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Preface

This book presents a collection of 25 contributions presented during the 2nd
International Workshop on Advanced Dynamics and Model Based Control of
Structures and Machines, which was held at TU Wien in September 2015. It
contains 9 full-length papers of presentations from Austria, 7 from Russia, 4 from
Japan, 3 from Italy and 2 from Taiwan.

The general goal of the workshop was to present and discuss the frontiers in
the mechanics of controlled machines and structures. The workshop continued a
series of international workshops, the Japan-Austria Joint Workshop on Mechanics
and Model Based Control of Smart Materials and Structures, the Russia-Austria
Joint Workshop on Advanced Dynamics and Model Based Control of Structures
and Machines and the Ist International Workshop on Advanced Dynamics and
Model Based Control of Structures and Machines. The first two workshops took
place in Linz, Austria, in September 2008 and April 2010, and the third one
in St. Petersburg, Russia, in July 2012. The key objective of the workshop was
to further strengthen the long-standing cooperation between research teams from
Austria, Japan and Russia and to initiate new collaborations with other participating
renowned scientists from Europe and Taiwan.

We dedicate the book to Franz Ziegler who passed away on January 4th, 2016.
Franz Ziegler delivered his last scientific talk on “Free and forced vibrations of fuzzy
structures” at the workshop. This contribution, which is included in the present
volume, brings his long list of numerous papers published in the most prestigious
peer-reviewed journals, books, and conference proceedings to an end.

We, the undersigned Editors, together with all his other friends and colleagues
all over the world, will hold Franz Ziegler in grateful memory.

St. Petersburg, Russia Alexander Belyaev
Linz, Austria Hans Irschik
Vienna, Austria Michael Krommer

June 2016
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Free and Forced Vibrations of Fuzzy Structures

Franz Ziegler

Abstract Stochastic free and forced vibrations of layered beams are analyzed that
result from a single bounded random stiffness parameter whose probability density
function is considered to be zero outside of a given interval, i.e., it is a member of
a fuzzy set with bounded uncertainty. The relevant properties of natural vibrations
of an ensemble of sandwich beams with three perfectly bonded layers under hard
hinged support conditions are worked out in detail when a bounded random shear
stiffness of the core material is assigned by employing interval mathematics. The
main structure of a compound single-span railway bridge, effectively modeled as
a two-layer beam, is subjected to a single moving load as well as to a series
of repetitive moving loads traveling with constant speed. It serves as a complex
example for the resulting forced random vibrations and resonances under the severe
condition of an elastic interface slip of bounded random stiffness. In both cases
exact homogenization yields a stochastic sixth-order partial differential equation of
motion of the layered beam. Light modal damping is considered. The analysis of
the illustrative problems is based on the interval representation with a triangular
membership function of the stiffness modulus assigned. A short comment provides
information on the limits of such triangular membership functions. Membership
functions in the form of envelopes of the random natural frequencies, the dynamic
magnification factors, and the phase angles in free vibrations are determined.
Both, fuzzy peak deflection and acceleration are derived for the forced single-
span compound railway bridge subjected to the moving loads. Approximating
superposition of modal maxima is considered by standard routines of reliability
analysis.

Franz Ziegler was deceased at the time of publication.

© Springer International Publishing Switzerland 2017 1
H. Irschik et al. (eds.), Dynamics and Control of Advanced Structures
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2 F. Ziegler
1 Introduction

In general, the application of the fuzzy finite element method, see, e.g., [3, 9], is
required when the matrix in composite structures exhibits fuzzy randomness of the
material parameters. However, when extending the work on two- and symmetric
three-layer beam-, plate-, and shell structures based on an exactly homogenized
model [1, 4, 5, 8] to include either fuzzy interface slip or fuzzy core stiffness,
we can avoid numerical analyses and analytically work out the effects on the
random dynamic properties of these fuzzy structures. Exemplarily, random free
vibrations of a symmetric three-layer single-span beam with hard hinged supports,
exhibiting fuzzy shear stiffness of the core material, are considered first, with
details documented in [6, 7]. The practically very important case of a single-span
compound bridge consisting in its main structure of two steel girders connected
(elastically) to the concrete deck, when exactly homogenized, refers to the model
of an asymmetric two-layer elastic beam exhibiting the practically most important
defect of elastic interlayer slip with the major uncertainty of its elastic modulus.
Life loads of a train are here simply modeled as the passage of concentrated forces,
which pass the bridge with constant speed. The presentation of the resulting forced
vibrations in the form of non-dimensional response quantities is adopted from a
recent comprehensive study on the dynamic effects of high-speed trains on such a
simple fuzzy bridge structure [2]. The fundamental parameters are taken from [12].
For a more sophisticated deterministic analysis, see [13]. A full stochastic analysis
of such a bridge with temperature effects on stiffness, etc., included is presented
in [10].

The analysis of both illustrative examples is based on the interval representation
(interval of confidence at a given level of presumption, i.e., a-cut) with a triangular
fuzzy membership function of the relevant random stiffness prescribed. Fuzzy
membership functions of the response are defined using fuzzy set theory [11, 14],
however, avoiding artificial uncertainties. Where possible, envelope functions are
defined representing the bounds of the random response. Consequently, such a ran-
dom stiffness modulus is considered to be an interval number or a member of a fuzzy
set which contains the sure design value. Such an interval representation transforms
the deterministic parameter to inclusive set values with bounded uncertainty, see
Fig. la. Another interpretation of such an interval number includes intervals of
confidence for «-cuts of fuzzy sets. Such a parametric extension as shown in Fig. 1b
may even include a worst-case scenario, i.e., mink;(o = 0) = 0.
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Fig. 1 Single bounded random structural parameter, e.g., stiffness. (a) Defined interval contains
sure design value kp. Outside of the interval, probability is zero. (b) Fuzzy set: interval of
confidence at a given level of presumption «-cut. Non-dimensional stiffness k,(c) is referred to
its design value. Isosceles distribution assigned

2 Effects on Free Vibrations: Example: Fuzzy Sandwich
Beam

For linear elastic, symmetrically arranged three-layer beams, Fig. 2, the following
assumptions are made: (1) the faces are rigid in shear with their individual flexural
stiffness B; = B3 considered. (2) The shear stiffness of the elastic core is a bounded
random variable while its bending stiffness is neglected. Following [5], an exact
homogenization renders the homogeneous partial differential equation (PDE) of
sixth order in terms of the common deflection and for the case of free vibrations,

3
Mo 2 ..
XXXXXX AZ XXXX xx T A =0, = ihiv 1
w. W o + B W, w V8 ;Q @8

o0 BOO
By = By + B3,

Boo = Bo + (Dy + D), Bo/Boo = 1/ [14 3 (1 + ho/m)?]| < 1/4,

see again Fig.2, with the bounded random parameter related to the core shear
modulus K%Gz((x) with its assigned design value (K22G2)0 at o = 1 within the level
of presumption 0 <« < 1,

_ 2b B

A2 =
hy DBy

(53Ga), ka(@),  ka(@) = [K3Ga(a)] / (k3Ga), - )
For the single-span beam, length /, under hard hinged support conditions, the

ortho-normalized mode shapes result with a stochastic normalization factor,

-1/2

3)

@a(x) = sinBix, P, =nnw/l, A, = [(MI/ZBOO) (AZ + ,B%nBoo/Bo)]
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Fig. 2 Dimensions of the sandwich beam. Common cross-sectional rotation after homogenization
Y, as shown, is crucially eliminated. Fuzzy core shear stiffness in layer 2 is considered. Deflection
w is referred to the elastic centroid O

The random natural frequencies, referred to the sure values at rigid core shear

: 2 _ g4
stiffness, w;o, = B7,Boo/ I, are

Bo/Boso) + Y2,k
[0n(@)/@nool = 0/1 +2/2 ky;(’a;(a), Yon = (K3Ga),2b/ B Dihs. (&)

With light viscous modal damping ¢, = ¢ < 1 understood, the random dynamic
magnification factor y, () and the stochastic phase angle ¢, () are expressed by
textbook formulas; see, e.g., [15],

= {1 ~2(1-28%) (w/wn (@) + (a)/wn(ot))zt}—lﬂ,

ang, =2 ¢ (B°/B°°)+Vlnk2(“)_( Z )2 Lt paadol@) |
" Wnoo I+ y2.nk2(0[) Wnoo (BO/BOO) + y2.nk2(a) .

&)

Numerical results for bounds and even for envelope functions are thus straight-
forwardly derived, putting, e.g., the design values By/B = 0.1 < 1/4 and
Y2 = 0.25 in Egs. (4) and (5). Exemplarily, results are shown in Figs. 3, 4, and 5,
for light modal damping ¢, = { = 0.04. More details are presented in [6, 7].
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Fig. 3 Bounds of the first five natural frequencies when referred to the sure fundamental
frequency: worst-case scenario. Note the increased fuzziness of the higher modes [7]
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Fig. 4 Envelopes of the first three random DMFs [7]. « = O-cut; worst-case scenario o = 0
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Fig. 5 Envelopes of the first three random phase angles [7]. Conditions likewise to Fig. 4
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2.1 Effects of Non-symmetric Uncertainty

In the core shear stiffness, Fig. 2, we introduce a non-symmetry factor A > 1, such
that min k() = o remains unchanged and max k(o) = 1 + A(1 — ). When
considering the bounds of the natural frequencies just in the worst-case scenario,
the possibility of max®w, = minw,+; becomes true for n = 2 at the minimum
of A = 12.16, i.e., overlapping natural frequency intervals occur in an ensemble
of fuzzy sandwich beams. Further, for the material parameters By/Bos = 1/16
and By/Bs = 0.198 < 1/4, the fundamental frequency and the next higher one,
respectively, exhibit singularities, i.e., the non-symmetric triangular distribution of
uncertainty becomes obsolete. However, no singularity is possible for higher modes,
n > 3. For details of analysis, see again [7].

3 Effects on Forced Vibrations: Example: Fuzzy Compound
Railway Bridge

The practically very important case of a single-span compound bridge consisting,
e.g., of two steel girders connected (elastically) to the concrete deck, when smeared,
refers to the model of an asymmetric two-layer elastic beam exhibiting the main
defect of elastic interlayer slip with the major uncertainty of its elastic modulus,
Fig. 6. This structural uncertainty of the physical interface can be attributed to
imperfections, modeling inaccuracies, aging effects, and its design complexity.
Consequently, the slip modulus is considered to be a random variable whose

P
Au
—f l‘@‘ """"""" ] Sl
d — «— “T
I —— ——— e _Jg

Fig. 6 Model of the main structure of the fuzzy compound bridge [2]: effective elastic two-layer
beam with fuzzy elastic interlayer slip. Layer one refers to the RC-concrete deck. Layer two
represents the rigidity of two steel girders. Bounded random shear flow T = k(o) Au. Stiffness
center S
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probability density function is not known but is non-zero only in the range of an
interval, i.e., it is considered to be an interval number or a member of a fuzzy set, see
again Fig. 1. Exact homogenization of the two-layer beam renders the PDE of sixth
order, analogously to Eq. (1), see again [1]. Consequently, in the design stage, the
simply supported bridge of length / may be simply traveled by a series of repetitive
single concentrated forces with equal distance /; and with constant speed v to model
the forcing in the inhomogeneous Eq. (6), where the random parameters are adapted
to the fuzzy elastic modulus of the interlayer slip k(«) with the sure design value
ko = k(e = 1). The parameters of the two elastic layers j = 1,2, are: elastic
modulus Ej, effective cross-sectional area A;, and flexural rigidity B; = Djrj2 with
D; = EjA;,

1
W — AW+ o — A2 Y o p 22(@) = k@)A2/ko,
By Boo By

1 1 d?
By = By + By, Boo = By + d°D D,/ (D + D), A} :ko( +  + )
D, D, By

(6)

Considering just a single concentrated traveling force F; in Eq.(6), where
wi(x, £) = w;(x, 1), the lateral load becomes in standard notations [2],

i i+
pi=F(—E) [HO— ) —HG— )], &=vi—s, =", £=""""
v
(N
A properly truncated modal expansion, Eq. (3), with the definitions given in Eq. (6)
applies as well,

N

wir.0) = YY" 0gn (). ®

i=1

By changing the ortho-normalized modal coordinates to Y in ) (ta) = Ay(a) Yl.(") )
the random load in Eq. (6) is “swallowed” and the modal equations result, crucially
simplified, with a deterministic load participation factor Lf") . Only the natural
frequencies are left as the remaining bounded random coefficients in Eq. (9), light
modal damping is also added here [2],

= (n) - (n) n 2F;
Y, +200Y, +02v" =
L™ = [H(t — s;/v) — H(t — (s; + ) /v)] sinnzr (vt — 5) /1. ©)

- (n)
Bounds of the modal coordinate Y;n) and its rate Y; are determined by proper

. . . A O
time convolution and, subsequently, the corresponding modal acceleration Y; is
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determined from a rearranged form of Eq. (9). The bounds of the natural frequencies
at a-cuts are inserted. Thus, for a number M of repetitive single concentrated forces,
e.g., lateral displacement results by summation

M
Wi, 1:0) = Y, () g (x) = Yaltio) = YV (). (10)

i=1

In reliability analysis it suffices to evaluate the maximum response searched for by
considering either the minimum or maximum bound of the interface stiffness in
an o-cut, e.g., just in the worst-case scenario. It can be found by various methods
of approximating superposition of a proper finite number of these random modal
coordinates. The following combination rules, common in structural dynamics are
evaluated, the absolute sum rule, ABSUM, rendering an upper limit and the square
root of the sum of squares, SRSS, the latter was found to be inadequate here, see
again [2], and, best suited, the modal series, since it is exact for N modes,

N

Z wy(x, ;o)

n=1

. (1rn)

Wmax (X; @) = max
t

Resonances are observed at critical speeds due to the rhythmic repetition in the
load series [12]: for the deterministic bridge Vj(") = wuly/27j,j = 1,2,3,... A
resonance of second order is due to a single traveling force, V,, = w,l/mn, it is of
minor importance here, see, e.g., [15, p. 626]. For a detailed analysis, see again [2].

3.1 Some Numerical Results for a Standard Compound
Bridge: Concrete Deck, Two Steel Girders

The single span has the length / = 40.0 m and a mass density of & = 15,000 kg m™".
The design value of the elastic interface slip modulus is kg = 60.0 x 107 N/m?2,
We note the fundamental frequency f;(« = 1) = 2.81 Hz and, for the ideal rigid
bond, fj oo = 3.04 Hz [2]. At first, the intervals of uncertainty of the first ten natural
frequencies are evaluated for the bounded random interface stiffness k() , rendering
qualitatively analogous results as depicted in Fig. 3,

02 (@) = By/Boo + V2.uk(t) /ko Wl = 1 Boo - ko 14 D,/D,
n "0 14 yauk(e) kg T w B, Dy
(12)

In a second step, the randomly fuzzy response of the bridge is calculated when
a single concentrated force passes with constant speed. Maximum deflection and
maximum acceleration, say at mid-span and at the quarter-point, are calculated and
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0.12 |
0.10 [ rigi
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0.06 |

0.04 |

0.02 L

Fig. 7 Uncertain peak lateral deflection induced by ten repetitive moving loads, distance I; =
20 m, speed parameter S, limiting cases for two fuzzy intervals of the random interface stiffness,
[2]. (a) at mid-span, (b) at the quarter-point

stored as functions of the speed parameter S = 7wv/$2l, where 2| = w;(a¢ = 1).
Maximum deflections induced by ten repetitive moving loads are depicted in Fig. 7,
where wo(x; &) = Winax (x; @)Boo / FI*. For details, see again [2].

In Fig.7 it is observed that the upper limit of a certain fuzzy interval leads to
a larger deviation of the response from that of the deterministic bridge than for the
lower limit. That means, the softer the interlayer-slip-modulus the larger the increase
of the response magnification becomes. An increase of the interlayer stiffness does
not have this pronounced impact on the decrease of the peak deflection.

Finally it is mentioned again that a comprehensive stochastic analysis of a full
model of such a railway bridge is performed in [10].
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4 Conclusions

For fuzzy symmetric three-layer structures (sandwich beams) and for fuzzy two-
layer composites (compound railway bridge) the exact homogenization yields a
stochastic partial differential equation of sixth order. Intervals of confidence of the
dynamic response are determined either for fuzzy core shear stiffness or for fuzzy
elastic interlayer slip. Thus, intervals of confidence of the natural frequencies result.
Bounds of the dynamic magnification factor and the phase angles are presented
in the form of envelope functions. Effects on resonances in repetitive loadings of
the fuzzy railway bridge are studied within reliability measures of the maximum
response; say of flexural displacements, presenting bounds as function of the speed
parameter. Even the worst-case scenarios can be considered. Truncated modal
expansions are transformed such that the modal load participation factors become
deterministic leaving only the natural frequencies as the random parameters.
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Resonance of a Series of Train Cars Traveling
Over Multi-Span Continuous Beams

J.D. Yau and Y.B. Yang

Abstract For a train car moving over a multi-span continuous beam of identical
span length L at constant speed v, it may encounter repetitive excitations transmitted
from the sustaining beam of frequency v/L excited by the previous passing cars.
If the exciting frequency v/L coincides with the vehicle frequency f., namely
v/L = f,, resonance will be developed on the running car. In such a case, when
the train car travels over more and more spans of the beam, the response of the
car will be accumulated and becomes larger and larger, up to the limit imposed
by inherent damping. Using the rigid-vehicle/bridge interaction finite element
developed previously by the authors, each train car is modeled as a two-axle vehicle
and each span of the continuous beam is simulated as a number of beam elements.
Then the resonant response of the train cars running over the multi-span continuous
beam is analyzed. The numerical examples indicate that for a high speed train
composed of a series of cars traveling over a multi-span continuous beam, the
train-induced resonance on the bridge takes place at a rather high speed, but the
bridge-induced resonance on the train cars takes place at a much lower speed.

1 Introduction

To take the advantage of formwork preparation, the railway bridges for carrying high
speed trains are often designed as multi-span continuous beams. For a dynamical
system subjected to a periodic load, resonance takes place at the system when the
exciting frequency coincides with any of the natural frequencies of the system.
A similar resonant phenomenon can be observed from the train-bridge system of
high speed railways as well. Because of the regular arrangement of bogies in a
train, the bridge encounters repetitive excitations caused by a passing train. For
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Y.B. Yang
School of Civil Engineering, Chongqing University, 400044 Chongqing, China

Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan
e-mail: ybyang@ntu.edu.tw

© Springer International Publishing Switzerland 2017 11
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Fig. 1 R-VBI model

this, numerous researchers and scientists have conducted researches on the train-
induced resonance of a rail bridge, say, by simulating the train action as a sequence
of moving loads with equal intervals [5]. Since a high speed rail bridge must be
designed to provide sufficient structural strength for the traveling trains at high
speeds, the dynamic response of the train, especially with respect to resonance,
has become an issue that dominates the operational safety and riding quality of
the train-bridge system. For this reason, vehicle-bridge interaction (VBI) dynamics
has received the attention of researchers in the past two decades.

Concerning the VBI of high speed rail bridges, many interesting topics were
investigated, such as the train-induced resonance of a bridge, the wind effect on
moving trains, the behavior of moving trains under earthquakes, and train-induced
ground vibrations. However, there exists relatively little information on the resonant
phenomenon of train cars running over continuous beams with multi-spans of
identical length. In this paper, the train car is modeled as a two-axle system with
rigid car body and each span of the continuous beam is discretized as a number of
beam elements. Then the rigid-vehicle/bridge interaction (R-VBI, see Fig. 1) finite
element developed previously by the authors is employed to analyze the dynamic
response of the train cars running over a multi-span continuous beam. The numerical
results indicated that for a high speed train composed of a series of cars traveling
over multi-span continuous beams, the train-induced resonance of the bridge takes
place at a rather high speed, but the resonance of the train cars takes place at a much
lower speed.

2 VBI Problem

As was schematically shown in Fig. 1, during the passage of the train over a bridge,
some elements of the bridge will be directly acted upon by the two-axle train car,
while the others are not. In this study, the most commonly used beam element
with 12 degrees of freedom (DOFs) will be adopted to simulate the continuous
beam, of which the axial displacement is interpolated by linear functions and the
transverse displacements by cubic (Hermitian) functions. The number of train cars
directly acting on each beam element changes as the train keeps moving, and so do
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the contact points between each bridge element and the train cars. As the contact
points between the running cars and the bridge move from time to time, the system
matrices must be updated and factorized at each time step in the incremental time-
history analysis [1]. To overcome the time-varying nature of the problem, Yang et al.
proposed a method for condensing the DOF of the two-axle car system with rigid
car body into those of the element in contact, after the two-axle car system equations
are discretized by Newmark’s finite difference formulas [4]. The result is an R-VBI
element that possesses the same number of DOFs as the parent element, while the
properties of symmetry and bandedness are preserved. In the following section, a
brief description of the condensation technique for the VBI system considering the
pitching effect of the train car will be briefed.

2.1 Rigid-VBI Element

As shown in Fig.2, the contact forces acting on the two elements i and j are
composed of four components: (1) the static weights associated with the car body
and wheel assemblies, represented by M,g and M, g; (2) the damping forces
resulting from the relative velocity of the rigid car body to the bridge elements,
as indicated by the terms containing c,; (3) the elastic forces resulting from the
relative displacement of the car body to the bridge elements, as indicated by the
terms involving k,; and (4) the inertial forces due to the vertical acceleration of the
bridge elements, as indicated by the terms m,, ii.

In analyzing the VBI problem, two sets of equations of motion are written, one
for the supporting bridge and the other for each of the moving vehicles. Consider
a typical increment from time 7 to t + At in time domain. The equations of motion
for the car body can be written for the current time step, with 7 = ¢ + Ar clearly
inserted as the subscript as:

[MUO}{yU} n 2¢, 0 %
01, 0, 7 0 ¢, d;
Vv Sver }

= ) ey
ev }; { frol 7
where the acting forces are given as

%ﬁ/er} _ { co (it + 1) + ky (u; + wj) + ky (r; + 1) } )
t+ At t+ At

ﬁot O.Sd[CU (I/ll — Mj) + kl,(ui — I/lj) + ky (ri - rj)]
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Fig. 2 VBI system considering the pitching effect: (a) R-VBI element; (b) Free body diagrams

The equations of motion for the bridge elements, i and j, are expressed for the current
time step t + At as

[mi] {iti} o 0 + [ci) Aiti} g pr + (K] i34 pr = —Dis+ a0 AN S (3)
[ it} + Ll A} g a, + [}y 00 = =i an NG}
where the associated contact forces are
co(iti — o — 0.5d0y) + ky(u; + ri — yy — 0.5d6,)
Pit+ar = . > “4)
+0.5M,8 + m,, (g + it;) Lar

co(ity — 3y + 0.5d6,) + ky (uj + r; — y, + 0.5d6,)
Pj+aAr = . ,
+0.5My g + my,(g + iij) A
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the shape function vector {N,;} at x = x, of the i-the beam element is given as
T
xe)\2 xe\3 x\2 a(x\2 xe\3 (% x;
= {13007 +207) = (1= ) 307 200 (- ) O

and the shape function vector {ch} is given in a similar way.

Following the condensation procedure developed for a rigid-VBI system [4], one
can discretize the two-axle car system in advance using Newmark’s finite difference
formulas and then condensing the corresponding DOFs (y, 6,) of the two-axle car
system into the beam element in contact. Since the R-VBI elements possess the
same number of DOFs as the parent element, while the properties of symmetry
and bandedness are preserved, this element is particularly suitable for analyzing the
dynamic responses of the VBI problems concerning both the bridge and vehicle
responses. Readers who are interested in derivation of the R-VBI element should
refer to the paper by Yang et al. [4] for further details.

2.2 VBI Analysis Using FEM

Figure 3 shows the response analysis procedure of the train-bridge system using
the condensation technique. Because the VBI element and its parent element are
fully compatible, the conventional element assembly process can be adopted with
no difficulty to form the equations of motion for the entire vehicle-bridge system,
that is

IMI{U,} + [Cveil{Us} + [Kveil{Us} = {Ps} + {Fvai}. (6)

where [M], [Cvgi], [Kvsi], respectively, denote the mass, damping, and stiffness
matrices of the entire condensed vehicle-bridge system, {U,} the bridge displace-
ments, {Pp} the external loads acting on the bridge, and {Fyg;} the condensed
effective vehicular loads acting on the bridge. The preceding equations are typical
second-order differential equations, which can be solved by a number of time-
marching schemes. In this study, the Newmark 8 method with constant average
acceleration, i.e., with B = 1/4 and y = 1/2 [5], is employed to render the
preceding equations into a set of equivalent stiffness equations, from which the
bridge displacements {U,} can be solved for each time step. Once the bridge
displacements {U,} are made available, the bridge accelerations and velocities can
be computed accordingly. By a backward procedure, the response of the two-axle
car system can be computed as well on the element level, which serves as an
indicator of the riding comfort.
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Form equivalent stiffness matrix equations
of the train & bridge system using Newmark’s method

Calculate the total action time f,,; for the vehicles

Determinate the location of coaches moving on bridge girders ]47

Form condensed VBI element

Assemble the VBI element

)

Find bridge response

h 4

Recover vehicle response

Unbalance forces

Fig. 3 Flowchart of VBI analysis using the condensation technique

3 Resonant Speeds

Resonance takes place when the exciting frequency of the external forces coincides
with any of the natural frequencies of a mechanical system. For a train composed
of cars with bogies of equal interval D, when it travels at speed v over a bridge,
an exciting frequency v/D will be generated. When the exciting frequency v/D
matches one of the bridge frequencies f;,, resonant response will be developed on
the bridge, for which the resonant speed is vy, = f,D [3]. Such a phenomenon will
be referred to as the train-induced resonance on the bridge.

On the other hand, for a train car moving over a multi-span continuous beam with
identical span length L at speed v, the train car will encounter repetitive excitation
transmitted from the beam with frequency v/L. Once the exciting frequency v/L
coincides with one of the vehicle’s frequencies f,, resonance will be developed
on the car in running, that is, when v/L = f.. In this case, the corresponding
resonant speed is denoted as v,, = f.L [2]. Such a phenomenon is referred to
as the bridge-induced resonance on the train cars. For most high speed railways,
the bridge-induced resonant speed for the train cars takes place at a lower speed
compared with the train-induced resonant speed for the rail bridge.
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4 Finite Element Analysis

Figure 4 shows a schematic plot of the planar two-axle car with rigid car body
moving over a continuous beam, assumed to be of 5 spans. The properties of the
5-span continuous beam and planar two-axle system are listed in Tables 1 and 2,
respectively. By letting f; denote the first frequency of the beam, the resonant speed
induced by the train car is v = fiD [1]. In the following examples, each span
of the continuous beam shown in Fig.4 is modeled by 6 beam elements. Based
on Newmark’s method of direct integration, numerical solutions for the dynamic
response of the bridge due to the moving two-axle car system have been computed
for a time step of 0.0025s. To focus on the resonance of the continuous beam of
identical spans induced by the train car, the track irregularities will be neglected
in performing the VBI analysis with the condensation technique in the following
examples. Since the vertical acceleration of the moving vehicle has been regarded
as an indicator of the riding comfort or running safety of high speed trains, the
acceleration response of the VBI system is of key concern in this study.

4.1 Resonant Response Analysis

In Table 2, the resonant speeds v,,, and v, , represent the speeds for the resonance
to occur on the vehicle due to coincidence of the vertical and pitching frequencies,
respectively, of the two-axle car system with the implied frequency v/L of the
continuous beam. For the present purposes, let us consider the cases when the two-
axle car system moves over the continuous beam at each of the two resonant speeds
(vr» and v,p) as listed in Table 2. Figures 5 and 6 show the vertical and pitching
accelerations, respectively, of the midpoint of the two-axle car system computed
by the R-VBI element simulation. Evidently, when the vehicle moves at either the
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Fig. 4 Two-axle car system moving over a continuous beam with identical spans

Table 1 Properties of the continuous beam

L/m EJ/Nm™—2 mitm™! &/% fi/Hz f>/Hz f3/Hz Vpes/kmh ™!
35 2.82 x 108 25 1.5 4.3 4.78 5.97 387
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Table 2 Properties of the two-axle car system
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Fig. 5 Resonant response of the vertical acceleration of midpoint of the two-axle car system

moving over the continuous beam
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Fig. 6 Resonant response of pitching acceleration of the two-axle car system moving over the

continuous beam

vertical or pitching resonant speed, the acceleration response of the vehicle grows
monotonically as the vehicle passes through more and more spans.
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4.2 Maximum Acceleration of Train Cars Versus Train Speed

In this example, a train composed of 16 coaches is considered for simulating its
passage over a continuous beam with identical spans, as shown in Fig. 7. To illustrate
the resonant phenomenon, Figs. 8 and 9 show the maximum acceleration for the
running train and the beam, respectively, against the train speed. For the present
purposes, the maximum vertical acceleration a, .« for each of the two-axle cars
shown in Fig. 7 is defined as:

., Db,
Ay max = max | |it, = ) . (7)

The maximum acceleration response d, max Of the two-axle system versus the train
speed v was plotted in Fig. 8, which will be referred to as the a, max — v plot for the
train cars.

From Fig. 8, one observes that there exist three resonant peaks at the speeds of
115, 160, and 387 km/h, corresponding to the bridge-induced vertical and pitching
resonant speeds, and the vehicle-induced VBI resonant speed, respectively. The
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Fig. 7 A series of train cars moving over a multi-span continuous beam
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Fig. 8 a, max — v plot for the two-axle car system moving over the continuous beam



20 J.D. Yau and Y.B. Yang

&

% Vres

£

= 10+

5

=1

<

<

%

<

= ]

£ 054

= ]

= 4

.'E 4

= ]
3

0.0 e S e SR S P e |

100 150 200 250 300 350 400 450

Speed (km/h)

Fig. 9 Maximum midpoint acceleration at the central span of the continuous beam vs. train speed

pitching resonant speed at v,, = f,L (= 160km/h) deserves a special note, since
it creates a peak much higher than that of the vertical resonance at a speed that can
be encountered in practice. Under such a condition, the vertical component +6,D/2
induced by the pitching acceleration 6, dominates the peak acceleration response of
the vehicle, which is a long coach (D = 25m). Furthermore, larger response is
induced on the train cars as there are more cars passing the series of spans of the
continuous beam, due to the accumulation effect, although it is not shown here.
The speed 230 km/h represents another peak for the vehicle, which is caused by the
beating phenomenon associated with the pitching rotation. The beating phenomenon
is due to the fact that the subresonant excitation of the second frequency of the
bridge, i.e., f2/2 = 4.78/2 = 2.39Hz, couples with the pitching frequency of the
vehicles, 1.27 Hz. Their average frequency is foy = (2.39 + 1.27)/2 = 1.83Hz,
which corresponds to the beating speed of v, = f,yL = 1.83Hzx35m = 64 m/s =
230 km/h. Further investigation is needed for this phenomenon.

In contrast, the vehicle-induced resonance at ves = fiD = 387 km/h, where f; is
the frequency of the beam, is caused by the first resonance of the 5-span continuous
beam under the action of a series of train cars with car length D. For reference, the
maximum vertical acceleration of the midpoint of the central-span of the continuous
beam subjected to the same series of train cars constituting the train has been plotted
in Fig. 9.

5 Concluding Remarks

Using the VBI finite element developed previously by Yang et al. [4], the key
parameters that dominate the vertical and pitching resonance of a two-axle car
system running over a multi-span continuous beam are studied. The analysis has
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been expanded to include the case of a series of train cars running over a multi-
span continuous beam. From the numerical analyses presented herein, the following
conclusions are drawn:

1.

The resonance of a train car, either in vertical vibration or pitching rotation, is
featured by the fact that its response continues to build up when traveling over
more and more spans of the continuous beam.

. The train-induced resonance will occur on the bridge when the exciting fre-

quency of the train v/D, where v is train speed and D is car length, coincides
with one of the frequencies f} of the bridge.

. The bridge-induced resonance will occur on the train cars when the exciting

frequency of the multi-span bridge v/L, where L is the span length, coincides
with any of the car frequencies.

. For train cars with long axle intervals D, the vertical acceleration induced by the

pitching rotation in resonance dominates the peak acceleration of the train cars
in running.

. When in pitching resonance, larger response is induced on the train cars as there

are more train cars passing the continuous beam, due to the accumulation effect.
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Stability and Supercritical Deformation
of a Circular Ring with Intrinsic Curvature

Yury Vetyukov

Abstract Stability of a circular ring, pre-stressed by a temperature-like intrinsic
deformation, is studied using the equations of the nonlinear theory of rods. The
temperature gradient in the radial direction results in a bending moment. The critical
state depends on the ratio of the bending stiffness coefficients. In the supercritical
range, the ring begins to turn inside out as its cross-sections rotate about the axis.
The analytical solutions are successfully compared against results of finite element
simulations for a shell model of the ring.

1 Introduction and Statement of the Problem

While Euler buckling of columns is the most famous stability problem in rod
mechanics, there are other fascinating and practically relevant examples, which
allow for analytic solutions. Classical formulations feature lateral-torsional buckling
of deep beams, in-plane buckling of rings and arches under distributed loads,
buckling of shafts, etc., see [3, 5, 6, 8, 9]. Relevant for the present study is the less
known interesting problem of instable behavior and nonlinear response of a curved
shaft, which is twisted in a curved channel [2, 3]. We must also mention here the so-
called Michell’s instability of twisted elastic rings [4], which are pre-stressed owing
to the incompatible intrinsic pre-deformation.

Similarly to the last mentioned example, we consider a circular ring, which is
pre-stressed in its undistorted state. A temperature gradient in the radial direction
results in a bending moment about the out-of-plane axis, Fig. 1. The temperature
pre-strain in the three-dimensional body of the rod may be interpreted on the
structural level as an intrinsic curvature, superimposed upon the reference curvature
of the circle. Cutting the ring at one of the cross-sections, we allow it open and
change its curvature such that the bending moment vanishes, see the right part
of Fig. 1. But the original closed ring cannot change its curvature so easily, and
the growing temperature difference leads to an increasing bending moment. The
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Fig. 1 Circular ring with radial temperature profile (left), deformation of an open ring (right)

pre-stressed undistorted configuration remains in equilibrium, but it may become
instable depending on its stiffness properties and the magnitude of the imposed
intrinsic curvature. In the present contribution we determine the critical value of this
pre-strain based on the equations of the nonlinear theory of rods, find supercritical
solutions after the buckling, and compare the results to the numerical finite element
simulations for a shell model of the structure.

2 Nonlinear Theory of Classical Rods

We will employ the equations of the nonlinear theory of rods in the form, suggested
by Eliseev [3] and Vetyukov [8], see also [1, 5]. We consider a material line with
three translational and three rotational degrees of freedom of particles, and the
equations of the theory follow from the principle of virtual work. In the classical
theory, conditions of inextensibility and absence of shear impose certain constraints
for the possible forms of deformation of the one-dimensional continuum.

Particles of the rod are identified by their material coordinate s. Owing to the
inextensibility, we choose s as the arc coordinate along the axis of the rod, see Fig. 2.
Position vectors of particles r(s) define the geometry of the axis, and the orientation
of particles is determined by the rotation of three basis vectors ¢;. Constraints of the
classical theory allow choosing the third basis vector in the tangent direction, such
that the unit tangent vector is

e; = ¥ =t @))
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Fig. 2 Rod as a material line
with positions of particle r(s)
and their orientations e, (s)
depending on the material
coordinate s

The rate of change of the local basis along the axis of the rod is determined by the
vector of twist and curvature £2:

1
6 =Rxe, £2= 5% % e, = ey 2

summation over the repeating index is implied, and §2; are the components in the
local basis.
The undeformed reference state is defined by the orientations of particles e(s),

o o
and 2 = $2¢;. The deformation from the reference state to the actual one is
described by the vector

K = (.Qk — .Qk)ek = /ckek. (3)

Components « » are responsible for bending, and «3 shall be interpreted as torsion

of the rod. Computing these strain measures, we deal with components §2; and é PR
which are, respectively, written in the actual basis and in the reference one. If we
write the tensor of rotation of a particle from the reference to the actual state P, then
its derivative along the axis is found as if ¥ was an angular velocity and s was time:

P=ed. P =kxP. “)
The constitutive relation expresses the moment in the rod M(s), which acts from the

particle s 4 0 on the particle s — 0, M = a- k. The symmetric tensor of stiffness
for bending and torsion a = aje,e, has constant components in the local basis and
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rotates together with the particles. In components, the above relation reads
M = Mie,, M; = ajky. Q)

Now, we write the equations of balance of forces Q and moments in a state of static
equilibrium:

0+qg=0, M+txQ+m=0. (6)

The external distributed forces ¢ and moments m are counted per unit length of the
rod. There is no constitutive relation for the force Q in the classical theory, and the
constraint (1) shall be used instead. This system of equations is completed by the
boundary conditions or periodicity conditions for a closed rod, considered in the
following.

3 Linearized Equations of a Pre-stressed Rod and Stability
of Static Equilibrium

Small increments in the external forces ¢° and moments m’ result in small
displacements r* = u and rotations ¢, = 6 x e, away from the static equilibrium.
The incremental formulation [3, 8] comprises above equations, linearized in the
vicinity of a pre-stressed equilibrium state. The constraint (1) holds during the
deformation, which relates displacements and small rotations 6:

W =0xt 7
The constitutive relation
M =0xM+a-0 (8)
and the balance equations
0"4+¢ =0, M"+uxQ+txQ +m =0 )

feature the force factors O, M in the rod in the previous equilibrium state and their
small increments Q°, M".
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In Eulerian approach, stability of static equilibrium of a conservative system is
judged by the existence of infinitesimally close equilibrium configurations. It means
that the configuration is critical if the above linear equations allow for a nontrivial
solution u, 8, M" and Q" with ¢ = 0 and m* = 0; the boundary conditions are to be
treated correspondingly. A pitchfork bifurcation of an equilibrium path corresponds
to a classical buckling of a conservative system [3, 8, 9].

4 Pre-stressed Ring with Intrinsic Curvature

Consider a circular ring with the radius R in a cylindrical coordinate system with
the angular coordinate ¢ and the local basis e,, €y k, Fig. 3. Now, we choose the
material coordinate along the axis of the ring and the local basis:

s=¢R, r=Re, e =k e=e, e=ce, (10)
~1 ~1
K =0, e; =R €y e;} =—R"e,.
Using (2), we compute the vector of twist and curvature and its components:
Q=R'e,xe, =Rk, 2 =R-¢ =R" £2,5=0. (11

We assume that the introduced basis coincides with the principal axes of the stiffness
tensor:

a = aze e, + are,e, + ageses, (12)

and the stiffness for bending in plane is higher than that out of plane: a; > a,.

The applied temperature gradient imposes intrinsic curvature «R™!, which
“pushes” the ring towards less curved configuration. Although this undeformed state
is incompatible for a closed ring, we can virtually cut it and plot the stress-free states
with the curvatures

Fig. 3 Undistorted state of
the ring and the basis of the
cylindrical coordinate system

ook
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Fig. 4 Undeformed states of oa=1
the open ring with applied
intrinsic curvature

2 =R"—aR'=(1-a)R", £2,3=0 (13)

in dependence on the loading parameter «, see Fig. 4. Now we easily find the strains
and the bending moment:

ki=R'—(1—a)R'=aR™", Kk3=0, (14)

k=aR %k, M= azaR_lk = const,

and the equilibrium conditions are fulfilled with Q = 0.

5 Buckling Analysis

Consider a small axisymmetric perturbation of the undistorted equilibrium state in
the form of rotation of particles about the axis of the rod:

u=0, 6= Qe(p, 6 = const. (15)

We find the increment of the moment (8):

M = GazaR_ler —a- QR_ler = R Y(aa, — a)e,. (16)
The second of the balance equations (9) reads now
OR™(aa. —ay)e, + e, x Q =0, (17)
which may be fulfilled only when
a=0ax =a,/a, (18)

and the force Q is directed along the axis; along with the condition Q" = 0 it means
that O = 0. But we are more interested in the obtained value of the critical intrinsic
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curvature a«, which is low for flat rings with small out-of-plane thickness. Indeed, if
the cross-section of the rod with the Young modulus E is rectangular with the height
in the z direction being % and the width in the radial direction being w, then

a, = Ewh®*/12, a, = Em’/12, oy = h*/w?, (19)

and oy < 1 for flat rings with 7 << w.

6 Supercritical Deformation

The undistorted shape of the ring becomes instable as o > «,. We seek the new
solutions to the nonlinear system of equations in the form

r=Re,, e =kcosO+e.ssinf, e,=—ksinf+e,cosl, e;=e (20)

-
Similar to the buckling form, the axis of the rod retains its shape, and the cross-
sections simply rotate with the angle 6 about the tangent direction, see Fig. 5. The
stiffness tensor (12) rotates together with the cross-sections, and the vector of twist
and curvature remains the same as in (11):

1
Q= 5 (sin® 6 + cos®0 + 1) R 'k = R 'k. (1)

Its components are changing, however, as the local basis depends on 6:

Q21 =e¢,-2=R"cosh, £2,=-R'sinh, £2;=0. (22)

Fig. 5 Supercritical
deformation of the ring,
cross-sections are rotated
with the angle 6 about the
axis
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Subtracting the undeformed components (13), we find strains k; and compute the
moment

M = a, (82, — .(021)e1 + a,$2ze,
= R 'sinfO(a.(1 — &) — (a, + a.) cos O)e, (23)

— R Y (a,(1 —a —cos 0) + a, sin? H)k.

Inserting into the second balance equation in (6), we see that M’ has just a

component in the direction e, = 1. It means again that Q = 0, and

R 'sinf(a.(1 —a) — (a, + a.) cos6) = 0. (24)

This condition of static equilibrium is an algebraic equation for 6. Besides the trivial
solution sin 8 = 0, there exists a solution branch, determined by the equality

a=1—(14a/a;)cosb. (25)

Solutions for 6 exist when o > «y from (18), which is typical for a pitchfork
bifurcation. At « = 1 we obtain § = =£m/2, which means that a flat ring turns
into a cylinder when the intrinsic curvature reaches the geometrical one R™! and the
undeformed state is straight, see simulation results below.

7 Finite Element Simulation with a Shell Model

We used a finite element simulation [7, 8] for a shell model of a flat ring with
R =1,w = 0.1, and & = 0.02; the intrinsic curvature was applied by changing
the circumferential component of the metric of the undeformed shell, which varied
linearly in the radial direction depending on the current value of «. Increasing o
from O to 1 we indeed observed the transformation of a flat shell into a cylindrical
surface, as it is predicted by the above analytical study. A small imperfection in the
reference geometry “promoted” the system towards stable deformed configurations
in the supercritical range. The undistorted and the deformed shapes of the ring for
four values of « are presented in the left part of Fig. 6. One of the cross-sections
(marked by a line) is fixed, which results in the large rigid-body rotation of the shell
along with the axisymmetric deformation as in the study above. The right part of
Fig. 6 demonstrates a shell solution for an open ring at « = 1/3: the configuration
remains plane, and its curvature decreases; at « = 1 the ring evolves into a straight
strip.
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Fig. 7 Maximal out-of-plane displacement in the shell solution depending on the intrinsic
curvature parameter

Finally, for the simulation with a closed ring we plotted the maximal out-of-plane
displacement u, depending on «, see Fig. 7. The bifurcation of the flat equilibrium
configurations is clearly seen at a value of the loading parameter, which is very close
to the theoretically predicted critical value oy = 0.04.
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Estimation of Mechanical Properties
of Micro-Lattice Panel with Irregular Cells

Kuniharu Ushijima and Dai-Heng Chen

Abstract In our study, the uniaxial tensile response of lattice panel with missing
cell region was investigated using nonlinear FE analysis. In particular, the effects
of missing cell size and shape on the initial stiffness E* and the plastic collapse
strength cr;l were discussed. The initial stiffness is mainly affected by the ratio of
missing cell height /1/ho as well as the missing cell width w/wy, and independent
of the unit-cell shape. On the other hand, the plastic collapse strength is mainly
dominated by the missing cell width w/wy only, which implies that the strength is
affected strongly by the tensile strength at the front of the missing cell region.

1 Introduction

Over the decades, cellular structures, such as honeycombs, foams and lattice
structures, have been taken much attention, and used for many kinds of structural
applications owing to their superior mechanical performance per unit mass. Up
to now, many technical papers regarding the mechanical properties of cellular
structures have been published [1-8]. In most cases, the cellular structures are
composed of uniform cell wall and periodic structural arrangement. On the contrary,
Guo and Gibson [1] have investigated the effect of structural non-uniformities in the
cellular structures on the compressive response by using FE analysis. Also, Silva and
Gibson [2] have studied the effect of randomly removing cell edges in hexagonal
honeycombs on the Young’s modulus and collapse stresses.
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In our study, the uniaxial tensile response of lattice panel with missing cell region
is investigated using nonlinear FE analysis. In particular, the effects of missing cell
size and shape on the initial stiffness and the plastic collapse strength are discussed.

2 Method of Numerical Analysis

In our numerical calculation, the commercial FE software, MSC.Marc 2012, is used
to demonstrate the elastoplastic behaviour of the micro-lattice panel. Figure la
shows the schematic of numerical model in our FE analysis. The model which
consists of 3-D unit cell (Iength L,, L, and L, in x-, y- and z-directions) as shown in
Fig. 1b has a missing cell region at the centre, and is subjected to a uniaxial in-plane
tensile load. Each unit cell is composed of eight slender beams (length L, diameter
d = 200[pwm]) connected to each other. In our FE analysis, Timoshenko beam
element is selected, and each beam is divided into 20 number of elements. Each
beam is assumed to be isotropic and homogeneous elastoplastic material. Here, the
Young’s modulus E;, Poisson’s ratio vy and yield stress o, are set to 140 [GPa],
0.3 and 144 [MPa], respectively, which are all based on the experimental data of
stainless steel SS316L. Also, owing to symmetry of the panel, only one quarter
region is modelled in our calculation. The geometrical parameters of our numerical
model are shown in Fig. 1c. Here, N, and N, represent the number of unit cell in
x- and y-direction, respectively. Parameters n, and n, show the number of missing
cell in x- and y-direction, respectively. Moreover, wy and w are the widths of overall

> !
X ‘ R
8>i :
> ‘ L,=2.9mm
. ‘ &
e B > AAR A | %,
’_, <
missiné cell region y L, 4(
W
-~
L w=nL,
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¥ & = 7

(a) (®) (©)

Fig. 1 Schematic of numerical model in FE analysis. (a) Overall model; (b) Unit cell; (¢) FE
model
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lattice panel and missing cell region, and /g and & are the heights of overall lattice
panel and missing cell region, respectively.

In solving the nonlinear problem, the Mises’ yield criterion and the updated
Lagrangian method are used in our calculation, and the Newton—Raphson numerical
method is applied for finding the root effectively.

In our study, the effect of the existence of missing cell region on the overall
response (initial stiffness E* and plastic collapse strength 0;1) of the lattice panel is
discussed.

3 Results and Discussion

3.1 Stress—Strain Curves of Lattice Panel With and Without
Missing Cell Region

Figure 2 shows the tensile stress—strain curve of the lattice panel by changing the
size of missing cell region. When the panel is composed of uniform unit cell and
perfect cell arrangement, the initial stiffness termed E and plastic collapse strength
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Fig. 2 Comparison of stress—strain curve of lattice by changing the defect size
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termed o, can be obtained theoretically as follows:

. /Ly’
Er = 4v/37E, - 1
§ = 4V3rE 34 8(L/d)} M
6 d\’
oo = Jz o (L) @)

It can be found from Fig. 2 that the theoretical results of initial stiffness and plastic
collapse strength agree well with FE result for uniform cell model. Also, the stress—
strain curve decreases gradually as the defect region expands.

3.2 Effect of Missing Cell Region on Initial Stiffness E*

Figure 3 shows the variation of initial stiffness E* as a function of normalized defect
width w/wy. All lattice panels are square-shaped, and have square-shaped defects.
In Fig.3, the stiffness E* is normalized by E for a perfect lattice model. It can
be seen that the normalized initial stiffness E*/E] decreases nonlinearly as the
defect width increases. And this degradation curve cannot be evaluated from the
curve of the volume fraction of defect in a lattice plate. In order to investigate the
degradation curve of initial stiffness E*/Ej more in detail, the degradation curves

\\\\\\\\ - ho= NxLx, Wo= N\,Ly
o \L L =2.9 mm

o
©
T

¢ S
R 0.7} ]
e :N=Ns=16
o :Nz=N=15
0611 5 :N=N=10
o :N=N,=8
0.5 PRI S U S S S NS S SR SR ISR SR S S S S '
0 0.1 0.2 0.3 0.4 0.5
w Iw,

Fig. 3 Variation of initial stiffness E* for square-shaped lattice panels with square-shaped
missing cell region
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Fig. 4 Comparisons of stiffness versus defect width curve for square-shaped, horizontally long
and vertically long lattice panels with square-shaped missing region. (a) Variations of normalized
initial stiffness and defect width for lattice plates with square-shaped defect region. (b) Three types
of FE models with square-shaped defect region

of lattice models by changing the defect size and overall plate size. Figure 4a shows
the comparisons of initial stiffness E*/E7 for three cases of lattice model having
the same ratio of defect width w/wj but different ratio of defect height //hy. These
lattice models are shown in Fig. 4b. It can be found from Fig. 4a that the normalized
defect height 1/ hy is also the dominant parameter of the initial stiffness E*/E as
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Fig. 5 Comparisons of stiffness versus defect width curve for three lattice panels with the same
ratio of missing cell region /1/hy and w/wy. (a) Variations of normalized initial stiffness and defect
width for lattice plates with similar form of defect region. (b) Three types of FE models with
similar form of defect region

well as the defect width w/wy. Figure Sa shows the comparisons of E*/Ef for other
three lattice models having the same ratios of defect width w/wy and defect height
h/hy. These lattice models are shown in Fig. 5Sb. When these three types of plate
have the same ratios of defect width and defect height, then the obtained degradation
curves of E*/ Ea‘ are regarded as one curve. Therefore, it can be concluded that the
initial stiffness E*/E( is mainly a function of defect width ratio w/wy and defect
height ratio A/ hy.
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Fig. 6 Comparisons of stiffness versus defect width curve of lattice panel composed of different
unit cell

Figure 6 shows the variation of initial stiffness E*/E; for lattice models having
different unit-cell size. It can be understood from Fig. 6 that the degradation curve
of initial stiffness is almost independent of the unit-cell shape.

3.3 Effect of Missing Cell Region on Plastic Collapse Strength
*

o

Figure 7 shows the variation of plastic collapse strength a:l of square-shaped lattice
panels(N, = N,) by changing the missing cell region. Here, the strength a:l is
normalized by 0;10 for a perfect lattice model. It is found from Fig.7 that the
normalized strength a:l / ‘7:10 decreases linearly as the defect width w/wy increases.
Also, Fig. 8 shows the comparisons of a:l / ‘7:10 of square-shaped, horizontally long
and vertically long lattice panels with defect shown in Fig. 5b. It can be observed
that the normalized plastic collapses strength cr;‘l /0%, depends mainly on the defect
width w/wy, and is independent of the defect height &/ho. This implies that the
plastic collapse of the lattice panel with defect is mainly dominated by the tensile
stress at the front of the defect region.
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4 Conclusion

In our study, the uniaxial tensile response of lattice panel with missing cell region
was investigated using nonlinear FE analysis. In particular, the effects of missing
cell size and shape on the initial stiffness E* and the plastic collapse strength (7;‘1
were discussed.

As for the initial stiffness E*, the stiffness decreases dramatically as the ratio of
missing cell width w/wy increases. Also, the stiffness is mainly governed by the
ratio of missing cell height i1/ kg as well as the width w/wy, and independent of the
unit-cell shape.

On the other hand, as for the plastic collapse strength, the strength is mainly
dominated by the normalized width w/wq only, which implies that the strength is
affected strongly by the tensile strength at the front of the missing cell region.
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Overview Reading and Comparing the Seismic
Proof Capability of Displacement Dependent
Semi-Active Hydraulic Damper and
Accumulated Semi-Active Hydraulic Damper

M.-H. Shih and W.-P. Sung

Abstract Structural control technologies are applied to reinforce the building to
resist the external forces. Especially, passive control method is widely accepted
by earthquake research community; therefore, many researchers are developing
semi-active structural control systems. There are two types of semi-active hydraulic
dampers—Displacement Dependent Semi-Active Hydraulic Damper (DSHD) and
Accumulated Semi-Active Hydraulic Damper (ASHD) have been proposed by
Shih et al. In this study, oil circuit and element hysteretic behavior of DSHD
and ASHD are discussed. Then, a ten floor shear frame structure installed with
DSHD and ASHD with various control conditions is simulated for analyzing the
control effect of the maximum story drift, maximum absolute acceleration, and
maximum base shear. Test and analysis results reveal that shock absorption ratio of
structural displacement of the roof of ten floor structure added with ASHD reaches
to 87.9 %. Structural acceleration responses of this structure can be diminished by
the synchronization of ASHD. Base shear of this structure installed with these two
dampers with various control conditions is reduced 55—60 %. Seismic proof of these
two semi-active hydraulic dampers can be demonstrated by this study.

1 Introduction

Global warming affects the ocean temperature to cause the El Nino and anti-El
Nino phenomena over and over again. Then, the intensity of typhoons (hurricanes)
has been strengthened. Otherwise, the movement of mantle has been accelerated
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to induce some strong earthquakes in the world such as Indian ocean strong
earthquake, 2004, Japan earthquake, 2011, Pakistan earthquake, 2013, Nepal earth-
quake, 2015 to cause much loss of life and properties. Therefore, structural control
technologies have been developed to diminish the structural responses, induced by
earthquakes and wind forces [1-3].

These structural control technologies have been divided into three parts: active
control, passive control, and semi-active control, which semi-active control should
add the passive control element on structure. The elements of passive control must
be reformed or installed control components to provide local adaptability.

Presently, some of semi-active hydraulic dampers have been developed such
as Semi-Active Hydraulic Damper, SHD [4-6], Magnetorheological Damper, MR
Damper [7], Electrorheological Damper, ER Damper [8], and Taylor Device [9].
The main purpose of this study is to compare oil circuit, element hysteretic behavior
and seismic proof capability of high-rise building added with two special dampers,
Displacement Dependent Semi-Active Damper, DSHD and Accumulated Semi-
Active Hydraulic Damper, ASHD, proposed by Shih et al. [10—13]. Then, a ten
floor shear frame structure is used to simulate and analyze to compare the seismic
proof capability between bare structure and structure added with these two types of
semi-active hydraulic dampers.

2 Design Concept of Semi-Active Hydraulic Dampers

There are two different types of semi-active hydraulic dampers have been proposed
by Shih and Sung: DSHD and ASHD. These two types are composed of Hydraulic
Jack, Directional Valve, Check Valve, Relief Valve, and Accumulator to constitute
DSHD and ASHD. These two types of semi-active hydraulic dampers are using
different combinations of components and oil circuit assembly to produce different
reactions of earthquake responses due to its oil circuit and mechanical changes.

The main functions of these components are described as follows: (A) Hydraulic
Jack: the main power transmission of these two types of hydraulic dampers with two
connection points, one is to join structure with a hinge and another is to articulate
with stiffened component; (B) Directional Valve: to transform the flow direction of
pressure oil. Electromagnetic type of Directional Valve is used in this study; (C)
Check Valve: to keep the operating oil on unidirectional flow without refluxing; (D)
Relief Valve: to keep the hydraulic circuit under oil pressure at a certain value; (E)
Accumulator: the main function of Accumulator of the ASHD is (1) to keep an
initial pressure; (2) to storage oil.
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The various combinations of these two types of semi-active hydraulic dampers
are described as follows:

2.1 Displacement Dependent Semi-Active Hydraulic Damper
2.1.1 Oil Circuit of DSHD

The oil circuit of DSHD is composed of Hydraulic Jack, Directional Valve, Check
Valve, and Relief Valve, the oil path of DSHD is shown in Fig. 1. In order to prevent
the DSHD from overloading, the Relief Valve is installed in the oil circuit to avoid
bracing yielding due to the large deformation of structure. Therefore, the hysteretic
loop of DSHD with and without overflow behavior of DSHD should be discussed to
investigate its energy dissipation behavior. Directional Valve of DSHD can present
the different state: oil circuit does not pass to the left, both sides of circuit connected,
and the circuit access to the right-hand side, so as to achieve the requirement of
“free to lengthen,” “free to expand and contract,” and “free to shorten”, as shown in
Fig. 2. Figure 2a—c represents the “free to lengthen,” “free to expand and contract,”
and “free to shorten,” respectively. The combination of series connection of DSHD
and bracing can always do negative work on structure.

2.1.2 Element Hysteretic Behavior of DSHD

Relief Valve is installed in this DSHD, therefore, the energy dissipation behavior of
DSHD performs with and without overflow behavior of DSHD. Figure 3 displays
the hysteretic loop of DSHD without overflow behavior. This figure shows the
energy dissipation influence of amplitude and bracing stiffness. When the structural

(1) Left Primary
led—b B Hydraulic Circuit
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Hydraulic Circuit
(3) Right Primary
Hydraulic Circuit
(4) Right Secondary
Hydraulic Circuit
(3) A. Hydraulic Jack
B. Directional Valve
C. Check Valve
D. Relief Valve

QP

(B Connect to Structure

Connect to Bracing

Fig. 1 The organization of DSHD
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displacement increases the control force is provided by elastic deformation of
bracing, and structural displacement reaches its maximum amplitude, bracing force
up to the maximum value. Then, bracing force can be released at this time, then,
when structural displacement increases on reverse direction, bracing deformation
increases from zero, and provide the reverse resistant force.

2.2 Accumulated Semi-Active Hydraulic Damper
2.2.1 Oil Circuit of ASHD

The combination of ASHD, shown in Fig. 4, is almost the same as DSHD. The
difference between ASHD and DSHD is that an Accumulator is connected to the
Directional Valve. Aims of installing the Accumulator are (1) to maintain an initial
pressure; (2) to storage oil.

2.2.2 Element Hysteretic Behavior of ASHD

Control force of ASHD is provided by the change of oil with pre-pressure magnitude
of the Accumulator. The hysteretic energy dissipation behavior of element test
result is shown in Fig.5, the action force is variation between 80 and —60kN.
The action forces at push-side and pull-side maintain the maximum values at all
times. The reason for difference between both of the maximum values at two
sides is the difference of effective piston area of cylinder. When pressure of each

(1) Left Primary Hydraulic
Circuit

(2) Left Secondary
Hydraulic Circuit

(3) Right Primary Hydraulic
Circuit

(4) Right Secondary
Hydraulic Circuit

A. Hydraulic Jack

. Directional Valve
. Check Valve

. Relief Valve
Accumulator

(0 (3)

mo o w

@ Connect to Structure

G Connect to Bracing

Fig. 4 Organization of ASHD
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earthquake 1995, (b) comparison of the maximum storey drifts responses, (¢) comparison of the
maximum absolute acceleration responses, (d) comparison of the maximum base shear responses

cylinder body is equal, the output forces at each side are not the same. But, both
of them can preserve the maximum output state at any time for ASHD, installed
with accumulator by loaded storage oil into Accumulator to produce pressure for oil
inlet, then, the pre-pressure of cylinder can be produced. This is the reason for Fig. 6
to maintain the defined value and avoid the loss of forces because of the cylinder
sliding. Therefore, Accumulator can avoid the problem of the cylinder sliding. The
energy dissipation behavior of ASHD is dominated by the Accumulator. The control
force is directly related to the maximum pressure of the Accumulator.
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2.3 Case Study of High-Rise Building Added with DSHD
and ASHD

2.3.1 Analysis Model and Control Parameters

In this study, a ten floor shear frame structure is used to simulate and analyze
the seismic proof capability of this structure added with DSHD and ASHD. The
mass of each floor of this shear frame structure is 1000 tones and the stiffness
of each floor is 1763.47 MN/m. Natural frequency of this structure is 1.0s and
assuming the damping ratio of basic model of vibration is 0.5 %. Three control
modes are analyzed to compare the seismic proof capability of this building added
with different control conditions such as with DSHD, ASHD with and without
synchronized control with the structural responses of bare structure. The analysis
parameters for each analysis mode are listed in Table 1. The brace stiffness is
7053.88 MN/m and the damper capacity is SOMN. In this study, the maximum
structural story drift, the maximum absolute acceleration, and the maximum base
shear of test building under different control conditions are under excitation of Kobe
earthquake record, 1995, the maximum acceleration is 0.833 G, shown in Fig. 6a.

2.4 Analysis Results

The analysis results of the maximum story drift, the maximum absolute acceleration,
and the maximum base shear of test building under external excitation of Kobe
earthquake are shown in Fig. 6, respectively. Figure 6b displays that the decreasing
trends of the maximum story drift responses are bottom up. But, it also displays
that the maximum story drift reduction percentage of Mode I, II, and III are
78, 78, and 80 %, respectively. There is no obviously difference between Mode
I and Mode II, the Accumulator does not perform its seismic proof efficiency.
But, Accumulator can raise the saturation of oil of hydraulic damper to avoid
the losses of control efficiency resulting from the oil spill from perspective of
shock absorption. Otherwise, test results of Mode III also reveal that the structural
displacement responses of more than half floors of building have been controlled
well, better than those of Mode II. Then, the roof structural displacement responses
of bare structure are compared with those of Mode III, the maximum structural

Table 1 The analysis parameters for these three analysis modes

Mode Damper type Brace stiffness (MNm™!)  Damper capacity (MN)  Synchronization
I DSHD 7053.88 50 No
I ASHD 7053.88 50 No
I ASHD 7053.88 50 Yes
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displacement response of top roof for bare structure is smaller than that of Mode
III, 0.627 m for bare structure and 0.076 m for Mode III respectively. The shock
absorption ratio of the structural displacement of top roof is 8§7.9 %.

Figure 6¢ reveals that the absolute acceleration responses of Mode I and Mode
II are greater than those of bare structure, the variation trend of these responses is
reverse for those of bare structure. Therefore, the structural acceleration responses
of Mode I and Mode II have been enlarged for the lower floors of building by
added with dampers. After checking the time history of acceleration responses,
it is found that the difference of switching time causes the magnification of the
structural acceleration responses. The test results of Mode III are mined to show that
the transient amplification phenomenon has been eliminated by the synchronization
process of ASHD. Not only the maximum structural acceleration responses of all
floors are less than those of bare structure, but also the control effects of structural
displacement control are better than those of Mode I and II.

The maximum absolute acceleration responses of Mode I and Mode II have no
apparent effects because of pulse phenomena. Nevertheless, the shock absorption
effects of base shear responses provide obviously mitigation effect for Mode I, II,
and III. Each control mode will reduce 55-60 %.

3 Conclusions

The component test of DSHD and ASHD has been executed to discuss the basic
energy dissipation behavior. Then, a ten floor shear frame structure is applied
to simulate and analyze the seismic proof capability of this building added with
DSHD and ASHD without and with synchronized. The test and analysis results are
synthesized as follows:

1. A ten floor shear frame structure is used to simulate and analyze the seismic
proof capability of this structure added with DSHD and ASHD without and
with synchronized control. Simulation results display that there are no obviously
difference of the maximum story drift reduction percentage between these three
control modes.

2. Simulation results of test structure with ASHD with synchronized control show
that the structural displacement responses of more than half of floors have been
controlled well, better than test structure with ASHD without synchronized
control. Otherwise, a comparison between roof structural displacement responses
of bare structure and those of test structure with ASHD with synchronized
control, the shock absorption ratio of the roof structural displacement is 87.9 %
for test structure under control process of ASHD with synchronized control.

3. Structural acceleration responses of test structure added with DSHD and ASHD
without synchronized control have been enlarged for the lower floors of test
structure under these two control conditions.

4. The base shear responses of test structure added with DSHD and ASHD without
and with synchronized control are reduced 55-60 %.
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On Necessary and Sufficient Conditions
for Eigenstrain-Type Control of Stresses
in the Dynamics of Force-Loaded Elastic Bodies

Juergen Schoeftner and Hans Irschik

Abstract In the present contribution, the possibility of controlling dynamic stresses
in force-loaded bodies by means of actuating eigenstrain fields is addressed.
The action of eigenstrains, such as thermal or piezoelectric actuating strains, is
subsequently gathered under the notion of actuating stresses. Our study is performed
in the framework of the theory of small incremental dynamic deformations super-
imposed upon a state of possibly large static pre-deformation of a hyperelastic body.
Particularly, we present a solution for the general problem of producing certain
incremental stress trajectories by means of specifically tailored actuation stresses
that are superimposed onto the force-loaded body. This we shortly call the stress
tracking problem. The problem of suppressing incremental stresses is contained as a
special case. Subsequently, particular emphasis is given to the systematic derivation
of necessary and sufficient conditions that must be satisfied in order to solve the
stress tracking problem. Necessary conditions are presented that must be satisfied
by the intermediate configuration and by the desired incremental stress field that
shall be tracked, and sufficient conditions are derived that must be satisfied by the
incremental actuating stresses. As an illustrative example, our three-dimensional
formulation is eventually applied to the one-dimensional dynamic case of a straight
homogeneous rod with a support excitation at one end and a single point-mass at
the other end.
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1 Fundamental Relations

1.1 Local Balance of Linear Momentum and Boundary
Conditions in the Actual Configuration

In the following, we use a natural (unstressed) state of the body as common
reference configuration. The local relation of balance of linear momentum reads:

DivP + by = p it (1)

The first Piola—Kirchhoff stress tensor is denoted as P, and Div stands for the
divergence operator with respect to the place in the reference configuration. The
imposed body force per unit volume in the reference configuration is by, and pg
is the mass density in the reference configuration. The total displacement vector
from the reference configuration is written as u, and a superimposed dot denotes the
material time derivative. On some portions dB; of the boundary 0B = 0B; U 0B,
kinematic boundary conditions are prescribed:

oB;: u=u" )

The imposed surface displacements at dB; are denoted as u*. At dB,, dynamic
boundary conditions (boundary conditions of traction) are given:

832 . Pny = l‘E)k 3)

Here, ng stands for the unit outer normal vector at the surface in the reference
configuration, and #; is the imposed Lagrange surface traction.

1.2 Introduction of a Static Intermediate Configuration

Incremental dynamic displacements and stresses are considered relative to an
intermediate configuration, which in general may be a (possibly) large static pre-
deformation from the reference configuration. The use of a common reference
configuration allows applying the following additive decomposition:

bo = boi + bot, 1y =1y +1to,, u=ui+uy, P=P;+Py 4
The subscript (i) refers to the static intermediate configuration, and the subscript
(+) indicates the dynamic increments from the intermediate configuration. Substi-

tuting into Egs. (1)—(4) and subtracting the relations for the intermediate state gives:

Div P4 + boy = poii+ (5)
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8B1: uy = Lt*+ (6)
0B, : Ping = l6k+ 7

Since the intermediate state is assumed to be static, i.e., it is at rest, trivial initial
conditions for the incremental motion are obtained:

t=0: upr=0, iy =0 (8)

1.3 Linearization About the Incremental State

From now on, we consider infinitesimally small incremental dynamic deformations
superimposed upon the intermediate state. The latter may represent a large static pre-
deformation from the common reference configuration. Considering a hyperelastic
body, the linearized constitutive relations read

Py = A;[Graduy] + Past )

The fourth order tensor of elastic constants in the intermediate configuration is
abbreviated by A;, and Grad denotes the gradient operator with respect to the place
in the reference configuration. For the square bracket notation, which indicates the
linear mapping of a second order tensor onto a second order tensor via a fourth
order tensor, see Gurtin [1]. The incremental actuation stress tensor, a second order
tensor, is denoted as P, . It represents a linear mapping of the actuating incremental
eigenstrains. In case of thermal eigenstrains, it relates the stress to the temperature
via the second order stress—temperature tensor, see Carlson [2] for the linear theory
of thermoelasticity, i.e., when intermediate and natural reference configuration do
coincide. When using eigenstrains for the purpose of controlling deformations,
one also talks about a smart actuation in the literature. Note that in case of an
intermediate state with a large deformation from the reference configuration, A; as
well as P, depend on the intermediate state and thus do vary across the body, even
if it is homogeneous in the natural reference configuration.

1.4 Stress-Based Reformulation

Since we deal with stress tracking, a stress-based reformulation of the above
incremental relations is desirable. In the framework of the linear theory of elasticity,
i.e., when the intermediate configuration coincides with the natural reference
configuration, this strategy dates back to Ignaczak [3] and [4]. This reformulation
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requires that A; is invertible:
Graduy = K; [P+ — P,] with K; =A;"" (10

The existence of the compliance tensor K; in any point of the body represents a first
necessary condition in order that our subsequent solutions for the stress tracking
problem make sense. Substituting Eq. (10) into Egs. (5)—(8), we obtain the following
stress-based reformulation of the incremental initial boundary value problem under
consideration:

Grad (po ™" (DivPy + bot)) = K;i [P+ — Py | (11)
dBi: DivPy + byt = po il (12)
0By: Ping=1, (13)
t=0: Py—P,y=0 P —P,=0 (14)

2 The Dynamic Stress Tracking Problem

2.1 Formulation of the Stress Tracking Problem

We now formulate the stress tracking problem as follows: derive a space- and time-
wise distribution of an incremental actuation stress field P,4, such that the above
initial boundary value problem, Eqs. (5)—(9), results in a desired incremental stress
field Z everywhere in the body under consideration and for all times:

PL=Z (15)

Note that the desired incremental stress field Z may be both, space- and time-
dependent. For a convenient solution strategy, we introduce an error stress field:

P,=P,—Z (16)

Our goal in the following will be enforcing that the error stress field does vanish
everywhere and for all times, P, = 0.

2.2 Direct Solution of the Stress Tracking Problem

In a first step, we derive a direct solution strategy for the stress tracking problem
by replacing the incremental stress P by the entities Z and P,, see Eq. (16), in the
stress-based formulation in Eqs. (11)—(14). Putting the expressions that contain P,
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onto the left-hand side of the corresponding relations yields:

Grad (po~'Div P,) — K; [P.]

= —Grad (o' (DiVZ + bo4)) + Ki [Z — Poy ] (17)
dB1: DivP, = —DivZ — boy + poii’. (18)
OBy: Peng=—Zng+ 15, (19)
t=0: P,=P, —Z2 P, =P, —7 (20)

The desired goal, P, = 0, then may be reached, when the right-hand sides of
Egs. (17)—(20) do vanish. First, note that Egs. (18) and (19) result into two necessary
conditions that must be satisfied by the desired incremental stress field Z:

B1: DivZ = —boy + poii’. Q1)
0B, : Zny= t;+ (22)

In other words, at the boundary of the body B, the desired incremental stress field
Z cannot be chosen independently from the imposed incremental body forces and
boundary data. Moreover, two sufficient conditions for the incremental actuation
stress follow from Eqs. (17) and (20):

Py = —A;[Grad (pg ™' (DIVZ + boy )| + Z (23)
t=0: Py=2 Po=27 (24)

In the present context of (infinitesimally) small incremental deformations superim-
posed upon the large pre-deformation of the intermediate state, it is required that
the latter is stable in some sense, such that a further necessary condition must be
formulated.

2.3 Stability Issues

In order to derive a condition for the necessary stability of the intermediate
configuration, we now utilize a strategy originally suggested by Ignaczak [3] for
studying the completeness of a stress-based formulation in the framework of the
linear case. By analogy, we introduce the following scalar error integral over the
volume in the reference configuration, but referring to the incremental error stress:

L(1) = / (py ' Div P, - Div P, + K; [P.] - P,) dVy (25)
By
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Now assume that initially no errors are present:
P.(t=0)=0, P,(t=0=0= L(=0)=0 (26)
Considering the major symmetry property of the fourth order tensor of compliance
K;[B]-D =K;[D]-B 27
see, e.g., Knops and Wilkes [5], the time derivative of Eq. (25) follows to:

1d

I :/ (py ' DivP, -Div P, + P, - K; [P.]) dV, (28)
2dt By

Using some results from tensor algebra and analysis, it can be shown after some
reformulations, using Egs. (21)—(24) and (26), that the necessary and sufficient
conditions for P, = 0 yield that

d
dtle =0=1I,(t) =const. = [, (t = 0)
=1,() = / (b ' DivP. -DivP, + K;[P.] - P.) dVo=0  (29)
Bo

Now, the first part of the integral in Eq. (29) is positive semi-definite:

/B 0 (05" Div P, - Div P,) dVy j(;) ff;’: I;je ;(()) (30)
However, the second part of the integral is generally indefinite
‘ ‘ =0 for Pe =0

/B 0 (K: [P.] - P.) dVo i 8 for B, 40 (31)

Thus, vanishing of the error integral implies that the error stress vanishes only if:

P,=0 if / K;[P.] -PedVy>0 for P, #0 (32)
By
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This necessary condition is analogous to the Hadamard stability condition, see
Knops and Wilkes [5]

/ K; [Pe] -P,dVy>0 for P, #0 (33)
Bo

This necessary condition is also known as infinitesimal superstability of the inter-
mediate configuration under consideration. When the intermediate configuration
and the natural reference configuration do coincide, i.e., in the linear theory of
infinitesimally small deformations superimposed upon an undeformed configura-
tion, stability is pre-assumed. In the present case of a possibly large deformation of
the intermediate configuration from the reference configuration, however, Eq. (33)
represents a practically important requirement.

2.4 Recalling the Three-Dimensional Solution

The above results for solving the stress tracking problem are shortly summarized. If
the following two necessary conditions hold at the boundary of the body:
0B1: DivZ = —bo+ + po IT_;_, (34)
0By: Zng= l8(+, (35)
and moreover if the compliance tensor does exist in every point in the intermediate

configuration, and if the Hadamard stability condition stated in Eq. (33) does hold,
then, in order that the goal of stress tracking is reached,

P, =2, (36)

it is sufficient to use an eigenstrain actuation satisfying the following two relations:

Py = —A;[Grad (o' (DiVZ + bo1))] + Z, (37)
t=0: Py=2 Po=27 (38)

For preliminary formulations concerning the linear case of infinitesimally small
deformations superimposed upon the natural reference configuration, see Irschik,
Gusenbauer and Pichler [6] and Irschik [7]. The solution strategy gathered in
Eqgs. (34)—(38) will be subsequently exemplified.
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3 Illustrative Example: Straight Rod

3.1 One-Dimensional Boundary Value Problem

In the one-dimensional case, the relation of balance of incremental linear momen-
tum, Eq. (5), becomes

2
’ Py(X, 1) + bot (X, 1) = po(X) ? u (X, 1) (39)
0X or2
The axial coordinate in the reference configuration is denoted as 0 < X < L.
The incremental boundary conditions of place and traction, Egs. (6) and (7), and
the trivial initial conditions for the incremental motion from the static intermediate
configuration, see Eq. (8), read

X=0 up(X=0, 1) =u}()) (40)
X=L: P.(X=L, 1t)=15(1) (41)
t=0: up(X,t=0)=0, (X, 1=0)=0 (42)

The one-dimensional form of the linearized constitutive relation in Eq. (10) is

ad
9x Lt+(X, t) = K,(X) (P+(Xv t) - Pa-i-(Xs t)) (4‘3)

The Hadamard stability condition for the intermediate configuration, Eq.(33),
locally reduces to

Ki=1/A;>0 (44)

3.2 Conditions for Stress Tracking in the One-Dimensional
Case

We assume a support excitation u; (¢) at X = 0 and boundary conditions of traction
atX = L:

9 2,
0: X Z(0, 1) = =bo+(0, 1) + po(0) a2 uZ (1) (45)

X=L: Z(L, 1)= 13,00 (46)

X
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Sufficient conditions for stress tracking, P+ (X, t) = Z(X, t), then become, see
Eqgs. (37) and (38):

2 ] 0
a2 Poyr (X, 1) = —Ai(X) [BX (PO_I(X) (8X Z(X, 1) + bot (X, f)))i|
32
+o2 Z(X, 1) 47)
t=0: P, (X,0)=2Z(X, 0), P, (X, 0)=ZX, 0) (48)

3.3 Linear Elastic Rod with End-Mass and Support Excitation

For simplicity sake, from now on we restrict to the case of an intermediate
configuration, which coincides with the natural reference configuration, such that
we deal with the linear theory of elastic bodies in the presence of eigenstrains. We
take body forces to be absent, bo " (X, 1) = 0, and assume that the mass density py,
the cross-section ap and the elastic constant Ay (the effective Young’s modulus) of
the rod are constant. As complicating aspects, the rod, however, is assumed to be
firmly connected to a single point-mass M at the free end X = L. The boundary
condition of traction at this end of the rod thus becomes, see Eqgs. (39) and (41):

2

9 Pi(L, )y (49

X=L: P (L n=1t,0=- L ax

Loy=-"
uy(L, 1) = —

agp or? + Lo a
Now, let the desired stress be separable in space and time Z(X,?t) =

2(X) po 53:2 u’y (1), then the necessary conditions stated in Egs. (45) and (46) yield
that

0
X=0 20 =1 (50)
M 0
X=L: z(L)+ po do BXZ(L) =0 (51)

A suitable function z(X) is chosen, which satisfies the necessary conditions,
Egs. (50) and (51), and the sufficient conditions, Eqgs. (47) and (48), are eventually
solved for a given u? (f), resulting in an actuation stress field that satisfies
P+ (X, 1) = Z(X, t). This strategy is subsequently demonstrated in an example.
The following peak-type functional dependence for the support excitation is taken
into consideration in this example, see also Fig. 1, where C and « are constants:

wh(t) = Can)’exp(—anL (52)
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prescribed excitation Fourier transform
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Fig. 1 Support excitation at X = 0 and Fourier transform

desired stress Z(X,t) = z(X)poti (t)

spatial component of desired stress tempora}ocomponent of desired stress

02 3)(10
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Fig. 2 Spatial and temporal distribution of the desired stress Z(X, 1)

In Fig. 1, the first three natural frequencies of the rod are marked as fi, f> and f5.
The following values (in SI-units) have been chosen in the numerical computations:
C = (e/3)’, @ = 2500, modulus of elasticity Ay = 6.29 x 10°, cross-section
ap = 4 x 107, mass density pg = 7750, single mass M = 10, length of rod
L = 0.8. From Egs. (48) and (52), we find that:

atpﬁ(x, 0) =0 (53)

Pa+(X, 0) == 0, a

For the desired stress Z(X, f), we use, see also Fig. 2:

ZX)=L(X-3X*+3X’—X") with X=X/L 54)
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Fig. 3 Time-wise distribution of stress in three locations; controlled case
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Fig. 4 Time-wise distribution of stress in three locations; uncontrolled case (P,+ (X, t) = 0)

Note that the selected spatial distribution z(X) in Eq.(54) satisfies the necessary
conditions stated in Egs. (50) and (51). The required actuation stress P, (X, ?)
is eventually found by integration of Eq.(47), using the trivial initial conditions
stated in Eq.(53). It is found that the desired stress Z(X, f) is indeed obtained by
our method. Results are depicted in the following figures for the controlled (Fig. 3)
and the uncontrolled case (Fig. 4). Note that the stress maxima in the uncontrolled
case are substantially higher than in the controlled case. A more detailed discussion
and further examples will be given in a forthcoming contribution, Schoeftner and
Irschik [8].
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Variational Principles for Different
Representations of Lagrangian and Hamiltonian
Systems

Markus Schoberl and Kurt Schlacher

Abstract In this contribution we show, mainly based on an example, how Hamil-
tonian counterparts for partial differential equations that allow for a variational
principle can be derived in a systematic manner. The main tool will be the
appropriate use of the Lagrange multiplier technique, which allows us to obtain
several well-known Hamiltonian formulations by using a common principle. The
Mindlin plate will be used to visualize the presented approach

1 Introduction

Calculus of variations is one important tool to derive the partial differential
equations (PDEs) of physical systems, see, e.g., [1, 2, 5-7]. The outcome of the
variational principle are PDEs in the so-called Lagrangian setting, as the Euler—
Lagrange operator plays an important role. However, based on the Lagrangian
formulation it is of interest to derive Hamiltonian counterparts. This has been
discussed in various settings, e.g., based on Stokes—Dirac structures as well as on
the underlying structure of a jet-bundle in [3, 8, 12, 13] and the references therein.

In this contribution, we will show that some of the Hamiltonian pictures from
above have a common origin, see also [9]. The main idea is to adopt the concept of
Lagrange multipliers to get rid of derivative variables in the Lagrangian by imposing
constraints—this can be uniquely performed for ordinary differential equations and
leads to the well-known Hamiltonian counterpart. For systems described by PDEs,
more than one independent variable exists, and thus several choices for constraints
can be made, which then lead to different Hamiltonian representations.
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2 Variational Calculus and the Hamiltonian Counterparts

In this section we shortly review variational calculus for first-order field theories. In
particular we show how one derives the Euler—Lagrange equations and furthermore
we discuss the derivation of several Hamiltonian counterparts by using the Lagrange
multiplier technique. All these theoretical foundations will be extensively discussed
in more detail in Sect. 3 by using an illustrative example.

Let us consider a variational problem that can be described using the dependent
coordinates x*, « = 1,...,r and the independent variables X i=1,..., p.
Furthermore, we consider the derivative variables x¥. Given a map o as x* =
a%(X', ..., XP) then, roughly speaking, x* is a container for the partial derivatives of
amap o, i.e., dyic® (Xl, ..., XP), see, e.g., [2] for an extensive and a (geometrically)
precise introduction of these concepts.

Remark I In a geometric framework one can introduce a bundle 2~ — 2 with
coordinates (X', x*) for 2~ and (X') for 2. The map o is called a section of
the bundle and the first jet-manifold _# '(2") possesses the induced coordinates
(X', x*, x%) including the derivative coordinates x¢.

Based on this setting a Lagrangian density of first-order is a differential p-form
#£2 with the volume element £2 = dX' A ... A dX? and where the Lagrangian
ZL(X', x*,x¥) explicitly depends on first-order derivative variables. Stating a varia-
tional problem implies to find the so-called critical maps o such that the functional'

ea/_@(fo@(o)m

becomes stationary, where ¢, is a map (based on a flow that only acts on the depen-
dent coordinates x*) that distorts the map o. Furthermore, the relation that v* =
0 (%)= » 1-€., v is the variational field or the generator of the map (flow) ¢, will
be u§ed tqgeth.er with integration by parts. The.n, from de /. 9 (L o¢p(0)) 2 |E= 0 =
0 using Einstein’s convention on sums, we derive the important result

/ (v“(axaf—dxf(aiaf))oa)ﬂ—i-/ (1L o0) 2 =0 (1)
Z 09

'In the integrand .% o ¢, (o) it is implicitly assumed that one plugs in the derivative of ¢, (o) as
the derivative variables x{ are present in .. Using a more precise notation this could be written
as .Z o j1(¢.(c0)), but to enhance the readability we will not indicate the jet-prolongations (i.e. j')
when it follows from the context.
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with? 2, = yi |$2 . In (1) the Euler-Lagrange operator

qu = 3)6« —dxiaia N axu = axa N 3}1 == ax? (2)

appears where dy: is the total derivative, and consequentially §,«.Z = 0 leads to
the desired PDEs of the field problem, whereas the second term in (1) delivers the
boundary conditions.

To derive possible Hamiltonian counterparts the following strategy can be
adopted. We first split the independent coordinates into time and spatial coordinates.
It is convenient to label X! = ¢ and X* with A = 2,...,p denote the spatial
variables. To enhance the readability we set xX{ = x7 and xj only corresponds to
spatial derivative variables. Introducing the constraint x{ = u®, the Lagrangian
density is of the following form:

L1, X1, x°, u®,x3)$2 3)

and we can consider the variational problem

9 /@ (Z0¢e(0) 2+ (Ag 0 0) (x¥ 0 ¢ (0) — u® 0 p(0)) £2 =0

e=0

with the Lagrange multipliers A,. This setting leads to a symplectic formulation of
the PDEs, as one derives evolution equations for the Lagrange multipliers A, .

Remark 2 1t should be noted that here ¢ = (¢, ¢~) corresponds to the variation
of the x* and the u® variables. As these variables are coupled by the relation x{ = u®
the Lagrange multipliers have been introduced.

In a similar manner also the Lagrangian density

A

L, X", x",u?) 2 )
with the constraint x¥ = u} can be considered, where i = ¢, A, and the
corresponding variational problem will lead to the so-called De-Donder Weyl
formulation, where it should be noted that in contrast to x¥ the variables u{ are
no derivative variables.

Remark 3 Tt should be noted that the symplectic picture and the De-Donder Weyl
representation are well-known in the literature, see, e.g., [2, 7, 10]. However, their
common derivation by using the Lagrange multiplier technique has been pointed out
just recently in [9].

2| denotes the natural contraction, i.e., dxi |2 = (—1)~'dX' A ... AdX' A ... A dX? where dX'
is omitted.
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Alternatively, it might be possible to introduce the so-called energy coordinates e
such that the Lagrangian takes the form

Z(X',e) ®)

where we will show in Sect. 3 that this latter approach is connected to the Stokes—
Dirac formulation, see, e.g., [13].

It is worth noting that the basic idea of the presented approaches is to hide
derivative variables x{ in the Lagrangian by introducing additional variables and
to take these relations into account by applying the Lagrange multiplier technique.
In (3) only the time derivative variables are hidden and hence one obtains evolu-
tionary equations in a Hamiltonian setting, where the Lagrange multipliers can be
interpreted as the canonical momenta. Contrary, in (4) all the derivative variables
are hidden and the Lagrange multipliers turn out to be the multi-momenta. A
significantly different approach is based on energy coordinates as in (5), where the
constraints that have to be taken into account result from integrability conditions
due to the introduction of the coordinates e.

3 An Extended Example

Let us consider a rectangular plate with lengths /., /,, where 2 will denote the
thickness, which will be modeled based on the hypothesis stated by Mindlin.
Therefore, we choose as independent coordinates the vertical deflection w of the
mid-plane as well as the rotations of a transverse normal to the X and Y direction
termed i and ¢, respectively. The kinetic energy density .# §2 and the potential
energy density ¥ §2 can be introduced with %" = ) (a; (¥ + ¢?) + aow?) and

I S O P TR U G

@ + v + s8] + vri))

h3

12°
Poisson ratio, k = ’1’; , and G, D are the plate stiffness and the plate module, see [4]
and the references therein.

Remark 4 In our setting we have (x',x*,x*) = (w,v¥.¢) and (X!, X%, X3) =
(t,X,Y), thus r = p = 3. Furthermore, a subscript ¢, X or Y corresponds to
derivative variables. It should be noted that a subscript x or y does not indicate a
derivative variable, e.g., in I, or [.

Here, «; = pY,, an = ph and a3 = kGh as well as «gs = D. Furthermore, v is the



Variational Principles for Lagrangian and Hamiltonian Systems 69
3.1 The Lagrangian Picture

To derive the PDEs in a Lagrangian (variational) setting we have to evaluate 6,«.%
with (2) and .Z = # — ¥ where the volume element meets 2 = dr A dX A dY.
The variational derivatives follow as 8, = 9y —d, 0!, — dxaff — dyBE; where, by slight
abuse of notation, & = {w, ¥, ¢} and the PDEs read as

wwy = dyQx + dYQy

atht = Qx + dXMx + dYMxy (6)

al¢tt = Qy + dYMy + dXMxy

with

M, = D(Yx + voy), My = D(¢y +vi¥x), My = Dl ; Y (Yy + éx)
Q. = kGh(wx — V), Qy = kGh(wy — ¢). @)

The boundary conditions follow from the boundary integral in (1) together
with (7) as

/8 . (WLOx + VLM + ¢rM,y)) dtAdY — /a , (WLQy + VM + ¢rM,) dtAdX =0
®)

where the variational vector field v takes the form v = w;.0,, + Y0y + ¢104 and on
the time-boundary no variation takes place. Thus, we can conclude that if, e.g., at
X = 0 we have that wy, is arbitrary, then Q, has to vanish or has to be compensated
by an external boundary term, see also [11].

3.2 The Hamiltonian Counterparts

Based on the partial differential equations (6) we discuss two of the presented port-
Hamiltonian formulations. In particular we focus on the symplectic approach and
the formulation using energy coordinates.

3.2.1 Symplectic Approach

The symplectic approach is based on imposing the constraints w, = u', ¥, = u?
and ¢, = > and thus

H = L@@ + () + ew)?)
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is met. As the variation of x’ and ' is not independent as x* = u* (x* corresponds
to wy, ¥, and ¢, respectively, fora = 1,...,3 ) the variational problem has to be
augmented by Lagrange multipliers in the form

2. [_@ (LW b 1w x bWy Yy By) © Be(o)

+ 1w — u') 0 ¢ (0) + Ao (Y — u?) 0 pe(0)
+ A3 — ) 0 pe(0)} 2|, = 0. )

Performing the variation (and applying integration by parts) the PDEs in the domain

d/(A)) = —dx(3*.Z) — dy(3Y L)
di(Ay) = 3y L — dx(3),.L) — dy(0),.2)
di(3) = 0L — dx(03.2) — dy(3}.2)

follow, as well as
0,L = A1, 0,78 =Ly, 037 = As.
Renaming the Lagrange multipliers as
Al =pw=0aw, Ay =py =¥, A3 =pg = a1 (10)
and introducing the Hamiltonian as
H = (Wth + Yipy + by _g) ol

where [ is the inverse of the map (10) we derive a system of evolutionary PDEs

dw 0 0 0100 8|
dy 00 0010 8457
d¢ | _| 0 0 0001 8p (an
d,p —10 0000 || 8,7
dipy 0 —10000]]|86,7
L dpy | | O 0 —=1000] [ 8,7 |

The variational derivatives in this setting take the form §, = 9, — dxdX — dyd?
where o = {w, ¥, ¢} together with §,, = 9,,, (SPw = 8”,, 8p¢ = 8p¢.

The representation (11) has been derived in [11] without the use of Lagrange
multipliers by using the Legendre transformation. In this latter reference also the
energy balance and the possible boundary ports are discussed in connection with
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the boundary conditions (8). This is omitted here, as the focus is on the derivation
of the PDEs in a variational setting using the Lagrange multiplier technique.

3.2.2 Energy Variables

Let us introduce the following variables:

INi=—Yx, Iy =—¢y, Iy =Wy +¢x), [ =wx -V, ), =wy—¢

together with w, = v, ¥, = y and ¢ = w. Then

1
H = Z(Oll()(2 + 0?) + av?)
as well as

1 I 1—v 1
%zzaﬂﬂﬁ+qﬂ+2m 5 Qﬂ+%maf+vggy+muf+vﬂﬁn
is met. We have introduced eight new variables, the so-called energy variables,
which have been derived by derivations of the three dependent variables w, ¥ and
¢ and thus, obviously, the constraints

1:}=—XX, 1:}=—60Y, n}v=—)(y—wx, fjrz:vX_Xv I, =v—w
(12)

follow, where by slight abuse of notation we use the ‘dot’ to indicate a total time
derivative. Now we apply again the variational principle as in (9) but we observe
that now the Lagrangian is of the form £ (y, w, v, I, Iy, I'yy, I, I,;)—hence no
derivative variables appear at all—but we have to augment the problem with the
constraints in the following form:

M (Lot xx) + 20 (D +oy) + 23 (Dy+ gy +ox) FAa (D —vx + 1) + A5 (D —vy + o).
Performing again the variation gives the following domain conditions:
oV + dx(/\4) + dy(ls) =0
a1 —dx(A1) —dy(A3) + 44 =0
arw —dy(Ar) —dx(A3) + A5 =0

aswell as d;(A1) = —au(Ix +vI)), di(A2) = —as(Jy + vI;) and

1—v
di(A3) = —ou 5 Iy, di(As) = —o3[y, di(As) = —azly,.
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Taking the total time derivatives of the first three relations and combining this with
spatial derivatives of the latter five equations we derive

dtpw = Ol?l(dXI-vxz + dYI}Z)

1—v
dipy = —dx(a4(I'x +vIy) —dy (Ol4 5 ny) + o3l

1—v
dipy = —dy(as(Iy +vIy) —dx (a4 5 ny) + a3l

with p,, = v = wwy, py = a1y = aY;, pg = 1w = a1¢;. Furthermore, the
constraints read as

1 1 1 1
dil'y = —dx (alpxlf) . a0y = —dy (a1p¢) , dily = —dy (all’w) —dx (alqu)

1 1 1 1
diI; = dx ( pw) - Py s dtrjvz =dy ( pw) - Pe
023 o s o

and consequently we have a relation of the form
din = Je 13)

with a formally skew-adjoint differential operator j together with the so-called effort
variables € = 0,5 with € = 2 + ¥ and n = [pw,py.Pg. L%, Iy, Iy, Tzy Tye).

It should be noted that the systems (11) and (13) both are Hamiltonian represen-
tations of the same physical system. Indeed the first three PDEs of (13) correspond
to the lower three PDEs of (11). Also the Hamiltonian is the same function in the
two scenarios, but based on different coordinates. The representation as in (13)
corresponds to the Stokes—Dirac formulation as in [4]—it is worth noting that
in contrast to (11) in (13) the mechanical degrees of freedom (w, ¥, ¢) are not
present anymore, this comes from the choice of the energy variables and leads
to a higher dimensional system (eight PDES compared to six). Furthermore, the
choice of energy coordinates leads to the integrability conditions (12) that have to
be included into the setting—this does not occur in the symplectic approach where
the mechanical degrees of freedom (w, ¥, ¢) are still present—similar as in the
Lagrangian scenario, where (w, ¥, ¢) are the field variables.

Acknowledgements This work has been partially supported by the Linz Center of Mechatronics
(LCM) in the framework of the Austrian COMET-K2 programme.
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Hardware-in-the-Loop Testing of High-Speed
Pantographs Using Real-Time Catenary
Emulation

Alexander Schirrer, Guilherme Aschauer, and Stefan Jakubek

Abstract This contribution outlines key developments and first results towards an
innovative hardware-in-the-loop test rig for high-speed pantographs that can accu-
rately emulate high-speed train rides. This allows for efficient pantograph testing
in laboratory and thus reduces the need for expensive track tests. Efficient real-
time-capable models of the relevant and complex catenary dynamics are needed,
but due to the distributed-parameter dynamics and weak damping, special care in
the model formulation has to be taken. A novel moving coordinate formulation
combined with controlled absorbing boundary layers yields an accurate and efficient
catenary model. A model-based predictive test rig impedance control scheme is
then used to emulate the catenary behavior on the test rig. Additionally, physical
conservation laws (energy and momentum) can be considered by the controller as
control goals. First experimental results demonstrate the test rig ability to emulate
catenary behavior and eliminate errors in energy and momentum between the
coupled systems.

1 Introduction

High demands are put on modern high-speed railway current collectors (panto-
graphs). They need to maintain a stable contact with the current-carrying contact
wire of the overhead catenary system to ensure reliable energy supply and prevent
arcing that is caused by loss of contact and leads to heavy wear.

Examining the dynamic response of an actual pantograph on a test rig is called
hardware-in-the-loop (HiL) testing. One use case is to apply realistic load scenarios
that also emerge on real track rides by accurately emulating the catenary behavior
on the test rig. The so-called impedance control concepts are needed to shape the
test rig’s dynamic behavior rather than only track pre-defined trajectories.

For this purpose realistic real-time-capable catenary models are required. In this
work this is achieved by describing the behavior of the catenary by two coupled
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partial differential equations (PDEs). Classical modeling approaches thereby require
a large computational domain or high damping to avoid distorted solutions by
spurious reflections from the boundaries. Specific model formulations and boundary
treatment methods can, however, significantly increase model efficiency and finally
produce real-time-capable models of high accuracy.

Another application issue is that existing HiL test rigs often suffer from intrinsic
phase lag when using impedance control realized by classical control strategies. This
could lead to the accumulation of energy errors that may emerge between the cate-
nary model and the pantograph caused, for example, by ubiquitous imperfections in
control.

The main contributions of this work solve the described issues by presenting
an efficient real-time-capable Eulerian modeling approach to solve the distributed-
parameter catenary dynamics combined with special absorbing boundary layers.
Additionally, a novel impedance control strategy incorporating energy and momen-
tum conservation, solved by a model predictive control (MPC) approach to consider
constraints and predict the complex catenary dynamics, is outlined. For a high-
dynamic test rig setup, first promising experimental results of the test rig control
concept are shown.!

2 Catenary Model

A typical catenary consists of a carrier wire that is attached to inertia-fixed masts
and of a contact wire that is attached to the carrier wire via droppers. The simplified
structure of the catenary that was the basis for the modeling is shown in Fig. .
The bending behavior of each wire can be described by the Euler—Bernoulli
bending beam under axial pretension, see [1]. The corresponding PDE with constant
coefficients reads

PAW + Bw = —EIW"" + Tw" + f, (1)
mast
carrier wire
f—>
dropper
o contact wire pantograph —»_»

Fig. 1 Typical railway catenary system setup

'The HiL test rig (Fig. 3) has been jointly developed by TU Wien and Siemens pantographs team
(Siemens AG Austria, MO MLT BG PN).
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where pA is the specific mass, w(x, f) the vertical displacement field, B a velocity-
proportional damping coefficient, E Young’s modulus of elasticity, / the geometrical
moment of inertia, 7 the axial pretension force, and f(x,f) denotes the vertical
force density acting on the wire. The spatial coordinate x is (horizontally) aligned
along the undeformed wire, and ¢ denotes time. Partial derivatives with respect to
x and t are denoted by a prime and a dot, respectively. The droppers that cause
the coupling between the two wires as well as the pantograph/contact wire contact
are modeled as linear (possibly one-sided) springs. The resulting vertical coupling
forces are incorporated via the force density term f(x, f). Dropper slackening and
loss of pantograph contact can be modeled via one-sided springs and result in a
variable-structure system description.

Equation (1) is valid for a non-moving wire in a fixed coordinate reference
system. Here, we use a Eulerian-based modeling approach where instead of a
moving pantograph with a fixed catenary, a pantograph-fixed coordinate system is
chosen with a moving catenary, see [6]. Hence, the coordinate transform z = x 4 vt
is introduced such that the displacements of the wires are described in a moving
coordinate system (moving with velocity v). This leads to mixed derivative terms
and periodic time-varying coupling coefficients in the linear/piecewise-linear PDE.

In the following, an approximate solution of the PDE problem is obtained by the
method of Finite Differences. Thereby the PDEs’ field variables are approximated
at discrete points in space and time,

w(zk, 1) = w(kAz, nAt) = wi, S ty) =1 )

where Az and At are the uniform step sizes in space and time, and the partial
derivatives are approximated by suitable difference quotients. A set of linear
algebraic equations is obtained that can be solved in a time-marching manner.

Initial and boundary conditions are needed for a well-posed PDE problem. These
are also discretized and substituted into the set of equations. In the most simple
form the outmost boundary points’ displacements are set to zero for all times,
realizing clamped boundary conditions. This choice, however, leads to the total
reflection of all outgoing waves at the boundary back into the domain interior.
For weakly damped systems (as for catenaries), these spurious reflections from
artificial boundaries destroy physical trustworthiness of the results. One viable
countermeasure is to apply absorbing boundary conditions (ABCs) instead, but their
analytic derivation for complex PDEs is often not possible. An optimization-based
approach to obtain them for a wide range of PDEs was shown in [8]. Another
option is to extend the computational domain with an additional damping layer,
called perfectly matched layer (PML). However, its derivation is mathematically
challenging, even for simple PDEs, if possible at all. In this contribution, a novel
approach towards controlled boundary layers (developed in [7]) is utilized that
emulates the behavior of a PML.
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3 Perfectly Matched Layer-Based Boundary Dynamics
via Control

The idea of a PML is to extend the computational domain with a small region
with damping properties chosen such as to attenuate all incoming waves signif-
icantly by adding an exponential decay to the harmonic wave solution: w; =
exp(—o (kAx)) exp(iw, Ax)* exp(iw; At)", with the damping profile o(x). See [3]
for more information on harmonic wave solutions of PDEs and basic absorbing
boundary conditions for the wave equation. Care has to be taken to avoid additional
reflections at the interface between the PML and the computational domain
(impedance matching). In this work, a controlled boundary layer is utilized (taken
from [7]) as depicted in Fig.2, and the state-space system of the discretized PDE
from a PML point of view thus becomes

xpMme(k + 1) = Apmrxpme (k) + Bpmiuepmr (), upmr (k) = Kxpwmr (k), (3)

where a force on nodes inside the PML is applied by the feedback gain matrix K
such that the desired exponential decay is obtained.

The optimal reference tracking control gain K is derived by minimizing a
quadratic cost function for each time step:

ne—1

p
mi%\l}zize Z Vet —yz')T Q (et —¥:) + Z ”EMLJR”PMLJF )
i=1 j=0

where Q and R are the weighting matrices that can be tuned by the user, y, is
the reference solution that is constructed by a modal decomposition and exploiting
the PDE’s dispersion relation, and y is the displacement field inside the PML. n,
is the prediction horizon over which the deviation from the reference solution is
evaluated and . is the control horizon over which the forthcoming control moves
are penalized. Linear control theory can be applied to derive a constant feedback
gain matrix K, see [7] for a detailed derivation.

] uPML

K ) 4 y .4 —?/? == T o ~.
PM L ----- domain of interest

T i LPML

Fig. 2 Control scheme for the proposed controlled PML
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4 Emulation of Catenary Behavior on a HiL. Test Rig

Having formulated a catenary model in moving coordinates (Sect.2) and its
augmentation by absorbing boundary layers (Sect. 3), the central HiL testing task
is to realistically emulate this virtual catenary dynamics at the physical interface
between a test rig and the pantograph (unit under test). A high-dynamic HiL test
rig has been developed as depicted in Fig. 3 (joint development of the authors with
Siemens MO MLT BG PN). It consists of a six-degree-of-freedom industrial robot
and an attached linear drive that together enable high-dynamic maneuvers in a large
operating range. Contact forces and the linear drive position are measured. The
emulation of accurate catenary behavior is accomplished by the setup illustrated
in Fig.4: instead of applying classical tracking control, here the control goal is
to shape the test rig response to behave dynamically like the catenary model—a
concept called impedance control [4]. As seen in Fig. 4, the controller’s main task
is to steer the test rig (via usg) so that the test rig’s contact point displacement xyg
stays close to the catenary model’s contact point displacement x.,. The measured
contact force Fy, is thereby applied to the catenary model. Additionally, an artificial
catenary correction force F,, is introduced as an additional control input available
to the impedance controller. This force will be helpful to control the consistency
of conserved quantities exchanged between the real pantograph and the virtual
catenary model. The control law is realized as an MPC, in which the control inputs

Fig. 3 Pantograph HiL test rig (Siemens MO MLT BG PN)
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P correction force Fi; '

Feo cat

» catenary
_model |
Foxt
controller »| testrig
Urig | ;
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Fig. 4 Control concept

are determined by solving a constrained convex quadratic problem of the form

minimize  J (o (k), Feor(k), x(k), k
trig (k) Feor (K) ( ¢ (k) (k), x(k) ) 5

subjectto g (urig(k), F.:(k), x(k), k) <0.

at each time step. There, a sequence of future test rig control inputs and artificial
catenary correction forces,

g (K) = [uig (K). gk + 1), ..., tgk+ e = D] (©)
Feor(k) = [Fcor(k), Fcor(k + 1)3 ooy Feorlk +ne — 1)]T s @)

comprise the decision variables, the objective function J formulates the devia-
tion from the control goals (see below), and the constraints g formulate input-,
state-, and output-constraints that the controller needs to fulfill. The first val-
ues (urg(k), Feor(k)) of the optimal input sequences are applied to the test rig,
respectively, the catenary model, so a receding-horizon impedance control law is
realized. It is noteworthy that this control law exploits model-based predictions of
the dynamics to eliminate lag in tracking, typically resulting in superior control
performance compared to classical tracking control designs, and it can explicitly
account for constraints such as actuator limits.
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The terms in the objective function and the constraints are carefully formulated
to achieve both, optimal tracking of the contact point displacement and velocity,
as well as ensuring correctness of conserved quantities transferred between the
pantograph and the virtual catenary model. The tracking goals are formulated by
the objective terms

np ne—1
Teack = q Y (earlk + ) — Xig(k + ) + 1Y (rig(k + )2, ®)
Jj=1 j=0

where x denotes the contact point displacements and g, r > 0 are weighting factors.

It is known from earlier test rig control works that the adherence to physical
conservation laws on HiL test rigs is crucial to produce physically trustworthy
results. In [5] an automotive engine test rig has been observed to produce different
fuel consumption in HiL testing and on a real test track. Imperfect impedance emu-
lation leads to accumulating energy errors. This discrepancy could be eliminated by
ensuring that the exchange of energy and momentum between the impedance model
and the unit under test was consistent.

Here, these two relevant conserved quantities are addressed by the control
concept and according control goals and constraints: the momentum exchanged
between the pantograph and the virtual catenary differs by

t

Ap(1) :/0 (Fext(t) + Feor(7)) dr—/o Fexi(7)dt :/0 Feor(T)dr. )

This quantity is considered in the discrete-time MPC objective as

ne—1

Jmomentum = Z (Fcor(k +j))2’ J = Jlrack + aJmomenlumv o 2 O' (10)
j=0

The momentum balance can thus be ensured by classic linear control concepts and
would, without a correction force, automatically be fulfilled.

The error in energy (specifically its mechanical part, work) exchanged between
the catenary and the pantograph is

t t
AW(f) = / Foxeitigdt — / (Foxt + Feor) fendT. (11
0 0

This nonlinear expression cannot be directly incorporated into a linear MPC scheme.
However, suitable constraints on F,, can be formulated to keep the energy error
sufficiently small.



82 A. Schirrer et al.
5 Numerical Results

The absorbing properties of the proposed boundary control layer that mimics PML
dynamics compared with other methods to realize absorbing boundaries are shown
in Fig.5 for the case of a one-dimensional wave (string) where analytic boundary
conditions can be derived. In Fig. 6 (left), first results of emulating a high-speed
train ride on the test rig are presented. The overall dynamics of the catenary are
already well captured by the tested controller and, as can be seen in Fig. 6 (right),
initial nonzero errors in energy and momentum are successfully eliminated.
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Fig. 5 Simulation error for different realizations of absorbing boundaries, taken from [7].
Engquist-Majda ABC for the wave equation is taken from [3], the PML is obtained through
complex coordinate stretching, see [2], and the controlled damping layer is presented in [7]
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Fig. 6 Preliminary results from the pantograph HiL test rig. Test case (left): tracking of the
catenary model. Test case (right): energy and momentum conservation
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6 Discussion and Conclusions

In this contribution some key technologies and preliminary results of a HiLL panto-
graph test rig were presented. It is shown how a realistic, real-time-capable catenary
model can be obtained. First, moving (train-fixed) coordinates are introduced when
modeling the wires as Euler—Bernoulli beams. Then the computational domain is
extended with a newly developed form of controlled boundary layers. The obtained
periodic, linear, time-varying model represents a theoretically unbounded catenary
domain at a high detail level.

This catenary model is then used in an advanced real-time MPC-based
impedance control scheme to emulate high-speed train rides in the laboratory.
Conservation laws at the pantograph/catenary interface are made consistent by the
controller. For that, an artificial virtual force that directly affects the catenary model
is utilized.

A range of first, promising results (numerical results of the controlled absorbing
boundary layer and experimental results from an actual test rig with a real
pantograph) are shown. The publication of the comprehensive methodology and
detailed experimental validation are in preparation.
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Swelling-Induced Bending of Hydrogel Bistrips

Takuya Morimoto, Fumihiro Ashida, and Yu Hayashi

Abstract We study swelling-induced bending of hydrogel bistrips comprising an
elastomer strip and a gel strip by using finite element method. The constitutive laws
of the elastomer and gel strips are assumed to be the neo-Hookean and Flory—Rehner
models, respectively. We explore the swelling-induced bending of bistrips due to
chemical potential and specifically focus on how the stiffness and thickness ratios
between the elastomer and gel strips affect their swelling-equilibrium shapes. We
show that there exist the specific values to maximize their bending curvatures.

1 Introduction

Stimuli-responsible gels have a three-dimensional structure of crosslinked polymer
network that can realize a large reversible deformation in response to a specific
external stimulus such as temperature, solvent concentration, pH, light, and electro-
magnetic field [1, 2]. In particular, temperature-responsive hydrogels have potential
application in smart structures such as sensors and actuators, drug delivery systems,
and micro-fluidic devices since the volume phase transition of the gel can cause large
swelling at around room temperature. Bending actuation in response to temperature
requires generating inhomogeneous misfit stresses in a specific spatial direction.
The easiest way to create a swelling-induced bending structure is to utilize a layered
structure. Bending is achieved when one of the polymer layers swells more than the
other in response to temperature.

We have theoretically considered for the swelling-induced bending of bilayer
comprising a first elastomer layer and a second temperature-responsive gel layer [3].
In the analytical model, the deformation was assumed to be isochoric, and the
stretches were given by Rivlin’s semi-inverse solution. Also, the total deformation
gradient was decomposed into transversely homogeneous swelling part and non-
swelling pure bending part. Then, we imposed the self-equilibrium condition that
the bending moment in the bistrip is in the equilibrium without any external forces

T. Morimoto (<) * F. Ashida ¢ Y. Hayashi

Interdisciplinary Graduate School of Science and Engineering, Shimane University,
1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan

e-mail: morimoto @riko.shimane-u.ac.jp

© Springer International Publishing Switzerland 2017 85
H. Irschik et al. (eds.), Dynamics and Control of Advanced Structures
and Machines, DOI 10.1007/978-3-319-43080-5_9


mailto:morimoto@riko.shimane-u.ac.jp

86 T. Morimoto et al.

and moments, and numerically determined the equilibrium shapes with the various
geometrical and material parameters. For more practical applications, we need to
simulate the inhomogeneous swelling fields by using finite element method and
modeling a bilayer or a bistrip in response to changes in environment conditions.
Here we first establish the finite element model for swelling-induced bending
of hydrogel bistrips in a plane strain condition. The constitutive laws of the
elastomer and gel strips are described by the neo-Hookean and Flory—Rehner
models, respectively. We then explore the swelling-induced bending responses of
hydrogel bistrips due to chemical potential and specifically focus on the effects of
the ratios between the elastomer and gel strips on their swelling-equilibrium shapes.

2  Continuum Theory of Polymeric Gels

We briefly summarize the continuum theory of polymeric gels under an isothermal
condition, developed in [4-6]. Let us consider a polymeric gel in the reference
state of volume V| enclosed by a surface Sy, subjected to a distributed body force
B; and surface traction 7;. The gel is immersed in a solvent with the chemical
potential i per solvent molecule; the solvent molecules migrate within the gel
body and across the surface Sp. A part of the surface may also be mechanically
constrained and/or chemically isolated from the solvent. The equilibrium state of
the gel can be characterized by two fields: x;(X) and C(X). The first field represents
the deformation mapping from an arbitrary material point in the reference state, X,
to that in the actual state, x, with deformation gradient F;; = dx;(X)/dX;. The second
field represents the concentration of solvent molecules at an arbitrary material point
with respect to the reference coordinates X. In the thermodynamic equilibrium state,
the variation of the free energy of gel is equal to the sum of the work done by the
external mechanical forces (B; and T;) and the external solvent (1), namely

SWdVy = / Biéx; dVy + ¢ T;6x;dSoy + ﬁ §CdV,, (1)
20 20 Iy 20

where §x; and §C are arbitrary variations of x; and C from the equilibrium state,

respectively. The nominal stress S;; and chemical potential .+ may be defined as work
conjugates of the deformation gradient and solvent concentration, respectively:

ow ow

= . 2
op M @)

Si = ile

The free energy density function of the gel per unit volume in the dry state is
described by the Flory—Rehner model [7],

G® kgT v, C v, C
W(F.C) = [—3-2InJ .Cl : ‘ ,
F.O=" ( n) 4 [v‘ 0g(1+vsc)+x(1+vsc)}
(3)
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where the shear modulus of elasticity G® is related to the crosslink density n®),
Boltzmann constant kg, and temperature 7: G® = n@kgT. I = 22 + A3 + Al is
the first deviatoric strain invariant in terms of the stretches A;, y is a dimensionless
parameter that represents the disaffinity between the polymer and solvent, and vy
is the volume per solvent molecule. Assuming the molecular incompressibility, the
volume swelling ratio of the gel is J = V/V,, = 1+4v, C. A Legendre transformation
of the free energy density function W(F ) = W(F,C) — uC leads to
(2 — —
W(F, ) = G2 (I—-3—-2InJ)+ T [(J— l)anJ ! +)(JJ 1} - 5(]— 1).

“)

This function involves the volume change due to swelling, so that it is regarded
as a compressible hyperelastic material to implement it using the user subroutine
UMAT in Abaqus/Standard [5]. Furthermore, Eq. (4) can give rise to |, 2 SWdvy =
/, o, BidxidVo + -¢1‘o T;8x; dS instead of Eq. (1), which is reduced to the same form
of the equilibrium condition for a hyperelastic material.

It is noted that the chemical potential is singular (u = —o0) because of J = 1
and / = 1 in Eq. (4) at the dry state. To avoid the singularity, as shown in Fig. 1,
we decompose the total deformation gradient F = FWF© into the deformation
from the dry state to the equilibrium state where the chemical potential x must be
constant at the swelling equilibrium; the internal chemical potentials p are equal to
the external one fi, i.e., (4 = ft). In the present study, we introduce a free swelling
state of a uniform stretching with FO = Ao I in numerical calculations [5, 6]. Once
the initial stretch A in the initial state is given, one can determine the corresponding
chemical potential 11(”) by the following condition of the free-swelling equilibrium:

S

n®vy 1 1 X w
"A—-D+In(1- = . 5
e () e v

The temperature variable in Abaqus/Standard is utilized to mimic the external
chemical potential /.

Dry state F Equilibrium state
Iy /\ r
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FO = 3, I\* /‘F(l)

w=pn®

Initial state

Fig. 1 Schematic of the swelling kinematics of gel
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3 Finite Element Modeling of Hydrogel Bistrips

We constructed a finite element model of swelling-induced bending of hydrogel
bistrips due to chemical potential by using Abaqus/Standard (Dassault Systemes).
Figure 2 shows a half model of bistrip according to its symmetry about the side
AFE. Specifically, we consider the bistrip with length L/2 = 400 mm, thickness
of elastomer strip (ABCF) H® = 5mm, and thickness of gel strip (FCDE)
H® = 5mm. The superscript s = (e, g) denotes the elastomer and gel strips,
respectively. We introduced the cylindrical coordinate system in the deformed
configuration as shown in Fig.2. After bending of the bistrip due to swelling, the
kinematics were characterized by the radius of curvature at the bottom surface
of elastomer strip and the thicknesses of the elastomer and gel strip denoted by
h® and h®, respectively. The full-integration quadrilateral plane strain elements
for incompressible elastomer (CPE4H) and for gel (CPE4) were used. A mesh
refinement study required 50 elements in elastomer strip and 50 elements in gel
strip through the thickness direction and 400 elements in the axial direction. The
nodes along the side AFE were constrained in e;-direction and the middle node
F was pinned in e;-direction. At the nodes along the side BCD were constrained
so as to maintain a straight line but may increase in thickness so that the resulting
deformation is pure bending. The free energy density functions of the elastomer
and gel strips per unit volume in the reference (dry) state are described by the neo-
Hookean model, W® = (G®/2)(I — 3), and the Flory—Rehner model, W® = W,
given by Eq. (4), respectively. G = n®kgT is the shear modulus of elasticity for
each strip.
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Fig. 2 Finite element model of the bistrip comprising of gel and elastomer. (a) Initial state of the
half-symmetric model of bistrip according to its symmetry about the side AFE. (b) The swelling-
equilibrium state of the model at u = [
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4 Results and Discussion

In order to understand how the material and geometrical parameters can control the
shapes of hydrogel bistrip at the state of swelling equilibrium, we explore the effects
of the stiffness ratio G® /G® and thickness ratio H® /H® between the elastomer
and the gel on the bending responses of the bistrip.

Figure 3 shows the effect of the stiffness ratio between elastomer and gel strips,
G®/G® e [107*,107], on the shapes of swelling-induced bending. The stiffness
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Fig. 3 Effect of the stiffness ratio on the responses of swelling-induced bending. Computationally
used conditions: H® /H® = 1 and L/H = 8. (a) Swelling-equilibrium shapes with y =
0.1. G®/G® defines the stiffness ratio of gel strip to that of elastomer strip. Contour level
represents circumferential stress normalized by the shear modulus of gel strip G®. (b) Dependence
of normalized bending curvature pH on the stiffness ratio G®/G®. (c¢) Normalized bending
curvature pH as a function of the differential strain Aggy
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ratio is varied by changing the crosslink density n/® v, through the relation G® =
n®kgT, while the shear modulus of elastomer strip is fixed. We take the values of
T = 300K, vs = 3.0x 1072 m?, and kg = 1.38 x 10723 J/K. The y-parameter may
be served as measuring the magnitude of swelling. We consider the three values
of y = {0.1,0.5,1.0}. Figure 3a represents the swelling-equilibrium shapes with
various stiffness ratios for H® /H® = 1, y = 0.1, and L/H = 8. The contour
level exhibits the circumferential stress normalized by the shear modulus of gel
G'®. The stress level is high at the interface between the gel and elastomer strips.
Figure 3b shows the dependence of bending curvature p, normalized by multiplying
the total thickness H in the reference state, on the stiffness ratio. The curvature is
defined as the inverse of bending radius of curvature measuring at the bottom surface
of the elastomer strip. We observe that there exists the optimum value of stiffness
ratio to maximize the bending curvature: (G®/G®)yy &~ 107! for y = {0.1,0.5}
and (G®/G®)op ~ 10° for y = 1.0. When the stiffness ratio is lower than the
optimum value, the curvature increases as the stiffness ratio increases from 1074
t0 (G®/G®)4y. On the other hand, for the case that the stiffness ratio is higher
than the optimum value, G® /G© > (G /G®),y, the curvature decreases as the
stiffness ratio increases from (G® /G®) to 10%. We can understand the optimum
value of stiffness ratio through the differential strain Agg, defined as the maximum
misfit strain between upper and lower surfaces of the bistrip. Figure 3c plots the
normalized bending curvature pH as a function of the differential strain Agy. We
can directly see that the maximum curvature occurs at the maximum value of the
differential strain at which the stiffness ratio takes the optimal ones (G'®/ G(e))opl ~
107! for y = {0.1,0.5} or (G®/G®)op ~ 10° for y = 1.0 when cross-referring to
both Fig. 3b and c. We also find that the relation between the differential strain and
the normalized curvature exhibits a loop, depending on the stiffness ratio.

Next we explored the effect of thickness ratio between elastomer and gel strips,
H®/H® e [}, '’], on the responses of swelling-induced bending, as shown
in Fig.4. The thickness ratio is varied so that the total thickness of bistrip is
kept constant. Figure 4a represents the swelling-equilibrium shapes with various
thickness ratios H® /H® for fixed values of G®/G® = 1, y = 0.1, and
L/H = 8. The contour level exhibits the circumferential stress normalized by the
shear modulus of gel strip, G'®. We observe that there exists the optimum value
of stiffness ratio to maximize the bending curvature, (H® /H®), ~ 3/2. This
tendency is the same for all the values of y-parameter. When the stiffness ratio is
lower than the optimum value (H®/H® < 3/2), the curvature increases as the
thickness ratio increases from 1/19 to 3/2. On the other hand, when the stiffness
ratio is higher than the optimum value (H® /H(®© > 3/2), the curvature decreases as
the stiffness ratio increases from 3/2 to 19/1. As the same of preceding discussion,
we can understand that the optimum value of thickness ratio is also determined by
the differential strain Agy. Figure 4c plots the bending curvature p as a function
of the differential strain Agg. We can see that the maximum curvature occurs
corresponding to the maximum value of the differential strain at the thickness ratio
H®/H® ~ 3/2. We also find that the relation between the differential strain and
the normalized curvature exhibits a linear, depending on the thickness ratio.



Swelling-Induced Bending of Hydrogel Bistrips

a
gel layer
thinner <« > thicker
H® ] 1 2 4 19
H® ~ 19 4 3 1 1
C
l )
~—
>
) ©
elastomer gel
b

03

91

0.05

—0.05

G(g)/G(e) =1

H® JH (e)

Fig. 4 Effect of the thickness ratio on the responses of swelling-induced bending. Computation-
ally used conditions: G® /G® = 1 and L/H = 8. (a) Swelling-equilibrium shapes with y = 0.1.
H® /H® defines the thickness ratio of gel strip to elastomer strip, and the total thickness is kept
constant. Contour level represents circumferential stress normalized by the shear modulus of gel
strip G®. (b) Dependence of normalized bending curvature pH on the thickness ratio H® /H®.

(c) Normalized bending curvature pH as a function of the differential strain Aggy

5 Conclusions

We explored the swelling-induced bending of bistrips due to chemical potential and
specifically focused on the effects of the stiffness and thickness ratios between the
elastomer and gel strips on their swelling-equilibrium shapes. As a result, we found

the followings:
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The curvature of hydrogel bistrip depends on three parameters: y, G®/G®, and
H® / H®©.

There exists the optimum combination of the stiffness and thickness ratios to
maximize the curvature.

The curvature becomes large when y is decreased since the gel strip much more
swell and the differential strain level is high.
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Determination of Parameters of the External
Electric Circuits Providing Maximum Damping
of Vibrations of Electroelastic Bodies

V.P. Matveenko, N.V. Sevodina, N.A. Yurlova, D.A. Oshmarin,
ML.A. Yurlov, and A.S. Ivanov

Abstract The paper considers the piece-wise homogeneous bodies composed of
elastic deformable elements, some of which show piezoelectric properties and can
be coupled with series-connected external circuits via the electroded surfaces of
piezoelements. The objective of this study is to develop effective algorithms of
mathematical modeling, which will allow us to find the values of the circuit element
parameters providing maximum damping of the system vibrations at the prescribed
resonant frequencies. The optimal values of the parameters for the circuit elements
are determined based on the natural vibration problem and equivalent circuits for
elastic system incorporating piezoelectric element and external electric circuit. The
efficiency of the proposed approach is demonstrated by solving particular problems.

1 Introduction

Embedment of piezoelectric elements into different structures and their connection
to the external electric circuits open up new possibilities in controlling the dynamic
behavior of engineering structures.

In work [1], the authors have demonstrated for the first time that the external
electric circuits composed of series-connected inductance (L) and resistance (R)
elements can be effectively used for damping one vibration mode.

Different variants of piezoelement connection with shunt electric circuits allow-
ing vibration damping are discussed in works [2—-6].

Because of the abundance of shunt piezoelectric techniques for controlling the
dynamic characteristics of smart-structures with embedded piezoelectric elements,
a search for optimal variants should rely mainly on the mathematical modeling. At
present, the literature in this area numbers thousands of works, but there are still
problems that call for further investigation. In the majority of studies the numerical
simulation of vibration damping with the use of piezoelectric elements and external

V.P. Matveenko (P<) « N.V. Sevodina * N.A. Yurlova * D.A. Oshmarin * M.A. Yurlov ¢ A.S. Ivanov
Institute of Continuous Media Mechanics of the Ural Branch of RAS, Perm, Russia
e-mail: mvp@icmm.ru

© Springer International Publishing Switzerland 2017 93
H. Irschik et al. (eds.), Dynamics and Control of Advanced Structures
and Machines, DOI 10.1007/978-3-319-43080-5_10


mailto:mvp@icmm.ru

94 V.P. Matveenko et al.

electric circuits is performed based on the finite element method. In particular, the
review articles [7, 8] published from 1986 to 2002 collected and systemized 2074
papers dealing with the application of the finite element method to the analysis
and simulation of smart-materials and structures. All these works focus on the
development of new algorithms and discussion of the results obtained with the aid
of commercial software packages.

In numerical simulation, the damping properties of smart-systems are generally
estimated by the value of resonance mode amplitude or by the rate of transient
processes. In the first case it is necessary to solve the problem of sustained forced
vibrations and in the second case the dynamic problem with initial conditions.
A search for optimal parameters of piezoelectric elements and external electric
circuits in the context of these problems is associated with certain difficulties.
Thus, the evaluation of the resonance mode amplitudes in the framework of
the sustained forced vibration problem requires that this particular problem be
solved repeatedly at different frequencies of external actions. Nevertheless, the
application of sustained forced vibration problem and the dynamic problem with
initial conditions allowed us to obtain optimal solutions for the examined loading
regimes.

In this paper, optimization of the dynamic characteristics of smart-systems with
piezoelectric elements and external electric circuits is accomplished based on the
natural vibration problem and equivalent circuit technique.

2 Optimization of the External Electric Circuit Parameters
Based on the Solution of Natural Vibration Problem

Let us consider a piece-wise homogeneous body of volume V = V| + V,, where
the volume V; consists of homogeneous elastic and viscoelastic elements and the
volume V, consists of piezoelectric elements. The piezoelectric elements can be
connected through the electroded surface to the RLC-circuits of arbitrary structure
involving the resistance, capacitance, and inductance elements.

For the problem of natural vibrations under homogeneous boundary conditions
the desired solutions are written in the following form:

u; (.X, t) = Ijli (X) ei‘“t , 1) (X, t) — ¢ (X) eia)t (1)

where @ = wg + iw; is the complex natural frequency; wg corresponds to the
natural frequency; w; characterizes the rate of vibration damping, i; (x), ¢ (x) is the
eigenvibration.
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A mathematical statement of the problem is given in works [9, 10]. Numerical
implementation of the problem is based on the finite element method.

Consider a cantilevered plate, the surface of which is coupled with a piezoelectric
element and external, series-connected electric RL-circuit shunted to the electroded
surface of the element. The size of the plate is 210 x 26 x 0.6 mm, and the size of
piezoelement is 50 x 20 x 0.36 mm. The piezoelement is attached at a distance of
12 mm away from the clamped end of the plate and symmetrically with respect to
the plate axis.

The plate was made of elastic material with the following mechanical charac-
teristics: elastic modulus E = 2 x 10" N/m?, Poisson’s ratio v = 0.3, specific
density p =7800kg/m?>. The piezoelement polarized through the thickness was made
of piezoceramics PZT-4-z [9].

The eigenfrequencies of the plate with the attached piezoelement and shunt
electric circuit were calculated at different values of resistance R and inductance
L of the external circuit using the developed software package for computing
the eigenfrequencies. In this case, the eigenfrequencies of vibrations are complex
even in electroelastic bodies due to the presence of the dissipative mechanism in
the external electric circuit. Table 1 summarizes the first nine eigenfrequencies at
different values of R and L. It also presents eigenfrequencies of the plate, which has
no external circuit, only the attached piezoelement with short-circuited electroded
surfaces.

A comparison of these results shows that the external electric circuit leads to the
appearance of additional eigenfrequency.

Table 1 Vibration eigenfrequencies of structure (plate with piezoelement) with and without
external electric circuit

No. w = wg + iw; No. w
R=10*Q, R=10*Q,
L=10°H, L=11.66x 10> H,
1 13.55 —i4.50 x 10~ 12.38 —i3399.00 x 10~° 1 13.56
2 47.35 —i78.70 x 10— 15.20 — i3423.00 x 10—
3 72.47 — i261.50 x 1073 72.34 —i2.71 x 1073 2 72.15
4 198.35 —i18.80 x 10~ 198.32 —i1.36 x 1073 3 197.90
5 204.46 — i0.07 x 1073 204.45 — i0.23 X 10— 4 204.45
6 404.22 —i3.71 x 1072 404.16 — i4.6 x 10~ 5 399.79
7 489.40 —i0.01 X 1077 489.40 —i0.17 X 1073 6 489.40
8 584.10 — i0.00 x 10— 584.10 — i7.00 x 10~° 7 584.10
9 675.01 —i3.76 x 103 674.96 —i0.38 x 10— 8 665.45
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Fig. 1 Behavior of imaginary part of the first eigenfrequency of the structure, depending on the
parameters of the external electric circuit

Figure 1 illustrates the variation in the imaginary part of the first eigenfrequency
of structure vibrations in the range of the values of parameters L and R, at which the
rate of vibration damping reaches its maximum value.

Actually, this result demonstrates the possibility of constructing an optimization
algorithm for computing the values of L and R, ensuring maximal damping of nearly
all vibration modes except for the modes, at which the electrode surface potential is
zZero.

3 Verification of the External Circuit Parameters Using
the Equivalent Circuit Approach

In the electromechanical processes under consideration the piezoelement shows
capacitive properties and forms together with external circuit a series-connected
RLC—oscillatory circuit (Fig.2), which leads to the appearance of additional
vibrational eigenfrequency. In the case when this frequency coincides with one
of the eigenfrequencies of the electroelastic body, damping of the corresponding
vibration mode reaches its maximum level [11].

In papers [2, 4, 5, 12, 13], the simplest model of a piezoelement consisting of a
single capacitor of zero capacitance Cyp was used as its electric analogue. In this case
the relations for the real and imaginary parts of vibrational eigenfrequency can be
derived based on the relations describing the behavior of current and voltage in the



Optimal Schemes of Electro-Viscoelastic Systems with External Electric Circuits 97

R L
—{ HE—

o

Fig. 2 Series resonant circuit formed by external electric circuit and piezoelement with constant
capacitance

series-connected oscillatory circuit [14]

1 R 1R o
ORe = ox\Lc, a2 YT TopoL

The capacitance Cj is specified by the value of the charge produced on the surface
of piezoelectric element as a result of its deformation by the electric potential V,
applied to one of the electroded surfaces —Cy = Q,/V, where Q; is the total electric
charge on the electroded surface.

The electroelastic static problem was solved using the ANSYS package. In the
example problem under consideration Cy=11.79nF. This value of peizoelement
capacitance is taken as a static one.

Relation (2) allows us to evaluate the values of R and L, sustaining the specified
vibration frequency. In particular, the value & = 46.36 — i7.96 x 10~*, falling in the
middle of the interval between the first and the second eigenfrequencies of the plate
with the attached piezoelement and short-circuiting (s/c), occurs at R = 102,
L = 10° H, whereas the value ® = 13.58—i6.82 x 1072, which are practically
consistent with the first vibration frequency, occurs at R = 10°Q, L = 11660
H. The eigenfrequencies of the plate with the attached piezoelement and external
circuit obtained from the solution of natural vibration problem (1) for the above-
mentioned parameters of the circuit elements are given in Table 2. These results
demonstrate that the additional frequency occurring in the presence of the external
electric circuit differs insignificantly from the estimates made by formula (2) only
at the frequencies far from resonance.

The above examples, as well as the analogous calculations made for other
eigenfrequencies, lead us to conclude that the piezoelectric element behaves as
a capacitor of constant capacitance Cy only at the frequencies that are far from
the resonant frequencies of the initial system (plate with piezoelectric element).
Therefore, the parameters R and L obtained by formula (2) cannot provide the
maximum damping level.

A more adequate description of piezoelement behavior can be gained by using
the equivalent electric circuit models composed of electric elements with fixed
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Table 2 Vibration eigenfrequencies of plate with piezoelement obtained by direct calculations
and on the basis of equivalent electric circuit

Eigenfrequencies of the plate with

electric circuit piezoelement and external
Eigenfrequencies R=456348 Q2 R=168491 Q
of the plate with L=11054 H L=3254H
piezoelement at @ = 13.79—i85.10 x 1072 @) = 72.276—i19.95 x 1072
s/c @, = 13.79—i243.50 x 1072 @, = 72.276—i4100.55 x 1072
13.58 13.79—i85.00x 102 13.57—i4.83x1072
13.58 13.79—i243.4x1072 13.57—i4.83x1072
72.15 72.34—i0.04x 1072 72.28—i19.94x1072
72.15 72.34—i0.04x 1072 72.25—i4085.68x 102
197.90 198.32—i0.00 198.40—i0.00
204.45 204.45—i0.00 204.45—i0.00
399.80 404.16—i0.00 404.34—i0.00
489.41 489.30—i0.00 489.40—i0.00
584.11 584.10—i0.00 584.10—i0.00
665.46 674.96—i0.04x 1072 675.11—i1.88x1072
Fig. 3 The equivalent O
electrical model with fixed l
parameters of electrical
components for describing
the behavior of a Ll.
piezoelement

CCli Ri

—_—

o f

parameters. Figure 3 shows one of these models, which is seen to be a parallel
connection of the capacitance C;, inductance L;, resistance R;, and capacitance of
the piezoelectric element Cy;. The equivalent resistor R; in the series-connected
oscillatory circuit R;L;C; corresponds to the loss of energy in the structure due
to viscoelastic properties of the structure material. Since in the problem under
consideration the piezoelectric element is made from piezoceramics that possesses
elastic properties, the resistance R; can be neglected. In this model [15-18], the
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capacitance of the piezoelement is not a constant. It means that the piezoelement
behaves as an ordinary capacitor of capacitance Cy; only at the off-resonance
frequencies. The parameters of the equivalent circuit C;, L; (dynamic capacitance
and inductance) reveal themselves only at vibration frequencies that approach the
self-resonant frequency of the piezoelement.

The equivalent electric model of the plate with short-circuited piezoelectric
element and one resonant frequency allows us to describe the simulated object only
in the neighborhood of the eigenfrequency w.

The computation of the external circuit parameters was done using the algorithm
designed for describing vibrations in the examined electric circuit.

Table 2 presents the obtained set of eigenfrequencies for the plate with a short-
circuited piezoelement and the eigenfrequencies for the plate with piezoelement and
external RL-circuit, which were calculated on the basis of the equivalent electric
model and was responsible for the occurrence of the additional eigenfrequency in
the neighborhood of the first and second resonances of the plate and piezoelement
at s/c. Table 2 also presents the values of R and L and eigenfrequencies @ of the
electric analogue.

The obtained results demonstrate that the equivalent electric model composed of
elements with lumped parameters can be effectively used to identify the appropriate
parameters for the elements of the external electric circuit, at which the additional
eigenfrequency coincides with the frequency of the damped mode providing thereby
the maximum suppression of system vibrations.

4 Conclusion

In this paper we propose a mathematical formulation of the problem on nat-
ural vibrations of piece-wise homogeneous elastic bodies composed of elastic
deformable elements, some of which show piezoelectric properties and are coupled
via the electroded surfaces of piezoelements with the series-connected external
electric circuits comprising the resistance, inductance, and capacitance elements.

By numerical example we have demonstrated that the problem of natural
vibrations of electroelastic body with external electric circuit can be used to identify
the parameters of its elements, which will provide the maximum rate of vibration
damping at the prescribed resonant frequency.

We have considered two variants of equivalent electric circuits for a piece-wise
homogeneous elastic body with piezoelectric elements: on the basis of the capacitor
with constant capacitance and on the basis of the circuit composed of electric
elements with fixed parameters.

It has been shown that the replacement of the piece-wise homogeneous body
containing piezoelectric element by the capacitor of constant capacitance yields
insignificant error only at the off-resonance frequencies. The second circuit provides
rather high accuracy over the whole frequency range.
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The reliability and efficiency of the application of equivalent circuits for evalu-
ation of desired parameters for the elements of external electric circuits have been
justified through a comparison of the obtained results with the calculations made
in the framework of the problem on natural vibrations of deformable elastic bodies
with piezoelectric elements and external electric circuits.
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Forming of Woven-Reinforced
Thermoplastic-Matrix Composites:
Characterization, Modelling, and Validation

Martin Machado and Zoltan Major

Abstract The objective of this article is to give an overview of the methods
available in literature to model the forming of woven-reinforced thermoplastic-
matrix composites. Modelling approaches, namely kinematic and mechanics-based,
to simulate the forming process are discussed. The experimental tests for the
determination of the necessary parameters are listed and discussed. A great part
of the efforts has been devoted to the shear characterization since it is the most
important deformation mode. The bending behaviour is usually neglected but it is
starting to be considered since it is important to simulate the shape of wrinkles.

1 Introduction

Automotive industry started to analyse metal replacement strategies for their
vehicles in order to reduce carbon dioxide emissions. Up to 14 % fuel economy
improvement could be achieved through a 20 % weight reduction [1]. In the case of
automobiles, more than 75 % of fuel consumption automobiles is directly related to
their weight [2]. Polymer-matrix composites play an important role in this context
since they offer similar strength, stiffness, and toughness to steel but their density is
significantly lower.

Large-scale production of automotive composites components is only plausible if
high production rates can be achieved. Woven-reinforced thermoplastic-matrix com-
posites can be processed via forming/stamping, implicating considerable shorter
cycle times than traditional thermoset-matrix composites [3]. The original sheet,
provided as pre-preg by the material manufacturer, is heated employing an infrared
heater, then is pressed between two moulds to achieve the desired geometry, and
finally a laser cuts the outer contour.

Numerical simulations are nowadays an essential tool in development stages of
almost all industrial process. As draping of dry woven reinforcement and forming
of woven composites made their way to automotive and aerospace industries, the
corresponding simulation strategies started to be developed. In this sense, the field
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of woven and woven composite modelling has seen intense activity during the last
two decades. Although a wide diversity of approaches has been explored, most of
them can be divided in kinematic and mechanics-based models.

This paper provides a brief overview of the experimental characterization
techniques and the different modelling approaches employed to model the forming
process. First, the mechanical characterization of the three predominant deformation
modes of these materials, namely in-plane shear [4], in-plane tensile [5], and
out-of-plane bending [6], is discussed. Special focus is given to the in-plane shear
characterization as it is the most relevant deformation mode and it has been
consequently studied in more detail. The two more popular tests to characterize
the shear behaviour (picture frame test and bias extension test) are analysed. In the
subsequent section different modelling approaches are discussed. Kinematic and
mechanics-based approaches are mentioned. Then some forming experiments are
remarked with emphasis on the shear angle measurements aimed to validate forming
simulations.

2 Mechanical Characterization

2.1 In-Plane Shear

Most of the literature has been focussed on the study of the shear behaviour.
This is logical because woven composites undergo large fibre relative rotations
while forming [7] and this rotation is mainly determined by the shear properties
of the material. As orientation determines the final properties of the component,
especially its stiffness [8], a good description of the shear behaviour yields a better
prediction of the fibre orientation and consequently a more accurate prediction of
its mechanical performance during service.

Two main tests have been used during the last decades to characterize the shear
behaviour of dry woven and woven-reinforced composites, namely picture test
frame and bias extension test [9]. Picture frame test consists of applying a uniform
shear strain using a deformable frame as shown in Fig. 1a and b. The shear angle
(y = 90° —20) is related to the applied displacement as in Eq. (1). The shear force
Fy, is easily calculated considering the geometry of the tests [Eq. (2)]. As the shear
force depends on the sample size, Harrison et al. [6] proposed a normalized shear
force F}j, with respect to the rig length (L in Fig. la), i.e., F; = Fs/L. In this way,
two samples of different size exhibit the same ratio between axial force and side
length when sheared to the same shear angle.

_T arccos VaL+d (1)
Y= 2L

F

F =
0 cos 6

2
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Fig. 1 Picture frame test (a, b) and bias extension test (¢, d). Figures (a) and (c) show the initial
configuration. Figures (b) and (d) show the deformed configuration

Bias extension test consists basically of a tensile test of a £45 °-oriented plate
with aspect ratio larger than 2 (see Fig. Ic and d). Assuming no relative slippage
between yarns, the central region C is subjected to pure shear, the shear angle in
region B is the half of that in region C, and the region A is not deformed. On
the basis of geometrical considerations the shear angle can be related to the axial
displacement as shown in Eq. (3). However, this equation loses accuracy as the shear
angle increases and approximates the locking angle [6]. In order to avoid this, the
shear angle is usually measured using optic systems [10].

T D+d
= _ — 2arccos 3
"o ( «/20) )

Normalization of the shear force is not as straightforward as in the case of the
picture frame test, mainly due to the fact the deformation is not homogeneous in
the sample. Recently, Hértel and Harrison [11, 12] presented a detailed review of
the normalization methods. Considering the power dissipated in regions B and C,
the normalized shear force of a bias extension test can be calculated as in Eq. (4).
As F} (y) depends on F (y/2) an iterative process is needed [13].

Fy(y) = (2h — 3w) cos ((w — 1) F(cos 5~ sin 2) —wFy, (2) cos 2)
“4)

The former analysis is the most widely used to normalized bias extension results
although it was conceived, in principle, only for rate-independent materials.
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One of the few alternatives available for rate-dependent materials was proposed
by Harrison et al. [6]. Based also on power dissipation considerations they intro-
duced the following expression:

(-1 F

5
fj,—3+2XJ22w ©)

F:h()’) = 2

where X is a function exclusively of the shear angle [6] if the material is considered
as a constrained Newtonian fluid. This assumption obviously introduces some error
but it can avoid an artificial drop of the shear force obtained when using the
expression for rate-independent materials [11].

Published works show a certain preference of researchers for the bias extension
test over the picture frame when investigating the shear behaviour of woven and
woven-reinforced composites. Regarding the shear force determination in the bias
extension test, most works prefer the rate-independent relationship of Eq.(4).
This equation has shown satisfactory results even when applied to rate dependent
thermoplastic composites [14, 15].

2.2 In-Plane Tensile

Tensile stiffness is considerably higher than in-plane and out-of-plane shear stiff-
ness. Buet-Gautier and Boisse [16] analysed biaxial tensile behaviour of glass fibre
longitudinal-to-transversal strain ratios. Similar set-up was used by Xue et al. in
[7]. The undulations of the yarns in a woven material lead to strong nonlinearities
especially at low loads. It has been shown experimentally that the tensile behaviour
shows almost no dependence on the shear angle [16]. Biaxial as well as uniaxial
textile testing of fabrics is done mainly by state-of-the-art and non-standardized
characterization methods, which are still under development [17]. This mode is,
however, often not studied in detail as the strains in fibre direction are relatively
small during forming.

2.3 Out-of-Plane Bending

Bending behaviour plays an important role in the development of wrinkle during
forming [18]. Traditionally two standard tests were available to determine the
bending stiffness of fabrics: cantilever bending test [19] and Kawabata bending
test [20]. The principle of the cantilever test is shown in Fig.2. The length L of
the specimen hanging under the action of the gravity is registered when the angle
a reaches a specific value. However, these tests have been developed for clothing
textiles and are not well adapted to textile reinforcement and much less to woven
composites which are much thicker and stiffer. Recently, Liang et al. [21] developed
a new cantilever test performed in a temperature chamber. The position of every
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Fig. 2 Cantilever bending test. Deformed sheet is shown as a dotted line

point of the sample is measured with an optical measuring system. The moment
at each point is calculated considering the gravitational force acting at the local
section and is correlated with the local curvature. In order to extend the range of
curvatures obtained in the test, they carried out tests with a lump mass at the free
end of the sample. It is found that the deflection increases strongly with temperature
until a limit value is reached. At this temperature the resin is entirely molten and the
bending stiffness practically equal to that of the fabric.

3 Constitutive Modelling

3.1 Kinematic Models

The simplest approach to simulate draping/forming consists of using kinematic
models [22]. These models are basically mapping algorithms where the material
is considered as a pin-jointed net with inextensible yarns. This means that the
yarns can rotate freely at each intersection point but they do not change in length.
Kinematic models provide a fast solution in several cases but since forces are not
involved they cannot evaluate the effect of different holder systems and fail when
predicting fibre orientation in unsymmetrical moulds [23].

3.2 Mechanics-Based Models

Mechanics-based approaches, despite being more time-consuming, can take into
account all relevant aspects of the material constitutive behaviour. Mesoscopic or
semi-discrete approaches [24] analyse the woven mechanical behaviour at the scale
of a woven unit cell and this behaviour is implemented in finite elements composed
by unit cells. On the contrary, continuous approaches [14, 15] discretize the material
as a homogeneous medium using shell or membranes elements. Continuous models
are usually preferred because they can be easily applied to standard finite elements.

Rate constitutive equations have been adopted in continuous models which
describe dry woven [25] and woven-reinforced composites [14]. In such models
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the relationship between an objective derivative of the Cauchy stress oV and the
strain rate D is given by a constitutive tensor *C as follows:

oV =4C:D (6)

Most FE-codes consider an objective derivative of the stress based on the material
rotation. Badel et al. [25] demonstrated that this can produce spurious stresses in
some cases and introduced an objective derivative based on the warp and weft yarns
rotation. This model was later extended in [14] to include strain rate dependence.
In order to highlight the importance of following the yarns rotation and the use
of a non-orthogonal formulation, Fig.3 compares simulation results using the
non-orthogonal model of [14] (Fig.3b) and its orthogonal variant (Fig.3c) with
experimental results (Fig. 3a). It can be seen that neither the shear angle distribution
nor the shear angle value in the pure shear region is well reproduced if an orthogonal
formulation is used.

Woven composites present a complex nonlinear rate and temperature depen-
dence. This, however, is usually attributed in the models only to the shear behaviour
since tensile behaviour is dictated by fibres which are not viscous and bending
stiffness is usually neglected or estimated by trial-and-error procedures. Guzman-
Maldonado et al. [15] and Machado et al. [14] are within the few who detailed stud-
ied the shear stiffness for the specific case of the woven-reinforced thermoplastic-
matrix composites.

Recent works indicate that the bending stiffness influences the shape of the
wrinkles in a forming simulation but the results available on bending properties of
thermoplastic pre-pregs are scarce. Consequently, the viscous character of the out-
of-plane stiffness is usually neglected and focus is placed on the shear modelling.

A
00 1064
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Fig. 3 Comparison between bias extension test and simulation results at same axial displacement.
(a) Experiment, (b) simulation (non-orthogonal model), (¢) simulation (orthogonal)
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4 Validation

Validation experiments are usually performed on hemispherical shapes or extended
hemispherical geometries which lead to large shear angles (up to &~ 50°). Identi-
fying the fibre orientation after a forming/draping can be a challenging task. The
change in the angle between the warp and the weft was measured using a parallel
reference pattern in [23]. In [14, 26] points as grid markers are used as in traditional
grid strain analysis performed in metal forming industry. In all cases, the main
challenges are the misalignment of the applied pattern with respect to the actual
fibre direction and the destruction of the pattern during the forming due to friction
with the tools.

5 Outlook

A brief review of the state-of-the-art methods regarding characterization and
modelling of woven-reinforced composites was presented. Viscous behaviour (rate
and temperature dependence) and nonlinearities are usually attributed to the shear
behaviour in current modelling trends. Efforts towards a more detailed bending
behaviour are possibly the future challenge to be addressed in this field.
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Model Predictive Temperature Control
of a Distribution System for Chemicals

S. Koch, M. Ponikvar, M. Steinberger, and M. Horn

Abstract In semiconductor manufacturing tight temperature control of chemi-
cals is crucial for meeting clean application requirements. The use of multiple
chemistries as well as various configuration options makes precise temperature
control a challenging task. In this paper a generic solution for the temperature
control in a single wafer manufacturing machinery for wet-chemical processing
based on a model predictive control technique is presented. The developed control
strategy is implemented and evaluated on a real world unit with realistic wafer
cleaning recipes.

1 Introduction

Shrinking sizes, higher integration densities and more complex structures in semi-
conductor devices steadily increase the demands placed on single wafer processing
equipment. The fast technological progress calls particularly for advanced wafer
wet-chemical etching tools. Wet-chemical processing of wafers is a crucial step that
has to be repeated several times during semiconductor manufacturing. The process
result depends on a wide number of machine parameters and process variables such
as the rotational speed of the wafer, the flow rate and pressure of the chemical fluid
and its temperature [5, 8].

The control of such process variables mainly relies on linear feedback controllers
like PID control [1]. However, rising demands toward the accuracy and precision
as well as the support of flexible processing recipes makes the accurate chemistry
control a challenging task. On the other hand, the increasing available computational
power allows the implementation of advanced control strategies. In this article the
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design of a model predictive control (MPC) scheme for temperature stabilization in
a chemical distribution system of a semiconductor fabrication tool is discussed.

The remainder of this paper is organized as follows: Sect. 2 provides an overview
of the considered chemical distribution system. A mathematical model is presented,
followed by the controller design in Sect. 3. The implementation and performance
of the developed controller is discussed based on experimental data in Sect. 4.

2 Plant Description and Mathematical System Model

A process flow diagram of the chemical distribution system is shown in Fig. 1.
The wafer processing takes place in individual process chambers. The number of
active chambers varies during operation. If no chamber is active, the fluid circulates
from the tank through the heater and back to the tank. In case of the so-called low
temperature processes an additional cooler, which is connected to the “optional”
branch, compensates for heat transfer introduced from the surrounding. As soon as
processing starts, the fluid is routed into a particular chamber and afterwards either
reused, i.e., fed back to the tank (“reclaim mode”) or drained (*“single pass mode”).
In the latter case the tank level has to be frequently refilled with fresh media as soon
as the filling level drops below a specified threshold. This procedure is called “tank
top-up”. Depending on the specific cleaning application the tool may be equipped
with different components, e.g., heater, cooler and tanks.

q/)r
- Process Chambers

X
to drain [
i 4qH —qpr R |

e | - JEC Bl

from facilicty

[
=peof=

optional

Fig. 1 Process flow diagram of the chemical distribution system of the considered single wafer
cleaning tool. The diagram illustrates the routing of the chemical fluid and provides an overview
of the main components
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Assuming spatially uniform temperatures a simplified mathematical model of the
heater can be obtained by using the so-called method of lumped capacitance leading
to a first order time delay system of the form

dAd

1 K
=— A%+ "P(t—D). Snou = AV + Fuin (0
dr TH TH

where the parameter Ky is the thermal gain, ty the thermal time constant. Both
parameters depend on the mass flow rate, the specific heat capacity and the density
of the chemical fluid as well as the heater volume. According to Fig. 1 yg := Pgou
represents the heater outlet temperature which is the variable to be controlled.
The heater inlet temperature is represented by d := Uiy and can be considered
as disturbance acting directly on the output temperature. Both are available from
measurements. The actuating signal u := P is the electrical power supplied to the
heater. An in-depth analysis of such a heater is carried out in [3]. Under sampling
the linear system (1) can be written in the discrete time state-space form:

_Ts

e H 01><nZ X+ |:0nz><1i| e
Inzxnz Onle 1

XH k+1

YHE = I:On;Xl —(e H — I)KH] Xy i + dy. (2

The time delay is taken into account as multiples of the sampling time (7;) where k
denotes the sampling instant, i.e., f = kT . The system order increasesto N = 1+n,
withn, = [g 1. The mathematical model of the heater is compared to measured data
in Fig. 2.

In a similar way a dynamic model of the tank can be derived. Applying first law
of thermodynamics for heat transfer problems gives

d r
dr (VTl?Hin)pCp = ,OCp (Z qin,-l?Tin,- - ﬂHian)

i=1

7 :
6 30% Umax [
5 s0% |
4 70% H
3 100%
2 [ Sim
| losgiss” |
0 R I I I I I
0 50 100 150 200 250 300

Time [s]

Fig. 2 Normalized step response of system model (2) compared to experimental data. The model
parameters, obtained from the measured step response, are ty ~ 80s, Ky =~ 0.06 and D ~ 25s
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which eventually leads to the second order model

! = Z 4in; — 4H, dﬁHm = Z qin; ﬁHm Z qiniﬁTin,- (3)
i=1 Ti=

In the above equations p denotes the density and C, the specific heat capacity of
the chemical solvent which are assumed to be constant. The quantity g; denotes
the volumetric flow rate of the various flows entering the tank. As indicated in
the process diagram in Fig. I, the number of flows depends on the specific tool
configuration as well as the processing recipe. The flow rate gy is the pump supply
rate, i.e., the overall flow supplied to the system. The filling capacity of the tank is
denoted by Vr. A discrete time version of the model (3) can be obtained by applying
Euler forward discretization:

Vi + T (Z Gin o — (JH,k) 4)

i=1

1 r
Vtink+1 = (1 —Iy, > Qini,k) Vhink— Z Gin; kO Ting k - &)
Tk = g

_,Ll

Vrik+1

~ —_— -
bd k Vdk Wi

The input wy, is separated into flows entering the tank with temperature 9oy, Which
is the overall flow supplied by the pump less the flow routed to the process chambers,
i.e.,, (qu — gpr), and flows with arbitrary temperature like top-up-, reclaimed- and
cooler-media flow which are summarized by the quantity ¥, i.e.,

wk = (91 — qpr) PHourk + Yk

Combining the discrete time heater model (2) and the tank (5) leads to the
following discrete linear time-varying system in state-space representation:

Dy On+1x1 :| [T :| |:0N+lxl:|
X = X +
e [(CIH — qr)VaxCl Gax + var(qu — qer) ¢ 0 Vdk Vi

_ - \.\,.

[ I'

with the augmented state vector x; = [xux di]”.
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3 Controller Design

A model predictive controller is designed based on the mathematical system
description developed in Sect. 2.

In order to achieve offset free reference temperature tracking the following
integral cost function, discussed in, e.g., [4], is considered

I (Aig) = [Frqr = Ferllg + [ Al + Iz 115 6)

where O, R, S are appropriately chosen weighting matrices. The predicted output

is defined by y, 4 = [yk+ 1 Vk42 - -- yk+np]T, respectively, the reference trajectory

- T . - T
Fk+1 = [rk_H V42 - .. rk+,,p] and the nput Auy = [Auk Auk+1 cee Auk+m._1]
with Awuy = ux — ur—y. The indices n, and n. represent the prediction and control
horizon. The integral state vector is defined by

- T
Zk+1 = [Zk+1 k42 - - Zk+np] ,  where zx = z—1 + r—1 — Yi—1-

It is obtained by
00...0 1
) o . 10...0
Zpt =Mz + 1 —yi) + Nt = Yeq). with N=1| |, M=
11...1 1

According to the Receding Horizon MPC formulation (see, e.g., [2]) the predicted
system output is

Vis1 = Fixi + Guuy—y + Hy Aty + Hy
where

CTrdk 0 . 0
Hy =

—1 —2
CT¢Z‘D I‘dk CT¢Z‘D de ...CTrdk

In order to formulate the optimization problem in a compact way the vectors
gr = Fixy + G- + Hd“/_fk and e := g} — r'r+1 are introduced.

In the design it is also necessary to consider two hard constraints. The control
input is limited within 0-100% and the temperature is not allowed to exceed an
upper limit. The limit depends heavily on the used chemical solvent and the process
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recipe. Incorporating these two constraints in the control problem leads to the
optimization problem:

Minimize

I (Awy) = 2Au,HY Qe + Aul (HL QH; + R) Aty — 2Ai, H'N"SM (2, + i, — y)

subject to
WAu, <w @)

where Q := N'SN + Q and
—L _ﬁmin + Mblk_l 10...0
L _ ™ — My, 11...0
W= _H s w = __—min % s L = . .
I Yy & R
H, g 11...1

The solution to this problem yields an optimal control sequence. The first value of
the obtained vector is applied to the plant.

It should be noted that the solution of (7) requires a prediction of the disturbance

vector l/_lk. Due to the comprehensive knowledge of the future evolution of the
process and the available mathematical models a model based prediction of the
disturbance is proposed in the present case. Its computation basically breaks down
into two phases:

1.

The predictive information on processing flows, tank filling flows and tank
volume is provided on the basis of the predefined processing recipe:

A typical processing characteristic is, e.g., shown in the lowest plot in Fig. 3.
The black line represents the cumulative flow into the process chambers. The
stepwise increasing or decreasing of the flow indicates an on/off switching of
individual process chambers. As an example the green line shows the predicted
values 10 s ahead. The gray pulses illustrate the frequently appearing tank top-up
flow, the yellow one is the predicted value.

. The calculation of the reclaimed chemistry temperature and the estimation of the

cooler outlet temperature:

The reclaim temperature is estimated, respectively, predicted depending on the
processing temperatures, processing flows, wafer rotational speed and ambient
temperature [7]. The estimated value is assumed to remain constant during
processing. The cooler outlet temperature is predicted based on a dynamic model,
see, e.g., [6].
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4 Implementation and Experimental Results

The developed controller is implemented with a sampling time of 7; = 1s. The
optimization problem is solved online using Hildreth’s quadratic programming
procedure [9]. The prediction horizon is set to n, = 60s, the control horizon to
n. =>5s.

The MPC performance is compared to the currently used PID controller.
Therefore two test runs with deionized water have been performed on the real
tool. In the first configuration a low temperature single pass recipe was tested. As
mentioned, in this mode it is necessary to frequently refill the tank. The scenario is
depicted in Fig. 3 in the two bottom plots. The second last shows the tank volume
over time. The last plot shows the tank refilling flow and the cumulative flow into
the process chambers with its predicted values as discussed in the previous section.
The plot on the top shows the temperature to be controlled, the second the tank
temperature followed by the heater power. Due to confidentiality agreements all
values are normalized, i.e., set-point temperature equals r; = 1. The second test is
a high temperature process to reclaim recipe. The tank level remains approximately
constant on its initial filling level. The disturbance is mainly caused by heat

_ 40 T T T T
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o
0 1 1 1 1
= T T T T T
g b ]
2
-
> 05 1 1 1 1 1
300 400 500 600 700 800 900
0.5 T T T T T
e Ay ey o
% UM l g
o 0 :’_,_r’_' T N B M e = SN — i e
300 400 500 600 700 800 900

Time [s]

Fig. 3 Comparison of red line MPC and blue line PID controller performance during a low
temperature single pass recipe
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Fig. 4 Comparison of red line MPC and blue line PID controller performance during high
temperature process to reclaim recipe

dissipation in the process chambers leading to larger temperature differences in the
reclaim flow compared to the first test. The results are presented in Fig. 4.

In both cases it can be seen that the MPC outperforms the PID controller.
The MPC can provide temperature stabilization within £1.5% of the set-point
temperature. Especially in the high temperature test it can be observed, when
comparing the two control signals at time instant ¢ ~ 400s or t ~ 700s, that
the MPC controller starts to counteract the disturbance way earlier than the PID
controller leading to significant smaller temperature losses.

5 Conclusion and Outlook

In this paper a model predictive control approach was applied to a single wafer
cleaning tool for temperature stabilization of chemical fluids. The performance
of the developed controller has been evaluated via test runs on the real unit with
realistic processing recipes. It has been shown that the developed controller offers
significantly improved temperature stabilization compared to a classical linear
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feedback control and thus ensures high repeatability of process recipes. The model
based approach allows for configuring the controller for various available tool
options.

Future work will focus on the performance evaluation of the developed controller
in various tool configurations, i.e., combinations of different heaters, coolers and
tank types. Furthermore the incorporation of active cooler control in the design
leading to a multi-input/single-output system will be approached.
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Hidden Oscillations in Electromechanical
Systems

Maria Kiseleva, Natalya Kondratyeva, Nikolay Kuznetsov,
and Gennady Leonov

Abstract In this paper an electromechanical system with two different types of
motor is considered. It is shown that during the spin-up, the system with DC
motor may experience unwanted vibration—the Sommerfeld effect. This is a well-
known effect when the motor of electromechanical system gets stuck near the
resonance zone instead of reaching its nominal power. The absence of this effect
is demonstrated in the system with synchronous motor. Nowadays, there are many
works devoted to the study of this effect in various systems. Here we discuss the
Sommerfeld effect from the point of view of localization of the so-called hidden
oscillations.

1 Introduction

In order to obtain a well-operating electromechanical system, it is important to
perform the stability and oscillation analysis of its corresponding mathematical
model. An oscillation in a dynamical system is either self-excited or hidden attractor
[7, 8, 10, 11]. An attractor is called a hidden attractor if its basin of attraction does
not intersect with small neighborhoods of equilibria, otherwise, it is called a self-
excited attractor. The basin of attraction of self-excited attractor is associated with

M. Kiseleva (<)
St. Petersburg State University, St. Petersburg, Russia
e-mail: m.kiseleva@spbu.ru

N. Kondratyeva
St. Petersburg State University, St. Petersburg, Russia

St. Petersburg Polytechnic University, St. Petersburg, Russia

N. Kuznetsov
St. Petersburg State University, St. Petersburg, Russia

University of Jyviskyld, Jyvaskyld, Finland
e-mail: nkuznetsov239 @ gmail.com

G. Leonov
St. Petersburg State University, St. Petersburg, Russia

Institute of Problems of Mechanical Engineering, RAS, St. Petersburg, Russia
© Springer International Publishing Switzerland 2017 119

H. Irschik et al. (eds.), Dynamics and Control of Advanced Structures
and Machines, DOI 10.1007/978-3-319-43080-5_13


mailto:m.kiseleva@spbu.ru
mailto:nkuznetsov239@gmail.com

120 M. Kiseleva et al.

an unstable equilibrium. In other words, the self-excited attractors can be localized
numerically by the following standard computational procedure: a trajectory, which
starts from a point of an unstable manifold in a neighborhood of an unstable
equilibrium, after a transient process is attracted to the state of oscillation and traces
it. In contrast, hidden attractor’s basin of attraction is not associated with unstable
equilibria. Recent examples of hidden attractors can be found in The European
Physical Journal Special Topics: Multistability: Uncovering Hidden Attractors,
2015 (see [2, 4-6, 12-16, 18-20]).

Hidden oscillations appear naturally in systems without equilibria, describing
various mechanical and electromechanical models with rotation. In 1902 Arnold
Sommerfeld described one of the first examples of such models [17]. He studied
vibrations caused by a motor actuating on unbalanced rotor and discovered the
resonance capture phenomenon (Sommerfeld effect). Discussing the nature of this
capture phenomenon, Sommerfeld wrote: “This experiment corresponds roughly to
the case in which a factory owner has a machine set on a poor foundation running
at 30 horsepower. He achieves an effective level of just 1/3, however, because only
10 horsepower are doing useful work, while 20 horsepower are transferred to the
foundational masonry” [3].

Further we will consider mechanical model actuated by DC motor, where the
Sommerfeld effect corresponds to the existence of hidden oscillation. We will also
demonstrate when Sommerfeld effect is absent for the same model actuated by
synchronous motor.

2 Unbalanced Rotor on a Rigid Platform

Following the work [1], we consider the first electromechanical system, which
is unbalanced rotor placed on a rigid platform. The platform can move only
horizontally and is connected to a wall by means of damping and elastic elements
(see Fig. 1). The system of equations of motion is the following:

J§ = 9(¢) + mplising,
(M + mo)i + Bx + cx = mol (¢* cos ¢ + @ sing) . (1)

Here ¢ is the rotation angle of the rotor, x is the displacement of the platform, J is
the moment of inertia of the rotor, my is the eccentric mass of the rotor, M is the
mass of the platform, c is stiffness, B is friction coefficient, / is the eccentricity of
mass my, and ¢4(¢) is the motor torque.

Let us consider two different types of motor for this system and see whether the
Sommerfeld effect can be found.
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Fig. 1 Scheme of unbalanced rotor on a rigid platform

2.1 Sommerfeld Effect in the System

First, we consider a limited power DC motor
G(p) = A—ke, 2

where A and k are constant parameters of the motor.

For computer simulation we take the following parameters: / = 0.014, M =
10.5,mp = 1.5,1 = 0.04, k = 0.005, ¢ = 5300, B = 5, and A = 0.49. For initial
data x(0) = x(0) = ¢(0) = ¢(0) = 0 the Sommerfeld effect occurs. For other
initial data x(0) = x(0) = ¢(0) = 0,¢(0) = 40 we observe normal operation—
the achievement of desired rotational velocity of our mechanical system.! The
transient processes for both the initial data and the corresponding attractors are
shown in Fig. 2. Comparison of this situation with experiment of Sommerfeld gives
the following result: when the Sommerfeld effect occurs, the effective level of only
about 1/4 is achieved (comparing to the normal operation). Note that in this example
we have the coexistence of attractors, which are hidden in the sense of mathematical
definition. But from a physical point of view, the zero initial data correspond to
typical start of the system, so the Sommerfeld effect can be easily localized, while
the normal operation is hidden.

TFor this system with 8 = 0.005, k = 5, A = 0.5, or A = 0.51 both the effects were discussed
in [1]. Here we give more precise parameter values.
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Normal operation Sommerfeld effect

(§(0) = 40, x(0) = 5(0) = 0) Sommerfeld effect /
((0) = x(0) =x(0) = 0)

Normal operation

Fig. 2 Sommerfeld effect and normal operation in unbalanced rotor on a rigid platform

2.2 Absence of the Sommerfeld Effect

Consider now the following mathematical model of synchronous motor:
JO = —af —sin 6, 3)

where 6 is the phase difference between the rotating magnetic field and the rotor
(0 = ¢ —wt, where ¢ is the rotation angle of the rotor as before), « is the coefficient
of damper windings, and w is the current frequency in the stator windings.

Then the equations of “unbalanced rotor on a rigid platform” system take the
form:

JO6 = —af —sin 0 + moli sin(wt + 0),
(M + mo)i + Bi + cx = myl ((a) + 6)2 cos(wt + 0) + 6 sin(wr + 9)) Y

In [9] it was mathematically rigorously proved that there is no Sommerfeld effect
in system (4) if it is actuated asynchronously (asynchronous actuation means that
x(0) = x(0) = 6(0) = 0). It is shown that the following equation is valid for
sufficiently small / and large :

(M + mg)¥ + B + cx = mplw?* cos wt + O(P). (5)

After the transient process the synchronous machine reaches normal operation mode
with the rotation frequency of rotor equal to @ 4+ O(/). The platform oscillations can
be approximated by the harmonic oscillation with the frequency w + O(l) and the
amplitude

I’i’l()l(,!)2

o). 6
V(e — (M + mp)o?)? + pro? © ©
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Normal operation

(6(0) = x(0) = £(0) = 0) Normal operation

(¢(0) = x(0) = x(0) = 0)

Fig. 3 Normal operation in unbalanced rotor on a rigid platform

Thus, if the eigenfrequency of the platform is less than w, then in the case of
asynchronous actuation system (4) always passes resonance and enters normal
operation mode after transient process.

Computer simulation of (4) with parameters J/ = 0.014, M = 10.5, my = 1.5,
| =004, 0 = 0.5, ¢c = 5300, B =5, w = 90, and initial data x(0) = x(0) =
©(0) = 6(0) = ¢(0) = 6(0) + v = 0 gives a normal operation, which is shown
in Fig. 3. The normal operation is a hidden attractor in the sense of mathematical
definition, but from a physical point of view, it is easily localized. Remark that the
computation with other initial data does not reveal any other coexisting attractors,
thus our experiments expand the work [9], where the limitation on initial data is
assumed.

3 Conclusion

In this paper two types of vibrational units with unbalanced rotors are considered.
It is demonstrated that under certain conditions system (1) and (2) experiences
the Sommerfeld effect, namely the resonance capture phenomenon. Here the
Sommerfeld effect can be regarded as the coexistence of hidden oscillations since
the system has no equilibrium states. Also an example of similar model without
Sommerfeld effect is shown.

Acknowledgements Authors were supported by Saint-Petersburg State University (6.38.505.2014).
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Effect of Material Layers in a Compound
Circular Receiver Model Design
for Concentrating Solar Power

Ryuusuke Kawamura, Yoshinori Nagase, and Shigeki Tomomatsu

Abstract The present study intends to evaluate heat conductance and mechanical
strength at elevated temperature of a prototype of flat type receiver composed of
carbon steel fin and copper tubes. Considering a compound circular plate composed
of different kinds of material layers as an analytical model of the receiver, a
mathematical analysis of plane axisymmetric transient heat conduction and thermal
stresses for the plate is developed. Performing numerical calculation for a compound
circular plate consisted of carbon steel layer and copper one, the effect of thickness
of copper layer on spatial variations and time-evolutions of temperature change and
thermal stresses is discussed briefly.

1 Introduction

Effective use of solar energy becomes important issues all over the world, since
solar energy has been very promising as one of renewables which enable to reduce
greenhouse gas emissions. Concentrating solar power (CSP) [1] is a system in
which steam generated by solar heat drives a turbine to generate electricity. CSP
is divided into two parts: one is the solar collector part and the other is power
generation part. Direct normal irradiation in sunlight is only concentrated by the
solar collector. The concentrated sunlight is converted into heat on the surface
of receiver. For stable operation of CSP, the structure and materials in the solar
collector part have to possess heat resistance and mechanical strength. Miyazaki
Prefectural Government in Japan built a beam-down solar thermal collector at
University of Miyazaki in 2012, the government is supporting and promoting the
study and development of new energy. The collector [2] is the plant composed of
reflectors and a receiver. Sunlight concentrated by reflectors which is referred to as
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heliostat is converted into heat on the surface of a receiver. Solar energy research
project team in University of Miyazaki is working the study of receivers which
enable them to convert concentrated sunlight into heat with high efficiency.

Before the beam-down solar thermal collector was established at University
of Miyazaki, we considered a prototype of flat type receiver which is consisted
of carbon steel fin and copper tubes. We focused on the effect of copper tubes
on thermal conductance and mechanical strength at elevated temperatures in the
receiver. To evaluate the prototype of the receiver, heating experiment was carried
out by using a solar simulator [3]. A xenon short arc lamp of rating lamp input
500 W is used as a light source of the solar simulator. A xenon lamp is considered as
a point light source with continuous spectra, which radiates light that is the closest of
all artificial light sources to sunlight. An elliptical mirror is used to concentrate the
light radiated by the lamp. When the light source in the lamp is set at the first focal
point of the mirror, the radiated light which is reflected by the mirror is concentrated
at the second focal point of the mirror. When the receiver is set at the second focal
point of the mirror, the concentrated light absorbed by the receiver is converted into
heat. The heat causes temperature rise in the receiver. Heat conducts along a copper
tube in the receiver, and temperature rise of carbon steel fin on the copper tube can be
observed. To elucidate heat conduction of the receiver from a theoretical viewpoint,
we considered a compound flat plate composed of two different material layers as an
analytical model, and one-dimensional heat conduction analysis was conducted as a
first approximation [4]. When the numerical result of time-evolution of temperature
on the top surface calculated by the theoretical analysis is compared with the
experimental result, there is an inconsistency in time up to steady temperature state
between the theoretical result and experimental one. Heat flows in the thickness
direction in the one-dimensional heat conduction of the compound flat plate in
which the top surface is subjected to uniform heat supply. Heat conduction from
heated area to non-heated area cannot be considered in the one-dimensional heat
conduction model of the plate.

The present study intends to evaluate heat conductance and mechanical strength
at elevated temperature of a flat type receiver from a theoretical viewpoint. Consider-
ing a compound circular plate composed of two different kinds of material layers as
an analytical model of the receiver, a mathematical analysis of plane axisymmetric
transient heat conduction and thermal stresses for the plate is developed. It is
assumed that the plate is subjected to heat flux on the top surface axisymmetrically
and that the plate transfers heat with surrounding media. Analytical solutions of
transient temperature change and thermal stresses are derived under a plane axisym-
metric condition. Performing numerical calculations for the compound circular plate
composed of carbon steel layer and copper one, the effect of thickness of carbon
steel and copper layers on spatial variations and time-evolution of temperature
change and thermal stresses in the plate is discussed briefly.
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2 Analysis

2.1 Heat Conduction Problem

Consider a compound circular plate of radius a and of thickness B that is composed
of two different kinds of material layers as an analytical model shown in Fig. 1.
The origin O of radial coordinate r and transverse coordinate z is set on the top
surface of the plate. The layers are numbered, and thickness of i-th layer is b;; local
coordinate in the thickness direction whose origin is set on the top surface of the
layer is z;; temperature of the layer is 6;. Initial temperature in the plate is assumed to
be constant temperature . Consider heat flux ¢(r, r) which has plane axisymmetric
distribution is supplied on the top surface of the plate at time ¢. There are heat
transfer between on the top, the bottom, and the side surfaces and surrounding media
with temperatures 6,, 6, 65. Coefficients of heat transfer on the top, the bottom, and
the side surfaces are y,, ¥, Vs, respectively.
First, temperature change 7; of each layer is defined as

n(rvzivt)ZHi(rsZist)_QOs l: 152 (1)
The fundamental equation of transient heat conduction, the initial condition, the

boundary conditions, and the continuity conditions in temperature change and heat
flux are expressed in dimensionless forms as below:

oT; 10 oT; 92T,
=Kiy_. 7. |+ , i=12, 2
ot K{rar(rar) 32%} : @
;=0 at =0, i=12, (3)
o, - - - 1 _
— A h(Ti=T) = - f(Pgr) at 7 =0, S
aZl Al
o - - o
(D -Ty) =0 at % =b, (5)
0z2
in qir.1) a 7. qir.1)
Tt T . 1i 4 341 a .
1T O h N, rz, oz |int
4, 7, :\ ” ' ;'_'f. , o f a, .”"::‘:r.:..:,))' T E "H
. 1 a v
&

Fig. 1 Analytical model of compound circular plate
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Assuming the step heating shown in Fig. 2, functions of heat flux f(r) and g(t) are
expressed in dimensionless forms as

f(r) =H(c—7), )
g(t)y =H(t—1v) —H(t — 190 — A7), (10)

in which H( ) is Heaviside step function; ¢ is a dimensionless form of radius of
heated area on the top surface of the plate c; 7, 9y, At are dimensionless forms of
time ¢, heating start time fy, and the duration of heating Az.

Dimensionless quantities introduced in Egs. (2)—(10) are defined by

- T = = = (Zivbivrsavc) - Ki = A'i
i bi,r,a,¢c) = L ki= L A=
(z r,a,c) B i ‘o 2o
B - - - - T;, Ty, Ty, T
i= 1 1 =" G 1T = o1 ; (an
qo0 Ao Ty
(Tv tOv At) == Zg (t, t()v At)v (ilasilbsilsi) = B X (ha’hb7h3i)

in which k; and A; are the thermal diffusivity and the heat conductivity of i-th layer;
ko and A are the typical values of the thermal diffusivity and the heat conductivity,
respectively; go is the intensity of heat flux; T is the typical temperature change;
ha, hy, and hg; are relative heat transfer coefficients defined as

:J/a
A

_ "
A

Vs

hy hy hg = 5 i=12. (12)

Analytical solution of temperature change in the plate is obtained by the superposi-
tion of both solution to the heat conduction problem such that the plate is subjected
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to heat flux at top surface whose intensity varies with time and solution to the
heat conduction problem such that the plate has heat transfer between the boundary
surfaces and surrounding media.

T;

o0
> Tadolgu?) . i=1.2, (13)
k=1

243 i 2l (7)

Auit; cosh(atixizi) + By sinh(oixz;
le(qlk + ]’l2 )Jz(%ka) AI(MI) [ kj ( kj ) kj ( kj )]

Ty
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o0

2pilr (T ) 7)) + By si Z
_ Z ’uj/ " Ay cos(BixZ) + Buig sin(BigZi)]
j=m+1 ( j)

m N
J
+ Z 1A (1 ,kj cosh(azi) + B,kj sinh(oikzi)]

oo

+ Z A [Auj cos(Bizi) + B sin(BixZi)]
j= m+1 ( ])
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+ b [A} cosh(qazi) + By sinh(qaz) + D Jo(qua)]
ikj

(14)

In Eqgs. (13) and (14), Jo( ) is the Bessel function of the first kind of order zero; I7(7)
is defined as

It(r) = / ' e OHE — 1) — H(T — 10 — A7)] dr'. (15)
0

The details of symbols in Eq. (14) are omitted due to lack of space.

2.2 Thermal Stress Problem

We now consider stress and bending deformation in the compound circular plate
subjected to thermal loads. If the origin of the coordinate in the thickness direction
is appropriately selected in the cross-section of the plate, thermal bending of the
plate can be treated easily. Thus, the coordinate in the thickness direction 7/ whose
position of the origin is located at z = 7 from the top surface z = 0 is defined as

Z/

=z—1, (16)
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When the Poisson ratios of two layers assume to be same value v, the position 7 of
the origin of the coordinate 7’ is defined as

=B /A, (17)

in which 7 is dimensionless form of the position of neutral plane of the plate 7. It
is assumed that Kirchhoff-Love hypothesis holds for the bending deformation of
the plate subjected to plane axisymmetric heating. When body forces are absent, the
equilibrium equations of the plate under plane axisymmetric condition are expressed
in dimensionless forms in terms of resultant forces N,, Ny and resultant moments
M,, My as

dN, N,—Ny
S+
dr r

&M, 2dM, 1dM,

—~ = 0. 19
i Trar 7 {19

=0, (18)

Dimensionless forms of resultant forces N,, Ny and resultant moments M,, My are
expressed as

_ (e @ _
N, :Al( 1o +u”_°) — N

dr r
- - du, U -
s = A (V _0+ _0)_NT
dr r

i, = — (b= BV (7 1) e [ e
,=—|Di— - otv. |-
! A dr? rdr T

i 5 B2 d*w R S
= — _ V —
? AU Trar )T

in which u,y and w are dimensionless forms of radial displacement on the neutral
plane u,o and deflection w; ;\1, B 1, and Dl are dimensionless forms of rigidities of
the plate A;, By, and Dy; NT and MT are dimensionless forms of thermal resultant
force N7 and thermal resultant moment My. Their details are omitted due to lack of
space.

Substituting Eq. (20) into the equations of equilibrium (18) and (19), and solving
them under the restraint condition in deflection at the center of the plate and the
mechanical boundary conditions

. 21
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radial displacement on the neutral plane and deflection are expressed in dimension-
less forms as

7 liim " e+, Tnaa (22)
Uy = - ikl - ik )
0 A1k=1i=1 g (1 —v 139k 1+vaIQk

- 2 -
— A1 > ij |: 1 _ 1 Jo(q,-ka) V2i|
w = _ _ _ J ikl —1 — _ .
AIDI—Bfk;J; 7 1y o) =1 e,

(23)

Then, dimensionless forms of thermal stress components 0,,;, 0gg; of i-th layer are
expressed as

G = E; iz (}jjk n _A_lijZ’_ ) %JO(‘]ik;)
1—2 : Ay AlDl—B% 1—v

I (Ji(gur)  Ji(gua %E; -
3 ( 1(?1(7)_ 1(Q_kd))} _ kg 24)
qik r a 1—v
_ E &G (Fi | AGid | volgu?)
d = L (A
1—v =1 im Al AlDl_Bl 1—v
=1 j=1
1 (Ji(qr) Ji(gua E; -
4 ( 1(({/&’) B 1(1{/&1))} _ wkig 25)
qik r a 1—v

in which o,,; and Gyg; are dimensionless forms of radial and circumferential
components of thermal stress o,,, 0gg; of i-th layer; Ei and «; are dimensionless
forms of the Young’s modulus E; and the coefficient of linear thermal expansion ¢;
of i-th layer. Details of coefficients Fj and Gj; are omitted.

Dimensionless quantities introduced in Egs. (16)—(25) are defined as

L, zZ.n _ _ (0.w) -  E _ o
2,0 = , (U0, w) = JE= o=
(z.2.1) B (1,0, W) wToB E, %
VIR (erNesNT) - = = (MrsMQsMT)
N,,Ng,N1) = , M,,Mg,Mr) = , 26
(Ny.No. Nr) oEoToB ( 9, Mr) woEoT,B? (26)
L (0111, 0061) - A - B - D,
rrivo- i) = k A = ’ B = k] D =
©@ri000) =" pr M T BB B T R DT g

in which Ey and o are typical values of the Young modulus and the coefficient of
linear thermal expansion.
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3 Numerical Results and Discussion

Assuming heating experiment of the compound circular plate composed of carbon
steel and copper layers using a solar simulator, numerical calculations are performed
by making use of analytical solutions formulated in Sect. 2. The effect of thickness
of copper layer on the spatial variations and time-evolutions of the temperature
change and the thermal stress is examined.

Parameters in numerical calculation are given by

a=50mm, ¢ = 15mm, Ar = 600s, go = 92.4kW /m’

by = 0.3mm, 6y = 25°C, 6, = 6, = 6, = 30°C , 27)

Ya =W =ys = S50W/m’K

in which b, is thickness of carbon steel layer; c is radius of region which is subjected
to heat supply; At is the duration of heating; and g is the intensity of heat flux,
respectively. The thickness of copper layer b, was changed parametrically as b, =
(0.0, 0.3, 1.2, 2.1, 3.0) mm. The material properties of carbon steel and copper
are shown in Table 1.

Figure 3 shows the effect of thickness of copper layer on radial variations of
temperature on the top surface z = Omm at time + = 600s. As the thickness
of copper layer increases, temperature rise over the area of the plate which is
subjected to heat supply decreases, meanwhile temperature rise around the area
increases. Temperature has a maximum at the center of the plate » = 0 mm, and
has a minimum at the circumference »r = 50mm. As the thickness of copper
layer increases, the maximum temperature decreases, and the difference between
maximum temperature and minimum one becomes small. The heat conductivity of
copper layer is larger than that of carbon steel, which raises the temperature around
the area which is not subjected to heat supply.

Figure 4 shows the effect of thickness of copper layer on time-evolution of
temperature at the center on the top surface r = O mm, z = 0 mm. As the thickness
of copper layer increases, time up to steady temperature state becomes longer and
maximum temperature decreases.

Table 1 Material properties

Material properties Carbon steel Copper

Mass density (kg m—3) 7850 8890

Specific heat Tkg—! K1) 498 385

Thermal conductivity (W m™! K1) 48.5 373.9
Thermal diffusivity (m?s™) 124 x 107° 109.2 x 10™°
Coefficient of linear thermal expansion (K—!) 122 x 10™° 18.4 x 107
Young’s modulus (GPa) 188.2 108.8

Poisson ratio/1 0.3 0.3
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Fig. 3 Effect of thickness of copper layer on radial variation of temperature on the top surface
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Fig. 4 Effect of thickness of copper layer on time-evolution of temperature at the center on the
top surface r = O mm, z = O mm

Figure 5 shows the effect of thickness of copper layer on the radius of the area
in which temperature is above 110 °C. As the thickness of copper layer increases,
the radius of the area increases. However, the radius of the area decreases, when the
thickness exceeds a certain value. That means that there is an optimal thickness of
the copper layer so as to maximize the radius of the area in which temperature is
above a certain value. These results indicate that we may determine the thickness of
the copper layer in the compound plate so as to maximize the temperature and the
radius of the area.

Figure 6 shows the effect of the thickness of copper layer on the radial variation
of the circumferential component of thermal stress oy on the top surface z = O mm
at time ¢ = 600s. When the thickness of copper is zero millimeters, compressive
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Fig. 6 Effect of thickness of copper layer on the radial variation of thermal stress ogg on the top

surface z = 0 mm at time t = 600 s

stress occurs in the heated area and tensile stress occurs in the unheated area. As the
thickness of copper layer increases, the radial variation of the stress becomes flat
and the maximum compressive stress at the center on the top surface.

Figure 7 shows the effect of thickness copper layer on the maximum compressive
thermal stress 0pg on the top surface of the plate z = 0 mm. Maximum compressive
stress occurs at the center on the top surface r = Omm at time ¢ = 600s when
temperature has maximum value. As the thickness of copper layer increases, the
maximum compressive thermal stress oyg decreases monotonously.
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4 Conclusion

In the present study, a mathematical analysis of plane axisymmetric transient
thermal stress of a circular plate composed of two different material layers is
developed. Analytical solutions of temperature change, radial displacement at
a neutral plane, deflection, and thermal stresses are derived under mechanical
boundary condition of free surface at the whole side edge. Performing numerical
calculation for a compound circular plate consisted of carbon steel layer and copper
one, the effect of thickness of copper layer is discussed.

Numerical results on the effect of thickness of copper layer on spatial variations
and time-evolutions of temperature change and thermal stresses are summarized as
follows:

1. As the thickness of copper layer increases, time up to steady temperature state
becomes longer and maximum temperature at the center of the plate decreases.

2. As the thickness of copper layer increases, temperature rise over the area of the
plate which is subjected to heat supply decreases, meanwhile temperature rise
around the area increases.

3. There is an optimal thickness of the copper layer so as to maximize the radius of
the area in which temperature is above a certain value.

4. As the thickness of copper layer increases, the radial variation of the stress
becomes flat and the maximum compressive stress at the center on the top surface
of the plate.

5. As the thickness of copper layer increases, maximum temperature change and
maximum compressive stress at the center on the top surface of the plate
decreases, and the radial variations become flat.

The information obtained from this study can give an instruction for design of
receiver which converts concentrated sunlight into heat with high efficiency and
possesses mechanical strength at elevated temperature.
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On Multiple Support Excitation Analysis
of Bridges

R. Heuer and D. Watzl

Abstract Multiple support excitations of elastic multi-span beams are studied.
Based on the common set of equations of motion an efficient formulation is devel-
oped in order to reduce the degrees of freedom. The resulting equations are formally
identical to those that are valid for structures under uniform support excitations.
Applying classical modal analysis results in a set of uncoupled differential equations
with time-dependent participation factor. A numerical example is given for a two-
span railway bridge.

1 Introduction

Long extended structures such as bridges or structures supported on several
foundations behave very complex when subjected to ground motions, e.g.,
earthquakes. Analysis of seismic response cannot be based on the single
assumption that free-field ground motions are spatially uniform. Therefore common
discretization procedures, originally derived for structures under uniform support
excitations, must be extended accordingly resulting in a larger system of equations
of motion, see, e.g., [1] and [2].

The structural response of bridges subjected to deterministic multiple support
excitation has been investigated by various researchers [3—5]. The dynamic behavior
of railway bridges under seismic excitation is studied in [6]. Random vibrations of
bridges have been analyzed generally by spectral analysis approach in the last two
decades. In [7] the response of continuous two- and three-span beams to varying
ground motions is evaluated and the validity of the commonly used assumption of
equal support motion is examined. An extensive comparison of random vibration
methods for multiple support seismic excitation analysis of long-span bridges can
be found in [8].
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In this contribution a new formulation for linear elastic multi-span beams under
multiple support excitation is proposed in order to reduce the degrees of freedom in
a mechanically consistent manner. The resulting differential equations are formally
identical to those of structures under uniform support excitations. To demonstrate
the application of the introduced method, an example is given where the discretized
system of a continuous two-span railway bridge is evaluated by means of modal
analysis where it becomes necessary to introduce time-dependent participation
factors.

2 Basic Equations of Motion

The equation of motion of a discretized linear elastic beam subjected to uniform
support excitation,

Wi (1) = wp(t) = ... = wey(t) = wg(1), (1)
reads, compare [1],

mii + cu + ku = —me®yig, (2)
where m, ¢, and k stand for the mass, damping, and stiffness matrix, respectively
(Fig. 1).

u(?) denotes the vector of the nodal transverse deflections w;(¢), i = 1,...,N. If
the discretization is extended to include also nodal rotations, u(#) contains additional

rotatory degrees of freedom, and the corresponding system matrices have to be
extended accordingly. The uniform ground acceleration is expressed by wg. The

LK X X %‘\\) —

ANNNNNN ANNNNNN
! ! ! ! !
ng(t) Wgz(f) Wg3(t) Wg4(f) WgM(f)

’;ngl my ’j1g2 my ’?53 e nfg4 my rn/gi\/[
—Olqu—Cl)—AA -O—3
Fowo b owo 1 owo | o

ng(t) Wgz(f) Wg3(t) Wg4(f) WgM(f)

Fig. 1 Multi-span beam and its discretization as lumped-mass model
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influence vector e® represents the displacements (and rotations) of the masses
resulting from the static application of a ground displacement. In case of a lumped-
mass model, where only nodal deflections (and no rotations) are considered, it is a
vector with each element equal to unity, ¥ = 1.

Contrary, the coupled equations of motion of multi-span beams under multiple
support excitation can be written formally as, compare [2],

momJ[0] [os]fe] Jrm]w] o)
m, Mg | | Ug Cg Cog | LUg Ky Kgg | [ ug Pe
or abbreviated,

MU(1) + CU(r) + KU(r) = P(2). 4)

The displacement vector now contains two parts: u* includes the degrees of freedom
of the beam, and ug contains the components of support excitation. mg, Mg, Cg, Cog
and kg, kge are submatrices associated with the support motion, and pg(f) is the
vector of support forces. Note that in case of a lumped-mass model, my is a null
matrix,

mg = 0. Q)

In the following a new, efficient representation of Eq. (3) is derived, which is related
to the form of Eq. (2). Thus it becomes possible to use numerical procedures that
are common in the field of structures under uniform support excitation.

3 Modeling Procedure

In a first step the individually prescribed support displacements, wg(f), j =
1,...,M, are interpreted as additional degrees of freedom, i.e., ux(t), k = N +
I,...,N + M, see Fig.2. Next, the (singular) stiffness matrix of the complete
discretized beam has to be evaluated, e.g., using the direct stiffness method by

m m m m m m m m

u u u
UN+1 oy "2y M3 uyyy N UN+M

Fig. 2 Free body diagram of the lumped-mass model
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applying static unit deformations, which leads to

[k k... ki kit - ki |
kot k... kon ' :
K=| kv ... kv kv oo kvoveny | (©6)
kv+pt ... knv+onv kwv+yw+n - kevenw+mn
| kvt - kevrsn kvemnw+1y - kovesno+mn

Mass and damping matrices of Eq. (4) are of analogous form.
In the analysis of such dynamic system it is common to decompose the response
into pseudo-static and dynamic components,

_[u®] _[u® u(r)
ue = |:ug(f):| B [“g(f)} * [ 0 :| @

The pseudo-static component satisfies the equation

K kg |:us(t)i| [o ®
ky keg | Lug(r) Py |’
from which one can solve for u’(7):

u'(f) = —k 'k ug. )

Substituting Eqgs. (7) and (9) into Eq. (3) and by assuming a lumped-mass model,
Eq. (5), results in

mii + cu + ku = —m(—k ~'ky)iig + [c (k 'kg) — cg] 1y = pesr. (10)

Considering that either the damping terms in the effective forcing function pegr can
be neglected when the motions are not uniform, or

c=ak, ¢ =ak,, (11)

or the damping forces are assumed to be proportional to the relative velocity vector
instead to the absolute velocity, i.e.,

cc |[0 cc [[u
[cg cgg] |:ﬁg:| ” [cg cgg] [0} 42
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Then Eq. (10) simplifies to
mii + ci + ku = —m(—k 'ky)ii. (13)
Defining a non-dimensional ground acceleration vector,
Fy' (1) = [iig1 /iigre iiga/figres =+ 1 fighs/ilgrer | - (14)
where iyt 7 O represents a reference acceleration component leads to
mii + ci + ku = —m(—k 'ky)iiy = —mE(t) iigrer, (15)
with the time-dependent influence vector
E() = (=k 'kg)Fy(?). (16)

When comparing Eq. (15) to Eq. (2) of the beam under uniform support excitation it
turns out that both are of the same dimension and structure.

In order to prove the validity of the formulation according to Eq. (15) the limit
case of uniform support excitation is examined as follows: the stiffness matrix must
satisfy the rigid body condition as

k kg |:ei| [0} s
= = k,e, = —ke’, 17
[kg kgg] € 0 e

where €° and e, are the rigid body displacement vectors associated with the active
direction of support motion. In the case of uniform excitation,

iy = egiv, = —k 'Kkeii, (18)
and finally
mii + ci + ku = —me®yi,. (19)

Equation (19) is identical to Eq. (2) and thus represents the classical equation of a
multi-degree of freedom system subjected to uniform ground motion.

4 Modal Expansion Technique

Classical approaches for solving the linear system of differential equations, Eq. (13),
are either numerical time-integration procedures or modal analysis, see, e.g., [2].

In the following Eq. (13) is transformed into a set of uncoupled equations of
motions by modal superposition, that is, assuming

N
u(®) = ) i) = Sy, (20)

i=1



142 R. Heuer and D. Watzl

where @ represents the modal matrix containing N eigenvectors ¢,, and y(¢) stands
for the vector of generalized coordinates y;. Inserting Eq. (20) into Eq. (13), pre-
multiplying by @7, and considering the orthogonality conditions as well as the
assumptions of proportional modes for the damped structure, transforms Eq. (13)
into

Vi + 2wy + 0}y = —Ii(Ditgrer, ,i=1,2,..., N, (21
with the time-dependent participation factor

o _ O/mE(®) _ ¢/m(—k k)
TO= grmg, = ¢fmg, 2 22

S Example Problem

For studying the influence of multiple support excitation on the response of a railway
bridge, a two-span beam structure with simply support conditions, made of steel
and with span length /; = I, = 56 m, is excited by the El Centro earthquake. The
geometry of the cross-section is given qualitatively in Fig. 3. A detailed compilation
of all additional input parameters can be found in [6]. All three supports are excited
by the accelerogram recorded from El Centro earthquake [9], see Fig.4. The first

Support area Field area

>

Fig. 3 Cross-section of a two-span railway bridge
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Fig. 6 Midspan deflection x?= x} = x2 due to uniform support excitation

support is excited with the original signal, for support 2 and 3 a time shift of 1 and
2 s are considered. In a second calculation, for comparison, all three supports are
excited uniformly. Figures 5 and 6 show the dynamic midspan deﬂections due to
multiple and uniform support excitation, respectively, denoted as x!, x?, and Xt =

1 2
X, =x;.
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Control of Friction by Surface Microgeometry
Variation

Irina Goryacheva

Abstract Some models of a sliding contact of the surfaces with periodic microge-
ometry over a viscoelastic body are presented. The various gap conditions, such as
complete contact, boundary friction, and the contact of dry surfaces with adhesive
interaction, are considered. Based on the analytical or semi-analytical solutions of
the periodic contact problems, the effects of the microgeometry parameters on the
contact pressure distribution and the mechanical component of the friction force are
analyzed for various gap and load/velocity conditions.

The main causes of energy dissipation in sliding contact of deformable bodies
are hysteresis losses and adhesive interaction of the contacting surfaces (Bowden
and Tabor, The friction and lubrication of solids. Part 2. Clarendon, Oxford, 1964,
Kragelsky et al., Friction and wear: calculation methods. Pergamon Press, Oxford,
1982). Their influence on friction force depends on the mechanical properties
of the contacting bodies and their surface layers, conditions in the gap between
surfaces, operation conditions, such as applied load, sliding velocity, temperature,
and environment conditions. Besides, surface microgeometry has the significant
effect on friction force, particular under conditions of dry contact and boundary
lubrication.

In this paper some models of a sliding contact of the surfaces with periodic
microgeometry over a viscoelastic base are presented. Based on the models, the
dependences of the friction force on the microgeometry parameters are analyzed for
various contact conditions.

1 Complete Sliding Contact of the Surfaces with Regular
Waviness

Under the condition of complete contact the main course of energy dissipation is the
imperfect elasticity of the contacting bodies or their surface layers [1, 2]. To study
this effect the model of complete sliding contact of wavy surface was developed in

1. Goryacheva (<)
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[3]. The analytical solution of the contact problem for the punch with surface shape
described by the periodic function, f(x) = f(x+1), sliding over the viscoelastic half-
plane with a constant velocity V along the axis Ox is based on the expansion of the
functions of the pressure distribution and surface displacement into Fourier series,
and on the establishment of the relations between the coefficients of the series. The
relations between the strain ¢,0, £,0, €0 and the stress o0, 0,0, T,0,0 COMpoNents in
an isotropic viscoelastic body are taken in the following form [4]:

de0  1—1? do, v(l +v do,
g0+ T; - E (oxo+T,, 0)—( )(Uyo-i-Ta }0)

ot at E at
dey0 12 doyo v(l+v) 90,0
Yo y X
& + T, P (Gyo + Ty o ) — £ (Uxo + 75 9 ) (1)
0y, 1 07,0,
Vx0y0 + T, Va;yO = —g v (‘L’xoyo +Ts a‘;y")

Here T, and T, are constants characterizing the viscous properties of the half-
plane (T, > T,), E and v are the longitudinal Young’s modulus of elasticity
and Poisson’s ratio, respectively; H = T.E/T, is the instantaneous modulus of
elasticity. Equation (1) constitutes the two-dimensional extension of the Kelvin
model.

The following dimensionless parameters and functions are used for the analysis:

2 2
i=T 0 B@ = ") o,
1
~ 2
i =" po 2(0-v%) / PE)dR, 2)
l nEl
0
T, o o
o=, P=p $= vt

It is shown that if the punch shape is described by the function

o0
(%) = ) (axcos 27kX + by sin 27kF) (3)
k=1

the contact pressure has the form

[e.]

1
P = / p(t)dt + ) " (Agcos 2k + By sin 27kR). 4)
0 k=1
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The following relationships between the coefficients ay, by and Ay, By are reduced
in [3]:

(1+2(2) a2 a=
_2k- "
1+ ()

Ay = k=1,2,3,... 4)

B = ,
k
1+ (a;)

The dimensionless tangential force T arising due to hysteretic losses in the
viscoelastic body in sliding contact (mechanical component of the friction force)
is calculated from the following relationship reduced from Egs. (2)—(5):

2 _ 12
(1-v)
nEl

1

[ i eas == 3k - aby

0 k=1

2 © 13 (2 1 2
27 (1_1)Zk(ak+bk) ©

é‘ o — wk 2
k=1 1+ (ag)

Eq. (6) is used to study the dependence of the mechanical component of friction
force on the parameters « and ¢ for given microgeometry of the sliding indenter. It
is worth noting that for the elastic half-plane « = 1, and as it follows from Eq. (6),
T = 0, so the mechanical component of friction force is zero at this case. Figure 1
illustrates the dependences of the mechanical component T of the friction force on
parameter ¢ (2), which is inversely proportional to the sliding velocity V.

The curves in Fig. 1 correspond to the same mechanical properties of the half-
plane, the same waviness amplitude and nominal pressure, but different shapes
of asperities and their densities. The waviness of the punch is described by the

following functions:

T =

curve 1: f(x) = Bcos® nx
curve 2: f(x) = Bcos* nx
curve 3: f(x) = Bcos®2mx

The results of calculations make it possible to conclude that the mechanical
component of friction is no monotonic function of parameter { with maximum at



148 I. Goryacheva

16
3
12
T s
2
4 TN
//1\
0 T T T T S
3 2 1 0 1 2
[:44

Fig. 1 Dependences of the friction force 7 on parameter ¢ for @ = 20, 8 = 0.5, and various
values of microgeometry parameters

some value ¢* which depends on viscous parameters of the base and on the wave
length. The results also indicate that the change in the shape of each asperity leads
to the variations in the friction force/velocity dependence. Increasing of the density
of the asperities leads to increasing of the friction force.

2 Boundary Friction of the Surfaces with Regular
Microgeometry

For incomplete contact the properties of the intermediate medium in the gaps
between the contacting bodies influence on the contact characteristics and the
friction force. In this section the model of sliding contact is considered under the
assumption that there are no adhesive stress in the gap between the surfaces, and no
shear stress within the contact spots. The model is applied to analyze the boundary
friction, for example, if there is a thin film of lubricant at the contacting surfaces.

The contact problem for a rigid body with regular surface geometry sliding with
the constant velocity V along the x-axis on the boundary of a thin viscoelastic layer
bonded to a rigid base is considered. The shape of the wavy surface is described by
the periodic function (Fig. 2):

fy) = h— Z (cos (271”) + 1) (Cos (27;y) + 1) h<<D) (7

Here / and [ are the height of asperities and the distance between them, respectively.
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Fig. 2 Sliding contact of the indenter with periodic surface relief on the viscoelastic layer

The mechanical properties of the viscoelastic layer are described by the one-
dimensional Kelvin model with spectrum of relaxation times:

Ai dCTi Eli de “
T ira dt_1+a,~(8+/xidt) p_;(’i ®
Here, p is a pressure, € is a deformation, and «;, A;, Ey; are the model parameters.

The strip method was used in [4] for solving the contact problem. The problem
was reduced to the linear system of equations {w} = [S]{p} to calculate the
contact pressure and the deformed shape of the surface in the gaps. The matrix
of coefficients [S] was calculated analytically.

The contact problem was solved for various periodic functions describing the
surface relief. The results were used to analyze the contact characteristics under
various load/velocities conditions including the complete contact. The influence of
the surface relief parameters and the sliding velocity on contact pressure distribution
and on the mechanical component of friction force was studied. The results of
calculations make it possible to conclude [4] that increasing of the velocity under
the same loading conditions leads to asymmetry of the pressure distributions at each
contact spot, and to decreasing the each contact spot area (“flowing up” effect).

The maximum contact pressure increases as the velocity increases. For high
velocities the contact pressure is distributed symmetrically in respect to the axis of
coordinates. The dependence of the friction force on sliding velocity has the same
features as in the case of complete contact (see Fig. 1). Decreasing of the asperity
height and the distance between them (values of # and /) leads to the complete
contact under lower nominal pressure. The friction force increases as the asperity
density increases.
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3 Sliding Contact with Adhesive Interaction

In sliding contact of dry surfaces the adhesive (molecular) attraction arises in the
gap between the contacting bodies. The adhesive attraction is usually modeled by
the negative adhesive stress p = —p,(8) acting on the boundary of the interacting
bodies outside the contact region, § is the distance between the surfaces.
Maugis—Dugdale model is often used to describe the adhesive stress in which the
dependence of the adhesive stress on the gap between the surfaces has a form of
one-step function [5]
po, 0<8=<4é
Pa(6) = { AN ©)

where & is the maximum value of the gap for which the adhesive attraction acts.
The surface energy y is specified by the relation:

+o0
Y =/ Pa(8) d§ = podo (10)
0

The periodic contact problems for a sliding contact of a rigid body with wavy surface
[6] and surface with two-periodic regular relief [7] over a viscoelastic layer were
considered taking into account the adhesive stress (9) in the gap between the bodies.
The Kelvin model (8) with one relaxation 7}, and one retardation 7, times was used
to describe the mechanical properties of the layer. The boundary conditions for the
contact pressures and displacements are formulated with taking into account various
regimes of the gap filling: saturated contact, discrete contact with saturated adhesive
interaction, and discrete contact with zones of adhesive interaction and zones of free
boundary.

The results indicate that due to adhesion a significant increase in the real contact
area and hysteretic friction force arises, the contact saturation occurs at lower loads,
and a contact between surfaces exists even for negative (tensile) loads. The results
show that the transition from discrete to saturated contact in the presence of adhesion
occurs at lower loads than without adhesion. Adhesion essentially increases the
friction force.

Figure 3 illustrates the effect of the distance between asperities. The calculations
were made for the sliding contact of the indenter with two-periodic regular waviness
described by Eq. (7). The coefficient of friction u = T/P is calculated for two
values of the dimensionless distance between asperities of the wavy surface: [/h = 3
(curves 1 and 1) and I/h = 6 (curves 2 and 2’). Results for solid lines 1 and 2
are calculated for the following parameters: « = 10, k = 0.4, A = 15, where

a = T. /Ty is the viscosity parameter, k = is the velocity parameter, A =

12
2n2HVT,

1/3
po( 2 is the adhesion parameter, H is the layer thickness. Results for dashed
Ey
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Fig. 3 Coefficient of friction vs. dimensionless normal penetration

lines 1’ and 2’ are calculated for the same parameters @ and k but with no adhesion
taken into account (A = 0).

The results indicate that decreasing the distance between asperities leads to
increasing the coefficient of friction. Adhesive interaction between the contacting
surfaces increases the friction coefficient; the effect of adhesion is especially
significant for small distance between contacting bodies.

4 Conclusions

The models were developed to study the effect of surface microgeometry in sliding
contact of viscoelastic bodies. The various conditions in the gap between the
contacting surfaces were considered: complete contact, boundary friction, and the
contact of dry surfaces with adhesive interaction.

Based on the solutions of the corresponding contact problems it was established
that the dependence of the mechanical component of the friction force is non-
monotonic function of velocity for any boundary conditions. The maximum value
of the friction coefficient is higher for smaller distance between asperities and for
bigger inclination of the asperity side. Decreasing the distance between asperities
leads to smaller effect of adhesion but higher effect of hysteretic losses. The results
can be used for analysis of contact characteristics and the mechanical component of
friction force at various microgeometry scales.

The models developed make it possible to evaluate the influence of microgeom-
etry parameter on contact characteristics and friction force for dry and wet surfaces,
and to control of these characteristics by choosing the optimal surface relief.
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Peculiarities of the Magnetic Behavior of Pipe
Steels with Different Initial Stress—Strain
States Under Elastic Deformation

E.S. Gorkunov, A.M. Povolotskaya, S.M. Zadvorkin, and Yu.V. Subachev

Abstract The effect of the value of preliminary plastic deformation viewed as an
initial stress—strain state on the magnetic behavior of X70 pipe steels under elastic
tension and compression is studied. Magnetic characteristics were measured both in
a closed magnetic circuit and with the use of attached transducers along the direction
of applied loading. The plastic deformation history affects the magnetic behavior of
the material during subsequent elastic deformation, as plastic strain induces various
residual stresses, and this necessitates taking into account the initial stress—strain
state of products when developing magnetic techniques for the determination of
their stress—strain parameters in operation.

1 Introduction

The increasing output of pipe products is accompanied by ever increasing on the
strength of pipe steels, their resistance to corrosion and pipe geometry. However,
such important parameter as the level of residual stresses in pipes is tested only
in the stage of production, without consideration of the fact that a pipe may suffer
additional uncontrollable plastic deformation during transportation to the installa-
tion site and during installation. As a result, the condition of pipes after pipeline
laying may differ greatly from their condition when they leave the production plant.
This may result in higher material damage rates, higher probability of emergencies,
and shorter service lives of pipelines.
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Nondestructive magnetic techniques are currently finding increasing application
in diagnosing the stress—strain state of pipes. The development of such techniques
was discussed in numerous studies, e.g., [1-6], but practically all of them ignore the
history of the material in the form of previous plastic strain.

This paper studies the effect of previous plastic strain in the form of elastic—
plastic tensile deformation of a pipe steel on the behavior of some of its magnetic
characteristics under subsequent elastic uniaxial tension/compression in order
to reveal the nature of the thus-induced magnetic anisotropy and to determine
parameters that can be used to evaluate acting elastic strains.

2 Experimental Procedure and Material

Control-rolled pipe steel of strength class X70 (according to the API classification)
was studied. Flat test specimens were cut out from a 1.420mm pipe along the
direction of rolling. The gauge length of the specimens with a cross-section of
5.95 x 46 mm was 120 mm. The specimens were in the as-machined condition.

In stage I, the specimens were subjected to uniaxial tension to various values
of plastic strain o, namely 0.08; 0.23; 0.49, and 1.65 %, and their magnetic
characteristics were determined. The loading—relieving diagrams for each specimen
are presented in Fig. 1. In stage II, the specimens plastically pre-deformed in stage
I underwent elastic tension and compression, the magnetic characteristics being
simultaneously measured in a closed magnetic circuit and with attached magnetic
devices along the direction of applied loading.

600 - —:Load clurve ( I I [ r ) I
500 - Xl 4
g 400 - 2/. 4/ 5]’ B
{Eg 300 - ° * o) 4
[} .
% L Plastic 1
strain, %:
200 - / / —a—(1)-0 B
- . * —o—(2)-0.08 fs] 1
—h—(3)-0.23
100 1 —%—(4) - 0.49 )
—0—(5)- 1.65 1
o - 1 1 A 1
0.0 0.5 1.0 1.5 2.0

Strain, %

Fig. 1 Loading-relieving diagrams for the test specimens
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3 Results and Discussion

Figure 2 presents magnetic characteristics as dependent on tensile stresses, which
were obtained in the stage of plastic deformation to a certain level and under
subsequent relief. The magnetic behavior of the specimens under tension agrees
with the current ideas of the processes occurring in the magnetic structure of steels
under force effects. Similar results of studying the effect of elastic—plastic tension
on magnetic behavior were obtained earlier and discussed in [7, 8].

It follows from Fig. 2 that, when the specimens are unloaded after plastic strain,
the magnetic characteristics change irreversibly; and the higher the value of plastic
strain, the greater these irreversible changes. The higher values of the coercive
force in the relieved state than those in the loaded state can be explained as
follows: under relief, significant residual compressive elastic stresses arise along the
direction of tension in a considerable number of grains, and prerequisites emerge
for the formation of an “easy magnetization plane” magnetic texture, when it is

10 Plastic
- strain, %o:
g —m—(1)-0
< 8 | —®—(2-008
LR —A—(3)-0.23
ay —4— (4) - 0.49
—O—(5) - 1.65
Bl
120 |y
= /,, = \
QQh A7 ‘/ e 0|
0.8f 2

b

800

max

yzi

400k

0 200 200 600
o, MPa

Fig. 2 Coercive force H, (a), residual induction B; (b), and maximum magnetic permeability [4ax
(c) as dependent on tensile stresses under loading to different values of plastic strain followed by
stress relieving: 0 (curve 1); 0.08 % (2); 0.23 % (3); 0.49 % (4); 1.65 % (5)
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more advantageous for the spontaneous magnetization vectors to line up in the
plane normal to the tension axis and hence to the magnetization and magnetization
reversal fields; as a result, the magnetization reversal is hampered, and this results in
the higher values of the coercive force and the lower values of B;(0) and fimax(0).
These results agree with those obtained in [6, 9], where significant difference in the
coercive force values in the loaded and relieved states under plastic tension were
also observed on steel specimens.

For a vivid demonstration of the effect of plastic strain on the magnetic behavior
of the specimens, Fig. 3 shows the values of magnetic characteristics after stress
relief, reduced to the values in the no-load state, as dependent on the value of plastic
strain. There is a monotonic variation of magnetic characteristics with growing
plastic strain. It follows from Fig. 3 that these parameters are the most sensitive
at residual elongations ranging between 0 and about 0.5 %.

The monotonic behavior of the magnetic characteristics with growing plastic
strain enables these parameters or their combination to be used to evaluate the strain
state of a pipe that results from pipe manufacture, transportation, and installation
and which must be considered later on, when testing the stress—strain state during
operation. Note that uniaxial tension plastic strain can be evaluated by the values of
the coercive force in the strain range from 0 to about 0.5 %, and it can be evaluated
by the values of residual induction and maximum magnetic permeability in the
entire range of plastic strain up to necking.

Figure 4 shows the magnetic characteristics of the specimens as dependent
on applied stresses measured in a closed magnetic circuit under elastic ten-
sion/compression after previous plastic tension to various levels. Note that, under
tension, the growth of previous plastic strain is accompanied by an increasing
rate of change in the magnetic characteristics, particularly at the initial stage of
tension, their behavior for the specimens with different initial uniaxial tension

14F c,reliel c.0
12F
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0.6

Relative variation of magnetic parameters

7,

max.reliel
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Fig. 3 Relative variation of magnetic parameters after stress relief from the value of plastic strain
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Fig. 4 Applied external stress dependences of coercive force H. (a), residual induction B; (b), and
maximum magnetic permeability ftmax (€) measured in a closed magnetic circuit. The plastic strain
values are 0 (1), 0.08 % (2), 0.23 % (3), 0.49 % (4), and 1.65 % (5)

stress-states remaining unchanged. When the tensile stress values increase, the
magnetic characteristics change nonmonotonically, with extreme points. It follows
from Fig. 4 that, as the values of plastic pre-strain grow, the extreme points shift to
the regions of higher stresses, this being the most pronounced on the dependences
B:(0) and fmax(0). The values of stresses at which there are minimum coercive
force values and, correspondingly, peaks on the dependences B.(0) and pmax(0)
are attributed to a partial compensation of a part of residual internal compressive
stresses by external elastic tensile stresses at these moments [10]. When external
tensile loading is applied, the absolute values of stresses decrease at sites with
residual compressive stresses, whereas the stress values keep increasing at sites
with residual tensile stresses. At the instant the stresses become zero in most of
the volume with compressive stresses, the coercive force is minimum, since the
stress gradients are minimum in this state. As the external tensile load increases,
the tensile stresses grow everywhere in the material, and this is accompanied by
an increase in the coercive force. It is obvious that the higher the value of plastic
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pre-strain, the higher the level of residual internal compressive stresses, and hence
the higher is the value of stresses at which there is a minimum of the coercive force
and the wider is the range of applied elastic stresses where the magnetic behavior is
monotonic.

The dependences of the magnetic characteristics that are obtained during subse-
quent relief (after tension) coincide with the similar dependences for loading, this
being indicative of the reversibility of magnetization reversal in the elastic region
both under loading and when the load is removed.

Affected by compressive stresses growing to 240 MPa, the magnetic character-
istics vary monotonically. Note that the dependences H.(0), B:(0), and pmax(0)
for the specimens plastically pre-strained to not more than 0.23 % are monotonic
in the whole range of compressive stresses (curves 1, 2, and 3 in Fig. 4), whereas
the dependences H.(0), B:(0), and pmax(o) for the specimens with high values
of plastic pre-strain (curves 4 and 5 in Fig.4) have extrema at about 240 MPa,
which are uncharacteristic of elastic compressive deformation. The extrema are
caused by a transition to the plastic strain region as a result of the Bauschinger
effect. The extrema are caused by the destruction of the “easy magnetization plane”
magnetic texture under plastic compression of the steel and easier magnetization
reversal along the direction of compression. The latter cause, in its turn, disconnects
the loading—relieving curves under the effect of compressive stresses, and this
is observed on the dependences H.(0), B:(c), and pmax(0). Moreover, the more
severe the pre-strain, the greater is the disconnection of the curves H.(o), B:(0),
and (max(0) measured during loading and relieving, or, in other words, the more
pronounced are the irreversible changes in the magnetic characteristics.

In practice, it is easier to measure the magnetic parameters with the use of
attached transducers, which are therefore more often used for magnetic inspection
under field conditions, particularly, for testing large objects, such as large-diameter
pipes. Test results obtained with the use of attached transducers are depicted in
Fig. 5 showing the values of the coercive force H.. and the rms values of magnetic
Barkhausen noise voltage U (measured when the transduced is placed on the
specimens along the direction of applied loading) as dependent on applied stresses.

It follows from a comparison between Figs.4 and 5 that in the tension region
there is a qualitative similarity between the dependences H.(0) and H..(0) obtained,
respectively, by measurements in a closed magnetic circuit and with an attached
transducer. The differences in the behavior of the dependences H.(0) and H..(0)
under compressive stresses, namely the absence of the disconnection on the loading
and relief curves, which is present in Fig.4a, and the monotonic change (without
extrema, as distinct from curves 4 and 5 in Fig. 5a) in the values of the coercive force
with increasing compressive stresses for all the plastically pre-strained specimens
are due to the fact that the results shown in Fig.5a were obtained by attached
transducers after the measurements in a closed magnetic circuit, i.e., they are the
results of the second compression cycle. In this case, the stress relief after the plastic
strain occurring under compression in the first measurement cycle is, according to
[11], always reversible.
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Fig. 5 Coercive force H.. (a) Plastic
and rms voltage U (b) = strain. Y:
= 16 1
measured by attached 2 ——-(1)-0
transducers as dependent on <, —@—(2)-0.08
applied external stresses. The 3 A (3)-023
plastic strain values are 0 (1), ™ 45 | —he—(4)-049
0.08 % (2), 0.23 % (3), 0.49 % —O—(5)-1.65
(4), and 1.65 % (5)
800
> —_— ]n:z_di |.1g
=t relief
= 600
=
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It follows from Figs.4 and 5 that, at applied elastic stresses ranging approxi-
mately between —200 and 120 MPa, the magnetic characteristics of all the speci-
mens plastically pre-strained to different amounts vary monotonically and thus can
be used to test acting elastic stresses.

4 Conclusion

A monotonic behavior of the magnetic characteristics of the steel (coercive force,
residual induction, and maximum magnetic permeability) with increasing plastic
strain has been revealed. This enables these parameters or their combination to
be used to evaluate the strain state resulting from pipe making, transportation, and
installation.

Due to residual stresses induced by plastic strain, the prehistory in the form of
plastic strain affects the magnetic behavior of the material during its subsequent
elastic deformation, and this necessitates considering the initial stress—strain state of
a metallic structure when developing magnetic techniques to determine its stress—
strain parameters in operation.

For the steel studied, the range of elastic stresses (between —200 and 120 MPa)
has been determined where the magnetic characteristics measured in the longitu-
dinal direction vary uniquely and hence are usable for evaluating acting elastic
stresses.
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Cable-Stayed Bridges: A Monitoring Challenge

L. Faravelli

Abstract The monitoring of cable-stayed bridges has a core aspect: the cables.
They are a significant component of the structural skeleton and are in so large
number that a one-by-one response measurement is often too ambitious. In this
paper, a footbridge is studied with only 16 cables in double symmetry. Despite
the evident simplification of the problem, several aspects met in the process of
collecting the data are worth being reported.

1 Introduction

The overall safety of large span bridges, such as cable-stayed and suspension
bridges, relies on an adequate understanding, design, and management of some
crucial elements: the cables [1-3]. They are characterized by tension forces that
vary in time due to the effects of both vehicle/pedestrian crossing and environmental
excitations. The estimation of the time-varying cable tension forces from cable
vibration measurements or special force sensors on the cables is important for the
maintenance and safety assessment of cable-based bridges. Consequently, several
theoretical studies were finalized in the first decade of the millennium [4-13].

Vibration-based methods for estimating cable tension forces use a relation
between the natural frequency of the cable vibrations and the tension force in the
cable. In particular, approximate empirical formulae can be found in the literature to
calculate the tension from the measured frequency by accounting of sag extensibility
and flexural rigidity.
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In other words, one is supposed to collect data on the vibration of every single
cable, either in real time or periodically. In the former case one relies on ambient
vibration (i.e., the cables are excited by the wind action and/or traffic effects), while
in the latter case one is allowed to adopt suitable impact forces.

In this paper, a simple timber pedestrian bridge is studied and a hammer is used
to excite the more significant cable. The harmonic structure of the response is found,
an attempt of tension reconstruction is developed and details of the cable damping
properties are discussed.

2 Cable-Stayed Bridge Case Study

Figure 1 gathers the photographs of four significant cable-stayed bridges recently
constructed and today in service. The one in the bottom is fully equipped to satisfy
the in-service needs: to collect estimates of the tension in the stays, and to quantify
the effects of their variation on the deck’s modal features, paying the necessary
attention to the temperature effects [14].

The study reported in this paper refers to a timber footbridge in service in
Northern Italy which is characterized by eight primary stays of diameter 44 mm
of length 27 m and anchored at the height of 14.63m [15]. A couple of internal
cables were instrumented by a transversal uni-axial accelerometer and a vertical
uni-axial accelerometer. The operator impacts the hammer on the former cable in
the transversal direction, then moves to the parallel cable, and impacts it along
the vertical direction. The two, recorded signals are plotted in Fig. 2, together with
the associated periodograms, as achieved by the software [16]. It is seen that the
transversal acceleration peak corresponds to the fifth harmonics, while the vertical
acceleration peak corresponds to the fourth harmonics. Despite the attention is
often focused on the first frequency (2.18 Hz in the case under investigation), a
special remark applies to the nature of the harmonics. With reference to the vertical
component, Fig. 3a shows that only retaining frequency components up to 25 Hz the
peak is shortly reached and its value is consistent. The other two lines (red and cyan)
show the delay and the loss of intensity when the filter cut off is set at 10 and 5 Hz,
respectively.
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(a)

Fig. 1 Cable-stayed bridges all around the world. (a) Rion—Antirion bridge, Greece; (b) Chords
bridge, Israel; (c¢) Russky bridge, Russia; (d) Ting Kau bridge, Hong Kong



164 L. Faravelli

(a) 5 (b)0.07 Periodogram

0.06

0.05-

0.04r

y1

0.03r

0.02

0.01r

L N

0 50 100 150 200 0 5 10 15 20 25
time [s] Frequency (Hz)

Fig. 2 (a) Recorded acceleration time histories: the first peak is for the horizontal transversal

component, the second peak for the vertical one; (b) associated periodograms. The first peak is at
2.18Hz
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Fig. 3 (a) Recorded vertical acceleration time history (zoom); (b) the signal filtered by pass band
up to 25 Hz; (c) the signal filtered by pass band up to 10 Hz; (d) the signal filtered by pass band up
to SHz
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3 Numerical Model

As discussed in [17, 18], the main features associated with recorded signal can
be reproduced by a numerical model provided a sufficient number of nodes and
elements are introduced and the analyses run in large strain. In particular, for the
cable under investigation, 24 elements were considered. To have the same frequency
a tension of 101 [kN] had to be produced (see [15]) and this was obtained by
a horizontal displacement of the top node of 1.15cm in the negative direction.
Figure 4 shows the estimates of axial force and vertical displacement in the nodes.

lcased

Fig. 4 Numerical estimates of the axial forces [N] along the cable (fop) and numerical estimates
of the vertical displacement [m] along the cable (bottom)
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4 Validation of the Numerical Model

The validation/updating of the achieved numerical model includes two steps:

1. to build a suitable model for the impacting excitation, and
2. to discuss the damping properties of the system.

The only constraint within step 2 is the acceleration peak, i.e., 1.5 g. But also the
peak sequence has to be taken into account. In the experiment the first peak was
higher, in absolute value, than the subsequent negative one. The time history of the
impacting force is a pulse of given duration.

Figure 5 compares the acceleration time histories numerically achieved for the
two cases of duration 0.185 and 0.030s, respectively. It is seen that the latter case
produces an excessive second peak and this suggested to work with the first value.
The associated periodogram is given in Fig. 6, where the peaks are well detected
but the relative values of the peaks do not agree with that seen in Fig. 2b. As said,
a comparison of the spectrum in Fig. 6 with the one in Fig. 2b shows that the two
first peaks are too large. This suggests to refine the damping and, in particular, to
introduce a damping matrix proportional to the mass matrix, which penalizes the low
frequencies. The result is plotted in Fig.7. A further refinement on the contribution
of the stiffness matrix to the damping matrix would be required to fix the large
frequency ordinates.

a b
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Fig. 5 Acceleration response from the numerical model under an impact excitation of duration:
(a) 0.1855s; (b) 0.030s
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Fig. 6 Periodogram for the time history in Fig. 5a
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Fig. 7 Periodogram for the response time history obtained for an impact duration of 0.185 s and a
damping proportional to the mass matrix (a factor 0.5 is used)

5 Conclusions

Starting from the availability of the results of an experimental campaign on a timber
footbridge, attention was focused on tests carried out by exciting the cables by a
hammer.

The recorded signals provided the modal features of the cable. By them, a
numerical, finite element model in large strain was developed and an estimate of
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the cable tension was achieved. Finally, the damping properties were outlined and
the way to incorporate them in the numerical model was discussed.

Acknowledgements The authors gratefully acknowledge the financial support provided by the
corresponding Athenaecum Research Grants.

References

1. Kim BH, Park T (2007) Estimation of cable tension force using the frequency-based system
identification method. J Sound Vib 304:660-676
2. Casas JR (1994) A combined method for measuring cable forces: the cable-stayed Alamillo
Bridge, Spain. Struct Eng Int 4(4):235-240
3. Kim BH, Shin HY (2007) A comparative study of the tension estimation methods for cable
supported bridges. Int J Steel Struct 7(1):77-84
4. Ren WX, Liu HL, Chen G (2008) Determination of cable tensions based on frequency
differences. Eng Comput 25(2):172-189
5. Russell JC, Lardner TJ (1998) Experimental determination of frequencies and tension for
elastic cables. J] Eng Mech 124(10):1067-1072
6. Humar JL (2000) Dynamics of structures. Prentice-Hall, Upper Saddle River
7. Fang Z, Wang J (2012) Practical formula for cable tension estimation by vibration method.
J Bridg Eng 17:161-164
8. Sim SH, Li J, Jo H, Park JW, Cho S, Spencer BF Jr, Jung HJ (2014) A wireless smart sensor
network for automated monitoring of cable tension. Smart Mater Struct 23(2):025006
9. Zui H, Shinke T, Namita YH (1996) Practical formulas for estimation of cable tension by
vibration method. ASCE J Struct Eng 122(6):651-656
10. Liao W, Ni Y, Zheng G (2012) Tension force and structural parameter identification of bridge
cables. Adv Struct Eng 15(6):983-996
11. Cho S, Lynch JP, Lee JJ, Yun CB (2010) Development of an automated wireless tension force
estimation system for cable-stayed bridges. J Intell Mater Syst Struct 21(3):361-376
12. Li H, Zhang F, Jin Y (2014) Real-time identification of time-varying tension in stay cables by
monitoring cable transversal acceleration. Struct Control Health Monit 21:1100-1111
13. Yang Y, Li S, Nagarajaiah S, Li H, Zhou P (2016) Real-time output-only identification of
time-varying cable tension from accelerations via complexity pursuit. ASCE J Struct Eng
142(1):04015083
14. Ni YQ, Wang YW, Xia YX (2015) Investigation of mode identifiability of a cable-stayed
bridge: comparison from ambient vibration responses and from typhoon-induced dynamic
responses. Smart Struct Syst 15(2):447-468
15. Casciati S (2016) Human induced vibration vs. cable-stay footbridge deterioration. Smart
Struct Syst 18(1):17-29
16. Matlab (2016) Matlab user’s manual. Mathworks Inc., Lowell
17. Faravelli L, Ubertini F (2009) Nonlinear state observation for cable dynamics. J Vib Control
15(7):1049-1077
18. Bortoluzzi D, Casciati S, Elia L, Faravelli L (2015) Design of a TMD solution to mitigate
wind-induced local vibrations in an existing timber footbridge. Smart Struct Syst 16(3):459—
478



Dynamics and Control of Motion for Systems
Containing Internal Moving Masses

F.L. Chernousko

Abstract Dynamical systems are considered that consist of a main rigid body
and one or several movable internal bodies. The internal bodies interact with the
main one by forces created and controlled by drives but do not interact with
the environment. The motion of the internal bodies affects the main body, and
it can move progressively under the influence of resistance forces produced by
the environment. Different kinds of resistance forces are considered including
Coulomb’s friction, piecewise linear and quadratic resistance. Periodic motions of
the internal bodies and the corresponding translational motion of the main body are
analyzed. The average speed of the system locomotion is evaluated and optimized
with respect to the system parameters and control.

1 Introduction

Consider a dynamical system that consists of main rigid body and one or several
internal bodies that can move relative to the main one. The main body is placed
inside the environment that exerts resistance forces upon this body, see Fig. 1. The
resistance forces can be caused by the fluid outside the main body (Fig. 1a) or by
the friction of the body over a rough plane (Fig. Ib). The internal bodies interact
with the main one by forces created and controlled by drives but do not interact with
the environment. The motion of the internal bodies affects the main one, and it can
move under the influence of the outer resistance forces.

If the internal bodies perform specific periodic motions within the bounded
volume inside the main body, the latter can, under certain conditions, perform a
translational movement in the external environment.

This principle of locomotion can be useful for mobile robots. An advantage of
these robots is that they do not need any outer propelling devices such as wheels,
legs, and propellers. They can be readily made hermetic without any protruding
devices. Such robots can be useful for the motion inside vulnerable and aggressive
media, in narrow slots and tubes to perform various technological operations. This
principle of locomotion was applied to robotic systems in [3, 8, 11, 12].
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Fig. 1 Mechanical systems

The dynamics of systems controlled by the periodic motions of internal masses
was first analyzed in [4, 5] for the case of Coulomb’s friction force acting upon the
main body. The average speed of locomotion was evaluated. Optimal parameters of
the internal periodic motion were found that correspond to the maximum average
locomotion speed. Experimental data confirming the obtained theoretical results are
presented in [9, 10].

Other cases of resistance forces acting upon the main body were considered in
[2, 6, 7]. Here, optimal parameters and optimal controls were also found. The case
of two internal masses moving along horizontal and vertical directions was analyzed
in [1].

In this paper, the results on dynamics and optimization for systems controlled by
internal moving masses are described, summarized, and discussed.

2 Mechanical Systems

A mechanical system consists of a main body of mass M and an auxiliary internal
body of mass m. The main body moves in the outer medium and is subjected to
the resistance force R, see Fig. 1. The internal body can move inside the main
one and does not interact with the outer medium. Denote by x and v the absolute
displacement and velocity, respectively, of the main body, and by &, u, and w the
displacement, velocity, and acceleration, respectively, of the internal body relative
to the main one.
The kinematic equations have the form

whereas the dynamical equation can be written as follows:
U= —pw +r(v), (1)
where the following notation is introduced:

R=WM+myr, p=mM+m "
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Several kinds of resistance forces acting upon the main body are considered, namely
the dry friction obeying Coulomb’s law:

r(v) = —kgv |v |7, if v#0, |r@)|<kg if v=0; 2)
linear resistance:
r(v) = —kv; 3)
and quadratic resistance:
r(v) = —kv|v|. 4

The coefficients k in Egs. (2)—(4) are constant in the case of isotropic resistance. For
the anisotropic resistance, these coefficients depend on direction of motion:

k=ky, if v>0, k=k_, if v<0. 5)

3 Internal Motions

Let the internal body move periodically with period T relative to the main body, so
that for all ¢

EC+T)=E(). (6)
We assume that this motion is bounded:
0<é&( <L @)

Without loss of generality, suppose that the internal body starts its motion at the left
end of the interval [0, L] and reaches the right end of this interval at the instant of
time 6. Then we have

§(0)=§(T) =0, §O)=L w0 =u®)=0, 06¢c(07). ®)

Let us consider two simple versions of possible internal motions satisfying

(6)—(3).

1. The relative velocity u(t) is piecewise constant and has two phases (Fig. 2):

ult) =w, if t€(0,0); u(@)=-up, if te(,7). 9)
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u 4 Ua

Fig. 2 Velocity control and acceleration control cases

Velocities u; in (9) are assumed to be bounded by a given constant U:
O<u; <U, i=1,2. (10)
2. The relative acceleration w(t) is piecewise constant and has three phases:

w(t) =w;, if te€(0,71), w({)=—-wy, if te(r,1+ 0),

w(t) =ws, if te(n+1,7). (11)
Here, 11 and 1, are positive constants, accelerations w; are bounded by constant W:
O<w; <W, i=1,2,3. (12)

The two cases described above will be referred to as velocity and acceleration
control cases, respectively. They correspond to different possibilities of actuators
controlling the relative motion of the internal body. The graphs of the relative
velocity for these cases are shown in Fig. 2. Note that each of these control modes
has the minimal possible number of intervals of constant control compatible with
the conditions imposed by (6)—(8): two intervals for the velocity control and three
for the acceleration control.

The following requirements are imposed on the motion of the main body:

(a) The velocity v(?) is periodic with the same period T as the period of the internal
motion in (6): v(t+ T) = v(¢) forall =

(b) For the initial velocity v(0) = vy, two alternative assumptions are made: either
vg = 0, or vy is a free parameter to be chosen.

The total displacement of the system for the period of motion Ax and its average
velocity V are defined as

Ax = x(T) —x(0), V = Ax/T. 13)
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We will determine the optimal parameters of the velocity and acceleration
controls that correspond to the maximum average speed V for various resistance
forces under the imposed conditions (a) and (b).

4 Linear and Quadratic Resistance

Consider first the case of the linear isotropic resistance defined by Eq.(3). By
integrating both sides of Eq. (1) over period 7, it can be shown easily that Ax = 0 for
any periodic internal motion £(7). Hence, in the linear isotropic medium, the main
body will only oscillate about some mean position, and the progressive motion is
impossible.

The optimal velocity control described by Egs. (9) and (10) was obtained for the
cases of anisotropic linear and quadratic resistance [7].

We assume that the initial velocity vy in condition (b) is chosen so as to
maximize the average velocity V. Then the maximum average velocity for the linear
anisotropic case described by (3) and (5) is given by

Vi = LUPL™ (1 = e)(1 = e2)(1 — eren) ™ (k3" — k21, (14)
where the following notation is used:
er = exp(—k-T/2), e =exp(—k4+T/2), T =2L/U.

The velocity Vinax in (14) is positive, if and only if the resistance for the forward
motion is smaller than for the backward one: k4 < k_.

Similarly, the case of the quadratic anisotropic resistance defined by (4) and (5)
has been considered. Contrary to the linear resistance, here the maximum average
velocity is positive even in the isotropic case. We have

Vimax = —(kT) "' log(1 — u?k*L*) >0, T =2L(1 —pkL)"'U™", pkL < 1.

More general case of resistance forces was analyzed in [2]. For a wide class of
functions r(v) in Eq. (1), the optimal relative acceleration & (#) subject to the bounds
| § |[< W was found that provides the maximum value of Ax and V for a given
T. The optimal control £(7) has up to four different intervals; on two of them, the
control reaches the bounds imposed; the other two intervals are singular control arcs
where the velocity of the main body v(t) is constant.
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5 Dry Friction

Consider now an important case of the dry friction obeying Coulomb’s law (2). This
case under the condition that v9 = 0 was analyzed in [5]; for free vy that can be
chosen in an optimal way, it was investigated in [6]. The analysis for the anisotropic
friction is rather complicated. Here, we will present some final results only for the
case of isotropic friction with coefficient k.

For the velocity control defined by Eqs. (9) and (10) and for the case with vy = 0,
we have

Vinax = 0.5(ukLg)'2, (15)
if the maximal admissible U in (10) satisfies the inequality
Uzuo, uy= (kLg/)'">. (16)

If inequality (16) is violated, the motion under consideration is impossible.
For the velocity control and the case where vy can be chosen arbitrarily, we have

Vo = (1kLg)"* U — ug) (2Uuo) ™", (17)
if the following inequality:
U > 2712y, (18)

is satisfied. Otherwise, the motion is impossible.

Comparing inequalities (16) and (18), we see that the case with a free value of
vp can be realized in a wider range of admissible velocities U. Under the condition
U > up where the both types of motion can be implemented, the motion with a
free value of vy provides a higher average velocity Vy,.x (compare (15) and (17) for
U > up), which is quite natural.

Let us consider now the acceleration control defined by (11) under the condition
vo = 0. Here, the motion is possible, if and only if the maximal possible acceleration
W of the internal body in (12) satisfies the inequality

Y = uWikg) ' > 1. (19)

Under this condition, the maximal possible velocity of the main body is given by
formulas [5]:

Viax = (ukLg/2)'/*F(Y), (20)
FY)= X -=DYY+D]""2, if 1<Y <2445,
F(Y)=[Y(Y + D]"2,  if Y>2++/5,

where Y is defined by (19).
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The analysis of optimal motions for the velocity and acceleration control cases
showed that, for the velocity control, the motion of the main body consists of
alternating forward and backward motions, whereas for the acceleration control,
there are only forward motions and intervals of rest.

Let us compare the maximal speeds of motion (15) and (20) for v9 = 0 and
unbounded internal motions, i.e., for U — oo and W — oo.

We obtain

Vi = 0.5(ukLg)'/?, V5, = 0.707(ukLg) ">

for the velocity and acceleration control cases, respectively. Thus, the maximal
speeds are of the same order of magnitude, the acceleration control providing a
higher speed.

If the main body contains two internal bodies moving in the horizontal and
vertical directions, respectively, this can give additional possibilities to increase the
average speed of locomotion. The internal body moving in the vertical direction
causes the change in the normal reaction and, hence, in the friction force acting upon
the main body. Optimal control of two internal bodies moving along horizontal and
vertical directions within the main one was obtained in [1].

The principle of locomotion based upon the controlled displacement of internal
masses was implemented in a number of experimental models. In Fig. 3, the internal
motion is performed by an inverted pendulum that oscillates about the vertical
equilibrium position [9]. The system called capsubot and shown in Fig. 3 contains an
internal mass that is driven by an electromagnetic actuator and oscillates inside the
main body [10]. The cart shown in Fig. 4 carries eccentric rotating wheels and moves
along a horizontal plane. Here, the internal masses move both in the horizontal and
vertical directions.

Mini-robots based on the locomotion principle described above that can move
inside tubes were created in the Institute for Problems in Mechanics [8]. These
vibro-robots are driven by electromagnetic actuators and move inside horizontal,

Fig. 3 Inverted pendulum and capsubot
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Fig. 4 Cart with rotors and vibro-robot in a tube

vertical, sloping, and curved tubes of a diameter of 4-50 mm with a speed of 0.1-
0.3m/s. They can carry various sensors and perform inspection as well as other
operations (Fig.4).

6 Conclusions

Locomotion of a rigid body controlled by internal moving masses is discussed.
Certain classes of periodic motions of the internal masses are examined. The system
can move inside a resistive medium; different types of resistance forces are consid-
ered. The average velocity of locomotion is evaluated. The optimal parameters of
the internal motion are found that correspond to the maximum locomotion speed.
Experimental models of mobile robots are described that implement the principle of
locomotion analyzed in the paper.
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Elaborations from the TKB Monitoring
Database

S. Casciati and L. Elia

Abstract The ambient vibration is one of the viable output data-only structural
dynamic testing options by winds and typhoons. This contribution aims to present
the application of a reliable method such as the stochastic subspace identification
implemented in a general-purpose software. One of the greatest infrastructures built
in Hong Kong, i.e., the Ting Kau Bridge, is addressed as a case study. Results reveal
that the proposed method detects both frequencies and mode shapes despite the
reduced number of sensors adopted.

1 Introduction

One of the most active areas in the civil engineering field is certainly structural
health monitoring. A large amount of system identification techniques has been
developed and enhanced since the past few decades. Indeed, the main purpose is
to estimate the modal parameters of a mathematical model of the structure under
study. Parameters identification via dynamic measurements is a discipline originally
improved in aerospace and mechanical engineering as found in literature [1-3],
among the others. In the civil engineering context, the parameters to be estimated
by dynamic measurements come directly from the modal nature, i.e., frequencies,
damping ratios, and mode shapes [4]. Such parameters will supply a basis for
the input to the finite element model, but also provide the necessary feedback for
detecting and locating damage.

Structural dynamic testing is basically subdivided into three main classes: (1)
forced vibration testing, (2) free vibration testing, and (3) ambient vibration testing.
The output-only modal identification techniques are gathered in two groups, (1) the
frequency domain methods, and (2) time domain methods [5]. In civil engineering,
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sensors are placed at different locations to record the output. But the difficult task
is to identify the input or the excitation level on a real structure under its service
conditions.

The benchmark started in [6] focuses on the mechanism behind the output-
only modal identification, the deficiency in modal identifiability, and the criteria
to evaluate robustness of identified modes.

In this contribution, the stochastic subspace identification (SSI)-data driven
method as found in the MACEC tool [7] is employed for the identification of modal
parameters.

2 The Governing Relations

Hereinafter, a briefly overview of the governing relations is shown. Ambient
vibration testing requires developments by modal parameter identification methods.
Therefore, the choice of authors fell on the SSI method well implemented in the
MACEC [7] environment working within the commercial software MATLAB [8].

Since literature is rich of contribution about this theme, the reader is referred to
[9-12] among the others.

Modal analysis of a structure develops along three principal steps, namely the
data collection, the system identification, and the determination of modal features,
such as eigenvalues, damping ratios, eigenvectors, and so forth [13]. The above-
mentioned toolbox, i.e., MACEC, is able to handle with each step in the modal
analysis procedure, and it saves for the data collection.

The tool is applied for verifying the modal parameter under the first set of blind
data provided by the benchmark study where the contribution is included.

3 The Ting Kau Bridge, Hong Kong

The Ting Kau Bridge (TKB) is a cable-stayed bridge situated in Hong Kong and it
connects the Tsing Yi Island to the Tuen Mun Road [14]. There are four spans: the
two main ones are 448 and 475 m long, while the side-spans are 127 m long. There
are three slender towers (170, 198, and 158 m high, respectively) along the deck that
is divided into two carriageways 18.8 m width. There are also steel girders along the
edges of the deck, and each 13.5 m there are connecting crossgirders, which link the
5.2m gap between the carriageways. Furthermore, 384 stay-cables are installed and
support the deck.

More than 230 sensors were installed on the TKB, within a long-term SHM
system conceived by the Hong Kong SAR Government Highways Department, as
shown in Fig. 1. In this contribution, only the data collected by the accelerometers
placed on the deck are considered. Indeed, in each section from A to K in Fig. 2, two
accelerometers are placed on the east and west side of the deck and they measure the
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Fig. 2 Actual deployment of accelerometers at the bridge deck (sections A—K)

vertical acceleration, while another set of accelerometers is placed across the central
crossgirder and measures the transverse acceleration. For sake of completeness, the
sampling frequency is 25.6 Hz.

4 Collected Records and Elaborations

Different sets of data are collected and used in order to carry out the modal
identification. The available field measurements consist of ten sets of monitored
nodal acceleration and wind speed. In particular, one relies on six sets recorded
under weak excitations and four sets under typhoon excitations, as reported in Tables
1 and 2. In addition, a further set of data without knowing the excitation condition is
provided. Such set is properly called “blind dataset” [15]. Figure 3 shows the time
history of the wind velocity resulting in the external force for Sample 6 in Table
1, in condition of weak wind. The mean hourly speed is equal to 4.21 m/s and the
data were gathered on August 12, 1999, by a set of anemometers, which constantly
record the pressure and the speed of the wind. Twenty four sensors installed at the
bridge deck record the accelerations due to the external excitation (i.e., the wind or
the typhoon) and Fig. 4 shows the response recorded by the first channel as stated in
Fig. 2. For sake of completeness, one specifies that such sensor records the vertical
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Table 1 Data samples under weak wind conditions

Sample

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6

Time duration
15:00-16:00 28 Dec 1999
15:00-16:00 18 Feb 1999
15:00-16:00 01 Mar 1999
15:00-16:00 21 Jun 1999
15:00-16:00 24 Jul 1999
15:00-16:00 12 Dec 1999

S. Casciati and L. Elia

Mean hourly wind speed (m/s)

2.00
3.40
3.34
3.41
6.17
4.2

Table 2 Data samples under typhoon conditions

Sample
Maggie
Sam
York
York

velocity [m/s]

1000

Time duration

03:00-04:00 07 Jun 1999
02:00-03:00 23 Aug 1999
06:00-07:00 16 Sep 1999
15:00-16:00 16 Sep 1999

Mean hourly wind speed (m/s)

22.11
15.62
21.72
15.91

Sample 6 - Aug 12, 1999 - Weak wind condition
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6000
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Fig. 3 Plot of the velocity for Sample 6 under weak wind conditions

acceleration. Let now consider the sample “Typhoon Maggie” (see Table 2), whose
speed is 12.11 m/s and whose recording occurred on June 7, 1999. Toward the data
provided, the acceleration of the first channel is shown in Fig. 5, which corresponds
to the first sensor placed on the east side of the deck. According to the same
procedure, the first set of blind data is considered too. In this set of data, the external
condition remains unknown. One of the challenges carried out in the benchmark
launched in [15] was exactly the use of these “blind” datasets for obtaining further
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Fig. 5 Acceleration of the first channel (Typhoon Maggie sample)

modal information. Figure 6 illustrates the accelerogram corresponding to the first
channel. The recorded signals are processed in the MATLAB environment for
outlining the dominating frequencies.

Hereinafter, a set of figures (from Figs.7, 8, and 9) and remarks are reported.
When comparing the three periodograms, one has evidence that the record of
Fig. 6, despite a little more than negligible noise, already contains a mapping of
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Fig. 6 Acceleration of the first channel (first sample of blind dataset)
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Fig. 7 Periodogram of the acceleration signal recorded at station 1 under the external excitation
labelled as “Sample 6”

the frequencies involved. Then the stationary wind excitation of Fig.4 enhances
the peak near 2 Hz, with the ordinates in Fig. 7 higher than those in Fig. 8, which
corresponds to the typhoon. For it, the geometric nonlinearity associated with the
cable response seems to translate the values of the significant frequencies (around
1 Hz) due to the fluctuation of the tension in some cables.
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Fig. 8 Periodogram of the acceleration signal recorded at station 1 under the external excitation
labelled as “Typhoon Maggie”
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Fig. 9 Periodogram of the acceleration signal recorded at station 1 under the external excitation
labelled as “Blind dataset”
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5 Conclusions

This contribution exploits the availability of a significant amount of recorded data
collected for the cable-stayed bridge, TKB, which is located in Hong Kong.

Despite no damage was detected along the structural system, the geometrically
nonlinear response of the cables translates into different modal responses depending
on the excitation intensity.

In particular, under a typhoon excitation, the periodogram peaks seem to move, as
predicted by the theory, but, in order to achieve conclusions, a deeper investigation
covering the whole set of accelerometers deployed along the deck would be
required.
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Reduced Order Models and Localized
Nonlinearity: An Approach to the Design
of Meta-Structures

F. Casciati

Abstract Impact events on soil media cause vibrations that propagate all around
the impact site. These vibrations can be mitigated by the construction of suitable
buried barriers. A recent proposal suggests of realizing them by meta-structures
characterized by a nonlinear response. Their design requires repeated analyses of
the whole system made of soil and barriers. A simplification is achieved by building
the reduced order model of the linear system and incorporating the nonlinear effects
as suitable external actions.

1 Introduction

As often occurred in the last decades, scientific neologisms are first acquired by
electronics, where the term meta-structure means a structure based upon meta-
materials and meta-material denotes any material that obtains its electromagnetic
properties from its structure rather than from its chemical composition. But in
Wikipedia (https://en.wikipedia.org/wiki/Metamaterial#Structural) one also reads:
“Structural metamaterials provide properties such as crushability and light weight.
Using projection micro-stereolithography, microlattices can be created using forms
much like trusses and girders”. Starting from this point of view, one easily reaches
a quite different concept, still named meta-structure, as adopted in [1], where
the authors “propose to use an array of resonating structures (herein termed a
“metastructure”) buried around sensitive buildings to control the propagation of
seismic waves”. Thus the topic addressed by the last term in the title is clarified.
Just for sake of completeness, this term is also used by modern painters (http://www.
blackbookgallery.com/meta-structures) and in a socio-epistemological context [2].

The idea of buried barriers in vibration mitigation is not new and implemen-
tations are mainly associated with the traffic induced vibration [3-5]. This was
synthesized by the FP7 research project RIVAS (http://www.rivas-project.eu/index.
php?id=8), which recently celebrated its closure conference. But extensions to the
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protection from seismic [6], machine foundation [7] or blast [8] generated waves
are easily found in the literature. Also the technology insight in this barrier is quite
broad and spans from passive [9] to active [10] solutions.

Once the concept has been introduced, the next step is how to design such a
technological solution to the problem of vibration mitigation. The numerical model
has to simulate soil—structure interaction [11] and, as usual in these cases, the size
of the problem is quite large. On the other side, the barriers are better designed
to behave in a nonlinear way, making the problem nonlinear. Thus standard model
order reduction (MOR) schemes [12] could not be adopted, since they only hold for
linear problems, and much more sophisticated schemes [13, 14] for the reduction of
nonlinear systems to be required.

Indeed an extension of standard MOR to include cases with localized nonlin-
earities was recently introduced [15], with an application to the problem of falling
helicopter impact. Such a problem is approached in this paper with focus on the
consequence of the nonlinearity assumed for the protection barriers.

2 MOR Governing Relations

With reference to a dynamic transient analysis problem, the governing partial
differential equation system is reduced to a set of ordinary derivative differential
equations by finite element discretization. Introducing the so-called state space
representation, only linear derivatives of time are considered, with the number of
equations being doubled. One writes

z(t) = Az(t) + Bu(1), (1

where z is the state variable vector of size 2N, the superimposed dot denotes time
derivative, u is the vector of the external excitations, of size p, and A and B are
time invariant matrices of sizes 2N by 2N and 2N by p, respectively. The state
variables are not supposed to have any physical meaning. But they are linked to
any set of observables variables y(f) (denoted as “observed variables”) by a second
set of equations, this time of the algebraic type

y(1) = Cz(t) + Du(z). 2)

An often-met situation sees the vector y ordered to give N (relative to the base)
displacements followed by N (relative) velocities, so that, if z coincides with y, C
becomes an identity matrix of size 2N and D is assumed to be 0.

Model reduction procedures are discrete versions of Ritz—Galerkin analyses: they
seek solutions in the subspace generated by a transformation matrix T [12]. Among
different alternative schemes one adopts here the approach that re-writes Eq. (1) in a
different basis system and apply to the obtained balanced system a truncation using
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Hankel singular values; the basis transformation also applies to Eq.(2) and after
truncation just a bit of information is lost.

Equations (1) and (2) can be re-written adding the suffix “R” (for reduced) to all
the quantities except the observed variables [12] when the reduced order model is
pursued by balanced truncation

Zr() = Agzr(f) + Bru(z), 3)
y() = Crzr(). “4)

The number of state variables is now n, with n significantly lower than 2N.
As discussed in [15], the whole procedure and hence the suitable value of #n is
significantly affected by the size and nature of the matrix C as well as by the actual
acceleration considered in the problem formulation.

Assume now that the structural problem contains localized material nonlineari-
ties. Equations (1) and (2) become

z(t) = Az(t) + Bu(t) + Rq(1), 3)
I (®) = Cnez(?), (6)
q(t) = f@®),yn (1)), (7)

where the nonlinearities are accounted for the vector g, related to the current state
and the displacements yy; in the nodes surrounding the nonlinearity domains. They
are simply related to the state variables via the matrix Cnp.

Equations (5) and (6) are linear and hence standard MOR applies:

Zr(2) = Apzr(f) + Bru(t) + Rpq(1), (8)
InL(®) = Cnirzr(?), 9)
q(@) = f@@®),yn.(0), (10

3 The Helicopter Impact Exemplification

The study reported in this paper refers to a heliport, i.e., a civil infrastructure of the
type shown in Fig. 1. The case study is fully described in reference [15] to which
the reader is referred to. In this short note there is just room for discussing some of
its features with reference to Figs.2 and 3.

The geometry of Fig. 2 is modified by subdividing the internal large elements in
two and inserting buried walls along axis y for a length twice the plate diameter
(Fig.2).
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Fig. 1 Heli-surface of the hospital of Livorno in Central Italy
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Fig. 2 Finite element discretization with focus on the materials
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Fig. 3 Details of the plate and the buried walls

4 Some Displacement Time Histories

The positive effect of building buried walls in term of mitigation of the propagating
acceleration was already discussed in [15]. In this paper, one just reports the
response in terms of:

1. horizontal (along x) displacement in the point marked by a cross in Fig. 2;
2. vertical displacement in the points marked by a cross and a diamond in Fig. 2.

Figures 4, 5, and 6 compare the response computed after an impact in the centre of
the plate for linear elastic walls, with the response one achieves when a nonlinear
function is adopted in Eq.(10). The nonlinearity is introduced by computing the
ratio ¢ of the absolute value of each displacement component in every wall border
node with a limit value, say 0.005 m. If the ratio is higher than 1, the corresponding
column entries in k; of the walls stiffness matrix are put equal to 20 % of their
original value k. Otherwise each matrix entry k is rearranged in k, by the relation:

ks =k[0.8(1 =) +0.2]. (11)

Of course any other equation can be incorporated in the numerical model and
the structural response simulated. The response time histories were obtained on
the same reduced order model developed for the linear system and, hence, the
computational effort is quite reduced when compared with that required by the
transient dynamic analysis of the initial full model. This reduced computational
effort allows the designer to design the walls’ constitutive law in the more suitable
way, achieving, if convenient, the implementation of a “meta-structure” concept.
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Fig. 4 Time histories of the horizontal (along x) displacement in the point marked by a cross in
Fig. 2: linear (dashed line) versus nonlinear response (solid line)
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Fig. 5 Time histories of the vertical displacement in the point marked by a cross in Fig. 2: linear
(dashed line) versus nonlinear response (solid line)
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Fig. 6 Time histories of the vertical displacement in the point marked by a diamond in Fig. 2:
linear (dashed line) versus nonlinear response (solid line)

5 Conclusions

The MOR approach, which was proposed in [15] for linear systems incorporating
regions of limited extension made by nonlinear material, is applied to the study
of mitigation of the vibration propagating after a helicopter land impact by buried
walls.

The timely aspect of this proposal is that there is a ferment in the area of intro-
ducing walls more and more sophisticated. In particular the idea of realizing them
by meta-structures seems to be particularly fascinating for future implementations.
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Contact of Flexible Elastic Belt with Two Pulleys

A.K. Belyaev, V.V. Eliseev, H. Irschik, and E.A. Oborin

Abstract The drive belt set on two pulleys is considered as a nonlinear elastic
rod deforming in plane. The modern equations of the nonlinear theory of rods are
used. The static frictionless contact problem for the rod is derived. The nonlinear
boundary value problems for the ordinary differential equations are solved by
the finite differences method and by the shooting method by means of computer
mathematics. The belt shape and the stresses are determined in the nonlinear
formulation which delivers the contact reaction and the contact area. The developed
method allows performing calculations for any set of geometrical and stiffness
parameters.

1 Introduction

The technical calculations of the belt drives are usually based on the ideas of an
inextensible string and the Eulerian formula. However modelling of high loaded
drives requires taking into account elastic deformations of the belt. In the previous
works [5, 6, 11] the model of an extensible string is used, and the contour motion
with the constant trajectory is explored. The model of a rod with (at least) bending
stiffness is needed because the friction force loading does not act on the belt axis.
A number of works consider the significant effect of bending stiffness on the
belt drive dynamics [2, 8, 9]. In finite-element modelling [1, 3, 10], the penalty
formulations are used for obtaining the conditions in the contact area. In the works
[1, 12] the concentration of reactions at the contact area boundaries is noted.
However accurate solutions even for the static problem with the large deformations
inherent to real drives have not been developed. For large deformation problems
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Fig. 1 Contact of straight
beam and cylinder

>y

the nonlinear theory of rods is necessary. The corresponding theory of rods [4] and
computer mathematics allow us to formulate and solve difficult nonlinear problems.

The goal of this work is an application of the nonlinear elastic rod theory in the
contact problem of fitting the belt as a ring to the frictionless pulleys in order to find
strains and forces, reactions, and localization of reactions [7, 13]. Before starting we
consider the linear model (see Fig. 1) to explain the localization of the reactions.

In this problem a stiff cylinder with the radius a is pressed against the center of a
simply supported beam with the increasing force P. At first the force is concentrated
at the contact point, and the deflection of the beam is ¢ = PI?A/6. Here the bending
compliance is A, the length of the beam is 2I. The curvature of the beam at the
contact point becomes AM = API/2. When it reaches the value 1/a, i.e., P = P* =
2 /Ala, the contact zone expands. The displacement of the cylinder points is

x? xt

— 22— _

) =c—a+ Va2 -2 =¢ a 8a3+ (1)

Assuming the full contact (when the points of the beam lie on the cylinder), we

obtain the contact pressure p(x) = A~ 'v!Y. Since p < 0 the full contact is not

present, and the contact area is concentrated at the ends of the interval (x = =+s).

The value s; is determined by matching the solutions at the different segments.

The dependence P(g) becomes nonlinear. Below in Sect. 3 we will use this result to
formulate the nonlinear contact problem.

2 Nonlinear Classical Theory of Rods Deforming in Plane

Elastic rods may be considered as Cosserat material lines, whose particles have the
translational and rotational degrees of freedom [4]. In Fig. 2 the rod is shown in two
configurations: before and after the deformation.

The rod axis is defined by the dependence of the position vector r(s) on the
material coordinate. A triple of unit vectors ex(s) is connected with every particle
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Fig. 2 Initial (dashed line)
and deformed (solid line) rod
configurations: position
vectors, local basis, angles

to establish an angular orientation. In Fig. 2 index zero indicates the values before
deformation. We restrict ourselves to the model without extension, then the variable
s is the arc coordinate in both configurations.

The external loads are the force ¢ and the moment m distributed per unit length.
The internal interaction is defined by the force @ and the moment M, whose signs
depend on the direction of s. The full system of equations involves equations of
balance of forces and moments, definitions of strains, and elasticity relations [4].

In this work we consider the plane problem of the belt fitted on two pulleys.
Thus vectors r, Q, e}, e; lie in the plane of the drawing. The unit vectors e, exo are
rotated with regard to i, j by an angle «(s) (around the z-axis). After the deformation
we have e, e; and the angle ¢ = « + 6. In the general theory a rotation tensor
P = e;ej is introduced, but in the plane problem just one angle 6 is sufficient. The
moment vector M = Mk; k = e; = ey is directed along the z-axis. The vector of
bending strain is 6'k, where prime indicates differentiation with respect to s.

The equations of the full system [4] are simplified:

Q=-qM=-krxQ=-X0+Y0, 0 =AM, ¥ =P-r. )
A is the bending compliance. Since r6 = e19, and thus P - ey = e;, we can write

¥ =e = x =cosg, y =sing. 3)

3 Contact Problem Formulation

The scheme of the belt on two equal pulleys (with the radius a) is depicted in Fig. 3.
Motivated by the above linear model (see Sect. 1), we begin the analysis under the
assumption of the contact at discrete points. The half of the center distance before
the deformation equals d = R—a and then it is increasing by a given value . We aim
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Fig. 3 Fitting of the ring on the pulleys. Here solid circles are the pulleys, dashed circle is the
initial belt configuration and solid line is the deformed configuration

at computing the deformation and the contact forces to obtain a given kinematical
loading . The problem has two axes of symmetry, thus the consideration of first
quarter 0 < s < L = YR/2 is sufficient. The load ¢ is just the reaction force from
the pulley N that is concentrated in the contact point with the unknown coordinate
s1: q = N8(s—s;) (here § is the Dirac delta-function). Then the equations of balance
of forces and moments in (2) are integrated as:

Q = —Nh(s—s1) + Q;

M=k-[(r—r)) xNh(s—s1) —r X Q] + M. 4
Here A(. . .) is the unit step function (Heaviside), Q,, M are the vector and the scalar
constants of integration. In the absence of friction the contact force N is directed
perpendicular to the pulley. We denote y as the angle of the force to the x-axis:
N = N(icosy +jsiny). At the contact point we have ¢ = y — /2. At the ends

of the interval, transverse forces equal to zero: Q(0) = Q, = Qoi, O(L) = —Qyj.
From the equation of balance of forces for the quarter of the rod, it follows:

QIé—l—N:O;Ncosy:QOEP/Z, QO = Nsiny. 5)

The tension Qg at the top point equals to the half of the force P moving the pulleys
apart. The tension in the right point Q; = Ptany/2. The bending moment

M = N[x—xi)siny —(y—yi)cosy]h(s —s1) + yQo + M=« (6)

with the contact pointr; = x1i + yij = (d + € +acosy)i + asiny j.
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We note that in the considered model without axial extension the coordinate s
remains the arc coordinate also after the deformation. Thus, « = —s/R, ¢ =
6 — s/R. The derived system of ordinary differential equations (ODE) can be solved
partly due to the existence of the first integrals. Within both segments of the interval
(0, L), there is Q = const, and then it follows:

A0 =y 0y — X' Q) = Oy cos(s/R — 6) — Qy sin(s/R — 0).

Introducing the variable ¢(s) as above, we obtain the equation:

A™'¢" — Qrcosp — Qysing = 0. (7

It is integrated in terms of elliptic functions as in the classical problems [4]:

A_lqo/z/Z— Oy sing 4+ Oy cos @ = ¢; = const;

d
/ @ — sv24 + ¢, ®)
\/cl + O,sing — Qy,cos @

However it is difficult to determine cy, ¢, that are different at both segments.

We suggest another approach, which is more advantageous. The unknown con-
stants of the problem are s, ¥, Qo, M. The unknown functions are 6(s), x(s), y(s).
Considering the constants as functions, we equate their derivatives to zero (see, e.g.,
this well-known method in [9]). Adding the expressions 6’, X', y’, we arrive to the
ODE system of seventh order. The boundary conditions are

s=0:0=0,x=0;,s=L:0=0,y=0;
s=s51:0=0,=51/R+y—vy/2, x=x1=d+¢e+acosy, y=y, =asiny.
)

Four conditions at the ends s = 0, L are not enough for the seventh order system.
Conditions at the contact point should be taken into account.

The formulated problem with the condition in the internal point is not usual
and is not solved in particular by the shooting method. We can transform it to the
tenth order system at the interval [0, 1] with the appropriated number of conditions.
Instead of the coordinate s we introduce a new variable £ € [0, 1] by setting

Es1, 5 <81,
y L—&(L—sy), s> 5. (10)

The relation between the derivatives is (... ) = mf(s)(...)" (the point means
differentiation with respect to £); here m = s at the first interval and m = s; — L at
the second one. We shall consider the solutions at these two intervals as two different
unknowns.
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4 The Solution Using Computer Mathematics

Constructing a column of the unknowns Y (§) with ten elements, we have

T
Y = (517 Qo My 8D XD 30 @ x> y@))T,

then we arrive to the following system of ODEs:

¥ =F(Y)= (0000 F, Fs F F; Fy Fy)',

Fy = mAM, Fs = mcos (V) — s/R), Fs = msin (8V — s/R). (11)

Components F7, Fg, Fy differ by the expressions m, M, 0 at the segments (6).
We should add to the system (see the end of Sect.3 and (11)) the boundary
conditions (9). This boundary value problem (BVP) is solved by means of computer
mathematics, namely by the finite difference method using Wolfram Mathematica
and by the shooting method using Mathcad. The results of both methods are equal.

In the example calculation the radius of the ring is R = 0.55m, the radius of
the pulleys is a = 0.15m, the half of center distance is d = 0.4 m. The Young’s
modulus is E = 0.1 GPa, and the section is a square with the side equal 0.01 m. In
a series of calculations the increment ¢ of distance d is increased from zero to the
limiting value due to the inextensibility. Figure 4 corresponds to the displacement
& = 0.228 m. Herewith the angle y = 0.713, the coordinate s; = 0.758 m (with the
length L = 0.864 m), and the force P = 2Qp = 19.6 N.

However the calculations did not reveal such pronounced gaps of the belt from
the pulley as in Fig. 3. The configuration of the belt differs from the pulley circle and
intersects it. We can assume full contact along with a concentrated contact reaction.
Its value is N = Qo/ cos y = 13.0N. The difference between Figs. 3 and 4 requires
further study presented in what follows.

y
05
04
03 ¢
0.2 |
0.1}
{ .

0.2 0.4 0.6
Fig. 4 Belt and pulley: overall picture and intersection. Dashed circle is the initial belt, dash-dot
line is the pulley, solid line is the deformed belt, and thin line depicts the contact point
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5 Version with Full Contact of Belt and Pulleys

Here we assume the full (distributed) contact of the belt on the pulley when s > s;.
Projecting Eq. (2) on the tangent (index 1) and the normal (index 2), we obtain

—1 —

Qi +a ' +q1=0.0—a'Q+q2=0 (12)

(taking into account the equalities e’1 =—ale,, e’2 =a"'e;). But q1 = 0, because
friction is absent. Transverse force Q, vanishes since the moment is constant

p=a'(L-s)—y/2, M=A""(R"'=a™"), 0o =-M =0. (13)

Then from (12) we obtain Q; = const = agq;, the tension and the contact pressure
are constant. Adding obvious expressions x, y at the pulley circle, we obtain all the
set of formulas at the contact area having the unknown pair of constants sy, g5.

Let us turn to the free interval s < s;. Here the above shown relations are
applicable: Q@ = Qoi, Qo = P/2, M = yQy + M,. The last helps us to derive
the relation for M,.. At the point s = s the moment is continuous and y = asiny
with angle y = (L — s1)/a. Using (13) we write

M, = —asin(a”'(L—5))Q0 + A" (R —a™"). (14)

As in (10) we introduce the coordinate £. Thus we obtain a BVP for the ODE
system of fifth order (boundary conditions are almost the same as in (9)):

51=0, Qo =0, 0 =s,AM, x = 5,08 (0 — Es1/R), y = sy sin (0 — Es1/R)
£E=00=0,x=0,=1:0=0, x=x1, y=y1. (15)

Solving problem (15) by means of computer mathematics, for ¢ = 0.228 m we
obtain s; = 0.672m, Qp = 43.8N, y = 1.28.

Friction is absent, therefore at the point s; the tension is continuous: Qg siny =
01,50 g2 = Psiny/2a = 280 N/m. But the concentrated reaction N = Pcosy/2 =
12.5 N arises. This value is less than the same one for the point contact problem.

Figure 5 displays the dependence of the angle y (&) and the force P(¢) that moves
apart the pulleys. Initially the contact is at one point: y = 0 until the value ¢ ~
0.19m. This is consistent with the linear model in Fig. 1. But the dependence of
force P(g) (Fig.5) is nonlinear right away, because here we deal with geometric
nonlinearity. Quantitative differences are observable at large values of ¢.
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Fig. 5 Numerical results: (a) angle of reaction inclination; (b) force moving apart pulleys. Here
dashed line depicts the full contact, and solid line depicts the point contact

6 Conclusion

We formulated and solved two contact problems for plane rods for modelling the
process of fitting of the belt on the pulleys. Difficulties of solving the nonlinear
BVP of tenth and fifth order were overcome by means of computer mathematics.
We considered two formulations: the point contact and the full contact, the latter
being the preferable one. The strains in both formulations nearly coincide, but the
reactions of the pulleys are different. We determined the forms of belt, the stress
states, the contact pressure with its localization. The developed method allows us
performing multivariant calculations easily.

Acknowledgements This research is carried out in the framework of the joint project of the
Russian Foundation for Basic Research (grant No. 14-51-15001) and the Austrian Science Fund
(FWE, grant No. 12093 International Project).
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Control over Internet of Oscillations
for Group of Pendulums

Mikhail S. Ananyevskiy and Alexander L. Fradkov

Abstract The problem of control for group of pendulums is considered. Control
goal is the synchronization of several remote pendulums over Internet. Some
theoretical approach is presented. It is based on some experiments about statistic
data of delays for control over Internet. Simulation results for several pendulums
are presented. Experiments “in hardware” results are also presented (hardware—
pendulums, constructed with Lego Mindstorms NXT, software—cloud mechatronic
laboratory, http://cmlaboratory.com).

1 Introduction

Global network gives the opportunity for global interconnection and global control
of mechatronic systems. But control over network has some difficulties—the exis-
tence of non-stationary delays in digital channel. According to OSI classification
(Open System Interconnection, ISO/IEC 7498-1) there are seven abstraction layers
of interconnection: physical, data link, network, transport, session, presentation and
application. Common models of digital channel used for research of control over
network correspond to the second layer—data link, this is not good. To describe
control over Internet model of network layer or transport layer should be used.
Today there are no such model of delays good for theory of feedback control.
There are some papers about control of mechatronic systems over special
kind of network—Internet [1-6]. In paper [7] several experiments for control
of teleoperators over different types of communication channels are presented:
commercial Internet, wireless LAN, and Ethernet LAN, the feedback was based on a
video-signal from different applications (iChat/Skype, HaiVision, Hai1000, Hai200,
etc.). The problem of stabilizing inverted pendulum over local net was studied in [8].
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In this paper the problem of synchronization for group of pendulums on cart
over Internet is investigated. Control goal is to force the in-phase synchronization.
Plan of the paper is following: first the property of digital network channels is
studied, then some theoretical approach is developed, after some simulation with
Matlab Simulink Desktop RealTime Toolbox is presented and final the results of
experiment “in-hardware” with pendulums constructed of Lego Mindstorms NXT
and with software of Cloud mechatronic laboratory (http://cmlaboratory.com) are
presented.

2 Digital Network Channel

Delays in network interconnection depends on: topology of network (could change
in time), hardware of network (routers, switches, bridges, etc.), software of network
(algorithms for network packets transmission, routing, network balance algorithms,
etc.), network load (including reflected, dos, ddos, etc.), hardware and software
of receiver and transmitter block (computer), receiver and transmitter block load
(computer), protocol for network interconnection (tcp/ip, udp/ip, etc.) and so on.

To understand the influence of delays on control quality some statistics for
several network channels was collected: for local net, for wireless LAN, for Internet
between USA and Russia. Each control pulse forms a packet which is sent over
net, the difference between send time and received time is the delay (of course
clocks on transmitter and receiver computers should be synchronized). The results
are presented in Figs. 1, 2, and 3.

1 L L 1 1
o 0.005 om 0015 0.02 0.025 003 0035 0.04 0.045 005
ms

Fig. 1 Histogram of delays (local network)
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packets

L 1 ] L 1
0 002 004 005 008 0.1 012 014 016 018 0.2
ms

packets

0
0 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16 0.18 02
ms

Fig. 2 Histogram of delays for wireless LAN: on top—free wireless LAN, on bottom—Iload
wireless LAN

Distribution of delays is not normal, it is not corresponding to some standard
distributions. It has large spread, localization in several intervals, and usually a little
number of huge delays. For control of systems with fast oscillations (period “near”
1's) such delays could make a problem.
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Fig. 3 Histogram of delays for Internet between USA and Russia

3 Theoretical Approach

Consider a group of remote systems “pendulum on cart” interconnected over the
network digital channel. The control goal is to synchronize all pendulums.

With some idealistic assumptions (the mass of cart is greater than the mass of
pendulum, system has no friction) one can write the following simplified equation:

ml$y (1) + mglsin ¢y (t) = —ur(H)ml cos ¢y (), k=1,...,K, (1)

where m—pendulum mass (equal for all pendulums), I—pendulum length (equal
for all pendulums), g—free fall acceleration, u;(f)—control for kth pendulum (kth
pendulum cart acceleration).

The master—slave approach is used. First pendulum is marked as “master”, all
other are marked as “slaves”. For synchronization the star topology is used: each
slave system is synchronized to master independently.

Master pendulum is excited by speed-gradient method [9]:

ur(t)y = —=I'V,, Z (E(¢1(1), $1(D) — Ex) 2
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here E.—goal value for energy, I" > O—parameter. After some calculations the
following control algorithm for master slave system is obtained:

w1 () = =y (E($1(1), 1(1) — Ex) cos(¢1(1) i (1), 3

here y > O0—parameter.
For slave system synchronization a PD-regulator is used:

u(tet1) = i (P1(tn) — ic(tn)) + Bi(1(ta) — Pultn)). k=2,... K, “4)

where parameters oy and Sy are obtained by modified Fridman’s method.

For pendulum with mass m = 1kg and length [ = 0.25m, it was analytically
proved in [10] that PD-regulator with parameters « = 17.7, 8 = 3.875
synchronized slave system to master if delays are lower than 0.099s.

4 Simulation Results

For computer simulation the Matlab Simulink Desktop RealTime Toolbox was used.
Three computers were connected over local network. First computer simulated
the master pendulum system, second—the slave pendulum system, and third—the
regulator. Pendulum parameters were mass m = 1 kg, length / = 0.25 m, simulation
time was 20s, regulator parameters were: @« = 17.7, § = 3.875. Protocol for
network interconnection was UDP/IP. Sample time for UDP receiver was 0.01 s,
so delays were greater than 0.01s. In Fig.4 results of simulation are presented.
Pendulums were synchronized.

-6

-8 1 t I t 1 I 1
0 2 & 6 8 10 12 14 16 18 20

Offset=0

Fig. 4 Computer simulation for master—slave synchronization of two pendulums over the local
network. Dot line—master system, solid line—slave system
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5 Experiments Results

For experiment “in-hardware” two similar pendulums on cart were constructed with
Lego Mindstorms NXT (see Fig.5). Actuator is cart motor, sensor is pendulum
angular. This is very non-ideal system, the differences between these (similar)
pendulums are demonstrated by free oscillations in Fig. 6. Histogram of delays is
presented in Fig. 8. Plot of angular dynamics for pendulums is in Fig. 7. Data from
angular sensor was received quite rarely one or two times per period (hardware lim-
itation). Therefore the plot demonstrates that synchronization sometimes achieved
(Fig. 8).

Fig. 5 Two similar pendulums on cart constructed with Lego Mindstorms NXT
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fi 0 w MWWV\MJWNWVV\W
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Fig. 6 Free oscillations of pendulums. Both pendulums were moved to horizontal position
(angular = 7) and were dropped: periods are equal, but friction is quite different

100

| T—— T

angle, deg
o

-100

0
i time, sec g0 100

Fig. 7 Synchronization of pendulums
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Fig. 8 Histogram of delays for control over network

6 Conclusions

The problem of control of synchronization over network for group of pendulums
on cart was studied. Some statistics about delays for control over several types
of network were collected. Master—slave approach for group synchronization was
considered. Master pendulum was excited by speed-gradient method, each slave
pendulum was synchronized to master by a PD-regulator. Simulations results
demonstrated synchronization. Experiment “in-hardware” also demonstrated some
synchronization (not clearly and sometimes synchronization broke).
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Effect of the Load Modelling Strategy
on the Dynamic Response Prediction of Bridges
Subjected to High-Speed Trains

Christoph Adam and Patrick Salcher

Abstract The paper evaluates the effect of various modelling strategies for the
bridge—train interaction system on the prediction of the dynamic bridge response.
Trains crossing the bridge with constant high-speed are described either by a
series of moving single forces representing their static axle loads or by a planar
mass-spring-damper multi-body system. The outcomes of the latter model serve as
reference solution because vehicle-bridge interaction (VBI) is explicitly considered.
In an application problem the vertical bridge peak response is derived based
on models of different degree of sophistication. From the outcomes it can be
concluded that the impact of high-speed trains on a bridge by means of single
forces (representing the static train axle loads) provides accurate results if bridge
damping is increased and additional dynamic distributed mass is added to the bridge
to account indirectly for VBI effects.

1 Introduction

The assessment of the serviceability and load-bearing capacity of railway bridges
is usually based on the outcomes of static structural analysis amplified by a
dynamic amplification factor. The demands of bridges along railway lines for
high-speed trains are, however, higher than for bridges crossed by trains with
moderate speeds, because they may be excited to a state of resonance during
the train passage, amplifying dynamically deformations and stresses. Resonance
occurs if the frequency (or its multiple) of the repetitive arrival of the train wheels
corresponds to a natural frequency of the bridge structure. Sway forces of the
train vehicles originating from track irregularities and wheel hunting moments
may also induce resonance. Consequently, dynamic structural analysis is required
to predict the response realistically. Since train and bridge represents a complex
interacting system, its local and global dynamic behaviour can only be captured
by a sophisticated structural model. With increasing model complexity, however,
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computations in the design process of structures become inaccessible for many
engineers in practice. Furthermore, the most sophisticated structural model may be
computationally too expensive for certain investigations, where also a lesser level of
detail would be appropriate. Simplified approaches of analysis reduce the modelling
effort, and they require less parameters, which are usually readily available. These
models can be built by engineers with less specialized experience, and response
predictions are available within a narrow time frame since the computational cost is
much lower compared to numerical analysis based on a complex model.

In the comprehensive text book of [12] various modelling strategies are
described, discretizing the bridge by means of simple beam models or detailed
two- and three-dimensional finite element models, which comprise structure, rails,
sleepers, and ballast. The more complex models even may capture rail irregularities.
The passing train may be modelled by moving single forces representing the static
axle loads of the train, or more realistically, by a complex mass-spring-damper
(MSD) multi-body system. While in the first approach interaction between the
subsystems bridge and train cannot be explicitly considered, in the second approach
coupling between the subsystems (and, thus, interaction) is achieved through
different assumptions discussed in the literature, see, e.g., [9]. Liu et al. [5] have
evaluated both approaches comparing the outcomes based on the single force model
and discrete MSD systems of various levels of detail. The authors of these and many
other studies come to the common conclusion that the modelling strategy and the
underlying simplifications affect the accuracy of the response prediction of bridge
and/or train. However, as outlined in [5], it has still not been completely revealed
under which condition a simple moving single force model predicts sufficiently
accurate the bridge response or a more complex dynamic interaction model should
be utilized.

The present paper aims at contributing to the discussion how certain degrees
of simplifications of the train model affect the prediction of the dynamic bridge
response. Some of the results discussed here have been presented at the Vienna
Congress on Recent Advances in Earthquake Engineering and Structural Dynamics,
see [10]. For further details it is referred to [9].

2 Assessment of Various Load Modelling Strategies

Based on the following example problem the effect of load model simplifications
and vehicle-bridge interaction (VBI) on the dynamic bridge response prediction
is investigated. The considered bridge is a simply supported beam-like steel
structure carrying a single rail-track. For the purpose of this study the bridge is
modelled as Euler—Bernoulli beam with span L = 22.0 m, bending stiffness EI =
3.94 x 10" Nm?, and mass per unit length pA = 9660kg/m (i.e. the total mass of
this structure pAL is 212.520kg), see Fig. 1a. The fundamental natural frequency f,
of this beam is 6.55 Hz. For steel bridges, [3] proposes a modal damping coefficient
of { = 0.5%. According to this standard for bridges with span L less than 30 m
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Fig. 1 (a) Beam representation of a simply supported bridge travelled by single forces represent-
ing the crossing train. (b) Planar mass-spring-damper model of one car of the Railjet train

modal damping can be increased to consider the response reduction effect of VBI.
For the considered bridge ¢ can be increased by A = 0.17 % [3]. It is assumed
that crossing of a Railjet train [7] consisting of a power car and seven identical
passenger cars excites the bridge to vibrations. For this study the five subsequently
defined modelling approaches of this train—bridge interacting system are evaluated
comparing the dynamic response predictions derived by these models.

1. Mass-spring-damper model. The two-dimensional ten-degrees-of-freedom
(10 DOF) MSD system per car of the Railjet train depicted in Fig. 1b, composed
of rigid bodies connected through springs and dashpot dampers, is utilized.
Coupling of the bridge (Fig. 1a) and train (Fig. 1b) subsystem is achieved through
the so-called corresponding assumption. For details of this model see [9]. Mass,
mass moments of inertia, and damping parameters of the model components are
listed in [6, 9]. Because in this approach VBI is directly considered, to the Euler—
Bernoulli beam the modal damping coefficients for steel bridges, { = 0.5 %, are
assigned.

2. Single force model: SF. Each single force represents the corresponding static axle
loads of the Railjet train, as shown in Fig. 1b. Magnitudes of the single forces
and load spacing are provided in [7]. To the Euler—Bernoulli beam the modal
damping coefficients for steel bridges, { = 0.5 %, according to [3] are assigned.

3. Single force model: SF+A¢. Modal bridge damping coefficients ¢ are increased
by A¢ = 0.17 % according to [3] to account for VBI effects.
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4. Single force model: SF+A¢+ApA. Increased bridge damping ¢ + AZ. The fotal
train mass is uniformly smeared, ApA = 2684 kg/m, and added to the distributed
mass pA of the beam bridge model to account for the coupled train mass as
proposed in [7].

5. Single force model: SF+A{+ApAy. Increased bridge damping A¢. The mass of
all wheel axles of the train is uniformly smeared, ApAw = 317 kg/m, and added
to the distributed mass pA of the beam bridge model.

The numerical analysis of the beam deflection and beam acceleration is based
on a modal expansion of the Euler—Bernoulli beam considering the first five modes.
For the single force model the details of the procedure of analysis are found, for
instance, in [1]. The substructure approach used here to account for full train—bridge
interaction based on the planar MSD train model is described in [11].

In Fig. 2 for these five model representations the peak acceleration max |w| and
the dynamic deflection amplification factor S,, of the bridge are plotted against
the train speed v in the range from 10 to 85 m/s. Herein, S,, is the dynamic peak
deflection of the beam (at any location along the span) related to corresponding
static deflection. The black lines correspond to the responses based on the MSD

domain of vehicle
parameter study

(&)

10 20 30 40 50 60 70 80
v [m/s]

Fig. 2 Dynamic peak bridge response prediction based on different modelling as function of the
train speed v. (a) Peak acceleration (modified from [10]). (b) Dynamic deflection amplification
factor
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train interaction model, which serves as reference solutions, because it assumingly
delivers the most realistic outcomes. The results based on the plain single force load
model (SF) are shown in blue. The grey lines refer to the response predictions of the
beam with increased damping subjected to the single force model (SF+A¢). The red
lines represent the peak response of the bridge model with increased damping and
added smeared train mass (SF+A¢+ApA) and added wheel axle mass (AL+ApAy),
respectively, loaded by the single force load model. The peak acceleration response
shown in Fig. 2a by the black line shows that compared to the MSD model the SF
model overestimates the peak acceleration in the almost entire speed range, and thus,
confirms that it leads to quite conservative response prediction. At critical speeds,
i.e., speeds where the bridge is excited to a state of resonance, and thus, the response
exhibits a local maximum, this overestimation can exceed 100 % compared to the
MSD reference solution, in particular at lower speeds. This is not only a result of
neglecting the response reduction effect of VBI but can also led back to the shift of
the resonance domains to higher speeds. Exemplarily, in Table 1 for the different
models the predictions of the two resonance speeds Vf4) and V;l) = Vf) are
specified, which are also shown in Fig. 2a by vertical lines. Note that the definition
of the critical speeds Vi(j ) can be found, for instance, in [12]. Inspection of the results
reveals that models SF and SF+AZ, where only the bridge mass is taken into account
and the train mass is completely disregarded, overestimate the critical speed V{4) by

1.4 % and Vél) = 54) by 1.5% compared to the MSD interaction model. This
may become critical if the analysis based on such a simplified modelling approach
predicts a critical response peak beyond the considered speed range, although it
is in reality within the operational speed limits. If bridge damping is increased
according to [3] to account for VBI effects, the peak accelerations are closer to the
results of the MSD train interaction model, but they are in general still conservative.
Adding the mean smeared train mass to the bridge mass (model SF+A{+ApA)
leads to a considerably different peak acceleration predictions in the entire speed
range compared to the MSD reference solution. According to Table 1 this modelling
approach underestimates the critical speeds by more than 10 %. As a consequence,
also the corresponding peak accelerations are in general too small. The difference
to the more accurate MSD model response prediction cannot be accepted, and thus,
this modelling approach should be applied for short bridges with great care only [7].

Table 1 Resonance speeds based on different train load representations

Resonance speed Vf4) Resonance speed VQ(I)
Load model V}4) (m/s) Difference (%) VQ(I) (m/s) Difference (%)
MSD (reference) 42.8 - 68.7 -
SF 43.4 +1.4 69.7 +1.5
SF+A¢ 43.4 +1.4 69.7 +1.5
SF+AL+ApA 38.4 —10.3 61.7 —10.2

SF+AC+ApAy 4238 0.0 68.7 0.0
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Furthermore, adding the total train mass (which is more than 25 % of the beam mass)
to the beam mass reduces the fundamental frequency ﬁg(Ap Y 105.80 Hz, compared to
f¢ = 6.55Hz of the beam bridge. On the other hand, if only the wheel axle mass is
distributed uniformly along the bridge with increased damping (model Al+ApAy),
resonance speeds and peak accelerations are close to the reference solution of the
MSD model, compare with Table 1 and Fig. 2a. The fundamental frequencyf;Ap Aw)
of this model is 6.45 Hz, which is about 1.5 % less than the corresponding outcome
of the beam bridge. In contrast to the peak acceleration, the dynamic deflection
amplification factor S,, depicted in Fig.2b is smoother with respect to speed v,
indicating that higher modes contribute only minor to the bridge peak deflection. It
is also observed that all models except the smeared train mass model SF+A{+ApA
deliver a similar prediction of the peak deflection, and the differences are not
significant. Model SF+A{+ApA is not appropriate because the resonance speeds
are considerably underestimated, as discussed before.

3 Parameter Variation in Mass-Spring-Damper Vehicle
Model

Assuming that the MSD vehicle model results in the most accurate response predic-
tion, the previous example shows the importance of considering VBI, in particular
when predicting the acceleration response. Adding the distributed train mass to
the bridge mass overestimates the effect of the train mass on the bridge, because
common high-speed trains are in general designed to provide a high passenger riding
comfort. A high passenger riding comfort is achieved if the passenger stage of the
train cars is dynamically decoupled from the track (and bridge). Consequently, in
real trains the natural frequencies of the passenger stage are well separated from the
bogies and the bridge. As discussed in [5], the equivalent single-degree-of-freedom
(SDOF) models shown in Fig.3 can be used to estimate the fundamental natural
frequencies of car components. The SDOF systems modelling vertical vibrations of
the bogie, z», (Fig. 3a) and of the passenger stage (car body), z3, (Fig. 3b) exhibit the

(a) (b)
. a

ky

1 = e

Fig. 3 Simple SDOF systems used to estimate the natural frequency of bogie and passenger stage.
(a) Bogie frequency model. (b) Passenger stage frequency model
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Table 2 Comparison of vehicle model parameters and bogie and passenger stage frequencies
of selected European high-speed trains

Parameter Unit Railjet [6,7] ETR500Y [2] Thalys [4] Eurostar [4] ICE-2 [2]

m kg 51,000 34,231 40,900 37,300 30,000
"> kg 2300 2760 4200 5000 2500
k 10°N/m  320.0 180.5 24500  910.0 1800.0
ks 10°N/m  1600.0 808.7 2090.0  2200.0 720.0
Toody Hz 0.54 0.49 1.38 1.01 1.16
Foogie Hz 6.23 4.06 6.32 5.19 5.73

following natural frequencies [5]:

1 2k + ky 1 2
Foogie = 2 m, Fooay = 2 1 1 M
2 (kz + ) nmy

where m; denotes the bogie mass and m, the mass of the passenger stage. The
linear spring stiffness coefficients k; and k, model the stiffness of the primary and
secondary suspension system, compare with Table 2. In Table 2 estimates for the
bogie and car body frequencies evaluated according to Eq. (1) are listed for five
different European high-speed trains. Primary and secondary suspension stiffness,
and bogie and passenger stage mass of these trains have been extracted from studies
specified in Table 2. It is readily observed that for all trains the car body frequency
Joody 18 below the lowest estimates of the frequency for high-speed railway bridges
according to [3]. In all cases fyoqy is well separated from the bogie frequency foogie-
For the example bridge problem discussed before, the bogie frequency of the Railjet
train is less than the bridge fundamental frequency. Thus, only the wheels, which
are in permanent contact with the bridge as defined in the corresponding assumption
for bridge-MSD interaction, contribute to the dynamic active mass of the bridge
model. Consequently, modelling approach SF+A{+ApAy yields the most accurate
response prediction of all non-interacting single force models. However, it should
be noted that for other train—bridge systems this simplified approach of adding the
wheel mass may be insufficient.

An MSD vehicle model requires many more parameters than a single force train
representation, which are, however, not always readily available for each operating
train or they may be inaccurate. Furthermore, depending on the train type these
parameters such as mass, mass moments of inertia, spring and dashpot coefficients
of the various vehicle parts vary in a large range, as indicated by Liu et al. [5]
and Kouroussis et al. [4], see also Table 2. These parameters have a large impact
on the vehicle response. Parametric studies such as [5] have shown that under
certain circumstances also the bridge response might be sensitive to variations of
parameters such as stiffness, damping, and mass of the train model.
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Fig. 4 Influence of (a) vehicle stiffness, (b) vehicle damping, and (c¢) vehicle mass moments of
inertia on the acceleration response. The black line corresponds to the reference response with
o = o = oy = 1.0. Modified from [10]

Subsequently, based on the planar MSD vehicle modelling approach the sen-
sitivity of the response of the considered example bridge to vehicle parameter
variation is analysed, inspecting its effect on the maximum acceleration around
the resonance peak at Vél) in the speed range v = 65.0-72.0m/s. In Fig.2a the
considered response domain is framed. In a first study the stiffness coefficients of all
springs are varied simultaneously, multiplying each of these coefficients by the non-
dimensional stiffness variation factor o ranging from 0.01 to 100. In two additional
studies the effect of damping and mass moments of inertia variation is assessed
separately, utilizing the damping and mass moment of inertia variation coefficients
o, and o;.

In Fig.4 the peak acceleration is plotted against the corresponding variation
factor oy, o, o, respectively, in the considered range of the train speed. Black lines
represent the reference solution for oy = o, = «; = 1.0, also shown in Fig.2a.
The impact of spring stiffness variation is visualized in Fig. 4a. In the parameter
range of oy between 0.01 and 5 the peak response is almost constant with respect
to o. In this range the vehicle components above the axles are basically decoupled
from the bridge, and only the wheel and axle masses interact with the structure.
Thus, the single force model where the wheel axle mass is added to the beam
mass delivers the previously discussed accurate response approximation. A major
influence on the response is observed when increasing the stiffness by a factor of
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ax = 10. In this parameter domain the peak acceleration exhibits a minimum due
to a strong interaction of train and bridge. A further increase of stiffness decreases
the interaction, and hence, the peak response grows again. A similar effect on the
bridge response, however, less pronounced, is observed when varying the initial
damping parameter o, = 1, see Fig.4b. Here, for parameters beyond the global
minimum, i.e., . > 10, very large damping is imposed to the structure, and thus,
no local resonance peak can be observed. A variation of the mass moments of inertia
of this vehicle model, as depicted in Fig.4c, has only a minor impact on the peak
acceleration response of this example bridge. This result confirms that considering
the pitching effect of the vehicle is not of particular importance for an accurate
bridge response prediction, and more simple interaction models can also be used,
such as proposed in [5, 8].

4 Summary and Concluding Remarks

From the outcomes of this study it can be concluded that models describing the
impact of high-speed trains on a bridge by means of single forces (representing the
static train axle loads) are very capable of providing accurate results, in particular,
if bridge damping is increased and additional dynamic distributed mass is added
to the bridge to account indirectly for VBI effects. It has been shown that for
the discussed application problem the added mass should correspond to the wheel
axle mass instead of the total train mass. Single force models are versatile because
different train types can be considered without changing the modelling strategy. In
contrast, deriving a more sophisticated MSD vehicle model, whose parameters are
often unknown, makes this train modelling approach cumbersome for applications
in engineering practice, in particular, because different types of trains must be
considered. For conventional, regular, and articulated trains different MSD vehicle
models are needed, and for each train the suspension system may be different with
respect to component parameters, geometry, and composition. A main advantage of
MSD train models is that train—bridge interaction is explicitly taken into account,
and thus, rail irregularities can be captured. Furthermore, simultaneously the vehicle
response is provided.
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Mechanical Properties of Epoxy Resins Filled
with Nano-Silica Particles
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Masahiro Higuchi, and Zoltan Major

Abstract In this research, the mechanical properties of epoxy composite filled
with nano-silica particles with different crosslinking densities were experimentally
studied to clarify the interaction effects between nano-particles and the network
structure in matrix resins. The composite materials were prepared by adding 240-
nm silica particles to the bisphenol A diglycidyl ether with a volume fraction of 0.2.
The bending elastic moduli of the composites were dependent on only the volume
fraction of the particles regardless of the particle size and network structures. Filling
the nano-silica particles was clarified to improve the bending strength and fracture
toughness of the composites with a fine network structure. However the particles
acted as defects, reducing the mechanical properties of composites with rough
network structures.
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1 Introduction

Epoxy composites filled with silica particles are widely applied to various engineer-
ing fields, especially the packaging material of electrical devices, etc., because of
excellent mechanical, insulation properties, etc. Generally composite is believed to
be reinforced by filling particles, fibers, etc., to improve properties. By decreasing
the size of the filling particles, namely nanocomposites, properties are expected to
be improved more.

The mechanical properties of nanocomposites have been investigated in several
previous studies. Particularly the effects of the particle size and volume fraction
of the particles on the properties were considered to clarify the mechanism of
property improvement. The mechanical properties of composites strongly depend
on the network structure and shape of the silica particles, as found by Yamamoto
et al. [1], Moloney et al. [2-4], and Adachi et al. [5-7], on the size, shape, and
specific surface of the silica particles, as clarified by Nakamura et al. [§-10], and
also on distributions of particle size obtained by Preghenella et al. [11], Kitey et
al. [12], Butcher et al. [13], and Kwon et al. [14, 15]. In almost all papers, filling
with smaller particles was found to be effective to improve mechanical properties.
Not only the size of the particles but also the internal structure in the matrix
resin, namely the interaction between the particles and the internal structure in
the matrix resin should be investigated to improve the mechanical properties of
the composites. To consider the interaction effect on the mechanical properties of
epoxy composites filled with nano-silica particles, we utilized non-stoichiometric
curing of the epoxy matrix resins to vary not the size of the silica particles but the
network structure of the matrix epoxy resins. The concept of the non-stoichiometric
curing is illustrated schematically in Fig. 1 to consider the interaction. Because the
curing is conducted under the stoichiometric condition, the network structure in the
epoxy matrix resin is fine. The network structure after non-stoichiometric curing is
rough in comparison with the structure after the stoichiometric curing. Therefore,
the interaction between the particles and the internal structure can be studied by
manufacturing epoxy composites with different network structures. By using this
concept, we have reported and discussed the dynamic compression behavior [16],
elastic modulus, strength [17], and fracture toughness [18] of the epoxy composites
with different network structure in the matrix resins. This paper summarized these
results.
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2 Materials

The specimen materials were epoxy resin filled with spherical silica particles.
The epoxy resin was cured after mixing bisphenol A diglycidyl ether (DGEBA)
(Asahi Kasei E-Materials, AER 2603) with methyl tetrahydrophthalic anhydride
(New Japan Chemical, Rikacid MH-700) as the curing agent, 2,4,6-tris (dimethyl
aminomethyl) phenol (Mitsubishi Chemical, jER BMI12) as the accelerator, and
the particles. The equivalent weight of the DGEBA was 188 g/equivalent, and the
acid anhydride equivalent weight of the curing agent was 162 g/equivalent. The
weight ratio of the resin, the agent, and the accelerator was 100:86:0.5 according
to stoichiometry.

The filler was silica particles with a median diameter of 240 nm (Tatsumori, SO-
C1). The surfaces of the particles were not chemically coated to avoid agglomeration
of the particles in the matrix during mixture before curing. The volume fraction of
the silica particles was constantly 0.2 for every composite.

The mixture ratio of the DGEBA to the curing agent was varied to manufac-
ture the composites and neat epoxy resins with different crosslinking densities.
The mixture ratio of the epoxy resin to the curing agent was defined as the
epoxy-equivalent-weight ratio (EEWR) expressed by the DGEBA weight over the
stoichiometric DGEBA weight in the mixture. The EEWRSs were prepared in a range
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Table 1 Specimen materials

Epoxy resin (weight ratio) Volume fraction
Material DGEBA Current agent Accelerator EEWR of particles
Composite 100 86 0.5 1.0 0.2

160 86 0.5 1.6 0.2

200 86 0.5 2.0 0.2

240 86 0.5 2.4 0.2

280 86 0.5 2.8 0.2

320 86 0.5 32 0.2
Neat epoxy 100 86 0.5 1.0 0.2

160 86 0.5 1.6 0.2

200 86 0.5 2.0 0.2

240 86 0.5 2.4 0.2

280 86 0.5 2.8 0.2

320 86 0.5 3.0 0.2

EEWR epoxy-equivalent-weight ratio
EEWR=1.0: stoichiometric curing. EEWR%1.0: non-stoichiometric curing

from 1.0 to 3.2, and the accelerator was kept constant at 0.5, as listed in Table 1.
The composite and neat epoxy resin with the EEWR=1.0 had complete network
structures, and the ones with the EEWR>1.0 had incomplete, namely rough network
structures. The composites and neat epoxy resins with the EEWRs>3.2 were not
produced because the materials were too weak to measure viscoelastic properties.
The composites and neat epoxy resins with EEWRs<1.0 because unreacted curing
agents could be transferred from the cured resins.

The silica particles were blended with the epoxy resin containing the curing agent
and accelerator until all particles dispersed without agglomeration. The mixture
was cured in an aluminum mold coated with a teflon sheet after degassing. The
curing process was two steps of pre-curing, where the mixture was kept at 373 K for
2 h to gel the matrix resin, and post-curing, which greatly affected the crosslinking
reaction of the resin. The post-curing was performed at 403 K for 15h.

The thermo-viscoelastic properties of the composites and neat epoxy resins
were measured with a dynamic viscoelastometer (UBM, Rheogel-E4000) using a
non-resonance tensile mode with a frequency of 10Hz. The measurements were
conducted at 1 K intervals ranging from 223 to 493 K to characterize glass transition
temperatures and crosslinking densities. The glass transition temperatures, T, were
determined at peaks of the maximum tan§ of their loss moduli. The crosslinking
density, n, of the matrix resins was calculated from the dynamic storage moduli,
E’, in a rubbery state: T, + 30 to T, + 50K of the neat epoxy resins according to
[19, 20],

E = 3nRT, (1)
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Fig. 2 Characterizations of specimen materials. (a) Glass transition temperature. (b) Crosslinking
density of epoxy matrix resin

where R and T are the gas constant (= 8.3145J/(molK)) and the absolute
temperature.

The characterized results are shown in Fig.2. The glass transition temperature
decreased as the EEWR increased, namely far from stoichiometric curing. The
glass transition temperature of the composites was lower than the one of the neat
epoxy resins regardless of the EEWR because of the interaction between the nano-
particles and the network structure in the matrix resins. The composites with the
epoxy matrix resins having different network structures could be prepared because
the crosslinking density of the matrix resin was found to decrease as the EEWR
increased.

3 Experimental Procedure

Three-point bending tests were conducted at room temperature in accordance with
ASTM standard D790-07 to measure the bending elastic moduli and the bending
strengths. The specimens were 100 mm long, 15 mm wide, and 5 mm thick. The span
length between the supports was 60 mm. The constant deflection rate was 50 pm/s
at the loading point by using a universal materials testing machine (Shimad-zu,
AGS-J). Because every measured load-deflection curve was approximately linear
until breaking, the bending elastic modulus, Ep, and bending strength, op, of each
specimen were determined using the following equations:

L’m 3Pl

E = ,O- - k]
B awps "8 T awme

2
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where m, Py, W, B, and L are the slope of the initial linear portion of the load-
deflection curve, maximum load, width, thickness, and span length of the specimens,
respectively.

Single-edge-notched bending tests were carried out at room temperature to
measure the mode I fracture toughness according to ASTM standard D5045-99. The
specimens were 100 mm long, 20 mm high, and 5 mm wide. The length of pre-crack
at the middle point of the specimen and span length between the supports were
10 and 60 mm, respectively. The constant deflection rate at the loading point was
50 pwm/s by using the universal materials testing machine. Because every measured
load-deflection curve was linear until fracture, the linear fracture mechanics could
be applied to evaluate the fracture toughness of each material. Namely, the critical
stress intensity factor, Kjc, could be calculated as fracture toughness by using the
following equation:

Kic

)

3

where Pnax, B, L, W, and a correspond to the maximum load, width, span length,
height, and pre-crack length of the specimens.

3 Pualya | 1.99—a(1—a){2.15-3.93 (« + 2.7¢%)} _a
2 WB2 (1+20) (1—a)*? T w

4 Results

Figure 3 shows the mechanical properties of the neat epoxy resins and composites.
In this figure, the triangles and inverted triangles are the averages of the composites
and the neat epoxy resins calculated from more than five experimental results. The
error bars indicate the standard deviations of the experiment data, and the solid lines
in Fig. 3b, ¢ shows the fitting curves.

The bending elastic moduli of both materials were compared in Fig.3a. The
moduli increased in the neat epoxy resins slightly as the crosslinking densities of
the resins decreased. The measured moduli of the composites were in agreement
with the solid line in this figure evaluated using the mixture law of Lewis and
Nielsen [21] with the measured results of the neat epoxy resins. Because the law
was calculated only with the volume fraction of the particle and the elastic moduli
of the particle and the matrix, the elastic moduli of the epoxy composites was found
to be independent of the network structure in the matrix resins.

Figure 3b shows the bending strengths of both materials. The strength of the
composites with high crosslinking densities above approximate 2000 mol/m* was a
little larger than that of the neat epoxy resin with the same crosslinking density.
In contrast, the strengths of the composites with the crosslinking density below
2000 mol/m?* were much smaller.

Figure 3c shows the fracture toughness of each material. Similar to the results
of the strength, the fracture toughness of the composites with high crosslinking
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density above approximate 2000 mol/m? was much larger than that of the neat epoxy
resins with the same crosslinking densities, In contrast, the fracture toughness of the
composites with the crosslinking density below 2000 mol/m? decreased rapidly.

The results of the bending strength and fracture toughness mean that the matrix
resin was not always reinforced by the particles and that the particles in the matrix
resin with low crosslinking density acted as defects in these properties.

5 Discussion

The properties were normalized using the following parameter to clarify the
reinforcement effect of filling the particles on the mechanical properties:

fN _ fComp _proxy
or —

. “)

f Epoxy

where f is the mechanical properties of the bending elastic modulus, bending
strength, and fracture toughness. Its subscripts of Nor, Comp, and Epoxy denote
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the normalized mechanical property and the properties of the composites and
neat epoxy resins, respectively. The positive fyor means that filling the particles
reinforced the epoxy matrix.

The normalized mechanical properties are shown in Fig. 4. The normalized elas-
tic modulus in Fig. 4a was roughly constant regardless of the crosslinking density of
the matrix resin. The normalized bending strength was positive above the crosslink-
ing density of 2000 mol/m>. Below the crosslinking density of 2000 mol/m?, which
is the composites with rough network structures in the matrix resins, the particles
were found clearly to be defects, reducing the bending strength and fracture
toughness. We found that the particles reinforced the resins with crosslinking
densities higher than 2000 mol/m? to improve the strength and fracture toughness
of the composites.

The crosslinking density where the normalized fracture toughness was zero was
the same as the one where the normalized bending strength was zero. This result
suggests that the interaction between the particles and the network structure in
the matrix resin affected the fracture toughness and also the strength, although the
fracture toughness was more sensitive to the interaction.
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6 Conclusion

The mechanical properties of epoxy composites filled with nano-silica particles with
different crosslinking densities were experimentally studied to clarify the interactive
effects between nano-particles and the network structure in matrix resins. The epoxy
composite materials filled with the silica particles of 240nm in diameter were
prepared by curing non-stoichiometrically to change the crosslinking densities of
the matrix resins. The bending elastic moduli of the composites were found to be
dependent on only the volume fraction of the particles regardless of the particle
size and network structures. The nano-silica particles were clarified to improve the
bending strength and the fracture toughness of the composites with the fine network
structure above a crosslinking density of 2000 mol/m?, although the particles acted
as defects, reducing the mechanical properties of the composites with rough network
structures below 2000 mol/m>. The interaction between the nano-particles and the
network structure in the matrix resin improved the fracture toughness rather than the
bending strength. Therefore, the particles size or the network structure in the matrix
resin must be optimized to improve the mechanical properties of the composites
taking into account the interaction.
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