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Preface

The disciplines of Data Science and Big Data, coming hand in hand, form one
of the rapidly growing areas of research, have already attracted attention of industry
and business. The prominent characterization of the area highlighting the essence
of the problems encountered there comes as a 3V (volume, variety, variability) or
4V characteristics (with veracity being added to the original list). The area itself has
initialized new directions of fundamental and applied research as well as led to
interesting applications, especially those being drawn by the immediate needs to
deal with large repositories of data and building some tangible, user-centric models
of relationships in data.

A general scheme of Data Science involves various facets: descriptive (con-
cerning reporting—identifying what happened and answering a question why it has
happened), predictive (embracing all the investigations of describing what will
happen), and prescriptive (focusing on acting—make it happen) contributing to the
development of its schemes and implying consecutive ways of the usage of the
developed technologies. The investigated models of Data Science are visibly ori-
ented to the end-user, and along with the regular requirements of accuracy (which
are present in any modeling) come the requirements of abilities to process huge and
varying data sets and the needs for robustness, interpretability, and simplicity.

Computational intelligence (CI) with its armamentarium of methodologies and
tools is located in a unique position to address the inherently present needs of Data
Analytics in several ways by coping with a sheer volume of data, setting a suitable
level of abstraction, dealing with distributed nature of data along with associated
requirements of privacy and security, and building interpretable findings at a
suitable level of abstraction.

This volume consists of twelve chapters and is structured into two main parts:
The first part elaborates on the fundamentals of Data Analytics and covers a number
of essential topics such as large scale clustering, search and learning in highly
dimensional spaces, over-sampling for imbalanced data, online anomaly detection,
Cl-based classifiers for Big Data, Machine Learning for processing Big Data and
event detection. The second part of this book focuses on applications demonstrating
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the use of the paradigms of Data Analytics and CI to safety assessment, manage-
ment of smart grids, real-time data, and power systems.

Given the timely theme of this project and its scope, this book is aimed at a
broad audience of researchers and practitioners. Owing to the nature of the material
being covered and a way it has been organized, one can envision with high con-
fidence that it will appeal to the well-established communities including those
active in various disciplines in which Data Analytics plays a pivotal role.

Considering a way in which the edited volume is structured, this book could
serve as a useful reference material for graduate students and senior undergraduate
students in courses such as those on Big Data, Data Analytics, intelligent systems,
data mining, computational intelligence, management, and operations research.

We would like to take this opportunity to express our sincere thanks to the
authors for presenting advanced results of their innovative research and delivering
their insights into the area. The reviewers deserve our thanks for their constructive
and timely input. We greatly appreciate a continuous support and encouragement
coming from the Editor-in-Chief, Prof. Janusz Kacprzyk, whose leadership and
vision makes this book series a unique vehicle to disseminate the most recent,
highly relevant, and far-reaching publications in the domain of Computational
Intelligence and its various applications.

We hope that the readers will find this volume of genuine interest, and the
research reported here will help foster further progress in research, education, and
numerous practical endeavors.

Edmonton, Canada Witold Pedrycz
Taipei, Taiwan Shyi-Ming Chen
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Large-Scale Clustering Algorithms

Rocco Langone, Vilen Jumutc and Johan A. K. Suykens

Abstract Computational tools in modern data analysis must be scalable to satisfy
business and research time constraints. In this regard, two alternatives are possible:
(i) adapt available algorithms or design new approaches such that they can run on
a distributed computing environment (ii) develop model-based learning techniques
that can be trained efficiently on a small subset of the data and make reliable predic-
tions. In this chapter two recent algorithms following these different directions are
reviewed. In particular, in the first part a scalable in-memory spectral clustering algo-
rithm is described. This technique relies on a kernel-based formulation of the spec-
tral clustering problem also known as kernel spectral clustering. More precisely, a
finite dimensional approximation of the feature map via the Nystrom method is used
to solve the primal optimization problem, which decreases the computational time
from cubic to linear. In the second part, a distributed clustering approach with fixed
computational budget is illustrated. This method extends the k-means algorithm by
applying regularization at the level of prototype vectors. An optimal stochastic gra-
dient descent scheme for learning with /; and /, norms is utilized, which makes the
approach less sensitive to the influence of outliers while computing the prototype
vectors.

Keywords Data clustering * Big data - Kernel methods * Nystrom approximation *
Stochastic optimization + K-means + Map-Reduce *+ Regularization * In-memory
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1 Introduction

Data clustering allows to partition a set of points into groups called clusters which
are as similar as possible. It plays a key role in computational intelligence because of
its diverse applications in various domains. Examples include collaborative filtering
and market segmentation, where clustering is used to provide personalized recom-
mendations to users, trend detection which allows to discover key trends events in
streaming data, community detection in social networks, and many others [1].

With the advent of the big data era, a key challenge for data clustering lies in its
scalability, that is, how to speed-up a clustering algorithm without affecting its per-
formance. To this purpose, two main directions have been explored [1]: (i) sampling-
based algorithms or techniques using random projections (ii) parallel and distributed
methods. The first type of algorithms allows to tackle the computational complexity
due either to the large amount of data instances or their high dimensionality. More
precisely, sampling-based algorithms perform clustering on a sample of the datasets
and then generalize it to whole dataset. As a consequence, execution time and mem-
ory space decrease. Examples of such algorithms are CLARANS [2], which tries
to find the best medoids representing the clusters, BIRCH [3], where a new data
structure called clustering feature is introduced in order to reduce the I/O cost in the
in-memory computational time, CURE [4], which uses a set of well-scattered data
points to represent a cluster in order to detect general shapes. Randomized techniques
reduce the dimension of the input data matrix by transforming it into a lower dimen-
sional space and then perform clustering on this reduced space. In this framework,
[5] uses random projections to speed-up the k-means algorithm. In [6], a method
called Colibri allows to cluster large static and dynamic graphs. In contrast to the
typical single machine clustering, parallel algorithms use multiple machines or mul-
tiple cores in a single machine to speed up the computation and increase the scala-
bility. Furthermore, they can be either memory-based if the data fit in the memory
and each machine/core can load it, or disk-based algorithm which use Map-Reduce
[7] to process huge amounts of disk-resident data in a massively parallel way. An
example of memory-based algorithm is ParMETIS [8], which is a parallel graph-
partitioning approach. Disk-based methods include parallel k-means [9], a k-means
algorithm implemented on Map-Reduce and a distributed co-clustering algorithm
named DisCO [10]. Finally, the interested reader may refer to [11, 12] for some
recent surveys on clustering algorithms for big data.

In this chapter two algorithms for large-scale data clustering are reviewed. The
first one, named fixed-size kernel spectral clustering (FSKSC), is a sampling-based
spectral clustering method. Spectral clustering (SC) [13—16] has been shown to be
among the most effective clustering algorithms. This is mainly due to its ability of
detecting complex nonlinear structures thanks to the mapping of the original data
into the space spanned by the eigenvectors of the Laplacian matrix. By formulating
the spectral clustering problem within a least squares support vector machine setting
[17], kernel spectral clustering [18, 19] (KSC) allows to tackle its main drawbacks
represented by the lack of a rigorous model selection procedure and a systematic
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out-of-sample property. However, when the number of training data is large the com-
plexity of constructing the Laplacian matrix and computing its eigendecomposition
can become intractable. In this respect, the FSKSC algorithm represents a solution
to this issue which exploits the Nystrom method [20] to avoid the construction of the
kernel matrix and therefore reduces the time and space costs. The second algorithm
that will be described is a distributed k-means approach which extends the k-means
algorithm by applying /, and [, regularization to enforce the norm of the prototype
vectors to be small. This allows to decrease the sensitivity of the algorithm to both
the initialization and the presence of outliers. Furthermore, either stochastic gradient
descent [21] or dual averaging [22] are used to learn the prototype vectors, which are
computed in parallel on a multi-core machine.'

The remainder of the chapter is organized as follows. Section 3 summarizes the
standard spectral clustering and k-means approaches. In Sect. 4 the fixed-size KSC
method will be presented. Section 5 is devoted to summarize the regularized stochas-
tic k-means algorithm. Afterwards, some experimental results will be illustrated in
Sect. 6. Finally some conclusions are given.

2 Notation

x! Transpose of the vector x

AT Transpose of the matrix A

I, N X N Identity matrix

1y N % 1 Vector of ones

Dy = {xi}?i'1 Training sample of N, data points
@(+) Feature map

F Feature space of dimension d,,
{¢, }’;:1 Partitioning composed of & clusters
[ -] Cardinality of a set

(- 11, p-norm of a vector

Vf Gradient of function f

3 Standard Clustering Approaches

3.1 Spectral Clustering

Spectral clustering represents a solution to the graph partitioning problem. More
precisely, it allows to divide a graph into weakly connected sub-graphs by making
use of the spectral properties of the graph Laplacian matrix [13-15].

'The same schemes can be extended with little effort to a multiple machine framework.
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A graph (or network) ¥ = (¥, &) is a mathematical structure used to model
pairwise relations between certain objects. It refers to a set of N vertices or nodes
v ={y, }?i , and a collection of edges & that connect pairs of vertices. If the edges are
provided with weights the corresponding graph is weighted, otherwise it is referred
as an unweighted graph. The topology of a graph is described by the similarity or
affinity matrix, which is an N X N matrix S, where Sij indicates the link between
the vertices i and j. Associated to the similarity matrix there is the degree matrix
D = diag(d) € RV, with d = [d,, ..., dy]" = S1y € RV and 1, indicating the
N X 1 vector of ones. Basically the degree d; of node i is the sum of all the edges (or
weights) connecting node i with the other vertices: d; = Zjil Sij-

The most basic formulation of the graph partitioning problem seeks to split an
unweighted graph into k non-overlapping sets 4, ... , ), with similar cardinality in
order to minimize the cut size, which is the number of edges running between the
groups. The related optimization problem is referred as the normalized cut (NC)
objective defined as:

min k — tr(G"L,G) 0
subjectto G'G =1
where:
e L =1- D™3SD": is called the normalized Laplacian
« G=|g,....8;] is the matrix containing the normalized cluster indicator vectors
— D%fl
" i, . o .
o f,withl=1,... k, is the cluster indicator vector for the /-th cluster. It has a 1 in
the entries corresponding to the nodes in the /-th cluster and 0 otherwise. More-
over, the cluster indicator matrix can be defined as F = [f, ... .f,] € {0, 1 }Vxk

« I denotes the identity matrix.

Unfortunately this is a NP-hard problem. However, approximate solutions in poly-
nomial time can be obtained by relaxing the entries of G to take continuous values:

min k — tr(GTLnG)
¢ 2
AT A
subjectto G G=1.

with G € RV Solving problem (2) is equivalent to finding the solution to the fol-
lowing eigenvalue problem:

Lg= . 3)

Basically, the relaxed clustering information is contained in the eigenvectors corre-
sponding to the k smallest eigenvalues of the normalized Laplacian L,. In addition
to the normalized Laplacian, other Laplacians can be defined, like the unnormalized
Laplacian L = D — § and the random walk Laplacian L,,, = D~'S. The latter owes
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its name to the fact that it represents the transition matrix of a random walk associ-
ated to the graph, whose stationary distribution describes the situation in which the
random walker remains most of the time in the same cluster with rare jumps to the
other clusters [23].

Spectral clustering suffers from a scalability problem in both memory usage and
computational time when the number of data instances N is large. In particular, time
complexity is O(V?), which is needed to solve eigenvalue problem (3), and space
complexity is O(N?), which is required to store the Laplacian matrix. In Sect.4
the fixed-size KSC method will be thoroughly discussed, and some related works
representing different solutions to this scalability issue will be briefly reviewed in
Sect. 4.1.

3.2 K-Means

Given a set of observations 7 = {x;}¥ |, withx; € R, k-means clustering [24] aims
to partition the data sets into k subsets .7}, ..., %}, 50 as to minimize the distortion
function, that is the sum of distances of each point in every cluster to the correspond-
ing center. This optimization problem can be expressed as follows:

k

1
> o D e =xI3 |, (4)
=1

min
(1) (k)
[ amaTee 4 Xe.%,

where p) is the mean of the points in .. Since this problem is NP-hard, an alter-
nate optimization procedure similar to the expectation-maximization algorithm is
employed, which converges quickly to a local optimum. In practice, after randomly
initializing the cluster centers, an assignment and an update step are repeated until the
cluster memberships no longer change. In the assignment step each point is assigned
to the closest center, i.e. the cluster whose mean yields the least within-cluster sum
of squares. In the update step, the new cluster centroids are calculated.

The outcomes produced by the standard k-means algorithm are highly sensitive
to the initialization of the cluster centers and the presence of outliers. In Sect. 5 we
further discuss the regularized stochastic k-means approach which, similarly to other
methods briefly reviewed in Sect. 5.1, allows to tackle these issues through stochastic
optimization approaches.

4 Fixed-Size Kernel Spectral Clustering (FSKSC)

In this section we review an alternative approach to scale-up spectral clustering
named fixed-size kernel spectral clustering, which was recently proposed in [25].
Compared to the existing techniques, the major advantages of this method are the



8 R. Langone et al.

possibility to extend the clustering model to new out-of-sample points and a precise
model selection scheme.

4.1 Related Work

Several algorithms have been devised to speed-up spectral clustering. Examples
include power iteration clustering [26], spectral grouping using the Nystrom method
[27], incremental algorithms where some initial clusters computed on an initial sub-
set of the data are modified in different ways [28-30], parallel spectral clustering
[31], methods based on the incomplete Cholesky decomposition [32—34], landmark-
based spectral clustering [35], consensus spectral clustering [36], vector quantization
based approximate spectral clustering [37], approximate pairwise clustering [38].

4.2 KSC Overview

The multiway kernel spectral clustering (KSC) formulation is stated as a combina-
tion of k — 1 binary problems, where k denotes the number of clusters [19]. More
precisely, given a set of training data Z,, = {xi}i.\i'l, the primal problem is expressed
by the following objective:

k-1 k=1
; ! O o _ 1 O e
min =) wlwY—— e’ Ve
wi e b, 2 ; 2 ; n 5)
subjectto ¥ =@dw +p1y I=1,... k—1.
1 ) 0) URYs _— .
The e = le)s....e; ey eNlr] denotes the projections of the training data mapped

in the feature space along the direction w'. For a given point x;, the corresponding
clustering score is given by:

= w p(x) +b,. (6)

In fact, as in a classification setting, the binary clustering model is expressed by an
hyperplane passing through the origin, that is el(.l) — w @(x,) — b; = 0. Problem (5)
is nothing but a weighted kernel PCA in the feature space ¢ : R? — R%, where the
aim is to maximize the weighted variances of the scores, i.e. e?’ Ve® while keeping
the squared norm of the vector w’ small. The constants y, € R* are regularization
parameters, V € RV*Ne is the weighting matrix and @ is the N,, X d), feature matrix
D = [px)T;... ;qo(xN”)T], b, are bias terms.
The dual problem associated to (5) is given by:
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VM, Qa" = 4,a? (7)

where £2 denotes the kernel matrix with jj-thentry 2, = K(x;, x;) = (p(xi)T(p(xj). K :

]

RY x R? - R means the kernel function. M, is a centering matrix defined as M, =

Iy — T;lerﬁ V, the @ are vectors of dual variables, 4, = 2. By setting?
t 1 N Vi, e Ny 7

V = D!, being D the graph degree matrix which is diagonal with positive elements
D, = Zj £2;;, problem (7) is closely related to spectral clustering with random walk
Laplacian [23, 42, 43], and objective (5) is referred as the kernel spectral clustering
problem.

The dual clustering model for the i-th training point can be expressed as follows:

Nlr
¢’ = Y d" K x) +bpj= 1 Nl =1, k= 1. 8)
j=1

. L. o . ) . .
By binarizing the projections ¢;” as sign(e; ) and selecting the most frequent binary

indicators, a code-book €% = {c,} ;=1 with the k cluster prototypes can be formed.
Then, for any given point (either training or test), its cluster membership can be com-
puted by taking the sign of the corresponding projection and assigning to the cluster
represented by the closest prototype in terms of hamming distance. The KSC method
is summarized in algorithm 1, and the related Matlab package is freely available on
the Web.3 Finally, the interested reader can refer to the recent review [18] for more
details on the KSC approach and its applications.

Algorithm 1: KSC algorithm [19]

.. N, Nes .
Data: Training set 7, = {x; }l.=“1 , test set Py = {xf“}r;“i‘ kernel function

test
K : R?x R? - R, kernel parameters (if any), number of clusters k.

Result: Clusters {%, ..., %, }, codebook ¢ % = {cp};‘;:l with {c,} € {=1, 1},

1 compute the training eigenvectors @, [ = 1, ...,k — 1, corresponding to the k — 1 largest
eigenvalues of problem (7)

2 let A € RV**=D pe the matrix containing the vectors a®, ... a*D as columns

3 binarize A and let the code-book €% = {c, }ﬁ= , be composed by the k encodings of
Q = sign(A) with the most occurrences

4 Vi,i=1,...,Ng, assignx; to A,. where p* = argmin,dy, (sign(e;), ¢,) and dy, (-, -) is the
Hamming distance

5 binarize the test data projections sign(e), r = 1, ..., Ny, and let sign(e,) € {—1,1}*" be
the encoding vector of x!**"

6 Vr, assign x‘fs‘ to A,., where p* = argmin,dy,(sign(e,), c,).

2By choosing V = I, problem (7) represents a kernel PCA objective [39—41].
3http://www.esat kuleuven.be/stadius/ADB/alzate/softwareKSClab.php.
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4.3 Fixed-Size KSC Approach

When the number of training datapoints N, is large, problem (7) can become
intractable both in terms of memory bottleneck and execution time. A solution to this
issue is offered by the fixed-size kernel spectral clustering (FSKSC) method where
the primal problem instead of the dual is solved, as proposed in [17] in case of clas-
sification and regression. In particular, as discussed in [25], the FSKSC approach is
based on the following unconstrained re-formulation of the KSC primal objective
(5), where V=D"1:

k-1 k-1
. 1 N 1 A 2 Al 2
min - lzzl WO w0 — 5 Z v @W? + b,lN")TD @w" + bly,) )]

A (] 7~
WO b, =

where @ = [@(x,)"; ... ;@(XN")T] € RYe*m js the approximated feature matrix, D €
RM>N: is the corresponding degree matrix, and ¢ : R?Y — R™ indicates a finite
dimensional approximation of the feature* map ¢(-) which can be obtained through
the Nystrom method [44]. The minimizer of (9) can be found by computing
VJ(w!, b)) = 0, that is:

by T anls Tacl.
r{) =0 - WO=y,@ D 'dw+d D1, b)
W tr
by . .
A 17D owd =17 b '1, b,
ab[ w r r

These optimality conditions lead to the following eigenvalue problem to solve in
order to find the model parameters:

Rw" = ,w" (10)
Lo 1 ATa | (1 D@ D'd) A 1, b'é .
with4, = -, R=® D' - = — " andp, = ——"=—w?. Notice that
% lN( D! lNlr IN“-D_l lNlr

we now have to solve an eigenvalue problem of size m X m, which can be done very
efficiently by choosing m such that m < N,.. Furthermore, the diagonal of matrix D

can be calculated as d = dAi(dAiTlm), i.e. without constructing the full matrix lfiéiT.

Once WO, 13, have been computed, the cluster memberships can be obtained by
applying the k-means algorithm on the projections él(.l) = W' @(x,) + b, for training
data and etest = vAv(l)T@(x;eS‘) + b, in case of test points, as for the classical spectral
clustering technique. The entire algorithm is depicted in Fig. 2, and a Matlab imple-
mentation is freely available for download.” Finally, Fig. 1 illustrates examples of
clustering obtained in case of the Iris, Dermatology and S1 datasets available at the
UCI machine learning repository.

4The m points needed to estimate the components of ¢ are selected at random.
Shitp://www.esat.kuleuven.be/stadius/ADB/langone/softwareKSCFSlab.php.
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Fig. 1 FSKSC embedding
illustrative example. Data
points represented in the
space of the projections in
case of the Iris, Dermatology
and S1 datasets. The
different colors relate to the
various clusters detected by
the FSKSC algorithm
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Algorithm 2: Fixed-size KSC [25]

Input : training set 7 = {x;} 1] Ne , Test set Z,. = {x;} “i‘.

Settings : size Nystrom subset m, kernel parameter o, number of clusters k

Output : q and q,; vectors of predicted cluster memberships.

/* Approximate feature map: */
Compute 2.,

Compute [U,A] = SVD(R2
Compute b by means of the Nystrom method

m><m)

/* Training: */
Solve RW® = 4,w®

Compute E = [e(V, ..., ek 1]

[q.C,;] = kmeans(E k)

/* Test: */
Compute E. = [e lels)t’ s tcit o]

Qreqe = kmeans(E .. k,’start’,C,,)

‘test?

4.4 Computational Complexity

The computational complexity of the fixed-size KSC algorithm depends mainly
on the size m of the Nystrom subset used to construct the approximate feature
map ®. In particular, the total time complexity (training + test) is approximately
om?) + O(mN,) + O(mN,.), which is the time needed to solve (10) and to com-
pute the training and test clustering scores. Furthermore, the space complexity is
O(m?) + O(mN,,) + O(mN,.,), which is needed to construct matrix R and to build the
training and test feature matrices @ and ngt Since we can choose m < N,, < N
[25], the complexity of the algorithm is approximately linear, as can be evmced also
from Fig. 6.

5 Regularized Stochastic K-Means (RSKM)

5.1 Related Work

The main drawbacks of the standard k-means algorithm are the instability caused by
the randomness in the initialization and the presence of outliers, which can bias the
computation of the cluster centroids and hence the final memberships. To stabilize
the performance of the k-means algorithm [45] applies the stochastic learning para-
digm relying on the probabilistic draw of some specific random variable dependent
upon the distribution of per-sample distances to the centroids. In [21] one seeks to
find a new cluster centroid by observing one or a small mini-batch sample at iter-
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ate ¢ and calculating the corresponding gradient descent step. Recent developments
[46, 47] indicate that the regularization with different norms might be useful when
one deals with high-dimensional datasets and seeks for a sparse solution. In particu-
lar, [46] proposes to use an adaptive group Lasso penalty [48] and obtain a solution
per prototype vector in a closed-form. In [49] the authors are studying the problem
of overlapping clusters where there are possible outliers in data. They propose an
objective function which can be viewed as a reformulation of the traditional k-means
objective which captures also the degrees of overlap and non-exhaustiveness.

5.2 Generalities

Given a dataset ¥ = {xi}?i with N independent observations, the regularized
k-means objective can be expressed as follows:

k

: 1 O _ <2 0
”(lgg;_g‘(k); o ;u»: x|l3 + Cyu™ | (11)
Xes;

where y(u") represents the regularizer, C is the trade-off parameter, N, = |.7)| is
the cardinality of the corresponding set .#, corresponding to the /-th individual clus-
ter. In a stochastic optimization paradigm objective (11) can be optimized through
gradient descent, meaning that one takes at any step ¢ some gradient g, € df (yil))
w.r.t. only one sample x, from .#; and the current iterate ;451) at hand. This online
learning problem is usually terminated until some e-tolerance criterion is met or the
total number of iterations is exceeded. In the above setting one deals with a sim-
ple clustering model ¢(x) = arg min, |4 — x||, and updates cluster memberships
of the entire dataset .# after individual solutions u®, i.e. the centroids, are com-
puted. From a practical point of view, we denote this update as an outer iteration
or synchronization step and use it to fix .7, for learning each individual prototype
vector u¥ in parallel through a Map-Reduce scheme. This algorithmic procedure is
depicted in Fig. 2. As we can notice the Map-Reduce framework is needed to paral-
lelize learning of individual prototype vectors using either the SGD-based approach
or the adaptive dual averaging scheme. In each outer p-th iteration we Reduce ()
all learned centroids to the matrix W, and re-partition the data again with Map ().
After we reach 7, iterations we stop and re-partition the data according to the final
solution and proximity to the prototype vectors.

5.3 l,-Regularization

In this section the Stochastic Gradient Descent (SGD) scheme for learning objec-
tive (11) with yw(u®) = %llu(’)H% is presented. If we use the I, regularization, the
optimization problem becomes:
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where function f(u’) is A-strongly convex with Lipschitz continuous gradient and
Lipschitz constant equal to L. It can be easily verified that A = L = C + 1 by observ-
ing basic inequalities which f(u®) should satisfy in this case [50, 51]:

IV ™) = V@Ol = Al — ull, =

1€ + D =€+ Dully = Al = w1l

and

IV @) = Vi), < Lin? - w11, =

) ) ) [
1€+ D = (€ + Dpl, < LIW = w1l
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which can be satisfied if and only if A = L = C + 1. In this case a proper sequence
of SGD step-sizes #, should be applied in order to achieve optimal convergence rate
[52]. As aconsequence, we sety, = é such that the convergence rate to the e-optimal

solution would be ﬁ(%), being T the total number of iterations, i.e. 1 <t < T. This
leads to a cheap, robust and stable to perturbation learning procedure with a fixed
computational budget imposed on the total number of iterations and gradient re-
computations needed to find a feasible solution.

The complete algorithm is illustrated in Algorithm 3. The first step is the initial-
ization of a random matrix M, of size d X k, where d is the input dimension and
k is the number of clusters. After initialization T, outer synchronization iterations
are performed in which, based on previously learned individual prototype vectors
u®, the cluster memberships and re-partition & are calculated (line 4). Afterwards
we run in parallel a basic SGD scheme for the /,-regularized optimization objective

(12) and concatenate the result with M, by the Append function. When the total
number of outer iterations 7, is exceeded we exit with the final partitioning of 5

by c(x) = arg min, ||M(TI) — X||, where [ denotes the /-th column of MTM.

Algorithm 3: /,-Regularized stochastic k-means
Data: /,C> 0,7 > 1,T,, > 1,k>2,e>0

> Tout =

1 Initialize M, randomly for all clusters (1 < < k)
2 forp<1toT,, do
3 Initialize empty matrix M,
4 Partition . by c(x) = arg min, ||M]<j)_ = xl,
5 for ., C . in parallel do
6 Initialize 4}’ randomly
7 fort < 1to T do
8 Draw a sample X, € .7}
9 Setn, = 1/(Cr)
10 u’ = uf?l - n,(CME?l + 145?1 -X,)
11 if 1" = 4 Il < & then
12 Append (yfl), M,,)
13 return
14 end
15 end
16 Append (yg), Mp)
17 end
18 end
19 return . is partitioned by c(x) = arg min, ||M¥3ur —x||,
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5.4 l-Regularization

In this section we present a different learning scheme induced by /,-norm regular-
ization and corresponding regularized dual averaging methods [53] with adaptive
primal-dual iterate updates [54]. The main optimization objective is given by [55]:

N
. 1
Oya 2 ) _ ¢ 12 0]
min/ (s )—ZNZ,nu %15+ Clla®l. (13)

By using a simple dual averaging scheme [22] and adaptive strategy from [54] prob-
lem (13) can be solved effectively by the following sequence of iterates /4521 :

t
My, = arg min {g Z}(&m“) +nCllu®ll, + %h(u“))} : (14)
7=
where h,(u?) is an adaptive strongly convex proximal term, g, represents a gradient
of the ||u — x,||> term w.r.t. only one randomly drawn sample x, € .#; and current
iterate /451), while # is a fixed step-size. In the regularized Adaptive Dual Averaging
(ADA) scheme [54] one is interested in finding a corresponding step-size for each
coordinate which is inversely proportional to the time-based norm of the coordinate
in the sequence {g,}, of gradients. In case of our algorithm, the coordinate-wise

update of the yﬁl) iterate in the adaptive dual averaging scheme can be summarized

as follows:

) . " nto_
Mty =502 ) 18,1 = Al (15)

1.q99

where g, , = % th:l 8.4 1s the coordinate-wise mean across {g, } 5, sequence, H, ,, =
P+ 181,41l 1s the time-based norm of the g-th coordinate across the same sequence
and [x], = max(0, x). In Eq. (15) two important parameters are present: C which con-
trols the importance of the /,-norm regularization and # which is necessary for the
proper convergence of the entire sequence of yﬁl) iterates.

An outline of our distributed stochastic /;-regularized k-means algorithm is
depicted in Algorithm 4. Compared to the [, regularization, the iterate yy) now has a
closed form solution and depends on the dual average (and the sequence of gradients
{:}>1)- Another important difference is the presence of some additional parame-
ters: the fixed step-size # and the additive constant p for making H, ,, term non-zero.
These additional degrees of freedom might be beneficial from the generalization
perspective. However, an increased computational cost has to be expected due to the
cross-validation needed for their selection. Both versions of the regularized stochas-
tic k-means method presented in Sects. 5.3 and 5.4 are available for download.®

Shttp://www.esat.kuleuven.be/stadius/ ADB/jumutc/softwareSALSA.php.
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Algorithm 4: /,-Regularized stochastic k-means [55]
Data: #,C>0,7>0,p>0,T>1,T, >1,k>2,6>0

> Tout =

1 Initialize M, randomly for all clusters (1 <[ < k)
2 forp<1toT,, do
3 Initialize empty matrix M,
4 Partition .% by c(x) = arg min; ||MI(7[)_] - x|,
5 for .7, . in parallel do
6 Initialize ;4(1[) randomly, g, =0
7 fort < 1to T do
8 Draw a sample X, € .7}
9 Calculate gradient g, = ;451) - X,
10 Find the average g, = %(@H + %g,
11 Calculate H, ,, = p + 118,41l
12 2, = sien(=8.) =112, - Cl,
199
13 if ||u§l) - [4521 I, < € then
14 Append ([421, M,)
15 return
16 end
17 end
18 Append ([4%1, Mp)
19 end
20 end

21 return . is partitioned by c(x) = arg min, ”M(TI.),,,, —x|l,

5.5 Influence of Outliers

Thanks to the regularization terms that have been added to the k-means objective in
Egs. (13) and (12), the regularized stochastic k-means becomes less sensitive to the
influence of the outliers. Furthermore, the stochastic optimization schemes allow to
reduce also the sensitivity to the initialization. In order to illustrate this aspects, a
synthetic dataset consisting of three Gaussian clouds corrupted by outliers is used
as benchmark. As shown in Fig. 3, while k-means can fail to recover the true clus-
ter centroids and, as a consequence, produces a wrong partitioning, the regularized
schemes are always able to correctly identify the three clouds of points.

5.6 Theoretical Guarantees

In this section a theoretical analysis of the algorithms described previously is dis-
cussed. In case of the /,-norm, two results in expectation obtained by [52] for smooth
and strongly convex functions are properly reformulated. Regarding the /,-norm, our
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Fig. 3 Influence of outliers. (7op) K-means clustering of a synthetic dataset with three clusters
corrupted by outliers. (Bottom) In this case RSKM is insensitive to the outliers and allows to per-
fectly detect the three Gaussians, while K-means only yields a reasonable result 4 times out of 10
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theoretical results are stemmed directly from various lemmas and corollaries related
to the adaptive subgradient method presented in [54].

5.6.1 Il,-norm

As it was shown in Sect. 5.3 the /,-regularized k-means objective (12) is a smooth
strongly convex function with Lipschitz continuous gradient. Based on this, an upper
bound on f (y(rl)) —f (uil)) in expectation can be derived, where ygf) denotes the opti-
mal center for the [-th cluster, where [ =1, ... , k.

Theorem 1 Consider strongly convex function f(u®) in Eq. (12) which is v-smooth
with respect to yil) over the convex set # . Suppose that E||g,||* < G*. Then if we
take any C > 0 and pick the step-size n = %t, it holds for any T that:

2G?

O\ _ 201D
By~ W < 5 T

(16)
Proof This result follows directly from Theorem 1 in [52] where the v-smoothness is
defined as f(u?) — f(u") < | u® = u||. From the theory of convex optimization
we know that this inequality is a particular case of a more general inequality for func-
tions with Lipschitz continuous gradients. From Sect. 5.3 we know that our Lipschitz

constantis L = C + 1. Plugging the already known constants into the aforementioned
Theorem 1 completes our proof.

Furthermore, an upper bound on ||u; — p, || in expectation can be obtained:

Theorem 2 Consider strongly convex function f(u) in Eq.(12) over the convex set
W . Suppose that E||g,||> < G*. Then if we take any C > 0 and pick the step-size
n= %t, it holds for any T that:

4G?

(C+ DT 17

Elllur — u, )] <

Proof This result directly follows from Lemma 1 in [52] if we take into account that
f(u) is (C + 1)-strongly convex.

5.6.2 [;-norm

First consider the following implication of Lemma 4 in [54] over the running sub-
gradient g, = yfl) —x, of the first term in the optimization objective defined in
Eq. (13):

T d
D EDIZ <2 g1yl (18)
=1 =1
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Table 1 Datasets

Size Dataset N d
Small Iris 150 4
Ecoli 336 8
Libras 360 91
Dermatology 366 33
Vowel 528 10
Spambase 4601 57
S1 5000 2
S2 5000 2
S3 5000 2
S4 5000 2
Medium Opt digits 5620 64
Pen digits 10992 16
Magic 19020 11
RCV1 20242 1960
Shuttle 58000 9
Large Skin 245057 3
Covertype 581012 54
GalaxyZoo 667944 9
Poker 1025010 10
Susy 5000000 18
Higgs 11000000 28

where ||g;.7,ll, is the time-based norm of the g-th coordinate. Here we can see
a direct link to some of our previously presented results in Theorem 2 where we
operate over the bounds of iterate specific subgradients.

Theorem 3 By defining the following infinity norm D, = sup,ocpy | — ;4,(:)

lleo
w.r.t. the optimal solution ,45?, setting the learning rate n = D,/ \/E and applying
update steps to yfl) in Algorithm 4 we get:

2D, +
Ecpr ) —f)] < % 2 lgiszll (19)
=1

Proof Our result directly follows from Corollary 6 in [54] and averaging the regret

term R (T') (defining an expectation over the running index ) w.r.1. the optimal solu-

tion f(u").

Our bounds imply faster convergence rates than non-adaptive algorithms on sparse
data, though this depends on the geometry of the underlying optimization space of
M.
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6 Experiments

In this section a number of large-scale clustering algorithms are compared in terms
of accuracy and execution time. The methods that are analyzed are: fixed-size ker-
nel spectral clustering (FSKSC), regularized stochastic k-means (RSKM