of abstraction, dealing with distributed nature of data along with associated
requirements of privacy and security, and building interpretable findings at a
suitable level of abstraction.

This volume consists of twelve chapters and is structured into two main parts:
The first part elaborates on the fundamentals of Data Analytics and covers a number
of essential topics such as large scale clustering, search and learning in highly
dimensional spaces, over-sampling for imbalanced data, online anomaly detection,
CI-based classifiers for Big Data, Machine Learning for processing Big Data and
event detection. The second part of this book focuses on applications demonstrating

v



the use of the paradigms of Data Analytics and CI to safety assessment, manage-
ment of smart grids, real-time data, and power systems.

Given the timely theme of this project and its scope, this book is aimed at a
broad audience of researchers and practitioners. Owing to the nature of the material
being covered and a way it has been organized, one can envision with high con-
fidence that it will appeal to the well-established communities including those
active in various disciplines in which Data Analytics plays a pivotal role.

Considering a way in which the edited volume is structured, this book could
serve as a useful reference material for graduate students and senior undergraduate
students in courses such as those on Big Data, Data Analytics, intelligent systems,
data mining, computational intelligence, management, and operations research.

We would like to take this opportunity to express our sincere thanks to the
authors for presenting advanced results of their innovative research and delivering
their insights into the area. The reviewers deserve our thanks for their constructive
and timely input. We greatly appreciate a continuous support and encouragement
coming from the Editor-in-Chief, Prof. Janusz Kacprzyk, whose leadership and
vision makes this book series a unique vehicle to disseminate the most recent,
highly relevant, and far-reaching publications in the domain of Computational
Intelligence and its various applications.

We hope that the readers will find this volume of genuine interest, and the
research reported here will help foster further progress in research, education, and
numerous practical endeavors.

Edmonton, Canada Witold Pedrycz
Taipei, Taiwan Shyi-Ming Chen
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Large-Scale Clustering Algorithms

Rocco Langone, Vilen Jumutc and Johan A. K. Suykens

Abstract Computational tools in modern data analysis must be scalable to satisfy

business and research time constraints. In this regard, two alternatives are possible:

(i) adapt available algorithms or design new approaches such that they can run on

a distributed computing environment (ii) develop model-based learning techniques

that can be trained efficiently on a small subset of the data and make reliable predic-

tions. In this chapter two recent algorithms following these different directions are

reviewed. In particular, in the first part a scalable in-memory spectral clustering algo-

rithm is described. This technique relies on a kernel-based formulation of the spec-

tral clustering problem also known as kernel spectral clustering. More precisely, a

finite dimensional approximation of the feature map via the Nyström method is used

to solve the primal optimization problem, which decreases the computational time

from cubic to linear. In the second part, a distributed clustering approach with fixed

computational budget is illustrated. This method extends the k-means algorithm by

applying regularization at the level of prototype vectors. An optimal stochastic gra-

dient descent scheme for learning with l1 and l2 norms is utilized, which makes the

approach less sensitive to the influence of outliers while computing the prototype

vectors.

Keywords Data clustering ⋅ Big data ⋅Kernel methods ⋅Nyström approximation ⋅
Stochastic optimization ⋅ K-means ⋅ Map-Reduce ⋅ Regularization ⋅ In-memory

algorithms ⋅ scalability
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1 Introduction

Data clustering allows to partition a set of points into groups called clusters which

are as similar as possible. It plays a key role in computational intelligence because of

its diverse applications in various domains. Examples include collaborative filtering

and market segmentation, where clustering is used to provide personalized recom-

mendations to users, trend detection which allows to discover key trends events in

streaming data, community detection in social networks, and many others [1].

With the advent of the big data era, a key challenge for data clustering lies in its

scalability, that is, how to speed-up a clustering algorithm without affecting its per-

formance. To this purpose, two main directions have been explored [1]: (i) sampling-

based algorithms or techniques using random projections (ii) parallel and distributed

methods. The first type of algorithms allows to tackle the computational complexity

due either to the large amount of data instances or their high dimensionality. More

precisely, sampling-based algorithms perform clustering on a sample of the datasets

and then generalize it to whole dataset. As a consequence, execution time and mem-

ory space decrease. Examples of such algorithms are CLARANS [2], which tries

to find the best medoids representing the clusters, BIRCH [3], where a new data

structure called clustering feature is introduced in order to reduce the I/O cost in the

in-memory computational time, CURE [4], which uses a set of well-scattered data

points to represent a cluster in order to detect general shapes. Randomized techniques

reduce the dimension of the input data matrix by transforming it into a lower dimen-

sional space and then perform clustering on this reduced space. In this framework,

[5] uses random projections to speed-up the k-means algorithm. In [6], a method

called Colibri allows to cluster large static and dynamic graphs. In contrast to the

typical single machine clustering, parallel algorithms use multiple machines or mul-

tiple cores in a single machine to speed up the computation and increase the scala-

bility. Furthermore, they can be either memory-based if the data fit in the memory

and each machine/core can load it, or disk-based algorithm which use Map-Reduce

[7] to process huge amounts of disk-resident data in a massively parallel way. An

example of memory-based algorithm is ParMETIS [8], which is a parallel graph-

partitioning approach. Disk-based methods include parallel k-means [9], a k-means

algorithm implemented on Map-Reduce and a distributed co-clustering algorithm

named DisCO [10]. Finally, the interested reader may refer to [11, 12] for some

recent surveys on clustering algorithms for big data.

In this chapter two algorithms for large-scale data clustering are reviewed. The

first one, named fixed-size kernel spectral clustering (FSKSC), is a sampling-based

spectral clustering method. Spectral clustering (SC) [13–16] has been shown to be

among the most effective clustering algorithms. This is mainly due to its ability of

detecting complex nonlinear structures thanks to the mapping of the original data

into the space spanned by the eigenvectors of the Laplacian matrix. By formulating

the spectral clustering problem within a least squares support vector machine setting

[17], kernel spectral clustering [18, 19] (KSC) allows to tackle its main drawbacks

represented by the lack of a rigorous model selection procedure and a systematic
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out-of-sample property. However, when the number of training data is large the com-

plexity of constructing the Laplacian matrix and computing its eigendecomposition

can become intractable. In this respect, the FSKSC algorithm represents a solution

to this issue which exploits the Nyström method [20] to avoid the construction of the

kernel matrix and therefore reduces the time and space costs. The second algorithm

that will be described is a distributed k-means approach which extends the k-means

algorithm by applying l1 and l2 regularization to enforce the norm of the prototype

vectors to be small. This allows to decrease the sensitivity of the algorithm to both

the initialization and the presence of outliers. Furthermore, either stochastic gradient

descent [21] or dual averaging [22] are used to learn the prototype vectors, which are

computed in parallel on a multi-core machine.
1

The remainder of the chapter is organized as follows. Section 3 summarizes the

standard spectral clustering and k-means approaches. In Sect. 4 the fixed-size KSC

method will be presented. Section 5 is devoted to summarize the regularized stochas-

tic k-means algorithm. Afterwards, some experimental results will be illustrated in

Sect. 6. Finally some conclusions are given.

2 Notation

𝐱T Transpose of the vector 𝐱
𝐀T

Transpose of the matrix 𝐀
𝐈N N × N Identity matrix

𝟏N N × 1 Vector of ones

D
tr
= {𝐱i}

N
tr

i=1 Training sample of N
tr

data points

𝜑(⋅) Feature map

F Feature space of dimension dh
{Cp}kp=1 Partitioning composed of k clusters

| ⋅ | Cardinality of a set

|| ⋅ ||p p-norm of a vector

∇f Gradient of function f

3 Standard Clustering Approaches

3.1 Spectral Clustering

Spectral clustering represents a solution to the graph partitioning problem. More

precisely, it allows to divide a graph into weakly connected sub-graphs by making

use of the spectral properties of the graph Laplacian matrix [13–15].

1
The same schemes can be extended with little effort to a multiple machine framework.
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A graph (or network) G = (V ,E ) is a mathematical structure used to model

pairwise relations between certain objects. It refers to a set of N vertices or nodes

V = {vi}Ni=1 and a collection of edges E that connect pairs of vertices. If the edges are

provided with weights the corresponding graph is weighted, otherwise it is referred

as an unweighted graph. The topology of a graph is described by the similarity or

affinity matrix, which is an N × N matrix SSS, where Sij indicates the link between

the vertices i and j. Associated to the similarity matrix there is the degree matrix

DDD = diag(ddd) ∈ ℝN×N
, with ddd = [d1,… , dN]T = SSS111N ∈ ℝN×1

and 111N indicating the

N × 1 vector of ones. Basically the degree di of node i is the sum of all the edges (or

weights) connecting node i with the other vertices: di =
∑N

j=1 Sij.
The most basic formulation of the graph partitioning problem seeks to split an

unweighted graph into k non-overlapping sets C1,… ,Ck with similar cardinality in

order to minimize the cut size, which is the number of edges running between the

groups. The related optimization problem is referred as the normalized cut (NC)

objective defined as:

min
GGG

k − tr(GGGTLLLnGGG)

subject to GGGTGGG = III
(1)

where:

∙ LLLn = III −DDD− 1
2SSSDDD− 1

2 is called the normalized Laplacian

∙ GGG = [ggg1,… ,gggk] is the matrix containing the normalized cluster indicator vectors

gggl =
DDD

1
2 fff l

||DDD
1
2 fff l||2

∙ fff l, with l = 1,… , k, is the cluster indicator vector for the l-th cluster. It has a 1 in

the entries corresponding to the nodes in the l-th cluster and 0 otherwise. More-

over, the cluster indicator matrix can be defined as FFF = [fff 1,… , fff k] ∈ {0, 1}N×k
∙ III denotes the identity matrix.

Unfortunately this is a NP-hard problem. However, approximate solutions in poly-

nomial time can be obtained by relaxing the entries of GGG to take continuous values:

min
ĜGG

k − tr(ĜGGT
LLLnĜGG)

subject to ĜGG
T
ĜGG = III.

(2)

with ĜGG ∈ ℝN×k
Solving problem (2) is equivalent to finding the solution to the fol-

lowing eigenvalue problem:

LLLnggg = 𝜆ggg. (3)

Basically, the relaxed clustering information is contained in the eigenvectors corre-

sponding to the k smallest eigenvalues of the normalized Laplacian LLLn. In addition

to the normalized Laplacian, other Laplacians can be defined, like the unnormalized

Laplacian LLL = DDD − SSS and the random walk Laplacian LLLrw = DDD−1SSS. The latter owes
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its name to the fact that it represents the transition matrix of a random walk associ-

ated to the graph, whose stationary distribution describes the situation in which the

random walker remains most of the time in the same cluster with rare jumps to the

other clusters [23].

Spectral clustering suffers from a scalability problem in both memory usage and

computational time when the number of data instances N is large. In particular, time

complexity is O(N3), which is needed to solve eigenvalue problem (3), and space

complexity is O(N2), which is required to store the Laplacian matrix. In Sect. 4

the fixed-size KSC method will be thoroughly discussed, and some related works

representing different solutions to this scalability issue will be briefly reviewed in

Sect. 4.1.

3.2 K-Means

Given a set of observations D = {𝐱i}Ni=1, with 𝐱i ∈ ℝd
, k-means clustering [24] aims

to partition the data sets into k subsets S1,… ,Sk, so as to minimize the distortion

function, that is the sum of distances of each point in every cluster to the correspond-

ing center. This optimization problem can be expressed as follows:

min
𝜇𝜇𝜇(1),…,𝜇𝜇𝜇(k)

k∑

l=1

[

1
2Nl

∑

𝐱∈Sl

‖𝜇𝜇𝜇(l) − 𝐱‖22

]

, (4)

where 𝜇𝜇𝜇
(l)

is the mean of the points in Sl. Since this problem is NP-hard, an alter-

nate optimization procedure similar to the expectation-maximization algorithm is

employed, which converges quickly to a local optimum. In practice, after randomly

initializing the cluster centers, an assignment and an update step are repeated until the

cluster memberships no longer change. In the assignment step each point is assigned

to the closest center, i.e. the cluster whose mean yields the least within-cluster sum

of squares. In the update step, the new cluster centroids are calculated.

The outcomes produced by the standard k-means algorithm are highly sensitive

to the initialization of the cluster centers and the presence of outliers. In Sect. 5 we

further discuss the regularized stochastic k-means approach which, similarly to other

methods briefly reviewed in Sect. 5.1, allows to tackle these issues through stochastic

optimization approaches.

4 Fixed-Size Kernel Spectral Clustering (FSKSC)

In this section we review an alternative approach to scale-up spectral clustering

named fixed-size kernel spectral clustering, which was recently proposed in [25].

Compared to the existing techniques, the major advantages of this method are the
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possibility to extend the clustering model to new out-of-sample points and a precise

model selection scheme.

4.1 Related Work

Several algorithms have been devised to speed-up spectral clustering. Examples

include power iteration clustering [26], spectral grouping using the Nyström method

[27], incremental algorithms where some initial clusters computed on an initial sub-

set of the data are modified in different ways [28–30], parallel spectral clustering

[31], methods based on the incomplete Cholesky decomposition [32–34], landmark-

based spectral clustering [35], consensus spectral clustering [36], vector quantization

based approximate spectral clustering [37], approximate pairwise clustering [38].

4.2 KSC Overview

The multiway kernel spectral clustering (KSC) formulation is stated as a combina-

tion of k − 1 binary problems, where k denotes the number of clusters [19]. More

precisely, given a set of training data D
tr
= {𝐱i}

N
tr

i=1, the primal problem is expressed

by the following objective:

min
𝐰(l),𝐞(l),bl

1
2

k−1∑

l=1
𝐰(l)T𝐰(l) − 1

2

k−1∑

l=1
𝛾l𝐞(l)

T V𝐞(l)

subject to 𝐞(l) = 𝛷𝛷𝛷𝐰(l) + bl𝟏N
tr
, l = 1,… , k − 1.

(5)

The 𝐞(l) = [e(l)1 ,… , e(l)i ,… , e(l)N
tr

]T denotes the projections of the training data mapped

in the feature space along the direction 𝐰(l)
. For a given point 𝐱i, the corresponding

clustering score is given by:

e(l)i = 𝐰(l)T
𝜑(𝐱i) + bl. (6)

In fact, as in a classification setting, the binary clustering model is expressed by an

hyperplane passing through the origin, that is e(l)i − 𝐰(l)T
𝜑(𝐱i) − bl = 0. Problem (5)

is nothing but a weighted kernel PCA in the feature space 𝜑 ∶ ℝd → ℝdh , where the

aim is to maximize the weighted variances of the scores, i.e. 𝐞(l)T V𝐞(l) while keeping

the squared norm of the vector 𝐰(l)
small. The constants 𝛾l ∈ ℝ+

are regularization

parameters, 𝐕 ∈ ℝN
tr
×N

tr is the weighting matrix and𝛷𝛷𝛷 is the N
tr
× dh feature matrix

𝛷𝛷𝛷 = [𝜑(𝐱1)T ;… ;𝜑(𝐱N
tr
)T ], bl are bias terms.

The dual problem associated to (5) is given by:
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𝐕𝐌V𝛺𝛺𝛺𝛼𝛼𝛼
(l) = 𝜆l𝛼𝛼𝛼

(l)
(7)

where𝛺𝛺𝛺 denotes the kernel matrix with ij-th entry𝛺𝛺𝛺ij = K(𝐱i, 𝐱j) = 𝜑(𝐱i)T𝜑(𝐱j).K ∶
ℝd ×ℝd → ℝ means the kernel function. 𝐌V is a centering matrix defined as 𝐌V =
𝐈N

tr
− 1

𝟏TNtr
𝐕𝟏Ntr

𝟏N
tr
𝟏TN

tr

𝐕, the 𝛼𝛼𝛼
(l)

are vectors of dual variables, 𝜆𝜆𝜆l =
N

tr

𝛾l
. By setting

2

𝐕 = 𝐃−1
, being 𝐃 the graph degree matrix which is diagonal with positive elements

Dii =
∑

j 𝛺ij, problem (7) is closely related to spectral clustering with random walk

Laplacian [23, 42, 43], and objective (5) is referred as the kernel spectral clustering

problem.

The dual clustering model for the i-th training point can be expressed as follows:

e(l)i =
N

tr∑

j=1
𝛼
(l)
j K(𝐱j, 𝐱i) + bl, j = 1,… ,N

tr
, l = 1,… , k − 1. (8)

By binarizing the projections e(l)i as sign(e(l)i ) and selecting the most frequent binary

indicators, a code-book CB = {cp}kp=1 with the k cluster prototypes can be formed.

Then, for any given point (either training or test), its cluster membership can be com-

puted by taking the sign of the corresponding projection and assigning to the cluster

represented by the closest prototype in terms of hamming distance. The KSC method

is summarized in algorithm 1, and the related Matlab package is freely available on

the Web.
3

Finally, the interested reader can refer to the recent review [18] for more

details on the KSC approach and its applications.

Algorithm 1: KSC algorithm [19]

Data: Training set D
tr
= {𝐱i}

N
tr

i=1, test set D
test

= {𝐱test

r }Ntest

r=1 kernel function

K ∶ ℝd ×ℝd → ℝ, kernel parameters (if any), number of clusters k.

Result: Clusters {C1,… ,Ck}, codebook CB = {cp}kp=1 with {cp} ∈ {−1, 1}k−1.

1 compute the training eigenvectors 𝛼𝛼𝛼
(l)

, l = 1,… , k − 1, corresponding to the k − 1 largest

eigenvalues of problem (7)

2 let 𝐀 ∈ ℝN
tr
×(k−1)

be the matrix containing the vectors 𝛼𝛼𝛼
(1)
,… , 𝛼𝛼𝛼

(k−1)
as columns

3 binarize 𝐀 and let the code-book CB = {cp}kp=1 be composed by the k encodings of

𝐐 = sign(A) with the most occurrences

4 ∀i, i = 1,… ,N
tr
, assign 𝐱i to Ap∗ where p∗ = argminpdH(sign(𝛼𝛼𝛼i), cp) and dH(⋅, ⋅) is the

Hamming distance

5 binarize the test data projections sign(𝐞(l)r ), r = 1,… ,N
test

, and let sign(𝐞r) ∈ {−1, 1}k−1 be

the encoding vector of 𝐱test

r
6 ∀r, assign 𝐱test

r to Ap∗ , where p∗ = argminpdH(sign(𝐞r), cp).

2
By choosing 𝐕 = 𝐈, problem (7) represents a kernel PCA objective [39–41].

3
http://www.esat.kuleuven.be/stadius/ADB/alzate/softwareKSClab.php.

http://www.esat.kuleuven.be/stadius/ADB/alzate/softwareKSClab.php
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4.3 Fixed-Size KSC Approach

When the number of training datapoints N
tr

is large, problem (7) can become

intractable both in terms of memory bottleneck and execution time. A solution to this

issue is offered by the fixed-size kernel spectral clustering (FSKSC) method where

the primal problem instead of the dual is solved, as proposed in [17] in case of clas-

sification and regression. In particular, as discussed in [25], the FSKSC approach is

based on the following unconstrained re-formulation of the KSC primal objective

(5), where 𝐕 = 𝐃−1
:

min
𝐰̂(l),b̂l

1
2

k−1∑

l=1
𝐰̂(l)T 𝐰̂(l) − 1

2

k−1∑

l=1
𝛾l(𝛷̂𝛷𝛷𝐰̂(l) + b̂l𝟏N

tr
)TD̂DD−1(𝛷̂𝛷𝛷𝐰̂(l) + b̂l𝟏N

tr
) (9)

where 𝛷̂𝛷𝛷 = [𝜑̂(𝐱1)T ;… ; 𝜑̂(𝐱N
tr
)T ] ∈ ℝN

tr
×m

is the approximated feature matrix, D̂DD ∈
ℝN

tr
×N

tr is the corresponding degree matrix, and 𝜑̂ ∶ ℝd → ℝm
indicates a finite

dimensional approximation of the feature
4

map 𝜑(⋅) which can be obtained through

the Nyström method [44]. The minimizer of (9) can be found by computing

∇J(𝐰l
, bl) = 0, that is:

𝜕J

𝜕𝐰̂(l) = 0 → 𝐰̂(l) = 𝛾l(𝛷̂𝛷𝛷
T
D̂DD

−1
𝛷̂𝛷𝛷𝐰̂(l) + 𝛷̂𝛷𝛷

T
D̂DD

−1𝟏N
tr
b̂l)

𝜕J

𝜕b̂l
= 0 → 𝟏TN

tr

D̂DD
−1
𝛷̂𝛷𝛷𝐰̂(l) = −𝟏TN

tr

D̂DD
−1𝟏N

tr
b̂l.

These optimality conditions lead to the following eigenvalue problem to solve in

order to find the model parameters:

𝐑𝐰̂(l) = 𝜆̂l𝐰̂(l)
(10)

with 𝜆̂l =
1
𝛾l

,𝐑 = 𝛷̂𝛷𝛷
T𝐃̂−1

𝛷̂𝛷𝛷 −
(𝟏TNtr

𝐃̂−1
𝛷̂𝛷𝛷)T (𝟏TNtr

𝐃̂−1
𝛷̂𝛷𝛷)

𝟏TNtr
𝐃̂−1𝟏Ntr

and b̂l = −
𝟏TNtr

𝐃̂−1
𝛷̂𝛷𝛷

𝟏TNtr
𝐃̂−1𝟏Ntr

𝐰̂(l)
. Notice that

we now have to solve an eigenvalue problem of size m × m, which can be done very

efficiently by choosing m such that m ≪ N
tr
. Furthermore, the diagonal of matrix 𝐃̂

can be calculated as 𝐝̂ = 𝛷̂𝛷𝛷(𝛷̂𝛷𝛷T𝟏m), i.e. without constructing the full matrix 𝛷̂𝛷𝛷𝛷̂𝛷𝛷
T
.

Once 𝐰̂(l)
, b̂l have been computed, the cluster memberships can be obtained by

applying the k-means algorithm on the projections ê(l)i = 𝐰̂(l)T
𝜑̂(𝐱i) + b̂l for training

data and ê(l),test

r = 𝐰̂(l)T
𝜑̂(𝐱test

i ) + b̂l in case of test points, as for the classical spectral

clustering technique. The entire algorithm is depicted in Fig. 2, and a Matlab imple-

mentation is freely available for download.
5

Finally, Fig. 1 illustrates examples of

clustering obtained in case of the Iris, Dermatology and S1 datasets available at the

UCI machine learning repository.

4
The m points needed to estimate the components of 𝜑̂ are selected at random.

5
http://www.esat.kuleuven.be/stadius/ADB/langone/softwareKSCFSlab.php.

http://www.esat.kuleuven.be/stadius/ADB/langone/softwareKSCFSlab.php
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Fig. 1 FSKSC embedding
illustrative example. Data

points represented in the

space of the projections in

case of the Iris, Dermatology

and S1 datasets. The

different colors relate to the

various clusters detected by

the FSKSC algorithm
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Algorithm 2: Fixed-size KSC [25]

Input : training set D = {𝐱i}
N

tr

i=1, Test set D
test

= {𝐱i}
N

test

r=1 .

Settings : size Nyström subset m, kernel parameter 𝜎, number of clusters k
Output : 𝐪 and 𝐪

test
vectors of predicted cluster memberships.

/* Approximate feature map: */
Compute 𝛺𝛺𝛺m×m

Compute [U,𝛬𝛬𝛬] = SVD(𝛺𝛺𝛺m×m)

Compute 𝛷̂𝛷𝛷 by means of the Nyström method

/* Training: */

Solve 𝐑𝐰̂(l) = 𝜆̂l𝐰̂(l)

Compute E = [𝐞(1),… , 𝐞k−1]
[q,C

tr
] = kmeans(E,k)

/* Test: */
Compute E

test
= [𝐞(1)

test
,… , 𝐞k−1

test
]

q
test

= kmeans(E
test

,k,’start’,C
tr
)

4.4 Computational Complexity

The computational complexity of the fixed-size KSC algorithm depends mainly

on the size m of the Nyström subset used to construct the approximate feature

map 𝛷̂𝛷𝛷. In particular, the total time complexity (training + test) is approximately

O(m3) + O(mN
tr
) + O(mN

test
), which is the time needed to solve (10) and to com-

pute the training and test clustering scores. Furthermore, the space complexity is

O(m2) + O(mN
tr
) + O(mN

test
), which is needed to construct matrix𝐑 and to build the

training and test feature matrices 𝛷̂𝛷𝛷 and 𝛷̂𝛷𝛷
test

. Since we can choose m ≪ N
tr
< N

test

[25], the complexity of the algorithm is approximately linear, as can be evinced also

from Fig. 6.

5 Regularized Stochastic K-Means (RSKM)

5.1 Related Work

The main drawbacks of the standard k-means algorithm are the instability caused by

the randomness in the initialization and the presence of outliers, which can bias the

computation of the cluster centroids and hence the final memberships. To stabilize

the performance of the k-means algorithm [45] applies the stochastic learning para-

digm relying on the probabilistic draw of some specific random variable dependent

upon the distribution of per-sample distances to the centroids. In [21] one seeks to

find a new cluster centroid by observing one or a small mini-batch sample at iter-
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ate t and calculating the corresponding gradient descent step. Recent developments

[46, 47] indicate that the regularization with different norms might be useful when

one deals with high-dimensional datasets and seeks for a sparse solution. In particu-

lar, [46] proposes to use an adaptive group Lasso penalty [48] and obtain a solution

per prototype vector in a closed-form. In [49] the authors are studying the problem

of overlapping clusters where there are possible outliers in data. They propose an

objective function which can be viewed as a reformulation of the traditional k-means

objective which captures also the degrees of overlap and non-exhaustiveness.

5.2 Generalities

Given a dataset D = {𝐱i}Ni=1 with N independent observations, the regularized

k-means objective can be expressed as follows:

min
𝜇𝜇𝜇(1),…,𝜇𝜇𝜇(k)

k∑

l=1

[

1
2Nl

∑

𝐱∈Sl

‖𝜇𝜇𝜇(l) − 𝐱‖22 + C𝜓(𝜇𝜇𝜇(l))

]

, (11)

where 𝜓(𝜇𝜇𝜇(l)) represents the regularizer, C is the trade-off parameter, Nl = |Sl| is

the cardinality of the corresponding set Sl corresponding to the l-th individual clus-

ter. In a stochastic optimization paradigm objective (11) can be optimized through

gradient descent, meaning that one takes at any step t some gradient gt ∈ 𝜕f (𝜇𝜇𝜇(l)
t )

w.r.t. only one sample 𝐱t from Sl and the current iterate 𝜇𝜇𝜇
(l)
t at hand. This online

learning problem is usually terminated until some 𝜀-tolerance criterion is met or the

total number of iterations is exceeded. In the above setting one deals with a sim-

ple clustering model c(𝐱) = argminl ‖𝜇𝜇𝜇(l) − 𝐱‖2 and updates cluster memberships

of the entire dataset Ŝ after individual solutions 𝜇𝜇𝜇
(l)

, i.e. the centroids, are com-

puted. From a practical point of view, we denote this update as an outer iteration

or synchronization step and use it to fix Sl for learning each individual prototype

vector 𝜇𝜇𝜇
(l)

in parallel through a Map-Reduce scheme. This algorithmic procedure is

depicted in Fig. 2. As we can notice the Map-Reduce framework is needed to paral-

lelize learning of individual prototype vectors using either the SGD-based approach

or the adaptive dual averaging scheme. In each outer p-th iteration we Reduce()
all learned centroids to the matrix 𝐖p and re-partition the data again with Map().

After we reach Tout iterations we stop and re-partition the data according to the final

solution and proximity to the prototype vectors.

5.3 l𝟐-Regularization

In this section the Stochastic Gradient Descent (SGD) scheme for learning objec-

tive (11) with 𝜓(𝜇𝜇𝜇(l)) = 1
2
‖𝜇𝜇𝜇(l)‖22 is presented. If we use the l2 regularization, the

optimization problem becomes:



14 R. Langone et al.

Fig. 2 Schematic

visualization of the

Map-Reduce scheme

min
𝜇𝜇𝜇(l)

f (𝜇𝜇𝜇(l)) ≜ 1
2N

N∑

j=1
‖𝜇𝜇𝜇(l) − 𝐱j‖22 +

C
2
‖𝜇𝜇𝜇(l)‖22, (12)

where function f (𝜇𝜇𝜇(l)) is 𝜆-strongly convex with Lipschitz continuous gradient and

Lipschitz constant equal to L. It can be easily verified that 𝜆 = L = C + 1 by observ-

ing basic inequalities which f (𝜇𝜇𝜇(l)) should satisfy in this case [50, 51]:

‖∇f (𝜇𝜇𝜇(l)) − ∇f (𝜇𝜇𝜇(l))‖2 ≥ 𝜆‖𝜇𝜇𝜇
(l)
1 − 𝜇𝜇𝜇

(l)
2 ‖2 ⟹

‖(C + 1)𝜇𝜇𝜇(l)
1 − (C + 1)𝜇𝜇𝜇(l)

2 ‖2 ≥ 𝜆‖𝜇𝜇𝜇
(l)
1 − 𝜇𝜇𝜇

(l)
2 ‖2

and

‖∇f (𝜇𝜇𝜇(l)
1 ) − ∇f (𝜇𝜇𝜇(l)

2 )‖2 ≤ L‖𝜇𝜇𝜇(l)
1 − 𝜇𝜇𝜇

(l)
2 ‖2 ⟹

‖(C + 1)𝜇𝜇𝜇(l)
1 − (C + 1)𝜇𝜇𝜇(l)

2 ‖2 ≤ L‖𝜇𝜇𝜇(l)
1 − 𝜇𝜇𝜇

(l)
2 ‖2
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which can be satisfied if and only if 𝜆 = L = C + 1. In this case a proper sequence

of SGD step-sizes 𝜂t should be applied in order to achieve optimal convergence rate

[52]. As a consequence, we set 𝜂t =
1
Ct

such that the convergence rate to the 𝜀-optimal

solution would be O( 1
T
), being T the total number of iterations, i.e. 1 ≤ t ≤ T . This

leads to a cheap, robust and stable to perturbation learning procedure with a fixed

computational budget imposed on the total number of iterations and gradient re-

computations needed to find a feasible solution.

The complete algorithm is illustrated in Algorithm 3. The first step is the initial-

ization of a random matrix 𝐌0 of size d × k, where d is the input dimension and

k is the number of clusters. After initialization Tout outer synchronization iterations

are performed in which, based on previously learned individual prototype vectors

𝜇𝜇𝜇
(l)

, the cluster memberships and re-partition Ŝ are calculated (line 4). Afterwards

we run in parallel a basic SGD scheme for the l2-regularized optimization objective

(12) and concatenate the result with 𝐌p by the Append function. When the total

number of outer iterations Tout is exceeded we exit with the final partitioning of Ŝ

by c(x) = argmini ‖𝐌
(l)
Tout

− 𝐱‖2 where l denotes the l-th column of 𝐌Tout .

Algorithm 3: l2-Regularized stochastic k-means

Data: Ŝ ,C > 0,T ≥ 1,Tout ≥ 1, k ≥ 2, 𝜀 > 0
1 Initialize 𝐌0 randomly for all clusters (1 ≤ l ≤ k)

2 for p ← 1 to Tout do
3 Initialize empty matrix 𝐌p

4 Partition Ŝ by c(x) = argminl ‖𝐌
(l)
p−1 − 𝐱‖2

5 for Sl ⊂ Ŝ in parallel do
6 Initialize 𝜇𝜇𝜇

(l)
0 randomly

7 for t ← 1 to T do
8 Draw a sample 𝐱t ∈ Sl
9 Set 𝜂t = 1∕(Ct)

10 𝜇𝜇𝜇
(l)
t = 𝜇𝜇𝜇

(l)
t−1 − 𝜂t(C𝜇𝜇𝜇

(l)
t−1 + 𝜇𝜇𝜇

(l)
t−1 − 𝐱t)

11 if ‖𝜇𝜇𝜇(l)
t − 𝜇𝜇𝜇

(l)
t−1‖2 ≤ 𝜀 then

12 Append(𝜇𝜇𝜇(l)
t ,𝐌p)

13 return
14 end
15 end
16 Append(𝜇𝜇𝜇(l)

T , 𝐌p)

17 end
18 end
19 return Ŝ is partitioned by c(x) = argminl ‖𝐌

(l)
Tout

− 𝐱‖2
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5.4 l𝟏-Regularization

In this section we present a different learning scheme induced by l1-norm regular-

ization and corresponding regularized dual averaging methods [53] with adaptive

primal-dual iterate updates [54]. The main optimization objective is given by [55]:

min
𝜇𝜇𝜇(l)

f (𝜇𝜇𝜇(l)) ≜ 1
2N

N∑

j=1
‖𝜇𝜇𝜇(l) − 𝐱j‖22 + C‖𝜇𝜇𝜇(l)‖1. (13)

By using a simple dual averaging scheme [22] and adaptive strategy from [54] prob-

lem (13) can be solved effectively by the following sequence of iterates 𝜇𝜇𝜇
(l)
t+1 :

𝜇𝜇𝜇
(l)
t+1 = argmin

𝜇𝜇𝜇(l)

{
𝜂

t

t∑

𝜏=1
⟨g

𝜏
,𝜇𝜇𝜇

(l)⟩ + 𝜂C‖𝜇𝜇𝜇(l)‖1 +
1
t
h(𝜇𝜇𝜇(l))

}

, (14)

where ht(𝜇𝜇𝜇(l)) is an adaptive strongly convex proximal term, gt represents a gradient

of the ‖𝜇𝜇𝜇(l) − 𝐱t‖2 term w.r.t. only one randomly drawn sample 𝐱t ∈ Sl and current

iterate 𝜇𝜇𝜇
(l)
t , while 𝜂 is a fixed step-size. In the regularized Adaptive Dual Averaging

(ADA) scheme [54] one is interested in finding a corresponding step-size for each

coordinate which is inversely proportional to the time-based norm of the coordinate

in the sequence {gt}t≥1 of gradients. In case of our algorithm, the coordinate-wise

update of the 𝜇𝜇𝜇
(l)
t iterate in the adaptive dual averaging scheme can be summarized

as follows:

𝜇𝜇𝜇
(l)
t+1,q = sign(−ĝt,q)

𝜂t
Ht,qq

[|ĝt,q| − 𝜆]+, (15)

where ĝt,q =
1
t

∑t
𝜏=1 g𝜏,q is the coordinate-wise mean across {gt}t≥1 sequence,Ht,qq =

𝜌 + ‖g1∶t,q‖2 is the time-based norm of the q-th coordinate across the same sequence

and [x]+ = max(0, x). In Eq. (15) two important parameters are present:C which con-

trols the importance of the l1-norm regularization and 𝜂 which is necessary for the

proper convergence of the entire sequence of 𝜇𝜇𝜇
(l)
t iterates.

An outline of our distributed stochastic l1-regularized k-means algorithm is

depicted in Algorithm 4. Compared to the l2 regularization, the iterate𝜇𝜇𝜇
(l)
t now has a

closed form solution and depends on the dual average (and the sequence of gradients

{gt}t≥1). Another important difference is the presence of some additional parame-

ters: the fixed step-size 𝜂 and the additive constant 𝜌 for making Ht,qq term non-zero.

These additional degrees of freedom might be beneficial from the generalization

perspective. However, an increased computational cost has to be expected due to the

cross-validation needed for their selection. Both versions of the regularized stochas-

tic k-means method presented in Sects. 5.3 and 5.4 are available for download.
6

6
http://www.esat.kuleuven.be/stadius/ADB/jumutc/softwareSALSA.php.

http://www.esat.kuleuven.be/stadius/ADB/jumutc/softwareSALSA.php
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Algorithm 4: l1-Regularized stochastic k-means [55]

Data: Ŝ ,C > 0, 𝜂 > 0, 𝜌 > 0,T ≥ 1,Tout ≥ 1, k ≥ 2, 𝜀 > 0
1 Initialize 𝐌0 randomly for all clusters (1 ≤ l ≤ k)

2 for p ← 1 to Tout do
3 Initialize empty matrix 𝐌p

4 Partition Ŝ by c(x) = argminl ‖𝐌
(l)
p−1 − 𝐱‖2

5 for Sl ⊂ Ŝ in parallel do
6 Initialize 𝜇𝜇𝜇

(l)
1 randomly, ĝ0 = 0

7 for t ← 1 to T do
8 Draw a sample 𝐱t ∈ Sl

9 Calculate gradient gt = 𝜇𝜇𝜇
(l)
t − 𝐱t

10 Find the average ĝt =
t−1
t
ĝt−1 +

1
t
gt

11 Calculate Ht,qq = 𝜌 + ‖g1∶t,q‖2
12 𝜇𝜇𝜇

(l)
t+1,q = sign(−ĝt,q)

𝜂t
Ht,qq

[|ĝt,q| − C]+
13 if ‖𝜇𝜇𝜇(l)

t − 𝜇𝜇𝜇
(l)
t+1‖2 ≤ 𝜀 then

14 Append(𝜇𝜇𝜇(l)
t+1,𝐌p)

15 return
16 end
17 end
18 Append(𝜇𝜇𝜇(l)

T+1, 𝐌p)

19 end
20 end
21 return Ŝ is partitioned by c(x) = argminl ‖𝐌

(l)
Tout

− 𝐱‖2

5.5 Influence of Outliers

Thanks to the regularization terms that have been added to the k-means objective in

Eqs. (13) and (12), the regularized stochastic k-means becomes less sensitive to the

influence of the outliers. Furthermore, the stochastic optimization schemes allow to

reduce also the sensitivity to the initialization. In order to illustrate this aspects, a

synthetic dataset consisting of three Gaussian clouds corrupted by outliers is used

as benchmark. As shown in Fig. 3, while k-means can fail to recover the true clus-

ter centroids and, as a consequence, produces a wrong partitioning, the regularized

schemes are always able to correctly identify the three clouds of points.

5.6 Theoretical Guarantees

In this section a theoretical analysis of the algorithms described previously is dis-

cussed. In case of the l2-norm, two results in expectation obtained by [52] for smooth

and strongly convex functions are properly reformulated. Regarding the l1-norm, our
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Fig. 3 Influence of outliers. (Top) K-means clustering of a synthetic dataset with three clusters

corrupted by outliers. (Bottom) In this case RSKM is insensitive to the outliers and allows to per-

fectly detect the three Gaussians, while K-means only yields a reasonable result 4 times out of 10

runs
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theoretical results are stemmed directly from various lemmas and corollaries related

to the adaptive subgradient method presented in [54].

5.6.1 l𝟐-norm

As it was shown in Sect. 5.3 the l2-regularized k-means objective (12) is a smooth

strongly convex function with Lipschitz continuous gradient. Based on this, an upper

bound on f (𝜇𝜇𝜇(l)
T ) − f (𝜇𝜇𝜇(l)

∗ ) in expectation can be derived, where 𝜇𝜇𝜇
(l)
∗ denotes the opti-

mal center for the l-th cluster, where l = 1,… , k.

Theorem 1 Consider strongly convex function f (𝜇𝜇𝜇(l)) in Eq. (12) which is 𝜈-smooth
with respect to 𝜇𝜇𝜇

(l)
∗ over the convex set W . Suppose that 𝔼‖ĝt‖2 ≤ G2. Then if we

take any C > 0 and pick the step-size 𝜂 = 1
C
t, it holds for any T that:

𝔼[f (𝜇𝜇𝜇(l)
T ) − f (𝜇𝜇𝜇(l)

∗ )] ≤
2G2

(C + 1)T
. (16)

Proof This result follows directly from Theorem 1 in [52] where the 𝜈-smoothness is

defined as f (𝜇𝜇𝜇(l)) − f (𝜇𝜇𝜇(l)
∗ ) ≤

𝜈

2
‖𝜇𝜇𝜇(l) − 𝜇𝜇𝜇

(l)
∗ ‖. From the theory of convex optimization

we know that this inequality is a particular case of a more general inequality for func-

tions with Lipschitz continuous gradients. From Sect. 5.3 we know that our Lipschitz

constant is L = C + 1. Plugging the already known constants into the aforementioned

Theorem 1 completes our proof.

Furthermore, an upper bound on ‖𝜇𝜇𝜇T − 𝜇𝜇𝜇∗‖
2

in expectation can be obtained:

Theorem 2 Consider strongly convex function f (𝜇𝜇𝜇) in Eq.(12) over the convex set
W . Suppose that 𝔼‖ĝt‖2 ≤ G2. Then if we take any C > 0 and pick the step-size
𝜂 = 1

C
t, it holds for any T that:

𝔼[‖𝜇𝜇𝜇T − 𝜇𝜇𝜇∗‖
2)] ≤ 4G2

(C + 1)2T
. (17)

Proof This result directly follows from Lemma 1 in [52] if we take into account that

f (𝜇𝜇𝜇) is (C + 1)-strongly convex.

5.6.2 l𝟏-norm

First consider the following implication of Lemma 4 in [54] over the running sub-

gradient gt = 𝜇𝜇𝜇
(l)
t − xxxt of the first term in the optimization objective defined in

Eq. (13):

T∑

t=1
‖f ′t (𝜇𝜇𝜇

(l)
t )‖2 ≤ 2

d∑

l=1
‖g1∶T ,q‖2. (18)



20 R. Langone et al.

Table 1 Datasets

Size Dataset N d

Small Iris 150 4

Ecoli 336 8

Libras 360 91

Dermatology 366 33

Vowel 528 10

Spambase 4601 57

S1 5000 2

S2 5000 2

S3 5000 2

S4 5000 2

Medium Opt digits 5620 64

Pen digits 10992 16

Magic 19020 11

RCV1 20242 1960

Shuttle 58000 9

Large Skin 245057 3

Covertype 581012 54

GalaxyZoo 667944 9

Poker 1025010 10

Susy 5000000 18

Higgs 11000000 28

where ‖g1∶T ,q‖2 is the time-based norm of the q-th coordinate. Here we can see

a direct link to some of our previously presented results in Theorem 2 where we

operate over the bounds of iterate specific subgradients.

Theorem 3 By defining the following infinity norm D∞ = sup
𝜇𝜇𝜇(l)∈MMM ‖𝜇𝜇𝜇(l) − 𝜇𝜇𝜇

(l)
∗ ‖∞

w.r.t. the optimal solution 𝜇𝜇𝜇
(l)
∗ , setting the learning rate 𝜂 = D∞∕

√
2 and applying

update steps to 𝜇𝜇𝜇(l)
t in Algorithm 4 we get:

𝔼t∈{1…T}[f (𝜇𝜇𝜇
(l)
t ) − f (𝜇𝜇𝜇(l)

∗ )] ≤
√
2D∞
T

d∑

l=1
‖g1∶T ,l‖2. (19)

Proof Our result directly follows from Corollary 6 in [54] and averaging the regret

term R
𝜙
(T) (defining an expectation over the running index t) w.r.t. the optimal solu-

tion f (𝜇𝜇𝜇(l)
∗ ).

Our bounds imply faster convergence rates than non-adaptive algorithms on sparse

data, though this depends on the geometry of the underlying optimization space of

MMM.
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Fig. 4 FSKSC parameters selection. (Top) Tuning of the Gaussian kernel bandwidth 𝜎 (Bottom)
Change of the cluster performance (median ARI over 30 runs) with respect to the Nyström subset

size m. The simulations refer to the S1 dataset
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Fig. 5 RSKM and PPC
parameters selection.

Tuning of the regularization

parameter for RSKM and

PPC approaches by means of

the WCSS criterion,

concerning the toy dataset

shown in Fig. 3. In this case

RSKM is insensitive to the

outliers and allows to

perfectly detect the three

Gaussians (ARI = 0.99),

while the best performance

reached by the PPC method

is ARI = 0.60

6 Experiments

In this section a number of large-scale clustering algorithms are compared in terms

of accuracy and execution time. The methods that are analyzed are: fixed-size ker-

nel spectral clustering (FSKSC), regularized stochastic k-means (RSKM), parallel

plane clustering [56] (PPC), parallel k-means [9] (PKM). The datasets used in the

experiments are listed in Table 1 and mainly comprise databases available at the UCI

repository [57]. Although they relate to classification problems, in view of the clus-

ter assumption [58]
7

they can also be used to evaluate the performance of clustering

algorithms (in this case the labels play the role of the ground-truth).

The clustering quality is measured by means of two quality metrics, namely the

Davies-Bouldin (DB) [59] criterion and the adjusted rand index (ARI [60]). The

first quantifies the separation between each pair of clusters in terms of between clus-

ter scatter (how far the clusters are) and within cluster scatter (how tightly grouped

the data in each cluster are). The ARI index measures the agreement between two

partitions and is used to assess the correlation between the outcome of a clustering

algorithm and the available ground-truth.

All the simulations are performed on an eight cores desktop PC in Julia,
8

which is

a high-level dynamic programming language that provides a sophisticated compiler

and an intuitive distributed parallel execution.

7
The cluster assumption states that if points are in the same cluster they are likely to be of the same

class.

8
http://julialang.org/.

http://julialang.org/
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Fig. 6 Efficiency evaluation. Runtime of FSKSC (train + test), RSKM with l1 and l2 regulariza-

tion, parallel k-means and PPC algorithms related to the following datasets: Iris, Vowel, S1, Pen

Digits, Shuttle, Skin, Gzoo, Poker, Susy, Higgs described in Table 2

The selection of the tuning parameters has been done as follows. For all the meth-

ods the number of clusters k has been set equal to the number of classes and the tun-

ing parameters are selected by means of the within cluster sum of squares or WCSS

criterion [61]. WCSS quantifies the compactness of the clusters in terms of sum of

squared distances of each point in a cluster to the cluster center, averaged over all the

clusters: the lower the index, the better (i.e. the higher the compactness). Concerning

the FSKSC algorithm, the Gaussian kernel defined as k(𝐱i, 𝐱j) = exp

(

− ||𝐱i−𝐱j||2

𝜎l2

)

is

used to induce the nonlinear mapping. In this case, WCSS allows to select an opti-

mal bandwidth 𝜎 as shown at the top side of Fig. 4 for the S1 dataset. Furthermore,

the Nyström subset size has been set to m = 100 in case of the small datasets and

m = 150 for the medium and large databases. This setting has been empirically found

to represent a good choice, as illustrated at the bottom of Fig. 4 for the S1 dataset.

Also in case of RSKM and PPC the regularization parameter C is found as the value

yielding the minimum WCSS. An example of such a tuning procedure is depicted in

Fig. 5 in case of a toy dataset consisting of a Gaussian mixture with three components

surrounded by outliers.

Table 2 reports the results of the simulations, where the best performance over 20

runs is indicated. While the regularized stochastic k-means and the parallel k-means
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approaches perform better in terms of adjusted rand index, the fixed-size kernel spec-

tral clustering achieves the best results as measured by the Davies-Bouldin criterion.

The computational efficiency of the methods is compared in Fig. 6, from which it is

evident that parallel k-means has the lowest runtime.

7 Conclusions

In this chapter we have revised two large-scale clustering algorithms, namely regular-

ized stochastic k-means (RSKM) and fixed-size kernel spectral clustering (FSKSC).

The first learns in parallel the cluster prototypes by means of stochastic optimization

schemes implemented through Map-Reduce, while the second relies on the Nyström

method to speed-up a kernel-based formulation of spectral clustering known as ker-

nel spectral clustering. These approaches are benchmarked on real-life datasets of

different sizes. The experimental results show their competitiveness both in terms of

runtime and cluster quality compared to other state-of-the-art clustering algorithms

such as parallel k-means and parallel plane clustering.
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Abstract In data science, there are important parameters that affect the accuracy of

the algorithms used. Some of these parameters are: the type of data objects, the mem-

bership assignments, and distance or similarity functions. In this chapter we describe

different data types, membership functions, and similarity functions and discuss the

pros and cons of using each of them. Conventional similarity functions evaluate

objects in the vector space. Contrarily, Weighted Feature Distance (WFD) functions

compare data objects in both feature and vector spaces, preventing the system from

being affected by some dominant features. Traditional membership functions assign

membership values to data objects but impose some restrictions. Bounded Fuzzy

Possibilistic Method (BFPM) makes possible for data objects to participate fully or

partially in several clusters or even in all clusters. BFPM introduces intervals for

the upper and lower boundaries for data objects with respect to each cluster. BFPM

facilitates algorithms to converge and also inherits the abilities of conventional fuzzy

and possibilistic methods. In Big Data applications knowing the exact type of data

objects and selecting the most accurate similarity [1] and membership assignments

is crucial in decreasing computing costs and obtaining the best performance. This

chapter provides data types taxonomies to assist data miners in selecting the right
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learning method on each selected data set. Examples illustrate how to evaluate the

accuracy and performance of the proposed algorithms. Experimental results show

why these parameters are important.

Keywords Bounded fuzzy-possibilistic method ⋅Membership function ⋅ Distance

function ⋅ Supervised learning ⋅ Unsupervised learning ⋅ Clustering ⋅ Data type ⋅
Critical objects ⋅ Outstanding objects ⋅ Weighted feature distance

1 Introduction

The growth of data in recent years has created the need for the use of more sophisti-

cated algorithms in data science. Most of these algorithms make use of well known

techniques such as sampling, data condensation, density-based approaches, grid-

based approaches, divide and conquer, incremental learning, and distributed com-

puting to process big data [2, 3]. In spite of the availability of new frameworks for

Big Data such as Spark or Hadoop, working with large amounts of data is still a

challenge that requires new approaches.

1.1 Classification and Clustering

Classification is a form of supervised learning that is performed in a two-step process

[4, 5]. In the training step, a classifier is built from a training data set with class labels.

In the second step, the classifier is used to classify the rest of the data objects in the

testing data set.

Clustering is a form of unsupervised learning that splits data into different groups

or clusters by calculating the similarity between the objects contained in a data set

[6–8]. More formally, assume that we have a set of n objects represented by O =
{o1, o2, ... , on} in which each object is typically described by numerical feature −
vector data that has the form X = {x1, ... , xm} ⊂ Rd

, where d is the dimension

of the search space or the number of features. In classification, the data set is

divided into two parts: learning set OL = {o1, o2, ... , ol} and testing set OT = {ol+1,
ol+2, ... , on}. In these kinds of problems, classes are classified based on a class

label xl. A cluster or a class is a set of c values {uij}, where u represents a member-

ship value, i is the ith object in the data set and j is the jth class. A partition matrix

is often represented as a c × n matrix U = [uij] [6, 7]. The procedure for member-

ship assignment in classification and clustering problems is very similar [9], and for

convenience in the rest of the paper we will refer only to clustering.

The rest of the chapter is organized as follow. Section 2 describes the conventional

membership functions. The issues with learning methods in membership assign-

ments are discussed in this section. Similarity functions and the challenges on con-

ventional distance functions are described in Sect. 3. Data types and their behaviour
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are analysed in Sect. 4. Outstanding and critical objects and areas are discussed in

this section. Experimental results on several data sets are presented in Sect. 5. Dis-

cussion and conclusion are presented in Sect. 6.

2 Membership Function

A partition or membership matrix is often represented as a c × n matrix U = [uij],
where u represents a membership value, i is the ith object in the data set and j is

the jth class. Crisp, fuzzy or probability, possibilistic, bounded fuzzy possibilistic

are different types of partitioning methods [6, 10–15]. Crisp clusters are non-empty,

mutually-disjoint subsets of O:

Mhcn =
{

U ∈ ℜc×n| uij ∈ {0, 1}, ∀j, i;

0 <

n∑

i=1
uij < n, ∀j;

c∑

j=1
uij = 1, ∀i

}

(1)

where uij is the membership of the object oi in cluster j. If the object oi is a member

of cluster j, then uij = 1; otherwise, uij = 0. Fuzzy clustering is similar to crisp

clustering, but each object can have partial membership in more than one cluster

[16–20]. This condition is stated in (2), where data objects may have partial nonzero

membership in several clusters, but only full membership in one cluster.

Mfcn =
{

U ∈ ℜc×n| uij ∈ [0, 1], ∀j, i;

0 <

n∑

i=1
uij < n, ∀j;

c∑

j=1
uij = 1, ∀i

}

(2)

An alternative partitioning approach is possibilistic clustering [8, 18, 21]. In (3)

the condition
∑c

j=1 uij = 1 is relaxed by substituting it with
∑c

j=1 uij > 0.

Mpcn =
{

U ∈ ℜc×n| uij ∈ [0, 1], ∀j, i;

0 <

n∑

i=1
uij < n, ∀j;

c∑

j=1
uij > 0, ∀i

}

(3)

Based on (1), (2) and (3), it is easy to see that all crisp partitions are subsets of

fuzzy partitions, and a fuzzy partition is a subset of a possibilistic partition, i.e.,

Mhcn ⊂ Mfcn ⊂ Mpcn [8].
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2.1 Challenges on Learning Methods

Regarding the membership functions presented above we look at the pros and cons

of using each of these functions. In crisp memberships, if the object oi is a member of

cluster j, then uij = 1; otherwise, uij = 0. In such a membership function, members

are not able to participate in other clusters and therefore it cannot be used in some

applications such as in applying hierarchical algorithms [22]. In fuzzy methods (2),

each column of the partition matrix must sum to 1 (
∑c

j=1 uij = 1) [6]. Thus, a property

of fuzzy clustering is that, as c becomes larger, the uij values must become smaller.

Possibilistic methods have also some drawbacks such as offering trivial null solu-

tions [8, 23] and lack of upper and lower boundaries with respect to each cluster

[24]. Possibilistic methods do not have this constraint that fuzzy method have, but

fuzzy methods are restricted by the constraint (
∑c

j=1 uij = 1).

2.2 Bounded Fuzzy Possibilistic Method (BFPM)

Bounded Fuzzy Possibilistic Method (BFPM) makes it possible for data objects to

have full membership in several or even in all clusters. This method also does not

have the drawbacks of fuzzy and possibilistic clustering methods. BFPM in (4), has

the normalizing condition 1∕c
∑c

j=1 uij. Unlike Possibilistic method (uij > 0) there is

no boundary in the membership functions. BFPM employs defined intervals [0, 1]
for each data object with respect to each cluster. Another advantage of BFPM is that

its implementation is relatively easy and that it tends to converge quickly.

Mbfpm =
{

U ∈ ℜc×n| uij ∈ [0, 1], ∀j, i;

0 <

n∑

i=1
uij < n, ∀j; 0 < 1∕c

c∑

j=1
uij ≤ 1, ∀i

}

(4)

BFPM avoids the problem of decreasing the membership degrees of objects, as the

number of clusters increases [25, 26].

2.3 Numerical Example

Assume U = {uij(x)|xi ∈ Lj} is a function that assigns a membership degree for each

point xi to a line Lj, where a line represents a cluster. Now consider the following

equation which describes n lines crossing at the origin:

AX = 0 (5)
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where matrix A is a n × m coefficient matrix, and X is an m × 1 matrix, in which n
is the number of lines and m is the number of dimensions. From a geometrical point

of view, each line containing the origin is a subspace of Rm
. Equation (5) describes

n with its different lines as a subspace. Without the origin, each of those lines is not

a subspace, since the definition of a subspace comprises the existence of the null

vector as a condition, in addition to other properties [27].

When trying to design a probability/fuzzy-based clustering method that could

create clusters using all the points in all lines, it should be noted that removing or

even decreasing the membership value of the origin ruins the subspace. For instance,

x = 0, y = 0, x = y, and x = −y are equations representing some of those lines with

some data objects (points) on them as shown in the following equation. Note that all

lines contain point (0, 0).

⎡
⎢
⎢
⎢
⎣

1 0
0 1
1 1
1 −1

⎤
⎥
⎥
⎥
⎦

×
[
X
Y

]

=
⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

Assume that we have two of those lines L1 ∶ {y = 0} and L2 ∶ {x = 0} with five

points on each, including the origin, as shown in the following definitions:

L1 = {p11, p12, p13, p14, p15} = {(−1, 0), (−2, 0), (0, 0), (1, 0), (2, 0)}

L2 = {p21, p22, p23, p24, p25} = {(0,−1), (0,−2), (0, 0), (0, 1), (0, 2)}

where pij = (x, y). As mentioned, the origin is part of all lines, but for convenience,

we have given it different names such as p13 and p23 in each line above.

The point distances with respect to each line and Euclidean ||X||2 norm(

dk(x, y) =
(∑d

i=1 ∣ xi − yi ∣2
)(1∕2)

)

are shown in the (2 × 5) matrices below, where

2 is the number of clusters and 5 is the number of objects.

D1 =
[
0.0 , 0.0 , 0.0 , 0.0 , 0.0
2.0 , 1.0 , 0.0 , 1.0 , 2.0

]

D2 =
[
2.0 , 1.0 , 0.0 , 1.0 , 2.0
0.0 , 0.0 , 0.0 , 0.0 , 0.0

]

A zero value in the first matrix in the first row indicates that the object is on the first

line. For example in D1, the first row shows that all the members of set X1 are on the

first line. The second row shows how far each one of the points on the line are from

the second cluster. Likewise the matrix D2 shows the data points on the second line.

We assigned membership values to each point, using crisp and fuzzy logic as shown

in the matrices below by using the following membership function (6) for crisp and

fuzzy methods and also the conditions for these methods described in (1) and (2).
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Uij =
⎧
⎪
⎨
⎪
⎩

1 if dpij = 0

1 −
dpij
d
𝛿

if 0 < dpij ⩽ d
𝛿

0 if dpij > d
𝛿

(6)

where dpij is the Euclidean distance of object xi from cluster j, and d
𝛿

is a constant

that we use to normalize the values. In our example we used d
𝛿
= 2.

Ucrisp(L1) =
[
1.0 , 1.0 , 𝟏.𝟎 , 1.0 , 1.0
0.0 , 0.0 , 𝟎.𝟎 , 0.0 , 0.0

]

Ucrisp(L2) =
[
0.0 , 0.0 , 𝟎.𝟎 , 0.0 , 0.0
1.0 , 1.0 , 𝟎.𝟎 , 1.0 , 1.0

]

or

Ucrisp(L1) =
[
1.0 , 1.0 , 𝟎.𝟎 , 1.0 , 1.0
0.0 , 0.0 , 𝟎.𝟎 , 0.0 , 0.0

]

Ucrisp(L2) =
[
0.0 , 0.0 , 𝟎.𝟎 , 0.0 , 0.0
1.0 , 1.0 , 𝟏.𝟎 , 1.0 , 1.0

]

UFuzzy(L1) =
[
1.0 , 0.5 , 𝟎.𝟓 , 0.5 , 1.0
0.0 , 0.5 , 𝟎.𝟓 , 0.5 , 0.0

]

UFuzzy(L2) =
[
0.0 , 0.5 , 𝟎.𝟓 , 0.5 , 0.0
1.0 , 0.5 , 𝟎.𝟓 , 0.5 , 1.0

]

In crisp methods, the origin can be a member of just one line or cluster. Therefore, the

other lines without the origin can not be subspaces [27]. In other words, the example

“crossing lines at origin” can not be represented by crisp methods.

Given the properties of the membership functions in fuzzy methods, if the number

of clusters increases, the membership value assigned to each object will decrease

proportionally.

Methods such as PCM, allow data objects to obtain larger values in membership

assignments [8, 21]. But PCM needs a good initialization to perform clustering [23].

According to PCM condition (uij ≥ 0), the trivial null solutions should be handled

by modifying the membership assignments [8, 21, 23]. The authors in [8] did not

change the membership function to solve this problem, instead they introduce an

algorithm to overcome the issue of trivial null solutions by changing the objective

function as:

Jm(U,V) =
c∑

j=1

n∑

i=1
umij ||Xi − Vj||

2
A +

C∑

i=1
𝜂i

n∑

j=1
(1 − uij)m (7)

where 𝜂i are suitable positive numbers. The authors of [23] discuss more details

about (7), without considering membership functions. Implementation of such algo-

rithm needs proper constraints and also requires good initializations, otherwise the

accuracy and the results will not be reasonable [23]. Upcm can obtain different val-

ues, since the implementation of PCM can be different because the boundaries for

membership assignments with respect to each cluster are not completely defined.
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In conclusion, crisp membership functions are not able to assign membership val-

ues to data objects participating in more than one cluster. Fuzzy membership func-

tions reduce the membership values assigned to data objects with respect to each

cluster, and possibilistic membership function is not well defined with respect to

clusters. BFPM avoids the problem of reducing the membership degrees of objects

when the number of clusters increases.

Ubfpm(L1) =
[
1.0 , 1.0 , 𝟏.𝟎 , 1.0 , 1.0
0.0 , 0.5 , 𝟏.𝟎 , 0.5 , 0.0

]

Ubfpm(L2) =
[
0.0 , 0.5 , 𝟏.𝟎 , 0.5 , 0.0
1.0 , 1.0 , 𝟏.𝟎 , 1.0 , 1.0

]

BFPM allows data objects (such as the origin in the lines presented by previous

example) to be members of all clusters with full membership. Additionally, BFPM

may show which members can affect the algorithm if moved to other clusters. In

critical systems, identifying these types of objects is a big advantage, because we

may see how to encourage or prevent objects from contributing to other clusters.

The method also includes those data objects that participate in just one cluster. Some

of the issues on membership functions are described in [6, 24]. In [24] some other

examples on different membership methods are discussed.

3 Similarity Functions

Similarity function is a fundamental part in learning algorithms [6, 28–32], as any

agent, classifier, or method make use of these functions. Most of the learning meth-

ods compare a given problem with other problems to find the most suitable solution.

This methodology indicates that the solution for the most similar problem can be the

desired solution for the given problem [33].

Distance functions are based on the similarity between data objects or use prob-

ability measures. Tables 1, 2 and 3 show some well-known similarity functions

(Eqs. 8–26) in L1, L2, and Ln norms [38, 39]. The taxonomy is divided into two

categories: vector and probabilistic approaches. P and Q represent data objects or

probability measures, in d dimensional search space, and D(P,Q) presents a distance

function between P and Q. Equation (13) is introduced to normalize the search space

Table 1 Distance functions or probability measures on Minkowski family

Minkowski family Euclidean (L2) DE =
√

∑d
i=1 |Pi − Qi|

2 (8)

City block (L1) [34] DCB =
∑d

i=1 |Pi − Qi| (9)

Minkowski (Lp) [34] DMK = p
√

∑d
i=1 |Pi − Qi|

p (10)

Chebyshev (L∞) [35] DChecb = maxi|Pi − Qi| (11)
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Table 2 Distance functions or probability measures on Lvovich Chebyshev (L1) family

Lvovich family Sorensen [28] DSor =
∑d

i=1 |Pi−Qi|
∑d

i=1(Pi+Qi)
(12)

Gower [36] DGov =
1
d
d
∑d

i=1
|Pi−Qi|

Ri
(13)

DGov =
1
d

∑d
i=1 |Pi − Qi| (14)

L1 family Soergel [29] DSg =
∑d

i=1 |Pi−Qi|
∑d

i=1 max(Pi ,Qi)
(15)

Kulczynski [30] DSg =
∑d

i=1 |Pi−Qi|
∑d

i=1 min(Pi ,Qi)
(16)

Canberra [30] DCan =
∑d

i=1
|Pi−Qi|

Pi+Qi
(17)

Lorentzian [30] DLor =
∑d

i=1 ln(1 + |Pi − Qi|) (18)

Table 3 Distance functions or probability measures on x2 (L2) family

x2 family Squared euclidean DSE =
∑d

i=1(Pi − Qi)2 (19)

Pearson x2 [1] DP =
∑d

i=1
(Pi−Qi)2

Qi
(20)

L2 family Neyman x2 [1] DN =
∑d

i=1
(Pi−Qi)2

Pi
(21)

Squared x2 [1] DSQ =
∑d

i=1
(Pi−Qi)2

Pi+Qi
(22)

Probabilistic x2 [37] DPSQ = 2
∑d

i=1
(Pi−Qi)2

Pi+Qi
(23)

Divergence [37] DDiv = 2
∑d

i=1
(Pi−Qi)2

(Pi+Qi)2
(24)

Clark [30] DClk =
√

∑d
i=1

(
(Pi−Qi)
(Pi+Qi)

)2
(25)

Additive x2 [30] DAd =
∑d

i=1
(Pi−Qi)2(Pi+Qi)

(PiQi)
(26)

boundaries by dividing the equation by R, the range of the population in the data set.

The method scales down the search space by dividing the equation by d, the number

of dimensions [36]. Asymmetric distance functions (Pearson (20),Neyman (21)) and

symmetric versions of those functions
(
squared x2 (22)

)
have been proposed, addi-

tionally to probabilistic symmetric x2 (23) functions. There are other useful distance

functions such as distance functions based on histograms, signatures, and probability

density [40, 41] that we do not discuss in this paper.
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3.1 Challenges on Similarity Functions

Assume there are two objects in a three dimensional search space, such as O1 =
(2, 2, 5) and O2 = (1, 1, 1), and a prototype P = (2, 2, 2). Now if we use a distance

function such as Euclidean distance, object O2 seems overall more similar to the

prototype, but from a features’ perspective, O1 is more similar to the prototype when

compared with O2 given that they share two out of three features. This example

motivates the following distance functions. These functions can be applied in high

dimensional search spaces (d′
≫ d) typical of big data applications [16, 42, 43]

where d′
is a very large number. Let us consider:

O′

1 = (2, 2, 2, ..., x),O′

2 = (1, 1, 1, ..., 1),P′ = (2, 2, 2, ..., 2)

where

O′

1,1 = O′

1,2 = O′

1,3 = ⋯ = O′

1,d′ −1 = 2 and O′

1,d′ = x =
√
d′ + 2

O′

2,1 = O′

2,2 = O′

2,3 = ⋯ = O′

2,d′ = 1

P′

1 = P′

2 = P′

3 = ⋯ = P′

d′
= 2

According to all similarity functions presented in Tables 1, 2 and 3, we see how

these functions may have some dominant features (x >
√
d′ + 2) that may cause

algorithms to misclassify data objects.

We should evaluate the data objects’ features from different perspectives, not just

using the same scale. This is because each feature has its own effect on the similarity

function and a single feature should not have a large impact on the final result.

3.2 Weighted Feature Distances

Assume a set of n objects represented by O = {o1, o2, ... , on} in which each object

is typically represented by numerical feature − vector data, with the same priority

in features, that has the form X = {x1, ... , xm} ⊂ Rd
, where d is the dimension of

the search space or the number of features. We introduce Weighted Feature Dis-

tance (WFD) that overcome some of the issues with distance function that we have

described.

WFD(L1): Weighted feature distance (WFDL1 ) for L1 norm is:
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WFD(L1) =
(
|WiOi −WjOj|

)
=

=
d∑

k=1

(
|wkxik − w′

kxjk|
)

(27)

WFD(L2): Weighted feature distance (WFDL2 ) for L2 norm is:

WFDL2 =
√

(
WiOi −WjOj

)2 =

=

( d∑

k=1

(
|wkxik − w′

kxjk|
2)
)( 12 )

(28)

where d is the number of variables, or dimensions for numerical data objects. wk and

w′

k are the weights assigned to features of the first and the second objects respectively.

We make (wk = w′

k) if both objects are in the same scale.

We can also obtain the Euclidean distance function from (28) by assigning the same

values to wk as:

w1 = w2 = ⋯ = wd = 1

WFD(Lp): Weighted feature distance (WFDLp ) for Lp norm is:

WFD(L1) =
(
|WiOi −WjOj|

p)(
1
r
) =

=
d∑

k=1

(
|wkxik − w′

kxjk|
p)(

1
r
)

(29)

where d is the number of variables, or dimensions for numerical data objects. p and

r are coefficients that allow us to use different metrics but p and r can be equal.

wk and w′

k are the weights assigned to features of the first and the second objects

respectively. (wk = w′

k), if both objects are in the same scale.

4 Data Types

Data mining techniques extract knowledge from data objects. To obtain the most

accurate results, we need to consider the data types in our mining algorithms. Each

type of object has its own characteristic and behaviour in data sets. The type of

objects discussed in this paper help to avoid the cost of redoing mining techniques

caused by treating objects in a wrong way.
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4.1 Data Objects Taxonomies

Data mining methods evaluate data objects based on their (descriptive and predic-
tive) patterns. The type of data objects should be considered, as each type of data

object has different effect on the final results [44]. For instance, data objects known

as outlier(s) are interesting objects in anomaly detection. On the other hand, outliers

do not play any role in other applications since they are considered noise. Since each

type of data object has different effects on the final result of an algorithm, we aim to

look at different types of data from different perspectives. We start with the simplest

definition of data objects and categorize them into single variable or with two or

more variables [45].

∙ Univariate Data Object:
Observations on a single variable on data sets X = {x1, x2, ..., xn}, where n is the

number of single variable observations (xi). Univariate Data Object can be cate-

gorized into two groups:

1. Categorical or qualitative [31], that can be represented by frequency distribu-
tions and bar charts.

2. Numerical or quantitative, which can be discrete or continuous data. Dotplots
can be used to represent this type of variables.

∙ Multivariate Data Object:
Observations on a set of variables on data sets or populations presented as X =
{X1,X2, ...,Xn}, where Xi = {x1, x2, ..., xd}, n is the number of observations, and d
is the number of variables or dimensions. Each variable can be a member of the

above mentioned categories.

4.2 Complex and Advanced Objects

The growth of data in various types prevents data taxonomies for classifying data

objects into above mentioned categories. Methods dealing with data objects need to

distinguish their type to create more efficient methodologies and data mining algo-

rithms. Complex and Advanced categories are two main topics for sophisticated data

objects.

These objects have sophisticated structures, and also need advanced techniques for

storage, representation, retrieval and analysis. Table 4 shows these data objects with-

out the details. Further information can be found in [24]. An advantage of sophisti-

cated objects is in allowing miners to reduce the cost of using similarity functions on

these type of objects instead of comparing the data objects individually. For example

two networks can be compared at once instead of being compared individually.
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Table 4 Data types (Complex and advanced data objects)

Complex objects Advanced objects

Structured data object [46] Sequential patterns [47, 48]

Semi-structured data object [49] Graph and sub-graph patterns [50, 51]

Unstructured data object [52] Objects in interconnected networks [53, 54]

Spatial data object [55] Data stream or stream data [56]

Hypertext [57] Time series [58]

Multimedia [59]

4.3 Outlier and Outstanding Objects

Data objects from each of the categories previously presented, can be considered as

normal data objects that do fit the data model and obey the discovered data patterns.

Now we introduce some data objects known as Outlier and Outstanding, that cannot

be considered as normal data objects. These data objects affect the results obtained

from knowledge extracted from data sets. Data objects from these categories can be

any data object from above mentioned categorizes (complex, advanced, univariate,

and multivariate data objects). Outliers and outstanding objects are important since

they have potential ability to change the results produced by the learning algorithms.

Outlier: A data set may contain objects that do not fit the model of the data, and

do not obey the discovered patterns [60, 61]. These data objects are called ‘outliers’
[17, 24]. Outliers are important because they might change the behaviour of the

model, as they are far from the discovered patterns and are mostly known as noise

or exceptions. Outliers are useful in some applications such as fraud and anomaly

detection [62], as these rare cases are more interesting than the normal cases. Outlier

analysis is used in a data mining technique known as outlier mining.

Outstanding Objects Unlike outliers, a data set may contain objects that do fit the

model of the data and obey the discovered patterns fully, even in all models or clus-

ters. These data objects are important because they do not change the behaviour of the

model, as they are in the discovered patterns and are known as full members. These

critical objects named as “outstanding” objects cannot be removed from any cluster

that they participate in [25]. The another important property of outstanding objects

is that they may easily move from one cluster to another by small changes in even

one dimension [24]. The crossing lines at origin example describes the behaviour

and properties of outstanding objects. Origin should be a member of each line with

full membership degree, otherwise each line without the origin can not be consid-

ered as a subspace. In such cases, we can see the importance of outstanding objects,

in having full membership in several or in all objective functions [63].

In next section we describe some experimental results on clustering methods to

illustrate how mining methods deal with outstanding objects, and how these data

objects can affect the final results.
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5 Experimental Results

Experiments are based on three scenarios. The first scenario compares the accuracy

of membership functions on clustering and classification methods on some data sets

shown in Table 5. In the second scenario, we check the effect of dominant features

on similarity functions and consequently on final results of clustering methods. Data

sets are selected based on a different number of features as we aim to check how

proposed methods can be influenced by dominant features. Finally, the third sce-

nario provides an environment to evaluate the behaviour of critical areas and objects

that we have called Outstanding. In all scenarios in our experiments, we compare the

accuracy of different fuzzy and possibilistic methods with BFPM and BFPM-WFD

algorithms presented in Algorithms (1) and (2).

BFPM Algorithm This algorithm uses the conventional distance functions for mem-

bership assignments. Equations (30) and (31) show how the algorithm calculates (uij)
and how the prototypes (vj)will be updated in each iteration. The algorithm runs until

the condition is false:

max1≤k≤c{||Vk,new − Vk,old||
2} < 𝜀

The value assigned to 𝜀 is a predetermined constant that varies based on the type of

objects and clustering problems.

U is the (n × c) partition matrix, V = v1, v2, ..., vc is the vector of c cluster centers in

ℜd
, m is the fuzzification constant, and ||.||A is any inner product A-induced norm

[6, 64], and Euclidean distance function presented by (32).

DE =

√
√
√
√

d∑

i=1
|Xi − Yi|2

=
√

(X1 − Y1)2 + (X2 − Y2)2 +⋯ + (Xd − Yd)2 (32)

Table 5 Multi dimensional data sets

Dataset Attributes No. objects Clusters

Iris 4 150 3

Pima Indians 8 768 2

Yeast 8 1299 4

MAGIC 11 19200 2

Dermatology 34 358 6

Libras 90 360 15
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Algorithm 1 BFPM Algorithm

Input: X, c, m

Output: U, V
Initialize V;
while max1≤k≤c{||Vk,new − Vk,old||

2} > 𝜀 do

uij =
[ c∑

k=1

( ||Xi − vj||
||Xi − vk||

) 2
m−1

] 1
m
, ∀i, j (30)

Vj =
∑n

i=1(uij)
mxi

∑n
i=1(uij)m

, ∀j ; (0 <
1
c

c∑

j=1
uij ≤ 1). (31)

end while

where d is the number of features or dimensions, and X and Y are two different

objects in d dimensional search space.

BFPM-WFD Since BFPM algorithm assigns (uij) based only on the total distance

shown by (32), we implement algorithm BFPM-WFD (BFPM Weighted Feature Dis-

tance) not only to compare the objects based on their similarity using the distance

function, but also to check the similarity between features of objects and similar

features of prototypes individually.

Algorithm 2 BFPM-WFD

Input: X, c, m

Output: U, V
Initialize V;
while max1≤k≤c{||Vk,new − Vk,old||

2} > 𝜀 do

{

uij =
[ c∑

k=1

( ||Xi − vj||
||Xi − vk||

) 2
m−1

] 1
m
, ∀i, j ;

||Xi − Xj|| =
( d∑

f=1

(
|wf .xif − w′

f .xjf |
2)
)( 12 )

}

(33)

Vj =
∑n

i=1(uij)
mxi

∑n
i=1(uij)m

, ∀j ; (0 <
1
c

c∑

j=1
uij ≤ 1). (34)

end while

wf and w′

f are weights assigned to features (xif and xjf ) of objects Xi and Xj respec-

tively, presented by (28). Table 6 illustrates the compared results between BFPM and

other fuzzy and possibilistic methods: Type-1 fuzzy sets (T1), Interval Type-2 fuzzy

sets (IT2), General Type-2 (GT2), Quasi-T2 (QT2), FCM and PCM on four data sets
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Table 6 Compared accuracy between conventional fuzzy, possibilistic, and BFPM methods

Methods Iris Pima Indian Yeast MAGIC

T1 (fuzzy) [65] 95.15 73.59 60.03 77.26

IT2 (fuzzy) [65] 94.18 74.38 54.81 75.63

QT2 (fuzzy) [65] 94.28 75.05 55.97 77.44

GT2 (fuzzy) [65] 94.76 74.40 58.22 78.14

FCM (fuzzy) [12] 88.6 74 67.4 54

PCM

(possibilistic)

[12]

89.4 59.8 32.8 62

BFPM 97.33 99.9 67.71 100.0

BFPM-WFD 100.0 100.0 82.3 100.0

Table 7 Compared accuracy based on distance functions

Dataset ↓ |
|
|

Dis.Func.
⟶

Euclidean (L2) WFDL2 (w = 1
2
) WFD (L2) w = 1

3
WFDL2 (w = 1

d
)

Irish 97.33 100 100 100

Pima 99.9 100 100 100

Yeast 67.71 77.2 77.3 82.03
MAGIC 100.0 100.0 100.0 100.0

Dermatology 77.4 89.5 83.0 92.4
Libras 57.0 69.0 62.5 61.4

“Iris”, “Pima”, “Yeast” and “MAGIC”. This comparison is based on the first sce-

nario, and as results show, BFPM performs better than the conventional fuzzy and

possibilistic methods.

Table 7 compares the accuracy between WFD with different weights (w = 1∕2,
w = 1∕3,w = 1∕d) and Euclidean distance function on different data sets “Iris”,

“Pima”, “Yeast”, “Magic”, “Dermatology” and “Libras”, where d is the number of

dimensions. According to the table, dominant features has less impact on weighted

features distance functions. The table also shows that in some data sets such as

“Libras” larger values for assigned weights are most desirable and in some other

such as “Yeast” lower values are most suitable. The comparison between conven-

tional similarity function and WFD was implemented with respect to the second

scenario.
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Table 8 Outstanding objects with ability to move from one cluster to another

Dataset No. objects >90% >80% >70%

Irish 150 25 99 99

Pima 768 677 751 751

Yeast 1299 868 1135 1264

MAGIC 19200 0 34 424

Dermatology 358 286 331 355

Libras 360 238 317 336

According to the last scenario, we aim to check the ability of outstanding objects

to participating in other clusters. Table 8 demonstrates the potential ability of data

objects to get membership values from the closest cluster, besides their own clusters.

For example, the first row of the table shows that 25 data objects from Iris data set

have the potential ability of more than 90% to participate in the closest cluster. As

the table presents, some data objects are able to move to another cluster with small

changes. These kinds of behavior can be beneficial or produce errors.

In some safety critical systems such as cancerous human cell detection, or fraud-

ulent banking transactions, we need to prevent data objects to move to other clusters.

Figures 1, 2, 3 and 4 plot data objects on data sets “Iris”, and “Libras” [66]

obtained by Fuzzy and BFPM methods with respect to two closest clusters. By com-

paring the plots for BFPM and fuzzy methods [24], critical areas and objects are

being shown. This comparison is being highlighted when we look at the accuracy

of Fuzzy, Possibilistic, and BFPM as well as considering the ability of outstanding

objects to affect performance. In fuzzy methods, data objects are mostly separated.

In this situation the critical areas are not shown, but instead in BFPM method, critical

areas, and also outstanding objects may be identified.

Fig. 1 Mutation plot for Iris data set, prepared by BFPM method
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Fig. 2 Mutation plot for Iris data set, prepared by Fuzzy method

Fig. 3 Mutation plot for Libras data set, prepared by BFPM method

Fig. 4 Mutation plot for Libras data set, prepared by Fuzzy method
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6 Conclusion

This chapter describes some of the most important parameters in learning methods

for partitioning, such as similarity functions, membership assignments, and type of

data objects. Additionally, we described the most used and well known membership

functions. The functionality of these membership functions was compared on differ-

ent scenarios. The challenges in using similarity functions that could deal correctly

with dominant features is another concept studied in this chapter. The presented sim-

ilarity functions were compared in different aspects.

This chapter also discusses different types of data objects and their potential effect

on learning algorithm’s performance. Critical objects known as outstanding were

described in the context of several examples.

Our results show that BFPM performs better than other conventional fuzzy and pos-

sibilistic algorithms discussed in this chapter on the presented data sets. WFD helps

learning methods to handle the impact of the dominant features in their processing

steps. Outstanding objects are the most critical and many learning methods do not

even consider this type of data objects. BFPM provides the most flexible environ-

ment for outstanding objects by analysing how critical objects can make the system

more stable. We found that the most appropriate membership and similarity function

should be selected, regarding the type of data objects considered by our model.
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Enhanced Over_Sampling Techniques
for Imbalanced Big Data Set Classification
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Abstract Facing hundreds of gigabytes of data has triggered a need to reconsider
data management options. There is a tremendous requirement to study data sets
beyond the capability of commonly used software tools to capture, curate and
manage within a tolerable elapsed time and also beyond the processing feasibility of
the single machine architecture. In addition to the traditional structured data, the
new avenue of NoSQL Big Data has urged a call to experimental techniques and
technologies that require ventures to re-integrate. It helps to discover large hidden
values from huge datasets that are complex, diverse and of a massive scale. In many
of the real world applications, classification of imbalanced datasets is the point of
priority concern. The standard classifier learning algorithms assume balanced class
distribution and equal misclassification costs; as a result, the classification of
datasets having imbalanced class distribution has produced a notable drawback in
performance obtained by the most standard classifier learning algorithms. Most of
the classification methods focus on two-class imbalance problem inspite of
multi-class imbalance problem, which exist in real-world domains. A methodology
is introduced for single-class/multi-class imbalanced data sets (Lowest vs. Highest
—LVH) with enhanced over_sampling (O.S.) techniques (MEre Mean Minority
Over_Sampling Technique—MEMMOT, Majority Minority Mix mean—MMMm,
Nearest Farthest Neighbor_Mid—NFN-M, Clustering Minority Examples—CME,
Majority Minority Cluster Based Under_Over Sampling Technique—MMCBUOS,
Updated Class Purity Maximization—UCPM) to improve classification. The study is
based on broadly two views: either to compare the enhanced non-cluster techniques
to prior work or to have a clustering based approach for advance O.S. techniques.
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Finally, this balanced data is to be applied to form Random Forest (R.F.) tree for
classification. O.S. techniques are projected to apply on imbalanced Big Data using
mapreduce environment. Experiments are suggested to perform on Apache Hadoop
and Apache Spark, using different datasets from UCI/KEEL repository. Geometric
mean, F-measures, Area under curve (AUC), Average accuracy, Brier scores are
used to measure the performance of this classification.

Keywords Imbalanced datasets ⋅ Big data ⋅ Over_sampling techniques ⋅ Data
level approach ⋅ Minority class ⋅ Multi-class ⋅ Mapreduce ⋅ Clustering ⋅
Streaming inputs ⋅ Reduct

1 Introduction

Big Data is a watchword of today’s research which is basically dependent on huge
digital data generated in exabytes per year. There is no dearth of data in today’s
enterprise, but the spotlight is to focus on integration, exploitation and analysis of
information. The study of some performance techniques is needed to harness the
efficient handling of Big Data streams.

Scientific research has a wash in a flood of data today, which has set a revolution
by this Big Data. The new notion of decision-making through the promise of Big
Data is impeded with various problems like heterogeneity, scale, timelines, com-
plexity and privacy. Addressing the same at all phases will help to create value from
data. Traditional data management principles are unable to address the full spec-
trum of enterprise requirements with less structured data. As per resources [1], the
size of digital data in 2011 is roughly 1.8 Zettabytes (1.8 trillion gigabytes) which is
estimated to be supported by networking infrastructure having to manage 50 times
more information by year 2020 [2]. Concentric considerations of efficiency, eco-
nomics and privacy should carefully be planned. Big Data challenges induced by
traditional data generation, consumption and analytics are handled efficiently. But,
recently in sighted characteristics of Big Data has shown vital trends of access,
mobility, utilization as well as ecosystem capabilities [3, 5, 7]. Now-a-days, mining
knowledge from huge varied data for better decision making is a challenge [4].

1.1 Basics of Data Mining

Data mining is the extraction of predictive information from large datasets. The
various data mining tools are used to predict useful information from available
datasets, which helps organization to make proactive business-driven decisions [6].
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Data mining is an application of the algorithm to find patterns and relationships
that may exist in databases. The databases may contain a large number of records
and machine learning is used to perform a search over this space. Now, machine
learning is defined as “algorithmic part of data mining process”. With the aim of
extracting useful knowledge from complex real-world problems, machine learning
techniques has also been useful in the last few years. Many real-world problems
contain few examples of the concept to be described due to either the rarity or the
cost to obtain them. This situation consequences for rare classes or rare cases in
datasets, leading to confront new avenues in mining and learning [8–10].

1.2 Classification

Data mining is a data driven approach in the sense that it automatically extracts the
patterns from large datasets. Various data mining techniques are present, including
association rules, decision tree classification, clustering, sequence mining and so
on.

Classification is the most popular application area of data mining. Classification
is one kind of predictive modelling in data mining. It is a process of assigning new
objects to predefined categories or classes. In classification, building of the model is
a supervised learning process and this model can be represented in various forms,
like neural networks, mathematical formulae, decision trees and classification rules
[11].

Training examples are described in two terms: (a) attributes (b) class labels. The
attributes can be categorical or numeric and class labels are called as predictive or
output attributes. The training examples are processed using some machine learning
algorithms to build decision functions and these functions are used to predict class
labels for new datasets. Numbers of classification techniques are available, some of
them are as follows:

1. Decision Tree based Methods
2. Rule-based Methods
3. Memory based reasoning
4. Neural Networks
5. Naïve Bayes and Bayesian Belief Networks
6. Support Vector Machines

The classification plays an important role and is an essential tool for several
organizations and in many individuals’ lives. Classification makes easier to locate,
retrieve and maintain things and information. Without classification it is impossible
to organize things in a specific order. Hence, it becomes difficult to find things since
there is no index to refer. For this reason, classification comes into existence to
make our life better and easier.
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1.3 Clustering

Clustering is considered as the unsupervised learning problem. Every problem of
this type deals with finding structure or similarities in a collection of unlabeled data
or objects. A cluster is a collection of objects or data which are “similar” between
the particular clusters and “dissimilar” to the object or data belongs to the other
clusters [11]. The most common similarity measure criterion is ‘distance’. If cluster
is formed on the basis of distance, then it is called as ‘distance based clustering’; in
which two or more objects or data will belong to the same cluster if they are “too
close to each other” using a given distance. There are various types of distance
measures: Euclidian distance, Manhattan distance, Minikowski distance, Correla-
tion distance. Different distance measures, gives different resulting clusters. Clus-
tering is of the two types:

i. Hierarchical Clustering:
Algorithms of hierarchical clustering create hierarchical decomposition of the
objects or the data using similarity criteria with the agglomerative approach and
divisive approach. By this algorithm, cluster is formed from dendrogram which
helps for visualization.

ii. Partitional Clustering:
Partitioning algorithms construct the partitions of the data or objects and then
evaluate them as per the similarity criteria.

Hierarchical algorithms are desirable for the small datasets and partitioning
algorithms are desirable for the larger datasets [13]. The performance of various
clustering algorithms which are supported by Mahout on different cloud runtime
such as Hadoop and Granule are evaluated in [11, 14]. Granule (stream processing
system) gives better result than hadoop, but doesn’t support for failure recovery.
K-means requires a user to specify a K value. K-means clustering is the best choice
when all points belong to distinct groups and when it initially approaching a new
dataset. K-means runs quickly and can find large distinctions within the data. Fuzzy
C-means operates in the same manner as k-means, with the modification that
instead of each data point belongs to a single cluster; each data point is assigned a
probability of belonging to every cluster. Dirichlet and LDA take long time to run
than K-means and fuzzy C-means due to its complexity. [15] compares k-means
and fuzzy c-means for clustering a noisy realistic and big Wikipedia’s dataset using
apache mahout. The variance of both algorithms is according to initial seeding.
Generally, k-means is slower than the fuzzy version. However, with random
seeding one cannot assume which method will be faster. In this research, it is found
that in a noisy dataset, fuzzy c-means can lead to inferior cluster quality than
k-means. [13] has proven Partitional Clustering algorithm is best suited for large
datasets by studying and comparing the results of Partitional K-means, Hierarchical
algorithm and Expectation Maximization (EM) Clustering Algorithm.
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Osama [16] has proposed an idea for text categorization in the vector space
model using Term Frequency-Inverse Document Frequency (TF-IDF). TF-IDF is
very sensitive for feature selection settings and less stable. It is the most common
weighting function for information retrieval problem and text mining. It assigns
weight to each vector component of the document and categorizes those [12].

Another challenge for data mining algorithms is Big Data. The techniques used
to deal with Big Data are focused on fast, scalable and parallel implementations. To
reach this goal, mapreduce framework is followed. The mapreduce framework is
one of the most popular procedures used for handling Big Data. The working of this
framework is based on—divide and conquer strategy, where the dataset is divided
into subsets that are easy to manage and partial results from earlier stages are
combined for further needful processing.

Furthermore, many real world applications present classes which have an
insignificant number of samples as compared to other classes. This situation is
called as a class imbalance problem. Usually, the insignificant samples are the
main focus of study; hence it is necessary to classify them correctly. In machine
learning research, learning from imbalanced datasets is an issue that has attracted a
lot of attention. The statistical learning methods are suited for balanced data sets
and may ignore the negligible samples which are important. That’s why it is
required to consider the features of the problem and solve it correctly.

In this chapter, the various enhanced O.S. techniques used to deal with
single-class/multi-class imbalanced data problem are presented. These approaches
are evaluated on the basis of potency in correct classification of each instance of
each class and time required to build the classification model. In order to perform
classification, R.F. which is a popular and well-known decision tree ensemble
method can be used. It is proven that R.F. is scalable, robust and gives better
performance [6]. In experimental studies, the mapreduce based implementation of
non-cluster or clustering based O.S. is required to carry out. In an imbalanced data
domain, the efficacy in classification can basically be evaluated using two measures:
Geometric Mean for true rates and β-F- Measure [11].

While the benefits of Big Data are real and significant, there are many technical
challenges that must be addressed to fully realize the potential. The challenges are:

• New data management and analysis platforms
• Techniques for addressing imbalance data sets
• Handling huge streaming data
• Feature selection for reduced data set
• Enhancement for traditional mining iteration based techniques over new

frameworks
• Soft computing and machine learning techniques for efficient processing
• Privacy management
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2 Mapreduce Framework and Classification
of Imbalanced Data Sets

2.1 MapReduce Framework

Real world areas such as Telecommunication, Financial Businesses, Health Care,
Pharmaceuticals, etc. are generating enormous amounts of data. It is the need of an
hour to get useful business insights from this data and has become a challenge to
standard data mining techniques. Traditionally, large amount of data is managed by
data warehouses. But, data warehouses have some drawbacks as they don’t cope-up
with management of massive data that grow day by day. Consequently, the Big
Data concept came into existence. Big Data is data that overshoot the processing
capacity of traditional database systems. The data is too large, moves too fast or
doesn’t fit into a predefined structure of database architecture [11]. To process this
massive size, high velocity structured/unstructured streaming data, there is a need of
advance processing framework to deal with distributed computing using com-
modity hardware. Hadoop is the Apache framework, has capabilities as a data
platform. Hadoop and its surrounding ecosystem solution vendors provide the
enterprise requirements. It also helps to integrate together the Data Warehouse and
other enterprise data systems as the part of modern data architecture. It is a step on
the journey toward delivering an enterprise ‘Data Lake’ [8].

Since 2012 Big Data has become a hot IT buzzword and it is defined in terms of
3 V’s such as Volume, Velocity and Variety. [3, 19].

• Volume: Deals with the amount of data that is generated per day and grows from
MB’s to GB’s to PB’s.

• Velocity: Deals with how fast data is coming and how fast it should be analysed.
• Variety: Deals with different forms of data, structured and unstructured [18].

Initially in 2004, the mapreduce programming framework was proposed by
Google. It is a platform designed for processing tremendous amount of data in an
extremely parallel manner. It provides an environment to easily develop scalable
and fault tolerant applications. The mapreduce programming model carries out the
calculation process in two phases and are as follows:

• Map: Master node divides the input dataset into independent sub-problems and
distributes them to slave nodes, the slave nodes process these sub problems in a
parallel way and pass the result back to its master node.

• Reduce: Master node takes the results from all the sub-problems and combines
them to form the output.

In the mapreduce model all the computation is organized around (key, value)
pairs. First stage deals with Map function, taking a single (key, value) pair as input
and produce lists of intermediate (key; value) pairs as the output. It can be repre-
sented as [19]:
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Map key; valueð Þ→ list key′; value′
� �

Then, the system merges and groups these intermediate pairs by keys and passes
them to the Reduce function. Finally, the Reduce function takes a key and an
associated value list as input and generates a new list of values as output, which can
be represented as follows in [20, 21]:

Reduce(key′, list value′
� �

→ key′, value1
� �

The Map-Reduce techniques are used to perform the tasks in parallel fashion
over the framework provided. The performance of executing is the major concern of
improvement, which can be increased without increasing the hardware cost, but is
achieved by just tuning some parameters like input size, processing intricacy and
cluster conditions. Further, tuning factors in architecture design schemes helps to
improve the overall performance of multi-GPU mapreduce [9, 22]. Data analytics
are becoming a good practice in most domains. The economy and everyday life are
full of guiding examples, which provide the basis for updating or refining our
understanding of Big Data Analytics and for exploring new ground [19]. The focus
of research should further apply the Knowledge Discovery process (KDD) to create
data backbones for decision support systems to aid in ergonomic evaluations [21].

In [22], the author has proposed and implemented a non-parametric extension of
Hadoop. It allows for early results for arbitrary workflows in an incremental
manner, besides providing accuracy in the computation on reliable on-line esti-
mates. Early results for simple aggregates are experimented, which have laid a
foundation in [22] to achieve similar objectives. These estimates are based on a
technique called bootstrapping [25, 26], used widely in statistics applicable to
arbitrary functions and data distributions. The technique is selected based on its
generality and accuracy. While data sampling over memory-resident, disk resident
has been widely studied, sampling over a distributed file system has not been fully
addressed [21]. Summary of various files (database files) sampling techniques is
studied which are closely related to random sampling over Hadoop Distributed File
System (HDFS). As the initial samples are drawn from the original dataset, they are
further re-sampled based on replacement drawn from it. They are additionally used
to generate results, which derive the final result distribution. The sample result
distribution is used for estimating the accuracy. The error for arbitrary analytical
functions can be estimated via the bootstrapping technique described in [23]. There
are other resampling techniques, such as the jackknife, which performs resampling
without replacement. It is known that jackknife does not work for many functions
such as the median [23].

The Apache Hadoop is an open source project and provides the mapreduce
framework as in Fig. 1 for processing Big Data. Hadoop distributed file system
(HDFS) is used to store the data which makes data available to all computing nodes.
The Hadoop usage has three steps: 1. Load data into HDFS 2. mapreduce opera-
tions 3. Retrieve data from HDFS.
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By nature this process is of batch operation type, well suited for analytics and
non-interactive applications. The Hadoop is not a database or data warehouse, but it
can act as an analytical tool. The role of the users in this scenario is only to define
what should be computed in the Map and Reduce functions while the system
automatically distributes the data processing over a distributed cluster of machines.

Apache Mahout is an open source project and runs on top of the hadoop platform
[6]. It provides a set of machine learning algorithms for clustering, recommendation
and classification problems. Mahout contains various implementations of classifi-
cation models such as Logistic Regression, Bayesian models, Support Vector
Machines, and Random Forest. Like Hadoop, Apache Spark is an open-source
cluster computing framework and was developed in the AMPLab at UC Berkeley.
It is an in-memory based mapreduce paradigm and performs 100 times faster than
Hadoop for certain applications [6].

2.2 Classification of Imbalanced Datasets

Many real-world problems contain some concepts only with very few examples in a
huge set. They are described either by their rarity or the cost to obtain them. The
results from these rarities have been identified as one of the main challenges in data
mining. In mining, the categorization of input into pre-labeled classes is done on
certain similarity aspects. The categories may either be of multi-class or two classes.
The analysis of various techniques for multi-class imbalanced data problem is
required to be focused as many real world problems such as medical diagnosis [24],
fraud detection, finances, risk management, network intrusion, E-mail foldering,
Software Defect Detection [25]. The classification of imbalanced datasets poses
problems where class distributions having number of examples in one class are
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outnumbered by other classes [10]. A class having an abundant number of examples
is called as majority or negative class and a class having a significant number of
examples called as minority or positive class. Additionally, the positive (minority)
class is the class of interest from the learning point of view and has a great impact
when misclassified [6]. Learning from imbalanced datasets is a difficult task for
machine learning algorithm due to global search measure which does not take into
account the difference between the numbers of instances of each class. The specific
rules are used for identification of minority class instances. But during model
construction, these specific rules are ignored in the presence of more general rules,
which are used to identify the instances of majority class.

Several techniques are available to address the classification of imbalanced data
[18]. These techniques are categorized into various groups [6]:

1. Data Level Approach:
An original imbalanced dataset is modified to get a balanced dataset and further
analysed by standard machine learning algorithms to get the required results.

2. Algorithm Level Approach:
An existing algorithm is modified to launch procedures that can deal with
imbalanced data.

3. Cost-Sensitive Approach:
Both, the data level and the algorithm level approaches are combined to get
accuracy and reduce misclassification costs.

The techniques discussed, deals with the data level approach in detail. Fur-
thermore, data level approaches are divided into various groups: O.S., Undersam-
pling and Hybrid technique. In O.S. technique, new data from minority classes are
added to the original dataset in order to obtain a balanced dataset. In Undersampling
technique, data from majority classes are removed in order to balance the datasets.
With hybrid technique, previous techniques are combined to achieve the goal of
balanced dataset. Usually in hybrid approach, first O.S. technique is used to create
new samples for minority class and then Undersampling technique is applied to
delete samples from the majority class [9]. The O.S. and Undersampling techniques
have some drawbacks. The noisy data may get replicated in O.S. techniques.
Undersampling may lead to loss of important data due to random selection scheme
[6].

Synthetic Minority Oversampling Technique (SMOTE) algorithm is used as a
powerful solution to solve imbalanced dataset problem, which has shown success in
various application domains [26]. The SMOTE algorithm is an O.S. technique. This
technique adds synthetic minority class samples to original dataset to achieve the
balanced dataset [6].

In SMOTE algorithm, minority class is oversampled by duplicating samples
from minority class. Depending on the O.S. required, numbers of the nearest
neighbors are chosen randomly [6]. The synthetic data is then generated based on
feature space likeliness prevails between existing samples of a minority class. For
subset Smin ϵ S, consider k nearest neighbors for each sample xi ∈ X. The
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K-nearest neighbors are the K elements whose Euclidean distance between itself
and xi has smallest weight along the n-dimensional feature space of X. The samples
are generated as simply as, randomly selecting one of the K-nearest neighbors and
multiplying the corresponding Euclidean distance with random numbers between
[0, 1]. Finally, this value is added to xi.

xi new = xi old + xi KNN − xi oldð Þ*δ ð1Þ

where, xi ∈ Smin is a sample from minority class used to generate synthetic data.
xi_KNN is the nearest neighbor for xi, and δ is a random number between [0, 1]. The
generated synthetic data is a point on line fragment between xi under consideration
and xi_KNN k-nearest neighbors for xi.

The following Fig. 2a, shows imbalanced class distribution, where the circles
represent the majority class and stars represent the minority class. The K-nearest
neighbor is set to K = 5. The Fig. 2b, illustrates synthetic data generation on the
line segment joining xi and xi_KNN and it is spotlighted by diamond. Finally,
synthetic data are added to the original dataset in order to balance it.

Though SMOTE is a popular technique in imbalanced domain, it has some
drawbacks including over-generalization, only applicable for binary class problem,
over-sampling rate varying with the dataset. To avoid these drawbacks, some
approaches are defined such as Borderline-SMOTE and Adaptive Synthetic Sam-
pling for generalization. Evolutionary algorithms and sampling methods are used to
deal with the class imbalanced problem [27]. SMOTE + GLMBoost [28] and
NRBoundary-SMOTE are based on the neighborhood Rough Set Model [29] and
are used to solve the class imbalance problem. The ensemble methods like Ada-
Boost, RUSBoost and SMOTEBoost are coupled with SMOTE to solve imbalanced
data problems [24]. All these approaches are focused on two-class problem. In [30],
the author proposed a solution for multi-class problem based on fuzzy rule clas-
sification. Ensembles of decision trees (R.F.) have been the most successful
general-purpose classification algorithm in modern times [6]. R.F. was proposed by
Leo Breiman in 2002 to improve the classification of a dataset having a small
training dataset and large testing dataset i.e. R.F. is suited for large number attri-
butes and a small number of observations [18]. R.F. is scalable, fast and durable

Fig. 2 a Imbalanced class distribution, b generation of synthetic data, k = 5
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approach for classification of high-dimensional data and can handle continuous
data, categorical data and time-to-event data [31].

Huge attribute sets with categorical data values lead to inaccurate results of
imbalanced data sets. Attribute reduction of large featured data sets has moved
attention for handling imbalanced data sets in alignment to reduce storage cum
efficient retrieval. It aims to delete superfluous condition attributes from a decision
system. However, most of the existing techniques for selecting an informative
attribute set are developed for a single type of attributes. It is challenging to deduce
some effective attribute reduction techniques for heterogeneous data [32]. There are
two categories of techniques which deal with heterogeneous conditional attribute
reduction viz. pre-processed into single-type data and secondly, measure diverse
types of attributes using dissimilar criteria [33]. Both can be combined to provide an
overall evaluation of mixed attributes. Pre-processing into a single type deals with
conversion from one form to another, i.e. symbolic to real-valued and vice versa,
but may lead to loss of mutual information. Also measuring and combining unlike
attributes may sometimes direct to problematic undesirable results [20]. Both cat-
egories further fail to comprehend the substitution ability among heterogeneous
attributes, their classification ability towards decision attributes and inconsistency
tending to decision labels. Rough set helps to address inconsistencies between
conditional and decision attributes. Rough set deals attribute reduction with in-hand
available data itself to process, which is different than all other methods and obtains
reducts keeping original inconsistencies [34]. Classical rough sets only deal with
symbolic/integer valued attributes. As a generalization of rough set model, fuzzy
rough sets were developed to handle real-valued attributes. Attribute reduction with
fuzzy rough sets was developed and then improved in [17, 35, 36] with several
heuristic algorithms to find reducts. By discerning two samples to a certain degree
related to decision labels, fuzzy rough set methods help to tackle the inconsistency
between condition attributes and decision labels [36]. In terms of transforming
attribute types, both classical and fuzzy rough sets are not able to exactly handle
heterogeneous data [37].

3 Methodology

3.1 Architecture

The projected research is based on experimental analysis, which comprises a range
of exploratory statistical and quantitative methods. Quantitative research is gener-
ally associated with the positivist paradigm. It involves collecting and converting
data into numerical form for statistical calculations and drawing out conclusions.
Hypotheses address predictions about possible relationships between the things
they want to investigate. In order to find answers, the researchers need to avail
certain techniques and tools with a clearly defined plan of action. Quantitative
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research mainly tends towards deductive reasoning directing to shift from the
general to the specific things i.e. top down approach. The conclusions can be
validated based on earlier findings.

The study involves an overview of data science and the challenge of working
with Big Data using statistical methods. It requires integrating the insights from
data analytics into knowledge generation and decision-making based on both
structured and unstructured data. The study incorporates the process of how to
acquire data, process it, store it and convert it into a format suitable for analysis,
model the experimental design and interpret the final results.

The theoretical concept deals with the development of some techniques to
enhance the traditional approaches to handle streaming high velocity data mining
aspects in parallel execution environment. Moreover, the imbalanced classification
of minority data versus majority samples is to be studied to provide a well-balanced
data.

The analysis of Big Data involves multiple distinct phases as shown in the
Fig. 3. The huge streams of data are required to handle, accept, record and store.
The ‘storage and retrieval’ is a major concern of performance. Further, the system
attempts to implement an optional clustering model that clusters the data parallely
based on the similarities or theme of the text data. It helps to find the characteristic
similarity of data under pre-processing for further needful clustering. Moreover,
streaming inputs with heterogeneity are to be addressed with approximation tech-
niques to provide some useful early insight. The inputs are further processed with
enhanced O.S techniques for creating balanced dataset. The outputs are finally
analysed for improved accuracy.

Fig. 3 Overall system architecture
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3.1.1 Input Pre-processing and Similarity Based Parallel Clustering
of Streaming Data

The designed system consists of following modules:

• Data acceptance—input for data preparation model.
• Data preparation of (D) docs (Using Porter Stemmer)—having n terms of data

(d) as di and dj (i, j = 0, 1, 2,…, n). Di and Dj are description similarities and Fi
and Fj are functional similarities

– Tokenization
– Stop word removal
– Stemming—to give output as D′

i and D′

j

• Similarity Based Analysis

– Description (SD) and Functional similarity (SF) using Cosine/Jaccard simi-
larity coefficient

– Characteristic similarity (SC) by weighted sum of SD and SF
– Table of SC for data under study

• Clustering algorithms—Clustering data (considering either majority and
minority instances or especially minority instances) can be done either
according to their SC in D using a parallel clustering algorithm or using various
clustering algorithms as like DBSCAN, BIRCH, K-Means.

The output of the system is a document clustered in the form of hierarchical
hyperlinks, pure/hybrid clusters for the further O.S. process.

Further, the work may be extended for analysis showing that the datasets con-
taining a number of features may contain some superfluous attributes which are
intended to be reduced (fuzzy based techniques). This may help to provide the
reduced dataset characterizing the same notion as the original set for efficient
storage and needful analysis. The proposed major steps of the analysis are as
follows:

• Decision information table with the discernibility relation of mixed attributes is
to be formed from given input data set:
An information system is a pair (U, A), where U = {x1, x2,…, xn} is a none-
mpty finite universe of discourses and A = {a1, a2,…, am} is a nonempty finite
set of heterogeneous attributes. With every subset of attributes B ⊆ A, associate
a binary relation IND(B), called the B-indiscernibility relation, and defined as
IND(B) = {(x, y) ∈ U × U: a(x) = a(y), a ∈ B}; then IND(B) is an equiv-
alence relation and IND(B) = ∩ a ∈ B IND({a}). By [x]B the equivalence
class of IND(B) including x is denoted.
A decision information table (DT), is an information system A* = (A ∪ D)
where A ∩ D = φ. A is a set of heterogeneous conditional attributes, while D
is the decision attribute and U/IND(D) = {D1, D2,…, Dr}.
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The following approach of discernibility matrix is used as the mathematical
foundation of finding reducts.
Let A* = (U, A∪D) be a DT, where U = {x1, x2,…, xn} is a nonempty finite
universe of discourses, A is a set of symbolic conditional attributes, and D is the
decision attribute. M(A*) denotes an n × n matrix (Cij), called the discernibility
matrix of A*, such that (s.t.) Cij = {ak ∈ A: ak(xi) ≠ ak(xj)}, for xi and xj
satisfying one of the following conditions:

i. xi ∈ posA(D) and xj ∈ posA(D);
ii. xi ∈ posA(D) and xj ∈ posA(D); and
iii. xi, xj ∈ posA(D) and D(xi) ≠ D(xj).

Suppose U is a nonempty universe, A* = (U, A ∪ D) is a decision system,
A ∩ D = φ and A = AS ∪ AR, where AS and AR denote the families of
symbolic and real valued condition attributes, respectively. Suppose RD(A) =
RD(AS) ∪ RD(AR); then, RD(A) is also a fuzzy relation, where the relation
RD(AS) is considered as a fuzzy relation, i.e., RD(AS) (x, y) = 1 if (x, y) ∈
RD(AS) Or = 0 if (x, y) ∈ RD(AS).

• The discernible ability of conditional attributes to decision labels is to be
modeled using dependence function:
A Boolean function denoted by fU(A ∪ D) = ∧ (∨Cij), Cij ≠ φ is referred to
as the discernibility function for A*. A discernible relation of a ∈ A is defined
as RD(a) = {(x, y): a(x) ≠ a(y)} for D(x) ≠ D(y).

• Attributes are to be selected using reduct algorithm:

RedX ðA∪DÞ= A1, . . . , Atf g.

• Formation of rules based on selected attributes in conjunctive/disjunctive forms:
Let gU(A ∪ D) be the reduced disjunctive form of fU(A ∪ D) by applying the
distribution and absorption laws as many times as possible; then there exist t and
Ai ⊆ A for i = 1,…, t s.t. gU(A ∪ D) = (∧A1)∨ ⋅ ⋅ ⋅ ∨ (∧At).

• Reducing the data set as per reducts.

3.1.2 Enhanced Over_Sampling Techniques for Imbalanced Dataset

A methodology for O.S. of two-class or multi-class imbalanced data is addressed.
The O.S. techniques can be applied to the non-cluster imbalanced Big Data (I.B.D.)
sets or clustered based.

The O.S. techniques are based on linear interpolation methods. These can be
further classified on the basis of variables within viz. bi-linear, tri-linear interpo-
lation methods. The Linear interpolation methods have disadvantages of low pre-
cision, less differentiability of interpolated points and error proportional to the
square of the distance between points. Subsequently, Polynomial or Spline inter-
polation can be used to reduce error, smoothing interpolation, estimating local
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Maxima-Minima and providing infinite differentiability of the interpolated points.
But these methods are computationally more complex and might exhibit oscillatory
artifacts at the end points.

I. Un-Clustered Simplistic Imbalanced Data Sets
i. Two Class Data Sets (Assuming N—No. of instances):

• Technique 1—Mere Mean Minority Over_Sampling Technique
(MEMMOT):
This technique is enhanced SMOTE methodology. A SMOTE provides a
disadvantage of duplicating majority/minority samples. In MEMMOT,
following procedure avoids almost a duplication of interpolated instances.
Let the training dataset be D, Dmaj—majority class instances zm (m = 1, 2,
…., m) and Dmin—minority class instances xn (n = 1, 2,…, n).
Find safe levels of all instances before processing [12].
Further, for each minority instance xn (for 100% O.S. rate):

1. Find K-NN instances comprising the whole training data set.
2. Find SMOTE based interpolated instances of all the K-NN instances.
3. Take the average of all interpolated instances to get a new interpolated

instance.
4. Check for duplication—if Yes, reduce the lowest safe level nearest

neighbor instance from the current K-NN. Reduce the interpolated
instance of the respective lowest safe level nearest neighbor instance
from the current interpolated instances. Repeat step 3.

For O.S. rate above 100%:
Reduce the lowest safe level nearest neighbor instance from the current
K-NN. Reduce the interpolated instance of the respective lowest safe level
nearest neighbor instance from the current interpolated instances. Repeat
step 3 to comply the O.S. rate. The value of K should satisfy the condition
as-

K>%over sampling rate ̸100

OR
Repeatedly use the current over sampled set for further over sampling
based on MEMMOT, till the satisfaction of O.S. rate.
OR

i. Based on safe levels or random basis—select 50% samples out of the
first 100% over sampled instances and remaining 50% from the
original set. Use this combined set for next O.S. generations with
MEMMOT.

ii. For more O.S. rate, based on safe levels or random basis, select 33%
samples from each Original, First 100% and Second 100% over
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sampled sets. Use this combined set for next O.S. generations with
MEMMOT.

iii. Continue step ii. with reduced selection ratios of 25, 12.5, 6.25% and
so on from original and over sampled sets….till the O.S. rate is
satisfied.

For O.S. rate below 100%, select the interpolated samples either randomly
or on the basis of high safe level—which comply the required O.S. rate. In
either case if the technique fails to comply I.R., than under-Sampling
Based on Clustering [39] can be used to reduce majority classes to match
the number of minority instances.
The above method helps to provide more generalized synthetic minority
instances with low repetition rates and improves classification accuracy.

• Technique 2—Minority Majority Mix mean (MMMm):
This technique is a unique advancement of SMOTE methodology.
SMOTE, only considers K-NN minority samples for creating synthetic
samples. As stated above, it leads to duplication and as well a less gen-
eralized interpolated sample.
The technique (MMMm)—considers K-NN minority as well as majority
samples for further O.S. of interpolated instance. It helps to provide a more
generalized interpolated sample, less duplication faults with overcoming
boundary-line samples.
Find safe levels of all instances before processing [12].
Further, for each minority instance xn (n = 1, 2,…,n and for 100% O.S.
rate):

1. Find K-NN instances comprising the whole training data set.
2. Check for K-NN instances set—either all instances are minority or

majority or minority-majority mix.
3. If all instances are minority class—follow step 6 to 7.
4. If all instances are of majority class—follow step 8 to 9.
5. Else—follow step 10 to 11.
6. Select an instance on the highest safe level basis from available K-NN.

Find a SMOTE based interpolated instance.
7. Check for duplication—if Yes, reduce the highest safe level instance

from the current K-NN. Repeat step 6.
8. Select an instance from K-NN on a random basis. Find a nearest

minority sample to the current majority sample under consideration.
Find a SMOTE based interpolated instance of both—majority and
nearest minority instance. Take the average of both interpolated
instances to get the new interpolated instance.

9. Check for duplication—if Yes, select the next most nearest minority
sample to the current majority sample under consideration. Repeat step
8.

10. Select an instance from K-NN on a random basis.
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i. If the selected instance is of minority class—find a SMOTE based
interpolated instance.

ii. If the selected instance is of majority class—find a highest safe
level minority sample from in hand minority samples in K-NN set.
Find a SMOTE based interpolated instance for both—majority and
nearest minority instance. Take the average of both interpolated
instances to get the new interpolated instance.

11. Check for duplication—if Yes, remove the instance under considera-
tion. Repeat step 10.

For O.S. rate above 100%:
Reduce the lowest safe level instance from the current k-NN set. Further,
step 2 to 10 can repeatedly be used for all remaining instances to comply
the O.S. rate.
The value of K should satisfy the condition as-
K ≥ % over_ sampling rate/100
OR
Repeatedly use the current over sampled set for further over sampling
based on MMMm, till the satisfaction of O.S. rate.
OR

i. Based on safe levels or random basis—select 50% samples out of the
first 100% over sampled instances and remaining 50% from the
original set. Use this combined set for next O.S. generations with
MMMm.

ii. For more O.S. rate, based on safe levels or random basis, select 33%
samples from each Original, First 100% and Second 100% over
sampled sets. Use this combined set for next O.S. generations with
MMMm.

iii. Continue step ii with reduced selection ratios of 25, 12.5, 6.25% and
so on from original and over sampled sets….till the O.S. rate is
satisfied.

For O.S. rate below 100%, select the interpolated samples either randomly
or on the basis of high safe level—which comply the required O.S. rate. In
either case if the technique fails to comply I.R., than under-Sampling
Based on Clustering [39] can be used to reduce majority classes to match
the number of minority instances.

• Technique 3—Nearest Farthest Neighbor_Mid—(NFN-M):
This technique proposes to consider K - nearest as well as farthest
instances for interpolation with an add-on middle element.
Find safe levels of all instances before processing [39].
Further, for each minority instance xn (n = 1, 2,…, n and for 100% O.S.
rate):
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1. Find KNN dataset such that—K/2 nearest, K/2 farthest and mid-point
element from the whole data set, where k ≤ N − 2.

– For even number data sets above 2, either lower-end/higher-end
mid-point is considered

– For odd number data sets—K > 1

2. Check for K-NN instances set—either all instances are minority or
majority or minority-majority mix.

3. If all instances are minority class—follow step 6 to 7.
4. If all instances are of majority class—follow step 8 to 9.
5. Else—follow step 10 to 11.
6. Select an instance on the highest safe level basis from available K-NN.

Find a SMOTE based interpolated instance.
7. Check for duplication—if Yes, reduce the highest safe level instance

from the current K-NN. Repeat step 6.
8. Select an instance from K-NN on a random basis. Find a nearest

minority sample to the current majority sample under consideration.
Find a SMOTE based interpolated instance of both—majority and
nearest minority instance. Take the average of both interpolated
instances to get the new interpolated instance.

9. Check for duplication—if Yes, select the next most nearest minority
sample to the current majority sample under consideration. Repeat step
8.

10. Select an instance from K-NN on a random basis.

i. If the selected instance is of minority class—find a SMOTE based
interpolated instance.

ii. If the selected instance is of majority class—find a highest safe
level minority sample from in hand minority samples in K-NN set.
Find a SMOTE based interpolated instance for both—majority and
nearest minority instance. Take the average of both interpolated
instances to get the new interpolated instance.

11. Check for duplication—if Yes, remove the instance under considera-
tion. Repeat step 10.

For O.S. rate above 100%:
Reduce the lowest safe level instance from the current k-NN set. Further,
step 2 to 10 can repeatedly be used for all remaining instances to comply
the O.S. rate.
The value of K should satisfy the condition as-
K ≥ % over_ sampling rate/100
OR
Repeatedly use the current over sampled set for further over sampling
based on NFN-M, till the satisfaction of O.S. rate.
OR
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i. Based on safe levels or random basis—select 50% samples out of the
first 100% over sampled instances and remaining 50% from the
original set. Use this combined set for next O.S. generations with
NFN-M.

ii. For more O.S. rate, based on safe levels or random basis, select 33%
samples from each Original, First 100% and Second 100% over
sampled sets. Use this combined set for next O.S. generations with
NFN-M.

iii. Continue step ii with reduced selection ratios of 25, 12.5, 6.25% and
so on from original and over sampled sets….till the O.S. rate is
satisfied.

For O.S. rate below 100%, select the interpolated samples either randomly
or on the basis of high safe level—which comply the required O.S. rate. In
either case if the technique fails to comply I.R., than under-Sampling
Based on Clustering [39] can be used to reduce majority classes to match
the number of minority instances.
This proposed method helps to consider a wide range of inputs for creating
synthetic samples and avoids repetition.

• Technique 4—Clustering Minority Examples (CME):
This technique is a pure cluster based technique. The technique involves
only the instances of minority classes for synthetic samples generation. The
means of clusters basically seem to synthetic instances. The technique
helps to provide the same objective as like DBSMOTE of enriching cen-
troids based O.S.
Find safe levels of all instances before processing [12].
Further, for each minority instance xn (n = 1, 2,…, n and for 100% O.S.
rate):

1. Cluster only minority data set using any clustering algorithm (basically
K-Means).

2. Each mean (Centroid) seems to be a new interpolated synthetic sample.
3. Check for duplication—if Yes, remove that respective Centroid.

For achieving the O.S. rate:

– Add the centroids obtained in iteration to previous minority data set
forming new set and continue Step 1 to 3 (Keeping cluster no. and
initial seeds same as pervious iteration)
OR

– Either repeat the Step 1 to 3 by reducing an element within the
original data set based on the lowest safe level, till dataset_size >2
(Keeping cluster no. same as pervious iteration but the initial seeds
will be different)

The above methods provide generalized synthetic instances with low
repetition rates and helps improving classification.
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In either case if the technique fails to comply I.R., than under-Sampling
Based on Clustering [39] can be used to reduce majority classes to match
the number of minority instances.

• Technique 5—Majority Minority Cluster Based Under_Over Sampling
Technique—(MMCBUOS):
The idea is to consider both between-class and with-in class imbalances to
address them simultaneously. Technique proposes to cluster individual
class beforehand to under-over sampling.
Find safe levels of all instances before processing [12].

1. Cluster individual classes from training dataset. (e.g. using K-means)
2. Check for majority class cluster (Mjl) which is immediate large com-

pared to largest minority class cluster.
3. Under sample all the majority clusters above Mjl to the level of Mjl.
4. Calculate the total ‘t’ of all majority clusters after under sampling.
5. Find the over sampling ‘o’ requirement based on ‘t’ (considering

I.R. ≤ 1.5)
6. Find individual minority cluster O.S. rate (equalizing each cluster

sample instance) based on ‘o’ to meet I.R.
7. O.S. is carried out in each individual minority cluster using

MEMMOT/MMMm/NFN-M. (while O.S., the neighbor is selected
from the same cluster from minority class)

8. The induced balanced data set is used for further classification.

• Technique 6—Updated Class Purity Maximization—(UCPM):
This technique focuses on over-sampling under observation of under
sampling technique [40]. Clustering is used to solve the class imbalance
issue through O.S. This idea is to find as many clusters of majority class
instances which are pure. Remaining impure clusters are considered for
further needful O.S. It also considers both between-class and with-in class
imbalances to address them simultaneously. The technique leverages the
drawback of complying I.R. using better O.S. techniques, improving
classification results. Technique proposes to cluster individual class
beforehand to under-over sampling [40, 44].

1. Select a pair of minority and majority instances as centers from the
training data set.

2. The remaining instances are partitioned into two subsets according to
their nearest centers, with at least one subset having a high class purity.

3. Step 2 is repeated recursively for each of the two subsets until we can
no longer form two clusters, with at least one yielding higher class
purity than its parent cluster.

4. Eliminate the pure clusters and remaining impure clusters are seen for
further O.S.

5. Calculate the total ‘t’ of all majority class instances in all impure
clusters after under sampling.
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6. Find the over sampling ‘o’ requirement based on ‘t’ (considering
I.R. ≤ 1.5)

7. Find individual minority cluster O.S. rate (equalizing each cluster
sample instance) based on ‘o’ to meet I.R.

8. O.S. is carried out in each individual minority cluster using
MEMMOT/MMMm/NFN-M. (while O.S., the neighbor is selected
from the same cluster from minority class)

9. The induced balanced data set is used for further classification.
ii. Multi-Class Imbalanced Data Sets:-

Profound techniques in multi-class imbalanced data set handling are
One versus One (OVO) and One versus All (OVA). In the proposed
technique, Lowest versus Highest (LVH) is a unique method sufficing
all disadvantages of OVO and OVA technique. The technique helps to
reduce computation in addition to improve classification performance.
The details of techniques with respective advantages and disadvan-
tages as:
OVA—helps to reduce computation for balanced data set formations,
but it doesn’t comply with the realistic need of classification cum O.S.
as compared to second lowest minority set underlying “All” label. In
certain cases, minority class may exceed some majority sub-classes
after over sampling has led to excess synthetic sample creation. This
may lead to poor classification results.
OVO—helps to address an individual class of data sets compared to
each set within. It basically coverts a multi-class issue into a binary
model, applying all other binarization models of the induced sets. With
the same, it inherits the disadvantages of binary based techniques. It
incurs a heavy computation overhead compared to OVA and also
marginal accuracy is achieved. In addition, the balancing of each
individual class leads to more over_sampled instances affecting the
classification results. The test sample has to needlessly proceed to more
binary models for final classification output.
LVH—The idea quoted is more robust compared to the above two
techniques for multi-class data set balancing.

– Compares the individual lowest minority class (all classes below a
certain threshold, i.e. 35–40%) versus one highest majority class
only.

– O.S. of minority classes is done one by one, forming the final
training data set.

– Avoid duplication cum reduced computation.
– Reduces synthetic samples generations and provides more realistic

interpolated samples compared to all other minority set underlying.
– Evade overshooting of other majority sub-classes after O.S.
– Reduces computation of test samples for final classification.
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– Comply the highest majority class indirectly, conforming all
remaining classes within.

The Fig. 4 depict the in-sight of LVH method. Figure 4a states the
whole data set. Figure 4b states the comparison of the lowest (a) versus
highest (A) class. Figure 4c states the comparison of second-last
lowest (b) versus highest (A) class. Figure 4d states the comparison of
third-last lowest (c) versus highest (A) class. This method will surely
help to enhance the accuracy of the model.
The above six proposed methods can be used similarly with LVH for
balancing of multi-class data sets to improve classification results.

II. Clustered Based Over_Sampling Techniques for Imbalanced Data Sets
In contrast to above non-clustered O.S. techniques for two-class/multi-class,
clustering based techniques work with unsupervised approach and further over
sample the minority class data sets for required balanced objective. For
two/multi-class datasets (LVH based), all three clustering techniques
(CME/MMCBUOS/UCPM) can be used.

b                                                     a           
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B 

c                                  C 

b                                                     a           

                A 

B 

c                                  C 

b                                                     a           

                A 

B 

c                                  C 

b                                 a           

                A 

B 

c                                  C 

(a) (b)

(c) (d)

Fig. 4 a Whole dataset, b LVH method, c LVH method, d LVH method
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Various clustering algorithms can be implemented with the three enhanced
techniques. In [41], an online fault detection algorithm based on incremental
clustering is studied. [42], which addresses the issue of ordinal classification
methods in imbalanced data sets. A novel class detection in data streams with
efficient string based methodology is deliberated in [43].
The overall structure of I.B.D. handling techniques is shown in Fig. 5. O.S.
techniques are used to handle large imbalanced datasets.
Further, the work can be extended for analysis showing that the datasets
containing a number of features may contain some superfluous attributes
which are intended to be reduced. This may help to provide the reduced
dataset characterizing the same notion as the original set for efficient storage
and needful analysis.

3.2 Sampling Design and Assumptions

i. Sampling:
In some cases, it is highly inefficient and impossible to test the entire population
—thus the focus of study may lead toward samples. Samples help to test the
entire population, which produces error or a cross section of it. Sampling does
come with several problems as like missing elements, foreign elements,
duplicate elements etc.

Fig. 5 Structure of I.B.D. techniques
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ii. Assumptions:
Support for incremental sample input_size should be incorporated in Hadoop
framework.
Heterogeneous data set may be converted into a symbolic/numeric attribute
values for further O.S. procedures and analysis. High dimensional data set leads
to bias classification results towards minority classes, hence the need for
dimension reduction.
The input streaming data set is considered to be of known class labels for
empirical analysis.

3.3 Evaluation Parameters

Experiments can be performed on Apache Hadoop and Apache Spark using diverse
datasets from the UCI repository. Geometric mean and F-measures can be planned
to measure the performance of this classification.

The proposed major steps for implementation are as follows:

1. To convert the dataset from CSV format into Hadoop Sequence File format
consisting of key/value pairs.

2. To map the dataset in OVO/OVA/LVH model.
3. To implement O.S. algorithms, to convert imbalanced dataset to balanced form.
4. To implement R.F. forest algorithm for training set and analyse.
5. To analyse the results of performance metrics as a Geometric Mean (GM) and

F-measure for varying data size, number of data nodes.

The effectiveness is to be evaluated using above two measures that are able to
efficaciously rate the success in imbalanced classification.

– Geometric Mean (GM): gives a balanced accuracy of true rates. It attempts to
maximize the accuracy of each one of the two classes with balancing good link
between both objectives.

GM =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity * specificity

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π∑k

i=1 Ri
k
q

ð2Þ

k no. of classes
Ri the recall of ith call
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• Sensitivity (recall) = True Positive/(True Positive + False Negative)
• Specificity = True Negative/(False Positive + True Negative)

– F-Measure: Another metric used to assess quality of classifiers in imbalanced
domain is F-Measure and it is given as:

F −Measure =
2 RiPi
Ri +Pi

for all i=1, 2, . . . k ð3Þ

Pi—precision of ith class.

• Precision = True Positive/(True Positive + False Positive) − predicted
positive cases that were correctly classified.

4 Conceptual Framework

4.1 Pre-processing and Efficient Parallel Clustering
Architecture

Architecture in Fig. 6 is planned for similarity based clustering model that clusters
the Big Data based on the similarities.

– The similarities between data/documents are calculated based on description
similarity. Further functional similarity is used as a measure to analyse clusters.

– The clustering would be implemented using M-R techniques based on weighted
means of characteristic similarity.

As shown in Fig. 7, the input data may be partitioned and provided to mappers,
thereafter to combiner for computing the relative clusters, including their centroids
and merge the local centroids for global mean to achieve required clusters.

Fig. 6 Similarity based mining architecture
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4.2 Conceptual Flow of Experimentation

The conceptual flow of analysis consists of following steps:

1. Identify the imbalanced training set and form a R.F. tree of it. Use testing set to
check for initial bare results for comparison at last. Parallely, this data set can be
clustered and checked for cluster cohesiveness.

2. Carry out O.S. of two-class or multi-class imbalanced training data sets, either
using un-clustered simplistic term or on clustering basis.

3. Perform—R.F. on same.
4. Use Testing set—for model prediction and accuracy testing.
5. Update R.F., if the I.R. goes above 1.5 (+10%) OR error rate goes above a

certain threshold (recall). <If the error rate goes above a certain threshold—then
re-correct the data set with prior known classes>

6. The new corrected data can further be used to improve R.F. tree using Step 2
and 3. Parallely this data can be analysed for cluster cohesiveness and similarity
cohesiveness.

7. Continuously, collect real time incoming data set for further prediction and
analysis through R.F. tree. Repeat step 5 to 7 for this real time data set.

8. Analyse the classifier performance on said measurements by respective meth-
ods. Progress to the conclusion.

9. Optionally—can repeat Step 7 and 8 for infinite sequence of time to improve the
classifier accuracy as per the requirement.

Figure 8 explains the logical flow of experimentation work and analyse for
necessary results.

Fig. 7 Parallel clustering architecture
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4.3 Data Sets

HBase is an open source, distributed, column oriented database modelled after
Google’s BigTable. HBase is a distributed Key/Value store built on top of
Hadoop. HBase shines with large amounts of data and read/write concurrency. The
data are acquired for further analysis in HBase.

Basically, the standard datasets are to be collected from UCI (UC Irvine
Machine Learning Repository) library and KEEL (Knowledge Extraction based on
Evolutionary Learning) database repository for experimentation as below:

In order to analyse the quality of solutions provided for the anticipated problem,
datasets from the UCI Database Repository is to be used. As selected datasets have
multiple classes, diverse solutions are to be experimented to address this issue
separately. Table 1 summarizes the details of selected datasets which includes
documented name of the data set, number of instances (#EX), number of attributes
(#ATTR) and number of classes (#CL).

Fig. 8 Conceptual flow of experimentation
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Data sets referred [38]:

• Mashup-
The data are collected from ProgrammableWeb, a popular online community
built around user-generated mashup services. It provides the most characteristic
collection. The extracted data is used to produce datasets for the population of
mashup services. The dataset included mashup service name, tags, APIs used,
technology used and its class.

• KDD Cup 1999-
This data set is used for The Third International Knowledge Discovery and Data
Mining Tools Competition, which was held in conjunction with KDD-99_The
Fifth International Conference on Knowledge Discovery and Data Mining. The
competition task was to build a network intrusion detector, a predictive model
capable of distinguishing between “bad” connections called intrusions or attacks
and “good” normal connections. This database contains a standard set of data to
be audited, which includes a wide variety of intrusions simulated in a military
network environment.

• Mushroom-
This data set includes descriptions of hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lepiota Family. Each species
is identified as definitely edible, definitely poisonous, or of unknown edibility
and not recommended. This latter class was combined with the poisonous one.
The Guide clearly states that there is no simple rule for determining the edibility
of a mushroom.

• Landsat-
The database consists of the multi-spectral values of pixels in 3 × 3 neigh-
borhoods in a satellite image and the classification associated with the central
pixel in each neighborhood. The aim is to predict this classification, given the
multi-spectral values. In the sample database, the class of a pixel is coded as a
number.

Table 1 Characteristics of
dataset [38]

Dataset #EX #ATTR #CL

Mashup 14,193 06 Multi-class
KDD Cup 1999 40,00,000 42 2
Mushroom 8,124 22 2
Landsat 6,435 36 6
Lymphography 148 18 4
Zoo 101 17 7
Segment 2,310 19 7
Iris 150 4 3
Car 1,728 6 4
Vehicle 946 19 4
Waveform 5,000 40 3
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• Lymphography-
This is one of three domains provided by the Oncology Institute that has
repeatedly appeared in the machine learning literature.

• Zoo-
A simple database containing 17 Boolean-valued attributes. The “type” attribute
appears to be the class attribute. The breakdown of animal types is provided.

• Segment-
The instances were drawn randomly from a database of 7 outdoor images. The
images were hand segmented to create a classification for every pixel. Each
instance is a 3 × 3 region.

• Iris-
This is perhaps the best known database to be found in the pattern recognition
literature. Fisher’s paper is a classic in the field and is referenced frequently to
this day. The data set contains 3 classes of 50 instances each, where each class
refers to a type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

• Car-
Car Evaluation Database was derived from a simple hierarchical decision model
originally developed for the demonstration of DEX, M. Bohanec, V. Rajkovic:
Expert system for decision making.

• Vehicle-
The purpose is to classify a given silhouette as one of four types of vehicle,
using a set of features extracted from the silhouette. The vehicle may be viewed
from one of many different angles.

• Waveform-
There are 3 classes of waves with 40 attributes, all of which include noise. The
latter 19 attributes are all noise attributes with mean 0 and variance 1 and
contains 5000 instances.

4.4 Methods of Data Computations

Methods of data computations are as:

• For similarity based parallel clustering following methods are used-

– Step 1:
Morphological similar words are clubbed together under the assumption that
they are also semantically similar.

– Step 2: Compute Description Similarity (DS)–
For e.g.: using Jaccard Similarity Coefficients for Di and Dj as cardinality of
their intersection divide by the cardinality of their union.
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Dsðdi, djÞ=
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ð4Þ

Larger the numerator tends to more similarity and the denominator is scaling
factor to ensure similarity between 0 and 1.

– Step 3: Compute Functional Similarity (DF)–
For e.g.: using Jaccard Similarity Coefficients for Fi and Fj as cardinality of
their intersection divide by the cardinality of their union.

DFðdi, djÞ=
F′

i ∩F′

j
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���
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i ∪F′

j

���
���

ð5Þ

– Step 4: Compute Characteristic Similarity (DC)–
Characteristic similarity between di and dj is computed by a weighted sum of
description similarity and functionality similarity.

DCðdi, djÞ= α*DSðdi, djÞ+ β*DFðdi, djÞ ð6Þ

Where α ϵ [0, 1]—weight of DS and β ϵ [0, 1]—weight of DF and α + β = 1
Weight expresses relative importance between two

– Step 5:
A: Partition Clustering (K-means)-

Step 1.

map (k1, v1)
do clustering for each sample by K-means
Output (Ci, Ni, Pi)

Step 2.

reduce (k2, v2)
merge sequence (Ci, Ni, Pi)
output (c1,c2,…,ck)

Where

Ci—collection of ith sample’s cluster centres
Ni—collection of points—number of Ci

Pi—collection of points for each centre of Ci

B: Hierarchical Algometric Clustering (HAC)-
Assume ‘n’ data items, each initialized to be a cluster of its own. At each
reduction step, the two most similar clusters are merged until only K (K < n)
clusters remains. Reduction during cluster formation as:
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Step1. Search for the pair of maximum similarity in table of SC and merge
them.
Step2. Create a new similarity table by calculating the average values of
similarities between clusters.
Step3. Save and reuse these similarities and cluster partitions for later
visualization.
Step4. Repeat step 1–3 until the K clusters remains on the table

5 Conclusion

In this study, the enhanced data pre-processing techniques for two-class and
multi-class imbalanced data has been presented using non-cluster/cluster based O.S.
techniques. R.F. algorithm is used as a base classifier, which is decision tree
ensemble and known for its good performance. Traditional data mining techniques
are unable to survive with requirements urged by Big Data; hence, the mapreduce
framework under Hadoop environment is used to deal with it.

Experimental analysis can be carried out using various datasets of UCI reposi-
tory. The system quality testing benchmark may be indexed in terms of the
parameters like accuracy, AUC, G-Mean and F-measure. These can be applied to
three methods, namely MEMMOT, MMMm and NFN-M in non-cluster mode as
well as CME, MMCBUOS and UCPM in clustering mode using OVO, OVA and
LVH method. It is believed that, the proposed techniques will outperform the
existing methods i.e. SMOTE, BorderlineSMOTE, SafeLevel SMOTE,
DBSMOTE. At the same time, concerns raised out of the intrinsic data character-
istics like small disjuncts, lack of density, overlapping and impact of borderline
instances will be addressed. The issues related to dataset shift and changing O.S.
rate, needs to be further addressed in detail.
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Online Anomaly Detection in Big Data:
The First Line of Defense Against Intruders

Balakumar Balasingam, Pujitha Mannaru, David Sidoti,
Krishna Pattipati and Peter Willett

Abstract We live in a world of abundance of information, but lack the ability to

fully benefit from it, as succinctly described by John Naisbitt in his 1982 book, “we

are drowning in information, but starved for knowledge”. The information, collected

by various sensors and humans, is corrupted by noise, ambiguity and distortions

and suffers from the data deluge problem. Combining the noisy, ambiguous and dis-

torted information that comes from a variety of sources scattered around the globe in

order to synthesize accurate and actionable knowledge is a challenging problem. To

make things even more complex, there are intentionally developed intrusive mech-

anisms that aim to disturb accurate information fusion and knowledge extraction;

these mechanisms include cyber attacks, cyber espionage and cyber crime, to name a

few. Intrusion detection has become a major research focus over the past two decades

and several intrusion detection approaches, such as rule-based, signature-based and

computer intelligence based approaches were developed. Out of these, computa-

tional intelligence based anomaly detection mechanisms show the ability to handle

hitherto unknown intrusions and attacks. However, these approaches suffer from two

different issues: (i) they are not designed to detect similar attacks on a large num-

ber of devices, and (ii) they are not designed for quickest detection. In this chapter,

we describe an approach that helps to scale-up existing computational intelligence

approaches to implement quickest anomaly detection in millions of devices at the

same time.
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1 Introduction

Advances in miniature computing have led to the development of physical systems

that perform very complex tasks and their need to communicate defines cyber-

physical systems. In addition, cyber and physical systems interact with humans, to

accomplish tasks that require cognitive inputs that can only be provided by humans,

or to enhance the comfort and quality of experience of humans, or to achieve both.

These cyber-physical-human systems (CPHS), as illustrated in Fig. 1, are expected

to become more and more commonplace in the future.

Revolutions in computing and connectivity have also exposed the CPHS

infrastructure to premeditated attacks with potentially catastrophic consequences by

those within as well as outside enterprises and geographic boundaries, armed only

with a computer and the knowledge needed to identify and exploit vulnerabilities.

Fig. 1 Cyber-physical-human systems (CPHS). Due to the nature of the increasingly connected

world, the standalone nature of physical systems, cyber systems (e.g., a web page) and humans

continue to shrink (i.e., all three of the circles are getting closer and closer with time and the area

occupied by cyber-physical-human systems is increasing). The arrows indicate that each of the

circles is moving closer and closer due to advances in communication and computing technology
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The past two decades have seen tremendous research activity in developing intru-

sion detection mechanisms. These approaches can be generally categorized into the

following: [1], signature-based detection, rule-based detection, and computer intelli-
gence based detection. The signature and rule based approaches are designed based

largely on known attacks or intrusive behaviors, whereas the computational intel-

ligence based approaches [2–5] promise defense against unknown attacks as well.

Even though the term “intrusion detection” is more explanatory in nature, most of

the intrusion detection mechanisms are designed to detect “contextual anomalies”.

Hence, we will use the more general term, anomaly detection [6–9], in the rest of

this chapter.

Advanced persistent threats (APT) are insidious cyber-attacks executed by sophis-

ticated and well-resourced adversaries targeting specific information in high-profile

companies and governments, usually in a long term campaign involving different

phases and multiple attack vectors (e.g., cyber, physical, and deception, automated

tools, social engineering) [10]. Some examples of APTs are: Stuxnet worm [11],

Aurora Trojan [12], Diginotar hack [13], RAS Breach [14], Operation Ke3chang

[15], Operation Snowman [16].
1

The distinguishing characteristics of APTs are:

1. Specific digital assets with clear objectives that bring competitive advantage in a

conflict or strategic benefits, such as national security data, intellectual property,

trade secrets, etc.

2. Highly organized and well-resourced attackers having access to zero-day vul-

nerabilities and distributed denial of service (DDoS) attack tools working in a

coordinated way.

3. A long-term campaign that adapts to defensive mechanisms to stay undetected in

the target’s network for several months or years.

4. Stealthy and evasive attack techniques by concealing themselves within enter-

prise network traffic. For example, APT actors may use zero-day exploits to avoid

signature-based detection, and encryption to obfuscate network traffic.

Expanding the APT attack models in [18, 19], we view an APT as being com-

prised of the following eight phases: (1) reconnoitre; (2) gain access; (3) internal

reconnaissance; (4) expand access; (5) gather information; (6) extract information;

(7) malware control (command and control); and (8) erase tracks. Cyber defense

against APTs, like conventional warfare, necessitates situational awareness and rapid

decision-making (faster “OODA” loop) to eliminate or mitigate the effects of a spe-

cific attack. Approaches to detecting network attacks must resolve issues with false

positives and missed detections, achieve high scalability, facilitate the detection of

highly complex attacks, and adapt to new types of attacks by piecing together how

individual attack steps are configured to enable their detection. It is not uncommon

1
Malware is an umbrella term used to refer to a variety of software intrusions, including viruses,

worms, Trojan horses, ransomware, spyware, scareware, adware and so on. These can take the form

of executable code, scripts, active content and other software. The majority of recent active malware

threats were worms or Trojans rather than viruses [17]. When malware is used in a deliberate and

concerted manner, as in APTs, one needs sophisticated monitoring and mitigating strategies to

address them.
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to have thousands of false positive alerts per day. Indeed, a threat analysis system

must scan and fuse context-specific network and host activities from multiple sources

to reliably detect changes that could signal a developing attack, identify the attack

sources, assess its impact, and respond before it affects network and combat system

operations (e.g., data corruption, functional degradation, system latencies). The typ-

ical attack methods, features of the attack that can be used to detect the anomalies,

locations where anomalies can be detected, the data used for detection and the type

of analysis for anomaly detection are broadly described in Table 1 [18, 19].

Anomaly detection [20–26] forms the first line of defense against unauthorized

users and deliberate intruders. This can be done by continuously monitoring user

activities and by detecting patterns of behavior that are potentially harmful to the

network. Recent developments in big data technology [27] allow the ability to store

large amounts of historical user activity data so that one can visit past instances in

order to analyze and learn about threat patterns and behaviors. Further, due to the

relatively recent and dramatic changes in the field, it is often hard to decide exactly

what kind of information needs to be stored. As a result, any available information

regarding user activity, such as ethernet source address, ethernet destination address,

internet protocol (IP) source address, IP destination address, geographical informa-

tion of the subscriber, etc. are collected and their relevance to security threats needs

to be accessed online. Hence, the first challenge in anomaly detection is feature selec-
tion, i.e., deciding which features give the most information for effective detection.

Feature selection and data reduction have been the focus of extensive research

in the past [28–31]. Studies of data reduction techniques broadly categorize them

into linear and nonlinear methods [31–33]. Linear data reduction techniques include

principal component analysis (PCA) [34], partial least squares (PLS) [35], indepen-

dent component analysis [36, 37], factor analysis [29, 33], and random projections

[38]. Nonlinear data reduction methods include locally linear embedding [39], prin-

cipal curves [40], multifactor dimensionality reduction [41, 42], multidimensional

scaling [43], and self-organizing maps [44, 45].

The second challenge in anomaly detection comes from the transactions that are

event triggered and hence are asynchronous in nature. Also, the observed features

are asymmetrical, i.e., not all the features are observed during the same sampling

time. Two possible approaches for online monitoring of asynchronous transactions

are time windowing and time interval modeling. In time windowing, the incoming

data from a constant time window is processed to make one snapshot of data cor-

responding to that time window; the time window is defined in a way that all the

features can be captured. This approach is relatively easy to implement and is incor-

porated in this chapter. In time interval modeling, the anomaly detection scheme

needs to be equipped to handle the time difference between two subsequent obser-

vations through time series modeling of each individual features [46].

The third challenge for online anomaly detection is the anomaly detection process

itself: How can one perform anomaly detection in millions of devices by continu-

ously observing thousands of features at the same time? The focus of this chapter is

to describe an approach based on big data processing and computational intelligence.

Big data processing capabilities [27, 47–49] allow one to process large amounts of
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data at once. Computational intelligence methods allow us to employ “big data”

processing capabilities to extract features that are themselves indicative of contex-

tual anomalies (and hence indicative of intrusions and threats). The online anomaly

detection strategy that is detailed in this chapter works in two domains—in space
and time—as summarized below:

∙ Anomaly detection and learning in space. The objective here is to learn model

parameters for normal and abnormal behaviors by exploiting the big data

infrastructure that allows one to store and process large swaths of information.

First, the entire data belonging to a short period of time is analyzed (burst learning)

to decide which features and attributes need to be monitored (feature selection)

and what level of data abstraction needs to be performed (processing asynchro-

nous data). Then, static anomaly detection is performed and the model parameters

corresponding to normal and abnormal behavior are estimated (model learning).

∙ Online anomaly detection in time. The estimated model parameters belonging to

the normal and abnormal behavior during the preceding burst of learning is used

to monitor the ongoing transactions using an iterated sequential probability ratio

test (Page’s test), which raises an alarm whenever the likelihood of anomalies in

the incoming data exceeds a threshold.

Our proposed anomaly detection concept is demonstrated using a PCA based anom-

aly detection scheme [50] on application level features collected from video on

demand systems. However, the same concept is easily extendable to employ any

type of computational intelligence methods for online anomaly detection in large

scale CPHS.

Figure 2 summarizes how the rest of this chapter is organized. Section 2 describes

how the raw data in many different formats can be digested into some meaningful,

numerical format. To demonstrate this, we introduce data from video on demand ser-

vices which have many of the challenges described earlier. Section 3 describes how

a small burst of data from all the devices is used for learning models for normal and

abnormal behaviors. Section 4 describes how those models can be used in individual

devices to quickly detect emerging anomalies. Section 5 presents numerical results

and the chapter is concluded in Sect. 6.

2 Data Abstraction Methods

Figures 3 and 4 describe typical events collected from a video access device [51].

It is important to note that the most of the events occur in an asynchronous man-

ner as a result of interactions from those who use/operate the device. Further, the

frequency of each event varies significantly creating asynchronism in the data. An

effective anomaly detection strategy requires (i) Accurate enough models reflecting

the normal as well as abnormal nature of the device, (ii) Algorithms that are able to

exploit these models for quickly detecting “emerging anomalies” buried in noise.
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Fig. 2 Overview of the chapter. The objective is to perform anomaly detection on a large num-

ber of similar devices that are connected on the internet, such as cable modems and digital video

recorders (DVR). Section 2 describes some methods to digest data from individual devices; Sect. 3

describes an approach (that is named burst learning) to perform anomaly detection using all the

data from all the devices at once and obtain the required parameters for online anomaly detection.

Section 4 describes how parameters from burst learning are used for fastest detection of potential

threats as they emerge

Fig. 3 Video on demand (VoD) system. A specific example of a cyber-physical-human system

The nature and volume of online transactions surpasses the ability to decide which

features are needed to be stored for anomaly detection. As a result, all the possible

features are streamlined for analysis: the types of data may include numbers, symbols

(e.g., IP address), text, sentences (e.g., synopsis), etc. The first objective is to process

these data and transform it into a matrix format. We call this the “data abstraction”

process.

Let us consider the data collected from the ith device during a time interval [t1, tk]
for abstraction:
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Fig. 4 Example of features of a connected device. An important characteristic of these features

is the asynchronous nature of the observations

∙ Each device can “emit” up to n different events (see Fig. 4). Some examples of

events are “communication bit-rate”, “video frame rate”, “device IP address”,

“device location”, etc. Most of the events are variables and some, such as IP

address, are quasi-stationary.

∙ Each event can take values in different ranges and formats, e.g.,

– Communication bit-rate (say, jth event) of the device i at time t, xi,j(t), is in mega

bits per seconds (mbps) and xi,j(t) ∈ [0, 7] .
– Location (say, j + 1th event) of the ith device at time t, xi,j+1(t) denotes longi-

tudes and latitudes both of which are in degrees, i.e., xi,j(t) ∈ ℝ2
.

– Genre of the video being played by the device (say, j + 2th event) of the

ith device at time t, xi,j+2(t) is categorical, e.g., xi,j+2(t) ∈ {𝚍𝚛𝚊𝚖𝚊, 𝚊𝚌𝚝𝚒𝚘𝚗,
𝚌𝚘𝚖𝚎𝚍𝚢, 𝚎𝚝𝚌.}.

∙ The event values are recorded against time t1, t2,… , tk asynchronously, i.e., tk −
tk−1 ≠ tk−1 − tk−2.

∙ The asynchronous nature of the observations is indicated through “×” in grey back-

ground, which indicates that not all entries of a row are available at the same time.

∙ Each column in (1) denotes a particular event.

∙ Each row in (1) denotes the set of values for all n events observed at time tk.
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Xraw(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xi,1(t1) × ·· · xi, j(t1) · · · xi,n−1(t1) xi,n(t1)
xi,1(t2) xi,2(t2) · · · × · · · xi,n−1(t2) ×

× xi,2(t3) · · · × · · · xi,n−1(t3) ×
...

... . . .
... . . .

...
...

× xi,2(tk−1) . . . xi, j(tk−1) . . . × xi,n(tk−1)
× × . . . xi, j(tk) . . . xi,n−1(tk) ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

←
←
←

←
←

t1
t2
t3
...

tk−1

tk

(1)

Another important objective of the data abstraction process is to summarize the

observations over the time window [t1, tk] into as few parameters as possible while

retaining as much information as possible. The following approaches are useful tools

in this regard:

∙ Mean, median and variance: The jth event over the time window [t1, tk] is sum-

marized/abstracted by its mean and variance during that period.

∙ Histograms and Markov chains: These are particularly useful to abstract non-

numerical outputs, such as text and categorical variables.

∙ Hidden Markov models (HMM): This approach is well-suited to capture hidden,

stochastic patterns in temporal data.

After data abstraction, (1) is compressed into the following form

𝐱T
i (t) =

[
xi,1(t),… , xi,j(t),… , xi,N−1(t), xi,N(t)

]
(2)

where t is an index representing the observation time block [t1, tk] and xi,j(t) are the

abstracted features.

Now, let us write the abstracted event data from all the devices in the following

form:

𝐗(t) =
[
𝐱1(t), 𝐱2(t),… , 𝐱M(t)

]T
(3)

Usually M ≫ N in big data applications.

3 Burst Learning

Online anomaly detection strategies presented in this chapter require the knowledge

of models belonging to normal and abnormal characteristics of the data. The big data

framework allows us to have data belonging to a small (but the same) time duration

of all the devices for learning. This concept is described in Fig. 5. Succinctly, the

proposed online anomaly detection strategy works as follows:

1. Point anomaly detection: Use data from all the devices during time block k
(shown in grey in Fig. 5) to learn model parameters 𝜃0 that corresponds to the

normal data and 𝜃1 corresponding to the abnormal data.
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Fig. 5 Model hypothesis learning. Short bursts of data from all the devices in time block (k) is

used to train models for normal and abnormal hypotheses

2. Online anomaly detection: Use the model parameters {𝜃0, 𝜃1} for online anomaly

detection in each device (Sect. 4).

3. Repeat (1) periodically for updating the parameters.

In this section we discuss how the model parameters 𝜃0 and 𝜃1 corresponding to

normal and abnormal data, respectively, can be obtained from a snapshot of data

𝐗(k) from all the devices during time duration k. We remove the time index k for

convenience in this subsection.

First, we focus on data reduction where the number of columns N in 𝐗 is reduced.

This is achieved through principal component analysis (PCA).

As a preparation for PCA, each column of matrix 𝐗 is scaled so that each com-

ponent has zero mean and unit variance. This can be achieved by performing the

following operation on each column of matrix 𝐗

𝐱n
i ←

𝐱i − 𝜇i

𝜎i
(4)

where 𝐱i is the ith column of 𝐗, 𝜇i is the mean of 𝐱i and 𝜎i is the standard deviation

of 𝐱i(k).
The N × N covariance matrix is computed as

𝐑 = 1
M − 1

𝐗T𝐗 (5)

Performing eigendecomposition on 𝐑 will result in

𝐑 = 𝐕𝛬𝐕T
(6)
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The first L eigenvectors are selected to form the following loading matrix:

𝐏 = [𝐯1, 𝐯2,… , 𝐯L] (7)

Now, let us define 𝐓 as

𝐓 = 𝐗𝐏 (8)

where the M × L matrix 𝐓 = [𝐭1, 𝐭2,… , 𝐭N] is known as the score matrix and each

of column of 𝐓, 𝐭1, 𝐭2,… , 𝐭N , are known as the score vectors.

It must be noted that each row of 𝐓 can be written as

𝐭T
i = 𝐱T

i 𝐏 (9)

Let us post-multiply (8) by 𝐏T

𝐓𝐏T = 𝐗𝐏𝐏T

= 𝐗̂
(

≈ 𝐗
)

(10)

Hence, the data matrix 𝐗 can be written as

𝐗 = 𝐓𝐏T + 𝐄

=
L∑

j=1
𝐭 j𝐩

T
j
+ 𝐄 (11)

where the error 𝐄 is given by

𝐄 = 𝐗 − 𝐗̂ (12)

3.1 Estimating the Number of PCs

It must be noted that as L increases, the error 𝐄 will decrease. The number L is an

important tuning parameter as it determines the amount of variance captured by the

loading matrix 𝐏. There are many approaches for selecting the value of L.

1. By graphically ordering the eigenvalues and selecting a cut off at the knee [52].

2. Based on cumulative percentage variance (CPV) explained by 𝐗̂ [53], which is

a measure of the percentage of variance captured by the first L principal com-

ponents:

CPV(L) =
∑L

i=1 𝜆i

trace(𝐑)
100% (13)



94 B. Balasingam et al.

This second approach gives a way of capturing the exact percentage of variability

in the data. However, this requires the computation of trace (𝐑).

3.2 Anomaly Detection Using Hotelling’s Statistic

Anomaly detection can be done by computing the Hotelling’s T2
statistic [54] for

data from each device, 𝐱T
i , as follows:

T2
i = 𝐱T

i 𝐏𝛬
−1
L 𝐏T𝐱i (14)

The anomalies are then declared as follows:

device i
{

normal (Hypothesis j = 0, H0) T2
i ≤ T

𝛼

abnormal (Hypothesis j = 1, H1) T2
i > T

𝛼

(15)

where T2
𝛼

is a threshold. Setting a threshold T2
𝛼

often requires expert knowledge about

the nature of anomalies along with intimate familiarity with the data.

3.3 PCA in “Big Data” Using NIPALS

When the size of 𝐗 is very large, computing 𝐑 adds significant computational bur-

den. The following NIPALS PCA procedure allows one to compute a small number

of principal components recursively and with relatively little computational load.

[𝐏,𝐓] = NIPALS-PCA
(

𝐗,L
)

1. k = 0
2. Set k = k + 1

Initialize:

𝐭(i)k = any column of 𝐗
Iterate:

Set i = i + 1
𝐯(i)k = 𝐗T 𝐭(i−1)k ∕‖𝐗T 𝐭(i−1)k ‖

𝐭(i)k = 𝐗𝐯(i)k
until ‖𝐯(i)k − 𝐯(i−1)k ‖ < 𝜖

𝐭k ← 𝐭(i)k
𝐯k ← 𝐯(i)k

3. Set 𝐗 ← 𝐗 − 𝐭(i)k 𝐯(i)k
T

if k ≤ L go to step 2



Online Anomaly Detection in Big Data: The First Line . . . 95

4. Obtain

𝐓 = [𝐭1, 𝐭2,… , 𝐭k]
𝐕 = [𝐯1, 𝐯2,… , 𝐯k]

Now, the Hoteling’s statistics are obtained as follows:

T2
i ≈ 𝐭T

i 𝛬̃
−1
L 𝐭 i (16)

where 𝐭T
i is the ith row of 𝐓 and 𝛬̃L is a diagonal matrix formed by the diagonal

elements of 𝐓T𝐓.
It must be noted that the NIPALS-PCA approach described above has its disad-

vantages: It is sensitive to initialization and it becomes unreliable as the number of

principal components that need to be computed increase. There are other efficient

ways to compute PCA [55] and some others are reported in [56].

3.4 Model Parameter Learning

For fast, online anomaly detection, we need models that represent normal as well

as abnormal behaviors. This is an ongoing and challenging research problem. As

an initial step, we investigated multivariate Gaussian models for this purpose [57].

A more general approach is to employ with a Gaussian mixture model: one each

for normal as well as abnormal data. This requires one to employ the expectation

maximization algorithm in a distributed form. Alternatively, a simpler approach is to

use clustering to divide the data into groups and then employ multivariate Gaussian

modeling for each group.

First, we form a group of data 𝐗j (which are the outputs of a clustering algorithm)

𝐓j = 𝐗jP (17)

where each row of 𝐗j is an observation corresponding to the jth cluster.

Now, the jth cluster can be represented by N
(
𝝁j, 𝛴j

)
where

𝝁j =
𝟏T𝐓j

Mj
(18)

𝛴j = 𝐓j𝛬̃
−1
j 𝐓T

j (19)

and 𝛬̃j is a diagonal matrix formed by the diagonal elements of 𝐓T
j 𝐓j.
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4 Online Anomaly Detection

In this section, we describe the online anomaly detection approach assuming the

models learned in Sect. 3. For more details, the reader is referred to [57].

4.1 Batch Detection

Given a series of vector outputs 𝐱i(k), k = 1, 2,… ,K from the ith device, it is

desired to (quickly) detect if the device is turning into an abnormal one. This can

be posed as the following hypothesis testing problem:

H0 ∶ 𝐱(k) ∼ P
𝜃0

1 ≤ k ≤ K
H1 ∶ 𝐱(k) ∼ P

𝜃0
1 ≤ k ≤ k∗ − 1

𝐱(k) ∼ P
𝜃1

k∗ ≤ k ≤ K (20)

where 𝐱i(k) is written without the subscript i for convenience in this section.

Assuming that the change occurred in time k∗, the likelihood ratio between the

hypotheses H0 and H1 is written as

𝛬
K
k∗ =

∏k∗−1
k=1 P

𝜃0
(𝐱(k))∏K

k=k∗ P
𝜃1
(𝐱(k))

∏K
k=1 P

𝜃0
(𝐱(k))

(21)

Now, (21) is written in the form of log-likelihood ratio as

SK
k∗ =

K∑

k=k∗
ln

P
𝜃1
(𝐱(k))

P
𝜃0
(𝐱(k))

(22)

Hence, based on a batch of K observations, the exact time of change is detected

as follows

k̂∗ = arg max
1≤k∗≤K

SK
k∗ (23)

Batch detection is not suitable for anomaly detection, because every time new

data arrives, the batch-computation of SK
k∗ has to be repeated. Hence, a recursive

way of anomaly detection is desired. Next, we summarize Page’s test, which is an

approximate way of performing the anomaly detection recursively.
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4.2 Page’s Test

Consider the following log-likelihood ratio

Sk∗ =
k∗∑

k=1
ln

P
𝜃1
(𝐱(k))

P
𝜃0
(𝐱(k))

(24)

where Sk∗ can be incrementally updated as new data arrives, and an anomaly is

declared when

Sk∗ − mk∗ > h (25)

where

mk∗ = min
1≤k≤k∗

Sk (26)

and h is a predefined threshold value.

Formally, the above anomaly detection time is written as

k̂∗ = argmin
k∗

{
k∗ ∶ Sk∗ − mk∗ > h

}
(27)

Based on the key idea from Page [58], (27) can be recursively computed as fol-

lows

CUSUMk = max
{

0,CUSUMk−1 + Tk

}

(28)

where

Tk = ln
P
𝜃1
(𝐱(k))

P
𝜃0
(𝐱(k))

(29)

and anomaly is declared when CUSUMk exceeds the threshold h.

It must be noted that, for the model in Sect. 3.4-(19)

Tk =
1
2
(
𝐱k − 𝝁0

)T𝐑−1
0
(
𝐱k − 𝝁0

)
− 1

2
(
𝐱k − 𝝁1

)T𝐑−1
1
(
𝐱k − 𝝁1

)
+ log

(
|𝐑0|

|𝐑1|

)

(30)
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4.3 Shiryaev’s Test

Shiryaev [59] proposed a Bayesian approach for change detection, which, we sum-

marize in this subsection.

First, the prior probability of change towards H1 is assumed to be geometric, i.e.,

𝜋
1
0 = 𝜌(1 − 𝜌)k−1 for k > 0 (31)

The probability of hypotheses at time k given the hypothesis at time k − 1 is writ-

ten as a Markov chain with the following transition matrix

P =
(

p(H0|H0) p(H0|H1)
p(H1|H0) p(H1|H1)

)

=
(
1 − 𝜌 0
𝜌 1

)

(32)

Based on Bayes rule, the posterior probability of change towards H1 at time k can

be written as follows:

1
k =

π π
π ππ π

1
k−1Pθ1 (x(k))+ (1− 1

k−1)ρPθ1 (x(k))
1
k−1Pθ1 (x(k))+ (1− 1

k−1)ρPθ1 (x(k))+ (1− 1
k−1)(1− ρ)Pθ0 (x(k))

(33)

The expression in (33) can be simplified as follows

𝜔
1
k = 1

1 − 𝜌
(𝜔1

k−1 + 𝜌)Tk (34)

where 𝜔
1
k is a monotonic function of 𝜋

1
k

𝜔
1
k =

𝜋
1
k

1 − 𝜋
1
k

(35)

The recursive formula in (34) can be written in log-likelihood form as follows

g1k = ln(𝜌 + eg1k−1) − ln(1 − 𝜌) + Tk (36)

where

g1k = ln(𝜔1
k) (37)
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Fig. 6 Multiple anomalies. The objective of the online anomaly detection is to identify the type

of anomaly

Finally, the change is declared when g1k exceeds a threshold h and the change time

estimate is given as

k̂∗ = argmin
k
(g1k > h) (38)

4.4 Tagging Multiple Anomalies

Due to the large amount of data, it becomes infeasible to absorb the entire set of

anomalies into one single model. As a result, the detected anomalies are clustered

into several groups (see Fig. 6) and model parameters of each group are learned.

The abnormal groups are then ranked, based on expert knowledge. The objective

here is to detect the type of anomaly online. This can be done by extending the

Shiryaev’s approach, described in Sect. 4.3.

First, let us assume that initial state of each device is denoted by the prior prob-

abilities 𝜋0 =
[
𝜋
0
0 , 𝜋

1
0 ,… , 𝜋

Na
0
]T

, where 𝜋
0
0 correspond to the normal model and 𝜋

j
0

corresponds to the jth abnormal mode.
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Now, let us assume that the change in model hypothesis can be characterized by

the following transition probability matrix

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p0,0
1−p1,1

Na
… 1−pNa ,Na

Na
1−p0,0

Na
p1,1 … 1−pNa ,Na

Na

⋮ ⋮ ⋱ ⋮
1−p0,0

Na

1−p1,1
Na

… pNa,Na

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(39)

where the probability of staying in the same mode j from time k − 1 to k is given by

pj,j = 1 − 1
𝜏j
; j = 0, 1,… ,Na (40)

and 𝜏j is the expected sojourn time [60] of mode j indicating how long on average the

mode j stays active. It is important to note that P above allows a particular anomaly

j to be detected as well as reset.

Now, from Bayes’ theorem, the mode probability of the nth hypothesis at the kth

time epoch can be written as

𝜋
n
k =

∑Na
i=0 𝜋

i
k−1pn,iP𝜃n

(𝐱(k))
∑Na

j=0
∑Na

i=0 𝜋
i
k−1pn,iP𝜃j

(𝐱(k))
n ∈ {0, 1,… ,Na} (41)

5 Simulation Results

The data for analysis comes from Comcast’s Xfinity player, collected while sub-

scriber devices were accessing VOD services. The model learning data is taken by

setting the time duration k = 1 h.

The following nine features (N = 9) are extracted during a 1 h time frame.

f1: number of buffering events, f2: number of media failed events, f3: Number of

User Interface(UI)-error events, f4: Number of opening events, f5: Number of acti-

vation events, f6: Number of authentication events, f7: Startup time, f8: Number of

IP addresses linked to a device, and f9: Number of assets a device accessed. These

data are collected form N = 54306 devices.

Figure 7 shows the extracted features f1 − f9 from all the devices.

Figure 8 shows a histogram of each feature, corresponding to Fig. 7. The his-

tograms give a good sense of where most of the features lie.
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Fig. 7 Abstracted features. The data from each device is collected during the same time interval

[tk−1, tk]. In each plot, the x axis ranges from 1 to 54306, denoting one of the devices, and y axis

denotes the feature fi

Figure 9 shows the result of feature reduction based on PCA. We selected the num-

ber of principal components corresponding to a cumulative percentage of variance

(CPV) value of 95%, which resulted in selecting nPC = 6 principal components.

The results of anomaly detection and model learning are shown in Fig. 10. The

threshold T
𝛼

is selected as inverse of the Chi-square cumulative distribution function

with nPC degrees of freedom at the 99% confidence level.

Figure 11 shows the features corresponding to detected normal and abnormal fea-

tures as a box plot.

Now, we demonstrate the online anomaly detection capability through simula-

tions. We assume the number of abnormal modes to be Na = 1 so that other anomaly

detection approaches can be compared. The parameters corresponding H0(𝝁0, 𝛴0)
and H1(𝝁1, 𝛴1) are computed based on the initial anomaly detection discussed ear-

lier. A test data stream of length K = 1000 is generated as follow: The first 500 data

points are generated samples of a multivariate Gaussian distribution of mean 𝝁0 and

covariance 𝛴0 and the second 500 data points are generated samples of a multivari-

ate Gaussian distribution of mean 𝝁1 and covariance 𝛴1. Fig. 12 shows the tracking

results of all the algorithms discussed in Sect. 4.
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Fig. 12 Demonstration of online anomaly detection by comparing all three approaches

6 Conclusions

This chapter described an anomaly detection strategy applicable to a large num-

ber of intelligent devices (specifically, millions of cable modems and digital video

recorders) connected to the Internet. The proposed anomaly detection scheme

exploits the availability of distributed, big data processing for the learning of model

hypotheses—from short bursts of data from all devices. Relevant parameters obtained

through learning from a small interval of data (through centralized processing) are

passed over to each connected device for online anomaly detection. The online anom-

aly detection strategy is set up as a likelihood ratio test, also known as the Page’s test.

Each connected device is equipped with the online anomaly detection capability, as

such emerging threats can be quickly detected and the affected devices before mul-

titudes of devices are affected.
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Developing Modified Classifier for Big Data
Paradigm: An Approach Through
Bio-Inspired Soft Computing

Youakim Badr and Soumya Banerjee

Abstract The emerging applications of big data usher different blends of

applications, where classification, accuracy and precision could be identified as

major concern. The contemporary issues are also being emphasized as detecting

multiple autonomous sources and unstructured trends of data. Therefore, it becomes

mandatory to follow suitable classification and in addition to appropriate labelling of

data is required to use relevant computational intelligent techniques. This is signifi-

cant, where the movement of data is random and follows linked concept of data e.g.

social network and blog data, transportation data and even supporting low-carbon

road transport policies. It has been agreed by the research community whether only

supervised classification techniques could be useful for such diversified imbalanced

classification. Subsequently, the genesis of majority and minority class detection

based on supervised features following conventional data mining principle. How-

ever, the classification of majority or positive class is over-sampled by taking each

minority class sample. Definitely, significant computationally intelligent methodolo-

gies have been introduced. Following the philosophy of data science and big data,

the heterogeneous classification, over-sampling, mis-labelled data features cannot be

standardized with hard classification. Hence, conventional algorithm can be modi-

fied to support ensemble data set for precise classification under big and random data

and that can be achieved through proposed monkey algorithm dynamic classification

under imbalance. The proposed algorithm is not completely supervised rather it is

blended with certain number of pre-defined examples and iterations. The approach

could be more specific, when more numbers of soft computing methods, if they can

be hybridized with bio-inspired algorithms.
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1 Introduction

Big data computing needs advanced technologies or methods to solve the issues of

computational time to extract valuable information without information loss. In this

context, generally, Machine Learning (ML) algorithms have been considered to learn

and find useful and valuable information from large value of data [1]. Combining the

different textures of big data, there are methods to address the granular level of big

data through granular computing and rough sets [2]. However to address the dynamic

big data e.g. on-line social data [3], the use of Fuzzy sets to model raw sentiment

with classification probabilities has already been developed. The artifacts and ana-

lytics based on a-cut of fuzzy sets to determine whether any given artifact expresses

and impresses positive, negative, and/or neutral sentiment. The deployment of fuzzy

classification and Fuzzy Rule Based Classification Systems found to be an emerging

soft computing algorithm for big data and analytics. In addition to, as the data in

big data [3] paradigm are highly skewed and hence using certain ensemble classi-

fier could improve the machine learning and fusion process. Each base classifier is

trained with a pre-processed data set. As data level approaches towards random val-

ues, the pre-processed data sets and the corresponding classifiers will be different.

This will also tackle massive random under and over-sampling processes across big

data interaction and movements [4]. The proposed model considers a service com-

puting problem in big data scenario to classify the levels of different load requests on

demand concerning the opinions collected from tourists in a city at real time. In mul-

tiple application domains, one obtains the predictions, over a large set of unlabeled

instances, of an ensemble of different experts or classifiers with unknown reliabil-

ity. Common tasks are combining these possibly conflicting predictions. However,

not only the unlabeled instances with variable reliable values are not instrumental

to develop the modified classifier, additionally, bio-inspired methods are found to

be suitable and appropriate. Here, improved monkey algorithm is applied here to

investigate dynamic classification under big data environment.

The classification is the problem of identifying to which of a set of categories a

new observation belongs, on the basis of a training set of data containing observa-

tions (or instances) whose category membership is known.

The prime consideration of classifier is granularity of space decomposition, num-

ber of nearest neighbors and dimensionality. All these features could become more

significant, if they are being applied to conventional MapReduce closures. Usually,

the set of features is encoded as a binary vector, where each position determines if a

feature is selected or not. is allows to perform feature selection with the exploration

capabilities of evolutionary algorithms. However, they lack the scalability necessary
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to address big datasets. We find manifold computational intelligent techniques to

perform the feature selection process for developing classifier.

The challenges derived from acquiring and commissioning these consolidated

volume of data indicates some merits as well [5]. Categorically, the concept of Data

Science evolves from the paradigm of Data Mining environment [6]. These typical

categories could be addressed as core Big Data problems [7, 8]. There exist a sub-

stantial scalability of Data Mining models, the consolidation of more precise knowl-

edge from data can be easily achieved should be accessible [9]. The conventional

MapReduce model [10] has been improvised as an emerging prototype, support-

ing the development of accurate and scalable applications for present researchers-

pertaining to data science. In order to deploy a learning procedure from a set of

labeled examples (training data) it becomes mandatory to configure a prototype sys-

tem, that models the problem space while utilizing their input attributes. Later, when

un-known examples (test data) are being accepted by the system, an inference mech-

anism is evolved to determine the label of the query with respect to their appropriate

instance. We investigate several big data supervised techniques that are applied on

the imbalanced datasets [11, 12] such as cost-sensitive Random Forest (RF-BDCS),

Random Oversampling with Random Forest (ROS + RF-BD), and the Apache Spark

Support Vector Machines (SVM-BD) [12] combined with MapReduce ROS (ROS

+ SVM-BD).

However, the diversification of classification problem always solicits computa-

tional intelligence.

The highlight of classification problem is that the examples of one class signif-

icantly outnumber the examples of the other one [13]. Definitely, the classification

problem also may represent minority class. Practically, those classes may be excep-

tional and significant cases. Hence, computational cost could be enhanced. In most

cases, the imbalanced class problem is associated to binary classification, but the

multi-class problem seldom occurs and it will be more challenging, if there exist

several minority classes [14].

The suitability of standard learning algorithms normally consider a balanced

training set. Therefore, majority classes are well accepted whereas the minority ones

are misclassified frequently. These algorithms, which exhibits decent performance

for standard classification, do not necessarily achieve the best performance for imbal-

anced datasets [15]. Research explores several such causes:

∙ The use of global performance measures for monitoring the learning paradigm,

such as the standard accuracy rate, may provide an advantage to the majority class.

∙ Classification rules which forecast the positive classes are seldom majorly cate-

gorized and thus their coverage is very low, hence they are discarded in favor of

more general rules, i.e. those that predict the negative class.

∙ Very small clusters of minority class examples can be identified as noise or could

be error as well, and hence the chances of erroneous cancel by the classifier may

persist. On the contrary, few real noisy examples can degrade the identification of

the minority class, since it has limited instances to train with.

One of the solution rending computational intelligence could be resampling
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Re-sampling techniques can be categorized into three groups or families:

∙ Under sampling methods, which create a subset of the original dataset by elimi-

nating instances (usually majority class instances).

∙ Oversampling methods, which create a superset of the original dataset by repli-

cating some instances or creating new instances from existing ones.

∙ Hybrids methods, which combine both sampling approaches from above. Within

these families of methods, the simplest preprocessing techniques are non-heuristic

methods such as random under sampling and random oversampling.

Their working procedure is straight-forward approach: they are focussed to randomly

remove examples of the majority class, or replicate examples from the minority

class. This process is carried out only in the training set of instances with aims at

re-balancing the data distribution to the 50%. In the first case, i.e. random under sam-

pling, the major drawback is that it can discard potentially useful data, that could be

important for the learning process. In order to deal with the mentioned problems,

more sophisticated methods have been proposed. Among them, the work accom-

plished in 2002 [16] has become one of the prominent approaches. In brief, its main

idea is to create new minority class examples by interpolating several minority class

instances that lie together for oversampling the training set. With this technique, the

positive class is over-sampled by taking each minority class sample and introducing

synthetic examples along the line segments joining any/all of the k minority class

nearest neighbors. Depending upon the amount of over-sampling required, neighbors

from the k nearest neighbors are randomly chosen. The standardization of compu-

tationally intelligent technique may not be possible and to create more such option

this present bio-inspired soft computing is proposed.

The remaining part of the chapter could be as follows: Sect. 1 will elaborate the

problem, followed by the recent similar works in Sect. 2. Section 3 introduces the ele-

mentary fundamentals of classifier and proposed approach. Section 4 presents vali-

dation on the proposed approach using soft computing. Finally, Sect. 5 gives conclu-

sion and mentions further scope of the concept.

1.1 Motivation and Background

Emerging changes orchestrated through the rapid interaction and volume of data lead

to the business analytics. The wide information generation with the help of smart

devices and the rapid growth of social networks, including IoT (Internet of Things)

[1, 2] contributes significant impact towards various features of business data analy-

sis and classification. Unlikely to the conventional texture of data, big data and data

grabbed through interconnected smart devices indicates different verticals e.g. text

mining, opinion Mining, social network and cluster analysis, which ushers distin-

guished techniques to classify and analyze. The reason of such scaled differences

are expected as the v3 concepts of big data which is defined as velocity, variety and

volume. It is also followed by c3 concepts of cardinality, continuity and complex-
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ity. Hence, data classification has become an essential technique to support people

for exploring the hidden knowledge within large-scale datasets and then using this

knowledge to make informed inferences. It can be assumed there exists a sequence

dataset (SD) and that L is a set of class labels. Assume further that each sequence S

∈ SD is associated with a particular class label c1 ∈ L. The sequence classification

task involves building a sequence classifier C; namely a function, which maps any

sequence S, to a class label cL, i.e., C:S ∈ cL; cL ∈ L. In the second stage of the

classification model, the mapping process is performed using an ensemble classifier,

expressed as ESC (C1, . . . , Cn): S ∈ cl; cl ∈ L, where n is the number of classifiers.

The challenge of such classification is crucial in the paradigm of big data becomes

crucial as multiple classes exist and linear classifier could not be adequate due to

skewness of random data. Ensemble classification is a technique, in which multiple

classifiers are combined in order to obtain an enhanced prediction accuracy. A good

ensemble classifier with an equal voting mechanism is able to both reduce the biased

prediction of r is k (from each single classifier) and to improve the forecasting accu-

racy of the data categories. A data set by a pairs (xi, yi) from (x, y) where x ∈ ℜm
and

Y is either described by a set of labels yi ∈
∑

or numeric values. A space described

by n ∈ N observations and m ∈ N, m ∈ N features is here referred as a (n, m) space.

The joint distribution p(x,y) and the marginals pX(x) and pY(y) all are random and

unknown. Hence, the classification seems to be injected by imbalance with random

big data and during the final classification. It causes several problems for standard

machine learning (ML) algorithms suffers to perform with accuracy because of the

unequal distribution in dependent variable. This causes the performance of existing

classifiers to get biased towards majority class. The algorithms are accuracy driven

i.e. they aim to minimize the overall error to which the minority class contributes

proportionately less. ML algorithms assume that the data set has balanced class dis-

tributions. They also assume that errors obtained from different classes have same

cost. This paper is proposing the modified classifier with respect to multi class mea-

sures considering the class imbalance attribute in the sample of big random data

set. The proposed bio-inspired soft computing method addresses the problem. The

embedded imbalance and strategy to tackle it, may solicit certain primary formal

foundation. if there is a set of underlying stochastic regulations for a given class then

any learning task will try to minimize the error in final state. Primarily, the proposed

model addresses a multi-class classification problem and it also takes care-off class

imbalance as well. The followings are the instances:

∙ One-vs.-rest (OvR) The one-vs.-rest (or one-vs.-all) strategy involves training a

single classifier per class, with the samples of that class as positive samples and

all other samples as negatives.

∙ One-vs.-one (OvO) In the one-vs.-one, one trains K(K − 1)/2 binary classifiers

for a K-way multi-class problem; each receives the samples of a pair of classes

from the original training set, and must learn to distinguish these two classes. At

prediction time, a voting scheme is applied: all K(K − 1) / 2 classifiers are applied

to an unseen sample and the class that got the highest number of “+1” predictions

gets predicted by the combined classifier.
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Fig. 1 Schema of learning classifier

As shown in Fig. 1, the sequence dataset is divided into a training dataset and a

test dataset. The classifier consists of two stages. The first stage generates sev-

eral Sequence Classifiers based on the Pattern Coverage Rate (SC-PCR) using the

sequences in the training dataset.

Considering these specific ranges of classifiers and background, it has been real-

ized that there is substantial scope to augment modified classifier schemes by incor-

porating bio-inspired soft computing approaches. Monkey algorithm and its vertical

is well suitable for developing classifier based on bio-inspired soft computing prin-

ciple to tackle randomized behavior and imbalanced classification.
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2 Similar Works

There are emerging research perspectives on big data classifiers. Primarily, the con-

ventional classification methods are unsuitable for sequence data. Hence, Ensem-

ble Sequence Classifier (ESC) has been proposed [17]. The ESC consists of two

stages. The first stage generates a Sequence Classifier based on Pattern Coverage

Rate (SC-PCR) in two phases. The first phase mines sequential patterns and builds

the features of each class, whereas the second phase classifies sequences based on

class scores using a pattern coverage rate. Similarly, there are typical applications on

Extreme learning machine (ELM) which has been developed for concerned big data

and neural net based frameworks [18, 19]. Recently, classification in the presence

of class imbalance [20, 21] has gained a considerable amount of attention in the last

years. The principle objective is to investigate the correct identification of positive

examples, without drastically deteriorating the performance on the negative class. A

wide variety of solutions has been proposed to address this problem [22]. Data skew-

ness is an often encountered challenge in real world applications and it also moti-

vates to have better classification [23]. A sequence of open competitions for detecting

irregularities in the DNA string is one of the major area of finding ensemble clas-

sification problem [24]. Data Mining Package, an open-source, MapReduce-based

tool known as ICP, for the supervised classification was presented focussing large

amounts of data [25].

There is a need to propose efficient classification techniques, which are suitable

to handle the data stream challenges. The challenges are open data stream, concept

drift, concept evolution problem and feature evolution problem [26]. The trend of

feature selection in genomics experiment also solicits efficient classification solu-

tions keeping dimensionally different gene expressions [27]. Dimension reduction is

one of the biggest challenge in high-dimensional regression models ad that is well

accomplished by machine learning research community [28].

While implementing the different variations of ensemble learning and classifica-

tion it becomes a practice to insert the diversity into an ensemble. Sampling could

be the most generic procedure. In Bagging [29], each base classifier is obtained from

a random sample of the training data. In AdaBoost [30] the resampling is based on a

weighted distribution, the weights are modified depending on the correctness of the

prediction for the example given by the previous classifier. Bagging and AdaBoost

have been modified to deal with imbalanced datasets They are referred as SMOTE-

Bagging [31], SMOTEBoost [32] and RUSBoost [33]. These approaches are ori-

ented with data level and they can manage oversampling and randomness to some

extent. It is also possible to have ensembles that combine classifiers obtained with

different methods [34]. The proposed algorithm is one of such combined strategical

approach using monkey algorithm [35, 36] and its subsequent improvement with

respect to big data environment.
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3 Proposed Model

Hence, the conventional algorithm can be modified to support ensemble data set for

precise classification under big and random data. The modified classifier is proposed

to develop by using a novel bio-inspired mechanism. e.g. monkey algorithm. The

monkey algorithm was first proposed to solve numerical optimization problems as

a new swarm intelligence based algorithm stemmed from the mountain-climbing

behavior of monkeys [35]. Assume that there are many mountains in a given field.

At the beginning, the monkeys climb up from their respective positions to find the

mountaintops (this action is called climb process). When a monkey get the top of

its mountain, it will find a higher mountain within the sight and jump somewhere of

the mountain from the current position (this action is called watch–jump process),

then repeat the climb process. After repetitions of the climb process and the watch–

jump process, each monkey will somersault to a new search domain to find a much

higher mountaintop (this action is called somersault process). In this model, only

climb process has been incorporated.

The improved monkey algorithm [36] will assist to formulate a scheme for

dynamic classification under imbalance. The proposed model is an iterative algo-

rithm which accumulates sequentially positive and negative votes for subsets of

classes. The terminating criteria of the can be customized accordingly.

Given the initial set of classes L = {l0, l1,…, lL} and an example x to classify,

the algorithm will yield output at the end of the process and presents the highest

mean class of positive votes as coined in ensemble learning methods. Based on climb
and watch jump process of Monkey Algorithm elaborates a general scheme. At each

round, a binary classifier is considered named as dichotomizer, which will compare

two subsets of classes, C+ and C− (C+
⋂

C− = ∅) and will predict if the example x

belongs most likely to a class of C+ or to a class of C−. Positive and negative votes

are recorded accordingly for the classes of C+ and C−. We will note in the following

fC+,C− the classifier trained to separate the set of classes C+ from the set of classes

C−: f C+,C− is trained such that fC+,C− (x) = 1 for x from a class in C+ and fC+,C−(x)

= − 1 for x from a class in C−.

There could be 2 levels of algorithms: firstly, the basic looping to the inserted

new data for learning to be done followed by the typical module of monkey algorithm

(climb process) to keep track of different iterations of sample data. However, it could

be more efficient to deduce the steps of first level looping prior to enter into actual

samples and iterations:
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Algorithm 1 First Level of Algorithm Concerning the Initial Samples
D1= initial dataset with equal weights

for i =1 to k do

Learn new classifier Ci;

Compute ai (importance of classifier);

Update sample weights;

Create new training set Di+1 (using weighted sampling)

end for
Construct Ensemble which uses Ci weighted by ai (i = 1, k)

Algorithm 2 High Level Description of Classifier with Monkey Algorithm
Require : Set S, N observations, M features

Set S of examples (x1,y1) . . . (xn, yn) /*where, xi ∈ X ⊆ ℜn
& yi ∈ Y = {−1,+1}*/

Test : New set of S’ of examples, Number of iterations

for i=1 to M do

for j= 1to N do

x[i][j]=1 to N do

x[i][j]=rand ( )

if x[i] [j] < 0.5

x[i][j]=1

end if
end for

end for
SN ← {(xi, yi) ∈ S ∣ yi = −1; /* Majority Size SN*/

SP ← {(xi, yi) ∈ S ∣ yi = +1; /*/* Minority Size SP*/

Climb_Monkey( )

Randomly generate 2 vectors Δx´ = (Δx′
,Δx′

,… ,Δx´) = (Δx′′

i1,Δxi2´´,… ,Δxin´´),
/*where, j = 1, 2, . . . , n, respectively*/

/*The parameter a(a > 0), called the step of the climb process, can be determined by specific situ-

ations. Here, set the climb step a = 1 for the 0-1 knapsack problem.*/

Set x´ij = |xij − Δx′

ij| and x
′′
ij =|xij − Δx′′

ij|, /*j=1, 2, . . . , n, respectively, |x| represents the

absolute value of x.*/

Set Xi´ = (x´, x´ ,. . . ,x´ ), X´´ = (x´´ ,x´´, . . . , x´´ ).

Calculate f (Xi´) and f (Xi´´), /*i = 1, 2, . . . , M, respectively*/

if f(X´) > f(X´´) and f(X´) > f(Xi),

Set Xi= Xi´.

end if
If f(Xi´´) > f(Xi´) and f(Xi´´) > f(Xi)

Set Xi= Xi´´

end if
Repeat steps until the maximum allowable number of iterations has been reached.

4 Discussion

As a justified case study, it is focussed to big data paradigm of tweets of tourists in

a specific city.
1

1
https://github.com/DMKM1517/SmartCity/blob/master/DataScienceNotebooks/sampledata.csv.

https://github.com/DMKM1517/SmartCity/blob/master/DataScienceNotebooks/sampledata.csv
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Fig. 2 Monkey climb algorithm on tweet data

However, csv format of data with 1.5M tweets having the following specifications

are being considered:

∙ idd: Unique tweet id

∙ Text: Text within the tweet

∙ alch_scores: Score Alchemy API

∙ Local_score: Score

∙ Sentiment: Score trained classifier (sample dataset with 200 records)

Figure 2 demonstrates the training error versus number of stumps in case of mon-

key climb algorithm applied on the tweet data. The climb process is an incremental

procedure to improve the objective function by choosing a better one between two

positions that are generated around the current position. It is observed that near 100

stump the training error converges into 0.2 unit value. The experiments were per-

formed using a desktop computer with a 3.01 GHz X4640 processor, 3 GB of RAM.

For every test problem, algorithm runs 50 times individually with random initial

solutions. The proposed algorithm achieve perfect prediction on the training data

after a while. In brief, the following procedure could be considered:

First, we have a training dataset and pool of classifiers. Each classifier does a

poor job in correctly classifying the datasets (they are usually called weak classifier).

Then the pool is consulted and find the one which does the best job (minimizing

classification error). The weight of the samples will be increased, which are miss-

classified (so the next classifier has to work better on these samples). They are self-

terminating, hence the scope of guess to include minimum numbers of members.

They also produce ensembles with some very small weights, we can safely remove

ensemble members.



Developing Modified Classifier for Big Data Paradigm . . . 119

Suppose, there are 25 base classifiers Each classifier has error rate, 𝜖 = 0.35
Assume classifiers are independent probability that the ensemble classifier makes

a wrong prediction:

25∑

i=13

(25
i
)
𝜖
i(1 − 𝜖)25−i = 0.06 (1)

If base classifiers are C1, C2, . . . , CN and error rate becomes:

𝜖i =
1
N

N∑

j=1
wj𝛿[(Cixj) ≠ yj)] (2)

This demonstrates that if any intermediate rounds yield subsequent error rate

higher than 50%, then the weights w are reverted back to 1/n and the re-sampling

procedure has to be invoked again.

Figure 3 shows the variation of 𝜖 and inversion of it, with respect to different

iterations. As shown in Table 1 Record Set 4 (out of 200 records of sample) is hard

to classify. Its weight is increased, therefore it is more likely to be chosen again in

subsequent iterations with more climb values of monkey.

Fig. 3 Base classifier with

variation of 𝜖 = 0.35

Table 1 Snaps of different sample iterations

Original data 1 2 3 4 5 6 7 8 9 10

Iteration 1 7 3 2 8 7 9 4 10 6 3

Iteration 2 5 4 9 4 2 5 1 7 4 2

Iteration 3 4 4 8 10 4 5 4 6 3 4
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5 Conclusion

The prime objective of existing big data oriented classifiers is not to obtain highly

accurate base models, but rather to achieve base models, to quantify different kinds

of errors. For example, if ensembles are used for classification, high accuracies can

be accomplished, if different base models misclassify different training examples,

even if the base classifier accuracy is low. Independence between two base classifiers

can be evaluated in this case by measuring the degree of overlap in training exam-

ples towards misclassification. In this case, more overlap means less independence

between two models. Considerable understanding of bio-inspired soft computing

behavior improvise to develop the proposed model which can optimize computa-

tional effort to classify the different classes under big and skewed data paradigm.

Monkey algorithm and its simple functional improved components will assist to for-

mulate a scheme for dynamic classification under imbalance. It has been observed

that the classification in ensemble mode through bio-inspired soft computing could

be better accurate in-spite of the presence of noise and miss-classification. Till this

report is prepared, there is not adequate research on bio-inspired and soft computing

based classifier for big data environment persist. Hence, the other functional compo-

nents of monkey algorithm like somersault process for all tweet records can also be

incorporated towards further clarification. The search domain will be more precise

and classification based on sample will be more ensembles with less data skewing

and oversampling.

References

1. Shafaatunnur Hasan, Siti Mariyam Shamsuddin, Noel Lopes (2014), Machine Learning Big

Data Framework and Analytics for Big Data Problems, Int. J. Advance Soft Compu. Appl,

Vol. 6, No. 2, IS bSN 2074-8523; SCRG Publication.

2. Tianrui Li, Chuan Luo, Hongmei Chen, and Junbo Zhang (2015), PICKT: A Solution for Big

Data Analysis, Springer International Publishing Switzerland, Ciucci et al. (Eds.): RSKT 2015,

LNAI 9436, pp. 15–25. doi:10.1007/978-3-319-25754-9 2.

3. Raghava Rao Mukkamala et. al (2014), Fuzzy-Set Based Sentiment Analysis of Big Social

Data IEEE 18th International Enterprise Distributed Object Computing Conference (EDOC).

4. Quan Zou, Sifa Xie Ziyu Lin Meihong Wu, Ying Ju (2016) Finding the Best Classification

Threshold in Imbalanced Classification, Big Data Research, Available online 4 January.

5. Chen CP, Zhang C-Y (2014), Data-intensive applications, challenges, techniques and technolo-

gies: a survey on big data. Inf Sci 275: pp. 314–347, 2014.

6. Witten IH, Frank E, Hall MA (2011), Data mining: practical machine learning tools and tech-

niques. Morgan Kaufmann series in data management systems. Morgan Kaufmann, Burlington,

2011.

7. Mattmann CA (2013) Computing: a vision for data science. Nature 493: pp. 473–475.

8. Provost F, Fawcett T (2013), Data science and its relationship to big data and data-driven deci-

sion making. Big Data 1(1): pp. 51–59.

9. Wu X, Zhu X, Wu G-Q, Ding W(2014), Data mining with big data. IEEE Trans Knowl Data

Eng 26(1): pp. 97–107.

10. Dean J, Ghemawat S (2010), MapReduce: a flexible data processing tool. Commun ACM

53(1): pp. 72–77.

http://dx.doi.org/10.1007/978-3-319-25754-9


Developing Modified Classifier for Big Data Paradigm . . . 121

11. del Río S., López V., Benítez J. M., Herrera F (2014), On the use of MapReduce for imbalanced

big data using Random Forest. Information Sciences. 284: pp. 112–137.

12. Zaharia M., Chowdhury M., Das T., et al (2012). Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing. Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation (NSDI ’12); April 2012; San Jose, Calif, USA.

USENIX Association; pp. 1–14.

13. V. López, A. Fernandez, S. García, V. Palade, F. Herrera (2013). An Insight into Classification

with Imbalanced Data: Empirical Results and Current Trends on Using Data Intrinsic Charac-

teristics. Information Sciences 250, 113–141.

14. A. Fernández, V. López, M. Galar, M.J. del Jesus, F. Herrera (2013), Analysing the clas-

sification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc

approaches, Knowledge-Based Systems 42. pp. 97–110.

15. A. Fernandez, S. García, J. Luengo, E. Bernadó-Mansilla, F. Herrera (2010), Genetics-based

machine learning for rule induction: state of the art, taxonomy and comparative study, IEEE

Transactions on Evolutionary Computation 14 (6) pp. 913–941.

16. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer (2002) Synthetic Minority Oversam-

pling Technique (SMOTE): Synthetic Minority Over-Sampling Technique, Journal of Artificial

Intelligent Research 16, pp. 321–357.

17. I-Hui Li, I-En Liao, Jin-Han Lin, Jyun-Yao Huang (2016), An Efficient Ensemble Sequence

Classifier Journal of Software, Volume 11, Number 2, pp. 133–147.

18. Jiuwen Cao and Zhiping Lin (2015), Extreme Learning Machines on High Dimensional and

Large Data Applications: A Survey, Mathematical Problems in Engineering Volume 2015,

Article ID 103796, pp. 1–13.

19. Extreme Learning Machines, Erik Cambria and Guang-Bin Huang (2013), IEEE Intelligent

System, Published by the IEEE Computer Society.

20. V. López, A. Fernández, S. García, V. Palade, and F. Herrera (2013), An insight into clas-

sification with imbalanced data: Empirical results and current trends on using data intrinsic

characteristics, Information Sciences, vol. 250, no. 0, pp. 113–141.

21. M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera (2012), A review on

ensembles for the class imbalance problem: Bagging boosting and hybrid-based approaches,

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.

42, no. 4, pp. 463–484.

22. S. del Río, V. López, J. Benítez, and F. Herrera (2014), On the use of Mapreduce for imbalanced

big data using random forest, Information Sciences, vol. 285, pp. 112–137.

23. I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera (2015), MRPR: A Mapreduce

solution for prototype reduction in big data classification, Neurocomputing, vol. 150, pp. 331–

345.

24. Ariel Jaffe, Ethan Fetaya, Boaz Nadler, Tingting Jiang, Yuval Kluger (2016), Unsupervised

Ensemble Learning with Dependent Classifiers, Appearing in Proceedings of the 19th Inter-

national Conference on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz, Spain.

JMLR: W&CP, Volume 51.

25. V. A. Ayma, R. S. Ferreira, P. Happ, D. Oliveira, R. Feitosa, G. Costa, A. Plaza, P. Gamba

(2015), Classification algorithms for big data analysis, a Map Reduce approach, The Interna-

tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

Volume XL-3/W2, 2015 PIA15+HRIGI15 – Joint ISPRS conference, 25–27 March Munich,

Germany.

26. M. B. Chandak (2016), Role of big-data in classification and novel class detection in data

streams, J Big Data 3:5, Springer-Verlag.

27. Mahmoud et al. (2014), A feature selection method for classification within functional

genomics experiments based on the proportional overlapping score, BMC Bioinformatics,

15:274 http://www.biomedcentral.com/1471-2105/15/274.

28. Yengo L, Jacques J, Biernacki C (2013), Variable clustering in high dimensional linear regres-

sion models. Journal de la Societe Francaise de Statistique.

29. L. Breiman (1996), Bagging predictors, Mach. Learn. 24, pp. 123–140.

http://www.biomedcentral.com/1471-2105/15/274


122 Y. Badr and S. Banerjee

30. Y. Freund, R.E. Schapire (1996), Experiments with a new boosting algorithm, in: Machine

Learning, Proceedings of the Thirteenth International Conference (ICML ’96), Bari, Italy, July

3–6, pp. 148–156.

31. S. Wang, X. Yao (2009), Diversity analysis on imbalanced data sets by using ensemble models,

in: IEEE Symposium Series on Computational Intelligence and Data Mining (IEEE CIDM

2009), pp. 324–331.

32. N. Chawla, A. Lazarevic, L. Hall, K. Bowyer (2003), Smoteboost: improving prediction of the

minority class in boosting, in: 7th European Conference on Principles and Practice of Knowl-

edge Discovery in Databases (PKDD 2003), pp. 107–119.

33. C. Seiffert, T. Khoshgoftaar, J. Van Hulse, A. Napolitano (2010), Rusboost: a hybrid approach

to alleviating class imbalance, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum. 40 (1) pp.

185–197.

34. S.B. Kotsiantis, P.E. Pintelas (2003), Mixture of expert agents for handling imbalanced data

sets, Ann. Math. Comput. Teleinform. 1 (1) pp. 46–55.

35. R.Q. Zhao, W.S. Tang (2008), Monkey algorithm for Global numerical optimization, J. Uncer-

tain Syst. 2 (3) pp. 164–175.

36. Yongquan Zhoua, Xin Chena, Guo Zhou (2016), An improved monkey algorithm for a 0-1

knapsack problem, Applied Soft Computing, Elsevier 38, pp. 817–830.



Unified Framework for Control
of Machine Learning Tasks
Towards Effective and Efficient
Processing of Big Data

Han Liu, Alexander Gegov and Mihaela Cocea
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chine learning as a powerful tool of big data processing. In machine learning
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1 Introduction

Big data can generally be characterized by 5Vs—Volume, Velocity, Variety,
Veracity and Variability. In particular, volume generally reflects the space required
to store data. Velocity reflects the speed of data transmission and processing, i.e.
how effectively and efficiently real-time data is collected and processed on the
platform of cloud computing. Variety reflects the type of data, i.e. data can be
structured or unstructured and can also be in different forms such as text, image,
audio and video. Veracity reflects the degree to which data can be trusted. Vari-
ability reflects the dissimilarity between different instances in a data set. More
details on big data can be found in [1–4].

In many studies, machine learning has been considered as a powerful tool of big
data processing. As introduced in [5], the relationship between big data and
machine learning is very similar to the relationship between resources and human
learning. In this context, people can learn from resources to deal with new matters.
Similarly, machines can learn from big data to resolve new problems. More details
on big data processing by machine learning can be found in [6–12].

Machine learning is regarded as one of the main approaches of computational
intelligence [13]. In general, computational intelligence encompasses a set of nature
or biology inspired computational approaches such as artificial neural networks,
fuzzy systems and evolutionary computation. In particular, artificial neural net-
works are biologically inspired to simulate the human brains in terms of learning
through experience. Also, fuzzy systems involve using fuzzy logic, which enables
computers to understand natural languages [14]. Moreover, evolutionary compu-
tation works based on the process of nature selection, learning theory and proba-
bilistic methods, which helps with uncertainty handling [13]. As stated in [15],
learning theories, which help understand how cognitive, emotional and environ-
mental effects and experiences are processed in the context of psychology, can help
make predictions on the basis of previous experience in the context of machine
learning. From this point of view, machine learning is naturally inspired by human
learning and would thus be considered as a nature inspired approach. In addition,
most machine learning methods involve employing heuristics of computational
intelligence, such as probabilistic measures, fuzziness and fitness, towards optimal
learning. In particular, C4.5, Naïve Bayes and K nearest neighbors, which are
selected for the experimental studies in Sect. 4, involve employing such heuristics.

In machine learning context, learning algorithms are typically evaluated in four
dimensions, namely accuracy, efficiency, interpretability and stability, following the
concepts of computational intelligence. These four dimensions can be strongly
related to veracity, volume, variety and variability, respectively.

Veracity reflects the degree to which data can be trusted as mentioned above. In
practice, data needs to be transformed to information or knowledge for people to
use. From this point of view, the accuracy of information or knowledge discovered
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from data can be highly impacted by the quality of the data and thus is an effective
way of evaluation against the degree of trust.

Volume reflects the size of data. In the areas of machine learning and statistics,
the data size can be estimated through the product of data dimensionality and
sample size [16]. Increase of data dimensionality or sample size can usually
increase the computational costs of machine learning tasks. Therefore, evaluation of
the volume for particular data is highly related to estimation of memory usage for
data processing by machine learning methods.

Variety reflects the format of data, i.e. data types and representation. Typical
data types include integer, real, Boolean, string, nominal and ordinal [17]. In ma-
chine learning and statistics, data types can be simply divided into two categories:
discrete and continuous. On the other hand, data can be represented in different
forms, e.g. text, graph and tables. All the differences mentioned above in terms of
data format can impact on the interpretability of models learned from data.

Variability reflects the dissimilarity between different instances in a data set. In
machine learning, the performance of learning algorithms can appear to be highly
unstable due to change of data samples, especially when the data instances are
highly dissimilar to each other. Therefore, the stability of a learning algorithm can
be highly impacted by data variability.

The above four aspects (accuracy, efficiency, interpretability and stability) are
also impacted greatly by the selection of different machine learning algorithms. For
example, data usually needs to be pre-processed by particular algorithms prior to
the training stage, which leads to a particular level of impact on data modelling.
Also, inappropriate sampling of training and test data can also lead to building a
poor model and biased estimation of accuracy, respectively. Further, different
learning algorithms can usually lead to different quality of models learned from the
same training data. In addition, in the context of online learning, velocity, which is
related to the learning speed of an algorithm, is an important impact factor for data
streams to be processed effectively and efficiently. However, this chapter focuses on
offline learning, which analyses in depth how the nature of learning algorithms is
related to the nature of static data.

This chapter is organized as follows: Sect. 2 introduces fundamental concepts of
machine learning and how computational intelligence contributes to the design of
learning algorithms. Section 3 presents a framework proposed in a nature inspired
way for control of machine learning tasks towards appropriate employment of
learning algorithms and efficient processing of big data. Section 4 reports experi-
mental studies on employment of learning algorithms and efficient processing of big
data and discusses the obtained results in both quantitative and qualitative terms.
Section 5 highlights the contributions of this chapter and suggests further directions
towards advancing this research area by using computational intelligence
approaches.
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2 Fundamentals of Machine Learning

Machine learning is a branch of artificial intelligence and involves two stages:
training and testing [18]. The first stage aims to learn something from known
properties by using learning algorithms and the second stage aims to make pre-
dictions on unknown properties by using the knowledge learned in the first stage.
From this point of view, training and testing are also referred to as learning and
prediction, respectively. In practice, a machine learning task is aimed at building a
model, which is further used to make predictions, through the use of learning
algorithms. Therefore, this task is usually referred to as predictive modelling.

Machine learning could be divided into two special types: supervised learning
and unsupervised learning [19], in terms of the form of learning. Supervised
learning means learning with a teacher, because all instances from a training set are
labelled, which makes the learning outcomes very explicit. In other words, super-
vised learning is naturally inspired by student learning with the supervision of
teachers. In practice, the aim of this type of learning is to build a model by learning
from labelled data and then to make predictions on other unlabeled instances with
regard to the value of a predicted attribute. The predicted value of an attribute could
be either discrete or continuous. Therefore, supervised learning could be involved
in both classification and regression tasks for categorical prediction and numerical
prediction, respectively. In contrast, unsupervised learning means learning without
a teacher. This is because all instances from a training set are unlabeled and thus the
learning outcomes are not explicit. In other words, unsupervised learning is natu-
rally inspired by student learning without being supervised. In practice, the aim of
this type of learning is to discover previously unknown patterns from data sets. It
includes association and clustering. The former aims to identify correlations
between attributes whereas the latter aims to group objects on the basis of their
similarity to each other.

According to [18], machine learning algorithms can be put into several cate-
gories: decision tree learning, rule learning, instance based learning, Bayesian
learning, perceptron learning and ensemble learning. All of these learning algo-
rithms show the characteristic of nature inspiration.

Both decision tree learning and rule learning aim to learn a set of rules on an
inductive basis. However, the difference between the two types of learning is that
the former generates rules in the form of a decision tree and the latter generates
if-then rules directly from training instances [1, 20, 21]. The above difference is
mainly due to the fact that the former follows the divide and conquer approach [22]
and the latter follows the separate and conquer approach [23]. In particular, the
divide and conquer approach is naturally similar to the top-down approach of
student learning, such as dividing a textbook into several levels: parts, chapters,
sections and subsections. The separate and conquer approach is naturally similar to
the iterative approach of student learning, which means by reading through an
entire material in the first iteration and then focusing on more important parts of the
material for deeper understanding in the subsequent iterations.
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Instance based learning generally involves predicting test instances on the basis
of their similarity to the training instances, such as K nearest neighbor [24]. This
type of learning is also referred to as lazy learning, due to the fact that it does not
aim to learn in depth to gain some pattern from data but just to make as many
correct predictions as possible [16]. In other words, this type of learning is naturally
similar to the exam centered approach of student learning, which means that stu-
dents mainly aim to answer correctly the exam questions without deep under-
standing of knowledge.

Bayesian learning essentially employs the Bayes theorem [25]. In particular, this
type of learning is based on the assumption that all the input attributes are totally
independent of each other. In this context, each attribute-value pair would be
independently correlated to each of the possible classes, which means that a pos-
terior probability is provided between the attribute-value pair and the class.
A popular method of Bayesian learning is Naive Bayes [26]. This type of learning is
naturally similar to the prior-knowledge based approach of human reasoning, which
means that people make decisions, reasoning and judgments based on the knowl-
edge they obtained before, towards having the most confident choice.

Perceptron learning aims to build a neural network topology that consists of a
number of layers and that has a number of nodes, each of which represents a
perceptron. Some popular algorithms include backpropagation [17] and proba-
bilistic neural networks [18]. This type of learning is biology inspired as stated in
Sect. 1. Ensemble learning generally aims to combine different learning algorithms
in the training stage or computational models in the testing stage towards
improvement of overall accuracy of predictions. Some popular approaches of
ensemble learning include bagging [27] and boosting [28]. This type of learning is
naturally similar to the approach of group learning for students to collaborate on a
group assignment.

In terms of evaluation of a machine learning task, there are generally two main
approaches: cross-validation and split of data into a training set and a test set.
Cross-validation generally means to split a data set into n disjoint subsets. In this
context, there would be n iterations in total for the evaluation, while at each iter-
ation a subset is used for testing and the other n − 1 subsets are used for training. In
other words, each of the n subsets is in turn used as the test set at one of the
n iterations, while the rest of the subsets are used together as the training set. In
laboratory research, ten-fold cross-validation is used more popularly, i.e. the
original data set is split into 10 subsets. Cross-validation is generally more
expensive in terms of computational cost. Therefore, researchers sometimes instead
choose to take the approach of splitting a data set into a training set and a test set in
a specific ratio, e.g. 70% of the data is used as the training set and the rest of the data
is used as the test set. This data split can be done randomly or in a fixed way.
However, due to the presence of uncertainty in data, the random split of data is
more popular for researchers in machine learning or similar areas.

In this chapter, new perspectives of the two approaches of evaluating machine
learning tasks are used in Sect. 4. In particular, cross-validation is used towards
measuring effectively the learnability of an algorithm, i.e. the extent to which the
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algorithm is suitable to build a confident model on the provided training data. This
is in order to help employ appropriately the suitable learning algorithms for
building predictive models on the basis of existing data. The other approach for
splitting a data set into a training set and a test set is adopted towards learning a
model that covers highly complete patterns from the training data and evaluating
the model accuracy using highly similar but different instances from the test data.
This is in order to ensure the model accuracy evaluated by using the test data is
trustworthy. Details on the use of the new perspectives are presented in Sect. 4.

3 Framework for Control of Machine Learning Tasks

This section presents a framework for control of machine learning tasks towards
appropriate employment of learning algorithms and effective processing of big data.
In particular, the key features of the proposed framework are described in detail.
Also, the motivation of developing this framework is justified by analyzing the
impact of big data on machine learning, i.e. this is to argue the relevance for
effective control of machine learning tasks in a big data environment.

3.1 Key Features

A unified framework for control of machine learning tasks is proposed in a nature
inspired way in [1] as a further direction. The purpose is to effectively control the
pre-processing of data and to naturally employ learning algorithms and the gen-
erated predictive models. As mentioned in [1], it is relevant to deal with issues on
both the algorithms side and the data side for improvement of classification per-
formance. In fact, a database is daily updated in real applications, which could
result in the gradual increase of data size and in changes to patterns that exist in the
database. In order to avoid lowering computational efficiency, the size of a sample
needs to be determined in an optimal way. In addition, it is also required to avoid
the loss of accuracy. From this point of view, the sampling is critical not only in
terms of the size of a sample but also in the representativeness of the sample.

Feature selection/extraction is another critical task for pre-processing of data. As
mentioned in [1], high dimensional data usually results in high computational costs.
In addition, it is also very likely to contain irrelevant attributes which result in noise
and coincidental patterns. In some cases, it is also necessary to effectively detect
noise if the noise is introduced naturally or artificially. In other words, noise may be
introduced in a dataset due to mistakes in typing or illegal modifications from
hackers. A potential way of noise handling is using association rules to detect that
the value of an attribute is incorrect on the basis of the other attribute-value pairs in
the same data instance. Also, appropriate employment of learning algorithms and
predictive models are highly required, due to the fact that there are many existing
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machine learning algorithms, but no effective ways to determine which of them are
suitable for a particular data set. Traditionally, the decision is made by experts
based on their knowledge and experience. However, it is fairly difficult to judge the
correctness of the decision prior to empirical validation. In real applications, it is not
realistic to frequently change decisions after it has been confirmed that the chosen
algorithms are not suitable.

The arguments above outline the necessity to develop the framework for control
of machine learning tasks in a nature inspired way. In other words, this framework
aims to adopt computational intelligence techniques to control machine learning
tasks. In this framework, the actual employment of both learning algorithms and
predictive models follows computational intelligent approaches. The suitability of a
learning algorithm and the reliability of a model are measured by statistical analysis
on the basis of historical records. In particular, each algorithm in the algorithms
base, as illustrated in Fig. 1, is assigned a weight which is based on its performance
in previous machine learning tasks. The weight of an algorithm is naturally similar
to the impact factor of a journal which is based on its overall citation rate. Fol-
lowing the employment of suitable learning algorithms, each model generated is
then also assigned a weight which is based on its performance on the latest version
of validation data in a database. Following the employment of high quality models,
a knowledge base is finalized and deployed for real applications as illustrated in
Fig. 1.

Fig. 1 Unified framework for control of machine learning tasks [1]
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3.2 Justification

As mentioned in Sect. 1, machine learning algorithms are usually evaluated against
accuracy, efficiency, interpretability and stability. The presence of big data has
deeply affected machine learning tasks in the four aspects mentioned above.

In terms of accuracy, overfitting of training data can be significantly reduced in
general as the size of data is greatly increased. There is evidence reported in [29]
that learning from a large training set can significantly improve the performance in
predictive modelling. The evidence is illustrated in Fig. 2, which was provided with
an illustration by Banko and Brill in 2001 [30] that the complex problem of learning
on automated word disambiguation would keep improving after the size of training
data is beyond billions of words. In particular, each of the four learning algorithms
shows an increase of at least 10% in terms of test accuracy, while the number of
words is increased from 0.3 million to 1 billion. For example, the memory-based
algorithm gets the test accuracy increased from 83 to 93%, and the winnow algo-
rithm achieves to increase the test accuracy from 75 to 97%. The improvement in
learning performance is due to the fact that the increase in data size can usually
improve the completeness of the pattern covered. In other words, small data may
cover only a small part of a pattern in a hypothesis space. Therefore, overfitting of
training data is likely to result in the case that a learning algorithm may build a

Fig. 2 Improvement of words disambiguation by learning from big data [30]
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model that performs greatly on training data but poorly on test data. This case
occurs especially when the training data covers a pattern that is highly different
from the one in the test data. When the size of data is increased, the training data is
likely to cover a pattern that is more similar to the one present in the test data.

On the other hand, the increase in the size of data may also increase the chance
to have noise and coincidental patterns present in the data. This is due to the fact
that the biased improvement in the quantity of data may result in the loss of quality.
Also, large training data is likely to cover some patterns which occur in fairly low
frequencies. This could mean that the patterns covered by the training data are
purely coincidental rather than scientifically confident.

The above issues regarding accuracy can be solved through scaling up algo-
rithms or scaling down data. As specified in [1], the former way is to reduce the bias
on the algorithms side. In particular, the algorithms can be designed to be more
robust against noise and thus avoid being confused by coincidental patterns. In the
context of rule learning, the reduction of bias can be achieved through direct
advancement of rule generation methods or employment of rule simplification
algorithms; similar ways also apply to other types of learning algorithms. The latter
way is to reduce the variance on the data side. In particular, data can be
pre-processed through removal of irrelevant attributes by feature selection tech-
niques or through the merger of redundant attributes by feature extraction tech-
niques. In addition, data can also be resampled by selecting only those instances
that are more representative.

In terms of efficiency, the increase in the size of data is likely to increase the
computational costs in both training and testing stages. In the training stage, it may
slow down the process of building a predictive model by learning from big data. In
the testing stage, the predictive model is likely to have a high level of complexity,
which significantly increases the computational complexity in predicting on unseen
instances. In particular to rule learning algorithms, the presence of big data may
result in the generation of a large number of complex rules.

As stressed in [7, 29, 31], processing of big data needs decomposition, paral-
lelism, modularity and recurrence. In this case, these machine learning algorithms,
which are inflexible and work in black box manners, would fail in dealing with big
data. This case would immediately happen to those algorithms that are quadratically
complex (O (n2)), when encountering data with millions of points (instances).

The above issues regarding efficiency can also be resolved through scaling up
algorithms or scaling down data. In the former way, the algorithms can be designed
to have a low level of computational complexity in the training stage and thus be
less affected by the increase in the size of training data. In the context of rule
learning, the improvement of efficiency can be achieved through the employment of
pruning algorithms, as some of such algorithms can stop the process of rule learning
earlier. In the latter way, the size of data can be reduced through dimensionality
reduction and data sampling. This not only reduces the computational costs in the
training stage, but also results in the generation of simpler models and thus speeds
up the process of predicting on unseen instances in the testing stage.
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In terms of interpretability, the increase in the size of data usually decreases the
interpretability. As analyzed in [1, 16], interpretability can be affected by the size of
training data in terms of model complexity. In the context of rule learning, big data
may result in the generation of a large number of complex rules, which would make
it difficult for people to read and understand.

The above issues regarding interpretability can also be solved through scaling up
algorithms or scaling down data. In the former way, the algorithms can be designed
to be robust against noise and irrelevant or redundant attributes. In other words, the
presence of noise and irrelevant/redundant attributes would not result in irrelevant
patterns being learned by the algorithms. In the context of rule learning, algorithms
for rule generation may decide to skip some attributes or attribute-value pairs for
generation of decision trees or if-then rules due to the irrelevance of these attributes
or attribute-value pairs. In addition, the employment of rule simplification methods
also helps improve the interpretability since such employment usually results in the
generation of a smaller number of simpler rules. In the latter way, the data size is
reduced through dimensionality reduction and data sampling as mentioned above.
In particular, as discussed in [1, 16], the reduction of data dimensionality decreases
the maximum length (the maximum number of rule terms) of each single rule. The
data sampling also reduces the maximum number of rules. In this approach, the
interpretability can be improved if the dimensionality reduction and data sampling
are effectively undertaken.

In terms of stability, the increase in the size of data usually leads to the increase
in dissimilarity between different instances, and thus results in high variance in
terms of the performance of learning algorithms when an experiment is repeated
independently on the same data. In other words, big data could generally have high
variability, which results in low stability of performance being shown from repeated
experiments on the same data, especially when unstable algorithms are used. Some
unstable algorithms include neural network learning and rule learning [17, 32].

The above stability issues can also be resolved through scaling up algorithms or
scaling down data. As introduced in [33, 34], prediction accuracy in machine
learning tasks can be affected by bias and variance. Bias generally means errors
originated from use of statistical heuristics and can be reduced through scaling up
algorithms. Variance generally means errors originated from random processing of
data and can be reduced by scaling down data. From this point of view, heuristic
based algorithms usually show high bias and low variance on fixed training and test
data. In contrast, random algorithms usually show low bias and high variance on
fixed training and test data. However, if both the training data and the test data are
randomly sampled from the original data, heuristic based algorithms usually appear
to be more sensitive to the change of sample and thus perform less stably. In the
same situation, random algorithms, in contrast, usually appear to be less sensitive
and perform more stably when an experiment is repeated independently on the basis
of random sampling of training and test data.

On the basis of the above descriptions, it is highly relevant to develop the unified
framework illustrated in Fig. 1 towards effective control of machine learning tasks
in a big data environment. In particular, learning algorithms need to be employed
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appropriately by measuring their accuracy, efficiency, interpretability and stability
on the basis of particularly selected data. It is also important to have effective data
pre-processing so that employment of algorithms can be done on the basis of high
quality data provided following the data pre-processing.

4 Experimental Studies

This section presents two case studies on big data. The first case study addresses the
veracity aspect, and is designed to confirm that cross-validation can be used to
measure the learnability of algorithms on particular training data towards effective
employment of learning algorithms for predictive modelling. The second case study
addresses variability, and is designed to show how to measure the data variability
through checking the variance of the performance of a particular algorithm, while
independently repeated experiments are undertaken on the same data. The other two
aspects of big data on volume and variety respectively have been studied in [1, 16]
through theoretical analysis and empirical investigations in terms of efficiency and
interpretability of computational models.

4.1 Measure of Learnability

This case study is done using 10 data sets retrieved from the biomedical repository
[35]. The characteristics of these data sets are described in Table 1.

In particular, all these selected data are highly dimensional and have additional
test sets supplied. This selection is in order to support the experimental setup, which
employs cross-validation [36] to measure the learnability of particular algorithms
on the training data and then employ suitable algorithms to build models that are

Table 1 Medical data sets

Name Attribute types #Attributes #Instances #Classes

ALL-AML Continuous 7130 72 2
DLBCL-NIH Continuous 7400 160 2
LungCancer Continuous 12534 32 2
MLL_Leukemia Continuous 12583 72 3
BCR-ABL Continuous 12559 327 2
E2A-PBX1 Continuous 12559 327 2
Hyperdip50 Continuous 12559 327 2
MLL Continuous 12559 327 2
T-ALL Continuous 12559 327 2

TEL-AML1 Continuous 12559 327 2
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evaluated by using test instances. In other words, for each of the selected data sets,
the whole training set is provided in order to measure the extent to which a par-
ticular algorithm is suitable to build a model on the training set, and the test set is
used to evaluate the performance of the model learned by the algorithm. In this
setup, the results would show the extent to which the learnability of an algorithm
measured by using cross validation on training data can provide a good basis for
judging whether the algorithm can build a confident model that performs well on
additional test data. In this case study, C4.5, Naïve Bayes and K nearest neighbor
are chosen as learning algorithms for testing due to their popularity in real appli-
cations. In addition, these three algorithms can also be seen as nature inspired
approaches as justified in Sect. 2. The results of this experimental study can be seen
in Table 2.

Table 2 shows that in almost all cases the learnability of an algorithm measured
by cross validation is effective for judging the suitability of an algorithm to a
particular training set, which leads to expected performance on the corresponding
test set. In other words, the results show that if an algorithm is judged to be suitable
for a particular training set through measuring its learnability, then the model
learned by the algorithm from the training set usually performs well on the addi-
tionally supplied test set.

On the other hand, when an algorithm is judged to be unsuitable for a particular
training set through cross-validation, the results generally indicate the phenomenon
that the model learned by the algorithm from the training set performs a low level of
classification accuracy on the additionally supplied test set. In particular, it can be
seen on the DLBCL-NIH data that all these three algorithms are judged to be less
suitable for the training set and the models learned by these algorithms from the
training set fail to perform well on the corresponding test set. Another similar case
can be seen on the MLL-Leukemia data that Naïve Bayes is judged to be unsuitable

Table 2 Learnability on training data and prediction accuracy on test data

Dataset C4.5 I
(%)

C4.5 II
(%)

NB I
(%)

NB II
(%)

KNN I
(%)

KNN II
(%)

ALL-AML 93 100 70 71 88 97
DLBCL-NIH 44 58 55 63 56 63
LungCancer 94 89 25 90 88 97
MLL_Leukemia 79 100 22 53 89 100
BCR-ABL 91 95 96 95 97 96
E2A-PBX1 96 87 92 95 98 88
Hyperdip50 91 88 81 80 94 98
MLL 94 97 94 95 97 100
T-All 91 100 87 87 55 99
TEL-AML1 95 95 76 76 98 98
NB: C4.5 I means testing the learnability of the algorithm by cross validation on the basis of
training data and C4.5 II means testing the performance of the predictive model using the
additionally supplied test data. The same also applies to NB and KNN
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for the training set and the model learned by the algorithm fails to perform well on
the corresponding test set.

In addition, there are two exceptional cases on the lung-cancer and T-All data. In
the first case, Naïve Bayes is judged to be very unsuitable for the training set but the
performance on the test set by the model learned by the algorithm from the training
set is very good. In the second case, K nearest neighbor is judged to be less suitable
for the training set but the actual performance on the test set by the model learned
by the algorithm from the training set is extremely good. For both cases, it could be
because the training set essentially covers the complete information and the split of
the training set for the purpose of cross validation could result in incompleteness to
which both Naïve Bayes and K nearest neighbor are quite sensitive. However, when
the algorithm learns from the whole training set, the resulted model covers the
complete information from the training set and thus performs well on the test set.

4.2 Measure of Data Variability

This case study is conducted using 20 data sets retrieved from the UCI [37] and the
biomedical repositories. The characteristics of these chosen data sets are described
in Table 3.

Table 3 Data sets from UCI and biomedical repositories

Name Attribute types #Attributes #Instances #Classes

Anneal Discrete, continuous 38 798 6
Balance-scale Discrete 4 625 3
Car Discrete 6 1728 4
Credit-a Discrete, continuous 15 690 2
Credit-g Discrete, continuous 20 1000 2
Diabetes Discrete, continuous 20 768 2
Heart-statlog Continuous 13 270 2
Hepatitis Discrete, continuous 20 155 2
Ionosphere Continuous 34 351 2
Iris Continuous 4 150 3
Lymph Discrete, continuous 19 148 4
Wine Continuous 13 178 3
Zoo Discrete, continuous 18 101 7
Sonar Continuous 61 208 2
Segment Continuous 19 2310 7
ColonTumor Continuous 2001 62 2
DLBCLOutcome Continuous 7130 58 2
DLBCLTumor Continuous 7130 77 2
DLBCL-Stanford Continuous 4027 47 2
Lung-Michigan Continuous 7130 96 2
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The data sets selected from the UCI repository are all considered as small data as
they are of lower dimensionality and sample size, except for the segment data which
is considered to be big data due to its larger sample size. On the other hand, the last
five data sets selected from the biomedical repository are all considered as big data
due to the fact that they are of high dimensionality. This selection is in order to put
the case study in the context of data science by means of processing data with
different scalability. In addition, all these chosen data sets are not supplied addi-
tional test sets. The selection of the data sets was also made so that both discrete and
continuous attributes are present, which is in order to investigate how the different
types of attributes could impact on the data variability.

On the basis of the chosen data, the experiment on each data set is undertaken by
independently repeating the training-testing process 100 times and checking the
variance of the performance over the 100 repetitions, on the basis of random
sampling of training and test data in the ratio of 70:30. This experimental setup is in
order to measure the extent to which the data is variable leading to variance in terms
of performance in machine learning tasks. In this context, C4.5, Naïve Bayes and K
nearest neighbor are chosen as learning algorithms for testing the variance due to
the fact that these algorithms are not stable, i.e. they are sensitive to the changes in
data sample. The results are presented in Table 4.

It can be seen from Table 4 that on each data set, while different algorithms are
used, the standard deviation of the classification accuracy over 100 independently

Table 4 Data variability
measured by standard
deviation of classification
accuracy

Dataset C4.5 NB KNN

Anneal 0.007 0.017 0.023
Balance-scale 0.028 0.022 0.020
Car 0.011 0.019 0.028
Credit-a 0.026 0.021 0.030
Credit-g 0.027 0.023 0.022
Diabetes 0.027 0.028 0.027
Heart-statlog 0.044 0.039 0.045
Hepatitis 0.046 0.042 0.073
Ionosphere 0.031 0.043 0.035
Iris 0.030 0.033 0.027
Lymph 0.057 0.057 0.055
Wine 0.048 0.027 0.054
Zoo 0.045 0.068 0.063
Sonar 0.057 0.059 0.052
Segment 0.010 0.015 0.010
ColonTumor 0.094 0.105 0.089
DLBCLOutcome 0.122 0.104 0.109
DLBCLTumor 0.074 0.067 0.072
DLBCL-Stanford 0.133 0.060 0.096
Lung-Michigan 0.040 0.041 0.028
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repeated experiments appears to be in a very similar level, except for the
DLBCL-Standford data set on which Naïve Bayes displays a much lower level of
standard deviation.

On the other hand, while looking at different data sets, the standard deviation for
them appears to be very different no matter which one of the three algorithms is
adopted. In particular, for the 15 UCI data sets, the standard deviation is lower than
5% in most cases or a bit higher than 5% in several cases (e.g. on the lymph and
sonar data sets). In contrast, for the last five data sets selected from the biomedical
repository, the standard deviation is usually higher than 5% and is even close to or
higher than 10% in some cases (e.g. on the colonTumer and DLBCLOutcome data
sets). An exceptional case happens from the lung-Michigan data set, which appears
to have the standard deviation lower than 5%, no matter which one of the three
algorithms is used.

In addition, it can also be seen from Table 4 that the data sets that contain only
continuous attributes appear to have the standard deviation higher than the data sets
that contain discrete attributes. Some data sets that contain both discrete and con-
tinuous attributes also appear to have the standard deviation higher than the data
sets that contain only discrete attributes. In fact, the presence of continuous attri-
butes generally increases the attribute complexity, and thus makes the data more
complex, which leads to the potential increase of the data variability.

The results shown in Table 4 generally indicate that attribute complexity, data
dimensionality and sample size impact on the size of data and that data with a larger
size is likely to be of higher variability, leading to higher variance in terms of
performance in machine learning tasks, especially when the training and test data
are sampled on a purely random basis.

5 Conclusion

This chapter has proposed a unified framework in a nature inspired way for control
of machine learning tasks in Sect. 3.1, and the necessity of the proposal has been
justified in Sect. 3.2 through analyzing the impact of big data on machine learning.
Two case studies have been conducted experimentally following computational
intelligence methodologies in Sect. 4. The results from the case studies also indicate
the necessity of proposing the unified framework through using computational
intelligence concepts.

The results from the first case study indicate that cross-validation is an effective
way to measure the extent to which an algorithm is suitable to build a predictive
model on the basis of the existing data. In fact, a test set is not actually available in
reality and instead a set of unseen instances are given for the model to predict the
values of unknown attributes of each particular instance. From this point of view,
the framework proposed in Sect. 3 is highly relevant in order to achieve appropriate
employment of learning algorithms on the basis of the existing data. However, it is
difficult to guarantee in reality that the existing data can cover the full population.
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Therefore, the framework proposed in Sect. 3 can be modified further to work
towards achieving natural selection of learning algorithms. In other words, the
learnability of an algorithm measured through cross-validation can be used as the
chance of being employed for predictive modelling, towards predicting unseen
instances through natural selection of the predefined classes. Similar ideas have
been applied to voting based classification in [38].

On the other hand, the results from the second case study indicate that data can
be of high variability, which could lead to high variance in terms of performance in
machine learning tasks while training and test data are sampled on a purely random
basis. In fact, as described in Sect. 3.2, while training and test data are sampled
randomly, the algorithms based on statistical heuristics generally display higher
variance than those algorithms with high randomness. However, these
heuristics-based algorithms, such as C4.5, Naïve Bayes and K nearest neighbor, are
highly popular in practical applications. This indicates the necessity to have
effective and efficient pre-processing of data prior to the training stage in order to
avoid any high variance due to random sampling. In particular, effective sampling
of training and test data can be achieved through data clustering in order to ensure
that the training instances are of high similarity to the test instances. This is nat-
urally inspired by the principle of student examination that the exam questions
should all cover what the students actually learned from learning materials rather
than anything else outside of these sources. In other words, representative sampling
of training and test data would make the model learned from the training data cover
more complete patterns and the model accuracy evaluated by using the test data
more trustworthy. On the basis of the above descriptions, clustering-based sampling
of training and test data is strongly recommended as a further direction.
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An Efficient Approach for Mining High
Utility Itemsets Over Data Streams

Show-Jane Yen and Yue-Shi Lee

Abstract Mining frequent itemsets only considers the number of the occurrences
of the itemsets in the transaction database. Mining high utility itemsets considers the
purchased quantities and the profits of the itemsets in the transactions, which the
profitable products can be found. In addition, the transactions will continuously
increase over time, such that the size of the database becomes larger and larger.
Furthermore, the older transactions which cannot represent the current user
behaviors also need to be removed. The environment to continuously add and
remove transactions over time is called a data stream. When the transactions are
added or deleted, the original high utility itemsets will be changed. The previous
proposed algorithms for mining high utility itemsets over data streams need to
rescan the original database and generate a large number of candidate high utility
itemsets without using the previously discovered high utility itemsets. Therefore,
this chapter proposes an approach for efficiently mining high utility itemsets over
data streams. When the transactions are added into or removed from the transaction
database, our algorithm does not need to scan the original transaction database and
search from a large number of candidate itemsets. Experimental results also show
that our algorithm outperforms the previous approaches.
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1 Introduction

In this section, we first introduce some preliminaries for mining high utility itemsets
[7]. Let I = {i1, i2,…, im} be the set of all the items. An itemset X is a subset of I
and the length of X is the number of items contained in X. An itemset with length k
is called a k-itemset. A transaction database D = {T1, T2,…, Tn} contains a set of
transactions and each transaction has a unique transaction identifier (TID). Each
transaction contains the items purchased in this transaction and their purchased
quantities. The purchased quantity of item ip in a transaction Tq is denoted as o(ip,
Tq). The utility of item ip in Tq is u(ip, Tq) = o(ip, Tq) × s(ip), in which s(ip) is the
profit of item ip. The utility of an itemset X in Tq is the sum of the utilities of the
items contained in X ⊆ Tq, which is shown in expression (1). If X ⊄ Tq, u(X,
Tq) = 0. The utility of an itemset X in D is the sum of the utilities of X in all the
transactions containing X, which is shown in expression (2).

The transaction utility (tu) of a transaction Tq is the sum of the utilities of the
items in Tq, which is shown in expression (3). The total utility of the whole
transaction database D is the sum of the transaction utilities of all the transactions in
D. A utility threshold is a user specified percentage and a minimum utility
(MU) can be obtained by multiplying total utility of D and the user-specified utility
threshold. An itemset X is a high utility itemset if the utility of X in D is no less
than the minimum utility.

u(X, TqÞ= ∑
ip ∈X⊆Tq

u ip, Tq
� � ð1Þ

u(X)= ∑
X⊆Tq ∈D

u ðX, TqÞ ð2Þ

tu(TqÞ= ∑
ip ∈Tq

u ip, Tq
� � ð3Þ

For example, Table 1 is a transaction database, in which each integer number
represents the purchased quantity for an item in a transaction. Table 2 is a Profit
Table which records the profit for each item in Table 1. Suppose the user-specified
utility threshold is 60%. Because the total utility of Table 1 is 224, the minimum
utility is 226 * 60% = 134.4. The utility of itemset {D} is u ({D}) = 3× 6 = 18 ≦

Table 1 A transaction
database

Item A B C D E
TID

T1 0 0 16 0 1
T2 0 6 0 1 1
T3 2 0 1 0 0
T4 0 10 0 1 1
T5 1 0 0 1 1
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135, which is not a high utility itemset. The utility of itemset {BD} is u
({BD}) = (6 × 10 + 1× 6) + (10 × 10 + 1× 6) = 172 ≥ 135. Therefore, itemset
{BD} is a high utility itemset.

For mining frequent itemset [1], all the subsets of a frequent itemset are frequent,
that is, there is a downward closure property for frequent itemsets. However, the
property is not available for high utility itemsets, since a subset of a high utility
itemset may not be a high utility itemset. For the above example, itemset {BD} is a
high utility itemset in Table 1, but its subset {D} is not a high utility itemset.
Therefore, Liu et al. [7] proposed a Two-Phase algorithm for mining high utility
itemsets. They defined the transaction weighted utility (twu) for an itemset X,
which is shown in expression (4).

twu(X) = ∑
X⊆Tq ∈D

tu(TqÞ ð4Þ

If the twu of an itemset is no less than MU, then the itemset is a high transaction
weighted utility (HTWU) itemset. According to expression (4), the twu for an
itemset X must be greater than or equal to the utility of X in D. Therefore, if X is a
high utility itemset, then X must be a HTWU itemset. All the subsets of a HTWU
itemset are also HTWU itemsets. Therefore, there is a downward closure property
for HTWU itemsets. The first phase for the Two-Phase algorithm [7] is to find all
the HTWU itemsets which are called candidate high utility itemsets by applying
Apriori algorithm [1]. Two-Phase algorithm scans the database again to compute
the utilities for all the candidate high utility itemsets and find high utility itemsets in
the second phase.

Although some approaches [2, 7, 9, 15, 16, 18] have been proposed for mining
high utility itemsets in a static transaction database, these approaches cannot effi-
ciently discover high utility itmesets in a data stream environment, since they need
to rescan the original database and re-discover all the high utility itemsets when
some transactions are added into or removed from the database. In a data stream
environment, the transactions are generated or removed in an extremely fast way.
We need to immediately identify which itemsets can be turn out to be high utility
itemsets, and vice versa. Besides, in this environment, we need to keep the infor-
mation for all the itemsets, otherwise some high utility itemsets may be lost.
However, the memory space is limited. It is very difficult to retain the utilities of all
the itemsets in a large database.

Table 2 Profit table Item Profit ($)
(Per Unit)

A 3
B 10
C 1
D 6
E 5
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Recently, some approaches [3, 6, 10, 14] have been proposed to find high utility
itemsets in a data stream, which can be divided into Apriori-like [6, 14] and
Tree-based approaches [3, 10]. However, these approaches just tried to find can-
didate high utility itemsets, that is HTWU itemsets. They still need to take a lot of
time to rescan the original database and search for high utility itemsets from the
large number of candidate itemsets without using the previous found information.
Therefore, in this chapter, we propose an efficient algorithm HUIStream(mining
High Utility Itemset in data Stream) for mining high utility itemsets in a data
stream. When the transactions are added or deleted, our algorithms can just update
HTWU itemsets according to the added or deleted transactions and directly cal-
culate the utilities of HTWU itemsets without rescan the original database and
search for high utility itemsets from the HTWU itemsets.

2 Related Work

The early approaches for mining frequent itemsets [1, 4, 12] are based on
Apriori-like approach, which iteratively generate candidate (k + 1)-itemsets from
the frequent k-itemsets (k ≥ 1) and check if these candidate itemsets are frequent.
However, in the cases of extremely large input sets or low minimum support
threshold, the Apriori-like algorithms may suffer from two main problems of
repeatedly scanning the database and searching from a large number of candidate
itemsets.

Since Apriori-like algorithms require multiple database scans to calculate the
number of occurrences of each itemset and record a large number of candidate
itemsets, Tree-based algorithms [5, 11, 21] improve these disadvantages, which
transform the original transaction database into an FP-tree and generate the frequent
itemsets by recursively constructing the sub-trees according to the FP-Tree.
Because all the transactions are recorded in a tree, Tree-based algorithms do not
need multiple database scans and do not need to generate a large number of can-
didate itemsets.

Although Tree-based algorithms have been able to efficiently identify frequent
itemsets from the transaction database, because of the number of the frequent
itemsets may be very large, the execution time and memory usage would increase
significantly. Therefore, some researchers have proposed the concept of closed
itemsets [17, 20]. The number of the closed frequent itemsets is far less than the
number of the frequent itemsets in a transaction database, and all the frequent
itemsets can be derived from the frequent closed itemsets, so either memory usage
or execution time for mining frequent closed itemsets is much less than that of
mining frequent itemsets.

Liu et al. [7] proposed Two-Phase algorithm for mining high utility itemsets.
Since the subset of a high utility itemsets may not be a high utility itemsets, that is,
there is no downward closure property for high utility itemset, Liu et al. proposed
the transaction weighted utility (twu) of an itemset to find out high utility itemsets.
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In the first stage, Two-Phase algorithm applied Apriori algorithm [1] to find all the
HTWU itemsets as the candidate itemsets, and then scans the transaction database
to calculate the utility for each candidate itemset in order to identify which can-
didate itemsets are high utility itemsets. Although Two-Phase algorithm can find all
the high utility itemsets from a transaction database, a large number of HTWU
itemsets would be generated in the first phase, such that much time would be taken
to search for high utility itemsets from these candidates in the second phase, since
the twu of an itemset is much greater than the utility for the itemset.

Tseng et al. [14] proposed an algorithm THUI-Mine for mining high utility
itemsets in a data stream, which only stores length two HTWU itemsets and applies
Two-Phase algorithm to find all the HTWU itemsets. When a set of transactions is
added, if there are new items in the added transactions, THUI-Mine will only
determine whether the new items satisfy the utility threshold in the added trans-
actions. If the items in the added transactions already exist in the original database,
THUI-Mine will judge if the items are still HTWU items. Because THUI-Mine uses
Two-Phase algorithm to re-mine the high utility itemsets, it still needs to take a lot
of time to scan the database many times. HUP-HUI-DEL algorithm [8] also applies
Two-Phase algorithm and only considers the transaction deletion. It still needs to
generate a large number of candidate high utility itemsets and repeatedly scans the
database to find high utility itemsets.

Li et al. [6] proposes MHUI algorithm, which discovers high utility itemsets in a
specific sliding window. MHUI takes use of BITvector or TIDlist to store the
transaction IDs in which each item is contained to avoid repeatedly scanning the
database. MHUI stores length 2 HTWU itemsets in the structure LexTree-2HTU
(Lexicographical Tree with 2-HTU itemset). When the transactions are added or
deleted, MHUI generates all the length 2 itemsets from the added or deleted
transactions and updates the structure LexTree-2HTU. MHUI uses level-wise
method to generate all the HTWU itemsets from the length 2 HTWU itemsets, and
re-sacan the database to find high utility itmesets.

Ahmed et al. [3] proposes a tree structure IHUP to stores the utility for each
transaction and divides IHUP into three types according the order of the items
which appear in the tree nodes: IHUPL, IHUPTF and IHUPTWU-. When a transaction
is added, IHUPL stores each item of the transaction in the tree node according to the
alphabetic order, but IHUPTF and IHUPTWU need to adjust the tree nodes to make
sure that the items of each transaction are ordered by support and twu, respectively.
IHUP needs to spend a large amount of memory space to store the whole database
in a tree structure and applies FP-Growth algorithm [5] to repeatedly generate
subtree structure. Finally, IHUP still needs to rescan the whole database to calculate
the utility for each HTWU itmesets and generate high utility itemsets.

Yun and Ryang proposes HUPID-Growth algorithm [19] and SHU-Grow
algorithm [13], respectively. HUPID-Growth scans the database once to construct
HUPID-Tree and TIList and adjust the order of the items in the tree nodes to reduce
the over-estimated value of the utility for each node in a path, that is to reduce the
over-estimated utility for each itemsets. SHU-Grow uses the tree structure IHUP
and stores the accumulated utility for each node when a set of transactions are
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added. SHU-Grow applies the strategies of UP-Growth algorithm [16] to reduce the
over-estimated utility and the number of the candidate high utility itemsets.
UPID-Growth and SHU-Grow still apply FP-Growth algorithm to find HTWU
itemsets and search for high utility itemsets from a large number of candidate high
utility itemsets.

3 Mining High Utility Itemsets in a Data Stream

In this section, we first introduce the storage structure for our algorithm HUIStream.
When a transaction is added into or deleted from the transaction database, HUI-
Stream updates HTWU itemsets related to the added or deleted transaction,
respectively. In the following, we propose two algorithms HUIStream+ and
HUIStream− for maintaining the HTWU itemsets and generates all the high utility
itemsets from the HTWU itemsets when a transaction is added and deleted,
respectively.

In order to avoid rescanning the original database and searching from the can-
didate high utility itemsets when the transactions are added or deleted, we have the
following definitions. An itmeset X is a closed twu itemset if there is no superset of
X, which has the same twu as X. An itemset is a closed HTWU itemset if X is a
closed twu itemset and the twu of X is no less than user-specified minimum utility.
For any two itemsets X and Y (X ⊆ Y), if the twu of Y is the same as the twu of X
and Y is not contained in any other itemset with the same twu as Y, then Y is the
closure of X. For a closed HTWU itemset X, the proper subset of X, which has the
same twu as X, is called the Equal TWU itemset of X, and X is the closure of the
Equal TWU itemset.

In order to efficiently find the high utility itemsets in a data stream without
information loss, HUIStream first determines which itemsets in the transaction are
closed twu itemsets when a transaction is added or deleted. All the closed twu
itemsets are recorded in a Closed Table, since the number of the closed itemsets is
much less than the number of the itemsets and all the itemsets can be generated by
the closed itemsets in a transaction database. There are three fields included in the
Closed Table: Cid records the identification of each closed twu itemset; CItemset
records the closed twu itemset with utility of each item in the closed twu itemset;
twu records the twu of the closed twu itemset.

Table 3 shows the content of the Closed Table after the previous four transac-
tions in Table 1 are added. There are five closed twu itemsets, in which the utility
and twu of the closed twu itemset {E} with Cid 3 are 15 and 205, respectively. For
each item, we use the table Cid List to record the Cids of the closed twu itemsets
which contain the item. Table 4 shows the content of the Cid List after the previous
four transactions in Table 1 are added, in which the field CidSet for item C is {1, 4,
5}, since item C is contained in the three closed twu itemsets with Cids 1, 4 and 5.

For example, the total utility of the previous four transactions in Table 1 is 210.
If the utility threshold is 60%, that is the minimum utility is 210 * 60% = 126, then

146 S.-J. Yen and Y.-S. Lee



the closed HTWU itemsets are {BDE} and {E}. The Equal TWU itemsets for the
two closed twu itemsets are shown in Table 5. The closed HTWU itemsets and their
Equal TWU itemsets form the candidate high utility itemsets. HUIStream only
needs to update the closed HTWU itemsets, that is, update the content of Closed
Table and Cid List, and then the twu values of all the Equal TWU itemsets can be
computed without rescanning the database.

3.1 The Algorithm HUIStream+

In this subsection, we describe how HUIStream finds the closed twu itemsets which
need to be updated and all the HTWU itemsets after adding a transaction. When a
transaction TADD is added, the twu value will be increased just for TADD and the
subsets of TADD. Therefore, HUIStream only considers whether TADD and the
subsets of TADD are closed twu itemsets or not. If X ⊆ TADD is a closed twu itemset
before adding the transaction TADD, it must be a closed twu itemset after adding the
transaction, because the twu value for the supersets (⊄TADD) of X would not be

Table 3 The closed table after processing the previous four transactions in Table 1

Cid CItemset twu

0 0 0
1 C:16, E:5 21
2 B:160, D:12, E:10 182
3 E:15 205
4 A:6, C:1 7
5 C:19 30

Table 4 The Cid list after processing the previous four transactions in Table 1

Item CidSet

A 4
B 2
C 1, 4, 5
D 2
E 1, 2, 3

Table 5 Closed HTWU itemsets and their equal TWU itemsets

Closed HTWU itemset Equal TWU itemset

{BDE} {B}, {D}, {BD}, {BE}, {DE}, {BDE}
{E} {E}

An Efficient Approach for Mining High Utility Itemsets … 147



changed [20]. Therefore, all the closed twu itemsets which need to be updated can
be obtained by performing the intersections on TADD and all the closed twu itemsets
in the Closed Table. However, the intersections of TADD and most of the closed twu
itemsets would be empty. It will waste a lot of unnecessary time to intersect TADD

with all the closed twu itemsets. In order to avoid that the intersection is empty,
HUIStream identifies which closed twu itemsets contain some items in TADD =
{i1, i2,…, im} from Cid List according to expression (5).

SET fTADDgð Þ=CidSet i1ð Þ ∪ CidSet i2ð Þ ∪ . . . ∪ CidSet imð Þ ð5Þ

The closed twu itemset X obtained by the intersection of each closed twu itemset
Y with Cid in SET({TADD}) and TADD need to be updated when a transaction TADD

is added. The closed twu itemsets which need to be updated after adding transaction
TADD are recorded in the table TempADD, which includes the two fields: UItemset
records the closed twu itemset X which needs to be updated; Closure_Id records the
Cid of the closure of X before adding transaction TADD, that is, the Cid of itemset
Y. If there is the same closed twu itemset X generated by the intersections of
different closed twu itemsets and TADD, then the closure of X is the closed twu
itemset with the largest twu value among the different closed twu itemsets. Because
an added transaction TADD must be a closed twu itemset [20], TADD is recorded in
TempADD and the corresponding Closure_Id is set to be 0, which represents that we
cannot know the closure of TADD before adding the transaction so far. HUIStream
can update the content of Closed Table according to the TempADD.

For each record in TempADD, HUIStream compares the itemset X in UItemset
and the itemset Y with Cid in Closure_Id. If X and Y are the same, that is, X is a
closed twu itemset before adding the transaction TADD, then the utility of each item
in X is increased by adding the utility of the item in TADD, and the twu of X is
increased by adding the tu of TADD. If X and Y are different, that is, X is not a
closed twu itemset before adding the transaction TADD and turns out to be a closed
twu itemset after adding the transaction, then HUIStream assigns X a unique Cid
and adds it into The Closed Table and Cid List, in which the twu of X is the twu of
Y plus the tu of TADD and the utility of each item is the utility of the item in Y in
Closed Table plus the utility of the item in TADD, since the twu of X is equal to the
twu of Y before adding the transaction TADD.

If itemset X is not a closed HTWU itemset before adding transaction TADD, but
is closed HTWU itemsets after adding the transaction, then the Equal TWU itemsets
of the Closure Y of X becomes the Equal TWU itemsets of X. If the Closure of X is
not a closed HTWU Itemset, then the Equal TWU itmesets of X are the subsets of
X, which have the same twu as X. HUIStream uses the following method to
determine if the subset Z of X is an Equal TWU itemset of X: If the twu of X is the
largest twu among all the itemsets with Cids in SET(Z) according to expression (5),
then Z is an Equal TWU itemset of X, that is, X is the Closure of Z. If X is a closed
twu itemset before adding the transaction, then HUIStream only needs to justify if
X is a closed HTWU itemset after adding the transaction.
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For example, suppose the utility threshold is 60% for Table 1. The Close
Table and Cid List are shown in Tables 3 and 4 after adding the previous four
transactions in Table 1. When the transaction T5 is added, HUIStream records the
itemset T5 = {ADE} in the field UItemset of TempADD and set 0 to Closured_Id.
Because SET(T5) = CidSet(A) ∪ CidSet(D) ∪ CidSet(E) = {1, 2, 3, 4} according
to expression (1), HUIStream performs the intersections of T5 and the closed twu
itemsets with Cids 1, 2, 3 and 4 from Closed Table, respectively. Firstly, because
Cid 1 is itemset {CE} and {ADE} ∩ {CE} = {E}, HUIStream adds UItemset {E}
and Closure_Id 1 in the TempADD. Secondly, because Cid 2 is itemset {BDE} and
{ADE} ∩ {BDE} = {DE}, HUIStream adds UItemset {DE} and Closure_Id 2 in
the TempADD. Thirdly, Cid 3 is itemset {E} and {ADE} ∩ {E} = {E} has existed
in TempADD. Because the twu of the closed twu itemset with Cid 3 is greater than
the twu of the closed twu itemset with Cid 1, the corresponding Closure_Id of
UItemset {E} is replaced with Cid 1. Finally, because Cid 4 is itemset {AC} and
{ADE} ∩ {AC} = {A}, HUIStream adds UItemset {A} and Closure_Id 4 in the
TempADD. After adding the transaction T5, the TempADD is shown in Table 6.

HUIStream updates Closed Table and Cid List according to TempADD. For
Table 6, because the first UItemset {ADE} of TempADD is not in Closed Table and
the corresponding Closure_Id is 0, which means that itemset {ADE} is not a closed
twu itemset before adding transaction T5, but turns out to be a closed twu itemset
after adding transaction T5, HUIStream adds the CItemset {A:3, D:6, E:5} with Cid
6 and twu = 3+6 + 5 = 14 into the Closed Table. HUIStream also inserts Cid 6
into Cid List for items A, D and E. Because the minimum utility is 135 after adding
transaction T5, itemset {ADE} is not a closed HTWU itemset.

For the second UItemset {E} and the corresponding Closure_Id 3 in Table 6,
because Cid 3 in Closed Table (Table 3) is also {E}, which means that itemset {E}
is a closed twu itemset before adding transaction T5, the twu of {E} after adding the
transaction T5 is the twu of {E} in the Closed Table plus the tu of T5, that is
205 + 14 = 219. Because the utility of {E} is 5 in T5, HUIStream updates the
CItemset {E:15} in Table 3 as {E:20 (=15 + 5)}.

For the third UItemset {DE} and the corresponding Closure_Id 2 in Table 6,
because Cid 2 in Closed Table (Table 3) is {BDE}, which means that itemset {DE}
is not a closed twu itemset and the Closure of {DE} is {BDE} before adding
transaction T5, the twu of {DE} after adding transaction T5 is the twu of {BDE} in
the Closed Table plus the tu of T5, that is, 182 + 14 = 196. HUIStream adds the

Table 6 The TempADD
after adding transaction T5

UItemset Closure_Id

{ADE} 0
{E} 3
{DE} 2
{A} 4
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CItemset {D:18 (=12 + 6), E:15 (=10 + 5)} in the Closed Table and assigns the
new closed twu itemset {DE} a Cid 7, which is added to Cid List for items D and E.
Because the two itemsets {D} and {DE} are the Equal TWU itemsets of {BDE}
before adding transaction T5, and {D} and {DE} both are contained in {DE}, the
two itemsets become the Equal TWU itemset of {DE} after adding transaction T5.

For the fourth record in TempADD, the UItemset is {A} and the corresponding
Closure_Id is 4. Because Cid 4 in the Closed Table (Table 3) is {AC}, which
means that itemset {DE} is not a closed twu itemset and the Closure of {A} is
{AC} before adding transaction T5. The twu of {A} after adding transaction T5 is
the twu of {AC} in the Closed Table plus the tu of T5, that is 7 + 14 = 21, which
is not a closed HTWU itemset. HUIStream adds the CItemset {A:9 (=6 + 3)} in the
Closed Table and assigns the new closed twu itemset {A} a Cid 8, which is added
to Cid List for item A. After adding transaction T5, the Closed Table and Cid List
are shown in Table 7 and Table 8, and the closed HTWU itemsets and the corre-
sponding Equal TWU itemsets are shown in Table 9.

Table 7 The closed table
after adding transaction T5 in
Table 1

Cid CItemset twu

0 0 0
1 C:16, E:5 21
2 B:160, D:12, E:10 182
3 E:20 219
4 A:6, C:1 7
5 C:17 28
6 A:3, D:6, E:5 14
7 D:18, E:15 196
8 A:9 21

Table 8 The Cid list after
adding transaction T5 in
Table 1

Item CidSet

A 4, 6, 8
B 2
C 1, 4, 5
D 2, 6, 7
E 1, 2, 3, 6, 7

Table 9 The closed HTWU
itemsets after adding
transaction T5 in Table 1

Closed HTWU itemset Equal TWU itemset

{BDE} {B}, {BD}, {BE}, {BDE}
{E} {E}
{DE} {D}, {DE}
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3.2 The Algorithm HUIStream−

In this subsection, we describe how HUIStream finds the closed twu itemsets which
need to be updated and all the HTWU itemsets after deleting a transaction. The
itemsets need to be updated after deleting a transaction are the subsets of TDEL,
since the twu of the subsets of TDEL would be decreased after deleting the trans-
action. Therefore, the closed twu itemsets which need to be updated can be obtained
by performing the intersections on TDEL and all the closed twu itemsets before
deleting transaction TDEL. In order to avoid that the intersection is empty, HUI-
Stream only performs the intersections on TDEL and the closed twu itemsets with
Cids in SET({TDEL}) according to expression (5) after deleting transaction TDEL.
The closed twu itemsets which need to be updated after deleting a transaction are
recorded in a table TempDEL, which includes the two fields: DItemset records the
closed twu itemset X which needs to be updated; C1 records the Cid of X before
deleting the transaction; C2 records the information which can be used to determine
if X is still a closed twu itemset after deleting the transaction. Because a deleted
transaction TDEL is a closed twu itemset before the deletion [20], HUIStream firstly
puts TDEL in the first record of TempDEL, and sets the corresponding C1 and C2 to
be 0.

Because the intersection of TDEL and different closed twu itemsets S may obtain
the same itemset X, the field C1 in TempDEL records the Cid p of the closed twu
itemset with the largest twu among all the closed twu itemsets in S. Cid p is the Cid
of itemset X, since itemset X is a closed itemset before deleting the transaction
TDEL. Because itemset X may not be a closed twu itemset after deleting the
transaction, the field C2 in TempDEL records the Cid q of the closed twu itemset
with the largest twu among all the closed twu itemsets in S except the closed twu
itemset with Cid p. If the twu of Cid q is equal to the twu of Cid p minus the tu of
TDEL, which means that the itemset with Cid q has the same twu as X, then X is not
a closed twu itemset any more after deleting the transaction. HUIStream updates the
content of the Closed Table according to the Table TempDEL.

For each record with values X, p and q for DItemset, C1 and C2 in TempDEL,
respectively, the twu values of the closed twu itemsets with Cid p and Cid q can be
obtained from Closed Table. If the twu of X minus the tu of TDEL is equal to 0,
which means that X is not contained in any transaction after deleting TDEL, then
itemset X with Cid p is removed from the Closed Table. If itemset Y with Cid q is
not itemset X and the twu of X minus the tu of TDEL is equal to the twu of Y, then X
is not a closed twu itemset after deleting transaction TDEL, since Y is a superset of X
and they have the same twu values.

If X is still a closed twu itemset after the deletion, then HUIStream updates the
twu of X and the utility of each item in X in the Closed Table as follows: the
updated twu of X is the twu of X minus the tu of TDEL and the updated utility of
each item in X is the utility of the item in X minus the utility of the item in TDEL.
If X is not a closed HTWU itemset before deleting the transaction but is a closed
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HTWU itemset after the deletion, then HUIStream finds all the subsets of X, which
have the same twu as X, that is all the Equal TWU itemsets of X.

For example, in Table 1, when the transaction T1 = {CE} is deleted, HUIStream
firstly puts {CE} in the field DItemset in TempDEL and the corresponding C1 and
C2 are set to be 0. Because SET(T1) = CidSet(C) ∪ CidSet(E) = {1, 2, 3, 4, 5, 6,
7} according to expression (1) and Cid List in Table 8, HUIStream performs the
intersections on T1 and the closed twu itemsets with Cids 1, 2, 3, 4, 5, 6 and 7 from
Closed Table in Table 7, respectively. Firstly, Cid 1 is itemset {CE} and {CE} ∩
{CE} = {CE} which exists in TempDEL and the corresponding C1 and C2 are 0 s.
Because from Table 7, we can see that the twu of Cid 1 is greater than the twu of
Cid 0, the Cid in C1 is changed to 1 and the Cid in C2 remains 0 for DItemset {CE}
in the table TempDEL.

Secondly, because Cid 2 is itemset {BDE} and {CE} ∩ {BDE} = {E} which is
not in TempDEL, the itemset {E} is added to TempDEL, and the corresponding C1
and C2 are set to 2 and 0, respectively. Thirdly, Cid 3 is itemset {E} and {CE} ∩
{E} = {E} has existed in TempDEL. Because the twu of Cid 3 is greater than the
twu of Cid 2 and the twu of Cid 2 is greater than the twu of Cid 0, the Cid in C1 is
replaced with 3 and the Cid in C2 is replaced with 2 for DItemset {E} in the table
TempDEL. HUIStream continuously performs the intersections on T1 and the closed
twu itemsets with Cids 4, 5, 6, and 7, respectively, and updates the content of
TempDEL. After deleting the transaction T1, the TempDEL is shown in Table 10.

HUIStream updates the content of Closed Table and Cid List according to
TempDEL. For example, in Table 10, the first record in DItemset is {CE} and C1 is
Cid 1. Because the twu of {CE} with Cid 1 in Table 7 minus the tu of T1 is equal to
0, itemset {CE} is not a closed twu itemset after deleting transaction T1. Therefore,
HUIStream removes the information about {CE} from Closed Table and Cid List.
The second record in DItemset is {E} and C1 is Cid 3. Because the twu of {E} with
Cid 3 in Table 7 minus the tu of T1 is equal to the twu of {DE} with Cid 7 in C2,
itemset {E} is not a closed twu itemset after deleting transaction T1, since there
exists a superset {DE} of {E} and they have the same twu values. HUIStream
removes the information about {E} from the Closed Table and Cid List, and moves
all the Equal TWU itemsets of {E} to the Equal TWU itemsets of {DE} with Cid 7.
There is the same situation with the second record for the third record in TempDEL.
All the information about itemset {C} is removed from the Closed Table and Cid
List. After deleting transaction T1 from Table 1, the Closed Table and Cid List are
shown in Table 11 and Table 12, respectively, and the closed HTWU itemsets and
their Equal TWU itemsets are shown in Table 13.

Table 10 The TempDEL after
deleting the transaction T1

DItemset C1 C2

{CE} 1 0
{E} 3 7
{C} 5 4
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3.3 High Utility Itemset Generation

After processing the added and deleted transactions, all the Equal TWU itemsets of
the closed HTWU itemsets are the candidate high utility itemsets. The utility of
each Equal TWU itemset X for each closed HTWU itemset Y can be obtained by
accumulating the utility of each item of X in Y from the Closed Table, and then all
the high utility itemsets can be obtained without scanning the database.

For example, from Table 13, we can see that the itemsets {BDE} and {DE} are
closed HTWU itemsets. For itemset {BDE} with Cid 2, the utility of {BDE} is 182(
=B:160 + D:12 + E:10), which can be obtained from Closed Table in Table 11.
The utility of the Equal TWU itemset {BD} of {BDE} is 172 (=B:160 + D:12),
The utility of the Equal TWU itemset {BE} of {BDE} is 170 (=B:160 + E:10). All
the candidate high utility itemsets and their utilities after deleting transaction T1 are
shown in Table 14, in which itemsets {B},{BD},{BE} and {BDE} are high utility
itemsets.

Table 11 The closed table
after deleting the transaction
T1 from Table 1

Cid CItemset twu

0 0 0
2 B:160, D:12, E:10 182
4 A:6, C:1 7
6 A:3, D:6, E:5 14
7 D:18, E:15 196
8 A:9 21

Table 12 The Cid list after
deleting the transaction T1

from Table 1

Item CidSet

A 4, 6, 8
B 2
C 4
D 2, 6, 7
E 2, 6, 7

Table 13 The closed HTWU
itemsets and their equal TWU
itemsetsafter deleting T1

Closed HTWU itemset Equal TWU itemset

{BDE} {B}, {BD}, {BE}, {BDE}
{DE} {D}, {E}, {DE}

Table 14 The candidate high
utility itemsets and their
utilities

Closed HTWU Itemset Equal TWU itemsets

{B:160, D:12, E:10} u({B}) = 160
u({BD}) = 172
u({BE}) = 170
u({BDE}) = 182

{D:18, E:15} u({D}) = 18
u({E}) = 15
u({DE}) = 33
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4 Experimental Results

In this section, we evaluate the performance of our HUIStream algorithm and
compare it with IHUP algorithm [3]. Our experiments are performed on Intel(R)
Core(TM) 2 Quad CPU Q9400 @ 2.66 GHz with 4 GB RAM and running on
Windows XP. The two algorithms are implemented in JAVA language.

We first generate two synthetic datasets T5I2D100 K and T5I4D100 K by using
IBM Synthetic Data Generator [22], in which T is the average length of the
transactions, I is the average size of maximal potentially frequent itemsets and D is
the total number of the transactions. The number of distinct items is set to 1000. For
the profit of each item, we use the log Normal Distribution [2, 7] and set the range
of the profits between 0.01 and 10, which is shown in Fig. 1. The purchased
quantity for an item in a transaction is randomly set to the number between 1 and
10.

Figure 2 and Fig. 3 show the execution time of IHUP and HUIStream, which the
utility threshold is set to be 0.1%, the number of transactions is increased from 10 K
to 100 K, and the size of sliding window is set to be 1 K and 10 K, respectively.
From the experiments, we can see that HUIStream outperforms IHUP, and the
performance gap increases as the number of transactions increases and the times of
window size movements increases, since HUIStream only updates the closed twu

Fig. 1 Utility value distribution in utility table

Fig. 2 The execution time for the two algorithms on window size = 1 K
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itemsets related to the added or deleted transactions. However, IHUP needs to
re-mine HTWU itemsets by using FP-Growth algorithm [5] and rescan the database
to find high utility itemsets from the HTWU itemsets.

Figures 4 and 5 show the memory usages for the two algorithms IHUP and
HUIStream when the number of transactions is increased from 10 K to 50 K and
the size of sliding window is set to be 1 K and 10 K, respectively, from which we
can see that the memory usage for IHUP is significantly larger than that of HUI-
Stream. This is because IHUP needs to recursively construct the subtrees for
re-mining HTWU itemsets when a transactions are added or deleted, but HUI-
Stream only needs to store and update the Closed Table and Cid List.

In the following experiments, we generate the two datasets T10I4D100K and
T10I6D100K. The number of distinct items is set to 2000, and the utility threshold
is set to be 0.1%. s Figures 6 and 7 show the execution time of IHUP and
HUIStream, which the number of transactions is increased from 10 K to 50 K, and
the size of sliding window is set to be 1 K and 10 K, respectively. From Fig. 6,

Fig. 3 The execution time for the two algorithms on window size = 10 K

Fig. 4 The memory usages for the two algorithms on window size = 1 K
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Fig. 5 The memory usages for the two algorithms on window size = 10 K

Fig. 6 The execution time for the two algorithms on window size = 1 K

Fig. 7 The execution time for the two algorithms on window size = 10 K
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we can see that HUIStream outperforms IHUP and the performance gap increases
as the number of transactions increases. Although the performance gaps are similar
when the number of transactions increases from 10 K to 50 K, HUIStream still
outperforms IHUP in Fig. 7. The memory usages for IHUP and HUIStream in this
experiment are shown in Figs. 8 and 9, from which we can see that the memory
usage for HUIStream still less than the memory usage for IHUP on the datasets with
longer transaction size.

5 Conclusion

There are many previous approaches for mining high utility itemsets in a data
stream. However, they all first need to generate a large number of candidate high
utility itemsets and then scan the whole database to caculate the utility for each high

Fig. 8 The memory usages for the two algorithms on window size = 1 K

Fig. 9 The memory usages for the two algorithms on window size = 10 K
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utility itemset. Although some approaches propose some strategies to reduce the
number of the candidate high utility itemsets, the number of the candidates is still
large when the size of the database is large. In order to avoid rescanning the
database, some approaches store the whole database in a tree structure, but they also
need to re-generate the candidate high utility itemsets when the transactions are
added or deleted without using the information about previously discovered high
utility itemsets.

In order to improve the performance of the previous approaches, we propose an
algorithm HUIStream for mining high utility itemsets over a data stream. We take
use of the concept of closed itemsets [20] and propose the definition of closed twu
itemsets which can be used to derive the twu values of all the itemsets in the
database. Because the number of the closed twu itemsets is much less than the
number of the itemsets in the database, HUIStream only keeps all the closed twu
itemsets, such that the twu values of all the itemsets in the database can be reserved.
Therefore, our approach only needs to update the closed twu itemsets about the
added or deleted transaction without any information loss when a transaction is
added or deleted. According to the closed twu itemsets, HUIStream can directly
obtain the high utility itemsets from the closed HTWU itemsets without rescanning
the database. The experimental results also show that our HUIStream outperforms
the other approaches.
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Event Detection in Location-Based Social
Networks
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Abstract With the advent of social networks and the rise of mobile technologies,

users have become ubiquitous sensors capable of monitoring various real-world

events in a crowd-sourced manner. Location-based social networks have proven to

be faster than traditional media channels in reporting and geo-locating breaking

news, i.e. Osama Bin Laden’s death was first confirmed on Twitter even before the

announcement from the communication department at the White House. However,

the deluge of user-generated data on these networks requires intelligent systems

capable of identifying and characterizing such events in a comprehensive manner.

The data mining community coined the term, event detection, to refer to the task

of uncovering emerging patterns in data streams. Nonetheless, most data mining

techniques do not reproduce the underlying data generation process, hampering to

self-adapt in fast-changing scenarios. Because of this, we propose a probabilistic

machine learning approach to event detection which explicitly models the data gen-

eration process and enables reasoning about the discovered events. With the aim to

set forth the differences between both approaches, we present two techniques for the

problem of event detection in Twitter: a data mining technique called Tweet-SCAN

and a machine learning technique called WARBLE. We assess and compare both tech-

niques in a dataset of tweets geo-located in the city of Barcelona during its annual

festivities. Last but not least, we present the algorithmic changes and data processing

frameworks to scale up the proposed techniques to big data workloads.

J. Capdevila (✉) ⋅ J. Torres

Universitat Politècnica de Catalunya (UPC), Barcelona Supercomputing

Center (BSC), Barcelona, Spain

e-mail: jc@ac.upc.edu; capdevila.pujol.joan@gmail.com

J. Torres

e-mail: torres@ac.upc.edu

J. Cerquides

Artificial Intelligence Research Institute (IIIA), Spanish National Research

Council (CSIC), Madrid, Spain

e-mail: cerquide@iiia.csic.es

© Springer International Publishing AG 2017

W. Pedrycz and S.-M. Chen (eds.), Data Science and Big Data:
An Environment of Computational Intelligence, Studies in Big Data 24,

DOI 10.1007/978-3-319-53474-9_8

161



162 J. Capdevila et al.

Keywords Event detection ⋅ Social networks ⋅ Geolocation ⋅ Twitter ⋅ Anomaly

detection ⋅ DBSCAN ⋅ Topic models ⋅ Probabilistic modeling ⋅ Variational infer-

ence ⋅ Apache spark

1 Introduction

Sensor networks are systems composed of several tenths of spatially-distributed

autonomous devices capable of monitoring their surroundings and communicat-

ing with their neighbors [2]. Detecting abnormal behaviors in these networks have

attracted the interest of different communities ranging from communications [36] to

data mining [14]. In particular, the task of detecting and characterizing anomalous

subgroups of measurements that emerge in time has been coined as event detection
and it has found many applications in surveillance systems, environmental monitor-

ing, urban mobility, among many others [43].

In contrast, social networks came about to interconnect users mainly for com-

munication purposes. However, the rise of mobile technologies and positioning sys-

tems have turned users into ubiquitous sensors capable of monitoring and reporting

real-world events (i.e. music concert, earthquakes, political demonstration). Most

of these events are very challenging to detect through sensor networks, but location-

based social networks, which incorporate geo-tagging services, have shown to report

them even faster than traditional media [48]. For example, Mumbai terrorist attacks

were instantly described on Twitter by several eyewitness in the crime area [40] and

Osama Bin Laden’s death was first revealed on the same platform before the com-

munication department at the White House had even confirmed his death [33].

Therefore, there has recently been a growing interest to build intelligent systems

which are able to automatically detect and summarize interesting events from online

social content [34]. In particular, Twitter has attracted most of the attention in both

research and industry because of its popularity
1

and its accessibility
2

[3]. Tweet mes-

sages respond to the What’s happening? question through a 140-character-long text

message, and tweet meta-data might also contain details about the when, where and

who [45]. Social networks in general, and Twitter in particular, are classic big data

scenarios in which large volumes of heterogeneous data are generated in stream-

ing by millions of uncoordinated users. Applications such as event detection have to

consider these challenges in order to generate veracious knowledge from this data.

In other words, event detection in Twitter has to deal with the 5 Vs defined in big

data: volume, velocity, variety, veracity and variability.

In this chapter, we present two techniques for retrospective event detection, that

is to say that both techniques seek to discover events from historical data, not from

a stream. As a result, velocity is disregarded for this retrospective study, but left for

future work in online or prospective setups. Both techniques deal with tweet variety

1
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how.

2
https://dev.twitter.com/rest/public.

https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
https://dev.twitter.com/rest/public
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by modeling the spatial, temporal and textual dimensions of a tweet independently.

They could also be extended to take into account other forms of data (image, video,

etc.).

The first technique, called Tweet-SCAN [9], is based on the Density-based Spa-

tial Clustering of Applications with Noise (DBSCAN) [18]. This is a well-known

algorithm for bottom-up event detection from the data mining community [43]. This

algorithm identifies as events groups of densely packed tweets which are about sim-

ilar themes, location and time period. However, such techniques do not consider

uncertain measurements (i.e. GPS errors) or partial information (i.e. tweets without

location), compromising the veracity of the results. Moreover, these detection tech-

niques lack of knowledge about the data generation process hampering them to adapt

in varying scenarios. Nonetheless, parallel and distributed versions of DBSCAN [21]

are enabling to scale up event detection in large datasets [12].

On the other hand, computational intelligent approaches like probabilistic models

and learning theory can help to mitigate some of these issues by accounting for the

uncertainty in a very principled way [5]. WARBLE [10], the second technique pre-

sented here, follows this approach and tackles the event detection problem through

heterogeneous mixture models [4]. These are probabilistic models that represent sub-

populations within an overall population, and each sub-population might be gener-

ated by a different statistical distribution form. Last but not least, recent advances in

approximate inference have mitigated the high computational cost in learning prob-

abilistic models in scenarios with large volumes of data [24].

The rest of this chapter is structured as follows. In Sect. 2, we define the problem

of event detection in location-based social networks. We then provide the necessary

background regarding DBSCAN and mixture models in Sect. 3. Section 4 contains

detailed explanation about the two event detection techniques and their scaling in the

presence of large data volumes. Tweet-SCAN is described in Sect. 4.1 and WARBLE,

in Sect. 4.2. The experimental setup and results is in Sect. 5. We first introduce “La

Mercé” dataset for local event detection in Sect. 5.1, we then present the metrics

to evaluate the detection performance in Sect. 5.2 and we ultimately evaluate both

techniques in Sect. 5.3. Finally, Sect. 6 presents some conclusions out of this chapter

and points out to several future steps.

2 Problem Definition

Event detection in social networks lacks of a formal definition for an event, hamper-

ing the progress of this field. Broadly speaking, [30] defined an event as “a significant
thing that happens at some specific time and place”. However, this definition does

not specify what significant means in the context of social networks. Lately, [34]

built on top of this definition to provide the following one:

Definition 1 Event (e): In the context of Online Social Networks (OSN), (signifi-

cant) event (e) is something that cause (a large number of) actions in the OSN.
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Note first that it does not constrain an event to happen at some specific time and

place, in contrast to [30]. This enables to have a more general definition from which

we can then distinguish several event types (Global, Local or Entity-related) depend-

ing on the constraints. However, this definition still lacks of some sort of formaliza-

tion regarding the significant number of actions in the social network (e.g. post new

content or accept a friend request). With the aim to unify and formalize this, we add

to Definition 1 the idea that events are caused by abnormal occurrences:

Definition 2 Event (e): In the context of Online Social Networks (OSN), (signifi-

cant) event (e) is something that cause an abnormal number of actions in the OSN.

This definition resembles that of event detection in sensor networks [43], in which

events are anomalous occurrences that affect a subgroup of the data. Note also that

this captures more complex events than Definition 1. For example, an abnormal

decrease of actions in the social network, as it might initially happen during a shoot-

ing in a crowded area, should be also considered a significant event.

Moreover, location-based social networks have enabled to narrow down the scope

of events to geo-located events [48], enabling the identification of many real-world

occurrences such as music concerts, earthquakes or political demonstrations. More-

over, by restricting the geographical dimension of such events, we are able to identify

local events taking place in urban environments, which will be the application of the

techniques presented in this chapter.

Therefore, the task of event detection in a social network consists of identifying

and characterizing a set of events that are anomalous with respect to a baseline. This

task can be performed either retrospectively or prospectively. While the former aims

to retrieve events from historical data in a batch mode, the latter seeks to identify

them in streaming data in an online fashion. In the following sections, we will present

two different approaches to retrospectively uncover these anomalous patterns:

1. Tweet-SCAN: A data mining approach based on DBSCAN [18] in which events

are groups of posts (i.e. tweets) that are more densely packed than the baseline.

2. WARBLE: A probabilistic approach based on heterogeneous mixture models [4] in

which events are groups of posts (i.e. tweets) generated by a statistical distribution

different from that of non-event tweets.

Both techniques follows the anomaly-based approach to event detection by assum-

ing that events are groups of similar tweets (in space, time and textual meaning) and

they are masked by tones of non-event tweets such as memes, user conversations or

re-post activities. While Tweet-SCAN considers distance as the metric for similarity,

WARBLE uses probability to assess the pertinence to event or non-event.



Event Detection in Location-Based Social Networks 165

3 Background

In this section, we present digested background regarding DBSCAN and mixture

models, methods that are used by the later proposed techniques. Both methods have

been used for clustering in applications with noise. We instead propose them for ret-

rospective event detection, given that the noise component can be used to for mod-

eling the baseline or expected behavior.

3.1 DBSCAN

DBSCAN [18] was initially proposed to uncover clusters with arbitrary shapes whose

points configure a dense or packed group. This means that for each point in a cluster

its neighborhood at a 𝜖 distance must contain at least a minimum number of points,

MinPts. Formally, this implies the definition of two predicates:

1. NPred(o, o′) ≡ N
𝜖
(o, o′) = |o − o′| ≤ 𝜖.

2. MinWeight(o) ≡ |{o′ ∈ D | |o − o′| ≤ 𝜖}| ≥ MinPts.

The fulfillment of both predicates allows to define the notion of a point p being

directly density-reachable from another point q, see (left) Fig. 1, where 𝜖 is given by

the circle radius and MinPts is set to 2. In this scenario, q is a core point because it

satisfies both predicates and p is a border point since it breaks the second predicate.

The notion of being direct reachable is extended to density-reachable points when p
and q are far apart, but there is a chain of points in which each pair of consecutive

points are directly density-reachable, as it is the case in (middle) Fig. 1. Finally, it

might happen that p and q are not density-reachable, but there is a point o from which

they are both density-reachable, that is when p and q are said to be density-connected,

for example in (right) Fig. 1. Note that both points, p and q, are here border points,
while o is a core point.

Consequently, a cluster in DBSCAN is defined to be a set of density-connected

points that contains all possible density-reachable points. Furthermore, noise points
can now be defined as those points which do not belong to any cluster since they are

not density-connected to any.

GDBSCAN [39] generalizes DBSCAN by redefining the above-mentioned predi-

cates to cope with spatially extended objects. For example, the neighborhood of a set

of polygons is defined by the intersect predicate instead of a distance function. It is

also the case for a set of points with financial income attributes within a region whose

MinWeight predicate is a weighted sum of incomes instead of mere point cardinality,

so that clusters become regions with similar income. Therefore, both predicates can

be generalized as follows:

1. NPred(o, o′) is binary, reflexive and symmetric.

2. MinWeight(o) ≡ wCard({o′ ∈ D | NPred(o, o′)}) ≥ MinCard, where wCard is a

function that 2D → ℝ≥0
.



166 J. Capdevila et al.

Fig. 1 Directly density-reachable (left), density-reachable (middle) and density-connected (right)
points

These new predicates enable to extend the concept of density-connected points

to objects and thus generalize density-based clustering to spatially extended objects,

like geo-located tweets. Moreover, we note that DBSCAN-like techniques have been

considered for event detection in sensor networks as a bottom-up approach [43].

3.2 Mixture Models

Mixture models are probabilistic models for representing the presence of subpopula-

tions within an overall population and they have been very popular for clustering and

unsupervised learning. Mixture of Gaussians or Gaussian Mixture Models (GMM)

are the most widely used mixture model [31]. In this model, each mixture compo-

nent is a multivariate Gaussian with mean 𝜇k and covariance 𝛴k parameters. This

means that given the component assignment cn, the generative process for the n-th

observations is,

xn ∼ N
(
𝜇cn , 𝛴cn

)
. (1)

[4] proposed a more general model in which not all mixture components share the

same distributional form. In particular, observations from one of the mixture compo-

nents came from a Poisson process associated with noise. Therefore, the generative

process can be rewritten as,

xn ∼

{
N
(
𝜇cn , 𝛴cn

)
cn < K

U(xmin, xmax) cn = K
(2)

where U(xmin, xmax) corresponds to a multivariate uniform distribution with xmin, the

most south-western point and xmax, the most north-eastern point. This model has
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shown to perform reasonably well in cluster recovery from noisy data in both syn-

thetic and real datasets [20].

Heterogeneous mixture models enable to propose generative models for event

detection, in which event-related observations, i.e. tweets, are drawn from a distrib-

utional (cn < K) form that entails locality in the temporal, spatial and textual dimen-

sions, while non-event data points are generated from the background distribution

(cn = K).

4 Event Detection Techniques

4.1 Tweet-SCAN: A Data Mining Approach

Tweet-SCAN [9] is defined by specifying the proper neighborhood and MinWeight

predicates introduced in Sect. 3.1 for GDBSCAN in order to associate density-

connected sets of tweets to real-world events. Next, we introduce both predicates

and the text model for the textual component of a tweet.

4.1.1 Neighborhood Predicate

Most event-related tweets are generated throughout the course of the event within

the area where it takes place. Consequently, we need to find sets of tweets density-

connected in space and time, as well as in meaning.

We also note that closeness in space is not comparable to time, nor to meaning.

Because of this, Tweet-SCAN is defined to use separate positive-valued 𝜖1, 𝜖2, 𝜖3
parameters for space, time and text, respectively. Moreover, specific metrics will be

chosen for each dimension given that each feature contains different type of data.

The neighborhood predicate for a tweet o in Tweet-SCAN can be expressed as

follows,

NPred(o, o′) ≡ |o1 − o′1| ≤ 𝜖1, |o2 − o′2| ≤ 𝜖2, |o3 − o′3| ≤ 𝜖3 (3)

where |oi − o′i| are distance functions defined for each dimension, namely space,

time and text. The predicate symmetry and reflexivity are guaranteed as long as

|oi − o′i| are proper distances. Particularly, we propose to use the Euclidean distance

for the spatial and temporal dimensions given that latitude and longitude coordinates

as well as timestamps are real-valued features and the straight line distance seems

a reasonable approximation in this scenario. The metric for the textual component

will be defined later once we present the text model for Tweet-SCAN.



168 J. Capdevila et al.

4.1.2 MinWeight Predicate

Tweet-SCAN seeks to group closely related tweets generated by a diverse set of

users instead of a reduced set of them. User diversity is imposed to avoid that a

single user continuously posting tweets from nearby locations could trigger a false

event in Tweet-SCAN. Forcing a certain level of user diversity within a cluster can

be achieved through two conditions in the MinWeight predicate that must be satisfied

at the same time,

MinWeight(o) ≡ |NNPred(o)| ≥ MinPts, UDiv(NNPred(o)) ≥ 𝜇 (4)

where NNPred(o) is the set of neighboring tweets of o such that {o′ ∈ D | NPred
(o, o′)} w.r.t. the previously defined Tweet-SCAN neighborhood predicate. The first

condition from the MinWeight predicate establishes that neighboring tweets must

have a minimum cardinality MinPts as in DBSCAN. While in the second condition,

the user diversity UDiv() ratio, which is defined as the proportion of unique users

within the set NNPred(o), must be higher than a given level 𝜇 of user diversity.

4.1.3 Text Model

The text message in a tweet is a 140-character-long field in which users type freely

their thoughts, experiences or conversations. The fact that users tweet in different

languages, argots and styles dramatically increases the size of the vocabulary, mak-

ing the use of simple Bag of Words (BoW) models [38] not viable. Therefore, we

propose to use probabilistic topic models, which are common dimensionality reduc-

tion tools in text corpus [6]. In this approach, a tweet message is encoded into a

K-dimensional vector which corresponds to the Categorical probability distribution

over the K topics. K is often much smaller than the vocabulary size and the resulting

topics are represented by semantically similar words.

Nonparametric Bayesian models like Hierarchical Dirichlet Process (HDP) [41]

can automatically infer the number of topics K, overcoming the limitation of their

parametric counterparts like Latent Dirichlet Allocation (LDA) [7]. The HDP topic

model basically consists of two nested Dirichlet Process: Go, with base distribu-

tion H and concentration parameter 𝛾 , and Gi, with base distribution Go and con-

centration parameter 𝛼o. Although the number of topics is automatically inferred,

the hyperparameters 𝛾 and 𝛼o might strongly influence the number of components.

Because of this, vague informative gamma priors such as, 𝛾 ∼ Gamma(1, 0.1) and

𝛼o ∼ Gamma(1, 1) are usually considered [17, 41].

The straightforward use of HDP models on raw tweets does not provide mean-

ingful topic distributions [25] due to the lack of word co-occurrence in short texts

like tweets. Because of this, we propose the scheme from Fig. 2 which aims to

alleviate these shortcomings. First, raw tweets, modeled as Bag of Words, are pre-

processed and cleaned through classical data cleaning techniques from Natural Lan-
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Fig. 2 Text model scheme. Stages are highlighted in bold in the text

guage Processing (NLP): lowering case, removing numbers and special characters,

and stripping white-spaces. Then, processed tweets are aggregated to build longer

training documents from a group of concatenated tweets. These aggregated docu-

ments are used to train the HDP model. Finally, the trained HDP model is employed

to predict the topic distributions per each single tweet in order to obtain the Categor-

ical probability distributions over the K topics that summarize each tweet message.

In the aggregation stage, we consider the aggregation scheme by top key terms

proposed in [25]. This consists in first identifying a set of top key terms through

the TF-IDF statistic [37], and then aggregating tweets that contains each of these

top keywords. Thus, there will be as many training documents as top key terms and

very few tweets will be unassigned as long as we choose a reasonable number of top

keywords.

Finally, we propose to use the Jensen-Shannon (JS) distance for the textual com-

ponent in Tweet-SCAN neighborhood predicate. JS is a proper distance metric for

probability distributions [16]. It is defined as,

JS(p, q) =
√

1
2
DKL(p||m) +

1
2
DKL(q||m) (5)

where p, q and m are probability distributions and DKL(p||m) is the Kullback-Leibler

divergence between probability distribution p and m written as,

DKL(p||m) =
∑

i
p(i)log2

p(i)
m(i)

m = 1
2
(p + q) (6)

where m is the average of both distributions.

In Tweet-SCAN, p and q from Eq. (5) are two Categorical probability distribu-

tions over topics which are associated to two tweet messages. Given that Jensen-

Shannon distance is defined through base 2 logarithms, JS distance will output a

real value within the [0, 1]. Documents with the similar topic distribution will have a

Jensen-Shannon distance close to 0 and those topic distributions which are very far

apart, distance will tend to 1.
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Fig. 3 Simplified MR-DBSCAN workflow

4.1.4 Scaling up to Large Datasets

To scale up Tweet-SCAN to large datasets, we propose to build on current parallel

versions of DBSCAN such as MR-DBSCAN [22] which parallelizes all the critical

sub-procedures of DBSCAN. The MR-DBSCAN workflow, shown in Fig. 3, first

partitions the full dataset, then performs local DBSCAN clustering in each partition,

and finally merges the local clusters into global ones, which correspond to events in

our case.

An implementation of MR-DBSCAN in Apache Spark named RDD-DBSCAN

was proposed by [15]. Apache Spark [46] is a computing framework in which dis-

tributed data collections, called Resilient Distributed Datasets (RDD), can be cached

into memory for fast map-reduce operations.

The extension of DBSCAN algorithm for large scale event detection based on

RDD-DBSCAN was developed by [12] and preliminary results show that by increas-

ing parallelism we can reduce computation time.

4.2 WARBLE: A Machine Learning Approach

Next, we introduce WARBLE [10] a probabilistic model and learning scheme to

uncover events from tweets through heterogeneous mixture models introduced in

Sect. 3.2.

4.2.1 Probabilistic Model

[29] proposed a probabilistic model for event detection based on homogeneous mix-

ture models in which each mixture component shares the same distributional form.

Formally, they assume that the n-th tweet 𝕋n is generated according to,

𝕋n ∼ f
(
𝛽en

)
(7)

where f is the probability distribution function (pdf), common for all mixture com-

ponents and 𝛽k are the distribution parameters corresponding to the k-th mixture

component.

As argued in the introduction, a vast majority of tweets is not event-related. There-

fore, we would like to address rarity of event data by introducing a new mixture com-
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Fig. 4 Simplified probabilistic graphical models (PGMs)

ponent, to which we will refer as background, which contains those tweets which

are not part of any event. In probabilistic terms, it seems clear that the distribution of

tweets inside the background component should be widely different from that inside

events.

Accordingly, the WARBLE model generalizes McInerney and Blei’s model to han-

dle heterogeneous components as introduced in Sect. 3. To do that, for each compo-

nent k, we enable a different base function fk as

𝕋n ∼ fcn
(
𝛽cn

)
(8)

where the latent variables are now symbolized as cn to denote that a tweet might be

generated by event component (cn < K) or by background (cn = K).

Figure 4 shows simplified probabilistic graphical models (PGMs) [27] for McIn-

erney and Blei’s and our proposals. The proposed WARBLE model uses a different

distributional form 𝛾B for the K-th mixture component.

Moreover, geo-located tweets tends to be unevenly distributed through space and

time. For example, it is known that users are more likely to tweet during late evening

and from highly populated regions [28]. Consequently, the background component

(cn = K) needs to cope with density varying spatio-temporal distributions.
In particular, we propose to model the distributional form 𝛾B for the background

component through two independent histogram distributions for time and space with

parameters TB and LB, respectively. The temporal histogram distribution is repre-

sented through a piecewise-continuous function which takes constant values (TB1
,

TB2
, ... TBIT

) over the IT contiguous intervals of length b. Similarly, the spatial back-

ground is modeled through a 2d-histogram distribution over the geographical space,

which is represented in a Cartesian coordinate system. The 2d-piecewise-continuous

function is expressed through IL constant values (LB1
, LB2

,… LBIL
) in a grid of squares

with size b × b each.

Figure 5 shows the complete probabilistic graphical model for the WARBLE model,

where tweets 𝕋n are represented by their temporal tn, spatial ln and textual wn fea-

tures.
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Fig. 5 The complete

WARBLE model
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The event-related components (k < K) generate the temporal, spatial and textual

features from a Gaussian distribution with mean 𝜏k and precision 𝜆k, a Gaussian

distribution with mean 𝜇k and precision matrix𝛥k and a Categorical distribution with

proportions 𝜃k, respectively. Moreover, priors over these distributions are assumed

with hyperparameters m
𝜏
, 𝛽

𝜏
, a

𝜆
, b

𝜆
, m

𝜇
, 𝛽

𝜇
, 𝜈

𝛥
, W

𝛥
and 𝛼

𝜃
.

The background component (k = K) accounts for the spatio-temporal features of

non-event tweets, which are drawn from the histogram distributions with parameters

(LB) and (TB) introduced earlier. However, textual features of theK-th component are

not constrained by any textual background, but drawn from a Categorical distribution

with proportions 𝜃K and hyperparameter 𝛼
𝜃
.

Finally, we consider T topic distributions over words 𝜙 = {𝜙1,… , 𝜙T} generated

from a Dirichlet distribution with hyperparameter 𝛼
𝜙

. The topic distributions 𝜙 are

learned simultaneously with component assignments cn which has lately been found

very promising in modeling short and sparse text [35] and we refer here as simulta-
neous topic-event learning. In contrast to traditional topic modeling, where distri-

butions over topics are document-specific [7], the WARBLE model assumes that top-

ics zn,m are drawn from component-specific distributions 𝜃k. This enables to directly

obtain topics that are event-related or background-related, providing also an inter-

esting approach for automatic event summarization.

4.2.2 Learning from Tweets

Next, we describe how we can learn the WARBLE model from tweets to identify a

set of events in a region during a period of interest. We first show how to learn the

background model and later explain the assignment of tweets to events or background

components.
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Learning the background model. To learn the spatio-temporal background, we pro-

pose to collect geo-located tweets previous to the period of interest in order to add a

sense of ‘normality’ to the model.

From the collected tweets, the temporal background is built by first computing

the daily histogram with IT bins. Then, the daily histogram is smoothed by means

of a low pass Fourier filter in order to remove high frequency components. The

cut-off frequency fc determines the smoothness of the resulting signal. The normal-

ized and smoothed histogram provides the parameters for the temporal background

TB1
,TB2

,… ,TBIT
.

The spatial background is built following the same procedure. However, geo-

graphical location has to be first projected into a Cartesian coordinate system in

order to consider locations in a 2-d Euclidean space. The spatial range limits can be

determined from the most southwestern and northeastern points. We consider now a

two dimensional Gaussian filter with a given variance 𝜎. The resulting 2d-histogram

provides the parameter for the spatial background LB1
,LB2

,… ,LBIL
.

We suggest to set the number of bins for the temporal and spatial histograms as

well as the cut-off frequency and variance empirically. Future work will examine

how to automatically adjust these parameters.

Assigning tweets to mixture components. To assign tweets to mixture components,

we need to find the most probable assignment of tweets to mixture components, given

the data at hand. That is finding c∗,

c∗ = argmax
c

p(c|l, t,w;𝛤 ) (9)

where 𝛤 stands for the model hyperparameters LB, TB, 𝛼
𝜋
, 𝛼

𝜃
, 𝛼

𝜙
, m

𝜏
, 𝛽

𝜏
, a

𝜆
, b

𝜆
, m

𝜇
,

𝛽
𝜇
, 𝜈

𝛥
and W

𝛥
. Exactly assessing c∗ is computationally intractable for the WARBLE

model.

Therefore, we propose to first use mean-field variational Bayesian inference [19,

26] to approximate p(X|D;𝛤 ) (where X stands for the set of random variables con-

taining c, z, 𝜋, 𝜏, 𝜆, 𝜇, 𝛥, 𝜃 and 𝜙, and D stands for our data, namely l, t, and w) by a

distribution q(X; 𝜂) (where 𝜂 stands for the variational parameters). Then, assess c∗
from the approximation, that is

c∗ = argmax
c

q(c; 𝜂) = argmax
c ∫X−c

q(X; 𝜂). (10)

The functional forms for the mean-field approximation q(X; 𝜂) and the updates

for the variational parameters can be found in a separate technical report [11]. Vari-

ational parameters are updated in an iterative fashion one at a time as in coordinate

descent.
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4.2.3 Scaling up to Large Datasets

Recent advances in approximate inference are enabling to scale up inference of prob-

abilistic models to large high-dimensional datasets [24]. In particular, the application

of stochastic optimization techniques to variational inference has enabled to process

datasets in an online fashion [23], avoiding to have the whole dataset cached in mem-

ory or even in a local machine.

The stochastic variational inference paradigm [24] sets a variational objective

function which also uses the factorized mean-field distribution q(X; 𝜂). However, the

variational updates are now computed from noisy estimates of the objective function

instead of the true gradient. As a result, the computation of noisy gradients does

not require the local variational parameters for the whole dataset, but only those

associated with the randomly sampled data point.

Although stochastic algorithm are sequential in nature, their parallelization have

been actively researched in order to preserve the statistical correctness while speed-

ing up the run time of the algorithm in multicore machines [1]. The straightforward

application of such techniques on distributed systems with commodity hardware is

not obvious due to the high latency introduced by the network. Recently, some have

distributed the inference of specific probabilistic models such as Latent Dirichlet

Allocation (LDA) [32], but their parallel scheme is tailored to this model.

System for Parallelizing Learning Algorithm with Stochastic Methods (Splash)

has been introduced as general framework for parallelizing stochastic algorithms

on distributed systems [47]. It is build on top of Apache Spark [46] and it benefits

from the abstraction of this data processing engine. Splash consist of a programming

interface in which the user defines the sequential stochastic algorithm and a execution

engine in which it averages and reweights local updates to build the global update.

Our approach to scale up WARBLE is to use the general Splash framework built

on top of Apache Spark.

5 Experimental Setup and Results

5.1 “La Mercé”: A Dataset for Local Event Detection

We have collected data through the Twitter streaming API
3

via Hermes [13]. In

particular, we have established a long standing connection to Twitter public stream

which filters all tweets geo-located within the bounding box of Barcelona city. This

long standing connection was established during the local festivities of “La Mercè”,

that took place during few days in September 2014 and 2015.
4

3
http://dev.twitter.com/streaming/overview.

4
Dataset published in https://github.com/jcapde87/Twitter-DS.

http://dev.twitter.com/streaming/overview
https://github.com/jcapde87/Twitter-DS
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(a) Location dimension (b) Time dimension

(c) Text dimension (d) User dimension

Fig. 6 Tweets dimensions from “La Mercè” 2014

“La Mercè” festivities bring with several social, cultural and political events that

happen in different locations within a considerably short period of time. This sce-

nario is a suitable test bed for evaluating the accuracy of Tweet-SCAN on discover-

ing these local events from tweets. Moreover, the abundance of events during these

days causes that some of them overlap in time and space, making text more rele-

vant to distinguish them. However, these events are apparently not distinguishable

by analyzing tweet dimensions separately as shown in Fig. 6, where event patterns

are not visible. Figure 6a shows the spatial distribution of tweets within the borders

of Barcelona city, where different tweet density levels can be appreciated in the map.

Figure 6b represents the time series of tweets from the 19th to the 25th of September

and daily cycles are recognizable. Figure 6c is a wordcloud in which more frequent

words are drawn with larger font size, such as “Barcelona”. The multilingualism at

Twitter is also reflected at this wordcloud although this work does not considered

translating between different languages. Last, Fig. 6d is a histogram of the number

of tweets per user, which shows that most of the users tweet very few times, while

there are a few, although non-negligible number of users, who tweet very often. All

four dimensions play a key role in Tweet-SCAN to uncover events.
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Table 1 “La Mercè” local festivities data sets

Tweets Tagged tweets Tagged events

“La Mercè” 2014 43.572 511 14

“La Mercè” 2015 12.159 476 15

As shown in Table 1, we have also manually tagged several tweets with the corre-

sponding events as per the agenda in “La Mercè” website
5

and our own expert knowl-

edge as citizens. With this tagged subset of tweets, we will experimentally evaluate

the goodness of Tweet-SCAN. We also note that the number of tweets collected in

2015 is much less than in 2014. This is because Twitter released new smart-phone

apps in April 2015 for Android and IOS that enable to attach a location to a tweet

(such as a city or place of interest) apart from the precise coordinates.
6

Since tweets

generated during “La Mercè” 2014 data set did not contain this functionality, we

only consider tweets whose location is specified through precise coordinates for “La

Mercè” 2015 data set (12.159 tweets).

5.2 Detection Performance Metrics

Clustering evaluation metrics have been applied in retrospective event detection

given that this problem is defined to look for groups of tweets which are clustered

together. The task of evaluating clustering against a tagged data set or gold standard
is known as extrinsic cluster evaluation, in contrast to intrinsic evaluation, which is

based on the closeness/farness of objects from the same/different clusters. Among

extrinsic measures, we find out that purity, inverse purity and, specially, the com-

bined F-measure have been extensively used for event discovery [44].

Purity is the weighted average of the maximum proportion of tweets from cluster

Ci labeled as Lj over all clusters Ci, and it is expressed as follows,

Purity =
∑

i

∣ Ci ∣
N

maxj
∣ Ci ∩ Lj ∣
∣ Ci ∣

(11)

where higher purity means that more tweets clustered as Ci are from the same

labeled event, and lower purity represents that they are from more different labels.

Given that the number of clusters is not fixed, we note that purity is trivially maxi-

mum when each object is set to a different cluster, but it is minimum when all objects

are set to the same cluster.

5
http://lameva.barcelona.cat/merce/en/.

6
https://support.twitter.com/articles/78525.

http://lameva.barcelona.cat/merce/en/
https://support.twitter.com/articles/78525
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To compensate the trivial solution of purity, inverse purity is introduced. Inverse

purity is the weighted average of the maximum proportion of tweets labeled as event

Li that belongs to cluster Cj over all labels Li, and it is defined as follows,

Inv. Purity =
∑

i

∣ Li ∣
N

maxj
∣ Cj ∩ Li ∣
∣ Li ∣

(12)

where higher inverse purity means that more tweets labeled as event Li are from

the same cluster, and lower inverse purity represents that they are from more different

clusters. Hence, Inverse Purity is trivially maximum when grouping all tweets into

a unique cluster, but it is minimum if each tweet belongs to a different cluster.

[42] combined both measures through the harmonic mean into the Van Rijsber-

gen’s F-measure to mitigate the undesired trivial solutions from purity and inverse

purity.

The F-measure score is defined as,

F =
∑

i

∣ Li ∣
N

maxj 2 ⋅
Rec(Cj,Li) ⋅ Prec(Cj,Li)
Rec(Cj,Li) + Prec(Cj,Li)

(13)

where Li is the set of tweets labeled as event i and Cj is the set of tweets clustered

as j and N is the total number of tweets. Recall and precision are defined over these

sets as the proportions Rec(Cj,Li) =
∣Cj∩Li∣
∣Li∣

and Prec(Cj,Li) =
∣Cj∩Li∣
∣Cj∣

.

5.3 Assessment

This section assesses Tweet-SCAN and WARBLE techniques in “La Mercé” data sets

presented in Sect. 5.1 through the detection metrics introduced earlier in Sect. 5.2.

In particular, we will first show how to determine Tweet-SCAN and WARBLE para-

meters and we will then evaluate both tuned up techniques during the main day of

“La Mercé” 2014.

5.3.1 Determining Tweet-SCAN Density Thresholds

We aim to determine the best performing neighborhood sizes for Tweet-SCAN in

terms of its spatio-temporal, textual and user diversity parameters.

First, we assess Tweet-SCAN in terms of F-measure scores when varying 𝜖1, 𝜖2
and 𝜖3. Figure 7 shows four possible 𝜖1, 𝜖2 configurations as function of 𝜖3 for “La

Mercé” 2014 and 2015 data sets. Note that, we consider a value of MinPts equal to

10, which implies that an event will have at least 10 tweets.
7

7
Although we have tested several differentMinPts values,MinPts = 10 outperforms all others given

that labeled events had at least 10 tweets.
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(c) ε1 = 500m, ε2 = 1800s (d) ε1 = 500m, ε2 = 3600s

(a) ε1 = 250m, ε2 = 1800s (b) ε1 = 250m, ε2 = 3600s

Fig. 7 F-measure for different 𝜖1, 𝜖2, 𝜖3 and MinPts = 10, 𝜇 = 0.5

A Tweet-SCAN configuration for short distances in time and space (𝜖1 = 250m,

𝜖2 = 1800 s) optimizes F-measure for 𝜖3 = 1, see Fig. 7a. This means that Tweet-

SCAN disregards the textual component for this spatio-temporal setup and it can be

explained by the fact that these 𝜖1𝜖2-neighborhoods are too narrow for the tagged

events.

For larger temporal neighborhoods (𝜖1 = 250m, 𝜖2 = 3600 s), the optimum value

for 𝜖3 is achieved within the range 0.8–0.9 in both data sets, see Fig. 7b. Now, we

can also see that this spatio-temporal configuration performs the best.

If we increase the spatial component, but we keep the temporal short (𝜖1 = 500m,

𝜖2 = 1800 s), F-measure score is lower in both data sets, but the optimum value for

𝜖3 is attained within 0.8–0.9 in “La Mercè” 2014, and 𝜖3 = 1 in “La Mercè” 2015,

see Fig. 7c.

Last, we increase both dimensions to (𝜖1 = 500m, 𝜖2 = 3600 s) as shown in

Fig. 7d. Although the optimum F-measure score for this setup is lower than the best

performing configuration, we observe that the textual component becomes more rele-

vant. This is due to the fact that large 𝜖1𝜖2-neighborhoods need textual discrimination

to identify meaningful events.
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(a) “La Mercè” 2014 (b) “La Mercè” 2015

Fig. 8 F-measure for different 𝜇 values

Next, we examine the effect of different user diversity levels 𝜇 in terms of F-

measure and number of discovered events. To do that, we fix the spatio-temporal and

textual parameters to the best performing parameter set (𝜖1 = 250m, 𝜖2 = 3600 s,
𝜖3 = 0.8, MinPts = 10) and we compute F-measure as function of the user diversity

level 𝜇. Low user diversity levels will cause that few users could generate an event

in Tweet-SCAN, while higher values will entail that events are generated by many

different users. Since different 𝜇 values influences the number of detected clusters

by Tweet-SCAN, we will also add the number of events into the figure.

Figure 8 plots the F-measure and number of clusters as a function of 𝜇 for both

data sets. It is clear from the figures that F-measure starts decreasing after a level of

𝜇 around 0.6. Similarly, the number of discovered clusters decreases but much faster

and sooner than F-measure. We observe that a user diversity level of 50 % (𝜇 = 0.5)

gives high figures of F-measure and reasonable number of events (≈50 events for

“La Mercè” 2014 and ≈30 events for “La Mercè” 2015). Given that the size of “La

Mercè” 2015 data set is nearly four times smaller, make sense to obtain less number

of events for the same 𝜇 level.

5.3.2 Learning WARBLE Background Component

In what follows, we learn the background component for the WARBLE model from

“La Mercé” dataset. In particular, we consider all geo-located tweets from the 20th

to the 23th of September 2014 to build the spatio-temporal backgrounds, LB and TB,

to be used later in the 24th of September for event detection.

Figure 9a (left) shows the daily histogram of tweets in which we observe a val-

ley during the early morning and a peak at night, indicating low and high tweeting

activity during these hours, respectively. The 1-d histogram has been computed with
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(a) Temporal background

(b) Spatial background

Fig. 9 Spatio-temporal backgrounds

IT = 100 bins. Figure 9a (right) is the filtered histogram signal that will be used for

setting the temporal background parameters TB1
,TB2

,… ,TBIT
.

Figure 9b (left) is the spatial histogram of all tweet locations. The smoothed ver-

sion, Fig. 9b (right), provides the parameters for the spatial background LB1
,LB2

,… ,

LBIL
. The 2-d histogram has been computed with IL = 1600 bins. We observe that

the most likely areas in the filtered histogram (in red) correspond to highly dense

regions of Barcelona like the city center, while city surroundings are colored in blue

indicating lower density of tweets.
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We note that WARBLE considers priors over most of model variables. We have

considered non-informative priors and we have not experimented substantial differ-

ences in the results when varying its hyper parameters.

5.3.3 Comparative Evaluation

Finally, we compare the detection performance of Tweet-SCAN and WARBLE tuned

up as described in the previous sections during the main day of “La Mercè 2014”,

which was the 24th of September. During that day, 7 events happened in the city of

Barcelona: a music concert at Bogatell beach area and its revival the morning after,

human towers exhibition at Plaça Sant Jaume, open day at MACBA museum, a food

market at Parc de la Ciutadella, a wine tasting fair at Arc de Triomf and fireworks

near Plaça d’Espanya.

Together with Tweet-SCAN and WARBLE, we will also consider McInerney &

Blei model [29] and two WARBLE variants for comparison. Next, we enumerate event

detection techniques under assessment,

(A) McInerney & Blei model [29], which does not consider background and does

not perform simultaneous topic-event learning.

(B) The WARBLE model without simultaneous topic-event learning.

(C) The WARBLE model without modeling background.

(D) The WARBLE model.

(E) Tweet-SCAN.

For McInerney & Blei, WARBLE and its variants we consider the number of com-

ponents K to be 8 so that the model is able to capture the 7 events occurring. More-

over, we also consider the number of topics T to be 30 for all models. Regarding

those models that do not perform simultaneous topic-event learning (B and E), the

Latent Dirichlet Allocation model [7] is separately trained with tweets aggregated

by key terms as proposed earlier in Sect. 4.1.3.

Figure 10 shows the results for each event detection technique introduced earlier

in terms of set matching metrics. Results show that the complete WARBLE model

outperforms in terms of F-measure and purity. Moreover, by analyzing the results of

models B and C we see a clear synergy between background modeling and simulta-

neous topic-event learning. Neither of them separately achieves a large increase of

the F-measure, but when combined they do.

Figure 11 provides visual insight on the quality of the events detected by each of

the alternatives, by drawing tweets in a 3-dimensional space corresponding to the

spatial (lat, long) and temporal (time) features. Each tweet is colored with the max-

imum likelihood event assignment (c∗n) for that tweet. Moreover, to improve visual-

ization, the most populated cluster, which usually is the background, is plotted with

tiny dots for all models, except model A, which fails to capture a clear background

cluster. The figure shows that the similarity between hand-labeled data (F) and the

WARBLE model (D) can only be compared to that of Tweet-SCAN (E).
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Fig. 10 Detection performance. (A) McInerney & Blei model (B) WARBLE w/o simultaneous

topic-event learning (C) WARBLE w/o background model (D) WARBLE model (E) Tweet-SCAN

Fig. 11 Resulting real-world events. a McInerney & Blei model b WARBLE w/o simultaneous

topic-event learning cWARBLE w/o background model d WARBLE model e Tweet-SCAN f Labeled

events
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6 Conclusions and Future Work

6.1 Conclusions

In this chapter, we have introduced the problem of event detection in location-based

social networks and we have motivated a computational intelligent approach that

combines probabilistic methods and learning theory to identify and characterize a

set of interesting events from Twitter. Following this paradigm, we have presented a

machine learning-based technique called WARBLE which is based on heterogeneous

mixture models. To show the differences with the classical data mining approach,

we have also presented a DBSCAN-like algorithm for event detection called Tweet-

SCAN. Both approaches are inspired on the anomaly-based event detection para-

digm, in which events are groups of data points which are anomalous with respect

to a baseline or background distribution.

On the one hand, the formulation of Tweet-SCAN within the framework of

DBSCAN defines events as density-connected set of tweets in their spatial, tempo-

ral and textual dimension. This technique allows the discovery of arbitrary-shaped

events, but restricts the definition of ‘normality’ to simply be sparse regions of tweets

and has no notion of the data generation process. On the other hand, WARBLE can

define richer background models and account for seasonality and uneven popula-

tion densities, but the spatio-temporal shape for events is explicitly constrained to be

Gaussian.

The experimental results show that both techniques performs similarly well,

although WARBLE does slightly better. For Tweet-SCAN, we have also shown that

the technique performs much better when incorporating the textual and user features.

More importantly, we have shown that Tweet-SCAN and WARBLE significantly out-

performs the geographical topic model presented by [29]. This result encourages

explicitly modeling ‘normality’ in a separate clustering component, either in a data

mining approach like DBSCAN or in probabilistic models like mixture models.

We have shown that both approaches can scale up to large data volumes by means

of distributed processing frameworks such as Apache Spark. A parallel version of

Tweet-SCAN splits data into separate partitions which might reside in separate com-

puters and apply local event detection and subsequent merging to obtain the same

results as the sequential Tweet-SCAN. The scaling of WARBLE benefits from sto-

chastic optimization to avoid having all data cached in memory or in the same local

machine. Moreover, general frameworks like Splash enable parallel and distributed

learning on top of Apache Spark.

6.2 Future Work

Future work will put together larger Twitter datasets to corroborate our preliminary

findings regarding the accuracy of both techniques and validate our approach to scale
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them up through the proposed parallel schemes and general purpose data processing

engines, such as Apache Spark.

Moreover, we will consider non-parametric approaches for the proposed WARBLE

model in which the number of events and topics can be automatically inferred from

data. For instance, existing work in mixture models uses Dirichlet Process [8] as

a prior distribution and that of topic modeling uses Hierarchically-nested Dirichlet

process [41].

Probabilistic approaches to event detection also provide a mechanism to reason

about unseen observations or partially observed data in a principled way. For exam-

ple, posts that have not been geo-referenced, words that have been misspelled or

pictures without captions, can be taken into account by these models.

Finally, online or prospective event detection has to be addressed in such a way

that events can be detected as early and reliably as possible and deal with the fact

that the ‘normality’ might change over time.

Our vision is that computational intelligent approaches that combine probabilis-

tic modeling and learning theory can pave the way to build event detection systems

which self-adapt to fast changing scenarios and that are capable to reason with par-

tially observed and noisy data.
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Using Computational Intelligence
for the Safety Assessment of Oil
and Gas Pipelines: A Survey

Abduljalil Mohamed, Mohamed Salah Hamdi and Sofiène Tahar

Abstract The applicability of intelligent techniques for the safety assessment of oil
and gas pipelines is investigated in this study. Crude oil and natural gas are usually
transmitted through metallic pipelines. Working under unforgiving environments,
these pipelines may extend to hundreds of kilometers, which make them very
susceptible to physical damage such as dents, cracks, corrosion, etc. These defects,
if not managed properly, can lead to catastrophic consequences in terms of both
financial losses and human life. Thus, effective and efficient systems for pipeline
safety assessment that are capable of detecting defects, estimating defects sizes, and
classifying defects are urgently needed. Such systems often require collecting
diagnostic data that are gathered using different monitoring tools such as ultra-
sound, magnetic flux leakage, and Closed Circuit Television (CCTV) surveys. The
volume of the data collected by these tools is staggering. Relying on traditional
pipeline safety assessment techniques to analyze such huge data is neither efficient
nor effective. Intelligent techniques such as data mining techniques, neural net-
works, and hybrid neuro-fuzzy systems are promising alternatives. In this paper,
different intelligent techniques proposed in the literature are examined; and their
merits and shortcomings are highlighted.
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1 Introduction

Oil and gas are the leading sources of energy the world relies on today; and
pipelines are viewed as one of the most cost efficient ways to move that energy and
deliver it to consumers. The latest data, in 2015, gives a total of more than 3.5
million km of pipeline in 124 countries of the world. Many other thousands of
kilometers of pipelines are planned and under construction. Pump stations, along
the pipeline, move oil and gas through the pipelines. Because the pipeline walls are
under constant pressure, tiny cracks may arise in the steel. Under the continuous
load, they can then grow into critical cracks or even leaks. Pipelines conveying
flammable or explosive material, such as natural gas or oil, pose special safety
concerns; and various accidents have been reported [1]. Damage to the pipeline
may cause the occurrence of large and enormous human and economic losses.
Moreover, damaged pipelines obviously represent an environmental hazard.
Therefore, pipeline operators must identify and remove pipeline failures caused by
corrosion and other types of defects as early as possible.

Today, inspection tools, called “Pipeline Inspection Gauges” or “Smart Pigs”,
employ complex measuring techniques such as ultrasound and magnetic flux
leakage. They are used for the inspection of such pipelines, and have become major
components to pipeline safety and accident prevention. These smart pigs are
equipped with hundreds of highly tuned sensors that produce data that can be used
to locate and determine the thickness of cracks, fissures, erosion and other problems
that may affect the integrity of the pipeline. In each inspection passage, huge
amounts of data (several hundred gigabytes) are collected. A team of experts will
look at these data and assess the health of the pipeline segments.

Because of the size and complexity of pipeline systems and the huge amounts of
data collected, human inspection alone is neither feasible nor reliable. Automating
the inspection process and the evaluation and interpretation of the collected data
have been an important goal for the pipeline industry for a number of years.
Significant progress has been made in that regard, and we currently have a number
of techniques available that can make the highly challenging and computationally-
intensive task of automating pipeline inspection possible. These techniques range
from analytical modeling, to numerical computations, to methods employing arti-
ficial intelligence techniques such as artificial neural networks. This paper presents
a survey of the state-of-the-art in methods used to assess the safety of the oil and gas
pipelines, with emphasis on intelligent techniques. The paper explains the princi-
ples behind each method, highlights the settings where each method is most
effective, and shows how several methods can be combined to achieve higher
accuracy.

The rest of the paper is organized as follows. In Sect. 2, we review the five
stages of the pipeline reliability assessment process. The theoretical principals
behind the intelligent techniques surveyed in this study are discussed in Sect. 3. In
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Sect. 4, the pipeline safety assessment approaches using the intelligent techniques
reported in Sect. 3 are presented and analyzed. We conclude with final remarks in
Sect. 5.

2 Safety Assessment in Oil and Gas Pipelines

The pipeline reliability assessment process is basically composed of five stages,
namely data processing, defect detection, determination of defect size, assessment
of defect severity, and repair management. Once a defect is detected, the defect
assessment unit proceeds by determining the size (the defect’s depth and length) of
the defect. This is really an important step as the severity of the defect is based on
its physical characteristics. Based on the severity level of the detected defect, an
appropriate action is taken by the repair management. These five stages of the
pipeline assessment process are summarized in the following subsections.

2.1 Big Data Processing

The most common nondestructive evaluation (NDE) method of scanning oil and
gas pipelines for possible pipeline defects utilizes magnetic flux leakage
(MFL) technology [2], in which autonomous devices containing magnetic sensors
are sent on periodic basis into the pipeline under inspection. The magnetic sensors
are used to measure MFL signals every three-millimeters along the pipeline length.
Figure 1 shows a rolled-out representation of a pipeline wall. The MFL sensors are
equally distributed around the circumference of the pipeline and move parallel to
the axis of the pipeline.

For pipelines that extend hundreds of kilometers, the data sets collected by the
MFL sensors are so big and complex that traditional data processing techniques to
analyze such data are inadequate. To reduce the quantity of the data, redundant and

Fig. 1 Rolled-out representation of pipeline wall
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irrelevant data are removed using feature extraction and selection techniques. The
most relevant features are selected, and then used to determine the depth and length
of the detected defect.

2.2 Defect Detection

In this stage, the diagnostic data are examined for the existence of possible defects
in the pipeline. To detect and identify the location of potential defects, wavelet
techniques are widely used [3]. They are very powerful mathematical methods [4–
6]. They were reported in many applications such as data compression [7], data
analysis and classification [8], and de-noising [9–11].

2.3 Determination of Defect Size

To determine the severity level of the detected defect, the defect’s depth and length
are calculated. However, the relationship between the given MFL signals and
particular defect type and shape is not well-known. Hence, it is very difficult to
derive an analytical model to describe this relationship. To deal with this problem,
researchers resort to intelligent techniques to estimate the required parameters. One
of these intelligent tools is the Adaptive Neuro-Fuzzy Inference System (ANFIS).

2.4 Assessment of Defect Severity

Based on the defect parameters (i.e., depth and length) obtained in the previous
stage, an industry standard known as ASME B31G is often used to assess the
severity level of the defect [12]. It specifies the pipeline stress under operating
pressure and what defect parameters that may fail the hydro pressure test [13].

2.5 Repair Management

In order to determine an appropriate maintenance action, the repair management
classifies the severity level of pipeline defects into three basic categories, namely:
severe, moderate, and acceptable. Severe defects are given the highest priority and
an immediate action is often required. The other two severity levels are not deemed
critical, thus, a repair action can be scheduled for moderate and acceptable defects.
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3 Computational Intelligence

As mentioned in the previous section, MFL signals are widely used to determine the
depth and length of potential defects. From recorded data, it has been observed that
the magnitude of MFL signals varies from one defect depth and length to another.
In the absence of analytical models that can describe the relationship between the
amplitude of MFL signals and their corresponding defect dimensions, computa-
tional intelligence provides an alternative approach. Given sufficient MFL data,
there are different computational techniques such as data mining techniques, arti-
ficial neural networks, and hybrid neuro-fuzzy systems that can be utilized to learn
such relationships. In the following, the theoretical principals behind each of these
techniques are summarized.

3.1 Data Mining

The k-nearest neighbor (k-NN) and support vector machines (SVM) are widely
used in data mining to solve classification problems. Within the context of the
safety assessment in oil and gas pipelines, these two techniques can be employed to
assign detected defects to a certain severity level.

3.1.1 K-Nearest Neighbor (KNN)

The KKN is a non-parametric learning algorithm as it does not make any
assumptions on the underlying data distribution. This may come in handy since
many real world problems do not follow such assumptions. The KNN learning
algorithm is also referred to as a lazy algorithm because it does not use the training
data points to do any generalization. Thus, there is no training stage in the learning
process, but rather KNN makes its decision based on the entire training data set.
The learning algorithm assumes that all instances correspond to points in the
n-dimensional space. The nearest neighbors of an instance are identified using the
standard Euclidean distance. Let us assume that a given defect x is characterized by
a feature vector:

⟨a1ðxÞ, a2ðxÞ, . . . , anðxÞ⟩, ð1Þ

where ar xð Þ denotes the value of the rth attribute of instance x. Thus, the distance
d between two instances xi and xj is calculated as follows:

d xi, xj
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

r=1
ar xið Þ− ar xj

� �� �2
s

, ð2Þ
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For the safety assessment in oil and gas pipeline application, the target function
is discrete. That is, it assigns the feature vector of the detected defect to one of the
three severity levels severe, moderate, or acceptable. If we suppose k=1, then the
1-nearest neighbor assigns the feature vector to the severity level where the training
instance of that severity level is nearest to the feature vector. For larger values of k,
the algorithm assigns the most common severity level among the k nearest training
examples. e only assumption made is that the data is in a feature space.

3.1.2 Support Vector Machine (SVM)

The SVM is a discriminant classifier defined by a separating hyperplane. Given
labeled training data, the SVM algorithm outputs an optimal hyperplane that can
categorize new examples. Support vector machines are originally designed for
binary classification problems. For a linearly separable set of 2D-points, there will
be multiple straight lines that may offer a solution to the problem. However, a line is
considered bad if it passes too close to the points because it will be susceptible to
noise. The task of the SVM algorithm is to find the hyperplane that gives the largest
minimum distance (i.e., margin) to the training examples.

To solve multi-class classification problems, the SVM should be extended. The
training algorithms of SVMs look for the optimal separating hyperplane which has
a maximized margin between the hyperplane and the data, which in turn, minimizes
the classification error. The separating hyperplane is represented by a small number
of training data, called support vectors (SVs). However, the real data cannot be
separated linearly, thus the data are mapped into a higher dimensional space.
Practically, a kernel function is utilized to calculate the inner product of the
transformed data. The efficiency of the SVM depends mainly on the kernel.

Formally, the hyperplane is defined as follows:

f ðxÞ= β0 + βTx, ð3Þ

where β is known as the weight vector and β0 as the bias. The optimal hyperplane
can be represented in an infinite number of different ways by scaling of β and β0.
The hyperplane chosen is:

β0 + βTx
�� ��=1, ð4Þ

where x symbolizes the training examples closest to the hyperplane, which are
called support vectors. The distance between a point x and a hyperplane ( β,β0) can
be calculated as:

distance=
β0 + βTx
�� ��

βk k , ð5Þ

For the canonical hyperplane, the numerator is equal to one, thus,
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distance=
β0 + βTx
�� ��

βk k =
1
βk k , ð6Þ

The margin (M) is twice the distance to the closest examples:

M =
2
βk k , ð7Þ

Now, maximizing M is equivalent to the problem of minimizing a function L βð Þ
subject to some constrains as follows:

min
β, β0

L βð Þ= 1
2
βj j2, ð8Þ

subject to:

yi = βTxi + β0
� �

≥ 1∀i, ð9Þ

where yi represents each of the labels of the training examples.

3.2 Artificial Neural Networks

Artificial neural networks (ANN) are suitable for the safety assessment in oil and
gas pipelines as they are capable of solving ill-defined problems. Essentially they
attempt to simulate the neural structure of the human brain and its functionality.

The multi-layer perceptron (MLP) with the back propagation learning algorithm
is considered the most common neural network and being widely used in a large
number of applications. A typical MLP neural network of one hidden layer is
depicted in Fig. 2. There are d inputs (example, d dimensions of input pattern X), h
hidden nodes, and c outputs nodes.

The output of the jth hidden node is zj = fjðajÞ, where aj = ∑d
i=0 wjixi, and fjð.Þ is

an activation function associated with hidden node j. wji is the connection weight
from the input node i to j, and wj0 denotes the bias for the hidden node j. For an
input node k, its output is yk = fkðakÞ, where ak = ∑h

j=0 wkjzj, and fkð.Þ is the acti-
vation function associated with output node k. wkj is the connection weight from
hidden node j to output node k. wk0 denotes the bias for output node k. The acti-
vation function is often chosen as the unipolar sigmoidal function:

f ðaÞ= 1
1+ expð− γaÞ , ð10Þ
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In MLP, the back propagation learning algorithm is used to update weights so as
to minimize the following squared error function:

JðwÞ= 1
2
∑
c

k=1
ðek − ykðXÞÞ2, ð11Þ

3.3 Hybrid Neuro-Fuzzy Systems

The focus of intelligent hybrid systems in this study will be on the combination of
neural networks and fuzzy inference systems. One of these systems is the adaptive
neuro-fuzzy inference system (ANFIS), which will be used as an illustrative
example of such hybrid systems. ANFIS, as introduced by Jang [14], utilizes fuzzy
IF-THEN rules, where the membership function parameters can be learned from
training data, instead of being obtained from an expert [15–23]. Whether the
domain knowledge is available or not, the adaptive property of some of its nodes
allows the network to generate the fuzzy rules that approximate a desired set of
input-output pairs. In the following, we briefly introduce the ANFIS architecture as
proposed in [14]. The structure of the ANFIS model is basically a feedforward
multi-layer network. The nodes in each layer are characterized by their specific
function, and their outputs serve as inputs to the succeeding nodes. Only the
parameters of the adaptive nodes (i.e., square nodes in Fig. 3) are adjustable during
the training session. Parameters of the other nodes (i.e., circle nodes in Fig. 3) are
fixed.

Fig. 2 A multi-layer perceptron neural network
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Suppose there are two inputs x, y, and one output f. Let us also assume that the
fuzzy rule in the fuzzy inference system is depicted by one degree of Sugeno’s
function [14].

Rule 1: if x is A1 and y is B1 then f = p1x+ q1y+ r1
Rule 2: if x is A2 and y is B2 then f = p2x+ q2y+ r2

where pi, qi, ri are adaptable parameters.
The node functions in each layer are described in the sequel.

Layer 1: Each node in this layer is an adaptive node and is given as follows:

o1i = μAiðxÞ, i=1, 2

o1i = μBi− 2ðyÞ, i=3, 4

where x and y are inputs to the layer nodes, and Ai and Bi− 2 are linguistic
variables. The maximum and minimum of the bell-shaped membership
function are 1 and 0, respectively. The membership function has the
following form:

μAiðxÞ=
1

1+ x− ci
ai

� �2
� 	bi , ð12Þ

where the set ai, bi, cif g represents the premise parameters of the
membership function. The bell-shaped function changes according to the
change of values in these parameters.

Layer 2: Each node in this layer is a fixed node. Its output is the product of the
two input signals as follows:

Fig. 3 The architecture of ANFIS
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o2i =wi = μAiðxÞμBiðyÞ, i=1, 2, ð13Þ

where wi refers to the firing strength of a rule.
Layer 3: Each node in this layer is a fixed node. Its function is to normalize the

firing strength as follows:

o3i =w′′

i =
wi

w1 +w2
, i=1, 2 ð14Þ

Layer 4: Each node in this layer is adaptive and adjusted as follows:

o4i =w′′

i fi =w′′

i pix+ qiy+ rið Þ, i=1, 2 ð15Þ

where w′′

i is the output of layer 3 and fpi + qi + rig is the consequent
parameter set.

Layer 5: Each node in this layer is fixed and computes its output as follows:

o5i = ∑
2

i=1
w′′

i fi =
∑
2

i=1
wifi


 �

w1 +w2
, ð16Þ

The output of layer 5 sums the outputs of nodes in layer 4 to be the output of the
whole network. If the parameters of the premise part are fixed, the output of the
whole network will be the linear combination of the consequent parameters, i.e.,

f =
w1

w1 +w2
f1 +

w2

w1 +w2
f2, ð17Þ

The adopted training technique is hybrid, in which, the network node outputs go
forward till layer 4, and the resulting parameters are identified by the least square
method. The error signal, however, goes backward till layer 1, and the premise
parameters are updated according to the descent gradient method. It has been shown
in the literature that the hybrid-learning technique can obtain the optimal premise
and consequent parameters in the learning process [14].

4 Pipeline Safety Assessment Using Intelligent Techniques

In this section, pipeline safety assessment approaches using the above intelligent
techniques that are reported in the literature are presented and analyzed. Most of
these have been proposed for either predicting pipeline defect dimensions or
detecting and classifying defect types [24].
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4.1 Data Mining-Based Techniques

A recognition and classification of pipe cracks using images analysis and a
neuro-fuzzy algorithm is proposed [25]. In the preprocessing step the scanned
images of the pipe are analyzed and crack features are extracted. In the classification
step the neuro-fuzzy algorithm is developed that employs a fuzzy membership
function and an error back-propagation algorithm. The classification of under-
ground pipe defects is carried out using the Euclidean distance method, a
fuzzy-KNN algorithm, a conventional back-propagation neural network, and a
neuro-fuzzy algorithm. The theoretical backgrounds of all classifiers are presented
and their relative advantages are discussed. In conventional recognition methods,
the Euclidean distance has been commonly used as a distance measure between two
vectors. The Euclidean distance is defined by Eq. 2.

The fuzzy k-NN algorithm assigns class membership to a sample observation
based on the observation distance from its k-nearest neighbors and their member-
ship. The neural network universal approximation property guarantees that any
sufficiently smooth function can be approximated using a two-layer network.
Neuro-fuzzy systems belong to hybrid intelligent systems. Neural networks are
good for numerical knowledge (data sets), fuzzy logic systems are good for lin-
guistic information (fuzzy sets). The proposed neuro-fuzzy algorithm is a mixture,
where the input and the output of the ANN is a fuzzy entity. Fuzzy neural networks
such as the ones proposed in this study provide more flexibility in representing the
input space by integrating vagueness usually associated with fuzzy patterns with
learning capabilities of neural networks. In fact, by using fuzzy variables as input to
the neural network structure, the boundaries of the decision space become repre-
sented in a less restrictive manner (unlike the conventional structure of neural
networks where the input are required to be crisp), and permits the representation of
data possibly belonging to overlapping boundaries. As such more information could
be represented without having recourse to the storage of a huge amount of data,
which are usually required for the training and testing of conventional “crisp-based
data training” neural networks.

The main disadvantage of the KNN algorithm, in addition to determining the
value of the parameter k, is that, for a large number of images or MFL data, the
computation cost is high because we need to compute the distance of each instance
to all training samples. Moreover, it takes up a lot of memory to store all the image
properties and features of MFL samples. However, it is simple and effective due to
the large data.

SVM-based approaches are reported in [26–28]. In [26], the proposed approach
aims at detecting, identifying, and verifying construction features while inspection
the condition of underground pipelines. The SVM is used to classify features
extracted from the signals of a NDE sensor. The SVM model to be trained for this
work uses the RFT data and the ground truth labels to learn how to separate
construction features (CF) from other data (non-CF) from CCTV images. The CFs
represent pipeline features such as joints, flanges, and elbows. The learned SVM

Using Computational Intelligence for the Safety Assessment … 199



model is later employed to detect CF in unseen data. In [27], the authors propose an
SVM method to reconstruct defects shape features. To create a defect feature
picture, a large number of samples are collected for each defect. The SVM model
reconstruction error is below 4%. For the analysis of magnetic flux leakage images
in pipeline inspection, the authors in [28] apply support vector regression among
other techniques. In this paper, the focus is on the binary detection problem of
classifying anomalous image segments into one of two classes: the first class is the
one which consists of injurious or non-benign defects such as various crack-like
anomalies and metal losses in girth welds, long-seam welds, or in the pipe wall
itself, which if left untreated, could lead to pipeline rupture. The second class
consists of non-injurious or benign objects such as noise events, safe and
non-harmful pipeline deformations, manufacturing irregularities, etc.

Although finding the right kernel for the SVM classifier is a challenge, but once
obtained, it can work well despite the fact that the MFL data is not linearly sepa-
rable. The main disadvantage is that it is fundamentally a binary classifier; thus,
there is no particular way for dealing with multi-defect pipeline problems.

4.2 Neural Network-Based Techniques

Artificial neural networks have been used extensively in safety assessment in oil
and gas pipelines [29–33]. In [29], Carvalho et al. propose an artificial neural
network approach for detection and classification of pipe weld defects. These
defects were manufactured and deliberately implanted. The ANN was able to
distinguish between defect and non-defect signals with great accuracy (94.2%). For
a particular type of defect signals, the ANN recognized them 92.5% of the time. In
[29], a Radial Basis Function Neural Network (RBFNN) is deemed to be a suitable
technique and a corrosion inspection tool to recognize and quantify the corrosion
characteristics. An Immune RBFNN (IRBFNN) algorithm is proposed to process
the MFL data to determine the location and size of the corrosion spots on the
pipeline. El Abbasy et al. in [31] propose an artificial neural network models to
evaluate and predict the condition of offshore oil and gas pipelines. The inspection
data for selected factors are used to train the ANN in order to obtain ANN-based
condition prediction models. The inspection data points were divided randomly into
three sets: (1) 60% for training; (2) 20% for testing; and (3) 20% for validation. The
training set is used to train the network whereas the testing set is used to test the
network during the development/training and also to continuously correct it by
adjusting the weights of network links. The authors in [32] propose a machine
learning approach for big data in oil and gas pipelines, in which three different
network architectures are examined, namely static feedforward neural networks
(static FFNN), cascaded FFNN, and dynamic FFNN as shown in Figs. 4, 5, and 6,
respectively.

In the static FFNN architecture, the extracted feature vector is fed into the first
hidden layer. Weight connections, based on the number of neurons in each layer,
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are assigned between every adjacent layers. While in the cascaded FFNN archi-
tecture, include a weight connection from the input layer to each other layer, and
from each layer to the successive layers. In the dynamic architecture, the network
outputs depend not only on the current input feature vector, but also on the previous
inputs and outputs of the network. Compared with the performance of pipeline
inspection techniques reported by service providers such as GE and ROSEN, the
results obtained using the method we proposed are promising. For instance, within
±10% error-tolerance range, the obtained estimation accuracy is 86%, compared to
only 80% reported by GE; and within ±15% error-tolerance range, the achieved
estimation accuracy is 89% compared to 80% reported by ROSEN.

Mohamed et al. propose a self-organizing map-based feature visualization and
selection for defect depth estimation in oil and gas pipelines in [33]. The authors
use the self-organizing maps (SOMs) as feature visualization tool for the purpose of

Fig. 4 Architecture of static FFNN

Fig. 5 Architecture of cascaded FFNN

Fig. 6 Architecture of dynamic FFNN
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selecting the most appropriate features. The SOM weights for each individual input
feature (weight plane) are displayed then visually analyzed. Irrelevant and redun-
dant features can be efficiently spotted and removed. The remaining “good” features
(i.e., selected features) are then used as an input to a feedforward neural network for
defect depth estimation. An example of the SOM weights are shown in Fig. 7. The
21 features selected by the SOM approach are used to evaluate the performance of
the three FFNN structures. Experimental work has shown the effectiveness of the
proposed approach. For instance, within ±5% error-tolerance range, the obtained
estimation accuracy, using the SOM-based feature selection, is 93.1%, compared to
74% when all input features are used (i.e., no feature selection is performed); and
within ±10% error-tolerance range, the obtained estimation accuracy, using the
SOM-based feature selection, is 97.5%, compared to 86% when all the input fea-
tures are used (i.e., no feature selection is performed).

The disadvantage of using neural networks is that the neural network structure
(i.e., number of neurons, hidden layers, etc.) is determined by trial and error
approach. Moreover, the learning process can take very long due to the large
number of MFL samples. The main advantage is that there is no need to find a
mathematical model that describes the relationship between MFL signals and
pipeline defects.

Fig. 7 SOM weights for each input feature [33]
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4.3 Hybrid Neuro-Fuzzy Systems-Based Techniques

Several approaches that utilize hybrid systems have been reported in the literature.
In [34], the authors propose a neuro-fuzzy classifier for the classification of defects
by extracting features in segmented buried pipe images. It combines a fuzzy
membership function with a projection neural network where the former handles
feature variations and the latter leads to good learning efficiency as illustrated in
Fig. 8. Sometimes the variation of feature values is large, in which case it is difficult
to classify objects correctly based on these feature values. Thus, as shown in the
figure, the input feature is converted into fuzzified data which are input to the
projection neural network. The projection network combines the utility of both the
restricted coulomb energy (RCE) network and backpropagation approaches. A hy-
persphere classifier such as RCE places hyper-spherical prototypes around training
data points and adjusts their radii. The neural network inputs are projected onto a
hypersphere in one higher dimension and the input and weight vectors are confined
to lie on this hypersphere. By projecting the input vector onto a hypersphere in one
higher dimension, prototype nodes can be created with closed or open classification
surfaces all within the framework of a backpropagation trained feedforward neural
network. In general, a neural network passes through two phases: training and
testing. During the training phase, supervised learning is used to assign the output
membership values ranging in [0,1] to the training input vectors. Each error in
membership assignment is fed back and the connection weights of the network are
appropriately updated. The back-propagated error is computed with respect to each
desired output, which is a membership value denoting the degree of belongingness
of the input vector to a certain class. The testing phase in a fuzzy network is
equivalent to the conventional network.

Fig. 8 A hybrid neuro-fuzzy classifier
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In [35], a classification of underground pipe scanned images using feature
extraction and neuro-fuzzy algorithm is proposed. The concept of the proposed
fuzzy input and output module and neural network module is illustrated in Fig. 9.
The fuzzy ANN model has three modules: the fuzzy input module, the neural
network module, and the fuzzy output module. The neural network module is
aconventional feedforward artificial neural network. A simple three-layer network
with a backpropagation training algorithm is used in this study. To increase the rate
of convergence, a momentum term and a modified backpropagation training rule
called the delta–delta rule are used. The input layer of this network consists of 36
nodes (because of the use of fuzzy sets to screen the 12 input variables; and the
output layer consists of seven nodes (trained with fuzzy output values). As shown in
Fig. 9, the input layer of this fuzzy ANN model is actually an output of the input
module. On the other hand, the output layer becomes an input to the output module.
The input and output modules, for preprocessing and post-processing purposes,
respectively, are designed to deal with the data of the ANN using fuzzy sets theory.

In [36], an adaptive neuro-fuzzy inference system (ANFIS)-based approach is
proposed to estimate defect depths from MFL signals. To reduce data dimension-
ality, discriminant features are first extracted from the raw MFL signals. Repre-
sentative features that characterize the original MFL signals can lead to a better
performance for the ANFIS model and reduce the training session. The following
features are extracted: maximum magnitude, peak-to-peak distance, integral of the
normalized signal, mean average, and standard deviation. Moreover, MFL signals
can be approximated by polynomial series of the form, anXn + . . . + a1X + a0. The
proposed approach is tested for different levels of error-tolerance. At the levels of

Fig. 9 Neuro-fuzzy neural network architecture

204 A. Mohamed et al.



±15, ±20, ±25, ±30, ±35, and ±40%, the best defect depth estimates obtained by
the new approach are 80.39, 87.75, 91.18, 95.59, 97.06, and 98.04%, respectively.

The advantages of using ANFIS is that the MFL data can be exploited to learn
the fuzzy rules required to model the pipeline defects, and it converges faster than
typical feedforward neural networks. However, the number of rules extracted is
exponential with the number of used MFL features, which may prolong the learning
process.

5 Conclusion

In this paper, the applicability of computational intelligence in the safety assess-
ment in oil and gas pipelines is surveyed and examined. The survey covers safety
assessment approaches that utilize data mining techniques, artificial neural net-
works, and hybrid neuro-fuzzy systems, for the purpose of detecting pipeline
defects, estimating their dimensions, and identifying (classifying) their severity
level. Obviously, techniques of computational intelligence offer an attractive
alternative to traditional approaches as they can cope with complexity resulting
from the uncertainty accompanying the collected diagnostic data, as well from the
large size of the collected data. For intelligent techniques such as KNN, SVM,
neural networks, and ANFIS, there is no need to derive a mathematical model that
describes the relationship between pipeline defects and the diagnostic data (i.e.,
MFL and ultra sound signals, images, etc.). For typically large MFL data, KNN and
SVM classifiers perform well and can provide optimal results. However, KNN may
require large memory to store MFL samples. Obtaining suitable kernel functions for
the SVM model has proven to be difficult. While, large MFL data may effectively
be used to train different types and structures of neural networks, the learning
process may take long time. Moreover, appropriate fuzzy rules can be extracted
from the MFL data for the ANFIS model, which has the advantage of converging
much faster than regular neural networks. The number of rules extracted, however,
may increase exponentially with the number of the used MFL features.
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Big Data for Effective Management
of Smart Grids

Alba Amato and Salvatore Venticinque

Abstract The Energy industry is facing a set of changes. The old grids need to be

replaced, alternative energy market is increasing and consumers want more control

of their consumption. On the other hand, the ever-increasing pervasiveness of tech-

nology together with the smart paradigm, are becoming the reference point of anyone

involved in innovation, and energy management issues. In this context, the informa-

tion that can potentially be made available by technological innovation is obvious.

Nevertheless, in order to turn it into better and more efficient decisions, it is neces-

sary to keep in mind three sets of issues: those related to the management of gener-

ated data streams, those related to the quality of the data and finally those related to

their usability for human decision-maker. In smart grid, large amounts of and various

types of data, such as device status data, electricity consumption data, and user inter-

action data are collected. Then, as described in several scientific papers, many data

analysis techniques, including optimization, forecasting, classification and other, can

be applied on the large amounts of smart grid big data. There are several techniques,

based on Big Data analysis using computational intelligence techniques, to optimize

power generation and operation in real time, to predict electricity demand and elec-

tricity consumption and to develop dynamic pricing mechanisms. The aim of the

chapter is to critically analyze the way Big Data is utilized in the field of Energy Man-

agement in Smart Grid addressing problems and discussing the important trends.
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1 Introduction

Smart grids are an evolution of the existing power distribution networks. They

respond to the growing demand for energy, and the availability of several solutions

of renewable energy sources that have stimulated the formulation of plans aiming at

expanding and upgrading existing power grids in several countries. A fundamental

characteristic of the smart grid is also the ability to manage, via protocols and infor-

mation flows, generators and loads active in the network, coordinating them to per-

form certain functions in real-time as, for example, to cope with a peak, balance the

load of a power supply or make up for a sudden drop in voltage by drawing more dis-

tricts where there is a surplus. By linking information technologies with the electric

power grid to provide “electricity with a brain” the smart grid promises many bene-

fits, including increased energy efficiency, reduced carbon emissions, and improved

power reliability, but there is an urgent need to establish protocols and standards [1].

Nevertheless, in order to turn it into better and more efficient decisions, it is nec-

essary to keep in mind three sets of issues: those related to the management of gen-

erated data streams, those related to the quality of the data and finally those related

to their usability for human decision-maker.

The recent introduction of smart meters and the creation of the Smart Grid, the

first of which constitutes one of the fundamental elements, has completely revolu-

tionized the utility system. From a processing point of view of a smart grid is inex-

haustible and valuable data source in order to analyse time series, crossing them

with weather data to make predictions about the electricity consumption of long or

very short time; Distribute more efficiently the supply on the territory; Evaluate the

quality of service provided in real time; Analyse time series to prevent potential fail-

ures and to intervene promptly; Produce more accurate bills making more conscious

consumer. Smart Grid therefore generates a stream of data that must be captured,

processed and analyzed efficiently from all business areas. So the data obtained,

together with the data coming from more traditional sources, can be used to perform

several types of analysis such as churn analysis, or research and development of new

tariff plans depending on the type of consumer or fraud detection.

In fact, in smart grid, large amounts of and various types of data, such as device

status data, electricity consumption data, and user interaction data are collected.

Then, as described in several scientific papers [2], many data analysis techniques,

including optimization, forecasting, classification and other, can be applied on the

large amounts of smart grid big data [3]. There are several techniques, based on

Big Data analysis using computational intelligence techniques, to optimize power

generation and operation in real time, to predict electricity demand and electricity

consumption and to develop dynamic pricing mechanisms [4]. Computational Intel-

ligence can provide effective and efficient decision support for all of the producers,

operators, customers and regulators in smart grid enabling all those stakeholders to

have more control over the energy utilization. The aim of the chapter is to critically

analyze the way Big Data analysis using computational intelligence techniques is

utilized in the field of Energy Management in Smart Grid addressing problems and
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discussing the important trends. In particular computational intelligence techniques

can be used to overcome the challenges posed by large and complex software sys-

tems. Computational intelligence aims to produce good solutions to problems in a

reasonable amount of time and it is widely used for several real world applications

and problems that are widespread in Smart Grid field, e.g., routing problems; assign-

ment and scheduling problems; forecasting problems; etc.

The first part of the chapter presents overview, background and real life applica-

tions of Internet of Energy with particular emphasis on Smart Grid. Successively the

state of the art of Big Data Analytics issues in IoE are discussed together with the

current solutions and future trends and challenges.

The paper is organized as follows: in Sect. 2 smart energy concepts are presented,

Sect. 3 introduces big data properties of smart grid and some important information

in order to better understand the problem. Section 4 presents an overview of research

lines and research project dealing with energy management in Smart Grid. Conclu-

sions are drawn in Sect. 5.

2 Smart Grids and Smart Micro-Grids

Smart grids is now part of a wider smart energy concepts that includes not only the

provisioning of intelligences to the power grid by an ICT solution, but also manage-

ment of smart buildings, the monitoring and analysis of user’s information, user’s

devices, environmental parameters and others [5].

In the context of smart energy, it is increasingly spreading the idea that the road

leading to the reduction of global energy consumption depends of the capability to

deliver usable information in the hands of energy managers, users and consumers for

effective decision making. This would require lower investment than advancing the

power grid or green restructuring buildings. In fact an immediate and effective solu-

tion to obtain improvements in fuel consumption and emissions appears to ensure

that the existing infrastructure is at its maximum efficiency. To reach this goal it can

certainly be useful the creation of a data analysis system, which is a convenient solu-

tion also from an investment perspective of their occupants. Such capability relies on

innovative ICT solutions which can extract the information potentially contained in

data collected by advanced metering technologies and deliver effectively it to appli-

cations and users.

The logic architecture of a smart grid is shown in Fig. 1 that is also introduced

in [6]. The fabric layer of smart grids is composed of a number of smart meters and

controllers, which collect data, perform simple elaboration and feed directly SCADA

and other types of systems. The more representative example is the network of down-

stream detection instruments, which connect the user’s power grid to the distribution

network, and are used to measure the consumption on the various branches of a net-

work, in particular for billing purpose. They can be also used to check and control

power peek, but do not allow for improving energy efficiency, in fact usually mea-

sures are not collected and processed in real time for management purpose. These
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Fig. 1 Layered model of smart energy

usually represent the leaves of an energy provider and provide the finest grain of

information.

On the other hand the spread of smart metering systems is growing as the informa-

tion technology is assuming a central role in the technologies for energy management

sector also at the building dimension. The instruments to detect energy consumption

are now reaching affordable and their market penetration appears rapidly growing.

For this reason the dimension of the fabric layer is growing, but it usually feeds, at

building level, proprietary systems, which implement all the remaining stack of the

layered architecture, caring of data communication, collection, monitoring, analysis

and control. These solutions are usually provided to users which aim at increasing the

degree of automation of their home, in this case to improve energy efficiency. Such

kind of grid, limited to an apartment or to a building is called smart micro-grid.

The communication layer allows for transmission of data and control signals using

heterogeneous technologies and across different kinds of area networks. For example

data can be collected locally using embedded systems that are hosted at the user’s

home, in the Cloud, or directly to the user’s smartphone, according to the complexity

of applications, the amount of data and the provided functionalities. Hybrid solutions

exists [7].

At the next layer data are collected in centralized or distributed repositories. Data

flowing from the fabric layer are characterized here by complexity complexity of

different type, that make challenging the extraction of relevant information they pro-



Big Data for Effective Management of Smart Grids 213

vide as a whole. First we must consider different solutions, because data are het-

erogeneous as they come from very different sources or they are representative of

different magnitudes and phenomena (the sources can be rather than utility meter

sensors that detect environmental quantities or human phenomena). Sometimes the

same technology cannot adequately manage the characteristics of data from differ-

ent sources, and for example, the integration of the electrical consumption data with

those of other energy sources such as fuel or water is seldom supported. But also

the data representation make it difficult the correlation between different kinds of

energy related information or environmental variables. Furthermore, virtually all the

data come from field measurements and need to be consolidated into a single data

structure, there is the problem of managing the transport and ensure their integrity.

Lies also the problem of data sets to be processed keeping in mind that interoper-

ability with NoSQL database, it is not a very common feature among the energy data

management systems, although this, like other technologies that allow you to work

with big date, could be a very important resource to support processing in real time,

ensuring accurate and timely analysis capabilities and deliver it to decision-makers

with the latest information.

The collective layer services orchestrate services provided by the underlying lay-

ers to reduce the complexity due to distribution, heterogeneity, computational load,

distribution etc. Effort spent to increase innovation could be spent at this layer to

integrate available technologies such as in the Cloud field, to meet computational

requirements of big data processing.

At highest level we found application which implement monitoring, analysis and

sometimes business intelligence to decision makers for an effective management

of the infrastructure. Building Management Systems (BMS) are implemented and

Energy Information Systems (EIS) are implemented at this layer. BMS are conceived

to perform operational tasks (maintenance of electrical and mechanical systems, the

occupant complaints management ...), as well as the energy and the operation of the

individual subsystems such as the heating or air conditioning. EIS allow for recogni-

tion and fault diagnosis, alarm management and energy management. In those three

areas, if implemented properly, they are able to provide a very important support by

speeding up the procedures of intervention in case of failures, focusing the attention

of engineers on the most critical events that are happening in real time, integrating

and consolidating data flows from environmental or energy meter and presenting the

results of calculations with usable mode.

Available technological solutions implement all or part of the discussed architec-

ture. For example in Fig. 2 we can see some example of implementation for smart

micro-grids and smart grid:

∙ A commercial solution
1

that provides a wifi gateway from a sensor network of

smart meters to an app that can be used for monitoring and management of the

smart home. The apps implements all the layers of the architecture.

1
http://www.4-noks.com.

http://www.4-noks.com
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Fig. 2 Technological implementations of smart micro-grids

∙ A different technology
2

that use a resident gateway to forward collected data to

the cloud, where they are stored and analyzed, monitoring and control dashboard

are provided to customers by application as a service (AaaS). In this case the data,

the application and the business logic are hosted in Cloud.

∙ The CoSSMic [8] research project prototype implements a peer to peer network of

collaborating smart micro-grids, each of them collecting and storing data locally.

All layers are hosted at home, in an PC or an embedded system with enough com-

putational resources.

∙ Finally smart grid solutions are provided by some big commercial companies,

which usually provide ad hoc solution which are not integrated with the micro-

grids, a part of the monitoring and total energy flow between the household and

the distribution network.

Figure 3 shows how the variation in energy consumption patterns between build-

ings in a neighbourhood can be optimized by coordinating load shifting and the use

of storage capacities. The investigation of a scalable, at least at neighborhood level,

is investigated in [6] by a Peer to Peer (P2P) collaboration of smart micro-grids

[5, 7].

Unfortunately fragmentation of the smart grid is observed both across layers and

within the same layers, because of different reasons which range from interoperabil-

ity to security. In the current technological scenario more and more micro-grids are

2
http://smartbeecontrollers.com/.

http://smartbeecontrollers.com/
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Fig. 3 Collaborating smart grids

growing, which are all connected to the power grid, but isolated from the smart grid.

Open issues affect different layer of the presented architectures. Some of them can

be addressed independently such as growing supply of services in mobility, flexi-

bility and customization of user interfaces. Other ones rely on interoperability and

security, that are drivers to deliver and integrate data to upper levels, for improving

the application awareness, for aggregate processing and information fusion.

But this process has started and more and more data are collected and must be

stored, aggregated and processed. For this reason the smart energy energy is already

now a big data problem. In the following sections we will focus on the data and

the application layer discussing issues, research efforts and technological solution

related to big data properties of smart energy.

3 Big Data Properties of Smart Grid

“Not only will the integration of Big Data technologies help make the grid more

efficient, it will fundamentally change who sells electric power; how it gets priced;

and how regulator, utilities grid operators and end user interact” is claimed in [9].

An interesting view of what are the Big Data has been exposed to Gartner

that defines Big Data as “high volume, velocity and/or variety information assets

that demand cost-effective, innovative forms of information processing that enable

enhanced insight, decision making, and process automation” [10]. In fact the huge

size is not the only property of Big Data. Only if the information has the characteris-

tics of Volume,Velocity and/or Variety we can talk about Big Data [11] as shown in

Fig. 4. Volume refers to the fact that we are dealing with ever-growing data expand-
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Fig. 4 Big Data

characteristics

ing beyond terabytes into petabytes, and even exabytes (1 million terabytes). Variety

refers to the fact that Big Data is characterized by data that often come from het-

erogeneous sources such as machines, sensors and unrefined ones, making the man-

agement much more complex. Finally, the third characteristic, that is velocity that,

according to Gartner [12], “means both how fast data is being produced and how fast

the data must be processed to meet demand”. In fact in a very short time the data

can become obsolete. Dealing effectively with Big Data “requires to perform ana-

lytics against the volume and variety of data while it is still in motion, not just after”

[11]. IBM [13] proposes the inclusion of veracity as the fourth Big Data attribute

to emphasize the importance of addressing and managing the uncertainty of some

types of data. Striving for high data quality is an important Big Data requirement

and challenge, but even the best data cleansing methods cannot remove the inher-

ent unpredictability of some data, like the weather, the economy, or a customer’s

actual future buying decisions. The need to acknowledge and plan for uncertainty

is a dimension of Big Data that has been introduced as executives seek to better

understand the uncertain world around them.

In the case of smart grids most of information are provided by Machine-generated
data coming from smart meters to measure the consumption of electricity, but we

have also human-generated data. Data frequency will varie a lot. In fact the plans

will be update by the user at low frequency at not regular intervals. Monitoring must

be available on demand, as with social media data. On the other hand prediction and

measures could came periodically and at higher frequency. Even if data analysis can

be performed in batch mode, on the other hand negotiation and scheduling should

take place in near real time. In any case we handle structured data.

About data complexity we have to consider that volume of data increases con-

tinuously, either because of the continuous production of metering information and

because the foreseen connection of new users and devices. Such issue pose a chal-

lenge about using traditional methods, such as relational database engines to store,

search, share, analyze, and visualize using. Data processing can make use of massive

parallel processing power on available hardware because of an application model

based on collaborating autonomous agents, however location of data and privacy is

an open issue in current big data solutions.
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Data velocity can obviously increase and response adaptation may be required.

The quality of the data made available by an energy information system is cer-

tainly another area of research on which it is important to reflect. Quality can be

understood from the point of view of fairness and integrity of the data source to user,

but also from the perspective of adherence data to the needs of decision-makers and

their proper context. The first part of the problem may seem simple solution, but tak-

ing into account the heterogeneity of the sources and the absence of specific reference

models, combined with the specific nature of the data collected in each real applica-

tion context, you realize that it can be a longer process complicated than expected.

It must be added that not always the transport of energy data takes place in an ideal

way, since the communication networks built for this purpose are, in many cases the

result of compromises due to the need to make them coexist with the existing classi-

cal structures of the buildings which are the subject Business management Energy.

Standardize the data in a consistent and functional structure to the needs of the orga-

nization that will exploit them, it is also a prerequisite for people and structures who

base their decisions on these data. The second part of the reasoning on data quality

has instead to do with both the design that with the implementation of these sys-

tems. The fact that the data provided by a Smart Grid are more or less appropriate in

decision-making that are intended to support, depends both on the instrument’s abil-

ity to offer the depth and breadth of analysis, that the skills of those who are planning

to deploy to a specific application context. By focusing on the power of the analysis

instruments, the question regards the minimum level of granularity provided, and it

is evident that this can only be a trade-off between the complexity of the system and

the large number of listening points (the meters and sensors) it has. It is inevitably an

issue that involves aspects concerning the scalability of the systems, the complexity

of the necessary data structures and performance processing; identifying the right

balance between these three dimensions is surely one of the most significant issues

to be addressed, and will be both a mobile equilibrium influenced by the evolution

of the technologies that make up the energy management systems.

Big data is changing the way of energy production and the pattern of energy con-

sumption. Energy big data have brought opportunities and challenges at the same

time for us. Some of the primary and urgent challenges include: (a) how to effec-

tively collect, store and manage the energy big data; (b) how to efficiently analyze

and mine the energy big data; (c) how to use the energy big data to support more

effective and efficient decision makings; (d) how to get insights and obtain values

from the energy big data; and (e) how to effectively prevent risks and protect pri-

vacy while utilizing the energy big data [14].

So, the challenge is to find a way to transform raw data into valuable information.

To capture value from Big Data, it is necessary an innovation in technologies and

techniques that will help individuals and organizations to integrate, analyze, visual-

ize different types of data at different spatial and temporal scales. Based on Big Data

Characteristics, [14] describes the characteristics of energy big data and proposes a

mapping of the two. So the 4 V characteristics became the 3E (energy, exchange and

empathy) characteristics of energy big data. Energy (data-as-an-energy) means that

energy savings can be achieved by big data analytics. Energy big data with its easy to
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transport properties, and in the course of constantly refining and value-added. Under

the premise of can protect the interests of users, in each link of the low energy. By

saving energy, the process of energy big data is the process of water and electricity

energy release in a sense, through the energy big data analysis to achieve the purpose

of energy saving, is the largest investment in energy infrastructure [15].

Exchange (data-as-an-exchange) refers to that the big data in energy system need

to exchange and integrate with the big data from other sources to better realize its

value. Energy big data has a value that reflect the entire national economy, social

progress and development of all walk of life and other aspects of innovation and to

play a greater value of its premise and the key is to interact with external data. In

fact big data energy fusion and a full range of mining, analysis and presentation on

this basis, can effectively improve the current industry [15].

Empathy (data-as-an-empathy) means that better energy services can be provided,

users needs can be better satisfied, and consumer satisfaction can be improved based

on energy big data analytics. Enterprise’s fundamental purpose is to create cus-

tomers, create demand. Energy big data natural contact households, factories and

enterprises to promote power industry by the electric power production as the center

to take the customer as the center which is the essence of ultimate concern for power

users. Through the power user needs to fully tap and met to establish an emotional

connection, for the majority of electricity users to provide more high-quality, safe

and reliable electric service. In the process of energy industry contribution to max-

imize the value of energy industry also found a new source of power often changed

frequently, empathy can benefit [15].

In conclusion, big data have a large impact on the management of power utilities

as smart grid operation and future energy management will be hugely data-intensive.

There are many challenges which affect the success of big data applications in smart

grid. It is necessary to gain practical experience in integrating big data with smart

grid together with more effort to develop more advanced and efficient algorithms

for data analysis. With this aim, in the next section, we introduce several research

contribution in the field of big data analytics for smart grid.

4 Research Lines and Contribution

In this section we present an overview of research contribution for big data analyt-

ics applications to the smart grid. In [16] authors identify several future research

directions about smart grid, we focus here on those which are related to big data.

An effort to improve interoperability needs to aggregate all available information

from different sources, such as individual smart meters, energy consumption sched-

ulers, solar radiation sensors, wind-speed meters and relays.

As it is strengthened in [17], it is relevant to improve data collection and manage-

ment, starting from optimizing data sampling, choosing effective storage solutions.

The next open issue deals with real-time monitoring and forecasting, which

requires effort in the application and development of data mining techniques and
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big data analytic. Techniques for categorization of the information and successful

recognition of the different patterns are necessary here and at the business level.

Big data analytic is also relevant to provide at the right communication point

necessary decision making support.

Research Focus Requirements Technology

Interoperability and stan-

dardization

Metrics, taxonomies, protocols Ontologies, semantic

Big Data storages and

Cloud availability

Performance, reliability, aggregation,

processing, NOSQL

Big data analytic Categorization, pattern recognition,

decision making, monitoring and

forecasting

Data mining, business

intelligence

4.1 Interoperability and Standardization

Smart Grid data are collected from different sources, such as individual smart meters,

energy consumption schedulers, aggregators, solar radiation sensors, wind-speed

meters. Some effort have been spent by widespread deployment of wireless com-

munication power meters, availability of customer energy usage data, development

of remote sensing for determining real-time transmission and distribution status, and

protocols for electric vehicle charging.

National Institute of Standards and Technology (NIST) ongoing efforts aim at

facilitating and coordinating smart grid interoperability standards development and

smart grid-related measurement science and technology, including the evolving and

continuing NIST relationship with the Smart Grid Interoperability Panel (SGIP
3
)

public-private partnership. NIST developed an initial (now completed) three-phase

plan whose first step is the identification and consensus on smart grid standards. In

particular interoperability on data is addressed at technical level, focusing on syn-

tactic interoperability, and at information layer, where it deals with semantic under-

standing business context. Syntactic interoperability means understanding of data

structures, while semantic means understanding of concept contained in data struc-

tures. At the state of the art improving interoperability requires development and

application of techniques and technologies to achieve such alignment on big data

which already now are available in smart grids.

Table Definition Language (TDL), described in terms of the XML-based

Exchange Data Language (EDL) that can be used to constrain oft-utilized informa-

tion into a well-known form, are proposed for data representation.

3
http://www.sgip.org/.

http://www.sgip.org/
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Many standard and proposal are already available.
4

They are related to information exchange among many components of a smart-

grids such as energy usage in kilowatt hours from a meter, load profiles and control

information, communications protocols for field devices and systems in SCADA Dis-

tribution Grid Management, Markets Energy Price and Transactions, Schedules and

Calendars, Standard for Common Format for Event Data Exchange (COMFEDE) for

Power Systems.

4.2 Big Data Storages

Widespread integration of grid-tied renewable along with attendant large-scale stor-

age has been recognized as a key scientific and technological areas related to smart-

grid [18].

Research effort at this layer deals with the effective utilization and integration of

available technologies to address different kind of data of smart grid.

Big Data are so complex and large that it is really difficult and sometime impos-

sible, to process and analyze them using traditional approaches. In fact traditional

relational database management systems (RDBMS) can not handle Big Data sets

in a cost effective and timely manner. These technologies may not be enabled to

extract,from large data set, rich information that can be exploited across of a broad

range of topics such as market segmentation, user behavior profiling, trend predic-

tion, events detection, etc. and in many fields like public health, economic develop-

ment and economic forecasting. Besides Big Data have a low information per byte,

and, therefore, given the vast amount of data, the potential for great insight is quite

high only if it is possible analyze the whole dataset [11].

The term NoSQL (meaning ‘not only SQL’) is used to describe a large class of

databases which do not have properties of traditional relational databases and which

are generally not queried with SQL (structured query language). NoSQL data stores

are designed to scale well horizontally and run on commodity hardware. Also, the

‘one size fit’s it all’ [19] notion does not work for all scenarios and it is a better to

build systems based on the nature of the application and its work/data load [20]. They

can provide solution both at data and collective layer of a smart grid architecture, in

fact some functionalities can be:

∙ Sharding, also referred to as horizontal scaling or horizontal partitioning. It is a

partitioning mechanism in which records are stored on different servers accord-

ing to some keys. Data is partitioned in such a way that records, that are typically

accessed/updated together, reside on the same node. Data shards may also be repli-

cated for reasons of reliability and load-balancing.

∙ Consistent hashing [21] The idea behind consistent hashing is to use the same hash

function, used to generate fixed-length output data that acts as a shortened refer-

4
http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/SGIPCoSStandardsInformation

Library.

http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/SGIPCoSStandardsInformationLibrary
http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/SGIPCoSStandardsInformationLibrary
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ence to the original data, for both the object hashing and the node hashing. This

is advantageous to both objects and machines. The machines will get an interval

of the hash function range and the neighboring machines can take over portions

of the interval of their adjacent nodes if they leave and can assign parts of their

interval if some new member node joins and gets mapped to a nearby interval.

Another advantage of consistent hashing is that clients can easily determine the

nodes to be contacted to perform read or write operations.

∙ Advanced computation capabilities such as MapReduce [22] for processing large

data sets. A popular open source implementation is Apache Hadoop [23], a frame-

work that allows for the distributed processing of large data sets across clusters of

computers using simple programming models. It is designed to scale up from sin-

gle servers to thousands of machines, each offering local computation and storage

and to execute queries and other batch read operations against massive datasets

that can be tens or hundreds of terabytes and even petabytes in size. It supports

both high performant stream and batch processing, which are respectively used for

smart grids to detect in real time alerts, error or for business analytics.

On the other hand, to chose the right technological solution we have to take into

account the type of data of the smart energy domain and the kind of requirements

for processing them. In particular format of the content for the energy measure is of

course composed of real or integer values. Hence we have to store, communicate and

process time series which should be available for off-line analysis and reporting but

also for on-line monitoring and learning. Moreover we need to handle transaction

for negotiation and historical data and prediction.

Key-value data stores (KVS) typically provide replication, versioning, locking,

transactions, sorting, and/or other features. The client API offers simple operations

including puts, gets, deletes, and key lockups. Notable examples include: Amazon

DynamoDB [24], Project Voldemort [25], Memcached [26], Redis [27] and RIAK

[28]. They can be exploited to organize information. Many of them offer in-memory

solution and workload distribution [26], which can be used to improve performance

for stream processing, when it needs to elaborate on line high frequency measures

which are received from smart meters.

Document data stores (DDS). DDS typically store more complex data than KVS,

allowing for nested values and dynamic attribute definitions at runtime. Unlike KVS,

DDS generally support secondary indexes and multiple types of documents (objects)

per database, as well as nested documents or lists. Notable examples include Ama-

zon SimpleDB [29], CouchDB [30], Membase/Couchbase [31], MongoDB [32] and

RavenDB [33]. They could be exploited at business level to store report, result of

analysis, billing documents.

Extensible record data stores (ERDS). ERDS store extensible records, where

default attributes (and their families) can be defined in a schema, but new attributes

can be added per record. ERDS can partition extensible records both horizontally

(per-row) or vertically (per-column) across a datastore, as well as simultaneously

using both partitioning approaches. Notable examples include Google BigTable [34],
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HBase [35], Hypertable [36] and Cassandra [37]. In smart grid they are the solution

for building datawarehouse and supporting business analytics.

Another important category is constituted by Graph data stores. They [38] are

based on graph theory and use graph structures with nodes, edges, and properties to

represent and store data. Different Graph Store products exist in the market today.

Some provide custom API’s and Query Languages and many support the W3C’s

RDF standard. Notable examples include neo4j [39], AllegroGraph [40] and Infinite-

Graph [41]. The graph data model fits better to model domain problems that can

be represented by graph as ontologies, relationship, maps etc. Particular query lan-

guages allow querying the data bases by using classical graph operators as neighbor,

path, distance etc. Unlike the NoSQL systems we presented, these systems generally

provide ACID transactions. In smart grid they can be exploited to record relation-

ships among events, users, devices and in general to represent the knowledge of the

smart energy domain. They allow to apply at application level effective inference

models to recognize situation, deduct reactions and predict future events.

We cannot forget a Time Series Databases which are optimized for handling time

series data. Meters output are mainly represented as an array of numbers indexed by

time. They are used also to represent profiles, curves, or traces in the smart energy

domain. Some available technologies are Graphite,
5

InfluxDB
6

and OpenTSDB.
7

Some of them are not really conceived to store big data, but to effectively manage

time series in window time-frames.

Table 1 provides a comparison of all the examples given in terms of Classification,

Licence and Storage System. Comparison based on several issues are available at

[42].

Exploitation of big data storages in Cloud is another scientific and technological

challenge.

In [43] authors discuss about about how Cloud computing model can be used

for developing Smart Grid solutions. They propose to exploit to use advantages of

Cloud computing to achieve the most important future goals of a large-scale Smart

Grid, such as energy savings, two-way communication, and demand resource man-

agement. In [44] smart grid data management is based on specific characteristics of

cloud computing, such as distributed data management for real-time data gathering,

parallel processing for real-time information retrieval, and ubiquitous access.

4.3 Big Data Analytic

In order to build an accurate real-time monitoring and forecasting system, it is nec-

essary to integrate all available information from different sources, such as indi-

vidual smart meters, energy consumption schedulers, aggregators, solar radiation

5
http://graphite.net.

6
https://influxdata.com/.

7
opentsdb.net/.

http://graphite.net
https://influxdata.com/
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Table 1 Data store comparison

Name Classification License Data storage

Dynamo KVS Proprietary Plug-in

Voldemort KVS Open Source RAM

Memcached KVS Open Source RAM

Redis KVS Open Source RAM

RIAK KVS Open Source Plug-in

SimpleDB DDS Proprietary S3 (Simple Storage

Service)

CouchDB DDS Open Source Disk

Couchbase DDS Open Source Disk

MongoDB DDS Open Source Disk

RavenDB DDS Open Source Disk

Google BigTable ERDS Proprietary GFS

HBase ERDS Open Source Hadoop

Hypertable ERDS Open Source Disk

Cassandra ERDS Open Source Disk

Neo4J Graph Open Source Disk

AllegroGraph Graph Proprietary Disk

InfiniteGraph Graph Proprietary Disk

RRDtool TSDB Open Source Disk (Circular Buffer)

Graphite TSDB Open Source Disk

Druid TSDB Open Source NFS

Riak TS TSDB Open Source Hadoop

OpenTSDB TSDB Open Source Hadoop, Hbase

kdb+ TSDB Commercial Disk, column oriented

splunk TSDB Commercial Oracle DB

sensors [45]. Moreover [45] also individuate two important issues. the appropriate

forecasting system should rely on effective data sampling, improved categorization

of the information and successful recognition of the different patterns. Second, suit-

able adaptive algorithms and profiles for effective dynamic, autonomous, distrib-

uted, self-organized and fast multi-node decision-making have to be designed. This

requires to invest effort in big data analytics, as it will give utilities and grid operators

insights on smart grid data for grid management, reliability and efficiency. Analytics

application can utilize various big data options for administering smart meter gate-

ways and meter data processing for market participants. Energy theft and overloaded

distribution equipment detections through grid load analysis, grid incident analysis

and end-customer consumption load analysis are examples of information that can

be extracted. The big data option will also allow the creation of load forecasts for

different levels in the distribution grid as well as an analysis of distributed energy

resources.
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Descriptive smart meter analytics have already proved to be quite valuable for

utilities that are searching for ways to use data to understand root causes and provide

awareness for better decision making.

Diagnostic analytic models is closely coupled with descriptive ones a diagnostic

model will further analyze the data to look for trends and patterns in the monitoring

stage. Thus, the successful model will use drill-downs, factor analytics, and advanced

statistical exploration.

Predictive big data analytics is a powerful tool to expose risks, uncover opportu-

nities, and reveal relationships among myriad variables.

Relevant use case are the need for load balancing according to the day-to-day and

hour-to-hour costs of power. The goal is saving both money and energy by predict-

ing the costs of power and demand based on a constant flow of signals, allowing the

distributors to buy and sell accordingly while shaving load during peak hours. Pre-

dictive analytics, applied to big-data, allows to create an interaction layer between

the bulk power system and the distribution systems.

Decision making support can be implemented, exploiting Big Data Analytics

Strategies for producing recommendations to find the best decision in a particular

context making a more informed guess about the most high-value action.

Research contribution have proposed how to use computing resources for apply-

ing such techniques. A hierarchical structure of cloud computing centers to pro-

vide different types of computing services for information management and big data

analysis is described in [46]. Security issues are addressed by a solution based on

identity-based encryption, signature and proxy re-encryption.

In [47] it has been shown that the performance of multi-node load forecasting is

clearly better than that of single-node forecasting. [47] proposes a load data hier-

archical and partitioned processing method, establishes a formula to reflect their

mutual restraint and relation, creates a model to describe transmission system multi-

node load dynamic characteristic on the basis of top layer forecasting using recursive

least square support vector machines algorithm, and constructs an ultra-short term

load forecasting overall frame of adaptive dynamic model. As shown in [48], the

designed algorithms should be based on realistic consensus functions or voting by

incorporating probability terms models, where the large computations can be par-

allelized. The algorithmic results are the state estimation, the estimated production

and consumption, and the STLF in SGs.

For the most efficient pattern-recognition and state estimation in the SGs envi-

ronment, the following methodologies and technologies can be used:

∙ Feature Selection and Extraction. The traditional factors include the weather con-

ditions, time of the day, season of the year, and random events and disturbances.

On the other hand, the smart grid factors include the electricity prices, demand re-

sponse, distributed energy sources, storage cells and electric vehicles.

∙ Online Learning. In contrast to statistical machine learning, online learning algo-

rithms do not make stochastic assumptions about the observed data. Some appli-

cation use a streaming processing of incoming data o recognize already known

shape-lets and classify events.
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∙ Randomized Model Averaging. It is concerned with the design and development

of algorithms that allow computers to evolve behaviours based on empirical data.

A major focus of research is to automatically learn to recognize complex patterns

such as the features of smart grids, and make intelligent decisions based on data.

Even if many contributions focused on short term load forecasting, using regres-

sion models, linear time-series-based, state-space models, and nonlinear time-series

modeling, on the other hand they have been seldom used at meter aggregate levels,

such as distribution feeders and substation. Moreover, very little progress has been

made in the field of the very-short-term load forecasting, which could be very useful

to compensate aggregate power fluctuation of co-located photovoltaic panels, when

storages are full or do not exist.

4.4 Research Projects Networked with Companies

Power utilities are cooperating with IT companies to develop big data analytics for

smart grid applications. There are several research project, networked with big com-

panies, aimed at investigate big data analytics applications to the smart grid. The aim

of those research project networked with companies is to achieve also competence

and results that can be used as a springboard for the companies’ own research and

development projects.

Global technology company Siemens announced on February 2016 the integra-

tion of a big data option in its smart grid application. They are providing more and

more standard Business Intelligence (BI) reports to their products and supporting

applications into the smart grid solution. Also European Commission is funding sev-

eral European Project based on Big Data driven Smart Grid solution. Some important

project aiming at solve the issue related to big data analytics, data transformation and

management, demand response, settlement end forecasting are the following.

The EU-funded SPARKS
8

(Smart Grid Protection Against Cyber Attacks) project

aims to provide innovative solutions in a number of ways, including approaches to

risk assessment and reference architectures for secure smart grids. The project will

make recommendations regarding the future direction of smart grid security stan-

dards. Furthermore, key smart grid technologies will be investigated, such as the

use of big data for security analytics in smart grids, and novel hardware-supported

approaches for smart meter (gateway) authentication. All of these contributions and

technologies will be assessed from a societal and economic impact perspective, and

evaluated in real-world demonstrators.

RealValue
9

is an European energy storage project funded by Horizon 2020, the

largest Research and Innovation Programme in Europe. RealValue will use a combi-

nation of physical demonstrations in Ireland, Germany and Latvia along with inno-

vative modelling techniques, in order to demonstrate how local small-scale energy

8
https://project-sparks.eu/.

9
http://www.realvalueproject.com/.

https://project-sparks.eu/
http://www.realvalueproject.com/
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storage, optimised across the whole EU energy system, with advanced ICT, could

bring benefits to all market participants. Using Big Data technologies, the smart

system will also interpret data to forecast heat demand and consumer comfort pref-

erences, and it will interact with the grid to manage supply and congestion.

IES (Integrating the Energy System)
10

is an European Project that combines Big

Data technologies and cyber security in order design a modular process chain to

achieve interoperability of standards, a specification of a normalised use of these

standards in interoperability profiles and a demonstration of the processes for testing

interoperability. The description of the processes and the practical implementation is

to be vendor-neutral, in order to ensure long-term interoperability and acceptance in

energy domain. The transparency of the method and the open database for technical

specifications and profiles should be accessible for technology providers for inter-

operable products and services. In this way interoperability will create increasing

competition with decreasing prices for better products on binding security level.

Secure Operation of Sustainable Power Systems (SOSPO)
11

is a project whose

main goal is to carry out research and development for the purpose of methods for

a real-time assessment of system stability and security, as well as methods for intel-

ligent wide-area prosumption control that can ensure stable and secure operation of

the future power system. The research in the SOSPO project focuses on methods that

enable system stability and security assessment in real-time and on methods for auto-

matically determining control actions that regain system security when an insecure

operation has been detected.

5 Conclusion

In this chapter we have presented a survey of the various research issues, challenges,

technical and technological solutions and analyzed critically the utilization of Big

Data to manage smart grid introducing several research problems and describing

several research project trying to bring out the weaknesses and strengths of the dif-

ferent solutions. The main goal of the research was to identify the critical issues and

highlight strengths and potential on the basis of direct experience accumulated. The

main challenges are [49]:

∙ the difficulty in collecting the data by itself due the existence of multiple sources

with different formats and types and different usage and access policies;

∙ the difficulty in categorize and organize and an easily accessible way for applica-

tions to use the data itself due to the unstructured nature of the data;

∙ the difficulty in create a unified understanding of data semantics and a knowledge

base in order to extract new knowledge based on specific real-time data;

∙ the difficulty in retrieve and transform the data automatically and universally into

a unified data source for useful analysis;

10
http://www.offis.de/en/offis_in_portrait/structure/structure/projekte/ies-austria.html.

11
http://www.sospo.dk/.

http://www.offis.de/en/offis_in_portrait/structure/structure/projekte/ies-austria.html
http://www.sospo.dk/
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∙ the data uncertainty and trustworthiness;

∙ security and privacy issues, as databases may include confidential information, so

it is necessary to protect this data against unauthorized use and malicious attacks;

∙ the size of generated data that rapidly grows according to the population grows.

So Smart Grid applications need to evolve quickly and extend efficiently to handle

the growing volume and variety of big data.

Nevertheless, the success of the new energy transition relies on the ability to adopt

Big Data analysis using computational intelligence techniques. Computational Intel-

ligence provides solutions for such complex real-world problems to which traditional

modeling can be useless for a few reasons: the processes might be too complex and

it contains some uncertainties during the process. Computational Intelligence repre-

sents a powerful and versatile methodology for a wide range of data analysis prob-

lems, so to effectively and efficiently overcome the challenges it is necessary to pay

more attention to these techniques.
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Distributed Machine Learning
on Smart-Gateway Network Towards
Real-Time Indoor Data Analytics

Hantao Huang, Rai Suleman Khalid and Hao Yu

Abstract Computational intelligence techniques are intelligent computational

methodologies such as neural network to solve real-world complex problems. One

example is to design a smart agent to make decisions within environment in response

to the presence of human beings. Smart building/home is a typical computational

intelligence based system enriched with sensors to gather information and processors

to analyze it. Indoor computational intelligence based agents can perform behav-

ior or feature extraction from environmental data such as power, temperature, and

lighting data, and hence further help improve comfort level for human occupants in

building. The current indoor system cannot address dynamic ambient change with

a real-time response under emergency because processing backend in cloud takes

latency. Therefore, in this chapter we have introduced distributed machine learning

algorithms (SVM and neural network) mapped on smart-gateway networks. Scalabil-

ity and robustness are considered to perform real-time data analytics. Furthermore,

as the success of system depends on the trust of users, network intrusion detection

for smart gateway has also been developed to provide system security. Experimen-

tal results have shown that with a distributed machine learning mapped on smart-

gateway networks real-time data analytics can be performed to support sensitive,

responsive and adaptive intelligent systems.
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1 Introduction

1.1 Computational Intelligence

Computational intelligence is the study of the theory, design and application of

biologically and linguistically motivated computational paradigms [1–3]. Compu-

tational intelligence is widely applied to solve real-world problems which traditional

methodologies can neither solve fficiently nor model feasibly. A typical computa-

tional intelligence based system can sense data from real-world, use this information

to reason the environment and then performed desired actions. In a computational

intelligent system such as smart building/home, collecting environmental data, rea-

soning the accumulated data and then selecting actions can further help to improve

comfort level for human occupants. The intelligence of the systems comes from

appropriate actions by reasoning the environmental data, which is mainly based on

computational intelligence such as fuzzy logic and machine learning. To have a real-

time response to the dynamic ambient change, a distributed system is preferred since

a centralized system suffers long latency of processing in the back end [4]. Compu-

tational intelligence techniques (machine learning algorithms) have to be optimized

to utilize the distributed yet computational resource limited devices.

1.2 Distributed Machine Learning

To tackle the challenge of high training complexity and long training time of machine

learning algorithms, distributed machine learning is developed to utilize comput-

ing resources on sensors and gateway. Many recent distributed learning algorithms

are developed for parallel computation across a cluster of computers by applying

MapReduce software framework [5]. MapReduce shows a high capacity in han-

dling intensive data and Hadoop is a popular implementation of MapReduce [6]. A

prime attractive feature of MapReduce framework is its ability to take good care of

data/code transport and nodes coordination. However, MapReduce services always

have a high hardware requirement such as large processing memory in order to

achieve good performance. However, IoT platforms, such as smart gateways, are with

limited resources to support MapReduce operations.

Another kind of approaches is Message Passing Interface (MPI) based algorithms

[7, 8]. MPI-based distributed machine learning has very low requirement for hard-

ware and memory sources and it is very suitable for implementation and applica-

tion in smart gateway environment. However, distribution schedulers for traditional

machine learning algorithms are naive and ineffective to utilize computational loads

among nodes. Therefore, learning algorithms should be optimized to map on the

distributed computational platform.
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1.3 Indoor Positioning

GPS provides excellent outdoor services, but due to the lack of Line of Sight (LoS)

transmissions between the satellites and the receivers, it is not capable of providing

positioning services in indoor environment [9]. Developing a reliable and precise

indoor positioning system (IPS) has been deeply researched as a compensation for

GPS services in indoor environment. Wi-Fi based indoor positioning is becoming

very popular these days due to its low cost, good noise immunity and low set-up com-

plexity [10, 11]. Many WiFi-data based positioning systems have been developed

recently for indoor positioning based on received signal strength indicator (RSSI)

[12]. As the RSSI parameter can show large dynamic change under environmen-

tal change (such as obstacles) [13–15], the traditional machine-learning based WiFi

data analytic algorithms can not adapt to the environment change because of the

large latency. This is mainly due to the centralized computational system and the

high training complexity [16], which will introduce large latency and also cannot be

adopted on the sensor network directly. Therefore, in this chapter, we mainly focus

on developing distributing indoor positioning algorithm targeting to computational

resource limited devices.

1.4 Network Intrusion Detection

Any successful penetration is defined to be an intrusion which aims to compromise

the security goals (i.e. integrity, confidentiality or availability) of a computing and

networking resource [17]. Intrusion detection systems (IDSs) are security systems

used to monitor, recognize, and report malicious activities or policy violations in

computer systems and networks. They work on the hypothesis that an intruder’s

behavior will be noticeably different from that of a legitimate user and that many

unauthorized actions are detectable [18, 19]. Anderson et al. [17] defined the fol-

lowing terms to characterize a system prone to attacks:

∙ Threat: The potential possibility of a deliberate unauthorized attempt to access

information, manipulate information or render a system unreliable or unusable.

∙ Risk: Accidental and unpredictable exposure of information, or violation of opera-

tions integrity due to malfunction of hardware or incomplete or incorrect software

design.

∙ Vulnerability: A known or suspected flaw in the hardware or software design or

operation of a system that exposes the system to penetration of its information to

accidental disclosure.

∙ Attack: A specific formulation or execution of a plan to carry out a threat.

∙ Penetration: A successful attack in which the attacker has the ability to obtain

unauthorized/undetected access to files and programs or the control state of a com-

puter system.
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The aim of cyber physical security techniques such as network intrusion detection

system (NIDS) is to provide a reliable communication and operation of the whole

system. This is especially necessary for network system such as Home Area Network

(HAN), Neighborhood Area Network (NAN) and Wide Area Network (WAN) [20,

21]. Network intrusion detection system can be placed at each network to detect

network intrusion.

In this chapter, we will develop algorithms on distrusted gateway networks to

detect network intrusions to provide system security.

1.5 Chapter Organizations

This chapter will be organized as follows. Firstly, we introduce a distributed compu-

tational platform on smart gateways for smart home management system in Sect. 2.

Then, in Sect. 3, an indoor positioning system by support vector machine (SVM) and

neural network is discussed and mapped on distributed gateway networks. In the fol-

lowing Sect. 4, a machine learning based network intrusion detection system (NIDS)

is designed to provide system security. Finally, in Sect. 5, conclusion is drawn that

distributed machine learning can utilize the limited computing resources and boost

the performance of smart home.

2 Distributed Data Analytics Platform on Smart Gateways

2.1 Smart Home Management System

Smart Home Management System (SHMS) is an intelligent system built for residents

to benefit from automation technology. By collecting environmental data including

temperature, humidity and human activities, a system can react towards residents’

best experience [22–25]. Figure 1 depicts the basic components and working strate-

gies in our SHMS test bed:

∙ Smart gateways to be the control center, harboring the ability in storage and com-

putation. Our smart gateway will be BeagleBoard-xM.

∙ Smart sensors to collect environmental information on light intensity, tempera-

ture, humidity, and occupancy.

∙ Smart sockets to collect current information of home appliances.

∙ Smart devices with GUI to interact with users; residents have access to environ-

mental information and can control home appliances through a smart phone or

tablet.

To ensure high quality performance of SHMS, a robust indoor positioning system

(IPS) is indispensable because knowledge about occupants of a building and their
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Fig. 1 The overview of smart home management system

movements is essential [26]. Applications can include the scenarios when a resident

comes back and enters his room, SHMS automatically powers on air conditioner,

heater, humidifier and sets the indoor environment to suit the fitness condition; when

nobody is in the house, the system turns off all appliances except for fridge and

security system for energy saving issue.

2.2 Distributed Computation Platform

Figure 2 shows our computation platform for real time data analytics. The major

computation is performed on smart gateways in a distributed fashion. Data com-

munication between gateways is performed through Wi-Fi using message passing

interface (MPI). This distributed computation platform can perform real-time data

analytics and store data locally for privacy purpose. Also, shared machine learning

engine is developed in the smart gateway to perform real-time feature extraction and

learning. Therefore, these learnt features can support indoor positioning services and

provide network security protection.

An indoor positioning system (IPS) by WiFi-data consists of at least two hard-

ware components: a transmitter unit and a measuring unit. Here we use smart

gateways to collect WiFi signal emitted from other smart devices (phone, pad) of

moving occupants inside the building. The IPS determines the positioning with

WiFi-data analyzed from the smart gateway network [27]. The central unit in SHMS

is BeagleBoard-xM as shown in Fig. 2b, which is also utilized in our positioning
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Fig. 2 a Distributed computation platform. b BeagleBoard xM. c TL-WN722N. d MAC frame

format in Wi-Fi header field

systems. In Fig. 2c, TL-WN722N wireless adapter is our Wi-Fi sensor for wireless

signals capturing. BeagleBoard-xM runs Ubuntu 14.04 LTS with all the processing

done on board, including data storage, Wi-Fi packet parsing, and positioning algo-

rithm computation. TL-WN722N works in monitor mode, capturing packets accord-

ing to IEEE 802.11. They are connected with a USB 2.0 port on BeagleBoard-xM.

As depicted in Fig. 2d, Wi-Fi packet contains a header field (30 bytes in length),

which contains information about Management and Control Address (MAC). This

MAC address is unique to identify the device where the packet came from. Another

useful header, which is added to the Wi-Fi packets when capturing frames, is the

radio-tap header, which is added by the capturing device (TL-WN722N). This radio-

tap header contains information about the RSSI, which reflects the information of

distance [28].

Received Signal Strength Indicator (RSSI) is the input of indoor positioning sys-

tem. It represents the signal power received at a destination node when signal was

sent out from a source passing through certain space. RSSI has a relationship with

distance, which can be given as:

RSSI = −KlogD + A; (1)

where K is the slope of the standard plot, A is a fitting parameter and D is the distance

[13]. So RSSI, as a basic measurement for distance, has been widely applied in Wi-Fi

indoor positioning.
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As described in Fig. 2, our SHMS is heavily dependent upon different entities

communicating with each other over different network protocols (Wi-Fi, Ethernet,

Zigbee). This in turn is prone to network intrusions. Some of the security violations

that would create abnormal patterns of system usage include:

∙ Remote-to-Local Attacks (R2L): Unauthorized users trying to get into the system.

∙ User-to-Root Attacks (U2R): Legitimate users doing illegal activities and having

unauthorized access to local superuser (root) privileges.

∙ Probing Attacks: Unauthorized gathering of information about the system or net-

work.

∙ Denial of Service (DOS) Attacks: Attempt to interrupt or degrade a service that a

system provides to its intended users.

Therefore, the ability to detect a network intrusion is crucial for intelligent system

to provide data and communication security.

3 Distributed Machine Learning Based Indoor
Positioning Data Analytics

3.1 Problem Formulation

The primary objective is to locate the target as accurate as possible considering the

scalability and complexity.

Objective 1: Improve the accuracy of positioning subject to the defined area.

mine =
√

(xe − x0)2 + (ye − y0)2

s.t. label(xe, ye) ∈ 𝐓
(2)

where (xe, ye) is the system estimated position belongs to the positioning set 𝐓 and

(x0, y0) is the real location coordinates. Therefore, a symbolic model based position-

ing problem can be solved using training set 𝛺 to develop neural-network.

𝛺 = {(si, ti), i = 1,… ,N, si ∈ Rn
, ti ∈ 𝐓} (3)

where N represents the number of datasets and n is the number of smart gateways,

which can be viewed as the dimension of the signal strength space. si is the vec-

tor containing RSSI values collected in ith dataset, ti ∈ {−1, 1} is a discrete value

and denoted as a label to represent the indoor positioning coordinates. Note that

𝐓 ∈ {−1, 1} labels the physical position and by changing the sequence of −1 and 1,

different labels can be represented. The more labels are used, the more accurate the

positioning service is.
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Objective 2: Reduce the training time of machine learning on Hardware Beagle

Board-xM. To distribute training task on gateways with n number, the average train-

ing time should be minimized to reflect the reduced complexity on such gateway

system.

min1
n

n∑

i=1
ttrain,i

s.t. e < 𝜖

(4)

where ttrain,i is the training time on ith smart gateway, e is the training error and 𝜖 is

the tolerable maximum error.

3.2 Indoor Positioning by Distributed SVM

Support vector machine (SVM) is one robust machine learning algorithm and can

be viewed as a special form of neural network [29]. Due to its reliability and high

accuracy in classification, it is one of the most popular algorithms in positioning. The

basic idea behind SVM in indoor positioning is to build a classification model based

on a training set [30]. To obtain the decision function in the classification problem,

LIBSVM [31], one of the most popular SVM solver, is chosen for our multi-category

positioning problem.

For indoor positioning application, different positioning zones mean different

classes, so multi-category classification is required here. Multi-category classifica-

tion in LIBSVM uses one-versus-one (1-v-1) SVM, i.e., if there are k classes, the

solution follows binary problems solved by 1 versus 2, 1 versus 3, . . . , 1 versus k, 2

versus 3, . . . , 2 versus k, . . . , k−1 versus k, with a total number of k(k −1)/2. This will

generate k(k −1)/2 decision functions of where F:Rn → {Ci, Cj}, i, j = 1, 2, ..., k, i ≠
j where Ci means ith class.

3.2.1 Workload Scheduling for DSVM

Experimental results show that iteration time, the time spent on generating binary

decision functions, is the major part of time consumed in training (more than 95%).

The balanced training time can be expressed as (5):

n∑

i=1
ttrain,i =

K(K−1)∕2∑

p=1
tp (5)

where tp means the time consumed for subtask p and ttrain,i is the training time on

ith smart gateway, Thus, we can ease the load on a single gateway by simply distrib-

uting iteration tasks. This section will focus on evenly distributing all the sub tasks



Distributed Machine Learning on Smart-Gateway Network Towards . . . 239

onto multiple gateways for processing in order to improve performance. In order to

elaborate our task distribution strategies with more details, we first introduce two

necessary definitions:

Definition 1 The task workload is the factor to measure each task time in computa-

tion. The higher workload a task has, the more computational time it needs for this

sub-task. The workloads for all sub-tasks are stored in a matrix 𝐋, where a Lp stores

the workload of sub-task p. As the computation time in SVM training is quadratic in

terms of the number of training instances, task workloads are represented by square

of dataset size of sub-training tasks.

Definition 2 The decision matrix 𝐁 is an M × P matrix to define whether sub-task

p is allocated to gateway m, where M is the number of gateways and P is the number

of sub-tasks.

Bm,p =

{
1, sub task p is with gate m

0, sub task p not with gate m
(6)

Based on the task workload distribution and decision matrix, we can have the

final workload allocation on each gate:

𝐆m = 𝐁m𝐋, m = 1, 2,… ,M
= [𝐁m,1,𝐁m,2,… ,𝐁m,p][L1,L2,… ,Lp]T

(7)

where 𝐋 represents all sub-tasks stored, where Lp stores the workload of sub-task

p. 𝐁m represents the decision matrix for gateway m and 𝐆m is the total workload

allocated to mth gateway. With these definitions, an optimization WL-DSVM model

can be described as (8)

min[max(Gm) +

√
√
√
√

M∑

m=1
(Gm −Gm)2∕M] (8)

s.t.

{
Gm = BmL, m = 1, 2,… ,M
Bm,p = 0 or 1, m = 1, 2,… ,M; p = 1, 2,… ,P

(9)

The conventional allocation scheme in [30] is following a computational sequence,

and ignoring the difference in computation complexity between sub-problems. How-

ever, we take workload of each sub-task into consideration and reorder task alloca-

tion. The distribution schemes comparison is described in Fig. 3. If we have a 5-class

problem, which will generate 10 sub-tasks (or binary-class classifications), sequen-

tial DSVM (SQ-DSVM) will allocate the sub-tasks between 2 gateways by follow-

ing the computational sequence as shown in Fig. 3: tasks 1–4 allocated to gateway 1;

tasks 5–7 allocated to gateway 2; tasks 8–9 allocated to gateway 1; tasks 10 allocated
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Fig. 3 Working scheduling schemes of sequential based distributed SVM (SQ-DSVM) and work-

load based distributed SVM (WL-DSVM)

to gateway 2. To achieve an even distribution, we need to rearrange the sub-tasks

according to workload distribution and allocate them in an even manner to gateways.

In order to realize it, we propose an allocation scheme based on a greedy rule that

always allocates the heaviest workload to the gateway with the lightest workload.

As a summary, the pseudo-code and initial settings in the proposed workload-

based DSVM are shown in Algorithm 1. Initial values are presented as input. In line

1 we sort the workloads of gates from large ones to small ones. The updated sub-

task index in ls is with line 2. In line 3 we randomize gate index in case that some

gates are always allocated more loads than others. Loop line 4–9 is the main part of

Workload-based WL-DSVM computation load allocation. Finally in line 8, decision

matrix will be updated and the iteration moves to the next loop.
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Algorithm 1: WL-DSVM Workload Allocation

Input : Sub-task number n

Computational load vector for each sub-task L

Index vector for each sub-task ls = [1, 2,. . . , P]

Working load vector for each gate G = 0

Index vector for each gateway lg = [1, 2,. . . ,M]

Decision Matrix B = 0

Output: Working load allocation for each sub-task B

1 SortFromLargeToSmall(a)

2 Update order in ls based on L

3 RandGateIndex (Ig)

4 for p ← 1 to P //load allocation for each gate do
5 SortFromSmallToLarge(G)

6 Update order in Ig based on G

7 Update gateway load G1 ← G1 + Lp
8 Update decision matrix B(lg,1,p) ← 1

9 end

3.2.2 Working Flow for DSVM-Based IPS

With a distributed fashion applied in support vector machine (SVM), an ideal result

is that working load can be distributed and training time can be reduced to:

Ttrain = trun +
P∑

p=1
tp∕P (10)

For predicting phase, as only a very short time is needed to predict a user’s position,

it’s not necessary to distribute one single prediction task among different gateways.

However, for plenty of incoming RSSI arrays, to predict position of all data on one

gateway will have the working load unevenly allocated and there will be one node put

under too much load. The solution is to introduce a distributed data storage system.

RSSI series stored in mth gateway can be determined using the following formula:

Si = {s|RSSIm = max(s),RSSIm′ ≠ max(s),m′
< m} (11)

which means the maximum RSSI value of the data stored in mth gateway is exactly

RSSIm; s represents a RSSI array. But if there existing case of RSSI1 = RSSI2, assum-

ing that we have stored the dataset in gateway 1, Eq. (11) will avoid storing the same

dataset in gateway 2 again (m = 2, m
′

= 1 as described in (11)). As such, working

flow of proposed DSVM indoor positioning can be described as Fig. 4.
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Fig. 4 Working scheduling schemes of SQ-DSVM and WL-DSVM

3.2.3 Experiment Result

System and Simulation Setup

Before verifying the effectiveness of distributed support vector machine, we test the

computational capacity of PC and gateway with 4800 × Dup (Dup = 1 to 10 means

size of datasets are 4800 × Dup, separately, the duplicate count in Fig. 5) datasets for

8 classes, 70% for training, 30% for testing; each dataset has 5 features, i.e. RSSI1,

RSSI2, . . . , RSSI5. Figure 5 shows the time for training/testing on BeagleBoard-xM

(BB)/PC. As is shown in Fig. 5, training on smart gateway (AM37x 1GHz ARM

Fig. 5 Runtime comparison

for PC and BB based SVMs
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processor) takes a rather long time compared with PC (Intel
®

CoreTM i5 CPU 650

3.20 GHz), and the divergence is about 10 times. Conversely, the predicting time is

low enough that it can be quickly handled on the board.

To verify the effectiveness of distributed support vector machine (DSVM) in

indoor positioning system (IPS), we performed tests with our indoor environment.

For comparison, we implemented conventional SVM algorithm on PC (Baseline 1)

and BeagleBoard-xM (Baseline 2) separately, sequential based DSVM (SQ-DSVM)

on board (Baseline 3), and finally workload-based DSVM (WL-DSVM) on board

(Baseline 4).

Baseline 1: Centralized SVM algorithm. In this method, data (RSSI arrays and

position) are collected by different gateways but data processing is performed on a

single PC, denoted as SVM-PC.

Baseline 2: Centralized SVM algorithm. In this method, data are collected by

different gateways and data processing is performed on Gateway 1, denoted as SVM-

BB.

Baseline 3: SQ-DSVM algorithm. In this method, data collection and algorithm

computation are both paralleled among 5 gateways. In this method, training phase is

performed with sequential DSVM, it is denoted as SQ-DSVM-BB.

Baseline 4: WL-DSVM algorithm. In this method, data collection and algorithm

computation are both paralleled among 5 gateways. In this method, training phase is

performed with workload-based DSVM, denoted as WL-DSVM-BB.

Indoor test-bed environment for positioning is presented in Fig. 6, with total area

being about 80m2
(8 m at width and 10 m at length) separated into 48 regular blocks,

each block represents a research cubicle in the lab, and the cubicles are the position-

Fig. 6 An example of building floor with position tracking
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ing areas in this chapter. 5 gateways, with 4 locations at 4 corners of the map, 1 in

the center of the map, are set up for experiment.

To quantify our environment setting, here the positioning accuracy is defined as r,

representing radius of target area. It is generated from S = 𝜋r2, where S is the square

of the whole possible positioning area.

Besides, positioning precision is defined as the probability that the targets are

correctly positioned within certain accuracy. The definition is as follow:

Precision =
Npc

Np
(12)

where Npc is the number of correct predictions and Np is the number of total predic-

tions.

Performance Comparison

To verify the effectiveness of distributed support vector machine (DSVM) in indoor

positioning system (IPS), in this part, performance comparison between WL-DSVM

and other SVMs will be performed within our indoor environment. For comparison,

we implemented centralized SVM algorithm on PC (SVM-PC) and BeagleBoard-

xM (SVM-BB) separately, and distributed SVMs are tested with workload-based

DSVM on board (WL-DSVM-BB) and sequential DSVM on board (SQ-DSVM-

BB).

Table 1 (Dup = 1, 2, ..., 10 means size of datasets are 4800 × Dup, separately)

mainly elaborates the advantages of distributed machine learning over centralized

data analytics. (1) Without a distributed fashion, centralized SVM on board only

shows about 1/8 in computational ability of PC. (2) With DSVM on 5 gateways,

improvement of computational efficiency in runtime can be 2.5–3.5x of SVM-BB.

(3) WL-DSVM-BB shows a higher efficiency in runtime than SQ-DSVM-BB; (4)

Table 1 Training time comparison of among different SVMs

Dup Time consumed (s)

SVM-PC SVM-BB SQ-DSVM-BB WL-DSVM-BB

1 3.30 1× 25.78 7.8× 11.58 3.5× 9.41 2.9×
2 13.23 1× 99.09 7.5× 44.26 3.3× 36.78 2.8×
3 29.75 1× 221.84 7.5× 95.38 3.2× 79.85 2.7×
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

7 137.44 1× 1101.98 8.0× 451.18 3.3× 362.84 2.6×
8 179.33 1× 1452.87 8.1× 611.85 3.4× 509.18 2.8×
9 228.08 1× 1842.62 8.1× 770.86 3.4× 614.57 2.7×
10 266.68 1× 2195.79 8.2× 859.90 3.2× 679.27 2.5×
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Fig. 7 Runtime comparison on each gateway for WL-DSVM and SQ-DSVM. Total time includes

the training time, communication time and waiting time for other beagleboards

Increased size of dataset for training doesn’t show an increase in relative time with

distributed machine learning; it means that computational load is much more time

consuming than data communication and needs more attention.

Figure 7 shows the running time comparison of each BeagleBoard with WL-

DSVM-BB and SQ-DSVM-BB methods. The total time of each BeagleBoard

includes the training time, communication time and waiting time for others. It

clearly shows that WL-DSVM-BB has relative fair load distribution. Therefore, WL-

DSVM-BB performs a higher training efficiency with total time 679 s (max(Gm) in

(8)), comparing with total time 860 s on SQ-DSVM-BB, achieving an improvement

of 27% for the case of Dup = 10.

WL-DSVM-BB only needs 2.5× training time of PC, and results in 3.2× improve-

ment in training time when compared with centralized SVM on board (SVM-BB),

which means WL-DSVM has made sense in reducing the working load of a single

node, which is useful when gateway nodes are in a large amount, such as hundreds

of gateways, which will be very promising in real-time positioning for a changing

environment. Conventional way in training phase is off-line training on PC and then

sending the training predictor to sensor nodes. But with an ability to efficiently com-

pute training phase on board, real-time data analysis can be performed on board so

that we can get rid of server that requires extra cost and implementation.

In order to test the positioning precision improvement with WL-DSVM, we sim-

ulate an indoor environment where RSSI values vary according to Gaussian distri-

bution every half an hour. WL-DSVM can update its predictor automatically while

SVM-BB applies the initially generated predictor. This is a reasonable setting since

WL-DSVM is much faster to perform training than SVM-BB. Due to the long train-

ing time SVM-BB is not likely to perform online updates while WL-DSVM is favor-

able to perform online updates. Here, we take accuracy of 2.91 m for an example.

Results in Fig. 9 show that WL-DSVM can maintain the precision of prediction,
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Fig. 8 Indoor positioning accuracy and precision by WL-DSVM
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Fig. 9 Positioning precision comparison of changing environment for WL-DSVM and SVM-BB

while SVM shows a decreasing and unstable performance of precision. It is because

WL-DSVM will update the predictor whenever environment changes. But tradition-

ally, training phase is only done once so that the precision will decrease with a chang-

ing environment. Indoor positioning accuracy and its precision by WL-DSVM are

shown in Fig. 8.

In conclusion, instead of dealing with data storage and analytics on one central

server, the proposed distributed real-time data analytics is developed on networked

gateways with limited computational resources. By utilizing the distributed support

vector machine (DSVM) algorithm, the data analytics of real-time RSSI values of

Wi-Fi data can be mapped on each individual gateway. The experimental results have

shown that the proposed WL-DSVM can achieve a 3.2x improvement in runtime in

comparison to a single centralized node and can achieve a performance improvement

of 27% in runtime in comparison to conventional DSVM.
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3.3 Indoor Positioning by Distributed-neural-network

In this section, we introduce a low computational complexity machine-learning

algorithm that can perform WiFi—data analytics for positioning on smart gate-

way network. A distributed-neural-network (DNN) machine learning algorithm is

introduced with the maximum posteriori probability based soft-voting. Experiment

results have shown significant training and testing speed-up comparing to SVM.

3.3.1 Machine Learning Algorithm on Gateway

Single-Hidden-Layer Neural-Network

Our neural-network with two sub-systems is shown as Fig. 10, which is inspired by

extreme learning machine and compressed sensing [32, 33]. Unlike previous work

[14], the input weight is only connecting nearyby hidden nodes. The input weight

in our proposed neural-network is connected to every hidden node and is randomly

generated independent of training data [34]. Therefore, only the output weight is

calculated from the training process. Assume there are N arbitrary distinct training

samples X ∈ RN×n
and T ∈ RN×m

, where 𝐗 is training data representing scaled

RSSI values from each gateway and 𝐓 is the training label indicating its position

respectively. In our indoor positioning cases, the relation between the hidden neural-

node and input training data is addictive as

𝐩𝐫𝐞𝐇 = 𝐗𝐀 + 𝐁, 𝐇 = 1
1 + e−𝐩𝐫𝐞𝐇

(13)

Fig. 10 Soft-voting based distributed-neural-network with 2 sub-systems
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Algorithm 2: Learning Algorithm for Single Layer Network

Input : Training Set (xi, ti), xi ∈ 𝐑n
, ti ∈ 𝐑m

, i = 1, ...N, activation function H(aij, bij, xi),
maximum number of hidden neural node Lmax and accepted training error 𝜖.

Output: Neural-network output weight 𝜷

1 Randomly assign hidden-node parameters

2 (aij, bij), aij ∈ 𝐀, bij ∈ 𝐁
3 Calculate the hidden-layer pre-output matrix 𝐇
4 𝐩𝐫𝐞𝐇 = 𝐗𝐀 + 𝐁, 𝐇 = 1∕(1 + e−𝐩𝐫𝐞𝐇)
5 Calculate the output weight

6 𝜷 = (𝐇T𝐇)−1𝐇T𝐓
7 Calculate the training error error
8 error = ||𝐓 −𝐇𝜷||

9 if (L ≤ Lmax and e > 𝜖) then
10 Increase number of hidden node

11 L = L + 1, repeat from Step 1

12 end

where 𝐀 ∈ 𝐑n×L
and 𝐁 ∈ 𝐑N×L

. 𝐀 and 𝐁 are randomly generated input weight and

bias formed by aij and bij between [−1, 1]. 𝐇 ∈ 𝐑N×L
is the result from sigmoid

function for activation. In general cases, the number of training data is much larger

than the number of hidden neural nodes (i.e. N > L), to find the output weight 𝜷 is

an overdetermined system. Therefore, estimating the output weight is equivalent to

minimize ||𝐓 −𝐇𝜷||, the general solution can be found as

𝜷 = (𝐇T𝐇)−1𝐇T𝐓, 𝐇 ∈ 𝐑N×L
(14)

where 𝜷 ∈ 𝐑L×m
and m is the number of symbolic classes. (𝐇T ×𝐇)−1 exits for full

column rank of 𝐇 [32]. However, such method is computationally intensive. More-

over, as the number of hidden neural nodes can not be explicit from the training data

to have small training error, [35] suggests to increase the number of hidden neural

node L during the training stage, which will reduce the training error but at the cost of

increasing computational cost and required memory for neural-network. Therefore,

an incremental solution for (14) is needed to adjust the number of hidden node L with

low complexity. The algorithm of single hidden layer neural-network is summarized

in Algorithm 2.

Incremental Least-Square Solver

The key difficulty for solving training problem is the least square problem of mini-

mizing ||𝐓 −𝐇𝜷||. This could be solved by using SVD, QR and Cholesky decompo-

sition. The computational cost of SVD, QR and Cholesky decomposition is

O(4NL2 − 4
3
L3), O(2NL2 − 2

3
L3) and O( 1

3
L3) respectively [36]. Therefore, we use

Cholesky decomposition to solve the least square problem. Moreover, its incremen-

tal and symmetric property reduces the computational cost and saves half memory
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Algorithm 3: Incremental L2 Norm Solution

Input : Activation matrix 𝐇L, target matrix 𝐓 and number of hidden nodes L
Output: Neural-network output weight 𝜷

1 for l ← 2 to L do
2 Calculate new added column

3 𝐯l ← 𝐇T
l−1hl

4 g ← hT
l ∗ hl

5 Calculate updated Cholesky matrix

6 𝐳L ← 𝐐−1
L−1𝐯L, p ←

√

g − 𝐳T
L𝐳L

7 Form new Cholesky Matrix 𝐐L←

(
𝐐L−1 0
𝐳T

L p

)

8 Calculate output weight using forward and backward substitution

9 𝐐L𝐐T
L𝜷 ← 𝐇T

L𝐓
10 end

required [36]. Here, we use HL to represent the matrix with L number of hidden

neural nodes (L < N), which decomposes the symmetric positive definite matrix

𝐇T𝐇 into

𝐇T
L𝐇L = 𝐐L𝐐T

L (15)

where 𝐐L is a low triangular matrix and T represents transpose operation of the

matrix.

𝐇T
L𝐇L =

[
𝐇L−1 hL

]T[𝐇L−1 hL
]

=
(
𝐇T

L−1𝐇L−1 𝐯L
𝐯T

L g

)
(16)

where hL is the new added column by increasing the size of L, which can be calcu-

lated from (13). The Cholesky matrix can be expressed as

𝐐L𝐐T
L

=
(
𝐐L−1 𝟎
𝐳T

L p

)(
𝐐T

L−1 𝐳L
𝟎 p

)
(17)

As a result, we can easily calculate the 𝐳L and scalar p for Cholesky factorization as

𝐐L−1𝐳L = 𝐯L, p =
√

g − 𝐳T
L𝐳L (18)

where 𝐐L−1 is the previous Cholesky decomposition result and 𝐯L is known from

(16), which means we can continue to use previous factorization result and update

only according part. Algorithm 3 gives details on each step since l ≥ 2. Please note

when l = 1, Q1 is a scalar and equals to

√

HT
1 H1. Such method will greatly reduce

computational cost and allow the online training on smart gateway for positioning.
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Fig. 11 Working flow of distributed-Neural-Network indoor positioning system

3.3.2 Distributed-Neural-Network with Soft-Voting

Distributed-Neural-Network for Indoor Positioning

The working flow of the distributed-neural-network (DNN) is described as Fig. 11.

Environmental Wi-Fi signal is received from the Wi-Fi Adapter and through Wi-

Fi parsing the data with MAC address and RSSI of each Wi-Fi adapter is stored.

Such data is sent to gateway for training with label first. Please note that the training

process is on the gateway. As we mentioned in Sect. 3.3.1, a single layer forward

network (SLFN) is trained. A small data storage is required to store trained weight

for the network. In the real time application, the same format data will be collected

and sent into the well trained network to locate its position. In Fig. 11, the block for

soft-voting is through message passing interface (MPI) protocols to collect all the

testing result from each SLFN and soft-voting is processed in the central gateway.

Note that n gateways together can form one or several SLFNs based on the accuracy

requirement.

Soft-Voting

As we have discussed in Sect. 3.3.1, the input weight and bias𝐀,𝐁 are randomly gen-

erated, which strongly supports that each SLFN is an independent expert for indoor

positioning. Each gateway will generate posteriori class probabilities Pj(ci|𝐱), i =
1, 2, ...,m, j = 1, 2, ...,Nslfn, where 𝐱 is the received data, m is the number of classes

and Nslfn is the number of sub-systems for single layer network deployed on smart
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gateway. During the testing process, the output of single layer forward network

(SLFN) will be a set of values yi, i = 1, 2, ...,m. Usually, the maximum yi is selected

to represent its class i. However, in our case, we scale the training and testing input

between [−1, 1] and target labels are also formed using a set of [−1,−1, ...1...,−1],
where the only 1 represents its class and the target label has length m. The posteriori

probability is estimated as

Pj(ci|𝐱) = (yi + 1)∕2, j = 1, 2, ...,Nslfn (19)

A loosely stated objective is to combine the posteriori of all sub-systems to make

more accurate decisions for the incoming data 𝐱. Under such case, information theory

suggests to use a cross entropy (Kullback-Leibler distance) criterion [37], where we

may have two possible ways to combine the decisions (Geometric average rule and

Arithmetic average rule). The geometric average estimates can be calculated as

P(ci) =
Nslfn∏

j=1
Pj(ci|𝐱), i = 1, 2, ...m (20)

and the arithmetic average estimate is shown as

P(ci) =
1

Nslfn

Nslfn∑

j=1
Pj(ci|𝐱), i = 1, 2, ...m (21)

where P(ci) is the posteriori probability to choose class ci and will select the max-

imum posteriori P(ci) for both cases. In this chapter, we use arithmetic average as

soft-voting of each gateway since [37] indicates that geometric average rule works

poorly when the posteriori probability is very low. This may happen when the object

to locate is far away from one gateway and its RSSI is small with low accuracy of

positioning. The final decision is processed at the central gateway to collect the vot-

ing value from each sub-systems on other gateways. Such soft-voting will utilize

the confidence of each sub-system and avoid the prerequisite that each sub-system

maintains accuracy of more than 50% for hard-voting.

3.3.3 Experimental Results

Experiment Setup

Indoor test-bed environment for positioning is presented in Fig. 6, which is the same

as Sect. 3.2.3. The summary for the experiment set-up is shown in Table 2. To avoid

confusion, we use DNN to represent distributed neural network and SV-DNN repre-

sents soft-voting based DNN.
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Table 2 Experimental set-up parameters

Parameter Value

Traing date size 18056

Testing date size 2000

Data dimension 5

Number of labels 48

No. of gateway 5

Testing area 80m2

Fig. 12 Training time for

SLFN by incremental

Cholsky decomposition

Fig. 13 Testing accuracy

under different positioning

scale
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Real-Time Indoor Positioning Results

The result of the trained neural forward network is shown as Figs. 12 and 13. The

training time can be greatly reduced by using incremental Cholesky decomposition.

This is due to the reduction of least square complexity, which is the limitation for the

training process. As shown in Fig. 12, training time maintains almost constant with

increasing number of neural nodes when the previous training results are available.

Figure 13 also shows the increasing accuracy under different positioning scales from

0.73 to 4.57 m. It also shows that increasing the number of neural nodes will increase

the performance to certain accuracy and maintains almost flat at larger number of

neural nodes.
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Table 3 Comparison table with previous works

System/Solution Precision

Proposed DNN 58% within 1.5 m, 74% within 2.2 m and 87% within 3.64 m

Proposed SV-DNN 62.5% within 1.5 m, 79% within 2.2 m and 91.2% within 3.64 m

Microsoft RADAR [38] 50% within 2.5 m and 90% within 5.9 m

DIT [39] 90% within 5.12 m for SVM; 90% within 5.40 m for MLP

Ekahau [40] 5 to 50 m accuracy (indoors)

SVM 63% within 1.5 m, 80% within 2.2 m and 92.6 % within 3.64 m

Performance Comparison

In Table 3, we can see that although single layer network cannot perform better than

SVM but it outperforms other positioning algorithms proposed in [38–40]. More-

over, by using maximum posteriori probability based soft-voting, SV-DNN can be

very close to the accuracy of SVM. Table 4 shows the detailed comparisons between

proposed DNN positioning algorithm with SVM. Please note that the time reported

is the total time for training data size 18056 and testing data size 2000. It shows more

than 120× training time improvement and more than 54× testing time saving for pro-

posed SLFN with 1 sub-network comparing to SVM. Even adding soft-voting with

3 sub-networks, 50x and 38x improvement in testing and training time respectively

can be achieved. Please note that for fair training and testing time comparison, all

the time is recorded using Ubuntu 14.04 LTS system with core 3.2 GHz and 8GB

RAM. Variances of the accuracy is also achieved by 5 repetitions of experiments

and the reported results are the average values. We find that the stability of proposed

DNN is comparable to SVM. Moreover, the testing and training time do not increase

significantly with new added subnetworks. Please note that SVM is mainly limited

by its training complexity and binary nature where one-against-one strategy is used

to ensure accuracy with a cost of building m(m − 1)∕2 classifier and m is the number

of classes. Figure 14 shows the error zone of proposed SV-DNN.

In conclusion, this section proposes a computationally efficient data analytics

by distributed-neural-network (DNN) based machine learning with application for

indoor positioning. It is based on one incremental L2-norm based solver for learn-

ing collected WiFi-data at each gateway and is further fused for all gateways in the

network to determine the location. Experimental results show that with 5 distributed

gateways running in parallel for a 80m2
space, the proposed algorithm can achieve

50x and 38x improvement on testing and training time respectively when compared

to support vector machine based data analytics with comparable positioning preci-

sion.
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Fig. 14 Error Zone and accuracy for indoor positioning by distributed neural network (DNN)

4 Distributed Machine Learning Based Network Intrusion
Detection System

In this section we propose to use the distributed-neural-network (DNN) method as

described in Sect. 3.3.1 for the network intrusion detection system (NIDS). We also

use the same soft voting technique as described in Sect. 3.3.2 to achieve an improved

accuracy.

4.1 Problem Formulation and Analysis

In machine learning approach for NIDS, the detection for intrusion can be consid-

ered as a binary classification problem, distinguishing between normal and attack

instances. In the similar way, intrusion can also be considered as a multi-class classi-

fication problem to detect different attacks. We can use supervised, semi-supervised

or unsupervised machine learning approach to achieve the objective. In this section

we use a supervised machine learning approach based on single hidden layer neural-

network [32] for intrusion detection. Figure 15 shows an overview of steps involved

in binary NIDS. As such our main objectives are:

Objective 1: Achieve an overall high accuracy, high detection rate, a very low

false alarm rate. We define the following terms to mathemically formulate our objec-

tive.

1. False Positives (FP): Number of normal instances which are detected as intru-

sions.

2. False Negatives (FN): Number of intrusion instances which are detected as nor-

mal.
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Fig. 15 NIDS Flow based on distributed machine learning on smart-gateways

3. True Positives (TP): Number of correctly detected intrusion instances.

4. True Negatives (TN): Number of correctly detected normal instances.

Several statistical measures are used to measure the performance of machine

learning algorithms for Binary NIDS. Specifically following measures are used to

characterize the performance.

1. Recall: is a measure of detection rate of the system to detect attacks and is defined

as:

Recall = TP
TP + FN

× 100 (22)

2. False Positive Rate (FP): gives a measure of false positive rate i.e., normal

instances being classified as intrusions

FP = FP
FP + TN

× 100 (23)

3. Precision: Precision is a measure of predicted positives which are actual posi-

tives.

Precision = TP
TP + FP

× 100 (24)

4. F-Measure: F-Measure is a metric that gives a better measure of accuracy of an

IDS. It is a harmonic mean of precision and recall.

F − Measure = 2
1

precision
+ 1

recall

× 100 (25)

5. Matthews Correlation Coefficient (MCC): MCC measures the quality of binary

classification. It represents values in the range −1 to +1. A value of +1 represents

100% prediction, −1 represents 0% prediction. A value of 0 represents no better

prediction than random prediction.
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MCC = TP × TN − FP × FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(26)

6. Overall Accuracy: Overall accuracy is defined as a ratio of TP and TN to the total

number of instances

Accuracy = TP + TN
FP + FN + TP + TN

× 100 (27)

Objective 2: Reduce the training complexity for intrusion detection modules at var-

ious network layers in the smart grid so that the model can be quickly updated. To

distribute training task on gateways with n number, the average training time should

be minimized to reflect the reduced complexity on such gateway system.

min1
n

n∑

i=1
ttrain,i

s.t. e < 𝜖

(28)

4.2 Experimental Results

To achieve Objective 1 (i.e. improved overall accuracy), we use distributed neural-

network (DNN) and soft-voting as described in Sect. 3.3.2. To achieve Objective 2

(i.e. reduced training time), we use the same Cholesky decomposition as described

in Sect. sec:architecture.

4.2.1 Setup and Benchmarks

In this section we evaluate the NSL-KDD [41] and ISCX 2012 benchmarks [42] for

intrusion detection. The experiments were simulated on Ubuntu 14.04 LTS system

with core 3.2 GHz and 8GB RAM.

4.2.2 NSL-KDD Dataset Description and Preprocessing

All the attack types mentioned previously i.e., DOS, Probe, R2L and U2R are encap-

sulated in the KDD Cup 99 Dataset which has been used as benchmark for detecting

intrusions in a typical computer network. To evaluate the classfication accuracy of

SVM and SLFN as well as to evaluate detection latency using DNN we propose

to use an improved version of KDD Cup 99 Dataset known as NSL-KDD dataset

[41] which has been used as a benchmark in previous works on intrusion detec-

tion [21]. Some of features in the dataset i.e., protocol type, service and flag have

sybmolic representation. To be able to use SVM or SLFN we assigned an arbitrary
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Table 5 NSL-KDD experimental set-up parameters

Parameter Value

Training data size 74258

Testing data size 74259

Data dimension 41

Number of labels Binary (2)

Multiclass (5)

Number of gateways 5

sequential integer assignment to establish a correspondence between each category

of a symobolic feature and a sequence of integer value. Table 5 gives the description

of NSL-KDD benchmark for intrusion detection.

4.2.3 ISCX 2012 Dataset Description and Preprocessing

ISCX 2012 Dataset [42] was developed at the University of Brunswick ISCX. The

original dataset contains 17 features and a label representing normal instances and

intrusions belonging to DOS, SSH, L2L and Botnet (DDOS) intrusions. Some of

the features were irrelevant and were removed from the dataset. Additionally some

of the features in the data set i.e., appName, direction, sourceTCPFlagsDescription,

destinationTCPFlagsDescription and protocolName were symbolic in nature and an

arbitrary sequential integer assignment was used to convert these features to numeric

features similar to NSL-KDD benchmark. Table 6 gives the description of ISCX

benchmark for intrusion detection.

4.2.4 Training and Testing Time Analysis

Table 7 gives the metrics for training and testing time for the two benchmarks. For

NSL-KDD dataset it can be observed that SLFN is 49× faster in training time com-

pared to SVM and 8× faster in testing time compared to SVM. Similarly for ISCX

dataset it can be observed that SLFN is 60× faster in training time compared to SVM

and 13× faster in testing time compared to SVM.

Table 6 ISCX 2012 experimental set-up parameters

Parameter Value

Training data size 103285

Testing data size 103229

Data dimension 11

Number of labels Binary (2)

Multiclass (5)

Number of gateways 5
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Table 7 Binary classification performance with 500 hidden neurons

Benchmark Algo. Class TP. % FP. % Prec. Recall % FM. % MCC Tr.(s) Te. (s)

NSL-KDD SVM Normal 95.90 6.00 94.5 95.90 95.20 0.899 8678 188.7

Anomaly 94.00 4.10 95.50 94.00 94.80 0.899

SLFN Normal 98.24 3.77 96.54 98.24 97.38 0.945 333.08 41.94

Anomaly 96.22 1.76 98.08 96.22 97.14 0.945

ISCX 2012 SVM Normal 98.90 1.50 99.30 98.90 99.10 0.971 5020 83.7

Anomaly 98.50 1.10 97.70 98.50 98.10 0.971

SLFN Normal 94.43 11.83 94.33 94.43 94.38 0.826 277.9 21.25

Anomaly 88.16 5.56 88.36 88.16 88.26 0.827

Fig. 16 ISCX 2012

classification

4.2.5 Binary and Multiclass Classification Performance Metrics

Table 7 gives the detailed performance metrics for NSL-KDD and ISCX datasets

using SVM and SLFN machine learning methods for normal and anomaly classes.

For NSL-KDD dataset it can be observed that all performance metrics for both nor-

mal and anomaly classes are superior for SLFN compared to SVM. For ISCX dataset

SVM performs slightly better than SLFN in performance metrics for both normal and

anomaly classes. However SLFN has a much higher FP rate compared to SVM.

Figures 16 and 17 shows the performance of SVM and SLFN using 500 hidden

neurons for multiclass classification for the 2 benchmarks using the F-Measure. For

ISCX dataset it can be seen that SLFN has performance comparable to SVM for Nor-

mal and Botnet classes. However SVM outperforms SLFN for DOS, SSH and L2L

classes. For NSL-KDD dataset it can be observed that for Normal, DOS and Probe

classes SLFN has almost similar performance compared to SVM. SLFN outperforms

SVM for R2L class. However it is not able to detect any intrusions relating to U2R
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Fig. 17 NSL-KDD

classification

class. This can be attributed to the fact that the NSL-KDD dataset only contains 119

instances of U2R class.

4.2.6 DNN Performance

Table 8 shows the performance metrics for DNN using NSL-KDD and ISCX datasets

at 500 hidden neurons. It can be observed that for both datasets all the performance

metrics stay relatively constant however the server processing time is reduced propo-

tionally to the number of sub neural networks employed. For NSL-KDD server

processing time is reduced by 8× compared to centralized NIDS and by 37× com-

pared to SVM when using 5 sub neural networks. Similarly for ISCX dataset server

Table 8 Binary DNN classification performance metrics

Benchmark Algo. TP Rate

(%)

FP Rate

(%)

Prec. Recall (%) FM. (%) MCC Server (s)

NSL-KDD SVM 95.00 5.10 95.00 95.00 95.00 0.899 188.73

C-NIDS 95.56 4.62 95.68 95.56 95.55 0.912 41.94

DSN(2) 95.70 4.34 95.18 95.70 95.68 0.855 12.73

DSN(3) 95.87 4.69 95.92 95.87 95.83 0.808 8.52

DSN(4) 95.45 4.82 95.83 95.99 95.93 0.859 6.41

DSN(5) 95.36 4.42 95.13 95.36 95.29 0.816 5.11

ISCX 2012 SVM 98.70 1.40 98.70 98.70 98.70 0.971 83.68

C-NIDS 91.67 10.94 91.65 91.67 91.66 0.809 20.94

DSN(2) 91.77 10.86 91.75 91.77 91.76 0.812 10.69

DSN(3) 91.70 11.06 91.67 91.70 91.68 0.810 7.28

DSN(4) 91.82 11.00 91.79 91.82 91.80 0.812 5.29

DSN(5) 91.62 10.99 91.60 91.62 91.61 0.808 4.28
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processing time is reduced by 5 × compared to centralized NIDS and by 20 × when

compared to SVM when using 5 sub neural networks. The reduced server processing

time allows DNN to detect intrusions in lesser amount of time since each SLFN in

DNN has a reduced detection latency.

5 Conclusion

In this chapter, we have discussed the application of computational intelligence tech-

niques for indoor data analytics on smart-gateway network. Firstly, a computational

efficient data analytic platform is introduced for smart home management system

based on the distributed gateway network. Secondly, a distributed support vector

machine (DSVM) and distributed neural network (DNN) based machine learning

algorithm are introduced for the indoor data analytics, which can significantly reduce

the training complexity and training time yet maintaining acceptable accuracy. We

have applied the DSVM and DNN for indoor positioning to analyze the WiFi data;

and further to analyze network intrusion detection to provide the network secu-

rity. Such a computational intelligence technique can be compactly realized on the

computational-resource limited smart-gateway networks, which is desirable to build

a real cyber-physical system towards future smart home, smart building, smart com-

munity and further a smart city.
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Predicting Spatiotemporal Impacts
of Weather on Power Systems Using Big
Data Science
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Abstract Due to the increase in extreme weather conditions and aging infras-
tructure deterioration, the number and frequency of electricity network outages is
dramatically escalating, mainly due to the high level of exposure of the network
components to weather elements. Combined, 75% of power outages are either
directly caused by weather-inflicted faults (e.g., lightning, wind impact), or indi-
rectly by equipment failures due to wear and tear combined with weather exposure
(e.g. prolonged overheating). In addition, penetration of renewables in electric
power systems is on the rise. The country’s solar capacity is estimated to double by
the end of 2016. Renewables significant dependence on the weather conditions has
resulted in their highly variable and intermittent nature. In order to develop auto-
mated approaches for evaluating weather impacts on electric power system, a
comprehensive analysis of large amount of data needs to be performed. The
problem addressed in this chapter is how such Big Data can be integrated,
spatio-temporally correlated, and analyzed in real-time, in order to improve capa-
bilities of modern electricity network in dealing with weather caused emergencies.
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1 Introduction

The Big Data (BD) in the power industry comes from multiple sources: variety of
measurements from the grid, weather data from a variety of sources, financial data
from electricity and other energy markets, environmental data, etc. The measure-
ments from the physical network and weather data exhibit various aspects of BD:
large volume, high velocity, increasing variety and varying veracity. For efficient
condition-based asset and outage management, and preventive real-time operation,
fast processing of large volumes of data is an imperative. The volume and velocity
with which the data is generated can be overwhelming for both on-request and
real-time applications. The heterogeneity of data sources and accuracy are addi-
tional challenges. The effective use of BD in power grid applications requires
exploiting spatial and temporal correlations between the data and the physical
power system network.

In this chapter, we will address unique fundamental solutions that will allow us
to effectively fuse weather and electricity network data in time and space for the
benefit of predicting the risk associated with weather impact on utility operation,
generation, and asset and outage management. Computational intelligence approach
plays a central role in such a task. Unstructured models like neural networks (NN),
fuzzy systems and hybrid intelligent systems represent powerful tools for learning
non-linear mappings. However, majority of those models assume independent and
identically distributed random variables mainly focusing on the prediction of a
single output and could not exploit structural relationships that exist between
multiple outputs in space and time.

We will illustrate how more accurate predictions are possible by structured
learning from merged heterogeneous BD compared to unstructured models, which
is achieved by developing and characterizing several innovative decision-making
tools. We will describe how the BD is automatically correlated in time and space.
Then, the probabilistic graphical model called the Gaussian Conditional Random
Fields (GCRF) will be introduced.

The proposed BD analytics will be examined for the following applications:
(1) Assets management—predicts weather impacts on deterioration and outage rates
of utility assets such as insulators, providing knowledge for optimal maintenance
schedules and replacement strategies. The GCRF model is used to predict the
probability of a flashover leading to probability of total insulator failure. (2) Solar
Generation—the GCRF model is introduced to forecast the solar photovoltaic
generation. Such data-driven forecasting techniques are capable of modeling both
the spatial and temporal correlations of various solar generation stations, and
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therefore they are performing well even under the scenarios with unavailable or
missing data.

Benefits of the proposed method are assessed through a new risk-based
frame-work using realistic utility data. The results show that spatio-temporal cor-
relation of BD and GCRF model can significantly improve ability to manage the
power grid by predicting weather related emergencies in electric power system.

2 Background

2.1 Power System Operation, Generation,
Outage and Asset Management

The current context of the modern electric industry, characterized by competitive
electricity markets, privatization, and regulatory or technical requirements
man-dates power utilities to optimize their operation, outage and asset management
practices and develop the requisite decision plans techno-economically. With the
rapid deployment of renewable generation based on wind, solar, geothermal energy
resources, etc., as well as the increasing demand to deliver higher quality electricity
to customers, many electric utilities have been undergoing a paradigm shift
regarding how the grid planning, operation, and protection should be reframed to
enhance the resilience of the power delivery infrastructure in face of many threating
risks. While the wide deployment of distributed renewable generation in the grid
has brought about a huge potential for performance improvements in various
domains, yet there are critical challenges introduced by renewables to overcome.
An accurate forecast of the unpredictable and variable sources of renewable gen-
eration, as well as their strategic coordination in every-day normal and even
emergency operation scenarios of the grid is of particular interest [1].

Asset management is said to be the process of cost minimization and profit
maximization through the optimized operation of the physical assets within their
life cycles. Asset management in electric power systems can be broadly classified
into four main categories based on the possible time scales, i.e., real-time,
short-term, mid-term, and long-term [2]. Real-time asset management mainly
covers the key power system resiliency principles and deals with the unexpected
outages of power system equipment and grid disruptions. System monitoring and
operating condition tracking infrastructures, e.g. supervisory control and data
acquisition systems (SCADA) and geographic information systems (GIS), play a
vital role for a techno-economically optimized real-time asset management. By
enhancing the situational awareness, they enable power system operators to
effectively monitor and control the system. Contingency analysis as well as online
outage management scheme is utilized to coordinate the necessary resource man-
agements through automated control systems. Wide area measurement systems
(WAMS), which have been recently realized by broad deployment of phasor
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measurement units (PMUs), are among the new technologies in this context [3].
Intelligent Electronic Devices (IED) located in substations can record and store a
huge amount of data either periodically with high sampling rates or on certain
critical events such as faults. When properly interpreted, data gathered from such
devices can be used to predict, operate, monitor and post-mortem analyze power
system events. Yet, without knowledge on the meaning of such data, efficient
utilization cannot be pursued. Thus, data mining techniques such as neural net-
works, support vector machines, decision trees, and spatial statistics should be
considered for acquiring such knowledge.

Short-term asset management strives to maximize the rate of return associated
with asset investments. The process, called asset valuation, is performed to incor-
porate company’s investments in its portfolio. The value mainly depends on the
uncertain market prices through various market realizations. Market risk assessment
is a key consideration and the revenue/profit distributions are gained through a
profitability analysis.

Optimized maintenance scheduling falls within the realm of mid-term asset
management. It guides the maintenance plans and the associated decision making
techniques toward satisfactorily meeting the system-wide desired targets. In other
words, efforts are focused to optimize the allocation of limited financial resources
where and when needed for an optimal outage management without sacrificing the
system reliability. Smart grid concept has facilitated an extensive deployment of
smart sensors and monitoring technologies to be used for health and reliability
assessment of system equipment over time and to optimize the maintenance plans
accordingly [4]. Two factors that are typically used for condition monitoring are the
prognostic parameters and trends of equipment deterioration. Prognostic parameters
that provide an indication of equipment condition such as ageing and deterioration
are useful indicators of impending faults and potential problems. The trend of the
deterioration of critical components can be identified through a trend analysis of the
equipment condition data. In addition to the aforementioned factors, event triggered
deterioration of equipment can be also considered. Gathering and interpreting
historical data can provide useful information for evaluation of impacts that events
had on given equipment over its lifetime. Data analytics can use such data as a
training set and establish connection between causes of faults/disturbances and its
impact on equipment condition. Knowledge gathered during training process can
then be used for classification of new events generated in real time and prediction of
equipment deterioration that is caused by these effects. With addition of historical
data about outages that affected the network, a more efficient predictive based
maintenance management can be developed [4].

Long-term investment in power system expansion planning as well as wide
deployment of distributed generations fall within the scope of long-term asset
management where the self-interested players, investors, and competitors are
invited to participate in future economic plans.

Knowledge from outage and assets management can be combined by consid-
ering both IED recordings and equipment parameters and reliability characteristics
for a more reliable decision making in practice. The goal is to explore limits of

268 M. Kezunovic et al.



available equipment and identify possible causes of equipment malfunction by
gathering both data obtained through the utility field measurement infrastructure
and additional data coming from equipment maintenance and operation records, as
well as weather and geographic data sources. In this approach, decision about the
state of the equipment is made based on the historical data of the events that
affected the network, as well as real-time data collected during the ongoing events.

2.2 Weather Data Parameters and Sources

The measurement and collection infrastructure of weather data has been well
developed over the past decades. In this subsection, as an example, the data from
National Oceanic and Atmospheric Administration (NOAA) [5] will be discussed.
Based on the type of measurements, the weather data may be categorized into:

• Surface observations using data collected from land-based weather stations that
contain measurement devices that track several weather indices such as tem-
perature, precipitation, wind speed and direction, humidity, atmospheric pres-
sure, etc.

• Radar (Radio Detection and Ranging) provides accurate storm data using radio
waves to determine the speed, direction of movement, range and altitude of
objects. Based on radar measurements different reflectivity levels are presented
with different colors on a map.

• Satellites generate raw radiance data. Unlike local-based stations, they provide
global environmental observations. Data is used to monitor and predict
wide-area meteorological events such as flash floods, tropical systems, torna-
does, forest fires, etc.

Table 1 [6–13] demonstrates the list of weather data sources from NOAA which
may be useful for power system operations. A list of national support centers for
more real-time and forecasting data may be found in [14]. A list of commercial

Table 1 List of weather data sources

Data source Available access

National Weather Service (NWS) GIS Portal [6]
National Digital Forecast Database [7]
Doppler Radar Images [8]

National Centers for Environmental
Information (NCEI)

Data Access [9]
Web Service [10]
GIS Map Portal [11]

Office of Satellite and Product Operations
(OSPO)

Satellite Imagery Products [12]

Global Hydrology Resource Center (GHRC) Lightning and Atmospheric Electricity
Research [13]

Predicting Spatiotemporal Impacts of Weather on Power Systems … 269



weather vendors for more specialized meteorological products and services may be
found in [15]. More land and atmosphere data and images may be found in National
Aeronautics and Space Administration (NASA) websites.

Specific power system operations are related to certain type of weather events. In
such case, the most relevant weather data input is required for data analytics. An
example below demonstrates the use of satellite and radar data.

The satellite meteorological detection is passive remote sensing in general,
whereas the radar meteorological detection is active remote sensing. Radars can
emit radio or microwave radiation and receive the back-scattering signals from a
convective system. For a practical example regarding tropical cyclones, satellites
can observe a tropical cyclone once it forms in the ocean, and radar can detect its
inner structure as it moves near the continent and lands in.

Lightning data is gathered by the sensors that are typically located sparsely over
the area of interest. There are three common types of lightning sensors:
(1) Ground-based systems that use multiple antennas to determine distance to the
lightning by performing triangulation, (2) Mobile systems that use direction and a
sensing antenna to calculate distance to the lightning by analyzing surge signal
frequency and attenuation, and (3) Space-based systems installed on artificial
satellites that use direct observation to locate the faults.

Typical detection efficiency for a ground-based system is 70–90%, with a
accuracy of location within 0.7–1 km, while space-based systems have resolution
of 5–10 km, [16].

For example, The National Lightning Detection Network (NLDN) [17] uses
ground-based system to detect lightning strikes across the United States. After
detection data received from sensors in raw form is transmitted via satellite-based
communication to the Network Control Center operated by Vaisala Inc. [18].

When it comes to the way data is received by the utility we can distinguish two
cases: (i) the lightning sensors are property of the utility, and (ii) lightning data is
received from external source. In the first case raw data are received from the
sensors, while in second case external sources provide information in the format
that is specific to the organization involved. Lightning data typically includes the
following information: a GPS time stamp, latitude and longitude of the strike, peak
current, lightning strike polarity, and type of lightning strike (cloud-to-cloud or
cloud-to-ground).

2.3 Spatio-Temporal Correlation of Data

Any kind of data with a spatial component can be integrated into GIS as another
layer of information. As new information is gathered by the system, these layers can
be automatically updated. Two distinct categories of GIS data, spatial and attribute
data can be identified. Data which describes the absolute and relative context of
geographic features is spatial data. For transmission towers, as an example, the
exact spatial coordinates are usually kept by the operator. In order to provide
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additional characteristics of spatial features, the attribute data is included. Attribute
data includes characteristics that can be either quantitative or qualitative. For
instance, a table including the physical characteristics of a transmission tower can
be described along with the attribute data.

In terms of spatial data representation, raster and vector data can be used. In case
of vector data, polygons, lines and points are used to form shapes on the
map. Raster presents data as a grid where every cell is associated with one data
classification. Typically, different data sources will provide different data formats
and types. Although modern GIS tools such as ArcGIS [19] are capable of opening
and overlaying data in different formats, analysis of mixed database is a challenge
[20].

GIS is often understood as a visualization tool of mapping geographical infor-
mation. However, it also enables interpretation of spatio-temporal data for better
decision making. An enterprise level GIS requires a GIS platform and a geospatial
database management system [21]. The GIS platform will allow the execution of
designed applications and enable access from various devices, and it is the key to
interface with current utility decision-making tools such as outage management
system. The geospatial database system will keep the most recent asset information
and update the database from asset management.

In addition to spatial reference, data must also be time referenced in a unique
fashion. Following factors are important for time correlation of data:

• Time scales: data can be collected with different time resolution: yearly,
monthly, daily, hourly, once every few minutes or even seconds. Time scales for
different applications and events of interest for this research are presented in
Fig. 1 [22].

• Atomic Time: Standards and their characteristics are listed in Table 2. All
standards use the same definition for 1 s.
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Fig. 1 Time scales of the Big Data and related applications of interest to the power sector
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• Synchronization protocols: Accuracy of a time stamp is highly dependent on the
type of the signal that is used for time synchronization. Different measuring
devices that use GPS synchronization can use different synchronization signals.
Table 3 lists properties of time synchronization protocols.

3 Weather Impact on Power System

3.1 Weather Impact on Outages

Main causes of weather related power outages are:

• Lightning activity: the faults are usually caused by cloud-to-ground lighting
hitting the poles.

• Combination of rain, high winds and trees movement: in order to completely
understand this event several data sources need to be integrated including pre-
cipitation data, wind speed and direction, and vegetation data.

• Severe conditions such as hurricanes, tornados, ice storms: in case of severe
conditions multiple weather factors are recorded and used for analysis.

• In case of extremely high and low temperatures the demand increases due to
cooling and heating needs respectively leading to the network overload.

Table 2 Atomic Time Standards

Standard name Leap
seconds

Representation Zero datum

UTC—Coordinated
Universal Time

Included Date and time:
[ddmmyyyy, hhmmss]

N/A

GPS Satellite Time Not
included

Seconds, or
week# + Seonds_of_Week

Midnight roll-over to 6
Jan 1980 UTC

TAI—International
Atomic Time

Not
included

Seconds Midnight roll‐over to 1
Jan 1970 UTC

Table 3 Time Synchronization Protocols

Protocol name Media Sync
accuracy

Time
standard

Description

Network Time
Protocol (NTP),
[23]

Ethernet 50–100 ms UTC Simplified version—SNTP assumes
symmetrical network delay

Serial time code
IRIG B-122, [24]

Coaxial 1–10 μs TAI Two versions used in substation:
B12x and B00x “lagging” code

Precision Time
Protocol (PTP),
[25]

Ethernet 20–100 ns TAI Master to slave
Hardware time‐stamping of PTP
packets is required
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Weather impact on outages in power systems can be classified into direct and
indirect [26]. Direct impact to utility assets: This type of impact includes all the
situations where severe weather conditions directly caused the component to fail.
Examples are: lightning strikes to the utility assets, wind impact making trees or tree
branches to come in contact with lines, etc. These types of outages are marked as
weather caused outages. Indirect impact to utility assets: This type of impact accrues
when weather creates the situation in the network that indirectly causes the com-
ponent to fail. The examples are: hot weather conditions increasing the demand thus
causing the overload of the lines resulting in the line sags increasing the risk of faults
due to tree contact, exposure of assets to long term weather impacts causing com-
ponent deterioration, etc. These types of outages are marked as equipment failure.

Weather hazard relates to the surrounding severe weather conditions that have a
potential to cause an outage in the electric network. Key source of information for
determining the weather hazard is weather forecast. Depending on the type of
hazard that is under examination different weather parameters are observed. In case
of a lightning caused outage, forecast for lightning probability, precipitation,
temperature, and humidity needs to be considered, while in case of outages caused
by wind impact, parameters of interest are wind speed, direction and gust, tem-
perature, precipitation, humidity, probability of damaging thunderstorm wind.

National Digital Forecast Database (NDFD), [7] provides short-term (next
3–7 days) and long-term (next year and a half) weather prediction for variety of
weather parameters such as temperature, precipitation, wind speed and direction,
hail, storm probabilities etc. NDFD uses Numerical Weather Prediction (NWP),
which is taking current weather observations and processing it using different
numerical models for prediction of future state of weather. Overview of hazard
analysis based on NDFD data is presented in Fig. 2 [27].

Fig. 2 Weather hazard using NDFD data, [27]
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3.2 Renewable Generation

Due to its’ environmentally friendly and sustainable nature, renewable generation,
such as wind generation, solar generation, etc., has been advocated and developed
rapidly during the past decades, as illustrated in Fig. 3. Many state governments are
adopting and increasing their Renewable Energy Portfolio (RPS) standards [28].
Among the 29 states with the RPS, California government is holding the most
aggressive one, aiming at reaching 33% renewables by 2020 [29].

Weather’s impact on the renewable generation is quite evident. For example,
solar generation largely depends on the solar irradiance, which could be affected by
the shading effect due to the variability of the clouds. Besides, other weather
condition such as the high temperature or snow can decrease the production effi-
ciency of the solar panel. As another commonly utilized renewable energy, wind
generation is sensitive to the availability of the wind resources, since small dif-
ferences in wind speed lead to large differences in power. Besides, when the wind
blows extremely hard, the wind turbine may switch off out of self-protection.

Renewable generation is quite sensitive to weather factors, and some of them are
highly variable and unpredictable: the wind could blow so hard at this moment and
suddenly stop at the next time step; the solar irradiance received by the solar panel
could suddenly goes down because of a moving cloud, etc.

Fig. 3 Illustration on the development of renewable generation [30]
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4 Predictive Data Analytics

4.1 Regression

4.1.1 Unstructured Regression

In the standard regression setting we are given a data set with N training examples,
D = {(xi, yi), i = 1, …, N}, where xi ∈ X ⊂ RM is an M dimensional vector of
inputs and yi ∈ R is a real-valued output variable.

For example, in one of the applications described later in this chapter
(Sect. 5.1.2.3), in the data set D, x are multivariate observations on a substation or a
tower, like weather conditions or peak current and lightning strike polarity, while
the output of interest y is the BIL (Basic Lightning Impulse Insulation Level) after
occurrence of lightning strike.

The objective of regression is to learn a linear or non-linear mapping f from
training data D that predicts the output variable y as accurately as possible given an
input vector x. Typically, the assumption about data-generating model is
y= f ðxÞ+ ε, ε∼Nð0, σ2Þ, where ε is Gaussian additive noise with constant variance
σ2. This setup is appropriate when data are independently and identically distributed
(IID). The IID assumption is often violated in applications where data reveal
temporal, spatial, or spatio-temporal dependencies. In such cases, the traditional
supervised learning approaches, as linear regression or neural networks, could result
in a model with degraded performances. Structured regression models are, there-
fore, used for predicting output variables that have some internal structure. Thus, in
the following sections we introduce such methods.

4.1.2 Structured Regression (Probabilistic Graphical Models)

Traditional regression models, like neural networks (NN), are powerful tools for
learning non-linear mappings. Such models mainly focus on the prediction of a
single output and could not exploit relationships that exist between multiple out-
puts. In structured learning, the model learns a mapping f: XN → RN to simulta-
neously predict all outputs given all input vectors. For example, let us assume that
the value of yi is dependent on that of yi−1 and yi+1, as is the case in temporal data,
or that the value of yi is dependent on the values of neighboring yh and yj, as it is the
case in spatially correlated data. Let us also assume that input xi is noisy. A tradi-
tional model that uses only information contained in xi to predict yi might predict
the value for yi to be quite different from those of yi−1 and yi+1 or yh and yj because
it treats them individually. A structured predictor uses dependencies among outputs
to take into account that yi is more likely to have value close to yi−1 and yi+1 or yh
and yj, thus improving final predictions.

In structured learning we usually have some prior knowledge about relationships
among the outputs y. Mostly, those relationships are application-specific where the
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dependencies are defined in advance, either by domain knowledge or by assump-
tions, and represented by statistical models.

Probabilistic Graphical Models

Relationships among outputs can be represented by graphical models. The
advantage of the graphical models is that the sparseness in the interactions between
outputs can be used for development of efficient learning and inference algorithms.
In learning from spatial-temporal data, the Markov Random Fields [31] and the
Conditional Random Fields (CRF) [32] are among the most popular graphical
models (Fig. 4).

Conditional Random Fields

Originally, CRF were designed for classification of sequential data [32] and have
found many applications in areas such as computer vision [33], natural language
processing [34], and computational biology [35]. CRFs are a type of discriminative
undirected probabilistic graphical model defined over graph G as

PðyjxÞ= 1
ZðxÞ ∑

A

a=1
ψaðya, xaÞ, ψaðya, xaÞ= exp ∑

KðAÞ

k=1
θakfakðya, xaÞ

 !
, ð4:1Þ

where Z(x) is a normalization constant and {Ψ a} is a set of factors in G. The feature
functions fak and the weights θak are indexed by the factor index a (each factor has
its own set of weights) and k (there are K feature functions).

Construction of appropriate feature functions in CRF is a manual process that
depends on prior beliefs of a practitioner about what features could be useful. The
choice of features is often constrained to simple constructs to reduce the complexity

Fig. 4 Data set D in the
standard regression setting
with X as an input variable
matrix and y as a real-valued
output variable vector
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of learning and inference from CRF. In general, to evaluate P(y|x) during learning
and inference, one would need to use time consuming sampling methods. This
problem can be accomplished in a computationally efficient manner for real-valued
CRFs.

CRF for regression is a less explored topic. The Conditional State Space Model
(CSSM) [36], an extension of the CRF to a domain with the continuous multivariate
outputs, was proposed for regression of sequential data. Continuous CRF (CCRF)
[37] is a ranking model that takes into account relations among ranks of objects in
document retrieval. In [33], a conditional distribution of pixels given a noisy input
image is modeled using the weighted quadratic factors obtained by convolving the
image with a set of filters. Feature functions in [33] were specifically designed for
image de-noising problems and are not readily applicable to regression.

Most CRF models represent linear relationships between attributes and outputs.
On the other hand, in many real-world applications this relationship is highly
complex and nonlinear and cannot be accurately modeled by a linear function. CRF
that models nonlinear relationship between observations and outputs has been
applied to the problem of image de-noising [33]. Integration of CRF and Neural
Networks (CNF) [38–40] has been proposed for classification problems to address
these limitations by adding a middle layer between attributes and outputs. This layer
consists of a number of gate functions each acting as a hidden neuron, that captures
the nonlinear relationships. As a result, such models can be much more computa-
tionally expressive than regular CRF.

4.2 Gaussian Conditional Random Fields (GCRF)

4.2.1 Continuous Conditional Random Fields Model

Conditional Random Fields (CRF) provide a probabilistic framework for exploiting
complex dependence structure among outputs by directly modeling the conditional
distribution P(y|x). In regression problems, the output yi is associated with input
vectors x = (x1, …, xN) by a real-valued function called association potential A(α,
yi, x), where α is K-dimensional set of parameters. The larger the value of A is the
more yi is related to x. In general, A is a combination of functions and it takes as
input all input data x to predict a single output yi meaning that it does not impose
any independency relations among inputs xi (Figs. 5 and 6).

To model interactions among outputs, a real valued function called interaction
potential I(β, yi, yj, x) is used, where β is an L dimensional set of parameters.
Interaction potential represents the relationship between two outputs and in general
can depend on an input x. For instance, interaction potential can be modeled as a
correlation between neighboring (in time and space) outputs. The larger the value of
the interaction potential, the more related outputs are.

For the defined association and interaction potentials, continuous CRF models a
conditional distribution P(y|x):

Predicting Spatiotemporal Impacts of Weather on Power Systems … 277



PðyjxÞ= 1
Zðx, α, βÞ exp ∑

N

i=1
Aðα, yi, xÞ+ ∑

j∼ i
Iðβ, yi, yj, xÞ

 !
ð4:2Þ

where y = (y1, …, yN), j ∼ i denotes the connected outputs yi and yj (connected
with solid line at Fig. 6) and Z(x, α, β) is normalization function defined as

Zðx,α, βÞ=
Z
y

exp ∑
N

i=1
Aðα, yi, xÞ+ ∑

j∼ i
Iðβ, yi, yj, xÞ

 !
dy ð4:3Þ

Fig. 5 U.S. average annual precipitation (1971–2000) [41]: spatial relationship between outputs
of precipitation measurement stations over U.S.

yi+1yi

yi-1 yi+5

yi+2

yi-3

x
Fig. 6 Continuous CRF
graphical structure. x-inputs
(observations); y-outputs;
dashed lines-associations
between inputs and outputs;
solid lines-interactions
between outputs, [57]
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The learning task is to choose values of parameters α and β to maximize the
conditional log-likelihood of the set of training examples

Lðα,βÞ= ∑ logPðyjxÞ
ðα̂, β ̂Þ= argmax

α, β
ðLðα,βÞÞ. ð4:4Þ

This can be achieved by applying standard optimization algorithms such as
gradient descent. To avoid overfitting, L(α, β) is regularized by adding α2/2 and β2/
2 terms to log-likelihood in formula (4.4) that prevents the parameters from
becoming too large.

The inference task is to find the outputs y for a given set of observations x and
estimated parameters α and β such that the conditional probability P(y|x) is
maximized

y ̂= argmax
y

ðPðyjxÞÞ. ð4:5Þ

In CRF applications, A and I could be defined as linear combinations of a set of
fixed features in terms of α and β [42]

Aðα, yi, xÞ= ∑
K

k=1
αkfkðyi, xÞ

Iðβ, yi, yj, xÞ= ∑
L

l=1
βlglðyi, yj, xÞ

ð4:6Þ

This way, any potentially relevant feature could be included to the model
because parameter estimation automatically determines their actual relevance by
feature weighting.

4.2.2 Association and Interaction Potentials in the GCRF Model

If A and I are defined as quadratic functions of y, P(y|x) becomes multivariate
Gaussian distribution and learning and inference can be accomplished in a com-
putationally efficient manner. In the following, the proposed feature functions that
lead to Gaussian CRF are described.

Let us assume we are given K unstructured predictors (e.g. neural network, linear
regression or any domain-defined model), Rk(x), k = 1, …, K, that predict single
output yi taking into account x (as a special case, only xi can be used as x). To
model the dependency between the prediction and output, introduced are quadratic
feature functions
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fkðyi, xÞ= − ðyi −RkðxÞÞ2, k=1, . . . ,K. ð4:7Þ

These feature functions follow the basic principle for association potentials—
their values are large when predictions and outputs are similar. To model the
correlation among outputs, introduced are the quadratic feature function

glðyi, yj, xÞ= − eðlÞij S
ðlÞ
ij ðxÞðyi − yjÞ2, eðlÞij =1 if i, jð Þ ∈ Gl,

eðlÞij =0, otherwise
ð4:8Þ

that imposes that outputs yi and yj have similar values if they have an edge in the
graph. Note that multiple graphs can be used to model different aspects of corre-
lation between outputs (for example, spatial and temporal). Sij

(l)(x) function repre-
sents similarity between outputs yi and yj, that depends on inputs x. The larger
Sij
(l)(x) is, the more similar the outputs yi and yj are (Fig. 7).

4.2.3 Gaussian Canonical Form

P(y|x) for CRF model (4.2), which uses quadratic feature functions, can be rep-
resented as a multivariate Gaussian distribution. The resulting CRF model can be
written as

PðyjxÞ= 1
Z
exp − ∑

N

i=1
∑
K

k=1
αkðyi −RkðxÞÞ2 − ∑

i, j
∑
L

l=1
βle

ðlÞ
ij S

ðlÞ
ij ðxÞðyi − yjÞ2

 !
ð4:9Þ

Fig. 7 Gaussian CRF
graphical structure:
association and interaction
potentials are modeled as
quadratic feature functions
dependent on unstructured
predictors Rk and similarity
functions S(l), respectively
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The exponent in (4.9), which will be denoted as E, is a quadratic function in
terms of y. Therefore, P(y|x) can be transformed to a Gaussian form by representing
E as

E= −
1
2
ðy−μÞTΣ− 1ðy−μÞ= −

1
2
yTΣ− 1y+ yTΣ− 1μ+ const ð4:10Þ

To transform P(y|x) to the Gaussian form, Σ and μ are determined by matching
(4.9) and (4.10). The quadratic terms of y in the association and interaction
potentials as represented as -yTQ1y and -yTQ2y, respectively, and combined to get

Σ− 1 = 2ðQ1 +Q2Þ. ð4:11Þ

By combining the quadratic terms of y from the association potential, it follows
that Q1 is diagonal matrix with elements

Q1ij =
∑
K

k=1
αk, i= j

0, i≠ j.

8<: ð4:12Þ

By repeating this for the interaction potential, it follows that Q2 is symmetric
with elements

Q2ij =
∑
k
∑
L

l=1
βle

ðlÞ
ik S

ðlÞ
ik ðxÞ, i= j

− ∑
L

l=1
βle

ðlÞ
ij S

ðlÞ
ij ðxÞ, i≠ j.

8>><>>: ð4:13Þ

To get μ, linear terms in E are matched with linear terms in the exponent of (4.9)

μ=Σb, ð4:14Þ

where b is a vector with elements

bi =2 ∑
K

k=1
αkRkðxÞ

� �
. ð4:15Þ

By calculating Z using the transformed exponent, it follows

Zðα,β, xÞ= ð2πÞN 2̸ Σj j1 2̸expðconstÞ. ð4:16Þ
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Since exp(const) terms from Z and P(y|x) cancel out

PðyjxÞ= 1

ð2πÞN 2̸ Σj j1 2̸ exp −
1
2
ðy−μÞTΣ− 1ðy−μÞ

� �
, ð4:17Þ

where Σ and μ are defined in (4.11) and (4.14). Therefore, the resulting conditional
distribution is Gaussian with mean μ and covariance Σ. Observe that Σ is a function
of parameters α and β, interaction potential graphs Gl, and similarity functions S,
while μ is also a function of inputs x. The resulting CRF is called the Gaussian
CRF (GCRF).

4.2.4 Learning and Inference

The learning task is to choose α and β to maximize the conditional log-likelihood,

ðα ̂,β̂Þ= argmax
α,β

ðLðα,βÞÞ, where Lðα, βÞ= ∑ logPðyjxÞ. ð4:18Þ

In order for the model to be feasible, the precision matrix Σ−1 has to be positive
semi-definite. Σ−1 is defined as a double sum of Q1 and Q2. Q2 is a symmetric
matrix with the property that the absolute value of a diagonal element is equal to the
sum of absolute values of non-diagonal elements from the same row.

By Gershgorin’s circle theorem [43], a symmetric matrix is positive
semi-definite if all diagonal elements are non-negative and if matrix is diagonally
dominant. Therefore, one way to ensure that the GCRF model is feasible is to
impose the constraint that all elements of α and β are greater than 0. In this setting,
learning is a constrained optimization problem. To convert it to the unconstrained
optimization, a technique used in [37] is adopted that applies the exponential
transformation on α and β parameters to guarantee that they are positive

αk = euk , for k=1, . . . ,K

βl = evl , for l=1, . . . ,L,
ð4:19Þ

where u and v are real valued parameters. As a result, the new optimization problem
becomes unconstrained.

All parameters are learned by the gradient-based optimization. Conditional
log-likelihood form is

logP= −
1
2
ðy−μÞTΣ− 1ðy−μÞ− 1

2
log Σj j. ð4:20Þ
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Derivative of log-likelihood form is given by

d logP= −
1
2
ðy−μÞTdΣ− 1ðy−μÞ+ ðdbT −μTdΣ− 1Þðy−μÞ+ 1

2
TrðdΣ− 1 ⋅ΣÞ

ð4:21Þ

From (4.21) derivatives ∂logP/∂αk and ∂logP/∂βl can be calculated. The
expression for ∂logP/∂αk is

∂ logP
∂αk

= −
1
2
ðy− μÞT ∂Σ

− 1

∂αk
ðy− μÞ+ ∂bT

∂αk
− μT

∂Σ − 1

∂αk

� �
ðy− μÞ+ 1

2
Tr Σ ⋅

∂Σ − 1

∂αk

� �
.

ð4:22Þ

To calculate ∂logP/∂βl, use ∂b/∂βl = 0 to obtain

∂ logP
∂βl

= −
1
2
ðy+μÞT ∂Σ

− 1

∂βl
ðy−μÞ+ 1

2
Tr Σ ⋅

∂Σ− 1

∂βl

� �
. ð4:23Þ

Gradient ascent algorithm cannot be directly applied to a constrained opti-
mization problem [37]. Here, previously defined exponential transformation on α
and β is used and then gradient ascent is applied. Specifically, the maximization of
log-likelihood with respect to uk = logαk and vl = logβ instead to αk and βl is
performed. As a result, the new optimization problem becomes unconstrained.
Derivatives of log-likelihood function and updates of α’s and β in gradient ascent
can be computed as

uk = log αk, vl = log βl

unewk = uoldk + η
∂L
∂uk

,
∂L
∂uk

=
∂L

∂ log αk
= αk

∂L
∂αk

vnewk = voldk + η
∂L
∂vl

,
∂L
∂vl

=
∂L

∂ log βl
= βl

∂L
∂βl

,

ð4:24Þ

where η is the learning rate.
The negative log-likelihood is a convex function of parameters α and β and its

optimization leads to globally optimal solution.
In inference, since the model is Gaussian, the prediction will be expected value,

which is equal to the mean μ of the distribution,

y ̂= argmax
y

PðyjxÞ=Σb. ð4:25Þ

Vector μ is a point estimate that maximizes P(y|x), while Σ is a measure of
uncertainty. The simplicity of inference that can be achieved using matrix com-
putations is in contrast to a general CRF model defined in (4.2) that usually requires
advanced inference approaches such as Markov Chain Monte Carlo or belief
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propagation. Moreover, by exploiting the sparsity of precision matrix Q, which is
inherent to spatio-temporal data, the inference can be performed without the need to
calculate Σ explicitly which reduces computational time to even linear with the
dimensionality of y (depends on the level of sparsity).

4.2.5 GCRF Extensions

The previously defined GCRF model was first published in [37]. If size of the
training set is N and gradient ascent lasts T iterations, training the GCRF model
introduced at [37] requires O(T ⋅ N3) time. The main cost of computation is matrix
inversion, since during the gradient-based optimization we need to find Σ as an
inverse of Σ−1. However, this is the worst-case performance. Since matrix Σ−1 is
typically very sparse, the training time for sparse networks can be decreased to O
(T ⋅ N2). The total computation time of this model depends on the neighborhood
structure of the interaction potential in GCRF. For example, GCRF computational
complexity is O(T ⋅ N3/2) if the neighborhood is spatial and O(T ⋅ N2) if it is
spatio-temporal [44].

Several GCRF extensions were developed to speed-up the learning and infer-
ence, and increase the representational power of the model. A continuous CRF for
efficient regression in large fully connected graphs was introduced via Variational
Bayes approximation of the conditional distribution [45]. A distributed GCRF
approximation approach was proposed based on partitioning large evolving graphs
[46]. More recently, the exact fast solution has been obtained by extending the
modeling capacity of the GCRF while learning a diagonalized precision matrix
faster, which also enabled inclusion of negative interactions in a network [47].

Representational power of GCRF was further extended by distance-based
modeling of interactions in structured regression to allow non-zero mean parame-
ters in the interaction potential to further increase the prediction accuracy [48].
Structured GCRF regression was also recently enabled on multilayer networks by
extending the model to accumulate information received from each of the layers
instead of averaging [49]. A deep Neural GCRF extension was introduced to learn
an unstructured predictor while learning the GCRF’s objective function [50]. This
was further extended by joint learning of representation and structure for sparse
regression on graphs [51]. This is achieved by introducing hidden variables that are
nonlinear functions of explanatory variables and are linearly related with the
response variables. A semi-supervised learning algorithm was also developed for
structured regression on partially observed attributed graphs by marginalizing out
missing label instances from the joint distribution of labeled and unlabeled nodes
[52]. Finally, a GCRF extension for modeling the uncertainty propagation in long-
term structured regression was developed by modeling noisy inputs, and applied for
regression on evolving networks [53].
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5 Applications and Results

5.1 Insulation Coordination

5.1.1 Introduction

The integrity of an overhead transmission line is directly governed by the electrical
and mechanical performance of insulators. More than 70% of the line outages and
up to 50% of line maintenance costs are being caused by the insulator-induced
outages [54].

In this section the Big Data application for insulation coordination is presented.
Proposed method in [55] changes the insulator strength level during the insulator
lifetime reflecting how weather disturbances are reducing the insulator strength.
Historical data is analyzed to observe cumulative changes in the power network
vulnerability. Regression is used to determine insulator breakdown probability. The
data we used included Lightning Detection Network Data, weather data, utility fault
locators’ data, outage data, insulator specification data, GIS data, electricity market
data, assets data, and customer impact data. The model includes economic impacts
for insulator breakdown.

5.1.2 Modeling

Risk Based Insulation Coordination

The risk assessment framework used for this research is defined as follows [55]:

R=P½T � ⋅ P½CjT � ⋅ uðCÞ ð5:1Þ

where R is the State of Risk for the system (or component), T is the Threat intensity
(i.e. lightning peak current), Hazard P[T] is a probability of a lightning strike with
intensity T, P[C|T] is the Vulnerability or probability of an insulation total failure if
lightning strike with intensity T occurred, and the Worth of Loss, u(C), is an
estimate of financial losses in case of insulation total failure.

Lightning Hazard

Probability of a lightning strike is estimated based on historical lightning data in the
radius around the affected components. For each node, the lightning frequency is
calculated as the ratio between the number of lightning strikes in the area with
radius of 100 m around the node and the number of lightning strikes in the total
area of the network, Fig. 8. As it can be seen in the Fig. 8, Hazard probability is
calculated based on two factors: (1) probability that the lightning will affect the

Predicting Spatiotemporal Impacts of Weather on Power Systems … 285



network area determined based on weather forecast, and (2) probability that the
lightning will affect a specific component inside the network area determined based
on historical lightning frequency data.

Prediction of Vulnerability

The goal of vulnerability part of risk analysis is to determine what impact the severe
weather conditions will have on the network. In the case of lightning caused
outages, the main goal is to determine what the probability of insulator failure is.
Insulation coordination is the study used to select insulation strength to withstand
the expected stress. Insulation strength can be described using the concept of Basic
Lightning Impulse Insulation Level (BIL), (Fig. 9a) [56]. Statistical BIL represents
a voltage level for which insulation has a 90% probability of withstand. Stan-
dard BIL is expressed for a specific wave shape of lightning impulse (Fig. 9b), and
standard atmospheric conditions.

In order to estimate a new BIL as time progresses (BILnew), data is represented in
form of a graph where each node represents a substation or a tower and links
between nodes are calculated using impedance matrix as illustrated in Fig. 10.

BILnew in our experiments is predicted using Gaussian Conditional Random
Fields (GCRF) based on structured regression [52]. The model captures both the
network structure of variables of interest (y) and attribute values of the nodes (x).

Fig. 8 Lightning Hazard probability
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It models the structured regression problem as estimation of a joint continuous
distribution over all nodes:

PðyjxÞ= 1
Z
exp − ∑

N

i=1
∑
K

k=1
αk yi −RkðxÞð Þ2

�
− ∑

i, j
∑
L

l=1
βle

ðlÞ
ij S

ðlÞ
ij ðxÞ yi − yj

� �2! ð5:2Þ

where the dependence of target variables (y) on input measurements (x) based on k
unstructured predictors R1,…, Rk is modeled by the “association potential” (the first
double sum of the exponent in the previous equation).

Fig. 9 a Basic lightning impulse insulation level (BIL), b Standard lightning impulse

Fig. 10 Network graph representation [55]
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Economic Impact

Having a model that takes into account economic impact is the key for developing
optimal mitigation techniques that minimize the economic losses due to insulation
breakdown. Such analysis provides evidence of the Big Data value in improving
such applications.

If electric equipment fails directly in face of severe weather changes or indirectly
due to the wear-and-tear mechanism, an outage cost would be imposed to the
system. For instance, the weather-driven flash-over might happen on an insulator
k in the system leading to the corresponding transmission line i outage as well. In
order to quantify the outage cost of an electric equipment, say failure of insulator
k and accordingly outage of transmission line i at time t, Φt

k, i, which is the total
imposed costs, are quantified in (5.3) comprising of three monetary indices.

Φt
k, i =Ct

CM, k, i + ∑
D

d=1
d∈ LP

Ct
LR, k, i +Ct

CIC, k, i

� � ð5:3Þ

The first monetary term in (5.3) is a fixed index highlighting the corrective
maintenance activities that needs to be triggered to fix the damaged insulator. Such
corrective maintenance actions in case of an equipment failure can be the
replacement of the affected insulator with a new one and the associated costs may
involve the cost of required labor, tools, and maintenance materials. The variable
costs [the second term in (5.3)] include the lost revenue cost imposed to the utility
(Ct

LR, k, i) as well as the interruption costs imposed to the affected customers expe-
riencing an electricity outage (Ct

CIC, k, i). In other words, the cost function Ct
LR, k, i is

associated with the cost imposed due to the utility’s inability to sell power for a
period of time and hence the lost revenue when the insulator (and the associated
transmission line) is out of service during the maintenance or replacement interval.
This monetary term can be calculated using (5.4) [58, 59].

Ct
LR, k, i = ∑

D

d=1
d∈LP

λtd.EENS
t
d, k, i

� � ð5:4Þ

where, λtd is the electricity price ($/MWh.) at load point d and EENStd, k, i is the
expected energy not supplied (MWh) at load point d due to the failure of insulator
k and outage of line i accordingly at time t.

The last variable term of the cost function in (5.3) reflects the customer inter-
ruption costs due to the failure of insulator k and corresponding outage of trans-
mission line i at time t which can be calculated in (5.5). Ct

CIC, k, i is a function of the
EENS index and the value of lost load (VOLLd) at load point d which is governed
by various load types being affected at a load point. The value of lost load
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($/MWh.) is commonly far higher than the electricity price and is commonly
obtained through customer surveys [59, 60].

Ct
CIC, k, i = ∑

D

d=1
d∈ LP

VOLLd.EENS
t
d, k, i

� � ð5:5Þ

The cost function in (5.3), which is actually the failure consequence of an
electric equipment (insulator in this case) can be calculated for each equipment
failure in the network making it possible to differentiate the impact of different
outages (and hazards) on the system overall economic and reliability performance.

5.1.3 Test Setup and Results

The network segment contains 170 locations of interest (10 substations and 160
towers). Historical data is prepared for the period of 10 years, starting from January
1st 2005, and ending with December 31st 2014. Before the first lightning strike, all
components are assumed to have a BIL provided from the manufacturer. For each
network component, risk value was calculated, assigned, and presented on a map as
shown in Fig. 11. In part (a) of Fig. 11, the risk map on January 1st 2009 is
presented, while in part (b), the risk map after the last recorded event is presented.
With the use of weather forecast, the prediction of future Risk values can be
accomplished. In Fig. 11c, the prediction for the next time step is demonstrated. For
the time step of interest, the lightning location is predicted to be close to the line 11
(marked with red box in Fig. 11c. Thus, risk values assigned to the line 11 will have
the highest change compared to that of the previous step. The highest risk change
on line 11 happens for node 72 with changed from 22.8% to 43.5%. The Mean

Fig. 11 Results—insulator failure risk maps [55]
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Squared Error (MSE) of prediction of GCRF algorithm on all 170 test nodes is
0.0637 + 0.0301 kV when predicting the new value of BIL (BILnew).

5.2 Solar Generation Forecast

5.2.1 Introduction

The solar industry has been growing quite rapidly so far, and consequently, accurate
solar generation prediction is playing a more and more important role, aiming at
alleviating the potential stress that the solar generation may exert to the grid due to
its variability and intermittency nature.

This section presents an example of how to conduct the solar prediction through
the introduced GCRF model, while considering both the spatial and temporal
correlations among different solar stations. As a data-driven method, the GCRF
model needs to be trained with historical data to obtain the necessary parameters,
and then the prediction can be accurately conducted through the trained model. The
detailed modeling of the association and interaction potentials in this case is
introduced, and simulations are conducted to compare the performance of GCRF
model with two other forecast models under different scenarios.

5.2.2 Modeling

GCRF is a graphical model, in which multiple layers of graphs can be generated to
model the different correlations among inputs and outputs. We are trying to model
both the special and temporal correlations among the inputs and the outputs here, as
shown in Fig. 12.

In Fig. 12, the red spots labeled in numbers locate different solar stations, in
which historical measurements of solar irradiance are available as the inputs. Our
goal is to predict the solar irradiance at the next time step as the outputs at different
solar stations. Then the prediction of the solar generation can be obtained, since
solar generation is closely related to the solar irradiance.

In next subsection, the relationship between the solar generation and solar
irradiance is first introduced. Then, the modeling of both the temporal and spatial
correlations by GCRF model is presented.

Solar Generation Versus Solar Irradiance

The relationship between the solar generation and the solar irradiance can be
approximated in a linear form [61], as calculated in (5.6).
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Psolar = Isolar × S× η ð5:6Þ

where Psolar is the power of the solar generation; Isolar is the solar irradiance
(kWh/m2); S is the area of the solar panel (m2); and η is the generation efficiency of
a given material.

Temporal Correlation Modeling

The temporal correlation lies in the relationship between the predicted solar irra-
diance of one solar station and its own historical solar irradiance measurements, as
illustrated in red dot lines in Fig. 12. The autoregressive (AR) model [62] is
adopted here to model the predictors RiðxÞ in the association potential, as denoted in
(5.7).

RiðxÞ= c+ ∑
pi

m=1
φmy

t−m
i ð5:7Þ

where pi is selected to be 10 to consider the previous 10 historical measurements;
and φm is the coefficient of the AR model.

Fig. 12 Spatial and temporal correlations [61]
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Spatial Correlation Modeling

The spatial correlation lies in the relationships among the predicted solar irradiance
at different solar stations, as illustrated in the black lines in Fig. 12. It can be
reasonably assumed that the closer the stations are, the more similar their solar
irradiance will be. Therefore, the distance can be adopted to model the similarity
between different solar stations, and the Sij in the interaction potential can be
calculated in (5.8).

Sij =
1
D2

ij
ð5:8Þ

where Dij is the distance between station No. i and No. j.

5.2.3 Test Setup and Results

Hourly solar irradiance data in year 2010 from 8 solar stations have been collected
from the California Irrigation Management Information System (CIMIS) [63]. The
geographical information is provided in Fig. 13, where the station No. 1 is regarded
as the targeted station, and two artificial stations (No. 9 and No. 10) are added very
close to station No. 1.

Fig. 13 Geographical information of the test system [61]
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The scenarios are selected as follows: Scenario 1: no missing data; Scenario 2:
missing data do exist (Scenario 2-1: one hourly data set is missing in station No. 1;
Scenario 2-2: two successive hourly data sets are missing in station No. 1; Scenario
2-3: one hourly data set is missing in several stations; Scenario 2-4: no data is
available in one of those stations.).

Besides, the data obtained have been divided into 4 cases during the training and
validation periods, as listed in Table 4. And the performance of the GCRF model
will be compared with that of two other models: Persistent (PSS) and Autore-
gressive with Exogenous input (ARX) models, through the index of the mean
absolute errors (MAE) and the root mean square error (RMSE) defined in (5.9) and
(5.10). The detailed information regarding to the PSS and ARX models can be
found in [64].

MAE=
1
Z
∑
Z

t=1
byt − ytj j ð5:9Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z
∑
Z

t=1
byt − ytð Þ2

s
, ð5:10Þ

The performances of the three models regarding to Scenario 1 are listed in
Table 5, and the detailed performances are illustrated in Fig. 14, in which the green
line denotes the ideal prediction result, and the performance is better if it is closer to
that line. We can observe clearly that GCRF model outperforms the other two
models in Scenario 1.

Table 4 Training and validation periods [61]

Case 1 2 3 4

Training period January, March May July, September November
Validation period February, April April, June August, October October, December

Table 5 Performance indices
of various forecasting models:
Scenario 1 [61]

Index Cases Forecast model
PSS ARX GCRF

MAE Case 1 90.3676 56.5334 55.1527
Case 2 98.1372 51.8562 40.4062
Case 3 96.6623 35.5478 25.5906
Case 4 92.8664 51.6816 29.6195

RMSE Case 1 111.9337 76.7467 74.4007
Case 2 116.5823 81.9164 60.6969
Case 3 111.6060 55.8073 40.6566
Case 4 108.1498 67.8648 43.7008
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Figures 15 and 16, Table 6 present the performance results of the three models
in Scenario 2 (In Scenario 2-4, the data from Station No. 5 are totally not available).
The simulation results under Scenario 2 shows that: (1) GCRF model still has the
best performance when missing data exist; (2) the data from Station No. 9 and 10
play an important role. GCRF model works very well when there is no missing data
in those two stations, while its performance may also compromise a bit when
missing data occur in those two stations, though it still performs the best most of the
time. The reason behind is the spatial correlations among those three stations
(No. 1, 9 and 10) are strong, since they are physically close to each other. These
spatial correlations are modeled and considered in the GCRF model, and therefore,
the deviated prediction results, caused by the missing data, can be further adjusted
by the strong spatial correlation.

Fig. 14 Prediction performance of GCRF, ARX and PSS models: Scenario1 (Case3) [61]

Fig. 15 Prediction performance of GCRF, ARX and PSS models: LEFT—Scenario 2-1 (Case3);
RIGHT—Scenarios 2-2 (Case 3) [61]
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6 Conclusions

In this chapter the application of the Big Data for analyzing weather impacts on
power system operation, outage, and asset management has been introduced.
Developed methodology exploits spatio-temporal correlation between diverse
datasets in order to provide better decision-making strategies for the future smart
grid. The probabilistic framework called Gaussian Conditional Random Fields
(GCRF) has been introduced and applied to two power system applications:

Fig. 16 Prediction performance of GCRF, ARX and PSS models: LEFT—Scenario 2-3 (Case3)
[61]

Table 6 Performance indices
of various forecasting models:
Scenario 2-4 [61]

Index Cases Forecast model
PSS ARX GCRF

MAE Case 1 96.6623 58.2602 55.9011
Case 2 96.6623 47.7145 43.0316
Case 3 96.6623 50.2712 26.8112
Case 4 96.6623 56.3702 30.7201

RMSE Case 1 111.6060 79.2030 75.6125
Case 2 111.6060 76.5143 63.7870
Case 3 111.6060 68.0714 41.8258
Case 4 111.6060 72.0233 44.8699
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(1) Risk assessment for transmission insulation coordination, and (2)
Spatio-temporal solar generation forecast.

When applied to the insulation coordination problem, proposed model leads to
the following contributions:

• Our data analytics changes the insulator strength level during the insulator
lifetime reflecting how weather disturbances are reducing the insulator strength.
We analyzed historical data to observe cumulative changes in the power net-
work vulnerability to lightning. This allows for a better accuracy when pre-
dicting future insulator failures, since the impact of past disturbances is not
neglected.

• We used GCRF to determine insulator breakdown probability based on spa-
tiotemporally referenced historical data and real-time weather forecasts. The BD
we used included Lightning Detection Network Data, historical weather and
weather forecast data, data from utility fault locators, historical outage data,
insulator specification data, Geographical Information System (GIS) data,
electricity market data, assets replacement and repair cost data, and customer
impact data. This was the first time that we are aware such an extensive Big Data
set was used to estimate insulator failure probability.

• Our model included economic impacts for insulator breakdown. Having a model
that takes into account economic impact is the key for developing optimal
mitigation techniques that minimize the economic losses due to insulation
breakdown. Such analysis provides evidence of the Big Data value in improving
such applications.

When applied to the solar generation prediction, the proposed model leads to the
following contributions:

• Not only the temporal but also the spatial correlations among different locations
can be modeled, which leads to an improvement in the accuracy of the pre-
diction performance.

• The adoption of the GCRF model can further ensure a good prediction per-
formance even under the scenario with missing data, especially when the spatial
correlations are strong. The reason behind is that the deviated prediction results,
caused by the missing data, can be adjusted by the strong spatial correlation.
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