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Foreword

This book is dedicated to Prof. Selim G. Akl to honor
his major research achievements in computer science
over four decades. In this way his colleagues, stu-
dents, and friends wish to express their gratitude to
this great scientist.

Dr. Akl completed his Ph.D. at McGill University
in 1978. He has been a faculty member in the Queen’s
School of Computing (formerly Department of
Computing and Information Science) since 1978. Dr.
Akl serves as Director of the Queen’s School of
Computing since July 2007. He has held visiting
positions at the University of California Berkeley,
Simon Fraser University, the University of Puerto
Rico, Clarkson University, and Kent State University.

He was an SRI International Fellow at the Stanford Research Institute, in Menlo
Park, California, and an NSERC Senior Industrial Research Fellow at MacDonald
Dettwiler and Associates, in Richmond British Columbia. In 1990, he held the
Louis Néel Chair at the École Normale Supérieure de Lyon, France.

Throughout his career, Dr. Akl has made significant contributions in multiple
areas of computer science. He has published 170 journal articles and presented
180 conference papers. Dr. Akl has written four influential monographs on parallel
algorithms and parallel computation that are widely considered as landmarks
in parallel computation research and have been translated to many languages.
As will be discussed below, Dr. Akl’s research has made a strong impact on the
development of each area of computer science he has worked on. Dr. Akl has
collaborated with a large number of scientists and has more than 100 co-authors in
publications in a wide range of areas.

Dr. Akl possesses the enviable skill of making complex ideas and visionary
concepts accessible and engaging, whether they appear in written form or in a
presentation. He is a brilliant scientific communicator. Dr. Akl has given plenary
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lectures at many international conferences and invited talks at universities world-
wide. He has supervised 24 Ph.D. theses and numerous M.Sc. theses. Dr. Akl has
always been very dedicated and supportive to his students and many of his former
students have leading positions in academia and industry.

Dr. Akl has made substantial contributions to the computer science community
through his selfless service. He is the Editor in Chief of Parallel Processing Letters
and has held editorial positions in 10 professional journals. He has served as a
program committee or organizing committee member of 70 computer science
conferences. In 2007, Dr. Akl served as General Chair of the Sixth International
Conference on Unconventional Computation held in Kingston, Ontario. Dr. Akl has
received a number of academic honors for research and teaching, including the
Queen's University Prize for Excellence in Research in 2008 and the Queen's
University Award for Excellence in Graduate Supervision in 2012.

Dr. Akl has made important contributions to many areas of theoretical computer
science. The following sections briefly summarize some of these achievements.

Parallel Computation and Parallel Algorithms

The goal of parallel computation is to reduce the time needed to solve a compu-
tational problem by using several processors that are working simultaneously.
Designing parallel algorithms, i.e., methods for solving problems efficiently on
parallel computers is a nontrivial task, requiring creativity and a way of thinking
completely different from the one used for sequential algorithms.

Dr. Akl was one of the pioneering researchers in this field and, since the early
1980s, he has contributed many efficient parallel algorithms to the literature. These
include algorithms for problems such as selection, sorting, computing convex hulls,
or enumerating combinatorial objects. The algorithms were designed to run on a
wide spectrum of computational models, such as shared memory machines, com-
binational circuits, and interconnection networks. Dr. Akl was among the first to
demonstrate the links between parallel computation and optical computing, and the
importance of parallel algorithms in real-time applications.

In work dealing with the foundations of parallel computing, Dr. Akl was the first
to demonstrate superlinear speedup in the number of processors, i.e., he established
that there exist computational problems that can be solved with n processors more
than n times faster than on a sequential computer. Dr. Akl uncovered three general
computational paradigms within which parallel computation leads to a superlinear
improvement in performance. The results were groundbreaking and could be
viewed even as counter-intuitive.

In 2004, Dr. Akl demonstrated the existence of classes of inherently parallel
problems, that is, classes of problems that can be solved on a parallel computer with
an appropriate number of processors, but not on a sequential computer or even a
parallel computer with fewer processors. Furthermore, Dr. Akl has established the
impossibility of constructing a universal computer that could simulate any other
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computation. This is a significant foundational result with philosophical implica-
tions and, at least initially, it went against much of the commonly held beliefs in
computer science. By questioning common wisdom in parallel computation—
computations with uncertain time restrictions, computations under the influence
of the laws of nature, and computations subject to mathematical constraints—
Dr. Akl has achieved surprising results, with implications that continue to be timely
and important.

Dr. Akl has written four influential monographs that are considered landmarks of
parallel computation research, education, and practice. Each of these books was in
some sense a ‘first’. Before Parallel Sorting Algorithms (Academic Press, 1985)
there existed no book that covered parallel algorithms exclusively. This monograph
became a model for many other books that were published on parallel algorithms in
the years since. Dr. Akl’s second book The Design and Analysis of Parallel
Algorithms (Prentice Hall, 1989) was broader in scope and offered a unified and
rigorous treatment of the different techniques for designing and analyzing algorithms
for parallel computers. The book is considered a classic and has been used exten-
sively worldwide. To this day, the only book offering an in-depth treatment of
parallel algorithms for computational geometry problems is Dr. Akl’s Parallel
Computational Geometry (Prentice Hall, 1993). Finally, Parallel Computation:
Models and Methods (Prentice Hall, 1997) is an encyclopedic volume that presents
the major approaches to designing efficient parallel algorithms as well as the different
parallel computer models on which the algorithms would be executed. The book is
listed on Amazon among the 21 best books on algorithmics, not just parallel algo-
rithms. The creator of the list, Prof. Christoph Kögl from the University of
Kaiserslautern, described the book as “Possibly the best book on parallel algorithms”.

Unconventional Computation and Natural Computation

Unconventional computation investigates the possibility of building computers
unlike any that are currently in use. The models investigated include biomolecular,
chemical, optical and quantum computers, and analog neural networks or cellular
automata, among many others. Often parallelism captures the essence of uncon-
ventional computing and, consequently, Dr. Akl’s transition into unconventional
computation can be viewed as a logical continuation to his extensive work in
parallel computation.

Dr. Akl’s work in unconventional computation has various motivations and
goals. One goal is to understand the natural processes by modeling them as algo-
rithms, e.g., plant respiration as a cellular automaton algorithm or photosynthesis as
a quantum process. Dr. Akl used two-dimensional cellular automata to provide
efficient solutions for computational problems in plant respiration that had remained
open for several years. Another goal is to seek inspiration from nature for com-
putational models such as genetic algorithms, neural networks, or swarm intelli-
gence. A further goal is to use natural laws to perform more efficient computations,
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for example, in biomolecular computing, chemical computing, or quantum com-
puting. Significantly Dr. Akl’s work has uncovered computational problems that
can be performed on a quantum computer but not even in principle on any classical
computer. Furthermore, in considering physical systems as computational models
the work tackles philosophical questions about the definition of computation, that
is, what it means ‘to compute’.

Work in Other Research Areas

In addition to the areas of Parallel Computation and Unconventional Computation,
Dr. Akl has made important contributions in at least four other areas which we
briefly mention here. Selim Akl is a pioneer in the field of Computational Geometry
working in the nascent field while still a Ph.D. student at McGill. Dr. Akl
co-authored several seminal papers among them a very effective and often-cited
heuristic to compute the convex hull of a planar point set. Dr. Akl continued his
exploration of Computational Geometry and published several parallel algorithms
to solve geometric problems. In the area of Design and Analysis of Combinatorial
Algorithms he was the co-editor of the book Algorithms and Data Structures
(Springer 1995) and served on the Editorial Board of the journal Information
Processing Letters (North Holland). Dr. Akl was a pioneer of modern
Cryptography and Data Security, presenting a paper on digital signatures as early
as 1981. Dr. Akl’s elegant and ingenious solution to the problem of controlling
access to information in a hierarchical organization opened up an entire subfield of
research. Over the years many researchers have attempted, without success, to
improve on his solution which remains the state of the art for access control in a
hierarchy. Generalizations to this solution are described in Dr. Akl’s book Adaptive
Cryptographic Access Control (Springer, 2010) and applied to a number of com-
puter security issues, most notably the protection of information in data
warehouses.

Since 2009, Dr. Akl has collaborated with a cardiologist in the area of
Biomedical Computing and Computer Assisted Medicine. The work uses uncon-
ventional algorithmic techniques to analyze electrocardiograms, towards a better
diagnosis and treatment of cardiac arrhythmias. While the clinical work is still in
early stages, the research has produced a substantial number of publications and
two completed Ph.D. degrees supervised by Dr. Akl.

Personal Recollections

The undersigned have had the good fortune to be Selim’s long time colleagues at
the Queen’s School of Computing and we conclude with a few more personal
remarks.
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Selim is truly a Renaissance man. Along with his eclectic research interests
Selim is also actively involved in the creative arts. He has a background in theater
and was a prominent fixture of the Kingston theater scene. Selim founded the
French speaking theater company Les Tréteaux de Kingston, shortly after he arrived
to Kingston, and the company has been continuously active to this day. Currently
Selim’s creative outlet is photography. The expert care and attention to detail found
in his research articles can be seen in his beautiful photographs. Since 2005 his
pictures grace the cover of the monthly magazine Vista.

As a colleague Selim has always been supportive and encouraging. His
unbounded energy and creativity is stimulating to colleagues and students alike.
Selim leads a weekly seminar group that has continued without interruption for
decades. The group includes professors, researchers, clinicians, and students, all
from diverse backgrounds that, in addition to computing, include biology, philos-
ophy, and surgery. It is Selim’s affable nature that is the force of attraction that
brings this diverse group of individuals together.

Selim has natural leadership qualities that impressively enhance his productivity.
Perhaps his most significant human characteristic is his generosity and kindness. He
works tirelessly to assist his colleagues and students, always with encouragement,
and never with derision. There are many researchers today, those who were
supervised by Selim, or worked with him as colleagues, whose careers are marked
indelibly by his strong influence. We are all richer for knowing and working with
him.

We, together with all contributors of this volume, wish Selim continued success
in the years to come.

Kingston, Canada David Rappaport
July 2016 Kai Salomaa
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Simple Deterministic Algorithms
for Generating “Good” Musical Rhythms

Godfried T. Toussaint

Abstract The most economical representation of a musical rhythm is as a binary
sequence of symbols that represent sounds and silences, each ofwhich have a duration
of one unit of time. Such a representation is eminently suited to objective mathemat-
ical and computational analyses, while at the same time, and perhaps surprisingly,
provides a rich enough structure to inform both music theory and music practice.
A musical rhythm is considered to be “good” if it belongs to the repertoire of the
musical tradition of some culture in the world, is used frequently as an ostinato or
timeline, and has withstood the test of time. Here several simple deterministic algo-
rithms for generating musical rhythms are reviewed and compared in terms of their
computational complexity, applicability, and capability to capture “goodness.”

1 Introduction

The Oxford dictionary defines aesthetics as a set of principles concerned with the
nature and appreciation of beauty, especially in art. Traditionally it is also a branch of
philosophy concernedwith the nature, expression, and perception of beauty and artis-
tic taste [1]. The design of algorithms that generate “good”musical rhythms thus falls
in the domain of computational aestheticswhich is concernedwith questions such as:
How can the computer generate aesthetic objects without human intervention? [2].
A related question also asked is: How can the arts influence computer generated aes-
thetic objects? This question is sometimes attributed to another emergent field called
aesthetic computing [3]. These two fields are, not surprisingly, inextricably inter-
twined. Not only do artistic principles provide artificial intelligence researchers with
new ideas, but the results of computer programs influence artistic practices. Closely
related to these two emerging computational fields is the area concerned with con-
structing mathematical measures of aesthetics, which goes back most notably to at
least the work of Birkhoff [4–6] and should not be confused with the field that stud-
ies the aesthetics of mathematics [7]. The former attempts to develop mathematical
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2 G.T. Toussaint

measures of aesthetics that predict human aesthetic judgments, whereas the latter is
concerned with studying the role of aesthetics in the mathematical research carried
out by mathematicians. Not surprisingly these two fields are also inextricably inter-
twined. Indeed, the philosopher Oswald Spengler [8] wrote: “The mathematics of
beauty and the beauty of mathematics are ... inseparable.”

Most research in thesefields has been limited to the visual arts, such as painting [9],
and less attention has been paid to music in general [10, 11] and musical rhythm in
particular [12–14]. Mathematical measures of aesthetics explore a variety of features
such as symmetry [15], theGolden section [16–18], and complexity [19] to determine
how well they correlate with human judgments [20].

It is useful to distinguish between algorithmic generation of music, and genera-
tion of music using electronic digital computers. The word ‘algorithmic’ specifies
the use of well defined rules, without necessarily implying that these rules must be
implemented on an electronic digital computer. Indeed the algorithmic approach to
music composition may use any other method such as rolling dice with human hands
to generate rhythms and melodies, as was popular in 18th century Europe [21], when
more than twenty algorithmic processes were devised, inspired by the new develop-
ments in mathematics and probability theory that were receiving public attention at
the time. In this sense algorithmic composition predates the advent of the electronic
digital computer by centuries if not millennia. Following the introduction of the sim-
ple dice-rollingmethods employed in 18th century Europe,muchwork has been done
using more advanced approaches for incorporating randomness to compose music.
Such methods usually involve the application of Markov processes [22]. Markov
processes work well in general for applications where short-term dependencies are
sufficient to capture relevant information, such as in text recognition [23, 24]. To
exploit long term dependencies in musical rhythm, probabilistic methods that incor-
porate the distributions of distances between subsequences have been shown to be
superior to more traditionalMarkovmethods [25]. Other approaches that incorporate
randomness to generate musical rhythms include genetic algorithms that use proba-
bilistic rules to mutate rhythms to obtain new better rhythms [13, 26]. Some systems,
such as The Continuator, interact with a musician during a performance, and either
modify the music that the performer plays, or generate music that complements what
is being played by the performer [27].

Themethods described above generate rhythms using complex probabilistic algo-
rithms that involve parameters that must be tuned in order to yield “good” rhythms,
with sufficiently high probability. Furthermore, the “goodness” or quality of the
rhythms produced by these methods is evaluated either by mathematical measures
of aesthetics such as fitness functions in simulated annealing and genetic algorithms
[28, 29], or by human beings who are usually the designers of the algorithms.

In contrast to the complex and probabilistic methods outlined above, this chapter
provides a description of some simple and deterministic rules that are guaranteed
(within specified limits of rhythm length) to generate “good” musical rhythms. Fur-
thermore, in contrast to the above methods that measure “goodness” by either human
evaluations, or with mathematical measures of “goodness,” the methods described
in the following consider a rhythm to be “good” if it belongs to the repertoire of the
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musical tradition of some culture in the world, is used frequently as an ostinato or
timeline, and has withstood the test of time. Typical examples of “good” rhythms that
satisfy this definition are the timelines in Sub-Saharan music [12, 30–33], the talas
in Indian music [34], the compas in the Flamenco music of southern Spain [35], and
the wazn in Arabic music [36–38].

The most convenient and economical representation of a musical rhythm is in
box notation as a sequence of binary symbols that represent sounds and silences,
each of which has a duration of one unit of time. In text the simplest visualization
uses the symbols “x” and “.” to denote the onset of a sound and a silent pulse (unit
rest), respectively. Thus the sixteen-pulse, five-onset clave son rhythm would be
represented by the sequence [x . . x . . x . . . x . x . . .]. Such a skeletal representation is
eminently suited to objective mathematical and computational analyses, while at the
same time, and perhaps surprisingly, encapsulates a rich enough structure to provide
considerable musical insight into both the theory and practice of musical rhythm.
Here several simple deterministic algorithms for generating musical rhythms are
reviewed and compared in terms of their ability to capture “goodness” as defined
above.

2 Maximally Even Rhythms and the Euclidean Algorithm

The most salient simple deterministic rule that generates “good” rhythms yields
rhythms that have the property that their onsets are distributed in the rhythmic cycle
as evenly as possible. In 2004 the author discovered that the ancient Greek algorithm
for determining the greatest commondivisor of two numbers, known as theEuclidean
Algorithm [39], generates scores of traditionalmusical rhythms from cultures all over
the world. For this reason they are called Euclidean rhythms. This discovery was first
published in the Bridges-2005 conference held in Banff (Canada) [40], and most
recently re-published in Interalia Magazine [41]. Furthermore, it turns out that the
Euclidean algorithm generates rhythms that have their onsets distributed as evenly
as possible in the rhythmic cycle. Sets that have this property are termed maximally
even sets in the music theory literature, where it was originally introduced in the
context of pitch-class sets (chords and scales) by Clough and Douthett [42]. The
first appearance of the Euclidean algorithm is in Propositions 1 and 2 of Book VII
of Euclid’s Elements written circa 300 BC [43]. Given two positive integers, n and
k, the Euclidean algorithm repeatedly subtracts the smaller number from the larger
until either 1 or 0 is obtained. The greatest common divisor of the two numbers
is 1 if the algorithm terminates with 1, and the number just preceding 0 if 0 is
obtained. However, for the purpose of rhythm generation we are in fact not interested
in calculating the greatest common divisor of the two numbers, but rather in the
process bywhich the answer is obtained. In this setting n denotes the number of pulses
(onsets and silent rests) in the rhythm, and k denotes the number of onsets (sounded
pulses). The repeated subtraction process in the Euclidean algorithm is illustrated in
Fig. 1 with n = 16 and k = 5. A similar implementation of the Euclidean algorithm
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Fig. 1 The rhythm obtained
by the Euclidean algorithm
with n = 16 and k = 5
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was used by Bjorklund [44, 45] to design timing systems for spallation neutron
source accelerators in the Los Alamos National Laboratory, that evenly distribute a
specified number of electrical pulses within a given interval. In row (a) the 16 pulses
are first organized so that the sounded pulses (here denoted by squares filled with
black disks) fill the first 5 positions going from left to right, and the remaining 11
silent pulses (denoted by empty squares) fill the remaining positions. Since there are
more empty boxes than filled boxes, 5 of them are “subtracted” and placed flush to
the left under the remaining boxes, as in row (b). At this stage the “remainder” of
6 empty boxes is still larger than 5, so a second subtraction is performed to yield
the pattern in row (c). This process terminates when the remainder consists of a
single column of boxes shorter than the others, such as one box in row (c), or an
empty column. The generated rhythm is then obtained by reading row (c) in a top-
to-bottom and left-to-right fashion, as illustrated in rows (d) and (e). The rhythm
obtained in row (e) with n = 16 and k = 5 has inter-onset intervals (IOI) 33334,
and is the signature rhythm of electronic dance music (EDM) [46], and one of the
ways the shamans on the east coast of South Korea subdivide a 16-pulse cycle in
their ritual drumming music [47]. Since the type of rhythm considered here is cyclic,
and thus repeats throughout a piece of music, it is also useful to consider rhythm
necklaces consisting of all rotations of a given rhythm. Note that in the EDM rhythm
the long interval occurs at the end. On the other hand, the rhythm heard on the piano
of Radiohead’s recent song ‘Codex’ places the long IOI at the start of the pattern to
obtain 43333 [48]. Furthermore, there are traditional rhythms that situate this interval
at other locations in the cycle. For example the bossa-nova rhythm from Brazil has
IOI = 33433 [49].

Given the two positive integers n = 16 and k = 5, the Euclidean algorithm ter-
minates with a remainder of 1, establishing that the numbers 16 and 5 are relatively
prime. Two integers are relatively prime if there exists no integer greater than 1
that divides both. On the other hand, with n = 16 and k = 4 the remainder is 0, the
arrangement of boxes forms a 4 × 4 rectangle yielding the regular rhythm [x . . . x
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. . . x . . . x . . .], a house kick drum (four-on-the-floor) pattern [46]. Therefore the
Euclidean algorithm generates regular rhythms as well. However, the most interest-
ing rhythms are obtained when n and k are relatively prime numbers [14, 31, 32,
40, 50]. In addition, if the starting point of the cyclic rhythm is not important and
all rotations are included in the set, then these rotations are known as Euclidean
necklaces. If mirror reflections are also included in the set then the set is referred to
as a Euclidean bracelet [14].

By varying the values of n and k one may generate scores of Euclidean rhythms
that are used in traditionalmusic all over theworld. The number n is generally smaller
than 24 [51]. Usually the value of k is between one fourth and one half that of n.
The most frequent values of n the world over are 4, 6, 8, 12, 16, and 24. When n is
8, 12, or 16, a popular value of k is 5. Figure2 depicts the Euclidean algorithm at
work with n = 12 and k = 5. The resulting rhythm with pattern [x . . x . x . . x . x .]
is the Venda clapping pattern of a South African children’s song [31]. As a final
example consider the case when n = 8 and k = 5 pictured in Fig. 3. The resulting
rhythm with pattern [x . x x . x x .] is a rhythm found in the music of many cultures
around the world, known in Cuba as the cinquillo pattern [52]. When it is started on
the second onset it is the Spanish tango [53] and a thirteenth century Persian rhythm,
the al-saghil-al-sani [37].

Fig. 2 The rhythm obtained
by the Euclidean algorithm
with n = 12 and k = 5
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Fig. 3 The rhythm obtained
by the Euclidean algorithm
with n = 8 and k = 5

a

b

c

d

e

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1
2
3

4
5
6

7
8



6 G.T. Toussaint

0 1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

O
ns

et
s

Pulses
12 13 14 15 0

1

Fig. 4 Generating a maximally even rhythm by the snapping algorithm with n = 16 and k = 5

The Euclidean algorithm described above, based on repeated subtraction, gen-
erates rhythms that are maximally even sets [42], in the sense that the IOIs of the
rhythms obtained are distributed as evenly as possible in the necklace cycle. Maxi-
mally even rhythms may also be generated by means of a simple geometric process
that consists of snapping real numbers to integers in a d × n grid of squares, as illus-
trated in Fig. 4 for the case n = 16 and k = 5. The vertical y-axis denotes the number
of onsets desired in the rhythm, whereas the horizontal x-axis denotes the units of
time at which the onsets should occur. First connect the lower left corner of the d × n
grid to the upper right corner with a straight line. This diagonal line intersects the
horizontal dashed lines at equally spaced x-coordinates. The first intersection is at
x = 16/5 = 3.2, the second intersection at x = 2(16/5) = 6.4, and so forth. The
final step involves “snapping” these intersection points to their next lower integer
(unless they happen to already have an integer x-coordinate. The resulting rhythm
has IOI pattern 33334, the electronic dance music rhythm (EDM) [46]. Alternately
one can “snap” the intersections to the next higher integer to obtain the IOI pattern
43333, a rotation of 33334. It is also possible to implement the “snapping” algorithm
on a circular lattice. For the case of n = 16 and k = 5 the circle is first divided into
a circular lattice of 16 equidistant points. On this lattice place an inscribed regular
pentagon with one of its vertices on the first lattice point. Finally the remaining four
vertices of the pentagon are snapped to the their nearest counter-clockwise integer
lattice point, unless they are located on a lattice point.

Since the discovery that the Euclidean algorithm generates almost all the most
popular rhythms that occur in traditional music all over the world in such a simple
fully automatic manner, and can in addition generate “good” new rhythms that seem
not to have appeared before in traditional music, by specifying unusual numbers for
n and k, it has been frequently implemented electronically, and is now available in a
variety of commercial open-source hardware sequencers such as Ableton Live [54].
Sequencers for generating Euclidean rhythms have also been applied to distributed
multi-robot systems (swarm robotics) in which the motions of the robots control a
group of Euclidean rhythms played concurrently [55].
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3 Almost Maximally Even Rhythms and the Snapping
Algorithm

For given values of n and k the Euclidean algorithm generates only a single “good”
rhythm, which for n = 16 and k = 5 is the EDM rhythm [x . . x . . x . . x . . x . . .].
However, there exist other “good” rhythms with n = 16 and k = 5 used in traditional
world music, such as the distinguished clave son: [x . . x . . x . . . x . x . . .] [12], which
although not maximally even, are close to being maximally even. This motivates the
generalization of the concept of maximally even, in order to obtain a simple deter-
ministic algorithm that captures these additional “good” rhythms found in practice.
There exists a plethora of mathematical possibilities for defining rhythms that are
approximately maximally even. For example, one can define a measure of the dis-
tance between any rhythm with say n = 16 and k = 5, such as the edit distance [56],
and consider a rhythm to be approximately even if the edit distance between the
rhythm in question and a maximally even rhythm with n = 16 and k = 5 is below a
specified threshold.

The algorithm for generating maximally even rhythms with the snapping algo-
rithm on the grid illustrated in Fig. 4 suggests a natural generalization of maximally
even rhythms by permitting each intersection point to be “snapped” to either its
left (floor function) or right (ceiling function) nearest integer (pulse). This gener-
alized “snapping” algorithm is conveniently described as a traversal in a nearest
pulse directed acyclic graph (NP-DAG) constructed as follows (refer to Fig. 5). The
source vertex of the NP-DAG is the lower left corner of the grid that corresponds to
the occurrence of the first onset at time zero. Directed edges are connected from the
source vertex to both the left and right nearest integer pulse locations (vertices) cor-
responding to the first intersection point of the diagonal line with the dashed line of
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Fig. 5 The nearest pulse directed acyclic graph (NP-DAG) obtained with n = 16 and k = 5
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Fig. 6 Almost maximally
even rhythms with k = 5 and
n = 16
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the second onset. This process is continued from the two vertices created, connecting
directed edges to the two vertices determined by the succeeding intersection point.
Finally the last two vertices are connected to the upper right target vertex, which
corresponds to the starting onset at time zero. In this NP-DAG every path from the
source vertex to the target vertex corresponds to an IOI pattern along the x-axis
and thus a generated rhythm. The rhythms generated with this algorithm are termed
almost maximally even. Since the vertices of this DAG other than those correspond-
ing to the last intersection point of the diagonal at level 5, have degree 2, the number
of distinct paths from the source vertex to the target vertex is 2 × 2 × 2 × 2 = 16.
Therefore for n = 16 and k = 5 there are sixteen almost maximally even rhythms.
These sixteen rhythms are shown in box-notation in Fig. 6. Note that among this
collection are present eight well known traditional rhythms (shaded) including the
clave son, and a rotation of the gahu rhythm which has IOI pattern 33442 [57]. Note
also that rhythms No. 1 and 9 are a rotations of the samba or EDM rhythm as well as
the bossa-nova and its variant, and rhythm No. 11 is a rotation of the clave son. Fur-
thermore, rhythm No. 5 is a rotation of the mirror image of the clave son. Therefore
the notion of almost maximally even is a much more encompassing characterization
of “good” rhythms than the stricter definition of Euclidean maximally even rhythms,
and includes some, but not all, the rotations and mirror images of the traditional
rhythms used in practice, suggesting that some of these transformations of “good”
rhythms also produce “good” rhythms. Recall that if a rhythm is maximally even,
then all its rotations and mirror images are also maximally even. However, not all
the rotations or mirror images of an almost maximally even rhythm are almost maxi-
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mally even. For example the clave son has an IOI of length 2, but none of the sixteen
almost maximally even rhythms start with an IOI of length 2.

Although the unshaded rhythms in Fig. 6 do not appear to be used in traditional
music, and are thus not “good” according to the definition used in this study, this does
not imply that they would not be considered “good” rhythms by present-day musi-
cians. Indeed, as has already been pointed out in the preceding, rhythmNo. 1with IOI
pattern 43333, which is a rotation of the EDM rhythm, is used by Radiohead. Also, a
rotation of the clave sonby180degreeswhenviewedon a circle, or equivalently, start-
ing the rhythm on the silent pulse No. 8, yieds the rhythm [. . x . x . . . x . . x . . x .],
which is a popular way to play the rhythm in salsa music [58]. Aesthetic judgments
in general, and of the “goodness” of a musical rhythm are of course partly dependent
on cultural upbringing and musical experience [59]. Hannon et al. provide evidence
that supports the hypothesis that culture-dependent familiarity of musical meter has
a significant influence on rhythmic pattern perception [60]. There is also explicit evi-
dence that language has an influence on the rhythmic aspects of music composition,
and implicitly on the perception of musical rhythm [61]. To the author, all 16 almost
maximally even rhythms in Fig. 6 sound good, although some are less familiar than
others.

The 16 almost maximally even rhythms with k = 5 and n = 12 are shown in
Fig. 7. Note that as with k = 5 and n = 16, half of the rhythms generated by the
NP-DAG algorithm (shown shaded) are well established traditional rhythms used
in practice in Sub-Saharan Africa, Andalusia in Southern Spain, and Cuba [14]. A
noteworthy feature that distinguishes the rhythms used in practice from the other
eight (unshaded) is the absence of two onsets located in adjacent pulses. None of the
former have an IOI = 1, and all but one (No. 13) of the latter contain an IOI = 1. Due

Fig. 7 Almost maximally
even rhythms with k = 5 and
n = 12
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Fig. 8 Almost maximally
even rhythms obtained with
k = 5 and n = 8
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to the decrease in available temporal space for 5 onsets to be distributed among 12
rather than 16 pulses, the NP-DAG algorithm creates these short IOIs, which appear
to be an undesirable feature in the rhythms used in practice.

The sixteen almost maximally even rhythms obtained when the values of k and
n are set to 5 and 8, respectively, are shown in Fig. 8. As with n = 12 and n = 16,
more than half (ten) of the rhythms generated by the NP-DAG algorithm (shown
shaded) are well established traditional rhythms used in practice in Rumanian folk
music, vodou rhythms, Sub-Saharan Africa, Cuba, and the Arab world [14, 36–
38]. A noteworthy feature that distinguishes the rhythms used in practice from the
other seven (unshaded) is the absence of two groups of contiguous onsets. None
of the former contain one group of two contiguous onsets and one group of three
continuous onsets. Due to the further decrease in available temporal space for 5
onsets to be distributed among 8 rather than 12 pulses, the NP-DAG algorithm tends
to create fewer groups of onsets, whereas three groups appear to be preferred in
practice. Another feature present in these rhythms is that some of them (Nos. 4, 11
and 12) contain only four onsets. Due to the fact that 5 is more than one half of 8, the
snapping rule used in theNP-DAGalgorithm sometimes creates “collisions”whereby
the rightward-snapped onset and the leftward-snapped onset of two consecutive input
onsets coincide, resulting in the loss of one onset. Nevertheless, the regular 4-onset
rhythmNo. 4 is used all over the world, and the irregular 4-onset rhythmNo. 12when
started on the last onset has IOI = 2132, which is the Abitan vodou rhythm [62].
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4 Mutating “Good” Rhythms

The NP-DAG algorithm for generating almost maximally even rhythms described in
the preceding section is limited to generating, fromonemaximally even rhythmmade
up of n pulses, fifteen offspring rhythms with the same number n of pulses. However,
with a slight modification the snapping algorithm may transform a “good” rhythm
with n pulses into one with m pulses where n �= m. Such a modification, besides
serving as a model of the trans-cultural evolution of musical rhythms, and as a fully
automatic algorithm for generating additional “good” rhythms, also provides a tool
for changing themeter or introducingmetrical ambiguity during performances on the
fly [63–66]. This version of the snapping algorithm is most conveniently illustrated
using concentric circular notation of cyclic rhythms [14, 67]. Figures9 and 10 depict
the algorithm for themost ubiquitous values of thenumber of pulsesn = 8, 12, 16and
the number of onsets k = 5. The input rhythms are displayed as polygons composed
of solid lines, and the output rhythms as polygons with dashed lines. The snapping
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Fig. 9 Binarization from n = 12 to n = 16 (left), and from n = 12 to n = 8 (right)
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Fig. 10 Ternarization from n = 16 to n = 12 (left), and from n = 8 to n = 12 (right)
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algorithm is similar to the algorithm used to generate Euclidean rhythms, except
that here the onsets on the input circle are snapped to selected pulses on the output
circle. If an onset on the input circle is flush with a pulse on the output circle, then it
does not move. Otherwise several possibilities exist: (1) the onsets may be snapped
to their nearest clockwise neighboring pulse, (2) their nearest counter-clockwise
neighboring pulse, or (3) simply to their closest neighboring pulse in either direction.
In Figs. 9 and 10 the nearest clockwise rule is used. Rhythms that are made up
of 8 or 16 pulses (numbers divisible by 2 and not by 3) are here called binary
rhythms, whereas rhythms with 12 pulses (divisible by 3) are here called ternary
rhythms. The process of snapping a non-binary rhythm to a binary rhythm is called
binarization [64–66], whereas snapping a non-ternary rhythm to a ternary rhythm
is called ternarization [63]. Figure9 (left) shows the binarization of the ternary 12-
pulse, 5-onset fume-fume rhythm (on interior circle) to a 16-pulse binary rhythm,
the clave son (on exterior circle). The diagram on the right shows the binarization
of the fume-fume to an 8-pulse binary rhythm, in this case the cinquillo. Note that
binarizing a ternary Euclidean rhythm does not necessarily yield a binary Euclidean
rhythm. The fume-fume rhythm is Euclidean, and so is the cinquillo, but the clave
son is not, although it is almost maximally even.

Figure10 (left) shows the ternarization of the binary 16-pulse, 5-onset clave son
rhythm (on outer circle) to a 12-pulse ternary rhythm with IOI = 32313 (on inner
circle). The diagram on the right shows the ternarization of the binary 8-pulse lundu
rhythm (on outer circle) to an 12-pulse ternary rhythm with IOI = 23133 (on inner
circle). Note that in this case both output ternary rhythms are rotations of each other.

The algorithm for generating almost maximally even rhythms described in the
preceding may be viewed as a method for transforming a single maximally even
rhythm that is established as being “good” according to our definition of “good,” to
a larger family of rhythms that are expected to be “good,” by means of small local
changes to the maximally even rhythm, in the form of minimal shifts of onsets, while
maintaining the even distribution of the onsets in the rhythmic cycle as much as pos-
sible. These small changes fall into the much broader category of rhythm mutations.
Mutations are typically defined in a biological context involving a modification of a
DNAmolecule that is modeled as a sequence of symbols each of which may take on
one of four values. In the present context a rhythmic mutation is defined broadly as a
transformation of one binary sequence to another. It is useful to distinguish between
local and global transformations. A global transformation is guided or constrained
by one or more properties of the rhythm as a whole, such as maintaining maximal
evenness or almost maximal evenness, or transforming a binary rhythm to a ternary
rhythm (or vice-versa). On the other hand, local transformations are implemented by
local rules that may disregard their effect on global structural properties. Intuition
suggests that a natural simple local rule for generating “good” rhythms is to make
small judicious changes to existing “good” rhythms. One possible method is simply
to take an established “good” rhythm such as a maximally even Euclidean rhythm
or a ubiquitous non-Euclidean rhythm that has withstood the test of time, such as
the clave son, and shift one or more of its onsets (other than the first) in either direc-
tion by one or more pulse positions. Application of this rule to the maximally even
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Fig. 11 Mutations of the
maximally even rhythm
obtained by shifting a single
onset by one pulse
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(Euclidean) EDM rhythm with the minimal restrictions that only a single onset may
be shifted by only one pulse position minimal onset shifting (MOS) rule, yields the
eight mutations shown in Fig. 11, four of which (shown shaded) are rhythms used in
practice. Rhythm No. 2 may be viewed as the clave son run backwards starting at the
last onset, or as the clave son run forwards starting at the third onset. The unshaded
rhythms all sound good and it would not be surprising to find them used in practice
somewhere, and thereby satisfy our definition of “good.” Rhythm No. 5 is a more
syncopated version of a popular rap rhythm given by [x . . . x . . x . x . . x . . .] by
virtue that the second onset in the rap rhythm is anticipated by one pulse. Rhythm
No. 8 is also a more syncopated variant of the clave son obtained by anticipating the
two last onsets.

Recall that the sixteen almost maximally even rhythms in Fig. 1 were generated
by snapping each intersection point to its nearest left and right pulse positions. Note
that all sixteen rhythms have the property that not one of their onsets is more than one
pulse away from its nearest onset in the maximally even rhythm (No. 16). However,
this does not imply that a rhythm obtained with a single shift of one of the onsets of
a maximally even rhythm, by one pulse position, implies that the resulting rhythm is
almost maximally even. Indeed, some rhythms in Fig. 11 are not almost maximally
even, such as rhythm No. 8 which ends with an IOI of length 5, whereas no almost
maximally even rhythm in Fig. 6 has such a long IOI.

Application of the MOS rule to the distinguished “good” rhythm, the clave son,
yields the eight mutations shown in Fig. 12, six of which (shown shaded) are used
in practice. However, both rhythms numbered 4 and 7 are “good” rhythms as well.
Rhythm No. 4 anticipates the second and third onsets of the shiko by one pulse
each, making it more syncopated than the shiko. Rhythm No. 7 introduces hesitation
on the last pair of adjacent onsets of the soukous by starting one pulse later, thus
placing greater emphasis on the closing response portion of the rhythm. The two
examples of the MOS rule applied to the EDM and clave son rhythms suggest that
this method may be a viable alternative to the Euclidean and NP-DAG algorithms. In
terms of computational complexity the MOS rule is certainly efficient once a “good”
rhythm is given as input. However, compared to the Euclidean algorithm it requires
too much memory (and concomitant search time) in terms of a table of existing
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Fig. 12 Mutations of the
clave son obtained by
shifting a single onset by one
pulse
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rhythms, whereas the Euclidean algorithm requires no knowledge of any existing
rhythms, generating rhythms automatically by merely varying n and k. Furthermore,
comparing theMOS rulewith theNP-DAGalgorithm, the former yields fewer “good”
rhythms than the latter. Of course one could relax the MOS constraint that only one
onset may be shifted by only one pulse position, thereby generating many more
rhythms. However, then the property of maximal evenness will be grossly violated
and the chance of generating good rhythms will dwindle.

A variety of other local mutation algorithms are possible that sometimes yield
a “good” rhythm. However, they are rather ad hoc and thus lack generality and
applicability. For example, an extremely simple rule is to just delete one onset from
a “good” rhythm in the hope that the remaining rhythm is still “good.” Here deletion
means replacement of an onset with a silent pulse. If the last onset of the clave son
[x . . x . . x . . . x . x . . .] is deleted one obtains the rhythm [x . . x . . x . . . x . . . . .]
which is often heard in practice and is therefore “good.” However, deleting the
third onset of the clave son yields [x . . x . . . . . . x . x . . .], which is not a successful
mutation. So an algorithm that uses this rule requires the solution of the difficult
problem of finding a general rule to determine which onsets of any given rhythm
may be deleted without losing “goodness.” Another approach is to change rhythms
by some rule, and pass the resulting rhythms through similarity filters in the hope
that admitting a rhythm that is similar to a “good” rhythmmust also be “good.” Such
methods depend on measures of similarity or distance between rhythms [56, 68].
However, the relationship between “goodness” and similarity (or distance) is not yet
well defined, making it difficult to select an appropriate similarity measure that will
guarantee good results. The edit distance, often used in music applications, is known
to correlate well with human judgements of rhythm similarity [56], but this does not
imply it also correlates with rhythm “goodness.” Assume for instance that a mutation
of the clave son is accepted by a filter that uses the edit distance, if the distance is
at most 1. Both of the above mutations obtained by deleting either the third or last
onsets have edit distance 1 from the clave son, and yet one is “good” and the other
is “bad.” Furthermore, this approach may incur a heavy computational burden, if
the distance between a candidate rhythm and all the “good” rhythms stored in some
table must be computed and compared to some acceptability threshold.
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5 Conclusion

In contrast to the computationally complex randomized and probabilistic methods,
outlined in the introduction, that are used to generate musical rhythms without any
guarantees that the resulting rhythms are “good,” and with the requirement that para-
meters must be tuned by their designers in order to yield rhythms that are good
enough, this chapter focused on two computationally efficient and conceptually sim-
ple deterministic algorithms that are guaranteed to generate “good”musical rhythms:
(1) the Euclidean algorithm, which for specific numbers of pulses n and onsets k
yields a single maximally even (Euclidean) rhythm, and (2) the NP-DAG (Nearest
PulseDirectedAcyclicGraph) algorithm that generates a family of almostmaximally
even rhythms. It is argued that although other simple deterministic algorithms for
mutating “good” rhythms to obtain new “good” offspring rhythms are easy to con-
coct, they fall short of the Euclidean andNP-DAGalgorithms on several counts. They
not only lack generality and applicability, but are less efficient in terms of memory
requirements and computational complexity, and are not guaranteed to yield “good”
rhythms without “human intervention,” the latter being one of the hallmarks of the
field of computational aesthetics [2]. Aword of clarification is in order here concern-
ing the words “without human intervention,” regarding the selection of the values
of the number of pulses n and the number of onsets k in either the Euclidean or the
NP-DAG algorithms. Clearly, selecting n and k arbitrarily does not guarantee that
these algorithms will always yield “good” rhythms. For instance, if n = 128 (as hap-
pens for some Indian talas) and k is too large (k = 50) or too small (k = 5) relative
to n, then the resulting rhythms are guaranteed to be terrible. Are not n and k then,
parameters that must be tuned in order to obtain good results, thus implying that the
algorithms depend on human intervention in order to perform well? To clarify this
seeming contradiction it helps to distinguish between parameters that must be tuned,
and constraints that must be satisfied. The parameters that must be tuned in typical
approaches to rhythm generation, such as genetic algorithms, use complicated fitness
functions that depend on statistics compiled from music corpora, and that encapsu-
late parameters including frequencies of notes, saliency weights attached to notes,
and relations between note duration intervals [29]. These parameters (including the
weights) must be tuned by trial and error to yield good results. On the other hand, the
Euclidean and NP-DAG algorithms assume that the values of n and k are selected
so as to lie in the range of values found in existing styles of music practice, and
therefore are musical constraints that must be satisfied, rather than parameters that
must be tuned. Once these values are fixed, the rhythm generation is automatic and
completely free of human intervention. In this sense these algorithms fall also in
the area of aesthetic computing [3], which asks how the arts can influence computer
generated aesthetic objects. The values of n and k that are used in musical traditions
all over the world have evolved over many years, even millennia, and have been
adopted as part of the artistic practices of different cultures, providing the artistic
influence on the computational generation of “good” musical rhythms.
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Is Universal Computation a Myth?

Selmer Bringsjord

Abstract Akl has claimed that universal computation is a myth, and has offered
a number of ingenious arguments in support of this claim, one of which features
the challenge of tracking the locations of multiple, ever-moving robots on Mars.
I provide what I see as a refutation of this argument; my counter-argument is based
on a thesis that is less informal and more plausible than the Church-Turing Thesis,
and on my own generalized variant of Kolmogorov-Uspensky machines. While I
concede that it doesn’t deductively follow from the success of my refutation that
universal computation is, or can be, real, I conclude by pointing toward a route that
I believe can vindicate the counter-claim that universal computation is specifiable,
and instantiable.

1 Introduction

Selim Akl’s remarkable oeuvre provides innumerable opportunities for one to write
about the foundations, both formal and philosophical, of computation. For the present
volume, I’ve seized upon a single opportunity: his ingenious and provocative “The
Myth of Universal Computation” [1]. My analysis, in a further narrowing, is specifi-
cally targeted at a key argument ofAkl’s within this paper, a fascinating one involving
the tracking of multiple robots (assumed to be) on Mars. I denote this argument as
‘AuTM

.’ Because I shall use ‘uTM’ to denote the statement that no Turing machine
can be a universal computer, the subscript in ‘AuTM

’ is just a convenient reminder
that uTM is the conclusion of this argument.

Akl’s overall goal in Akl [1] is in fact much more ambitious than establishing
uTM, for he doesn’t think any rigorous, fixed, abstract model of computation can be

I’m indebted to Selim Akl for bringing to my attention countless stimulating ideas, only one of
which I explore herein.
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universal. This is made clear by Akl at the very outset of his paper, in fact in his
paper’s abstract. There he says this about what the paper by his lights accomplishes:

It is shown that the concept of a Universal Computer cannot be realized. . . . This result
applies not only to idealized models of computation, such as the Turing Machine and the
like, but also to all general-purpose computers, including existing conventional computers,
as well as contemplated ones such as quantum computers [1].

It obviously follows from this quote thatAkl takes himself to have shownnot only that
the Turingmachine (TM) isn’t a universal computer, but that any other candidates for
the title of ‘universal computer’will likewise fail to reach universality. Leveraging the
notation that we have already allowed ourselves, we can hence observe that Akl sees
his paper as providing a sound argument AuQC

for the conclusion uQC; here, ‘QC’ is
an acronym referring to quantum computers. Indeed, letting ‘C’ be a variable ranging
over any established class of idealized computing machines, we can safely say that
Akl’s ultimate goal (which he believes he has reached in the paper in question) is to
establish

u := ¬∃C uC;

and we can denote his overarching argument by ‘AuC
.’ However, again, my objective

is the narrow, focused one of showing that Akl’s multiple-robot argumentAuTM
for

uTM is unsuccessful.While it doesn’t followdeductively frommy refutation thatAkl’s
overarching argumentAuC

is overthrown (because he gives additional arguments for
uTM beyond the one I target), if his other arguments for uTM fail, his overarching
case AuC

would fall, and hence despite his clever analysis and argumentation there
may well be a form of bona fide universal computation. I contend, but do not prove,
that my counter-argument against AuTM

can in fact be generalized into a recipe that
overthrows the other arguments Akl gives against universal computation. At the end
of the present chapter I suggest a logic-based route toward formalizing a form of
universal computation.

My selection of Akl’s paper and the specific AuTM
within it, I confess, is not

without an element of selfishness, since the topics with which Akl deals in this
important work are ones I too have thought a bit about. Nonetheless, as will soon
be seen, our respective points of view are fundamentally different. Put with brutal
brevity, I come to computation after reflecting upon the cognition of animals and
persons, and from there move to the relevant logico-mathematics for modeling and
computationally simulating that cognition; Akl, on the other hand, draws morals
about the nature of computation after considering “de-agentized” informationflowing
at the mercy of time and change, in the real, physical world. (His multiple-robots-on-
Mars scenario is a perfect case of his orientation in action.) We both move on from
our respective starting points to consider the limits of computation, but our respective
conclusions turn out to be quite different: Akl (obviously) regards AuTM

(and AuQC
,

and indeed AuC
) to be sound; I don’t. Moreover, as I’ve already indicated, I think

that the concept of universal computation can in principle be formally defined via
increasingly powerful logics, and that the concept can in fact be instantiated in our
universe (in some mind sufficiently powerful to reason in these logics).
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The plan for the remainder of the chapter is straightforward: The first step
(Sect. 2) is to explain that Akl’s understanding of the Church-Turing Thesis (CTT) is
inaccurate.Next, in Sect. 3, usingmy analysis ofCTTas a springboard, I present a dif-
ferent andmuch “safer” thesis: “Selmer’s Safer Thesis,” or just ‘SST’ for short. More
accurately, the safer thesis is actually a thesis schema. Whereas CTT (as I shall point
out) relies on the concept of effective computation, my safer thesis schema relies
instead upon what I call reflective-C computation. Here, where C is again (recall
above) a variable ranging over any of the established idealized frameworks for com-
puting at the Turing level, reflective-C computation is a semi-formal description of
the fully formal computation in C . With SST in hand, I next (Sect. 4) recapitulate
and analyze Akl’s multiple-robot argumentAuTM

, drawing directly from his paper to
do so. Then in the next Sect. 5, I refute Akl’s argument. Some concluding remarks
that gesture toward a universal computer wrap up the paper (Sect. 6).

2 The Church-Turing Thesis (CTT), for Real

Our first step is to isolate and analyze what Akl takes to be the “Church-Turing
Thesis” (CTT). Doing so is easy, for here is a verbatim quote from Akl [1, p. 172]:

While fairly simple conceptually, the Turing Machine is a truly powerful model of compu-
tation. So powerful in fact, that it was believed until recently that no model more powerful
than the Turing Machine can possibly exist (in other words, a model that would be able to
perform computations that the Turing Machine cannot perform). This belief is captured in
the following statement, known as

Church-Turing Thesis: Any computable function can be computed on a Turing
Machine [73, 54].

Unfortunately, this is not CTT. The reason is perfectly simple and uncontrover-
sial: It must be a particular kind of function that is said in the thesis to be a Turing-
computable one. Church [14, p. 356] originally used the informal phrase ‘effectively
calculable’ to label the kind of function in question. The phrase ‘effectively com-
putable’ is the syntactic variant of Church’s phrase that is currently used. Now, notice
that Akl, in the quote immediately above, gives two citations immediately after typo-
graphically setting out his version of the thesis in question. Could it be that Akl has
been led astray by the authors in question? I investigated; sure enough, this appears
to be exactly what happened. For example, here is how [28, p. 209] puts it: “The
Turing machine (TM) is believed to be the most general computational model that
can be devised (the Church-Turing thesis).” This is what Akl is referring to when
he offers the citation ‘[54].’1

1Unfortunately for Savage, the super-recursive computational models explored by Turing in his
doctoral dissertation under Church (i.e. [30]) refute Savage’s claim that (at least at the time of
his writing) it is believed that the Turing machine is the “most general computational model.” A
wonderful discussion of these matters in relation to Turing’s dissertation is provided in Feferman
[18]; cf. Bringsjord [5].
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But why do I say that Akl has been led astray? The reason, again, is simple, and
quite decisive: The Church-Turing Thesis, CTT as we abbreviate it, is not what Akl
says it is, because the core idea in CTT is the equivalence of what is “effectively” or
“mechanically” or “algorithmically” computable, with what is Turing-computable.
Hence we must be more precise and accurate.2

Again, the heart of CTT is the informal notion of an algorithm,3 which has been
nicely characterized (in traditional fashion) by Mendelson as

an effective and completely specified procedure for solving a whole class of problems. . . .
An algorithm does not require ingenuity; its application is prescribed in advance and does
not depend upon any empirical or random factors [24, p. 225].

An effectively computable function is thus the computing of a function by an ide-
alized “worker” or “computist” following an algorithm.4 (Without loss of generality,
we can for present purposes view all functions as taking natural numbers into natural
numbers; that is, for some arbitrary f , f : N �→ N).

CTT also involves a more formal notion, that of a so-called Turing-computable
function. If the formal notion is wed to a different paradigm, thenwewould no longer
have the Church-Turing Thesis. For example, we could refer instead to a recursive
function, or a register machine-computable function, etc. Mendelson employs Tur-
ing’s approach, and Turing machines are what Akl focuses upon in the paper we’re
analyzing. A function f : N �→ N is Turing-computable iff there exists a TM m
which, starting with n on its tape (perhaps represented by n |s), leaves f (n) on its
tape after processing. (The details of the processing are harmlessly left aside.) Given
this definition, CTT amounts to

CTT A function f is effectively computable if and only if it’s Turing-computable.

Most scholars, as the reader herself is likely to know, regard CTT to be true.
However, I’m not one of them. So while I have on hand a counter-argument against
AuTM

that employs CTT, I certainly can’t use it here. Not only that, but in a rather
interesting twist, even if I was inclined to affirm CTT, I still couldn’t use it as a
premise in a counter-argument against AuTM

. The reason is that a careful reading of
Akl [1] reveals that Akl himself is quite prepared to give up CTT. In fact, he appears
to hold that uTM entails the falsity of CTT.

2Andhere I followmyownpriorwork, and thework of others, including thosewhohave instructively
sought to proveCTT. In my own case, devoted in part to arguments against CTT, see e.g. Bringsjord
and Arkoudas [6], Bringsjord and Govindarajulu [7]; for an attempt to prove CTT, see the chapter
on CTT in Smith [29]; and for a wonderful exposition of CTT and its history, including coverage
of the trap of stating CTT erroneously as in the case of Savage [28], see Copeland [15].
3Interestingly enough, Lewis and Papadimitriou [23], the pair of authors Akl [1] draws from in
order to formally characterize Turing machines, well understand that CTT asserts an equivalence
between an intuitive notion of algorithm and Turing-computability, for—in a quote isolated by Akl
himself—we read that CTT consists in the proposition that “the idea of a ‘computational procedure’
or an ‘algorithm’ is equivalent to the idea of aTuring Machine.”
4Turing [31] spoke of “computists” and Post [27] of “workers,” humans whose sole job was to
slavishly follow explicit, excruciatingly simple instructions.
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3 Selmer’s “Safer” Thesis (SST)

The received view is that CTT is not only true, but unprovable.5 The main rationale
in support of this view is the claim that the concept of effective computation is
too informal to allow a proof of CTT [4]. Whether or not this rationale is correct,
the fact certainly remains that the “left side” of the biconditional that constitutes
CTT is not formal, while the right side, which refers to the Turing-computability
of a function, can be rendered formal. Turing-computability (and of course also
therefore Turing-decidability, etc.) can be formalized in various ways, as Akl [1]
points out. He draws heavily on Lewis and Papadimitriou [23] to recount some of
the formalism in question. And we could even be more formal and rigorous about
Turing-computability, since we could move from the naïve set theory of Lewis and
Papadimitriou [23] to axiomatic set theory (e.g., ZFC), and laboriously build up to
CTT from there. But a move to greater rigor in defining the right side of CTT would
still leave the left side vague. I introduce now the promised thesis schema SST, which
includes still on its left side a somewhat informal concept, but not one as intuitive
and informal as effective computation. As I’ve said, while I can’t for the reasons
given above use CTT in my counter-argument againstAuTM

, I can, and do, use SST.
The first step toward SST is to recall that above we quantified over idealized

computational schemesC to introduce u. We can leverage this simple idea in order
to formulate a thesis schema that is at once both much more plausible and much
less informal than CTT. Instead of employing the concept of effective computation
as in the case of CTT, SST employs the concept of reflective-C computation, where
C here is once again functioning as a variable ranging over the space of established
idealized computational schemes that are provably equivalent to that of the Turing
machine. This space includes not just Turing machines (T ), but also for example
Post machines (P) [26], register machines (R) [16], the μ-recursive functions (M)
[23], unrestricted (= Type 0) grammars (G) [25], the λ-calculus (Λ) [12, 13], and
my favorite formal model of Turing-level computation that doesn’t explicitly use
logic and deduction, and one that is clearly the most cognitively realistic category
under C , Kolmogorov-Uspensky (KU) machines (K ) [21]. Each of these idealized
frameworks is an acceptable instance of the general variable C that ranges over all
established idealized frameworks equivalent to Turing machines; and all of these
frameworks are equivalent. Hence, for instance, a function f is G-computable if and
only if (iff) f is T -computable iff f is Λ-computable iff f is R-computable, and so
on.

In this context, I now introduce the new concept of reflective-C computation.
This concept is not fully formal, but it’s much more formal than the very vague
and intuitive concept of effective computation. To see the basic idea is this, start
by bringing to mind some formal description of one of the idealized frameworks
listed in the previous paragraph. For focus and to ease exposition, but without loss

5A few have held that CTT is provable, but they are in the extreme minority, and, joined by others,
I have shown that defenders of the provability of CTT are incorrect. E.g., while Smith [29] has tried
to prove CTT, see Bringsjord and Govindarajulu [7].
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of generality, let’s first choose T , Turing machines. Many examples of reflective-T
computation can be given, and in fact many are given in the literature; here’s one:

Imagine an old-fashioned railroad track that starts at a certain point and extends
infinitely in one direction. Imagine as well that this track is laid upon railroad ties
spaced at a regular interval, and that on the ground, bounded by two ties and two
stretches of track, is a blackboard. In addition, suppose that there is a small boxcar
that can roll on the track, powered by a simplemechanical lever, and a switch onboard
the boxcar that controls the direction of movement (left or right on the track). The
boxcar is occupied by a well-trained chimpanzee who can power the car by pushing
the lever up and down, and who can through toggling of the switch move left or right.
In addition, the bottom of the boxcar is hollow, so when the boxcar is positioned
over a blackboard, the chimpanzee can reach down to erase symbols appearing on
the blackboard, and to write symbols on the blackboard. He does so in accordance
with very simple instructions. Finally, the combined ensemble of the chimp, the
boxcar, and his simple tools, at any one moment, are assumed to be in any one of a
particular number of finite, pre-defined configurations. Whatever a—as we shall call
them—chimp machine can (reflective-T -compute) a Turing-machine can compute,
and vice versa. The reason for this, in a word, is that chimp-machine computation,
while intuitive, is directly reflective of T computation. And of course we didn’t need
to refer to chimps and boxcars. Instead, we could have referred to any number of
an infinite number of other props, and we could still be depicting computation that
is directly reflective of the formal Turing-machine model. The general truth in play
can be elevated to the following statement:

SSTT A function f is reflective-T -computable if and only f is T -computable (= Turing-
computable).

To make sure there is no misunderstanding or resistance, let me explain that we
can do the same kind of trick for register machines, formal, idealizedmachines which
are reflected by the less formal concept of raven machines, as I now explain.6

Raven machines include, first and foremost, a raven: Roger. Roger is a thoroughly
obedient bird whose range of activity is highly restricted. Roger is shown in Fig. 1.
You will note that he is holding something in his beak. What is it? It’s a little round
stone. Roger doesn’t fly (at least when he isworking); whenwe tell him to start awork
session, he simply moves little round stones around, in accordance with programs
that we provide to him, and he halts when we tell him to conclude a work session.
More specifically, his movement of the stones is confined to moving them into and
out of numbered boxes. For any given work session, we provide Roger with n boxes
to start, and if his programmakes reference to the numberm of a box beyond the ones
he intially has, Roger calls out “More,” and instantly a new box numberedm appears
for him to employ.7 Raven machines consist of the combination of: programs to

6Here I draw upon my Bringsjord and Taylor [9], which I use to teach introductory formal logic
and computability theory. Most readers will be familiar with register machines, which are elegantly
and economically defined in Ebbinghaus et al. [17].
7Alternatively, we could imagine that Roger’s call for another box results in a box from an infinite
supply provided at the outset of his efforts, moving into his work area.
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Fig. 1 Roger the raven

Fig. 2 Snapshot of a raven
machine in operation

instruct Roger, Roger himself with his perception and action powers, and the stones
and boxes. Figure2 shows a snapshot of a raven machine during some computation.

We are interested in having raven machines compute number-theoretic functions,
that is functions from N

n to N. In order to enable this, we shall understand a given
natural number n to correspond to n stones located in a given box. The natural
number 0 will correspond to the absence of any stones; so an empty box is assumed
to be holding 0. Hence Fig. 2 shows a configuration in which box B1 holds stones
representing the numeral ‘2,’ and box B2 holds stones representing the numeral ‘3.’
Ordinary addition + of natural numbers is of course such that

+ : N2 �→ N.

Can Roger compute it? Yes, easily. But in order to see how, we need to specify the
format of the instructions that we provide him with.

Each instruction to Roger is one of five possible types.We now define this quintet,
by giving the schema for each one, and in addition an intuitive explanation of what
the instruction communicates to our bird. Note that every instruction begins with a
natural number l that serves as its label.
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1. l SET Bi = Bi − •
This instruction tells Roger to take away one stone from box Bi . If this box
happens to be empty, Roger doesn’t do anything, and simply moves on to the
next instruction.

2. l SET Bi = Bi + •
This instruction tells Roger to add one stone to box Bi .

3. l IF Bi = e THEN j ELSE k

This instruction tells Roger that if box Bi is empty, he should shift his attention
to, and follow, instructionwith label j ; otherwise he shouldmove to instruction
with label k.

4. l ROGER, POINT TO Bi

This instruction tells Roger to point to box Bi , in order to inform us that this
is output he wishes us to have.

5. l ROGER, HALT

This instruction simply tells Roger to halt. In any set of instructions given
to Roger (i.e., in any raven program given to him), there can only be one
instruction of this type.

Let’s now put these schemas into action, in the form of a raven program for Roger
that carries out addition. In order to do that, we shall assume that box B1’s contents
denotes the first of the two numbers to be added, and that box B2’s contents denotes
the second. Here then is a program for addition:

0 IFB1 = e THEN5ELSE 1
1 IFB2 = e THEN6ELSE 2
2 SETB2 = B2 − •
3 SETB1 = B1 + •
4 IFB2 = e THEN6ELSE 2
5 ROGER,POINT TOB2

6 ROGER,POINT TOB1

7 ROGER,HALT

With an initial input of •• in box B1, and • • • in box B2 (i.e., an initial configuration
that constitutes a request to Roger that he tells us what 2 + 3 is), the program given
here will cause Roger to point to B1 when it contains • • • • •, at which point he will
stop.

The overall point of this account of raven machines is to flesh out and make rather
obvious the proposition that raven-machine computation, while somewhat informal,
is equivalent to register-machine computation (= R computation). In short, raven
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computation, albeit informal, is nonetheless directly reflective of register-machine
computation. In addition, raven machines could be replaced by an indefinite number
of schemes of the same intuitive sort, but ones featuring different animals, and/or
objects other than stones to be manipulated, etc. All these schemes would preserve
reflection of R computation. We hence have the general statement:

SSTR A function f is reflective-R-computable if and only f is R-computable.

Now let’s spend just a bit of time on the idealized computing framework that I said
above was my favorite: KU machines (or the space of idealized machines denoted
by just ‘K ’). It’s my favorite because it’s the most cognitively robust model of
information-processing to emerge from the mid 20th century, as far as I know. I have
myownvariant of the original conception that is set out inKolmogorov andUspenskii
[21]. I have neither the time nor the space to set out either the original conception or
my own formal generalization (workbook machines) in full detail, but I can certainly
give a sufficiently detailed explanation of the latter, and while my formalization
is more general that KU machines, workbook machines can serve as an adequate
stand-in in the present paper for the more primitive KU-machine framework. (While
KU machines are equivalent to Turing machines, workbook machines have settings
that can be configured in such a way as to allow these machines to compute functions
beyond the Turing Limit in the Arithmetic Hierarchy, e.g. the halting problem.) Also,
because workbook machines are built from scratch to be reflected by the ordinary
notebooks used by systematic human thinkers through their careers, the account that
I now give of workbook machines will serve both to introduce such machines, and
to do so by providing an informal correlate of workbook machines. The informal
correlate is what I call notebook machines. Obviously, the situation is thus such that
notebook machines are reflective-K machines.

Aworkbookmachine has an associated formal language L of the type customarily
used to specify the syntax of the formulae allowed in a logic, and to specify the
inferential machinery by which formulae can be linked to each other. The language
is composed of formulae that can be constructed according to a formal grammar of
a familiar type (e.g. a BNF grammar) from a list of syntactic ingredients: variables,
constants (= names), function symbols, relation symbols, quantifiers, operators (e.g.,
modal operators), connectives, and punctuation symbols. In addition, and this is
unusual, L includes the elements necessary to precisely write expressions that are
typically in meta-theory; but we can leave this aside in the present context.8 The
language may also include things necessary to tap into abstract algebra, and thereby
move beyond what readers are used to seeing in standard logics to regiment typical
symbolic formulae. For example, the language of a given workbook might need
to be extended to allow for the precise specification of diagrams; such a language
is used in the Vivid family of logics for reasoning over symbolic formulae and

8The formal language associated with a workbook machine for information-processing in line with
logic programming would thus allow formulae in the language of horn-clause logic, and would
also allow for meta-logical expressions like ∀I : I |= Ra ↔ Ra, where I is an interpretation from
model theory.
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diagrams [2]. Finally, another part of L is the machinery needed to specify proof
theories and argument theories; for example, rules of inference.

We have already implicitly made use of such languages above; for example, when
we defined the statement u above we made implicit use of the formal language
that underlies first-order logic, which has only the two quantifiers ∃ and ∀, and no
operators. But workbooks allow formal languages that are simpler or more complex
than the language of first-order logic. In fact, the language for a given workbook may
allow formulae that are infinitely long. Most readers will have seen grammars used
to define formal languages for logics, so I spend no more time on formulae.

Workbooks are composed of pages that come in sequences like a conventional
book of the type that people read. Pages can come in any size, as long as the size
is finite. Workbooks can have arbitrarily many pages, though here let’s confine our
attention to books that have only a finite number of pages.What can be written on the
pages that are in workbooks? The answer is that formulae in L can be written inside
labeled nodes (e.g. inside ovals), the nodes can then be connected by directed arcs,
and the arcs can be labeled by such things as the names for inference schemas. For
convenience and clarity, the labels can be put inside their own shapes (e.g. boxes).

How does computation happen in a workbook machine? It happens when a scribe
is given instructions for what modifications to make on a page, within a proper subset
of space on the page that is the focus of attention of the scribe. As a profitable example
for the reader to consider, imagine that a scribe is given instructions for how to carry
out long division. The only differences between how people in the real world carry
out long division (on a piece of paper or a blackboard) versus how such an algorithm
gets mechanized in a workbook machine is that in the latter case each number must
be encased within a labeled node, the arrangement of nodes relative to each other
is enforced by arcs connecting them, and a scribe can make what would for some
humans be a number of sequential actions on page in one step.

I nowprovide an example of computation by a scribe in an implementedworkbook
machine, the Slate environment for producing proofs.9 The example is shown through
two snapshots of a page in Slate. In the first snapshot (see Fig. 3), the scribe’s attention
is focused on the simple theorem that 0 �= 5 (notice that it is highlighted), to be proved
from the axioms of Peano Arithmetic (PA) (shown on the left), plus some helpful
definitions (shown on the right). In the next snapshot, the theorem has in one step
been proved. In order to do this, the scribe has moved axiom 1, and cited this axiom
along with the definitions for support of a provability claim (viz., that the theorem
can be proved). It’s very important to realize that this progress has been made in a
single step, because when below I model the tracking of Akl’s Mars robots it will be
a key fact that in a single step the distances of multiple robots from a landmark can
be computed.

I have described workbook machines, which are formal, idealized machines that
subsume KU machines, by way of the less formal class of notebook machines.
Notebook machines, like the chimp machines and raven machines also characterized

9Slate is provided with Bringsjord and Taylor [9]; an early version is described in Bringsjord et al.
[10].
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Fig. 3 Snapshot of page built in slate system as workbook machine

above, are not fully formal; however, notebookmachines are clearly directly reflective
of workbook machines/KUmachines (although, again, the former can be set to allow
super-Turing computation). In addition, instead of my own conception of notebook
machines,which is based on the concept of a scribe, any number of other quasi-formal
description of KU machines could be created10—and in all these other variants,
computational equivalence between them and KU machines would be preserved.
Summing up, we have:

SSTK A function f is reflective-K -computable if and only f is K -computable.

While my refutation of Akl’s AuTM
can be articulated with only SSTK (see

Sect. 5), there is no reason, in general, to stay at the level of only instances of
SST, and a better version of my counter-argument uses SST itself, as the schema
that it is. In order to move to SST itself, in its fully general schematic form, we
have only to invoke again quantification over the entire space of Turing-level ide-
alized frameworks for computation, via C . Doing so yields the following general
proposition:

SST For all established idealized computational frameworks C , a function f is reflective-
C-computable if and only f is C-computable.

4 Akl’s Robot Argument (AuTM)

To start his argument AuTM
, Akl presents a scenario involving multiple robots:

10Smith [29] provides an alternative.
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On the surface ofMars n robots, R0, R1, . . . , Rn−1, are roaming the landscape. The itinerary
of each robot is unpredictable; it depends on the prevailing conditions in the robot’s environ-
ment, such as wind, temperature, visibility, terrain, obstacles, and so on. At regular intervals,
each robot Ri relays its current coordinates xi (t) = (ai (t), bi (t)) tomission control on Earth.
Given the coordinates of the n robots at time t , mission control determines the distance of
Ri , 0 ≤ i ≤ n − 1, to a selected landmark L(t) using a function Fi [1, p. 181].

A key additional aspect of the scenario, which Akl has introduced before giving the
scenario described in the quote immediately above (he introduces it on p. 180), is
that there is a composite n-ary function F that takes as its input tuple that which is
returned by the Fi . Akl says (p. 180) that F might return for instance the sum or the
minimum of the values of the Fi .

Leaving aside the exotic imaginary setting of Mars, this type of scenario is one
that is quite relevant for my own laboratory, which has more than its share of robots,
and which specifically often investigates the coördination of multiple robots acting
simultaneously in various environments. Of course, we don’t use any such low-level
formalism as that used to specify Turing machines to track and reason about the
diachronic attributes of robots through time. For that matter, no one writes sophisti-
cated software to control and coördinate multiple robots in the language of Turing
machines, certainly if the robots in question do anything cognitive.11 Instead, my
approach, and derivatively that of the lab I direct, is a logicist one; specifically, we
draw froma spaceCC of cognitive calculi tomodel both cognitive andphysical states
of artificial agents (including robots) through time [8, 11, 19, 20]. A cognitive calcu-
lus is a highly expressive computational logic, one that in some instances subsumes
so-called “BDI” logics, and in some cases includes provision for natural-language
understanding and/or generation, uncertainty, and non-monotonic reasoning. In the
present paper, it would be inappropriate to review in detail any of the calculi in CC ;
instead, in the Sect. 5, I will make informal and rapid use of a particular cognitive
calculus [2] that allows for the representation of, and reasoning over, pictorial infor-
mation in human-level fashion. Importantly, the reasoning is such that single steps
can comprise what humans working with paper and pencil would need to do in a
number of sequential steps; recall the discussion above centering around Figs. 3 and
4. With information expressed pictorially, it turns out that the kind of rapid and real-
time processing of Akl’s function Fi can be accomplished in the manner he says is
beyond the reach of Turing machines. But before we get to this, we of course need
to have before us the remainder of Akl’s AuTM

, which, in his own words, runs as
follows:

A Turing Machine fails to compute all the Fi as desired. Indeed, suppose that x0(t) is
read initially and placed onto the tape. It follows that F0(x0(t)) can then be computed
correctly (perhaps at a later time). However, when the next variable x1, for example, is to
be read, the time variable would have changed from t to t + 1, and we obtain x1(t + 1), not
x1(t). Continuing in this fashion, x2(t + 2), x3(t + 3), . . . , xn−1(t + n − 1) are read from
the input. In [my example], by the time x0(t) is read, robots R1, R2, . . . , Rn−1 would have
moved away from x1(t), x2(t), . . . , xn−1(t).

11Cognitive robotics is, at least in its original form, a logic-based affair; see e.g. Levesque and
Lakemeyer [22].
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Fig. 4 Snapshot of successor page built in slate system as workbook machine

Since the function according towhich each xi changeswith time is not known, it is impossible
to recover xi (t) from xi (t + i), for i = 1, 2, . . . , n − 1. Consequently, this approach cannot
produce F1(x1(t)), F2(x2(t)), . . . , Fn−1(xn−1(t)) as required [1, p. 181].

There are some important aspects of this argument that can and should be revealed
by some analysis. First, when Akl says “A Turing Machine fails to compute all the
Fi as desired.” he is not to be interpreted as saying only that there exists a Turing
Machine that fails to compute all the Fi . The kernel of the logical shape of this trivial
proposition would be

∃m(TM(m) ∧ FailsCompute(m, Fi )], (1)

whereas what Akl is claiming is (as must be the case if he is to succeed) in line with
the claim uTM, and the logical shape of his claim is the much more ambitious and
much more interesting

¬∃m(TM(m) ∧ Compute(m, Fi )]. (2)

This really is a very ambitious claim indeed. For there are a lot of Turingmachines;
there are overall a countably infinite number of them, of course. How does Akl know
that no Turing machine in this vast space can compute Fi? His reasoning appears
to be that while the configuration of the robots and the landmark at a given time t
can be placed into memory (= onto a tape of a given Turing machine), there isn’t
enough time to compute all the distances, because by the next timepoint t + 1 the
robots have moved and the distances will be different—and to further complicate
matters the environmental forces that partially determine the itineraries (I would say
plans, and I imagine that the robots are running AI planners) of the robots aren’t
retrievable. But is this reasoning sound? I don’t think so, and now I explain why.
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5 A Refutation of the Robot Argument

Since Akl concedes Fi to be a Turing-computable function, there exists a Turing
machine able to compute the distance of each robot R j from the landmark at every
timepoint t , before another such computation needs to occur. By definition, we are
dealing with number-theoretic functions, so we are dealing with a digitization of the
entire scenario. In ‘the ‘real world” the robots must take some time to travel to new
locations, and when they have arrived at those new locations, a new configuration can
be perceived, and processed afresh. So yes, I certainly agree that the solution for a
Turingmachine is not to be found in computation carried out, as Akl says, “later.” But
the solution is to be found in the fact that there exists some Turing machine m� that
computes Fi , for all relevant i , very quickly and at once, in parallel, in an intervening
moment, before the robots arrive at their new locations. (Even if robot movement is
staggered in time, it remains possible, in principle, to any configuration of any subset
of the entire collection of robots to be perceived and distances to be computed at a
single intervening timestep.) And having computed that,m∗ can computeF(Fi ), for
all relevant i , in another intervening moment. As Akl says, the composite function
F might return something like the sum of all the distances of each robot from the
landmark, at a given timepoint.

Of course, Akl’s claim is that the “intervening” activity I have described is
excluded. But what excludes it? It is true that Akl can stipulate a constraint accord-
ing to which there is no intervening time available to be used. But such a stipulation
merely establishes Eq.1; it doesn’t establish what he needs: Eq.2.

An even more severe problem for Akl is that such back-and-forth dialectic is
entirely irrelevant, because there is a non-constructive way of establishing that there
does exist the Turing machinem� that can compute Fi . In fact, I now give such a non-
constructive way: a formally valid argument whose conclusion is that the problem
in this case, contra Akl, can be solved by some TM (i.e., I establish the negation
of Eq.2). (Since my argument is formally valid on any standard proof theory, I
could classify my argument as an outright proof, save for the fact that “Selmer’s
Safer Thesis,” SST, isn’t itself proved in the present paper—though certainly it can
be proved.) My refutation is in defense of the proposition that, relative to standard
idealized computation— that is computation characterized by P , R,M ,G,Λ, K , and
the other frameworks that can be readily found in the literature—Turing machines
are universal.

As mentioned above (Sect. 2), I can’t employ CTT in any refutation of Akl’s
argument (since, again, I believe that, and indeed believe that I’ve shown that, CTT
is in fact false). However, I’m able to use SST and a the particular instance of it for
KU machines. Here’s my argument:
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Refutation ofAuTM

SST tells us that any number-theoretic function f that is reflective-C-computable is
C-computable. It follows directly by universal instantiation on C that any f that is
reflective-K -computable is K -computable. (Or we could of course use SSTK directly.)
Where Fi is the function (informally) defined by Akl that maps location informa-
tion regarding n robots to the distance of each robot from a given landmark (all
indexed, of course, to a particular time t), Fi is reflective-K -computable; hence Fi
is K -computable. But it’s a theorem that K -computability and T -computability (=
Turing-computability) are equivalent. Therefore, contra Akl, Fi is Turing-computable
(and with it also F). QED

In order to undergird this argument, I introduce a simple pictorial framework that
enables us to represent snapshots of the locations of robots and the landmark on
Mars. In this framework, which is grid-based, • j indicates a robot at the relevant
location, and + indicates the location of the landmark. Each configuration of the
grid corresponds to a page in a workbook machine. (I leave out messy ovals to define
nodes, and explicit arcs, in order to increase readability.) Consider the following
configuration:

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ •1 + ◦
◦ ◦ ◦ ◦ •2 ◦

Here there are only two robots (but there is no loss of generality). Please try to make
a quick ruling as to how far each robot is from the landmark. . . . Correct, both robots
are the same distance (1 unit) from the landmark.Notice that you rendered this verdict
by taking in the workspace as a whole. Now here is a second configuration:

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •1 ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ + ◦
◦ ◦ ◦ ◦ •2 ◦

To ensure that you understand what is being depicted in this second configuration, I
ask again: How far is robot R2 from the landmark, and how far is robot R1 from the
landmark? Once again, I’m quite sure that you can see what the answer is: R1 is 3
units away, and R2 is 1 away. This shows that a scribe in a workbook machine could,
presented with any such configuration, write down in one step, the distance for each
robot Ri . This in turn shows that Fi is reflective-K -computable, since in principle
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there is no reason why what you have instantly seen in the two configurations just
given can’t be seen in any such configuration, by a scribe perceiving a page in a
workbook. The area of focus in any given configuration will never be too large to
in principle be taken in, since it is always going to be finite, and since it will never
increase from one page to the next in an expansion that grows non-recursively fast.
(There are only a finite number of robots in Akl’s scenario, separated from each
other and the landmark by only finite distances.) This suffices to undergird the non-
constructive deductive counter-argument given above.

6 Concluding Remarks on Another Path

Alert-and-astute readers know that the failure of Akl’s robot argument AuTM
, as

revealed above, is formally consistent with the statement u that there doesn’t exist a
universal computer. (This is a fact that Akl himself, in rebuttal, might well convey.)
Hence, in the current state of the inquiry into whether or not a universal computer is
a myth, we are unable to resolve the central question. After all, perhaps one of the
other arguments given by Akl for uTM succeeds. However, for what it’s worth, I’ve
analyzed each of these arguments and find each to be at best inconclusive. I encourage
those interested in getting to “ground truth” on u not to accept on faith this report on
my analysis, but to study Akl’s inventive arguments for themselves. That said, I do
want to end, as promised, by introducing the reader to what I see as a better route for
settling the central question. My intuition, based on initial reflection upon this other
route, is that universal computation does in fact exist, and that therefore u (notice
that the overline is gone) holds.

So what is the route I recommend? To see its general shape and direction, sup-
pose, first, that universal computation, which we’ll symbolize by the predicate U ,
is stipulated to be a disjunctive concept, one with so much in-built latitude that it
ranges across all forms of information-processing, not just computation as it’s sys-
tematized in standard Turing-level-and-below information processing, and indeed
not just information-processing as it’s formalized in the entire Arithmetic Hierarchy
(of which the Turing-computable portion is only a small part). (Akl’s writings never
allow underU forms of information-processing beyond AH, as far as I can tell.) We
therefore admit information-processing over uncountable sets. So far this is quite
imprecise, of course. But the disjunction can be made precise by appeal to formal
logics—as long aswe countenance formal logics ofmore andmore power, including
those that exceed information-processing in AH. Let me explain, at least to a degree.

We know that to capture the behavior and power of standard Turing machines,
and any rigorous form of information-processing at and below this level in AH (e.g.,
to harken back to the categories deployed above, register machines, the λ-calculus,
KU machines, etc.), we can use standard first-order logic LI . This is shown in
excruciating detail in traditional proofs of the undecidability of theoremhood inLI

(= the undecidability of the Entscheidungsproblem), wherein deciding theoremhood
in LI is (frequently) reduced to the halting problem [4]. Encapsulating, we know
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that a number-theoretic function f is Turing-computable if and only if, from a suit-
able theory Γ , representing the operation of a standard Turing machine and initial
information (including a given element a of the domain of f ),

Γ � φ f (a),

where φ f (a) is the formulae expressing the value that f returns on a as an argument,
and where � is interpreted in standard form, that is to indicate provability in some
typical proof theory forLI . (Such a proof theory underlies the single-step inference
shown in Fig. 4.)

For distinctions within the sub-space of Turing-computable functions that per-
tain to howmuch time it takes for Turingmachines and automata below them to com-
pute a relevant function (the sub-space that covers such categories as NP-complete),
that too can be captured byLI with suitable function symbols and relation symbols
to capture time and change, number of steps in a computation, and size of input. But
we also know that once we for instance move from finitary logic (andLI is of course
certainly finitary: all its formulae are of finite length, as are all its formal, object-
level proofs) to infinitary logic, we can quickly move to information-processing
that is beyond Turing machines.12 (In parallel, we know that such a move allows us
to surmount Gödelian incompleteness, since such results are based on Turing-level
axiom systems inLI , such as Peano Arithmetic.) For a quick example, note that the
“small” infinitary logic Lω1ω allows countably infinite disjunctions and conjunc-
tions, and countably infinite proofs. Using infinitary logics, we can build up coverage
of increasingly challenging functions to compute, where we express the computing
of a function g in terms of what is expressible and deducible in the relevant logic,
following the general recipe sketched above in the case of LI , where what is to be
proved is that from a declarative representation of a given argument a in g’s domain,
g(a) is what is returned. If we take this route, we can say that a universal comput-
ing framework, that is a framework to which can be accurately ascribed the relation
U for universal computation, is one which, given any well-defined function g and
input a, can prove g(a), in either logic L1, or L2, or L3, or . . ., where this is a
progression of increasingly powerful logics. I wonder what Akl would say about this
route. One thing certainly seems clear: This disjunctive, logicist route, without all
that much work, would yield a precise framework on which all the challenges in the
remarkably fertile and suggestive [1] can be modeled and thereby met. In fact, the
more rigorous and accurate is Akl’s reasoning in setting out a challenge, the easier
such modeling, for some logic Lk , becomes.

12Readers interested in learning more, can consult as a starting point the excellent [3].
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A Hierarchy for BPP// log� Based
on Counting Calls to an Oracle

Edwin Beggs, Pedro Cortez, José Félix Costa and John V Tucker

Abstract Algorithms whose computations involve making physical measurements
can be modelled by Turing machines with oracles that are physical systems and ora-
cle queries that obtain data from observation and measurement. The computational
power ofmanyof these physical oracles has been established using non-uniformcom-
plexity classes; in particular, for large classes of deterministic physical oracles, with
fixed error margins constraining the exchange of data between algorithm and oracle,
the computational power has been shown to be the non-uniform class BPP// log�.
In this paper, we consider non-deterministic oracles that can be modelled by ran-
dom walks on the line. We show how to classify computations within BPP// log� by
making an infinite non-collapsing hierarchy betweenBPP// log� andBPP. The hier-
archy rests on the theorem that the number of calls to the physical oracle correlates
with the size of the responses to queries.

1 Introduction

Consider algorithms that request and receive data from an external source in the
course of their computations. These algorithms abound and can be found in all sorts
of monitoring and control systems. We suppose these algorithms are modelled by
Turingmachines with oracles that are physical systems, andwhose oracle queries ask
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and obtain data bymeans of some process tomeasure a physical quantity. Essentially,
through a measurement procedure, the Turing machine will access a sequence of
approximations to a real number.

Starting in [5, 6], we began a theoretical investigation of such physical oracles,
focussing on classic deterministic physical experiments. To guide our thinking we
conceived an abstract experimenter using some physical equipment to undertake an
abstract experiment to measure a physical quantity. The Turing machine modelled
the experimental procedure and the data from the oracle modelled observations of
the equipment: see [5, 6, 10, 12, 13, 16] inter alia.

Technically, we examined what was involved in an algorithm requesting and
receiving data from a physical process, and especially interface properties to do with

(a) the error margins involved in the data: the queries could have infinite precision,
being exact or having finite but vanishingly small errors; or have a finite precision
that is a fixed error margin;

(b) the time taken by the algorithm to acquire the data: the queries need not take one
computational step or unit time, but may take time depending on the size of the
query.

We also placed complexity constraints on the computations, especially polynomial
time.

The computational power of many of these physical oracles has been established
using non-uniform complexity classes. These have the general form B/F consisting
of a complexity class B equipped with class F of special oracles called advice
functions. An advice function is a map f : N → Σ∗ that provides extra data f (n) to
the Turing machine when computing with inputs of size n ∈ N. Advice functions are
suitable for representing real numbers (in binary, say). Typically, we take B to be
the class P, defined by polynomial time deterministic Turing machines; or to be the
class BPP, defined by polynomial time Turing machines governed by fair probability
distributions. We take F to be based on logarithms.

Through a detailed investigation of protocols between analogue and digital com-
ponents of many types of system (see [8, 13]), we established the computational
power of these oracles as follows.

For infinite precision measurements, in deterministic polynomial time, the com-
putational power was shown to be P/ log�. However, in the more realistic case of
finite fixed precision measurements in deterministic polynomial time, the compu-
tational power was shown to be BPP// log�. This was done for a wide variety of
physical oracles and led to a thesis proposing BPP// log� as a limit to computation
[15]. The probabilistic form of BPP// log� is due to the use of probabilities to han-
dle fair choices of data from within the fixed-size error intervals of the deterministic
physical oracle. Probabilistic oracles are the subject of [4].

Our attempts to model measurement algorithmically addressed a longstanding
question, first formulated by Geroch and Hartle in their intriguing paper [20]: What
are the physically measurable numbers? Are the measurable numbers computable
numbers? Measurement is a scientific activity supported by a full theory developed
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throughout the last century as a chapter of mathematical logic (see [21]). Our com-
putational theory of measurement started in [9, 10] and focussed on the time needed
to make a measurement; here we consider the amount of data involved in making a
measurement.

The data provided by the oracle is constrained by

(i) the size of responses to queries, and
(ii) the frequency of calls to the oracle.

The size of the data can be controlled by the size of the values of the advice functions
|f (n)|. We will show that for BPP// log�, for inputs of size n, the amount of bits
translates into a modest number of calls to the oracle, which is poly-logarithmic in n.

In this paper, we also introduce the possibility of using physical oracles whose
behaviour is modelled stochastically, as one finds in statistical mechanics. Imagine
a physical experiment modelled by a random walk on the line, as discussed in [19].
The oracle is non-deterministic and can be connected to a Turing machine that can
be deterministic or non-deterministic: we will need both. Specifically, we will use
Turing machines and fair probabilistic Turing machines.

Let log(k) be the class of advice functions f : N → Σ∗ such that |f (n)| ∈
O(log(k)(n)). Let poly(log(k)) be the class of polynomial functions in log(k). We
prove the following:

Theorem 1 The class of sets decidable in polynomial time by RW fair probabilistic
Turing machines that can make up to poly(log(k)(n)) calls to the RW oracle, for
inputs of size n, is exactly BPP// log(k+1)�.

The hierarchy of complexity classes within BPP// log� we establish starts with
BPP// log� and approaches arbitrarily close to BPP.

We show strict boundedness, i.e., k ≥ 0, log(k+1) ≺ log(k). In particular, this is
true for k ≥ 1 and we have the following infinite descending chain

· · · ≺ log(4) ≺ log(3) ≺ log(2) ≺ log,

which can generate a hierarchy as in the figure.

Theorem 2 The classes of sets decided by RW fair probabilistic Turing machines
that can make up to

· · · � poly(log(3)(n)) � poly(log(2)(n)) � poly(log(n)) � poly(n)
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calls to the RW oracle coincides with the descending chain of sets

· · · � BPP// log(4)� � BPP// log(3)� � BPP// log(2)� � BPP// log� ,

respectively.

While measuring a physical magnitude, a slight amount of bits of the binary
representation of a real number, relative to the size of the input, can originate hyper-
computation.

It is striking the extent to which the class BPP// log� arises naturally in exploring
physical systems and in physically inspired computational models. However other
non-uniform classes have been found useful. The computational power of determin-
istic neural networks having access to real numbers in polynomial timewas proposed
to be P/poly in [24]. These results contrast with our many results involving P/ log�:
our reduction of power in deterministic time is due to the fact that measurement takes
time in non-linear systems, while in [24] the systems considered are piecewise linear.
However, inspired by the work in [24], the authors of [26] specify hardware presum-
ably designed to be capable of computing a non-decidable fragment BPP// log�. In
our view such systems will not support programming, since programming in such
a context will the introduction of a real number into the system with unbounded
precision. Eventually, such systems will be capable of emergent computation due to
arbitrary unknown reals (if real numbers exist in Nature) specifying their compo-
nents. Emergent computational activities might well be relevant in learning tasks.

2 Random Walk Oracles

2.1 Random Walk

Consider the random walk experiment (RWE) of having a particle moving along
an axis. The particle is sent from position x = 0 to position x = 1. Then, at each
positive integer coordinate, the particle moves right, with probability σ, or left, with
probability 1 − σ, as outlined in Fig. 1. If the particle ever returns to its initial position
x = 0, then it is absorbed. In this process, the particle takes steps of one unit, at time
intervals also of one unit, postulated to be the time step of a Turingmachine transition
(see [25]).

We are interested in the probability that the particle is absorbed (see [22]). Let
pi be the probability of absorption when the particle is at x = i. In our model, the

Fig. 1 Random walk on the
line with absorption at x = 0

0 1 2 3 4 5 · · ·

1− σ σ
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particle is launched from x = 0 but it only starts its randomwalk at x = 1. It is easy to
see that p1 = (1 − σ) + σp2. From x = 2, to be absorbed, the particle must initially
move from x = 2 to x = 1 (not necessarily in one step), and then from x = 1 to x = 0
(again, not necessarily in one step). Both movements are made, independently, with
probability p1, thus, p2 is just p21. More generally, we have pk = pk1. Therefore, the
equation for the unidimensional random walk with absorption at x = 0 is given by
the equation

p1 = (1 − σ) + σp21,

with solutions p1 = 1 and p1 = 1−σ
σ
. For σ = 1

2 , the solutions coincide and p1 = 1.
For σ < 1

2 , the second solution is impossible, because 1−σ
σ

> 1, so, we must have
p1 = 1. For σ = 1, the particle always moves to the right, so p1 = 0. Thus, for the
sake of continuity of p1, for σ > 1

2 , we must choose p1 = 1−σ
σ
. Consequently, we get

p1 =
{
1 if σ ≤ 1

2
1−σ
σ

if σ > 1
2

.

So, if σ ≤ 1
2 , with probability 1 the particle always returns, but the number of steps

is unbounded. In Fig. 2, we illustrate this situation, for the case σ = 1/4, giving the
possible locations of the particle, and the respective probabilities, after the first steps.
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Fig. 2 Diagram showing probabilities of the particle being at various distances from the origin, for
the case of σ = 1/4
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2.2 Machines with Random Walk Oracles

We will combine the RWE with both Turing machines and fair probabilistic Turing
machines. Probabilistic Turingmachines have been around since the 1950s and have a
number of equivalent formulations. For example, the machine may randomly choose
between the available transitions at each step with probability 1

2 . Perhaps the most
elegant and easiest way to describe them is to say that they have access to a fair
independent coin toss oracle, returning values ‘heads’ or ‘tails’ with probability 1

2 .
Whilst the definition of the machines can be shown to converge, the different criteria
in use for recognising strings do not.

Definition 1 Consider any form of Turing machine that gives probabilistic results,
e.g. a Turing machine with any form of random oracle. A set A ⊂ {0, 1}∗ is accepted
by such a Turing machineM in polynomial time if there is a γ < 1/2 so that for for
every input w, M halts in polynomial time and

• If w ∈ A, M accepts w with error probability bounded by γ;
• If w /∈ A, M rejects w with error probability bounded by γ.

For example, fair probabilistic Turing machines are used to define the class BPP
with the criterion that any given run of the algorithm, it has a probability of (say)
at most 1

3 of giving the wrong answer, whether the answer is accept or reject. Fair
probabilistic Turing machines are required for our main theorems.

Now, let us consider a Turing machine coupled with a random walk experiment,
as introduced in [19]. To use the RWE as an oracle, we admit that the probability
σ that the particle moves forward, encodes some advice. Unlike scatter machine
experiments in [1, 6, 12], the RWE does not need any parameters to be initialized,
i.e., the Turing machine does not provide the oracle with any dyadic rational, it just
“pulls the trigger” to start the experiment. We consider both a Turing machine with
added RWE oracle, a RW Turing machine, and a fair probabilistic Turing machine
with added RWE oracle, a RW fair probabilistic Turing machine.

For every unknown σ ∈ (0, 1), the time that a particle takes to be absorbed is
unbounded. We introduce a constant time schedule to bound the oracle consultation
time. If the particle is absorbed during that time, the finite control of the Turing
machine changes to the ‘yes’ state, otherwise, the finite control changes to the ‘no’
state. The experiment has two possible outcomes and a constant time schedule.

We analyse the probability of ‘yes’.
A path of the randomwalk is a possible sequence of moves that the particle makes

until it is absorbed. Note that all such paths are made of an even number of steps.
Paths of the random walk along the positive x-axis with absorption at x = 0 are
isomorphic to a specific set of well-formed sequences of parentheses. For instance,
in a random walk of length 6, the particle could behave as ((())) or (()()), where a
movement to the right is represented by “(” and a movement to the left is represented
by “)”. The first opening parenthesis corresponds to the first move of the particle from
x = 0 to x = 1. The probability of answer in 6 steps is the sum of two probabilities
corresponding to the two possible paths. All paths of a certain length have the same
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probability; namely, for every even number n, the probability of each path of length
n is

σ
n
2 −1(1 − σ)

n
2 .

Therefore, we only need to know the number of possible paths for each length, i.e.,
the number of well-formed sequences of parentheses satisfying some properties. In
[17], the authors generalize the Catalan numbers and prove the following interesting
result:

Proposition 1 (Blass and Braun [17]) For every �,w ∈ Z, � ≥ w ≥ 0, let X be
the number of strings consisting of � left and � right parentheses, starting with w

consecutive left parentheses, and having the property that every nonempty, proper,
initial segment has strictly more left than right parentheses. Then

X = w

2� − w

(
2� − w

�

)

Note that whenw = � = 0, the undefined fractionw/(2� − w) is to be interpreted
as 1, since this gives the correct value X = 1, corresponding to the empty string of
parentheses. From this proposition, we derive the probability q(t) that the particle is
absorbed in even time t + 1, for t ≥ 1. It suffices to take � = (t + 1)/2 and w = 1:

q(t) = 1

t

(
t

t+1
2

)
(1 − σ)

t+1
2 σ

t+1
2 −1.

Therefore, the probability that the particle is absorbed during the time schedule T is
given by

F(σ,T) =
T−1∑
t=1
t odd

1

t

(
t

t+1
2

)
(1 − σ)

t+1
2 σ

t+1
2 −1.

This is the probability of getting the outcome ‘yes’ from the oracle. Figure3 allows
us to understand the behaviour of the probability F(σ,T) as a function of σ. We see
that, as T increases, F(σ,T) increases as well, since the longer the machine waits,
the more likely it is that a particle is absorbed. We can also see that as T approaches
infinity, F(σ,T) approaches the probability p1 that the particle is absorbed, which
makes sense, since p1 represents a probability of absorption with unbounded time.
For analytical reasons, we will consider only σ ∈ [ 12 , 1], corresponding to a variation
of p1 from 1 to 0. Note that we could consider any interval contained in [0, 1]. For
every T , this probability is a function of σ that satisfies the following conditions:

(a) F(•,T) ∈ C1([ 12 , 1]),
(b) for every σ ∈ [ 12 , 1], F ′(σ,T) 
= 0 and
(c) n bits of F(•,T) are computable in time O(2n).
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Fig. 3 Graphs of F(σ,T) for T = 2, T = 10 and T = 100

These conditions are the basis of an axiomatisation SPO of stochastic physical oracles
in the forthcoming paper [4], and from which take the following theorem:

Theorem 3 For every set A, A ∈ BPP// log� if, and only if, it is decidable by a RW
Turing machine in polynomial time.

3 Computational Resources

Consider that we have a limiting number of particles that the RW Turing machine
can launch, i.e., a bound in the number of oracle calls that the machine can make.
We study now how the precision in the measurement of σ depends on the number of
oracle calls.

Theorem 4 A RW Turing machine, or a RW fair probabilistic Turing machine, that
can make up to ξ(n) calls to the RW oracle, on input w of size |w| = n, can read
1
2 log(ξ(n)) + c bits of the unknown parameter σ, where c is a fixed constant, in
polynomial time.

Proof The proof is common to both types of Turing machine. We know that each
particle has probability of absorptionF(σ,T) in time T . Thus, if wemake ξ(n) oracle
calls on an input of size n, the number of times α that the experiment returns ‘yes’ is
a random variable with binomial distribution. Let us consider X = α/ξ(n), the ran-
dom variable that represents the relative frequency of absorption (‘yes’).We have the
expected value E[X] = E[α]/ξ(n) = ξ(n)F(σ,T)/ξ(n) = F(σ,T) and the variance
V[X] = V[α]/ξ(n)2 = ξ(n)F(σ,T)(1 − F(σ,T))/ξ(n)2 = F(σ,T)

(1 − F(σ,T))/ξ(n). Chebyshev’s inequality states that, for every δ > 0,

P(|X − E[X]| > δ) ≤ V[X]
δ2

≤ F(σ,T)(1 − F(σ,T))

ξ(n)δ2
≤ F(σ,T)

ξ(n)δ2
.



A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 47

Let k be the number of bits of σ to be read.1 This means that we have to find σ
up to an error of 2−k−5. To do this, we first estimate the probability F(σ) up to an
error δ, and then run a bisection algorithm to find the value of σ (this may require
polynomial time). The value of δ needed to ensure the required accuracy ofσ depends
on the lower bound of the derivative of F. To allow for this we set δ = C 2−k for
some C > 0, and then

P(|X − F(σ,T)| > C 2−k) ≤ 22kC−2 F(σ,T)

ξ(n)
≤ 22kC−2

ξ(n)
,

and if we want an error probability of at most γ, we set

22kC−2

ξ(n)
≤ γ.

Applying logarithms, we get

2k − 2 log(C) − log(ξ(n)) ≤ log(γ) ,

therefore,

k ≤ log(ξ(n)) +
constant value︷ ︸︸ ︷

log(γ) + 2 log(C)

2
.

For the RW Turing machine, for every σ, F(σ,T) increases with T and the term
log(1/F(σ,T)) decreases; contrary to what one might expect, for every input word
w of size n, the longer we wait for the particles to return, the less precision we can
obtain for σ.2 We take the particular case that in every oracle call the machine will
wait exactly two time steps for the particle to return (T = 2). Therefore, F(σ, 2) =
(1 − σ). Now, with k ∈ O(log(ξ(n))), we have

P(|(1 − X) − σ| = P(|X − (1 − σ)| > 2−k−5) ≤ γ.

With value 1 − X we can estimate σ. �

This result suggests a non-collapsing hierarchy of classes can be defined by the
magnitude of the number of queries to the oracle. As we want this to be a hierarchy
built on BPP and within BPP// log�, we must ensure that all of the machines we
consider can compute BPP. Thus we consider a RW oracle added to a probabilisitic
Turing machine, to give an RW fair probabilistic Turing machine.

1It is proved in [1, 13] that, for every σ ∈ C3 and for every dyadic rational z, if |σ − z| ≤ 2−k−5,
then the binary expansions of x and z coincide on the first k bits.
2This statement makes sense, since, if we wait too long, then we will lose information about the
absorption time of the particle.
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4 Lower and Upper Bounds

We encode advice functions in order to compare RW Turing machines with Turing
machines with advice. We define the iterated logarithmic functions log(k)(n):

• log(0)(n) = n;
• log(k+1)(n) = log(log(k)(n)).

Similarly, we define the iterated exponential exp(k)(n):

• exp(0)(n) = n;
• exp(k+1)(n) = 2exp

(k)(n).

The iterated exponential is a well known bound on the number of computation
steps of elementary functions (e.g. see [23]). For every k ∈ N, the functions log(k) and
exp(k) are inverse of each other. Let log(k) also denote the class of advice functions
f such that |f (n)| ∈ O(log(k)(n)).

Let c(w) be the encoding of a single word w. We define the encoding y(f ) =
lim y(f )(n) for an advice function f ∈ log(k)� in the following way:

• y(f )(0) = 0.c(f (0));
• if f (n + 1) = f (n)s, then

y(f )(n + 1) =
{
y(f )(n)c(s) if n + 1 is not of the form exp(k)(m)

y(f )(n)c(s)001 if n + 1 is of the form exp(k)(m)

So, for example, if we want to encode a function f ∈ log log�, we just have to place
the separator 001 when n + 1 is of the form 22

m
, for some m ∈ N.

For every k and for every f ∈ log(k)�, we have that y(f ) ∈ C3. Also, for every n,
in order to extract the value of f (n), we only need to find the number m ∈ N such
that exp(k)(m − 1) < n ≤ exp(k)(m) and then read y(f ) in triplets, until we find the
(m + 1)-th separator. Then, it is only needed to ignore the separators and replace
each 100 triplet by 0 and each 010 triplet by 1. Since f ∈ log(k)�, we know that
|f (exp(k)(m))| = O(log(k)(exp(k)(m))) = O(m). We conclude that 3O(m) + 3(m +
1) = O(m) bits are enough to get the value of f (exp(k)(m)) and, consequently,
O(log(k)(n)) bits to get the value of f (n).

Definition 2 Denote by poly(g(n)) the class of functions f : N → N for which there
is a polynomial p(x) so that f (n) ≤ p(g(n)) for all n ∈ N.

We can use this to prove the following result:

Theorem 5 (Lower bounds) For every k, every set in BPP// log(k+1)� is decidable
in polynomial time by a RW fair probabilistic Turing machine that can make up to
ξ(n) ∈ poly(log(k)(n)) RW oracle calls on inputs of size n.

Proof Let A be an arbitrary set in BPP// log(k+1)� and M a probabilistic Turing
machine with advice f ∈ log(k+1)�, which decides A in polynomial time with error
probability bounded by γ1 ∈ (0, 1/2).
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LetM′ be a RW fair probabilistic Turing machine with unknown parameter y(f ),
the encoding of f , and let γ2 ∈ R be such that γ1 + γ2 < 1/2. Let w be a word
such that |w| ≤ n. Theorem 4 assures thatM′ can estimate, up to adding constants,
1
2 log(ξ(n))) = 1

2 log
(
(log(k)(n))m

)
(which for m large gives an arbitrary constant

multiple of log(k+1)(n)) bits of y(f ), and, thus,M′ can read f (n) in scheduled protocol
time T = 2 and in machine polynomial time, with an error probability bounded by
γ2. We have that P(‘yes’) = 1 − σ and P(‘no’) = σ. By definition, the machine can
also make a sequence of fair coin tosses of polynomial length. Therefore, M′ can
decide A in polynomial time, with error probability bounded by γ1 + γ2 < 1/2. �

Taking the special case k = 0, we have the following complementary result to
Theorem 3:

Corollary 1 Every set in BPP// log� is decidable in polynomial time by a RW fair
probabilistic Turing machine that can make up to ξ(n) ∈ poly(n) RW oracle calls on
inputs of size n.

In order to state and prove upper bounds, we need the following auxiliary result.
This uses the query tree T , a tree with two branches—‘yes’ and ‘no’—every time a
query is made. The probability of taking a path down the tree is just the product of
the probabilities of the edges taken at every vertex.

Theorem 6 Let A be the set decided by a RWTuringmachine, or RW fair probabilis-
tic Turing machine,M with unknown parameter σ that can make up to ξ(n) calls to
the RW oracle, for inputs of size n, with error probability bounded by γ < 1/4. IfM′
is an identical RW machine, except with unknown parameter σ̃ and the probability
of absorption F̃, such that

|F(σ,T) − F̃(σ̃,T)| <
1

8ξ(n)
,

then, for any word of size ≤ n, the probability ofM′ making an error when deciding
A is ≤ 3/8.

Proof We know that M and M′ make at most ξ(n) calls to the oracle, in such a
way that the query tree T associated to both, has maximum depth ξ(n). Let w be
of size not greater than n. Let D be the assignment of probabilities to the edges of
T corresponding to the unknown parameter σ and ‘yes’ probability F(σ,T) and
D′ be the assignment of probabilities given by the unknown parameter σ̃ and ‘yes’
probability F̃(σ̃,T). Since |F(σ,T) − F̃(σ̃,T)| < 1/8ξ(n), the difference between
any particular probability is at most

κ = 1

8ξ(n)
.

Invoking Proposition 11 of [1], we have two different cases:
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• w /∈ A: In this case, an incorrect result corresponds toM′ accepting w. The prob-
ability of acceptance PA(T ,D′) forM′ is

PA(T ,D′) ≤ PA(T ,D) + |PA(T ,D′) − PA(T ,D)|
≤ γ + ξ(n)κ

≤ γ + ξ(n)
1

8 ξ(n)
= 1

4
+ 1

8
= 3

8

• w ∈ A: In this case, an incorrect result corresponds toM′ rejecting w. The prob-
ability of rejection PR(T ,D′) for M′ is

PR(T ,D′) ≤ PR(T ,D) + |PR(T ,D′) − PR(T ,D)|
≤ γ + ξ(n)κ

≤ γ + ξ(n)
1

8 ξ(n)
= 1

4
+ 1

8
= 3

8

In both cases, the error probability is bounded by 3/8. �

Let F(σ,T)�m denote the firstm bits of the probability F(σ,T). The next theorem
is a corollary of the previous:

Theorem 7 Let A be the set decided by RW fair probabilistic Turing machine M
with unknown parameter σ that can make up to ξ(n) calls to the RW oracle, for
inputs of size n, with error probability bounded by γ < 1/4. If Mn is an identical
fair probabilistic Turing machine, with unknown parameter σ̃, but with the exception
that the probability that the oracle returns ‘yes’ is given by F(σ,T)�log ξ(n)+3, then
Mn decides the same set asM in the same time, but with error probability bounded
by 3/8.

Now we state and prove upper bounds.

Theorem 8 (Upper bounds) For every k, every set decided in polynomial time by a
RW Turing machine, or RW fair probabilistic Turing machine, that can make up to
ξ(n) = poly(log(k)(n)) calls to the RW oracle, where n is the size of the input, is in
BPP// log(k+1)�.

Proof Let A be a set decided in polynomial time p(n) and with error probability
bounded by 1/4 by a RW Turing machine M with unknown parameter σ that can
make up to ξ(n) ∈ poly(log(k)(n)) calls to the oracle. We specify a probabilistic
Turing machine M′ with advice f (n) = F(σ,T)�log ξ(n)+3 to decide A. We have f ∈
log(k+1)�.

By Theorem 7, we know that an RW Turing machine with ‘yes’ probability f (n)
decides the same as M for words of size ≤ n, but with error probability ≤ 3/8.
The value f (n) = F(σ)�log ξ(n)+3 is a dyadic rational with denominator 2log ξ(n)+3.
Thus, m = 2log ξ(n)+3f (n) ∈ [0, 2log ξ(n)+3)] is an integer. Consider κ = log ξ(n) + 3
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fair coin tosses, interpreted as a sequence of bits. The machine M′ then tests if
τ1τ2 . . . τk < m, where τ1τ2 . . . τk is now interpreted as an integer. If the test is true,
themachine returns ‘yes’, otherwise it returns ‘no’. The probability of returning ‘yes’
is m/2k = f (n), as required. The time taken is polynomial in n. �

From Theorems 4 and 8, we get the following corollary:

Theorem 9 The class of sets decidable in polynomial time by RW fair probabilistic
Turing machines that can make up to poly(log(k)(n)) calls to the RW oracle, for
inputs of size n, is exactly BPP// log(k+1)�.

As we want the RW Turing machines to run in polynomial time, the maximum
number of oracle calls that we can allow is polynomial. For that bound, the corre-
sponding class is BPP// log�. Thus, if we restrict more and more the number of
queries to the oracle, we can obtain a fine structure of BPP// log�. Observe that if k
is a very large number, the machine is allowed to make only few calls to the oracle,
but the advice is smaller, so the number of bits that the machine needs to read is also
smaller.

5 The Hierarchy

We explore some properties of advice classes (see [3, 7, 24]).
If f : N → Σ∗ is an advice function, then we use |f | to denote its size, i.e.,

the function |f | : N → N such that |f |(n) = |f (n)|, for every n ∈ N. For a class of
functions, F , |F | = {|f | : f ∈ F}.
Definition 3 A class of advice functions is said to be a class of reasonable advice
functions if:

1. for every f ∈ F , |f | is computable in polynomial time;
2. for every f ∈ F , |f | is bounded by a polynomial;
3. for every f ∈ F , |f | is increasing;
4. |F | is closed under addition and multiplication by positive integers;
5. for every polynomial p of positive integer coefficients and every f ∈ F , there

exists g ∈ F such that |f | ◦ p ≤ |g|.
Definition 4 Let r and s be two total functions. We say that r ≺ s if r ∈ o(s). Let F
and G be classes of advice functions. We say that F ≺ G if there exists a function
g ∈ G such that, for every f ∈ F , |f | ≺ |g|.

We have log(k+1) ≺ log(k), for all k ≥ 0. Now, we just need to know the relation
between the non-uniform complexity classes of BPP, induced by the relation ≺ in
the advice classes. Remember that a set is said to be tally if it is a language over
an alphabet of a single symbol (e.g. {0}). Now, consider the set of finite sequences
over the alphabet Σ ordered first by size and then alphabetically. The characteristic
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function of a set A ⊆ Σ∗ is the unique infinite sequence χA : N → {0, 1} such that,
for every n, χA(n) is 1 if, and only if, the n-th word in that order is in A. The
characteristic function of a tally set A is a sequence where the i-th bit is 1 if, and only
if, the word 0i is in A. The following theorem generalizes the related theorem of [3,
7, 24], where it is proved for the deterministic case.

Theorem 10 If F and G are two classes of reasonable sublinear advice functions3

such that F ≺ G, then BPP//F � BPP//G.
Proof Trivially, BPP//F ⊆ BPP//G. Let linear be the set of advice functions of
size linear in the size of the input and η.linear be the class of advice functions of size
ηn, where n is the size of the input and η is a number such that 0 < η < 1. There is an
infinite sequence γ whose set of prefixes is in BPP//linear but not in BPP//η.linear
for some η sufficiently small.4 Let g ∈ G be a function such that, for every f ∈ F ,
|f | ≺ |g|. We prove that there is a set in BPP//g that does not belong to BPP//f , for
any f ∈ F .

A tally set T is defined in the following way: for each n ≥ 1,

βn =
{

γ�|g|(n) 0n−|g|(n) if |g|(n) ≤ n
0n otherwise

.

T is the tally set with characteristic string β1β2β3 . . .. With advice γ�|g|(n), it is easy
to decide T , since we can reconstruct the sequence β1β2 . . . βn, with (n2 + n)/2 bits,
and then we just have to check if its n-th bit is 1 or 0. We conclude that T ∈ P/g ⊆
BPP//g.

We prove that the same set does not belong to BPP//f . Suppose that some prob-
abilistic Turing machine M with advice f , running in polynomial time, decides T
with probability of error bounded by5

2− log(4|g|(n)) = 1

4|g|(n)
Since |f | ∈ o(|g|), then, for all but finitely many n, |f |(n) < η|g|(n), for arbitrarily
small η, meaning that we can compute, for all but finitely many n, |g|(n) bits of γ
using an advice of length η.|g|(n), contradicting the fact that the set of prefixes of γ is
not in BPP//η.linear. The reconstruction of the binary sequence γ�|g|(n) is provided
by the following procedure:

3F is a class of reasonable sublinear advice functions if it is a class of reasonable advice functions
such that, for every f ∈ F , |f | ∈ o(n)..
4We can take for γ the Chaitin Omega number, �.
5E.g. see Proposition 6.17 in [2]. The probability of error of a given probabilistic machine that
decides T in polynomial time can be reduced below any fixed value just by iteration.
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The queries are made simulating machine M which is a probabilistic Turing
machine with error probability bounded by 2− log(4|g|(n)) = 1

4|g|(n) . Thus, the proba-
bility of error of M′ is bounded by

1

4|g|( n2−n
2 )

+ · · · + 1

4|g|( n2−n
2 + |g|(n)) .

As |g| is increasing, the error probability is bounded by

1

4|g|( n2−n
2 )

× |g|(n),

which, for n ≥ 3, is bounded by

1

4|g|(n) × |g|(n) = 1

4
.

�

As we are considering prefix advice classes, it is useful to derive the following
corollary:

Theorem 11 If F and G are two classes of reasonable sublinear advice functions
such that F ≺ G, then BPP//F� � BPP//G�.

Proof The proof of Theorem10 is also a proof that BPP//F � BPP//G�, because
the advice functionused isγ�|g|(n),which is a prefixadvice function. SinceBPP//F� ⊆
BPP//F , the statement follows. �

We have already seen that, for all k ≥ 0, log(k+1) ≺ log(k). In particular, this is
true for k ≥ 1 and we have the following infinite descending chain

· · · ≺ log(4) ≺ log(3) ≺ log(2) ≺ log .

Therefore, by Theorem 11, we have also the descending chain of sets

· · · � BPP// log(4)� � BPP// log(3)� � BPP// log(2)� � BPP// log�,
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that, according with Theorem 9, coincide with the classes of sets decided by RW fair
probabilistic Turing machines that can make up to

· · · � poly(log(3)(n)) � poly(log(2)(n)) � poly(log(n)) � poly(n)

calls to the RW oracle, respectively.

6 Conclusion

Summary. We introduced RW fair probabilistic Turing machine specified as fair
probabilistic Turing machines having access to a random walk experiment on a line.
We then proved that the class of sets decidable in polynomial time by RW fair
probabilistic Turing machines that can make up to poly(log(k)(n)) calls to the oracle
is exactly BPP// log(k+1)�, where log(k) is the class of advice functions f such that
|f (n)| ∈ O(log(k)(n)).

We proved that, if F and G are two classes of reasonable sublinear advice func-
tions such that F ≺ G, then BPP//F � BPP//G. Although this result was already
discussed for the deterministic case in [3, 7, 24], the probabilistic case seems not to
have been considered.

Then, we presented a fine structure of BPP// log� based on counting oracle calls:

· · · � BPP// log(4)� � BPP// log(3)� � BPP// log(2)� � BPP// log�,

that coincide with the structure of classes of sets decided by RW fair probabilistic
Turing machine that can make up to

· · · � poly(log(3)(n)) � poly(log(2)(n)) � poly(log(n)) � poly(n)

calls to the RW oracle, respectively.
Open Problem. Together with the transfinite chain of advice classes presented in [7,
18], we also have a transfinite chain of non-uniform probabilistic classes:

· · · � BPP// log(2ω)� � · · · � BPP// log(ω)� � · · · � BPP// log(2)� � BPP// log�.

In fact, the chain of non-uniform classes can be continued, where log(ω) =⋂
k∈N log(k) is a non-empty class (as shown in [7, 18] for diverse transfinite classes).

However, we do not know if there is a correspondence between these complex-
ity classes and the classes decided by RW fair probabilistic Turing machines with
bounded number of oracle calls, since we only proved such a correspondence for
advice classes of the form log(k), with k ∈ N. At present, we do not know how to
encode a function f ∈ log(ω)� into a real number.
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On Computable Numbers, Nonuniversality,
and the Genuine Power of Parallelism

Selim G. Akl and Nancy Salay

Abstract We present a simple example that disproves the universality principle.
Unlike previous counter-examples to computational universality, it does not rely
on extraneous phenomena, such as the availability of input variables that are time
varying, computational complexity that changes with time or order of execution,
physical variables that interact with each other, uncertain deadlines, or mathematical
conditions among the variables that must be obeyed throughout the computation. In
the most basic case of the new example, all that is used is a single pre-existing global
variable whose value is modified by the computation itself. In addition, our example
offers a new dimension for separating the computable from the uncomputable, while
illustrating the power of parallelism in computation.

1 Introduction

The universality principle is the cornerstone of computing and the reason for the rapid
ascendancy of the discipline as the most influential science of our time. According
to this principle, any general-purpose computer A can execute, through simulation,
and more or less efficiently, any computation that is possible on any other general-
purpose computer B [42]. In essence, the principle expresses a deep and important
insight into the relationship between computability and universality. Perspicuously
stated, it says that a function is computable if and only if its value can be obtained
by simulation on any general-purpose computer [1, 26, 29, 36–38, 42, 44, 45, 56].
Here, general-purpose computers, our domain of discourse, are to be understood
as ones that are defined and fixed once and for all; the capabilities of a general-
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purpose computer are never modified in order to fit the computational problem to be
solved. In theoretical computing, general-purpose computers are represented using
computational models such as the Turing Machine, the Random Access Machine
(RAM), the Cellular Automaton, and the like [54]. In practice, they are the processors
in our tablets, our mobile phones, our cars, and so on. It follows from the universality
principle that any function that can be evaluated on any general-purpose computer is
a computable function. In other words, being universally simulatable is a sufficient
condition of computability. It also follows from this principle that a function that is
not universally simulatablemust not be computable. In otherwords, being universally
simulatable is a necessary condition of computability. A function that could not be
evaluated on some general-purpose computer, but could, nevertheless, be computed
by another, would be a counter-example to the necessity clause of the universality
principle andwould showus that the connection between computability and universal
simulatability is weaker than is generally assumed: simulatability is sufficient for
computability, but it is not necessary; that is, a function can be computable in some
contexts, but not in all contexts.

The universality principle does in fact hold for conventional computations, such
as, for example, sorting into non-decreasing order a list of numbers that are given
in arbitrary order, searching a list for a given datum, numerical computation, text
processing, and so on. To illustrate, consider the following parallel algorithm for
sorting a sequence S = g0, g1, . . . , gn−1 of n distinct integers on a linear array of
processors p0, p1, . . . , pn−1. Processor pi contains gi and can communicate with
its two neighbours pi−1 and pi+1 (except for p0 and pn−1 which have only one
neighbour each, namely, p1 and pn−2, respectively). In the “compare and swap if
needed” operation of the algorithm, processors pi and pi+1 compare their integers,
placing the smaller in pi and the larger in pi+1.

Parallel Sort
for k = 0 to n − 1 do
for i = 0 to n − 2 do in parallel
if i mod 2 = k mod 2
then pi and pi+1 compare and swap if needed
end if

end for
end for. �

Algorithm Parallel Sort completes the sort in O(n) time [3]. If it so happens that
only one processor, namely p0, is available, then the parallel algorithm can be easily
simulated by having the single processor methodically imitate the operations of the
n processors. The sequential solution uses an array S to store the sequence to be
sorted. Initially, S[i] contains gi , for i = 0, 1, . . . , n − 1. The algorithm is given in
what follows. In it, the operation “compare S[i] and S[i + 1] and swap if needed”
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compares the two integers currently in S[i] and S[i + 1], placing, as a result, the
smaller in S[i] and the larger in S[i + 1].

Sequential Sort
for k = 0 to n − 1 do
for i = 0 to n − 2 do
if i mod 2 = k mod 2
then compare S[i] and S[i + 1] and swap if needed
end if

end for
end for. �

Algorithm Sequential Sort completes the sort in O(n2) time (clearly not the best
sorting algorithm sequentially, but a sufficient illustration of the idea of simulation
for our purposes).

But here’s the rub: simulation is always feasible only for conventional computa-
tions. Several classes of unconventional computations have been uncovered recently
for which simulation is not always possible and, consequently, for which univer-
sality does not hold. These classes include computations that involve time-varying
variables, time-varying computational complexity, rank-varying computational com-
plexity, interacting variables, uncertain time constraints, mathematical constraints,
and so on [11–18]. While these unconventional computations can be executed suc-
cessfully on certain computers, they cannot be simulated on a unique fixed computer.
Because simulation is not always possible, the universality principle as currently
understood is false. This conclusion is referred to as nonuniversality in computation
[6–10].

Let time be divided into discrete time units. The nonuniversality result is usually
stated as follows: no computerU can be universal if it is capable of only a finite and
fixednumber of basic arithmetic and logical operations, such as addition, comparison,
exclusive-or, and so on, per time unit.

Nonuniversality Proof: Assume that computerU can perform D(i) operations during time
unit i of a computation, for i = 0, 1, . . . For any computation C requiring E(i) operations
during time unit i , where E(i) > D(i) for at least one i ,U will fail to successfully complete
C . Therefore, U cannot be universal. Note that C is computable on another computer U ′
capable of E(i) operations during time unit i . However, U ′, in turn, will be defeated by
another computation C ′ requiring F(i) operations during time unit i , where F(i) > E(i),
for at least one i , and consequently U ′ cannot be universal either.

One example of such a computation C calls for sorting an input sequence of ele-
ments, while imposing an extra condition to be satisfied by any candidate algorithm.
Thus, in this unconventional version of the standard sorting problem presented ear-
lier in this section, a sequence S = g0, g1, . . . , gn−1 of n distinct integers is given. It
is required to transform the sequence S in situ into a sequence S′ = g′

0, g
′
1, . . . , g

′
n−1



60 S.G. Akl and N. Salay

whose elements are the same as those of S, with the difference that, at the end
of the computation, g′

0 < g′
1 < g′

2 < · · · < g′
n−2 < g′

n−1. So far, this is the classic
sorting problem. The unconventional variant adds a new requirement: at no time,
once the sorting process has begun, should there be three consecutive elements of
an intermediate sequence S′′ = g′′

0 , g
′′
1 , . . . , g

′′
n−1, such that g′′

i > g′′
i+1 > g′′

i+2, for
i = 0, 1, . . . , n − 3. A complete description of this example, and its implications
can be found in [14]. It suffices to note here that algorithm Parallel Sort succeeds
in carrying out this computation for all input sequences S of size n, while algo-
rithm Sequential Sort fails when presented with a sequence S = g0, g1, . . . , gn−1

in which g0 > g1 > g2 > · · · > gn−2 > gn−1. A parallel computer with fewer than
n − 2 processors also fails to solve this problem.

Every reasonable model of computation is, by definition, capable of only a finite
and fixed number of operations per time unit. The same is obviously true for any
practical computer which is built once and for all; it too can only perform a finite
(and fixed) number of operations per time unit. Given the nonuniversality proof, it
follows that unless the unreasonable assumption is made that a computer is capable
at the outset of an infinite number of operations per time unit, universality cannot be
achieved by any computer [6–18, 46–51].

In this paper we present an even stronger result: there are computable functions
that are not computable universally, even on systems capable of an infinite number
of operations per time unit, so long as the general purpose computers in question
are constrained to perform operations sequentially. This is supported by the simplest
counter-example to the universality principle of which we are aware. As a bonus, the
counter-example that we propose illustrates the true, often unappreciated, power of
the idea of parallelism in computation: parallelism does not just speed up sequential
computations; it makes certain computations possible. An example of the lack of
appreciation of what parallelism brings to computing is the Speedup Theorem and
specifically its ‘proof’ [2, 35, 39–41]. This theorem states that the best sequential
(that is, single-processor computer) solution to a given problem P can be sped up, at
most, by a factor of n if an n-processor parallel computer is used instead. The proof
goes as follows.

Let t1 be the running time of the best sequential algorithm for P , and let tn be the running
time of a parallel algorithm. Assume that the speedup t1/tn is larger than n. In that case
we can simply simulate the parallel algorithm on a single processor, resulting in a running
time of n × tn < t1, which is impossible, since t1 is already, by definition, the best possible
sequential running time. The assumption is therefore false and t1/tn cannot be larger than n.

A demonstration of the fallacy of this ‘theorem’, through several counter-examples
that achieve speedups exponential in n, is provided in [3, 4], where a number of
additional references can also be found. Even in popular science writing, claims can
be found to the effect that parallel computing can do no more, in principle, than
sequential computing [52].

The remainder of this paper is organized as follows. Our counter-example is
described in Sect. 2. Some consequences of our result are derived in Sect. 3. In
Sect. 4 we generalize our counter-example using two different models of parallel
computation. Conclusions are offered in Sect. 5.
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2 The Global Variable Paradigm

Our computation, call it C0, consists of two distinct and separate processes P0 and
P1 operating on a global variable x . The variable x is time-critical in the sense
that its value throughout the computation is intrinsically related to real (external or
physical) time. Actions taken throughout the computation, based on the value of x ,
depend on x having that particular value at that particular time. Here, time is kept
internally by a global clock. Specifically, the computer performingC0 has a clock that
is synchronized with real time. Henceforth, real time is synonymous with internal
time. In this framework, therefore, resetting x artificially, through simulation, to a
value it had at an earlier time is entirely insignificant, as it fails to meet the true
timing requirements of C0. At the beginning of the computation, x = 0.

Let the processes of the computation C0, namely, P0 and P1, be as follows:

P0 : if x = 0 then x ← x + 1 else loop forever end if .

P1 : if x = 0 then read y; x ← x + y; return x else loop forever end if .

In order to better appreciate this simple example, it is helpful perhaps to put it in
some familiar context. Think of x as the altitude of an airplane and think of P0 and
P1 as software controllers actuating safety procedures that must be performed at this
altitude. The local nonzero variable y is an integral part of the computation; it helps
to distinguish between the two processes and to separate their actions.

The question now is this: on the assumption that C0 succeeds, that is, that both
P0 and P1 execute the “then” part of their respective “if” statements (not the “else”
part), what is the value of the global variable x at the end of the computation, that is,
when both P0 and P1 have halted?

We examine two approaches to executing P0 and P1:

1. Using a single processor: Consider a sequential computer, based, for example,
on the RAM model of computation [24], equipped, by definition, with a single
processor p0. The processor executes one of the two processes first. Suppose it
starts with P0: p0 computes x = 1 and terminates. It then proceeds to execute P1.
Because now x �= 0, p0 executes the nonterminating computation in the “else”
part of the “if” statement. The process is uncomputable and the computation fails.
Note that starting with P1 and then executing P0 would lead to a similar outcome,
with the difference being that P1 will return an incorrect value of x , namely y,
before switching to P0, whereby it executes a nonterminating computation, given
that now x �= 0.

2. Using two processors: The two processors, namely, p0 and p1, are part of a
shared memory parallel computer, based, for example, on the Concurrent-Read
Exclusive-Write Parallel Random Access Machine (CREW PRAM) model of
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computation [3]. In this model, two or more processors can read from, but not
write to, the same memory location simultaneously. In parallel, p0 executes P0
and p1 executes P1. Both terminate successfully and return the correct value of
x , that is, x = y + 1.

Two observations are in order:

1. The first concerns the sequential (that is, single-processor) solution. Here, no ex
post facto simulation is possible or evenmeaningful. This includes legitimate sim-
ulations, such as executing one of the processes and then the other, or interleaving
their executions, and so on. It also includes illegitimate simulations, such as reset-
ting the value of x to 0 after executing one of the two processes, or (assuming
this is feasible) an ad hoc rewriting of the code, as for example,
if x = 0 then x ← x + 1; read y; x ← x + y; return x else loop forever end if .
and so on. To see this, note that for either P0 or P1 to terminate, the then operations
of its if statement must be executed as soon as the global variable x is found to
be equal to 0, and not one time unit later. It is clear that any sequential simulation
must be seen to have failed. Indeed:

• A legitimate simulation will not terminate, because for one of the two
processes, x will no longer be equal to 0, while

• An illegitimate simulation will “terminate” illegally, having executed the
“then” operations of one or both of P0 or P1 too late.

2. The second observation follows directly from the first. It is clear that P0 and P1
must be executed simultaneously for a proper outcome of the computation. The
parallel (that is, two-processor) solution succeeds in accomplishing exactly this.

Finally, a word about the role of time. Real time, as mentioned earlier, is kept by a
global clock and is equivalent to internal computer time. It is important to stress here
that the time variable is never used explicitly by the computationC0. Time intervenes
only in the circumstance where it is needed to signal that C0 has failed (when the
“else” part of an “if” statement, either in P0 or in P1, is executed). In other words,
time is noticed solely when time requirements are neglected.

3 Consequences

The two-process computation C0 of Sect. 2 shows that no sequential (that is,
uniprocessor) computer can ever be universal. Even if it is given an unbounded
amount of memory and an unlimited amount of time (like a Turing Machine, for
example), processor p0 fails to solve the problem. Even if it is permitted interaction
with the outside world (unlike a Turing Machine), p0 fails. Finally, and most impor-
tantly for our purposes in this chapter, even if p0 is capable of an infinite number
of sequential operations per time unit (like an Accelerating Machine [33] or, more
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generally, a Supertask Machine [27, 30, 58]), it still fails to meet the requirements
of the computation C0.

Notice that the parallel (that is,multiprocessor) computer succeeded in performing
C0 satisfactorily. This demonstrates an important and often overlooked feature of
parallelism: far from being simply a faster alternative to sequential computing, it is
essential for the success of certain inherently parallel computations [18, 19, 46–51].
The two-process problem is uncomputable by a sequential computer and computable
by a parallel one. Thus, the example not only serves to make the nonuniversality
result more general and therefore stronger, it also offers a new way to distinguish
computability from uncomputability via sequential and parallel computing.

Does this mean that the parallel computer is universal? Certainly not, for it is
possible to construct a computation with three processes, namely, P0, P1, and P2,
for which a two-processor computer fails. A three-processor computer may succeed,
but it will then be thwarted by a four-process computation. Such reasoning continues
indefinitely. Taking this argument to its logical conclusion, only a computer capable
of an infinite number of parallel operations per time unit can be universal.

4 Generalizations

Various options are available to generalize our result. In this section, we describe
two such generalizations. Recall that in Sect. 2 we used the CREW PRAM as the
parallel model of computation. In this model, several processors can read simultane-
ously from the same shared memory location, but no simultaneous write is allowed.
Two alternative shared memory parallel models are the Exclusive Read Exclusive
Write Parallel Random Access Machine (EREW PRAM) and the Concurrent-Read
Concurrent-Write Parallel Random Access Machine (CRCW PRAM) [3]. In the
EREW PRAM, at most one processor can gain access to a shared memory location
during a time unit, either for reading or for writing. In the CRCW PRAM, a shared
memory location can be accessed simultaneously by several processors during a time
unit, either for reading by all of them (when executing a concurrent-read instruction)
or for writing by all of them (when executing a concurrent-write instruction). In the
latter case, memory conflicts are resolved in a variety of ways, including the priority
concurrent-write instruction, where the processor with the highest writing priority
succeeds in writing and all others fail, the common concurrent-write instruction,
where the write operation succeeds if and only if all processors are attempting to
write the same value, and the combining concurrent-write instruction, where all the
values being written are combined into one (using, for example, the arithmetic sum,
the logical and, themaximum, and so on) [3]. For our purposes in this paper, we shall
use the combining with arithmetic sum as our write instruction.

Let C1 and C2 be the two generalizations of the computation C0, to be proposed
in Sects. 4.1 and 4.2, respectively. Both C1 and C2 use the idea hinted to in Sect. 3,
whereby several processes are part of the computation to be carried out. We will
show that C1 is possible if an n-processor EREW PRAM is available, while an n-
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processor CRCW PRAM is needed to execute C2. Furthermore, both C1 and C2

cannot be performed successfully, neither by a RAM nor by a PRAM, of any type,
equipped with fewer than n processors.

4.1 Using Several Global and Local Variables

In ourfirst generalizationof the example inSect. 2,we assume the presenceofn global
variables, namely, x0, x1, . . . , xn−1, all of which are time critical, and all of which are
initialized to 0. There are also n nonzero local variables, namely, y0, y1, . . . , yn−1,
belonging, respectively, to the n processes P0, P1, . . . , Pn−1 that make up C1. The
computation C1 is as follows:

P0 : if x0 = 0 then x1 ← y0 else loop forever end if .

P1 : if x1 = 0 then x2 ← y1 else loop forever end if .

P2 : if x2 = 0 then x3 ← y2 else loop forever end if .

...

Pn−2 : if xn−2 = 0 then xn−1 ← yn−2 else loop forever end if .

Pn−1 : if xn−1 = 0 then x0 ← yn−1 else loop forever end if .

Suppose that the computation C1 begins when xi = 0, for i = 0, 1, . . . , n − 1.
For every i , 0 ≤ i ≤ n − 1, if Pi is to be completed successfully, it must be executed
while xi is indeed equal to 0, and not at any later time when xi has been modified
by P(i−1) mod n and is no longer equal to 0. On an EREW PRAM with n processors,
namely, p0, p1, . . . , pn−1, it is possible to test all the xi , 0 ≤ i ≤ n − 1, for equality
to 0 in one time unit; this is followed by assigning to all the xi , 0 ≤ i ≤ n − 1, their
new values during the next time unit. Thus all the processes Pi , 0 ≤ i ≤ n − 1, and
hence the computationC1, terminate successfully. A RAM has but a single processor
p0 and, as a consequence, it fails to meet the time-critical requirements of C1. At
best, it can perform no more than n − 1 of the n processes as required (assuming it
executes the processes in the order Pn−1, Pn−2, . . . , P1, then fails at P0 since x0 was
modified by Pn−1), and thus does not terminate. An EREW PRAM with only n − 1
processors, p0, p1, . . . , pn−2, cannot do any better. At best, it too will attempt to
execute at least one of the Pi when xi �= 0 and hence fail to complete at least one of
the processes on time.
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4.2 Using a Single Global Variable and No Local Variable

Our second generalization of the example in Sect. 2 requires the presence of only
a single, time-critical, global variable x . Let x = 0 initially. With n processes,
P0, P1, . . . , Pn−1, the computation C2 looks as follows:

P0 : if x = 0 then x ← 1 else loop forever end if .

P1 : if x = 0 then x ← 1 else loop forever end if .

P2 : if x = 0 then x ← 1 else loop forever end if .

...

Pn−1 : if x = 0 then x ← 1 else loop forever end if .

If the computation C2 starts when x = 0, it is required that the “then x ← 1”
operation be performed as soon as it is determined that x is indeed equal to 0.

The n processors of a CRCWPRAM, namely p0, p1, . . . , pn−1, read x in parallel,
find it equal to 0, and simultaneously increment x , by 1 each, resulting in x = n. Now
all the processes, and hence the computation C2, halt gracefully. A single-processor
computer is hopeless to perform this computation, but so also is the n-processor
CRCW PRAM if presented with an n + 1 process version of C2; they will both run
forever.

5 Conclusion

Despite considerable evidence to the contrary [15, 16, 21–23, 28, 31, 34, 55, 57,
59, 60, 62, 63], belief in the universality principle, particularly (but not exclusively)
in connection with the Turing Machine, remains one of the most enduring myths in
computer science (see, for example, [5, 32, 38]). In this paper we presented a new
counter-example to it, the simplest such counter-example of which we are aware.
Unlike previous counter-examples to computational universality, it does not rely
on extraneous phenomena, such as the availability of input variables that are time
varying, computational complexity that changes with time or order of execution,
physical variables that interact with each other, uncertain deadlines, or mathematical
conditions among the variables that must be obeyed throughout the computation. In
the most basic case of the new example, all that is used is a single pre-existing global
variable whose value is modified by the computation itself.

Further to its extreme simplicity, this new nonuniversality result is more powerful
than earlier ones. Itwas previously thought, based onpast counter-examples, that only
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a computer capable of an infinite number of basic operations per time unit could be
universal [6].We have shown in this paper that even a computer capable of an infinite
number of basic sequential operations cannot be universal. Thus, computational
universality requires an infinite number of basic parallel operations per time unit.

In his classic, discipline-creating paper [61], Alan Turing defined what it means
for a number to be computable or uncomputable. The distinction is made by fixing a
model of computation and determining whether or not that model is capable of pro-
ducing a desired number. Thus, the mathematical constants π and e, for example, are
computable (to a desired precision). By contrast, there are uncomputable numbers,
namely, those that are the outcome of unsolvable problems such as, for example, the
Halting Problem [25]. This conventional distinction between the computable and
the uncomputable has hitherto been adopted, almost universally, with respect to the
Turing Machine, as the ‘ultimate’ model of computation, the baseline. The present
paper provides an alternative but complementary way to distinguish between com-
putable and uncomputable numbers. While the background of Turing’s distinction is
a fixed model of computation, our examples exploit the fact that there exist multiple
possible general-purpose computer models, not all equivalent. A number that may
be uncomputable on some models, may be computable on others. For example, the
number x in C0 is computable on a parallel computer with the proper number of
processors, but uncomputable otherwise (whether sequentially or in parallel). The
same is true for the numbers in C1 and C2. Our examples, therefore, offer up paral-
lelism as a new baseline model for computation, acknowledging that other models
yet to be dreamed up will eventually replace it [46].

Our counter-example to universality also serves to illustrate the importance of
parallelism in computing. Virtually the entire body of literature on parallel compu-
tation suggests that the raison d’être of parallel computers is to speed up sequential
computations [20, 43, 53, 64]. We have shown here that parallel computing is con-
siderably more valuable since it can make the difference between computability and
uncomputability. Specifically, we have identified a problem that a parallel computer
can solve while a sequential computer cannot. In other words, the set of problems
solvable in parallel is a strict superset of the set of problems solved sequentially.
Therefore, on the hierarchy of computational models, in which models are ranked by
their power [42, 54], a parallel computer is strictly more powerful than a sequential
one.

In summary, our paper offers three contributions. It strengthens the notion of
nonuniversality in computation by extending the domain in which it holds to all
sequential machines, even those capable of an infinite number of operations per time
unit; it offers a new unconventional way to distinguish between what is computable
andwhat is uncomputable; and it puts in sharp focus an important difference between
sequential and parallel computing.
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On the Microscopic View of Time
and Messages

Nicola Santoro

Abstract In distributed message-passing systems, synchronous computations rely
on and exploit for their correctness and/or efficiency the existence of some reliable
mechanism, which provides all system entities with a globally consistent view of
time, e.g., a common global clock. Many of these computations, however, exploit
time at amacroscopic level: they assume that transmissionof anunbounded amount of
information can be done in constant time.We are instead interested in themicroscopic
level of synchronous computations; that is, the study of computability and complexity
when, in a constant amount of time, only a constant number of bits can be transmitted.
Our general interest includes the extreme case, when amessage contains only a single
bit. We discuss the basics of computing at the microscopic level, describing simple
but powerful computational tools, and analyzing their use.

1 Introduction

Amessage-passing system is a model of a distributed computing environment, which
in turnmodels many artificial systems (e.g., distributed systems, communication net-
works, systolic architectures, etc.); it provides a language to describe its components,
its behaviour, its properties; furthermore, it includes the tools for the analysis and
the measurement of such an environment.

Time is an human artifact superimposed on nature in our attempt to quantify its
qualitative processes. This quantification has the immediate effect of discretizing the
perceived continuum and enabling its measurement.

The presence of time and the discretization it imposes are the predominant aspects
in synchronousmessage-passing system. Indeed, messages and time are the two cru-
cial components of synchronous computations, and their interplay is the determining
element for both feasibility and complexity of the computations.
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Many synchronous computations however view and exploit time only at amacro-
scopic level: they assume that a unit of time is large enough for the transmission of
an unbounded amount of information.

Instead, like several other researchers, we are interested in themicroscopic analy-
sis of synchronous computations; that is, we are interested in the study of computabil-
ity and complexity when, in a unit of time, only a constant number of bits can be
transmitted. Our interest covers also themost extreme case, when amessage contains
only a single bit. Not surprisingly, great part of the nature and beauty of synchronous
computing, is revealed only under the microscope.

The aim of this chapter is to introduce the basics of computing at the microscopic
level, describing simple but powerful computational tools, and analyzing their use.
The terminology and notation are from [37].

1.1 Message-Passing Systems

In the language of distributed computing, a message-passing system is a collection
of computational entities which communicate by sending and receiving bounded
sequences of bits called messages. A binary relation, called out-neighbour, defines
for each entity x the subset of the other entities, called out-neighbourhood, to which x
can send a message; analogous is the definition of in-neighbourhood of an entity. If,
for each entity, its in-neighbourhood coincides with its out-neighbourhood, we will
use the terms neighbour and neighbourhood. The couple G = (V,E) where V is the
set of entities and E is the out-neighbour relation defines a graph G which describes
the communication topology of the system. Hence, graph-theoretic concepts and
terminology (e.g., nodes, edges, diameter, etc.) can be used to describe distributed
algorithms and analyze their performance. In the following, the terms vertex, node,
site, and entity will have the same meaning; analogously, the terms edge, arc, link
and line will be used interchangeably. Messages received at an entity are processed
there in the order they arrive; if more than one message arrives at the same entity at
the same time, they will be processed in arbitrary order.

Each entity is provided with local processing and storage capabilities, and a local
clock. The behaviour of the entities can be conveniently described as finite-state and
event-driven; that is, each entity at any time is in a particular system state (from a
finite set of states) and, when a predefined external event occurs (e.g., a message is
received, the local clock is increased by one unit, etc.), it will serially perform some
operations whose nature depends on the current state and on the occurred event. The
operations that can be performed are local computations, transmission of messages,
and changes of state. Thus, the behaviour of an entity is a set of rules of the form
State x Event → Action, where State is a system state, Event is one of a predefined
set of external events, and Action is an indivisible sequence of local operations. The
set of rules, the same for all entities, is called a distributed algorithm or protocol.
The entities might have distinguished initial values, e.g., an identity; if this is not the
case, the system is said to be anonymous.
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The basic model is based on only two simple axioms:

• Local Orientation: Every entity can distinguish between its (in- and out-) neigh-
bours, and can detect from which in-neighbour a received message was sent.

• Finite Delays: In absence of failure, a message sent to an out-neighbour is even-
tually received there in its integrity.

As a consequence of the Local Orientation axiom, it can be assumed that each
entity x has a distinct label associated to each out-edge (i.e., edge connecting x to an
out-neighbour) and in-edge (i.e., edge connecting an in-neighbour to x).

Note that the Finite Delays axiom does not imply the existence of any bound on
transmission delays; it only states that, in absence of failure, a message will arrive
after a finite delay in its integrity.

Any additional restriction of the general model defines a specific submodel. For
example, the following additional axiom, called Message Ordering, defines a system
where the transmission of messages obeys a FIFO discipline: messages sent to the
same out-neighbour, if they arrive, will do so in the same order in which they were
sent. By convention, all axioms defining a submodel are common knowledge to all
entities. Common restrictions usually relate to reliability, time, or communication.

1.2 Synchronous Systems

With respect to time, the basic model does not make any assumption on the local
clocks nor (except for the fact that it is finite) on transmission time (which include
both processing and queueing delays). For these reason, the systems described by the
basic model are referred to as asynchronous, and represent one end of the spectrum
of message-passing systems with respect to time. On the other end are synchronous
systems; that is, systems defined by two assumptions about time:

• Synchronized Clocks (SC): all local clocks ‘tick’ simultaneously (although they
might not sign the same value).

• Bounded Transmission Delays (BTD): there exists a known upper bound on the
number of clock ticks required for message transmission (including processing
and queueing delays).

Since the bound is known a priori to all entities and all local clocks tick simulta-
neously, the unit of time can be redefined so that the BTD axiom can be replaced (as
is almost always done) by the axiom

• Unitary Transmission Delays (UTD): message transmission is performed in a
single unit of time.

In other words, if an entity sends a message at local clock tick t to a neighbour,
the message is received and processed there at time t + 1 (sender’s time). To avoid
paradoxical situations, it is assumed that at any clock tick only one message can be
send to the same neighbour.
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In the following, like in almost all the literature, synchronousmeans simultaneous
presence of SC and UTD.

1.3 Macro Versus Micro

In a synchronous message-passing system S, the complexity of a distributed algo-
rithm is evaluated with respect to two basic parameters: the number of message
transmissions performed during the execution, and the number of clock ticks elapsed
from the time the first entity starts the execution to the time the last entity terminates
its participation in the computation.

The interval of time between successive clock ticks (sometimes called a round1)
is bounded by some system parameter but, by definition, is long enough so that any
message sent at a clock tick t arrives and is processed at its destination at clock
tick t + 1. As a consequence, two very different assumptions on the message size
are possible, and have been made in the literature, each offering a different view of
synchronous computations:

1. message size is unbounded (e.g., all the data to be transmitted always fits in a
single message); this is the macroscopic view.

2. the message size is bounded by some system constant B; this is the microscopic
view.

In the microscopic view, if a computation requires an entity to transmit M > B
bits, it is actually requiring the transmission of at least �M/B� messages (and not
one, like in the macro level). Furthermore, since at a clock tick the entity can send
at most one message to the same neighbour, the transmission of M > m bits will
require at least �M/B� clock ticks (and not one, like in the macro level).

These microscopic facts are clearly invisible to the commonly used macroscopic
view (e.g., the LOCAL model of computation [34]). Indeed, as already mentioned,
a macroscopic view hides great part of the nature and beauty of synchronous com-
puting, revealed only under the microscope. From this moment on, we will consider
only the microscopic viewpoint.

1.4 Under the Microscope: The Difference Time Makes

Under the microscopic view, the unique characteristics of synchronous computations
appear very clear. Among the many examples and results, the best known is the one
expressed by the following “folk” theorem:

1These intervals are usually assumed to have all the same length, but such a condition is not
necessary.
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Property 1 Any finite sequence of bits can be communicated in S transmitting two
messages, regardless of the message size.

Proof Let α be the sequence of bits, and let u and v be the transmitting entity and
its receiving neighbour, respectively. Consider the following protocol for u: 1. send
a message; 2. wait g(α) clock ticks; and 3. send another message, where g(α) is
the integer whose binary representation is 1α. The protocol for v is the following:
1. upon receiving the first message, set count to zero; 2. at each clock tick, if no
message is received, increase count by one, otherwise stop. Obviously, when y stops,
count = g(α). �

Theaboveproperty is a striking example of the difference that computingwith time
makes: since themessage size is irrelevant and since the stringα is finite but arbitrary,
and the content of the transmitted messages is irrelevant, the property states that any
amount of information (e.g., several Facebook datasets) can be communicated by
transmitting just two bits.

The property, as stated, is incomplete from a complexity point of view. In fact, in
a synchronous system, time and transmission complexities are intrinsically related
to a degree non existent in asynchronous systems. In the example above, the constant
bit complexity is achieved at the cost of a time complexity which is exponential in
the length of the sequence of bits to be communicated, as stated by the following
reformulation of the above property:

Lemma 1 Any finite sequence of bits α can be communicated in S transmitting two
bits in time 2α+1.

1.5 Organization

In the following, we present in some details some interesting aspects of computing
with time, always in the inherent interplay between time and transmissions.

In Sect. 2 we discuss the most basic distributed computation, two-party commu-
nication: the communication of information between two neighbouring entities; the
described results are from [31]. In Sect. 3 we present a simple yet powerful tech-
nique, waiting, that exploits the availability of time as a computational element; the
results described in Sect. 3.1 are from [35], those in Sect. 3.2 from [11]. A general
technique, guessing, which can be used to avoid the transmission of unbounded val-
ues, is discussed in Sect. 4; the described results are from [41]. Finally, we look at
another basic activity, wakeup, and again investigate the time versus bits tradeoffs
that it offers in the case of complete network; the discussed results are from [18].
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2 Two-Party Communication

In a system of communicating entities, the most basic and fundamental problem
is obviously the process of efficiently and accurately communicating information
between two neighbouring entities.

This problem is sometimes called TWO-PARTY COMMUNICATION problem,
and any solution algorithm is called a TPC protocol or communicator. Due to the
basic nature of the process, the choice of a communicator can greatly affect the overall
performance of the higher-level protocols employed in the system. Associated with
any communicator are clearly two related cost measures: the total number of bit
transmissions and the total number of clock ticks elapsed during the communication;
as we will see, the study of the two-party communication problem in synchronous
networks is really the study of the trade-off between time and transmissions.

2.1 Basic Communicators

Consider two entities, called the sender and the receiver, connected by a direct link;
at each time unit, the sender can either transmit a bit or remain silent; a bit transmitted
by the sender at time t will be received and processed by the receiver at time t + 1
(sender’s time). A quantum of silence (or, simply, quantum) is the number of clock
ticks between two successive bit transmissions; the quantum is zero if the bits are
sent at two consecutive clock ticks.

Given a countable (andpossibly infinite) universeU, the two-party communication
problem for U, denoted by TPC(U), is the problem of the sender communicating
without ambiguity to the receiver arbitrary elements of U using any combination of
bit transmissions and silence. Since U is countable, we will assume without loss of
generality that U is a set of consecutive integers starting from 0.

As observed in Sect. 1.4, any positive integer x can be communicated transmitting
only two bits. This is achieved by the well-known 2-bits Communicator C2, to which
Lemma 1 refers in the Introduction:
Communicator C2:
• Tocommunicate a positive integer x, the sender transmits afirst bit,waits a quantum
of silence q1 = x, and then sends the second and final bit b1

• To reconstruct x, the receiver simply reconstructs the quantum of silence q1
between the two received bits.

Using this communicator, the number of bits transmitted is 2 and the time is x.
Interestingly, if we increase the number of transmissions, time becomes sublinear.

Consider the following protocol C3 that uses 3 bits:
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Communicator C3:
• To communicate a positive integer x, the sender transmits three bits in order: b0,
b1, and b2; the quantum of silence q1 between the first two transmissions, and q2
between the second and the last are: q1 = �√x� and q2 = x − �√x�2.

• To obtain x the receiver simply computes (q1)2 + q2.

Notice that q1 = x − �√x�2 ≤ 2
√
x; thus, protocol C3 has time sublinear time com-

plexity ≤ 3�√x� + 3. The method used by protocol C3 can be easily extended to
arbitrary k = 2r + 1, obtaining a communicator Ck that communicates any integer x
transmitting k bits using at most k x

1
k−1 + k time units.

Notice that here, as in the rest of this section, the transmitted bits are used only as
delimiters; this renders the protocols resistant to message corruptions. In corruption-
free systems, the bounds can obviously be improved by using the bits to convey
information [31].

2.2 Optimal Communicators

At this point the natural question is what are the optimal communicators. We first
discuss lower-bounds on the time-bits trade-off for the two-party communication
problem both in the worst and in the average case. The bounds apply to any solution
protocol, regardless of the schemes employed for encoding, transmitting and decod-
ing. We then describe a solution protocol whose cost matches the lowerbounds.

2.2.1 Lower Bounds

ConsiderCb(U); i.e., the two-party communication problem forU using exactly b bit
transmissions. Observe that b time units will be required to transmit the b bits; hence,
the concern is on the amount of additional time required by the protocol. Obviously,
the time before the first transmission and after the last transmission cannot be used
to convey information.

Let c(U, b) denote the number of time units needed in the worst case to solve
Cb(U). To derive a bound on c(U, b), we will consider the dual problem of deter-
mining the size ω(t, b) of the largest set Ü for which c(Ü, b) ≤ t; that is, Ü is the
largest set for which the two-party communication problem can always be solved
using b transmissions and at most t additional time units. Notice that, with b bit
transmissions, it is only possible to distinguish k = b − 1 quanta; hence, the dual
problem can be rephrased as follows:

Determine the largest positive integer n = ω(t, b) such that every x ∈ Zn = {0, 1, . . . , n} can
be communicated using k = b − 1 distinguished quanta whose total sum is at most t.

This problem has an exact solution which will enable us to establish the desired

bounds. Let Bin(x, y) denote the binomial coefficient

(
x
y

)
.



78 N. Santoro

Theorem 1 ω(t, b) = Bin(t + k, k).

Proof Let n = ω(t, b); by definition, it must be possible to communicate any element
in Zn = {0, 1, . . . , n} using k = b − 1 distinguished quanta requiring at most time t.
In other words, ω(t, k + 1) is equal to the number of distinct k-tuples 〈t1, t2, . . . , tk〉
of positive integers such that

∑
1≤i≤k ti ≤ t. Given a positive integer x, let Tk[x]

denote the number of compositions of x of size k; i.e.,

Tk[x] = |{〈x1, x2, . . . , xk〉 :
∑

xj = x, xj ∈ Z+}|

Since Tk[x] = Bin(x + k − 1, k − 1), it follows that

ω(t, k + 1) =
∑
i

Tk[i] =
∑
i

Bin(i + k − 1, k − 1) = Bin(t + k, k)

which proves the theorem. �

We can now establish a worst case lower bound. Given two positive integers x
and k, let f (x, k) be the smallest integer t such that x ≤ ω(t, k + 1).

Theorem 2 Any solution protocol for Ck+1(U) requires f (|U|, k) time units in the
worst case.

Proof From Theorem 1, it follows that c(U, b) = f (|U|, k). �

Theorem 3 Let f (|U|, k) = t. For any solution protocol P for Ck+1(U), there exists
a partition of U into t + 1 disjoint subsets U0,U1, . . . ,Ut such that

1. |Ui| = Bin(i + k − 1, k − 1), 0 ≤ i < t; |Ut| ≤ Bin(t + k − 1, k − 1)
2. the time P(x) required by P to communicate x ∈ Ui is P(x) ≥ i.

Proof Since f (|U|, k) = t, by Theorem 1,U is the largest set for which the two-party
communication problem can always be solved using b = k + 1 transmissions and
at most t additional time units. Given a protocol P for Ck+1(U), order the elements
x ∈ U according to the time P(x) required by P to communicate them; let Ü be
the corresponding ordered set. Define Üi to be the subset composed of the elements
of Ü whose ranking, with respect to the ordering defined above, is in the range∑

0≤ j<i Bin( j + k − 1, k − 1),
∑

0≤j≤i Bin( j + k − 1, k − 1). Since f (|U|, k) = t,

it follows that |Üi| = Bin(i + k − 1, k − 1) for 0 ≤ i < t and |Üt| ≤ Bin(t + k −
1, k − 1) which proves part 1 of the theorem.

We will now show that, for every x ∈ Üi,P(x) ≥ i. By contradiction, let this not
be the case. Let j ≤ t be the smallest index for which there exists an x ∈ Üi such
that P(x) < j. This implies that there exists a j′ < t such that |{x ∈ U : P(x) = j′}| >

Bin( j′ + k − 1, k − 1). In other words, in protocol P, the number of elements which
are uniquely identified using k quanta for a total of j′ time is greater than the number
Tk[ j′] = Bin( j′ + k − 1, k − 1) of compositions of j′ of size k; a clear contradiction.
Hence, for every x ∈ Üi,P(x) ≥ i, proving part 2 of the theorem. �
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This gives us an average case lower bound:

Theorem 4 Any solution protocol for Ck+1(U) requires

tm + ∑
0≤i<t i Bin(i + k − 1, k − 1)

|U|
time on the average where t = f (|U|, k) and m = t(|U| − ∑

0≤i<t i Bin(i + k −
1, k − 1)).

Proof From Theorem 3. �

2.2.2 An Optimal Solution

We now introduce a protocol whose cost matches both the worst and the average
case lower bounds; we can actually show that this communicator is optimal at any
point of the time-bits tradeoff.

Given two k-tuples q = 〈q1, q2, . . . , qk〉 and q′ = 〈q′
1, q

′
2, . . . , q

′
k〉 of positive inte-

gers, we say that q < q′ if qj = q′
j for 1 ≤ j < l, and ql < q′

l for some index l,
1 ≤ l ≤ k + 1. For a given k, let Vt be the ordered set of k-tuples q = 〈q1, q2, . . . , qk〉
where qi ∈ Z+ and

∑
i qi ≤ t; that is Vt[i] < Vt[i + 1]. Obviously, the size of Vt

is Bin(t + k, k). Any two integers t and i, 1 ≤ i ≤ Bin(t + k, k), uniquely iden-
tifies a k-tuple Vt[i] = 〈q1, q2, . . . , qk〉 where

∑
i qi ≤ t; conversely, any k-tuple

〈q1, q2, . . . , qk〉 uniquely identifies the integers t = ∑
i qi and i, 1 ≤ i ≤ Bin(t +

k, k), such that Vt[i] = 〈q1, q2, . . . , qk〉.
The solution algorithm, P1, is described below; it comprises of an encoding

scheme, a decoding scheme, and a communication protocol.

Encoding Scheme: Given X and k,
1. Let t be the smallest integer such that X ≤ Bin(t + k, k); i.e., t = f (X, k).
2. Determine Vt[X] = 〈q1, q2, . . . , qk〉
3. Set encoding(X) = 〈p0, p1, . . . , p2k〉, where p2i = b ∈ {0, 1} and p2i+1 =

qi, (0 ≤ i < k).

The value X to be communicated will be encoded as a (2k + 1)-tuple 〈p0, p1,
. . . , p2k〉, where the even elements p0, p2, . . . , p2k are arbitrary bits and the odd
elements p1, p3, . . . , p2k−1 form the k-tuple corresponding to the X-th element of the
set Vf (X,k); i.e., 〈p1, p3, . . . , p2k−1〉 = Vf (X,k)[X].

Once the (2k + 1)-tuple 〈p0, p1, . . . , p2k〉 corresponding to the encoding of X has
been determined, the actual communication can start. The encoded information is
communicated as follows: the element p2i = b ∈ {0, 1} is transmitted and the element
p2i+1 = qi is communicated by waiting a quantum of silence of length qi.
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Communication Protocol
SEND(X):

Compute encoding(X) = 〈p0, p1, . . . , p2k〉;
for 0 ≤ i ≤ 2k

if even(i) then transmit pi else wait pi time units;
endfor

RECEIVE(Z):
i := 0;
receive(b);
p0 := b;
Repeat until i = k

wait q until receive(b);
p2i+1 := q; i := i + 1; p2i := b;

Z := 〈p0, p1, . . . , p2k〉;
Compute decoding(Z);

Once the last bit p2k has been received, the receiving entity has received the
(2k + 1)-tuple 〈p0, p1, . . . , p2k〉 and will apply to it the decoding scheme. To decode
〈p0, p1, . . . , p2k〉, the receiver will extract the (k + 1)-tuple 〈q1, q2, . . . , qk〉 formed
by the odd elements qi = p2i+1, (0 ≤ i < k) and compute t = ∑

i qi; at this point X,
the communicated value, is the unique integer such that 1 ≤ X ≤ Bin(t + k, k) and
Vt[X] = 〈q1, q2, . . . , qk〉.

Decoding Scheme: Given Z = 〈p0, p1, . . . , p2k〉 and k,
1. Let Y = 〈q1, q2, . . . , qk〉 where qi = p2i+1, (0 ≤ i < k); let t = ∑

i qi.
2. Find X such that Vt[X] = Y .
3. Set decoding(Z) = X.

For a fixed k, let P(X) denote the amount of time required by algorithm P to
communicate integer X using k bit transmissions. Recall (from Sect. 3) that f (X, k)
is the smallest integer t such that x ≤ ω(t, k + 1).

Lemma 2 For a fixed k, P(X) = f (X, k) for every integer X.

Proof By construction. �

Theorem 5 P is worst-case optimal for every Zn = {0, 1, . . . , n}.
Proof By Lemma 2 and Theorem 2. �

Protocol P actually satisfies a much stronger notion of optimality. A solution
protocol A is everywhere optimal for U if, for every solution protocol B and ∀b ≥ 2,
there exists a permutation π of the elements of U such that ∀x ∈ U : A(x, b) ≤



On the Microscopic View of Time and Messages 81

B(π(x), b). In other words, for every choice of the number of transmitted bits, A
requires no more time to communicate any element of U (within a relabelling) than
any other solution algorithm. Obviously, everywhere optimality implies both worst-
case and average-case time-bits optimality.

Theorem 6 For a fixed k, P is everywhere optimal for every Zn = {0, 1, . . . , n}.
Proof Given Zn, let t = f (n, k) be the smallest integer such that n ≤ ω(t, k + 1).
Assume for simplicity that n = Bin(t + k, k). Let Si = {x ∈ Zn : P1(x) = i}. By
Lemma 2, for every x ∈ Zn,P1(x) = f (x, k) ≤ t; hence, |Si| = Bin(i +
k − 1, k − 1), 0 ≤ i ≤ t. Recall that, by Theorem 2, for any solution algorithm
A, there exists a partition of Zn into t + 1 disjoint subsets A0,A1, . . . ,At such
that |Ai| = Bin(i + k − 1, k − 1) and A(x) ≥ i for every x ∈ Ai. Therefore, there
exists a permutation π of Zn such that P1(x) ≤ A(π(x)) for all x ∈ Zn, proving the
theorem. �

3 Waiting

In synchronous systems, time can be used to avoid the transmission of messages
of unbounded length, i.e., unbounded values. The communicators described in the
previous section are an instance of a simple and direct way of exploiting time to
communicate unbounded values transmitting only a constant number of bits.

In this section, we describe another technique that makes an explicit use of time
and that can be efficiently used as an alternative to transmitting possibly unbounded
values. The technique assumes that every entity x, in addition to its own integer value
v(x) (not necessarily unique), has locally available a bound w on the number n of
entities and a monotonically increasing integer function f , the same for all entities
With respect to this technique, an entity can be either active, processing or passive.
Initially, all entities are active.

The technique applies to both undirected and (strongly connected) directed graphs
(i.e., bidirectional and unidirectional networks). In the following, the term ‘neigh-
bours’ and the phrase ‘all other neighbours’ are assumed to mean for digraphs ‘out-
neighbours’ and ‘all out-neighbours’, respectively. The technique is as follows:

Waiting Technique
1. An active entity x waits f (v(x), w) time units.
2. If, during this time, it receives any message, it will forward it to all its

other neighbours and become passive; otherwise it becomes processing
and sends a message to all its neighbours.

We will now show how to “mutate” the basic technique so to work in different
environments and different problems.
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3.1 Minimum Finding and Election

Consider the situation where each entity x has a positive integer value v(x); values
might not be distinct.MINIMUMFINDING is the problem of moving from an initial
configuration where all entities are in the same state available, to a configuration
where every entity whose associated value is the minimum of all the values is in a
predefined state minimum and all others are in a different predefined state large.

To deal with different initiation times, a pre-processing phase is added to the
basic technique so to bound the delay between distinct starting times. Following is
the algorithm where w ≥ Δ(G) is known to all nodes, and f (a, b) = 2ab.

Algorithm WaitMinElect
• Rule 0. If an available entity wants to start the algorithm or receives an
activation message, it sends an activation message to all other neigh-
bours and becomes active.

• Rule 1. An active entity xwaits f (v(x), w) time units, ignoring anyactiva-
tion message. If, during this time it receives an end message, it forwards
it to all other neighbours and becomes large; otherwise, it sends an end
message to all its neighbours and becomes minimum.

• Rule 2. A large entity ignores all end messages.

Theorem 7 The minimum value vmin in any synchronous graph G with n nodes and
e edges can be found with at most 4e bits in at most 2wvmin + 2Δ(G) time units,
provided w ≥ Δ(G) is known.

Proof Let t(x) denote the time delay, from the start of the execution of the algorithm,
to the time entity x becomes active. Let x and y be two nodes such that v(x) < v(y).
Entity x will become active at time t(x) and will wait f (x, w) = 2v(x)w time units;
a message broadcasted by x would reach y after d(x, y) time units, where d(x, y)
denotes the length of the shortest path from x to y in G. Since (from Rule 0) t(x) ≤
t(y) + d(y, x), it follows that

t(x) + 2v(x)w + d(x, y) ≤ t(y) + d(y, x) + 2v(x)w + d(x, y) < t(y) + 2v(x)w + 2Δ(G)

This implies that the entities with smallest value become activewithin at mostΔ(G)

time units from the time the algorithm is first started; they will finish waiting before
everybody else, and thus send an endmessage; furthermore, this message will reach
every other entity while they are still waiting. Thus, any entity z with the smallest
identity (i.e., v(z) = vmin) will become minimum while all others will become large.
This process will require at most 2vminw + 2Δ(G) time units. Each edge will be
traversed by at most two activation messages and two end messages; since a
single bit is sufficient to distinguish between the two types of messages, a total of at
most 4e bits will be transmitted. �
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Notice that, if all initial values v(x) are distinct, only one entity will become
minimum, while all others become large. This means, that protocol WaitMinElect
actually solves the LEADER ELECTION problem; this problem requires moving
the system from an initial configuration where all entities are in the same state
(“candidate”), each with a distinct value, to a final configuration where all entities
are in the same predefined state (“defeated”), except one which is a distinguished
state (“leader”). Hence, the unique minimum is the elected leader.

Theorem 8 A leader can be elected in any synchronous graph G with n nodes and
e edges with at most 4e bits in at most 2wvmin + 2Δ(G) time units, where vmin is the
smallest value, provided w ≥ Δ(G) is known.

In specific classes of graphs more specific bounds apply:

Corollary 1 Knowing n, an election can be performed in a unidirectional ring
exchanging 2n bits in time (n + 1)vmin + 2n − 1, provided that the entities are aware
of being in a ring.

Proof To prove the time, choose f (a, b) = a(b + 1) and observe that, in a unidi-
rectional ring, d(x, y) + d(y, x) = n for all x and y. For the bit complexity, observe
that e = n and that each edge will be traversed by exactly one activation and one
entities message.

Corollary 2 Knowing n1 and n2, an election can be performed in a n1 × n2 mesh
exchanging O(n) bits in time O((n1 + n2)vmin), provided that the entities are aware
of being in a mesh.

Proof In a mesh of n = n1 × n2 nodes, Δ(G) = n1 + n2; by choosing w = d(G)

and f (a, b) = a(b + 1) the time bounds is achieved. Since e = O(n), the message
result follows.

Corollary 3 Knowing n, an election can be performed in an unlabelled hypercube
exchanging O(n log n) bits in time O(log nvmin), provided that the entities are aware
of being in a hypercube.

Proof In a hypercube of n = nodes, Δ(G) = log n; by choosing w = Δ(G) and
f (a, b) = a(b + 1) the time bounds is achieved. Since e = O(n log n), the message
result follows.

Corollary 4 With simultaneous initiation, an election can be performed in a com-
plete graph exchanging n − 1 bits in time 2vmin + 1, provided the entities are aware
of being in a complete graph.

Proof Remove Rule 0 (unnecessary because of simultaneous initiation) and Rule 2;
modify Rule 1 so that received endmessage is not forwarded, and choose f (a, b) =
2a. This choice of f ensures that the entity with smallest identity vmin will finish
waiting at least two time units before everybody else; hence, all other entities will
become passive after 2vmin + 1 time units. Following these modifications, the only
communication occurring in this election process will be the bit sent from the entity
with smallest identity to all other entities. �
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3.2 Symmetry Breaking in Rings

If the assumption on the uniqueness of the values v(x) does not hold, the election
problem cannot obviously be solved by an extrema-finding process. If the nodes have
no identities (i.e., the system is anonymous) then no deterministic solution exists for
the election problem, duly renamed SYMMETRY BREAKING, regardless of whether
the network is synchronous or not [3]. Thus, if any solution exists, it must be a
randomized algorithm.

We now shown that, using the Waiting Technique, symmetry can be broken in
a ring with O(n) bits and time units on the average without any assumption on
simultaneous initiation.

The algorithm is composed of a sequence of rounds; in each round, all nodes
become awake. In round i, upon becoming awake, a node x chooses a random value
v(x, i) ∈ {0, 1} with a biased coin: it selects 0 with probability 1

n and 1 with proba-
bility n−1

n . All nodes participate in determining whether exactly one node has chosen
0 (Situation 1), or not (Situation 2). If Situation 1 has occured, the only node that
has chosen 0 becomes leader, all other nodes become defeated, and the algorithm
terminates; if Situation 2 has occured, all nodes start a new round.

Initially, all nodes are in a sleeping state. Any sleeping node can spontaneously
become awake at any time and start the first round. To deal with different initiation
times, a pre-processing phase is added in each round so to bound the delay between
distinct starting times in that round.

A detailed description of the algorithm is as follows.

Algorithm SymmBreak
• Rule 1. A sleeping node:

1. It can become spontaneously awake and execute the Wake-up routine.
2. If it receives a wake- up message, it becomes awake and executes the

Wake-up routine.

• Rule 2. An awake node:

1. It ignores any received wake- up message.
2. If it receives a claim message, it becomes half-awake and sends the

message on.
3. If it receives a endmessage, it becomes defeated and passes the message

on. (* Situation 1 *)
4. When clock = n, if no claim is received (see rule 2.2) and the number it

selected is 0 it becomes candidate and sends a claim message.
5. When clock = 2n, if no claim is received (see rule 2.2) it executes the

Wake-up routine. (* Situation 2 *)
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• Rule 3. A candidate node:

1. If it receives a claim with clock < 2n, it becomes awake and executes
the Wake-up routine. (* Situation 2 *)

2. If it receives a claim and its clock equals 2n, it becomes elected and sends
a end message. (* Situation 1 *)

• Rule 4. A half-awake node:

1. If it receives a wake- up message, it becomes awake and executes the
Wake-up routine.

2. If it receives a endmessage, it becomes defeated and passes the message
on. (* Situation 2 *)

where the Wake-up routine is as follows

Wake-up Routine
1. choose 0 with probability 1

n and 1 with probability n−1
n ;

2. set clock := 0 and send a wake- up message.

An important property of the algorithm is expressed by the following

Lemma 3 (i) Every node starts its execution of a round within n − 1 time units
from the start of that round.

(ii) If exactly one node becomes candidate during this round, that node becomes
elected and all others become defeated; otherwise, all nodes start another round.

Proof Call a round a success if Situation 1 occurs. Assume the algorithm has per-
formed s − 1 unsuccessful rounds and that (i) holds at the beginning the s-th round
(s ≥ 1). Let t(x) denote the time at which node x becomes awake in this round; a node
x becomes candidate if and only if it has choosen 0 and it has not received any claim
in the (global) time interval (t(x), t(x) + n); furthermore, only candidate nodes orig-
inate claim messages. Three cases are possible depending on whether exactly one,
more than one, or no node becomes candidate in the round, respectively.

Case 1: exactly one node x becomes candidate. (Note: this case occurs if and only
if only one node chooses 0 in this round.) In this case, x will send a claim at time
t(x) + n. This message will reach node y at time t(x) + d(x, y) + n; since t(x) ≤
t(y) + d(y, x), it follows that node y will receive the claim at time t(x) + d(x, y) +
n ≤ t(y) + d(y, x) + d(x, y) + n = t(y) + 2n. Thus, by rule 2.2, y becomes half-
awake and sends the message on. In other words, the claim message originated by
x will travel along the ring transforming every node (except x) into half-awake and
will arrive at x at time t(x) + 2n; when this occurs, x becomes elected and originates
an end message (rule 2.2) which will make all other nodes defeated (rule 4.2).
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Case 2: more than one node becomes candidate. Let x1, x2, . . . , xk become can-
didate in this round; w.l.g. assume t(xi) ≤ t(xi+1), and let r(xi) denote the can-
didate nearest to xi clockwise. First observe that, for all candidate nodes xi and
xj, t(xj) < t(xi) + d(xi, xj) (otherwise t(xi) + d(xi, xj) + n ≤ t(xj) + n, and xj would
receive a claimwith clock≤ n becoming half-awake and not candidate by rule 2.2).
This implies that t(xi) + n < t(r(xi)) + d(r(xi), xi) + n; that is,

t(xi) + d(xi, r(xi)) + n < t(r(xi)) + d(r(xi), xi) + d(xi, r(xi)) + n = t(r(xi)) + 2n

In other words, a claim from xi will reach node r(xi) before r(xi) counts 2n. By rule
3.1, r(xi) will then kill the claim and start the next round by becoming awake and
sending a wake- up message; thus, within at most n − 1 additional time units from
the time the first xi becomes awake again, all nodes are awake.

Case 3: nobody becomes candidate. (Note: this case occurs if and only if nobody
chooses 0.) In this case, no claim will be sent, and each node x will start the next
round by becoming awake at time t(x) + 2n (rule 2.5).

Summarizing, if part (i) of the lemma holds for the s-th round, then part (ii) will
also hold; furthermore, if the round is not a success, part (i) will hold for the (s + 1)-th
round. Since (i) holds initially (i.e., for s = 1), the lemma is proved. �

The only thing left now is to see after how many rounds a leader will be elected.
Perhaps surprisingly, the process terminates after less than 3 expected rounds.

Theorem 9 Symmetry can be broken in a unidirectional ring using 2n bits and 2en
time units on the average regardless of the initiation time, where c is a constant and
e = 2.7 . . . is the basis of the natural logarithm.

Proof In any one round, each node will send exactly one wake- up message. If at
least one node becomes candidate, then each node will send or forward exactly one
claim message. Since there are a constant number of message types, each message
will use a constant c number of bits. Thus, each round will use at most 2cn bits.
Within 2n time steps when the first node on a round executed the Wake-up routine,
either a unique node is elected or a new round is started. For any round of random
selections, the probability that exactly one node selects 0 is

Bin(n, 1)
1

n
(
n − 1

n
)n−1 = (

n − 1

n
)n−1

For n large enough, this quantity is easily bounded:

lim
n→∞(

n − 1

n
)n−1 = 1

e

Thus, the expected number of rounds until this situation occurs is less than e; by
Lemma 3, if this event occurs, the algorithm terminates. �
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In the above theorem, the factor 2 can be removed from both the time and bit
complexity by allowing the nodes to immediately become candidate if they select 1
in the Wake-up routine, and modifying the algorithm appropriately.

4 Guessing

Another powerful technique that allows to compute functions on unbounded val-
ues without ever transmitting them is guessing. Let us consider again the MINI-
MUM FINDING problem, that is the problem of computing vmin = min{v(x)}. Let
us assume that all entities know n and start at the same time.

Consider the following distributed algorithm, where p is a parameter available to
all entities:

Decide(p)
clock := 0; (* start counting *)
if v(x) ≤ p then
send yes to all neighbors;
state := decided;

else state := undecided;
if (yes is received and clock < n and state = undecided) then

send the message to all neighbors which have not sent any message to you;
state := decided;

else ignore the message.

Note that forwarding a yesmessage can be done at most once by any entity since
after sending it the entity becomes decided. Also note that, due to the synchrony in
the network, this message could have been received from more than one neighbor in
the current time slot, and that it is forwarded only to the other neighbors.

Lemma 4 Let all entities know n and p, and simultaneously start the execution of
Decide(p) at time 0. Then, at time n:

1. if all local values are greater than p, then all entities are undecided;
2. if there is at least one local value v(x) ≤ p, then all entities are decided.

Furthermore, the number of bits transmitted is zero in case (1), and at most 2e in
case (2).

Proof At time zero entity x becomes undecided and sends no message iff its value
v(x) is greater than p. Thus, if all values are greater than p, no messages will be
transmitted during the execution of Decide; furthermore, all entities will remain
undecided, at time n. If entity x has local value v(x) ≤ p, it will become decided at
time zero and send yes messages to all its neighbours. An entity in state decided
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ignores all yes messages; an entity in state undecided receiving a yes message
becomes decided and forwards the message only to the neighbours from which such
a message has not yet been received; thus, at most two messages will be transmitted
on each edge, for a total of at most 2e bits. Since the underlying communication graph
is connected, it is easily shown that by time n each entity that was not decided at
time zero has received at least one yesmessage. Since an undecided entity becomes
decided as soon as it receives a message, all entities become decided within n − 1
time units. �

Using this property, we can effectively employDecide as a building block for our
computations.

4.1 Minimum Finding as a Guessing Games

A technique forminimum-finding can be developed by performing a sequence of exe-
cutions ofDecide as follows. Initially, all entities choose the same initial value g1 and
simultaneously perform Decide(g1). After n time units, all entities will be aware of
whether theminimumvalue is greater than g1 (case (1) in Lemma 4) or not (case (2) in
Lemma 4); note that the latter case means that we overestimated or guessed the min-
imum value; this case will be called overestimate, even if the correct value has been
guessed. Based on the outcome, a new value g2 will be chosen by all entities, which
will then simultaneously perform Decide(g2). In general, based on the outcome of
the execution of Decide(gi), all entities will choose a value gi+1 and simultaneously
performDecide(gi+1); this process is repeated until theminimum value is unambigu-
ously determined. Depending on which strategy is employed for choosing gi+1 given
the outcome of Decide(gi), different minimum-finding algorithms will result from
this technique. This technique allows to reformulate the minimum-finding problem
in terms of a number-guessing game, as follows.

Guessing Game
1. the network is a player;
2. the minimum value in the network is a number, previously chosen and

unknown to the player;
3. the player has to guess the number, by only asking questions of the type

“is the number greater than g?”, where each question corresponds to a
simultaneous execution of decide(g);

4. cases (1) and (2) of Lemma 4 correspond to a “yes” and a “no” answer to
the question, respectively; the latter case will be termed an overestimate.

First observe that, by definition, to each solution strategy for this number-guessing
game corresponds a solution algorithm for the minimum-finding problem. As for the
complexity of these solution algorithms recall that, by Lemma 4, each execution of
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Decide (i.e., each question) requires n time units, while the number of bits transmitted
is either zero or at most 2e, depending on whether the answer is “yes” or “no”,
respectively. The following theorem has thus been proved.

Theorem 10 Let S be a solution strategy for the number-guessing game which
requires b(X) overestimates and a total of t(X) questions in the worst case, where X
is the unknown number. Let vmin be the smallest value in the network, and assume n
is known to all entities. Then

1. minimum-finding can be performed in an anonymous network using at most
n · t(vmin) time and 2 · e · b(vmin) bits;

2. election inanetworkwith distinct values canbeperformedusingatmost n · t(vmin)
time and 2 · e · b(vmin) bits;

3. a spanning-tree in a network with distinct values can be constructed using at most
n · t(vmin) time and 2 · e · (b(vmin) + 2) bits.

4.2 Optimal Solutions

We are interested in determining the guessing strategy that offers the best use of
time for reducing the amount of bit transmissions. This means to find the strategy
that solves the guessing games with the minimum number of questions (each ques-
tion costs n time units) of which up to a given number b are overestimates (each
overestimate costs the transmission of 2e bits).

Consider first the case in which the unknown number is a positive integer in the
interval [1,M]; i.e., the values are v(x) ≤ M. We will see later the case when the
interval is unbounded, i.e., M = +∞.

4.2.1 Lower Bound

Wewant to determine theminimum number h(M, b) of questions needed to correctly
guess any value in [1,M] with no more than b overestimates.

To do so, we consider the “converse” problem of determining the largest integer
f (t, b) such that any value X known to be within the interval [1, f (t, b)] can be
guessed using at most t questions of which at most b are overestimates. The next
theorem determines f (t, b).

Theorem 11 For every t ≥ b ≥ 1,

f (t, b) =
∑
0≤i≤b

Bin(t, i). (1)
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Proof It is easy to see that f (t, 1) = t + 1, since the only algorithm that makes at
most one overestimate is “sequential search”; i.e., using the guesses g1 = 1, g2 =
2, . . . , gt = t. It also trivial to see that f (t, t) = 2t since, if any question can be an
overestimates, the largest possible interval is [1, 2t].

Now, for t > b ≥ 1, suppose the first question is “is the number > v?”. If the
answer is yes, the unknown number is greater than v, and the player has to find
it with t − 1 questions and b overestimates; hence, the largest interval that can be
correctly searched in this case is [v + 1, v + f (t − 1, b) ]. If the answer is no, then
the unknown number lies in the interval [1, v ], to be searched using t − 1 questions
and at most b − 1 overestimates. Thus, the largest value of v that allows for a correct
solution in this case is f (t − 1, b − 1). We therefore have

∀b, t > b ≥ 1, f (t, b) = f (t − 1, b) + f (t − 1, b − 1). (2)

One can show now that the unique solution to (2), satisfying the boundary con-
ditions f (t, 1) = t + 1 and f (t, t) = 2t , is given by (1). (Another approach is to
determine the generating function F(x, y) = 1/(1 − z)(1 − y − z ∗ y)). �

For future use we extend the definition of f (t, b) to the case where 1 ≤ t < b, so
as to satisfy (2) for every t and b, by

f (t, b) = f (t, t) for 1 ≤ t < b. (3)

We can now return to our original quest for determining a bound on the minimum
number h(M, b) of questions needed to correctly guess any value in [1,M] with no
more than b overestimates. We are now able to do so; in fact, by Theorem 11 we
have:

Theorem 12 Let t̂(M, b) = min{t : f (t, b) ≥ M }. Then, for every b ≥ 1,

t̂(M, b) ≥ h(M, b) ≥ t̂(M, b) − 1. (4)

Observe that, ifM = f (t, b), then h(M, b) = t̂(M, b) = t.
There is no known closed-form expression for h(M, b); however, it can be closely

estimated as follows:

Lemma 5

h(M, b) = (b ! N)
1
b + ε b, for some ε = ε(N, b) with − 1 < ε < 1. (5)

Proof 1. By induction on (t, b) (using (2)), one can show that

Bin(t + 1, b) ≤ f (t, b) (6)
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By (4) and (6) we have
Bin(h, b) ≤ f (h − 1, b) < N

and hence

h(h − 1) · · · (h − b + 1) < b ! N .

Thus (h − b + 1)b < b ! N and we have

h < (b ! N)
1
b + b. (7)

2. By induction on (t, b) (using (2)), one can show that

f (t, b) ≤ Bin(t + b, b). (8)

By (4) and (8) we have

N ≤ f (h,N) ≤ Bin(h + b, b),

and hence

b ! N ≤ (h + b)(h + b − 1) · · · (h + 1).

Thus, using the inequality between the arithmetic and geometric means:

(b ! N)
1
b ≤ [(h + b)(h + b − 1) · · · (h + 1) ] 1

b

≤ 1

b
[(h + b) + (h + b − 1) + · · · + (h + 1) ] = h + b + 1

2
.

Therefore

h ≥ (b ! N)
1
b − b + 1

2
. (9)

The lemma follows from (7) and (9). �

4.2.2 Optimal Protocol

The optimal guessing strategy follows directly from the proof of Theorem 11:



92 N. Santoro

Optimal Guessing Strategy To optimally search in [1,M] with at most k
overestimates:
1. Use as a guess p = h(q − 1, k − 1), where q ≥ k is the smallest integer

such that M ≤ h(q, k).
2. If p is an underestimate, then optimally search in [p + 1,M] with k over-

estimates.
3. If it is an overestimate, then optimally search in [1, p] with k − 1 overes-

timates.

This means that

Theorem 13 The number guessing game in a bounded interval [1,M] can be solved
with b bits and t̂(M, b) questions.

Worst case optimality follows from Theorem 12.

Wemust still consider solving the guessing gamewhen the interval in unbounded;
i.e., M = +∞. A solution strategy could be to first determine a bounded interval
containingX using b′ < b overestimates, and then use theOptimal Guessing Strategy
above to find X in this interval with at most b − b′ overestimates.

To determine an interval containing X, we find an upperbound on X by using
a monotonically increasing integer function g and proceeding through a sequence
of questions “is the number > g(i)?” (i = 1, 2, . . .), until we determine the value j
such that g( j − 1) < X ≤ g( j). This approach requires exactly j questions and one
overestimate.

Once this is done, we are left to determine X in an interval of size Δ( j) = g( j) −
g( j − 1)with only b − 1 overestimates; this can be done using the Optimal Guessing
Strategy above with at most h(Δ( j), b − 1) questions.

The entire process will thus require at most j + h(Δ( j), b − 1) questions. In other
words:

Theorem 14 The number guessing game in a unbounded interval can be solved
with b overestimates using at most 2h(X, b) − 1 questions, where X is the unknown
number.

Proof Choose g(i) = f (i, b), for i ≥ 1. Let t = h(X, b) (i.e., the smallest integer i
such that f (i, b) ≥ X); then, following the above procedure,we stopwhen j = t. From
this follows that Δ(j) = g(t) − g(t − 1) = f (t, b) − f (t − 1, b) = f (t − 1, b − 1);
that is, t − 1 questions will suffice to solve the resulting guessing game in an interval
of sizeΔ(jwith b − 1 overestimates. Altogether, we determined the unknown X with
a total of at most 2t − 1 questions and b overestimates. �
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4.3 Improved Bounds for Distributed Problems

Using the correspondence between guessing games andminimum-finding, the results
of the previous section will now be reinterpreted in the context of distributed compu-
tations. First observe that, in the distributed problem, no upper-bound is assumed on
the range of the values among which the minimum must be found. Further observe
that each solution strategy for the number guessing game with k overestimates cor-
responds to a minimum-finding algorithm requiring the transmission of O(k · e) bits
(Theorem 10). Let Ck denote the class of such minimum-finding algorithms.

Theorem 15 The minimum value vmin in a synchronous anonymous network can be

determined using at most O(k · e) bits in time O(k · n · v
1
k
min) for any integer k > 0,

provided n is known to the entities, and the entities start simultaneously. For every
value of the integer k, this bound is optimal among all algorithms in Ck.

Proof Let t be the smallest integer such that f (t, k) ≥ vmin; by Theorem 13 it follows
that vmin can be guessed using at most 2t − 1 questions. Thus, by Theorem 10, the
minimum value vmin can be determined using at most (4t − 2) · n time and 2 · k · e
bits. By Lemma 5, t < (k! · i) 1

k + k, which is approximately i
1
k k
e + k (using Stirling’s

approximation), from which the bound follows. By Theorem 11 and Lemma 5,
any algorithm in Ck requires at least �(( k!·vmin2 )

1
k ) questions, from which optimality

follows. �

In a similar way, the following theorem can be proved.

Theorem 16 In a synchronous network with distinct values, election and spanning-

tree construction can be performed using at most O(k · e) bits in time O(k · n · v
1
k
min)

for any k, where vmin is the smallest value in the network, provided n is known and
the entities start simultaneously.

Again, by choosing k to be any constant > 1, the theorem yields an improvement
in the time complexity of using waiting (Theorem 8) without increasing the order of
magnitude of the bit complexity.

5 Waking up in Complete Networks

A basic activity in distributed computing systems is that of WAKE-UP: initially all
entities are asleep; one or more entities, called initiators, independently wake-up and
send wakeupmessages to some neighbours, starting a process to ensure that within
finite time all entities become awake. Since the wakeup message contains no other
information, the wakeup process is a prototypical microscopic computation.

The wake-up process is used in a variety of situations, including initialization,
notification, and reset, e.g., to ensure that every entity in the system becomes aware of
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the start (or termination) of a computation. Called also weak unison and distributed
reset, this process can be carried out by totally anonymous entities. It offers an
interesting trade-off between time (the difference between the time the first entity
wakes up and the time that all entities are awakened) and communication (number
of wakeup messages sent in that interval) in synchronous networks.

This is indeed the case in complete networks. For simplicity, let denote the set
of nodes by {0, 1, . . . , n − 1}, and for nodes x, y, the label of the edge {x, y} is the
integer (y − x) mod n.

The obvious solution is to “flood”: an initiator sends a wakeupmessage to all its
neighbours. Since we are in a complete graph, this protocol requires only a single
round. The number of messages will however be k(n − 1), where k is the number
of initiators; this means that, in the worst case, n2 − n messages will be transmitted.
The only way to keep down the number of messages is for initiators to send only
to a subset of their neighbours. For example, if each node x sends only to node
(x + 1) mod n then only n messages will be sent in total, regardless of the number
of initiators. However, the time to complete wakeup will be the maximum distance
between successive initiators; this means that, in the worst case (i.e., with a single
initiator), the wakeup requires n − 1 time units.

In this type of situation, tomeasure the complexity of a protocol, the integrated cost
measure time × bits (TB) is used, i.e., the number of messages times the number of
steps required in the worst case for the completion of the algorithm, over all possible
choice and schedule of the initiators. Notice that, for the two algorithms described
above, the TB-complexity is the same:O(n2). The quest is for more efficient wakeup
protocols.

5.1 Oblivious Protocols

We consider a special class of protocols, those where an entity sends the wakeup
message to the same set of neighbours bothwhen it is an initiator andwhen it receives
awakeupmessage while asleep. This class of protocols is called oblivious (because
the set of neighbours does not depend on the state of the entity).

Notice that, since the network is anonymous, an oblivious protocol P can be seen
as specifying a subset S of integers modulo n and requiring every entity x to send a
wakeup message only to the subset {(x + j)mod n : j ∈ S(P)} of its neighbours. It
is assumed that 1 ∈ S while 0 /∈ S.

Further notice that the set S = {d0, d1, d2, . . . , dk−1}, where d0 = 1 and di−1 <

di < n for 1 ≤ i < n, defines a graph Rn[d1, d2, . . . , dk−1] where the nodes are
0, 1, . . . , n − 1 and there is an edge between nodes x, y if and only if (x − y)
mod n ∈ S. The class of graphs so defined are known as chordal ring.

Example 1 For n ≤ 2k the chordal ring Rn[2, 4, . . . , 2k−1] has diameter ≤ 2 log n
and degree log n. This chordal ring is also called double-cube.
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Example 2 For n < k! the chordal ring Rn[2!, 3!, . . . , (k − 1)!] has diameter O(k2)
(use the fact that every x < n canbe represented in themixedbasis 1!, 2!, . . . , (k − 1)!
as x = x1 + x22! + · · · + xk−1(k − 1)!, with 0 ≤ xi ≤ i, for i ≥ 1) and degree n ≤
log n/ log log n.

Summarizing, the edges on which messages are sent during the execution of
an oblivious wakeup protocol P form a chordal ring R. The message and the time
complexity of P will be the number of edges and the diameter of R, respectively.

We will use this observation to derive an optimal wakeup protocol.

5.2 Lower Bounds for Oblivious Protocols

We first derive a lower bound on the TB-complexity of oblivious wakeup protocols.
The derivation of this lower bound is based on the following bound for chordal rings.

Lemma 6 Let chordal ring Rn[d1, d2, . . . , dk−1] have diameter ψ. Then

k · ψ = �
(
log2 n

)
.

As a consequence, we have the following:

Theorem 17 Any oblivious wakeup protocol has �(n log2 n) TB-complexity.

Proof This follows easily fromLemma 6. Since the protocol is oblivious every entity
transmits a fixed number of messages in each iteration of the wakeup protocol, say k.
The graph resulting from such a protocol is the chordal ring Rn[S], where S is a set of
size k. The time required for thewakeupmessage to reach all the entities is at least the
diameterψ of the chordal ringRn[S]. Eventually all n entities are awakened. Since the
protocol is oblivious every entity that receives a wakeup message must transmit to
all its k neighbours. Hence the number of messages transmitted during the execution
of the protocol is nk. It follows that the complexity is at least nkψ = �(n log2 n). �

5.3 Optimal Oblivious Wakeup

In this section we describe an optimal oblivious wakeup algorithms. To derive it,
first observe that the k-dimensional mesh can be viewed as a chordal ring Rn[S], for
some set S of links. For example, the 2-dimensional mesh is the chordal ring Rn[√n],
while the k-dimensional mesh is the chordal ring Rn[n1/k, n2/k, . . . , n(k−1)/k].

For each point p = (p1, p2, . . . , pk) in the k-dimensional mesh, let

Sip = {(p1, . . . , pi−1, xi, pi+1, . . . , pk) : xi < n1/k}.
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If we define Si = {(0, . . . , 0, xi, 0, . . . , 0) : 0 ≤ xi < n1/k} then we see easily that
Sip = p + Si. Let Sp = S1p ∪ · · · ∪ Skp , and S = S1 ∪ · · · ∪ Sk .

This indicates a way to design an efficient oblivious wakeup algorithm for the
complete graph which terminates in k steps. In this protocol, entity p sends wakeup
messages to all and only the entities in the set p + S.

Oblivious Chordal Wakeup (for entity p)
1. If p is an initiator then it sends a wakeup message to all its neighbors in

the set p + S and becomes awake.
2. If p receives awakeupmessage from another entity and is not awake then

it sends wakeup messages to all entities in the set p + S and becomes
awake.

Theorem 18 For any k, if n = qk for some q, then protocol Oblivious Chordal
Wakeup has TB-complexity O(k2n(k+1)/k).

Proof Let n = qk; then in the execution of protocol Oblivious Chordal Wakeup,
the size of each transmission is kn1/k . A transmission from entity p = (p1, . . . , pk)
will reach all entities of the form p′ = (p1, . . . , pi−1, p′

i, pi+1, . . . , pk), where 0 ≤
p′
i < n, i = 1, 2, . . . , k. Therefore every entity will be reached after k steps. The
complexity is easily seen to be as claimed. �

More generally, by carefully choosing S, we have

Theorem 19 For any k and any m ≤ n1/k, if n = qk for some q, then protocol
Oblivious Chordal Wakeup is a t-step wakeup protocol, where t = k

mn
1/k, and its

TB-complexity is O(m k t n) = O(k2n(k+1)/k).

Proof Let n = qk , m ≤ n1/k , and t = d
mn

1/k . In the execution of Oblivious Chordal
Wakeup, each entity p transmits to the set p + S, where S = S1 ∪ · · · ∪ Sk and Si =
{(0, . . . , 0, xi, 0, . . . , 0) : 0 ≤ xi < m}. �

We now have all the ingredients to make Oblivious Chordal Wakeup optimal.

Theorem 20 Oblivious wakeup is possible with optimal TB-complexity�(n log2 n).

Proof Consider protocol Oblivious Chordal Wakeup when the set of neighbours
to which an entity p sends the wakeup messages defines the double-cube, i.e., the
chordal ringRn[2, 22, . . . , 2k−1]described inExample 1.ByTheorem19, the claimed
complexity follows. Optimality follows from the lower bound for oblivious protocols
of Theorem 17. �
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6 Further Reading

The aim of this chapter has been to introduce the basics of synchronous computing
at the microscopic level, describing some simple but powerful computational and
analytical tools.

Notice that, even though everything has been expressed in terms of message-
passing, the validity of what we said is independent of whether message transmission
to a neighbour and its reception are implemented by using physical communication
channels, or by writing to and reading from a predesigned shared register; in the
latter case, the microscopic view examines synchronous computations when the size
of the registers is limited by a system constant.

The reader interested in knowingmore about the microscopic nature of synchrony
is referred to the overview material in Chap. 6 of [37], as well as to the significant
amount of investigations on the subject.

These investigations cover a wide spectrum of problems and topics, including
election (e.g., [8, 12, 13, 25, 33, 35, 40, 41]), extrema finding (e.g., [1, 36, 41]),
symmetry breaking (e.g., [11, 15, 20, 26]), consensus (e.g., [7]), communicators and
their use (e.g., [5, 6, 30, 31, 38]), shortest paths (e.g., [28]), unison, firing squad
and wake-up (e.g., [4, 10, 16, 18, 29, 32]), matching (e.g., [19, 42]). Also relevant
are the results in the more powerful CONGESTmodel, on problem such as minimum
dominating sets (e.g. [21, 23]), coloring and independent sets (e.g. [2, 15, 17, 22,
27, 39]), andminimum-spanning-tree construction (e.g. [9, 14, 24, 34]). For a recent
investigation in a different application area see [43].
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Research Council (Canada) under the Discovery Grant program.
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Descriptional Complexity of Error Detection

Timothy Ng, David Rappaport and Kai Salomaa

Abstract The neighbourhood of a language L consists of all strings that are within
a given distance from a string of L . For example, additive distances or the prefix-
distance are regularity preserving in the sense that the neighbourhood of a regular
language is always regular. For error detection and error correction applications an
important question is to determine the size of theminimal deterministic finite automa-
ton (DFA) needed to recognize the neighbourhood of a language recognized by an n
stateDFA. This paper surveys recentwork on the state complexity of neighbourhoods
of regularity preserving distances.

1 Introduction

Distance is a fundamental concept in mathematics which gives a numerical value
to express the “closeness” of two objects. How we define “closeness” depends on
what the objects we want to compare are and why we want to compare them. Here
the objects we are interested in are strings, or sequences of symbols. Strings are
particularly important in computer science, where many different kinds of objects
are often represented as sequences of symbols.

A distance between strings can be extended into a distance between sets of strings,
or languages. There are various ways to extend distances from strings to languages
which are motivated by a number of applications, such as specification repair [1],
computational biology [24], and error detection in communication channels [16, 19].
Information on the theory and applications of error correcting codes can be found in
[7, 25, 36].
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The Encyclopedia of Distances by Deza and Deza [8] contains an extensive list of
distances that are used across a large number of different fields, including geometry,
biology, coding theory, image processing, and physics, among others. For each of
these definitions, we can ask questions about the behaviour of these distances and
their properties. The computational question typically considered is how hard it is to
compute the distance between given languages [12, 14, 17, 29].

Suppose we are given a distance d between strings. A mathematically elegant
extension of d to languages L1 and L2 is the Hausdorff distance [6, 8], which
gives a good overall measure of the similarity of L1 and L2. On the other hand, for
error detection and error correction applications when the distance function is used
to measure the number of errors in strings, the natural way to define the distance
between languages L1 and L2 is to take simply the distance between two closest
strings in L1 and L2, respectively. If we assume that errors have unit weight, then
L1 and L2 having distance r means that we can distinguish strings of L1 and L2,
respectively, on a channel that introduces at most r − 1 errors [13, 18]. A related
notion is the inner distance (or self-distance) of a language: if the distance of any two
distinct strings of a language L is at least r , the language L corrects r − 1 errors [14,
16, 19].

Theneighbourhoodof radius r of a language L consists of all strings that arewithin
distance atmost r froma stringof L .We say that a distanced is regularity preserving if
the neighbourhoodof a regular languagewith respect tod is always regular. This gives
rise to the question how large is the deterministic finite automaton (DFA) needed to
recognize the neighbourhood of a regular language. Roughly speaking, determining
the optimal size of the DFA for the neighbourhood gives the state complexity of
error detection.Note that since complementation does not change the size of a DFA,
the size of the minimal DFA for the neighbourhood of L of radius r is equal to the
state complexity of the set of strings that have distance at least r + 1 from any string
in L .1 Over the last 20years there has been much work on the state complexity of
various regularity preserving operations and the reader can find more references in
the survey [11].

It is known that the neighbourhoodof a regular languagewith respect to anadditive
distance or additive quasi-distance [4] or with respect to the prefix distance and its
variants [6] is always regular. The state complexity of neighbourhoods with respect
to the Hamming distance was first considered by Povarov [30]. A tight lower bound
for general additive distances was given by the current authors, however, a limitation
is that the alphabet size depends on the size of the original DFA.

This paper surveys algorithmic properties and descriptional complexity of com-
monly used distance measures between sets of strings and, in particular, recent work
on the state complexity of regularity preserving distances and related questions,
such as approximate pattern matching. The contents of the paper is as follows. In the
next section we recall some basic definitions on finite automata and Sect. 3 discusses
distances between languages and regularity preserving distances. Descriptional com-

1Strictly speaking, for incomplete DFAs the state complexity of L and the complement of L ,
respectively, may differ by one.
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plexity of neighbourhoods of regular languages is discussed in Sect. 4 and the last
section highlights some open problems and further research topics on the descrip-
tional complexity of error channels.

2 Definitions

We assume that the reader is familiar with the basics of finite automata and regular
languages and below we just fix some notations. All unexplained notions can be
found e.g. in the texts by Shallit [35] or Yu [37].

In the following Σ stands always for a finite alphabet and Σ∗ is the set of strings
over Σ . The length of a string w ∈ Σ∗ is |w| and ε is the empty string. For 1 ≤
i ≤ |w|, wi stands for the i th symbol of w. The reversal of a string w is wR =
w|w|w|w|−1 . . . w1. If w = xyz we say that x is a prefix, z is a suffix and y is a
substring of w. Here any of the strings x , y, z may be ε.

A nondeterministic finite automaton (NFA) is a tuple A = (Σ, Q, δ, Q0, F)

where Σ is the input alphabet, Q is the finite set of states, δ : Q × Σ → 2Q is
the multivalued transition function, Q0 ⊆ Q is the set of initial states and F ⊆ Q is
the set of final states. In the usual way δ is extended as a function Q × Σ∗ → 2Q and
the language accepted by A is L(A) = {w ∈ Σ∗ | δ(Q0, w) ∩ F �= ∅}. The automa-
ton A is a deterministic finite automaton (DFA) if |Q0| = 1 and δ is a single valued
partial function. If δ is a total function, the DFA A is complete. Note that our def-
inition allows DFAs to be incomplete, i.e., some transitions may be undefined. In
cases where the transitions function is required to be always defined we use the term
“complete DFA”. It is well known that the deterministic and nondeterministic finite
automata recognize the class of regular languages.

The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation ≡L⊆ Σ∗ ×
Σ∗ defined by setting x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L ⇔ yz ∈ L]. The language L
is regular if and only if the index of ≡L is finite and, in this case, the index of ≡L

is equal to the size of the minimal complete DFA for L [35]. For a given regular
language L , the number of states of the minimal incomplete and minimal complete
DFA recognizing L differ by at most one.

By the state complexity of a regular language L , sc(L), we mean the number of
states of the minimal incomplete DFA recognizing L . The nondeterministic state
complexity of L , nsc(L), is the number of states of a minimal NFA recognizing L .
Note that a state minimal NFA for a regular language need not be unique.

3 Distance Measures on Strings and Sets of Strings

A distance on strings over Σ is a function d : Σ∗ × Σ∗ → Q which for all strings
x, y, z ∈ Σ∗ satisfies the following
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1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x) (symmetry),
3. d(x, z) ≤ d(x, y) + d(y, z) (triangle-inequality).

From the above conditions it follows easily that d(x, y) must be non-negative for all
x, y ∈ Σ∗.

A quasi-distance is a function for which the first condition is weakened from “iff”
to “if”, that is, a quasi-distance of two distinct strings may be zero. If d is a quasi-
distance on Σ , we can define an equivalence relation ∼d on Σ by setting x ∼d y if
and only if d(x, y) = 0. Then the mapping d ′([x]∼d , [y]∼d ) = d(x, y) is a distance
over Σ∗/ ∼d [4].

A quasi-distance d is integral if for all strings x and y, d(x, y) ∈ N. Note that a
distance is a special case of a quasi-distance and all properties that hold for quasi-
distances apply also to distances.

Wenow recall the definition of some commonly used distancemeasures on strings.
The Hamming distance of two equal length strings x and y counts the number of
positions in which x differs from y. Formally, the Hamming distance between strings
x, y ∈ Σ∗ is defined as

dH (x, y) =
{ |{1 ≤ i ≤ |w| | xi �= yi }| if |x | = |y|,
undefined otherwise.

The distance is defined only when x is the same length as y.
For equal length strings Hamming distance counts the number of substitution

operations needed to transform x into y. A natural extension for all pairs of strings is
the Levenshtein distance [22], also called the edit distance, which counts the number
of atomic substitution, insertion and deletion operations required to transform x into
y. Formally the Levenshtein distance can be defined in terms of error systems con-
sidered by Kari and Konstantinidis [13] as a formalization of error in terms of formal
languages, see also [15]. An error system is a formal language over the alphabet of
edit operations. For an alphabet Σ , let EΣ be the alphabet of edit operations over Σ

defined by
EΣ = { (a/b) | a, b ∈ Σ ∪ {ε}, ab �= ε }.

An error is an edit operation (a/b) where a �= b. An edit string is a string over EΣ .
The weight |e|�= of an edit string e is the number of errors in e. For an edit string e =
(a1/b1)(a2/b2) . . . (an/bn), we call x = a1a2 . . . an the input part and y = b1b2 . . . bn
the output part of e (ai , bi ∈ Σ ∪ {ε}, i = 1, . . . , n).

Now the edit distance between strings x and y, de(x, y), is defined as theminimum
weight edit string e having x (respectively, y) as the input (respectively, the output)
part. The above definition has assigned weight one to all errors. It is possible to
consider also definitions where the weights need not be equal [12, 13]. General edit
distances are examples of additive quasi-distances considered in Sect. 3.2.
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Example 1 An edit string to transform the string hiphop into lollipop is

e1 = ε

l

h

o

i

l

p

l

h

i

ε

p

o

o

p

p
.

The length of this edit string is 8 and its weight is 6.
The edit string e1 is not a minimum weight edit string between the given strings.

The edit distance of the string hiphop and lollipop is 5, via the edit string

h

l

ε

o

ε

l

ε

l

i

i

p

p

h

ε

o

o

p

p
.

Instead of counting the number of edit operations, the similarity of strings can be
defined by way of their longest common prefix, suffix, or substring, respectively [6].
A parameterized prefix distance between regular languages has been considered
by Kutrib et al. [20] for estimating the fault tolerance of information transmission
applications. For example, the prefix distance of strings x and y is the sum of the
length of the suffix of x and the suffix of y that occurs after their longest common
prefix. Formally it is defined by

dp(x, y) = |x | + |y| − 2 · max
z∈Σ∗{|z| | x, y ∈ z · Σ∗}.

The definitions of the suffix distance and substring distance are analogous.2

Example 2 The strings yorkdale and yorkville have a prefix distance of 9 via their
longest common prefix york. The strings woodbine and guildwood have a substring
distance of 9 through their longest common substring wood. The strings parkdale
and riverdale have a suffix distance of 9 through the longest common suffix dale.

3.1 Distance Between languages

If d is a distance on strings over Σ , the natural way to define the distance between a
string w ∈ Σ∗ and a language L ⊆ Σ∗ is

d(w, L) = inf{d(w,w′) | w′ ∈ L}.

We want to further extend the definition to measure the distance between two lan-
guages, or sets of strings. The relative distance [6] of the language L1 to the language
L2 is defined as

d(L1|L2) = sup{d(w1, L2) | w1 ∈ L1}.

2The latter is called in [6] subword distance but this term has been used also for a distance defined
in terms of the longest noncontinuous subword [23].
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The bounded repair problem [1] consists of deciding whether or not the relative
edit distance of the restriction language L1 to the target language L2 is finite. The
bounded repair problem (in the general non-streaming case) is PSPACE-complete
when the restriction and target language are specified by NFAs and it is coNP-
completewhen the restriction language is specified by anNFAand the target language
by a DFA [1]. The coNP-hardness result holds also when the restriction language is
specified by a DFA. A variant of the bounded repair problem asks, roughly speaking,
what is the number of edits per symbol of a stringw in the restriction language that is
needed to transform w to a string of the target language [2]. Chatterjee et al. [5] have
studied systematically the complexity of the closely related threshold edit distance
problem for pushdown automata and finite automata.

Note that the relative distance is not, in general, symmetric. In order to satisfy sym-
metry, Choffrut and Pighizzini [6] use the Hausdorff distance to define the distance
between L1 and L2 by taking the maximum value

dHdorff(L1, L2) = max{ d(L1|L2), d(L2|L1) }.

The relative edit distance between regular languages was shown to be computable
by reducing it to the limitedness problem for distance automata [6], and Leung and
Podolskiy [21] have given an exponential time algorithm as well as a PSPACE-
hardness lower bound for the limitedness problem. As mentioned above, a PSPACE
algorithm for the relative distance between regular languages is known from themore
recent work on the bounded repair problem [1].

The Hausdorff distance having a small value means, intuitively, that every string
of L1 is close to some strings of L2 and vice versa, that is, the binary relation L1 × L2

is “almost reflexive” with respect to the distance under consideration [6].
In the above sense the Hausdorff distance gives a good measure of similarity

between languages. However, in error detection applications we want to ensure that
every string of L1 is at some minimum distance from every string of L2 and vice
versa. Thus, in the following we extend a distance from strings to languages simply
by taking the smallest distance of two strings in the respective languages:

d(L1, L2) = inf{ d(w1, w2) | w1 ∈ L1, w2 ∈ L2 }.

Unless otherwise mentioned, in the following when speaking about the edit distance
(or some other distance measure) for languages, we mean the above definition. The
inner distance of a language L [17] is

d(L) = inf{ d(w, z) | w, z ∈ L , w �= z }.

The maximal error-detecting capability of a language L , in the sense defined by
Konstantinidis and Silva [19], is one less than the inner distance of L .

The edit distance between two regular languages can be computed in polynomial
time and the corresponding question for context-free languages is unsolvable [24].
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Also the edit distance between a regular language and a context-free language can
be computed in polynomial time [12].

3.2 Regularity Preserving Distances

We can consider the topological notion of neighbourhoods, or balls, of radius r with
respect to a given distance d on strings. Informally, a neighbourhood of a language
L is the set of strings which are at most a distance r away from some string in L
according to the distance measure under consideration.

Formally, the neighbourhood of radius r ≥ 0 of a language L under quasi-distance
d is defined as

E(L , d, r) = { x ∈ Σ∗ | (∃y ∈ L) d(x, y) ≤ r }.

Suppose that the distance d measures the number of errors introduced in an informa-
tion transmission channel [13, 15, 19]. Then E(L , d, r) consists of all strings that a
channel that introduces at most r errors can output when the input is a string of L . In
other words, the complement of E(L , d, r) is the unique maximal language L ′ such
that d(L , L ′) > r .

Using the notion of neighbourhood we define the following notions on quasi-
distances:

Definition 1 Let d be a quasi-distance on Σ∗. We say that d is finite if, for all
w ∈ Σ∗ and r ≥ 0 the neighbourhood E({w}, d, r) is finite.

We say that d is regularity preserving if for all regular languages L and r ≥ 0,
the neighbourhood E(L , d, r) is regular.

For example, the edit, prefix, suffix and substring-distances are clearly all finite.
On the other hand, it is known that finiteness of a distance d does not guarantee that
d is regularity preserving [4]. Calude et al. [4] introduced a notion of additivity that
is sufficient to guarantee that a quasi-distance preserves regularity. We say that a
quasi-distance is additive if it respects composition of strings in the following sense.

Definition 2 A quasi-distance d on Σ∗ is additive if for all w1, w2 ∈ Σ∗ and r ≥ 0,

E({w1w2}, d, r) =
⋃

r1+r2=r

E({w1}, d, r1) · E({w2}, d, r2), (1)

Informally the additivity of d means that any neighbourhood of radius r of a con-
catenation of two strings w1w2 consists of exactly all the language concatenations
of neighbourhoods of w1 and w2 whose radii sum up to r . An additive distance is
always finite but additive quasi-distances need not be finite [4].

It is easy to verify that the edit distance de is additive. For the edit distance
the inclusion from left to right in (1) holds directly by definition and verifying the
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converse inclusion needs a short proof [4].Also, theHamming distance can be viewed
as an additive distance if we define that the cost of deletions and insertions is infinite,
that is, the distance between symbols of Σ and ε is defined to be infinite.

The additivity property is sufficient to guarantee that any neighbourhood of a
regular language is regular.

Theorem 1 ([4]) An additive quasi-distance preserves regularity.

For a given DFA A and radius r ≥ 0, the original proof of Theorem 1 in [4] first
verifies that the neighbourhoods of individual alphabet symbols are regular and then
using this property and additivity of the quasi-distance d constructs an NFA for the
neighbourhood E(L(A), d, r). The construction is far from optimal from the state
complexity point of view (since it results only in an NFA that, in general, needs to be
determinized) and in the next section we will discuss constructions with better state
complexity. Schulz and Mihov [34] have given a time efficient DFA construction for
the neighbourhood of a single stringw: if the radius is viewed as a constant, the DFA
can be constructed in time linear in the length of w.

On the other hand, additivity is not necessary for a distance to preserve recog-
nizability. It is clear that the prefix-, suffix- or substring distances are not additive.
However, given a DFA A it is easy to construct an NFA B that recognizes a neigh-
bourhood of L(A) with respect to the prefix-distance by, roughly speaking, guessing
the longest common prefix wp of the input and a string in L(A), and then counting
the length of the remaining suffix of the input. Naturally the number of states of B
has to depend on the radius, and depending on the state the simulated computation of
A ends in, the NFA B can “know” the length of the shortest suffix that completes wp

to a string of L(A). An analogous construction works for the suffix- and the substring
distance.

Theorem 2 ([6, 28]) The prefix-, suffix- and substring distances preserve regularity.

4 State Complexity of Neighbourhoods

A (combinatorial) channel is, in general, a binary relation on strings describing all
input-output situations permitted by the channel. Formore information on error chan-
nels and error detection we refer the reader e.g. to [9, 13, 16, 19]. If all substitution,
insertion and deletion errors have a unit cost, the number of errors introduced by
the channel is upper bounded by the edit distance of an input–output pair, and when
using errors with general weights (including possibly zero weight) we can bound the
number of errors by an additive quasi-distance.

Now assume that our channel C introduces at most r errors and consider a regular
language L that is recognized by a DFA with n states. The the complement of
the neighbourhood E(L , de, 2r + 1) is the unique maximal language L ′ such that
we can distinguish outputs produced by C on inputs from L and L ′, respectively.
Complementation changes the size of aminimal incompleteDFAby atmost one. This
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means that determining the state complexity of the neighbourhood E(L , de, 2r + 1)
as a function of n can be viewed as the state complexity of error detection on a
channel with at most r errors.

Povarov [30] was the first to systematically investigate the state complexity of
Hamming-neighbourhoods. Note that a Hamming-neighbourhood of radius r can be
viewed as a radius r neighbourhood where the underlying edit distance assigns value
r + 1 to all insertion and deletion operations, and in this way the Hamming distance
can be interpreted as a special case of an additive distance.

We begin by recalling the NFA construction for Hamming neighbourhoods due
to Povarov [30] since it is used for the first upper bound for deterministic state
complexity, as well as in later constructions from [27]. An alternative proof for the
upper bound of Theorem 3 based on finite transducers can be found in [31]. Recall
that dH denotes the Hamming distance.

Theorem 3 ([30, 31]) If L ⊆ Σ∗ has an NFA with n states and r ∈ N, then

nsc(E(L , dH , r)) ≤ n · (r + 1).

For every r ∈ N and n > r there exists an n-state NFA A over a two letter alphabet
such that

nsc(E(L(A), dH , r) = n · (r + 1).

Proof sketch for the upper bound. Suppose L is recognized by an NFA A =
(Σ, Q, δ, q0, FA). The neighbourhood E(L(A), dH , r) is recognized by an NFA

B = (Σ, Q × {0, 1, . . . , r}, γ, (q0, 0), FA × {0, 1, . . . , r}),
where the transitions of γ are defined by setting for q ∈ Q, 0 ≤ i ≤ r and b ∈ Σ :

γ ((q, i), b) =
{ {(p, i) | p ∈ δ(q, b)} ∪ {(p, i + 1) | (∃c ∈ Σ) p ∈ δ(q, c)} if i < r,

{(p, i) | p ∈ δ(q, b)} if i = r.

The first component of the state of B simulates a computation of A on some input
(possibly containing errors), and the second component keeps track of the cumulative
error. Note that the definition of γ allows the possibility of increasing the value of the
second component also on a transition with the correct input symbol (the case when
c = b). These transitions, although redundant, clearly do not change the language of
B. �

Theorem 3 is stated in [30] using the Hamming distance and the same upper
bound straightforwardly translates for any additive integral quasi-distance. In the
NFA construction the set of states remains Q × {0, 1, . . . , r} and, when the input
symbol is b, an error transition on c ∈ Σ ∪ {ε} takes state (q, i), (q ∈ Q, 0 ≤ i ≤ r )
to all possible states (p, i + d(b, c)), where i + d(b, c) ≤ r and p is reached from
state q on input c in the originalNFA.Additionally the construction adds ε-transitions
that simulate an insertion operation.
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Corollary 1 If L is recognized by an NFA with n states, d is an additive integral
quasi-distance and r ∈ N0, then

nsc(E(L , d, r)) ≤ n · (r + 1).

The derivation of an upper bound for the deterministic state complexity of Ham-
ming neighbourhoods uses the NFA construction of the proof of Theorem 3 and the
upper bound for the number of reachable states for the corresponding DFA makes
use of the redundant transitions (p, i + 1) ∈ γ ((q, i), b) where p ∈ δ(q, b) in the
definition of the NFA transition relation. Since [30] uses complete DFAs, below we
translate the upper bound construction also for incomplete DFAs. The lower bound of
Theorem 4 for neighbourhoods of radius one uses a construction where the minimal
DFA for the Hamming neighbourhood does not have a dead state which means that
the same lower bound holds when state complexity is based on incomplete DFAs.

Theorem 4 ([30])

(i) If A is a complete DFA with n states and r ∈ N0, then E(L(A), dH , r)) has a
complete DFA with at most 1

2 · n · 2nr + 1 states.
(ii) If A is an incomplete DFA with n states and r ∈ N0, then E(L(A), dH , r)) has

an incomplete DFA with at most 1
2 · (n + 2) · 2nr states.

(iii) For all n ≥ 4, there exists a complete DFA A with n states defined over a binary
alphabet such that

sc(E(L(A), dH , 1) = 3

8
n · 2n − 2n−4 + n.

Proof The proofs of (i) and (iii) can be found in [30]. Here we just translate the
former proof for incomplete DFAs to give the estimation (ii).

Suppose L is recognized by an incomplete DFA A = (Σ, Q, δ, q0, FA) where
|Q| = n. Let B = (Σ, P, γ, p0, FB) be the NFA constructed for the neighbourhood
E(L(A), dH , r) as in the proof of Theorem 3. In particular, the set of states P is
Q × {0, 1, . . . , r}.

Let B ′ be the DFA obtained from B using the standard subset construction. Since
A is deterministic, from the construction of B it follows that any subset of P that is
reachable as a state of B ′ can have at most one element of Q × {0} and, furthermore,
the reachable subsets X ⊆ P have the following property. If X �= {(q0, 0)} and X
contains an element (q, 0), q ∈ Q, then from the definition of the transitions of the
NFA B it follows that also (q, 1) ∈ X .

This means that the number of non-empty subsets of P that are reachable as states
of B ′ is upper bounded by

1 + (n · 2n−1 + 2n) · 2n(r−1) − 1 = 1

2
· (n + 2) · 2nr .

�
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The lower bound for radius one neighbourhoods is roughly within a factor of 3
4

of the upper bound of Theorem 4. Significantly, the lower bound is over a binary
alphabet—up to date this is the only good lower bound for the deterministic state
complexity of additive neighbourhoods where the alphabet size does not depend on
the size of the DFA and, furthermore, the underlying distance is just the Hamming
distance.

Shamkin [33] has constructed finite languages Ln , n ≥ 4, over a ternary alphabet
such that Ln has an incomplete DFA of size n and for all r ≤ n

2 − 1 the state com-
plexity of the radius r Hamming neighbourhood of Ln is at least 2� n

2 −r�. The lower
bound for Hamming neighbourhoods of radius r ≥ 1 is proportional to 2−r , that is,
with a fixed number of states the lower bound decreases with increasing radius. This
seems to be quite far from the upper bound.

The upper bounds of Theorem 4 could be improved by adding further redundant
transitions to the original NFA construction (from Theorem 3) and then using a
more detailed analysis of the number reachable states of the corresponding DFA.
However, in the next subsectionwe get a better upper bound for the deterministic state
complexity of neighbourhoods using a different approach. Instead of constructing an
NFA and then determinizing it, we construct a DFA for the neighbourhood directly
based on the finite automaton recognizing the original language.

4.1 Neighbourhoods of General Additive Distances

Here we consider the state complexity of neighbourhoods with respect to a general
additive distance, and in the next subsection the prefix-distance and other related
distance functions. If d is a regularity preserving distance, in the informal discussion
we use the term state complexity of d tomean the state complexity of neighbourhoods
with respect to d (given as a function of the state complexity of the original regular
language).

In the rest of this section, without separate mention we assume that all distances
and quasi-distances are integral, i.e., the range of values consists of the non-negative
integers. When considering the state complexity of neighbourhoods, this is not more
restrictive than using rational values. Note that an additive distance d is completely
determined by the distances between elements of Σ ∪ {ε}. Thus, if d has rational
values we can find a constant k such that there is an integral distance d ′ that satisfies,
for all strings x, y ∈ Σ∗, d ′(x, y) = k · d(x, y). Consequently for any language L
and radius r ≥ 0, E(L , d, r) = E(L , d ′, k · r).
Theorem 5 ([26, 32]) Let d be an additive quasi-distance. If L has an NFA with n
states and r ≥ 0,

sc(E(L(A), d, r)) ≤ (r + 2)n − 1.
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The statement of Theorem 5 in [26, 32] does not have the term “−1” because there
DFAs are required to be complete. The proof (for distances and quasi-distances in [26,
32], respectively) uses a construction based on additive weighted finite automata.
Below we outline a direct DFA construction for the neighbourhood of an additive
distance.
Proof sketch for Theorem 5. For simplicity we assume that d is a distance. This
implies that for any w ∈ Σ∗ and r ′ ≥ 0, E({w}, d, r ′) is finite [4].

Let A = (Σ, Q, δ, q0, FA) and denote Q = {q0, q1, . . . , qn−1}. We construct for
the neighbourhood E(L(A), d, r) a DFA B = (Σ, P, γ, p0, FB) where the set of
states is

P = {0, 1, . . . , r + 1}n − {(r + 1, . . . , r + 1)},

FB = {(x0, x1, . . . , xn−1) ∈ P | (∃0 ≤ j ≤ n − 1) x j ≤ r and q j ∈ FA},

and p0 = (0, i1, i2, . . . , in−1), where i j , 1 ≤ j ≤ n − 1, is the minimum of the set

Sdist−ε = ({d(ε,w) | q j ∈ δ(q0, w)} ∪ {r + 1}).

Finally, the transitions ofγ are defined as follows. Forb ∈ Σ and (x0, x1, . . . , xn−1) ∈
P , we define

γ ((x0, x1, . . . , xn−1), b) = (z0, z1, . . . , zn−1),

where z j , 0 ≤ j ≤ n − 1, is the minimum of the set

Sdist− j = {xi + d(b, w) | q j ∈ δ(qi , w)} ∪ {r + 1}.

Since d is a distance, the neighbourhood E({b}, d, r + 1) is finite and the set Sdist− j

can be effectively constructed.
Intuitively, theDFA B operates as follows.Assuming that B has processed an input

u ∈ Σ∗ and the current state is (x0, x1, . . . , xn−1), the component x j , 0 ≤ j ≤ n − 1,
is the smallest distance between u and a string w ∈ Σ∗ that in the original NFA A
takes the state q0 to q j . If x j = r + 1, then there is no string w with d(u, w) ≤ r
that takes q0 to q j . The state (r + 1, . . . , r + 1) would correspond to the dead state
of the computation and is omitted from the set of states.

The initial state p0 is chosen to satisfy the above property. Using the additivity of
d it can be verified inductively that if the state (x0, x1, . . . , xn−1) satisfies the above
described property, so does γ ((x0, x1, . . . , xn−1), b), b ∈ Σ . (The formal argument
for correctness is analogous to the one used in [26, 32] for constructing a weighted
finite automaton to recognize the neighbourhood.)

The choice of the set of final states guarantees that B accepts a string u ∈ Σ∗ iff
u ∈ E(L(A), d, r). �

When r and n are at least two, the upper bound of Theorem 5 is better than
the upper bound of Theorem 4. The natural question is then whether the upper
bound can be reached. Below we give a positive answer to this question. However,



Descriptional Complexity of Error Detection 113

a limitation is that the size of the alphabet depends on the size of the DFA and the
used (quasi-)distance needs to be defined based on the chosen radius.

Proposition 1 ([27])

(i) For all n, r ≥ 1, there exists an additive distance dr and an NFA An with n states
over an alphabet of size 2n − 1 such that sc(E(L(An), d, r) = (r + 2)n − 1.

(ii) For all n, r ≥ 1, there exists an additive quasi-distance d ′
r and a DFA A′

n
with n states over an alphabet of size 3n − 2 such that sc(E(L(A′

n), d
′, r) =

(r + 2)n − 1.

Proof The constructions for (i) and (ii) are variants of each other and (ii) is presented
in detail in [27]. Here we outline the construction for (i).

Choose Σn = {a1, . . . , an−1, b1, . . . , bn}. For r ∈ N, we define a distance dr :
Σ∗

n × Σ∗
n → N0 by the conditions:

• dr (ai , a j ) = r + 1 for i �= j ,
• dr (bi , b j ) = 1 for i �= j ,
• dr (ai , b j ) = r + 1 for all 1 ≤ i, j ≤ n,
• dr (σ, ε) = r + 1 for all σ ∈ Σ .

The above conditions specify a unique additive distance on Σn . Note that when we
set the deletion cost to be r + 1, due to symmetry of dr also the insertion cost will
be r + 1.

We define the following family of n-state NFAs An = (Qn,Σn, δ, 1, {n}) where
Qn = {1, . . . , n} and the transition function δ is defined by setting

• δ(i, ai ) = {i, i + 1} for 1 ≤ i ≤ n − 1,
• δ(i, a j ) = i for 1 ≤ i ≤ n − 2 and i + 1 ≤ j ≤ n − 1,
• δ(i, b j ) = i for 1 ≤ i ≤ n − 1 and j = i − 1 or i + 1 ≤ j ≤ n.

All transitions not listed above are undefined. The NFA An is depicted in Fig. 1.
As in Corollary 1 we construct an NFA Bn,r = (Q′

n,Σn, δ
′, q ′

0, F
′), for the neigh-

bourhood E(L(An), dr , r), where Q′
n = Qn × {0, 1, . . . , r}, q ′

0 = (q0, 0), F ′ = {n}
× {0, 1, . . . , r} and the transition function δ′ is defined by

• δ′((q, j), aq) = {(q, j), (q + 1, j)} for 1 ≤ q ≤ n − 1,
• δ′((q, j), aq ′) = {(q, j)} for all 1 ≤ q ≤ n − 1 and q ≤ q ′ ≤ n − 1,
• δ′((q, j), bi ) = {(q, j + 1)} for 1 ≤ q ≤ n and i = 1, . . . , q − 2, q,
• δ′((q, j), bi ) = {(q, j)} for 1 ≤ q ≤ n and i = q − 1, q + 1, . . . , n.

1start 2 · · · n− 1 n
a1 a2 an−2 an−1

a1, a2, . . . , an−1
b2, b3, . . . , bn

a2, a3, . . . , an−1
b1, b3, . . . , bn

an−1, bn−2, bn
bn−1

Fig. 1 The NFA An
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(1, 0)start (2, 0) · · · (n − 1, 0) (n, 0)

...
...

...
...

(1, r) (2, r) · · · (n − 1, r) (n, r)

a1 a2 an−2 an−1

a1, a2, . . . , an−1
b2, b3, . . . , bn

a2, a3, . . . , an−1
b1, b3, . . . , bn

an−1, , bn−2, bn

bn−1

b1 b2 b1, . . . , bn−3, bn−1
b1, . . . , bn−2, bn

b1 b2
b1, . . . , bn−3, bn−1 b1, . . . , bn−2, bn

a1 a2 an−2 an−1

a1, a2, . . . , an−1
b2, b3, . . . , bn

a2, a3, . . . , an−1
b1, b3, . . . , bn

an−1, bn−2, bn

bn−1

Fig. 2 The NFA Bn,r for the neighbourhood E(L(An), dr , r)

All transitions not listed above are undefined. The NFA Bn,r is depicted in Fig. 2.
Note that the distance dr associates cost one to substituting bi with b j , i �= j , and

cost r + 1 to all other substitutions, insertions and deletions. The “error transitions”
are depicted as non-horizontal transitions in Fig. 2 and, due to the above observation,
the only error transitions take a state (i, k) to (i, k + 1) on symbol bz , 1 ≤ i ≤ n,
0 ≤ k ≤ r − 1, where in the NFA An , δ(i, bz) is undefined.

For 0 ≤ ki ≤ r + 1, 1 ≤ i ≤ n, we define a string

w(k1, . . . , kn) = a1b
k1
1 a2b

k2
2 . . . an−1b

kn−1
n−1b

kn
n .

Claim 1. If ki ≤ r , then there exists a computation Ci of the NFA Bn,r which
reaches the state (i, ki ) at the end of the input w(k1, . . . , kn), 1 ≤ i ≤ n. There is no
computation of Bn,r on w(k1, . . . , kn) that reaches a state (i, k ′

i ) with k ′
i < ki . Fur-

thermore, if ki = r + 1, no computation of Bn,r reaches at the end of w(k1, . . . , kn)
a state where the first component is i .

The first part of the claim is easy to verify by direct inspection: Ci reaches state
(i, 0) by reading the prefix a1b

k1
1 . . . ai−1b

ki−1
i−1 . In state (i, 0) the computationCi reads

ai with the selfloop and the vertical error transitions on bkii take the computation to
state (i, ki ) where the remaining suffix can be processed using selfloops. For the
second part of the claim we note that all horizontal transitions in Bn,r are labeled by
a j ’s, and all horizontal transitions increment the first component of the state. Thus,
the only way to reach a state (i, k ′

i ), would be to read each of the symbols a1, …,
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ai−1 using a transition that increments the first component and then read ai with a
selfloop. Now the following ki symbols bi must be processed using error transitions
which means that k ′

i cannot be smaller than ki .
Using Claim 1 we can now verify any two distinct strings w(k1, . . . , kn) and

w(k ′
1, . . . , k

′
n), 0 ≤ ki , k ′

i ≤ r + 1, are inequivalent with respect to the Kleene con-
gruence of E(L(An), dn, r). Choose 1 ≤ j ≤ n such that k j < k ′

j and define z =
b
r−k j

j a j+1 . . . an−1.
By Claim 1,w(k1, . . . , kn) · z ∈ L(Bn, r) because after readingw(k1, . . . , kn) the

NFA Bn,r can reach the state ( j, k j ) and continuing the computation on z can make
r − k j further error transitions. Similarly using Claim 1 we see that no computation
of Bn,r onw(k ′

1, . . . , k
′
n) · z cannot reach an accepting statewhere the first component

is n, because to do so it would need to reach on the prefixw(k ′
1, . . . , k

′
n) a state ( j, �)

where � ≤ k j . Since k j < k ′
j this is impossible by Claim 1.

Since L(Bn,r ) = E(L(An), dn, r) it follows that the minimal complete DFA
for E(L(An), dn, r) has at least (r + 2)n states. The congruence class of w(r +
1, . . . , r + 1) corresponds to the dead state of the DFA and can be omitted.

The proof for the part (ii) in [27] introduces additional alphabet symbols c1, . . . ,
cn−1 and in each nondeterministic transition of An on ai , in the DFA A′

n the selfloop
is labeled instead by ci , 1 ≤ i ≤ n − 1. The quasi-distance d ′

r assigns distance zero
to ai and ci , 1 ≤ i ≤ n − 1. With these definitions a lower bound argument for
the size of a DFA for E(L(A′

n), d
′
r , r) similar to the one used above for (i) goes

through. �

To conclude this section we mention that the construction of Proposition 1 can be
modified to yield a tight lower bound for the state complexity of approximate pattern
matching. The descriptional complexity of pattern matching with mismatches was
first considered by El-Mabrouk [10]. Given a pattern P of length m and a text T ,
the problem is to determine whether or not T contains substrings of length m having
characters differing from P in atmost r positions, that is, substrings havingHamming
distance at most r from P . For a pattern P = am consisting of occurrences of only
one character, the state complexity was shown to be

(m+1
r+1

)
[10].

Extending the problem for a general additive quasi-distance d and a set of patterns
given as a regular language L ⊆ Σ∗, we want to determine the state complexity of
the set Σ∗ · E(L , d, r) · Σ∗, that is, the set of strings that contain a substring within
distance at most r from a string of L . The following lower bound is based on a
modification of the construction used in Proposition 1.

Proposition 2 ([27]) For n, r ∈ N, there exist an additive distance d and an NFA
A with n states defined over an alphabet of size 2n − 1 such that the minimal DFA
for Σ∗E(L(A), d, r)Σ∗ must have at least (r + 2)n−2 + 1 states.

The authors [27] give an upper bound matching the bound of Proposition 2 which
means that the state complexity of approximate pattern matching with r errors is
exactly (r + 2)n−2 + 1. Brzozowski et al. [3] have shown that, for an n-stateDFA lan-
guage L , the worst case state complexity of the two-sided ideal Σ∗LΣ∗ is 2n−2 + 1
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which corresponds to having error radius zero in approximate pattern matching. The
lower bound for the error free case is obtained with a three letter alphabet [3] whereas
Proposition 2 needs a variable size alphabet.

4.2 State Complexity of Prefix Distance

Additivity is not a necessary condition for a distance to be regularity preserving. For
example, by Theorem 2 the prefix, suffix, and substring distances preserve regularity
while these distances clearly are not additive.

The neighbourhood E(L , dp, r) (where dp is the prefix distance and r ≥ 0) con-
sists of strings w that share a “long” prefix with a string u ∈ L , more precisely, it is
required that the combined length of the parts of w and u outside their longest com-
mon prefix is at most the constant r . In view of this, it seems reasonable to expect
that the state complexity prefix distance neighbourhoods does not incur a similar
exponential size blow-up as, for example, the edit distance.

Theorem 6 ([28]) For n > r ≥ 0 and a DFA A with n states, the neighbourhood
E(L(A), dp, r) can be recognized by a DFA with n · (r + 1) − r(r+1)

2 states.
For n > r ≥ 0 there exists a regular language L over an alphabet of size n + 1

with sc(L) = n such that

sc(E(L , dp, r)) = n · (r + 1) − r(r + 1)

2
.

Proof sketch. We outline the general idea only for the upper bound [28]. Suppose
A = (Σ, Q, δ, q0, FA). We can construct for the neighbourhood E(L(A), dp, r) a
DFA B with state set

P = (Q − FA) × {1, . . . , r + 1} ∪ FA ∪ {p1, . . . , pr }.

Intuitively, B operates as follows. The computation of B simulates the computation of
A and, in states (q, j) ∈ (Q − FA) × {1, . . . , r + 1} the second component j keeps
track of the minimum of the following two values: (i) the number of steps A needs
q to reach a final state, and, (ii) the minimum path length in A from q to a final
state that first goes one or more steps back in the current computation and then any
number of steps forward (on an arbitrary input). Elements of FA have always counter
value zero and, hence, are not associated with the second component representing a
counter. The details of the definition of the transitions of B that correctly update the
counter value in the second component of the states can be found in [28].

If the simulated computation of A encounters an undefined transition, B performs
at most r further transitions using a sequence of “error-transitions” using the states
p1, . . . , pr . The number of allowable error transitions depends on the value of the
counter when the undefined transition of A was encountered.



Descriptional Complexity of Error Detection 117

All states of B except the states (q, r + 1), q ∈ Q − F , with counter value r + 1,
are final. Note that the states of the form (q, r + 1), q ∈ Q − F , are needed because
when simulating the transitions of A in the first component the counter value may
also decrease if the “forward” distance in A to a final state becomes smaller.

The state set P of B has in total (n − |FA|) · (r + 1) + r + |FA| elements. The
size of P is maximized by choosing |FA| = 1 and, furthermore, it can be verified that
at least r(r+1)

2 elements of P must, independently of the alphabet size, be unreachable
as states of B. �

The lower bound construction for Theorem 6 uses an alphabet of size n + 1 where
n is the number of states of the original DFA. It is known that the general upper bound
cannot be reached using an alphabet of size n − 2.

Proposition 3 ([28]) Let A be a DFA with n states. If the state complexity of
E(L(A), dp, r) equals n · (r + 1) − r(r+1)

2 , then the alphabet of A needs at least
n − 1 letters.

The paper [28] gives tight bounds also for the nondeterministic state complexity
of neighbourhoods defined by the prefix, suffix, and substring distances. The bounds
for the nondeterministic state complexity of the prefix distance and suffix distance,
respectively, coincide due to the observation thatds(x, y) = dp(x R, yR) for all strings
x, y, and the fact that the transitions of an NFA can be reversed without changing the
size of the NFA which means that, for any regular language L , nsc(L) = nsc(LR).

On the other hand, the deterministic state complexity of LR is usually significantly
different from the state complexity of L [11, 37]. It seems likely that constructing
a DFA for the neighbourhood of an n-state DFA with respect to the suffix distance
causes a much larger worst-case size blow-up than the bound for prefix distance in
Theorem 6. The precise deterministic state complexity of the suffix distance remains
open.

5 Conclusion and Open Problems

The precise worst-case state complexity of the radius r neighbourhood of an n state
DFA language with respect to an additive quasi-distance is (r + 2)n − 1. However,
the lower bound construction of Proposition 1 has the following limitations:

• The construction uses an alphabet that depends linearly on the number of states of
the original DFA.

• The underlying distance is defined based on the radius of the neighbourhood.
• We don’t have a tight bound for state complexity defined in terms of complete
DFAs. A complete DFA with (r + 2)n states can recognize a radius r neighbour-
hood of an n state DFA. It is not known how to construct a complete n state DFA
matching this upper bound.

Themain open problemconsists of proving lower bounds for additive distances (or
quasi-distances) using languages over a binary, or constant size, alphabet. The known
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good lower bound construction based on binary alphabets, due to Povarov [30], deals
only with the restricted case of radius one Hamming neighbourhoods (Theorem 4).
The other important improvement to the lower bound result of Proposition 1 would
be to find a construction where the same distance (or quasi-distance) definition works
for neighbourhoods of arbitrary radius.

Descriptional complexity questions are relevant also for the more general error
channels considered by Kari and Konstantinidis [13] and Konstantinidis and Silva
[19]. As briefly discussed in Sect. 3, the edit distance of two strings being at most a
constant r can be defined in terms of an error system that allows at most r substitu-
tion, insertion and deletion errors. With respect to this channel, the set of possible
outputs for an input belonging to a regular language L consists of the edit distance
neighbourhood of L having radius r .

General error channels (or error systems) realized by rational channels [9, 13, 19]
can formalize many further types of errors, such as transposition errors, or so called
scattered or burst errors that are relevant for data communication applications. The
set of possible outputs C(L) produced by a rational error channel C corresponding
to inputs belonging to a regular language L is always regular. However, the set C(L)

need not be a neighbourhood of L defined by a distance metric and future work can
consist to determine the state complexity of C(L) as a function of the state complexity
of L and the size of a finite transducer realizing the error channel C. The descriptional
complexity of error systems has been considered from a different point of view by
Kari and Konstantinidis [13] who establish upper and lower bounds for the sizes of
DFAs that recognize a given error system,
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A Less Known Side of Quantum
Cryptography

Naya Nagy, Marius Nagy and Selim G. Akl

Abstract The most tangible impact of quantum information processing that we can
perceive today is undoubtedly in the area of quantum cryptography. Quantum key
distribution protocols, starting with the groundbreaking BB84, are at the heart of
actual physical equipment designed to ensure the security of network communica-
tions through quantum means. But, despite their practical success, some important
questions related to these protocols remain insufficiently explored, even to the point
where they give rise to false myths. This chapter dispels these myths showing what is
the exact condition necessary to achieve genuine quantum key distribution (and not
just key enhancement), how authentication can also be done quantum mechanically
and how testing for possible acts of eavesdropping can also be done on qubits that
were never “touched” while in transit.

1 Introduction

It is without any doubt, that from the point of view of practical applications, quan-
tum cryptography is the most successful branch of quantum information processing.
Shor’s polynomial time algorithm for factorizing integers using quantum properties
[21] is a remarkable milestone, proving the power of a quantum computer. However,
experimental physicists are still struggling to find the best physical embodiment for
a qubit that would make a scalable quantum computer a practical reality.

On the other hand, physical equipment that can ensure the security of network
communications through quantum means have been available for years now. These
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technologies are based on the pioneering work of Bennett and Brassard [2]. They
showed for the first time how quantum properties (specifically photon polarization)
can be used to help two parties establish a shared secret key in order to communicate
secretly through a public channel. The BB84 protocol was the inception of a new
field of quantum key distribution, with many researchers devising new methods,
analyzing security properties or extending the initial result. Little by little, an array
of important results have established themselves as facts or common knowledge
shaping the public perception on quantum cryptography.

This chapter intends to bring under scrutiny some of the common beliefs marking
the field of quantum cryptography, either dispelling some of its myths or shedding
light on some less known, unconventional results that may look surprising at first.

Two of the most important problems in cryptography are concerned with the
security and authenticity of exchanged messages. There are perfectly good ways to
achieve these two goals, provided the two parties (generically referred to as Alice
and Bob) wishing to communicate over an insecure (public) channel share a secret
key. Therefore, the key distribution step, allowing Alice and Bob to establish a secret
key prior to exchanging any messages, is of capital importance for many areas of
cryptography.

Various schemes have been proposed over time to ensure the security and authen-
ticity of communications without resorting to a previously shared private key (Diffie-
Hellman, Digital Signature Algorithm, RSA). Probably, themost successful example
of such a public-key system is the RSA cryptographic system, based on the RSA
algorithm [18]. The security of public-key cryptographic communication systems
rests on unproved assumptions about the difficulty to compute the decryption key,
even when the encryption key is known. The RSA algorithm, for example, so popu-
lar today, capitalizes on the presumed intractability of factoring large numbers in a
reasonable amount of time, although nobody was able to prove that factoring is not
in P.

With the advent of processing information at the quantum level, the security of
cryptographic protocols was set on a firmer foundation. Quantum key distribution
(QKD) schemes were proposed, whose security is guaranteed by the very laws of
physics (quantum mechanics, more precisely). What really distinguishes them from
the classical cryptographic protocols is that they make the difference in terms of
intrusion detection. In a classical scheme, one can only hope that the adversary simply
does not have enough computational resources to gain knowledge of the information
in transit. There is no protocol that allows for the detection of an eavesdropper.
The ability to copy classical information without restriction is responsible for this
situation. In contrast, since arbitrary quantum bits cannot be cloned [24], it is much
more difficult for an eavesdropper to spy on a quantum communication without being
detected.

Several techniques exist that exploit quantum effects for key distribution [1, 2,
10]. Their aim is to maximize the intrusion detection rate, upon which the security of
the protocols rests. In these protocols, Alice conveys the secret information to Bob
by encoding it into some quantum properties of photons. At the other end, Bob has
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to subject each photon to a quantum measurement, as soon as it is received, in order
to agree with Alice on a common key.

All existing protocols, except the one presented here, actually perform a key
enhancement. Genuine key distribution is even deemed impossible due to the fact that
the quantum protocol needs to authenticate the classical channel. The authentication
of the classical channel is usually brieflymentioned, as being performed by a classical
authentication scheme, or in some cases it is not mentioned explicitly. A small key
authenticates the classical channel and then the quantum protocol develops a large
key. But, as we show in Sect. 3, authentication need not be done by classical means.
Thequantumprotocol itself can authenticate the communication partners. Thismeans
that all information exchanged between the partners is fully public, albeit public
protected. Public protected information means public information that cannot be
changed by a third party. A crucial note is justified here, namely that all classical
schemes need publicprotected information. In essence,we show that public protected
information is enough for genuine quantum key distribution.

A second myth we wish to dispel in this chapter is related to one-time pads. One-
time pads are the most secure solution for encrypting messages, exactly because
they are not supposed to be reused. The drawback is that the two communicating
parties need to meet in person in order to exchange the keys they will be using for
encryption/decryption of messages and each key must be as long as the message that
will be encrypted by that key. We show in Sect. 4 that one-time pad communication
can be made readily available by quantum or partially quantum messages. The one-
time pads are generated as needed by the initiating party of the communication. The
two parties do not need to meet in order to agree on the value of the one-time pad.
The only secret information that Alice and Bob share a priori is a reading mask. This
reading mask defines the quantum encryption of the one-time pad.

The idea of encrypting the encryption key and sending it along with the encrypted
message is part of the cryptographic folklore: for example a DES (data encryption
standard) key is used to encrypt a message, but is itself encrypted using an RSA
key. Our quantum version of the idea adds to the benefits of the classic version
the detectability of the intruder and the impossibility to copy the qubits. Thus, the
intruder is detected when only reading the message header or body. Also, for fully
quantum messages, both the encrypted key and the message body cannot be copied
by an eavesdropper for later use.

Finally, it is common sense to accept that a potential eavesdropper can be detected
based on how extensive her eavesdropping actions have been. The more qubits “dis-
turbed” through eavesdropping, the higher the chances to catch her. From this com-
mon sense comes the apparently reasonable assumption that Eve (the typical eaves-
dropper) can only be detected if at least one of the qubits tested or verified for
eavesdropping have been tampered with while in transit. However surprising as it
may seem, this is not actually true. Section5 presents the details of a QKD scheme
which employs the quantum Fourier transform in order to propagate the disturbance
caused by eavesdropping on a qubit to subsequent qubits in the sequence transmitted.
Thus, even if the intruder tries to “hide” behind a low level of eavesdropping, our
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protocol has the ability to detect Eve’s actions in spite of the fact that the qubits tested
for eavesdropping may have not been “touched” directly by Eve.

In an effort to make the material in this chapter accessible to a broad spectrum
of readers, even without a formal background in quantum mechanics, we begin our
exposition with a brief introduction to the field of quantum information processing.
The familiarized reader is advised to skip this preliminary section.

2 Fundamentals of Quantum Information Processing

2.1 Qubits and the Bloch Sphere

A classical bit may be in one of two states 0 and 1. The state of a qubit [17] is
defined as a superposition of the classical 0 and 1. Using Dirac’s notation, a qubit is
q = α|0〉 + β|1〉, where α and β are complex numbers. Since a qubit is normalized
to length one, |α|2 + |β|2 = 1, then |α|2 represents the probability of the qubit to
collapse to 0 when measured, and |β|2 represents the probability of the qubit to
collapse to 1. The qubit can be rewritten in polar coordinates q = eiγ(cosφ|0〉 +
eiθ sin φ|1〉), where α = eiγ cosφ and β = eiγeiθ sin φ. Because the global factor eiγ

is indistinguishable through measurement, it can be dropped. Thus, the qubit can be
written simply as q = cosφ|0〉 + eiθ sin φ|1〉.

Qubits can be graphically represented as arrows on a sphere, called the Bloch
sphere, see Fig. 1. Consider a three dimensional sphere of radius 1, in the coordinate
system Ox, Oy, and Oz. The Ox axis points to the right, Oy points away from the
paper, and Oz points upwards. Figure2 shows the representation of an arbitrary
qubit. The qubit shows as an arrow of length 1. Its orientation is described by φ,
the angle with the Oz axis, and by θ, the angle with the Ox axis measured in a
counterclockwise direction. Therefore, each qubit q = cosφ|0〉 + eiθ sin φ|1〉 has a
unique representation on the Bloch sphere.

Fig. 1 The Bloch sphere has
a unitary radius and is
centered in the origin of the
coordinate system
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Fig. 2 The qubit
cosφ|0〉 + eiθ sin φ|1〉 is a
vector on the Bloch sphere. φ
is the angle with the Oz axis,
and θ is the angle with the
Ox axis measured in a
counterclockwise direction

Some particular qubits are shown with their representation:

• |0〉 in Fig. 3.
• |1〉 in Fig. 4.
• 1√

2
(|0〉 + |1〉) in Fig. 5.

• 1√
2
(|0〉 + ei

π
2 |1〉) in Fig. 6.

• 1√
2
(|0〉 − |1〉) in Fig. 7.

• 1√
2
(|0〉 − ei

π
2 |1〉) in Fig. 8.

Note that all qubits in a balanced superposition are represented on the equator.
A balanced superposition means that the qubit has an equal chance 50% to collapse
to 0 or 1.

Fig. 3 The qubit |0〉

Fig. 4 The qubit |1〉
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Fig. 5 The qubit
1√
2
(|0〉 + |1〉)

Fig. 6 The qubit
1√
2
(|0〉 + ei

π
2 |1〉)

Fig. 7 The qubit
1√
2
(|0〉 − |1〉)

Fig. 8 The qubit
1√
2
(|0〉 − ei

π
2 |1〉)

2.2 Quantum Gates

Quantum protocols use a small set of common gates. Three such gates are described
below: the NOT gate, the phase-shift gate and the Hadamard gate. All these gates are
unary gates; they transform one qubit. Nevertheless, these gates may be extended to
binary gates by adding a control qubit to the primary qubit. The control qubit decides
whether the gate is actually applied to its primary qubit. If the control qubit is |1〉, the
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primary qubit is transformed according to the gate’s definition. If the control qubit
is |0〉, the primary qubit passes the gate undisturbed.

2.2.1 The Controlled NOT Gate

Probably the simplest gate that can be applied to a qubit is the plain NOT gate. It
reverses the |0〉 to |1〉 and vice-versa. For an arbitrary qubit, the NOT gate reverses
the probabilities of obtaining the binary 0 or 1 through measurement.

NOT(α|0〉 + β|1〉) = β|0〉 + α|1〉).

The NOT gate has the following transformation matrix

NOT =
[
0 1
1 0

]
.

Amore useful variant of the gate is the Controlled NOT gate, denoted CNOT. The
CNOT gate takes two input qubits and consequently also has two output qubits, see
Fig. 9. The control qubit gives the option either to indeed reverse the target qubit or
to leave it unchanged. If the control qubit is |0〉, the target qubit remains unchanged.
If the control qubit is |1〉, the target qubit comes out negated on the second output.
The first output is a copy of the control qubit. The CNOT gate is described by the
following transformation matrix. Note that the matrix has size four as it applies to
two qubits.

Fig. 9 The controlled NOT gate as applied to the computational basis
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CNOT =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

Thus, consider an arbitrary ensemble of two qubits qc qt = α|00〉 + β|01〉 +
γ|10〉 + δ|11〉, where |α|2 + |β|2 + |γ|2 + |δ|2 = 1. qc is the control qubit and qt
is the target (NOT) qubit. CNOT performs the following transformation

CNOT qc q =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

α
β
γ
δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

α
β
δ
γ

⎤
⎥⎥⎦ .

Let us consider a few particular cases. Suppose the control qubit is qc = |0〉 and
consequently the target qubit remains unchanged.

CNOT|00〉 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ = |00〉.

CNOT|01〉 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ = |01〉.

If the control qubit is qc = |1〉 the target qubit is flipped.

CNOT|10〉 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ = |11〉.

CNOT|11〉 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ = |10〉.

The CNOT gate can be used to clone a qubit if it is encoded in the computational
basis. That is to say, for a qubit that is in one of the two basis values |0〉 and |1〉,
the CNOT gate can produce an exact copy. To obtain this, the qubit to be cloned is
fed to the control input, and the NOT input is fed a |0〉, see Fig. 10. Such cloning
may be used by the eavesdropper to obtain a copy of a qubit that is part of a secret
message. If successful, the eavesdropper may remain hidden as she allows the initial
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Fig. 10 The controlled NOT
gate used for cloning a qubit
encoding the computational
basis

qubit to pass through to the rightful destination. This tentative eavesdropping, called
translucent eavesdropping can be revealed by using two or more encoding bases,
such as for example the computational basis and the Hadamard basis.

2.2.2 The Phase-Shift Gate

The phase-shift gate, Rθ, rotates the relative phase of a qubit by an angle θ. Rθ is
described by the transformation matrix

Rθ =
[
1 0
0 eiθ

]
.

If Rθ is applied to an arbitrary qubit q = α|0〉 + β|1〉, where |α|2 + |β|2 = 1, the
following transformation happens

Rθ ·
[

α
β

]
=

[
α

eiθβ

]

Let us consider a few particular cases.

Rotation by a θ = π angle.

Using Euler’s formula, eiθ = cos θ + i sin θ, we have eiπ = cos(π) + i sin(π) =
−1 (Fig. 11). The phase-shift gate for π is also called the Pauli-Z gate, denoted

Fig. 11 The qubit on the left is an arbitrary qubit α|0〉 + β|1〉, with |α|2 + |β|2 = 1. When the Z
gate is applied to it, the qubit vector gets rotated counter clock wise around the z-axis by an angle
of π
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Z = Rπ . It rotates the phase of the |1〉 by changing the sign of its coefficient. The
transformation matrix of the Z gate is

Z =
[
1 0
0 −1

]
.

The transformation can be shown to be unitary. The adjoint transformation is
obtained by transposing the matrix and each complex number is replaced by its com-

plex conjugate. As such, Z† is the same as Z . We have Z† =
[
1 0
0 −1

]
. And the mul-

tiplication of Z with its adjoint becomes Z · Z† =
[
1 0
0 −1

]
·
[
1 0
0 −1

]
=

[
1 0
0 1

]
= I ,

which is the identity matrix.
If Z is applied on an arbitrary qubit α|0〉 + β|1〉, with α and β complex numbers

and |α|2 + |β|2 = 1, the following transformation happens

Z(α|0〉 + β|1〉) = Z ·
[

α
β

]
=

[
1 0
0 −1

]
·
[

α
β

]
=

[
α

−β

]
= α|0〉 − β|1〉.

Z applied to the computational basis, |0〉 and |1〉 leaves the qubits unchanged.

Z|0〉 =
[
1 0
0 −1

]
·
[
1
0

]
=

[
1
0

]
= |0〉.

Z|1〉 =
[
1 0
0 −1

]
·
[
0
1

]
=

[
0

−1

]
= −|1〉 = |1〉.

We could write −|1〉 = |1〉 because the global factor −1, having the modulus 1,
is indistinguishable through measurement.

Z applied to a qubit on the equator rotates the qubit along the equator by an angle
of π. For example a qubit in balanced superposition, such as 1√

2
(|0〉 + |1〉), an arrow

pointing to the right on the Bloch sphere, undergoes the following Z transformation:

Z · 1√
2
(|0〉 + |1〉) =

[
1 0
0 −1

]
· 1√

2

[
1
1

]
= 1√

2

[
1

−1

]
= 1√

2
(|0〉 − |1〉).

The resulting qubit points to the right on the Bloch sphere (Fig. 12).

Rotation by a θ = π
2 angle.

Using Euler’s formula, eiθ = cos θ + i sin θ, we have ei
π
2 = cos( π

2 ) + i
sin( π

2 ) = i.
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Fig. 12 The qubit on the left is the balanced superposition 1√
2
(|0〉 + |1〉). When the Z gate is

applied to it, it gets rotated along the equator by an angle of π

The phase-shift gate for π
2 is also called the phase gate, denoted S = R π

2
. It rotates

the phase of the |1〉 component by an angle of π
2 , the equivalent of i. The transfor-

mation matrix for the S gate is

R π
2

=
[
1 0
0 i

]
.

Its adjoint transformation isR†
π
2
=

[
1 0
0 −i

]
.ThemultiplicationR π

2
· R†

π
2
=

[
1 0
0 i

]
·[

1 0
0 −i

]
=

[
1 0
0 1

]
= I , which proves the transformation to be unitary.

R π
2
applied to the computational basis, |0〉 and |1〉 leaves the qubits unchanged.

R π
2
|0〉 =

[
1 0
0 i

]
·
[
1
0

]
=

[
1
0

]
= |0〉.

R π
2
|1〉 =

[
1 0
0 i

]
·
[
0
1

]
=

[
0
i

]
= i|1〉 = |1〉.

We could write i|1〉 = |1〉 because the global factor i, having the modulus 1, is
indistinguishable through measurement.

R π
2
applied to a qubit on the equator rotates the qubit along the equator by an angle

of π
2 , counterclockwise. For example, if a qubit in balanced superposition, such as

1√
2
(|0〉 + |1〉), an arrow pointing to the right on the Bloch sphere, undergoes the

following R π
2
transformation:

R π
2

· 1√
2
(|0〉 + |1〉) =

[
1 0
0 i

]
· 1√

2

[
1
1

]
= 1√

2

[
1
i

]
=

1√
2
(|0〉 + i|1〉). (1)
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Fig. 13 The qubit on the left is the balanced superposition 1√
2
(|0〉 + |1〉). When the R π

2
gate is

applied to it, it gets rotated along the equator by an angle of π
2 , in the counterclockwise direction.

The resulting qubit points away from the page

The resulting qubit points away from the page on the Bloch sphere (Fig. 13).
If R π

2
is applied again on the resulting qubit 1√

2
(|0〉 + i|1〉), the arrow is rotated

additionally by the same angle, π
2 , in counterclockwise direction.

R π
2

· 1√
2
(|0〉 + i|1〉) =

[
1 0
0 i

]
· 1√

2

[
1
i

]
= 1√

2

[
1

−1

]
=

1√
2
(|0〉 − |1〉). (2)

This resulting qubit points to the left on the Bloch sphere (Fig. 14). Thus applying
the R π

2
twice is equivalent to applying the Z gate once.

Rotation by a θ = −π
2 angle.

Using Euler’s formula, eiθ = cos θ + i sin θ, we have e−i π
2 = cos( π

2 ) − i sin( π
2 ) =

−i. This transformation performs a clockwise rotation by an angle of π
2 , the equivalent

of a counterclockwise rotation by −π
2 .

Fig. 14 The qubit on the left is the balanced superposition 1√
2
(|0〉 + i|1〉). When the R π

2
gate is

applied to it, it gets rotated along the equator by an angle of π
2 , in the counter clock wise direction.

The resulting qubit points to the right on the Bloch sphere
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2.2.3 The Hadamard Gate

The Hadamard gate is described by the transformation matrix

H = 1√
2

[
1 1
1 −1

]
.

The transformation can easily be shown to be unitary as all values in the Hadamard
matrix are real and the matrix is symmetric. Therefore, the adjoint transformation is
identical to the original, H† = H. The multiplication of H with its adjoint becomes

H · H† = 1√
2

[
1 1
1 −1

]
· 1√

2

[
1 1
1 −1

]
= 1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
= I , which is the identity

matrix.
If H is applied on an arbitrary qubit q = α|0〉 + β|1〉, where |α|2 + |β|2 = 1, the

following transformation happens

H ·
[

α
β

]
= 1√

2

[
1 1
1 −1

]
·
[

α
β

]
= 1√

2

[
α + β
α − β

]
=

1√
2
(α + β)|0〉 + 1√

2
(α − β)|1〉. (3)

H applied to the computational basis, |0〉 and |1〉 brings the qubits into a balanced
superposition.

H|0〉 = 1√
2

[
1 1
1 −1

]
·
[
1
0

]
= 1√

2

[
1
1

]
= 1√

2
(|0〉 + |1〉). (4)

This is a vector on the equator pointing to the right, see Fig. 15.

H|1〉 = 1√
2

[
1 1
1 −1

]
·
[
0
1

]
= 1√

2

[
1

−1

]
= 1√

2
(|0〉 − |1〉). (5)

Fig. 15 The qubit on the left is classical zero. When the H gate is applied to it, it becomes the
balanced superposition 1√

2
(|0〉 + |1〉)
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Fig. 16 The qubit on the left is classical one. When the H gate is applied to it, it becomes the
balanced superposition 1√

2
(|0〉 − |1〉)

This is a vector on the equator pointing to the left, see Fig. 16. The two resulting
qubits, while both being balanced superpositions, differ in their phase.

As the Hadamard gate is its own inverse, H = H†, when the Hadamard gate is
applied two times on a qubit, the qubit remains unchanged. In particular, HH|0〉 =
H( 1√

2
(|0〉 + |1〉)) = |0〉, and HH|1〉 = H( 1√

2
(|0〉 − |1〉)) = |1〉.

Let us consider a few more Hadamard transformations as they will be useful in
the algorithms presented in the following sections.

When Hadamard is applied to the balanced superposition 1√
2
(|0〉 + i|1〉) the fol-

lowing rotation happens:

H(
1√
2
(|0〉 + i|1〉)) = 1√

2

[
1 1
1 −1

]
· 1√

2
(|0〉 + i|1〉) =

1

2

[
1 1
1 −1

]
·
[
1
i

]
= 1

2

[
1 + i
1 − i

]
= 1

2
[(1 + i)|0〉 + (1 − i)|1〉] =

1 + i

2

(
|0〉 + 1 − i

1 + i
|1〉

)
= 1 + i

2

(
|0〉 + (1 − i)2

1 − i2
|1〉

)
=

1 + i

2

(
|0〉 + 1 − 2i + i2

1 + 1
|1〉

)
= 1 + i

2
(|0〉 − i|1〉) =

1 + i√
2

1√
2

(|0〉 − i|1〉) = ei
π
4
1√
2

(|0〉 − i|1〉) = 1√
2

(|0〉 − i|1〉) . (6)

We could ignore the global factor ei
π
4 , as its modulus is unitary and is undis-

tinguishable through measurement. The resulting qubit is rotated by an angle of π
around the equator, see Fig. 17.

When Hadamard is applied to the balanced superposition 1√
2
(|0〉 − i|1〉) a similar

rotation happens:
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Fig. 17 The qubit on the left is the balanced superposition 1√
2
(|0〉 + i|1〉). When the H gate

is applied to it, it gets rotated by an angle of π around the equator and becomes the balanced
superposition 1√

2
(|0〉 − i|1〉)

H(
1√
2
(|0〉 − i|1〉)) = 1√

2

[
1 1
1 −1

]
· 1√

2
(|0〉 − i|1〉) =

1

2

[
1 1
1 −1

]
·
[
1
−i

]
= 1

2

[
1 − i
1 + i

]
= 1

2
[(1 − i)|0〉 + (1 + i)|1〉] =

1 − i

2

(
|0〉 + 1 + i

1 − i
|1〉

)
= 1 − i

2

(
|0〉 + (1 + i)2

1 − i2
|1〉

)
=

1 − i

2

(
|0〉 + 1 + 2i + i2

1 + 1
|1〉

)
= 1 − i

2
(|0〉 + i|1〉) =

1 − i√
2

1√
2

(|0〉 + i|1〉) = e−i π
4
1√
2

(|0〉 + i|1〉) = 1√
2

(|0〉 + i|1〉) . (7)

We could ignore the global factor e−i π
4 , as its modulus is unitary and is undis-

tinguishable through measurement. The resulting qubit is rotated by an angle of π
around the equator, see Fig. 18.

Fig. 18 The qubit on the left is the balanced superposition 1√
2
(|0〉 − i|1〉). When the H gate

is applied to it, it gets rotated by an angle of π around the equator and becomes the balanced
superposition 1√

2
(|0〉 + i|1〉)
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2.3 The Tensor Product

Two or more qubits together may be considered to form an ensemble. When a trans-
formation is defined for one qubit, it may algebraically be described as affecting the
ensemble. For example, if the first qubit is transformed by a Hadamard gate, while
the second remains unchanged, the ensemble transformation can be described by the
following matrix:

H ⊗ I2 = 1√
2

[
1 1
1 −1

]
⊗

[
1 0
0 1

]
=

1√
2

⎡
⎢⎢⎣
1 ·

[
1 0
0 1

]
1 ·

[
1 0
0 1

]

1 ·
[
1 0
0 1

]
−1 ·

[
1 0
0 1

]
⎤
⎥⎥⎦ = 1√

2

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ . (8)

Consider an arbitrary ensemble of two qubitsα|00〉 + β|01〉 + γ|10〉 + δ|11〉, where
|α|2 + |β|2 + |γ|2 + |δ|2 = 1.AHadamard gate applied on thefirst qubit is described
below:

H ⊗ I2(α|00〉 + β|01〉 + γ|10〉 + δ|11〉) =

1√
2

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

α
β
γ
δ

⎤
⎥⎥⎦ = 1√

2

⎡
⎢⎢⎣

α + γ
β + δ
α − γ
β − δ

⎤
⎥⎥⎦ =

α + γ√
2

|00〉 + β + δ√
2

|01〉 + α − γ√
2

|10〉 + β − δ√
2

|11〉. (9)

For a base vector, the formula is much simplified. Consider the first base vector |00〉.

H ⊗ I2(|00〉) = 1√
2

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ = 1√

2

⎡
⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎦ =

1√
2
(|00〉 + |10〉). (10)

The result of the computation shows the expected result, namely that the first qubit
is transformed to H|0〉, while the second qubit remains unchanged.
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3 Quantum Authenticated Key Distribution

In cryptography, key distribution is the process whereby two parties reach an agree-
ment on the value of a secret key. Several protocols exist in the quantum cryptography
literature for the distribution of quantum keys [1, 2, 10]. These protocols achieve
a higher confidence in the key’s secrecy than classical methods. To date, quantum
key distribution algorithms have used two communication media: a quantum chan-
nel, with quantum bits, and a classical channel, carrying classical information. The
classical channel needs to be authenticated.

The algorithm presented here improves the quantum key distribution in two ways.
First, there is no classical communication channel. Communication between the two
parties is done solely via one insecure quantum channel. Secondly, authentication
is done by the quantum algorithm itself, using two public keys. This is essentially
different from previous algorithms, where authentication was done exclusively by
classicalmeansor by a trusted authority. Itwas previously believed that authentication
is impossible by quantum means only [12]. Our protocol proves the opposite.

3.1 Public Keys: Classical Versus Quantum

There is no doubt that public key cryptosystems dominate cryptographic applica-
tions today. Their aim is to allow exchanging secret messages reliably and secretly.
Public key cryptosysems offer commercially satisfactory security levels. Formally,
the problem to be solved cryptographically can be formulated as two entities, Alice
and Bob, that want to exchange secret messages on a classical insecure channel.
A malevolent third party, Eve, may take advantage of the insecurity of the channel
and listen to the message or tamper with its content. The security of the public key
cryptosystem relies on the difficulty of inverting particular algebraic functions, also
called “one-way” functions.

3.1.1 Protected Public Keys

Secure communication is achieved using two types of keys: a public key and a private
key. If Bob wants to send a secret message to Alice, he uses the public key of Alice
to encrypt the message. Alice then reads the message after using her private key for
decryption. There are a few very important characteristics of the two keys implied in
this communication.Alice’s private key is secret, and not sharedwith anybody else. In
particular, Bob does not need to know Alice’s private key. This is a major advantage,
as the private key is never seen on any communication channel and therefore, its
secrecy is ensured.

By contrast, Alice’s public key is available to anybody. Bob needs to know it, and
also the eavesdropper, Eve, has access to it. In order for the protocol to work, the
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public key is guaranteed to be protected. This means, there is a consensus about the
public key value. Both Bob and Alice are sure that they use the correct, same public
key. Eve cannot masquerade as Alice and change the value of Alice’s public key,
making Bob use a false public key to encrypt his message. This feature is crucial for
a public key cryptosystem to work. The public key cryptosystems need the public
key to be protected, and accept it as given that such a protection of the public key
is practically possible. Current public key algorithms, such as the RSA [18], need
to continuously increase the length of the protected public key in order to maintain
acceptable security levels.

Our quantum key distribution protocol also relies on the protectedness of public
keys. The public keys used in our algorithm are regular binary numbers, but differ
in meaning from the conventional public key, such as the RSA key. We will call the
public keys used in our quantum algorithm quantum generated public keys. Alice has
a protected quantum generated public key and Bob has another protected quantum
generated public key. In fact these two public keys are the only protected informa-
tion exchange between Alice and Bob. Exactly as in the case of classical public
key cryptosystems, our algorithm requires that such public keys can be published
protectedly, with the guarantee that the keys’ values are and remain protected from
masquerading. As will be seen from the algorithm itself, besides having public keys,
Alice and Bob share only an insecure quantum channel.

3.2 Quantum Key Distribution Algorithms

The security of the classical public key RSA cryptosystem relies on the theoretically
unproven assumption that factoring large numbers is intractable on classical com-
puters. As described in [17], quantum computers can break some of the best public
key cryptosystems.

Quantumcryptography aims to designmechanisms for secret communicationwith
higher security than protocols based on the public key approach. Privacy of amessage
and its credibility is well satisfied in a private key cryptosystem setting. Alice and
Bob share one and the same secret key, ks. Bob uses the secret key for encryption
and Alice consequently decrypts the message with the same key. As long as ks is
unknown to anybody else, the secrecy of the communication is satisfied. There exist
various encryption/decryption functions using ks, such that the encrypted message
reveals no information whatsoever about the content of the message, provided the
key ks is unavailable.

Generally, QKD protocols involve two stages. The first one is usually a one-
way communication (from Alice to Bob) over a quantum channel. In this stage, a
random sequence of bits generated by Alice is transmitted over to Bob, each 0 or
1 encoded in some quantum observable (photon polarization is the natural choice).
Havingmeasured each incoming qubit in one of the pre-defined bases, Bobmust now
communicate with Alice over a public channel to exchange information about the
encoding of each qubit and eventually agree upon a common secret key. This two-
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way communication between Alice and Bob over a classical channel represents the
second stage of QKD protocols. The above two-stage scenario forms the backbone
of all schemes developed so far in order to distribute classical keys through quantum
means. They differ only in the particular quantum mechanical features or principles
chosen to achieve their goal.

The first quantum protocol for key distribution was developed in 1984 by Charles
Bennett and Gilles Brassard and is hence known as BB84 [2]. It is characterized by
the use of two quantum alphabets (orthonormal bases) for encoding and decoding
the bits transmitted. One consists of the vertical and horizontal polarization states
of photons, while the other orthonormal basis corresponds to polarization directions
formed respectively by 45◦ clockwise and counter-clockwise rotations off from the
vertical. The convention used for the two quantum alphabets could be

⎧⎨
⎩
“0” = | →〉

“1” = | ↑〉

in the case of the vertical/horizontal basis, and
⎧⎨
⎩
“0” = | ↗〉

“1” = | ↖〉

for the oblique basis. In the first stage of BB84, Alice randomly chooses one of these
two agreed-upon quantum alphabets for each bit transmitted. At the receiving end,
Bob also selects one basis, at random, to measure each incoming photon and decode
the bit carried. By comparing the alphabet used for encoding with that used for
decoding, in the second stage of the protocol, Alice and Bob can reach an agreement
for a commonbinary substring called the rawkey, by keepingonly those bits forwhich
the encoding and decoding basis was the same and discarding all the others (roughly
half of the total number of bits transmitted). Figure19 illustrates this process.

Using a pair of conjugate (incompatible) observables, the BB84 protocol relies on
Heisenberg’s uncertainty principle coupled with the inevitable disturbance caused by
quantum measurements to detect potential eavesdroppers. On average, 25% of the
photons that Eve (the prototypical eavesdropper) chooses to tamper with will give
rise to disagreements between Alice’s raw key and Bob’s raw key. Things get more

Fig. 19 Quantum key
distribution in the absence of
eavesdropping

Alice 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0
× + × + + + × × + + × + × × ×
↗ ↑ ↖ → → ↑ ↗ ↗ → ↑ ↗ → ↖ ↖ ↗

Bob + + × + × × + × × + + + × + ×
1 1 1 0 0 1 1 0 1 1 0 0 1 1 0

key 1 1 0 0 1 0 1 0
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complicatedwhen such disagreements can also be the result of imperfections or noise
in the quantum channel. Consequently, Eve could adopt the strategy of gaining only
partial knowledge about the key by trying to hide behind the noise level. To cope
with such low levels of eavesdropping, Bennett et al. [4] have proposed the method
of privacy amplification, a mathematical technique based on the principle of hashing
functions that magnifies Eve’s uncertainty over the final form of the key.

Using pairs of orthogonal polarization states as quantum alphabets for the trans-
mitted bits is not a necessary condition. Bennett showed [1] that any two non-
orthogonal quantum states can be used to achieve key distribution in a practical
interferometric realization using low-intensity coherent light pulses. The protocol
(known as B92) needs only one quantum alphabet, but with non-orthogonal polar-
ization states. Therefore, Bob must be equipped with a POVM (positive operator
value measure) receiver in order to interpret the incoming photons properly. As in
the case of BB84, eavesdropping attempts are made apparent by an unusual error
rate in Bob’s raw key. Specific to B92 is the possibility of detecting eavesdroppers
by an unusual erasure rate (inconclusive receptions) for Bob.

The protocols that offer the best security, at least from a theoretical viewpoint,
are based on entanglement (EPR pairs). Inspired by EPR experiments designed to
test Bell’s inequality, Artur Ekert thought of a way of using entangled pairs for
distributing cryptographic keys by quantum means [10]. In the first stage of his
scheme, Alice and Bob receive entangled particles from a central source and perform
independent measurements upon them. The shared secret key is established in the
second stage, when Alice and Bob publicly confront the orientations they adopted
for each measurement.

Similarly to BB84, the key will consist of only those bits that were measured
in the same basis by both participants. Unlike the BB84 protocol, however, the
remaining bits are not discarded, but the strength of their correlations is used to
test for eavesdroppers. These correlations must exceed anything that is possible
classically, according to Bell’s theorem, if the original EPR pairs were untampered
with. A related, but simpler EPR cryptographic scheme was described by Bennett
et al. [3] that is proved secure without the need to invoke Bell’s theorem. They also
show the equivalence between their scheme and the original BB84 key distribution
protocol.

Protocols resorting to EPR pairs offer a qualitatively new level of security, that
becomes apparent by considering the scenario in which someone attempts to make
measurements on the particles before they arrive at the legitimate receiver. For an
entanglement-free protocol, such an eavesdropping strategy aims at gaining knowl-
edge of the information encoded in the qubits transmitted. But in the case of schemes
based on EPR pairs, Eve cannot elicit any information from the transiting particles
simply because there is no information encoded there. The information about the
secret key has yet to come into being once Alice and Bob perform their measure-
ments.

Another advantage of entanglement-based schemes refers to the issue of privacy
amplification. The limitations of the classical privacy amplification based on hashing
algorithms are overcome in the quantum privacy amplification technique developed
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in 1996 [9]. The quantum procedure, which is applicable only to-based quantum
cryptography, is in fact an entanglement purification process that can be repeatedly
applied to impurely entangled particles to cleanse them of any signs of tampering by
Eve.

However, these advantages of entanglement-based cryptography are rather theo-
retical at themoment because storing entangled particles is only possible for a fraction
of a second as yet, and entanglement purification depends on quantum computational
hardware that, although simple, has yet to be built. In contrast, implementations of
the original BB84 protocol are well within the capabilities of current technology,
reaching the point where they have become commercially viable.

Note that all quantum key distribution algorithms mentioned above require that
the classical channel be authenticated. Authentication is supposed to be done by
classicalmeans.The authenticated classical channel preventsEve frommasquerading
as someone else and tamper with the communication. The general view in quantum
cryptographic literature (see for example [12]) is that authentication is not possible
through quantum means and consequently, for any secure quantum communication
a classical authentication scheme needs to be used.

As will be clear from the algorithm described in this section, authentication of a
quantum communication protocol is not only possible by quantummeans only, but in
fact a classical channel is superfluous. The general authentication scheme has been
developed in [15]. In this previous result, classical communication was still needed,
though the classical channel was not authenticated. In the present improved version
of the protocol, the classical channel is removed completely. The robustness of the
algorithm comes also from the simplicity of the communication support available.
Alice and Bob share an insecure quantum channel and two quantum generated public
keys. They have an authentication step at the end of the protocol, with the help of the
quantum generated public keys. Note that authentication in our algorithm is done at
the end of the protocol and is derived from the quantum algorithm itself.

Shi et al. [20] also describe a quantum key distribution algorithm that does not
use a classical channel. Authentication is done by a trusted authority, that provides
the entangled qubits to Alice and Bob. In our protocol, such a trusted authority is not
needed. The entangled qubits may come from an insecure source.

3.3 Entangled Qubits

The key distribution algorithmwe present in the following subsection relies on entan-
gled qubits. Alice and Bob, each possess one of a pair of entangled qubits. If one
party, say Alice, measures her qubit, Bob’s qubit will collapse to the state compatible
with Alice’s measurement. The qubit pair is in one of the four Bell states:

1√
2
(|00〉 ± |11〉)



142 N. Nagy et al.

1√
2
(|01〉 ± |10〉)

Suppose Alice and Bob share a pair of entangled qubits described by the first Bell
state:

1√
2
(|00〉 + |11〉)

Alice has the first qubit and Bob has the second. If Alice measures her qubit and
sees a 0, then Bob’s qubit has collapsed to |0〉 as well. Bob will measure a 0 with
certainty, that is, with probability 1. Again, if Alice measures a 1, Bob will measure a
1 as well, with probability 1. The same scenario happens if Bob is the first to measure
his qubit.

Note that any measurement on one qubit of this entanglement collapses the other
qubit to a classical state. This property is specific to all four Bell states and is then
exploited by the key distribution algorithms mentioned above: If Alice measures her
qubit, she knows what value Bob will measure. The entanglement employed by the
algorithm described in this section, however, does not have this property directly.

3.3.1 Entanglement Caused by Phase Incompatibility

Let us look nowat an unusual formof entanglement. Consider the following ensemble
of two qubits:

φ = 1

2
(−|00〉 + |01〉 + |10〉 + |11〉)

The ensemble has all four components, |00〉, |01〉, |10〉, and |11〉, in its expression.
And yet, this ensemble is entangled.

Consider the following proof. Suppose the ensemble φ is not entangled. This
means φ can be written as a scalar product of two independent qubits:

φ = 1

2
(α1|0〉 + β1|1〉)(α2|0〉 + β2|1〉)

Matching the coefficients fromeach base vector,we have the following conditions:

1. α1α2 = −1
2. α1β2 = 1
3. α2β1 = 1
4. β1β2 = 1.

The multiplication of conditions 1 and 4 yields: α1α2β1β2 = −1. On the other
hand, from conditions 2 and 3, we have: α1α2β1β2 = 1. This is a contradiction.
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The product α1α2β1β2 cannot have two values, both +1 and −1. It follows that φ
cannot be decomposed and thus the two qubits are entangled.

The entanglement of the ensemble is caused by the signs in front of the four
base vector components. Thus, it is not that some vector is missing in the expression
of the ensemble, rather it is the phases of the base vectors that keep the two qubits
entangled. Let us investigate what happens to the ensembleφ, when the entanglement
is disrupted through measurement.

If the first qubit q1 is measured and yields q1 = |0〉 = 0 then the second qubit
collapses to q2 = 1√

2
(−|0〉 + |1〉). This is not a classical state, but a simpleHadamard

gate transforms q2 into a classical state.
Applying the Hadamard gate to an arbitrary qubit, we have H(α|0〉 + β|1〉) =

α |0〉+|1〉√
2

+ β |0〉−|1〉√
2

. For our collapsed q2, we have H(q2) = H( 1√
2
(−|0〉 + |1〉)) =

−|1〉. This is a classical 1.
The converse happens when qubit q1 yields 1 through measurement. In this case

q2 collapses to q2 = 1√
2
(|0〉 + |1〉). Applying the Hadamard gate transforms q2 to

H(q2) = H( 1√
2
(|0〉 + |1〉)) = |0〉 = 0. Again this is a classical state 0.

It follows that by using the Hadamard gate, there is a clear correlation between
the measured values of the first and second qubit. In particular, they always have
opposite values.

A similar scenario can be developed, when the second qubit q2 is measured first.
In this case, the first qubit q1, transformed by a Hadamard gate, yields the opposite
value of q2.

3.4 The Algorithm

The goal of the key distribution algorithm described below is to establish a secret
key, known only to Alice and Bob. Subsequently, when Alice and Bob exchange
messages, they will use this key to encrypt/decrypt their messages. One session is
required to establish a binary secret key, called secret, such that Alice and Bob are in
consensus about the value of the secret key. The secret key secret consists of n bits,
secret = b1b2 . . . bn. Technically, to perform the algorithm, Alice and Bob need an
array of entangled qubit pairs, and two protected public keys. Note that Alice and
Bob do not communicate on any classical channel.

The array of the entangled qubits has length l, it consists of l qubit pairs denoted
(q1A, q1B), (q2A, q2B), . . . , (qlA, qlB). The array is split between Alice and Bob. Alice
receives the first qubit of each entangled qubit pair, namely q1A, q2A, . . . , qlA, and
Bob receives the second half of the qubit pairs, q1B, q2B, . . . , qlB. The entanglement
of a qubit pair is of the type described in the previous subsection, namely, phase
incompatibility. The array of qubits is unprotected. There is no guarantee that the
qubits of a pair are indeed entangled; indeed, Eve may have disrupted the entan-
glement. Also, Eve may have masqueraded as either Alice or Bob, modifying the
entangled qubits, such that Alice’s qubit is actually entangled with a qubit in Eve’s
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possession rather than Bob’s, and the same holds for Bob. In case Eve has disrupted
the entanglement or has masqueraded, any result of the algorithm is discarded and
the key distribution is attempted all over again, from the beginning.

The size n of the secret key is less than half of the length l of the initial qubit
array, n < l

2 . Indeed,
l
2 qubits, that is half of the qubits, are discarded because the

bases in which Alice and Bob measure are inconsistent 50% of the time. From the
remaining half of qubits a further arbitrary number is sacrificed for security checking.
The number of qubits thus sacrificed depends on the desired degree of security.

Two public keys are needed by the algorithm. Alice has a public key keyA and
Bob has a public key keyB. The two public keys keyA and keyB are independent.
Alice and Bob use these public keys to exchange classical binary information and
also, very importantly, for authentication. The keys, as used in this algorithm, have
some characteristics that are different from the classical public keys. The keys are
established during the computation. They are not known prior to the key distribution
algorithm and are defined in value during the computation according to the measured
values of some of the qubits. This means that the keys are available after the key
distribution protocol. Consequently, the keys have to be posted after the algorithm,
which is unlike the classical case, where a public key is known in advance.

Also, the two public keys keyA and keyB are valid for one session, that is, for one
application of the key distribution algorithm. If Alice and Bob want to distribute a
second secret key using the same algorithm, they will have to create new public keys,
which are different in value from the public keys of the previous session.

The key distribution algorithm, like all quantum key distribution algorithms,
develops the value of the secret key during the computation. Implicitly, the val-
ues of the public keys as well are developed during the computation. There exists
no knowledge whatsoever about the values of the keys (secret and public) prior to
running the algorithm.

Both Alice and Bob follow the same steps briefly denoted below:

1. Measure your entangled qubits
2. Compute your own public key and post it
3. Read your partner’s key and check for eavesdropping
4. Construct the value of the secret key

A detailed description of the algorithm follows.

Step 1

Alice works with the array of qubits q1A, q2A, . . . , qlA. Binary information is ren-
dered by the results of measuring. All measurements are performed in the standard
computational basis. Alice has two options for processing her qubits. She either mea-
sures a qubit directly, or she transforms the qubit by a Hadamard gate and measures
afterwards. For each qubit, qiA, Alice decides randomly on one of the two process-
ing options. Notably, there is no communication with Bob at this stage. To look
at a concrete example, suppose Alice has 10 qubits q1A, q2A, . . . , q10A. Qubits qiA
transformed by the Hadamard gate are denoted HqiA; for those measured directly
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the notation is unchanged. Suppose that by random choice, Alice has processed her
qubits as follows:

q1A,Hq2A,Hq3A, q4A, q5A, q6A,Hq7A,Hq8A, q9A, q10A,

and suppose again, she has measured the following binary values:

1, 1, 1, 0, 0, 0, 0, 1, 1, 1

In the meantime, Bob processes his qubits q1B, q2B, . . . , q10B following the same
policy. He too, has a random choice on each qubit: to measure directly or to measure
after a Hadamard transformation. Suppose again, that by random choice, Bob has
obtained the following array:

Hq1B,Hq2B, q3B,Hq4B, q5B, q6B, q7B,Hq8B,Hq9B, q10B,

with the values
0, 1, 0, 1, 1, 0, 1, 0, 0, 1

We have seen in the previous subsection that two entangled qubits qiAqiB =
1
2 (−|00〉 + |01〉 + |10〉 + |11〉), consistently render opposite classical bit measure-
ments, if and only if exactly one qubit is measured directly and the other is measured
after a Hadamard transformation. It is of no consequence whether the first qubit is
Hadamard transformed or the second. The order of the qubits is irrelevant, the impor-
tant issue is that exactly one of the qubits is passing a Hadamard gate. Thus, there
are two “valid” measurement options:

1. qiA, HqiB and
2. HqiA, qiB

These measurement scenarios are valid in the sense that they, and only they, yield
opposite classical bits aftermeasurement. EachofAlice andBobknowswith certainty
the value the other person has measured. Such qubits are considered valid by Alice
and Bob and will be used to form the secret key and to check for eavesdropping.

Measurements of the form

3. qiA, qiB and
4. HqiA, HqiB

cannot be used by Alice and Bob. For any value measured by Alice, the value mea-
sured by Bob is still determined probabilistically. Qubits measured according to
these scenarios, will unfortunately have to be discarded. As the scenarios 1, 2, 3, 4
are equally likely, 50% of the initial qubits will be discarded because of probabilis-
tically inconsistent measurements.
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As mentioned, half of the l qubits are discarded because of incompatible mea-
surement bases. The size n of the secret key is therefore n < l

2 . From the remaining
qubits, depending on the desired security level, some other qubits are sacrificed for
checking.

For the example of the 10 qubits given above, there are five valid qubit-pairs:

(q1A,Hq1B), (Hq3A, q3B), (q4A,Hq4B), (Hq7A, q7B), (q9A,Hq9B),

carrying the values
(1, 0), (1, 0), (0, 1), (0, 1), (1, 0)

Step 2

At this point Alice has no idea what measuring option Bob has employed on his
qubits. She does not know that qubits 1, 3, 4, 7, and 9 are valid. Bob is in the same
situation.

Therefore, Alice will publish her measuring strategy in her public key. Alice has
measured l = 10 qubits. As such, the first l bits of Alice’s public key explain which
qubits have been Hadamard transformed and which were measured directly. If Alice
has applied the Hadamard gate on qubit qiA then the i-th qubit of the public key is
set to 1, keyA(i) = 1. Otherwise, if qiA has been measured directly, then the i-th qubit
is 0, keyA(i) = 0. For the example of 10 qubits, the first ten bits of Alice’s public key
are

keyA(1..10) = 0110001100

The second part of Alice’s public key is used for security checking. A certain
fraction f , for example f = 40%, of the original qubits are made public for Bob
to check for eavesdropping. Alice chooses randomly 40% of her l qubits. For each
chosen qubit, Alice publishes the index of the qubit and the binary value she has
measured. To continue our example, Alice chooses randomly the indices 1, 2, 9, 10.
She will publish index 1 with value 1, index 2 with value 1, index 9 with value 1 and
index 10 with value 1. Translated in binary this is

(0001)1(0010)1(1001)1(1010)1

Alice’s final public key is the concatenation of the measuring (Hadamard/no
Hadamard) information and the qubit checking information:

keyA = 0110001100 0001 1 0010 1 1001 1 1010 1

The length of the public key depends on the length l of the qubit array and also on
the desired security level given by the fraction f . The following formula computes
the length of the key:

length(keyA) = l + f (1 + log l)



A Less Known Side of Quantum Cryptography 147

Here, l, the first term in the sum, refers to the measuring strategy; the second term,
f (1 + log l), represents the part that publishes the qubits for eavesdropping checking.

Bob creates his public key following exactly the same steps. Bob’s measuring
strategy is encoded at the beginning of his public key. For our example, this means

keyB(1..10) = 1101000110

Suppose Bob sacrifices qubits 1, 5, 7, 8 for checking. In his public key he will
publish (0001)0(0101)1(0111)1(1000)0. Thus, Bob’s final key, the one that Alice
and indeed everybody can see, is:

keyB = 1101000110 0001 0 0101 1 0111 1 1000 0

Both Alice’s and Bob’s keys, keyA and keyB are made public and are available to
everybody, including Eve.

Step 3

At this stage, Alice and Bob, in full knowledge and consensus of each other’s
keys, will proceed to check for eavesdropping. Alice is looking at Bob’s public key
keyB and learns the values Bob has measured on the randomly sacrificed f = 40% of
his qubits, here qubits 1, 5, 7, 8. Because of the various measuring options, only half
of the f = 40% qubits will be useful. In our example, qubits 1 and 7 are measured
with correct options, namely exactly one Hadamard gate applied to an entangled pair.
Alice can find out the valid qubits by XOR-ing the measuring strategy of Bob with
her own:

(0110001100)XOR(1101000110) = (1011001010)

which means qubits 1, 3, 4, 7, 9 have been measured well. Alice is left only to
compare the values of qubits 1 and 7 she has measured with the values posted by
Bob. With no malevolent interference, the binary values are opposite. Thus, if these
values are opposite, Alice concludes that the protocol was not influenced by Eve.
Otherwise, Alice discards all information and starts all over again. Bob performs
the same checking. He will find the valid qubits posted by Alice 1 and 9 and will
compare Alice’s binary measured values with his own. Thus Bob makes his own
independent decision concerning eavesdroppping. For reasonably large qubit arrays
and a reasonably large number of qubits checked, Alice and Bob will reach the same
conclusion concerning the validity of the measured binary data. This conclusion
effectively implies the absence of eavesdropping/masquerading (assuming, of course,
that the qubits were initially entangled).

Step 4

At this stage, the possibility of eavesdropping has already been eliminated. The
qubits that have not been published byAlice or Bob in their public keys continue to be
unknown to anybody else. These unpublishedqubits form the secret key secret, that is,
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secretwill be formed fromAlice’s recorded values, andBob’s complementary values.
In our ten qubit example, valid unpublished qubits are qubits 4 and 9. Therefore, the
secret key will be Alice’s qubits 4 and 9:

secret = 01

Bob has to complement his qubits to reach the same value as Alice.
The size (length) n of the secret key depends on the initial length of the qubit array

l, as well as the fraction of discarded qubits f . Alice and Bob have decided randomly
which qubits to publish. In the worst case, the set of qubits published by Alice is
disjoint from the set published by Bob. Thus, the fraction of unpublished qubits is
1 − 2f . From these unpublished qubits, only half (50%) are measured correctly. The
length of the secret key is given by the formula

n = (1 − 2f )
1

2
l

For our example

n = (1 − 2
40

100
)
1

2
10 = 1

The length of the secret key is 1 in the worst case. For our particular example we
could use 2 bits.

3.5 Security Evaluation or Catching the Evil Eavesdropper

Let us consider the algorithm described in the previous subsection, from the point
of view of the eavesdropper Eve. Eve wants to ideally gather knowledge about the
value of the secret key without being noticed by either Alice or Bob. It is well known
that an entangled qubit pair reveals no information whatsoever unless the qubits are
measured and the entangled state collapses. Even so, the algorithm presented in this
section supposes that the entanglement is not protected, only the public keys are
protected. This means that the qubits are not guaranteed to be entangled. Eve may
masquerade and distribute qubit arrays of her own choice. It is of no advantage to Eve
to distribute entangled qubits, as she gains no knowledge about the future secret key
from unmeasured entangled qubits. The best choice for Eve is to distribute classical
bits, or independent qubits in a known state.

The best Eve can do is to give Alice an array of classical 0s:

q1Aq2A . . . qlA = 00 . . . 0
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and to Bob an array of H1:

q1Bq2B . . . qlB = H1 H1 . . .H1

All other possible arrays Eve could send to Alice and Bob are equivalent or less
advantageous than the arrays above. In particular, Eve will want to send any pair
(qiA, qiB) that can be measured correctly: (0,H1), (H0, 1), (1,H0), or (H1, 0). Any
such pair is equally advantageous. For simplicity we will discuss the arrays of 0s and
H1s, respectively. For a pair (0,H1), Alice and Bob apply randomly one of the four
measurement options (see Sect. 3.4). Thefirst correctmeasurement option (qiA,HqiB)
consistently yields complementary correct results, namely (0, 1). The second correct
measurement option (HqiA, qiB) yields all four possible classical bit combinations
(0, 0), (0, 1), (1, 0), and (1, 1). Moreover, these combinations are equally likely. In
one-half of the cases, measurements will be (0, 0) or (1, 1). This cannot happen, if
the qubits are entangled and untouched. This situation reveals the intervention of
Eve. Thus, on any qubit checked for eavesdropping, there is a 1

4 × 1
2 = 1

8 chance of
detecting Eve.

AsAlice andBob respectively check a fraction f of the original array, the expected
number of times Eve is detected, that is, the expected detection rate, is

expected_detection_rate = 1

8
× f × l

For our example, the expected detection rate is

expected_detection_rate = 1

8
× 40

100
× 10 = 1

2
= 50%

Eve is caught 50% of the time. This expected detection rate is rather low given
the toy example we have considered, but of course it can be increased arbitrarily by
increasing f and/or l.

Suppose we have an array of 1024 qubits andworkwith the same fraction f = 40
100 .

In this case, the length of the final key is

n = (1 − 2
40

100
)
1

2
1024 ≈ 100

This is a length that can be used in practice.
The number of qubits checked by Alice (and also by Bob) is

checked_qubits = 1

2
× 40

100
× 1024 = 204.8

On each qubit, Eve can escape being caught with probability 3
4 . Thus Eve can

escape with probability 3
4
204.8 = 3.25 × 10−26. This probability is infinitesimal for

any practical purposes.
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The algorithm presented above shows clearly that authentication can be done by
quantum means only. Besides an insecure quantum channel, Alice and Bob have
only protected quantum generated keys to communicate with. The parallel with the
classical authentication scheme is simple. In classical authentication, Alice and Bob
have

1. an insecure classical channel and
2. one or two standard protected public keys, posted before any communication on

the channel.

In the quantum authentication scheme presented in this section, Alice and Bob
equivalently have two items:

1. an insecure quantum communication channel, and
2. two quantum generated protected public keys.

An important difference concerning the two types of public keys, classical and
quantum generated, is that the value of a quantum generated public key is developed
during the computation and posted after any communication on the quantum channel
is performed. Therefore, the quantum generated public keys depend on the specific
communication session. They are not known prior to the execution of the key distri-
bution algorithm and differ in value from one session to the next. This mirrors the
behavior of the secret key to be established by the key distribution protocol. In all
quantum key distribution protocols, the secret key is developed during the execution
of the protocol.

The algorithm presented performs quantum key distribution based on entangled
qubit pairs. The entanglement type is not of the generally used Bell states, but an
unusual entanglement based on phase incompatibility. The advantage of this type
of entanglement is that Alice and Bob perform different measurement steps: one is
measuring the qubit directly, and the other is measuring after applying a Hadamard
gate. Therefore, the measurement is not symmetric. This property, combined with
random choice on the measurement steps leaves Eve with no knowledge of how
to measure a tampered qubit in advance. How other protocols and algorithms may
benefit from asymmetric measurement is an open problem.

The principle of checking and authenticating at the end of the protocol with
quantum generated public keys, is not restricted to the algorithm described here. The
same type of public keys, generated per session, posted after the execution of the
main body of the algorithm, can be successfully used in authenticating other types
of algorithms. This is also a direction worth investigating.

If entangled qubits are easily available, the secret key established by the algorithm
can be arbitrarily long. Our algorithm can distribute a “one time pad” [23] without
Alice and Bob having to meet. To use one time pads, traditionally, Alice and Bob
meet in secret and exchange a long list of keys, each as long as the message it is
supposed to encrypt, and each to be used exactly once.
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4 One-Time Pads Without Prior Communication

If Alice and Bob share a set of long secret keys, the secrecy of their communication
is guaranteed. They use each key for exactly one communication and the key is
discarded afterwards. Needless to say, the secret keys are independent, randomly
generated and thus, one key does not reveal any information about any other key. In
the cryptographic world, these keys are usually referred to as one-time pads [19].
Any encryption/decryption function will be good enough to ensure secrecy, such as
for example, a binary XOR of the message text with the one-time pad (assuming the
text and key are binary strings). The only condition on the key is to be at least as
long as the message itself, so that there are no repetitions of the key’s usage.

The obvious drawback of any scheme with one-time pads is that Alice and Bob
need a prior reliable agreement on the value of the secret keys. In practice, to date,
the only viable solution to reaching a consensus and keeping the secrecy of the keys
is for Alice and Bob to meet in advance. They need to have a secure, private meeting
in which they agree on the value of all secret keys to be used henceforth. If, after
communicating for some time, they run out of keys, Alice and Bob need another
secret meeting. The basic idea is that for any one-time pad that Alice and Bob use,
there existed a prior secret meeting of Alice and Bob and in this meeting the value
of the one-time pad was defined.

By endowing messages with quantum properties, we show that encryption and
decryption can be done with one-time pads and the value of the one-time pads
are generated without Alice and Bob having to meet. Thus, messages are quantum
messages or at least partially quantum. A message (see Fig. 20) consists of two
concatenated arrays. The message header is the first part and is an array of qubits.
The header renders the value of the one-time pad. The message body may be an array
of classical bits or again an array of qubits. We will discuss both options. The body
contains the information to be transmitted in an encrypted form.

4.1 Reading Masks

As mentioned in the introduction, the value of the one-time pad is carried by the
array of qubits in the header. Some of these qubits are in a basic state, either 0 or 1,

Fig. 20 A message consists of two concatenated parts. The header is an array of qubits. The body
may be an array of classical bits or an array of qubits as well
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while the rest of the qubits are in a balanced superposition of 0 and 1. We say that
the (binary) value of the one-time pad is quantum encrypted. For each classical bit
bi of the pad, there exist four possible encryption options, resulting into the qubit qi.
These options are:

1. qi = bi. The qubit carries the exact value of the classical bit.

• if bi = 0 then qi = 0.
• if bi = 1 then qi = 1.

2. qi = NOT bi. The qubit carries the value of the complement of the classical bit.

• if bi = 0 then qi = 1.
• if bi = 1 then qi = 0.

3. qi = Hbi. The qubit is a superposition, obtained by applying the Hadamard gate
on bi.

• if bi = 0 then qi = H0 = 1√
2
(|0〉 + |1〉).

• if bi = 1 then qi = H1 = 1√
2
(|0〉 − |1〉).

4. qi = H NOT bi. The qubit is a superposition obtained by applying theHadamard
gate to the complement of bi.

• if bi = 0 then qi = H NOT 0 = 1√
2
(|0〉 − |1〉).

• if bi = 1 then qi = H NOT 1 = 1√
2
(|0〉 + |1〉).

An array that explains how to encrypt each bi, or conversely, explains how to read
each qi is called an encryption/decryption mask or simply a reading mask. Let us
see how the reading mask works on an example.

Suppose the secret key is

secret = 00111001

It is eight bits long. The reading mask has to have the same length. The value of
the reading mask is independent of the value of the secret key. Consider the mask
to be

mask = ∗ H ∗ (H NOT) NOT H H ∗,

where ∗ means read directly and the other notations are self explanatory.
To obtain the quantum encrypted version of the secret key, each bit needs to be

transformed as defined by that position in the mask. For our particular example:

secret_encrypt = 0 H0 1 H0 0 H0 H0 1
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4.2 One-Time Pad Communication with Classical Message

It is clear by now that Alice and Bob can exchange messages containing quantum
encrypted keys provided that they share the readingmask.We consider that Alice and
Bob do have a “meeting point” before they start an indefinite exchange of messages.
This means that they meet and agree on a reading mask (see Fig. 21), or they may
develop a secret readingmask using any quantumkey distribution algorithm.Another
way of viewing the sharing of the reading mask is to consider Alice and Bob as two
devices, rather than two people. In this case the secret reading mask is given to both
Alice and Bob before their deployment.

In addition to a secret reading mask, Alice and Bob have to share some secret
information to be used for witnesses to catch the intruder. In particular, for every
witness qubit two pieces of information are needed: an index describing its position
in the header and the binary value it carries.

Once Alice and Bob share the reading mask, they can exchange messages. Either
Alice or Bob can initiate such a message. Suppose Alice wants to send a message
to Bob. She generates a random key k to be used only once. Then she encrypts the
information with k and places it in the body of the message. Subsequently, Alice
quantum-encrypts k using the reading mask, places it in the header, and sends the
message. Figure22 shows the steps performed by Alice.

Bob on the other end receives both the header and the body of the message. He
first decrypts the header using the secret reading mask and retrieves the one-time pad
k. Then Bob decrypts the message body with the one-time pad k. Figure23 shows
the steps performed by Bob.

Fig. 21 Alice and Bob share
a secret reading mask

Fig. 22 Alice takes four
steps to send a message to
Bob
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Fig. 23 Bob takes three
steps when receiving a
message from Alice

4.3 What Eve Can Do

We consider the standard setting, in which Alice and Bob are trusted. The commu-
nication channel is vulnerable to attacks from Eve. Eve may intercept a message, try
to read it, change it, or send spurious messages. Suppose Eve intercepts a message.
She is interested to decrypt the message body that contains the information being
transmitted. Looking at the encrypted message body does not reveal anything about
the decryption key. In order to get the secret key, Eve has to look at the header of the
message. Because the header of the message is quantum encrypted, Eve has no way
of knowing how to read the header.

The best Eve can do to retrieve the one-time pad throughmeasurement of the head,
is to guess the reading strategy, meaning that she guesses the value of the reading
mask. Suppose Eve has chosen to read all qubits simply in the computational basis.
This means the reading mask would be

mask = ∗ ∗ ∗ . . .

Actually all other guesses are equivalent in terms of the performance of the guess.
Note that on average 25% of the header qubits are indeed encoded with ∗, 25% of
the qubits are encoded with NOT , 25% with H, and 25% with H NOT . Therefore
Eve’s guessed key will have the following performance:

1. On the 25% ∗ qubits, all guesses are correct.
2. On the 25% NOT qubits, all guesses are wrong.
3. On the 25% H qubits, half of the guesses are correct.
4. On the 25% H NOT qubits, half of the guesses are correct.

Overall, 50% of the secret key bits are guessed correctly and the rest are wrong.
Yet this is exactly as if Eve guesses the secret key directly, by tossing a coin, without
bothering to read the header at all. It means that without any information about the
reading mask, Eve cannot get any information about the secret key.

Eve’s intervention, on the other hand, is detectable by Bob. If Eve has touched a
witness qubit of the header of some message through reading, the state of the qubit
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will be detectably changed. Remember that Eve does not know whether a qubit is in
a simple state or in a superposition.

Suppose the qubit is in a simple state: |0〉 or |1〉. If Eve chooses to read the qubit
in the computational basis, her intervention remains hidden. Yet, if Eve chooses to
rotate the qubit with a Hadamard gate first and then measures, she will have rotated
the qubit into a superposition: H0 or H1. Measurement collapses the superposition
to any binary value with 50% probability. Thus, there is a 50% probability that the
qubit has collapsed to the wrong value. As Eve has a 50% probability to choose
applying an H gate, the probability of altering the value of the qubit is 25%. A
similar scenario happens if the qubit was initially in a superposition H0 or H1. If
Eve decides to measure in the computational basis, the result of the measurement
has a 50% probability of being wrong. If Eve applies a H gate, measures and then
rotates the qubit back with a H gate, her intervention remains hidden. Overall, Eve
has altered the value of the qubit with a chance of 25%.

For Bob to notice the change in the value of the qubit, he has to expect the qubit to
have a certain value. For this, Alice has to set the witness qubits to the known values.
Bob checks the witnesses and if they match the expected values, he concludes that
Eve has not touched the header.

As such, any reading intervention of Eve will be of no advantage to her and will
be probabilistically detectable by Bob. The probability to detect Eve’s intervention
grows exponentially with the number of qubits touched by Eve.

The only “information” Eve can see is the encoded message body. While the
encoded version does not reveal anything about the information content, it is still
a sequence of encoded information that Eve can read and copy without leaving
any trace of her intervention. We will see in the next subsection that fully quantum
messages will restrict Eve even in this action.

4.4 Fully Quantum Messages

Consider now that qubits are easily available and there are no technical impediments
to using fully quantummessages. That is, both the header and the body of themessage
are arrays of qubits.

In this case, we may consider the body of the message to be quantum encrypted.
As such

• the header contains the one-timepad, quantumencryptedwith the secret encryption
mask, and

• the body contains the intended information, quantum encrypted with the one-time
pad.

When Alice wants to send a message to Bob, she goes through the same steps
as before. Alice randomly generates a one-time pad that gets quantum encrypted
with the secret reading mask and represents the header of the message. Then Alice
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quantum encrypts the information with the one-time pad. This is done by interpreting
the one-time pad as a reading mask. The one-time pad is divided into groups of two
bits. Every group of two bits encodes the reading strategy (∗, NOT , H, H NOT ) of
one qubit. Then Alice places the encrypted message in the message body. Bob, on
receiving the message performs the same steps reversed. The only difference to the
partially quantum communication is that the body is quantum encrypted.

4.4.1 Discussion

Fully quantum message exchange offers at least all advantages of the partially quan-
tum message exchange. In addition, whenever Eve attempts to read the message
body, she changes the states of the superpositions of the qubits she reads. If the
message body contains witness qubits as described in Sect. 4.3, Bob can detect her
intervention. This means that Eve is detectable now whenever she reads a part of the
message.

When Eve reads themessage body, she has absolutely no benefit from the classical
binary array she obtains. This array is not even some classical encryption of the
information transmitted. The array Eve gets is actually not even uniquely determined,
as it depends on how the superpositions collapse.

Therefore, what Eve reads is nothing but garbage and has no clear connection to
the binary information to be transmitted. It is not even fully predictable and its pre-
dictability depends on Eve’s reading strategy for each qubit, whether Eve measures
directly or applies a Hadamard gate.

4.5 More Messages Means Safer Messages

Stepping now a few steps back for an overview of the implications of this work, we
can see that the use of quantum cryptography brings about a fundamental change
in the way we think about secret communication. This refers to a change in the
philosophy of cryptography, of some core beliefs taken for granted. For example,
one such belief of classical cryptography and quantum cryptography to date was
stated as follows:

The more Alice and Bob communicate secretly in a certain cryptographic setting, the less
secure that setting becomes and it needs to be updated or reinitialized from outside of the
system.

From this principle comes the advice to change passwords regularly. If a password
has been used for a long time, it has been exposed to attacks all along and some of
its content might have leaked out. Also, security systems tend to be checked after
a while, in order to determine whether they still work reliably. This check is done
from outside of the security system.
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A fully quantum security system may work in a fundamentally different way.
Authentication can be done with quantum cryptography [16]. An effectively secret
key can be distributed using protected public information only [13]. Using this secret
key as a reading mask, Alice and Bob may now communicate secretly with one-time
pad encrypted messages. Moreover, after communicating for some time, Alice and
Bob will know whether Eve was present in the slightest way during their communi-
cation, as Eve’s intervention, such as simple reading is detectable. This means that
the more Alice and Bob use the quantum communication system, the more their
confidence in the secrecy of their communication increases. Implicitly, the amount
of effectively secret information shared by Alice and Bob increases over time. This
may include the change or lengthening of the reading mask, or the change of the
encryption/decryption strategy. That is, Alice may communicate secretly to Bob the
intention of changing the reading mask, and after Bob agrees by an equally secret
message, Alice may encrypt and send a new, longer encryption mask. Note that
these revisions of the security scheme are nowmade from the inside of the system. A
check from the outside of the system is no longer needed. The following short story
summarizes the quantum philosophy of cryptography:

Alice and Bob, two cryptographic entities unknown to each other, meet in a public place. The
public place may be a crowded cafeteria. Here, a formal introduction takes place. Alice and
Bob present themselves with some public names, called public keys. Once the introduction
is over, Alice and Bob leave the cafeteria to go each on a different life-path. From then on,
Alice and Bob can communicate secretly “forever”. As time passes, their “acquaintance”
develops into a “friendship” and as such the trust in the privacy of their messages increases.

As this heart-warming story suggests, the quantum cryptographic system is self-
sustainable and moreover builds itself up over time.

Because the one time pads are randomly generated, even if Eve would possess
a series of quantum-encrypted one-time pads, this would not reveal anything about
the reading mask. In addition, as Eve’s intervention is detectable, Alice and Bob will
know how many message headers or fully quantum messages have been captured by
Eve. Therefore, Alice and Bob will know whether Eve has in her possession a series
of header readings and may act accordingly.

The unprecedented advantage of using fully quantum messages is that Eve is
clearly detectable in all her actions. If Alice andBob have communicated undisturbed
for some time, the amount of shared secret information increases. They may agree
on a longer or a new reading mask, using their previous message exchanges only. As
such, the confidence and security of the communication increases over time.

5 Quantum Key Distribution Using Disturbance
Amplification

At an abstract level, a QKD protocol could be described in terms of qubits transmit-
ted over a quantum channel. For practical implementations, the physical realization
usually chosen to embody a qubit is the photon. Since it travels at the speed of
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light and its polarization can be easily manipulated, the photon is naturally suited
for transmitting information. Still, in some cases, other realizations are equally pos-
sible, like manipulating the spin of an electron, for instance. Regardless of their
possible implementations, all QKD protocols share one basic constraint: qubits are
measured individually as soon as they are received. Storing the incoming qubits for
later processing and/or measurement is not taken into consideration. This is quite
intuitive, especially if we think about photons, which, by their nature, are made to
travel and not to store information locally, in a static fashion.

This section investigates the opportunities created by the relaxation of the afore-
mentioned constraint. More explicitly, we are interested in what benefits can be
gained and at what cost, if we allow the qubits transmitted over the quantum channel
to be stored for a determined amount of time by the receiving party. In the follow-
ing, we motivate the feasibility of this assumption, even if the qubits are realized as
photons.

Two of the main proposals for building a practical quantum computer are based
on “ion traps” and cavity QED (quantum electrodynamics), respectively. In the ion
trap scheme imagined by Cirac and Zoller [6], a quantum memory register would be
physically realized by using “fences” of electromagnetic fields to trap a number of
ions within the central region of an evacuated chamber. Each imprisoned ion embod-
ies a qubit, with the ground state representing |0〉 and a metastable state representing
|1〉. The operation of a quantum gate is effected by shining a pulse of light from a
laser beam of the appropriate frequency onto the target ion. Although very simple
quantum algorithms have been implemented on an ion trap quantum computer [11],
the technology’s main drawback remains scalability.

In the other proposal, which goes by the name of “flying qubit”-based quantum
computer, quantum information is encoded in the polarization states of photons. The
interaction necessary to emulate the functionality of a controlled-NOT quantum gate
can bemediated by a drifting cesium atom,when the photons are placed inside a small
cavity with highly reflecting walls. Quantum-phase gates based on cavity QED have
been successfully realized experimentally [8, 22], yet again, it is a very challenging
endeavor to extend this technology to complicated quantum circuits.

One of the ideas that emerged in order to overcome the scalability problem is
a hybrid approach that combines the advantages of both ion trap and cavity QED
technologies. In this approach, ion traps of limited size each would be intercon-
nected through fiber optics, forming a quantum network. Thus, photons could be
used to transfer quantum information between distant trapped atoms, while each of
the multibit ion traps is responsible for storing information and local processing. The
cavity QED interactions can provide the necessary methods for exchanging quantum
information between the two different carriers [7]. Alternatively, the same goal can
be achieved by using entanglement between a trapped atom and a photon [5].

The techniques proposed to implement a quantum network can also be applied
in a cryptographic context. The qubits “flying” through the quantum channel will
still be realized as photons, but whenever the receiving party wishes to store them
(until it has better knowledge about their encoding, for example), the information
they carry is transferred to a local ion trap quantum register, which is much more
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Fig. 24 Schematics of random phase shift protocol for QKD

suited for storing information over an extended length of time. Hence, our working
assumption is motivated practically by the advancements made on the way toward
building a quantum computer.

The immediate benefit of storing qubits during a quantum protocol for a more
“intelligent” processing/measurement is an important reduction in the communica-
tion volume required, both quantum and classical. In the case of BB84, for instance,
if Bob can safely store the qubits received from Alice until the second stage of the
protocol, when he is informed of the exact encoding for each of them, then an appro-
priate measurement can be performed for each qubit. In this way, no qubit has to
be discarded due to a mismatch between the encoding and decoding alphabet. For
a shared secret key of a specified length, this leads to a 50% reduction in the total
number of qubits that have to be transmitted. With fewer qubits transmitted, the vol-
ume of the classical communication in stage 2 of the protocol is reduced too. The fact
that an eavesdropper may gain knowledge about the correct measurement basis for
each qubit is of no advantage to her, since the qubits are no longer in her possession.

But reducing the amount of communication betweenAlice and Bob is not the only
advantage offered by temporarily storing qubits. This possibility opens the door for
designing new QKD schemes that have higher rates of intrusion detection and are
therefore more secure. In the next two subsections we show explicitly how storing
qubits for a limited time can be exploited to enhance security.

5.1 Random π
2 Phase Shift Protocol

We first describe a BB84 equivalent protocol that we will use as a building block
in designing a QKD scheme based on the quantum Fourier transform. The main
idea of the protocol described in this subsection is to encode each transmitted bit
(0 or 1) into the relative phase between the |0〉 and |1〉 components of a balanced
superposition and then encrypt the resulting qubit by applying a random phase shift
gate, as depicted in Fig. 24. The Hadamard gate provides the encoding alphabet

⎧⎪⎨
⎪⎩
“0” �→ 1√

2
(|0〉 + |1〉)

“1” �→ 1√
2
(|0〉 − |1〉)

and the Rθ gate rotates the relative phase with an angle θ
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Rθ =
⎡
⎣ 1 0

0 eiθ

⎤
⎦ , θ ∈ {0, π

2
}.

Note that R0 does not affect the state of the qubit onto which the gate is applied, while
Rπ/2 rotates the qubit halfway between the two symbols of the encoding alphabet. The
protocol conforms to the generic two-stage structure, as described in the following.

Random π
2 phase shift protocol for QKD

Stage 1: Communication over a quantum channel

Step 1. Alice flips a fair coin to generate a random binary sequence that she
intends to share with Bob.

Step 2. For each bit j in the sequence, Alice chooses, again at random, an
angle θ = 0 or θ = π/2. She then prepares, accordingly, a qubit in the state
|ψ〉 = RθH| j〉 that she sends over to Bob.

Step 3. Bob applies the necessary procedures for safely storing the qubits
received from Alice until the second stage of the protocol, when he gains
knowledge of which qubits have been phase shifted.

Stage 2: Communication over a public channel

Phase 1. Raw key extraction
Step 1. Alice informs Bob about her choice of θ for each transmitted bit.
Step 2. Knowing the relative phase shift θ for each stored qubit |ψ〉, Bob

recovers the original bit transmitted, by computing | j〉 = HR†
θ|ψ〉 and then

measuring | j〉 in the normal computational basis {|0〉, |1〉}. Following this
procedure, Bob obtains a binary sequence that should be identical to the
one randomly generated by Alice, provided no eavesdropping or errors
interfered with the quantum transmission.

Phase 2. Error estimation
Step 1. Over the public channel, Alice and Bob compare portions of their

raw keys to estimate the error rate Err. The bits tested are deleted from their
raw keys. If Err = 0 the remaining bits form their final secret key.

Step 2. If Err > 0, but still sufficiently small, Alice and Bob may decide to
apply privacy amplification techniques to minimize Eve’s knowledge about
their final secret key. Otherwise, if Err exceeds a certain threshold, they
discard the whole sequence and start all over again.

The analogy with BB84 becomes apparent if we assimilate the encoding alphabet
with the horizontal/vertical basis and the π/2 relative phase shift with the oblique
basis. What are Eve’s chances to break the above protocol and find a loophole that
may allow her to elicit information about the secret key? In what follows, we analyze
two main eavesdropping strategies that Eve may adopt.
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5.1.1 Opaque Eavesdropping

The most straightforward way in which Eve could spy on the quantum communica-
tion between Alice and Bob would be to intercept Alice’s information carriers and
measure them in some appropriate basis. If she could undo the rotation (with angle
θ) applied by Alice, then she could measure the intercepted qubit using the basis
{ 1√

2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)}. Such a measurement is carried out by first passing

the qubit through aHadamard gate and thenmeasuring it in the normal computational
basis {|0〉, |1〉}.

Since Eve has no information about θ, trying to rotate the qubit back with π/2
(see Fig. 25) is in no way a better strategy than applying the Hadamard gate directly.
Without loss of generality, consider what happens if the qubit intercepted by Eve
encodes the bit 0 (the other case proceeds in an analogous way yielding a symmetric
result). Before the qubit is acted upon, its state is given by

|ψ0〉 = RθH|0〉 = 1√
2
|0〉 + 1√

2
eiθ|1〉. (11)

Eve is assumed to have knowledge of the encoding alphabet, so she reverses the
effect of the Hadamard gate by also applying a Hadamard gate (which is its own
inverse):

H|ψ0〉 = 1

2
(|0〉 + |1〉) + eiθ

2
(|0〉 − |1〉) = 1 + eiθ

2
|0〉 + 1 − eiθ

2
|1〉. (12)

Fig. 25 Bit encoding in the
random π

2 phase shift
protocol
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Upon observing the above state, Eve will see a 0 with probability

p0Eve = |1 + eiθ

2
|2 = 1 + cos θ

2
. (13)

and a 1 with probability

p1Eve = |1 − eiθ

2
|2 = 1 − cos θ

2
. (14)

where θ is either 0 or π/2 (see Fig. 25). Next, Eve uses the Hadamard transform again
to prepare a qubit in an encoded state compatible with the measurement’s outcome
and sends it to Bob. Bob keeps the qubit untouched until Alice informs him of the
correct rotation angle θ. Then, he applies theR†

θ gate, thus inducing a relative phase of−θ, since he received the qubit from Eve and not from Alice. Finally, Bob measures
the qubit in the Hadamard basis, obtaining a 0 with the following probability:

p0Bob = p0Eve · |1 + e−iθ

2
|2 + p1Eve · |1 − e−iθ

2
|2 = 1 + cos2 θ

2
. (15)

For θ = 0, p0Bob = 1 and Eve gets undetected, but if θ = π/2, p0Bob is only 1/2, so,
on average, there is a 25% probability of detecting Eve for each qubit she chooses
to eavesdrop on (same as BB84). Of course, this probability can be made arbitrarily
close to 1 by testing a sufficiently large number of qubits. In turn, this requires a large
number of qubits to be transmitted through the quantum channel. If Bob can store
these qubits until the second stage of the protocol, the cost of the total communication
(both quantum and classical) is effectively halved. Parity checking techniques, to
avoid discarding bits when testing for eavesdropping, are also applicable.

5.1.2 Translucent Eavesdropping

In order to avoid the inevitable disturbance caused by a measurement, Eve could
decide for a more subtle eavesdropping technique. She could choose, for instance, to
entangleAlice’s information carrierwith her ownprobe, sending half of the entangled
pair to Bob while keeping the other half for herself. Then, upon finding about the
correct θ angle, by listening in on the conversation between Alice and Bob on the
classical channel, Eve can apply the R†

θ and Hadamard gates to the qubit in her
possession, hoping to unlock the information hidden within it. We focus again on the
case when Alice encodes a 0, with the observation that the analysis for the other case
would proceed in a similar way. The eavesdropping operation, performed by Eve, is
described by the following equation:

CNOT((
1√
2
|0〉 + eiθ√

2
|1〉) ⊗ |0〉) = 1√

2
|00〉 + eiθ√

2
|11〉. (16)



A Less Known Side of Quantum Cryptography 163

where CNOT denotes the application of a controlled-NOT operation, with the qubit
intercepted from Alice acting as the control qubit. When Alice discloses to Bob
whether she applied the π/2 relative phase shift or not, Eve can proceed to effect the
R†

θ and Hadamard transformations on the qubit that remained in her possession. This
will change the state of the ensemble Eve-Bob as follows:

H ⊗ I(R†
θ ⊗ I( 1√

2
|00〉 + eiθ√

2
|11〉)) = H ⊗ I( 1√

2
|00〉 + 1√

2
|11〉)

= 1

2
(|00〉 + |01〉 + |10〉 − |11〉).

(17)

Similarly, if a bit with the value 1 would have been transmitted by Alice, the state of
the entangled ensemble would have been

1

2
(|00〉 − |01〉 + |10〉 + |11〉). (18)

Although distinguishing among states (17) and (18) is possible by applying a two-
qubit gate on the whole ensemble, no information can be elicited by acting only on
one qubit. In particular, a quantum measurement in the normal computational basis
will yield a 0 or a 1 with equal probability.

The description and analysis of the protocol assumed an error-free quantum chan-
nel. The issue of noise can be addressed by introducing an additional phase to the
second stage of the protocol. During this phase, Alice and Bob remove all errors
from their tentative final key, producing a common error-free key, called reconciled
key (see [12], Chap. III, for details).

We conclude the analysis of the random π/2 phase shift protocol with a few
observations that, although formulated for the protocol presented in this subsection,
can be generalized, in a suitable form, to probably any existing QKD scheme. For
each qubit Eve decides to tamper with, there is a certain chance (25% in our case,
as well as for BB84) that she will be caught. It is important to emphasize that this
probability is independent of the actions performed on the other qubits transmitted
through the quantum channel. The only way Eve can be detected is to test one of the
qubits she decided to spy on. In half of the cases, when she is lucky, the quantum
state retransmitted to Bob is identical to the one intercepted from Alice, so she gains
knowledge of the bit transmitted without any possibility of being detected. On the
other hand, if she gets unlucky, then her uncertainty about the bit transmitted is total
and, in addition, she disturbs the state of the qubit, introducing an error rate in Bob’s
raw key.

Consequently, Eve could settle for a low level of eavesdropping, trying to gain only
partial knowledge of the secret key, while minimizing the chances of being detected.
She could even take advantage of the imperfections in the quantum channel, trying
to hide behind the “noise”. In the next subsection, we propose a conceptually new
kind of QKD scheme that aims to maximize Eve’s uncertainty about the bits she
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eavesdropped on, even after the public discussion between Alice and Bob, while
giving Bob higher chances of detecting Eve, even for a smaller number of bits tested.
The main idea of the protocol is to propagate the disruption caused by Eve when
measuring a qubit to other qubits in the sequence as well. To this end we take
advantage of the data dependencies introduced by the application of the quantum
Fourier transform.

5.2 QKD Scheme Based on the Fourier Transform

The quantum Fourier transform (QFT) is a very powerful tool, allowing the design of
quantumalgorithms that are exponentially faster than their best classical counterparts,
as in the case of Shor’s quantum algorithms for factoring integers and computing dis-
crete logarithms.We showherein that theQFT and its inverse can also be successfully
used to build quantum key distribution protocols that offer improved eavesdropping
detection rates while maximizing the eavesdropper’s uncertainty about the binary
sequence transmitted.

The QFT is a linear operator whose action on any of the computational basis
vectors |0〉, |1〉, . . . , |2n − 1〉 associated with an n-qubit register is described by the
following transformation:

| j〉 −→ 1√
2n

2n−1∑
k=0

e2πijk/2
n |k〉, 0 ≤ j ≤ 2n − 1. (19)

Equation (19) can be rewritten as a tensor product of the n qubits involved, as follows:

| j1j2 . . . jn〉 −→ (|0〉 + e2πi0.jn |1〉) ⊗ (|0〉 + e2πi0.jn−1jn |1〉) ⊗ · · · ⊗ (|0〉 + e2πi0.j1j2...jn |1〉)
2n/2

.

(20)

Equation (20) provides the blueprint for devising a circuit implementing the QFT
that requires only �(n2) elementary quantum gates (see Fig. 26).

Fig. 26 Quantum circuit performing the discrete Fourier transform
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Note that each Fourier transformed qubit is in a balanced superposition of |0〉 and
|1〉. They differ from one another only in the relative phase between the |0〉 and the
|1〉 components. For the first qubit in the tensor product, jn will introduce a phase
shift of 0 or π, depending on whether its value is 0 or 1, respectively. The phase of the
second qubit is determined (controlled) by both jn and jn−1. It can amount to π + π/2,
provided jn−1 and jn are both 1. This dependency on the values of all the previous
qubits continues up to (and including) the last term in the tensor product. When | j1〉
gets Fourier transformed, the coefficient of |1〉 in the superposition involves all the
digits in the binary expansion of j.

In the case of each qubit, the 0 or π phase induced by its own binary value
is implemented through a Hadamard gate. The dependency on the previous qubits
is reflected in the use of controlled phase shifts, as depicted in Fig. 26. Reversing
each gate in Fig. 26 gives us an efficient quantum circuit (depicted in Fig. 27) for
performing the inverse Fourier transform.

Because of the interdependencies introduced by the controlled rotations, the pro-
cedure computing the inverse quantum Fourier transform must start by computing
| jn〉 and then work its way up to | j1〉. The value of | jn〉 is needed in the computation
of | jn−1〉. Both | jn〉 and | jn−1〉 are required in order to obtain | jn−2〉. This continues
in the same manner, until finally, the values of all the higher rank bits are used to
determine | j1〉 precisely.

This fixed order of execution can be exploited to design secure QKD schemes.
The protocol that we describe in the following can be seen as a generalization of the
random π/2 phase shift protocol, both relying on encapsulating information in the
relative phase between the two components in a superposition. However, the Fourier
transform brings into play the rank of a qubit in the sequence, thus giving a context
to each qubit transmitted.

Employing the Fourier transform instead of the random π/2 phase shift as the
encryption method does not alter the main structure of the protocol, so we will
just point out the differences relative to the description we provided in the previous
subsection. In step 2 of the quantum communication stage, Alice applies the QFT
to the binary sequence generated in the previous step, by passing it through the
quantum circuit depicted in Fig. 26. Then, she scrambles the resulting qubit sequence
by choosing an arbitrary permutation of the qubits and sends them to Bob.

Fig. 27 Quantum circuit performing the inverse Fourier transform
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In stage 2 of the protocol, Alice informs Bob of the correct order in which he
must place the received qubits (in other words, the rank of each qubit is disclosed).
Consequently, the raw key extraction step can proceed with Bob applying the inverse
Fourier transform to the properly re-arranged qubit sequence. In the absence of any
eavesdropping or transmission errors, Bob must end up with the same bit sequence
that Alice randomly produced at the outset of the protocol.

When Eve decides to spy on an arbitrary qubit in the sequence, she doesn’t know
its rank and is therefore ignorant of the influence exerted on it by the previous qubits
in the ordered sequence. Without access to this additional information (the qubit’s
context), Eve can have no confidence in the outcome of an eventual measurement in
the Hadamard basis pointing to a 0 or a 1.

Example.

Suppose that the bit string that Alice wants to convey to Bob is 10011010, so that
j1 = 1 and j8 = 0. Consider what happens if Eve intercepts the qubit of rank 6 and
measures it in the Hadamard basis. Since its state is

|0〉 + e2πi0.010|1〉 = |0〉 + e
π
2 i|1〉, (21)

exactly halfway between |0〉 and |1〉 (relative phase π/2), there is an equal probability
for either outcome to be realized. Consequently, even after learning it’s context, Eve’s
uncertainty over this bit is total. Following her measurement, Eve can either send
H|0〉 or H|1〉 to Bob. In any case, Bob will undo the π/2 rotation supposedly caused
by j7 = 1, therefore having a 50% chance of detecting Eve, provided he and Alice
choose to test bit j6. But if Bobmeasures bit j6 as 1, then the error introduced by Eve’s
action is still detectable, even if the qubit whose state she disturbed is not checked
by Alice and Bob. Thus, when applying the inverse Fourier transform on the qubit
of rank 5, its quantum state becomes

|0〉 + e(π+ π
4 − π

4 − π
2 )i|1〉 (22)

and in 50% of the cases Alice and Bob will discover a mismatch in their values for
this bit. An erroneous bit j6 will continue to influence the outcome of the following
bits, up to j1. The strength of this influence decreases with the rank and probably
becomes negligible in a few steps. Nevertheless, if the error in j6 propagates to one
of its neighbors, then this bit acts as a new source of error, creating the mechanism
for the initial disturbance to propagate indefinitely. So, unlike other QKD schemes,
in this case, eavesdropping on one qubit has the potential to introduce a large num-
ber of errors. In general, for an arbitrary qubit of rank k (0 < k ≤ n), the relative
phase shift caused by errors in the previous bits (from n to k + 1) varies between 0
and

∑n−k
i=1 π/2i, as the errors induced may interfere with each other, adding up or

canceling out.
Since Eve’s uncertainty over an observed value is based on her ignorance about

the context involved, it appears that the weak spot of the protocol lies in the high rank
qubits. The highest rank qubit, for instance, is context-free (having no predecessors),
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so Eve can be certain of its value, provided she has performed a measurement on it.
But because she doesn’t know the ranks of the qubits transmitted during the quantum
communication stage, she must eavesdrop on many qubits to increase her chances
of learning the value of jn. This, in turn, will cause more disturbance and therefore
increase the risk of being detected.

In our example, by learning that the value of j8 equals 0, Eve also becomes aware
that j8 has no influence on j7, so her measurement on j7 (if performed) must have
yielded its true value. However, since j7 = 1, there is an equal probability that a
hypothetical measurement on j6 has revealed the correct or incorrect value. For an
arbitrary bit string j1 . . . jn, Eve can end up knowing the values of the last k bits, where
jn−k+1 = 1 and jn−k+2, . . . , jn−1, jn are all zeroes, assuming that she performed all
the necessary measurements on the qubits in transit. In practice, since the binary
sequence transmitted is chosen at random, the probability of it ending in more than
two or three consecutive zeroes is very low.

One immediate solution is for Alice and Bob to discard those bits from their raw
keys. Alternatively, the protocol described above, and based on the Fourier transform,
could be combinedwith the randomπ/2 phase shift protocol presented in the previous
subsection. In this way, each qubit may get an additional π/2 relative phase shift,
increasing Eve’s uncertainty about the trailing bits in the sequence while maintaining
the uncertainty level for the others.

One important idea that we brought forward in this section is to harness the
dependencies between qubits created by the quantum Fourier transform in order to
obtain a protocol with superior performance. When compared with existing QKD
schemes, the protocol using the QFT offers better eavesdropping detection rates by
propagating the disruption caused to one qubit to the following qubits in the sequence.
This makes the protocol more efficient in terms of the number of bits that have to
be tested in order to achieve a certain level of security. Also, the lack of knowledge
over a qubit’s context, at the time of eavesdropping, maximizes Eve’s uncertainty
about the information encoded within its quantum state, thus making the protocol
more secure.

These benefits come at the cost of a more complex processing required at both
ends of the link. However, the computational power assumed to be available for Alice
and Bob is not that of a quantum computer. Computing the QFT and its inverse in the
special case of a sequence made up of classical bits requires only the application of
single-qubit gates. Although all the phase shift gates in Figs. 26 and 27 are controlled-
rotations, the control qubit is in fact always classical. Consequently, the net effect
of such a controlled-gate is the application of the phase shift rotation onto the target
qubit, if the control is 1, or no transformation at all, if the control is 0. Therefore,
Alice and Bob need only to be able to perform Hadamard and phase shift rotations
of single-qubit quantum states. Parallel processing can also be applied in order to
avoid decoherence [14].

The protocol for QKD developed in this section demonstrates that the QFT is
a versatile tool, with important applications not only in quantum algorithms, but
also in quantum cryptography. It allows for the design of new QKD schemes with
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clear advantages over the existing ones, especially for low levels of eavesdropping.
Furthermore, the results obtained herein suggest that the role of QFT in the general
area of data security is much more important than previously believed.
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Emergence in Context-Free Parallel
Communicating Grammar Systems: What
Does and Does not Make a Grammar System
More Expressive Than Its Parts

Stefan D. Bruda and Mary Sarah Ruth Wilkin

Abstract We investigate the emergent factors that affect the expressiveness of par-
allel communicating grammar systems (PCGS) with context-free components. It is
already known that synchronization is a significant such a factor. In addition we show
that serving multiple queries from multiple components simultaneously (broadcast
communication) is not an emergent factor, but serving multiple queries from a single
component is. We further identify a notion of interference that has significant emer-
gent consequences. In the process we introduce several potentially useful techniques
for the analysis of PCGS with context-free components. In particular we introduce
the notion of PCGS parse trees, and also some techniques such as “copycat” compo-
nents and “reset” components that are potentially useful in developing an algorithm
for the elimination of broadcast communication.

1 Introduction

Parallel Communicating Grammar Systems (PCGS) have been introduced as a
language-theoretic treatment of concurrent (or more general, multi-agent) systems
[10, 24]. A PCGS consists of several component grammars that work in parallel on
separate strings. The components also communicate with each other: One compo-
nent grammar may request strings generated by others, and several components may
make queries at the same time. Several variants of PCGS can be defined based on
various synchronization and communication assumptions. Emergent behaviour was
expected and indeed did not fail to manifest itself: because of the synchronization
and communication facilities, PCGS whose components are of a certain type are
generally (though not always) more powerful than a single grammar of the same
type [5, 7, 10, 24, 25].
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In this paper we present a thorough analysis of the expressiveness of PCGS
whose components are context-free grammars (context-free PCGS henceforth). It
was shown earlier [6, 7, 11] that context-free PCGS are Turing complete, yet these
results are established under a certain communication model (called broadcast com-
munication) which is assumed in many papers on the matter yet is not implied by the
original definition of PCGS (which uses however implicitly the one-step communi-
cation model). We therefore wonder whether such a result holds for the original defi-
nition. It turns out that this is indeed the case, though the construction that establishes
Turing completeness in the one-step communication case (Sect. 4) is considerably
more complex. While the construction itself is large and unyielding, it introduces
several general techniques including “copycat” grammars (that behave identically
to other grammars in the system so that different components can query different
grammars without interfering with each other) and “reset” grammars (that reset other
components at precise moments in the derivation). We believe that these techniques
are interesting, general, and useful. In particular we believe that they can be eventu-
ally used algorithmically, so that one does not need to repeat the manual construction
from Sect. 4, but perform such a conversion algorithmically and for any context-free
PCGS using broadcast communication instead. One way or another, we establish
that broadcast communication is not an emergent factor in PCGS with context-free
components.

Having established the Turing completeness of the most powerful version of
context-free PCGS, we turn our attention to the expressiveness of weaker variants
of these systems. We use for this investigation the concept of parse tree, one of the
most important constructs in the realm of context-free languages. We first introduce
the notion of parse trees for context-free PCGS (Sect. 5) as a natural extension of
context-free parse trees, showing in the process that any context-freePCGSderivation
has an associated parse tree. Based on parse trees we then identify a particular
notion of “interference” (Sect. 6) andwe find that one cannot fully characterize PCGS
derivations using parse trees (in the sense that each derivation has a parse tree and
also the other way around) whenever our notion of interference is present. Complete
characterization of derivations by parse trees thus only holds for one very restricted
context-free PCGS variant (Sect. 7) which will turn out to be called unsynchronized,
returning, unique-query context-free PCGS. One consequence of the existence of
such a characterization is in the realm of generative power. More precisely, this
variant of context-free PCGS is the weakest of them all (Sect. 8).

The end result of our investigation is the assessment of the various emergent
factors in the behaviour of PCGS with context-free components. We already knew
that synchronization has a big impact, but we find that a weaker notion of interference
has quite a significant impact as well. The simultaneity of queries does and does
not have an emergent impact: On one hand it does not matter whether we allow
multiple queries from different components to be serviced simultaneously (broadcast
communication); we can produce the same result even if we serve one component
at a time (one-step communication). On the other hand, whether we allow multiple
simultaneous queries in a component or not makes quite a bit of a difference in the
expressiveness of the system.
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On a practical note, we believe that context-free PCGS have a promising future in
formal methods, where more expressive does not necessarily mean better. Therefore
the various emergent factors presented above will determine between other things
the most promising flavour of PCGS for such an application.

We will offer further details on emergence and its practical consequences only
after all the concepts have been defined and all the results have been established. A
detailed discussion on the matter will therefore be postponed until Sect. 9.

2 Preliminaries

For some alphabet (i.e., finite set) V , some word x ∈ V ∗, and a set U ⊆ V , |x |
denotes the length of x and |x |U denotes the number of occurrences of elements ofU
in x . By abuse of notation we write |x |a instead of |x |{a} for singleton sets U = {a}.
The empty string (and only the empty string) is denoted by ε.

A grammar [22] is a quadruple G = (N ,Σ, S, R). Σ is the finite, nonempty set
of terminals. N is the finite, nonempty set of nonterminals, and is disjoint from Σ .
S ∈ N is a designated nonterminal referred to as the start symbol or axiom. R is a
finite set of rewriting rules, of the form A → u where A ∈ (Σ ∪ N )∗N (Σ ∪ N )∗
and u ∈ (Σ ∪ N )∗ (A and u are strings of terminals and nonterminals but A contains
at least one nonterminal). Given a grammar G, the ⇒G binary operator on strings
from the alphabet W = (Σ ∪ N )∗ is defined as follows: w1Aw2 ⇒G w1uw2 if and
only if A → u ∈ R and w1, w2 ∈ (Σ ∪ N )∗. The language generated by a grammar
G = (Σ, N , S, R) is L(G) = {w ∈ Σ∗ : S ⇒∗

G w}, where⇒∗
G denotes as usual the

reflexive and transitive closure of ⇒G . We often omit the subscript G when no
ambiguity is thus introduced.

Languages generated by (unrestricted) grammars are referred to as recursively
enumerable (RE). A grammar G is called context sensitive if each rewriting rule
A → u in R satisfies |A| ≤ |u|; the languages generated by these grammars are
referred to as context sensitive (CS).G is context free if every rewriting rule A → u in
R satisfies |A| = 1 (meaning that A is a single nonterminal); these grammars generate
context-free languages (CF). A special type of context-free grammars are linear
grammars, generating linear languages (LIN), where no rewriting rule is allowed to
have more that one nonterminal symbol on its right hand side. Finally, grammars are
regular and generate regular languages (REG) if their rewriting rules have one of the
following forms: A → cB, A → c, A → ε, or A → B where A, B are nonterminals
and c is a terminal [17, 20].

Definition 1 [22] A parse tree for a context-free grammar G = (N ,Σ, R, S) is
a tree whose nodes are labelled with symbols from the set N ∪ Σ . It is defined
inductively as follows (based on Fig. 1a–d on p. XX): For every a ∈ N ∪ Σ the tree
depicted in Fig. 1a is a parse tree with yield a; for every A → ε ∈ R the tree from
Fig. 1b is a parse tree with yield ε. Suppose that the n trees from Fig. 1c are parse
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trees with yields y1, y2, …, yn and that A → A1A2 . . . An ∈ R; then the tree shown
in Fig. 1d is a parse tree with yield y1y2 . . . yn .

Note that the yield of a parse tree is the sequence of leaf labels as obtained by an
inorder traversal of the tree. For every parse tree with root A and yield y there exists
a derivation A ⇒∗ y (and the other way around) in a natural way [22].

2.1 Parallel Communicating Grammar Systems

A Parallel Communicating Grammar System (PCGS) provides a theoretical proto-
type that combines the concepts of grammars with parallelism and communication.
A PCGS consists of a number of grammars that communicate with each other and
thus cooperate in the generation of strings.

Definition 2 [10]: A PCGS of degree n for some n ≥ 1 is an (n + 3) tuple Γ =
(N , K ,Σ,G1, . . . ,Gn)where N is a nonterminal alphabet,Σ is a terminal alphabet,
and K is the set of query symbols, K = {Q1, Q2, . . . , Qn}. The sets N ,Σ , and K are
mutually disjoint.Gi = (N ∪ K ,Σ, Ri , Si ), 1 ≤ i ≤ n are grammars; they represent
the components of the system. The indices 1, . . . , n of the symbols in K point to
G1, . . . ,Gn , respectively.

A derivation in a PCGS consists of a series of communication and rewriting
steps. A rewriting step is not possible if communication is requested (which happens
whenever a query symbol appears in one of the components of a configuration).

Definition 3 [10]: Let Γ = (N , K ,Σ,G1, . . . ,Gn) be a PCGS as above, and
(xi , x2, . . . , xn) and (yi , y2, . . . , yn) be two n-tuples with xi , yi ∈ (N ∪ K ∪ Σ)∗,
1 ≤ i ≤ n. We write (xi , . . . , xn) ⇒Γ (yi , . . . , yn) iff one of the following two cases
holds:

1. |xi |K = 0, 1 ≤ i ≤ n, and for each i, 1 ≤ i ≤ n,we have xi ⇒Gi yi (in the gram-
mar Gi ), or [xi ∈ Σ∗ and] xi = yi .

2. |xi |K > 0 for some 1 ≤ i ≤ n; let xi = z1Qi1 z2Qi2 . . . zt Qit zt+1, with t ≥ 1 and
z j ∈ (N ∪ Σ)∗, 1 ≤ j ≤ t + 1. Then yi = z1xi1 z2xi2 . . . zt xit zt+1 [and yi j = Si j ,
1 ≤ j ≤ t] whenever |xi j |K = 0, 1 ≤ j ≤ t . If on the other hand |xi j |K 
= 0 for
some 1 ≤ j ≤ t , then yi = xi . For all 1 ≤ k ≤ n, yk = xk whenever yk was not
specified above.

The presence of “[and yi j = Si j , 1 ≤ j ≤ t]” in the definition makes the PCGS
returning. The PCGS is non-returning if the phrase is eliminated.

We use ⇒Γ for both component-wise and communication steps. A sequence of
interleaved rewriting and communication steps will be denoted by ⇒∗

Γ , the reflex-
ive and transitive closure of ⇒Γ . As usual we omit the subscript Γ whenever no
ambiguity is introduced by such an omission.
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The first case in Definition 3 above is called a component-wise derivation step
and the second a communication step. Informally, an n-tuple (x1, . . . , xn) yields
(y1, . . . , yn) as follows:

1. If there is no query symbol in x1, . . . , xn, then we have a component-wise deriva-
tion (xi ⇒Gi yi , 1 ≤ i ≤ n, whichmeans that one rule is used per componentGi ),
unless xi is all terminals (xi ∈ T ∗) in which case it remains unchanged (yi = xi ).

2. If we have query symbols then a communication step is required. When this
occurs each query symbol Q j in xi is replaced by x j , if and only if x j does
not contain query symbols. In other words, a communication step involves the
query symbol Q j being replaced by the string x j ; the result of this replacement is
referred to as Q j being satisfied (by x j ). Once the communication step is complete
the grammar G j continues processing from its axiom, unless the system is non-
returning. Communication steps always have priority over rewriting steps; if not
all the query symbols are satisfied during a communication step, then they can
still be satisfied during subsequent communication steps.

A tuple (x1, x2, . . . , xn) ∈ ((N ∪ K ∪ Σ)∗)n as above is called a configuration
of the system. We call xi a component of the configuration or only a component if
the reference to the configuration is understood from the context. Rules Q j → α are
never used so we can assume that no such rules are present.

The derivation in a PCGS is blocked if no component-wise derivation can be
applied to a nonterminal symbol in some component, or circular queries appear. The
latter happens whenGi1 introduces Qi2 ,Gi2 introduces Qi3 , . . . ,Gik−1 introduces Qik
andGik introduces Qi1 ; in such a case no rewriting step is possible (as communication
has priority), but no communication steps are possible either.

A string generated by a PCGS Γ is the result of a derivation that starts from
the tuple of axioms (S1, S2, . . . , Sn). A number of rewriting and/or communication
steps are performed until G1 produces a terminal string (we do not restrict the form
of, or indeed care about the rest of the components of the final configuration). The
language generated by Γ consists of exactly all the strings generated by Γ :

Definition 4 [10]: The language generated by a PCGS Γ is L(Γ ) = {w ∈ Σ∗ :
(S1, S2, . . . , Sn) ⇒∗

Γ (w,σ2, . . . ,σn),σi ∈ (N ∪ K ∪ Σ)∗, 2 ≤ i ≤ n}.
Several variants of PCGS can be defined. If a component-wise derivation requires

that any component containing nonterminals be rewritten (i.e., the bracketed phrase
“[xi ∈ Σ∗ and]” is present in the first case of Definition 3) then the system is syn-
chronized (note however that any component that is already a string of terminals will
not be rewritten under any circumstance). Otherwise we have an unsynchronized
system, that allows components to either perform derivations or stay put.

A PCGS is called returning (to the axiom) if, after communication, a component
which has communicated a string resumes the work from its axiom as described by
the phrase “[and yi j = Si j , 1 ≤ j ≤ t]” in the second case of Definition 3. A PCGS
is called non-returning if components continue working using the current string after
a query (i.e., the bracketed phrase above is erased from the definition).
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Finally, a PCGS is called centralized if only the first component grammar G1 can
control the communication, meaning that only G1 can introduce query symbols; in
the absence of such a restriction the system is non-centralized.

The family of languages generated by a non-centralized, returning PCGS with n
components of type X (where X is an element of the Chomsky hierarchy) will be
denoted by PCn(X). The language families generated by centralized PCGS will be
represented by CPCn(X). The fact that the PCGS is non-returning will be indicated
by the addition of an N , thus obtaining the classes NPCn(X) and NCPCn(X). Let M
be a class of PCGS, M ∈ (PC,CPC,NPC,NCPC); then we define:

M(X) = M∗(X) =
⋃
n≥1

Mn(X)

In the case of a returning PCGS a consequence of Definition 3 is that the com-
municated components are reset to their respective axioms as soon as all the query
symbols are satisfied in the component that requested the communication. However,
several papers e.g., [6, 7, 11] imply a different reset model, where the commu-
nicated components reset to their axioms only after all the queries (from all the
other components) have been satisfied. We refer to the communication model from
Definition 3 as one-step communication, while the other model will be called broad-
cast communication.

3 Previous Work

In this section we summarize the existing results regarding the expressiveness of the
most commonly studied PCGS. One will notice that not all structural variations have
been studied in this respect.Most of the existing results are about centralized systems,
and even then not all of the centralized variants have been studied thoroughly. We
pay particular attention to PCGS with context-free components, the object of our
discussion.

CS and RE are the two most powerful PCGS and grammar types. Somehow sur-
prisingly their behavior is quite similar. It is immediate that a RE grammar is just
as powerful as a PCGS with RE components: RE = Yn(RE) = Y∗(RE), n ≥ 1, for
all Y ∈ {PC,CPC,NPC,NCPC} [10]; PCGS of this type are thus not very inter-
esting since they are just as powerful as a PCGS with one component. The same
holds to some degree for PCGS with context-sensitive components versus context-
sensitive languages: CS = Yn(CS) = Y∗(CS), n ≥ 1, for Y ∈ {CPC,NCPC} [10].
Note however that this result describes the centralized case; we would expect the
non-centralized case to be more powerful, so presumably this result does not hold in
the non-centralized case.

One should note that PCGS with CS components are computationally expensive,
which limits their usefulness. As is the case with normal grammars, the most useful
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classes are the simple ones. The results in the area of PCGS with regular or context-
free components are therefore much more interesting.

We note first that the class of languages generated by centralized returning PCGS
with regular components is a proper subset of the class of languages generated by non-
centralized, returning PCGS with regular components: CPCn(REG) � PCn(REG),
n > 1 [26]. This indicates that the generative power of a PCGS is greater than
the generative power of a single grammar component, and that the more commu-
nication facilities we have the more powerful the resulting system is. A similar
result was found for PCGS with context free components; however in this case
increased communication does not necessarily make the system more powerful:
CPC∗(CF) ⊆ PC∗(CF) [12].

Generally, a centralized PCGS is a particular case of a non-centralized PCGS. As
a consequence the class of languages generated by a centralized PCGS of any type
can be generated by a non-centralized PCGS of the same type: CPCn(X) ⊆ PCn(X)

for any n ≥ 1. The generative power of a PCGS is greater that of a single grammar
component because of communication facilities, and once this parameter is restricted
the generative power is also restricted.

The following two results further demonstrate that there are limitations to the
generative power of PCGS. When we have only two regular components the lan-
guages generated by centralized PCGS are all context free. Even the non-centralized
variant is limited to generating context-free languages: CPC2(REG) � CF and
PC2(REG) ⊆ CF [10].

Anotherway to increase the generative power of a system is to increase the number
of components in the system.We have shown that this does not change the generative
capacity in the RE and (to some degree) CS case. However if we examine classes that
are lower in the hierarchy we notice that an increase in the number of components
generally increases the generative capacity of the system [10].

1. There exists a language generated by PCGS with 2 or more REG components
that cannot be generated by a linear grammar: Yn(REG) \ LIN 
= ∅ for n ≥ 2,
Y ∈ {PC,CPC,NPC,NCPC}.

2. There exists a language generated by a PCGS with 3 or more REG components
that cannot be generated by a context free grammar: Yn(REG) \ CF 
= ∅ for n ≥ 3
(and n ≥ 2 for non-returning PCGS), Y ∈ {PC,CPC,NPC,NCPC}.

3. There exists a language generated by a PCGS with 2 or more linear components
that cannot be generated by a context free grammar: Yn(LIN) \ CF 
= ∅, n ≥ 2,
Y ∈ {PC,CPC,NPC,NCPC}.

4. There exists a language generated by a non-returning PCGSwith 2 ormore regular
components that cannot be generated by a context free grammar: Yn(REG) \
CF 
= ∅, n ≥ 2, Y ∈ {NPC,NCPC}.
Obviously an increase in the power of the components will generally increase

the power of a PCGS. This holds strictly in the centralized case for REG versus
LIN versus CF components: CPCn(REG) � CPCn(LIN) � CPCn(CF), n ≥ 1, [10].
Presumably the same relationship would hold for the non-centralized case, but this
has not been investigated.
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We already mentioned the number of components as an important factor in the
generative power of PCGS. It thereforemakes sense to consider the hierarchies gener-
ated by this factor. Some of these hierarchies are in fact infinite, namely CPCn(REG)

and CPCn(LIN), n ≥ 1 [10].
Some hierarchies however collapse. We have already mentioned that CPCn(CS)

and NCPCn(CS), n ≥ 1, do not give infinite hierarchies, for all of these classes
coincide with CS. Lower classes also produce collapsing hierarchies; for instance
non-centralized context-free PCGSwith 11 components can generate the whole class
RE [7]:

RE = PC11(CF) = PC∗(CF). (1)

A later paper found that a context-free PCGSwith only 5 components can generate
the entire class of RE languages by creating a PCGS that has two components that
track the number of nonterminals and use the fact that for each RE language L there
exists and Extended Post Correspondence problem P [18] such that L(P) = L [11]:

RE = PC5(CF) = PC∗(CF). (2)

Other papers have examined the size complexity of returning and non-returning
CF systems even further. It has been shown that every recursively enumerable lan-
guage can be generated by a returning context-free PCGS, where the number of
nonterminals in the system is less than or equal to a natural number k [6].

This all being said, the earlier results showing theTuring completeness of returning
context-free PCGS [6, 7, 11] are valid only under the broadcast communication
model [27]. Whether a variant of these results exists for the one-step communication
model will be discussed in the next section.

Turing completeness was also shown for non-returning systems [8, 23]. In par-
ticular, if k ≥ 2 and L ⊆ {a1, . . . , ak}+ is a recursively enumerable language, then
there exists a non-returning context-free PCGS without ε-rules (meaning without
rules of the form A → ε) that generates L [8]. If we consider that non-returning
systems can be simulated by returning systems with the help of assistance grammars
holding intermediate strings [14], these results [8, 23] also apply to returning systems
(though the number of components necessary for this to happen does not remain the
same).

4 Broadcast Communication Is not Emergent

For the reminder of this paper we will focus on context-free PCGS. In particular in
this section we will consider the synchronized, returning variant. We already men-
tioned that this variant is Turing complete under the broadcast communication model
[6, 7, 11], but that the original proofs no longer holdwhen one-step communication is
used instead. As it turns out, context-free PCGS are Turing complete under any com-
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munication model, though the one-step communication construction is considerably
more complex. We have:

Theorem 1 [27] RE = L(PC95(CF)) = L(PC∗(CF)).

Proof (sketch) Similarly to one of the proofs for the broadcast communicationmodel
[7] we use a context-free PCGS to simulate an arbitrary 2-counter Turing machine.
We use all of the components used originally in their construction, but with modified
labels. However, we now have to ensure that the components canwork together under
one-step communication without stumbling over each other.

Let M = (Σ ∪ {Z , B}, E, R) be a 2-counter Turing machine [16]. M has a tape
alphabetΣ ∪ {Z , B}, a set of internal states E with q0, qF ∈ E and a set of transition
rules R. The 2-counter machine has a read only input tape and two counters that are
semi-infinite storage tapes. The alphabet of the storage tapes contains two symbols
Z and B, while the input tape has the alphabet Σ ∪ {B}. The transition relation is
defined as follows: if (x, q, c1, c2, q ′, e1, e2, g) ∈ R then x ∈ Σ ∪ {B}, q, q ′ ∈ E ,
c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}, and g ∈ {0,+1}. The starting and final states
of M are denoted by q0 and qF , respectively. A transition of the 2-counter machine
(x, q, c1, c2, q ′, e1, e2, g) ∈ R is then enabled by the current state q, the symbol
currently scanned on the input tape x , and the current value of the two counters c1
and c2 (which can be either Z for zero or B for everything else). The effect of such
a transition is that the state of the machine is changed to q ′; the counter k ∈ {1, 2} is
decremented, unchanged, or incremented whenever the value of ek is −1, 0, or +1,
respectively; and the input head is advanced if g = +1 and stays put if g = 0. When
the input head scans the last non-blank symbol on the input tape and the machine M
is in the accepting state qF then the input string is accepted by the machine. L(M)

be the language of exactly all the input strings accepted by M .
The following PCGS with 95 components will simulate a given 2-counter Turing

machine:

Γ = (N , K ,Σ ∪ {a},Gmoriginal , . . .Gm29 ,G
C1
P1

, . . . ,GC1
P15

,Gc1
P2

,Gc1
P3

,GC1
P1

, . . .

GC1
P15

,Gc2
P2

,Gc2
P3

,GPa1 . . . ,GPa115
Ga2 ,G

14
resetGMPa1

,G4
reset P1 . . .G4

reset P4)

where

N = {[x, q, c1, c2, e1, e2], [e1]′, [e2]′, [I ], [I ]′, 〈I 〉, 〈x, q, c1, c2, e1, e2〉|
x ∈ Σ, q ∈ E,C1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪
{S, S1, S2, S3, S4, S

(1)
4 , S(2)

4 , S(1), S(2), S(3), S(4)} ∪ {A,C}

The component definitions from the original system have the word original in their
label to differentiate them from the helper grammars that were added in order to
accommodate the requirements of a on step-communication (returning) system.

For clarity the labels l of the query symbols Ql will no longer be purely numerical.
We group newly introduced rules in sets labeled N. Those components that do not
have an equivalent in the original construction have all their rules in the set N.
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The new master contains the same rewriting rules and communications steps as it
had in the original construction [7]. The primary role of the master is to maintain its
relationship with the Pa1 component grammar. In addition, we copy the functionality
of themaster in fivemore helper grammars designed to handle queries from Pc1

1 , Pc1
2 ,

Pc1
3 , Pc1

4 , Pc2
1 , Pc2

2 , Pc2
3 , and Pc2

4 (these components will all be described in detail
later).

PGMOriginal = {S → [I ], [I ] → C,C → Qa1} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′1, c′2, e′1, e′2〉 → [x, q ′, c1, c2, e1, e2]|x ∈ Σ, c′1, c′2 ∈ {Z , B},

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, e′1, e′2 ∈ {−1, 0, +1}} ∪

{〈x, q, c′1, c′2, e′1, e′2〉 → x[y, q ′, c1, c2, e1, e2],
〈x, qF , c′1, c′2, e′1, e′2〉 → x |(x, q, c1, c2, q

′, e1, e2, +1) ∈ R,

c′1, c′2 ∈ {Z , B}, e′1, e′2 ∈ {−1, 0, +1}, x, y ∈ Σ}

The following 5 helper grammars simulate rules from the new master but each com-
ponent is designed to work with different components in Pc1

1 , including Pc1
1originalS1

its four newly defined helpers. The components below work with the Pc1
1 gram-

mars as the single grammar version would have in the original construction but the
labels of the query symbols have been modified to reflect the labels of their matching
component grammar.

Pc1
GMS1

= {S → [I ], [I ] → C} ∪ N = {C → Qc1
a1Pa1 S1

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc1
GMS1H2(S4)

= {S → [I ], [I ] → C} ∪
N = {C → Qc1

a1Pa1 S1H2(S4)
, S → Qc1

a1Pa1 S1H2(S4)
} ∪

{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|x ∈ Σ, c′

1, c
′
2 ∈ {Z , B},

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉

→ x |(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B},

e′
1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}
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Pc1
GMS1H3(S4)

= {S → [I ], [I ] → C} ∪ N = {C → Qc1
a1Pa1 S1H3(S4)

, S → Qc1
a1Pa1 S1H3(S4)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉

→ x |(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B},

e′
1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1
GMS1(S2)

= {S → [I ], [I ] → C} ∪ N = {C → Qc1
a1Pa1 S1(S2)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc1
GMS1(S3)

= {S → [I ], [I ] → C} ∪ N = {C → Qc1
a1Pa1 S1(S3)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}

We only need one Pc1
2 component. The grammar below will simulate rules from

the master grammar and will work indirectly with Pc1
2OriginalS2

holding intermediate
strings.

Pc1
GMS2

= {S → [I ], [I ] → C} ∪ N = {C → Qc1
a1Pa1 S2

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
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Similar to the Pc1
2 we only need one Pc1

3 , which will will work indirectly with
Pc1
3OriginalS3

.

Pc1
GMS3

= {S → [I ], [I ] → C} ∪ N = {C → Qc1
a1Pa1 S3

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}

The following 7helper grammars imitate Pa1 . Thefirst 5workwith P
c1
1original and four of

its helpers, while the remaining 2workwith Pc1
2original and Pc1

3original holding intermediate
strings during derivations. A new rule allows these grammars to reset themselves by
querying their new helper component defined later in the “reset” section.

Pc1
GMPA1S1

= {S → [I ], [I ] → C} ∪
N = {C → QResetGM

Pa1
c1
S1

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}

Pc1
GMPA1S1H2

= {S → [I ], [I ] → C} ∪
N = {C → QReset

GM
c1
Pa1S1H2(S4)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
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Pc1
GMPA1S1H3

= {S → [I ], [I ] → C} ∪
N = {C → QReset

GM
c1
Pa1S1H3(S4)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc1
GMPA1S1(S2)

= {S → [I ], [I ] → C} ∪
N = {C → QReset

GM
c1
Pa1S1(S2)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc1
GMPA1S1(S3)

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c1
Pa1S1(S3)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc1
GMPA1S2

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c1
Pa1S2

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
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Pc1
GMPA1S3

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c1
Pa1S3

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}

The following 5 helpers simulate rules from the new master and are designed to
work with a different component in the Pc2

1 family.

Pc2
GMS1

= {S → [I ], [I ] → C} ∪ N = {C → Qc2
a1Pa1 S1

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMS1H2(S4)

= {S → [I ], [I ] → C} ∪ N = {C → Qc2
a1Pa1 S1H2(S4)

, S → Qc2
a1Pa1 S1H2(S4)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMS1H3(S4)

= {S → [I ], [I ] → C} ∪ N = {C → Qc2
a1Pa1 S1H3(S4)

, S → Qc2
a1Pa1 S1H3(S4)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
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Pc2
GMS1(S2)

= {S → [I ], [I ] → C} ∪ N = {C → Qc2
a1Pa1 S1(S2)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMS1(S3)

= {S → [I ], [I ] → C} ∪ N = {C → Qc2
a1Pa1 S1(S2)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}

There is only one Pc2
2 and one Pc2

3 , as in the original system. The master helpers
below work indirectly with them.

Pc2
GMS2

= {S → [I ], [I ] → C} ∪ N = {C → Qc2
a1Pa1 S2

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMS3

= {S → [I ], [I ] → C} ∪ N = {C → Qc2
a1Pa1 S3

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}

The following 7 grammars work with the Pc2
a1 components; the first 5 work with

the Pc2
1 helper grammars, and the other 2 work with Pc2

2OriginalS2
and Pc2

3OriginalS3
. A new
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rule has been added to these components which allows them to reset themselves by
querying their matching reset component (defined later).

Pc2
GMPA1S1

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c2
Pa1S1

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMPA1S1H2

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c2
Pa1S1H2(S4)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMPA1S1H3

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c2
Pa1S1H3(S4)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMPA1S1S2

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c2
Pa1S1(S2)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
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Pc2
GMPA1S1S3

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c2
Pa1S1(S3)

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMPA1S2

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c2
Pa1S2

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}
Pc2
GMPA1S3

= {S → [I ], [I ] → C} ∪ N = {C → QReset
GM

c2
Pa1S3

} ∪
{〈I 〉 → [x, q, Z , Z , e1, e2]|(x, q0, Z , Z , e1, e2, 0) ∈ R, x ∈ Σ} ∪
{〈I 〉 → x[y, q, Z , Z , e1, e2]|(x, q0, Z , Z , q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{〈x, q, c′

1, c
′
2, e

′
1, e

′
2〉 → [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c

′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1}} ∪

{〈x, q, c′
1, c

′
2, e

′
1, e

′
2〉 → x[y, q ′, c1, c2, e1, e2], 〈x, qF , c′

1, c
′
2, e

′
1, e

′
2〉 → x |

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c′

1, c
′
2 ∈ {Z , B}, e′

1, e
′
2 ∈ {−1, 0,+1},

x, y ∈ Σ}

Pc1
1originalS1

contains the same rewriting rules and communication steps as the com-

ponent Pc1
1 in the original system [7], with some re-labelling of queries so that the

components query their corresponding helper grammars in the other sections of the
system. We now have 4 new helper grammars to ensure that Pc1

2 , Pc1
3 , and Pc1

4 have
their own unique component grammars to communicate with.

Pc1
1originalS1

= N = {S1 → Qc1
GMS1

, S1 → Qc1
4S1original

,C → Qc1
GMS1

} ∪
{[x, q, c1, c2, e1, e2] → [e1]′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪

{[I ] → [I ]′, [I ]′ → AC}
Pc1
1S1H2(S4)

= N = {S1 → Qc1
GMS1H2(S4)

, S1 → Qc1
4S1H2(S4)

,C → QGMS1H2(S4)
,

C → W } ∪
{[x, q, c1, c2, e1, e2] → [e1]′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C |
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x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1} ∪
{[I ] → [I ]′, [I ]′ → AC}

Pc1
1S1H3(S4)

= N = {S1 → Qc1
GMS1H3(S4)

, S1 → Qc1
4S1H3(S4)

,C → QGMS1H3(S4)
,

C → W } ∪
{[x, q, c1, c2, e1, e2] → [e1]′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1} ∪
{[I ] → [I ]′, [I ]′ → AC}

The following two Pc1
1 helpers will ensure the proper derivation of Pc1

2OriginalS2
and

Pc1
3OriginalS3

. They work by communicating with their corresponding helper grammars

and their designated special helper in the Pc1
4 section.

Pc1
1S1 (S2)

= N = {S1 → Qc1
GMS1(S2)

, S1 → Qc1
4SpecialHelper1S1S2 ,C → QGMS1(S2)

,

S4 → S(1)
4 , S(1)

4 → QP
c1
1S1H2(S4)

} ∪
{[x, q, c1, c2, e1, e2] → [e1]′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I ] → [I ]′, [I ]′ → AC}

Pc1
1S1 (S3)

= N = {S1 → Qc1
GMS1(S3)

, S1 → Qc1
4SpecialHelper1S1S3 ,C → Qc1

GMS1(S3)
,

S4 → S(1)
4 , S(1)

4 → QP
c1
1S1H3(S4)

} ∪
{[x, q, c1, c2, e1, e2] → [e1]′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I ] → [I ]′, [I ]′ → AC}

The grammars Pc1
2 and Pc1

3 have been renamed and labels have been modified to
ensure that they work with their matching helper components.

Pc1
2OriginalS2

= N = {S2 → Qc1
GMS2

, S2 → Qc1
4S2 ,C → Qc1

GMS2
, A → A} ∪

{[x, q, Z , c2, e1, e2] → [x, q, Z , c2, e1, e2], [I ] → [I ]|x ∈ Σ, q ∈ E,

c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}
Pc1
3OriginalS3

= N = {S3 → Qc1
GMS3

, S3 → Qc1
4S3 ,C → Qc1

GMS3
} ∪

{[x, q, Z , c2, e1, e2] → a, [x, q, B, c2, e1, e2] → [x, q, B, c2, e1, e2]
[I ] → [I ]|x ∈ Σ, q ∈ E, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

The component Pc1
4OriginalS4

, needs extra helper grammars to ensure that components
defined in other sections have their own unique Pc1

4 component to query.
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Pc1
4OriginalS4

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc1
P1S1

} ∪ {A → a}
Pc1
4S1H2(S4)

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc1
P1S1H2(S4)

, S(2)
4 → S(2)

4 } ∪
{A → a}

Pc1
4S1H3(S4)

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc1
P1S1H3(S4)

, S(2)
4 → S(2)

4 } ∪
{A → a}

Pc1
4S2

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc1
P1S2

} ∪ {A → a}
Pc1
4S3

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc1
P1S3

} ∪ {A → a}

Pc1
4SpecialHelper1S1S2 = Pc1

4SpecialHelper2S1S3 = N = {S4 → S4}

Pc2
1OriginalS1

is similar to the original Pc2
1 . It also needs 4 new helper grammars.

Pc2
1OriginalS1

= N = {S1 → Qc2
GMS1

, S1 → Qc2
P4S1

,C → Qc2
GMS1

} ∪
{[x, q, c1, c2, e1, e2] → [e2]′, [+1]′ → AAC, [0] → AC, [−1] → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I ] → [I ]′, [I ]′ → AC}

Pc2
1S1H2(S4)

= N = {S1 → Qc2
GMS1H2(S4)

, S1 → Qc2
P4S1H2(S4)

,C → Qc2
GMS1H2(S4)

,C → W } ∪
{[x, q, c1, c2, e1, e2] → [e2]′, [+1]′ → AAC, [0] → AC, [−1] → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪ {[I ] → [I ]′,
[I ]′ → AC}

Pc2
1S1H3(S4)

= N = {S1 → Qc2
GMS1H3(S4)

, S1 → Qc2
P4S1H3(S4)

,C → Qc2
GMS1H3(S4)

,

C → W } ∪
{[x, q, c1, c2, e1, e2] → [e2]′, [+1]′ → AAC, [0] → AC, [−1] → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I ] → [I ]′, [I ]′ → AC}

Pc2
1S1(S2)

= N = {S1 → Qc2
GMS1(S2)

, S1 → Qc2
4SpecialHelper1S1S2 ,C → Qc2

GMS1(S2)
,

S4 → S(1)
4 , S(1)

4 → QP
c2
1S1H2(S4)

} ∪
{[x, q, c1, c2, e1, e2] → [e2]′, [+1]′ → AAC, [0] → AC, [−1] → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I ] → [I ]′, [I ]′ → AC}
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Pc2
1S1(S3)

= N = {S1 → Qc2
GMS1(S3)

, S1 → Qc2
4SpecialHelper1S1S3 ,C → Qc2

GMS1(S3)
,

S4 → S(1)
4 , S(1)

4 → QP
c2
1S1H3(S4)

} ∪
{[x, q, c1, c2, e1, e2] → [e2]′, [+1]′ → AAC, [0] → AC, [−1] → C |
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I ] → [I ]′, [I ]′ → AC}

The components Pc2
2 and Pc2

3 are the same as in the original system, except for
modified labels. They do not need any helper.

Pc2
2OriginalS2

= N = {S2 → Qc2
GMS2

, S2 → Qc2
P4S2

,C → Qc2
GMS2

} ∪ {A → A} ∪
{[x, q, c1, Z , e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2],

[I ] → [I ]| x ∈ Σ, q ∈ E, c1 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
3OriginalS3

= N = {S3 → Qc2
GMS3

, S3 → Qc2
P4S2

,C → Qc2
GMS3

} ∪
{[x, q, c1, Z , e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]
[I ] → [I ]|x ∈ Σ, q ∈ E, c1 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

The component Pc2
4OriginalS4

on the other hand requires 6 additional helper compo-
nents.

Pc2
4OriginalS4

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc2
P1S1

} ∪ {A → a}
Pc2
4S1H2(S4)

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪

N = {S(2)
4 → Qc2

P1S1H2(S4)
, S(2)

4 → S(2)
4 } ∪ {A → a}

Pc2
4S1H3(S4)

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪

N = {S(2)
4 → Qc2

P1S1H3(S4)
, S(2)

4 → S(2)
4 } ∪ {A → a}

Pc2
4S2

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc2
P1S2

} ∪ {A → a}
Pc2
4S3

= {S4 → S(1)
4 , S(1)

4 → S(2)
4 } ∪ N = {S(2)

4 → Qc2
P1S3

} ∪ {A → a}

Pc2
4SpecialHelper1S1S2 = Pc2

4SpecialHelper2S1S3 = N = {S4 → S4}

The original Pa1 grammar remains as it was in the original system. In order for
component grammars in sections Pc1

1 , Pc1
2 ,Pc1

3 ,Pc1
4 , Pc2

1 , Pc2
2 , Pc2

3 , and Pc2
4 to derive

correctly 14 additional Pa1 helpers have been added to the system. Their names and
labels reflect the components they will work with during a derivation.
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Pa1Original = N = {S → QGMoriginal } ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1

= N = {S → Qc1
GMPA1S1 ,C → C} ∪

{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,
〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1H2(S4)

= N = {S → Qc1
GMPA1S1H2(S4)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1H3(S4)

= N = {S → Qc1
GMPA1S1H3(S4)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1(S2)

= N = {S → Qc1
GMS1(S2)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1(S3)

= N = {S → Qc1
GMS1(S3)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS2

= N = {S → Qc1
GMPA1S2 ,C → C} ∪

{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,
〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS3

= N = {S → Qc1
GMPA1S3 ,C → C} ∪

{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,
〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1

= N = {S → Qc2
GMPA1S1 ,C → C} ∪

{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,
〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
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x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}
Pc2
a1GMS1H2(S4)

= N = {S → Qc2
GMPA1S1H2(S4)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1H3(S4)

= N = {S → Qc2
GMPA1S1H3(S4)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1(S2)

= N = {S → Qc2
GMS1(S2)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1(S3)

= N = {S → Qc2
GMS1(S3)

,C → C} ∪
{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,

〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS2

= N = {S → Qc2
GMPA1S2 ,C → C} ∪

{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,
〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS3

= N = {S → Qc2
GMPA1S3 ,C → C} ∪

{[I ] → 〈I 〉, [x, q, c1, c2, e1, e2] → 〈x, q, c1, c2, e1, e2〉,
〈x, q, c1, c2, e1, e2〉 → 〈x, q, c1, c2, e1, e2〉, 〈I 〉 → 〈I 〉|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z , B}, e1, e2 ∈ {−1, 0,+1}}

The original component grammar Pa2 remains unchanged and works as it did in
the original system.

Pa2Original = {S → S3, S(1) → S(2), S(2) → S(3), S(3) → S(4)} ∪
N = {S(4) → Qc1

P2originalS2
Qc1

P3originalS3
Qc2

P2OriginalS2
Qc2

P3originalS3
S(1)}.

Nowwe define the grammars that are used to reset the Pa1 helpers. They will send
the nonterminal 〈I 〉 to their matching component grammar, which will allow their
derivation to restart. None of the components below are part of the original system.
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ResetGM
c1
Pa1S1

= ResetGM
c1
Pa1S1H2(S4)

= ResetGM
c1
Pa1S1H3(S4)

=
ResetGM

c1
Pa1S1(S2)

= ResetGM
c1
Pa1S1(S3)

= ResetGM
c1
Pa1S2

=
ResetGM

c1
Pa1S3

= ResetGM
c2
Pa1S1

= ResetGM
c2
Pa1S1H2(S4)

=
ResetGM

c2
Pa1S1H3(S4)

= ResetGM
c2
Pa1S1(S2)

= ResetGM
c2
Pa1S1(S3)

=
ResetGM

c2
Pa1S2

= ResetGM
c2
Pa1S3

= N = {S → 〈I 〉, 〈I 〉 → 〈I 〉}

The components below will reset Pc1
1S1H2(S4)

, Pc1
1S1H3(S4)

, Pc2
1S1H2(S4)

, and Pc2
1S1H3(S4)

.

Us = { U → U1,U1 → U2,U2 → U3,U3 → U4,U4 → U5,U6 → U7}
ResetPc1

1S1H2(S4)

= N = (Us ∪ {U7 → QP
c1
1S1H2(S4)

U4})
ResetPc1

1S1H3(S4)

= N = (Us ∪ {U7 → QP
c1
1S1H3(S4)

U4})
ResetPc2

1S1H2(S4)

= N = (Us ∪ {U7 → QP
c1
1S1H2(S4)

U4})
ResetPc2

1S1H3(S4)

= N = (Us ∪ {U7 → QP
c1
1S1H3(S4)

U4})

The following grammars will reset Pc1
4S1H2(S4)

, Pc1
4S1H3(S4)

, Pc2
4S1H2(S4)

, and Pc2
4S1H3(S4)

.

Ts = {T → T1, T1 → T2, T2 → T3, T3 → T4, T4 → T5, T6 → T7}
ResetPc1

4S1H2(S4)

= N = (Ts ∪ {T7 → QP
c1
4S1H2(S4)

T4})
ResetPc1

4S1H3(S4)

= N = (Ts ∪ {T7 → QP
c1
4S1H3(S4)

T4})
ResetPc2

4S1H2(S4)

= N = (Ts ∪ {T7 → QP
c2
4S1H2(S4)

T4})
ResetPc2

4S1H3(S4)

= N = (Ts ∪ {T7 → QP
c2
4S1H3(S4)

T4})

In order for our construction to hold it is enough for the grammars that represent
the original components to terminate the derivation with the same strings as in the
original 11-component derivation.

The master grammar will control the derivation. The string [x, q, c1, c2, e1, e2]
present in the master component, where x ∈ Σ , q ∈ E , c1, c2 ∈ {Z , B}, e1, e2 ∈
{−1, 0,+1}means that the 2-countermachineM is in state q, the input head proceeds
to scan x onto the input tape and c1, c2 on the two storage (counter) tapes, respectively,
and then the heads of the storage tapes are moved according to values in e1, and e2.
The number of A symbols in the strings of the c1, c2 component grammars keep track
of the value of the counters of M , meaning that these numbers should always match
the value stored in the counters of M or else the system will block.

The components defined as “original” will work with the Turing machine M
simulating the steps ofM in their derivation. The systemwill change its configuration
in sync with the state of M and according to the value of the string derived so far
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in the master component (which will correspond at the end of the derivation with an
input accepted by M). The interested reader is referred to the original proof [27] for
the details of the simulation. �

5 Context-Free PCGS Parse Trees and Meta-Trees

The notion of parse trees can be naturally extended to context-free PCGS (often
just PCGS henceforth, with the understanding that all grammars from now on are
context-free unless otherwise stated). In fact we use almost the same construction
as in Definition 1, though we also need to account for communication between
components. We also need to keep track of which portion of which tree has been
generated by which component grammar.

Definition 5 (PCGSParse Trees) LetΓ = (N , K ,Σ,G1, . . . ,Gn) be a PCGSwith
context-free components.

A parse tree for some component Gi = (N ∪ K ,Σ, Ri , Si ), 1 ≤ i ≤ n, of Γ is
defined inductively as follows: For every a ∈ N ∪ K ∪ Σ the tree depicted in Fig. 1a
is a parse tree with yield a, and for every A → ε ∈ Ri the tree depicted in Fig. 1b is
a parse tree with yield ε. Suppose that the n trees from Fig. 1c are parse trees with
yields y1, y2, …, yn and that A → A1A2 . . . An ∈ Ri ; then the tree shown in Fig. 1d
is a parse tree with yield y1y2 . . . yn . If the tree depicted in Fig. 1e is a parse tree of
G j , then the tree from Fig. 1f is a parse tree for Gi , 1 ≤ i, j ≤ n, i 
= j .

The yield of a parse tree continues to be the sequence of leaf labels as obtained
by an inorder traversal of that parse tree.

Note that parse trees are identified as belonging to a specific component Gi in the
PCGS. They are therefore constructed using only rewriting rules from that compo-
nent, until a query node Q j is generated. When this happens, the sub-tree rooted at
the subsequent Sj is only allowed to use rewriting rules from G j , and so on.

Similar with the context-free case, we can create parse trees that correspond to
derivations in a PCGS. However now we have n components so logically we should

Fig. 1 Parse trees for
context-free grammars as
well as PCGS (a, b, c, d);
supplementary parse trees
for context-free PCGS (e, f)

a T1

A1

T2

A2

. . . Tn

An

T

S j
(a)

(c) (e)

A

ε T1

A1

T2

A2

. . . Tn

An

A

T

S j

Q j

(b)

(d) (f)
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construct simultaneously n parse trees; the n parse trees are collectively referred to
as a parse forest.

Definition 6 (PCGS Parse Forest) A parse forest for Γ is an n-tuple
T = (T1, T2, . . . , Tn), with Ti a parse tree for Gi as in Definition 5, 1 ≤ i ≤ n.
The first component T1 of a parse forest T is called the master parse tree (of T ).

As it turns out Definition 6 will only have a temporary role, as we will eventually
show that the master parse tree alone is enough to characterize a PCGS derivation.
For the time being however the following establishes the usefulness of parse forests.

Lemma 1 Every derivation resulting in a configuration (x1, x2, . . . , xn) in a PCGS
with context-free components has an equivalent parse forest; the yields of the parse
trees in that forest are x1, x2, …, xn, respectively

Proof Let Γ = (N , K ,Σ,G1, . . . ,Gn) be a context-free PCGS with Gi = (N ∪
K ,Σ, Ri , Si ), 1 ≤ i ≤ n. We construct the trees in the parse forest simultaneously
in a natural way as follows:

1. All the n trees are initialized as single nodes labelled Si , 1 ≤ i ≤ n, respectively.
2. If no leaf node labelled with a query symbol exists in any of the n parse trees,

then each component i chooses a leaf labelled with a nonterminal A such that
A → w1w2 . . . wk ∈ Ri , w j ∈ N ∪ K ∪ Σ . The respective (former) leaf gains k
children labelled w1, w2, …, wk (or just one child labelled ε whenever k = 0).
If Γ is synchronized then every component must perform such an expansion as
long as a nonterminal leaf is present in its parse tree; otherwise, a component can
either perform the expansion or leave its parse tree unchanged. In all cases, if
there is no leaf labelled by a nonterminal in the parse tree for some component,
then that component does not alter its parse tree.

3. If at least one component has a leaf node labelled with a query symbol, then the
following process takes place:
For a non-returning system Γ , a leaf labelled with a query symbol (say, Q j ) in
some component (say, i) is chosen, such that the parse tree for component j has
no leafs labelled with query symbols. The leaf labelled with Q j gains one child
labelled Sj which is the root of a copy of the current parse tree of component j .
This process is continued for as long as there are leaves labelled with query
symbols in the forest.
Suppose now thatΓ is a returning PCGS. Let now Ti be some component treewith
leafs labelled with query symbols, and let Qi1 , …, Qik be exactly all the nodes
labelled with query symbols in Ti (note that by abuse of notation we henceforth
refer to a node by its label; note further that the labels Qi1 , …, Qik above are
not necessarily different from each other). Then for all 1 ≤ j ≤ k the leaf Qi j
gains one child labelled Si j which is the root of a copy of the current parse tree
of component i j . If the one-step communication model is used, the parse trees of
components i j are then reset to single nodes labelled Si j , 1 ≤ j ≤ k.
The process outlined in the previous paragraph is performed for as long as there
are leafs labelledwith query symbols in the forest. If the broadcast communication
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model is used, then immediately after this process completes, all the component
trees that have been queried are reset to single nodes labelled with their respective
axioms.

Showing that given a derivation such a construction exists proceeds as follows:We
consider the component strings xi , 1 ≤ i ≤ n, as they are rewritten, together with the
corresponding parse trees Ti , 1 ≤ i ≤ n, in the forest as they are constructed during
the same derivation. We proceed by induction over the number m of derivation steps
performed.

For m = 0 the component strings are all initialized with the respective axioms,
while the parse trees have all one (root) node labelled with the axiom; their yields
are obviously identical with the component strings.

The component strings at stepm are then rewritten to obtain the component strings
at step m + 1 as follows:

Suppose that no component string contains query symbols, so we have a
component-wise derivation step. By inductive assumption it follows that there is
no leaf labelled with a query symbol in any of the corresponding parse trees.
The rewriting that takes place in xi picks a nonterminal A (such that xi = x ′

i Ax
′′
i )

to be rewritten using a rule A → α1α2 . . . αk ∈ Ri , with αi ∈ N ∪ Σ ∪ K , 1 ≤
i ≤ k. Then A is replaced in the string by α1α2 . . . αk (such that xi becomes
x ′
iα1α2 . . . αk x ′′

i ). By definition the corresponding node A in Ti gains k children
labelled α1, α2, …, αk . The yield of Ti was x ′

i Ax
′′
i (by inductive assumption) and

is changed as follows: it contains x ′
i (since nothing changes to the left of the node

labelled A), followed by α1α2 . . . αk (A disappears from the yield since the node is
now internal; its place is taken by the labels of its children according to the inorder
traversal), followed by x ′′

i (since nothing changes to the right of the node labelled
A), as desired.

Whenever xi contains only terminals (case in which xi does not change), the yield
of Ti contains only terminals by inductive assumption, which means that all the leafs
of Ti are labelled with terminals. In such a case no expansion can take place, so the
tree remains unchanged, again as desired.

We note that whether some components can remain unchanged in the current step
even if they can be rewritten depends on whether the system is synchronized or not;
the same dependency is specified in the definition for the respective forest.

Suppose now that query symbols are present in some components, so a com-
munication step takes place. Let component xi contain Qi1 , …, Qik (so that xi =
w1Qi1

w2Qi2
· · ·wk Qik

x ′); then after the communication step xi becomesw1xi1
w2xi2

. . . wk xik
x ′. The yield of Ti was by inductive assumption w1Qi1

w2Qi2
· · ·wk Qik

x ′.
Now each leaf Qi j , 1 ≤ j ≤ k becomes internal (so it disappears from the yield).
It’s place is taken by the yield of the subtree now rooted at Qi j (by the definition of
inorder traversal); this yield is however xi j (indeed, the tree rooted at Qi j is a copy
of Ti j , which has yield xi j by inductive assumption) and so the yield of Ti becomes
w1xi1

w2xi2
· · · wk xik

x ′ (again by the definition of inorder traversal), as desired. Ti j
are reset to their initial form iff xi j is reset to the axiom in the PCGS (namely, when-
ever the system is returning and the communication model being used requires the
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reset of xi j ). That circular queries block equally the derivation and the construction
of the parse trees is also immediate from definitions. �

In order for parse forests to be useful we must also be able to get a parse forest
and reconstruct some derivation that gave birth to it. It turns out that this is possible.
We can actually do even better and reconstruct the derivation starting solely from the
master parse tree of the forest. In order to do this we will find the following notion
of meta-tree useful.

Definition 7 (Meta-tree) Let Γ = (N , K ,Σ,G1, . . . ,Gn) be a context-free
PCGS and let Tk , 1 ≤ k ≤ n be a tree in the parse forest of some derivation
(S1, S2, . . . , Sn) ⇒∗

Γ (x1, x2, . . . , xn).
A meta-node (of Tk) is then a maximal region of Tk which (a) has all the edges

produced by applications of rules from a single componentGi ofΓ , and (b) is rooted
at Si , the axiom of Gi .

The meta-tree μ(Tk) of Tk is then a the tree of meta-nodes constructed using a
function μ defined recursively (and naturally) such that for some parse tree T μ(T )

produces the following meta-tree:

1. The root r of μ(T ) is the meta-node rooted at the root of T . It has one child for
every leaf labelled with a query symbol Q j in r (zero children if no such a label
exists in r ).

2. For each edge (Q j , Sj ) in T that originates from a leaf of r labelled Q j the
respective child of r is μ(T ′), where T ′ is the tree rooted at Sj .

The yield of μ(T ) is defined as being the same as the yield of the underlying parse
tree T .

The meta-tree μ(Tk) of Tk is a tree of meta-nodes such that there exists an edge in
μ(Tk) for exactly all the edges (Q j , Sj ) in Tk ; this edge connects the meta-node that
contains Q j (the parent) with the meta-node rooted at Sj (the child). To illustrate
the concept of meta-node and meta-tree intuitively refer to the sample parse tree
depicted in Fig. 2a. This parse tree has four meta-nodesM1,M2,M3, andM4 which
are shown in Fig. 2b. The meta-tree μ(T) (Fig. 2c) is rooted at M1, which in turn
has M2 and M3 as its children; M2 is a leaf (it has zero children since there are no
nodes labelled with query symbols in this meta-node), and the sole child of M3 is
M4 (which is also a leaf).

Lemma 2 There exists a meta-tree μ(T ) for every parse tree T from any PCGS
parse forest. Furthermore μ(T ) covers all the nodes from T .

Proof That μ(T ) is a tree is immediate by the definition of a parse tree. Indeed,
component-wise derivations build a meta-node; the introduction of a query symbol
is followed immediately by the connection of that symbol with the respective axiom,
which then starts a new meta-node that becomes the child of the initial meta-node,
and so on.

A simple inductive argument over the depth of the nodes in T further shows that
μ(T ) covers all the nodes of T . Indeed, the root Sk of T (at depth 1) is evidently the
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T : S1

a S1

Q4 S1

a
Q2

S4
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ε

S2
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S3
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S3
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M1 : S1

a S1

Q4 S1

a
Q2
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S2

b
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Q3

M4 : S3

c
S3
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M1

M2 M3
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(c)

Fig. 2 A parse treeT (a), its meta-nodesM1,M2,M3, andM4 (b), and the associated meta-tree (c)

root of a meta-node (and so inside some meta-node). Then if a node A (at depth d)
with children A1, A2, …, Ak (at depth d + 1) is already in a meta-node rooted at Si ,
then the rewriting rule that generates its childrenmust come fromGi by the definition
of a PCGS parse tree and so all A1, A2, …, Ak are in the same meta-node. If a query
Q j (depth d) is in some meta-node, then its only child must be Sj (again by the
definition of a PCGS parse tree), which means that Sj (depth d + 1) is the beginning
of a new meta-node (and so belong to some, although different meta-node). �
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Overall we established a natural bijection μ between every PCGS parse tree and
its meta-tree. In passing, the definition of μ (in Definition 7) or alternatively the
inductive argument used in the proof of Lemma 2 effectively establish an algorithm
for computing μ.

Now we can show as promised that a valid derivation can be constructed from
every master parse tree.

Lemma 3 Given a master parse tree T with yield w for some PCGS Γ , one can
reconstruct a derivation in Γ that produces w in its first component, provided that
T was constructed based on a valid derivation in Γ .

Proof Let Γ = (N , K ,Σ,G1, . . . ,Gn) and let μ(T ) be the meta-tree of T . The
length of a derivation A ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wm ism, the number of steps in that
derivation. We proceed with our proof using a structural induction over μ(T ).

There are no query symbols in any of the leaves of μ(T ), so any derivation
consistent with the respective leaf will do. Such a valid derivation can be obtained
out of the meta-node using the standard technique used for context-free grammars
and their parse trees [22]. At least one such a derivation must exist since the whole
tree T comes from a valid derivation in Γ , so the base case is established. It is
worth noting additionally that the length of any derivation corresponding to a leaf
is equal to the number of internal nodes in that leaf (since each of these internal
nodes correspond to the application of one rewriting rule and so with one step in the
derivation).

Consider now the inductive step that is, a meta-node N with κ internal nodes
containing exactly all the query symbols QN1 , QN2 ,…, QNp (which are all necessarily
leafs of the meta-node). Let the sub-trees rooted at the roots of the children of N
be called N1, N2, …, Np, respectively, and let their number of internal nodes be
κ1, κ2, …, κp, again respectively.

The proof of this step proceeds more conveniently if split it into one case for Γ

being synchronized and another for Γ being unsynchronized.

Synchronized: Recall that none of the meta-nodes N , N1, N2, …, Np feature queries
as internal nodes by definition, so they were all created by a sequence of component-
wise derivation steps. In addition, this sequence of steps is synchronized between all
the trees (Γ being synchronized), meaning that each time an internal node was added
to N , one internal node is also added to each of its children N1, N2,…, Np . Therefore
the child Ni has κi internal nodes iff the respective query symbol QNi (than connects
it to N ) was introduced in N after precisely κi component-wise derivation steps. Out
of all the possible derivations that generate N we thus choose one derivation that
introduce every QNi after κi steps. Such a derivation must exist since the whole tree
T was generated by a valid derivation to begin with.

The derivation we thus choose happens in the component given by the root of N .
The other components’ derivations are given by the inductive assumption. Putting
all of these together and then satisfying the p query symbols in the usual way (com-
munication and if applicable reduction to axiom for the communicated component)
we obtain a whole derivation for N as a parse tree, as desired.
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Unsynchronized: We proceed as in the synchronized case, except that now we no
longer need to introduce the query symbols after any precise number of steps. We
therefore just choose a derivation that introduces all the query symbols present in N .
We then proceed in the same manner to construct the complete derivation for the
parse tree N . �

Note that the algorithm implied by the construction of Lemma 3 has a high time
complexity (since multiple derivations must be tried for most meta-nodes) and can
likely be improved. At this stage however just having an algorithm suffices.

Now we can finally state the main result that establishes the usefulness of parse
trees for PCGS with context-free components. Indeed, we showed that every deriva-
tion in a PCGS has a corresponding parse forest (Lemma 1) and so a corresponding
parse tree (the master parse tree of that forest). Once a master parse tree is given, one
derivation that generates it can be determined (Lemma 3); this essentially makes the
rest of the forest unnecessary. Putting these two points together we have:

Theorem 2 [4] Every derivation in a PCGS Γ with context-free components that
produces a string w (in the sense of the language generated by a PCGS that is, by
the first component grammar) has an equivalent parse tree with yieldw. Conversely,
given a master parse tree T with yield w that has been constructed according to a
valid derivation in Γ , one can reconstruct a derivation in Γ that produces w. �

We essentially showed that a given derivation in a PCGS is characterized by a
single parse tree. Whether this goes the other way around (that is, whether any parse
tree corresponds to a derivation) has a more complex answer that will be studied in
the next couple of sections.

6 Interference, PCGS Derivations, and Parse Trees

The usefulness of parse trees for context-free grammars is that they characterize
exactly all the derivations in a grammar, meaning that every derivation has an equiv-
alent parse tree but also every parse tree corresponds to at least one derivation in the
grammar. The first property is already established for PCGS and their parse trees in
Theorem 2 above. PCGS parse trees are a relatively straightforward extension of the
concept of (context-free) parse trees, so they have the potential of having the second
property as well.

However tempting (and useful) this might be, we will eventually show that this is
most of the time not the case. More precisely, the existence of the second property
will turn out to be dependent on the following concept of interference:

Definition 8 (Checkpoint and Interference) Let Γ = (N , K ,Σ,G1, . . . ,Gn) be
a context-free PCGS. We use γ0 ⇒Γ γ1 ⇒Γ · · · ⇒Γ γp to refer to any complete
derivation in Γ , meaning that there is no γp+1 such that γp ⇒Γ γp+1. We further put
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γk = (γk1, γk2, . . . , γkn), meaning that we use γki to refer to the i-th component of
the configuration γk , for 0 ≤ k ≤ p and 1 ≤ i ≤ n.

A checkpoint of (component) Gi by G j , 1 ≤ i, j ≤ n during some derivation in
Γ is either p (the end of the derivation) or some 1 ≤ k < p such that |γk j |Qi 
= 0
(the event of G j querying Gi ). Note that during a particular derivation there may be
multiple checkpoints of Gi by G j .

A component G j interfereswith another component Gi in some derivation when-
ever there exists a checkpoint C of Gi by G j and a string wi (the interference string)
such that

1. Si ⇒∗
Gi

wi (wi can be produced by grammar Gi if it acts alone outside Γ ), and
2. γCi 
= wi (wi cannot be produced byGi at stepC in the respective derivation ofΓ ).

In order to illustrate the concepts of checkpoint and interference we use the fol-
lowing non-returning PCGS (which incidentally speaking we shall meet again in
Corollary 1): Γ = ({S1, S2, S′

2}, {Q1, Q2}, {a, b}, G1, G2), where G1 = ({S1, S′
2},{a, b}, R1, S1), G2 = ({S2, S′

2}, {a, b}, R2, S2), and

R1 = {S1 → aS1, S1 → Q2, S
′
2 → ε}

R2 = {S2 → S′
2, S

′
2 → bS′

2}

Consider now the following derivation:

γ0 = (S1, S2) ⇒
γ1 = (aS1, S′

2) ⇒
γ2 = (aaS1, bS′

2) ⇒
γ3 = (aaQ2, bbS′

2) ⇒
γ4 = (aabbS′

2, bbbS
′
2) ⇒

γ5 = (aabb, bbbbS′
2)

In this derivation 3 and 5 are both checkpoints ofG2 byG1. Indeed, Q2 is introduced
in γ31 (and so γ3 defines a checkpoint) and γ5 is the end of the derivation (and so
it also defines a checkpoint). Furthermore G1 interferes with G2 at checkpoint 3, as
follows: S2 ⇒G2 S

′
2 ⇒G2 bS

′
2 and so S2 ⇒∗

G2
bS′

2 (if the grammar G2 acts alone),
yet γ32 = bbS′

2 
= bS′
2. The interference string in this case is thus bS

′
2.

Clearly the components of a PCGS must somehow “interfere” with each other
in a general sense (else the resulting system will not serve any purpose not already
served by its master grammar alone). Our notion of interference is more restricted
and is meant to only identify those cases in which one component controls another
in between queries. As it turns out, this notion of interference makes the difference
for whether parse trees or forests characterize completely PCGS derivations (second
property mentioned at the beginning of this section).
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Theorem 3 [4] Every (master) parse tree of a PCGS Γ with root S1 and yield w

corresponds to a (not necessarily unique) derivation (S1, S2, . . . , Sn) ⇒∗
Γ (w, x2,

. . . , xn) for some xi ∈ N ∪ Σ , 2 ≤ i ≤ n iff there is no interference in Γ .

Proof Let Γ = (N , K ,Σ,G1, . . . ,Gn) and let T be some master parse tree with
μ(T ) its correspondingmeta-tree. (Recall that the notion and properties of ameta-tree
were introduced in Definition 7 and Lemma 2.)

We consider first the case in which no interference is present and we proceed by
structural induction over the (structure of) μ(T ).

A leaf meta-node rooted at Si , 0 ≤ i ≤ n has no queries anywhere inside it; more-
over the rewriting rules that create the leaf come all from a single component. It is
thus equivalent to some component-wise derivation starting from the axiom Si in the
respective component grammar Gi . In the absence of interference multiple compo-
nents can create any possible combination of such leafs concurrently, including the
ones corresponding to the actual leafs of the given meta-tree. Indeed we note first
that all the components start from their axioms. The fact that there is no interference
in Γ means that the components can reach any combination of individual outcomes,
including the ones corresponding to the leafs being considered. We can then sim-
ply choose a component-wise derivation in Γ that produces a configuration which
includes the yields of all the leafs, as desired; the base case is established.

Consider now some meta-node rooted at Si , 0 ≤ i ≤ n together with all its chil-
dren rooted at Si1 , Si2 , Sik (and so introduced by the query symbols Qi1 , Qi2 , Qik ,
respectively). By the same argument as above this meta-node corresponds to a
component-wise derivation in the respective component. In the absence of inter-
ference the components corresponding to its children have the time to reach any
combination of configurations starting from their respective axioms (by induction
hypothesis), including the configurations that correspond to the actual children of
the node in discussion. The parent node is immaterial in the process as it does not
perform any query and so does not interfere with its children. Our meta-node cor-
responds to a derivation in the respective component resulting in some string that
includes the query symbols Qi1 , Qi2 , …, Qik (by the definition of a parse tree). These
query symbols must then become roots to trees corresponding to derivations in their
respective components (again by the definition of a parse tree). The actual children
do corresponds to such derivations (by induction hypothesis). Therefore the whole
tree corresponds to a derivation, as desired. The induction is complete.

Consider now the checkpoint C ofGi byG j such thatG j interferes withGi at C in
an otherwise successful derivation of Γ with parse tree T . Let wi be the interference
string. The checkpoint C corresponds in T to a node labelled Qi having Si as sole
child (which in turn is the root of some subtree). Replace then the aforementioned
tree rooted at Si with the tree corresponding to the derivation Si ⇒∗

Gi
wi . We still

have a parse tree, yet such a tree cannot correspond to any derivation in Γ since this
would imply that wi is communicated to G j at checkpoint C (an impossibility since
the interference string wi is not available at that point). �
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7 When All PCGS Parse Trees Correspond to Derivations
and When They Do Not

Theorem 3 together with Definition 8 allows us to easily see which (if any) PCGS
variant feature complete characterization of their derivation based on parse trees.

Consider first synchronized PCGS. Such a system can perform “inter-component
counting,” in the sense that the number of steps being the same in two (or more)
components allows for the generation of comparable numbers of symbols in both
(all three, etc.). In such a case the number of nodes in the component parse trees
is kept synchronized, so taking an arbitrary parse tree from one component and
plugging in into the master parse tree will not do (since this synchronization is no
longer taken into account). More to the point such an “inter-component counting” is
a clear interference by Definition 8 so we cannot have a complete characterization
by parse trees:

Corollary 1 There exists a master parse tree of some synchronized PCGS that does
not correspond to any derivation in that PCGS. There exists a parse forest of some
synchronized PCGS that does not correspond to any derivation in that PCGS. This
all holds for both returning and non-returning PCGS.

Proof Once the existence of a master parse tree not corresponding to any derivation
is established, the existence of a parse forest with the same property is immediate
(just take the master parse tree thus found and add some arbitrary but valid n − 1
parse trees for the remaining components).

Interference between different components of a synchronized PCGS is clearly
present (since the components are synchronized and therefore restrict each other in
the number of derivation steps available). Theorem 3 establishes the desired result.

A constructive proof of this result by finding an actual interference string in some
PCGS is also easy to establish. We also present this proof in order to better illustrate
the concept of interference, especially in conjunction with the “inter-component
counting” effect mentioned above.

Let Γ = ({S1, S2, S′
2}, {Q1, Q2}, {a, b}, G1, G2) be a PCGS, where

G1 = ({S1, S′
2}, {a, b}, R1, S1) and G2 = ({S2, S′

2}, {a, b}, R2, S2) such that

R1 = {S1 → aS1, S1 → Q2, S
′
2 → ε}

R2 = {S2 → S′
2, S

′
2 → bS′

2}

A derivation in Γ can only proceed as follows: Once the first component queries
the second the derivation is almost finished. Indeed, the only possible rewriting
will erase S′

2 (communicated from the second component), thus reaching a string of
terminals. The only successful derivations thus involve some p > 0 component-wise
derivation steps followed by a communication step, followed by onefinal component-
wise derivation step.

Whenever Q2 is introduced by the first component-wise derivation (p = 1) we
have:
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(S1, S2) ⇒ (Q2, S
′
2) ⇒ (S′

2,σ) ⇒ (ε,σ′)

with σ being either S2 or S′
2 and so σ′ being S′

2 or bS′
2 depending on whether the

system is returning or not. In either case the result of the derivation is ε.
If Q2 is introduced later (p > 1) we start with (S1, S2) ⇒ (aS1, S′

2). Each sub-
sequent p − 1 derivations introduce one a in the first component and one b in the
second, so after p steps we obtain:

(S1, S2) ⇒∗ (aa p−1S1, b
p−1S′

2) = (a pS1, b
p−1S′

2)

A final component-wise derivation introduces Q2 in the first component while the
second gains another b, so we have:

(S1, S2) ⇒∗ (a pQ2, bb
p−1S′

2) = (a pQ2, b
pS′

2)

The second component is then communicated to the first, followed by the erasure of
S′
2 in the first component. Therefore:

(S1, S2) ⇒∗ (a pbpS′
2,σ) ⇒ (a pbp,σ′)

where σ is either S2 or bpS′
2 (depending on whether Γ is returning or not) and so σ′ is

either S′
2 or b

p+1S′
2, respectively. Clearly whether Γ is returning or not is immaterial

as far as the string produced by the derivation is concerned.
As argued earlier there is no other possible derivation. We thus conclude that

L(Γ ) = {a pbp : p ≥ 0}.
Consider now the tree depicted in Fig. 3. It is amaster parse tree forΓ according to

Definition 5, but its yield isaab /∈ L(Γ ) and so cannot have any equivalent derivation.
Incidentally, this tree was constructed specifically as a counterexample using the
pertinent portion of the proof of Theorem 3 (bS′

2 being an interference string of G2

by G1). �

The unsynchronized, non-returning PCGS do not offer such strong synchroniza-
tion, so it is reasonable to believe that parse trees might after all describe exactly all
their derivations. Unfortunately, we still have interference and so this is yet again not
the case:

Corollary 2 There exists amaster parse tree of some non-returning, unsynchronized
PCGS that does not correspond to any derivation in that PCGS. There exists a parse
forest of some synchronized PCGS that does not correspond to any derivation in that
PCGS.

Proof Again once the existence of a master parse tree not corresponding to any
derivation is established, the existence of a parse forest with the same property is
immediate (just take the master parse tree thus found and add some arbitrary but
valid n − 1 parse trees for the remaining components).
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Fig. 3 A master parse tree
that cannot correspond to
any derivation in the
respective PCGS

S1

a
S1

a
S1

Q2

S2

S2

S2b

ε

We will establish interference using a system with two components having the
following sets of rewriting rules, respectively:

R1 = {S1 → aQ2, S2 → bQ2, S2 → c}
R2 = {S2 → xS2}.

We have (S1, S2) ⇒∗ (aQ2, xk S2) ⇒ (axk S2, xk S2). This first checkpoint does not
feature any interference. If the derivation continues however using S2 → bQ2 rather
than S2 → c, we get (axk S2, xk S2) ⇒∗ (axkQ2, xk+pS2) for some p ≥ 0. Clearly
the second component is forbidden to produce any string xq S2 with q ≤ n even if it is
perfectly capable of doing so if left to its own devices. The interference is established
and so the result is an immediate consequence of Theorem 3. �

The unsynchronized, returning case is slightly more interesting, though the result
is still mostly negative:

Definition 9 (Unique-query PCGS) A unique-query PCGS is a PCGS in which no
rewriting rule contains two or more occurrences of the same query symbol.

Corollary 3 Every parse tree with root S1 and yieldw of an unsynchronized, return-
ing PCGS Γ corresponds to a (not necessarily unique) derivation (S1, S2, . . . , Sn)
⇒∗ (w, x2, . . . , xn) in Γ for some xi ∈ N ∪ Σ , 2 ≤ i ≤ n iff Γ is a unique-query
PCGS.

Proof If (by contrapositive): If Γ is not unique query then interference happens as
follows: Let A → σ1Qiσ2Qiσ3 be one of the rules of component G j than makes Γ

non-unique-query. G j then interferes with Gi since G j imposes a fixed number of
steps (zero!) on Gi between the satisfaction of the first and the second occurrence of
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Qi . By Theorem 3 at least one parse tree that does not correspond to any derivation
in Γ exists.

Only if: When Γ is unique query then no interference is possible. Indeed, any
checkpoint reduces the queried component to its axiom, and then the respective
component has as much time as needed to derive by itself any possible string. The
whole positive part of the proof of Theorem 3 applies literally to this case. �

8 The Expressiveness of Unique-Query Context-Free PCGS

Between other things, the complete characterization of derivations in unique-query
context-free PCGS by parse trees implies that this variant is by far the least powerful
PCGS with context-free components possible. Indeed, in such a case we do not gain
anything from using a PCGS; a simple context-free grammar will do just as well.

Theorem 4 [4] Exactly all the languages generated by unique-query, unsynchro-
nized, returning context-free PCGS are context free.

Proof That every context-free language can be generated by a unique-query, unsyn-
chronized, returning context-free PCGS is immediate since a context-free grammar
is a special case of PCGS (with one component and no use for query symbols).

Let nowΓ = (N , K ,Σ,G1, . . . ,Gn) be a unique-query, unsynchronized, return-
ing context-free PCGSwithGi = (N ∪ K ,Σ, Ri , Si ), 1 ≤ i ≤ n. Let σi be a renam-
ing such that σi (x) is the string x in which all the occurrences η ∈ N are replaced by
(η, i). We extend naturally σi to rewriting rules as σi (A → α) = σi (A) → σi (α),
and to sets of rewriting rules as σi (ρ) = {σi (r) : r ∈ ρ}.

Consider then the following context-free grammar: G = ((N × {1, 2, . . . , n}) ∪
K ,Σ, R, (S1, 1)), where R = ⋃

0≤i≤n R
′
i with R′

0 = {Q j → (Sj , j) : 1 ≤ j ≤ n}
and R′

i = σi (Ri ), 1 ≤ i ≤ n.We find that there is a natural bijectionβ between the set
of parse trees of Γ and the set of parse trees of G such that the yield of T is identical
with the yield of β(T ) and thus we complete the proof. Indeed, this establishes
that w ∈ L(Γ ) =⇒ w ∈ L(G) by Theorem 2, that w ∈ L(G) =⇒ w ∈ L(Γ ) by
Corollary 3, and so that L(Γ ) = L(G), as desired.

Intuitively, a derivation in G simulates the derivation in Γ component by compo-
nent while the respective parse tree is constructed (and so generates an isomorphic
parse tree). The nonterminals are the old nonterminals in Γ with an added associated
index to keep track which rewriting (i.e., node expansion) happens in which compo-
nent. The occurrence of a query symbol will change this index in G, meaning that in
Γ whatever happens afterward is the result of a derivation in a different component.
This all follows faithfully the definition of PCGS parse trees (Definition 5).

Formally, given some parse tree T of Γ we construct β(T ) in a natural way by
considering every meta-node N in the meta-tree μ(T ) and relabeling all the nodes in
N with root Si from ν to σi (ν). (Recall that the notion and properties of a meta-tree
were introduced in Definition 7 and Lemma 2.)
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That β is one-to-one is immediate given that σi is one-to-one and that only the
node labels are changed by β while the structure of the tree remains the same.

Let now T ′ be a parse tree of G. T ′ is rooted at (Si , i) with i = 1, the axiom
of G and so β−1(T ′) is rooted at Si for i = 1 (the axiom of G1). Then every node
labeled (A, i) is expanded using some rule from σi (Ri ) (only these are usable given
the second component of the label), meaning that the corresponding node in β−1(T ′)
is expanded using some rule from Ri . When a node labeled Q j is encountered, it
can only be expanded using the rule Q j → (Sj , j), so the label of its sole child is
(Sj , j), and so from then on only rules from σ j (R j ) will be applicable (same reason
as above). Therefore in β−1(T ′) a node labeled Q j can only have one child labeled
Sj , and from then on only rules from R j will be applicable. As far as β−1(T ′) is
concerned the above description matches exactly Definition 5 and so β−1(T ′) is a
parse tree for Γ . The function β is thus onto.

The fact that β is a bijective relabeling of nodes in a tree which does not change
terminal symbols established immediately that the yields of T and β(T ) are the same
for any T . �

It is also worth noting that for synchronized context-free PCGS non-returning
systems were first found to be (not necessarily strictly) weaker than their return-
ing counterparts [14]. Subsequently returning and non-returning context-free PCGS
turned out to be equivalent (and also Turing complete) [8, 9, 23]. The initial find
in the synchronized case [14] turns out to be reversed in the unique-query, unsyn-
chronized case (for the returning, unique-query PCGS are the weakest of them all).
On the other hand, the subsequent find for the synchronized case (that returning and
non-returning PCGS are equivalent [8, 9, 23]) does not hold for the unique-query,
unsynchronized case. Overall we have:

Corollary 4 Any unsynchronized, returning, unique-query context-free PCGS can
be simulated by an unsynchronized, non-returning, unique-query context-free PCGS,
but not the other way around. Indeed, the non-returning variant of such systems is
strictly stronger than the returning variant.

Proof An unsynchronized, non-returning, unique-query context-free PCGS T can
simulate an unsynchronized, returning, unique-query context-free PCGS S in a trivial
manner: we construct the context-free grammar corresponding to S as in Theorem 4
above and we just call that T (that is, a non-returning unique-query context-free
PCGS). T is the lowest common denominator of all the context-free PCGS (having
one component and no use for queries) so it can be any kind of context-free PCGS.

The following examplewill then show that non-returning, unsynchronizedunique-
query context-free PCGS are strictly stronger than their returning version:

Let N = {S1, S2, S3, S4, A, B} and Σ = {a, b}. Let then Γ = (N , K ,Σ, (N ∪
K ,Σ, R1, S1), (N ∪ K ,Σ, R2, S2), (N ∪ K ,Σ, R3, S3), (N ∪ K ,Σ, R4, S4))be an
unsynchronized non-returning unique-query context-free PCGS with
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R1 = {S1 → Q3Q4, B → ε}
R2 = {S2 → aS2, S2 → bS2, S2 → A, A → A}
R3 = {S3 → Q2, A → B}
R4 = {S4 → Q2, A → B}

Clearly, the first componentmust query to have any chance of producing a terminal
string. Both the second and third components must query before the first component
queries, for if this is not the case then either S3 or S4 (or both) will find their way
into the first component, which cannot erase them and so the derivation cannot be
successful.

S2 can generate any string in {a, b}∗ in the second component before being rewrit-
ten to A; once such a rewriting happens, the second component will not change any-
more (since only the rule A → A will be applicable henceforth). The rewriting of
S2 to A must furthermore happen before any query takes place; if this is not so, then
S2 will find its way into the first component via the third and fourth components but
cannot be erased and so the first component cannot produce a terminal string.

In all a successful derivation in Γ can only proceed as follows before any query
takes place: For an arbitrary w ∈ {a, b}∗,

(S1, S2, S3, S4) ⇒∗ (S1, wA, S3, S4)

As we argued above, both the third and the fourth component must query before
the first component does so. The third and fourth component may query at different
times, but the timing does not matter since from now on the second component will
not change anymore. Any potentially successful continuation of the derivation is
therefore equivalent to the following one:

(S1, wA, S3, S4) ⇒ (S1, wA, Q3, Q4) ⇒ (S1, wA, wA, wA)

Now before the first component queries the A nonterminals in the third and fourth
component must both be rewritten to B; if this is not the case then A fill find its
way into the first component where it cannot be erased. The derivation will therefore
continue along the following line (or equivalent):

(S1, wA, wA, wA) ⇒ (Q3Q4, wA, wB, wB)

⇒ (wBwB, wA, wB, wB) ⇒∗ (ww,wA, wB, wB)

As explained throughout the above argument no other derivation is possible, and
so L(Γ ) = {ww : w ∈ {a, b}∗}. L(Γ ) is not context free [22] and so Γ cannot be
simulated by any unsynchronized, returning, unique-query context-free PCGS since
the latter only generate context-free languages (as shown in Theorem 4). �

We are not aware of any results in the intermediate case (namely, unsynchronized
PCGS that are not necessarily unique query).
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9 Conclusions

Emergence in teams of context-free constructs is by no means unexpected. A trivial
argument (which is also a classical class exercise [22]) makes a two-stack pushdown
automaton Turing complete. The way in which emergence appears and the factors
that enable it are however interesting andworth investigating. Formal languages after
all do not live in a vacuum and need to model real life phenomena in order to be
useful.

There are various features of context-free PCGS that realize emergence. Onewell-
studied such a feature is synchronization. The other emergent feature is the capability
of introducing multiple queries in the same component string simultaneously (the
lack of the unique-query feature). The main result of this paper is that these are the
only emergent features. Indeed, when all these features are eliminated then we obtain
unique-query, unsynchronized, returning context-free PCGS, a formalism which is
no more expressive than any one of its components (that is, a context-free grammar).

Another potential emergent feature is broadcast communication. We found how-
ever that broadcast communication is not really an emergent feature, since it can be
readily simulated using the one-step communication model. The construction used
to show this is manual and tedious, but is worth remembering because it introduces
a number of general patterns, as follows:

1. Copycat components contain rules similar to the original components, and derive
the same strings during the same steps as the original components. Such a con-
struction allows for each of the original grammars to request the same string at
the same time without the need to query the same component (that is, without
needing broadcast communication).

2. Reset components reset some of the copycat grammars at precise steps in the
derivation in order to fix synchronization issues.

3. Waiting rules ensure that communication steps would only be triggered at certain
points in the derivation.

4. Selective rewriting rules were used in conjunction with blocking, thus allowing
certain rewriting rules to be successful only at specific steps and ensuring that no
undesired strings are created.

We believe that the above techniques are applicable not only to our construction
but in a more general environment. That is, they appear to be useful for eliminating
broadcast communication in general. We further believe that our transformation can
be accomplished algorithmically. Whether this is indeed the case and if so in what
circumstances is an interesting open question.

9.1 Incidental Results

We introduced the concept of parse forests and parse trees as a natural extension
of parse trees for context-free grammars. More precisely, some of our results were
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obtained using the intermediate step of a parse forest, which in the end got reduced
to a single parse tree. While parse forests do not convey any more information than
their master parse trees, they may be needed as an intermediate step in any process of
actually constructing parse trees. Indeed, the only immediate way arising from our
results of actually constructing a parse tree for a context-free PCGS is to construct
the parse forest first and then discard all but the first tree of that forest. It also turned
out to be the case that parse trees and parse forests are of limited theoretical utility
for context-free PCGS, but they nonetheless may prove to be useful in practical
applications.

The concept of splitting a PCGS parse tree into regions thus obtaining a meta-tree
is natural, very simple, and worth remembering. It has proven extremely useful in
our effort and might have further utility elsewhere.

A final nod goes to an interesting difference in the power of returning versus non-
returning context-free PCGS. In the synchronized case it has been known that the
non-returning and returning variants are equivalent [8, 9, 23]. When it comes to
unique-query, unsynchronized PCGS this equivalence no longer holds (see Theo-
rem 4). It would be interesting to know how is the wind blowing in the intermediate
case (unsynchronized PCGS that are not necessarily unique query); given the known
results the simulation can essentially go either way, or it may even be that the two
variants are not comparable (though we do believe that this is unlikely).

9.2 PCGS in Formal Methods?

The motivation of PCGS is claimed to be the study of concurrent systems. Relatively
recently some, however strenuous links with practice have beet attempted [19], but
overall virtually no work has been performed on actually linking PCGS with any
practical field. PCGSwith context-free components in particular (whichwe believe to
have the most practical utility) were ignored almost completely. Instead, PCGS have
been studied relatively extensively (though not completely)with respect to theoretical
properties such as generative power and then their study has largely stalled.

Oneof our research interest is the formal specification andverificationof recursive,
concurrent systems.Wefind context-free PCGSparticularly enticing for this purpose.
Indeed, on one hand context-free grammars (or equivalently pushdown automata)
model naturally the control flow of sequential computation in typical programming
languages with nested, and potentially recursive invocations of program modules
such as procedures and methods. On the other hand, the communication facilities
offered by PCGS are a good model for inter-process communication. In other words,
the context-free components are an excellent model of recursive subsystems, while
the communication between these components (which is done in a “remote procedure
call”-like fashion) seems particularly suitable for putting these subsystems together.

Many non-regular properties are required for the verification of complex, recur-
sive and concurrent systems. One needs to specify and verify properties such as “if
p holds when a module is invoked, the module must return, and q must hold upon
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return” [1]. Non-regular properties however generate an infinite state space, which
cannot be handled by finite-state process algebrae or by standard verification tech-
niques such as model checking. Context-free process algebrae such as basic process
algebra or BPA [2] can specify such context-free properties. Still, most of the soft-
ware use many parallel components (such as multiple threads). In addition, many
conformance-testing techniques (such as may/must testing [13]) use test cases that
run in parallel with the process under test. Concurrency is therefore required for soft-
ware verification, but cannot be provided by simple context-free process algebrae
since context-free languages are not closed under intersection [22].

On the automata side the class ofmulti-stack visibly pushdown languages (MVPL)
has been introduced to address such a need [3, 21]; no equivalent mechanism is
known on the grammatical (and thus process-algebraic) side. In addition, permitting
concurrency in a compositional manner is done inMVPL using constructs that do not
seem tobenaturally portable to the grammatical (or process-algebraic) side; it appears
that any specification formalism based on MVPL requires an excessive exposition
of implementation details (which should normally be hidden in the specification
phase). We wonder whether context-free PCGS can be used as an underlying model
that would remedy such a lack of abstraction.

The attention received by PCGS so far was from the formal languages community
and so people have focused on the “more powerful is better” facet of these systems.
It did not take long to identify Turing complete variants, the apex of such a pursuit.
Power (andTuring-completeness in particular) are essential properties for identifying
those real-life phenomena (computational or otherwise) that can be modelled using
the respective formalism.

When it comes to formal methods however the goal is less ambitious. Instead of
trying to model general computational phenomena, we are aiming at modelling only
the interactions of (albeit complex) computing systems with their environment, so
that such interactions can be specified formally and then verified. In this context the
facet of interest of any underlying formalism becomes “less powerful is better,” as
long as the properties of interest can still be modelled. In this respect our results
suggest strongly that synchronized context-free PCGS are unnecessarily powerful,
and we also note that unsynchronized PCGS appear to be more amenable to practical
applications, they being less powerful but still expressive enough to model complex,
potentially recursive systems. Unfortunately however unsynchronized PCGS have
received little attention so far: They have been found to be weaker in terms of gen-
erative power compared to their synchronized counterparts, and then they have been
effectively ignored.

Other variants have also been proposed, including centralized PCGS [10] or PCGS
with terminal transmission [15] (in which only terminal strings can be communi-
cated). They further simplify the formalism which is in general a good thing, but
when it comes to formal verification we believe that these further simplifications
reduce too much the ability of the formalism to model real-life phenomena. In all,
we thus believe that unsynchronized context-free PCGS are in the sweet spot when
it comes to formal methods.
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We further note that the unique query variant is the only one that can make full
use of parse trees, though whether the use of parse trees is indeed required for
our purposes remains to be seen. More interestingly, the computational power of
the unique-query variant does not vary with the number of components, which is
appealing from the point of view of modelling parallel systems with arbitrary (and
possibly dynamic) number of concurrent threads of execution. Whether the unique
query restriction is a reasonable restriction remains however to be seen.

In general, before starting to use them in formal methods (or indeed any practical
domain), unsynchronized PCGS need to be analyzed thoroughly, especially with
respect to generative capacity and closure properties. Such an analysis is as we
already mentioned missing almost completely. Doing this is included in our short-
term interests. At the same time the possible ways of modelling the behaviour of
complex application software using PCGS need to be investigated, and this is yet
another of our immediate interests. Indeed, we moved tentatively our interest from
MVPL to PCGS simply because of the necessarily awkward form of anMVPL-based
specification; should a PCGS-based specification be equally awkward, our pursuit
becomes substantially less interesting.
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Structural Properties of Generalized
Exchanged Hypercubes

Eddie Cheng, Ke Qiu and Zhizhang Shen

Abstract It has been shown that, when a linear number of vertices are removed
from a Generalized Exchanged Hypercube (GEH), a generalized version of the in-
teresting exchanged hypercube, its surviving graph consists of a large connected
component and smaller component(s) containing altogether a rather limited number
of vertices. In this chapter, we further apply the above connectivity result to derive
several fault-tolerance related structural parameters for GEH, including its restricted
connectivity, cyclic vertex-connectivity, component connectivity, and its conditional
diagnosability in terms of the comparison diagnosis model.

1 Introduction

It is certainly unavoidable that some of the processing nodes within amulti-processor
system become faulty, leading to a faulty system. To have an effective system to
work with, we are naturally interested in the fault tolerance properties of these
systems, seeking answers to such questions as how many faulty nodes will disrupt
such a system, or disconnect its associated graph in graph theoretical terms; and
how disrupted the surviving system(graph) will become when a certain number of
nodes and/or links become faulty, thus effectively removed. For example, will the
surviving graph completely break apart, or are most of its nodes still connected in
a component? We might also be interested in knowing more about the details, e.g.,
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the relationship between the maximum number of the faulty nodes and the minimum
number of components in such a surviving graph.

A related issue is that, once processing nodes become faulty, could we know
exactly which ones are faulty so that the fault-free status of the system can be re-
stored? The number of such detectable faulty nodes in a system certainly depends
on its topology, the restriction placed on such a faulty set, as well as the modeling
assumptions, and the maximum number of detectable faulty nodes in such a system
is called its diagnosability. One major modeling approach to this regard is called the
comparison diagnosis model [14, 26, 27, 33], where each processing node performs
a diagnosis by sending the same input to each and every pair of its distinct neighbors,
and then comparing their responses. Based on such comparison results made by all
the nodes, the faulty status of the whole system can be determined. Various efficient
algorithms to detect such faulty sets have also been proposed, e.g., [33, 35, 47].

To address the unlikelihood that all the neighbors of a certain node in such a
system will fail at the same time, the notion of the conditional diagnosability of
a graph G was introduced in [18], defined as the maximum number of detectable
faulty nodes in G, assuming that no faulty set contains all the neighbors of any node
in G. Such a faulty set is henceforth referred to as a conditional faulty set. This more
realistic notion leads to an improved measurement of the fault tolerance capability
of network structures and is thus of great interest [1, 4, 5, 7, 18].

Answers to the aforementioned fault tolerance related questions are often ex-
pressed in terms of connectivity related properties of a graph underlying such a
surviving structure [1, 13, 15, 24, 41–43]. In particular, a general connectivity re-
sult has been demonstrated in [9] for the generalized exchanged hypercube structure
that, when a linear number of vertices are removed from such a structure, the surviv-
ing graph is either connected or consists of a large connected component and small
components containing a small number of vertices. The results as reported in this
chapter can be seen as a companion work of [9]: We apply the above general result to
further derive for this topological structure several fault tolerance related measure-
ments, including its (i) restricted connectivity, i.e., the size of a minimum vertex cut
such that the degree of every vertex in the surviving graph will have a guaranteed
lower bound; (ii) cyclic vertex-connectivity, i.e., the size of a minimum vertex cut
such that at least two components in the surviving graph contain a cycle; (iii) com-
ponent connectivity, i.e., the size of a minimum vertex cut whose removal leads to
multiple components in its surviving graph; as well as (iv) conditional diagnosability
in terms of the comparison diagnostic model.
The rest of this chapter proceeds as follows: We briefly review the exchanged

hypercube [3, 22] and the class of generalized exchanged hypercubes [9] in the
next section; our exposition is based on [9]. We state the general result obtained in
[9] in Sect. 3. We then apply the aforementioned general connectivity property as
associated with the generalized exchanged hypercube to derive various parameters
that generalize the concept of connectivity, namely, restricted connectivity and
cyclic vertex-connectivity in Sect. 4, component connectivity and conditional diag-
nosability in Sects. 5 and 6, respectively. We conclude this chapter with some final
remarks in Sect. 7.
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2 The Exchanged Hypercube and its Generalization

The n-dimensional hypercube [13], often referred to as the n-cube and denoted
by Qn , is perhaps one of the most studied and utilized interconnection structures,
as it possesses many desirable properties such as vertex and edge symmetry, high
connectivity, and small diameter thus lower communication cost, as well as the
existence of a simple routing algorithm. More specifically, an n-cube has 2n nodes
0, 1, 2, ..., 2n − 1 where (u, v) is an edge (arc) if u’s and v’s binary representations
differ in exactly one position, i.e., u = un−1un−2 · · · ui+1uiui−1 · · · u1u0 and v =
un−1un−2 · · · ui+1uiui−1 · · · u1u0, 0 ≤ i ≤ n − 1. Figure1 shows a 3-cube.

Several hypercube variants have since been suggested, including augmented
cubes, crossed cubes, enhanced cubes, folded hypercube, Möbius cubes, and twisted
cubes.

The exchanged hypercube was proposed in [3, 22] as another edge removal vari-
ant of the hypercube, where about half of the edges are systematically removed [3,
Theorem2].With such a significantly reduced complexity, besides addressing a scal-
ing issue as associated with the hypercube structure, the exchanged hypercube still
manages to inherit several attractive properties of the hypercube such as incremen-
tal expandability [3], bipancyclicity [23], connectivity and super connectivity [25],
and existence of a fault tolerant routing algorithm [22]. With essentially the same
diameter and eccentricity, but reduced maximum degree and Wiener index [17], the
bounds of its domination number, as well its surface area and average distance, have
also been established in [16, 17], respectively. We will further study some of its fault
tolerance related connectivity properties in this chapter.

The exchanged hypercube, denoted by EH(s, t), where s, t ≥ 1, is defined as
an undirected graph (V, E), where V is the collection of all the binary strings
of length s + t + 1. Hence, |V (EH(s, t))| = 2s+t+1. A vertex u of an exchanged
hypercube EH(s, t) is denoted by A(u)B(u)C(u), where A(u) = as−1 · · · a0,
B(u) = bt−1 · · · b0, and C(u) = c. C(u) is sometimes referred to as the C bit of

Fig. 1 A 3-Cube
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Fig. 2 Simple exchanged hypercubes

u henceforth. Let u, v ∈ V (EH(s, t)), (u, v) ∈ E if and only if it falls into one of
the following three mutually exclusive cases: E1: C(u) �= C(v), but A(u) = A(v)

and B(u) = B(v); E2: C(u) = C(v) = 0, A(u) and A(v) differ in exactly one bit in
position p ∈ [0, s), while B(u) = B(v); and E3: C(u) = C(v) = 1, A(u) = A(v),

but B(u) and B(v) differ in exactly one bit in position p ∈ [0, t).
Figure2a shows EH(1, 1), where (000, 001), (000, 100), and (001, 011) are

examples of E1, E2, and E3 edges, respectively.
Each collection of 2s vertices, sharing the same B segment and 0 as their common

C bit, forms aQs, referred to as aClass-0 cluster, via the associated E2 edges.Clearly,
there are a total of 2t such hypercubes in EH(s, t). Similarly, each collection of 2t

vertices, sharing the same A segment and 1 as their common C bit, forms a Qt , a
Class-1 cluster, via the associated E3 edges. There are a total of 2s such hypercubes
in EH(s, t). We thus refer to both E2 and E3 edges collectively as cube edges.
Class-0 clusters and Class-1 clusters are referred to as clusters of opposite class

of each other. Clearly, each vertex u in a cluster is adjacent to a unique vertex in a
cluster of opposite class via an E1 edge, denoted by u′ in the rest of this chapter. By
definition, A(u)B(u) = A(u′)B(u′) but C(u′) = C(u), namely, the complement of
the C bit of u. Since these E1 edges connect vertices belonging to different clusters,
we refer to them as cross edges.

A key structural property of the exchanged hypercube is that, let u, v be two
vertices of the same cluster C in EH(s, t), s, t ≥ 1, then u′ and v′ belong to two
different clusters of a class opposite to that of C, via cross edges. Here the set of
cross edges are chosen specifically. One may wonder the role of the specific set
of cross edges chosen among all possible sets. In terms of shortest path, it plays an
important role in ensuring the resulting graph has a small diameter. However, in terms
of connectivity type properties, there may be no differences among different set of
cross edges. Indeed, in the recursive definition of the hypercube, one can replace the
specificmatching between the two smaller hypercubes by any perfect matching. This
leads to a wider class of networks, which leads to the even more general matching
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composition networks.Wecan apply the same type of generalization to the exchanged
hypercube, that is, although the existence of a perfect matching between vertices
via the cross edges is structurally essential, the specifics of such a matching, i.e.,
details such as which vertices are matched with each other, is not. We will show that
such generalized networks also have strong connectivity type results. Of course, the
proof will be more involved due to the generality.

We thus generalized this class of exchanged hypercubes in [9] as follows: A
generalized exchanged hypercube, denoted by GEH(s, t, f ), s, t ≥ 1, consists of
twoclasses of hypercubes: One class contains 2t s-cubes, each labeledwith the shared
B segment, and referred to collectively as theClass-0 clusters; and the other contains
2s t-cubes, each labeled with the shared A segment, and referred to collectively as
the Class-1 clusters. Class-0 and Class-1 clusters will be referred to as clusters
of opposite class of each other, same class otherwise, and collectively as clusters,
Ci , i ∈ [0, 2s + 2t ), when their categories are irrelevant to the issue. When s = t,
we simply refer to one of the classes of hypercubes as Class-0 clusters, and the other
as Class-1 clusters. Set Eh, the cube edges, collects all the usual (s + t)2s+t−1 edges
in the hypercubes of both classes.

The function f is a bijection between vertices of Class-0 clusters and those of
Class-1 clusters such that, for u, v, two vertices of the same cluster, f (u) and f (v)

belong to two different clusters, as observed in the aforementioned structural property
of the exchanged hypercubes. We naturally refer to such an edge (u, f (u)) as a cross
edge. Set Ec collects all the 2s+t cross edges in between the clusters of opposite
classes. Such a bijection f ensures the existence, but ignores the specifics, of a perfect
matching between vertices of Class-0 clusters and those in the Class-1 clusters.

By its definition, in a generalized exchanged hypercube, all of the 2s distinct
vertices in a specific Class-0 cluster, a Qs , out of 2t of them, are adjacent, via cross
edges, to 2s vertices, each of which is located in a unique Class-1 cluster, a Qt ;
and all of the 2t distinct vertices in a specific Class-1 cluster, out of 2s of them, are
adjacent to 2t vertices, each of which is located in a unique Class-0 cluster. As an
example, Fig. 2b shows one example of GEH(1, 2), where there are four Class-0
clusters, (u, v), (w, x), (a, c), and (b, d), each being an edge, technically a Q1; and
two Class-1 clusters, (a′, b′, u′, w′) and (c′, d ′, v′, x ′), both being Q2. Each of the
two vertices in an edge is adjacent to a unique vertex in a Q2, and each of the four
vertices in a Q2 is adjacent to a unique vertex in an edge.

The above observation motivates us to further define a labeled structure graph,
G(s, t, ω), associated with GEH(s, t, f ),where V (G(s, t, ω)) collects all the clus-
ters in GEH(s, t, f ). Each vertex in this structure graph, sometimes also referred to
as a cluster, corresponding to a Class-0 cluster, is adjacent to 2s vertices, each corre-
sponding to a Class-1 cluster; and conversely, each vertex corresponding to a Class-1
cluster, is adjacent to 2t vertices, each corresponding to a Class-0 cluster. Each edge,
e, inG(S, t, ω), corresponding to a cross edge (u, f (u)) inGEH(s, t, f ), is labeled
with ω(e) (= (u, f (u))). It is clear that such a structure graph, G(s, t, ω), is iso-
morphic to a complete bipartite graph K2s ,2t . When f and/or ω are irrelevant to the
issue in the discussion, we may choose to exclude them in the notation. In particular,
by GEH(s, t), we mean GEH(s, t, f ) for some appropriate perfect matching f ;
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and, by G(s, t), we mean a structure graph G(s, t, ω) associated with a generalized
exchanged hypercube GEH(s, t, f ), where ω is induced by f.

An exchanged hypercube is certainly a generalized exchanged hypercube, where
the cross edges are specified with E1; while the class of generalized exchanged
hypercubes is strictly more general than that of the exchanged hypercubes since we
have a lot more freedom in choosing the cross edges between the clusters of opposite
classes: Any perfect matching between the vertices of clusters of opposite classes
will do.

Obviously, some topological properties (such as the distance between a specific
pair of vertices) may vary wildly depending on the specifics of such a matching, but
others do not. For example, as shown in [22, Theorem1], EH(s, t) is isomorphic to
EH(t, s). This property also holds for a generalized exchanged hypercube since, in
the above definition of GEH(s, t), the roles as played by Class-0 clusters and Class-
1 clusters are symmetric to each other. As a result, we assume 1 ≤ s ≤ t, when
addressing GEH(s, t), in the rest of this chapter. Furthermore, as we will expose in
the rest of this chapter, several other structure properties, and fault tolerance related
measurements, are also independent of this perfect matching between the vertices of
opposite clusters. Such an observation reveals the naturalness and robustness of the
generalized exchanged hypercube.

3 A Connectivity Result Associated with Linearly Many
Faults

Let G be a graph, and let S ⊂ V (G), we use NG(S) to refer to the open neighbors of
all the vertices of S in G, excluding those in S. (We often omit the subscript G from
this notation, and others, when the context is clear.) Such a graph G is r -regular if
the degree of every vertex in V (G) is r.

The vertex connectivity of a non-complete graph G, denoted by κ(G), refers to
theminimum size of a vertex cut F, F ⊂ V (G), such that the surviving graphG − F
is disconnected, which is obtained from G by deleting all the vertices in F from G,

together with edges incident to at least one vertex in F. By convention, the vertex
connectivity of a complete graph Kn is n − 1. On the other hand, the edge connec-
tivity of a graph G, denoted by κ ′(G), refers to the minimum size of an edge cut
D, D ⊂ E(G), such that the surviving graph G − D is disconnected, which is ob-
tained fromG by removing all the edges as contained in D.Let δ(G) be theminimum
degree among those of all the vertices in a graph G, clearly, δ(GEH(s, t)) = s + 1,
when 1 ≤ s ≤ t. Indeed the following well-known result relates the vertex connec-
tivity, the edge connectivity, and the minimum degree of a simple graph G, where
there is at most one edge between any two vertices.

Lemma 1 [37, Theorem 4.1.9] Let G be a simple graph, then κ(G) ≤ κ ′(G) ≤
δ(G).
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Naturally, it is desirable for a graph G to have the property that κ(G) = δ. A
non-complete graph G with at least r + 1 vertices is r -connected if deleting any
set of at most r − 1 vertices results in a connected graph. A complete graph with
r + 1 vertices, denoted by Kr+1, is k-connected for all k ≤ r. An r -regular graph is
maximally connected if it is r -connected. A maximally connected r -regular graph is
also tightly super-connected if, for every F ⊂ V (G) with |F | = r, the graph G − F
is either connected or it consists of two components, one being a singleton. Clearly, in
a tightly super-connected graph, all the neighbors of the aforementioned singleton fall
in such a set F.When used as an interconnection network, an r -regular tightly super-
connected structure is more preferable than an r -regular maximally connected graph,
as when up to r vertices become faulty, the surviving graph of such a tightly super-
connected graph, except one vertex, is still connected, thus functioning. We observe
that a maximally connected graph does not need to be tightly super-connected. For
example, in a given K3,3 (= (V1, V2, E)), K3,3 − V1 = V2, i.e., three singletons, thus
K3,3 is not tightly super-connected, although it is maximally connected. On the other
hand, it is well known that Qn is tightly super-connected [41, Theorem3.3], thus
maximally connected.

Noticing that the generalized exchanged hypercube GEH(s, t), 1 ≤ s ≤ t, is not
regular, except when s = t,we thus slightly generalize the above notions as follows:
We say that G is δ-maximally connected if, for all F ⊂ V (G), |F | < δ(G), G − F
is connected; and G is δ-tightly super-connected if it is δ-maximally connected,
and, for all F ⊂ V (G), |F | ≤ δ(G), G − F is either connected or it consists of
one large (connected) component plus one singleton. Clearly, Km,n, 1 ≤ m ≤ n,

is δ-maximally connected [37, Example4.1.2], although it is not δ-tightly super-
connected, while Qn is. For GEH(s, t) to be useful as an interconnection network,
it should be δ-tightly super-connected. In fact, an even stronger statement is true.

Theorem 1 Let s ∈ [1, t], and let k ∈ [1, s], then
1. there is F ⊂ V (GEH(s, t)), |F | = ks − k(k−1)

2 + 1, such that GEH(s, t) − F
contains a component of size k; and

2. for all F ⊂ V (GEH(s, t)), |F | ≤ ks − k(k−1)
2 , GEH(s, t) − F is either con-

nected or it consists of a large component and small components containing at
most k − 1 vertices.

The proof of Theorem 1 is given in [9]. (We note that the proof for the case of
s = 3 for Part 2 was omitted due to space constraint. In the appendix, we give a proof
for this case.) For example, if we set k = 1 in Part 2 of Theorem 1, we have that,
for all F, |F | ≤ s,GEH(s, t) − F is connected, that is, it is maximally connected.
On the other hand, if we set k = 1 in Part 1 of Theorem 1, we have that for some
F, |F | = s + 1, GEH(s, t) − F contains a singleton. Furthermore, if we then set
k = 2 in Part 2 of Theorem 1, we have that, when |F | ≤ 2s − 1, GEH(s, t) − F is
either connected or it contains a large component plus a singleton.

The following result is immediate by Theorem 1, and will be made use of in the
next section, when we address the component connectivity of GEH(s, t).
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Corollary 1 Let F ⊂ V (GEH(s, t)), s ∈ [1, t]. If GEH(s, t) − F consists of a
large component and other components that contain at least k (∈ [1, s]) vertices,
then

|F | ≥ ks − (k − 1)k

2
+ 1.

On the other hand, if we set k to 3, where k ∈ [1, s], in Part 2 of Theorem 1, the
following result plays a critical role when we derive the conditional diagnosability
in Sect. 6.

Corollary 2 Let F ⊂ V (GEH(s, t)), s ∈ [3, t]. If |F | ≤ 3s − 3, then GEH
(s, t) − F is either connected or it consists of a large component and small compo-
nents that contain at most two vertices altogether.

4 The Restricted and Cyclic Vertex-Connectivity

Given a non-complete graphG(V, E), F ⊂ V is a g-disconnecting set ofG ifG − F
is disconnected and every vertex in G − F has degree at least g (≥ 0). The restricted
connectivity of order g of G, denoted as κg(G), is defined as the size of a minimum
g-disconnecting set of G [10, 11].

While κ0(G) coincides with the traditional vertex connectivity κ(G), κg(G), g ≥
1, is often used to characterize other fault tolerance properties, such as the g-good-
neighbor conditional diagnosability, of various network structures, including the
hypercube [30, 31, 39], the m-ary n-dimensional hypercube [38, 45]. In particular,
the following general result is derived in [20, Theorem3.3].

Theorem 2 For 1 ≤ s ≤ t, and g ∈ [0, s], κg(EH(s, t)) = (s − g + 1)2g.

We now initiate the study of this measurement for GEH(s, t).

Theorem 3 Let 3 ≤ s ≤ t, κ1(GEH(s, t)) = 2s.

Proof Let k = 2 in Theorem 1, we have that if |F | ≤ 2s − 1, GEH(s, t) − F
is either connected or it has two components, one of which is a singleton. Thus
κ1(GEH(s, t)) ≥ 2s.

Let u and v be two adjacent vertices in a Class-0 cluster in GEH(s, t). Clearly,
|N ({u, v})| = 2s as GEH(s, t) is triangle-free by definition. Now let k = 3 in
Theorem 1, we have that if |F | ≤ 3s − 3, GEH(s, t) − F has a large compo-
nent and small components with at most two vertices in total. (This includes
the case when GEH(s, t) − F is connected.) Since 2s ≤ 3s − 3, when s ≥ 3,
GEH(s, t) − N ({u, v}) has two components, one of which is a K2, i.e., (u, v),

while none of the vertices in the large component is isolated, thus each having a
degree at least 1. Hence, κ1(GEH(s, t)) = 2s. �

We comment that κ1(G) is referred to as the super connectivity of G in [25, 39], i.e.,
the survival graph contains no isolated vertex when such a minimum vertex cut is
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removed. Theorem 3 immediately leads to the super connectivity of EH(s, t), 3 ≤
s ≤ t, one of the main results in [25].

The proof for the following observation is straightforward.

Lemma 2 Let n ≥ 4 and let C4 be a 4-cycle, then the degree of every vertex in
Qn − N (C4) is at least 2.

We are now ready to prove the following result.

Theorem 4 κ2(GEH(s, t)) = 4s − 4, s ∈ [6, t].
Proof Let k = 4 in Theorem 1, we have that, if |F | ≤ 4s − 6, GEH(s, t) − F has
a large component and small components with at most three vertices in total. Since
GEH(s, t) is triangle-free, the three vertices in small components cannot form a
triangle. Thus κ2(GEH(s, t)) ≥ 4s − 5. We now claim that this number is at least
4s − 4. Suppose the size of a minimum 2-disconnecting set of GEH(s, t) is 4s −
5 and let S be such a set. Let k = 5 in Theorem 1, we have that, if |F | ≤ 5s −
10, GEH(s, t) − F has a large component and small components with at most
four vertices in total. Since 4s − 5 ≤ 5s − 10, for s ≥ 5, the statement holds for S.

Furthermore, as S is a 2-disconnecting set, and the graph is triangle-free, the small
component of GEH(s, t) − S must contain exactly four vertices, which form a 4-
cycle. To isolate this 4-cycle, we need to delete at least 4(s − 1) (= 4s − 4) vertices,
a contradiction.

To show that 4s − 4 suffices, let A be the vertex-set of a 4-cycle in a Class-0
cluster C ofGEH(s, t). It is clear that |N (A)| = 4s − 4. Now apply Theorem 1 with
k = 5 again, we can conclude that GEH(s, t) − N (A) contains a large component
and small components with at most four vertices, as 4s − 4 ≤ 5s − 10, when s ≥
6. Since the large component contains at least 2s+t+1 − 4s vertices, and 2s+t+1 −
4s ≥ 22s+1 − 4s > 4, s ≥ 6,we conclude that the surviving graph contains one large
component and the prescribed 4-cycle. We claim that every vertex u in this large
component of GEH(s, t) − N (A) is of degree at least 2. If u is a vertex of C, then it
has degree at least 2 by Lemma 2; otherwise, the degree of u in GEH(s, t) − N (A)

is at least the degree of u in GEH(s, t)-1, thus at least 2. Therefore N (A) is a
2-disconnecting set. �

It is clear that both Theorems 3 and 4 agree with Theorem 2 when setting g to 1, and
2, respectively.

Let G be a graph, we refer to F (⊂ V (G)) a cyclic vertex-cut of G if G − F
is disconnected and at least two components in G − F contain a cycle. The cyclic
vertex-connectivity of a graph G is then defined as the size of a minimum cyclic
vertex-cut in G. This notion was originally introduced to study the Four Color prob-
lem [36], and has since been applied to study other graph theory problems, including
that of the Integer Flow Conjectures [46]. Recently, the cyclic vertex-connectivity
results of several interconnection networks have also been reported in literature, e.g.,
[6, 44].

By following the arguments as we made in proving Theorem 4, we can similarly
show that the cyclic vertex-connectivity of GEH(s, t) is 4s − 4.
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It is pointed out in [16, pp. 159] that DCn, the dual-cube-like network [1], which
generalizes the dual-cube structure [21], is isomorphic to EH(n − 1, n − 1), a spe-
cial case of GEH(n − 1, n − 1). Hence, we immediately have the following result:

Corollary 3 For n ≥ 3, κ1(DCn) = 2n − 2. For n ≥ 7, κ2(DCn) = 4n − 8,
which is also the value of its cyclic vertex-connectivity.

5 The Component Connectivity

Component connectivity of a graph characterizes the size of a minimum vertex
cut whose removal leaves its surviving graph in a certain number of components.
This notion, as introduced in [2, 32] and further addressed in, e.g., [19, 28, 29],
is to overcome the deficiency of the ordinary notion of vertex connectivity when
used to measure the fault tolerance of interconnection networks. Indeed, with two
graphs of same vertex connectivity, when a corresponding vertex cut is removed,
their respective surviving graphs could have quite different number of components.
For example, as pointed out in [19], the vertex connectivity of both K1,n and the
path graph Pn+1, n ≥ 2, is 1, but, when a cut vertex is removed, the surviving graph
of K1,n consists of n singletons, while that of the path graph consists of just two
components.

It is worth pointing out that there exists yet another alternative generalization of
this vertex connectivity concept as proposed in [12]. The k-tree connectivity of a
graph G is defined as the minimum k such that internally disjoint Steiner trees exist
on all the k-subsets of V (G). For a connection between the component connectivity
and this latter tree based generalization, readers are referred to [19] and the references
cited within.

Let G be a non-complete graph, an r -component cut of G, r ≥ 2, refers to a set
of vertices whose removal results in a surviving graph with at least r components.
The r -component connectivity, or simply r -connectivity [19], denoted by κ̄r (G), of
G refers to the size of a minimum r -component cut of G (If there is no r -component
cut of G, we simply define κ̄r (G) to be ∞.). Clearly, κ̄2(G) is just the usual vertex
connectivity ofG. It is also easy to see, by definition, that κ̄m(G) ≤ κ̄m+1(G),m ≥ 2.

As mentioned earlier, κ̄n(K1,n) = 1. For P2n+1, if we remove every other ver-
tex, n vertices in total, the surviving graph consists of n + 1 singletons. Thus,
κ̄n+1(P2n+1) ≤ n. Clearly, κ̄2(P3) ≥ 1, and an inductive argument shows that
κ̄n+1(P2n+1) ≥ n. Hence, κ̄n+1(P2n+1) = n. The same idea also applies to P2n, ex-
cept that removing the last vertex will not increase the number of singletons. Thus,
we only need to remove the first n − 1 vertices and the surviving graph ends up with
n − 1 singletons and one component of size 2, n components altogether. We thus
have κ̄n(P2n) = n − 1.

The above analysis shows that, although both K1,n and Pn+1 share the same vertex
connectivity , it just takes out one cut vertex to break a K1,n into n pieces, but it has
to take out about half of the vertices to achieve the same effect in a path graph that
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contains twice as many vertices. As a result, we may conclude that a path graph
is more resilient as compared with a star graph from this perspective. Hence, this
measure of component connectivity characterizes more faithfully the degree of an
interconnection network to stay intact, when a number of processing nodes become
faulty.

The following result on the (r + 1)-component connectivity of the hypercube
Qn, n ≥ 2, has been derived in [15, Theorem2.1].

Theorem 5 For all n ≥ 3, k ∈ [1, n], κ̄r+1(Qn) = rn − r(r+1)
2 + 1.

We now derive κ̄r+1(GEG(s, t)), the component connectivity of a generalized
exchanged hypercube GEH(s, t), 1 ≤ s ≤ t, for r ∈ [2, s].
Theorem 6 Let 1 ≤ s ≤ t. For r ∈ [1, s], κ̄r+1(GEH(s, t)) = rs − r(r−1)

2 + 1.

Proof Let u be a vertex in C0, a Class-0 cluster of GEH(s, t), 1 ≤ s ≤ t, S be a
collection of r (∈ [1, s + 1]) neighbors of u in GEH(s, t), and let u′ be the unique
neighbor of u in a Class-1 cluster, C ′

1, via a cross edge. Depending on whether
u′ ∈ S, we can construct the open neighbor set Nr (S) of S, where |S| = r, in two
ways, referred to as N 1

r (S) (N 2
r (S)), respectively.

• Assume that u′ /∈ S. Then, for those r (∈ [1, s]) neighbors of u in C1, each has
s + 1 neighbors in GEH(s, t), a total of r(s + 1) vertices. But, for each of them,
u is counted once as its neighbor, although it should be counted just once in N (S).

Moreover, every common neighbor shared by any two of these neighbors of u is
counted twice, while each of them should also be counted only once in N (S). As
a result, we have

|N 1
r (S)| = r(s + 1) − (r − 1) −

(
r

2

)
= rs −

(
r

2

)
+ 1

as a hypercube has no K2,3 as a subgraph. We notice that N 1
r (S) is only defined

when r ∈ [1, s]. As an example, in GEH(1, 2), as shown in Fig. 2b, we have that
s = 1, t = 2, thus r = 1. If we pick S = {v}, then, N 1

1 (S) = {u, v′}. On the other
hand, the above result gives us |N 1

1 (S1)| = 2.
• Alternatively, when u′ ∈ S, then each of the r − 1 (∈ [0, s]) neighbors of u in C0

has s neighbors, plus another one via a cross edge; and u′ has t + 1 neighbors
in C ′

0, a total of (r − 1)(s + 1) + (t + 1) vertices. Similar to the previous case,
u is counted once for each of these r neighbors of u, a total of r times, while it
should be included just once in N 2

r (S); and, each vertex adjacent to any two of
these r − 1 neighbors of u in C0 is counted twice, but it should be counted just
once. (Notice that only u is adjacent to both u′ and those r − 1 neighbors in C0.

Just assume there is another vertex v adjacent to both u′ and u1, a neighbor of
u in C0. By definition, v cannot be in a cluster of Class 0, as then it won’t be
adjacent to u, a vertex in a Class-0 cluster. Thus, v is either located in C0 or in a
Class-1 cluster C ′. Assume that v occurs in C0, then, because cross edges form a
perfect matching, there is only one cross edge in between C0 and C ′

0, since (u, u′)
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is already part of the matching, v ( �= u) cannot be adjacent to u′ via another cross
edge. By the same token, because of the existence of the edge (u, u′), v cannot be
located in a Class-1 cluster, either.) Removing all these redundancies, the size of
this alternative construction can be calculated as follows:

|Nr (S2)| = (r − 1)(s + 1) + (t + 1) − (r − 1) −
(
r − 1

2

)

= rs −
(
r − 1

2

)
+ (t − s + 1)

= |Nr (S1)| + (t − s + r − 1) ≥ |Nr (S1)|, (1)

when r ∈ [1, s + 1], as 1 ≤ s ≤ t,by assumption.Clearly, Nr (S1) = Nr (S2)when
s = t and r = 1.

To continue with our previous example, for r = 1, if we now pick S = {u′}, we
have N 2

1 (S) = {u, a′, w′}, while Eq.1 gives |N 2
1 (S)| = 3. In this case, |N1(S1)| <

|N1(S2)|, since s �= t, although r = 1. Moreover, for r = 2, although N 1
2 (S) is

not defined, when we set S = {v, u′}, the alternative construction gives us that,
N 2
2 (S) = {u, a′, w′, v′}, while |N 2

2 (S)| = 4 by Eq.1.

It is easy to see that, once N 1
r (S) (respectively, N 2

r (S)) is removed, all the
neighbors of vertices in S are removed and none of these vertices in S are ad-
jacent since GEH(s, t) is bipartite. Hence, GEH(s, t) − N 1

r (S) (respectively,
GEH(s, t) − N 2

r (S)) contains at least r + 1 components, including at least r sin-
gletons. Thus, N 1

r (S) (respectively, N 2
r (S)) is a (r + 1)-component cut. As a result,

when r ∈ [1, s],

κ̄r+1(GEH(s, t)) ≤ min{Nr (S1), Nr (S2)} = Nr (S1) = rs −
(
r

2

)
+ 1.

Let F be a minimum (r + 1)-component cut. Then GEH(s, t) − F has at least
r + 1 components. Thus, it has one large components and r “smaller” components.
Clearly, these “smaller” components collectively has at least r vertices. By Corol-
lary 1, for 1 ≤ s ≤ t, r ∈ [1, s], κ̄r+1(GEH(s, t)) ≥ |F | ≥ rs − r(r−1)

2 + 1.
Thus, for 1 ≤ s ≤ t, r ∈ [1, s], κ̄r+1(GEH(s, t)) = rs − r(r−1)

2 + 1. �

The following result is based on the relationship between the dual-cube-like net-
work and that of the generalized exchanged hypercube, as pointed out in the last
section.

Corollary 4 For all n ≥ 3, if r ∈ [1, n − 1], κ̄r+1(DCn) = r(n − 1) −
r(r−1)

2 + 1.
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6 The Conditional Diagnosability

The conditional diagnosability of interconnectionnetworks has been studied byusing
a number of ad-hoc methods [18, 47]. Recently, gathering various ad-hoc methods
developed in the last decade, an unified approach was developed [4, 14], which has
been applied tofind the conditional diagnosability ofmany interconnectionnetworks,
e.g., [4, 5, 7]. We give a brief overview here and refer readers to the aforementioned
literature for further details.

According to the comparison diagnosis model [26, 27, 33], a comparator,w ∈ G,

sends the same input to each and every pair of its neighbors, v and x in G, and
generates a result, which tells if v and x are faulty, assuming w is not. A collection
of all such results is called a syndrome of the diagnosis. Since a faulty comparator
can lead to unreliable results, a set of faulty vertices may also produce different
syndromes. Two distinct faulty sets F1 and F2 are indistinguishable if and only if
they are compatible with at least one syndrome, distinguishable otherwise. Hence,
tc(G), the conditional diagnosability of G, equals the maximum number d such that
for all distinct pairs of conditional faulty sets, (F1, F2), |F1| ≤ d, |F2| ≤ d, F1 and
F2 are distinguishable.

We notice that the central structure of the above comparison diagnosis model is a
length two path, p2(v,w, x), centered at a vertex w. Clearly, any vertex in a viable
interconnection network should have at least one neighbor outside the neighborhood
of such a length two path centered at w, an arbitrary but fixed vertex. Otherwise,
this length two path will immediately turn into a bottleneck, and make the network
fault-intolerant. This observation motivates the following notion of a good length
two path [5]: Let G be a graph, we call p2(v,w, x), a path of length 2 in G, a good
path if, for every vertex z /∈ N ({w}) ∪ {w}, N ({z}) � N ({v,w, x}) ∪ {v, x}.

By definition, to show that, for a given graph G, tc(G) ≤ d, we only need to
construct a pair of distinct conditional faulty sets (F1, F2), |F1| ≤ d + 1, F2 ≤ d +
1, such that (F1, F2) is indistinguishable. The following result [34] provides such an
upper bound of tc(G).

Proposition 1 Let G be a graph where p2(v,w, x) forms a good path of length two
in G. Then tc(G) ≤ |NG({v,w, x})|.
It seems that, to get an upper bound for tc(G) by applying Proposition 1, we have
to minimize |NG({v,w, x})| over all good paths of length two in G, which may not
be easy. On the other hand, as we will show, there is often a good candidate for
a minimizer. We should also point out that the above result does not imply that a
conditional faulty set obtained via a length two path is always a minimizer of such
an upper bound. In fact, such an upper bound is sometimes obtained through a four
cycle [40].

Given GEH(s, t), 2 ≤ s ≤ t,we select a four cycleC4 = (v,w, x, u, v) inC0, a
Class-0 cluster, and consider p2(v,w, x).Let any vertex z /∈ N ({w}) ∪ {w}. Such a z
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must exist sinceC0 (≡ Qs) contains at least four verticeswhen s ≥ 2.Bydefinition, z
is adjacent to vertex z′ in a cluster uniquely associatedwithC0,which is also different
from those corresponding to either v,w or x by definition. Thus, z′ cannot be either
v or x, and z′ cannot be adjacent to either v,w or x . In other words, p2(v,w, x) is
a good path.

Both v and x have s − 1 neighbors that are not on p2(v,w, x), while w has only
s − 2 of them.Moreover, u is a neighbor of both v and x thus gets over counted once.
Finally, all three of v,w, and x are adjacent to a unique vertex in their respectively
associated cluster. Hence, |NGEH(s,t)({v,w, x})| = 3s − 2.

By Proposition 1, we have achieved the following upper bound result.

Lemma 3 For all 2 ≤ s ≤ t, tc(GEH(s, t)) ≤ 3s − 2.

The issue now becomes how to verify this upper bound is also a lower bound, thus
an exact bound, of tc(GEH(s, t)). In general, this is quite challenging since we have
to show that, for all conditional faulty set pairs (F1, F2), |F1| ≤ d, |F2| ≤ d, they
are distinguishable. Fortunately, as previously mentioned, several general results to
this regard have recently emerged, one of which is the following [4].

Theorem 7 Let G be a graph, δ(G) ≥ 3, such that (1) for any T ⊂ V (G), |T | ≤
d,G − T contains a large component and smaller components which contain at
most two vertices in total; and (2) |V (G)| > (Δ(G) + 2)d + 4, where Δ(G) refers
to the maximum degree of vertices in G. Then tc(G) ≥ d + 1.

When 2 ≤ s ≤ t, δ(GEH(s, t)) = s + 1 ≥ 3, Δ(GEH(s, t)) = t + 1, and
|V (GEH(s, t))| = 2s+t+1.Condition 1 of Theorem 7, for the generalized exchanged
hypercube, immediately follows from Corollary 2, when 3 ≤ s ≤ t . What is left for
us to do is to check Condition 2 of Theorem 7, when d = 3s − 3, namely,

2s+t+1 = |V (G)| > (Δ(G) + 2)d + 4 = 3(t + 3)(s − 1) + 4. (2)

We only need to show that 2s+t−1 > (t + 3)(s − 1) + 1,which holds when 2s+t−1 >

(t + 4)(s − 1), since s ≥ 2.This last inequality holds if 2s−1 > s − 1 and2t ≥ t + 4.
The first part certainly holds when s ≥ 2, while the second part holds for t ≥ 3.
Finally, setting t = 2 in Eq.2, we have 2s+3 > 15(s − 1) + 4 = 15s − 11, which
certainly holds for all s ≥ 2.

Hence, Condition 2 holds for all s, t ≥ 2. By Corollary 2, Lemma 3, and Theo-
rem 7, we have obtained the following result.

Theorem 8 For 3 ≤ s ≤ t, tc(GEH(s, t)) = 3s − 2.

Last but not least, the diagnosability of the dual-cube-like network DCn has
been derived in [5, Theorem7.2] to be 3n − 5, n ≥ 4, that certainly coincides with
Theorem 8, when setting s = t = n − 1 ≥ 3.
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7 Concluding Remarks

In this chapter, we applied a general connectivity result to further derive several
fault tolerance measurements for the generalized exchanged hypercube, including
its restricted connectivity, cyclic vertex-connectivity, component connectivity, and
its conditional diagnosability, in terms of the comparison diagnosis model.

These results show that the generalized exchanged hypercube is a natural and
robust interconnection topology and the general connectivity result is truly general
and useful, which might be applied to derive other interesting connectivity related
results.

We comment that similar connectivity results have also been reported in the
literature [8] for the complete cubic networks with its underlying structure graph
being a complete graph.

Appendix

In this section, we give a proof of s = 3 for Part 2 of Theorem 1. We first state a
number of preliminary results from [9]. (The proof of Lemma 5 was omitted but it
is similar to the one for Lemma 4.)

Lemma 4 [9, Lemma 3.3] GEH(s, t), 1 ≤ s ≤ t, is δ-maximally connected.

Lemma 5 [9, Lemma 3.4] GEH(s, t), 2 ≤ s ≤ t, is δ-tightly super-connected.

Lemma 6 [9, Lemma 4.1] Let F ⊂ V (GEH(s, t)), s ∈ [2, t], |F | ≤ ks − k(k−1)
2 ,

there exists Y, a connected component of GEH(s, t) −F, such that, for all i ∈
[0, 2s + 2t ), if Ci − Fi is connected, it is a subgraph of Y.

We note that Lemma 5 does not hold for s = 1 as GEH(1, t) contains 2t Class-0
clusters, each of which is an edge, and two Class-1 clusters, each isomorphic to a Qt .

(Cf. Fig. 2b). Let (u, v) be one of these edges. When {u′, v′} ⊆ F, GEH(1, t) − F
contains (u, v) and other components containing a total of 2t+2 − 2 ≥ 6 vertices.

We are now ready to prove s = 3 for Part 2 of Theorem 1. When s = 3, k ∈
[1, 3]. We notice that, when k = 1, |F | ≤ s, GEH(s, t) − F is then connected, by
Lemma 4. We thus only need to consider the cases of k = 2 and k = 3.

For the case of k = 2, thus |F | ≤ 5 by Part 2, we need to show that GEH(3, t) −
F, t ≥ 3, is either connected or contains a large component together with a singleton.
By Lemma 5, when |F | ≤ 4, GEH(3, t) − F is either connected or it consists of
a large component and one singleton. Thus, we only need to consider the case of
|F | = 5.

Let Fi = F ∩ V (Ci ), i ∈ [0, 2s + 2t ). If, for some l, |Fl | = 5, then all the other
clusters contain no faulty vertices, thus they are all connected. Clearly GEH(s, t) −
Fl will be connected, as well, since every vertex in Cl − Fl is adjacent, via a cross
edge, to a vertex located in a connected cluster. If for some l, |Fl | = 4, and the
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remaining faulty vertex f falls into another cluster, then all the clusters, other than
Cl, are connected. GEH(s, t) − F is then either connected or contains a large com-
ponent and a singleton u (∈ V (Cl) \ Fl), when Cl is isomorphic to Q3, u is adjacent
to f via a cross edge, and all the three neighbors of u in Cl fall into Fl . We now
assume that |Fl | = 3, when the other clusters collectively hold two faulty vertices,
thus all connected by the maximum connectivity of hypercubes, as s = 3. IfCl − Fl
is connected, so is GEH(s, t) − F by Lemma 6. Otherwise, if Cl − Fl is discon-
nected, then Cl is isomorphic to Q3, and Cl − Fl contains a K1,3 and a singleton f.
Since the other clusters jointly hold two faulty vertices, this K1,3 must be part of the
large component of GEH(3, t) − F, as at least one of its four vertices is adjacent
to a non-faulty vertex in this large component. Then, GEH(3, t), 3 ≤ t, is either
connected or contains a large component and one singleton u when u is adjacent to
one of the two faulty vertices, while all its three neighbors in Cl form Fl . The other
cases are symmetric to the above.

We now turn to the case of k = 3, i.e., |F | ≤ 6, when we have to show that
GEH(3, t) − F, t ≥ 3, is either connected or contains a large component and small
components altogether with at most two vertices. In light of the previous case, we
only need to consider the case of |F | = 6.

If for some l, |Fl | ≥ 4, then other clusters, sharing at most two faulty vertices,
must be individually connected in the resulting graph by the assumption of s = 3
and Lemma 4, and belong to the same component, say Y , in the resulting graph
by Lemma 6. By definition, those non-faculty vertices of Cl are part of Y . Hence,
GEH(s, t) − F is either connected, or contains a large component and smaller ones
with at most two vertices, when the remaining up to two vertices in V (Cl) \ Cl are
adjacent to the faulty vertices in F \ Fl via cross edges, while sharing their faulty
neighbors in Fl .

Wenowconsider the casewhen, for all l, Fl contains atmost three of these vertices.
Since for all l, Cl is isomorphic to a cube Qm,m ≥ s (= 3), when m ≥ 4, all such
Cl − Fl ’s are connected by Lemma 4, and so is GEH(s, t) − F, by Lemma 6. We
thus only need to consider the case when Cl is isomorphic to Q3, where |Fl | = 3.

If for some l, |Fl | = 3, and for j �= l, |Fj | < 3, then C j − Fj , j �= l, will all be
connected by Lemma 6. If Cl − Fl is connected, so is GEH(s, t) − F by Lemma 6.
Now assume thatCl − Fl is not connected. Notice thatCl is isomorphic to a Q3, and
its surviving graph contains a singleton u and a K1,3. Since there are only three faulty
vertices located outside Cl , and K1,3 contains four vertices, it must be part of a large
connected component. Thus, in this case, GEH(3, t), t ≥ 3, is either connected or
contains a large component and a singleton u, when u is adjacent to one of these
remaining faulty vertices in F \ Fl, and all its three neighbors are contained in Fl .

We finally consider the subcase that |Fl | = |Fl ′ | = 3, where both Cl and Cl ′ are
isomorphic to Q3, when, for j /∈ {l, l ′}, Fj is empty. If both Cl − Fl and Cl ′ − Fl ′
are connected, then GEH(s, t) is also connected by Lemma 6. We now assume,
without loss of generality,Cl − Fl is connected, butCl ′ − Fl ′ is not, when it contains
a singleton u′ and a K1,3.GEH(s, t) − F, in this case, is either connected or contains
a large component and a singleton u′ when it is adjacent to a vertex in Fl and all
its three neighbors in C ′

l constitute F ′
l . For the remaining case, when neither of
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them is connected, namely, Cl − Fl (respectively, Cl ′ − Fl ′) contains a singleton u
(respectively, u′) and a K1,3. By the same token, GEH(s, t) − F is either connected
or it contains a large component and smaller component(s) with at most two faulty
vertices u and u′, when u′ (respectively, u) is adjacent to a vertex in Fl (respectively,
Fl ′) and all its three neighbors in C ′

l (respectively, Cl ) fall into F ′
l (respectively, Fl).
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Enumerated BSP Automata

Gaetan Hains

Abstract Parallel software needs formal descriptions and mathematically verified
tools for its core concepts that are data-distribution and inter-process exchanges or
synchronizations. Existing formalisms are either non-specific, like process algebras,
or unrelated to standard Computer Science, like algorithmic skeletons or parallel
design patterns. This has negative effects on undergraduate training, general under-
standing andmathematically-verified software tools for scalable programming.Tofill
a part of this gap, we adapt the classical theory of finite automata to bulk-synchronous
parallel computing (BSP) by defining BSP words, BSP automata and BSP regular
expressions. BSP automata are built from vectors of finite automata, one per compu-
tational unit location. In this first model the vector of automata is enumerated, hence
the adjective enumerated in the title. We also show symbolic (intensional) notations
to avoid this enumeration. The resulting definitions and properties have applications
in the areas of data-parallel programming and verification, scalable data-structures
and scalable algorithm design.

1 Introduction and Background

This paper introduces a new theory of bulk-synchronous parallel computing (BSP),
by adapting classical automata theory to BSP. It attempts to provide the simplest
possible mathematical description of BSP computations. With maximal reuse of
existing Computer Science it is hoped that this theory will find its way into more
complex formalisms for parallel programming tools, language designs and software-
engineering.

BSP is a theory of parallel computing introduced by Valiant in the late 1980s
[20] and developed by McColl [14]. Unlike theories of concurrency that generalize
sequential computation, BSP retains the deterministic and predictable behaviour of
sequential machines of the Von Neumann type, while taking advantage of concurrent
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execution for accelerating computations. Concurrency theory is related to BSP
in the way microscopes are related to telescopes: they are built from similar
components but look in opposite directions (Fig. 1).

Just as parallel algorithms are a special case of sequential algorithms (they realize
a sub- complexity class of problems i.e. NC ⊆ P), BSP machines are close relatives
of sequential machines whose instruction cycles are built from vectors of asynchro-
nous sequential computations and are called supersteps. When the vector’s elements
terminate, they are globally synchronized, which guarantees determinism and allows
predictable performance. This global sequence is called a superstep: launch a vector
of asynchronous and independent sequential computations, wait until they all termi-
nate and synchronize them. A BSP computation is a sequence of supersteps realized
by a BSP computer, that is a vector of Von Neuman sequential computers linked by
a global synchronization device. As we will see by adapting finite automata theory
to BSP

• BSP automata are special cases of finite-state machines because they are finitely-
defined systems, but

• the correspondence is not trivial and both the finite-alphabet hypothesis and the
classical theory of product automata have to be adapted to account for the two-level
nature of BSP computation.

In the usual definition and application of BSP, the sequential elements also
exchange data during synchronization and there is a simple linear model of time
complexity that estimates the delay for synchronization and data exchange in units
of sequential computation. The model defined in the present paper can be extended
to represent communication, as in the BSPCCS process algebra [16].

2 Bulk-Synchronous Words and Languages

Automata theory is both an elementary and standard part of Computer Science and
an area of advanced research through topics such as tree automata, pattern matching
and concurrency theory. It is also universally used by computing system through
lexical analysis, text processing and similar operations. We are interested here in the
core elementary theory of automata as described for example in [15, 21] or in the
initial chapters of graduate textbooks such as [9, 18].

LetΣ be a finite alphabet and p > 0 an integer constant. Elements ofΣ represent
inputs to the automaton, or more generally events it takes part into. Constant p rep-
resents the assumption of a vector of parallel computation units executing the events
or receiving them as signals. The local sequential computers or computations are
indexed by [p] = {0, 1, . . . , p − 1} and variable i will be assumed to range over [p].
In programming systems like BSPlib [7] this variable i is called pid for “Processor
ID”. A value i ∈ [p] is sometimes called a processor, or an explicit process [11] or
simply a location. Throughout the paper, all vectors will be assumed to be indexed
by [p].
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Fig. 1 Concurrency versus bulk-synchronous parallelism

Our whole theory of BSP computation is parametrized over this constant p, which
is thus “static” and fixed for a given application of the theory. There is now a large
body of research about BSP and many generalizations have been studied but for the
sake of generality we model here only the standard core of BSP.

Our first definition represents the asynchronous part of supersteps: vectors of
sequential computations, which automata theory sees as p-vectors of traces or word-
vectors.

Definition 1 Elements of (Σ∗)p will be called word-vectors. A BSP word over Σ

is a sequence of word-vectors i.e. a sequence of ((Σ∗)p)∗. A BSP language over Σ

is a set of BSP words over Σ .

Remark 1 The word-vector < ε, . . . , ε > is not equivalent to an empty BSP word ε

as the former will trigger a global synchronization, while the latter will not. In other
words, < ε, . . . , ε > has length one and ε has length zero.

In our examples we will assume that Σ = {a, b}, ε is the empty “scalar” word
and p = 4 without loss of generality.

For example v1 =< ab, a, ε, ba > and v2 =< bbb, aa, b, a > are word-vector
and w = v1v2 is a BSP word. It is understood that w represents two successive
supersteps and that

w = v1v2 �=< abbbb, aaa, b, baa >

that is: concatenation of BSP words is not the same as pointwise concatenation of
word-vectors. Concatenation of BSPwords represents phases of collective communi-
cations and barrier synchronizations (see Fig. 2, where vectors are drawn vertically).
Concatenation of BSP words accordingly means concatenation of (sequences of)
word vectors:
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Fig. 2 A BSP superstep

w = v1v2 =< ab, a, ε, ba >< bbb, aa, b, a > .

Let va =< ε, a, aa, aaa > respectively vb =< ε, b, bb, bbb > be word-vectors
whose local words are ai and bi respectively. Then La = {va}, Lb = {vb} and L2 =
{ε, va, vb, vavb} are finite BSP languages and L3 = {ε, va, vavb, vavbva, . . .} is an
infinite BSP language.

3 Finite Versus Infinite Alphabet

ABSP word is built from an infinite alphabet: even whenΣ is finite, the set of word-
vectors will be infinite. This part of the model illustrates the fact that a BSP computer
is two-level: it is built from sequential computers, whose computations are finite but
of unlimited length. But the infinite-alphabet property is not caused by the (finitely-
many) computing elements, it would still hold if p = 1. It is rather a consequence of
the fact that synchronization barriers are cooperative and not pre-emptive. Individual
local computations have to terminate before a superstep ends with synchronization.

In his famous paper [19] Turing gives sketches several arguments for the choice
of a finite alphabet. One is physical-topological: infinite alphabets realized by a finite
physical device would require infinite precision of the device reading a symbol from
working memory. He also gives another argument against infinite alphabets:

compound symbols [such as arabic numerals], if they are too lengthy, cannot be observed at
a glance

and even mentions, less convincingly, the case of Chinese ideograms as an attempt

to have an enumerable infinity of symbols.

So our notion of BSP computation would appear to be incoherent with classic
Church-Turing models: it is built from an infinite alphabet of symbols. However that
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would only be the case if we chose to use BSP languages as a model for decidability,
which they are not intended to be. The BSP model was invented to model parallel
algorithms, not arbitrary parallel computations. All local computations are therefore
assumed to terminate and so is the global sequence of supersteps.

The best point of view on this question of infinite-vs-finite alphabet for BSP is that
BSP languages are sets of traces having a series-parallel structure representing
the behaviour of parallel computers that all synchronize periodically.

4 Bulk-Synchronous Automata

We now define BSP automata as acceptance machines for BSP words.

Definition 2 A BSP automaton A is a structure

({Qi}i∈[p],Σ, {δi}i∈[p], {qi0}i∈[p], {Fi}i∈[p],Δ)

such that for every i, (Qi,Σ, δi, qi0,F
i) is a deterministic finite automaton (DFA),1

and Δ : Q → Q is called the synchronization function where Q = (Q0 × ... ×
Q(p−1)) is called the set of global states.

In other words a BSP automaton is a vector of sequential automata Ai over the
same alphabet Σ , together with a synchronization function that maps state-vectors
to state-vectors.

Observe that the synchronization function is finite, like the transition functions,
and that its value depends on a whole vector of local states. Because of it, a BSP
automaton is more than the product [6] of its local automata (see Appendix 1 for an
explanation).

Let Qi be a set of local states at location i, δi : Qi × Σ → Qi a local transition
function on those states and δi∗ : Qi × Σ∗ → Qi, the extended transition function
on Σ-words. Right-application notation is sometimes convenient: δi ∗ (q, w) can be
written qw e.g. qab = δ(δ(q, a), b).

Define a transition function δ on word-vectors as follows. For q ∈ Q and w =<

w0, . . . , wp−1 > a word-vector

qw = Δ(< q0w0, . . . , qp−1wp−1 >) (1)

i.e. “synchronization” of the result of application of local transition functions to local
words. Function Δ is the model of a synchronization barrier because its local results
depend on the whole vector of asynchronous results.

A BSP word is a sequence of word vectors. It is read by a BSP automaton as
follows (Fig. 3):

1Qi is the finite set of states, δ the transition function, qi ∈ Qi the initial state and Fi ⊆ Qi the
non-empty set of accepting states.
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Fig. 3 A BSP automaton

1. If the sequence of word vectors is empty, the vector state remains the vector of
local initial states; otherwise continue.

2. If < w0, . . . , wp−1 > is the first word vector. Local automaton i applies wi to
its initial state and transition function to reach some state qi, not necessarily an
accepting state.

3. The synchronization function maps Δ :< q0, . . . , qp−1 >→< q′0, . . . , q′p−1 >.
4. If there are no more word vectors, and ∀i. q′i ∈ Fi, the BSP word is accepted.
5. If there are no more word vectors, and ∃i. q′i /∈ Fi, the BSP word is rejected.
6. If there are more word vectors, control returns to step 2. but with local automaton

i in state q′i, for every location i.

Finite automata have no explicit notion of variables and values but states can be
used to encode them e.g. qx1 = {(x, 1)}, qx2 = {(x, 2)}, . . .. As a result, the synchro-
nization function Δ can encode the communication of values between locations i, j,
although this is not explicit in the general theory.

Proposition 1 A BSP automaton is equivalent to a deterministic automaton over
(the infinite alphabet of) word-vectors.

Proof If all p finite automata are deterministic, then the transition function on word-
vectors is a total and well-defined function of type Q × (Σ∗)p → Q. The following
structure built from A is a deterministic automaton by construction:

(Q, (Σ∗)p, δ,< q00, . . . , q
p−1
0 >, (F0 × . . . × Fp−1)).

The automaton is deterministic because δ is well-defined and total because of 1 and
the fact that local automata are deterministic. �

As Proposition 1 states, the BSP automaton is a deterministic automaton but its
alphabet is infinite. The synchronization function Δ finite (can be enumerated) but
enumerating the transition function δ is impossible: it is a table over Qp × (Σ∗)p
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whose second component is infinite. So δ is infinite, but it has an obvious finite rep-
resentation: the vector of finite transition functions δi. As a result, a BSP automaton
is practically equivalent to a DFA modulo the above syntactic changes.

Definition 3 As shown in the proof of Proposition 1, a BSP automatonA is aDFAon
word-vectors. A BSP-wordw is accepted byA if the reflexive-transitive closure of δ

takes initial state q0 =< q00, . . . , q
p−1
0 > to an accepting state of (F0 × . . . × Fp−1)

when applied to w. The language of A is its set of accepted BSP-words.

We now give BSP automata to recognize BSP languages from Sect. 2.
Let Ai

a and Ai
b be the unique minimal DFA to recognize va and vb. Define Aa

as the BSP automaton (< A0
a,A

1
a,A

2
a,A

3
a >,Δ) where Δ is the identity function.

Then, for word-vector a, the local transition functions of Aa will lead to a vector
of accepting states, which the synchronization function Δ will leave unchanged.
For any other word-vector w, the local transition functions will lead to a vector of
non-accepting states, unchanged by synchronization. As a result Aa accepts exactly
language La = {va}. A similar construction with letter b gives a BSP automaton Ab

to accept Lb.
We now define a BSP automaton to accept

L2 = {ε, va, vb, vavb}.

Let Ai
a+b be a DFA that accepts language {ε, ai, bi} with exactly three accepting

states: qi0 initial state for accepting ε, qiFa for accepting ai and qiFb for accepting bi.
Let Ai

ε+b be a DFA that accepts language {ε, bi} with initial (accepting) state qib.
Define the BSP automaton as

Aa+b = (< Ai
a+b ∪ Ai

ε+b : i = 0, 1, 2, 3 >,Δ)

where the local automaton has the union of accepting states and initial state qi0. Define
also

Δ < q0Fa, q
1
Fa, q

2
Fa, q

3
Fa >=< q0b, q

1
b, q

2
b, q

3
b >

and Δ is the identity function on all other vector-states. Then Aa+b on ε leads to
Δ(ε) = ε which is by definition accepting. Automaton Aa+b applied to word-vector
a leads to

Δ < q0Fa, q
1
Fa, q

2
Fa, q

3
Fa >=< q0b, q

1
b, q

2
b, q

3
b >

an accepting state. Automaton Aa+b applied to word-vector b leads asynchronously
to

< q0Fb, q
1
Fb, q

2
Fb, q

3
Fb >

unchanged by Δ and that is an accepting state. Automaton Aa+b applied to word-
vector ab leads through a and synchronization to < q0b, q

1
b, q

2
b, q

3
b > and from there
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asynchronously to accepting states ofAi
ε+b that the second synchronization preserves.

So ab is also accepted and it can be checked that any other sequence of word-vectors
is not accepted.

5 Non-determinism and Empty Transitions

A non-deterministic finite automaton (NFA) is a finite automaton whose transition
function has typeQ × Σ → P(Q) i.e. zero, one or more transitions δ(q, a) can exist
for a given symbol a . The closure of its transition function is the union of all possible
paths defined by δ for an input word.

A non-deterministic finite automaton with empty transitions (ε-NFA) is an NFA
over alphabetΣ ∪ {ε}where ε does not denote the emptywordbut a special “internal”
symbol that represents “spontaneous” state changes happening without input. The
closure of its transition function is the union of all possible NFA transitions on the
input word interleaved with an arbitrary number of ε symbols.2

The languages recognized by NFA and by ε-NFA are same regular languages
generated by regular expressions and recognized by DFA [15]. This holds because
of:

1. a polynomial-time algorithm to remove ε-transitions without changing the lan-
guage, and

2. an exponential-time algorithm to convert an NFA into an equivalent DFA.

The former transformation is called the subset algorithm because it generates a DFA
whose states are subsets of the NFA states.

Definition 4 A non-deterministic BSP automaton (NBSPA) is a BSP automaton
whose local automata are of typeQ × Σ → P(Q) and whose synchronization func-
tion has type Δ : Q → P(Q).

Definition 5 A non-deterministic BSP automaton with empty transitions
(ε-NBSPA) is a NBSPA whose local automata are ε-NFA (Fig. 4).

Remark that the definition of empty transitions for BSP automata leaves the syn-
chronization function Δ unchanged.

A (standard, deterministic) BSP automaton is by definition a special case of
NBSPA and of ε-NBSPA but we need to verify whether the latter encode the same
class of languages. The answer is positive and given by the next propositions.

2This notion of empty transitions is convenient but theoretically delicate. In the case of finite
automata it preserves all elementary properties but that is not the case for communicating automata.
For example Milner’s CCS process algebra [17] uses a spontaneous-transition symbol τ with a
similar property, but this changes the so-called bisimulation semantics of communicating automata.
Amore conservative process algebra can be built by replacing τ with an explicit clock-tick symbol�
[1]. The resulting algebra of processes combines a simple bisimulation semantics with the algebraic
simplicity (e.g. distributive law) similar to regular languages.
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Fig. 4 An ε-NBSPA

Proposition 2 The language of a NBSPA can be accepted by a deterministic BSP
automaton.

Proof Let N be a NBSPA defined by (< N0, . . . ,Np−1 >,Δ)where the Ni are NFA
and Δ : Q → P(Q). Let Qi be the set of states of Ni.

By the subset algorithm there exists p DFA Di accepting the same (scalar) lan-
guages as the Ni and whose states are parts of P(Qi). Define Δ′ : P(Q) → P(Q)

by

Δ′{q1, . . . ,qn} =
n⋃

i=1

Δ(qi)

soΔ′ sends a set of possible vector states to a set of vector states (a non-deterministic
choice of synchronization transition). Define D as the deterministic automaton D =
(< D0, . . . ,Dp−1 >,Δ′). Then we can verify that L(N) ⊆ L(D) by induction on the
number of supersteps S in an accepted BSP word.

• (S = 0) If ε is accepted by N that is because the initial vector-state in N , q0 is
accepting. By definition of the subset algorithm, the accepting vector state of D is
built from local accepting states, and the initial state of D is just q0. As a result,
q0 is also accepting in D and so D accepts ε.

• (S = 1) If a word-vector w =< w0, . . . , wp−1 > is accepted by N then one of
the paths in Ni applied to wi leads to a state q′i such that Δ < q′0, . . . , q′p−1 >

contains an accepting state-vector. By the subset algorithm, q′i ∈ Q′i where Q′i is
a state of Di and by the definition of Δ′ then Δ′ < Q′0, . . . ,Q′p−1 > contains an
accepting state-vector.

• (S ≥ 2) If a BSP word w1; . . . ;wn−1;wn is accepted by N then N applied to
w1; . . . ;wn−1 leads to a set of vector-states among which one Q can be chosen
as initial vector state from which N would accept wn. By construction D contains
a vector-state containing Q. Apply then the above one-superstep proof from Q to
show that if N leads to acceptance, so does D. �
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Proposition 3 The language of an ε-NBSPA can be recognized by a NBSPA.

Proof An ε-NBSPA N ′ is simply a non-deterministic BSP automaton built from a
vector of ε-NFAN ′i. Its synchronization function is non-deterministic but contains no
“spontaneous” empty supersteps. Standard automata theory gives us a polynomial-
time ε-reachability algorithm to convert everyN ′i into an equivalent NFANi without
ε-transitions. Define N to be the NBSPA built from the Ni and the same synchro-
nization function as N ′. Then L(N) = L(N ′). �

As a result, non-determinism and ε-transitions do not change the languages
accepted by BSP automata. Just as with sequential “scalar” automata, those syn-
tactic extensions can be used at an exponential cost in time and number of states.
Depending on the complexity of the synchronization functions, the blow-up factor
may also depend on p.

6 Sequentialization

Every parallel computation can be simulated sequentially and the theory of BSP
automata expresses this fact by a transformation from BSP automata to classical
finite automata. A word u = a1 . . . an of Σ∗ is localized to i as follows: u@i =
(a1, i) . . . (an, i). A word-vector w ∈ (Σ∗)p is sequentialized to a word Seq(w) on
alphabet Σ × [p] by the transformation:

Seq(w) = w0@0 . . .wp−1@(p − 1).

In otherwords, Seq(w) concatenates thewords ofword-vectorw after having labelled
them by their locations (any interleaving of the localized words would satisfy our
purpose, but ordered concatenation is simpler). For example if w =< b, ε, bb, aa >

then Seq(w) = w0@0 . . .w3@3 = (b, 0)(b, 2)(b, 2)(a, 3)(a, 3).

Definition 6 A BSP word on (Σ∗)p is sequentialized to a word on (Σ × [p]) ∪ {; }
as follows (Fig. 5):

Seq(ε) = ε

Seq(v1 . . . vn) = Seq(v1); . . . ;Seq(vn);

A BSP language L is sequentialized to Seq(L) by sequentializing every one of its
BSP words.

The following remarks should be kept in mind because they are much more than
a syntactic detail. 1. The sequentialization of a BSP word is either empty or contains
at least one semicolon, and 2. function Seq has one of two possible types.

• To sequentialize word vectors Seq : (Σ∗)p → (Σ × [p])∗.
• To sequentialize BSP words Seq : ((Σ∗)p)∗ → ((Σ × [p]) ∪ {; })∗.
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BSP element: type −→ local / sequential element
ε : Σ∗ @i−→ ε

a : Σ∗ @i−→ (a, i)

abaa : Σ∗ @i−→ (a, i)(b, i)(a, i)(a, i)

ε =< ε, ε, ε, ε >: (Σ∗)p
Seq−→ ε

v1 =< aba, b, bbb, a >: (Σ∗)p
Seq−→ (a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3)

v2 =< a, ε, bbb, ε >: (Σ∗)p
Seq−→ (a, 0)(b, 2)(b, 2)(b, 2)

ε =< ε, ε, ε, ε >: (Σ∗)p
Seq−→ ε

ε : ((Σ∗)p)∗
Seq−→ ε

ε =< ε, ε, ε, ε >: ((Σ∗)p)∗
Seq−→ (ε; ) = ;

v2 ε : ((Σ∗)p)∗
Seq−→ (a, 0)(b, 2)(b, 2)(b, 2); ;

ε v2 : ((Σ∗)p)∗
Seq−→ ; (a, 0)(b, 2)(b, 2)(b, 2);

< ε, a, ε, a >< b, b, b, b >: ((Σ∗)p)∗
Seq−→ (a, 1)(a, 3); (b, 0)(b, 1)(b, 2)(b, 3);

Fig. 5 Localization and sequentialization

For simplicity we denote both by the same symbol Seq but the first one is only an
auxiliary part of the definition of the second one.

So if ε =< ε, . . . , ε > is considered to be a word-vector, then it is sequentialized
to the empty word. But as a BSP word it is sequentialized to the one-symbol word
“;” (Definition 6). This is the theoretical representation that even an “empty” BSP
algorithm (whose every local process has an empty execution trace) must end by a
synchronization barrier that propagates the coherent information “end execution” to
every location. In terms of BSP automata this means that even if Δ is the identity
function, and it follows a vector of empty computations, it still must be applied once.

A finite automaton A = (Q,Σ, δ, q0,F) of alphabet Σ can be localized to i ∈ [p]
and becomes automaton A@i by the transformation

A@i = (Q × {i},Σ × {i}, δ@i, (q0, i),F × {i})

where (δ@i)((q, i), (a, i)) = (δ(q, a), i).

Proposition 4 For any BSP automaton A on Σ , there exists a finite automaton
Seq(A) on (Σ × [p]) ∪ {; } such that Seq(L(A)) = L(Seq(A)).

Proof Let A = (< A0, . . . ,Ap−1 >,Δ) with Ai = (Qi,Σ, δi, qi0,F
i).

Define vector states Q = ∏p−1
i=0 Q

i for the sequential automaton i.e. all vectors of
local states.
Define localized transition function δa(q, a) = q[i:=δi(qi, a)] i.e. the local asynchro-
nous transition at i for any letter a localized at i.
Define a vector of initial state q0 =< (q00, 0), (q

1
0, 1) . . . , (qp−1

0 , p − 1) > with the
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local initial states.
Define also the set of unanimously-accepting vector states F = ∏p−1

i=0 Fi.
Then Aa = (Q,Σ × [p], δa, q0,F) is a DFA that can simulate the application of A
to any word-vector w =< w0, . . . , wp−1 > as follows.
Let w = Seq(w) then δa(q0, w) =< δ0(q00,w

0), . . . , δp−1(qp−1
0 ,wp−1) >.

As a result, the asynchronous automaton Aa simulates A in the absence of syn-
chronizations. That covers the trivial case of accepting the empty BSP word whose
sequentialization is Seq(ε) = ε. Indeed if ε ∈ L(A) that is because ∀i.qi0 ∈ Fi and
then by definition q0 ∈ F so ε ∈ L(Aa). But even a single word-vector (single super-
step) involves the synchronization function when it is considered as a BSP word.

To simulate its effect with the sequential automaton, transform Aa to a DFA A; on
(Σ × [p]) ∪ {; } as follows.
Let δ; be the extension of δa with transitions on symbol semicolon ; that simulate
the effect of the synchronization function Δ. For any state vector q define δ;(q, ; ) =
Δ(q). Since the synchronization function is total, this ensures that δ; is a total function
and thatA; is a DFA. Consider a non-empty BSPword of length one i.e. a word vector
v (which could be a vector of empty words). The effect of A; on Seq(v) = (Seq(v));
is the same as the effect of A on v. Therefore v ∈ L(A) iff Seq(v) ∈ L(A;).

A trivial induction argument shows that this is also the case for a BSP word of
any length. We therefore define Seq(A) = A; and conclude that

v1 . . . vn ∈ L(A) ⇔ Seq(v1); . . . ;Seq(vn); ∈ L(A;)

i.e. Seq(L(A)) = L(A;) = L(Seq(A)). �

7 Parallelization

We have seen in Sect. 6 the sequentialization of word-vectors by localization of their
words, one symbol at a time Seq : (Σ∗)p → (Σ × [p])∗. It is easy to invert this
transformation and define Par : (Σ × [p])∗ → (Σ∗)p so that Par(Seq(w))) = w.

Let ε[i:=u] be the word vector that is empty everywhere except for word u at
position i. Let u · v be the pointwise concatenation of word-vectors i.e.

< u0, . . . , up−1 > · < v0, . . . , vp−1 >=< u0v0, . . . , up−1vp−1 > .

Define Par : Σ × [p] → (Σ∗)p by

Par(a, i) = ε[i:=a]

so that for example Par(u@i) = ε[i:=u]. Define then Par on sequentialized words of
(Σ × [p])∗ by

Par((a, i)(b, j) . . .) = Par(a, i) · Par(b, j) . . .
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and in particular Par(ε) = ε the vector of empty words (or “empty-word vector” not
to be confused with the empty BSP word ε ∈ (Σ∗)p)∗). For example

Par((a, 0)(b, 1)(b, 0)(b, 3)) =< ab, b, ε, b > .

The following follows directly from the definition of Seq on word-vectors.

Lemma 1 Parallelization is the left-inverse of sequentialization on word-vectors
(Σ∗)p:

Par(Seq(v)) = v.

In fact, any permutationπ of Seq(w) that does not reorder co-located letters would
also preserve the parallelization Par(π(Seq(w))) but we will not expand on this for
it is not essential to our developments.

Function Par has one of three possible types.

• To parallelize localized letters Par : (Σ × [p]) → (Σ∗)p.
• To parallelize semicolon-free words Par : (Σ × [p])∗ → (Σ∗)p.
• To parallelize localized words with semicolons Par : (Σ × [p]) ∪ {; })∗ →

((Σ∗)p)∗.

Again, this can lead to ambiguity if the input type is unknown: the semicolon-free
word is mapped to the empty-word vector, but the empty general word of type
((Σ × [p]) ∪ {; })∗) is mapped to the empty BSP word (Fig. 6). This ambiguity is of
course only a convenience for notation but, as we have seen earlier, the difference
between empty-word vector and empty BSP word in fundamental.

The following straightforward consequence of our definitions shows that Par is a
non-injective function.

Proposition 5 If w is a word of (Σ × [p])∗ and π is a permutation of w that does
not exchange co-located letters, then Par(π(w)) = Par(w).

For this reason, Seq is not the left-inverse of Par:

∃w ∈ (Σ × [p])∗. Seq(Par(w)) �= w.

local / sequential element: type −→ vector/BSP element: type
(a, 1) : Σ × [p] Par−→ < ε, a, ε, ε >: (Σ∗)p

ε : (Σ × [p])∗ Par−→ < ε, ε, ε, ε >: (Σ∗)p

(a, 1)(b, 3)(a, 1) : (Σ × [p])∗ Par−→ < ε, aa, ε, b >: (Σ∗)p

(a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3) Par−→ < aba, b, bbb, a >: (Σ∗)p

(a, 0)(b, 0)(b, 2)(a, 3); (a, 0)(b, 1)(b, 2)(b, 2); Par−→ < ab, ε, b, a >< a, b, bb, ε >: ((Σ∗)p)∗

Fig. 6 Parallelization
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For example if w = (a, 0)(b, 3)(a, 1) then Par(w) =< aa, ε, ε, b > and
Seq(Par(w)) = (a, 0)(a, 1)(b, 3) �= w. But Seq ◦ Par is clearly a normal form for
words of (Σ × [p])∗: it sorts their letters in increasing order of locations.

Proposition 6 Reduction to normal form ∼== Seq ◦ Par is a congruence for con-
catenation on (Σ × [p])∗ and (Σ × [p])∗/ ∼= is isomorphic to (Σ∗)p.

Proof Taking the normal form by ∼= preserves the value of Par, and Par is sur-
jective. Taking the i-subword of any w ∈ (Σ × [p])∗ is a homomorphism for con-
catenation. Therefore Par is a homomorphism from word concatenation to word-
vector concatenation. As a result Par is injective on (Σ × [p])∗/ ∼=, surjective and
homomorphic. �

Concurrency theories like process algebras [17] ignore the notion of localization
and simply consider interleavings π that forget the locations i. That is why they are
models of shared-memory computers and that was one of the reasons for inventing
theories like BSP that do not abstract from distributed-memory.

As the semicolon symbol ; encodes synchronization barriers i.e. the end of super-
steps, it is natural to extend parallelization to all words on (Σ × [p]) ∪ {; }.
Definition 7 Let α = α0; . . . ;αn; where αi ∈ (Σ × [p])∗.
Then Par(α) = Par(α0) . . . Par(αn).

For example Par((a, 0)(b, 1)(b, 0)(b, 3); (a, 2)(a, 2)(b, 3); ; (a, 0)) is theBSPword:

< ab, b, ε, b >< ε, ε, aa, b >< ε, ε, ε, ε >< a, ε, ε, ε > .

The inversion property on word-vectors then follows from our definitions.

Lemma 2 Parallelization is the left-inverse of sequentialization on BSP words
((Σ∗)p)∗:

Par(Seq(w)) = w.

The reasoning in the other direction, about Seq ◦ Par applies toBSPwords identically
and yields the same result as for word vectors (individual BSP supersteps): ∼==
Seq ◦ Par sorts inter-semicolon sequences in increasing order of location, it is a
congruence for concatenationon ((Σ × [p]) ∪ {; })∗ and leads to a parallel-sequential
isomorphism.

Reduction to normal form ∼== Seq ◦ Par is a congruence for concatenation on
sequential words but with the important exclusion of non-empty semicolon-free
sequential words that are meaningless for BSP.

Definition 8 Σp; = (((Σ × [p])∗); )

In other words, Σ∗
p; is the set of sequential localized words, without non-empty

semicolon-freewords.We find thatΣ∗
p;/ ∼= is isomorphic to the BSPwords ((Σ∗)p)∗.
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Proposition 7 Reduction to normal form ∼== Seq ◦ Par is a congruence for con-
catenation on Σ∗

p; and Σ∗
p;/ ∼= is isomorphic to ((Σ∗)p)∗.

Proof The proof is almost identical to that of Proposition 6. The only (key) difference
is that Par would not be a bijection if applied to the whole of ((Σ × [p]) ∪ {; })∗. �
Definition 9 TheparallelizationPar(L)of a languageon (Σ × [p]) ∪ {; } is {Par(α) :
α ∈ L} and the sequentialization Seq(L′) of a BSP language is
{Seq(w) : w ∈ L′}.

We now give results about inverting the sequentialization of BSP automata.
The first result is about inverting the sequentialization of “incomplete superstep”

BSP words. Such words correspond to sequentialized words on Σp; i.e. words of
the form ((Σ × [p])∗); ). It would appear that such words contain all the necessary
information to be recognized by a BSP automaton. One word at a time this is true,
but it does not hold of regular languages of this type. Take for example the regular
language of expression ((a, 0) + (b, 1))∗ then its parallelized language can be recog-
nized by a BSP automaton whose language is < a∗, b∗, ε, ε >, essentially because
the number of a events is independent from the number of b events. But a language
like that of ((a, 0)(b, 1))∗ is parallelized to language {< an, bn, ε, ε > | n ≥ 0}
which cannot be recognized by a BSP automaton because the local automata at
locations 0 and 1 would need to keep synchronised without the help of the syn-
chronization function. However if the sequentialized language is given extra syn-
chronization semicolons, then it can be recognized by a BSP automaton. In the
above example, the language of expression ((a, 0)(b, 1); )∗ is parallelized to lan-
guage {< a, b, ε, ε >n | n ≥ 0} =< a, b, ε, ε >∗ forwhich aBSP automaton exists.
The process of adding semicolons to a sequential word or language will be called
over-synchronization.

Definition 10 For w ∈ ((Σ × [p])∗) ∪ {; }, we say that w′ over-sychronizes w and
write w ≤; w′ if w′ is obtained by interleaving w with a word of the form ;∗. A
language L′ over-synchronizes language L, written L ≤; L′, if there is a bijection
from L to L′ which is an over-synchronization. An automaton A′ over-synchronizes
automaton A, written A ≤; A′ if L(A) ≤; L(A′).

Lemma 3 For any automaton A on (Σ × [p]) there is a sequential automaton A′ ≥;
A, and a BSP automaton Par(A) on Σ such that L(Par(A)) = Par(L(A′)).

Proof Let rA be a regular expression such that L(rA) = L(A) (Appendix 2). We show
by induction on the syntax of ra that there exists a BSP automaton to recognize the
parallelization of an over-synchronization of L(A).

If rA = ∅ then Par(L(rA)) = ∅ and the BSP automaton can be any one that has
empty sets of accepting states. If rA = ε then L(rA) = {ε} and Par(L(rA)) = {ε} so
the BSP automaton should recognize nothing but the empty BSP word. To obtain
this, define its local automata as accepting {ε} and the synchronization function is
the identity.
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If rA = r∗
0 then by induction there is a BSP automaton A0 to recognize Par(L(r0)).

Add new unique accepting states qiF to its local automata and ε-transitions from their
(previously) accepting states to the qiF . Add to A0’s synchronization function the
mapping from < q0F, . . . , qp−1

F > to the initial states of all finite automata. Call this
new ε-NBSPA A1. Then L(A1) = Par(L((r0; )∗)) i.e. the over-sychronization (r0; )∗
has A1 as accepting BSP automaton.

If rA = r1 + r2 then by induction there are BSP automata Aj and r′
j ≥; rj such

that L(Aj) = Par(L(r′
j)) for j = 1, 2. Then build an NBSPA A0 whose local automata

have: the union of local states from A1,A2 with an added new initial state with an ε-
transition leaving it to each of the (previously) initial states fromAi

1 andA
i
2, transition

function that are the union of local transition functions from A1,A2 and a new final
state qiF . The synchronization function ofA0 is the union of synchronization functions
of A1,A2 with the added mappings from all state vectors that are uniformly (∀i)
accepting for r′

1 or uniformly accepting for r′
2 to < q0F, . . . , qp−1

F >. Then L(A0) =
L(A1) ∪ L(A2) = Par((r′

1 + r′
2); ) which is an over-synchronization of rA.

If rA = r1r2 then a similar construction leads to a BSP automaton accepting the
parallelization of r1; r2. �

The second result follows about inverting the sequentialization of all BSP words.

Theorem 1 For any automaton A on (Σ × [p]) ∪ {; } there is a sequential automa-
ton A′ ≥; A, and a BSP automaton Par(A) on Σ such that L(Par(A)) = Par(L(A′)).

Proof Let rA be a regular expression such that L(rA) = L(A) (Appendix 2). We will
show by induction on the syntax of rA that there exists a BSP automaton Par(A) to
recognize Par(L(rA)) = Par(L(A)).

If rA = ∅ then Par(L(rA)) = ∅ and the BSP automaton can be any one that has
empty sets of accepting states.

If rA = ε then L(rA) = {ε} and Par(L(rA)) = {ε} so the BSP automaton should
recognize nothing but the empty BSP word. To obtain this, define its local automata
as accepting {ε} and the synchronization function can be arbitrary because it does
not get applied on the empty BSP word.

It is not possible to have rA = (a, i) then it is easy to build a BSP automaton to
recognize Par({(a, i); }.

If rA =; then L(rA) = {; } = {ε; } so Par(L(rA)) = {Par(ε)} = {ε}. Define then Ai

as a finite automaton with initial state qi0, a single accepting state equal to qi0 and
transition function to accept only the empty word. Let q0 =< q00, . . . , q

p−1
0 > and

define Δ(q0) = q0 and a different value of Δ(q) for all other q. Define the BSP
automaton Par(A) = (< A0, . . . ,Ap−1 >,Δ). Then applying Par(A) to ε leads to q0

vacuously on the local automata and then by one application of Δ, so ε is accepted.
Applying Par(A) to any other BSPword leads to non-acceptance so L(Par(A)) = {ε}.

If rA = r∗
0 , rA = r1 + r2 or rA = r1r2 then the corresponding induction steps used

in the proof of Lemma 3 apply directly. �

Moreover, as seen in Sect. 5 there exists a deterministic BSP automaton A equivalent
to the ε-NBSPA constructed in the proof of Theorem 1.
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8 Bulk-Synchronous Regular Expressions

In this section it is shown how to adapt regular expressions (Appendix 2) to BSP
languages.

A BSP regular expression is an expression R from the following grammar:

R ::= ∅ | ε |< r0, . . . , rp−1 >| R;R | R∗ | R + R

where ri is any (scalar) regular expression. The set of BSP regular expressions is
BSPRE and the language any BSP regular expression is defined by L : BSPRE →
P(((Σ∗)p)∗) as:

R L(R)

∅ { }
ε {ε}

< r0, . . . , rp−1 > L(r0) × . . . × L(rp−1)

R1;R2 L(R1)L(R2)

R∗ L(R)∗
R1 + R2 L(R1) ∪ L(R2)

We now show that Kleene’s equivalence theorems (Appendix 2 and [10]) can be
adapted to the two-level BSP regular expressions and automata.

Theorem 2 For R ∈ BSPRE there exists a BSP automaton AR such that L(AR) =
L(R).

Proof We proceed by induction on the syntax of R. If R = ∅ the BSP automaton
simply needs to have empty (local) sets of accepting states. IfR = ε theBSP automata
should have as unique accepted BSP word the empty one. That is obtained by having
accepting (local) start states and all transitions leading to different (non-accepting
states), with an indentity synchronization function.

If R =< r0, . . . , rp−1 > then there exist classical automata Ai on Σ such that
L(Ai) = L(ri) (Appendix 2). The BSP automaton is then simply the collection of
those automata with identity synchronization function.

If R = R1;R2 then by induction there exists BSP automata A1,A2 such that
L(Aj) = L(Rj) for j = 1, 2. Define the BSP automaton A whose states is the dis-
joint union of those of the Aj, whose accepting states are those of A2, whose initial
vector state is that of A1, whose (partial) ΔA is the union of the synchronization
functions of the Aj with an added ε-transition from all accepting state vectors in A1

to the (previously) initial state vector of A2. The resulting A is an ε-NBSPA accepting
language L(A1)L(A2) = L(R).

If is of the form R = R∗
0 or R = R1 + R2, similar constructions lead to ε-NBSPA

whose language is R. �
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Theorem 3 For A a BSP automaton there exists RA ∈ BSPRE such that L(RA) =
L(A).

Proof Assume

A = ({Qi}i∈[p],Σ, {δi}i∈[p], {qi0}i∈[p], {Fi}i∈[p],Δ) and Ai = (Qi,Σ, δi, qi0,F
i).

Let Q = ⋃
i Q

i be the union of all states in the local automata, then the states Q of
A are all in Qp. Similarly, let F ⊆ Q be the accepting states of Q.

Let q1, q2 ∈ Q be any local states. Then by Kleene’s theorem there exists
r(q1, q2)i ∈ RE such that L(r(q1, q2)i) is the set of Σ words that lead from q1
to q2 with δi. Let REA be the finite set of all such regular expressions over all
pairs of states and all location i ∈ [p]. Let ΣA = (REA)

p ∪ {; }, a large but finite
“alphabet” for the following construction of a “vector-automaton” A equivalent to
A. Define ΔA : Q × ΣA → Q by ΔA(q1, r) = q2 where q1,q2 are vectors of states
linked at every location by the local projection of r. Define also ΔA(q1, ; ) = q2 iff
Δ(q1) = q2. Define at last A = (Q,ΣA,ΔA,F).

This NFA can be applied to BSP words by applying the vectors of regular expres-
sions to the word vectors pointwise, and traversing any semicolon-edge when there
is a change of word. By defining transition in this manner, A is an acceptance mech-
anism for BSP word whose accepted language is precisely L(A).

By Kleene’s theorem applied to A, there is a (normal) regular expression built
from alphabetΣA = (REA)

p ∪ {; }whose language isL(A) = L(A). By construction,
such a regular expression is precisely a BSPRE whose language is that of A. �

It is convenient to write r = r′ in RE (respectively R = R′ in BSPRE) when the
two regular expressions (resp. BSP reg. expr.) have the same language.

Proposition 8 (Sect.9.3.1 of [15]) For r, r1, r2, r3 ∈ RE:
εr = rε = r r1(r2r1)∗ = (r1r2)∗r1
∅r = r∅ = ∅ (r1 ∪ r2)∗ = (r∗

1 r
∗
2 )

∗
ε∗ = ∅∗ = ε r1(r2 ∪ r3) = r1r2 ∪ r1r3

Classical equivalences such as the above hold also for BSP regular expressions
R,R1,R2,R3 because they involve no interactions between the two levels of BSP
syntax.

9 Minimization

For a given DFA A there exists a so-calledminimalDFAMA [21]: L(MA) = L(A), the
number of states ofMA is minimal amongst all automata of equal language.Moreover
the minimal automaton MA is unique: it is isomorphic to any other M ′

A of equal
language and of the same size. The computation A �→ MA is calledminimization and
can be realized by sequential algorithms of worst-case quadratic time in the number
of states of A.
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Let us recall the state congruence relation used for the invariant of those algo-
rithms, and its very compact formulation by Benzaken (Chap.2, Sect. 6.3 of [2]).

Definition 11 Let A = (Q,Σ, q0, δ,F) be a DFA and k ≥ 0 an integer. For q ∈ Q,
define Aq to be the language accepted by A starting from q i.e. Aq = L(A[q0:=q]). For
p, q ∈ Q define p �k q or “p, q are k-equivalent” to mean Lk(Ap) = Lk(Aq) where
Lk( ) denotes the sub-language of words no longer than k.

Then k-equivalence �k is clearly an equivalence relation on Q and:

• �0 has only two equivalence classes of states, namelyF andQ − F: L0(p) = L0(q)
precisely when the empty word is accepted from either state. That is true when
both are in F and false otherwise.

• p �k+1 q iff (p �0 q) and ∀a ∈ Σ.(δ(p, a) �k δ(q, a)): two states define the same
language of length ≤ k + 1 iff 1 they are both accepting/non-accepting and 2 any
pair of transitions δ(p, a) and δ(q, a) leaving them on the same symbol a, leads to
k-equivalent states.

By definition, (k + 1)-equivalence is a (non-strict) refinement of k-equivalence,
so its equivalence classesQ/ �k+1 are obtained by splitting some equivalence classes
of Q/ �k . Moreover, if for some k we have Q/ �k+1= Q/ �k then all Q/ �i

are equal for i = k, k + 1, k + 2 . . .. Observe then that in the series of partitions
Q/ �0,Q/ �1, . . .Q/ �i . . ., the number of equivalence classes is non-decreasing,
yet by definition it cannot be greater than the number of states | Q |. It follows that
Ap = Aq iff p �|Q| q and it can be proved that A/ �|Q| is the unique minimal DFA
equivalent toA. Sequential algorithms for computing it can be derived from the above
construction, among them Hopcroft’s algorithm [8] of time complexity O(n log n)
where n =| Q |.

The above ideas have been generalized by D’Antoni and Veanes to so-called
symbolic finite automata (SFA) whose alphabets are logical formulae rather than
elementary letters [5]. They generalize the above DFA minimization method to SFA
and find that the key requirement is to check rapidly for satisfiability of φ ∧ ψ

when considering transitions of the form δ(p, φ) and δ(q, ψ). From the construction
used in the proof of Theorem 3 it appears that our BSP automata are a special case
of SFA and that those results [5] apply to them. But we will not make use of this
general result for the sake of simplicity and to keep this paper self-contained. Efficient
algorithms for BSP automata will also benefit from our elementary presentation that
only builds from DFAs, REs and vectors, as there is no guarantee that excessively
general methods lead to efficient algorithms for the class of BSP automata.

LetMinbe theminimization functiononDFA that results fromapplyingHopcroft’s
algorithm. Observe that it is not sufficient to minimize a BSP automaton by mini-
mizing its local automata: we must account for the synchronization function. The
states of a BSP automaton are the state-vectors of

∏
i Q

i. But if we apply the clas-
sical method to state-vectors and alphabet Σp; then all minimization properties and
methods apply.
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Fig. 7 Automaton Aa

Proposition 9 If A is a deterministic BSPautomaton onΣ then there exists a sequen-
tial automaton Min(Seq(A)) that accepts the same Seq(L(A)) and is of minimal size.

Proof Consider A as a special notation for Seq(A): an automaton on (Σ × [p]) ∪ {; }
i.e. with vector-states but single-symbol local transitions or global transitions on ;
defined by the synchronization function Δ. Then clearly A is deterministic so it is a
DFA that can be minimized. Apply sequential minimization to obtain the result. �

Minimizing BSP automata is considerably more complex than minimizing DFA.
The reason is that pointwise minimization of the local automata, without reference
to the synchronization function, may change the accepted BSP language. Let us
illustrate this property by an example.

Example 1 Let Aa be the DFA with four states q1, q2, q3, qF , initial state q1, unique
accepting state qF , and transitions as shown in Fig. 7 (ignoring Δ). Then clearly
L(Aa) = ∅ because qF is unreachable from q1.

Define also the BSP automaton Aa = (< Aa, . . . ,Aa >,Δ) with the following
synchronization function:

q Δ(q)

q2 =< q2, . . . , q2 >
Δ−→ qF =< qF, . . . , qF >

qF =< qF, . . . , qF >
→−→ q1F =< q1, qF, . . . , qF >

any other q
→−→ q1F =< q1, qF, . . . , qF >

Since qF is the only accepting vector state for Aa, and since the initial state is <

q1, . . . , q1 > it follows that the emptyBSPword is not accepted byAa.AnyBSPword
of L(Aa) is therefore of length one or more, so must trigger one or more applications
of Δ. By definition, the only such application leading to acceptance is Δ(q2). By
definition of Aa, the only word-vectors leading to q2 is a =< a, a, . . . , a >. So the
BSP word a ∈ L(Aa).
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Fig. 8 Locally minimal
automaton Min(Aa)

Any longer BSP words are not accepted, because 1 by definition of Aa, local
transitions will only lead from qF to itself and 2 synchronization Δ will then lead to
q1F which is not accepted, and similarly for a BSP word of length more than two.

As a result L(Aa) = a =< a, a, . . . , a >.

Consider now local minimization of the BSP automaton Aa of Example 1. That
yields the BSP automaton (< Min(Aa), . . . ,Min(Aa) >,Δ) where Min(Aa) is the
minimal DFA for accepting the empty language i.e. the two-state DFA of Fig. 8.
Local state q1 in Min(Aa) is actually the equivalence class {q1, q2, q3} in Aa so the
synchronization function would send < q1, . . . , q1 > to Δ(q2, . . . , q2 >) = qF so
that any BSP word of length one would be accepted. The result would then be a
BSP automaton whose language is < (a + b)∗, . . . , (a + b)∗ >�= L(Aa). The above
remarks show that local minimization alone does not preserve the BSP language.

The application of Min ◦ Seq as in Proposition 9 has a disadvantage: it produces
an automaton whose parallelization is not obvious. Sequentialization can then be
reversed but only at the cost of over-synchronization (by Theorem 1).

In other words, if we apply Min ◦ Seq and then Par ◦ ≤; in the hope of mini-
mization, the resulting BSP automaton may have a reduced number of states but an
increased number of synchronizations. In practical terms that means that the BSP
automaton’s implementation will consume less space, and process BSP words in the
same number of local transitions, but require an increased number of global barriers.
Proposition 9 is thus a first but insufficient step towards BSP automata minimization.

Figure9 illustrates the minimization of Seq(Aa) (with p = 2, sufficient for illus-
trating the computation). The circled groups of state vectors are provisional con-
gruence classes to be refined until the Min algorithm reaches its fixed point. They
strongly depend on the structure of Δ and as we have seen, the resulting (sequential)
automaton on Σp; can only be re-parallelized at the expense of extra synchroniza-
tions.

More important for our purpose, the objective of bulk-sychronous parallelism is to
provide realistic and predictable parallel speed-up. BSP theory includes a cost-model
that relates sequential time, the number of processes p and global synchronization
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Fig. 9 Sequential minimization of BSP automaton Aa

(and communication) delays. Automaton minimization is directly related to space
complexity, memory consumption, but as seen in this section it can lead to higher
synchronization costs hence more time complexity. As a step in this direction, we
now adapt the cost-model of BSP theory to BSP automata and show how it can
be used as objective function in the search for fast parallel versions of sequential
automata.

10 Cost-Model

Words from regular languages can be recognized by (classical) finite automata in
time proportional to their length. Being models of parallel algorithms, BSP automata
are meant to accelerate this process. Ideally a word from a regular language could
be recognized p times faster by a BSP automaton. This is certainly possible but,
in general, parallel recognition requires more than one superstep so that the BSP
automaton’s operations require a BSP word of length more than one. Moreover, BSP
theory and systems have show that the synchronization functionΔ’s implementation
incurs costs that may be larger than the speed-up of parallelism.

In this section we show how to accelerate the recognition of regular languages,
and define a detailed version of the BSP cost model to quantify the time-space cost
of doing this.

The first auxiliary notion is concatenation-factorization on sequential words.
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Definition 12 A factorization function on Σ words is a function Φ : Σ∗ → (Σ+)∗
such that

Φ(ε) = ε

|w| > 0 ⇒ |Φ(w)| > 0
Φ(w) = w1, w2 . . . , wn ⇒ w1w2 . . . wn = w

By definition, a factorization function sends the empty word to itself and sends a
non-empty w to a non-empty sequence of non-empty words whose concatenation is
w itself.

Next we define the distribution of sequential words to (BSP) locations. Recall that
(Σp;)∗ is the set of sequentialized BSP words ((Σ × [p])∗; )∗.

Definition 13 Given a factorization function Φ on Σ words, a distribution function
based on Φ is a DΦ : Σ∗ → (Σp;)∗ such that

DΦ(ε) = ε

Φ(w) = w1, w2 . . . , wn ⇒ DΦ(w) = w′
1;w′

2; . . . w′
n;

wt = a1 . . . ak ⇒ w′
t = (a1, i1) . . . (ak, ik)

i1, . . . , ik ∈ [p]

The distribution of a language on Σ is the set of distributions of its words i.e.
DΦ(L) = {DΦ(w) | w ∈ L}.
This definition is such that a distributionD(w) is the sequential image of a BSP word
and Seq(Par(DΦ(w))) ∼= DΦ(w) (Sect. 7).

For example if
w = aaabba

one possible factorization is
Φ(w) = aaab, ba

and one possible associated distribution is

DΦ(w) = (a, 3)(a, 2)(a, 2)(b, 0); (b, 1)(a, 1);

with
Par(DΦ(w)) =< b, ε, aa, a >< ε, ba, ε, ε >

and
Seq(Par(DΦ(w))) = (b, 0)(a, 2)(a, 2)(a, 3); (b, 1)(a, 1); ∼= DΦ.

The definition of distribution function is flexible enough to allow any word and
any language to be distributed to a BSP word or BSP language. The existence of
distributions is a trivial fact of no interest in itself. What matters is optimization:
the discovery of distributions with minimal parallel execution time. To define this
we need to define the cost of a BSP automaton’s computations. The synchronization
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cost is an experimental constant that depends on the physical machine executing one
of our BSP automata.

Definition 14 Let v ∈ (Σ∗)p be a word vector. Its BSP cost cost(v) = maxi
∣∣vi

∣∣ is
the length of its longest element. Define also l ∈ N+, the barrier synchronization
cost constant. For a BSP word w = v1 . . . vS ∈ ((Σ∗)p)∗, its BSP cost is

cost(w) = ΣS
t=1(cost(vt) + l) = Sl + ΣS

t=1cost(vt).

The reader familiar with BSP theory will have noticed that our cost function covers
local sequential computation and global synchronization but not communication.
This is indeed a simplification and assumes, not that communication is “free” but
that an implementation always uses all-to-all communications and that its usual BSP
cost of p × g is here hidden in the l constant.

More detailed presentations of BSP automata will refine this, for example by
taking into account the actual dependencies in the synchronization function: a purely
local Δ actually costs less than one whose values (output states) depend on all the
input states. The above-defined cost model is a pessimistic upper-bound for this.
We now explain how BSP automata encode the elements of BSP algorithm design
namely load balancing and minimal synchronization.

Definition 15 For a given distribution functionDΦ of factorization Φ, the BSP cost
of a sequential word w ∈ Σ∗ with respect to DΦ is defined as the BSP cost of the
parallelization of its distribution:

costDΦ
(w) = cost(Par(DΦ(w)))

For example in the above example with w = aaabba we had

Par(DΦ(w)) =< b, ε, aa, a >< ε, ba, ε, ε >

and so
costDΦ

(w) = cost(Par(DΦ(w))) = 2 + l + 2 + l = 4 + 2l.

A direct consequence of the cost model is that the cost of a word with respect to
DΦ is least if the factorization Φ(w) produces a minimal number of factors (hence
minimal number of BSP supersteps) while the distribution of each factor DΦ(wt)

has the least maximal local length (hence the most balanced distribution). This bi-
objective cost function is the basis of BSP algorithm design: for a given amount of
parallelism, balance the lengths of local computations while minimizing the number
of supersteps.

Problem 1 BSP-PARALLELIZE-WORDWISE
Input: A regular language L given by a regular expression r or DFA A.
Goal: Find a distribution DΦ and BSP automaton AD such that L(A) = Par(DΦ(L))

and |AD| ∈ O(|A|).
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Subject to: ∀w ∈ Σ∗. costDΦ
(w) is minimal over {(Φ,DΦ,AD) | L(A) =

Par(DΦ(L))}.
Minimization for every individual w is not a standard formulation. A better one is:

Problem 2 BSP-PARALLELIZE
Input: A regular language L given by a regular expression or DFA.
Goal: Find a distribution DΦ and BSP automaton AD such that L(A) = Par(DΦ(L))

and |AD| ∈ O(|A|).
Subject to: TDΦ

(n) = max{costDΦ
(w) | |w| = n} is minimal over {(Φ,DΦ,AD) |

L(A) = Par(DΦ(L))}, for all n ≥ 0.

Theoretical work can concentrate on limn→∞ TDΦ
(n)while certain applications could

consider only fixed-size input words i.e. a single value of n. The former is clearly a
general algorithm-design problem and the latter is more likely to have an algorith-
mic solution. The present formulation of BSP automata leave open both theoretical
and practical explorations: depending on the space of factorization and distribution
functions that is considered, the BSP-PARALLELIZE problem could have widely
different complexities.

In the next section we explore an important subproblem: finding BSP automata
parallelizations for the block-wise distribution functionD÷p. The cost is then equal to
l times the number of supersteps and BSP-PARALLELIZE amounts to minimizing
the number of supersteps. But as specified in the problem definition (|AD| ∈ O(|A|))
this should not be at the cost of an explosion in the number of states. We present
elements of both lower- and upper-bound for this parameter.

11 Parallel Acceleration

Problem BSP-PARALLELIZE sets the goal of finding the fastest possible tuple (fac-
torization, distribution, BSP automaton) of dimension p to recognize a given regular
language L. Fastest refers to the cost of the BSP words once they are factorized and
distributed for the BSP automaton. As a first step towards such optimal solutions, we
will adapt the experimental notion of parallel speedup and show someparallelizations
measured thus.

Definition 16 Let L be a regular language and (Φ,DΦ,AD) a factorization, distri-
bution and BSP automaton for L i.e. Par(DΦ(L)). The parallel speedup obtained by
(Φ,DΦ,AD) on a given word size n is the ratio

speedup(Φ,DΦ,AD, n) = min{n/costDΦ
(w) | |w| = n}

The n term in the denominator is |w|, the cost of sequential recognition by a DFA. On
first inspection, the definition of speedup does not appear to depend on the language
L being recognized. But it actually does. A speedup value is only possible by virtue
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of a BSP automaton recognizing L with the given factorization (supersteps) and
distribution (data placement).

We take three examples of simple regular languages to parallelize.

• L1 = L(a∗)
• L2 = L(a∗b∗)
• L3 = L((a + b)∗bbb(a + b)∗)

Example 2 Parallel recognition of L1. Sequential recognition of a∗ amounts to
reading awordw ∈ Σ∗ sequentially with a DFA for this language. The simplest DFA
Aa∗ has two states q1, q2, starts from q1, accepting states F = {q1}, and transitions
δ(q2, x) = q2, δ(q1, a) = q1, δ(q1, b) = q2.

A simple and efficient parallelization for L1 is (Φ1,D◦,A1) defined as fol-
lows. The factorization function keeps the input word into a single superstep word:
Φ1(w) = (w).
The “remainder p” distribution function sends letters to locations in cyclic fashion:
D◦(u0 . . . un−1) = (u0, 0 mod p) . . . (un−1, (n − 1) mod p);
The BSP automaton A1 = (< Aa∗ , . . . ,Aa∗ >, Id) has a copy of the DFA for accept-
ing a∗ at every location so any input word containing letter b will put one location
into non-accepting local state. The synchronization function is the identity on state
vectors. As a result, the BSP words accepted are those that only contain letter a, i.e.
L(A1) = Par(D◦(L)).

By construction costD◦(w) = cost(w) + l i.e. the cost of the distributed word
vector + the cost of one barrier. Cyclic distribution is known to have cost n/p or
(n/p) + 1 because no location receives more than that many of the letters. As a
result the speedup is n

(n/p)+l which tends to p (ideal speedup) for large input sizes.
The above construction is an asymptotic solution to BSP-PARALLELIZE for

this language because any BSP automaton costs one l term on non-empty input, and
processing the whole input word is both necessary and requires at least parallel cost
n/p.

Example 3 Parallel recognition of L2. Sequential recognition of a∗b∗ is done by
a DFA having states q0, q1, q2 of which q0 is initial, accepting states q0, q1 and

transition function q0
a−→ q0, q0

b−→ q1,

q1
b−→ q1, q1

a−→ q2,
q2

x−→ q2.
Let us call this automaton A2.

Consider again parallelization with factorization function Φ1 i.e. BSP words of
length one superstep. Take as distribution function the “div-p” function that sends to
each location a block of length k ≥ p except one possibly shorter block at the end:
D÷p(u0u1 . . . un−1) = (u0, 0/p)(u1, 1/p) . . . (un−1, (n − 1)/p)
For example

D÷4(u0u1 . . . u8) = (u0, 0)(u1, 0)(u2, 0)(u3, 0)(u4, 1)(u5, 1)(u6, 1)(u7, 1)(u8, 2).
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We now show that a BSP automaton can be built for Φ1 and D÷p to accept L2. Its
parallel speedup will then be the same as in Example 2. Consider the BSPRE
R = R0 + R1 + R2 + R3 where
R3 =< a∗, a∗, a∗, a∗b∗ >,
R2 =< a∗, a∗, a∗b∗, b∗ >,
R1 =< a∗, a∗b∗, b∗, b∗ >,
R0 =< a∗b∗, b∗, b∗, b∗ >.
By construction L(R) = Par(D÷p(L2) because the words of L2 split into four equal-
length blocks and parallelized are precisely of one of the four forms specified by R.

It is not sufficient for our purpose to apply Theorem2 toR because the constructive
proof given there introduces unnecessary synchronization. To obtain a one-superstep
BSP automaton for L2 based on R proceed as follows. Build a DFA A′

2 with states
q0, q1, q2, q3 such that q0, q1, q3 are accepting, state q0 acceptsL(a+), state q1 accepts
L(a+b∗), state q3 accepts L(b∗) and words leading to q2 are not from the union of
those languages (which equals L2). Let the BSP automaton have A′

2 as local automa-
ton at every location and define the synchronization function as follows:
Δ(< (q0 + q1), (q0 + q1), (q0 + q1), (q0 + q1) >) = an accepting vector state; to
accept R3,
Δ(< (q0 + q1), (q0 + q1), (q0 + q1), q3 >) = an acceptingvector state; to acceptR2,
Δ(< (q0 + q1), (q0 + q1), q3, q3 >) = an accepting vector state; to accept R1,
Δ(< (q0 + q1), q3, q3, q3 >) = an accepting vector state; to accept R0,
Δ sends any other state vector to a non-accepting vector state.
It then follows that the BSP automaton accepts L2 in one superstep for the given
distribution. This completes the example.

Example 4 Parallel recognition of L3. Sequential recognition of (a + b)∗bbb(a +
b)∗ amounts to searching for the first sequence bbb in a given word. A simple manner
of obtaining a DFA for this is to start for a NFA with a sequence of 4 states from
initial to accepting, each one related to the next by a unique δ(qj, b) = qj+1 transition,
and then apply the NFA-to-DFA transformation. Another method is to retain the four
states and add all missing transitions to obtain a DFA. Let us call it A3.

A3, and thus L3 can be parallelized to a one-superstep BSP automaton by a con-
struction similar to that of Example 3 above. The parallelization uses factorization
Φ1 and distribution D÷p: it sends the first n/p = |w|/p elements of w to location 0,
the next n/p to location 1, etc. with a single superstep symbol ; at the end.

To do this we consider the three factors w = w1w2 of any w ∈ L3 where w1 ∈
L((a + b)∗) − {bbb}, w2 ∈ L(bbb(a + b)∗) i.e. w2 begins with the first occurrence
of bbb in w. Then we consider all the p possible positions for the first letter of w2.
Each one corresponds through D÷p to a BSPRE. For example
|w1bbb| ≤ n/p iff Par(D÷p(w)) ∈ L(< ((a + b)∗) − {bbb})bbb, (a + b)∗, (a + b)∗,
. . . >). A BSP automaton A0 can be derived from this BSP regular expression: by
definition it operates in one superstep. Similar BSP automata Ai can be derived from
the hypothesis that the first b symbol of the first bbb sequence in w starts at a certain
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point inw. It follows thatA0 + A1 + A2 + . . . is a BSP automaton for L3. Moreover it
is possible to combine those BSP automata by a purely local process: add (create the
disjuction) of all local DFA, and then build the combined synchronization functionΔ

by operating independently on the accepting states every local part Ai
j. The resulting

BSP automaton accepts L3 in a single superstep. Its speedup is the same as for
Example 3.

Warning In our parallelization examples above it is assumed that an input word
is split into regular blocks before being input to a custom-built BSPA. If process-
ing time is understood as the time required to accept/refuse a given input word in
each language, then our constructions indeed provide a p× speedup over the ini-
tial “sequential” DFA. But the reader should be aware that the BSPA are in general
non-deterministic (NBSPA) and that to obtain this speedup in practice requires to
transform them into equivalent deterministic BSPA. This pre-processing is amortized
over the whole language but may have an exponential cost in space and time.

The construction of Examples 3 and 4 can clearly be applied to the general
word recognition problem: for any given x ∈ L((a + b)∗), one can construct a one-
superstep BSP automaton A (i.e. based on Φ1 and D÷p) that paralellizes the lan-
guage (a + b)∗x(a + b)∗. This A is the sum (language union) ofO(max(p, |x|)) BSP
automata whose local DFA are minor modifications of Ax, the minimal DFA for
accepting x.

All examples shown above provide candidate solutions to BSP-PARALLELIZE:
they parallelize the given regular language Lj in one superstep with a BSP automaton
whose size is linear in the size of a minimal DFA for Lj. All three examples are
regular language of star-height one, and in general it is not clear whether such a
parallelization is always possible.

Problem 3 OPEN PROBLEM: does every instance of BSP-PARALLELIZE have a
one-superstep solution?

The answer would be positive if the number of states in the BSP automaton
solution were allowed to grow exponentially. However the construction for showing
this is very different from that of our above examples.

Proposition 10 Every regular language L of regular expression r has a one-
superstep parallelization (Φ1,D÷p,A) that can be constructed in time exponential
in |r| and such that |A| is also exponential in |r|.
Proof We show how L = L(r) can be parallelized to a 1-superstep BSP automaton.
Define Ln = L ∩ L((a + b)n) and apply the following steps to build (Φ1,D÷p,A)

such that L(A) = Par(D÷p(L)). Assume without loss of generality that p = 2 (if
p > 2 the construction can be extended by induction).

1. Compute L0 = L ∩ (a + b)n/2. Those words are the ones location 0 should accept
in A: the first half of Ln’s words i.e. L’s words for a given length input length n.
Let A0 be a DFA and r0 a regular expression for L0.

2. Compute Ln = L ∩ (a + b)n as a regular expression rn.
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3. For every one of the 2n words x ∈ Ln/2, compute the Brzozowski differential
Dx(rn) whose language is known to equal x\Ln = {y | xy ∈ Ln}. This computa-
tion is a simple but exponential time-size converging normalization on the regular
expression [4, 21].

4. Let L′ = ∑
x∈(a+b)n/2(x ∩ Ln/2)\Ln. Let A′ be a DFA for accepting L′.

5. Define A = (< A0,A′ >,Δ) with Δ mapping to an accepting state vector, only
those pairs of accepting states that correspond to the same x prefix.

By construction A will accept at location 0 precisely the first halves of words in Ln,
and at location 1 their corresponding suffixes. The local automata are a sum (union)
of all such possibilities and the synchronization function Δ recombines them in the
correct way. �

In this section we have begun exploring parallelizations of regular languages.
We have only shown one-superstep examples because there are trivial n-supersteps
parallelizations that are of no interest either theoretically or practically. On sim-
ple examples of star-height one, space-efficient one-supersteps parallelizations have
been constructed. It has also been proved that any regular language can have a one-
superstep parallelization if exponential space (number of states) is allowed. It remains
to explore intermediate solutions and how their complexity relates to star-height of
the input regular language.

12 Intensional Notation and Application to Programming

In the theory presented up to this point, parallel vectors are enumerated but this is not
a scalable point of view on parallel programming. It is more usual and convenient
to represent vectors as functions from position i to the local element. This was the
basis for the λ-calculus in [12] whose primitives are now implemented in BSML
(BSP-OCaml). We show how to improve our theory of BSP automata in this manner
so that vectors are not enumerated but defined by a simple symbolic notation.

Assume that the locations i ∈ [p] are written in binary notation 0, 1, 10, 11 . . ..
Define a binary regular expression (BRE) by the following grammar:

b ::= ∅ | 0 | 1 | bb | b + b | b∗

Notice that BRE cannot encode the empty word. This notation is used to encode
sets of locations. For example b1 = (0 + 1)∗1 is the set of odd-rank locations,
b2 = 0(0 + 1)(0 + 1) represents the first four locations when p = 8, and b3 = 010
(0 + 1)(0 + 1)(0 + 1) the third 8-position block of positions when p = 32 i.e. posi-
tions 16–23 over 6 binary digits. It would be possible to make this notation symbolic
over p but that would require additional syntax and here we only explain how to
make it symbolic over the position integers for a fixed p.

To avoid enumerating BSP vectors, replace the enumeration< r0, r1, . . . , rp−1 >

by a grammar clause for intensional vectors of regular expressions:
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R ::= < r@b >

where r ∈ RE and b ∈ BRE. The meaning of < r@b > is the vector of regular
expressions whose local value is r at locations pid ∈ L(b) and ∅ at other locations.
For example if p = 8, theBSPRE< (a + b)+@b2 > represents, in enumerated form,

< (a + b)+, (a + b)+, (a + b)+, (a + b)+, ∅, ∅, ∅, ∅ >

i.e. the BSP language of one-superstep BSP words with non-empty local traces at
positions 0–3 but empty traces at positions 4–7.

It is also possible to create BSP vectors by superposition ‖ of multiple r@b
expressions. For example if p = 4, the BSPRE < a@(0 + 1)∗0 ‖ b@(0 + 1)∗1 >

corresponds to the enumeration

< a, b, a, b > .

With this new notation, redefine the BSP regular expressions:

R ::= ∅ | ε |< V >| R;R | R∗ | R + R.

using a new sub-grammar for BSP vectors:

V ::= r@b | V ‖ V

where r ∈ RE and b ∈ BRE. The language of those intensional BSP regular expres-
sions is defined with new rules for intensional vectors:

R L(R)

∅ { }
ε {ε}

< r@b >
∏i=p−1

i=0

{
L(r) if i ∈ L(b)
{∅} else

< r1@b1 ‖ . . . ‖ rk@bk >
∏i=p−1

i=0

⋃{L(rj) | i ∈ L(bj), 1 ≤ j ≤ k}
R1;R2 L(R1)L(R2)

R∗ L(R)∗
R1 + R2 L(R1) ∪ L(R2)

This new notation is “scalable” in the sense that its parallel implementations
can slice it into local parts of the < r@b > sub-expressions and simply combine
their local values as (regular) functions of the location number pid. This is similar
to what data-parallel programming languages provide. But its restriction to regular
expressions has a major advantage: one location can compute the set of locations
that hold a certain value. For a parallel implementation this amounts to inverting the
communication relation, without specific source-code information to that effect.
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We illustrate this kind of application on a simple butmeaningful example: convert-
ing “get” requests for remote data into “put” operations for sending data. Assume we
are programming a one-million core machine p = 220 in a high-level BSP language
and a global parallel instruction (purely functional, for simplicity) of the form

get datavector from indexvector

whose input types are a

datavector : floatp; indexvector : (int set)p

and whose output type is
(float set)p.

Let datavector be < d0, . . . , dp−1 > and indexvector be < I0, . . . , Ip−1 >

and assume that the get-from instruction realizes a global BSP operation whose
resulting value is the vector < A0, . . . ,Ap−1 > whose local values are

Ai = {dj | j ∈ Ii}

. In other words get-frommoves the elements of datavector as if every processor
i sends a request for local data to processors whose positions j are listed in the local
table Ii of indexvector. Consider now three successively improved data-parallel
implementations for this operation.

12.1 2-Phases Implementation

A straightforward implementation is to use two BSP supersteps. The first one sends
a set of requests from every processor i to processors j ∈ Ii. The second superstep
sends back the requested data i.e. processor j communicates back with all requesting
processors {i′ | j ∈ Ii′ }. The disadvantage of this scheme is that its BSP costs includes
two global barriers (i.e. twice the global latency) and implementors wish to avoid it
by “converting get into put” using one of the two following methods.

12.2 1-Phase O(p) Inversion

The SPMD paradigm for data-parallel programming ensures that the source program
is common to every local processor and thus the code for our instruction is known
at every position i, only data di and Ii are local. We can consider the Ii to be (finite)
languages of 20-bit words (log p-bit words) and improve the get-from instruction’s
syntax as follows: indexvector is given as a BSPRE e.g. < r@b > where r
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encodes the Ii. As a result of this language construct, every processor j can directly
compute its set of target processors for sending data {i′ | j ∈ Ii′ } by simply running
every 20-bit word i′ through a finite automaton for r: if accepted and if j ∈ L(b) then
processor j should send its dj to processor i′. This can be done in time proportional
to 220 = p. Moreover it does not require two BSP supersteps but only one: the “get”
is implemented directly by a “send”, thanks to the simplicity of the sub-language on
integer sets for Ii.

12.3 1-Phase O(logP) Inversion

An evenmore efficient implementation of the 1-phase implementation is possible due
to the simplicity of BSPRE. Every processor j can simply enumerate L(r) because
it is a regular language. This can be done in time proportional to the size of this set
times the length of the words in it: that isO(log p) time the number of messages [13].
In our example, if processor j has a small number of requests to satisfy e.g. 3, that
would prevent it from executing p or one million instructions.

12.4 Other Intensional Notations

All p-indexed vectors in the theory of BSP automata can be manipulated with sim-
ilar regular-indexing notations. For example the factorization Φ and distribution D
functions on sequential regular languages can likewise be restricted to intensional
notations. The resultwould be to automate the inversion ofD, and from there compute
a BSPRE directly from a sequential regular expression.

Moreover, partition, distribution and synchronization are enumerated functions
whose implementation may not be obvious. Defining a regular notation for those
functions improves their ease of programming, makes expressions “scalable” (para-
metric on p) and leads to useful inversion algorithms e.g. inverse distribution. For
example BSPLib [7] and many other “SPMD” data-parallel programming systems
present the local code (which corresponds to our local sequential automata) as a
function of the location number called pid.

All the advantages of an intensional notation can be obtained by an extended
notation for BSPRE that we define below. Moreover as we will now explain, the low
complexity of regular languages allows us to automate the inversion of the (location
→ value) map, a useful operation for parallel algorithms that is rarely provided by
parallel languages.
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13 Conclusions and Future Work

We have defined and begun exploring a BSP variant of elementary automata theory.
Some key observations are that BSP automata are more than product automata, their
natural alphabet is the set of regular expressions, and their state-space is exponential
in the number of parallel locations. BSP automata and BSP languages preserve all
the classical closure properties: non-determinism, ε-transitions and determinization,
but break the classical properties of minimization. The interaction between state-
minimization and BSP cost optimization remains to be understood. Compact sym-
bolic notations can be designed for the parallel-vector components of BSP automata
and BSP regular-expressions. BSP automata can help automate bulk-synchronous
parallel programming e.g. as a declarative language for connection supersteps, defin-
ing communication structures and cost optimization.

Futureworkwill explore (a)BSP regular grammars and their generalization toBSP
context-free languages, (b) the application of BSP automata to parallel text process-
ing and parsing, (c) applications to pattern matching and to parallel data structure
(tries etc.) (d) generalizations of BSP automata to heterogeneous and hierarchical
architectures.

BSP automata constitute a clear and easily-understood basis for teaching, speci-
fying and writing parallel programs. They can be used to combine the control- and
communication structure of BSP programs, analyze or optimize that structure. BSP
regular expressions are useful for declarative programming of parallel operations
with explicit data placement and synchronizations.
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Appendix 1

1.1 BSP Automaton Versus Product of Automata

The theory of products of automata is developed by Gécseg in [6]. It describes
decompositions of finite automata as products of simpler ones, and is closely related
to the theory of semigroup decompositions.

A BSP computation is more than a vector of sequential computations, and this
is reflected by the fact that a BSP automaton is more than a vector of DFA. This
is relatively obvious but we make it here completely explicit by comparing that
definition (Definition 2) with that of a product automaton.

Let Ai = (Qi,Σ, δi, qi0,F
i), i ∈ [p] be a vector of DFA and A = (A0, . . . ,

Ap−1,Δ) a BSP automaton built from them. Gécseg’s definition (Definition 4.2 in
[6]) of machine product applies to Mealy machines i.e. DFA with an output function
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added. For the purpose of language recognition the output functions are not necessary,
so we consider the machine product

∏
i A

i as the Gécseg without outputs. According
to Definition 4.2 in [6],

∏
i A

i is a state machine with vector states
∏

i Q
i, just like

the BSP automaton, a new externally-defined alphabet X, and a special transition
function δψ based on the externally-given function

φ : (
∏
i

Qi) × X → Σp

such that

δψ(< q0, . . . , qp−1 >, x) =< δ0(q0, x0), . . . , δp−1(qp−1, xp−1) >

where < x0, . . . , xp−1 >= φ((< q0, . . . , qp−1 >, x).
It is trivial to show that the automaton product can simulate the asynchronous

parts of a BSP computation. But the structure of δψ is not the same as a synchro-
nization function Δ. The product automaton could simulate the BSP automaton but
at the expense of an unnatural encoding e.g. X = (Σ∗)p × ∏

i Q
i to let φ distinguish

asynchronous versus synchronous applications of Δ.
But an alphabet which contains states and trace histories is hardly a natural (and

low-complexity) encoding. Following this theoretical direction would defeat the pur-
pose of BSP automata that is not the study of algebraic decompositions, or decidabil-
ity, but rather to investigate programming notations having BSP implementations.

Appendix 2

2.1 Regular Expressions

Regular expressions are a well-known notation for the languages of finite automata.
The definitions and properties we state below can be found in every textbook on finite
automata for example Chap. 3 of [21]. The languages denoted by regular expressions
are called regular, and that class of languages is the same as those recognized by a
DFA or its equivalent, non-deterministic variants.

A regular expression is an expression r from the following grammar:

r ::= ∅ | ε | a | rr | r∗ | r + r

where a ∈ Σ is any symbol from the alphabet. We write RE for the set of regular
expressions . The language of a regular expression is defined by L : RE → P(Σ∗)
where function L translates ∅ to the empty language, ε (resp. a) to a singleton empty
word (resp. singleton one-symbol word), r1r2 to the concatenation of languages, r∗
to L(r)∗ = ⋃

n≥0 L(r)n and r1 + r2 to the union of the two languages. The union,

http://dx.doi.org/10.1007/978-3-319-46376-6_3
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concatenation, *-closure of two regular languages is regular. The complement of a
regular language is also regular [15].

For r ∈ RE, there exists a NFAA such that L(A) = L(r). A time-optimal quadratic
time algorithm for this transformation is described in [3]. It has been improved to a
linear-space and parallelisable algorithm in [22]. Both use the Glushkov automation
of r whose states are the positions in r’s syntax tree.

Inversely, for A a finite automaton, there exists r ∈ RE such that L(r) = L(A).
The two equivalence properties are called Kleene’s theorems [10].
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Coping with Silent Errors in HPC
Applications

Guillaume Aupy, Anne Benoit, Aurlien Cavelan, Massimiliano Fasi,
Yves Robert, Hongyang Sun and Bora Uçar

Abstract This chapter describes a unified framework for the detection and
correction of silent errors, which constitute a major threat for scientific applica-
tions at extreme-scale. We first motivate the problem and explain why checkpointing
must be combined with some verification mechanism. Then we introduce a general-
purpose technique based upon computational patterns that periodically repeat over
time. These patterns interleave verifications and checkpoints, and we show how
to determine the pattern minimizing expected execution time. Then we move to
application-specific techniques and review dynamic programming algorithms for
linear chains of tasks, as well as ABFT-oriented algorithms for iterative methods
in sparse linear algebra. Thanks to Selim Akl, by Yves Robert—I have a vivid
souvenir of Selim’s visit to Lyon in the early 90s. Selim had obtained a Louis Néel
fellowship devoted to promote exchanges between Canada and the Rhône-Alpes area
in France, and he spent 6months in Lyon with his family. Michel Cosnard was the
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head of the LIP laboratory at that time. Selim gave a course on parallel algorithms,
mainly sorting and PRAM, that sparkled a lot of interest among both our students and
the researchers in the lab. During his stay, Selim initiated several collaborations with
Jean Duprat, Afonso Ferreira and Pierre Fraigniaud. Although I never collaborated
with him, I would like to thank him for his vision. I was then a young professor in
LIP, and I felt like meeting a star, but a very kind one. His two books, Parallel Sorting
Algorithms and The Design and Analysis of Parallel Algorithms, had a huge influ-
ence on many researchers at LIP (including myself ), as they helped shape our view
of parallel complexity. Later on we all took different research directions (PRAM,
hypercubes, systolic arrays, scheduling, routing, …) but Selim laid the foundations
of the field for us, and we are grateful to him.

1 Introduction

For High-Performance Computing (HPC) applications, scale is a major opportunity.
Massive parallelism with 100,000+ nodes is the most viable path to achieving sus-
tained petascale performance. Future platforms will exploit even more computing
resources to enter the exascale era.

Unfortunately, scale is also a major threat, because resilience becomes a key
challenge. Even if each node provides an individual MTBF (Mean Time Between
Failures) of, say, one century, a machine with 100,000 such nodes encounters on
average a failure every 9h, an interval much shorter than the execution time of many
HPC applications. Note that (i) a one-centuryMTBF per node is an optimistic figure,
given that each node features several hundreds of cores; and (ii) in some scenarios
for the path to exascale computing [15], one envisions platforms including up to one
million such nodes, whose MTBF will decrease to 52min.

Several kinds of errors need to be considered when computing at scale. In the
recent years, the HPC community has traditionally focused on fail-stop errors, such
as hardware failures. The de facto general-purpose technique to recover from fail-
stop errors is checkpoint/restart [11, 17]. This technique employs checkpoints to
periodically save the state of a parallel application, so that when an error strikes
some process, the application can be restored into one of its former states. There are
several families of checkpointing protocols, but they share a common feature: each
checkpoint forms a consistent recovery line, i.e., when an error is detected, one can
rollback to the last checkpoint and resume execution, after a downtime and a recovery
time.Manymodels are available to understand the behavior of the checkpointing and
restarting techniques [8, 14, 31, 37].

While the picture is quite clear for fail-stop errors, the community has yet to devise
an efficient approach to cope with silent errors, primary source of silent data cor-
ruptions. Such errors must also be accounted for when executing HPC applications
[28, 30, 39–41]. They may be caused, for instance, by soft errors in L1 cache,
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Fig. 1 Error and detection
latency

TimeXs Xd

Error
Detection

arithmetic errors in the ALU (Arithmetic and Logic Unit), or bit flips due to cos-
mic radiation. The main issue is that the impact of silent errors is not immediate,
since they do not manifest themselves until the corrupted data impact the result of
the computation (see Fig. 1), leading to a failure. If an error striking before the last
checkpoint is detected after that checkpoint, then the checkpoint is corrupted, and
cannot be used to restore the application. If only fail-stop failures are considered,
a checkpoint cannot contain a corrupted state, because a process subject to failure
cannot create a checkpoint or participate to the application: failures are naturally
contained to failed processes. When dealing with silent errors, however, faults can
propagate to other processes and checkpoints, because processes continue to partic-
ipate and follow the protocol during the interval that separates the occurrence of the
error from its detection.

In Fig. 1, Xs and Xd are random variables that represent the time until the next
silent error and its detection latency, respectively.We usually assume that silent errors
strike according to a Poisson process of parameter λ, so that Xs has the distribution
of an exponential law of parameter λ and mean 1/λ. On the contrary, it is very
hard to make assumptions on the distribution of Xd . To alleviate the problem of
detection latency, one may envision to keep several checkpoints in memory, and
to restore the application from the last valid checkpoint, thereby rolling back to
the last correct state of the application [25]. This multiple-checkpoint approach has
three major drawbacks. First, it is demanding in terms of storage: each checkpoint
typically represents a copy of the entire memory footprint of the application, which
may well correspond to several terabytes. The second drawback is the possibility of
fatal failures. Indeed, if we keep k checkpoints in memory, the approach requires
that the last checkpoint still kept in memory to precede the instant when the error
currently detected struck. Otherwise, all live checkpoints would be corrupted, and
one would have to re-execute the entire application from scratch. The probability of
a fatal failure for various error distribution laws and values of k can be evaluated [1].
The third and most serious drawback of this approach applies even without memory
constraints, i.e., if we could store an infinite number of checkpoints in memory. The
critical point is to determine which checkpoint is the last valid one, information
which is necessary to recover from a valid application state. However, because of
the detection latency (which is unknown), we do not know when the silent error has
indeed occurred, hence we cannot identify the last valid checkpoint, unless some
verification mechanism is enforced.
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We introduce such verification mechanisms in this chapter. In Sect. 2, we discuss
several approaches to validation (recomputation, checksums, coherence tests, orthog-
onalization checks, etc.). Then in Sect. 3we adopt a general-purpose approach, which
is agnostic of the nature of the verification mechanism. We consider a divisible-load
application (which means that we can take checkpoints at any instant), and we par-
tition the execution into computational patterns that repeat over time. The simplest
pattern is represented by a work chunk followed by a verified checkpoint, which
corresponds to performing a verification just before taking each checkpoint. If the
verification succeeds, then one can safely store the checkpoint. If the verification
fails, then a silent error has struck since the last checkpoint, and one can safely
recover from it to resume the execution of the application. We compute the optimal
length of the work chunk in the simplest pattern in Sect. 3.1, which amounts to revis-
iting Young and Daly’s formula [14, 37] for silent errors. While taking a checkpoint
without verification seems a bad idea (because of the memory cost, and of the risk of
saving corrupted data), a validation step not immediately followed by a checkpoint
may be interesting. Indeed, if silent errors are frequent enough, verifying the data in
between two (verified) checkpoints, will reduce in expectation the detection latency
and thus the amount of work to be re-executed due to possible silent errors. The
major goal of Sect. 3 is to determine the best pattern composed of m work chunks,
where each chunk is followed by a verification and the last chunk is followed by a
verified checkpoint. We show how to determine m and the length of each chunk so
as to minimize the makespan, that is the total execution time.

Thenwemove to application workflows. In Sect. 4, we consider application work-
flows that consist of a number of parallel tasks that execute on a platform, and that
exchange data at the end of their execution. In other words, the task graph is a lin-
ear chain, and each task (except maybe the first and the last one) reads data from
its predecessor and produces data for its successor. This scenario corresponds to a
high-performance computing application whose workflow is partitioned into a suc-
cession of (typically large) tightly-coupled computational kernels, each of thembeing
identified as a task by the model. At the end of each task, we can either perform a
verification on the task output, or perform a verification followed by a checkpoint.
We provide dynamic programming algorithms to determine the optimal locations of
checkpoints and verifications.

The last technique that we illustrate is application-specific. In Sect. 5, we deal with
sparse linear algebra kernels, and we show how to combine ABFT (Algorithm Based
Fault Tolerance) with checkpointing. In a nutshell, ABFT consists in adding check-
sums to application data, and to view them as extended data items. The application
performs the same computational updates on the original data and on the checksums,
thereby avoiding the need to recompute the checksums after each update. The salient
feature of this approach is forward recovery: ABFT is used both as an error veri-
fication and error correction mechanism: whenever a single error strikes, it can be
corrected via ABFT and there is no need to rollback for recovery. Finally, we outline
main conclusions and directions for future work in Sect. 6.
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2 Verification Mechanisms

Considerable efforts have been directed at error-checking to reveal silent errors. Error
detection is usually very costly. Hardware mechanisms, such as ECC (Error Correct-
ing Code) memory, can detect and even correct a fraction of errors, but in practice
they are complemented with software techniques. General-purpose techniques are
based on replication [18, 21, 34, 38]. Indeed, performing the operation twice and
comparing the results of the replicas makes it possible to detect a single silent error.
With TripleModular Redundancy [26] (TMR), errors can also be corrected bymeans
of a voting scheme. Another approach, proposed by Moody et al. [29], is based on
checkpointing and replication and enables detection and fast recovery of applications
from both silent errors and hard errors.

Coming back to verification mechanisms, application-specific information can
be helpful in designing ad hoc solutions, which can dramatically decrease the cost
of detection. Many techniques have been advocated. They include memory scrub-
bing [24], but also ABFT techniques [7, 23, 35], such as coding for the SpMxV
(Sparse Matrix-Vector multiplication) kernel [35], and coupling a higher-order with
a lower-order scheme forOrdinaryDifferential Equation [6]. Thesemethods can only
detect an error but not correct it. Self-stabilizing corrections after error detection in
the conjugate gradient method are investigated by Sao and Vuduc [33]. Also, Heroux
and Hoemmen [22] design a fault-tolerant GMRES algorithm capable of converging
despite silent errors, and Bronevetsky and de Supinski [9] provide a comparative
study of detection cost for iterative methods. Elliot et al. [16] combine partial redun-
dancy and checkpointing, and confirm the benefit of dual and triple redundancy.
The drawback is that twice the number of processing resources is required (for dual
redundancy).

A nice instantiation of the checkpoint and verification mechanism that we study
in this chapter is provided by Chen [12], who deals with sparse iterative solvers. Con-
sider a simplemethod such as the PreconditionedConjugateGradient (PCG)method:
Chen’s approach performs a periodic verification every d iterations, and a periodic
checkpoint every d × c iterations, which is a particular case, with equi-spaced valida-
tions, of the approach presented later in Sect. 3.2. For PCG, the verification amounts
to checking the orthogonality of two vectors and to recomputing and checking the
residual. The cost of the verification is small if compared to the cost of an iteration,
especially when the preconditioner requires many more flops than a SpMxV. As
already mentioned, the approach presented in Sect. 3 is agnostic of the underlying
error-detection technique and takes the cost of verification as an input parameter to
the model.
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3 Patterns for Divisible Load Applications

In this section we explain how to derive the optimal pattern of interleaving check-
points and verifications. An extended presentation of the results is available in [2, 4,
10].

3.1 Revisiting Young and Daly’s Formula

Consider a divisible-load application, i.e., a (parallel) job that can be interrupted at
any time for checkpointing, for a nominal cost C . To deal with fail-stop failures, the
execution is partitioned into same-size chunks followed by a checkpoint, and there
exist well-known formulae by Young [37] and Daly [14] to determine the optimal
checkpointing period.

To deal with silent errors, the simplest protocol (see Fig. 2) would be to perform
a verification (at a cost V ) just before taking each checkpoint. If the verification suc-
ceeds, then one can safely store the checkpoint andmark it as valid. If the verification
fails, then an error has struck since the last checkpoint, which is correct having been
verified, and one can safely recover (which takes a time R) from that checkpoint to
resume the execution of the application. This protocol with verifications zeroes out
the risk of fatal errors that would force to restart the execution from scratch.

To compute the optimal length of the work chunk W ∗, we first have to define the
objective function. The aim is to find a pattern P (with a work chunk of length W
followed by a verification of length V and a checkpoint of length C) that minimizes
the expected execution time of the application. Let Wbase denote the base execution
time of an application without any overhead due to resilience techniques (without
loss of generality, we assume unit-speed execution). The execution is divided into
periodic patterns, as shown in Fig. 2. Let E(P) be the expected execution time of the
pattern. For large jobs, the expected makespan Wfinal of the application when taking
failures into account can then be approximated by

Wfinal ≈ E(P)

W
× Wbase = Wbase + H(P) · Wbase

Time

V C W V C W V C (Without error)

Time

V C W V R W V C W V C

Error
Detection

(With error)

Fig. 2 The simplest pattern: a work chunk W followed by a verification V and a checkpoint C
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where

H(P) = E(P)

W
− 1

is the expected overhead of the pattern. Thus, minimizing the expected makespan is
equivalent tominimizing the pattern overhead H(P). Hence, we focus onminimizing
the pattern overhead. We assume that silent errors are independent and follow a
Poisson process with arrival rate λ . The probability of having at least a silent error
during a computation of length w is given by p = 1 − e−λ w. We assume that errors
cannot strike during recovery and verification. The following proposition shows the
expected execution time of a pattern with a fixed work length W .

Proposition 1 The expected execution time of a pattern P with work length W is

E(P) = W + V + C + λW 2 + λW (V + R ) + O(λ 2W 3) . (1)

Proof Let p = 1 − e−λW denote the probability of having at least one silent error
in the pattern. The expected execution time obeys the recursive formula

E(P) = W + V + p (R + E(P)) + (1 − p )C . (2)

Equation (2) can be interpreted as follows: we always execute thework chunk and run
the verification to detect silent errors, whose occurrence requires not only a recovery
but also a re-execution of the whole pattern. Otherwise, if no silent error strikes, we
can proceed with the checkpoint. Solving the recursion in Eq. (2), we obtain

E(P) = eλW (W + V ) + (
eλW − 1

)
R + C .

By approximating eλ x = 1 + λ x + λ 2x2

2 up to the second-order term, we can further
simplify the expected execution time and obtain Eq. (1). ��

The following theorem gives a first-order approximation to the optimal work
length of a pattern.

Theorem 1 A first-order approximation to the optimal work length W ∗ is given by

W ∗ =
√
V + C

λ
. (3)

The optimal expected overhead is

H∗(P) = 2
√

λ (V + C ) + O(λ ) . (4)

Proof From the result of Proposition 1, the expected overhead of the pattern can be
computed as
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H(P) = V + C

W
+ λW + λ (V + R ) + O(λ 2W 2) . (5)

Assume that theMTBF of the platformμ = 1/λ is large if compared to the resilience
parameters. Then consider the first two terms of H(P) in Eq. (5): the overhead is
minimal when the pattern has lengthW = Θ(λ −1/2), and in that case both terms are
in the order of λ 1/2, so that we have

H(P) = Θ(λ 1/2) + O(λ ).

Indeed, the last term O(λ ) becomes also negligible when compared to Θ(λ 1/2).
Hence, the optimal pattern length W ∗ can be obtained by balancing the first two
terms in Eq. (5), which gives Eq. (3). Then, by substituting W ∗ back into H(P), we
get the optimal expected overhead in Eq. (4). ��

We observe from Theorem 1 that the optimal work length W ∗ of a pattern is in
Θ

(
λ −1/2

)
, and the optimal overhead H∗(P) is in Θ(λ 1/2). This allows us to express

the expected execution overhead of a pattern as H(P) = oef
W + orw W + O(λ ), where

oef and orw are two key parameters that characterize two different types of overheads
in the execution, and they are defined below.

Definition 1 For a given pattern, oef denotes the error-free overhead due to the
resilience operations (e.g., verification, checkpointing), and orw denotes the re-
executed work overhead, in terms of the fraction of re-executed work due to errors.

In the simple pattern we analyze above, these two overheads are given by
oef = V + C and orw = λ , respectively. The optimal pattern length and the optimal
expected overhead can thus be expressed as

W ∗ =
√

oef
orw

,

H∗(P) = 2
√
oef · orw + O(λ ) .

We see that minimizing the expected execution overhead H(P) of a pattern
becomes equivalent to minimizing the product oef × orw up to the dominating term.
Intuitively, including more resilient operations reduces the re-executed work over-
head but adversely increases the error-free overhead, and vice versa. This requires
a resilience protocol that finds the optimal tradeoff between oef and orw . We make
use of this observation in the next section to derive the optimal pattern in a more
complicated protocol where patterns are allowed to include several chunks.

3.2 Optimal Pattern

If the verification cost is small when compared to the checkpoint cost, there is room
for optimization. Consider the pattern illustrated in Fig. 3 with three verifications
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Time
V C w1 V w2 V w3 V C (Without error)

Time
V C w1 V w2 V R w1 V w2 V w3 V C

Error
Detection

(With error)

Fig. 3 Pattern with three verifications per checkpoint

per checkpoint. There are three chunks of size w1, w2, and w3, each followed by a
verification. Every third verification is followed by a checkpoint.

To understand the advantages of such a pattern, assume w1 = w2 = w3 = W/3
for now, so that the total amount of work is the same as in the simplest pattern.
As before, a single checkpoint needs to be kept in memory, and each error leads to
re-executing the work since the last checkpoint. But detection occurs much more
rapidly in the new pattern, because of the intermediate verifications. If the error
strikes during the first of the three chunks, it is detected by the first verification, and
only the first chunk is re-executed. Similarly, if the error strikes the execution of the
second chunk (as illustrated in the figure), it is detected by the second verification,
and the first two chunks are re-executed. The entire frame of work needs to be
re-executed only if the error strikes during the third chunk. Under the first-order
approximation as in the analysis of Theorem 1, the average amount of work to re-
execute is (1 + 2 + 3)w/3 = 2w = 2W/3, that is, the re-executed work overhead
becomes orw = 2λ /3. On the contrary, in the first pattern of Fig. 2, the amount of
work to re-execute is always W , because the error is never detected before the end
of the pattern. Hence, the second pattern leads to a 33% gain in the re-execution
time. However, this comes at the price of three times as many verifications, that
is, the error-free overhead becomes oef = 3V + C . This overhead is paid in every
error-free execution, and may be an overkill if the verification mechanism is too
costly.

This example shows that finding the best trade-off between error-free overhead
(what is paid due to the resilience method, when there is no failure during execu-
tion) and execution time (when errors strike) is not a trivial task. The optimization
problem can be stated as follows: given the cost of checkpointing C , recovery R,
and verification V , what is the optimal pattern to minimize the (expectation of the)
execution time? A pattern is composed of several work chunks, each followed by
a verification, and the last chunk is always followed by both a verification and a
checkpoint. Let m denote the number of chunks in the pattern, and let w j denote the
length of the j-th chunk for 1 ≤ j ≤ m. LetW = ∑m

j=1 w j . We define β j = w j/W
be the relative length of the j-th chunk so that β j ≥ 0 and

∑m
j=1 β j = 1. We let

βββ = [β1, β2, . . . , βm]. The goal is to determine the pattern work lengthW , the num-
ber of chunks m as well as the relative length vector βββ .
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Proposition 2 The expected execution time of the above pattern is

E(P) = W + mV + C + (
λβββ T Aβββ

)
W 2 + O(

√
λ ) , (6)

where A is an m × m matrix whose diagonal coefficients are equal to 1 and whose
other coefficients are all equal to 1

2 .

Proof Let p j = 1 − e−λ w j denote the probability of having at least one silent error
in chunk j . To derive the expected execution time of the pattern, we need to know
the probability q j that the chunk j actually gets executed in the current attempt.

The first chunk is always executed, sowe have q1 = 1. Consider the second chunk,
which is executed if no silent error strikes the first chunk, hence q2 = 1 − p 1. In
general, the probability that the j-th chunk gets executed is

q j =
j−1∏
k=1

(1 − p k) .

Now, we are ready to compute the expected execution time of the pattern. The
following gives the recursive expression:

E(P) =
(

m∏
k=1

(1 − p k)

)
C

+
(
1 −

m∏
k=1

(1 − p k)

)
(R + E(P))

+
m∑
j=1

q j (w j + V ) . (7)

Specifically, line 1 of Eq. (7) shows that the checkpoint at the end of the pattern is
performed only when there has been no silent error in any of the chunks. Otherwise,
we need to re-execute the pattern, after a recovery, as shown in line 2. Finally,
line 3 shows the condition for each chunk j to be executed. By simplifying Eq. (7)
and approximating the expression up to the second-order term, as in the proof of
Proposition 1, we obtain

E(P) = W + mV + C + λ f W 2 + O(
√

λ ) ,

where f = ∑m
j=1 β j

(∑m
k= j βk

)
, and it can be concisely written as f = βββ T Mβββ ,

where M is the m × m matrix given by

mi, j =
{
1 for i ≤ j

0 for i > j
.
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By replacing M by its symmetric part A = M+MT

2 , which does not affect the value
of f , we obtain the matrix A whose diagonal coefficients are equal to 1 and whose
other coefficients are all equal to 1

2 , and the expected execution time in Eq. (6). ��
Theorem 2 The optimal pattern has m∗ equal-length chunks, total length W ∗ and
is such that:

W ∗ =
√

m∗V + C
1
2

(
1 + 1

m∗
)
λ

, (8)

β∗
j = 1

m∗ for 1 ≤ j ≤ m∗ , (9)

where m∗ is either max(1, 	m̄∗
) or �m̄∗� with

m̄∗ =
√
C

V
. (10)

The optimal expected overhead is

H∗(P) = √
2λC + √

2λ V + O(λ ) . (11)

Proof Given the number of chunks m with
∑m

j=1 β j = 1, the function f = βββ T Aβββ

is shown to beminimized [10, Theorem 1with r = 1] whenβββ follows Eq. (9), and its
minimum value is given by f ∗ = 1

2

(
1 + 1

m

)
. We derive the two types of overheads

as follows:

oef = mV + C ,

orw = 1

2

(
1 + 1

m

)
λ .

The optimal work length W ∗ =
√

oef
orw

for any fixed m is thus given by Eq. (8).

The optimal number of chunks m̄∗ shown in Eq. (10) is obtained by minimizing
F(m) = oef × orw . The number of chunks in a pattern can only be a positive inte-
ger, so m∗ is either max(1, 	m̄∗
) or �m̄∗�, since F(m) is a convex function of m.
Finally, substituting Eq. (10) back into H∗(P) = 2

√
oef × orw + O(λ ) gives rise to

the optimal expected overhead as shown in Eq. (11). ��

4 Linear Workflows

For an application composed of a chain of tasks, the problem of finding the optimal
checkpoint strategy, i.e., of determining which tasks to checkpoint, in order to mini-
mize the expected execution time when subject to fail-stop failures, has been solved
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by Toueg and Babaoglu [36], using a dynamic programming algorithm. We revisit
the problem for silent errors by exploiting verification in addition to checkpoints. An
extended presentation of the results is available in [3, 5].

4.1 Setup

To deal with silent errors, resilience is provided through the use of checkpointing
coupled with an error detection (or verification) mechanism. When a silent error
is detected, we roll back to the nearest checkpoint and recover from there. As in
Sect. 3.1, let C denote the cost of checkpointing, R the cost of recovery, and V the
cost of a verification.

We consider a chain of tasks T1, T2, . . . , Tn , where each task Ti has a weight wi

corresponding to the computational load. For notational convenience, we also define
Wi, j = ∑ j

k=i+1 wk to be the time to execute tasks Ti+1 to Tj for any i ≤ j . Once
again we assume that silent errors occur following a Poisson processwith arrival rate
λ and that the probability of having at least one error during the execution of Wi, j is
given by p i, j = 1 − e−λWi, j .

We enforce that a verification is always taken immediately before each check-
point, so that all checkpoints are valid, and hence only one checkpoint needs to be
maintained at any time during the execution of the application. Furthermore, we
assume that errors only strike the computations, while verifications, checkpoints,
and recoveries are failure-free.

The goal is to find which task to verify and which task to checkpoint in order
to minimize the expected execution time of the task chain. To solve this problem,
we derive a two-level dynamic programming algorithm. For convenience, we add a
virtual task T0, which is always checkpointed, and whose recovery cost is zero. This
accounts for the fact that it is always possible to restart the application from scratch
at no extra cost. In the following, we describe the general scheme when considering
both verifications and checkpoints.

4.2 Dynamic Programming

Figures4 and 5 illustrate the idea of the algorithm, which contains two dynamic pro-
gramming levels, responsible for placing checkpoints and verifications, respectively,
as well as an additional step to compute the expected execution time between two
verifications. The following describes each step of the algorithm in detail.
Placing checkpoints. Thefirst level focuses on the placement of verified checkpoints,
i.e., checkpoints preceded immediately by a verification. Let Eckpt (c2) denote the
expected time to successfully execute all the tasks from T1 to Tc2 , where Tc2 is verified
and checkpointed. Now, to find the last verified checkpoint before Tc2 , we try all
possible locations from T0 to Tc2−1. For each location, say c1, we call the function
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T0 V C T1 . . . Tc1 V C Tc1+1 . . . Tc2 V C . . .

Eckpt(c1) Everi f (c1,c2)

Eckpt(c2)

Fig. 4 First level of dynamic programming (Eckpt )

. . . Tc1 V C Tc1+1 . . . Tv1 V Tv1+1 . . . Tv2 V . . .

Everi f (c1,v1) E(c1,v1,v2)

Everi f (c1,v2)

Fig. 5 Second level of dynamic programming (Everi f ) and computation of expected execution
time between two verifications (E)

recursively with Eckpt (c1) (for placing checkpoints before Tc1 ), and compute the
expected time to execute the tasks from Tc1+1 to Tc2 . The latter is done through
Everi f (c1, c2), which also decides where to place additional verifications between
Tc1+1 and Tc2 . Finally, we add the checkpointing cost C (after Tc2 ) to Eckpt (c2).
Overall, we can express Eckpt (c2) as follows:

Eckpt (c2) = min
0≤c1<c2

{Eckpt (c1) + Everi f (c1, c2) + C} .

Note that a location c1 = 0 means that no further checkpoints are added. In this
case, we simply set Eckpt (0) = 0, which initializes the dynamic program. The total
expected time to execute all the tasks from T1 to Tn is thus given by Eckpt (n).
Placing additional verifications. The second level decideswhere to insert additional
verifications between two tasks with verified checkpoints. The function is initially
called from the first level between two checkpointed tasks Tc1 and Tc2 , each of which
also comes with a verification. Therefore, we define Everi f (c1, v2) as the expected
time to successfully execute all the tasks from Tc1+1 to Tv2 , knowing that the last
checkpoint is right after task Tc1 , and there is no additional checkpoint between
Tc1+1 and Tv2 . Note that Everi f (c1, v2) accounts only for the time required to execute
and verify these tasks. As before, we try all possible locations for the last verification
between Tc1 and Tv2 and, for each location v1, we call the function recursively with
Everi f (c1, v1). Furthermore, we add the expected time needed to successfully execute
the tasks Tv1+1 to Tv2 , denoted by E(c1, v1, v2), given the position c1 of the last
checkpoint. Overall, we can express Everi f (c1, v2) as follows:

Everi f (c1, v2) = min
c1≤v1<v2

{Everi f (c1, v1) + E(c1, v1, v2)} . (12)
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Again, the case v1 = c1 means that no further verification is added, so we initialize
the dynamic program with Everi f (c1, c1) = 0. Note that the verification cost V at the
end of task Tv2 will be accounted for in the function E(c1, v1, v2).
Computing expected execution time between two verifications. Finally, to com-
pute the expected time to successfully execute several tasks between twoverifications,
we need the position of the last checkpoint c1, as well as the positions of the two
verifications v1 and v2.

First, we pay Wv1,v2 by executing all the tasks from Tv1+1 to Tv2 , followed by the
cost of verification V after Tv2 . During the execution, there is a probability p v1,v2 =
1 − e−λWv1,v2 of having a silent error, which will be detected by the verification after
Tv2 . In this case, we need to perform a recovery from the last checkpoint after Tc1 with
a cost R (set to 0 if c1 = 0), and re-execute the tasks from there by calling the function
Everi f (c1, v1) followed by E(c1, v1, v2). Therefore, we can express E(c1, v1, v2) as
follows:

E(c1, v1, v2) = Wv1,v2 + V + p v1,v2

(
R + Everi f (c1, v1) + E(c1, v1, v2)

)
. (13)

Simplifying Eq. (13), we get

E(c1, v1, v2) = eλWv1 ,v2
(
Wv1,v2 + V

) + (
eλWv1 ,v2 − 1

) (
R + Everi f (c1, v1)

)
.

Complexity. The complexity is dominated by the computation of the expected
completion time table Everi f (c1, v2), which contains O(n2) entries, and each entry
depends on at most n other entries that are already computed. All tables are computed
in a bottom-up fashion, from the left to the right of the task chain. Hence, the overall
complexity of the algorithm is O(n3).

5 ABFT and Checkpointing for Linear Algebra Kernels

In this section we introduce ABFT (Algorithm Based Fault Tolerance) as an app-
lication-specific technique which allows for both error detection and correction.
We streamline our discussion on the CG method, however, the techniques that we
describe are applicable to any iterative solver that uses sparsematrix vectormultiplies
and vector operations. This list includes many of the non-stationary iterative solvers
such as CGNE (Conjugate Gradient on Normal Equations), BiCG (Bi-Conjugate
Gradient), BiCGstab (Bi-Conjugate Gradient Stabilized), where sparse matrix trans-
pose vector multiply operations also take place. Preconditioned variants of these
solvers with an approximate inverse preconditioner (applied as an SpMxV, or two
SpMxVs) can also be made fault-tolerant with the proposed scheme. The extension
to PCG is described in [19].
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In Sect. 5.1, we first provide a background on the CGmethod and give an overview
of both Chen’s stability tests [12] and ABFT protection schemes. Then we detail
ABFT techniques for the SpMxV kernel.

5.1 CG and Fault Tolerance Mechanisms

The code for the CG method is shown in Algorithm 1. The main loop features a
sparse matrix-vector multiply, two inner products (for pᵀ

i q and ‖ri+1‖2), and three
vector operations of the form axpy.

Chen’s stability tests [12] amount to checking the orthogonality of vectors pi+1

and q, at the price of computing (pᵀ
i+1q)/(‖pi+1‖ ‖qi‖), and to checking the residual

at the price of an additional SpMxV operation Axi − b. The dominant cost of these
verifications is the additional SpMxV operation.

We investigate three fault tolerancemechanisms. The first one isOnline- Detec-
tion; this is Chen’s original approach modified to save the matrix A in addition to
the current iteration vectors. This is needed when a silent error is detected: if this
error comes for a corruption in data memory, we need to recover with a valid copy
of the data matrix A. The second one is ABFT- Detection, which detects errors
and restarts from the most recent checkpoint. The thirds one isABFT-Correction,
which detects errors and corrects if there was only one, otherwise restarts from the
last checkpoint. The three methods under the study keep a valid copy of A and have
exactly the same checkpoint cost.

We now introduce the ingredients of our own protection and verification mech-
anisms ABFT-Detectionand ABFT-Correction. We use ABFT techniques to
protect the SpMxV, its result (hence the vector q), the matrix A and the input vector
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pi . As ABFT methods for vector operations is as costly as a repeated computation,
we use TMR for them for simplicity. That is we do not protect pi , q, ri , and xi of the
i th loop beyond the SpMxV at line 5 with ABFT, but we compute the dots, norms
and axpy operations in resilient mode.

Although theoretically possible, constructing ABFT mechanism to detect up to
k errors is practically not feasible for k > 2. The same mechanism can be used
to correct up to 	k/2
 errors. Therefore, we focus on detecting up to two errors
and correcting single errors. That is, we detect up to two errors in the computation
q ← Api (two entries in q are faulty), or in pi , or in the sparse representation of the
matrix A. With TMR, we assume that the errors in the computation are not overly
frequent so that two results out of three are correct (we assume errors do not strike the
vector data here). Our fault-tolerant CG versions thus have the following ingredients:
ABFT to detect up to two errors in the SpMxV and correct up to one; TMR for vector
operations; and checkpoint and roll-back in case errors are not corrected. In the rest
of this section, we discuss the proposed ABFT method for the SpMxV (combining
ABFT with checkpointing is later in Sect. 5.3).

5.2 ABFT-SpMxV

The overhead of the standard single error correcting ABFT technique is too high
for the sparse matrix-vector product case. Shantaram et al. [35] propose a cheaper
ABFT SpMxV algorithm that guarantees detection of single errors striking either
the computation or the memory representation of the two input operands (matrix and
vector). As their results depend on the sparse storage format adopted, throughout this
section we assume that sparse matrices are stored in the compressed storage format
by rows (CSR) format [32, Sect. 3.4], that is bymeans of three distinct arrays, namely
Colid ∈ INnnz(A), Val ∈ IRnnz(A) and Rowidx ∈ INn+1.

Shantaram et al. can protect y ← Ax,whereA ∈ IRn×n and x, y ∈ IRn . To perform
error detection, they rely on a column checksum vector c defined by

c j =
n∑

i=1

ai, j (14)

and an auxiliary copy x′ of the x vector. After having performed the actual SpMxV, to
validate the result it suffices to compute

∑n
i=1 yi , cᵀx and cᵀx′, and to compare their

values. It can be shown [35] that in the case of no errors, these three quantities carry
the same value,whereas if a single error strikes either thememory or the computation,
one of themmust differ from the other two.Nevertheless, thismethod requiresA to be
strictly diagonally dominant, that seems to restrict toomuch the practical applicability
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of their ABFT scheme. Shantaram et al. need this condition to ensure the detection
of errors striking an entry of x corresponding to a zero checksum column of A. We
further analyze that case and show how to overcome the issue without imposing any
restriction on A.

A nice way to characterize the problem is expressing it in geometrical terms. Let
us consider the computation of a single entry of the checksum as

(wᵀA) j =
n∑

i=1

wi ai, j = wᵀA j ,

where w ∈ IRn denotes the weight vector and A j the j-th column of A. Let us now
interpret such an operation as the result of the scalar product 〈·, ·〉 : IRn × IRn → IR
defined by 〈u, v〉 �→ uᵀv. It is clear that a checksum entry is zero if and only if the
corresponding column of the matrix is orthogonal to the weight vector. In (14), we
have chosenw to be such thatwi = 1 for 1 ≤ i ≤ n, in order tomake the computation
easier. Let us see now what happens without this restriction.

The problem reduces to finding a vector w ∈ IRn that is not orthogonal to any
vector out of a basis B = {b1, . . . , bn} of IRn—the rows of the input matrix. Each
one of these n vectors is perpendicular to a hyperplane hi of IRn , and w does not
verify the condition

〈w, bi 〉 �= 0, (15)

for any i , if and only if it lies on hi . As theLebesguemeasure in IRn of an hyperplane of
IRn itself is zero, the union of these hyperplanes is measurable with mn

(⋃n
i=1 hi

) =
0, where mn denotes the Lebesgue measure of IRn . Therefore, the probability that a
vector w randomly picked in IRn does not satisfy condition (15) for any i is zero.

Nevertheless, there are many reasons to consider zero checksum columns. First
of all, when working with finite precision, the number of elements in IRn one can
have is finite, and the probability of randomly picking a vector that is orthogonal to
a given one could be bigger than zero. Moreover, a coefficient matrix usually comes
from the discretization of a physical problem, and the distribution of its columns
cannot be considered as random. Finally, using a randomly chosen vector instead
of (1, . . . , 1)ᵀ increases the number of required floating point operations, causing a
growth of both execution time and rounding errors. Therefore, we would like to keep
w = (1, . . . , 1)ᵀ as the vector of choice, in which case we need to protect SpMxV
with matrices having zero column sums. There are many matrices with this property,
for example the Laplacian matrices of graphs [13, Chap.1].
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In Algorithm 2, we propose an ABFT SpMxV method that uses weighted check-
sums and does not require the matrix to be strictly diagonally dominant. The idea
is to compute the checksum vector and then shift it by adding to all of its entries a
constant value chosen so that all of the elements of the new vector are different from
zero. We give the result in Theorem 3 for the simpler case of single error detection
without correction, in which case Algorithm 2 has W = (1, . . . , 1)ᵀ at line 1 and
raises an error at line 26 (instead of correcting the error) if the tests at line 23 are not
passed. The cases of multiple error detection and single error correction are proved
in a technical report [20, Sect. 3.2].

Theorem 3 (Correctness of Algorithm 2 for error detection) Let A ∈ IRn×n be a
square matrix, let x, y ∈ IRn be the input and output vector respectively, and let
x′ = x. Let us assume that the algorithm performs the computation

ỹ ← Ã̃x, (16)
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where Ã ∈ IRn×n and x̃ ∈ IRn are the possibly faulty representations of A and x
respectively, while ỹ ∈ IRn is the possibly erroneous result of the sparsematrix-vector
product. Let us also assume that the encoding scheme relies on

1. an auxiliary checksum vector c = [∑n
i=1 ai,1 + k, . . . ,

∑n
i=1 ai,n + k

]
, where k

is such that
∑n

i=1 ai, j + k �= 0 for 1 ≤ j ≤ n,
2. an auxiliary checksum yn+1 = k

∑n
i=i x̃i ,

3. an auxiliary counter sr initialized to 0 and updated at runtime by adding the value
of the hit element each time the Rowidx array is accessed,

4. an auxiliary checksum cr = ∑n
i=1 Rowidxi ∈ IN.

Then, a single error in the computation of the SpMxV causes one of the following
conditions to fail:

i. cᵀx̃ = ∑n+1
i=1 ỹi , difference is in dx at line 21,

ii. cᵀx′ = ∑n+1
i=1 ỹi , difference is in dx ′ at line 22;

iii. sr = cr , difference is in dr at line 20.

The proof of this theorem is technical and is available elsewhere [20, Theorem 1].
The function computeChecksum in Algorithm 2 requires just the knowledge of

the matrix. Hence in the common scenario of many SpMxVs with the same matrix,
it is enough to invoke it once to protect several matrix-vector multiplications. This
observation will be crucial when discussing the performance of the checksumming
techniques.

Extensions to k ≥ 2 errors are discussed elsewhere [20, Section3.2], where the
following are detailed. The method just described can be extended to detect up to a
total of k errors anywhere in the computation, in the representation of A, or in the
vector x. Building up the necessary structures requires O (knnz(A)) time, and the
overhead per SpMxV is O(kn). For the particular case of k = 2 a result similar to
that in Theorem 3 is also shown.

We now discuss error correction. If at least one of the tests at line 23 of Algo-
rithm 2 fails, the algorithm invokes CorrectErrors in order to determine whether
just one error struck either the computation or thememory and, in that case, to correct
it. Indeed, whenever a single error is detected, disregarding its location (i.e., compu-
tation or memory), it can be corrected by means of a succession of various steps, as
explained below; if need be, partial recomputations of the result are performed.

Specifically, we proceed as follows. To detect errors striking Rowidx, we compute
the ratio d of the second component of dr to the first one, and check whether its
distance from an integer is smaller than a certain threshold parameter ε. If it is so, the
algorithm concludes that the d-th element ofRowidx is faulty, performs the correction
by subtracting the first component of dr to Rowidxd , and recomputes yd and yd−1,
if the error in Rowidxd is a decrement; or yd+1 if it was an increment. Otherwise, it
just emits an error.

The correction of errors striking Val,Colid and the computation of y are corrected
together. Let now d be the ratio of the second component of dx to the first one.
If d is near enough to an integer, the algorithm computes the checksum matrix
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C′ = WᵀA and considers the number zC̃ of non-zero columns of the difference
matrix C̃ =| C − C′ |. At this stage, three cases are possible:
• If zC̃ = 0, then the error is in the computation of yd , and can be corrected by simply
recomputing this value.

• If zC̃ = 1, then the error concerns an element of Val. Let us call f the index of the
non-zero column of C̃. The algorithm finds the element ofVal corresponding to the
entry at row d and column f of A and corrects it by using the column checksums
much like as described for Rowidx. Afterwards, yd is recomputed to fix the result.

• If zC̃ = 2, then the error concerns an element of Colid. Let us call f1 and f2
the index of the two non-zero columns and m1, m2 the first and last elements of
Colid corresponding to non-zeros in row d. It is clear that there exists exactly
one index m∗ between m1 and m2 such that either Colidm∗ = f1 or Colidm∗ = f2.
To correct the error it suffices to switch the current value of Colidm∗ , i.e., putting
Colidm∗ = f2 in the former case and Colidm∗ = f1 in the latter. Again, yd has to
be recomputed.

• if zC̃ > 2, then errors can be detected but not corrected, and an error is emitted.

To correct errors striking x, the algorithmcomputes d, that is the ratio of the second
component of dx ′ to the first one, and checks that the distance between d and the
nearest integer is smaller than ε. Provided that this condition is verified, the algorithm
computes the value of the error τ = ∑n

i=1 xi − cx1 and corrects xd = xd − τ . The
result is updated by subtracting from y the vector yτ = Axτ , where xτ ∈ IRn×n is
such that xτ

d = τ and xτ
i = 0 otherwise.

Finally, note that double errors could be shadowed when using Algorithm 2, but
the probability of such an event is negligible. Still, there exists an improved version
which avoids this issue by adding a third checksum [20, Sect. 3.2].

5.3 Performance Model

The performance model is a simplified instance of the one discussed in Sect. 4,
and we instantiate it for the three methods that we are considering, namely Online-
Detection, ABFT-Detectionand ABFT-Correction. We have a linear chain of
identical tasks, where each task corresponds to one or several CG iterations. We
execute T units of work followed by a verification, which we call a chunk, and we
repeat this scheme s times, i.e., we compute s chunks, before taking a checkpoint.
We say that the s chunks constitute a frame. The whole execution is then partitioned
into frames. We assume that the checkpoint, recovery and verification operations are
error-free. For each method below, we let C , R and V be the respective cost of these
operations. Finally, and as before, assume a Poisson process for errors and let q be
the probability of successful execution for each chunk: q = e−λT , where λ is the
fault rate.
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5.3.1 ONLINE-DETECTION

For Chen’s method [12], we have the following parameters:

• We have chunks of d iterations, hence T = dTiter , where Titer is the raw cost of a
CG iteration without any resilience method.

• The verification time V is the cost of the operations described in Sect. 5.1.

• As for silent errors, the application is protected from arithmetic errors in the ALU,
as in Chen’s original method, but also for corruption in data memory (because
we also checkpoint the matrix A). Let λa be the rate of arithmetic errors, and λm

be the rate of memory errors. For the latter, we have λm = Mλword if the data
memory consists of M words, each susceptible to be corrupted with rate λword .
Altogether, since the two error sources are independent, they have a cumulated
rate of λ = λa + λm , and the success probability for a chunk is q = e−λT . The
optimal values of d and s can be computed by the same method as in Sect. 4.

5.3.2 ABFT-DETECTION

When using ABFT techniques, we detect possible errors every iteration, so a chunk
is a single iteration, and T = Titer . For ABFT-Detection, V is the overhead due to
the checksums and redundant operations to detect a single error in the method.

ABFT-Detectioncan protect the application from the same silent errors as
Online- Detection, and just as before the success probability for a chunk (a single
iteration here) is q = e−λT .

5.3.3 ABFT-CORRECTION

In addition to detection, we now correct single errors at every iteration. Just as for
ABFT-Detection, a chunk is a single iteration, and T = Titer , but V corresponds
to a larger overhead, mainly due to the extra checksums needed to detect two errors
and correct a single one.

The main difference lies in the error rate. An iteration withABFT-Correction is
successful if zero or one error has struck during that iteration, so that the success
probability is much higher than for Online- Detectionand ABFT-Detection.
We compute that value of the success probability as follows. We have a Poisson
process of rateλ,whereλ = λa + λm as forOnline- DetectionandABFT-Detec-
tion. The probability of exactly k errors in time T is (λT )k

k! e−λT [27], hence the
probability of no error is e−λT and the probability of exactly one error is λT e−λT , so
that q = e−λT + λT e−λT .
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5.4 Experiments

Comprehensive tests were performed and reported in the technical report [20]. The
main observation is that ABFT-Correctionoutperforms both Online- Detec-
tionand ABFT-Detection for a wide range of fault rates, thereby demonstrating
that combining checkpointing with ABFT correcting techniques is more efficient
than pure checkpointing for most practical situations.

6 Conclusion

Both fail-stop errors and silent data corruptions are major threats to executing HPC
applications at scale. While many techniques have been advocated to deal with fail-
stop errors, the lack of an efficient solution to handle silent errors is a real issue.

We have presented both a general-purpose solution and application-specific tech-
niques to deal with silent data corruptions, with a focus on minimizing the overhead.
For a divisible load application, we have extended the classical bound of Young/Daly
to handle silent errors by combining checkpointing and verification mechanisms. For
linear workflows, we have devised a polynomial-time dynamic programming algo-
rithm that decides the optimal checkpointing and verification positions. Then, we
have introduced ABFT as an application-specific technique to both detect and cor-
rect silent errors in iterative solvers that use sparsematrix vectormultiplies and vector
operations.

Our approach only addresses silent data corruptions. While several techniques
have been developed to cope with either type of errors, few approaches are devoted
to addressing both of them simultaneously. Hence, the next step is to extend our
study to encompass both fail-stop and silent data corruptions in order to propose a
comprehensive solution for executing applications on large scale platforms.
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Parallel Sorting for GPUs

Frank Dehne and Hamidreza Zaboli

Abstract Selim Akl has been a ground breaking pioneer in the field of parallel sort-
ing algorithms. His ‘Parallel Sorting Algorithms’ book [12], published in 1985, has
been a standard text for researchers and students. Here we discuss recent advances
in parallel sorting methods for many-core GPUs. We demonstrate that parallel deter-
ministic sample sort for GPUs (GPU Bucket Sort) is not only considerably faster
than the best comparison-based sorting algorithm for GPUs (Thrust Merge) but
also as fast as randomized sample sort for GPUs (GPU Sample Sort). However,
deterministic sample sort has the advantage that bucket sizes are guaranteed and
therefore its running time does not have the input data dependent fluctuations that
can occur for randomized sample sort.

1 Introduction

Selim Akl has been a ground breaking pioneer in the field of parallel sorting algo-
rithms. His ‘Parallel Sorting Algorithms’ book [12], published in 1985, has been
a standard text for researchers and students. Here we discuss recent advances in
parallel sorting methods for many-core GPUs.

Modern graphics processors (GPUs) have evolved into highly parallel and fully
programmable architectures. Current many-core GPUs can contain hundreds of
processor cores on one chip and can have an astounding performance. However,
GPUs are known to be hard to program and current general purpose (i.e. non-
graphics) GPU applications concentrate typically on problems that can be solved
using fixed and/or regular data access patterns such as image processing, linear alge-
bra, physics simulation, signal processing and scientific computing (see e.g. [7]).
The design of efficient GPU methods for discrete and combinatorial problems with
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data dependent memory access patterns is still in its infancy. The comparison-based
Thrust Mergemethod [11] by Nadathur Satish, Mark Harris andMichael Garland
of nVIDIA Corporation was considered the best sorting method for GPUs. Nikolaj
Leischner, Vitaly Osipov and Peter Sanders [9] recently published a randomized
sample sort method for GPUs (referred to as GPU Sample Sort) that significantly
outperforms Thrust Merge. However, a disadvantage of the randomized sample
sort method is that its performance can vary for different input data distributions
because the data is partitioned into buckets that are created via randomly selected
data items. Here we demonstrate that deterministic sample sort for GPUs, referred to
as GPU Bucket Sort, has the same performance as the randomized sample sort
method (GPU Sample Sort) in [9].

The remainder of this paper is organized as follows. Section2 reviews some fea-
tures of GPUs that are important in this context. Section3 reviews recent GPU based
sorting methods. Section4 outlines GPU Bucket Sort and discusses some details
of ourCUDA[1] implementation. In Sect. 5,we present an experimental performance
comparison between ourGPU Bucket Sort implementation, the randomizedGPU
Sample Sort implementation in [9], and the Thrust Merge implementation in
[11].

2 Review: GPU Architectures

As in [9, 11], wewill focus on nVIDIA’s unified graphics and computing platform for
GPUs [10] and associated CUDA programming model [1]. However, the discussion
appliesmore generaly toGPUs that support theOpenCL standard [2].AGPUconsists
of an array of streaming processors called Streaming Multiprocessors (SMs). Each
SMcontains several processor cores and a small size low latency local sharedmemory
that is shared by its processor cores. All SMs are connected to a global DRAM
memory through an interconnection network. The global memory is arranged in
independentmemory partitions and the interconnection network routes the read/write
memory requests from the processor cores to the respective globalmemory partitions,
and the results back to the cores. Each global memory partition has its own queue for
memory requests and arbitrates among the incoming read/write requests, seeking to
maximize DRAM transfer efficiency by grouping read/write accesses to neighboring
memory locations (referred to as coalesced global memory access). Memory latency
to global DRAM memory is optimized when parallel read/write operations can be
grouped into a minimum number of sub-arrays of contiguous memory locations.

It is important to note that data accesses from processor cores to their SM’s local
shared memory are at least an order of magnitude faster than accesses to global
memory. This is our main motivation for using a sample sort based approach. An
important property of sample sort is that the number of times the data has to be
accessed in global memory is a small fixed constant. At the same time, deterministic
sample sort provides a partitioning into independent parallel workloads and also
gives guarantees for the sizes of those workloads. For GPUs, this implies that we



Parallel Sorting for GPUs 295

are able to utilize the local shared memories efficiently and that the number of data
transfers between gloabl memory and the local shared memories is a small fixed
constant.

Another critical issue for the performance of CUDA implementations is condi-
tional branching. CUDA programs typically execute very large numbers of threads.
In fact, a large number of threads is required for hiding latencies of global memory
accesses. The GPU has a hardware thread scheduler that is built to manage tens
of thousands and even millions of concurrent threads. All threads are divided into
blocks, and each block is executed by an SM. An SM executes a thread block by
breaking it into groups calledwarps and executing them in parallel. The cores within
an SM share various hardware components, including the instruction decoder. There-
fore, the threads of a warp are executed in SIMT (single instruction, multiple threads)
mode, which is a slightly more flexible version of the standard SIMD (single instruc-
tion, multiple data) mode. The main problem arises when the threads encounter a
conditional branch such as an IF-THEN-ELSE statement. Depending on their data,
some threads may want to execute the code associated with the “true” condition
and some threads may want to execute the code associated with the “false” con-
dition. Since the shared instruction decoder can only handle one branch at a time,
different threads can not execute different branches concurrently. They have to be
executed in sequence, leading to performance degradation. Recent GPUs provide a
small improvement through an instruction cache at each SM that is shared by its
cores. This allows for a “small” deviation between the instructions carried out by
the different cores. For example, if an IF-THEN-ELSE statement is short enough
so that both conditional branches fit into the instruction cache then both branches
can be executed fully in parallel. However, a poorly designed algorithm with too
many and/or large conditional branches can result in serial execution and very low
performance.

3 GPU Sorting Methods

Early sorting algorithms for GPUs includeGPUTeraSort [6] based on bitonic merge,
and Adaptive Bitonic Sort [8] based on a method by Bilardi et al. [3]. Hybrid Sort
[14] used a combination of bucket sort and merge sort, and Cederman et al. [4]
proposed a quick sort based method for GPUs. Both methods [4, 14] suffer from
load balancing problems. Until recently, the comparison-based Thrust Merge
method [11] by Nadathur Satish, Mark Harris and Michael Garland of nVIDIA
Corporation was considered the best sorting method for GPUs. Thrust Merge
uses a combination of odd-even merge and two-way merge, and overcomes the load
balancing problems mentioned above. Satish et al. [11] also presented an even faster
GPU radix sort method for the special case of integer sorting. Yet, a recent paper
by Nikolaj Leischner, Vitaly Osipov and Peter Sanders [9] presented a randomized
sample sort method for GPUs (GPU Sample Sort) that significantly outperforms
Thrust Merge [11]. However, as also discussed in Sect. 1, the fact that GPU
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Sample Sort is a randomizedmethod implies that its performance can varywith the
distribution of the input data because buckets are created through randomly selected
data items. For example, the performance analysis presented in [9] measures the
runtime of GPU Sample Sort for several input data distributions to document the
performance variations observed for different input distributions.

4 GPU BUCKET SORT: Deterministic Sample Sort
For GPUs

In this sectionwe outlineGPU Bucket Sort, a deterministic sample sort algorithm
for GPUs. An overview of GPU Bucket Sort is shown in Algorithm 1 below. It
consists of a local sort (Step 1), a selection of samples that define balanced buckets
(Steps 3–5), moving all data into those buckets (Steps 6–8), and a final sort of
each bucket (Step 9). In our implementation of GPU Bucket Sort we introduced
several adaptations to the structure of GPUs, in particular the two level memory
hierarchy, the large difference in memory access times between those two levels, and
the small size of the local shared memories. We experimented with several bucket
sizes and number of samples in order to best fit them to the GPU memory structure.
For sorting the selected sample and the bottom level sorts of the individual buckets,
we experimented with several existing GPU sorting methods such as bitonic sort,
adaptive bitonic sort [8] based on [3], and parallel quick sort.

The following discussion of our implementation of GPU Bucket Sort will
focus on GPU performance issues related to shared memory usage, coalesced global
memory accesses, and avoidance of conditional branching. Consider an input array
A with n data items in global memory and a typical local shared memory size of n

m
data items.

In Steps 1 and 2 of Algorithm 1, we split the array A into m sublists of n
m data

items each and then locally sort each of those m sublists. More precisely, we create
m thread blocks of 512 threads each, where each thread block sorts one sublist using
one SM. Each thread block first loads a sublist into the SM’s local shared memory
using a coalesced parallel read from global memory. Note that, each of the 512
threads is responsible for n

m /512 data items. The thread block then sorts a sublist of
n
m data items in the SM’s local shared memory. We tested different implementations
for the local shared memory sort within an SM, including quicksort, bitonic sort, and
adaptive bitonic sort [3]. In our experiments, bitonic sort was consistently the fastest
method, despite the fact that it requires O(n log2 n)work. The reason is that, for Step
2 of Algorithm 1, we always sort a small fixed number of data items, independent of
n. For such a small number of items, the simplicity of bitonic sort, it’s small constants
in the running time, and it’s perfect match for SIMD style parallelism outweigh the
disadvantage of additional work.

In Step 3 of Algorithm 1, we select s equidistant samples from each sorted sublist.
(The implementation of Step 3 is built directly into the final phase of Step 2 when the
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sorted sublists are written back into global memory.) Note that, the sample size s is a
free parameter that needs to be tuned. With increasing s, the sizes of buckets created
in Step 8 decrease and the time for sorting those buckets (Step 9) decreases as well.
However, the time for managing the buckets (Steps 3–7) grows with increasing s.
This trade-off will be studied in Sect. 5 where we show that s = 64 provides the best
performance. In Step 4, we sort all sm selected samples in global memory, using all
available SMs in parallel. Here, we compared GPU bitonic sort [6], adaptive bitonic
sort [8] based on [3], and GPU Sample Sort [9]. Our experiments indicate that
for up to 16 M data items, simple bitonic sort is still faster than even GPU Sample
Sort [9] due to its simplicity, small constants, and complete avoidance of conditional
branching. Hence, Step 4was implemented via bitonic sort. In Step 5, we again select
s equidistant global samples from the sorted list of sm samples. Here, each thread
block/SM loads the s global samples into its local shared memory where they will
remain for the next step.

Input: An array A with n data items stored in global memory.
Output: Array A sorted.

1. Split the array A into m sublists A1, ..., Am containing n
m items each where

n
m is the shared memory size at each SM.

2. Local Sort: Sort each sublist Ai (i=1,..., m) locally on one SM, using the
SM’s shared memory as a cache.

3. Local Sampling: Select s equidistant samples from each sorted sublist Ai

(i=1,..., m) for a total of sm samples.
4. SortingAll Samples: Sort all sm samples in globalmemory, using all available

SMs in parallel.
5. Global Sampling: Select s equidistant samples from the sorted list of sm

samples. We will refer to these s samples as global samples.
6. Sample Indexing: For each sorted sublist Ai (i=1,...,m) determine the location

of eachof the s global samples in Ai . This operation is done for each Ai locally
on one SM, using the SM’s shared memory, and will create for each Ai a
partitioning into s buckets Ai1,..., Ais of size ai1,..., ais .

7. Prefix Sum: Through a parallel prefix sum operation on a11,..., am1, a12,...,
am2, ..., a1s ,..., ams calculate for each bucket Ai j (1 ≤ i ≤ m, 1 ≤ j ≤ s, ) its
starting location li j in the final sorted sequence.

8. Data Relocation: Move all sm buckets Ai j (1≤ i ≤ m, 1≤ j ≤ s) to location
li j . The newly created array consists of s sublists B1, ..., Bs where Bj =
A1 j ∪ A2 j ∪ ... ∪ Amj for 1≤ j ≤ s.

9. Sublist Sort: Sort all sublists Bj , 1≤ j ≤ s, using all SMs.

Algorithm 1: GPU Bucket Sort (Deterministic Sample Sort For GPUs)

In Step 6, we determine for each sorted sublist Ai (i=1, ...,m) of n
m data items the

location of each of the s global samples in Ai . For each Ai , this operation is done
locally by one thread block on one SM, using the SM’s shared memory, and will
create for each Ai a partitioning into s buckets Ai1,..., Ais of size ai1,..., ais . Here,
we apply a parallel binary search algorithm to locate the global samples in Ai . More
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precisely, we first take the s
2 -th global sample element and use one thread to perform

a binary search in Ai , resulting in a location ls/2 in Ai . Then we use two threads to
perform two binary searches in parallel, one for the s

4 -th global sample element in
the part of Ai to the left of location ls/2, and one for the 3s

4 -th global sample element
in the part of Ai to the right of location ls/2. This process is iterated log s times until
all s global samples are located in Ai . With this, each Ai is split into s buckets Ai1,...,
Ais of size ai1,..., ais . Note that, we do not simply perform all s binary searches fully
in parallel in order to avoid memory contention within the local shared memory [1].

Step 7 uses a prefix sum calculation to obtain for all buckets their starting loca-
tion in the final sorted sequence. The operation is illustrated in Fig. 1 and can be
implemented with coalesced memory accesses in global memory. Each row in Fig. 1
shows the ai1,..., ais calculated for each sublist. The prefix sum is implemented via a
parallel column sum (using all SMs), followed by a prefix sum on the columns sums
(on one SM in local shared memory), and a final update of the partial sums in each
column (using all SMs).

In Step 8, the sm buckets are moved to their correct location in the final sorted
sequence. This operation is perfectly suited for a GPU and requires one parallel
coalesced data read followed by one parallel coalesced data write operation. The
newly created array consists of s sublists B1, ..., Bs where each Bj = A1 j ∪ A2 j ∪
... ∪ Amj has at most 2n

s data items [13]. In Step 9, we sort each Bj using the same
bitonic sort implementation as in Step 4. We observed that for our choice of s, each
Bj contains at most 4M data items. For such small data sets, simple bitonic sort is
again the fastest sorting algorithm for each Bj due to bitonic sort’s simplicity, small
constants, and complete avoidance of conditional branching.

Fig. 1 Illustration of step 7 in Algorithm 1



Parallel Sorting for GPUs 299

5 Experimental Results and Discussion

Figure2 shows in detail the time required for the individual steps of Algorithm 1
when executed on an NVIDIA Fermi GTX 480 GPU. We observe that sublist sort
(Step 9) and local sort (Step 2) represent the largest portion of the total runtime of
GPU Bucket Sort. This is very encouraging in that the “overhead” involved to
manage the deterministic sampling and generate buckets of guaranteed size (Steps
3–7) is small. We also observe that the data relocation operation (Step 8) is very
efficient and a good example of the GPU’s great performance for data parallel access
when memory accesses can be coalesced.

Figures3 and 4 show a comparison between GPU Bucket Sort and the cur-
rent best GPU sorting methods, randomized GPU Sample Sort [9] and Thrust
Merge [11] on a NVIDIA Tesla C1060 GPU. For GPU Bucket Sort, all run-
times are the averages of 100 experiments, with less than 1ms observed variance. For
randomized GPU Sample Sort and Thrust Merge, the runtimes shown are the
ones reported in [9, 11]. For Thrust Merge, performance data is only available for
up to n = 16M data items. For larger values of n, the current Thrust Merge code
shows memory errors [5]. As reported in [9], the current randomized GPU Sample
Sort code can sort up to 128M data items on a Tesla C1060. Our GPU Bucket
Sort implementation appears to be more memory efficient. GPU Bucket Sort
can sort up to n = 512M data items on a Tesla C1060. Figures 3 and 4 show the per-
formance comparison with higher resolution for up to n = 128M and for the entire
range up to n = 512M, respectively. We observe that, as reported in [9], random-
ized GPU Sample Sort [9] significantly outperforms Thrust Merge [11]. Most
importantly, we observe that randomized sample sort (GPU Sample Sort) [9] and
deterministic sample sort (GPU Bucket Sort) show nearly identical performance.

The data sets used for the performance comparison in Figs. 3 and 4were uniformly
distributed, randomdata items. The data distribution does not impact the performance

Fig. 2 Performance of
deterministic sample sort for
GPUs (GPU Bucket
Sort). Total runtime and
runtime for individual steps
of Algorithm 1 for varying
number of data items
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Fig. 3 Comparison between
deterministic sample sort
(GPU Bucket Sort),
Randomized Sample Sort
(GPU Sample Sort) [9]
and Thrust Merge [11].
Total runtime for varying
number of data items up to
128,000,000. (Note [11] and
[9] provided data only for
up to 16 and 128M data
items, respectively.)
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Fig. 4 Comparison between
deterministic sample sort
(GPU Bucket Sort),
Randomized sample sort
(GPU Sample Sort) [9]
and Thrust Merge [11].
Total runtime for varying
number of data items up to
512,000,000. (Note [11] and
[9] provided data only for
up to 16 and 128M data
items, respectively.)
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of deterministic sample sort (GPU Bucket Sort) but has a considerable impact
on the performance of randomized sample sort (GPU Sample Sort) [9]. In fact,
the uniform data distribution used for Figs. 3 and 4 is a best case scenario for ran-
domized sample sort where all bucket sizes are nearly identical. Figure5 shows that
our deterministic sample sort (GPU Bucket Sort) is stable under different types
of data distribution. We tested three types of data distribution: Uniform, Gaussian,
and Zipf. As seen in the figure, different input data distributions have little influence
on the performance of GPU Bucket Sort.
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Fig. 5 Performance of
deterministic sample sort
(GPU Bucket Sort) for
different input data
distributions
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6 Conclusions

In this paper, we presented a deterministic sample sort algorithm for GPUs, called
GPU Bucket Sort. Our experimental evaluation indicates that GPU Bucket
Sort is considerably faster than Thrust Merge [11], the best comparison-based
sorting algorithm for GPUs, and it is exactly as fast as randomized sample sort
for GPUs (GPU Sample Sort) [9] when the input data sets used are uniformly
distributed, which is a best case scenario for randomized sample sort. However, as
observed in [9], the performance of randomized GPU Sample Sort fluctuates
with the input data distribution whereas GPU Bucket Sort does not show such
fluctuations.
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Mining for Functional Dependencies
Using Shared Radix Trees in Many-Core
Multi-Threaded Systems

Joel Fuentes, Claudio Parra, David Carrillo and Isaac D. Scherson

Abstract We consider the problem of mining for functional dependencies in
relational databases. Intermediate data structures, although simple, explode in size
and a solution is proposed using radix trees to reducememory utilization. Parallelism
is further applied in a Multi-Core computer to further speedup the process. Because
bit-permutations are the basis of the construction of a binary intermediate matrix,
radix trees reduce the memory usage 10 times. Multi-Threading the construction and
processing of the intermediate data leads to a concurrent computing average-over-
time of 63% on an equivalent speedup of 6.3 on a system with 12 cores, 256 GB of
memory and 1 TB SSD.

1 Introduction

With the advent of computing systems that use silicon devices with many CPUs per
chip, also known as Many-Core or Multi-Core systems, new challenges are posed
to programming applications that attempt to use parallelism to achieve a significant
computational improvement. Typical Many-Core computers use chips that contain
two, four or more cores each. These Multi-Core chips also include an on-chip hier-
archical shared cache system that provides local and shared caches. An interface
to a large common main DRAM storage completes the solid state memory hierar-
chy. These systems are normally programmed using threads that are managed by
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the operating system to execute in the available cores attempting to use as much
parallelism as possible. The main problem that arises is the management of shared
data structures in the shared hierarchical memory to guarantee synchronized access
to the data structures, avoiding deadlock and providing a correct access sequence as
required by the program.

Herlihy and Shavit [7] wrote a book that discusses the methodologies used to
properly program Multi-Core systems. Exploiting parallelism depends very much
on the synchronization mechanisms available to avoid shared data conflicts. Their
book has become a classic and has been adopted to teachMultiProgramming courses.

Experience with practical programs shows that in addition to deadlock avoidance,
programmers need to be very careful about write through latencies that are bound
to create incorrect value reads if threads access variables before the write through
mechanism updates values throughout the memory hierarchy. It seems that even
when sequentializing shared data accesses, the write through mechanism may get in
the way of correct execution, and might lead to a slowdown in program execution.

In this paper we consider an actual practical problem encountered when trying
to discover functional dependencies (FDs) in relational data bases using a recently
introduced technique based on the generation of refutations [6]. Given a relational
database with n records of k attributes each, the method starts by generating a refuta-
tion matrix that represents exhaustively all attribute groups where no dependencies
can be found. It is shown that the size of this matrix can explode beyond the storage
capabilities of the computer and a need is identified to represent it using radix trees.
The generation of this refutation matrix is almost embarrassingly parallel and a dis-
cussion is presented on how to gain performance by exploiting concurrency bothwith
a straight forward matrix data structure as well as with a radix tree representation.

It will be shown that a big bottleneck is an intermediate data structure whose size
may overcome the available storage in the computer. Radix trees are suggested to
reduce the demand on memory and are shown to yield a reduction of 10 times on
average for the worst case. Parallelization of the intensive phase of the procedure is
done on a Multi-Core engine using Multi-threaded programming. Recognizing the
inherent sequentialization present in shared memory/data programs, a figure of merit
is used to determine what percentage of the execution time threads are allowed to run
in parallel. A companion speedup is also calculated. For a 12-core computer, with
256GB of DRAM and 1TB disk, experimentation shows that on average a speedup
of 6.3 is achieved with parallelism observable 63% of the time.

2 Algorithm for Mining Functional Dependencies

Consider a relational database where R is a relation with a set of attributes
A = {ai |i = 1 . . . k} and r is an instance of R where each attribute in each tuple
can assume a value in some domain. We denote by t (ai ) the value of attribute ai
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in tuple t . A functional dependency (FD) is an expression of the form X → ai ,
where X ⊆ {A − ai }. X is called the determinant set and ai is called the dependent
attribute. The FD X → ai is valid in the instance r if and only if for every pair of
rows (tuples) t, t ′ ∈ r , whenever t[a j ] = t ′[a j ] for all a j ∈ X , it is also the case that
t[ai ] = u[ai ].

Many direct algorithms have been proposed to find FDs in relational databases
[2, 4, 5, 8, 10]. This work is based on a novel approach that first prunes the search
space by determining which attributes cannot depend on others. The idea is to gen-
erate first “refutations” by exhaustively searching all tuple pairs in the relational
database to identify which subsets of attributes cannot determine another attribute.

To facilitate the description of the operations in Refutation-Based FD mining
(RB-FD) algorithm [6], let us give the following definitions:

1. Let A = {ai | i = 1 . . . k} be a set of attributes where each attribute can assume
a value in some domain.

2. A relation R over A describes all possible tuples of values of attributes in A.
3. An instance r of R is a subset of tuples of R. We denote by t (ai ) the value of

attribute ai in tuple t .
4. A refutation [A − {ai }] � ai holds if and only if for t, t ′ ∈ r , t (ai ) �= t ′(ai ) ∧

∃a j , j �= i, t (a j ) = t ′(a j ).

A refutation is found when two different values for t (ai ) and t ′(ai ) correspond
to tuples where some subset of the remainder [A − {ai }] attributes are equal.

The result of finding refutations can be kept on a binary matrix H where a row
corresponds to the comparison of a pair of tuples t , t ′ in r . If t (ai ) �= t ′(ai ), the
row is generated with 1s at attribute positions where t (a j ) = t ′(a j ), i �= j , and 0s
elsewhere. If t (ai ) = t ′(ai ), no row is generated.

Note that if ai does not depend on some set of other attributes it does not depend
on any subset of those attributes. We conclude that when looking for refutations, we
only need to retain those with the maximum number of attributes other than ai .

If two refutations are generated such that the one with more 1s, say h, has 1s in all
the positions where other h′ has 1s, then only the one with more 1s (h) needs to be
retained. We say that the former (h) contains the latter (h′). The test for containment
can be summarized as follows:

If (h ∧ h′) ⊕ h = 0 ⇒ retain h′

If (h ∧ h′) ⊕ h′ = 0 ⇒ retain h

The procedure for generating the matrix H for an attribute ai in r is shown in
pseudocode in Algorithm 2 below.
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Input : relation r , set of attributes A
Output: set of refutations H

for t ∈ r do
for t ′ ∈ r do

if t (ai )! = t ′(ai ) then
h = ∅;
for a j ∈ {A − ai } do

if t (a j ) == t ′(a j ) then
h = h ∪ a j ;

end
end
for h′ ∈ H do

if (h ∧ h′) ⊕ h = 0 then
continue next t ′;

end
if (h ∧ h′) ⊕ h = 0 then

H = H \ {h′};
end

end
H = H ∪ h;

end
end

end
Algorithm 2: Generation of refutations H for attribute ai .

Example. Given a 6-attribute relation with A = {a, b, c, d, e, f } such that the
domain for a = {a1, a2, a3, a4, a5}, for b = {b1, b2, b3, b4} and so on for c, d, e
and f (see Fig. 1), and the instance r shown in Fig. 1 we produce the matrix H
for attribute 6 as its refuted attribute. We observe that the tuples 1 and 2 produce
the refutation {a, b} � f (represented by the vector h = 11000) since the values of
attribute f in tuples 1 and 2 are distinct and for attributes a and b are equal; tuples
1 and 3 produce the refutations {b, d} � f (h = 01010); tuples 1 and 7 produce the
refutations {a} � f (h = 10000) and so on. Keeping only the maximal refutations
we discard the refutation {a} � f and finally obtain the refutations {a, b} and {b, d}
represented by the matrix shown below:

Fig. 1 Relation instance
with A = {a, b, c, d, e, f } Tuple ID a b c d e f

1 a1 b3 c2 d1 e4 f1
2 a1 b3 c3 d3 e1 f2
3 a2 b3 c5 d1 e5 f4
4 a3 b3 c2 d3 e3 f1
5 a4 b2 c2 d8 e2 f1
6 a5 b4 c4 d1 e3 f1
7 a1 b1 c3 d7 e6 f2
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H =
(a b c d e

1 1 0 0 0
0 1 0 1 0

)

Phase 1 of the RB-FD algorithm is the generation of the refutation matrix H just
described.

As seen in [6], Phase 2 consists in finding the minimal transversals of a hyper-
graph represented by a binary matrix H , the bit-wise complement of H . A minimal
transversal τm of the hypergraph H ′ is a (k − 1)-bit binary vector that contains the
minimal number of 1s such that τm ∧ hi contains at least one 1 for all rows i of H ′.

Theprocedure is supposed togenerate all possible distinctminimal transversals for
each matrix H (for each attribute). The detail of the minimal transversals generation
is not within the main scope of this paper and are left to the interested to read in [6].

Example. From the refutation matrix found from r in Fig. 1 in the previous exam-
ple, we continue now by obtaining the hypergraph of the complements of the hyper-
edges in H , which is H ′ = {{c, d, e}, {a, c, e}}, represented by the binary vectors
H ′ = {00111, 10101}. Finally the minimal transversals correspond to the functional
dependencies in minimal form:

H =
⎛
⎝
a b c d e

1 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎠

That is, we have discovered the functional dependencies {a, d} → f, {c} → f
and {e} → f .

Even though the generation of the refutation matrices H for each attribute has
polynomial complexity, it can become dominant due to the large size of the database
r (large n and k) and also because the size of H may explode as it will be seen in the
next section.

3 The Size of Refutation Matrices

Consider as above a n-tuple instance r of a relation R. It was shown that to generate a
refutation matrix H , all pairs of tuples in r need to be compared to obtain refutation
vectors that are inserted in a running matrix H following the containment rule.

Tofind the number of rows in H , that is the number of “non-contained” refutations,
out of the O(n2) generated by comparing all possible pairs of tuples in r , assume
that some pair of tuples generated a refutation with a maximum number of 1s. It is
obvious that the only non-contained other refutations that could be added to H are
those binary vectors that are some permutation of this maximum 1s refutation. All
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other refutations will be contained in the maximum one, or in one that is permutation
of the maximum one.

If q is the number of 1s in the refutation vector with the maximum number of
ones, the maximum number of non-contained refutations (rows) in H is:

max rows in H =
(
k

q

)
= (k − 1)!

q!(k − 1 − q)! k, q ∈ N

which has a maximum when q = k−1
2 .

The proof of this maximum can be obtained by induction and we omit it as it is
simple and does not add substantial knowledge to this work.

Observation: If n2 ≥ k−1!
q!(k−1−q)! and all permutations of a binary vector with

q = k−1
2 1s are generated, the maximum size of H is:

|H | = k − 1!
k−1
2 !(k − 1 − k−1

2 )! (1)

Example. Table1 illustrates the growth of memory utilization needed to store
refutation matrix H when increasing the number of attributes in the worst case.

It is clear that there is a need for a compact representation of refutations in main
memory. In [9] Knuth shows different forms to represents all the permutations and
introduces the concept of path for these sequences. Table2 illustrates all the combi-

nations that corresponds to a worst case when finding

(
6

3

)
= 20maximal refutations

from a relationwith 6 attributes. From the second to the fourth column corresponds to
different forms of representing these binary strings that can also be seen as compact
representations. The second column corresponds to the dual combination bp . . . b1
that lists the position of zeros. The third column represents the primal combination
cp . . . c1 that lists the positions of the ones. The fourth column corresponds to the
multicombination dp . . . d1 that lists the number of 0s to the right of each 1.

Furthermore, Table2 presents the path of each binary string. Each binary string is
equivalent to a path of length k − 1 from the corner to corner of an q × (k − 1 − q)

grid, because such a path contains q vertical steps and k − 1 − q horizontal steps.

Table 1 Memory utilization
for refutation matrix H

# Attributes Memory

16 25.7 KB

24 8.1 MB

32 2.4 GB

40 689 GB

48 195 TB
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Table 2 Representations of maximal refutations for k = 6 and q = 3

a5a4a3a2a1a0 b3b2b1 c3c2c1 d3d2d1 Path

000111 543 210 000

001011 543 310 100

001101 541 320 110

001110 540 321 111

010011 532 410 200

010101 531 420 210

010110 530 421 211

011001 521 430 220

011010 520 431 221

011100 510 432 222

100011 432 510 300

100101 431 520 310

100110 430 521 311

101001 421 530 320

101010 420 531 321

101100 410 532 322

110001 321 540 330

110010 320 541 331

110100 310 542 332

111000 210 543 333

The concept of path in this sense is useful to define a new data structure to store
refutations. It can be seen that the worst case presents common prefix sequences in
a half of the total of refutations.
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4 Reducing the Size of Intermediate Data Structures

The refutation matrix H represents a simple structure to store refutations but it
produces high costs to keep the maximal refutations in it. For example, when a
refutation is found, a review step over the entire matrix H must be done by removing
all its subsets (contained refutations). The other important cost is the memory usage,
where this structure can explode if the worst case is presented.

To deal with these issues the radix tree data structure is introduced. A radix tree is
an ordered tree data structure that is used to store a dynamic set or associative array
where the keys are usually strings. In a regular radix tree each edge is assigned with
some symbol. Thus, any route from a tree root to one of its leaves defines precisely
only one string. As the refutations are represented as a binary strings, for the radix
tree only the symbols 0 and 1 are considered.

When inserting these refutation in the radix tree and based on the property that
all the refutations have the same length, the refutations are represented as paths from
the root to every leaf. Figure2 on the right illustrates the refutations from H inserted
in the radix tree. To make the radix tree smaller, it is possible compress it. Such form
means that a number of bits B per node is defined allowing that nodes with the same
bits in the same level are packed.

Unlike balanced trees, radix trees permit lookup, insertion, and deletion in O(k)
time rather than logarithmic. However for our radix tree implementation, a fixed
number of bits B is defined as the strict number of bits per node. This value will also
represent the maximum common number of bits for different refutations that can be
compacted in a node.

Formally, let B be the number of bits in each node. The worst case for the radix
tree when looking up for a refutation is similar to the matrix H , O(|H |). It occurs
when having defined the value B there are no common prefixes of size B for the set of
refutations. For instance, if there exist |H | different refutations and they are different
from each other in the first B bits, {X1, . . . , XB}, and the rest of bits {XB+1, . . . , Xk}
for every refutation are similar, then there is no possible compression. However, from
the previous section it was shown that if the worst case scenario for the number of
refutations occurs, then common prefixes exist (common initial paths exist from one
corner to the opposite on the diagonal).

H =

⎛
⎜⎜⎝

a b c d e f

0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

⎞
⎟⎟⎠

Fig. 2 Maximal refutations stored in the matrix H (left) and the radix tree (right) with B = 2
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The average case can be calculated as follows. Let n be the number of refutations
with k bits. Let M = 2B the number of possible combinations given B bits, and mi

the i-th combination of bits. Let ra and rb be refutations. Finally, let bits(B, ra) be
the first B bits of the refutation ra .

The probability of having two refutations with the same first B bits is:

Pr(bits(B, ra) == bits(B, rb)) =
M∑
i=1

Pr(bits(B, ra) = mi AND bits(B, rb) = mi )

= M ∗ Pr(bits(B, ra) = mi ) ∗ Pr(bits(B, rb) = mi )

= M ∗ (
1

M
)2

= 1

M

From above, Pr(bits(B, ra) �= bits(B, rb)) = 1 − 1
M . Then the probability that

n − 1 refutations are different to ra is (1 − 1
M )(n−1). This means ra is unique in its

first B bits. If all the refutations are unique in their first B bits, then the expected
number of different refutations is:

E[D] =
n∑

i=1

Pr(ri is unique) = n ∗ (1 − 1

M
)(n−1)

The number of refutations that share the first B bits is n(1 − (1 − 1
M )(n−1))

For the first level of the tree there are in average n ∗ (1 − 1
M )(n−1) ∗ B bits, and if

it is compared with the matrix H the memory usage is reduced by (1 − 1
2B )(n−1). On

the following levels the considerations are the same.
Experimental results show the important reduction in the memory usage by using

the radix tree. For instance, Fig. 4 illustrates a set of experiments comparing the
memory usage by the matrix H and the radix tree when increasing the number of
refutations. This experiment corresponds to a sequential execution of the algorithm
using both data structures.

5 Parallel Generation of Refutation Sets

The goal of the parallelization of the RB-FD on multicore systems is to minimize
the processing time with the computing power being efficiently utilized. Thus, the
parallelization plus the new data structure proposed would allow mining big datasets
in shorter time.

From results presented in [6] it can be seen that first step of RB-FD represents the
most time-consuming task. This part of the method involves two tasks:
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1. Obtain the set of maximal refutations H with the form [A − ai ] � ai by compar-
ing every pairs of tuples for every attribute. That is, ∀ai ∈ A, the set of pairs of
tuples (t, t ′) ∈ r × r such that (∀a j ∈ [A − ai ]) t[a j ] = t ′[a j ] ∧ t[ai ] �= t ′[ai ].
This task is exactly Θ(k2 n(n−1)

2 ) with n the number of tuples and k the number
of attributes.

2. Keep only the maximal refutations in H . For every new refutation, check its
maximality with the existing refutations in H .

The complexity of the first task does not seem to involve a problematic issue
even when having a big number of tuples. However the verification of maximal
refutations when inserting a new one in H would produce an upper bound of O(|H |)
whose complexity becomes the hardest with the presence of the worst case scenario.
Thus, we can have O(|H |) = k!

p!(k−q)! as a verification for every new refutation found.
TheDynamicMultithreading model described in [3] allows programmers to spec-

ify parallelism in applications without worrying about communication protocols,
load balancing, and other vagaries of static-thread programming. The model repre-
sents a multithreaded computation as a directed acyclic graph G = (V, E) whose
vertices are instructions and (u, v) ∈ E if u must be executed before v. The time
Tp needed to execute the computation on p cores depends on two parameters of the
computation: its work T1 and its span T∞. The work is the running time on a single
core, that is, the number of nodes (i.e., instructions) in G, assuming each instruction
takes constant time. Since p cores can execute only p instructions at a time, we have
Tp = Ω(T1/p). The span is the length of the longest path inG. Since the instructions
on this path need to be executed in order, we also have Tp = Ω(T∞). Together, these
two lower bounds give Tp = Ω(T∞ + T1/p). The degree to which an algorithm can
take advantage of the presence of p > 1 cores is captured by its speed-up T1/Tp and
its parallelism T1/T∞. In the absence of cache effects, the best possible speed-up is
p, known as linear speed-up. Parallelism provides an upper bound on the achievable
speed-up.

The proposed parallel solutions adopt the Dynamic Multithreading model. Fol-
lowing this model, two important features are defined to reflect the parallel behavior:
nested parallelism and parallel loops. Nested parallelism allows a subroutine to be
spawned, allowing the caller to proceed while the spawned subroutine is computing
its result. A parallel loop (parallel for in Algorithms 3 and 4) is like an ordinary for
loop, except that the iterations of the loop can execute concurrently.

Two parallel alternatives are presented in this section using radix trees.

5.1 Parallelism Through Attributes

It is easy to see that the first step of the studied algorithm is embarrassing parallel.
The objective of this step is to obtain the set of maximal refutations for every attribute
in A, itmeans that for every attribute there exists a set of refutations that is independent
from the sets generated for other attributes.
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Input : relation r , set of attributes A
Output: sets of refutations H1, . . . , Hk

parallel for a ∈ A do
Ha = findRefutations(a);

end

function findRefutations(a)
for t ∈ r do

for t ′ ∈ r do
if t (a)! = t ′(a) then

h = ∅;
for a j ∈ {A − {a}} do

if t (a j ) == t ′(a j ) then
h = h ∪ a j ;

end
end
addToRadixTree(Ha , h);

end
end

end
return Ha ;

end
Algorithm 3: Parallel RB-FD through the attributes usign radix trees (RB-FD-
rtree-att).

Given the set of attributes A = {a1, a2, . . . , ak} and an instance of relation r ,
this alternative associates independent threads to the search of refutations for each
attribute Ai . It results in a set of concurrent threads accessing (read operations) the
relation r to find refutations in it. The refutations are kept in radix trees, meaning
that each thread has its own radix tree which is independent from another thread’s
radix tree.

Each process computes exactly Θ(k n(n−1)
2 ) operations in finding refutations. The

Algorithm 3 presents the parallel solution through the set of attributes. The set of
refutations for each attribute (the right part in the refutation) are represented by Hai
and corresponds to a radix tree.

5.2 Parallelism Through Tuples

This alternative is based on the fact that sometimes a search of FDs for a specific
attribute can be needed. For instance, find all the refutations with attribute ai as the
dependent attribute. The approach consists in generating threads that go over a well-
defined range on the tuples of the relation r . Thus, every refutation found by a thread
will need to be stored in a common radix tree.

Formally, given a set of attributes A = {a1, a2, . . . , ak}, an instance of relation r
and a number of threads p; a range b is defined as b = |r |/p, where 0 ≤ b < |r |.
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A global radix tree is also defined with restricted access for writing and shared access
for reading. Each process is given a range of contiguous tuples that will be its scope
of search. The search of refutations starts when the main process takes a tuple as
a pivot and sends this tuple to each thread that has the labor of finding refutations
within its range. The radix tree is modified by getting exclusive access if and only if
the refutation to add is maximal.

Input : relation r , set of attributes A, number of processes P
Output: sets of refutations H1, . . . , Hk

i = 0;
j = 0;
range = |r |/P;
for a ∈ A do

Ha = ∅;
parallel for t ∈ r do

i = j + 1;
j = j + range;
findRefutations(a, t , i , j);

end
end

function findRefutations(a, t , i , j )
for t ′ ∈ (i, j) do

if t (a)! = t ′(a) then
h = ∅;
for a j ∈ {A − {a}} do

if t (a j ) == t ′(a j ) then
h = h ∪ a j ;

end
end
if h is maximal then

lock();
addToRadixTree(Ha , h);
unlock();

end
end

end
end

Algorithm 4: Parallel RB-FD through tuple ranges using shared radix trees (RB-
FD-rtree-tup).

For an attribute D and a range b each thread computes exactly Θ(k ∗ n ∗ b)
operations in finding refutations. Finding the refutations for all the attributes the
complexity is Θ(k2 ∗ n ∗ b). The Algorithm 4 presents the parallel solution through
the set of attributes.
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6 Experimental Results

A measurement of the average-over-time of the number of threads simultaneously
running is introduced as the figure of merit that characterizes the efficiency of a
Multi-threaded execution in a Many-Core computer. The objective is to distinguish,
for a certain problem and execution, what is the proportion of the total running time
for which threads execute in parallel and achieve some progress in their work.

Consider that blocking mechanisms are used to guarantee exclusive access to
certain memory location. These mechanisms usually have three main states:

• Acquiring permission: The thread asks for permission to access the protected
memory location. This state can consider blocking.

• Performing actions with permission: The thread performs actions on the protected
memory location.

• Releasing the permission: The thread releases the permission after finishing its
actions on the protected memory location.

It can be seen that the only blocking state is the first one, meaning that there can
be no progress on the actions that the thread has to perform. For instance, the Lock
blockingmechanism considers that only onewriter thread can have the lock at a time.
Thus the blocking state consists on repeatedly and unsuccessfully atomic operations
by the thread to change the lock state from unlock to lock.

Formally, let Γ be the total running time of a thread and let β be the time the
thread spends in blocking state, with a total of p threads running concurrently, the
average of parallel running time (APRT ) is defined as follows:

APRT =
∑p

i=1 Γi − βi

p

APRT and the level of speedup are used to analyze the performance of the parallel
algorithms described previously. We carried out a set of experiments using both of
the proposals with the introduction of the radix tree.

Algorithms were implemented in the C++11 programming language. The exper-
iments were carried out on a Dual 12 Core Xeon Haswell, with a total of 24 physical
cores running at 2.60 GHz. Hyperthreading was disabled. The computer runs Linux
3.19.0-26-generic, in 64-bit mode. This machine has per-core L1 and L2 caches of
sizes 32 and 256 KB, respectively and a per-processor shared L3 cache of 30 MB,
with a 256GB DDR RAM memory and 1TB SSD. Algorithms were compared in
terms of running times using the usual high-resolution (nanosecond) C functions in
time.h.

The datasets (input) used are from UCI Machine Learning Repository [1], in
particular we use the PAMAP2 Physical Activity Monitoring datasets.



316 J. Fuentes et al.

6.1 Radix Tree Performance

One of the first improvement for RB-FD that was introduced in the previous section
was the use of a radix tree instead of a matrix to store maximal refutations. This new
data structure allows refutation compression by using the similar refutations’ prefix
as a single node.

A number of 12 relation instances where used to carry out some experiments to
measure the performance with the goal of seeing what is the improvement achieved
by using this new data structure. Figure3 shows the running time (in seconds) of
RB-FD using the original matrix H and the new version using a radix tree (RB-
FD-rtree). It is clear to see that RB-FD-rtree presents a significant less running time
when increasing the number of tuples in the datasets. A similar behavior occurs
when increasing the number of attributes. Furthermore, as analyzed previously, the
memory usage is reduced notoriously when using the radix tree. For instance, when
storing 30,000 maximal refutations the memory utilization is 10 times smaller than
using an array representation for the matrix H (Fig. 4).

Fig. 3 Running time of
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6.2 Parallel Alternatives

Table3 shows the times achieved by RB-FD on its three versions: RB-FD-rtree
(sequential algorithm) and the parallel versions RB-FD-rtree-att (parallelization
through attributes) and RB-FD-rtree-tup (parallelization through tuples). This exper-
iment corresponds to the finding of functional dependencies on a datasets with
502,182 tuples and 32 attributes. Figure5 shows the speedup from the sequential
version RB-FD-rtree when increasing the number of cores for RB-FD-rtree-att and
RB-FD-rtree-tup. Up to 12 cores, it can be seen that the speedup of the parallelization
through tuples grows slowly, then it stops growing and decreases its speedup a bit and
continues fluctuating between a speedup of 2 and 3. The main reason for this phe-
nomenon is that increasing the number of threads in RB-FD-rtree-tup produces data
contention and more lock operations on the shared radix tree. The data contention
does not occur with RB-FD-rtree-att, which presents a constant growth, since there
is no shared radix tree, due to each thread has its own radix tree.

The parallelization over tuples (RB-FD-rtree-tup) works with a simple Lock as
a mechanism for allowing exclusive access to the radix tree when a new maximal

Table 3 Running times (in seconds) varying the number of cores

# cores RB-FD rtree RB-FD rtree-att RB-FD rtree-tup

1 4.41 4.41 4.41

4 – 2.08 1.7

8 – 1.94 1.04

12 – 1.46 0.76

16 – 1.86 0.66

20 – 1.62 0.56

24 – 1.90 0.44

Fig. 5 Speedup of parallel
alternatives varying the
number of cores
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Table 4 Average of blocking and total time for threads running RB-FD-rtree-tup

# cores Blocking time Total time APRT

4 0.018 0.22 0.91

8 0.030 0.156 0.79

12 0.05 0.132 0.63

16 0.048 0.106 0.57

20 0.064 0.114 0.43

24 0.082 0.126 0.35

refutation is found. Therefore it sounds interesting to see what is the APRT achieved
when different number of threads are finding FDs in a dataset.

Table3 shows the blocking and total times achieved by the algorithmwhen threads
work on the same attribute (right-part of the refutation). As explained in Algorithm 4
the number of tuples is divided by the number of threads and each thread has to
find refutations on its own range. These executions correspond to the same from the
previous experiments, but focusing only on RB-FD-rtree-tup and the blocking and
total times (Table4).

According to the results, when increasing the number of cores and threads shorter
running time is achieved. However after 12 cores, the running time stops decreasing
and keeps stable. This behavior is explained by the addition of more blocking time
as the number of cores and threads are increased. Therefore smaller APRT values
are obtained and the greater blocking times are added. In other words, with more
threads they have to perform less work but they suffer of blocking and waiting times
(Fig. 6).

Fig. 6 Running time
characterized by APRT and
blocking time
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Cellular Automata and Wireless
Sensor Networks

Salimur Choudhury

Abstract Wireless sensor networks and cellular automata both are unconventional
computing models. We can use cellular automaton based localized algorithms to
solve various optimization problems of wireless sensor networks. In this chapter, we
consider two very well known optimization problems and discuss various cellular
automaton based algorithms for these two problems.

1 Introduction

Due to the advancement of sensor communication technology, wireless sensor net-
works have been used in many applications. The sensors are the main components of
a wireless sensor network. A sensor is a very low cost small device that has limited
battery power, short communication range, limited processing power and limited
memory. A wireless sensor network (WSN) forms a distributed information process-
ing system that gathers and processes different attributes of the network, for example,
humidity, temperature, etc. A traditional wireless sensor network also includes sin-
gle or multiple base stations that gather data from the sensors [53]. Each sensor of
a sensor network has a sensing radius and a communication radius. A sensor can
sense or monitor the region that falls within its sensing radius and communicates
with other sensors that are within its communication radius. The sensors with whom
a sensor can communicate are called the neighbors of the sensor. A typical wireless
sensor network consists of hundreds, or even thousands, of sensors. These sensors
are deployed in the monitored area and typically centralized controls are absent on
these sensors [33]. These nodes are also unattended due to typical applications of
sensor networks, it is not possible to have a human operator to directly attend to
individual sensors. The sensors use each other (multi-hop communication) to route
the information that they sense to the base stations for further processing. Habitat
monitoring is an important application of wireless sensor networks. Mainwaring
et al. [38] designed a wireless sensor network on Great Duck Island, Maine, USA to
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monitor the behavior of storm petrel. Some other habitat monitoring applications are
considered in [8, 10, 27, 52]. The other important applications of wireless sensor
networks are health monitoring systems [39, 45], home applications [46], etc.

Unlike traditional networking technology, energy is one of the major constraints
that limits the usability of wireless sensor networks [53]. The energy of a sensor
decays with time. A typical sensor can be in one of the two modes, asleep and
awake. When a sensor is in the awake mode it can sense its region and also can
communicatewith its neighboring sensorswhile in the asleepmode, it cannot sense or
communicate. However the energy of a sensor decays in bothmodes. A sensor spends
muchmore energy in the awake state than in the asleep state and the amount of energy
needed for the purpose of communication increaseswith the increase of radius.When
a sensor loses all of its energy we consider that sensor as dead. Designing energy
aware techniques for different applications of wireless sensor networks is a well
studied research area [26].

As the sensors spend more energy in communication and they use multi-hop
communication, the sensors that are closer to the base station can be overloaded and
can die early. This problem can be solved using mobile sinks [2]. When a component
of a wireless sensor network (either a sensor or a sink) has moving capability then we
call the network aMobile Wireless Sensor Network (MWSN). Moreover, in different
applications, for example, military field, mobile objects monitoring, etc., the sensors
cannot be deployed in their desired positions by a centralized (or human) operator.
In these cases, we can deploy the sensors densely and they can autonomously move
within the network to improve the performance of the network if they have a moving
capability [37].

In most of the applications of a WSN or a MWSN, two metrics are considered to
measure the performance of the network [18]. One is the coverage and the other is
the network lifetime. Coverage is defined as the area monitored by the network. The
definition of network lifetime varies with the application. In some cases, we define
a network lifetime as the time elapsed until a sensor of the network dies, while in
some cases network lifetime refers to the time until a given fraction of the sensors
die. The other definition of network lifetime is the time elapsed “until all the sensors
are dead” [18].

Underwater sensor networks (UWSN) are relatively new applications of wireless
sensor networks [1, 42]. In a typical UWSN, sensors are used to monitor different
aspects of seas, lakes, etc. The sensors of a UWSN can be either static or mobile.
Differing from a land based MWSN, the sensors of a mobile UWSN move in three
dimensions. Deployment is one of themain challenges of the effective use of wireless
sensor networks. In a typical deployment, a number of metrics are considered. One of
the main metrics is the energy of the sensors. As the energy of the sensors is limited
and they decay with time we need to deploy the sensors in a way that enables us to
extend their lifetime as long as possible. There are other metrics often considered at
the deployment, for example, connectivity, coverage, etc. [48].

Most of the algorithms found in the literature related to the sensor network deploy-
ment are either global or distributed [44]. In a real environment it is not feasible to
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implement a global algorithm. On the other hand, a distributed algorithm needs more
communication and message passing which makes the algorithm complex. A local
algorithm can be a good candidate solution for this type of optimization problems.
Even the local algorithms that have been designed for WSN are quite complex in
terms of processing and memory needed [47].

In this chapter we discuss cellular automaton based algorithms [14, 15] for two
of the most important optimization problems of wireless sensor networks.

2 Cellular Automata

The Cellular Automaton is a biologically inspired model that has been widely used
to model different physical systems [11, 21, 25]. We can model a two dimensional
cellular automaton as a two dimensional grid. Each cell of the grid is in one of a
finite number of states. The cells change state synchronously at discrete time steps
and the new state depends always only on states of a local neighborhood.

One of themajor benefits of using a cellular automaton basedmodel is that it needs
very limited local information to compute the solution.We can also perform extensive
simulations if we use cellular automaton models as cellular automata are easy to
implement. The main challenge is to design good local rules that give a satisfactory
global outcome for different optimization problems. In the following subsections we
describe and discuss some optimization problems and related challenges.

Typically, a large number of sensors are deployed in the environment to sense the
data. Since the sensors are densely deployed, multiple sensors can sense or cover the
same region. The sensor spends most of its energy to sense the environment and dies
as soon as it loses all its energy. Different techniques have been applied to preserve
the energy for as long as possible. One of these techniques is to let a part of the
sensors sleep for a certain amount of time and let them awake only when necessary.

Much research has been done on such scheduling problems. One of the common
techniques is tomake a domatic partition of the sensors [40, 49]. In a domatic partition
(set), some representative sensors are selected in a way that either a sensor is in that
set or at least one of its neighbors is in the set. The idea is to let this set of sensors
stay awake for a certain period of time so that the area of the network is covered and
the life time of the network is also increased. As the domatic partition problem is
NP-hard [20], many approximation algorithms have been proposed [3, 12, 19, 31].
In such algorithms, it is assumed that the network is connected. Once the network is
disconnected the algorithm is of no use. Different strategies to solve energy efficient
coverage problems can be found in [9].

There are some algorithms to solve the sleep-wake scheduling problem of aWSN
using cellular automata [7, 18, 32]. In every case, they consider a radius 1 neighbor-
hood of the sensors. In this chapter, we consider a radius 2 neighborhood to solve
the sleep-wake scheduling problem of a wireless sensor network. Moreover, we have
used two different energy levels for sensing and communicating among neighbors. To
make the comparison with the earlier radius 1 algorithms realistic, in our algorithm
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the sensing radius remains one and the larger radius two neighborhood is used only
for communicating with neighbors. Naturally, the energy used for communication
depends on the square of the communication radius, and this is taken into account
when calculating the energy use of sensors. Furthermore, our algorithm solves the
sudden falls of the coverage of [18]. We developed a CA simulator and compare the
different rules to implement the CA model. Recently a variant of our algorithm is
considered in [30].

Object detecting in a WSN is one of the well studied research problems [4, 5, 28,
36]. In an animal behavior monitoring environment or in a military field, sensors are
usually deployed to detect animals or enemies, respectively. To this end, algorithms
are proposed that increase the probability of success. In such a situation network life
time is also an important factor. As soon as the network dies, we cannot detect the
object any more. We also find that our CA model increases the network lifetime and
can detect more objects than the earlier algorithms based on CA models.

3 The Coverage and the Object Detection Problems

In the following, we extend the CA algorithms considered in Cunha et al. [18]. We
represent the sensors as the cells of a two dimensional grid. Each cell can have three
states: awake, asleep and dead. A real value is associated to each cell representing
the remainder of the available battery for that sensor. At each time point, the value
is decreased correspondingly, depending on whether the sensor is awake or asleep.
When the value reaches 0 (or a negative value), the sensor enters permanently into
the dead state. Initially, after the deployment, we set the states of a subset of cells as
awake. In the awake state, the sensor can sense its region (radius 1 neighborhood)
and communicates with its neighbors. For communication with neighbors, a sensor
has, depending on the algorithm used, either radius 1 [18] or radius 2 neighborhood
(our algorithm). The energy consumption when using the radius 2 neighborhood
is larger (square of the energy consumption for the radius 1 neighborhood). While
using a large communication radius increases the energy consumption, having more
information about the states of nearby sensors may enable the network to make better
decisions on which set of cells should be kept awake.

In practice, the sensing range and the communication range of a sensor can be
different in a WSN [9]. In the asleep state, a sensor cannot sense and communicate
with any of its neighbors. However, as explained below, a sensor in the asleep state
periodicallywakes up and communicateswith its neighborhood to determinewhether
or not the sensor should go to the awake state. A sensor that runs out of energy goes
permanently to the dead state.

We use only rules that count the number of awake sensors. The CA transition rule
is applied only periodically. For i, j ≥ 0, we define i/j rules be setting:

• A cell in the awake state that has at least i neighbors awake, goes to the asleep
state; otherwise it remains awake.
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• A cell in the asleep state that has less than j neighbors awake, wakes up; otherwise
it stays asleep.

Thus, at periodic intervals, when the transition rules in a particular cell are applied,
the cell wakes up and checks its neighborhood. For this time period the cell con-
sumes energy (the energy consumption rate depending on the neighborhood radius
as described later in the simulation and results section).

Note that, when counting the number of awake cells in the neighborhood, it does
notmake a differencewhether the remaining cells are asleep or dead. Since a sensor in
the asleep state is not using energy for communication, it appears to its neighborhood
as a dead sensor. Thus, in order to keep the algorithm realistic, the CA rules cannot
distinguish between sensors that are asleep and those that are dead. Though the
boundary cells can always have less than i or j sensors for some rules (for example,
3/3, 3/4, 4/4, etc.), for simplicity we use similar rules for all the cells.

The algorithm terminates when all sensors are in the dead state.
In this section, we describe two problems for which we apply our algorithm:

coverage and object detection.
In a WSN, the area covered by the awake sensors is called the coverage of the

network. A sensor in the awake state is considered to cover the sensors that are
within its sensing radius (radius 1 neighborhood in our paper). Sensors in the asleep
or dead states do not provide any coverage. A network, where a large number of
cells is awake, provides good coverage, but due to the increased energy consumption
many cells start to die out which then makes it impossible to maintain the coverage
level. The goal of a coverage algorithm is to provide coverage at an acceptable
threshold (measured as a percentage of the area covered) with as few sensors awake
as possible. The decisions on which cells are asleep/awake need to be made locally,
which makes CA a good model for this problem. What is an acceptable threshold
naturally depends on the particular applications we have in mind. In general, the
solutions to the coverage problem can be evaluated by considering the resulting
coverage percentage as a function over time.

In the object detection problem, the network is used to detect various objects
(such as wild animals, or enemy soldiers) that enter the network area. While the
type of the movement may depend very much on the particular applications, here we
assume that the objects move randomly. In one set of experiments, the objects change
direction at each time step, and we consider another variant where the objects move
in one direction a fixed amount of time before making a random choice of a new
direction. As far as we know, CA algorithms have not been previously considered for
the object detection problem, and naturally for more detailed results, further work
can consider objects whose movement is not random.

Note that, if we require that the object be observed at all times, the problem setting
would become more similar to the coverage problem. Furthermore, when discussing
the object detection problem, we assume that the sensors have sensing radius zero,
that is, an object is detected only when it comes into the same grid point with an
awake sensor. Choosing the sensing radius is just a matter of scaling. If we use a
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larger sensing radius, almost all objects will be detected even with very conservative
algorithms that keep only a small portion of cells awake.

We identify the best transition rules for the coverage problem and the object
detection problem both with respect to the radius 1 and radius 2 neighborhood is
(1/1) and compare these with each other we find that radius 2 algorithm outperforms
radius 1 algorithm in all cases.

4 Dispersion of Mobile Sensor Networks

Mobile wireless sensor networks have a wide range of applications [33, 37] and there
has been much research on this topic. The mobile sensors have the same general
characteristics as in a sensor of a sensor network. Additionally, each mobile sensor
has locomotion capability. One of the main reasons for using the mobile sensors is
to improve the coverage of the networks. However, this leads to a very important
research question. How one sensor can move so that it can maximize the coverage
of the network?

Typically, a sensor is deployed in a network to cover some region of the network.
The coverage of a network is defined as the area that is covered by its sensors. In
different applications of MWSN, it is not possible to deploy the sensors determinis-
tically so that they can maximize the coverage. More commonly, they are deployed
randomly and the sensors are required to disperse autonomously using algorithms
to maximize the coverage of the network [37]. In different applications, along with
the coverage, the preservation of the connectivity is also a major concern. Once the
sensors try to move by themselves, they can break the connectivity. Connectivity is
an important aspect of the network as it is used to route the data among the nodes.
We call this problem the Mobile Dispersion Problem.

We first discuss a cellular automaton based algorithm that maximizes the cov-
erage of a MWSN very quickly, involves fewer sensor movements when compared
with an earlier cellular automaton algorithm [48], and is simpler than other existing
techniques [17, 22, 51]. Though we have not considered the energy constraints on
the movement of the sensors explicitly, the number of sensor movements gives a
good approximate measure of energy use and gives a good measure of the usefulness
of the algorithms in practice.

In the first set-up the sensors are restricted to an area. Thismeans that, as long as the
sensors are sufficiently dispersed (the algorithmworks probabilistically), most of the
network stays connected. We also consider a scenario where a number of sensors are
initially densely deployed and the area is (at least potentially) unbounded. Thus, the
algorithm needs to explicitly ensure that the connectivity of the network is preserved.

Connectivity preservation is an important aspect of different wireless sensor net-
works as it is necessary to route information within the network. In the second part
of this section we also consider different CA based algorithms for connectivity pre-
serving deployment of mobile sensors [13, 16]. In our experimental set-up we first
consider a “regular” n × n square formation as an initial configuration of the network
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and find an optimal solution using a deterministic algorithm. Finally, we study sys-
tematically more realistic random initial deployments of sensors and for the realistic
initial deployments it is not equally easy to obtain an optimal solution. We need to
add features to the algorithm that try to prevent the creation of “holes” in the network
and also, in this context, it turns out to be useful to consider randomized variants of
the algorithm.

There is another difference between the two variants of the problem. In the first
variant, each cell can contain only one sensor at any time period. On the other hand,
in the second variant a cell can contain more than one sensor.

Most of the solutions that have been proposed for this mobile dispersion problem
are either global or distributed algorithms [17, 22, 29, 43, 51].

Vector based approach is a well known approach for deploying mobile sensors to
maximize the coverage of the mobile sensor networks [23, 24, 41, 50, 54]. They all
are inspired by the different physicalmodels. In these cases, a sensor node determines
its movement direction based on the force received from its neighbors. Howard et al.
[24] first propose a virtual force algorithm which is localized but it is not applica-
ble for a discrete model and computing the directions is quite complex compared
to our cellular automaton algorithms. Zuo et al. [54] propose a distributed virtual
force algorithm for the dispersion of the mobile sensors. They use a combination of
attractive and repulsive forces to determine the movement of the sensors.

Cortes et al. [17] propose an algorithm for an analogues problem in robotics. In
their algorithm, each robot (sensor in our algorithms) draws a Voronoi diagram and
it moves to minimize its local uncovered areas by aligning its sensing range with the
Voronoi region as much as possible. Some other Voronoi diagram based algorithms
are proposed in [22, 51].

Barriere et al. [6] propose a local algorithm for the uniform dispersion of
autonomous mobile robots in a grid. However, their algorithm is quite complex
and the algorithm does not work for the network having communication radius less
than 4.

There are other local algorithms proposed for a variant of coverage problem [34,
35] called “focused coverage” where some regions of the network have more priority
to be covered. The definition of this problem is quite different than the problem that
we consider in this part of the thesis.

A simple approach has been proposed in [48] based on cellular automata to max-
imize the coverage of the mobile sensor networks. It does not explicitly consider the
connectivity constraint and there are no techniques considered in the algorithm to
preserve the connectivity. We discuss this algorithm in some more details when we
describe our algorithm in Sect. 4.2.

4.1 System Model of Mobile Sensor Networks

Aset ofnmobile sensors are deployed in a network.They are disperseddenselywithin
the network. The sensors are homogeneous, i.e. they have same sensing (Rs) and
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Fig. 1 An example of
mobile wireless sensor
network

communication (Rc) radii, whereRc > Rs. The sensing radius refers to themonitoring
function of the network and a sensor is said to cover the cells within its sensing radius.
On the other hand, the sensors can communicate with other sensors that are within
their communication radius. The network is connected if any two sensors can be
connected by a path of sensors m1, …, mk where mi+1 is within the communication
radius of mi, i = 1, . . . , k − 1. The coverage of the network is the area covered by
the largest connected component of the network. All the sensors move with the same
speed. In our cellular automaton based algorithms, the sensors can move a maximum
of one cell at a time. A random deployment of a mobile sensor network is shown in
Fig. 1. The small circles are the sensors.

4.2 Algorithms for Maximizing Coverage

We briefly discuss our algorithm for the first variant of the problem, i.e. maintaining
connectivity of the network is not the main concern of this algorithm. The main goal
of the algorithm is to increase the coverage. In this case, the sensors are deployed in
a closed area and there are sufficiently many sensors so that when they are evenly
distributed the majority of the sensors remain connected.

We consider a 2-D cellular automaton where the states of the cells indicate the
presence or the absence of mobile sensors. The movement of the sensors is modeled
by state changes. We consider different (Rc, Rs) pairs and the goal of the algorithms
is to position the sensors in a way that maximizes the coverage.

The sensors can communicate and get information about the locations of nearby
sensors up to Rc. During a given time period, a sensor spends much less energy to
communicate with its neighbors than in monitoring its environment. So it is reason-
able to assume that the communication radius is larger than the sensing radius even
though the energy consumption increases with the radius.
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In each time step, a sensor can move one cell in any direction. The algorithms use
the information about the positions of the nearby sensors to determine the movement
of the current sensor in the next time step. The goal of the algorithms is two-fold:

• to position the sensors in a way that maximizes the coverage,
• to minimize the movements of the sensors in order to conserve energy.

We propose the following cellular automaton model for this particular problem.
We consider an Rc neighborhood for each cell. We divide the neighborhood of a

cell into the North East (NE), North West (NW), South East (SE) and South West
(SW) quadrants. As indicated in Fig. 2 for Rc = 4, each quadrant consists of 20 cells.

Now we describe the algorithm that is used to solve the problem.

1. Initially the sensors are placed in different ways (described in the simulation and
results section) within the network. The state of the cell that contains a sensor is
set to 1, otherwise 0.

2. Each time period is divided into two phases: odd and even (similar to [48]).

• Odd Phase: The algorithms use two parameter values k
′
and k

′′
. In this phase,

each sensor determines whether it should move (and where) or not.
– For each of the four quadrants x ∈ {NE, NW , SW , SE} of its current loca-
tion, the sensor calculates a weight, tx that is based on the number of sensors
seen in that quadrant. The algorithm gives higher weight for sensors that
are closer to the current sensor. For example, in case of Rc = 3, the neigh-
bors that are distance 1 away are assigned weight 3. On the other hand the
neighbors that are distance 3 away are assigned weight 1.

– Each sensor determines the maximum and the minimum value from tx,
where x ∈ {NE, NW , SW , SE}.

Fig. 2 The four quadrants of a cell (i, j) When Rc is 4
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– If the minimum value is less than k
′
and the maximum value is more than

k
′′
, then the sensor chooses a position randomly from the quadrant (one of

the two positions of the quadrant that are adjacent to the current location
of the sensor) that has the minimum value. In case of multiple minimum
values, the sensor chooses a random quadrant. In the even phase, the sensor
tries to move into that position.

• Even Phase: In this phase, a sensor moves to the cell that it has chosen in the
odd phase if the following conditions are met:
– The cell where it is moving should be empty.
– No other sensor tries to move to that cell. Randomly one sensor is chosen
if there are multiple candidate sensors for that cell. A radius Rc = 2 com-
munication is enough to determine who are the candidates as the sensors
move one cell at a given time.

• Once the sensor decides on its next location, the state of that location is set to
1 and the state of the sensor’s previous location is set to 0.

By the (k
′
/k

′′
) algorithm wemean the algorithm where the sensor movement con-

dition requires that the minimum (respectively, maximum) weight computed for the
quadrants is less than k

′
(respectively, greater than k

′′
). We try different (k

′
/k

′′
) rules,

where k
′
and k

′′
are integers, 1 ≤ k

′
, k

′′ ≤ 5.We consider three different scenarios for
the grid of size 125 and compare the best rules of our model with an earlier algorithm
[48] for which we use the name “COUNT”. The COUNT algorithm determines the
movement of the sensors based only on a numerical quantity obtained by counting the
numbers of nearby sensors at different distances and does not incorporate directional
information into the numerical value.

Before explaining our simulation results, we briefly mention the differences
between our algorithm and the algorithm from [48] (that we call the “COUNT”
algorithm):

• Our algorithm divides the neighborhoods into four quadrants but “COUNT” does
not.

• “COUNT” calculates only one k for each sensor, whereas our algorithm calculates
four, one for each quadrant.

• Our algorithm forces the sensor to choose a future position from that quadrant that
has minimum weighted value, while “COUNT” chooses a random one from all of
its neighbors. So there is a possibility to choose a position where already enough
sensors exist.

In this section, we give a high-level description of our algorithm that disperses
sensors from an initial configuration while trying to maintain connectivity. In par-
ticular, for simplicity, below we talk about the movement of an individual sensor.
However, in the general case, one cell may contain more than one sensor and the
state of the cell needs to remember the information for each sensor it contains. We
consider a scenario where Rc > Rs.

The algorithm determines the movement direction of a sensor mi based on the
weighted number of neighbors of mi in the positive and in the negative x-direction
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(respectively, y-direction). The weights assigned to neighbors in case of Rc = 3 are
as follows: The weights for neighbors at distance 1, 2, 3 are 4, 2, 1 respectively. In
case of Rc = 2, the weights for neighbors at distance 1, 2 are 2, 1 respectively.

In an ideal case, one sensor can have neighbors at distance 3 away in case of
Rc = 3 and Rs = 1 to maximize the coverage while maintaining connectivity. For
this reason we assign the weights to be inversely proportional to the distance.

The state representing an individual sensor is a pair (x, y), x, y ∈ {−1, 0, 1}. The
state remembers the lastmoveof the sensor. Thedirection of themovement is stored in
the state because, in order to avoid infinite loops, the algorithm preserves the current
movement direction. For example, a pair (0, 1) means that in the last time step the
sensor did not move in the x-direction and moved upwards along the y-direction. The
next movement step of a sensor mi is determined by the weighted neighborhood of
mi and the previous movement direction of mi that is stored in the pair of integers
representing mi. When a cell has more than one sensor, each represented by a pair
(x, y), x, y ∈ {−1, 0, 1}, the algorithm computes the potential movement direction
for each of these sensors. (The movement direction depends on (x, y) and, thus, may
be different for different sensors in the same cell.)

Firstwe describe how the algorithmdetermines the direction of the nextmovement
step. Then we describe blocking rules that are used to prevent loss of connectivity
and, finally, we describe additional move-back rules that are used when the blocking
rules fail.

The algorithms use a parameter (Multiplier),M ≥ 2 that serves to encourage the
sensor to keep moving in the direction of its previous movement step. We define the
movement rule as follows.

Suppose a sensor mi is represented by pair (sx, sy). Suppose that w1 is the sum
of weights of neighbors of mi in the negative x-direction (to the left of mi). Suppose
that w2 is the sum of basic weights of neighbors of mi in the positive x-direction (to
the right of mi). The potential movement of mi in x-direction depends on the value
of sx, i.e. by remembering the last move, the sensor tries to keep moving in the same
direction, unless there is a really good reason to change direction. So the movement
of a sensor along the x-direction depends on its neighbors in the positive and negative
x-direction and the current value of sx. If we use a multiplierM, then the decision of
movement to the x-direction is determined by a value x-move(mi) defined as

• if sx = 0, x-move(mi) = w2 − w1

• if sx = −1, x-move(mi) =(M ∗ w2) − w1

• if sx = 1, x-move(mi) = w2 − (M ∗ w1)

Now, if x-move(mi)= 0 then the sensor does not move in the x-direction. If x-
move(mi)≥ 1 and x-move(mi)≤ −1 then the sensor moves to the negative and posi-
tive direction, respectively. Movement in the y-direction is determined analogously.

If we do not have multipliers, that is, set M = 1, the movement rules defined by
the weighted neighborhood of a sensor together with the move back rules can lead
to infinite cycles.

We introduce rules that attempt to prevent the network from losing connectivity.
Belowwe consider a movement step in the positive x-direction. The same rules apply
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to the 3 other directions. If a sensor mi does not see any neighbors within distance
Rc − 1 in the negative x-direction, amovement step in positive x-direction is blocked.

Consider a cell with n
′
sensors m1, m2, ..., mn′ . Each sensor determines indepen-

dently whether it should move or not. If all the sensors move to a positive x-direction
then sensorm1 checks within distance Rc − 1 in the negative x-direction for the con-
nectivity and if there is no sensor within distance Rc − 1 then only sensor m1 will
not move to the positive x-direction. In case all sensors in the cell try to move in one
of the other three directions, a similar control step is done in the opposite direction.

There are some additional blocking rules too.
The above blocking conditions still do not guarantee the preservation of connec-

tivity because the sensors that are within distance Rc − 1 of each other can move
to the opposite directions. For this reason we introduce the following “move back”
rules. At any given time period t, before moving to the positive x-direction, a sensor s
remembers whether or not it has a neighbor in two different quadrants in the negative
x-direction. At the next time period t + 1, if the sensor finds that there is no sensor in
one of these quadrants but there was at least one sensor in the same quadrant at period
t, then the sensor moves back in the negative x-direction. The same rule applies to 3
other directions.

If we are concerned only about the loss of connectivity, the move back rule can be
simplified by remembering only whether or not there were neighbors in the direction
opposite to the current movement, that is, in that case quadrants Q1 and Q2 can be
combined together.We call this simplified rule the 180◦-move back rule. The purpose
of the quadrant-rules is to prevent the creation of holes in the network. Large holes
increase the hop-distance between individual sensors and, thus, worsen the strong
connectivity of the network.

If we have a cell with n
′
sensors and x-move(mi) > 0 for all i = 1 . . . l,where l ≤

n
′
, then in case of 180◦-move back rule, only sensorm1 checks cells for a distance Rc

in the negative direction and if it finds that there is no sensor in the negative direction
then it moves back in the negative direction. All other sensors move according to the
other rules. On the other hand, in the case of quadrant move back, before moving to
a new direction each sensor remembers whether there is any sensor in the quadrants
of the opposite direction.

At any period t, m1 checks the quadrants of the opposite direction and if it finds
that there is no sensor in one of the quadrants at that time period but there was at
least one in that quadrant at time t − 1, then only sensor m1 moves back in negative
x-direction. Other sensors continue with other rules. These rules are applied similarly
in the other three directions.

In a deterministic version of the algorithm, one sensor checks the rules at each
time period to decidewhether or not it shouldmove from the current location.We also
consider the probabilistic versions of the algorithms where at each time period, each
sensor verifies the rules with some probability. Though, in a probabilistic version, it
takes more time than the deterministic one to reach a final position but we find that
the randomized algorithm often gives a better result and the probability of being in
a cycle is much less than in the deterministic cases.
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5 Conclusion

In this chapter we describe some well known cellular automaton based algorithms
for two well known optimization problems in wireless sensor networks. Wireless
sensor networks can be well modeled using cellular automata. A cell can represent
a sensor. Sensors can decide locally their acts to accomplish some tasks to obtain a
global solution for an optimization problems. Different results suggest that cellular
automata can be used to model such problems of the sensor networks. We can do
some extensive simulations and these algorithms can also be worked as benchmarks
for other algorithms. Cellular automaton based algorithms exist in literature only
consider square grids. However, considering hexagonal grids can be very interesting
which is much more realistic for wireless communications.
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Abstract The Population Protocol model is a distributed model that concerns
systems of very weak computational entities that cannot control the way they inter-
act. The model of Network Constructors is a variant of Population Protocols capable
of (algorithmically) constructing abstract networks. Both models are characterized
by a fundamental inability to terminate. In this work, we investigate the minimal
strengthenings of the latter model that could overcome this inability. Our main con-
clusion is that initial connectivity of the communication topology combined with the
ability of the protocol to transform the communication topology and the ability of a
node to detect when its degree is equal to a small constant, plus either a unique leader
or the ability of detecting common neighbors, are sufficient to guarantee not only
termination but also themaximum computational power that one can hope for in this
family of models. In particular, the model, under these minimal assumptions, com-
putes with termination any symmetric predicate computable by a Turing Machine of
space Θ(n2).
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1 Introduction

A dynamic distributed computing system is a system composed of distributed com-
putational processes in which the structure of the communication network between
the processes changes over time. In one extreme, the processes cannot control and
cannot accurately predict the modifications of the communication topology. Typi-
cal such examples are mobile distributed systems in which the mobility is external
to the processes and is usually provided by the environment in which the system
operates. For example, it could be a system of cell phones following the movement
of the individuals carrying them or a system of nanosensors flowing in the human
circulatory system. This type of mobility is known as passive (see e.g. [4]). On the
other extreme, dynamicity may be a sole outcome of the algorithm executed by the
processes. Typical examples are systems in which the processes are equipped with
some internal mobility mechanism, like mobile robotic systems and, in general, any
system with the ability to algorithmically modify the communication topology. This
type of mobility is known as active mobility (see e.g. [20] for active self-assembly,
[11, 12, 19] for mobile robots, and [1] for reconfigurable (nano)robotics under phys-
ical constraints). Recently, there is an interest in intermediate (or hybrid) systems.
One such type, consists of systems in which the processes are passively mobile but
still they are equipped with an internal active mechanism that allows them to have a
partial (algorithmic) control of the system’s dynamicity.

The intermediate model that guides our study here, is the network constructors
model introduced in [17]. In this model, there are n extremely weak processes,
computationally equivalent to anonymous finite automata, that usually have very
limited knowledge of the system (e.g. they do not know its size). The processes
move passively and interact in pairs whenever two of them come sufficiently close
to each other. This part of the system’s dynamicity is not controlled and cannot be
(completely) predicted by the processes and is modeled by assuming an adversary
scheduler that in every step selects a pair of processes to interact. The adversary is
typically restricted to be fair so that it cannot forever block the system’s progress
(e.g. by keeping two parts of the system forever disconnected). Fairness is sufficient
for analyzing the correctness of protocols for specific tasks. If additionally an esti-
mate of the running time is desired, a typical assumption is that the scheduler is a
uniform random one (which is fair with probability 1 [8] and also corresponds to
the dynamicity patterns of well-mixed solutions). But in this model, there is also
an internal source of dynamicity. In particular, the processes can algorithmically
connect and disconnect to each other during their pairwise interactions. This can be
viewed either as a physical bonding mechanism, as e.g. in reconfigurable robotics
and molecular (e.g. DNA) self-assembly, or as a virtual record of local connectivity,
as e.g. in a social network where a participant keeps track of and can regularly update
the set of his/her associates. This allows the processes to control the construction and
maintenance of a network or a shape in an uncontrolled and unpredictable dynamic
environment.
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The network from which the scheduler picks interactions between processes and
develops the uncontrolled interaction pattern is called the interaction network. At the
same time, the processes, by connecting and disconnecting to each other, develop
another network, the (algorithmically) constructed network, which is a subnetwork
of the interaction network. In the most abstract setting, the interaction network is the
clique Kn throughout the execution, no matter what the protocol does (e.g. no mat-
ter how the protocol modifies the constructed network). In this case, the scheduler
can in every step (throughout the course of the protocol) pick any possible pair of
processes to interact, independently of the constructed network.1 This is precisely
the setting of [17] and also the one that we will consider in the present work.2 But
even if the interaction network is always a clique independently of the constructed
network, the ability of the processes to construct a network may still allow them to
counterbalance the adversary’s power. For example, if the processes manage some-
how to self-organize into a spanning network G, then it might be possible for them
to ignore all interactions that occur over the non-links of G and thus force the actual
communication pattern to be consistent with the constructed network.

The existing literature on distributed network construction [14, 17] has almost
absolutely focused on the setting in which all processes are initially disconnected and
the goal is for them to algorithmically self-organize into a desired (usually spanning
or of size at least some required function of n) stable network or shape. In [17],
the authors presented simple and efficient direct constructors and lower bounds for
several basic network construction problems such as spanning line, spanning ring,
and spanning star and also generic constructors capable of constructing a large class
of networks by simulating a Turing Machine (abbreviated “TM” throughout). One
of the main results was that for every graph language L that is decidable by a O(

√
l)-

space (l + O(
√
l), resp.) TM,where l = Θ(n2) is the binary length of the input of the

simulated TM, there is a protocol that constructs L equiprobably with useful space
�n/2� (�n/3�, resp.), where the useful space is defined as a lower bound on the order
of the output network (the rest of the nodes being used as auxiliary and thrown away
eventually as waste). In [14], a geometrically constrained variant was studied, where
the formed network and the allowable interactions must respect the structure of the
2-dimensional (or 3-dimensional) grid network. The main result was a terminating
protocol counting the size n of the systemwith high probability (abbreviated “w.h.p.”
throughout). This protocol was then used as a subroutine of universal constructors,
establishing that the nodes can self-assemble w.h.p. into arbitrarily complex shapes
while still being capable to terminate after completing the construction.

1A convenient way to think of this setting is to imagine a clique graph with its edges labeled from
{0, 1}. Then, in this case, the clique is the interaction network while its subgraph induced by the
edges labeled 1 is the constructed network.
2On the other hand, it is possible, and plausible w.r.t. several application scenarios, that the set of
available interactions at a given step actually depends on the constructed network. Such a case was
considered in [14], where the constructed network is always a subnetwork of the grid network and
two processes can only interact if a connection between them would preserve this requirement. So,
in that case, the set of available interactions is, in every step, constrained by the network that has
been constructed by the protocol so far.
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1.1 Our Approach and Contribution

Themain goal of this work is to investigate minimal strengthenings of the population
protocol and network constructors models that can maximize their computational
power, also rendering them capable to terminate. To this end, we consider (for the first
time in network constructors) the case in which the initial configuration of the edges
is not the one inwhich all edges are inactive (i.e. those that are in state 0). In particular,
we assume that the initial configuration of the edges can be any configuration inwhich
the active (i.e. those that are in state 1) edges form a connected graph spanning the
set of processes.3 The initial configuration of the nodes is either, as in [17], the one in
which all nodes are initially in the same state, e.g. in an initial state q0, or (whenever
needed) the one in which all nodes begin from q0 apart from a pre-elected unique
leader that begins from a distinct initial leader-state l0. This choice is motivated by
the fact that without some sort of bounded initial disconnectivity we can only hope
for global computations and constructions that are eventually stabilizing (and not
terminating), because a component can guess neither the number of components not
encountered yet nor an upper bound on the time needed to interact with another one
of them ([18] overcomes this by assuming that the nodes know some upper bound
on this time, while [14] overcomes this by assuming a uniform random scheduler
and a unique leader and by restricting correctness to be w.h.p.).

Next, observe that if the protocol is not allowed to modify the state of the edges,
then the assumption of initial connectivity alone does not add any computational
power to the model (in the worst case). For if we ignore for a while the ability of
the model to modify the state of the edges, what we have is a model equivalent
to classical population protocols [4] on a restricted interaction graph [3] (observe
that the model can ignore the interactions that occur over inactive edges). Though
there are some restricted interaction graphs, like the spanning line, that dramatically
increase the computational power of the model (in this case making it equivalent to
a TM of linear space), still there others, like the spanning star, on which the power
of the model is as low as the power of classical population protocols on a clique
interaction graph [10], which, in turn, is equal to the rather small class of semilinear
predicates [5]. As we have allowed any possible connected initial set of active edges,
the spanning star inclusive, the initial configuration of the edges alone (without any
edge modifications) is not sufficient for strengthening the model.

Our discussion so far, suggests to consider at the same time initial connectivity
(or, more generally, bounded initial disconnectivity) and the ability of the protocol
to modify the state of the edges, with the hope of increasing the computational
power. Unfortunately, even with this additional assumption, non-trivial terminating
computation is still impossible (this is proved in Proposition 3, in Sect. 3.3). An
immediate way to appreciate this, is to notice that a clique does not provide more
information than an empty network about the size of the system. Even worse, if a
node’s initial active degree is unbounded (as e.g. is the case for the center of a spanning

3Active and inactive edges are not to be confused with active and passive mobility. An edge is said
to be active if its state is 1 and it is said to be inactive if its state is 0.
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star), then it is not clear even whether the stabilizing constructors that assume initial
disconnectivity (as in [17]) can be adapted to work. Actually, it could be the case, that
without additional assumptions initial connectivity may even decrease the power of
the model (we leave this as an interesting open problem). For example, it could be
simpler to construct a spanning line if the initial active network is empty (i.e. all edges
are inactive) than if it is a clique (i.e. all edges are active). Even if it would turn out
that themodel does not become anyweaker, we still cannot avoid the aforementioned
impossibility of termination and the maximum that we can hope for is an eventually
stabilizing universal constructor, as the one of [17].

We now add to the picture a very minimal and natural, but extremely powerful,
additional assumption that, combined with our assumptions so far, will lead us to
a stronger model. In particular, we equip the nodes with the ability to detect some
small local degrees. For a concrete example, assume that a node can detect when
its active degree is equal to 0 (otherwise it only knows that its degree is at least 1).
A first immediate gain, is that we can now directly simulate any constructor that
assumes an empty initial network (e.g. the constructors of [17]): every node initially
deactivates the active edges incident to it until its local active degree becomes for the
first time 0, and only when this occurs the node starts participating in the simulation.
So, even though a node does not know its initial degree (which is due to the fact that
a node in this model is a finite automaton with a state whose size is independent of
the size of the system), it can still detect when it becomes equal to 0. At that point,
the node does not have any active edges incident to it, therefore it can start executing
the constructor that assumes an empty initial network.

Our main finding in this work, is that the initial connectivity guarantee together
with the ability to modify the network and to detect small local degrees (combined
with either a pre-elected leader or a natural mechanism that allows two nodes to
tell whether they have a neighbor in common), are sufficient to obtain the maximum
computational power that one can hope for in this family of models. In particular, the
resulting model can computewith termination any symmetric predicate4 computable
by a TM of space Θ(n2), and no more than this, i.e. it is an exact characterization.
The symmetricity restriction can only be dropped by UIDs or by any other means of
knowing and maintaining an ordering of the nodes’ inputs. This power is maximal
because the distributed space of the system is Θ(n2), so we cannot hope for com-
putations exploiting more space. The substantial improvement compared to [15, 17]
is that the universal computations are now terminating and not just eventually stabi-
lizing. It is interesting to point out that the additional assumptions and mechanisms
are minimal, in the sense that the removal of each one of them leads to either an
impossibility of termination or to a substantial decrease in the computational power.

In Sect. 2, we discuss further related literature. Section3 brings together all defi-
nitions and basic facts that are used throughout the chapter. In particular, in Sect. 3.1
we formally define the model of network constructors under consideration, Sect. 3.2
formally defines the transformation problems that are considered in this work, and

4Essentially, a predicate in this type of models is called symmetric (or commutative) if permuting
the input symbols does not affect the predicate’s outcome.
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Sect. 3.3 provides some basic impossibility results and a lower bound on the time
needed to transform any network to a spanning line. In Sect. 4, we study the case in
which there is a pre-elected unique leader and give two protocols for the problem, the
Online-Cycle-Elimination protocol and the time-optimal Line-Around-a-Star proto-
col. Then, in Sect. 5, we try to drop the unique leader assumption. First, in Sect. 5.1
we show that, without additional assumptions, dropping the unique leader leads to a
strong impossibility result. In face of this negative result, in Sect. 5.2 we minimally
strengthen the model with a common neighbor detection mechanism and give a cor-
rect terminating protocol. Finally, in Sect. 6 we conclude and give further research
directions that are opened by our work.

2 Further Related Work

The model considered in this chapter belongs to the family of population protocol
models. The population protocol model [4] was originally developed as a model of
highly dynamic networks of simple sensor nodes that cannot control their mobility.
The first papers focused on the computational capabilities of the model which have
now been almost completely characterized. In particular, if the interaction network
is complete, i.e. one in which every pair of processes may interact, then the compu-
tational power of the model is equal to the class of the semilinear predicates (and the
same holds for several variations) [5]. Semilinearity persists up to o(log log n) local
space but not more than this [9]. If additionally the connections between processes
can hold a state from a finite domain (note that this is a stronger requirement than
the active/inactive that the present work assumes) then the computational power dra-
matically increases to the commutative subclass of NSPACE(n2) [15]. The latter
constitutes the mediated population protocol (MPP) model, which was the first vari-
ant of population protocols to allow for states on the edges. For introductory texts to
these models, the interested reader is encouraged to consult [6] and [16].

Based on the MPP model, [17] restricted attention to binary edge states and
regarded them as a physical (or virtual, depending on the application) bonding mech-
anism. This gave rise to a “hybrid” self-assembly model, the network constructors
model, in which the actual dynamicity is passive and due to the environment but still
the protocol can construct a desired network by activating and deactivating appropri-
ately the connections between the nodes. The present chapter essentially investigates
the computational power of the network constructors model under the assumption
that a connected spanning active topology is provided initially and also initiates
the study of the distributed network reconfiguration problem. Recently, [14] studied
a geometrically constrained variant of network constructors in which the interac-
tion network is not complete but rather it is constrained by the existing shapes (every
shape that can be formed being a sub-network of the 2D or 3D grid network). Interest-
ingly, apart from being amodel of computation, population protocols are also closely
related to chemical systems. In particular, Doty [13] has recently demonstrated their
formal equivalence to chemical reaction networks (CRNs), which model chemistry
in a well-mixed solution.
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3 Preliminaries

3.1 The Model

The model under consideration is the network constructors model of [17] with the
only essential difference being that in [17] the initial configuration was always (apart
from the network replication problem) the one in which all edges are inactive, while
in this work the initial configuration can be any configuration in which the active
edges form a spanning connected network. Still, we give a detailed presentation of
the model for self-containment.

Definition 1 A Network Constructor (NET) is a distributed protocol defined by a
4-tuple (Q, q0, Qout , δ), where Q is a finite set of node-states, q0 ∈ Q is the initial
node-state, Qout ⊆ Q is the set of output node-states, and δ : Q × Q × {0, 1} →
Q × Q × {0, 1} is the transition function.When required, also a special initial leader-
state l0 ∈ Q may be defined.

If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′) a transition (or rule)
and we define δ1(a, b, c) = a′, δ2(a, b, c) = b′, and δ3(a, b, c) = c′. A transition
(a, b, c) → (a′, b′, c′) is called effective if x 	= x ′ for at least one x ∈ {a, b, c} and
ineffective otherwise. When we present the transition function of a protocol we only
present the effective transitions. Additionally, we agree that the size of a protocol is
the number of its states, i.e. |Q|.

The systemconsists of a populationVI ofn distributedprocesses (also callednodes
when clear from context). In the generic case, there is an underlying interaction
graph GI = (VI , EI ) specifying the permissible interactions between the nodes.
Interactions in this model are always pairwise. In this work, unless otherwise stated,
GI is a complete undirected interaction graph, i.e. EI = {uv : u, v ∈ VI and u 	= v},
where uv = {u, v}. When we say that all nodes in VI are initially identical, we mean
that all nodes begin from the initial node-state q0. In case we assume the existence
of a unique leader, then there is a u ∈ VI beginning from the initial leader-state l0
and all other v ∈ VI\{u} begin from the initial node-state q0 (which in this case may
also be called the initial nonleader-state).

A central assumption of the model is that edges have binary states. An edge in
state 0 is said to be inactive while an edge in state 1 is said to be active. In almost
all problems studied in [17] (apart from the replication problem), all edges were
initially inactive. Though we shall also consider this case in the present chapter, our
main focus is on a different setting in which the protocol begins its execution on a
precomputed set of active edges provided by some adversary. Formally, there is an
input set of edges E ⊆ EI , such that all e ∈ E are initially active and all e′ ∈ EI\E
are initially inactive. The set E defines the input graph G = (VI , E), also called
the initial active topology/graph. Throughout this work, unless otherwise stated, we
assume that the initial active topology is connected, whichmeans that the active edges
form a connected graph spanning VI . This is a restriction imposed on the adversary
selecting the input. In particular, the adversary is allowed to choose any initial set of
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active edges E (in a worst-case manner), subject to the constraint that E defines a
connected graph on the whole population.

Execution of the protocol proceeds in discrete steps. In every step, a pair of nodes
uv from EI is selected by an adversary scheduler and these nodes interact and
update their states and the state of the edge joining them according to the transition
function δ. In particular, we assume that, for all distinct node-states a, b ∈ Q and for
all edge-states c ∈ {0, 1}, δ specifies either (a, b, c) or (b, a, c). So, if a, b, and c are
the states of nodes u, v, and edge uv, respectively, then the unique rule corresponding
to these states, let it be (a, b, c) → (a′, b′, c′), is applied, the edge that was in state c
updates its state to c′ and if a 	= b, then u updates its state to a′ and v updates its state
to b′, if a = b and a′ = b′, then both nodes update their states to a′, and if a = b and
a′ 	= b′, then the node that gets a′ is drawn equiprobably from the two interacting
nodes and the other node gets b′.

A configuration is a mapping C : VI ∪ EI → Q ∪ {0, 1} specifying the state of
each node and each edge of the interaction graph. LetC andC ′ be configurations, and
let u, υ be distinct nodes. We say that C goes to C ′ via encounter e = uυ, denoted
C

e→ C ′, if (C ′(u),C ′(v),C ′(e)) = δ(C(u),C(v),C(e)) or (C ′(v),C ′(u),C ′(e)) =
δ(C(v),C(u),C(e)) and C ′(z) = C(z), for all z ∈ (VI\{u, v}) ∪ (EI\{e}). We say
that C ′ is reachable in one step from C , denoted C → C ′, if C e→ C ′ for some
encounter e ∈ EI . We say that C ′ is reachable from C and write C � C ′, if there
is a sequence of configurations C = C0,C1, . . . ,Ct = C ′, such that Ci → Ci+1 for
all i , 0 ≤ i < t .

An execution is a finite or infinite sequence of configurations C0,C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. A fairness condi-
tion is imposed on the adversary to ensure the protocol makes progress. An infinite
execution is fair if for every pair of configurations C and C ′ such that C → C ′, if
C occurs infinitely often in the execution then so does C ′. In what follows, every
execution of a NET will by definition considered to be fair.

We define the output of a configuration C as the graph G(C) = (V, E) where
V = {u ∈ VI : C(u) ∈ Qout } and E = {uv : u, v ∈ V, u 	= v, and C(uv) = 1}. In
words, the output-graph of a configuration consists of those nodes that are in output
states and those edges between them that are active, i.e. the active subgraph induced
by the nodes that are in output states. The output of an execution C0,C1, . . . is said
to stabilize (or converge) to a graph G if there exists some step t ≥ 0 s.t. G(Ci ) = G
for all i ≥ t , i.e. from step t and onwards the output-graph remains unchanged. Every
such configuration Ci , for i ≥ t , is called output-stable. The running time (or time
to convergence) of an execution is defined as the minimum such t (or ∞ if no such t
exists). Throughout the chapter, whenever we study the running time of a NET, we
assume that interactions are chosen by a uniform random scheduler which, in every
step, selects independently and uniformly at random one of the |EI | = n(n − 1)/2
possible interactions. In this case, the running time on a particular n and an initial set
of active edges E becomes a random variable (abbreviated “r.v.”) Xn,E and our goal
is to obtain bounds on maxn,E {e[Xn,E ]}, where e[X ] is the expectation of the r.v. X .
That is, the running time of a protocol is defined here as the maximum (also called
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worst-case) expected running time over all possible initial configurations. Note that
the uniform random scheduler is fair with probability 1.

Definition 2 We say that an execution of a NET on n processes constructs a graph
(or network) G, if its output stabilizes to a graph isomorphic to G.

Definition 3 We say that a NETA constructs a graph language L with useful space
g(n) ≤ n, if g(n) is the greatest function for which: (i) for all n, every execution of
A on n processes constructs a G ∈ L of order at least g(n) (provided that such a G
exists) and, additionally, (ii) for all G ∈ L there is an execution ofA on n processes,
for some n satisfying |V (G)| ≥ g(n), that constructs G. Equivalently, we say thatA
constructs L with waste n − g(n).

In this work, we shall also be interested in NETs that construct a graph language
and additionally always terminate.

Definition 4 We call a NET A terminating (or say that A always terminates) if
every execution ofA reaches a halting configuration, that is one in which every node
is in a state qh from a set of halting states Qhalt , where (qh, q, s) → (qh, q, s) (i.e.
is ineffective) for every qh ∈ Qhalt , q ∈ Q, and s ∈ {0, 1}.

Finally, in order to consider TM simulations, we denote by SSPACE( f (n)) the
symmetric subclass of the complexity class SPACE( f (n)).

3.2 Problem Definitions

Acyclicity. Let G = (V, A) be the subgraph of GI consisting of V and the active
edges between nodes in V , that is A = {e ∈ EI : C(e) = 1}. The initial G is con-
nected. The goal is for the processes to stably transform G to an acyclic graph
spanning V without ever breaking the connectivity of G.

Line Transformation. Let G = (V, A) be the subgraph of GI consisting of V and
the active edges between nodes in V , that is A = {e ∈ EI : C(e) = 1}. The initial
G is connected. The goal is for the processes to stably transformG to a spanning line.

Terminating Line Transformation. The same as Line Transformation with the
additional requirement that all processes must terminate.

3.3 Fundamental Inabilities

We now give a few basic impossibility results that justify the necessity of minimally
strengthening the network constructors model in order to be able to solve the above
main problems.
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The following proposition (which is awell-known fact in the relevant literature but
we include here a proof for self-containment) states that if the systemdoes not involve
edge states (i.e. the original population protocol model with transition function δ :
Q × Q → Q × Q), then a protocol cannot decide with termination whether there is
a single a in the population (mainly because a node does not know how much time
it has to wait to meet every other node). Though the result is not directly applicable
to our model, still we believe that it might help the reader’s intuition w.r.t. to the
computational difficulties in this family of models.

Proposition 1 (PPs Impossibility of Termination) There is no population protocol
that can compute with termination the predicate (Na ≥ 1) (i.e. whether there exists
an a in the input assignment).

Proof Consider a population of size n and let the nodes be u1, u2, . . . , un . It suffices
to prove the impossibility for the variation in which there is a unique leader, initially
in state l, and all other nodes are non-leaders, initially in state qa if their input is a
and qb if their input is not a, and all interactions are between the leader and the non-
leaders. This is w.l.o.g. because this model is not weaker than the original population
protocol model, which means that an impossibility for this model also transfers to
the original population protocol model. Indeed, this model can easily simulate the
original model as follows. Interactions between two non-leaders can be simulated
via the leader: the leader first collects the state q1 of a node u, which it marks, and
then waits to interact with another node v. When this occurs, if the state of v is q2,
rule (q1, q2) → (q ′

1, q
′
2) is applied to the state stored by the leader and to the state

of v. Then the leader waits to meet u again (which can be detected since it has been
marked) in order to update its state to q ′

1. When this occurs, the leader drops the
stored information and starts a new simulation round.

So, let u1 be the initial leader. Let A be a protocol that computes (Na ≥ 1) and
terminates on every n and every input assignment. Consider now the input assignment
in which all inputs are b, that is there is no a and thus all non-leaders begin with
initial state qb. Clearly, it must hold that in every fair execution the leader terminates
in a finite number of steps and says “no”. These steps are interactions between the
leader and the non-leaders so any such execution can be represented by a sequence
of u j s from {u2, . . . , un}. Let now s = v1, v2, . . . , vk be any such finite execution
in which the leader says “no”. vi ∈ {u2, . . . , un} is simply the node with which the
leader interacted at step i .

Consider now a population of size n + 1. The only difference to the previous
setting is that now we have added a node un+1 with input a. Since now the predicate
evaluates to 1, in every fair execution, A should terminate in a finite number of
steps and say “yes”. Take any fair execution s ′ = s, vk+1, . . . , vh , that is s ′ has s
as an “unfair” prefix. As s contains the same nodes as before with the same input
assignment, the leader in s ′ terminates in precisely k steps saying “no” without
knowing that an additional node with input a exists in this case. This contradicts the
existence of protocol A. We should mention that the leader has no means of guessing
the existence of node un+1 because its termination only depends on the protocol
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stored in its memory which is by definition finite and independent of n (suffices to
consider the longest chain of rules that leads to termination with output “no” and
which corresponds to at least one feasible execution). �

Moreover, even if the system is initially connected, there are some very symmetric
topologies that do not allow for strong computations. For example, if the topology is a
star with the leader at the center, then the system is equivalent to population protocols
on a complete interaction graph and can compute only semilinear predicates on input
assignments, again only in an eventually-stabilizing way (i.e. no termination). This
is captured by the following proposition.

Proposition 2 (Structure versus Computational Power) There are initial topologies
in which the computational power of population protocols is as limited as in the case
of no structure at all.

The above expose the necessity of additional assumptions, such as topology mod-
ifications, in order to hope for terminating computations and surpass the computa-
tional power of classical population protocols. So, we turn our attention again to our
model, i.e. where the edges have binary states and the protocol can modify them, and
consider the case in which the initial topology is always connected.

Proposition 3 (NETs Impossibility of Termination) There is no protocol that can
compute with termination the predicate (Na ≥ 1), even if the initial topology is
connected and even if there is a pre-elected unique leader.

So, connectivity of the initial topology alone, even if the protocol is allowed to
transform the topology, is not sufficient for non-trivial terminating computations.
In the rest of the chapter we shall naturally try to overcome this by adding to the
model minimal and realistic extra assumptions. Interestingly, it will turn out that
there are some very plausible such assumptions that allow for: (i) termination and
(ii) computation of all predicates on input assignments that can be computed by a
TM in quadratic space (O(n2), where n is the number of nodes).

One of the assumptions that we will keep throughout is that the nodes are capable
of detecting some small local degrees. For example, in Sect. 4 we will assume that a
node can detect that it has local degree 1 or 2, otherwise it knows that it has degree in
{0, 3, 4, ..., n − 1} without being able to tell its precise value. We will complement
this local degree detection mechanism with either a unique leader or a common
neighbor detection mechanism in order to arrive at the above strong characterization.

Keep in mind that we want to give protocols for Acyclicity and Terminating
Line Transformation. In Acyclicity, the protocol begins from any connected active
topology and has to transform it to an acyclic network without ever breaking the
connectivity, while in Terminating Line Transformation the protocol does not neces-
sarily have to preserve connectivity but it has to satisfy the additional requirements
its constructed network to be a spanning line and to always terminate. Still, even for
the Terminating Line Transformation problem we shall mostly focus on protocols
that perform the transformation without ever breaking connectivity. A justification of
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this choice, is that arbitrary connectivity breaking could render the protocol unable
to terminate even if the protocol is equipped with all the additional mechanismsmen-
tioned above. This is made formal in Lemma 2 of Sect. 5.1. One way to appreciate
this is to consider a protocol in which a leader breaks in some execution the network
into an unbounded number of components. Then the leader can no longer distinguish
an execution in which one of these components is being concealed from an execution
that it is not. For example, if the leader is trying to construct a spanning line, then it
has no means of distinguishing a spanning line on all nodes but the concealed ones
from one on all nodes. Of course, this does not exclude protocols that perform some
controlled connectivity breakings, e.g. a leader breaking a spanning line at one point
and then waiting to reconnect the two parts. So, in principle, our problems could have
been defined independently of whether connectivity is preserved or not, as they can
also be solved in some cases by protocols that do not always preserve connectivity.
However, in this work, for simplicity and clarity of presentation, we have chosen to
focus only on those protocols that always preserve connectivity.

Before starting to present our protocols for above problems and the upper bounds
on time provided by them, we give a lower bound on the time that any protocol needs
in order to solve the Line Transformation problem.

Lemma 1 (Line Transformation Lower Bound) The running time of any protocol
that solves the Line Transformation problem is Ω(n2 log n).

4 Transformers with a Unique Leader

We begin from the simplest case in which there is initially a pre-elected unique leader
that handles the transformation. Recall that the initial active topology is connected.
The goal is for the protocol to transform the active topology to a spanning line and
when this occurs to detect it and terminate (i.e. solve the Terminating Line Trans-
formation problem). Ideally, the transformation should preserve connectivity of the
active topology during its course (or break connectivity in a controlled way, because,
as we already discussed in the previous section, uncontrolled/arbitrary connectivity
breaking may render termination impossible). Moreover, as a minimal additional
assumption to make the problem solvable (in order to circumvent the impossibility
of Proposition 3), we assume that a node can detect whether it has local degree 1
or 2 (otherwise it knows that it has degree in {0, 3, 4, ..., n − 1} without being able
to tell its precise value). We first give a straightforward solution, with a complete
presentation of its transitions and an illustration showing them in action. Though that
protocol is correct, it is rather slow and it mainly serves as a demonstration of the
model and the problem under consideration. Then we follow a different approach
and arrive at a time-optimal protocol for the problem.

The idea of the first protocol is simple. The leader begins from its initial node
and starts forming an arbitrary line by expanding one endpoint of the line towards
unvisited nodes. Every such expansion either occurs over an edge that was already
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active from the very beginning or over an inactive edge which the protocol acti-
vates. Apart from expanding its active line with the goal of making it spanning after
n − 1 expansions, the leader must also guarantee that eventually no cycles will have
remained. One idea would be to first form a spanning line and then start eliminat-
ing all unnecessary cycles, however there is, in general, no way for the protocol to
detect that the line is indeed spanning, due to the possible presence of non-line active
edges joining nodes of the line. This is resolved by eliminating line-internal cycles
“online” after every expansion of the line. This guarantees that when the last expan-
sion occurs and the protocol deactivates the last cycles, the active topology will be
a spanning line. Now the protocol can easily detect this by traversing the line from
left to right and comparing the observed active degree sequence to the target degree
sequence 1, 2, 2, . . . , 2, 1 (i.e. the degree sequence of a spanning line). We next give
the detailed description of the protocol.

Protocol Online-Cycle-Elimination. The leader marks its initial node as “left end-
point” el and picks an arbitrary next node for the line (for the first step it could
be from its active neighbors, because there is at least one such node due to initial
connectivity) and marks that node as “right endpoint” er . Then the leader moves to
er , finds an arbitrary next node which is not part of the current line, if the edge is
inactive it activates it and marks that node as er and the previous er is converted to
i (for “internal node” of the line). Observe that the active line is always in special
states, which makes its nodes detectable.

After every such expansion, the leader starts a cycle elimination phase. In partic-
ular, the leader deactivates all edges that introduce a cycle inside its active line. To
do this, it suffices after every expansion to deactivate the cycles introduced by the
new right endpoint er . First, the leader moves to el (e.g. by direct communication or
by traversing the active line to the left). Every time, the leader waits to meet er , in
order to check the status of the edge; if it is active, it deactivates it and then moves
on step to the right on the line. When the leader arrives at the left neighbor of er ,
all line-internal cycles have been eliminated and the leader just moves to er . If the
degree sequence observed during the traversal to the right (the degree of a node is
checked after checking and possibly modifying the status of its edge to er ) was of the
form 1, 2, 2, . . . , 2, 1 then the line is spanning and the leader terminates. Otherwise,
the line is not spanning yet and the leader proceeds to the next expansion.

The code of the protocol is presented in Protocol 5. For readability,we only present
the code for the expansion and cycle elimination phases and we have excluded the
termination detection subroutine (it is straightforward to extend the code to also take
this into account). An illustration showing what are the roles of the various states
and transitions during the expansion and cycle elimination phases, is given in Fig. 1.

Theorem 1 By assuming a pre-elected unique leader and the ability to detect local
degrees 1 and 2, Protocol Online-Cycle-Elimination solves the Terminating Line
Transformation problem in Θ(n4) time.

Proof We prove the following invariant: “For all 1 ≤ i ≤ n − 1, after the i th expan-
sion and cycle elimination phases, the leader lies on the er endpoint of an active
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Fig. 1 An illustration of all transitions involved in Protocol Online-Cycle-Elimination during
expansion of the line and elimination of the newly introduced internal cycles. The line at the
top shows an expansion of the current acyclic line, the intermediate steps show the the process of
eliminating cycles, and the line at the bottom is the new acyclic line. In every step, the two inter-
acting nodes are colored black and joined by a bold edge. Dashed edges could be either active or
inactive. The dashed edge of an expansion (top line) is activated no matter what its previous state
was, while all other dashed edges in the figure, that correspond to (potential) cycle eliminations,
are deactivated no matter what their state was
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Algorithm 5 Online-Cycle-Elimination

Q = {l0, l1, lc, l ′c, l, q0, e, i, i ′, t, te, t f , t ′f , tr , t ′, p, p′, p′′}, initially the unique leader is in state
l0 and all other nodes are in state q0
δ:

(l0, q0, 1) → (e, l1, 1) (te, i, 1) → (e, t, 1) (p′′, t ′, 1) → (p, t, 1)

(l1, q0, ·) → (i ′, l ′c, 1) (t, lc, ·) → (tr , lc, 0) (tr , i
′, 1) → (p′, t ′f , 1)

(e, l ′c, ·) → (te, lc, 0) (tr , i, 1) → (p′, t ′, 1) (p′′, t ′f , 1) → (i, t f , 1)

(te, i
′, 1) → (e, t f , 1) (e, p′, 1) → (e, p′′, 1) (l, q0, ·) → (i ′, l ′c, 1)

(t f , lc, 1) → (i, l, 1) (p, p′, 1) → (i, p′′, 1)

// All transitions that do not appear have no effect
// The logical structure is better followed if the transitions are read from top to bottom

line of (edge-)length i without line-internal cycles (still any node of the line may
have active edges to the rest of the graph) and the active topology is connected”.
This implies that for i < n − 1 there is at least one node of the line that has an edge
to a node not belonging to the line and that for i = n − 1 the active topology is a
spanning line (without any other active edges).

First observe that connectivity never breaks, because whenever the protocol deac-
tivates an edge e = uv, both u and v are nodes belonging to the active line formed
so far (in particular, at least one of them is the er endpoint of the line). As e is an
edge forming a cycle on the active line after its deactivation connectivity between u
and v still exists by traversing the line.

We prove by induction the rest of the invariant. It holds trivially for i = 1. Given
that it holds for any 1 ≤ i ≤ n − 2 we prove that it holds for i + 1. By hypothesis,
when expansion i + 1 occurs, the only possible line-internal cycles are between the
new er and the rest of the line. During the cycle elimination phase the protocol
eliminates all these cycles, and as a result by the end of phase i + 1 the active line
has now length i + 1, it has no internal cycles and is still connected to the rest of the
graph.

It remains to show that the leader terminates just after phase n − 1 and never
at a phase i < n − 1. For the first part, after phase n − 1 the active topology is a
spanning line, thus the observed degree sequence when the leader traverses it from
left to right is of the form 1, 2, 2, . . . , 2, 1 which triggers termination. For the second
part, after any phase i < n − 1 there is at least one node of the line having an active
edge leading outside the line. In case that node is an endpoint, its active degree is at
least 2 and in case it is an internal node its active degree is at least 3 (after eliminating
a possible cycle of that node with er ). So, in this case the observed degree sequence
is not of the form 1, 2, 2, . . . , 2, 1 and, as required, the leader does not terminate.

For the running time, the worst case is when the initial active topology is a clique.
In this case, the protocol must deactivate Θ(n2) edges to transform the clique to a
line. Every edge deactivation is performed by placing a mark on each endpoint of
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the edge and waiting for the scheduler to pick that edge for interaction. This takes
time Θ(n2), so the total time for deactivating Θ(n2) edges is Θ(n4). �

We should mention that due to the unique-leader guarantee, it suffices to only
have detection of whether the degree is equal to 1 (i.e. the detection of degree equal
to 2 can be dropped). The reason is that the leader can every time break the line at
some point while marking the two endpoints of the edge and then check whether
one of these nodes has degree 1. If yes, then its previous degree was 2 and the leader
waits for the two marked nodes to interact again in order to reconnect them, now
knowing their degree.

A drawback of the above protocol is that it is rather slow. In the paper onwhich this
chapter is based, we have developed another protocol, based on a different transfor-
mation technique, which is time-optimal. That protocol is called Line-Around-a-Star.

Theorem 2 By assuming a pre-elected unique leader and the ability to detect local
degree 1, Protocol Line-Around-a-Star solves the Terminating Line Transformation
problem. Its running time is Θ(n2 log n), which is optimal.

5 Transformers with Initially Identical Nodes

An immediate question, given the optimal Line-Around-a-Star protocol, is whether
the unique leader assumption can be dropped and still have a correct and possibly
also optimal protocol for Terminating Line Transformation. At a first sight it might
seem plausible to expect that the problem is solvable. The reason is that the nodes can
execute a leader election protocol (e.g. the standard pairwise elimination protocol;
see e.g. [6]) guaranteeing that eventually a single leader will remain in the system
which can from that point on handle the execution of one of the leader-based protocols
of the previous section. The only additional guarantee is to ensure that nothing can
go wrong as long as there are more than one leaders in the population. Typically,
this is achieved in the population protocol literature by the reinitialization technique
in which the configuration of the system is reinitialized/restored every time another
leader is eliminated so that when the last leader remains a final reinitialization gives
a correct system configuration for the leader to work on. In fact, this technique
and others have been used in the population protocol literature to show that most
population protocol models do not benefit in terms of computational power from the
existence of a unique leader (still they are known to benefit in terms of efficiency).

In contrast to this intuition, we shall see in this section (see Corollary 2) that if all
nodes are initially identical, Terminating Line Transformation becomes impossible
to solve (with the modeling assumptions we have made so far). In particular, we
will show that any protocol that makes the active topology acyclic, may disconnect
it in some executions in Θ(n) components (see Corollary 1). As already discussed
in Sect. 3.3, such a worst-case disconnection is severe for any terminating protocol,
because, in this case, a component has nomeans of determiningwhen it has interacted
with (or heard from) all other components in the network.
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Observation 1 For a protocol to transform any topology to a line (or in general
to an acyclic graph) without breaking connectivity, it must hold that the protocol
deactivates an edge only if the edge is part of a cycle. Because deleting an edge e of
an undirected graph does not disconnect the graph iff e is part of a cycle.

There are several ways to achieve this when there is a unique leader. However, it
will turn out that this is not the case when all nodes are initially identical.

5.1 Impossibility Results

An immediate question is whether there is a protocol with initially identical nodes
that decides the existence of small cycles and additionally always terminates. We
shall now show that this is not the case.

Theorem 3 (Strong Impossibility) For every connected graph G with at least one
cycle, there is an infinite family of graphs G such that for every G ′ ∈ G every protocol
(beginning from identical states on all nodes) that makes G acyclic may disconnect
G ′ in some executions.

The above strong result states that every connected graph G has a corresponding
infinite family of graphs (in most cases disjoint to the families of other graphs)
such that Acyclicity cannot be solved at the same time on G and on a G ′ from the
family. This means that it does not just happen for Acyclicity to be unsolvable in
a few specific inconvenient graphs. All graphs are in some sense inconvenient for
Acyclicity when studied together with the families that we have defined.

Corollary 1 (Acyclicity Impossibility) If all nodes are initially identical, then any
protocol that always makes the active topology acyclic may disconnect it in some
executions in Θ(n) active components (i.e. in a worst-case manner).

Lemma 2 If a protocol breaks in some executions the active topology into Θ(n)

components, then such a protocol cannot solve the Terminating Line Transformation
problem.

Corollary 2 (Terminating Line Transformation Impossibility) If all nodes are ini-
tially identical, there is no protocol for Terminating Line Transformation.

5.2 The Common Neighbor Detection Assumption

In light of the impossibility results of the previous section, we naturally ask whether
some minimal strengthening of the model could make the problems solvable. To
this end, we give to the nodes the ability to detect whether they have a neighbor
in common. In particular, we assume that whenever two nodes interact, they can
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tell whether they have at that time a common neighbor (over active edges). Clearly,
this mechanism can be used to safely deactivate an edge in case it happens that the
two nodes are indeed part of a 3-cycle. If the two nodes are part only of longer
cycles they still cannot deactivate the edge with certainty. Observe that the common
neighbor detection mechanism is very local and easily implementable by almost any
plausible system. For example, it only requires local names and at least 2-round
local communication before neighborhood changes. Moreover, it is also an inherent
capability of the variation of population protocols in which the nodes interact in
triples instead of pairs (see e.g. [4, 7]). Interestingly, we shall see in this section
that this minimal extra assumption overcomes the impossibility results both of
Corollaries 1 and 2. In particular, both Acyclicity and Terminating Line Transfor-
mation become now solvable.

Proposition 4 By assuming that nodes are equipped with the common neigh-
bor detection mechanism, there is a protocol, called Star-Transformer, that solves
Acyclicity in the setting in which all nodes are initially identical. In particular, the
final acyclic active topology is always a spanning star.

We now exploit the common neighbor detection assumption and the Star-
Transformer protocol to give a correct and efficient protocol for the Terminating
Line Transformation problem. The protocol, called Line-Transformer, assumes (as
did the protocols of Sect. 4) the ability to detect whether the local active degree of a
node is equal to 1 or 2.

Protocol Line-Transformer. We give here a high-level description. All nodes are
initially leaders in state l. When two leaders interact, one of them becomes a periph-
eral in state p and the edge is activated. Every leader is connected to all ps that it
encounters. Two ps deactivate an active edge joining them only if at the time of inter-
action they have a neighbor in common. When a peripheral has active local degree
equal to 1, its local state is p1, otherwise it is p or one of some other states that we
will describe in the sequel.

When a leader first sees one of its own p1s (i.e. via an active edge), it initiates
the formation of a line over its p1 peripherals (observe that the set of p1 peripherals
of a leader does not remain static, as e.g. a p1 becomes p when some other leader
connects to it). In particular, as in Protocol Line-Around-a-Star, the line will have as
its “left” endpoint the center of the local star, which will be in a new state el , and it
will start expanding over the available local p1 peripherals over its right endpoint in
state l ′.

The new center el keeps connecting to new peripherals but it cannot become
eliminated any more by other leaders. Pairwise eliminations only occur via any
combination of l and l ′. A local line expands over the local p1s as follows. When
the right endpoint l ′ encounters a p1, which can occur only via an inactive edge,
it expands on it only if the two nodes have a common neighbor (which can only
be the center of the local star). If this is satisfied, the l ′ takes the place of the p1,
leaving behind an i (for “internal node” of the line) and the edge becomes activated.



Connectivity Preserving Network Transformers 355

Moreover, the center el deactivates every active edge it has with an i but not with
the first peripheral of the line (so the first peripheral that the line uses must always
be in a distinguished state i1) and not with the l ′ right endpoint (because that edge is
always needed for common neighbor detection during the next expansion).

Now, if the l ′ endpoint ever meets either another l ′ endpoint or an l center then
one of them becomes deactivated. When it meets an l center we can always prefer to
deactivate the l center because no line backtracking is required in this case. When an
l center is deactivated, l simply becomes p and the edge becomes activated (it can
never be a p1 immediately but this is minor).

Themost interesting case is when an l ′ loses from another l ′. In this case, the elim-
inated l ′ becomes f . The role of f is to backtrack the whole local line construction
by simply converting one after the other every i on its left to p and finally converting
el again to p (again it cannot be a p1 at the time of conversion). This backtracking
process cannot fail because f has always a single i (or i1) active neighbor, always
the one on its left, while its right neighbor is no one initially and a p in all subsequent
steps, so it knows which direction to follow. When the backtracking process ends,
all the nodes of the local star are either p or p1 so they can be attracted by the stars
that are still alive.

The protocol terminates, when for the first time it holds that an el has local degree
equal to 2 after its line has for the first time length at least 3 (nodes).When this occurs,
a spanning ring has been formed and el can deactivate the edge (el , l ′) between the
two endpoints to make it a spanning line. This completes the description of the
protocol (Fig. 2).

Theorem 4 Byassuming that nodes are equippedwith a commonneighbor detection
mechanism and have the ability to detect local degrees 1 and 2, Protocol Line-
Transformer solves the Terminating Line Transformation problem in the setting in
which all nodes are initially identical. Its running time is O(n3).

Table1 summarizes all protocols that we developed for the Terminating Line
Transformation problem, both for the case of a pre-elected unique leader (Protocols
Online-Cycle-Elimination and Line-Around-a-Star in Sect. 4) and for the case of
identical nodes (Protocol Line-Transformer in the present section).

Finally, in the paper on which this chapter is based, we have shown how the
spanning line formed with termination by Line-Transformer can be used to establish
that the class of computable predicates is the maximum that one can hope for in this
family of models.

Theorem 5 (Full Computational Power) Let the initial active topology be con-
nected, all nodes be initially identical, and let the nodes be equipped with degree
in {1, 2} detection and common neighbor detection. Then for every predicate
p ∈ SSPACE(n2) there is a terminating NET that computes p.
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Fig. 2 An example execution of Protocol Line-Transformer. In all subfigures, black and gray edges
are active and missing edges are inactive. Black and gray are used together whenever we want to
highlight some subnetwork of the active network. a Initially, all nodes are leaders and the topology
is connected. b Most leaders have been converted to peripherals, some leaders have attracted new
peripherals, and some peripherals have disconnected from each other. c Two of the survived leaders
have started to form lines over their p1 peripherals. The centers of these stars are now in state el
(black nodes), the other endpoint of their lines is in state l ′ (gray nodes), and the lines are drawn by
black edges.dThe l ′ endpoints of the two previous lines interacted and one of themwas backtracked.
e A single line has remained. f The line is almost spanning
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Table 1 All protocols developed in this work for the Terminating Line Transformation problem.
For each of these protocols (OCE: Online-Cycle-Elimination, LAS: Line-Around-a-Star, and LT:
Line-Transformer), the table shows whether it makes use of a pre-elected unique leader, what local
degree detection it uses (DD), whether it uses common neighbor detection (CND), and also its
expected running time under the uniform random scheduler

Protocol Leader DD CND Expected time Lower bound

OCE Yes 1 No Θ(n4) Ω(n2 log n)

LAS Yes 1 No Θ(n2 log n)

(opt)
Ω(n2 log n)

LT No 1, 2 Yes O(n3) Ω(n2 log n)

The last column shows the best known lower bound for the problem

6 Conclusions and Further Research

There are many open problems related to the findings of the present work. We have
shown that initial connectivity of the active topology combined with the ability of the
protocol to transform the topology yield, under some additional minimal and local
assumptions, an extremely powerful model. We managed to show this by develop-
ing protocols that transform the initial topology to a convenient one (in our case the
spanning line) while always preserving the connectivity of the topology. Though arbi-
trary connectivity breakingmakes termination impossible, still we have not excluded
the possibility that some protocol performs some “controlled” connectivity breaking
during its course, being always able to correctly reassemble the disconnected parts
and terminate.

Another issue has to do with the underlying interaction model. Throughout this
work we have assumed that the underlying interaction graph is the clique Kn and
all of our protocols largely exploit this. Though this model is a convenient starting
point to understand the basic principles of algorithmic transformations of networks,
it is obvious that it is highly non-local. Realistic implementations would probably
require more local or geometrically constrained models (like the one of [14]), for
example, one in which, at any given time, a node can only communicate with nodes
at active distance at most 2. It is also valuable to consider the Terminating Line
Transformation and Acyclicity problems in models of computationally weak (and
probably also anonymous) robots moving in the plane.

There are also somemore technical intriguing openquestions. Themost prominent
one is whether protocol Line-Transformer is time-optimal. Recall that its running
time was shown to be O(n3). First of all, it is not clear whether the analysis is tight.
The subroutine that dominates the running time is the one that tries to form a span-
ning line over the peripheral nodes, which is restricted by the fact that the partial
lines of “sleeping” stars have to either be backtracked (which is what our solution
does) or merged somehow with the lines of “awake” stars. We should mention that
the spanning line subroutine that backtracks many “sleeping” lines in parallel is
an immediate improvement of the best spanning line protocol of [17], called Fast-
Global-Line. The improvement is due to the fact that instead of having the awake



358 O. Michail and P.G. Spirakis

leader backtrack node-by-node sleeping lines, we now have any sleeping line back-
track itself, so that many backtrackings occur in parallel. We also have experimental
evidence showing a small improvement [2] but still we do not have a proof of whether
this is also an asymptotic improvement. For example, is it the case that the running
time of this improvement is O(n3/ log n) (or even smaller)? This question is open.
There is also room for lower bounds. Apart from the obvious lower bound for the
Terminating Line Transformation problemwith identical nodes, one could also focus
on the spanning line construction problem with initially disconnected nodes (i.e. the
Spanning Line problem of [17]). The reason is that an improvement to this prob-
lem would probably imply an improvement for Terminating Line Transformation by
using the protocol as an improved subroutine of Line-Transformer for forming the
lines over the peripherals of the star. The best lower bound known for Spanning Line
is Ω(n2). Some first attempts suggest that it might be non-trivial to improve this to
Ω(n2 log n).
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Operating Secure Mobile Healthcare Services
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Abstract Constrained resource (lossy) networks are characterized by low-power
and low-processing capability devices. Using lossy networks for service provision is
a good approach to overcoming the technological constraints that characterize remote
and rural areas of developing regions. In this chapter, we propose a framework for
provisioning Healthcare-as-a-mobile-service over lossy networks, as a cost-effective
approach to healthcare management in remote and rural areas of developing regions.
The framework allows Healthcare providers collect and share patient data obtained
via body sensors that periodically report health status information. Queries can be
run locally on a mobile device when the stored copy, say on a cloud, is not acces-
sible. Since mobile storage capacity limitations can be problematic for maintain-
ing data consistency, we propose a storage management framework based on data
fragmentation and caching. The fragmentation scheme classifies data according to
confidentiality and affinity. While caching optimizes mobile storage by prioritizing
data fragments in terms of frequency of access. Our experimental results demonstrate
that our data fragmentation and caching algorithms are scalable to varied bandwidth
and download rates. The battery power consumption is reasonable with respect to
bandwidth variations.
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1 Introduction

The concept of “healthcare-as-a-mobile-service” offers a cost effective strategy to
addressing health care needs, particularly in regions where access to healthcare
providers is impeded by factors that include, intermittent power connectivity, lack of
on-site healthcare experts, and intermittent Internet access. In regions where standard
approaches to accessing the Internet are negatively impacted by bandwidth limita-
tions, studies indicate that cheap mobile devices offer a lightweight approach to
service provisioning [1]. As a consequence, health care organizations have explored
mobile health (m-health) solutions as a cost-effective strategy to healthcare manage-
ment and distribution in these regions [2–4].

Proposed m-health solutions suggest using a combination of smart devices (e.g.
sensors to measure heart rate, blood sugar levels, etc.) and the mobile Internet to
manage and distribute healthcare information. Mobile platforms have the advantage
of providing increased data accessibility while granting users (patients) more control
over the management of their data. The basic idea behind m-health data management
is that in the case of an emergency, a healthcare practitioner might be able to avoid
a misdiagnosis by retrieving the patient’s medical history from the patient’s mobile
device. Both patients and health care providers can benefit from this infrastructure.
For instance, patients can access portions of their records on demand while health
care providers can access whole copies of the patient’s data in addition to contacting
experts for help with handling difficult cases.

1.1 Problem Statement

The idea of integrating mobile devices on healthcare distribution platforms raises the
question of reliable and dependable mobile storage management in addition to data
security and privacy. While storing a copy of the data on the mobile device offers
the advantage of portability, mobile device storage limitations can make maintaining
a complete copy of a patient’s healthcare data on the mobile device challenging.
Existing studies [5–8] inspired by the outsourced data paradigm proposemaintaining
frequent mobile to cloud updates, but this is expensive both battery and security
performance-wise for the mobile device.

1.2 Contribution

In this paper, we extend our previous work [9], to provide a complete storage man-
agement framework for multi-tier scenarios in which a healthcare provider employs
some form of external storage (e.g. a cloud storage provider) to store patient health
data.While a patient keeps a “summarized” version of his/her health data on amobile
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device. For instance, the healthcare provider may want to keep records that are quite
a few years old but that are not necessarily useful for the patient’s regular hospital
visits. In this case, it makes sense to transfer the storage of these records to a third-
party storage provider and keep only the most relevant data on the mobile device’s
database. This serves to ensure that the patient’s medical history is easily accessible
in emergency situations.

Our proposed storage management framework works by requiring the mobile
device(s) to collect information pertaining to a patient’s vital signs. A relevant copy
of the data is maintained on themobile device while the rest of the data is periodically
offloaded to the storage provider. The storage provider integrates readings obtained
from multiple sources such as hospitals, laboratories, and imaging centers, to main-
tain data consistency. Determining which portions of the data to store on the mobile
devices happens periodically based on a data size threshold, event, or update. Finally
we note that the summary data on the mobile device might include data from other
sources, not necessarily only vital signs that the device collects.

We handle the problem of deciding how to offload data from the mobile device to
the cloud storage provider with two algorithms that are based on the concepts of frag-
mentation and caching. We note however, that the problem of composing fragments
to optimize query execution and that of optimizing mobile storage management are
both NP-Hard [10]. Therefore, the solutions that we propose are by necessity based
on heuristics. As an added extension, we provide proofs to support our claims of the
NP-hardness of both the problem of composing fragments to optimize query execu-
tion and that of optimizingmobile storagemanagement.We do this by demonstrating
that these problems are in fact reducible to the problem of computing a vertex cover
of minimum size and the knapsack problem, respectively.

The fragmentation algorithm creates data fragments from a patient’s healthcare
data, by relying on two criteria (heuristics) namely, confidentiality, and affinity. Con-
fidentiality expresses the privacy requirements of the healthcare providerwith respect
to the data while affinity is useful in forming fragments with similar information to
facilitate query processing. The caching algorithm supports the fragmentation algo-
rithmby employing a prioritizationmechanism to organize the created data fragments
to form a tree data structure. The prioritization mechanism orders data fragments
according to relevance and frequency of access, and automatically outsources the
least relevant and/or frequently accessed ones. The most frequently accessed data
fragments are used to form a “summarized” version of the data that is stored locally
on the hospital’s database and on the patient’s mobile device.

The advantage of our proposed storagemanagement framework is twofold, firstwe
protect themobile data frommalicious tampering by only storing themost vital infor-
mation on the mobile device, and second, we ensure that the e-healthcare provider
has control over the data even when this is outside the provider’s security domain.
Our experimental results demonstrate that our data fragmentation and caching algo-
rithms are scalable to varied bandwidth and download rates. Furthermore, the battery
power consumptions incurred when supporting mobile to cloud transfers (and vice
versa) are reasonable with respect to bandwidth variations and user expectations.
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1.3 Outline

The rest of this chapter is structured as follows: in Sect. 2 we discuss related work
on preserving security and privacy of outsourced data and how this relates to the
problems evoked in Sect. 1.1. Securing outsourced data is in fact quite similar to
protecting, from unauthorized access, the fragments of data that cannot be stored
locally on a mobile device. So in fact, the owner of the mobile device and by default
the data assumes the role of the data owner while the service provider could be the
patient’s home hospital or another hospital. In Sect. 3, we build on the discussion
in Sect. 2 and describe our proposed storage management framework. Section4,
presents experimental results. We offer concluding remarks and directions for future
work in Sect. 5.

2 Related Work

The idea of storing data electronically to facilitate access, guarantee consistency, and
reduce data management costs has existed for a while in the healthcare domain [2, 4,
11, 12]. In general, electronic healthcare management systems offer the potential for
better access to records when they are needed and have been evolved inmodern times
to incorporate access via stable Internet connections to support efficient sharing of
healthcare information among patients and healthcare providers. Electronic health-
care management systems typically implement a role-based access control (RBAC)
scheme to handle authentication and authorization. TheRBAC scheme usually places
the trust at the server-end in order to protect patient’s records. Typical examples of
authentication-based electronic healthcare systems that use RBAC include Indivo
and PCASSO [3, 13, 14].

Indivo is an open-source, and professionally developed personally controlled
health care management system that allows users ownership and management of
personal healthcare data [3, 14]. The Patient-Centered Access Control Secure Sys-
tem Online (PCASSO) platform also relies on role-based access control to handle
access to the data but is more user-centric as opposed to provider-centric [11]. Until
recently, the PCASSO model received little attention because in practice, securing
healthcare data requires a combination of authentication, encryption, and digital
signing to ensure confidentiality, and integrity of the data on the user’s end [15].

Another drawback that electronic health information management systems like
Indivo and PCASSO face is the lack of mechanisms to facilitate data portability.
Data portability becomes an issue when users (patients) decide to switch healthcare
providers and/or move to a remote area with intermittent Internet connections. In
situations like this it can be impractical to rely on exporting the data from the previous
healthcare provider to the new provider [4]. Therefore, existing systems need to be
extended to enable data consistency and storage on servers accessible to external
parties via the web. Furthermore, to cope with situations of intermittent Internet
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connections, users could maintain copies of their healthcare records locally on a
device that is used to access the healthcare management system.

Frequently, organizations and individuals, find it secure and cost effective to trans-
fer the management of data to external service providers. Similarly, in the health
care domain, increasingly patient records are stored in repositories that can be made
accessible on demand to other healthcare providers particularly in situations of emer-
gency. In these scenarios, it is important to guarantee security and privacy because
the storage service providers cannot be trusted completely.

The literature on the concept of data outsourcing began with Damiani et al.’s work
[16, 17] on metadata management in outsourced encrypted databases. The authors
show that to respond to queries metadata is integral to information retrieval from
outsourced data. Damiani et al. also built on earlier work on securing outsourced data
in untrustworthy environments to propose an access control mechanism to reduce the
cost of server side authentication [18, 19]. The proposed access control mechanism
selectively encrypts metadata and only grants access to users in possession of a
cryptographic key capable of decrypting the data. This is in contrast to previous
work where all authentication requests to the server needed to be transmitted to the
data owners for verification before access could be granted or denied.

In subsequent work, Ciriani et al., proposed fragmenting the data at the service
provider in order to improve the efficiency of query executions on encrypted data
[20–22]. The principal idea is to encrypt the outsourced data according to some
priority or criteria and to avoid creating large data fragments that are expensive to
encrypt or query.

More recently, De Capitani Di Vimercati et al. [7] worked on encryption policies
for outsourced data. The policies are supported by hierarchical key management
schemes [23, 24]. Each fragment of the data is encrypted with a separate key so
that access authorizations can be distinguished quite easily. Additionally, these key
management approaches aim to minimize the number of keys distributed in order
to make security management an efficient process. Kayem et al. also proposed a
solution to improving the cost of encryption to cope with security policy updates at
the service provider’s end [8]. Other relevant work includes that by Foresti [25] to
minimize the number of fragments of data created and ensure maximal visibility of
the data through querying and to minimize the number of fragments of data created
while ensuring maximal visibility of the data through querying.

We note that the previous work focuses mainly on management of the data at
the server-end and assumes that the data is primarily read-intensive which is well
suited to scenarios in which the data stored at the service provider changes relatively
infrequently. In the m-health care scenario however, situations can arise in which
the data is updated fairly frequently resulting in frequent security policy updates
which is expensive encryption/decryption-wise. Additionally, storage limitations on
the mobile device imply that relying on manual mechanisms to outsource data from
the mobile device to the cloud can result in privacy and/or security violations of the
e-healthcare providers’ policies. Therefore, a secure and efficient approach to man-
aging the m-health data is needed to minimize the cost of updating and/or querying
the data while ensuring that the data remains protected.
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3 Fragmentation and Caching

Our framework for handling healthcare-as-a-mobile-service is illustrated in Fig. 1.
In our framework, we assume that a user (patient) can collect data, via sensors on
his/her body, in relation to an illness(es) he/she may have. This data is stored on the
user’s mobile device and can be made accessible via a mobile web service (MWS)
to a caregiver. Mobile web services offer an interoperable interface that facilitates
data sharing via ubiquitous protocols and data formats such as HTTP and XML that
eliminate the need to worry about the implementation details of the service(s) being
accessed [26]. In themobile healthcare scenario this is an advantagebecause it implies
that healthcare providers and patients are able to use a uniform communication
platform irrespective of the device or operating system. For simplicity, we define a
caregiver as anyone who administers a health related operation on the patient.

In order to handle data archiving, or cases in which all of the data cannot be stored
on the mobile device, we envisage that the patient has access to a cloud storage
service provider. Access to the data on the cloud storage provider is controlled by an
authentication manager (AM) that ensures that the caregivers requesting access to
the cloud data have the authorization to do so. For consistency with similar solutions
in the literature [5–8], we consider that a cryptographic key management scheme is
implemented to enforce the access control policies on the data that is stored on the
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Fig. 1 Healthcare-as-a-mobile-service architecture [9]
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cloud. As described in the scheme proposed by Di Vimercati De Capitani et al. [7],
a data owner can protect the data that he/she transfers for storage and management
to a service provider by using a cryptographic key management scheme to encrypt
the data. The protection mechanism works by requiring that the data owner, in this
case the hospital or healthcare center, encrypt the data before it is transferred to the
service provider (or cloud). This is to ensure that the data remains secret even to the
service provider. In order to enforce non-repudiation, the service provider imposes
a second layer of encryption on the data and shares the key(s) used with the data
owner. All users wanting to access the data receive two keys from the data owner,
one that is used to decrypt the encryption layer imposed by the service provider and
the other key, to decrypt the layer initially imposed by the data owner. The data at
the cloud service can also be structured hierarchically as is the case in role-based
access control models where the types of access granted to a user depend on the role
or authorizations the user has in the system. As shown in Fig. 1, a caregiver or patient
wanting to access the health data on the cloud receives two keys from the healthcare
center or hospital. The first key decrypts the encryption layer imposed by the cloud
service provider while the second key decrypts the encryption layer that the hospital
imposed before the data was transferred to the cloud.

We address the problem of efficient data querying and privacy enforcement in the
provision of healthcare-as-a-mobile-service, with two algorithms that are based on
the concepts of data fragmentation and caching. The data caching algorithm employs
a hierarchical tree-like structure to store data according to fragments that are formed
on the basis of the privacy and temporal constraints. In the caching hierarchy, data
fragments that are the most recent and most frequently accessed appear closer to
the root node while the least accessed fragments are placed closer to the leaf nodes.
The fragmentation algorithm, uses the concept of marginal gain to determine which
fragments of the data contain attributes that permit an efficient execution of queries
on the mobile device. Both algorithms are aimed at complimenting each other, the
goal being to use the mobile storage capacity optimally to hold a copy of the data
that contains information that is most relevant to the patient’s present condition. By
this we mean a copy of the data that can satisfy all or most of the queries without
requiring access to the cloud data.

The advantage of this approach to healthcare-as-a-mobile-service is twofold, first,
in cases of disconnections from the cloud service provider, we can guarantee a best-
effort and reliable response to most queries; second, since the data is structured
according to the security policies of the Electronic Healthcare Provider (EHP), we
can ensure that the data is always handled in ways that comply with the security
requirements of the EHP. In the following section, we specify the confidentiality
constraints that are used to guide the data caching and fragmentation algorithms.
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3.1 Conditions for Confidentiality

Dependent on the available mobile storage capacity, the fragmentation algorithm
categorizes the data on the hospital database into small chunks or files based on the
healthcare provider’s confidentiality constraints and attribute affinity. This enables
the caching algorithm to determine which fragments of the data to store locally on the
hospital’s database and which to outsource to the cloud storage provider. Depending
on the storage constraints of the mobile device, the copy of the data stored on the
hospital’s database can be further fragmented to extract a more concise version of the
data for storage on the mobile device. In order to ensure that the data is kept secure
both on the cloud and on the mobile device it is important to model the privacy
requirements of the healthcare provider by applying confidentiality constraints on
the sets of attributes that make up the patient’s data.

Basically what this means is that the confidentiality constraints indicate which
attributes need to be kept together and protected from unauthorized access. For
instance, {Name,DOB} are considered to be sensitive bits of data that are correlated
and so must be kept in the same fragment of the data. Enforcing confidentiality con-
straints of this sort requires that the healthcare organization correctly specifies which
attributes of the data need to be protected. In order to enforce confidentiality con-
straints we must ensure that the constraints over one set of attributes does not contain
a constraint that belongs in another set of constraints. This is to avoid redundancies
that might lead to violations of the security policy enforcing the confidentiality con-
straints. A well-defined confidentiality constraint can be defined formally as follows:

Definition 1 (Well-Defined Confidentiality Constraints) Given a set of attributes
A = {

a0, ..., ai , a j , ..., an
}
, and a set of confidentiality constraints C = {c0, ..., ci ,

cj , ..., cm
}
where m is the maximum number of confidentiality constraints that have

been specified, and n the maximum number of attributes that have been specified, C
is said to be well-defined if and only if ∀ci , c j ∈ C , i �= j ci � cj and ci ⊆ A.

Example 1 In Fig. 2 we illustrate an example of a patient’s health record and some
of the confidentiality constraints that can be applied to the data. In this case we have
defined three constraints c0, c1, and c2 that state that the association of a patient’s
name and ID with any other information is considered sensitive.

We note that c0 �⊂ c1 �⊂ c2 �⊂ c3 to avoid cases in which overlapping information
can lead to security violations. If c1 were a subset of c2 or vice versa a user with the
authorization to view information on a patient’s name, address, and illnesswould also
have access to the patient’s date of birth. Essentially, the confidentiality constraints
are aimed at specifying access control policies that minimize data exposure while
guaranteeing efficiency and correctness in query responses.

In order to enforce the well-defined confidentiality constraints on the data, we
assume that we are dealing with a storage system with a schema, such as a relational
database management system. In the storage system we have a finite set of attributes
that each take on a series of values within some defined domain.
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ID Number Name DOB Postal Code Illness Physician

1235641188389 A. Bossi 12/12/1982 7701 Diabetes Saleem

1235641188389 A. Bossi 12/12/1982 7701 HIV Coyne

1235641188389 A. Bossi 12/12/1982 7701 Hypertension Ndaba 

1235641188389 A. Bossi 12/12/1982 7701 Gastri s Jackson

c0 = {ID}

c1 = {Name, DOB}

c2 = {Name, Postal Code, Illness}

c3 = {DOB, Postal Code, Physician}

Fig. 2 An example of a user’s healthcare data and the associated well defined confidentiality
constraints

3.2 Fragmentation Scheme

As mentioned before, the confidentiality constraints are used to model the privacy
requirements that the healthcare provider applies to the data. The reason for this, is to
ensure that the security and privacy policies of the healthcare provider are enforced
on the data, even in cases where the data is outside of the security domain of the
healthcare provider.

On the basis of the confidentiality constraints, the healthcare provider begins
by fragmenting the data into a set of disjoint fragments Fi represented by a tree
(T,≺), where T = {F0, F1, ..., Fn−1}. By definition, Fi ≺ Fj implies that Fj con-
tains attributes that hold information that ismore important or relevant to the patient’s
current condition than the attributes contained in Fi . Importance is derived from
the specification of the confidentiality constraints that we defined in Sect. 3.1. For
instance, from the confidentiality constraints specified in Example 1, c0 ≡ F0 and
c1 ≡ F1. So in this case, since c0 contains information that is more sensitive than
that c1 contains, it can be assumed that F0 is more important than F1.

In addition to creating fragments of the relation schema we need to ensure that the
fragments created obey the confidentiality constraints in order to protect the informa-
tion in the fragments from inference attacks. A fragment is considered to correctly
enforce the confidentiality constraints if and only if the fragments are protected from
linking attacks by requiring that fragments are disjoint so that no attribute appears in
more than one fragment. This aspect is formally captured in the following definitions.

Definition 2 (Distributed Databases) A distributed database is a database that is
managed by a software system (Distributed Database Management System) trans-
parently (i.e. knowledge of the storage location of the data is not required for access).
Distribution can be handled in terms of data fragmentation where a data fragment
constitutes some subset of the original database.

Definition 3 (Fragmentation) Given a relation schema R. This is the partitioning of
a distributed database into subsets of data. Three basic rules are required to support
fragmentation and database consistency:

http://dx.doi.org/10.1007/978-3-319-46376-6_3
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• Completeness. A database decomposed into fragments must be such that each
data item found in the database appears in at least one fragment.

• Reconstruction.There exists at least one relational expression thatwill reconstruct
the global database from the fragments.

• Disjointness. A data item appearing in a fragment, should not appear in any other
fragment.

Definition 4 (Horizontal Fragmentation) Given a relation schema R, we say that a
set of data fragments F is formed by subdividing R into subsets of tuples that adhere
to a set of well-defined confidentiality constraints and that satisfy the following
conditions:

• Completeness. The fragmentation is correct if each tuple of R is mapped unto at
least one tuple of the fragments created.

• Reconstruction. A union operation can be used to obtain R from the set of frag-
ments created.

• Disjointness. Each tuple of R is mapped unto exactly one tuple of one of the
fragments to control duplication explicitly at the fragmentation level.

The resulting fragments have the same schema structure as R, but differ in the data
they contain.

Definition 5 (Fragment Correctness) Let R be a relation schema in a distributed
database, C a set of well-defined constraints over R, and F a set of fragments of
R formed by horizontal fragmentation. We say that the fragments F are a result of
applying some combination of the relational expressions E1 and E2 on R using some
combination of the following rules:

• Union. E1 ∪ E2 : F is a result of merging data from E1 and E2

• Difference. E1 − E2 : F is a result of eliminating unwanted tuples E2 from the
set of tuples E1

• Cartesian Product. E1 × E2 : F is a result of combining each tuple in E1 with
every tuple in E2

• Selection. σp (E1) for predicate p on attributes of E1 : F is a result of extracting
a set of tuples from R with respect to a given list of attributes of E1.

• Projection. πs (E1) where s is a subset of attributes of E1 : F is a resulting set
that is obtained when all tuples in R are restricted to the set of attributes in E1

• Duplication. ρ (Q (L), E1) where Q is a new relation name and L is a list of
(Old name → New name) mappings of attributes of E1

In addition, we say that F correctly enforcesC if and only if the following conditions
are satisfied:

1. Each fragment belonging in F satisfies the confidentiality constraints C .
2. ∀Fi , Fj ∈ F, i �= j, Fi � Fj .

The first condition satisfies the constraint given in Definition 1 where we describe
the rules for ensuring that the data within a fragment remains confidential or inac-
cessible to unauthorized parties. While the second condition enforces the constraint
in Definition 1, to prevent overlaps that could lead to redundancy.
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Example 2 Combining the notions of confidentiality and fragmentation, from Fig. 2,
we can create fragments based on the confidentiality constraints c0, c1, c2, and
c3 to obtain fragments: F0 = c0 = ID; F1 = c1 = Name, DOB; F2 = c2 = Name,
Postal Code, IIlness; F3 = c3 = DOB, Postal Code, Physician.

In order to enforce the confidentiality constraints on the fragments of data the
security administrator(SA) of the EHP selects a secret key K0 that is used to generate
keys, using a one-way function, that are used to encrypt each one of the data fragments
Fi [8, 23, 24]. In the key management hierarchy, the keys are organized according
to a partial order such that Ki ≺ K j indicates that the key Ki is less important than
the key K j . One approach to enforcing hierarchical key generation is to have the
SA select two large primes p and q, in addition to selecting the secret key K0 and
compute the required keys using an exponentiation function of the form:

Ki = K ti
0 mod M (1)

where M = p × q and ti is a random integer value [23]. In this case, since the keys
are inter-dependent, when the Ki ≺ K j condition is enforced this implies that holders
of the key K j can derive the key Ki .

Each data fragment Fi can then be encrypted with a corresponding key Ki and
transferred to the patient’s mobile device. For simplicity, we assume that in order
to structure the fragments of data to form a tree we will use an importance rat-
ing that we discuss in Sects. 3 and 4, and we use a hierarchical key management
scheme to ensure that irrespective of the position of a data fragment in the tree
hierarchy—access always happens according to the rules of the specified security
policy. Example 3 provides an illustration of how the keymanagement schemeworks
with data fragmentation.

Example 3 In the example illustrated in Fig. 3, we suppose that for each patient’s
medical data the EHP defines a hierarchy of keys to encrypt the fragments of data
created from the patient’s medical data. A “summarized” version of the data is then
encrypted and transferred to the patient’s mobile device. In order to access the data
created, the patient and the caregiver(s) receive a cryptographic key from the EHP.
This key is used to authenticate the user requesting access to the data.

In order to enforce the confidentiality constraints specified in Fig. 2, the EHP will
create a hierarchy of keys, using Eq.2, that are interconnected in ways that enforce
the hospital’s access control policy. For example, a hierarchy of keys K0, K1, K2,
and K3 can be used to enforce the role-based access control (RBAC) policy where
0 indicates that no access is allowed, whereas 1 indicates that access is possible.
In Fig. 3, we show a representation how the data fragments can be stored. In this
case, we opted to use a complete binary tree to facilitate handling caching which
we discuss in Sect. 3.4. For example as illustrated in Fig. 4, the hierarchy of keys
K0, K1, K2, and K3 is used to enforce the role-based access control (RBAC) policy
represented in the access control matrix.

Confidentiality constraints are useful in ensuring that the fragmented data obeys
the security policies of the healthcare provider. However, since multiple security
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372 A. Kayem et al.

K,0
Level 0

Kn-1

K3 K4 K5 K6

K1 K2

Level n-1

Hospital (EHP)

Patient (mobile device)

Caregiver

Key Management Hierarchy

Key Distribution to 
users and caregivers

Fig. 3 Encrypting to protect mobile health data

Fig. 4 Key hierarchy and
fragmentation tree K0

K1 K2

K3

F0

F1 F2

F3

K0

K1
K2

F0 F1
1

10
1

0 0

policies might exist, it follows that several confidentiality constraints might be spec-
ified to enforce these security policies. Creating fragments solely according to the
confidentiality constraints can result in several small but related fragments. Querying
small but disjoint fragments is expensive, particularly when these queries need to be
run on data that has been encrypted to enforce a security policy. Therefore, it makes
sense to aggregate fragments with similar confidentiality constraints to form bigger
fragments of data that guarantee data security and at the same time optimize query
execution. We are interested therefore in finding a fragment that contains all the rele-
vant information required to make query execution on themobile device efficient and
maximize the utility of mobile device resources such as battery power. This problem
can be formalized as follows.
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Problem 1 (Optimal Fragmentation) Given a relation schema R, and a set C of
well-defined constraints over R find a fragmentation F of R such that all of the
following conditions hold.

1. F correctly enforces C
2. F maximizes attribute affinity
3. F is complete and minimal in that there is not a fragmentation F ′ that is a subset

of F and that satisfies the first two conditions.

The optimal fragmentation problem is NP-Hard, as formally stated by the follow-
ing theorem.

Theorem 1 The optimal fragmentation problem is NP-Hard.

Proof The proof is a reduction from the NP-Hard problem of computing a vertex
cover of minimum size in a given undirected graph [27]. The vertex-cover problem
can be formulated as follows: given an undirected graph G = (V, E) the aim is to
find a vertex-cover of minimum size in the undirected graph. So essentially the vertex
cover of an undirected graph G = (V, E) is a subset V ′ ⊆ V such that if (u, v) ∈ E
then u ∈ V ′ and/or v ∈ V ′. Each vertex “covers” its incident edges and so the vertex
cover for the graph G would be the set of vertices that include all the edges in E . If
we restate the optimization problem as a decision problem then basically, we wish
to determine whether a graph has a vertex cover of a given size k.

By analogy we can translate the vertex cover description to the case of a relational
schema R and set C of well-defined constraints that affect the data that we aim to
fragment optimally. We can then reformulate the optimal fragmentation problem as
follows: A fragmentation of a relational schema R is a subset R′ ⊆ R such that if
two attributes ai , a j ∈ C then ai ∈ R′ and/or a j ∈ R′. So, essentially, any vertex v of
the graph G corresponds to an attribute ai ∈ R and any edge ei in G which connects
v1, ..., vn corresponds to a constraint ci = {a1, ..., an} ∈ C where ci is not a singleton
constraint and is enforced in addition to attribute affinity.

A fragmentation F of a relational schema R that satisfies all the constraints in
C corresponds to a solution S for the corresponding vertex cover problem. More
specifically, S is composed of a set of size k attributes that are linked by confidentiality
constraints in such a way that all the attributes contained in the fragments of F are
also contained in the set S. As a consequence any algorithm that can find an optimal
fragmentation for R can also be exploited to solve the vertex cover problem.

3.3 Heuristics for Enabling Efficient Fragmentation

Our heuristic to handle fragmentation optimally combines the notions of the con-
fidentiality constraints and marginal gain. Confidentiality constraints are useful in
forming data fragments and in deciding how to position the fragments in the data
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(tree) hierarchywhilemarginal gain is useful in determining fragment importance and
in deciding when tomerge data fragments as opposed tomaintaining separate copies.

Marginal gain is computed by evaluating the number of hits (queries) involving the
attributes of a fragment say Fi , in comparison to another fragment say, Fj . Marginal
gain is computed as follows:

MG
(
Fi , Fj

) = Hits (Fi ) − Hits
(
Fj

)
(2)

WhenMG
(
Fi , Fj

)
> 0 the implication is that Fi has a higher number of hits than Fj ,

and when MG
(
Fi , Fj

)
< 0 the implication is that Fj has a high number of hits than

Fi . A value of 0 for I
(
Fi , Fj

)
indicates that both fragments have the same number

of hits.
In order to determinewhether or not data fragments should bemerged tominimize

the number of data fragments createdwe use a distancemeasure to determinewhether
or not to merge data fragments. We compute the distance Dist

(
Fi , Fj

)
between two

fragments Fi and Fj as follows

Dist
(
Fi , Fj

) =
√√√√ k∑

h

(
Hits

(
ai,h

) − Hits
(
a j,h

))2
(3)

where Hits
(
ai,h

)
is the number of hits on attribute h in fragment Fi , h ≥ 1, and

k ≥ 1 such that k represents the highest number of attributes in the largest fragment.
A small distance value, that is lower than a predefined threshold value, indicates
that merging both fragments of data is advantageous whereas a high distance value
indicates the reverse. The assumption here is that the corresponding attributes in Fi
and Fj are similar.

Periodically, the importance ratings of the fragments are compared to decidewhich
ones should be moved higher up in the data hierarchy and which should be merged.
We discuss how to assign importance ratings and how the promote/demote functions
are applied in Sect. 3.4 when we describe the cache management algorithm.

Example 4 An example of how our fragmentation algorithm works is as follows.
Each attribute that has been accessed is associated with a counter variable to log
the number of times the attribute has been involved in responding to a query. If we
suppose that we have two fragments F1 and F2. F1 contains attributes a2, and a3
while F2 contains attribute a4. After a period say T an evaluation of the counters for
attributes a2, a3, and a4 reveals that the attributes have been accessed 10, 24, and
30 times respectively. In this case the MG(F1, F2) is 4 so F1 gets rated as having a
higher number of hits than F2.
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In the next step we determine whether or not it is advantageous to merge F1 and
F2. The distance between F1 and F2 is computed using Eq.3, as follows:

Dist (F1, F2) =
√√√√k=2∑

h=1

(
Hits

(
ai,h

) − Hits
(
a j,h

))2

=
√(

Hits
(
a1,1

) − Hits
(
a2,1

))2
+

√(
Hits

(
a1,2

) − Hits
(
a2,2

))2
= (10 − 30)2 + (24 − 0)2

= 31.241

If we assume that the merging threshold value were preset to a value of 15 then in
this case we wouldnot merge the fragments. Since the marginal gain between both
fragments is not that high, and a3 is getting significantly higher hits than the other
two attributes in F1 we can choose not to merge the two fragments. In this case,
since F1 still has a higher marginal gain than F2 their relative importance ratings
remain unchanged. However, if the rating of F1 were to drop significantly so that the
importance rating of F2 is higher, or the threshold value for merging were raised,
both fragments would be merged to form a new fragment Fx = {a2, a3, a4}.

3.4 Caching to Support Fast Access to Data

Our approach to storage utilization is based on the architecture illustrated in Fig. 1.
Consistent with how the confidentiality constraints are defined, all of the data col-
lected from the sensors is stored in encrypted form on the user’s mobile device or
some portion of the data is transferred to the cloud for storage. The data is encrypted
in order to ensure that it is protected from unauthorized access. As mentioned before,
for simplicity and consistency with other proposals [5–8], we consider that the cloud
service provider can impose additional layers of encryption on the data to provide
stronger guarantees of data integrity and performance efficiency in handling updates
to the data.

Caching to optimize storage utilization on the mobile device is guided by the
following conditions. In determining which records to store on the mobile device
and which ones need to be transferred to the cloud, we basically need to decide
based on affinity between attributes and regularity (frequency) of access. Affinity
between attributes is useful in handling queries efficiently. In placing attributes that
are most likely to be needed to satisfy a query on themobile device we ensure that the
information can bemade available to the caregiver in cases of emergencywhen access
to the Internet is temporarily unavailable due to bandwidth limitations. Regularity
of access on the other hand provides added information to use in deciding which
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attributes of the data are useful to store on the mobile device. Data consistency, both
on the mobile device and the cloud, is maintained via updates to the medical data that
are effected during periods when access to the network occurs. For instance, when a
patient moves into an area with good Internet coverage.

Problem 2 (Mobile Storage Management) Given a relation schema R, and a set C
of well-defined constraints over R compute a set of fragments F of R such that all
of the following conditions hold.

1. F correctly enforces C
2. F maximizes the storage space S available on the mobile device
3. F is complete and minimal in that there is not F ′ that is a subset of F and that

satisfies the first two conditions. In other words F represents the most ‘useful’
summarized version of the patient’s healthcare data and ensures optimal query
responses.

The mobile storage management problem is NP-Hard, as formally stated by the
following theorem.

Theorem 2 The mobile storage management problem is NP-Hard.

Proof The proof is a reduction from the NP-Hard knapsack combinatorial optimiza-
tion problem [10]. The knapsack problem can be formulated as follows: given a
set of items, each with a mass and a value, determine the number of each item to
include in a collection so that the total weight is less than or equal to a given limit
and the total value is as large as possible. This is similar to the problem faced by a
person who is constrained by a fixed size knapsack and needs to fill it with only the
most important items. If we restate the knapsack optimization problem as a decision
problem then the problem is that we wish to determine whether a value of at least V
can be achieved without exceeding the weight W .

We can translate the knapsack problem’s description to our relational schema R
and set of constraints C on the set of data fragments F to be stored optimally on
some limited storage space S′ that is available on the mobile device. Reformulating
our mobile storage management problem we say that: Given a set of data fragments
Fi , Fj ∈ F with marginal gain MG

(
Fi , Fj

) ≥ 0 we wish to assign Fi to S′ such
that all Fi fit into the space S′. Consequently, any algorithm that can find an optimal
method of assigning the Fi to S′ can be used to solve the knapsack problem.

We are now ready to discuss the storage management optimization problem in
relation to storing medical data on a mobile device and to emphasize the need for
storing a “summarized” version of the data on the mobile device as opposed to a
complete copy. Since the storage management optimization problem is provably
NP-hard we will use a heuristic approach to maximizing storage utilization on a
mobile device.
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3.5 A Heuristic Approach to Maximizing Storage Utilization

In this section we consider the case in which we would like to maximize storage
utilization by prioritizing and caching the data. Prioritization is helpful in deciding
which fragments of data are necessary for successful queries and caching is useful is
maintaining a record of the fragments of data that are more frequently accessed. As
indicated in Fig. 5, we assume that the data can be broken up into fragments that are
structured hierarchically in terms of importance. We also assume that, as described
in Definition 1, the fragments of data are formed based on confidentiality constraints
that are specified by the EHP.

In the data hierarchy, there are n cache levels where n ≥ 1, and the hierarchy is
organized as a tree rooted at cache1 which is attached to the storage partition on
the mobile device’s storage. In the cache hierarchy each node is a data fragment and
the cache hierarchy sits at the cloud server. The cached data is handled in such a
way as to have the most recent and frequently accessed information at the higher
levels of the hierarchy while the least frequently accessed and, by comparison, older
information is stored at the lower levels of the hierarchy. We define three operations
for handling the cache hierarchy, namely:

• Buffer (y, temp): Move fragment y from the cache at level
⌊
i
2

⌋
into a temporary

buffer
• Promote (x, i): Move fragment x from the cache at level i to the cache at level⌊

i
2

⌋
• Demote (y, i): Move fragment y from the buffer to cache level i

In other words, a fragment gets moved to a lower priority cache level if it is not
accessed frequently and gets promoted to a higher level, if it is frequently accessed
or contains new material. We use the buffering operation to temporarily store the
fragment thatwas previously at position

⌊
i
2

⌋
in order to avoid data loss.Our algorithm

for managing the fragments of data in the cache hierarchy works by assigning a
priority to each fragment according to frequency of access. Initially a new fragment

Fig. 5 Caching hierarchy
structure

Cache 1

Promote(x, i)

Demote (x,i)
Level 0

Level n-1

Cache l

X

X
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is assigned the highest priority and depending on the frequency of access on the
fragment, get assigned a lower priority in which case the affected fragment gets
demoted to a lower cache level that is representative of the importance level associated
with the information. For simplicity, we assume that caches are stationary and that
the data fragments are moved between them. In addition, each cache holds at most
one data fragment at a time.

In our proposed storage management scheme caching priority is expressed as the
importance IR of a fragment. The importance of a data fragment basically indicates
how recently it was updated and in addition how frequently it has been accessed. So,
essentially we express importance of a data fragment as follows:

IR = FreqR
UR

whereUR denotes the freshness of the data fragment and is calculated in terms of the
number of time units (seconds, minutes, days...) for which the data has been on the
system, and FreqR expresses the frequency of access to a data fragment. A sliding
window is used to evaluate frequency of access to fragments so that FreqR is is a
value between 0 and 1. InitiallyUR is assigned a value of 1 time units and this grows
proportionately to the ‘age’ of fragment in the hierarchy. The IR of a fragment is
evaluated with respect to FreqR and UR . Consequently, a constant FreqR and a high
UR decreases the IR of a fragment and similarly a low UR and high FreqR implies a
high IR . As expected, consistent proportionate increases or decreases in FreqR and
UR result in a relatively constant IR .

Periodically, as shown in Fig. 5 the data fragments in the caching hierarchy need
to be evaluated and restructured to move the more frequently accessed fragments to
the top of the hierarchy.We accomplish this with the Buffer (y, temp), Promote(x, i),
and Demote(x, i) functions that we described earlier. In order to do this, we evaluate
the importance of each fragment using the importance function described above to
re-evaluate the value of IR for each fragment and use this value to decide which
fragments to move. For instance, as shown in Fig. 5 a data fragment associated with
Cache1 might get demoted to Cache2 if the IR value associated to the data in Cache1
is less than that in Cache2.

In order to formalize the implementation of our caching hierarchywe use a priority
queue that is modeled as a binary heap. Initially, the caching hierarchy is populated
on a first come first served basis so that the first data fragment to be processed is
stored in Cache1 and the last, in Cachel , assuming that n is the maximum number of
levels in the caching hierarchy and that l = 2n − 1.

The caching hierarchy population algorithm can be summarized as shown in
Algorithm 1.
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1: Input: di , IR /*A data fragment di of importance IR*/
2: Output: H /*A hierarchy of n levels of data, with nodal degree 2*/
3: H1 = d1, IR /*d0: Initial fragment based on confidentiality constraints*/
4: for i = 2 to 2n − 1 do
5: /*Assign fragment to all hierarchy levels based on prioritization*/
6: Hi = di , IR ;
7: end for

Algorithm 1: Cache Hierarchy Population

In line 4 of Algorithm 1 we initialize the caching hierarchy with the first data
fragment to arrive. Lines 5–10 basically populate the hierarchy from the leftmost
node at each level to the rightmost node. This is in order to ensure that we form a
complete binary tree to obey the heap structure property [10]. The ordering property
is obeyed because all insertions have the same priority (importance) at the beginning
[10].

Asmentioned above, the caching hierarchy is evaluated periodically and the cache
re-ordered in the form of a priority queue inwhich themost frequently accessed items
get placed in the front of the queue. In order to do this, we use a version of the heap
sort algorithm and order data fragments according to importance IR . Our heap sorting
algorithmworks by iteratively evaluating each level of the cache hierarchy promoting
and/or demoting data fragments in terms of importance. So the data fragment with
the maximum importance is stored at the root of the caching hierarchy while the
least import data fragment is stored at the lowest level of the caching hierarchy.
Algorithm 2 summarizes the heap sort procedure:

1: Input: H /*An unsorted cache hierarchy of n levels of data, where each node
can have a maximum of n children nodes*/

2: Output: HS /*A sorted cache hierarchy of n levels of data, where each node
can have a maximum of n children nodes*/

3: for i = l to 1 do
4: if (H [i]) >

(
H

[⌊
i
2

⌋])
then

5: Buffer
(((

H
[⌊

i
2

⌋])
, temp

))
6: Promote

(
(H [i]) ,

(
H

[⌊
i
2

⌋]))
7: Demote (temp, (H [i]))
8: end if
9: end for

Algorithm 2: Sorting Caching Hierarchy

Example 5 An example of how our cache hierarchy sorting algorithmworks is given
in Fig. 6. Basically the integer values in each node denote the current importance
rating associatedwith a data fragment contained in the cache position of the hierarchy.

As shown in Fig. 6, Algorithm 2 is applied iteratively through all the levels of the
hierarchy rearranging the data fragments to ensure that the fragment with the highest
importance rating is located at the top of the binary tree that represents the priority
queue. We note that in Step 3, the fragment with a rating of 9 has been progressively
moved up to the root position.
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5

897 5

2 1

9

512 5

7 8

5

812 5

7 9

Step 1: Step 2:

Step 3:

Fig. 6 Caching hierarchy: sorting example

3.6 Insertion and Deletion Schemes

Since the data fragment with the maximum importance is stored at the root of the
caching hierarchy, when a new element is inserted what happens is that the new
element is inserted in the last position of the caching hierarchy. We use a complete
binary tree to implement this so the next empty slot would be the current size of the
heap augmented by one (i.e. H [max + 1]). The tree can then be re-ordered using
the cache sorting algorithm.

Example 6 Insertions happen as shown in Fig. 7 where the new data fragment and its
associated importance rating are put in the last empty slot of the binary tree. Once this
happens, the caching hierarchy sorting algorithm is applied to move the inserted data
fragment to its “correct” position. As illustrated in Fig. 7, the insertion of a fragment
with an importance rating of 8 will result in the fragment getting moved into the root
position if we considered that the importance rating of all the other fragments of data
that currently exist in the hierarchy is less than 8.

Finally, in order to decide which fragments of data to move off the mobile device
to the cloud, we begin by using Algorithm 2 to sort the data fragments in order of
maximum importance. A threshold value that is defined by the mobile device user, is
used to determine howmany of the fragments need to be transferred. Using this value
the caching hierarchy management algorithm will use a delete operation to delete
data fragments from the caching hierarchy and have these fragments transferred to
the mobile device.
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5

847 5

2 1

5

112 5

7 8

Step 1: Step 2:

8

112 5

7 5

Step 3:

New fragment to insert

Fig. 7 Insertion of a new data fragment in the cache hierarchy

Example 7 Deletions of data fragments happen as illustrated in Fig. 8 where the
caching hierarchy is reverse sorted to position the fragmentswith the least importance
at the top of the hierarchy. Once the cache has been reverse sorted deletions happen
by removing the fragment at the root of the binary tree (caching hierarchy). This
creates, a sort of unbalanced tree, so in order to ensure that the binary tree structure
obeys the structure and ordering properties of a complete binary tree, we need to
reorder the data fragments till we find a suitable place for the fragment contained
in Cache7. In order to do this we compare the IR values of Cache2 and Cache3 and
move the lesser value up to the root position if this lesser value is less than the value
in Cache7. If the value in Cache7 is smaller than both values, the value in Cache7
is placed in the empty slot and the deletion process is terminated by reordering the
hierarchy in terms of maximum first as shown in step 6. However, since this is not
the case here, the result is that the empty slot that was at Cache1 is moved to position
Cache2. In the next step we compare the IR values of Cache4 and Cache5, since these
are the children nodes of Cache2. We find that the value in Cache5 is lesser, so 5
gets moved into Cache2 and the empty slot is now located at Cache5. Cache5 has
no descendant nodes so the value in Cache7 gets moved into it and the empty slot
is now at Cache7, thus retaining the complete binary tree structure of the caching
hierarchy. This process is repeated until all the data fragments that were below the
transfer threshold IR have been moved off the mobile device. The caching hierarchy
is then reordered to give a hierarchy such as the one in Step 6 of Fig. 8 which is the
one we get after deleting 1 in Step 4.
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Fig. 8 Deletion and re-ordering in the caching hierarchy

4 Experimental Results

The heuristic algorithms that we presented in Sects. 3.5 and 3.3 have been imple-
mented on a hybrid platform comprising a mobile device and a cloud server. We
developed a prototype to evaluate the performance of our approach. The proposed
fragmentation and caching algorithms are implemented in Python. Python comes
with an embedded lightweight database engine, SQLite. The prototype is deployed
on a Samsung Galaxy II I9100 smartphone (Dual-core 1.2 GHz Cortex-A9, 1 GB
RAM) with a rooted Android 4.0.4 platform, connected to a WiFi network. This
device consumes approximately 1.3W per second to send data over the wireless
link. The cloud server is represented by an Amazon EC2 virtual machine of the type
‘t1.large’ with an EC2 pre-configured image (AMI) of Ubuntu Server 12.04 LTS,
64 bits.

We assess the behavior of the heuristic algorithms in terms of response (execu-
tion) time, quality of the returned response, storage capacity, and energy (battery)
consumption. In order to compare the performance of our heuristic algorithms, we
implemented two naive versions of the storage utilization and fragmentation algo-
rithms. In the first case, the storage utilization algorithm randomly decides on a
threshold limit to use in determining when to offload data from the mobile device to
the cloud while the fragmentation algorithm uses frequency of access to randomly
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select the attributes to include in the fragment that is offloaded to the cloud. In the
second case, we augment both naive algorithms to incorporate the confidentiality
constraints that we implement by generating cryptographic keys that are used to
encrypt the data.

For simplicity and consistency with Ciriani et al.’s work on combining fragmenta-
tion with encryption [22], we used a relation schema that is composed of 32 attributes
from a database of medical information. We expressed 30 confidentiality constraints
that are composed of 2–4 attributes. Singleton constraints were not considered since,
as mentioned before, these cannot be used to determine what other attributes might
be required to satisfy a querywith the data available in themobile device’s storageM .

4.1 Performance Results

In these experiments, the patient’s mobile device collects the vital signs and stores
it locally. The device responds to queries requesting the status of specific health
attributes. The objective is to enable the mobile device to efficiently manage storage
utilization, where part of the patient’s data is offloaded to the cloud while another
part, that is frequently accessed, remains on the mobile device. The mobile device
runs our fragmentation algorithm to partition the patient’s data while satisfying the
confidentiality constrains set by the healthcare provider or the patient. The mobile
device also runs our proposed caching approach to secure data and allow efficient
query handling. The device runs these algorithms once the size database reaches a
pre-specified threshold based on available resources on the mobile side.

We have created a database to hold the patient information in multiple relations
(tables). One table maintains the patient’s biographical data and another one keeps
the patient’s vital signs. We also created a table to maintain the access frequency
of each attribute. The vital signs are generated randomly within the reference range
of each attribute. We test over a set of 32 attributes, such as Electrocardiography
(ECG), Oxygen Saturation (SPO2), Temperature, Blood Sugar (Glucose), Forced
Vital Capacity (FVC) and Functional Residual Capacity (FRC) that measure the
lung function, etc. The fragments are generated based on confidentiality constraints,
attribute affinity, and data freshness.

First, we split the data vertically based on confidentiality constraints and then
calculate the marginal gain between the various data chunks based on the access
frequency of their attributes. The marginal gain is used to decide which data chunks
are better to stay together. Then, each data chunk is fragmented horizontally based
on data freshness, which is captured by the record’s date and time attribute. These
fragments are generated using database views. Each view represents a fragment or
a patient data chunk. Table1 illustrates a summary of our experimental setup and
parameters
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Table 1 Summary of experimental setup and parameters

Parameter Range of values

Number of attributes 32

Confidentiality constraints 30

Number of records 1000–1,000,000

Database size 100KB–100MB

Number of fragments 30–90

We query the database with a 1000 randomly generated queries. Each query
requests a random set of attributes. The objective of these queries is to build a
sufficient frequency access data set and therefore assess the attribute affinity. Figure9
shows the execution time of our fragmentation algorithm versus a patient database
of varying size. The small increase in the execution time as the database size gets
bigger is due to creating the set of fragments. As the database size increases, either the
number of fragments increases or the size of each fragment gets bigger. However, the
complexity of our data fragmentation algorithm is relatively linear if one considers
that our theoretical complexity analysis is in O (n log n) where n is the number of
data fragments, with respect to the size of the database.We note also that the standard
deviation error on fragmentation execution time is ±0.99s which is reasonable. It
shows that caching improves the overall response time due to the positive impact of
attribute affinity. We observe that data fragmentation improves the query response
time by almost 25%, while caching offers an additional 35% relative improvement
in both cases. Figure10 shows the average query response time in both cases, when
data is un-fragmented and fragmented based on our approach. Query response times
on uncached data incur a standard deviation error of ±0.06s while the standard

Fig. 9 Fragmentation time versus database size (confidentiality constraints)
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Fig. 10 Query response time: fragmented versus un-fragmented data (database size = 1MB)

Fig. 11 Query response time: fragmented versus un-fragmented data (database size = 100MB)

deviation error on cached data is ±0.027s. Figure11 shows results for a database of
size 100MB and additionally that, the cost of responding to queries is scalable with
increases in data sizes. The standard deviation error is also proportionate with the
error on uncached data at±0.48s and±0.19s on cached data respectively. Figure12
illustrates the query failure rate for un-fragmented data and fragmented data, where
in the latter case we compare between our data fragmentation approach and a random
data fragmentation. The query failure rate is defined by the number of failed queries
to the total number of queries. The experimental results reveals that our approach
significantly outperforms the random data fragmentation, where both the attributes
and fragments that get to remain on the mobile device are chosen randomly. We note
that our approach results in 13.2% query failure rate in contrast to 58.7% for the
random fragmentation approach, resulting in more than a 4 times improvement. We
observe that the un-fragmented data yields a 100% query success rate by keeping
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Fig. 12 Query failure rate: fragmented versus un-fragmented data

the entire patient’s data on the mobile device. We attribute this difference in success
rates to the fact that queries on the fragmented data experience delays in going out
to the cloud copy of the data and hence are not able to provide a response in a
time window that is complaint to the quality of service agreements. Other factors
to which this might be attributed include low bandwidth or inaccessibility due to
network failures. However, we need to strike a tradeoff balance between efficient
utilization of the resource-constrained storage and better query handling. Figure13
depicts the energy cost of transferring data to the cloud. The energy consumption is
directly proportional to the amount of transferred data and available bandwidth on
wireless link between the mobile device and the cloud data storage provider. The
energy consumption is calculated according to the following equation:

Fig. 13 Energy cost: data transfer—mobile device to cloud
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Fig. 14 Energy cost: data transfer—mobile device to cloud under varied bandwidth (BW)

E = D

B
× pt

where E represents the total energy consumption in Watts, D indicates the size of
transferred data, B represents the available bandwidth, and pt is the energy con-
sumption unit that the device consumes to transfer data over its network interface
per second.

The rationale behind this equation is that a high bandwidth reduces the total energy
consumption of the data transmission because more data can be transmitted over a
short period. Hence this lowers the energy consumption per second. Whereas under
low bandwidth conditions we want to avoid data transfers because the energy cost of
transmission will be high and impact negatively on the limited battery power of the
mobile device. We note additionally that the standard deviation error is ±1.69 W in
terms of energy consumption with respect to varied data transfer sizes. As a further
step we vary the bandwidth and note as shown in Fig. 14 that the cost (in terms of
energy consumed is proportionate to the size of the data.

However, lower bandwidths result in a high energy consumption cost which is
possibility due to cost of handling failed connections or re-initiating unsuccessful
downloads. The error margin in this case is ±5% W with respect to the bandwidth.
Finally, we consider the average download speed with repeat to bandwidth and show
our results in Fig. 15. As expected the cost of downloads grows linearly with an
increase in bandwidth and as shown in Fig. 16, the cost of downloads in terms of
speed is proportionate to the observations we made in Fig. 14. As well, considering
that tests on user tolerance for bandwidth delays indicate that margins of 6–7s are
acceptable [28], we observe that our worst case download time at<2 s for a download
rate 0.565MB/s at a bandwidth of 4.52MB/s is acceptable.
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Fig. 15 Data transfer—mobile device to cloud: download speed with respect to bandwidth (BW)

Fig. 16 Data transfer—mobile device to cloud: varied download speeds and varied bandwidth

5 Conclusion

In mobile health applications tasks such as maintaining data consistency and secu-
rity are difficult to handle effectively in lossy networks where communications are
negatively affected by factors such as low bandwidth and intermittent connections.
Hence, to facilitate management of an mobile healthcare system, we have proposed
a framework that enables suitable data management via a mobile web service archi-
tecture. In our proposed framework, a patient’s vital signs are recorded periodically
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and stored locally on a mobile device such as a mobile device. Periodically, a sub-
set of the mobile device data is transferred off to a third party storage provider for
secure storage and management. In order to decide on how the data is transferred off
the mobile device we employ two algorithms namely a fragmentation algorithm and
caching algorithm. The fragmentation algorithm, segments the data using an impor-
tance rating metric while the caching algorithm uses an “aging” metric to determine
which portions of the data tomove off themobile device to the cloud service provider.
In order to preserve data privacy, we use confidentiality constraints supported by a
cryptographic key management scheme to support data fragmentation.

Though the proposed solution was primarily designed to aid deciding which por-
tions of the data to transfer to the cloud storage provider and which to maintain
on the mobile device, it has all the features required for use in a variety of appli-
cations that involve deciding on how to transfer or outsource data management to
a third party storage provider. Our experimental results indicate that data fragmen-
tation improves query response time by almost 25% while caching offers a 35%
performance improvement in query response time on various query workloads on
fragmented datawhen compared to cases involving un-fragmented data that are solely
cloud centric.

As a potential avenue for future work we plan to look at issues that emerge in
composing data from a variety of sources with possibly conflicting security policies.
In this case, a good negotiation model is needed to determine a set of minimum
security requirements that satisfies the security policy constraints of all the services
and/or domains participating in the composition. Another interesting topic would
be to extend our approach to multimedia data from multiple sources (text, xrays,
etc.) and to consider the media types in the storage management and how one might
optimize existing storage with respect to the data source.
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On Vague Computers

Apostolos Syropoulos

Abstract Vagueness is something everyone is familiar with. In fact, most people
think that vagueness is closely related to language and exists only there. However,
vagueness is a property of the physical world. Quantum computers harness superpo-
sition and entanglement to perform their computational tasks. Both superposition and
entanglement are vague processes. Thus quantum computers, which process exact
data without “exploiting” vagueness, are actually vague computers.

1 Introduction

Vagueness is somethingwe all are familiarwith. A very rough definition of vagueness
is this: the property of objects or entities that lack definite shape, form, or character.
For many years vaguenesswas considered just a linguistic phenomenon. This simply
means that vagueness is part of our everyday expression and not something real,
which turned out not to be true. In the linguistic realm, a property of some object
is vague when it is not clear to which group or, more generally, category the object
belongs to. Thus when Garnet is 1.68m tall, it is not obvious if she is tall or not
tall. Similarly, if Jim is 1.90m tall, he might be classified as tall, in general, but as
short when his height is compared to the height of the average NBA player. Now,
if John’s height is 2.00m and we are sure he is tall, then any other person whose
height is slightly different (e.g., Mike, whose height is 1.98m) is also considered tall,
thus Mike is similar to John with respect to his height. But what exactly is slightly
different? Obviously, this similarity degree is an indirect way to define vagueness.
In particular, similarity between physical objects can be used to show that vagueness
exists in the natural world. Although, elementary particles of the same kind (i.e.,
protons) are considered indistinguishable by most physicists, still there are some
who argue that elementary particles are in fact distinguishable and also similar (e.g.,
see [5] for an overview). Provided this approach is valid, and I will say more on this
later on, one can talk about vagueness in the physical reality.
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Sometimes people confuse vagueness with ambiguity. For example, the sentence
“Garnet ate the cookies on the couch” is ambiguous because one can understand it in
more than one way. In particular, did Garnet eat the cookies that were on the couch
or did she bring cookies that she later ate on the couch? Now contrast the previous
sentence with “the room was gray,” which is vague because there are many shades
of gray and it is not clear to which one is the color of the room. People also confuse
imprecision with vagueness. For example, the sentence “bring me the cup” is not
precise when there are many cups.

A modern computer is fed with exact data, processes them as such and delivers
exact answers. Of course, this scheme is quite reasonable as we usually have specific
problems andwewant concrete answers to them, but inmost, if not all cases,wedonot
care if the internal working involves vague data and operations as long as this does not
affect the final result. Of course, it is widely assumed that the computational process
does not involve any form of vagueness, yet there are error correction protocols
because errors happen. But can we attribute these errors to vagueness? Furthermore,
can we use vagueness constructively in the computational process? Or, in different
words, is there room for vagueness in computation? As far as the second question
is concerned, the answer is affirmative since there are realistic and not so realistic
models of computation that employ vagueness [e.g., the fuzzy Turing machine is
not a so realistic model, while fuzzy P systems and fuzzy chemical machines are
realistic models of computation (see [15] for details)]. In addition, it seems that there
is a connection between quantum mechanics and vague computing.

The pillars of modern physics are quantummechanics and general relativity (spe-
cial relativity explains only the special case when motion is uniform). One could say
that general relativity is the physics of the macrocosm while quantum mechanics
is the physics of the microcosm. In different words, one could say that quantum
mechanics helps us understand the behavior of molecules atoms, and elementary
particles while general relativity is the theory we use to explain phenomena near
very massive objects, such as planets, stars, and galaxies (gravity weakens as we go
away from massive objects). It is really weird that the two theories do not “mix”.
So far all efforts to quantize gravity have failed!1 Quantum mechanics started when
Max Karl Ernst Ludwig Planck explained the problem of the radiation of a black
body in 1900. Roughly, he proposed that energy can have only certain discrete values
something that helped him to solve this problem (see [2] among others for a short
description of the genesis of quantum mechanics).

Quantum computing is making use of the laws of quantum mechanics, and quan-
tum mechanics is explained by, among others, statistical probabilities (i.e., a combi-
nation of statistics and probability theory). Quantum mechanics was formalized in
1926 while probability theory was formalized in 1930 [3]. Until that time, probabil-
ity theory was considered a prediction tool, something that most people still believe.
For example, today many people think they can use probabilities to make educated
bets at a blackjack table and other games of chance. Naturally, they use statistical

1Speculations about higher dimensions, parallel universes, etc., will remain speculations until there
is solid proof about their existence.
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probabilities. Of course, probability theory is not about chance and games. In math-
ematics, (pure) probabilities are ratios of the measure of subsets of a given set. Here
the word “measure” means “counting” in case one deals with finite sets. However,
when one has to deal with sets that contain an infinite number of elements (e.g.,
the set of integer numbers), then one must employ a suitable measuring process to
“count” elements. Thus when one knows how to count the elements of a set, then
one can calculate probabilities. Obviously, this has nothing to do with chance or
randomness.

In what follows I will explore the connection between (mathematical models
of ) vagueness and quantum computing. In particular, after a concise introduction to
fuzzy set theory, I will introduce possibility theory. Then I will discuss vagueness
at the quantum level and I will explain how possibilities can replace probabilities in
quantum mechanics thus giving rise to real vague computers.

2 Fuzzy Set Theory: A Mathematical Model of Vagueness

Fuzzy set theory is a mathematical model of vagueness that was introduced by Lotfi
Askar Zadeh [16]. Fuzzy sets are a natural extension of ordinary sets. Zadeh defined
fuzzy sets by generalizing themembership relationship. In particular, given a universe
X , he defined a fuzzy subset of X to be an object that is characterized by a function
A : X → [0, 1]. The value A(x) specifies the degree to which an element x belongs
to A. Thus if A denotes tallness and g is Garnet, then A(g) is the degree to which
Garnet is tall. A fuzzy set A for which there is an x ∈ X such that A(x) = 1 is called
normalized.

Most newcomers tend to take fuzzy set theory for an alternative formulation of
probability theory, nevertheless, this is not the case. For instance, there are proba-
bility theorists that still believe that fuzziness is unnecessary since they argue that
probability theory can be used to solve all problems that can be tackled by fuzzy set
theory. Zadeh [17] has argued that the two theories are complementary, that is, they
are different facets of vagueness. Kosko [10] and other researchers, including this
author [15], have argued that fuzzy set theory is more fundamental than probability
theory. However, I do not plan to say anything more on this matter (a very detailed
discussion is included in [15]). Instead, let me now present the basic operations
between fuzzy subsets.

Assume that A, B : X → [0, 1] are two fuzzy subsets of X . Then, their union and
their intersection are defined as follows:

(A ∪ B)(x) = max{A(x), B(x)} (1)

and
(A ∩ B)(x) = min{A(x), B(x)}. (2)
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Also, if Ā is the complement of the fuzzy subset A, then Ā(x) = 1 − A(x). More
generally, it is quite possible to use functions other than min and max to define
the intersection and the union of fuzzy subsets. These functions are known in the
literature as t-norms and t-conorms, respectively. For more information on t-norms
and t-conorms see [9] or any other textbook on fuzzy set theory.

In the years that followed the publication of Zadeh’s paper, various researchers
proposed and defined various fuzzy structures (e.g., fuzzy algebraic structures, fuzzy
topologies, etc.). For instance, the concept of fuzzy languages was introduced by E.T.
Lee and Zadeh [11]:

Definition 17.1 A fuzzy language λ over an alphabet S (i.e., an ordinary set of
symbols) is a fuzzy subset of S∗.

If s ∈ S∗, then λ(s) is the grade of membership that s is a member of the language.

Example 17.1 Consider the following set that includes all the sequences of zeros
followed by ones:

L = {
0i1 j

∣
∣ i �= j and i, j > 0

}
.

Then, the following function

λ(0i1 j ) =
{
j/ i, if i > j
i/j, otherwise

defines a fuzzy language.

Ordinary set theory is built out of two predicates: membership and equality. This
means that in a fuzzy theory of sets both the membership and the equality should be
fuzzy. Unfortunately, and for unknown reasons, Zadeh fuzzified only themembership
predicate whereas he left crisp the equality predicate, thus, making the resulting
theory somehow incoherent. It is not difficult to fuzzify the equality predicate and
Barr [1] has provided a solution to this problem. In addition, he showed how to
construct categories of “fuzzy” sets that form a topos. Interestingly, a topos is a non-
fuzzy mathematical universe, thus, he showed how to actually embed “fuzzy” sets
in such a universe. Although a topos is an intuitionistic universe, that is, a universe
that is strongly connected to recursion theory, still it is one that has no respect for
vagueness! This implies that it is necessary to define fuzzy universes, whatever this
may mean.

3 From Probabilities to Possibilities

Most textbooks on quantum mechanics introduce the reader to the statistical inter-
pretation of the theory in the first pages of the book (e.g., Griffiths’s [7] excellent
textbook follows this convention). Of course, the reason is that the statistical inter-
pretation plays a central rôle in quantummechanics. Now, this interpretation is based
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on the pre-Kolmogorov probability theory and uses it for the estimation of the like-
lihood of various events. For example, if Ψ (x, t) is the wave function of a particle
that moves on a straight line and a and b are two points of this line, then

∫ b

a
|Ψ (x, t)|2dx =

{
the probability of finding the par-
ticle between a and b, at time t.

}
(3)

Obviously, here we are talking about events that we cannot control and so they can
be classified as random. This does not surprise anyone since nonspecialists perceive
probabilities as a mathematical “measure” of how likely it is to see some event to
happen. Statements like the following ones express exactly this view:

• it is quite probable thatBayernMunichwillwin theChampionsLeague this season,
or

• there is a 20% probability that it will rain tomorrow, or
• the probability of throwing two dice and obtaining two sixes is 1/36.

A rigorous and mathematically sound definition of probabilities have been given by
Andrey Nikolaevich Kolmogorov in his Analytical Methods of Probability Theory,
which was published in 1931. Kolmogorv’s formulation appeared almost 6 years
after the formalization of quantum mechanics (see [3]).

Kolmogorov employed measure theory in order to rigorously define probability
theory. In particular, a probability measure is a function taking sets as arguments and
assigns the number 0 to the empty set and a nonnegative number to any other set.
Also, it has to be countably additive. Thus given a nonempty set X and a nonempty
class C of subsets of X , and a function μ : C → [0, 1] such that

• μ(∅) = 0;
• μ

(⋃∞
i=1 Ei

) = ∑∞
i=1 μ(Ei ) for any disjoint sequence {En} of sets in C whose

union is also in C;
• μ(X) = 1;

then μ is a probabilistic measure on C.
As was outlined above, quantum mechanics is using probability theory to explain

and predict physical phenomena. But one could use possibility theory to give the
same explanations and predictions in a more natural way. In particular, Kosko [10],
a prominent fuzzy set theorist, argued in favor of the superiority of fuzzy set theory
when compared to probability theory by saying that fuzziness “measures the degree to
which an event occurs, not whether it occurs. Randomness describes the uncertainty
of event occurrence.” Thus if the particle lies between a and b, we need to know how
likely it is for the particle to be at a ≤ c ≤ b and not whether it is between a and
b. Possibility theory is based on possibility measures, which are are based on fuzzy
sets [18].

A possibility measure π is different from a probability measure in that

π

( ∞⋃

i=1

Ei

)

= ∞
sup
i=1

π(Ei ). (4)
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In simple words, the difference between the two approaches is that in probability
theory one demands that the sum of probabilities for given event should be 1 whereas
in possibility theory there should be at least one plausible event (i.e., one whose
possibility is 1). And this is clearly closer to what actually happens. A particle that
lies between a and b is definitely somewhere between them.

Starting from somemeasure one can define a corresponding integral. For example,
when using a probabilistic measure one may define the Lebesgue integral. Similarly,
using a possibility measure one can define the Sugeno integral. Assume that (X,F)

is measurable space, where X is some set and F is a σ -algbera,2 μ : F → [0,+∞] is
continuous monotone measure,3 and G is the class of all finite nonnegative measur-
able functions.4 For any f ∈ G, Fα = {x | f (x) ≥ α} and Fα+ = {x | f (x) > α},
where α ∈ [0,+∞]. Suppose that A ∈ F and f ∈ G. Then the Sugeno integral of f
on A with respect to μ is defined by

−
∫

A
f dμ = sup

α∈[0,+∞]

(
α ∧ μ(A ∩ Fα)

)
, (5)

When A = X , the Sugeno integral is also denoted by −
∫

f dμ. This form of integration
could be used instead of the Lebesgue integral in Eq. (3) to compute the possibility
of finding the particle between a and b, at time t .

4 Vagueness in the Physical Reality

If vagueness is not just part of our everyday expression, then there should be vague
objects. But are there such objects?5 I will not give a “yes” or “no” answer but
instead I would like to ponder about the length of the UK coastline. The British
Cartographic Society does not give an exact answer on their web page. Instead, they
give this answer: The true answer is: it depends! It depends on the scale at which you
measure it. Mandelbrot [14] gave exactly this answer in 1967. So in a sense it is not
exactly known what is inside the UK and what is outside. And of course it is quite
possible that some objects may lie somewhere in the middle. Thus one could say that
the UK is actually a vague object since its boundaries are rigid. Similarly, clouds
are vague objects for exactly the same reasons. On the other hand, there are objects
that appear to be genuine vague objects (e.g., think of heaps of grain or men with
few hair), still most of them are classified as such because the terms that describe

2F has to be a subclass of the power set 2X . Also, it must satisfy the following conditions: (a) X ∈ F;
(b) for all E, F ∈ F, E − F ∈ F; and (c) for all Ei ∈ F, i = 1, 2, . . .,

⋃+∞
i=1 Ei ∈ F .

3μ is monotone if and only if E, F ∈ F and E ⊂ F imply μ(E) ≤ μ(F).
4A function f : X → (−∞, +∞) on X is measurable if and only if f −1(B) = {x | f (x) ∈ B} ∈ F
for any Borel set B ∈ B. Now, assume that X is the real line. Then, the class of all bounded, left
closed, and right open intervals, denoted by B, is the class of Borel sets.
5A mathematical response to this question has been recently given by Gerla [6].
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them are vague. However, there is a third approach to the problem of finding vague
objects in Nature. In quantum mechanics, the “standard” view is that elementary
particles are indistinguishable, nevertheless, not everybody shares this view. More
specifically, Lowe [12], has argued against this view thus showing that vagueness
exists in the subatomic level:

Suppose (to keep matters simple) that in an ionization chamber a free electron a is captured
by a certain atom to form a negative ion which, a short time later, reverts to a neutral state
by releasing an electron b. As I understand it, according to currently accepted quantum-
mechanical principles there may simply be no objective fact of the matter as to whether or
not a is identical with b. It should be emphasized that what is being proposed here is not
merely that we may well have no way of telling whether or not a and b are identical,which
would imply only an epistemic indeterminacy. It is well known that the sort of indeterminacy
presupposed by orthodox interpretations of quantum theory is more thanmerely epistemic—
it is ontic. The key feature of the example is that in such an interaction electron a and other
electrons in the outer shell of the relevant atom enter an ‘entangled’ or ‘superposed’ state in
which the number of electrons present is determinate but the identity of any one of themwith
a is not, thus rendering likewise indeterminate the identity of a with the released electron b.

The idea behind this example is that “identity statements represented by ‘a = b’ are
‘ontically’ indeterminate in the quantummechanical context” [4]. In different words,
in the quantummechanical context a is equal to b to some degree, which is one of the
fundamental ideas behind fuzzy set theory. For a thorough discussion of the problem
of identity in physics see [5].

5 Superposition and Entanglement Revisited

Thewell-known Schrödinger’s cat paradox (see [7]) is about a cat that is placed inside
a box along with a Geiger counter. The box contains a tiny amount of a radioactive
substance whose atoms may or may not decay within an hour. If there is a decay,
it triggers the Geiger counter which, in turn, triggers a hammer that breaks a glass
that contains a poison capable to kill the cat. The obvious question is: What would
happen to the cat after exactly 1 h? At the end of the hour the wave function of the
cat would be

ψ = 1√
2
ψalive + 1√

2
ψdead. (6)

This implies that the cat is neither dead nor alive! Schrödinger regarded this as
patent nonsense, however, I tend to disagree. The reason of course is that there are
many things that are not either black or white. After all, this is exactly the essence
of vagueness. Thus, a patient who is in coma is not exactly alive and not exactly
dead. Regardless of our objections, superposition, that is, the ability of particles to
be in more than one state at the same time, is what makes quantum computing really
interesting.

In “classical” computing a bit is either the digit 0 or the digit 1. In quantum
computing a qubit is a quantum system (typically a polarized photon, a nuclear spin,
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etc.) in which the two digits are represented by two quantum states: |0〉 and |1〉. These
states are represented by the following matrices:

|0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
. (7)

Also, these two states are “basic” states (i.e., they form a basis of a Hilbert space)
and any other state of the qubit can be written as a superposition α |0〉 + β |1〉, where
α and β are complex numbers that are called normalization factors and they must
obey the normalization condition |α|2 + |β|2 = 1. For example, consider a photon
that can be polarized in the x direction or in the y direction and assume that these
states are represented by the vectors |↑〉 and |→〉, respectively, then one can use |↑〉
for |0〉 and |→〉 for |1〉.

The standard interpretation of α |0〉 + β |1〉 is that a particle is in states |0〉 or
|1〉 with probability that depends on α and β. Of course, according to a layman’s
interpretation of probability theory, these two numbers express the change that a
particle is in one of these states. A fuzzy theoretic interpretation of this state is that
the particle is in both states but with some degree. In fact, one can define a fuzzy set
as follows:

Ψ (|0〉) = |α|2 (8)

Ψ (|1〉) = |β|2 (9)

However, here there is no reason to demand that |α|2 + |β|2 = 1. In fact, there is no
reason to impose any restriction other than |α|2 ≤ 1 and |β|2 ≤ 1. Onemay argue that
these two restrictions are not that different, however, the fuzzy theoretic approach
assumes that the particle is in fact in a state that is partly |0〉 and partly |1〉. In different
words, α |0〉 + β |1〉 is like a shade of gray, where, for instance, |0〉 is like black and
|1〉 is like white.

Assume Ψ describes the state of quantum particle in superposition. Then, the
superposition collapses upon a measurement, but the question is why this happens.
Perhaps, the measurement forces a defuzzification of Ψ , that is, a process by which
one gets bivalent data from multivalued data (in this case a vague state is trans-
formed into a crisp one). But if defuzzification is possible, then one might expect
that fuzzification is also possible. Indeed, the Hadamard gate is a mechanism that
creates “vague” states as follows:

H |0〉 = 1√
2

|0〉 + 1√
2

|1〉 (10)

H |1〉 = 1√
2

|0〉 − 1√
2

|1〉 (11)

Thus superposition corresponds to the fuzzification of a quantum system by means
of the H operator, while measurement is a “natural” defuzzification process.
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Entanglement is another important quantum mechanical phenomenon. Consider
a physical system with two degrees of freedom, A and B. The states of such a system
belong to E = EA ⊗ EB . Some states can be expressed as

|Ψ 〉 = |α〉 ⊗ |β〉 . (12)

However, there are states that cannot be factorized (i.e., they cannot be written as
“products”). Such states are called entangled states. For example, the following is
such a state:

|Ψ 〉 = 1√
2

(|α1〉 ⊗ |β1〉 + |α2〉 ⊗ |β2〉
)
. (13)

First of all, there are two “special” forms of entanglement, namely entanglement
of cost, EC , and entanglement of distillation, ED , that vague in a particular case
(see [8] for details). More generally, Lowe [13] proposed a thought experiment that
showed that entanglement is vague. Assume that there are two determinately distinct
electrons. One of them (call it a) is determinately absorbed by an atom and then
becomes entangled with a single electron (call it a∗) determinately already in the
atom. Because these electrons exist in an entangled state inside the atom they are
not determinately distinct but of course we know that there are two of them. At
some moment one electron is emitted and so one electron is still inside the atom
and one is outside the atom. Since these two electrons were in an entangled state,
it is impossible to tell which electron left the atom. In a nutshell, this is the root of
vagueness in entanglement.

Quantumcomputing is so attractive because it is harnessingboth superposition and
entanglement to achieve its exponential computational power. Since both superposi-
tion and entanglement are vague in their nature, this means that quantum computers
operate on vague data using vague operations.

6 Conclusions

I have briefly explained why vagueness is not only a linguistic phenomenon but
also a property of the physical world. Also, it is a fact that quantum computers
harness quantum mechanical properties of matter to perform their computations.
These properties of matter have been shown to be vague, thus quantum computers
internally employ vagueness, which makes them automatically vague computers. Of
course, these vague computers process non-vague data in a non-vague way, however,
it would be really interesting to see if processing vague data vaguely would broaden
our understanding of computation. This is certainly an open problem and I think a
very interesting one.

Acknowledgements I thank Andromahi Spanou and Christos KK Loverdos for reading the man-
uscript and helping me to imporve it.
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Parallel Evolutionary Optimization
of Natural Convection Problem

Matjaž Depolli, Gregor Kosec and Roman Trobec

Abstract Computer simulations of complex natural phenomena become an approach
of choice if experimental work is impractical or dangerous. Often, optimization
approaches are used in a closed cycle with the simulation to obtain the desired per-
formances. To test and validate such cases an optimization of a coupled thermo-fluid
transport in a two dimensional cavity is elaborated. We seek for optimal positions and
dimensions of obstacles in the cavity to minimize the heat flux through the domain.
One can apply such an approach to maximize the insulation by using minimal amount
of insulation material. The governing equations are solved with a meshless numerical
method while the optimization is performed with differential evolution. The solu-
tion and optimization procedures are designed for execution on parallel computers.
Incentive scalability and speed-up are demonstrated on the presented test case.

1 Introduction

High performance computer simulations are routinely used in the development of
new technologies or in situations where experimental work is impossible, expensive
or dangerous. For example, climate changes cannot be predicted by real experiments
because setting up an experiment is practically impossible; a temperature distribution
inside a beating human hearth during a surgical procedure cannot be obtained with
measurements because of potential hazards for patients. Many practical problems
are even more complex, because the required performances cannot be obtained with
just a single development cycle, e.g., optimal shapes in hydraulic machinery or in
specialized vehicles, optimal mixtures of ingredients in drug production, etc. Many
trials could last too long for a practical usage or could become too expensive for a
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reasonable investment. To cope with such situations, optimization approaches have
to be used in a closed cycle with the simulation. Often, the real cases require high
fidelity solutions which results in excessive amount of data and long computation
times. Hence, the simulation and optimization methods have to be implemented using
parallel high performance computers in order to solve the problems with required
accuracy and in acceptable time frames.

To test and validate the described situations, an optimization of a coupled thermo-
fluid transport in a closed two dimensional cavity is elaborated in more details.
The two opposite edges of the cavity are set on different predefined temperatures.
The cavity area is partially covered with non-permeable rectangles that obstruct the
natural convection flow. We seek optimal positions and dimensions of the obstacles
to minimize the heat flux through the domain, i.e., we maximize insulation. There are
numerous practical examples where one would be interested in a similar optimization,
e.g., designing windows or other insulating elements for buildings, optimizing heat
storage systems, optimizing temperature distribution within rooms or warehouses,
etc.

The energy and momentum transport is modelled by a set of Partial Differential
Equations (PDEs), coupled with Boussinesq approximation. A momentum transport
is modelled with the Navier-Stokes equation that is coupled with a mass continuity
equation form the modelled fluid flow part, which is further coupled with heat trans-
port, modelled with a diffusion-convection equation. There are many natural and
technological problems that can be tackled with such diffusive-convective models,
e.g., weather dynamics, aerodynamics, solidification, semiconductor simulations [9],
and others.

The practical aspect of our test case is a minimization of energy loss in a non-
uniformly heated air-filled square cavity [17] by obstructing the natural convection
flow. Because the cavity is differentially heated on two opposite edges (left and
right) and thermally isolated on the two remaining edges, the differences in air
density due to the temperature gradients drive the fluid flow into pronounced natural
convection flow patterns. The energy transport over the domain, i.e., the energy
loss, is therefore not governed solely by a diffusion but also by a convection. In more
realistic problems, the shape of the closed cavity and obstacles could also change and
introduce supplementary optimization parameters. However, to keep the numerical
solution methodology simple, and to present the methodology in an easy-to-grasp
model, we omit any additional complications.

One of the important aspects of the solution procedure is its execution time. The
simulation time depends on the calculation complexity of the simulation, and by
selected output quality, determined through spatial and temporal resolutions. For
reasonable results, thousands of discretization nodes and thousands of time steps are
necessary, resulting in a simulation time in the range of minutes. In addition, sto-
chastic optimization, as implemented by an evolutionary algorithm, typically requires
vast number of iterations to converge, counted in thousands or millions. Soon, the
computational cost becomes too high for practical use. Consequently, the efficiency
of the computer implementation depends in its ability to yield reasonable results in
a reasonable time frame.



Parallel Evolutionary Optimization of Natural Convection Problem 405

The methodology applied in our test case is based on an efficient coupling of
programs for computer simulation and optimization. The simulation and optimization
procedures are designed for execution on parallel computers. The parallel simulator
that runs on a shared-memory computer cooperates with an evolutionary optimizer
executed on a cluster of interconnected multi-core processors. The obtained results
are presented by temperature and velocity fields and convergence analyses. Incentive
scalability and speed-ups are demonstrated on the selected test case, which confirms
the relevance of the proposed methodology.

2 Test Case Definition

2.1 Numerical Model and Geometry

The natural convection is modelled by three coupled PDEs: diffusion equation for
energy transport, Navier-Stokes equation for momentum transport, and mass con-
tinuity equation. The Boussinesq approximation is used for coupling the heat and
momentum transport. The basic model is a well-know fluid flow benchmark test, in
the literature usually referred to as de Vahl Davis test [17]. The model is defined by
the following system of equations:

∇ · v = 0,

ρ
∂v
∂t

+ ρ∇ · (vv) = −∇P + ∇ · (μ∇v) + b,

ρ
∂

(
cpT

)
∂t

+ ρ∇ · (cpT v) = ∇ · (λ∇T ) ,

b = ρ [1 − βT (T − Tref)] g,

where λ stands for thermal conductivity, v for velocity, t for time, cp for spe-
cific heat, ρ for density, P for pressure, μ for viscosity, b for body force, T for
temperature, βT for thermal expansion coefficient, Tre f for reference temperature
and g for gravitational acceleration. The problem is fully characterized by two
dimensionless numbers: the Prandtl number (Pr = μcp/λ) and the Rayleigh number
(Ra = |g| βT (TH − TC) Ω3ρ2cp/λμ), where TH and TC are temperatures on the left
end right edge, respectively.

A 2-D quadratic cavity Ω = ΩH × ΩW filled with air at Pr = 0.71 and
Ra = 106 is considered (Fig. 1). The cavity is covered by rectangular obstacles that
both replace the air within the cavity and alter the air-flow streams. The number
and shape of obstacles could be arbitrary, but we tested four cases with 1, 4, 9, and
16 rectangular obstacles. The obstacles are constrained to only have edges parallel
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Fig. 1 Schematic
representation of the test
case domain

to the cavity edges. The obstacle material is non-permeable and significantly better
thermal insulator than the fluid. The thermal conductivity of the obstacles is set to
25 % of the fluid. Each simulation starts with initial velocity and pressure set to 0 in
the whole domain. The non-permeable and no-slip velocity boundary conditions are
used, i.e., the velocity is zero on all boundaries. The left and right edges of the cavity
have fixed temperatures TH and TC , while the remaining two edges are thermally
isolated.

Since our goal is to construct an effective and scalable parallel implementation,
a local numerical approach is preferred in order to minimize the communication
between processors. We use the Meshless Local Strong Form Method (MLSM) [8,
10, 18], a variant of meshless methods [15, 16] for spatial discretization and solu-
tion of governing PDEs. The explicit time stepping is used to obtain the evolution
of the solution in time. The artificial compressibility method is applied for treating
the pressure velocity coupling [12]. The basic idea behind MLSM is to approxi-
mate the unknown field in each discretization node over a small subset of nearest
nodes, named as support domains. The partial differential operators can be now
expressed analytically from the locally approximated fields. Basically, the MLSM
can be understood as a generalized Finite Difference Method (FDM), where instead
of Taylor expression for spatial derivatives of unknown fields, a more general con-
cept is used to approximate the derivatives. Like in other strong form methods, the
continuous spatial variables and its derivatives from the PDE are approximated first
in discretization nodes and then the treated PDEs are solved by collocation.

2.2 Optimization

The simulator is coupled with an optimizer that can handle optimization of func-
tions, which cannot be defined analytically. Stochastic optimizers that are inspired
by biological processes are often used for such cases, since they require very lit-
tle knowledge of the function to be optimized. Swarm intelligence algorithms [2]
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and evolutionary algorithms [7] are the two largest classes of biologically inspired
algorithms for stochastic optimization.

For the presented case, the simulator is coupled with an optimizer that imple-
ments the Asynchronous Master Slave Differential Evolution for Multi-objective
Optimization (AMS-DEMO) algorithm [6], which is a parallel evolutionary algo-
rithm for multi-objective optimization [1, 5, 19] of real-valued functions. As its
name suggests, AMS-DEMO can perform multi-objective optimization but it is used
in our case for single-objective optimization. AMS-DEMO performs stochastic opti-
mization [3] and can solve problems for which the cost function can be evaluated
for any given set of parameters even though the analytical form of the cost function
is unknown. In the presented problem, the numerical simulation serves as the cost
function evaluator.

With given input parameters, i.e., positions of the obstacles, the simulator com-
putes steady-state temperature, pressure and velocity fields. The value of the cost
function—the total heat flux through the domain with specified obstacles—can be
easily determined from the computed fields. This value is then passed to the opti-
mizer, which computes a new input parameter set for the simulator. The procedure
iterates until the optimization convergence criterion is not met or the number of
performed iterations grows too large.

For single objective problems, AMS-DEMO acts as a parallel version of Dif-
ferential Evolution (DE) [13], which is an iterative algorithm operating on a set of
solutions called population. In each iteration, every solution from the population acts
as a parent p to a newly created trial solution c (also called candidate). To obtain trial
solutions, parents are modified using evolutionary operators: differential mutation,
uniform crossover, and selection. Differential mutation takes three or more mem-
bers of the population x1, x2, x3, [x4 . . . xnp ] ∈ P, where np is the population size,
to help construct a mutation vector v by vector addition and scalar multiplication.
A common way of calculating the mutation vector, also used here, is using the for-
mula v = x1 + F · (x2 − x3), where F ∈ R is a constant scaling factor, most often
from the interval (0, 1]. The mutation is followed by uniform crossover, which either
takes the elements of the parent vector or the mutation vector, with a fixed probability,
creating a trial solution:

∀i ∈ {1, 2, . . . , n} : ci =
{

pi with probability 1 − Pc,

vi with probability Pc.

Trial solutions are then tested against parents in a pair-wise manner, also called the
selection. The losers, i.e., the solutions with higher cost, are discarded while the
winners form the population of the next iteration.

The described operators are local in nature, since they operate on the parent and
three other members of the population only, with the possible effect of locally opti-
mizing the parent. Global optimization property emerges from the continuous appli-
cation of evolutionary operators on individual solutions. By having the evolutionary
operators applied to each population member in turn, they become structured; yet
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global optimization would be achieved even if they were applied in an unstructured
manner. The structure is used only to keep track of the optimization progress and to
make the algorithm less stochastic and, therefore, its results easily repeatable.

DE finishes either after a fixed number of performed cost function evaluations,
after a solution of predefined quality or better is found, after the solutions have
converged with a satisfyingly high confidence, or after a similar termination condition
is met. In AMS-DEMO, the execution persists a bit after the selected termination
condition is met, to allow all the evaluations that are in progress at that time to
complete.

2.3 Optimizer Parameters

Although AMS-DEMO converges towards a good solutions using just about any but
the most pathological parameter sets, this is not good enough in real life. Compu-
tational resources are valuable resources, and computational time determines which
problems will get solved efficiently and which not. Therefore, selecting a good set of
parameters to help achieve fast convergence towards optimal solutions is an impor-
tant task. The best set of optimizer parameters is not known in advance and therefore
cannot be determined prior to the actual optimization runs. Also, it is not clear
how sensitive is the optimization on the small changes in parameters. To shed some
light onto the problem of parameter selection, a scan over the parameter space is
performed. A task of filling the cavity with four obstacles, described in Sect. 4, is
selected for analysing the optimizer parameters.

The three most important parameters of the optimizer are taken into consideration
for the scan: crossover probability Pc, scaling factor F , and population size np. For
both Pc and F , the input set of values is set to [0.1, 0.2, ..., 0.9], while for np, the
input set of values is [10, 20, ..., 50]. Each of the parameters is varied across its
input set values with five repetitions of the optimization run for each value. The best
solutions after 8000 simulations are used to asses the impact of varying optimizer
parameters.

Mean normalized heat fluxes with error bars that denote their standard deviations
are shown in Fig. 2 for the Pc, F , and np. The optimizer works well enough with
almost any combination of parameter values, except for the most extreme ones. The
greatest influence on the solution quality comes from the crossover probability Pc.
Low values lead to better results (lowest heat flux), with minimum being around 0.3.
Only the highest two values, namely 0.8 and 0.9, seem to be bad choices. The scaling
factor F is much less dynamic, which implies that the optimizer is quite robust to its
variation. The results are clear enough to show that just about any value of F between
0.2 and 0.9 works well. Finally, the results of varying population size np are shown
in the right part of Fig. 2. Population size is known to have a pronounced effect on
the evolutionary algorithms, and AMS-DEMO is no exception. Low values will lead
to fast convergence, but not to the best solutions, while higher values will lead to
increasingly slow convergence towards increasingly better overall result. Since slow
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Fig. 2 Initial scan of optimizer parameters

convergence translates to long execution times, the population size is used to tweak
the trade-off between the execution time and the quality of solutions found.

3 Parallel Implementation

The simulation-based optimization is parallelized on two levels. On the first level,
each simulation exploits multi-core architecture of computing cluster nodes with
shared-memory parallelism, using OpenMP [4]. On the second level, the optimization
makes use of all interconnected computing cluster nodes by distributing separate
simulations among the cluster nodes, using Message Passing Library (MPI) [14].

3.1 OpenMP

Since the simulator uses explicit temporal stepping and local spatial discretization,
the solution in the next time step depends only on the previous known solutions in
the nodes from local support domains. The spatial operations for discretization nodes
can be executed independently, consequently, operations for all nodes in the spatial
loops can be executed in parallel. The conceptual flow-chart of the simulator is shown
in Fig. 3, where all parallel loops are marked. Note that most of the execution time
is used for calculations in spatial loops.

In the C++ programming language, each spatial loop of the MLSM code is marked
by a pre-processor directive #pragma omp parallel for, which divides the
spatial loop into equally sized sub problems. An OpenMP enabled program divides
the assigned task into disjunct parts and forks into several threads on request, with
each thread then processing one or more task parts. After the execution of the paral-
lelized code, the threads join back into the parent process and the program executes
sequentially from there on. Fine control is possible over the task division by speci-
fying the number of threads, the synchronization of threads, the scope of variables,
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Fig. 3 Block diagram of
shared-memory parallel
simulation

and so on. For effective parallel execution, the threads have to be bound to the cores
by using the runtime environment, which helps to maximally exploit the local core
caches. This can be done setting the KMP_AFFINITY environment variable before
executing the program. The following setting has been used in our experiments:
export KMP_AFFINITY=“explicit,proclist=[0,1,2,3]”.

Recently, a super-linear speed-up of such a simulation with a similar MLSM
approach has been reported in [8]. The reason for super-linearity is in the accumu-
lated L3 caches of multiple processors, which allows for significantly higher data
bandwidth compared to the bandwidth on a single processor.

3.2 MPI

The AMS-DEMO algorithm supports parallel execution on distributed memory com-
puters, e.g., computing clusters [6]. The master-slave methodology splits the algo-
rithm into two parts: (i) master, usually the main algorithm logic that cannot be done
in parallel and resides in the master process, and (ii) slave, comprising the tasks that
can be done in parallel by the slave processes.

The evaluation of a cost function is often, and also in our case, the most time-
demanding task within the optimization procedure. Furthermore, it is being repeated
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in the order of several thousands to million times, in the course of a single opti-
mization. Fortunately, separate evaluations of cost function on different sets of para-
meters are independent of each other and can therefore reside in the slave part of
AMS-DEMO. When comparing it to sequential DE, the advantage of AMS-DEMO
is the parallel processing with no practical limits on the number of solutions that
are processed in parallel, while the disadvantage is in slightly slower convergence of
solutions. Nevertheless, AMS-DEMO provides a way for very efficient utilization of
all the available processing nodes, even when faced with unpredictable and varying
duration of the cost function evaluation.

MPI is used to implement the distributed job processing, by providing means of
distribution of job input variables. The master process serves as job producer, where
jobs can be defined on demand and in real-time. A job is defined as a predefined cost
function evaluation that will be executed by the slave processes. Input parameters of
cost function represent the input of the job and are encoded as a real-valued vector.
The result of a job is encoded as a real-valued vector comprising the cost function
value and optionally also some internal variables. The flow of jobs is designed around
the processing node utilization efficiency.

Slave process n

…

Slave process 2

Slave process 1

Master process

Popula on of solu ons

Master part of algorithm

Slave part of algorithm

queue

Transforma on of simula on 
inputs Simula on

Transforma on of simula on 
outputs

queue

Cost func on

Fig. 4 Block diagram of MPI-based distributed optimization with AMS-DEMO
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The master process starts the communication with the slave processes by gen-
erating a number of jobs and asynchronously distributing them among the slave
processes. Slave processes then process their jobs in isolation and asynchronously
return results to the master. To avoid the waiting time in between processing of con-
secutive jobs, slave processes maintain a queue of jobs, which the master process
aims to keep full at all times (see [6] for more details). The scheme of the MPI-based
parallel optimization is shown in Fig. 4.

4 Test Case Experiments

4.1 Experimental Setup

The optimizer is given a differentially heated square cavity and the option to place
one or several obstacles in the domain. Obstacle positions are unconstrained, while
their sizes are constrained upwards by the size of the cavity divided by the number of
obstacles. Note that the orientation of the obstacles is also constrained in the sense that
their edges are always parallel to the edges of the cavity. The obstacles are allowed to
overlap, with the overlapping areas considered to have the same properties as regular
obstacle. Overlapping thus provides no benefit to the solution, but it is enabled so that
obstacles are not constrained by other obstacles, to ease the optimization procedure.

Since the obstacles are non-permeable and their material is a better insulator than
the air, the optimal result—minimal flux—is achieved when the obstacles fill the
whole cavity. Although the optimal solution is obvious to a human, that might not
hold for the stochastic optimization logic, and such a task serves as a benchmark of
the optimization procedure. In other words, a “closed form” solution is known and
can be compared against the solutions obtained by the optimization procedure, hence
the performance of the optimizer can be easily evaluated.

Four scenarios of the test case with varying difficulty are devised to test the
performance of the simulation-based optimization. Within each scenario, the flux is
normalized relative to the flux through an empty domain. The settings of the optimizer
for all four scenarios are listed in Table 1. The scenarios are increasingly difficult,
since the number of cost function parameters is increasing and these parameters are
all equally important.

All numerical experiments have been executed on a homogeneous cluster of 20
computing nodes interconnected with Gigabit Ethernet network. The heart of each
computing node is a single quad-core processor Intel Xeon E5520. In all experiments,
the same clock frequency was used on all cores.

Both, the simulator and the optimizer code are written in C++ programming lan-
guage, compiled with GCC 4.8 compiler with enabled optimization through -O3
switch. The OpenMP is built into the compiler while the MPI functionality is imple-
mented with the Open MPI library. The optimizer and the simulator programs com-
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Table 1 Settings of the optimizer for the test case scenarios

Sub-cases

Number of
obstacles

1 4 9 16

Obstacle max size 1 × 1 1
/

2 × 1
/

2 1
/

3 × 1
/

3 1
/

4 × 1
/

4

Number of cost
function
parameters

4 16 36 64

Population size 20 30 40 50

Number of
simulations

2000 6000 12000 18000

municate via the file system and bash scripts, using the tools provided by Ubuntu
12.04.

All simulations were executed with the following parameters: 81 × 81 uniformly
distributed discretization nodes on the domain (cavity and edges) with dimensionless
size 1 × 1, MLSM time step dt = 2.5 · 10−5, maximal allowed dimensionless time
tmax = 20 and steady state criteria | Ti+1 − Ti |< 10−7, where i is a time-step index.

4.2 Quantitative Results

For each scenario, the single optimum solution is to set obstacle sizes to their maxi-
mum and to arrange them in an orthogonal grid. The best solutions (out of 10 runs)
obtained by the optimizer are plotted in Fig. 5. Obstacles are marked with numbers in
their lower left corners. A single obstacle (scenario 1) is placed almost optimally. The
optimizer performs very well also with four obstacles. For higher number of obsta-
cles, i.e., 9 and 16, a slight drop in solution quality can be noticed. With increasing
complexity of the optimization problem (with more obstacles), the optimizer finds
less optimal solutions in the sense that the cavity is not fully covered, even though
the scenarios with more obstacles are optimized with increased population size.

Because the holes between the obstacles become minimal after optimization, the
temperature gradients and consequently thermal fluxes differ just slightly in all four
scenarios. For example, in the scenarios with 4 obstacles, the temperature gradient
is different because of four sizeable holes, which have pronounced impact on the
convection. Although the optimization settings could be set to produce better results,
the fine tuning of several parameters of optimization is beyond the scope of this work.
It should also be noted that better results could be found on the account of running
optimization for a longer time.

The convergence of solutions was measured by making 10 runs of the optimization
for each scenario and extracting the best solution per scenario from these runs. The
evolution of the best solution relative to the number of simulations is shown for each
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(a) 1 obstacle (b) 4 obstacles

(c) 9 obstacles (d) 16 obstacles

Fig. 5 Temperature contour plot and obstacle positions as set by the optimizer for the four scenarios

scenario in Fig. 6. On the figure, the heat flux is normalized with the true optimal
solution heat flux value, therefore the minimal value of normalized heat flux is 1,
and values above 1 represent sub-optimal solutions. We observe that the convergence
is slower for the scenarios with more obstacles, which is an expected result. Larger
populations would likely help in obtaining better results in terms of minimizing the
heat flux, but for the price of even higher number of performed simulations for each
optimization run.
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Fig. 6 Convergences of optimal solutions obtained for each optimization scenario

4.3 Parallel Speedup and Efficiency

The presented problem can easily become numerically so complex that exceeds
the performances of a single computer, therefore, the parallel implementation is of
high importance. With parallel implementation, great caution has to be paid on the
parallelization speedup or efficiency evaluated as:

S = t1
tN

,

E = S

n
= t1

n · tn ,

where the symbols used are: speedup S, efficiency E , number of computing units n,
execution time on a single computing unit t1, and execution time on n computing
units tn . In the flowing, we analyze only the speedup.

As described, the parallelization is performed on two levels, which reflects in
two-part speedup:

• speedup due to the execution of a single simulator run on multiple cores of a cluster
node;

• speedup due to the execution of different simulation runs on distributed computing
nodes.

An exact assessment of the speedup is difficult to obtain. While the simulations
results are identical, either obtained from runs on one or more cores, the results of the
optimization procedure depend on the number of computing nodes engaged in the
optimization run [6]. The serial DE is deterministic with the same random generator
seed, however, the parallel AMS-DEMO attempts to minimize the processor idle time
by allowing a non-deterministic execution. Therefore, several repetitions of AMS-
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Fig. 7 Speedup of 100 simulations with different parameters (left) and speedup of optimization
(right)

DEMO, even with the same random generator seed, are unlikely to produce the
same results. Consequently, the run on n processing nodes cannot be quantitatively
compared to the run on a single processing node, which induces difficulties in the
calculation of speedup.

The correlation between the number of computers and the solution quality is not
known, but it can be assumed that in most cases with more computers also more
simulations are needed to produce the same solution quality. The detailed statistical
analysis of the correlation on a large number of repetitions of AMS-DEMO has been
performed in [6], and we will only rehash the main findings here. No statistically
significant differences are found in the convergence rate of solutions produced by
different runs of the AMS-DEMO as long as the number of computing nodes is lower
than the population size, which is true in our test case. A justified simplification can
thus be made to ease the speedup measurements. For each tested number of computing
nodes, the AMS-DEMO is left to run until a predefined number of simulations is
completed.

To avoid some exceptionally long optimization runs, the speedup is measured
in parts—first for the simulator and then for the optimizer. The total speedup can
be obtained as a product of both speedups. The execution times always include
serial pre-processing, computation, post-processing, and input/output operations.
The simulator runs vary in execution time length, depending on how fast they reach
the steady state, which in turn depends on the input parameters—the placement of
obstacles. To obtain a robust speedup measurement, one hundred parameter sets
are randomly taken and used as input for separate simulations on 1–4 computing
cores. Since the simulation times do not significantly differ between the scenarios,
the joined results for the simulation speedup are shown in the left part of Fig. 7. Dots
represent mean simulation speedups and their standard deviations, which are both
satisfactory for a shared memory architecture.

To obtain the optimizer speedup, a separate test optimization is set up that stops
after 1000 simulations. The test optimization time only minimally depends on the
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choice of problem scenario and other details of the simulation, and is therefore per-
formed for one scenario only. The right part of Fig. 7 shows the optimization speedup,
again incorporating all needed calculations and the overhead. To eliminate the noise
introduced by the variation in simulation times from the graph, each optimization run
time is normalized by the mean simulation time of that run. The result is a near-linear
optimization speedup that scales well over the tested number of computers.

Finally, both speedups can be multiplied to get the total speedup. For example,
on 10 and 20 computers, each using 4 cores, the total speedups are 32.1, and 63.9,
respectively, which is satisfactory well, in particular, because the scalability of the
parallelization is also near ideal.

5 Conclusions

The proposed methodology is focused on displaying the potency of the simulation-
based optimization, taking into account the solution quality, the total execution time
and the ability to further speedup the execution if more parallel processors are avail-
able. The presented case of obstructing air-flow with obstacles is an evidence of how
the optimization achieves high quality solutions of complex problems. Although
presented here in its simplest form, it is intuitively clear that given a more complex
scenario, high quality obstacle placings would be hard to predict without the syn-
ergy between the numerical simulator and the multi-objective optimization. The test
case could be extended in the optimization of various areas of design: structure of
insulation material, large living and working spaces, air conditioning, heat storage
and heat engines, and in many similar domains.

Both, the optimizer and the simulator, exploit the emergent properties of very sim-
ple and local operations, and are therefore able to make good use of parallelization.
The optimization operates on the level of interconnected computing nodes, either on
a homogeneous computing cluster, as presented in this work, or also on distributed
systems built from computing nodes with diverse performances. The computer simu-
lation, on the other hand, exploits the shared-memory model of a multi-core computer,
and is also capable of switching to GPUs [11] and other computing accelerators that
proliferate in the modern high performance computing hardware. The combination
of the both approaches is shown to be efficient at utilizing hardware resources and
providing an emergent tool for handling simulation-based optimization problems.
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Theory and Practice of Discrete Interacting
Agents Models

Adrian-Horia Dediu, Joana M. Matos and Carlos Martín-Vide

Abstract We review several distributed, discrete time, and probabilistic models
with interacting multi-agents. We discuss the basic principles together with some
variants of the frog model. We also present an experimental approach, talking about
implementing and checking one of the less investigated variants of the model, where
the frogs die if not meeting other frogs for some time. We follow the same lines for
broadcasting and gossipingmodels, our experimental approach checks the validity of
the broadcasting time for a wide range of the number of agents existing in the system.
We also study the emergent behaviour of a multi-agent system whose agents follow
only several simple rules; we performed our experiments with an implementation in
StarLogo.

1 Introduction

Centralized versus distributed systems, discrete versus continuous models, deter-
ministic versus probabilistic behaviour, these are only few of the decisions we
have to take in complex design activities. Each choice offers various advantages
and disadvantages. Kim et al. [17] show that we consider various aspects related
to reliability, scalability, security, communication complexity, efficiency, etc. when
choosing between distributed and centralized solutions. About using continuous time
models, there are many opinions in favor, believing that there exist phenomena for
which continuous models fit better and should be preferred (Jarrow and Protter [16]).
There are also some people finding discrete models more intuitive and the simula-
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tion code easy to implement. There are also models where it is not possible to obtain
analytical results, then numerical methods which involve discretizing time should
be used, as showed by Gumel [14]. Deterministic versus probabilistic approaches
reflect our level of knowledge about the system we work with, its components and
the interactions among them (Kirchsteiger [18]). Without trying to argue in favor
of one or another options, we focus our survey on distributed, discrete time, and
probabilistic models. We mention only several books and reviewing articles relevant
for this domain, as the literature dealing with these problems is very vast.

Easley andKleinberg [9] dedicate an entire chapter of their book to epidemicmod-
els. They show that between epidemic disease and information spreading through
social networks there is a striking similarity. The simplestmodel of contagion referred
as a branching process, is actually a tree. An infected person meets other k per-
sons and the disease is transmitted with probability p. The initially infected per-
son is represented as the root of a tree and the contacted persons are vertices con-
nected to the root (we can find a formal definition of trees in the next section).
Assume that each infected person meets other k persons, we represent this as new
layers in the contagion tree, and the process continues. Note that if the product
pk < 1, then the disease dies out after some time, else if the product is greater
than 1, then the disease is persistent, infecting more and more persons. If the product
is approximatively 1, then the epidemic contagion is in a fragile equilibrium.We find
out about two basic epidemic models, SIS (Susceptible-Infectious-Susceptible, these
are the states an infected person passes through) and SIR (Susceptible-Infectious-
Removed from the population, either getting immune, or dying). Variations of these
basic models are discussed, for example SIRS represents a process where an infected
person gets a temporary immunity (being removed from the population), after some
time can contact again the disease, becoming susceptible once more.

In general, percolation theory describes the emergence of connected clusters of
constituents in a multi-component system. The main phenomenon studied in per-
colation models is the emergence of a dramatic change in the qualitative behavior,
triggered by an infinitesimal change in the parameters. For example, a small dif-
ference in the probability of the contamination can make the difference between a
limited spreading disease and a global epidemic (Erez et al. [10]). Various mathemat-
ical models deal with percolation. In an infinite grid, choose randomly each edge to
be open with probability p and closed with probability 1 − p. We consider an open
cluster C as the vertices that can be reached from the origin1 through open edges.
Let the bond percolation be the probability pbondc for which the cluster C becomes
unbounded. If instead of edges we declare vertices to be open with probability p, we
define the site percolation as the probability psitec for which the cluster C of open
vertices becomes unbounded. For more details on this subject we recommend the
book of Grimmett [13]. Other authors focus on continuum percolation, defining a
random graph with vertices as the set of points randomly scattered over a region of
space according to some probability distribution, and any two points separated by a
distance less than a certain specified value r are connected by an edge. We denote by

1The vertex with the coordinates (0, 0).
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G(X; r) the undirected graph with vertex set X and with undirected edges connect-
ing vertices whose distance is no longer than r . Percolation is studied as a function
of r (Penrose [21]).

Random walks in graphs is a natural model well established to test graph con-
nectivity. Cooper et al. [4, 5] study properties of multiple random walks in regular
graphs. They consider particles making simple random walks and they give results
for two cases, oblivious particles and interacting particles. The interacting particles
are also categorised as:

• Talkative particles, when meeting, they exchange information;
• Predator-Prey, predators eat preys when meeting;
• Annihilating particles, which destroy each other (pairwise) on meeting;
• Coalescent particles, which coalesce on meeting.

In the models we discuss, we assume that particle interaction occurs only when
meeting at a vertex not at edges. Chapter 14 from Aldous and Fill [2] gives formal
definitions for the random variables associated to the mentioned various types of par-
ticles taking random walks. Also, Aldous [1] introduces Finite Markov Information
Exchange (FMIE) processes, however, this model uses continuous time.

In this chapter, after the section containing preliminary notions and notations,
we discuss together with detailed references about the frog model, we study two
variants of information exchange models, namely the broadcasting and gossiping
models, and we conclude with a practical section showing several characteristics of
an emergent behaviour.

2 Preliminaries

We assume that the reader is familiar with the basic notions of graph theory, prob-
ability theory, and complexity theory. We briefly present an overview of the basic
concepts we use in this paper. We denote by N the set of natural numbers, that is
{0, 1, 2, . . .}. We denote by Z the set of integers and by R the set of real numbers.

Let f, g be functions defined from N into R, n, n0 ∈ N and c ∈ R (we follow the
notations from Rothlauf [27]). We define:

• f ∈ O(g) ⇔ ∃c > 0, ∃n0 > 0 such that | f (n)| ≤ c · |g(n)|,∀n ≥ n0 (asymptotic
upper bound).

• f ∈ o(g) ⇔ ∀c > 0, ∃n0 > 0 such that | f (n)| < c · |g(n)|,∀n ≥ n0 (asymptoti-
cally negligible).

• f ∈ Ω(g) ⇔ g ∈ O( f ) (asymptotic lower bound).
• f ∈ Θ(g) ⇔ f ∈ O(g) and g ∈ O( f ) (asymptotically tight bound).

Some authors use the “soft-O” notation that ignores also the logarithmic factors,
for example, Θ̃( f (m)) represents Θ( f (m) logc m), for some constant c.

A graph G = (V, E) consists of a set V of vertices (or nodes), and a set E ⊆
V × V of edges. A path in a graph is a sequence of vertices, v1v2 . . . vk for k ≥ 2
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such that every (vi , vi+1) is an edge in the graph, for 1 ≤ i ≤ k − 1. A path is a cycle
if the first and the last vertex are the same. The distance between two vertices v and
w of a graph is defined as the number of edges in the shortest path connecting the
vertices v and w, and we denote it by D(v,w).

A graph G = (V, E) is connected if for all v,w ∈ V there exists a path between
v and w. In this case, let DG = maxv,wD(v,w) be the diameter of the graph G.

A graph G is undirected if for all v,w ∈ V we have (v,w) ∈ E ⇔ (w, v) ∈ E ,
otherwiseG is directed. A graphG is called acyclic if there are no cycles inG. A tree
is a directed graph that has no cycles and that has one distinct vertex, called the root,
such that there is exactly one path from the root to every other vertex. A graph
G ′ = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ × V ′).
A spanning tree for a connected graph G is a tree subgraph of G including all the
vertices of G.

The 2-dimensional grid with n2 vertices is the undirected and connected graph Z2
n

with the set of vertices V = {(i, j) | 1 ≤ i, j ≤ n} and the set of edges
E = {(

(i, j), (i, j + 1)
) | 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1

} ∪ {(
(i, j), (i + 1, j)

) | 1 ≤ i
≤ n − 1, 1 ≤ j ≤ n

}
. A discrete torus modulo n, denoted by T 2

n , is the finite grid
Z2
n adding to E the following set of edges:

{(
(1, j), (n, j)

)
,
(
( j, 1), ( j, n)

) | 1 ≤
j ≤ n

}
. In a natural way, we extend the notion of a finite 2-dimensional grid to an

infinite grid (with vertices from Z × Z) and we denote it by Z2.
On a graph G = (V, E), we define a random walk v starting at the vertex v1 for

a given v1, as a sequence of vertices v1v2 . . . vt . . . from V for t > 1, where vt+1

is chosen uniformly at random from those vertices such that (vt , vt+1) ∈ E . For a
graph G = (V, E) and a random walk starting at v ∈ V , let Cv be the expected time
to visit all the vertices of G. The cover time CG is defined as maxv∈VCv .

A remarkable result by Feige, gives the upper and lower bound for the cover time
for any graph.

Theorem 1 (Feige [11, 12]) For any undirected and connected graph G with
m = |V | vertices, the cover time CG satisfies the relations:

m lnm + O(m lnm) ≤ CG ≤ 4

27
m3 + O(m5/2).

In particular, for large values of n, the cover time in a discrete torus T 2
n satisfies

the relation:

Theorem 2 (Dembo et al. [6])

lim
n→∞

CT 2
n

(n log n)2
= 4

π
in probability.

Markingvisitedvertices/edges, neighborhood look-ahead,multiple randomwalks,
are only several approaches for speeding up the cover times.

For a graph G = (V, E) and k random walks starting at v ∈ V , let Ck
v be the

expected time to visit all the vertices of G by at least one of the k random walks.
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Fig. 1 Cover time and speed-up for k random walks with random starting points on Z2
50

The cover time of k random walks Ck
G is defined as maxv∈VCk

v . We also define the

speed-up obtained by k parallel random walks as Sk = Ck
G

CG
.

When studding theproperties of graphs and the speed-upgivenbymultiple random
walks, it makes sense to consider only multiple random walks starting at the same
vertex. However, we are interested in the dissemination/propagation phenomena and
for us the randomwalks do not start at the same vertex.We give the results of a simple
experiment we made on Z2

50. We represent the cover time of k parallel random walks
with random initial points and the speed-up we get as functions of k in Fig. 1.

The proofs of the following two lemmas on randomwalks can be found in Pettarin
et al. [24].

Lemma 1 (Themeeting probability of a randomwalk and a vertex)Given a random
walk v on a graph G with m vertices, starting at the vertex v0 at time 0, there exists
a positive constant c such that for any vertex v �= v0 we have

P(v is visited by v within D(v0, v)2 steps) ≥ c

max{1, log D(v0, v)} .

Lemma 2 (The meeting probability of two random walks) Let v and w be two
independent random walks on a graph G with m vertices, starting at time 0 at the
vertices v0 and w0, respectively, with v0 �= w0. Let vt and wt be the locations of the
walks at time t and let t0 ≥ D(v0, w0)

2. Then, there exists a positive constant d such
that

P(∃ t ≤ t0 such that vt = wt ) ≥ d

max{1, log D(v0, w0)} .

3 Frog Model

In this section we follow the lines of the surveying article about the frog model, a
system of random walks on a graph, largely described by Popov [25]. The model
works on a given graph G with one of the vertices designated as the root. Initially
there is a random number of particles on each vertex of G, the ones in the root are
active, the others are sleeping. The active particles perform random walks on G,
obeying the following rules in each step:
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1. Each active particle lives with probability p or die with probability 1 − p.
2. A living particle moves to one of the neighbor vertices chosen with uniform

probability.
3. When an active particle reaches a vertex with sleeping particles, it activates all

the sleeping particles.

We can find a detailed description of the model as well as an example in Lebensz-
tayn [19]. Let η be a random variable giving for each vertex x ofG the initial number
of particles in x . We denote by FM(G, p, η) the frog model on the graph G with
the living probability for particles p and the initial configuration given by η.

A frog model becomes extinct if there are no more active particles, otherwise it
survives. A model FM(G, p, η) is called recurrent if the probability pr that the root
is hit infinitely often is greater than 0, otherwise, the model is called transient. If
we assume that active particles live some fixed time t , rather than having a random
geometrically distributed lifetime, let TG be the smallest value of t such that with
probability at least 0.5 all vertices of G are visited by active particles.

Theorem 3 (Popov [25]) There is a constant C such that C log n ≤ TZ2
n
≤ log2 n.

In Popov [25], we find also different versions of the shape theorem, conditions
for recurrent and transience, extinction and survival for various frog models. There
is also a list of open problems; unfortunately, this research line was not continued
according to our knowledge. In the last part of the articlewefind severalmodifications
introduced to frog models, we give here only several examples.

1. Instead of dying, the active particles become sleeping again.2

2. Let us introduce an integer parameter M ≥ 1, also called the movement counter,
such that any active particle which did not wake up anybody for M consecutive
steps dies.3

We have implemented and run some tests with the second modified frog model;
our results are similar with the ones presented by Popov [25], assuming that all the
particles arriving to a site with sleeping particles reset their movement counter M .
We considered G = Z2. We also studied the case η = 1, that means there exists one
particle on each vertex.

The following pictures (Fig. 2) show the results of our simulations, with red we
represent the traces of the active particles, with black there are the remaining active
particles.

We believe that many things can be improved when studying this model, for
example, not saying only that a model survives or becomes extinct, also computing
several expectations, like the surface covered by the active particles, the living time
of a certain model, etc.

Dutta et al. [7] studied a frog model FM(G, 1, k) where the meeting particles
coalesce. This model is known as the coalescing-branching random walk (cobra

2Proposed by Hervé Guiol.
3Preliminary research by Fábio Machado and Lucas Meyer.



Theory and Practice of Discrete Interacting Agents Models 425

Fig. 2 Modified frog models
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walk, for short). Themodels basedon cobrawalks are useful in understanding theSIS-
type of epidemic processes in networks and can also be helpful in performing light-
weight information dissemination in resource-constrained networks. The following
lemma gives the cover time for 2-dimensional grids.

Lemma 3 (Dutta et al. [7]) Let G = Z2
n . The cover-time of a cobra walk with a

branching factor 2 on G is O(n2 log n2) with high probability.

4 Broadcasting and Gossiping Models

Information dissemination is a clear topic of interest in the literature, where its
dynamics has been studied in several contexts and with different goals such as virus
infection, rumor spreading and mobile or social networks (Chierichetti et al. [3],
Hromkovic et al. [15]). This section is devoted to the work of Pettarin et al. [23, 24]
on rumor spreading, under two possible models: the broadcasting and the gossiping.

Let us consider k mobile agents uniformly distributed at random among the n2

vertices of the 2-dimensional grid Z2
n . In the broadcasting model, at time 0, randomly

one of the agents receives a rumor and starts a random walk. When an agent with
the rumor meets an uninformed agent, the rumor is shared and the latest agent starts
a new random walk. In the gossiping model, at time 0, each agent receives a distinct
rumor and starts a random walk. When two agents meet, they share their rumors and
continue their own random walks transporting the shared rumors.

Two natural questions arise from these scenarios, respectively. How long does it
take until all agents of the broadcasting model share the rumor? How long does it
take until all agents of the gossiping model are aware of all k rumors? An approach
to these answers are given by Peres et al. [22] when the rumor transmission process
is above the percolation point. Pettarin et al. [23, 24] complement their results for
the case the rumor transmission process is below the percolation point.

We call broadcasting time to the first time TB that all agents are sharing the rumor
and gossiping time to the first time TG that all agents are sharing all the k rumors.
The time is a discrete variable with rumor informed agents performing synchronized
movements.

In Pettarin et al. [23], the authors provide a tight characterization (up to logarith-
mic factors) of the rumor spreading time for both models. They prove, with high
probability, that both broadcasting and gossiping times are Θ̃(n2/

√
k).

Theorem 4 (Upper and lower bounds for the broadcasting and gossiping times) Let
T ∈ {TB, TG}. With high probability,

Ω

(
n2√

klog2n2

)
= T = Õ

(
n2√
k

)
.

Although the separated proofs presented by Pettarin et al. for each time T follow
a similar line, due to time dependencies they can not be deduced from each other.
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Fig. 3 Values of TB depending on the number of agents k on Z2
50

In fact, in the first model the random walks need to meet static uninformed agents,
while in the second one random walks of rumor informed agents need to meet the
random walks of the uninformed ones.

A direct corollary with a clear translation in the virus infection context can be
obtained from these results.

Corollary 1 (Virus infection speed) Static agents placed at random locations and
dynamic agents moving in independent random walks are infected at about the same
time.

We run some tests on Z2
50, studying the experimental values for TB depending on

the number of agents k. For each number of agents we tested the value of TB for 200
different executions andwe recorded the average values.We also compare our results
with the theoretical values computed as c12500/(

√
k log2(c2k)), where c1 = 15 and

c2 = 4, the constants were obtained interpolating the experimental values. In Fig. 3
we represent graphically our results.

Panagiotou et al. [20] present a faster spreading rumors model. In each vertex of
a connected graph with n vertices there is one agent. The so-called Push protocol
starts with a single vertex that knows a rumor. In each round, informed agents make
a random call to one of their neighbours, sending the rumor. The Push-Pull protocol
works similarly, in addition, each uninformed agent calls a random neighbor and thus
may also learn the rumor. Panagiotou et al. extend the known models allowing the
number of calls of an agent to be chosen independently according to a probability
distribution R. The main results of Panagiotou et al. give the number of rounds to
inform all the nodes under certain assumptions.

Theorem 5 (Panagiotou et al. [20]) Assume that R is a power law distribution with
2 < β < 3. Then the Push-Pull protocol informs all nodes in Θ(log log n) rounds
with probability 1 − o(1).
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Theorem 6 (Panagiotou et al. [20]) Assume that R is a power law distribution with
β = 3. Then the Push-Pull protocol informs all nodes in Θ(

log n
log log n ) rounds with

probability 1 − o(1).

5 Emergent Behaviour

In a general sense, emergent is associated with terms such prominent and unex-
pected. According toDyson [8], emergent behaviour, by definition, is what’s left after
everything else has been explained. In multi-agent systems, the emergent behaviour
represents the unexpected results arising from the interaction of the agents, rather
than from the individual agent behaviour specification.

In this section we follow a model proposed by Resnik [26] about termites and
wood-chips. In his article, Resnick, one of the parents of StarLogo, emphasizes the
decentralized modeling and decentralized thinking aspects, required for understand-
ing the new emergent paradigms related to several self organizing systems. StarLogo
is a programming environment designed for simulations to understand complex sys-
tems; its current versions are known as StarLogo TNG: The Next Generation4 and
StarLogo Nova.5

Suppose that each termite executes only the following simple rules:

1. If you do not carry anything and you find a wood chip, then pick it up.
2. If you are carrying a wood chip and you bump into another wood chip, then put

down the wood chip you are carrying.

It is almost incredible how starting from the following two simple rules, we
get such an unexpected behaviour of the global system. Only from picking up and
dropping wood chips, they group together in larger and larger piles, until eventually
remaining a single pile.

We find a detailed description of a simulation based on these simple rules on a
tutorial page about StarLogo.6

The instructions of each termite are coded into three simple procedures, that we
present as Algorithm 1:

Algorithm 1: Termite Instructions

search-for-chip // First rule
find-new-pile // Carrying a wood chip and finding a new pile,
find-empty-patch // put down the wood chip in an empty place

// at the border of the pile

4http://education.mit.edu/portfolio_page/starlogo-tng/.
5http://www.slnova.org/.
6http://web.mit.edu/mitstep/starlogo/tutorial/tutorial.html.

http://education.mit.edu/portfolio_page/starlogo-tng/
http://www.slnova.org/
http://web.mit.edu/mitstep/starlogo/tutorial/tutorial.html
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The old version of StarLogo promoted a recursive technique, for example, the
termite procedure search-for-chip, if not finding a wood chip, then after a
random move, calls itself search-for-chip (see Algorithm 2).

Algorithm 2: search-for-chip

if you find a wood chip then
take it
move away
return

end
else

random walk one step
search-for-chip

end

We have tried to update the study of this problem bymaking two implementations
in StarLogo TNG, taking advantage of the facilities offered by the newer language.

In the first experiment, we only made some cosmetic improvements of the imple-
mentation.We preferred instead of three (recursive) procedures for a termite, a single
one, coding the status of a termite with colors. We used black for a termite not carry-
ing a chip, looking to find one, red for a termite with a chip, looking for a new pile,
and grey for a termite looking for an empty place to put down its wood chip.

After running the experiment, we see the results in Fig. 4.
The first picture represents the initial configuration, with the wood chips (in red)

distributed uniformly at random over all the working environment, SpaceLand (the
green field). The following pictures show different stages of our simulation. We note
in the first picture that the wood chips are embossed, and having also a height. This
was leading us to a new variant of this problem. How about a 3-D version of the
piles?

Let us see the new rules, actually only the second rule is a bit modified.

1. If you do not carry anything and you find a wood chip, then pick it up.
2. If you are carrying a wood chip and in front there is a wall or a cliff, then reduce

the height difference.

The second rule could be better explained as follows:

2.a If in front there is a wall, then put down the wood chip you are carrying.
2.b If in front there is a cliff, move first, then put down the wood chip you are

carrying.

For implementation, we used only two colors for termites, black for termites not
carrying wood chips, and red for the ones with wood chips. For testing if a termite
stands in front of a wall or a cliff, we use the height of the terrain ahead (StarLogo
tile: ph ahead) compared to the current height (StarLogo tile: patch height).
Walls and cliffs show a difference of height of at least two. The following pictures
show different stages of our 3-D simulation (Fig. 5).
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(a) The initial setting (b) SpaceLand evolution after 101589 cycles

(c) SpaceLand evolution after 1064524 cycles (d) SpaceLand evolution after 8816369 cycles

Fig. 4 Termites following only pick-up and drop instructions; they organize wood chips into a
single pile

(a) The initial setting (b) SpaceLand evolution after 112197 cycles

(c) SpaceLand evolution after 4094100 cycles (d) SpaceLand evolution after 6253083 cycles;

Fig. 5 A simple modification in termites instructions leads to a different global behaviour
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We conclude this section showing up several differences between StarLogo TNG
and StarLogo Nova, with respect to this simulation problem. In StarLogo Nova there
is no terrain height, therefore, we should use anothermethod for simulations. There is
anyway the altitude of the agents, thus the patches become active, they could execute
movements by themselves. We could think to some self assembling constructions,
not only pyramids like, as in our 3-D simulation, but also more complex buildings,
adding rules for domes, tunnels, or bridges, etc.

An appropriate research direction can study several formal models helping us to
understand better the relations between the individual rules and the global behaviour
of thewhole system.Wealso feel the lack of theoretical results in this field, computing
several expectations, for example the number of cycles needed for k termites to move
m patches into a single pile in a grid Z2

n would be highly appreciated.

6 Concluding Remarks

We studied several distributed, discrete time, and probabilistic models. For a better
understanding, we illustrated the implementations of some of these models, showing
the obtained results. We also pointed out several possible research directions.

The methods we discussed were inspired by reality, and the derived results have
implications for the real world applications as well. For example, studies about cover
times for various graphs are useful in search algorithms, when an exhaustive search
is needed and there is no direct method to find faster the result. Studying about the
broadcasting time of information in computer networks and social networks of our
days, can have implications for world epidemic studies, helping us to prevent, fight
against disease spreading, limiting the effects and risks we are exposed. Analysing
the emergent behaviour and the relation between the simple individual rules and the
global system response can be important for many fields, especially for robotics as
a branch of the new domains of nanotechnology and biotechnology.

Acknowledgments This work was developed within the FCT Project UID/MAT/00297/2013 of
CMA and of Departamento de Matematica da Faculdade de Cincias e Tecnologia da Universidade
Nova de Lisboa.

References

1. Aldous, D.: Interacting particle systems as stochastic social dynamics. Bernoulli 19(4), 1122–
1149 (2013). doi:10.3150/12-BEJSP04

2. Aldous, D., Fill, J.A.: Reversible markov chains and random walks on graphs (2002). (Unfin-
ished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/~aldous/RWG/
book.html)

3. Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour spreading with
conductance. In: Schulman, L.J. (ed.) STOC, pp. 399–408.ACM(2010). doi:10.1145/1806689.
1806745

http://dx.doi.org/10.3150/12-BEJSP04
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://dx.doi.org/10.1145/1806689.1806745
http://dx.doi.org/10.1145/1806689.1806745


432 A.-H. Dediu et al.

4. Cooper, C., Frieze, A., Radzik, T.: Multiple random walks and interacting particle systems. In:
Albers, S.,Marchetti-Spaccamela, A.,Matias, Y., Nikoletseas, S., Thomas,W. (eds.) Automata,
Languages and Programming: 36th Internatilonal Collogquium, ICALP 2009, Rhodes, greece,
July 5–12, 2009, Proceedings, Part II, pp. 399–410. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2009). doi:10.1007/978-3-642-02930-1_33

5. Cooper, C., Frieze, A.M., Radzik, T.: Multiple random walks in random regular graphs. SIAM
J. Discret. Math. 23(4), 1738–1761 (2009). doi:10.1137/080729542

6. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random
walks in two dimensions. Ann. Math. 160, 433–464 (2004). doi:10.4007/annals.2004.160.433

7. Dutta, C., Pandurangan, G., Rajaraman, R., Roche, S.: Coalescing-branching random walks
on graphs. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’13, pp. 176–185. ACM, New York, NY, USA (2013).
doi:10.1145/2486159.2486197

8. Dyson, G.B.: Darwin Among the Machines: The Evolution of Global Intelligence. Addison-
Wesley Longman Publishing Co., Inc, Boston, MA, USA (1997)

9. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Con-
nected World. Cambridge University Press, New York, NY, USA (2010)

10. Erez, T., Moldovan, S., Solomon, S.: Social anti-percolation, resistance and negative word-
of-mouth. In: Sanchez, S., Lavigne, S. (eds.) Modeling an Artificial Stock Market: When
Information InfluenceMarketDynamics,HandbookofResearch onNature InspiredComputing
for Economics and Management. Idea Group (2006). http://www.idea-group.com/

11. Feige, U.: A tight lower bound on the cover time for random walks on graphs. Random Struct.
Algorithms 6(4), 433–438 (1995). doi:10.1002/rsa.3240060406

12. Feige, U.: A tight upper bound on the cover time for random walks on graphs. Random Struct.
Algorithms 6(1), 51–54 (1995). doi:10.1002/rsa.3240060106

13. Grimmett, G.: Percolation, 2nd edn. A Series of Comprehensive Studies in Mathematics, vol.
321. Springer (1999)

14. Gumel, A., Lenhart, S.: Modeling Paradigms and Analysis of Disease Transmission Mod-
els. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society (2010). https://books.google.pt/books?id=oeQ-BAAAQBAJ

15. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of Information
in Communication Networks: Broadcasting, Gossiping, Leader Election, and Fault-Tolerance
(Texts in Theoretical Computer Science. An EATCS Series). Springer New York, Inc., Secau-
cus, NJ, USA (2005)

16. Jarrow, R., Protter, P.: Discrete versus continuous time models: local martingales and singular
processes in asset pricing theory. Financ. Res. Lett. 9(2), 58–62 (2012). doi:10.1016/j.frl.2012.
03.002. http://www.sciencedirect.com/science/article/pii/S1544612312000177

17. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for dynamic collabo-
rative groups. In: Proceedings of the 7th ACM Conference on Computer and Communications
Security, CCS ’00, pp. 235–244. ACM, New York, NY, USA (2000). doi:10.1145/352600.
352638

18. Kirchsteiger, C.: On the use of probabilistic and deterministic methods in risk analysis. J. Loss
Prev. Process Ind. 12(5), 399–419 (1999)

19. Lebensztayn, É.: Um limitante superior para a probabilidade crtica do modelo dos sapos em
rvores homogneas. Ph.D. thesis, Universidade de So Paulo (USP). Instituto de Matemtica e
Estatstica, Brazil (2015). http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24052013-
125727/publico/Principal.pdf

20. Panagiotou, K., Pourmiri, A., Sauerwald, T.: Faster rumor spreading with multiple calls. Electr.
J. Comb. 22(1), P1.23 (2015). http://www.combinatorics.org/ojs/index.php/eljc/article/view/
v22i1p23

21. Penrose, M.: Random Geometric Graphs. University Press, New York, Oxford (2003)
22. Peres, Y., Sinclair, A., Sousi, P., Stauffer, A.: Mobile geometric graphs: detection, coverage

and percolation. In: Randall, D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23–25, 2011, pp. 412–428. SIAM (2011). doi:10.1137/1.9781611973082.33

http://dx.doi.org/10.1007/978-3-642-02930-1_33
http://dx.doi.org/10.1137/080729542
http://dx.doi.org/10.4007/annals.2004.160.433
http://dx.doi.org/10.1145/2486159.2486197
http://www.idea-group.com/
http://dx.doi.org/10.1002/rsa.3240060406
http://dx.doi.org/10.1002/rsa.3240060106
https://books.google.pt/books?id=oeQ-BAAAQBAJ
http://dx.doi.org/10.1016/j.frl.2012.03.002
http://dx.doi.org/10.1016/j.frl.2012.03.002
http://www.sciencedirect.com/science/article/pii/S1544612312000177
http://dx.doi.org/10.1145/352600.352638
http://dx.doi.org/10.1145/352600.352638
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24052013-125727/publico/Principal.pdf
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24052013-125727/publico/Principal.pdf
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p23
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p23
http://dx.doi.org/10.1137/1.9781611973082.33


Theory and Practice of Discrete Interacting Agents Models 433

23. Pettarin, A., Pietracaprina, A., Pucci, G., Upfal, E.: Infectious random walks. CoRR
abs/1007.1604 (2010). http://arxiv.org/abs/1007.1604

24. Pettarin, A., Pietracaprina, A., Pucci, G., Upfal, E.: Tight bounds on information dissemination
in sparse mobile networks. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing, PODC ’11, pp. 355–362. ACM, New York,
NY, USA (2011). doi:10.1145/1993806.1993882

25. Popov, S.Y.: Frogs and some other interacting random walks models. In: Banderier, C., Krat-
tenthaler, C. (eds.) DMTCS Proceedings, Discrete Random Walks, DRW’03, vol. AC, pp.
277–288. Discrete Mathematics and Theoretical Computer Science (2003). http://www.dmtcs.
org/proceedings/html/dmAC0126.abs.html

26. Resnick, M.: Decentralized modeling and decentralized thinking. In: Modeling and Simulation
in Precollege Science and Mathematics, pp. 114–137 (1999)

27. Rothlauf, F.: Design of Modern Heuristics: Principles and Application, 1st edn. Springer Pub-
lishing Company, Incorporated (2011)

http://arxiv.org/abs/1007.1604
http://dx.doi.org/10.1145/1993806.1993882
http://www.dmtcs.org/proceedings/html/dmAC0126.abs.html
http://www.dmtcs.org/proceedings/html/dmAC0126.abs.html


Vehicular Clouds: Ubiquitous Computing
on Wheels

Sherin Abdelhamid, Robert Benkoczi and Hossam S. Hassanein

Abstract Vehicular clouds have recently coalesced from two popular technolo-
gies, vehicular networks and cloud computing systems. In this chapter, we overview
the vehicular cloud computing paradigm, discussing its unique features in relation
with the conventional cloud computing models and highlighting several application
domains where vehicular clouds can be useful. We summarize the main design ele-
ments of vehicular clouds and we discuss a broad range of research problems that are
crucial for the performance, energy efficiency, and privacy of vehicular clouds. Our
review is a gentle introduction for researchers and practitioners interested in learning
about this promising new technology.

1 Introduction

Smart vehicles and the vehicular networking paradigm have received great attention
due to the wide scope of benefits that can be unleashed through utilizing vehicles
beyond just transportation. The ubiquity of vehicles along with a wide array of diver-
sified in-vehicle sensing, computing, and communication resources have positioned
smart vehicles in the heart of ubiquitous service provisioning. In addition to being
key enablers for intelligent transport systems, smart vehicles have been engaged in
a wider scope of services including safety, infotainment, and sensing services [2].

With the increased capability of the cloud computing paradigm, along with the
aspirations of utilizing the powerful computing resources available in smart vehicles,
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a new paradigm has emerged from integrating both vehicular networking and cloud
computing. This emerging paradigm is known as the Vehicular Cloud (VC). Due to
the promising capabilities of VCs, their architectures, features, and applications have
been hot topics of research and investigation in the past few years.

In this chapter, we present an overview of the VC paradigm delineating its unique
features compared to the conventional cloud computing paradigm. We also discuss
different architectures of VCs along with diversified application and service scopes.
In addition, we shed light on some fundamental considerations that should be taken
into account by the designers and researchers of VCs.

The chapter is organized as follows. In Sect. 2, we pave the way towards dis-
cussing the VC paradigm through an overview of the vehicular and cloud computing
paradigms. In Sect. 3, we expound the VC paradigm and discuss its architectures and
service scopes, as well as some potential applications. We touch upon some funda-
mental design considerations and approaches in Sect. 4. Finally, we summarize the
discussion in Sect. 5.

2 Background

Vehicular clouds have emerged from the consolidation of the vehicular and cloud
computing paradigms. In this section, we present an overview of the vehicular par-
adigm and smart vehicles. We also shed light on the cloud computing paradigm.

2.1 The Vehicular Paradigm and Smart Vehicles

Motivated by the urgent need to reduce on-road fatalities, and improve the driving
experience, the Vehicular Ad-hoc Network (VANET) paradigm has emerged to con-
nect vehicles on roads [3, 12, 15, 24, 40]. In a VANET, vehicles communicate with
one another to exchange safety and navigation messages, and share traffic status,
road conditions, and information regarding events on the road. A VANET can also
involve some Road Side Units (RSUs) that are stationary nodes deployed to assist
vehicles on roads. RSUs can provide vehicles with real-time traffic information, data
of interest (e.g., digital maps), and drive-through Internet access.

A VANET is a category of the wireless multi-hop networks that depend on
multi-hop communication over intermediate nodes working as relays to connect a
source node to a destination node. A number of communication standards have been
proposed for the use in VANETs [7, 30, 39]. The most dominant is the Wireless
Access for Vehicular Environment (WAVE) standard that makes use of Dedicated
Short-Range Communication (DSRC) [36]. The WAVE standard consists of two
sub-standards: the IEEE 802.11p standard [14] for managing the lower layers and
the IEEE 1609.x family of standards that manage the upper layers. Three types of
communication can be found in a VANET:
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1. Communication between vehicles, known as vehicle-to-vehicle (V2V) commu-
nication

2. Communication between vehicles and infrastructure (e.g., RSUs), known as
vehicle-to-infrastructure (V2I) and infrastructure-to-vehicle (I2V) communica-
tion

3. Communication between a vehicle and any neighbouring object, known as
vehicle-to-any (V2X) communication

An example of a VANET with its basic entities engaged in the three aforemen-
tioned types of communication is shown in Fig. 1.

Connected vehicles in a VANET are known as “smart vehicles”. A smart vehicle
is equipped with components that add computing capabilities. A typical smart vehi-
cle has an abundant number of sensors of different types that monitor the interior
and exterior surroundings of the vehicle for diagnostic purposes and for detecting
hazards/events on roads [1]. In addition, a smart vehicle has wireless communi-
cation capabilities that support communication with its neighboring vehicles and
RSUs. Some vehicles have broadband connectivity on-board to support communi-
cation with remote entities. A main component of a smart vehicle is the on-board
unit (OBU), which is known as the in-vehicle PC. An OBU works as the interface
that provides the driver with information/alerts about events that are either detected
by the in-vehicle sensors or received through the communication module. It is also
the means of receiving input from the driver, when needed. OBUs are now get-

Fig. 1 Smart vehicles and RSUs forming a VANET and involved in V2V, V2I, and I2V com-
munications. A vehicle is communicating with a gas station showing an example of V2X type of
communication
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ting as powerful as personal computers in terms of their processing and storage
capabilities [35].

With these components available on-board, a smart vehicle can be considered
a mobile resource for diverse service scopes including sensing, storage, comput-
ing, relaying, infotainment, and localization [2]. Such an abundance of resources
along with the ubiquity of vehicles bring smart vehicles to the forefront in service
provisioning, compared to other mobile resource providers, such as smart-phones,
that suffer from resource scarcity and unpredictable mobility. Resources of moving
and/or parked vehicles can be augmented to form a powerful resource and service
provider that can benefit a wide scope of users.

2.2 Cloud Computing

Cloud computing emerged as a disruptive technology providing a cost effective
alternative to the traditional, in-house, information technology solutions that players
in the private and public sector depend on [37]. According to Mell and Grance from
the National Institute of Standards and Technology [22],

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and releasedwithminimalmanagement
effort or service provider interaction.

Three classes of service are usually offered by cloud computing providers:
infrastructure as a service (IaaS), platform as a service (PaaS) and software as a
service (SaaS). With IaaS, customers have access to computing, storage, network,
and other fundamental computing resources on which they can deploy arbitrary soft-
ware, including operating systems, and applications. PaaS offers a range of software
development tools to support the development of custom applications to be deployed
in the cloud. Clients have full control over the applications they develop but they do
not control the underlying cloud infrastructure. SaaS allows consumers to use the
provider’s applications, commonly via a web interface, and offer very limited control
over the application capabilities.

The vision of recognizing computing as a utility after water, gas, electricity, and
telephony, is not new. During the inauguration of ARPANET in 1969, Kleinrock
contemplated the rise of “computer utilities” enabled by advances in computer net-
works [16]. Forty-five years later, cloud computing comes very close to realizing
this vision [6]. The key advantages of cloud computing—low cost of entry for com-
pute intensive business analytics, increased scalability, capability to support new and
innovative applications that are not supported in a traditional IT environment—have
pushed an increasing number of businesses to adopt “the cloud” [21] and have con-
solidated the position of several established providers like Microsoft, IBM, Google,
Cisco, or AT&T. However, with virtualization, customers have little control on the
physical devices that execute their applications and store their data, and thus con-
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cerns regarding privacy and compliance with local laws have been raised. In response
to these concerns, the US Federal Government has created the FedRAMP program
to evaluate and monitor the security and suitability of cloud solutions for use by
government agencies, and a number of cloud providers have obtained certification
[10]. In Europe, the European Union Agency for Network and Information Security
(ANISA) published a guide assisting the member nations with implementing cloud
systems for government agencies [9], while in Canada, Public Works and Govern-
ment Services has issued a request for information to determine the appropriate cloud
adoption strategy for Canadian government agencies [32].

Beyond government agencies, consumers of cloud services are faced with similar
concerns. For some applications, private clouds may address issues of jurisdiction,
and in this respect, vehicular clouds which are localized services by nature, may
provide a cost effective alternative to the computing services offered by dedicated
providers. Certainly, privacy and security are important considerations for vehicular
clouds, and we briefly discuss these in Sect. 4.5. In the following paragraphs, we
provide a broad review of vehicular clouds, highlighting the current state of research
and pointing out some of the design considerations.

3 Vehicular Clouds—Definition, Architecture,
and Applications

Motivated by the abundant storage, processing, and communication resources of
smart vehicles, a futuristic vision of “taking vehicles to the cloud” has been attract-
ing many researchers in the past few years resulting in the emerging paradigm of
“vehicular clouds”. In this section, we shed light on the definition, architectures, and
potential applications of this paradigm.

3.1 What Is a Vehicular Cloud?

With the plethora of vehicular resources, researchers have predicted that such
resources would be underutilized if their use was limited to intelligent transport
system (ITS) applications [29, 38]. That was the main motivation for coming up
with the vehicular cloud paradigm to allocate physical resources of smart vehicles
to users for utilizing them in computing tasks. Researchers argued that the benefit of
accessing such vehicular resources would be maximized when resources of multiple
vehicles are combined. In essence, we sum up our definition of a vehicular cloud as:
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A vehicular cloud is a pool of vehicular computing resources that can be
coordinated dynamically and on-demand for performing a computing task.

TheVCparadigm shares similaritieswith the conventional fixed clouds.Generally
speaking, a VC follows the general concept of renting out computing resources that
are not in use to authorized users on-demand based on a rental model. A VC brings
unique advantages compared to fixed clouds. Due to the mobility of vehicles, their
computing resources can be utilized in areas with restricted access to the Internet,
and consequently to fixed clouds. Another advantage is the possibility of autonomous
formation ofVCs. Neighbouring vehicles can automatically collaborate to form aVC
to handle instantaneous services (e.g., collecting traffic information for managing
congested areas). More details about autonomous VCs are presented later in this
section. One more advantage is the ability to survive and operate in emergency and
natural disasters where infrastructure may be broken down and conventional clouds
cannot be reached.Adetailed comparative study of vehicular and conventional clouds
is presented in [38].

3.2 Vehicular Cloud Architectures

Wedistinguish between two types of VCs: centralized and autonomous. The building
architecture of the VC is the main distinction between these two types. Below, we
discuss these two architectures and delineate the differences between them.

3.2.1 Centralized Vehicular Clouds

A typical centralized VC architecture can follow the general architecture of the
open-source Eucalyptus Cloud Computing system [28]. The architecture consists of
a central cloud controller interacting with node controllers. Based on the size of the
VC, the architecture may also include some cluster controllers. The functionalities
of such entities are discussed next.

Cloud Controller
The cloud controller is the central entity that manages the whole operation of the
VC. It communicates with the participating vehicles to discover and manage their
resources, assign computing tasks to them, and handle any necessary exchange of
control/data messages. To perform such functionalities, the cloud controller includes
three underlying components: a broker, a resource manager, and a task scheduler.

A centralized VC follows a client/server model where clients can reach the cloud
controller with access requests to computing resources managed by this controller.
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The broker component of the controller is the entity responsible for receiving client
requests and negotiating the terms of service/access on behalf of the VC.

The resource manager is a crucial entity of the cloud controller managing many
functionalities. The resource manager:

• discovers and monitors the availability of resources,
• predicts the availability of resources based on a use history and presence patterns,
• decides on the sufficiency of the available resources to match a computing task
requirements,

• allocates resources to computing tasks in cooperation with the task scheduler,
• migrates running tasks from vehicles leaving the VC to other available vehicles,
• ensures that recruitment requirements and fairness of use are met.

The task scheduler works in cooperation with the resource manager to create an
access schedule to the resources allocated to perform released computing tasks. The
schedule is built based on the availability span of the resources, the task temporal
span, and the dependency among the tasks/sub-tasks.

Node Controller
Each vehicle interested in participating in a VC sets up a node controller on-board.
The node controller works as the interface between the cloud controller and the on-
board resources of the vehicle managing all the interactions between them. It can
be considered as a local resource controller that reports the resource availability and
controls the access to the resources.

Cluster Controller
When a VC is large in size (defined by the number of participating vehicles), the
vehicles can be divided into clusters with each cluster being managed by a cluster
controller. In such a case, each cluster controller would work between the central
cloud controller and the node controllers of the vehicles in its cluster. The purpose of
such fragmentation is to reduce the management load of the cloud controller through
offloading a part of its functionalities to the cluster controllers (e.g., having each
cluster controller monitor and manage the vehicular resources of its cluster).

The centralized VC architecture is depicted in Fig. 2a through a VC formed at a
parking garage.

3.2.2 Autonomous Vehicular Clouds

In some scenarios, a VC might be only needed for a spontaneous computing service
associated with unplanned event. For example, a VC can be formed among vehicles
in a traffic jam to alert and re-route vehicles thereby mitigating the congestion. In
such a case, an autonomous VC can be temporarily formed in a self-organizing
fashion without the aid/control of a central entity. Vehicles in the vicinity of the
event cooperate to pool their computing resources and utilize them for handling the
required task.
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Fig. 2 The different architectures of vehicular clouds
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Due to their short life-span compared to the relatively long-lasting centralized
VCs, the autonomous VCs do not involve a central cloud controller, moving the
control to the node controllers. Since the computing requirements of autonomous
VCs are also relatively low compared to the well-planned centralized VCs, many
of the functionalities of the cloud controller are not needed for the operation of the
autonomous VCs. The client-server model adopted in the centralized VCs does not
conform to the nature of the ad-hoc autonomous VCs therefore, the broker function-
ality is not needed. Limited resourcemanagement and task scheduling functionalities
however might be needed in such VCs. To handle these situations, a vehicle can be
elected by the vehicles forming the VC to serve as a VC coordinator and manage
such functionalities.

Similar to their use in the centralized VCs, for easier management of large VCs,
vehicles can be grouped into clusters, each is managed by a cluster controller. The
cluster controllers take care of managing the vehicles in their clusters through com-
municating with the corresponding node controllers. In autonomous VCs, cluster
controllers link between the node controllers and the elected VC coordinator, when
needed.

The typical architecture of an autonomous VC is depicted in Fig. 2b.

3.3 Services and Applications

3.3.1 Scopes of Services

The types of services that can be provided by a VC can be categorized into four
different scopes: Processing as a Service (PRaaS), Storage as a Service (STaaS),
Network as a Service (NaaS), and Information as a Service (INaaS).

Processing as a Service (PRaaS)
With processing capabilities as high as the capabilities of personal computers, smart
vehicles can be utilized for handling processing tasks. Their idle processing resources
can be rented out to authorized users for either accessing software/applications
already available on the on-board OBUs, or for running their own virtual machines
after migrating them to the OBUs. Resources of multiple vehicles can be combined
to handle tasks with high processing requirements that exceed a single vehicle’s
capabilities. In such a case, efficient task scheduling mechanisms would be needed
to manage task partitioning, offloading, and migration.

Storage as a Service (STaaS) Smart vehicles are anticipated to have Terabytes of
storage. Those vehicles that would have unutilized storage capabilities can share
their resources with others in need of storage. For example, other vehicles with
limited on-board storage can rent resources from neighbouring vehicles to store
their generated/downloaded data for later retrieval. In addition, aggregated vehicular
storage resources can be utilized as a dynamic data center to be rented out to third
parties with interest as is the case with the storage services offered by conventional
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clouds. As an advantage over conventional cloud storage, mobility of vehicles can
support their use as data mules carrying data between a pair of nodes in need of data
delivery but do not have direct communication capabilities between each other.

Network as a Service (NaaS)
Although some vehicles would have the capability of connecting to the Internet while
moving, some would not have such a capability; especially in the early stages of
deployment and in areas with low numbers of connected vehicles. The networking
capabilities of such connected vehicles can be offered to unconnected vehicles in
a ‘Drive-by Internet Access’ model working as mobile hot spots. Such a service
involves advertisements by the drivers of connected vehicles who are interested in
sharing their network resources.

Information as a Service (INaaS)
Smart vehicles are considered major resources of information that can be generated
by them utilizing their in-vehicle sensors, obtained from other vehicles/RSUs on
roads, or downloaded from the Internet. Examples include information about road
and traffic conditions, events on roads, news of interest, and store/restaurant offers.
Such information can be offered to other users who need it.

3.3.2 Potential Applications

Under the different service scopes discussed above, many potential applications can
be proposed utilizing the vehicular cloud paradigm. Examples of these applications
are highlighted next.

Computing Engines at a Company Parking Lot
During a workday, the vehicles of a company’s employees are parked idle with
ample computing resources unutilized. These untapped resources can be utilized as
computing engines that can carry out computing tasks offloaded to them from the
company’s IT department in lieu of renting/outsourcing a computing infrastructure.
The owners of the utilized vehicles can be compensated for the use of their resources
so both the company and employees benefit. Such an application can be an example
of PRaaS and/or STaaS VC services.

Data Center at an Airport
A similar scenario to the previous one can be applied to vehicles left by travelers
at an airport. These vehicles are left idle for days resulting in massive unutilized
vehicular resources. With proper management and scheduling, such resources can
turn an airport parking lot into a data center with a capability to rent out its collective
resources, as an instance of the STaaS service scope. The airport can build an access
schedule to the vehicles based on the travellers’ plans that they share with the airport.
Facilitating access to suchparkedvehicles requires plugging them into apower supply
and providing them with an Ethernet connection. The same use setup applies to all
applications utilizing resources of parked vehicles.
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Dynamic Traffic Management
An autonomous VC of vehicles at an intersection can be formed to manage the traffic
dynamically at this intersection and alleviate congestion. Computational resources of
vehicles at an intersection can be consolidated to come up with a dynamic schedule
to adjust the traffic lights according to the current status of the intersecting roads.
The vehicles can elect a vehicle to work as the VC coordinator. This coordinator can
send the computed schedule to the authority that manages the traffic light controller
to put it in action.

Autonomous Congestion Alleviation
Vehicles in the vicinity of a congested road can form a VC to handle the situation and
alleviate the congestion. Vehicles on different neighbouring road segments can share
real-time traffic information with one another and cooperate to compute detouring
routes to help alleviate the congestion. A coordinator would be elected to manage the
VC and dissemination/announcement of the computed routes. This application and
the traffic management application described earlier are examples of PRaaS, STaaS,
and INaaS services.

Vehicular Public Sensing
As highlighted in Sect. 2.1, vehicles are equipped with an abundance of sensors
that enable them to work as mobile sensors. A vehicle’s sensing and computational
resources can be utilized by a service provider interested in collecting road infor-
mation for provisioning an information service. Collective vehicular resources of
multiple vehicles can be pooled to provide correlated sensing information of an
event with high levels of information fidelity and integrity.

Mobile Laboratory
A vehicle’s computing resources coupled with its sensing capabilities can enable
a vehicle to be a mobile laboratory. Phenomena of interest (e.g., ambient pressure,
temperature, and pollution) can be monitored by a vehicle, and its on-board com-
puting resources can be utilized to handle experimental analyses of such data while
the vehicle is on the go covering broad areas of interest. Such an autonomous appli-
cation can enable scientific experiments in areas with limited/restricted access to
remote facilities. This would be a definitive example of a benefit of a VC versus a
conventional cloud.

Mobile Marketplace
Vehicles’ owners can utilize the resources of the vehicles for mobile business pur-
poses. For example, owners interested in selling/trading products while on the go
can make use of a vehicle’s communication capabilities to advertise such products
and receive purchase/trading orders. The computational resources of the vehicle can
be exploited to carry out the corresponding transactions and to maintain a database
of the products, orders, and their details.
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4 Vehicular Clouds—Fundamental Considerations

Some design considerations need to be taken into account when designing/deploying
VCs. In this section, we highlight these considerations and discuss different
approaches to handle them.

4.1 Resource Discovery

Resource discovery is the first step when it comes to building a VC. Appropriate
resources that match the task requirements should be searched for and passed to the
resource manager to start the task allocation process. Many factors make resource
discovery inVCs a challenge, including the huge number of potential resources, inter-
mittent resource availability, distributed ownership, and diversified communication
interfaces to reach vehicular resources.

Fortunately, resource discovery is a well-studied topic with many mechanisms
available in the literature for use by other related paradigms such as grid computing
[11, 27] and peer-to-peer networks [23, 26]. Such mechanisms can be adapted for
use in VCs in a means that handles the unique features of the VC paradigm and the
factors mentioned so far. The resource discovery techniques can be classified into
three categories: centralized, decentralized, and hierarchical.

Centralized Approach
This approach follows a client-server architecturewhere a designated controller/set of
controllers take care of discovering the resources. The controller(s) stores information
about all the candidate resources. Such information includes the resource features and
availability span.When an entity is interested in accessing/renting resources, it sends
a request to the central controller defining the access/resource requirements. From
its registered resource list, the controller then finds a set of appropriate resources
matching the requirements defined in the received request. Although this approach
is the fastest in terms of the search time, it suffers from a scalability concern since
the controller has to keep information about all the candidate resources.

Decentralized Approach
In this approach, the need for a central controller is avoided to solve the scalability
concern faced in the centralized approach. Nodes carrying the resources cooperate
together to handle the discovery process in a distributed fashion. Discovery requests
are shared among the nodes until a resource is found or the requests expire. Although
this approach ismore suitable for large-scale systems, it suffers from overhead result-
ing from the wide exchange of the discovery requests among the nodes.

Hierarchical Approach
In this approach, nodes are divided into a hierarchical structure assembling nodes in
the same layer into clusters. Each cluster is assigned a controller that manages the
communication and discovery of the resources of its cluster members. By dividing
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the discovery burden on multiple controllers, the scalability issue of the centralized
approach is mitigated. In addition, by limiting the communication/query exchange
handledby eachnodeonlywithin its cluster, the request disseminationoverheadof the
decentralized approach is reduced. Although this approach succeeds in handling the
concerns of the two aforementioned approaches, it risks not reaching some nodes in
case their cluster controller fails, moves, or gets overloaded. For this reason, dynamic
clustering should be adopted where clusters are periodically rearranged.

We remark that the hierarchical approach is the most suitable for the centralized
VC architecture. Each cluster controller would handle resource discovery of the node
controllers of its cluster and work as a gateway between them and the resource man-
ager in the cloud controller. For the autonomous VC architecture, the decentralized
approach is the candidate for resource discovery due to the distributed nature of this
architecture. The dissemination overhead of the decentralized approach would not be
a severe issue in autonomous VCs as the dissemination of discovery requests would
be usually limited within a region of interest.

4.2 Task Allocation and Scheduling

Once the resources available in the VC are identified, the system must assign or
schedule the customers’ requests to the appropriate cloud resources. We discuss
in this section the research problems relevant to scheduling two of the services
mentioned in Sect. 3.3, processing and storage.

There is a large body of literature on scheduling processing tasks in domains such
as machine scheduling [18], distributed, and grid computing [8]. The scheduling of
processes in grid systems is closest, from the point of view of objectives and con-
straints, to scheduling in vehicular clouds, however grid systems serve applications
that are primarily computational intensive and exhibit a high degree of parallelism.
Vehicular clouds, on the other hand, may serve a large number of customers by
supporting information rich applications rather than scientific computation.

One task allocation model for vehicular clouds consists of a set of jobs, each
composed of a set of tasks. Tasks may be independent of each other, or may exhibit
precedence constraints. Optionally, tasks may request storage service for data persis-
tence. Memory required for running applications is not viewed as a separate STaaS
service but is part of PRaaS. As in the case of grid systems, vehicular clouds do
not have control on the availability of the computational and storage resources. In
vehicular clouds, however, the system must be able to respond in real time to events
triggered by resources becoming unavailable as vehicles move away from the area
that defines the VC.

Two objectives can be considered when scheduling tasks in a vehicular system,
minimizing makespan and minimizing cost. The makespan for a processing job
represents the total length of time that a job takes from the moment one of its tasks
begins execution until its last task completes execution. The cost objective is related
to the incentive mechanisms mentioned in Sect. 4.4. Both objectives may also be
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considered, for example, by imposing a deadline for the completion of a job and
minimizing the cost. Sets of pareto-optimal solutions can be generated by imposing
several different constraints for the deadline.

Depending on the application supported by the vehicular cloud, makespan might
not be an appropriate measure for scheduling jobs. Consider an application where
customers rent access to the cloud for a given period of time during which they
interact with various stored databases (see STaaS applications from Sect. 3.3.2). In
this case the objective of the scheduler is to minimize inter-vehicle communication
cost which amounts to solving a facility location type of problem: assign storage
requests and databases to vehicles and assign customer jobs to vehicles in such a
way that the amount of data transferred to and from local resources is maximized
over all jobs. An objective of this type has been considered in the data placement
problem [5].

These scheduling problems are NP-hard in general, and so researchers have
focused on approximations, exact heuristics, and meta-heuristic algorithms without
performance guarantees [5, 8, 18]. For autonomous vehicular clouds, designing dis-
tributed or localized algorithms is of great interest. If the availability of the resources
is not known ahead of time or if it cannot be estimated, we are faced with solving on-
line versions of these scheduling problems. In such a setting, the resource availability
is unknown ahead of time and the scheduling needs to react to changes in resources.
Another possibility is that resource availability is uncertain and it is known only to lie
within some interval of values. In such cases, we need to solve robust optimization
problems, where the objective is to compute a solution that minimizes regret. Regret
is defined by themaximum absolute difference between the cost of the solution under
a scenario where the uncertainties are within the prescribed limits and the cost of the
optimal solution had the scenario been known from the beginning.

4.3 Task Migration and Offloading

As inferred from the previous section, once a resource is about to become unavailable,
the vehicular cloud has little time to migrate the tasks assigned to it. The overhead of
migrating pure processing tasks may be significantly reduced if the task schedule and
resource availability is known in advance. In this case, the system could transfer the
machine code of the tasks on the resources scheduled to run the tasks the moment
these resources become available which allows to transfer only the process state
when migration is performed. Similarly, several instances of STaaS objects can be
spawned on the resources in anticipation of migration so that during migration,
the data objects are only synchronized rather than fully transferred. Although task
migration and offloading can be performed efficiently in this way, task scheduling
may seek to also minimize migration operations.
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4.4 Incentive Mechanisms

In vehicular clouds, incentives are needed to encourage vehicle owners to offer their
resources to other parties. Some of the incentive mechanisms proposed for other
paradigms, such as P2P file sharing [4, 33], can be borrowed by VCs. Generally,
incentives can be classified into three types: (1) getting nothing in return, (2) getting
service in return, and (3) getting monetary rewards in return. Among the three types,
mechanisms using monetary rewards appear to be the most effective.

The use of monetary incentives requires adopting a pricing model for calculating
the monetary reward paid to each participant. Two distinct pricing approaches can
be utilized: identical pricing and dynamic pricing.

Identical Pricing Approach
In this approach, all participants get the same monetary reward per a defined rental
period regardless of the difference in the capabilities of their vehicular resources.
Although this approach is easy to implement, it lacks fairness with respect to differ-
entiating various levels of resource quality.

Dynamic Pricing Approach
To avert the perceived unfairness of the identical pricing approach, pricing models
in the dynamic pricing approach calculate a participant’s incentive in proportion
to the features and quality of the rented resources and their access period. In that
way, vehicles with high-end resources get high rewards compared to those with less
powerful resources given that they are utilized for the same period.

Dynamic pricing models can be classified into two different types based on the
entity that holds the pricing model and administers the incentive computation. These
two types are the controller-based and owner-based models. In the controller-based
models, a dedicated controller manages the pricing model and computes the incen-
tives of all participants. Such a controller can be the main cloud controller in central-
ized VCs, and the VC coordinator in autonomous VCs. In the owner-based models,
the vehicle/resource owners set their own rewarding value and announce it to the
interested parties before tapping into their resources. Reverse auction techniques are
currently popular with the owner-based pricing models [17, 19].

Irrespective of the pricing model used, the incentive can be computed as a number
of tokens that can be translated to any form ofmonetary value such as cash, vouchers,
and passes. A unique incentive for parked vehicles can offer free parking while the
vehicle’s resources are utilized.

4.5 Privacy

The open access feature of VCs brings concerns regarding privacy to the forefront.
Since vehicle resources would be shared with others, privacymechanisms are needed
to ensure data protection for all users renting the same resources. Furthermore, pri-
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vacy should be guaranteed for vehicle owners themselves so that they are not deterred
from joining such an open-access paradigm.

Privacy inVCs can be supported usingmultiple techniques [13, 34]. Virtualization
and scheduling techniques can be used to coordinate the multi-access nature of VCs.
Other techniques can be used to grant exclusive access to the data’s owner. An
example of such techniques is the use of data vaults [25] as individually controlled
data repositories.

Some participants would prefer to hide their identity while offering their vehicular
resources. Pseudonymity [31] is one of the popular anonymity techniques that can
be deployed to ensure that the real identity of participants is not exposed nor tracked.

4.6 Powering and Connecting Parked Vehicles

In the model of VCs utilizing parked vehicles, such vehicles would be connected
to a power supply and a data port offering Internet access. Despite being power-
supplied, parked vehicles cannot have their on-board computers and resources on all
the time waiting for task assignments. Techniques are needed to power up partici-
pating vehicles only when required. We categorize such techniques into on-demand
and pre-scheduled techniques.

On-Demand Techniques
With this approach, vehicle PCs are powered up when a task is assigned to their
hosting vehicles, then turned off after the completion of the task. An example of
such techniques is proposed in [20]. This technique utilizes the Controller Area
Network (CAN) communication bus of the vehicle connecting the in-vehicle PC and
control units for powering up the needed resources. The CAN-connected units can
operate on a sleep mode to consume minimal energy while a vehicle is not utilized.
Once a parked vehicle is assigned a task, its CAN-connected computing resources
can be remotely powered up.

Pre-Scheduled Techniques
These techniques require the use of scheduling mechanisms to schedule the power-
up times of vehicles a priori. Schedules would be sent to vehicles whenever they are
on. Mobility prediction mechanisms can be utilized to anticipate a vehicle’s parking
times and plan the power-up times accordingly.

5 Summary

Vehicular networks and cloud computing have received a lot of attention over the
past decade. Motivated by the considerable benefits and wide scope of applications
of these two paradigms, a new computing paradigm, the Vehicular Cloud (VC),
emerged. This chapter presents an overview of the VC paradigm to familiarize
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interested researchers and developers. We delineate the unique features of VCs and
compare them to the conventional cloud computing systems. Architecture, service
scope, and potential applications of VCs are discussed. In addition, we highlight
several fundamental considerations in the design of VCs. We anticipate that VCs
will revolutionize service provisioning and pervasive computing.
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Computational Approaches to Epigenetic
Drug Discovery

Emese E. Somogyvari, Selim G. Akl and Louise M. Winn

Abstract The misregulation of epigenetic mechanisms has been linked to disease.
Current drugs that treat these dysfunctions have had some success, however many
have variable potency, instability in vivo and lack target specificity. This may be
due to the limited knowledge on epigenetic mechanisms, especially at the molecular
level, which restricts the development and discovery of novel therapeutics and the
optimization of existing drugs. Computational approaches, specifically in molecular
modeling, have begun to address these issues by complementing phases of drug
discovery and development. Here is presented a review of current computational
efforts in drug discovery and development, with a focus on molecular modeling
approaches including virtual screening, molecular dynamics, molecular docking,
homology modeling and pharmacophore modeling.

1 Introduction

The term epigenetics describes the regulation of genomic functions leading to herita-
ble changes in gene expression that are outside of the DNA sequence, and is thought
to be the link between environmental factors and gene expression. Epigenetic modi-
fications include DNAmethylation, histone modifications (acetylation, methylation,
phosphorylation) and ATP-dependent chromatin remodeling (Fig. 1). The misregu-
lation of these components, regardless of the DNA sequence, has been shown to lead
to an increase incidence in several diseases including Type II diabetes, cancer and
Alzheimers [22]. The development of drugs treating disorders of the epigenome has
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been gaining interest in recent years due to the potential to reverse inappropriate
epigenetic modifications [9]. Knowledge about the underlying mechanisms of the
epigenome is growing, however the development of specific drugs has been difficult
due to issues with instability in vivo and lack of specificity [8]. A potential solution
may lie in computational approaches to complement phases of the drug discovery
process, which may facilitate the development of epigenetic drugs.

1.1 Epigenetic Mechanisms

DNA can be compacted into chromatin by wrapping around an octamer of histone
proteins into a nucleosome (see Fig. 1). The interaction of multiple nucleosomes is
what makes up chromatin. Histone modifications, such as acetylation, which is the
addition of an acetyl group, can change the conformational state of chromatin. When
histones become acetylated, they lose their positive charge, which decreases their
interaction with DNA. This leads to a more open, active state of chromatin, known
as euchromatin, which allows DNA to be accessible to transcription factors lead-
ing to increased gene expression. Histone acetyltransferases (HATs) are among the
many enzymes that catalyze the acetylation of histone proteins. Histone deacetylases
(HDACs) on the other hand have the opposite effect and lead to heterochromatin,
a closed, inactive chromatin structure in which DNA is inaccessible thus leading to
decreased gene expression [26].Methylation ofDNA,which is the addition ofmethyl
groups to nucleic acids, is carried out by DNAmethyltransferases (DNMTs) and pri-
marily occurs within cytosine/guanine (CpG) dinucleotides. CpG dinucleotides are
located preferentially in the genome, and can be found in gene promoter regions as
clusters known as CpG islands [8]. DNMTs promote the addition of a methyl group
from a methyl donor such as S-Adenosyl methionine (SAM) to cytosine [18]. The
methylation status of an organism’s genome or DNA of a particular cell or tissue
is known as its methylome. DNA methylation may reduce gene expression via two
mechanisms. First, methylatedDNAmay physically impede the ability of a transcrip-
tion factors to bind to genes. Second, methyl-CpG-binding domain proteins (MBDs)
may bind to methylated DNA. MBD proteins then recruit other proteins, such as
HDACs that act to change the conformation of chromatin into the transcriptionally
inaccessible state, heterochromatin [3].

1.2 Epigenetic Drugs

Currently, there exists two primary classes of epigenetic drugs; DNA methylation
inhibitors and histone deacetylases inhibitors. DNA methyltransferase inhibitors
can work in two ways. First, the DNA methyltransferase inhibitors may be nucle-
oside analogues. When these nucleoside-like inhibitors are phosphorylated into
nucleotides, they are incorporated into DNA. There they can prevent methylation
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(a) DNA Methylation

(b) Histone Modifications

(c) ATP-dependent Chromatin Remodeling

Fig. 1 a Methylation primarily occurs in CpG rich promoter regions of DNA. Carried out by
DNMTs and supplied by SAM, methylation alters accessibility of DNA to transcription [8, 18].
Modified from [20]. b Histone modifications, such as acetylation, alter the accessibility of DNA
to transcription. Acetylation is mediated by HATs and HDACs [26]. Modified from [14] (c). The
energy from ATP hydrolysis alters the accessibility of nucleosomal DNA through nucleosome
ejection, restructuring, or mobilization [30]. Modified from [30]

by trapping any DNMTs that attempt to methylate them. Second, DNA methyl-
transferase inhibitors that are non-nucleoside analogues can inhibit methylation by
reversibly binding to the active sites of DNMTs, preventing them from binding to
DNA. HDAC inhibitors are much more numerous and diverse and can act through
a variety of mechanisms to modify gene expression and other cellular processes.
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Blocking the activity of HDACs leads to the acetylation of both histone and non-
histone proteins. This may alter transcription either directly or indirectly, affect DNA
replication and repair, and can influence cell differentiation and programmed cell
death [28].

The majority of approved epigenetic drugs, or drugs that are in clinical trials are
either HDAC or DNMT inhibitors [8]. These drugs include 5-azacytidine (AZA),
5-aza-2’deoxycytidine (decitabine [DAC]), Suberoylanilide hydroxamic acid
(SAHA), valproic acid and entinostat [5]. Developing drugs that target DNMTs is of
particular interest due to their known association with certain diseases and because
of the complex and less understood effects of HDAC inhibitors. Additionally, tar-
geting specific DNMT isoforms may also reduce the off-target effects that existing
drugs suffer from. Currently, there is a need to develop DNMT inhibitors that do not
incorporate into DNA. DNA-incorporating inhibitors such as AZA and DAC have
been found to have a lack of DNA incorporation at high concentrations, are lim-
ited by cytotoxicity, and have variable potency. The variable potency of these drugs
may be due to the ability of diseased cells, specifically tumour cells, to limit their
incorporation into DNA [8].

1.3 Drug Discovery and Development

Drug discovery and development is a long and costly process. In the United States,
bringing a new therapeutic drug to market typically takes an average of 10years, and
costs an average of $2.6 billion (Fig. 2) [21]. Key stages of the drug discovery and
development process are briefly outlined below (see Fig. 3) [11].

The drug discovery and development process begins with research, often in acad-
emia, which results in a hypothesis regarding a protein or pathway and its association
with a disease state that can be used to select a target. The target identification and
validation phases are crucial in drug discovery and development since the inhibition
or activation of the target should ultimately result in a therapeutic effect. Targets may

Fig. 2 Bringing a new drug to market in the United States. Modified from [21]
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Fig. 3 Phases of drug discovery and development including research, target identification and
validation, hit discovery and lead optimization. Modified from [11]

include proteins, genes, and RNA, and a good target is efficacious, safe and “drug-
gable”, meaning that a potential drug can bind to it and induce a biological response.
Data mining has significantly contributed to the identification of drug targets. Data
sources include publications and patent information, transgenic phenotyping, com-
pound profiling data, and genome wide association data. Alternatively, phenotypic
screening has been used, which involves identifying a target that is found to alter the
phenotype of a cell or organism.

The selected target must then undergo a thorough validation process. This usually
involves the use of in vitro and in vivo models such as cells and whole animals
respectively. There are many tools that are used in target validation. For example,
antisense technology, which involves the use of RNA-like molecules to prevent the
synthesis of an encoded protein, is often used. It allows researchers to study the role
of a target in a given disease by preventing its synthesis and observing the effects.
Transgenic animals are also frequently used since they allow the observation of the
phenotype of whole animals that have been genetically manipulated, which gives
insight on the potential functions of the gene.

Next is the hit discovery process that involves developing assays to identify a
hit molecule. A hit may be defined as a compound that has a desired and confirmed
activity resulting from a compound screen. There are many screening techniques that
exist, among which is high throughput screening (HTS). HTS is often an automated
process that involves screening a compound library against the drug target or a cell-
based assay and looking for a target induced response. The intent of these screens is
to identify compounds that interact with the target, improve the potency, selectivity,
and physiochemical properties of the compound and to verify the initial hypothesis
that interaction with the target will elicit a desired biological response.

Prior to preclinical and clinical trials, the lead molecule selected from the hit
discovery process enters the lead optimization phase. Here, the goal is to maintain
and improve the desirable properties of the lead compound. The drug candidate is
observed in various in vitro and in vivo models to ensure that it does not induce
any genetic mutations or undesirable behavioural or physiological functions. Var-
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ious pharmacological studies are also conducted to establish how the candidate is
metabolised and to explore any stability issues and other chemical properties. This
information is assembled along with control considerations to create a target candi-
date profile in order to be considered for preclinical and clinical trials.

2 Current Computational Approaches in Epigenetic Drug
Discovery

Computational methods have been shown to be powerful tools in drug discovery and
development [19]. The benefits of these approaches lie in their ability to represent
real-time events in a fraction of the time, quickly analyse mass amounts of data,
and find complex patterns. In epigenetic drug discovery, computational methods
provide a means for gaining a better understanding of epigenetic mechanisms and
identifying potential drugs, and drug targets. Several computational approaches have
been proposed to advance epigenetic drug discovery. Many of these approaches use
molecular modeling techniques such as molecular dynamics simulations, molecular
docking, homology modeling and pharmacophore modeling, or virtual screening,
although several other methods have been proposed.

2.1 Virtual Screening

Also known as computational or in silico screening, virtual screening involves com-
putationally searching databases such as small molecule libraries for specific struc-
tures of interest [32]. The criteria for these structures are often determined using
information from X-ray crystallography or nuclear magnetic resonance and mole-
cular modeling, with the intent of selecting a small number of compounds that are
likely to be active. Virtual screening is an attractive method to guide hit identification
and lead optimization, and has been successfully used to identify potential epigenetic
drugs [2, 16, 18, 32, 37].

In an early application, virtual screening was used to identify novel DNMT
inhibitors. An initial set of 1990 compounds obtained from theDiversity Set available
from the National Cancer Institute (NCI) was screened using molecular modeling
and the top 2 ranking compounds were validated in vitro and in vivo [24]. Later, a
larger subset of the NCI database consisting of 260,000 compounds was screened,
out of which 65,000 compounds were selected. The application of several molecu-
lar modeling techniques created a set of 24 compounds out of which 13 continued
for experimental testing. Seven of these compounds were found to have detectable
DNMT inhibitory activity and at least 6 of these compounds were selective for a
specific DNMT isoform [32].
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In some cases, drugs have been found to treat diseases and disorders other than
the ones they were originally approved for. For example, valproic acid, which is
generally used for its anticonvulsant properties in the treatment of epilepsy, has also
been found to exhibit HDAC inhibition [27]. This idea was explored in a study
which aimed to re-purpose bioactive food compounds. In this study, a database of
4600 bioactive food compounds was screened using 32 approved antidepressant
drugs. On the basis of chemical similarity, the 10 compounds found to be the most
similar to the antidepressant drugs were experimentally screened against an HDAC.
Interestingly, these 10 compounds were most similar to valproic acid. Out of the
10 compounds, 2 showed HDAC inhibition equivalent to valproic acid [15].

2.2 Molecular Dynamics

Molecular dynamics simulations provide information on the dynamic behaviour of
atoms andmolecules. Although computationally expensive, molecular dynamic sim-
ulations offermanyadvantages, such as detailed structural data, themicroscopic inter-
actions between molecules, and time-dependent responses to perturbations, which
complement traditional experiments [1]. Simulations may validate whether theoreti-
cal models predict empirical information and can give insight on details not available
in experiments. For example, molecular dynamics simulations reveal information on
protein dynamics at the atomic-level which may help improve experimental and
predicted protein structures [13, 27]. Specifically, molecular dynamics simulations
consist of algorithms which evaluate many mathematical physics equations, such
as equations of motion [1]. Molecular dynamics provides more detail than other
molecular modeling approaches and has applications in enhancing conformational
sampling and calculating free-energy changes upon ligand binding [27].

In 1988, hydralazine which is normally used as a potent arterial vasodilator, was
found to exhibit DNAmethylation inhibition, and in 2008 showed antitumour effects
when combined with valproic acid during clinical trials [6, 32]. In order to gain a
better understanding of the underlying molecular mechanisms of the methylation
inhibitory activity of hydralazine, molecular modeling techniques, which included
molecular dynamics, were used to model the binding mode of a DNMT isoform
[32]. These simulations revealed that hydralazine shares similar binding behaviour
as nucleoside analogs, which are known to be important in DNA methylation mech-
anisms [16].

With the intent of gaining a better understanding of DNMTs, molecular dynam-
ics simulations were used to model the catalytic domains of DNMTs upon binding
to SAM. Crystal structures and other molecular modeling techniques were used
represent the different DNMT isoforms. However, on a nanosecond scale, no signif-
icant conformational changes were found upon binding of SAM. Nevertheless, the
study provided insight on the the protein dynamics of DNMTs when binding to this
cofactor [7].
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2.3 Molecular Docking

Molecular docking often uses experimental data, such as the crystal structures of
compounds, in parallel withmolecular dynamics and other molecular modeling tech-
niques, to predict how a molecule might fit into a specific binding site, such as the
catalytic binding site of a DNMT [16, 36]. Each docking pose is scored in order to
find the best position and orientation of the molecule within the binding site [32,
37]. Applications of this method benefit from the ability of scoring a large number
of compounds in a small amount of time and generally produce meaningful results
[18]. Docking has been used to study protein-ligand interactions of known DNMT
inhibitors and has been shown to be important in the drug discovery process, as it can
lead to a better understanding of the molecular interactions involved with potential
drugs and can also be used to improve existing epigenetic drugs [19, 37].

With the intent of gaining a better understanding of the different binding poses
of DNMTs, 14 compounds with different structural classes, which included nucle-
oside and non-nucleoside inhibitors, were used for docking. Because the study was
conducted prior to the availability of the crystallographic structure of the DNMT, a
molecular model of the catalytic domain was used. A comparison between the dock-
ing score and experimental data was not possible, however docking revealed similar
binding interactions among the different compounds with the binding site that are
thought to be crucial in DNA methylation [37].

In a later study, the crystal structure of a DNMT bound to DNA containing
unmethylated CpG sites was used to dock known DNMT inhibitors. First, mole-
cular dynamics was used to model the catalytic binding site of the crystal structure,
as it was in an inactive state, into an active conformation. The binding poses of the
inhibitors were found to share common interactions with the catalytic domain of the
DNMT that are involved with the proposed mechanisms of DNA methylation. To
further the study, compounds that were recently identified through high-throughput
screening were also docked in an attempt to understand their binding modes. These
docking models were then used in virtual screening with the goal of finding other
inhibitors in large databases. The compounds that were identified were found to
have favourable docking scores and included approved drugs ideal for drug
re-purposing [17].

Similar docking studies have been conducted to explore the binding of SGI-
1027, a known DNMT inhibitor, and propose mechanisms for its inhibitory activity
[18, 34].

2.4 Homology Modeling

Homology modeling is among the top three three-dimensional (3D) structure predic-
tion techniques and is often used as an alternative in the absence of experimental data
or 3D structural information of a molecule [12, 27]. Homology modeling involves
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constructing a 3D model of a protein using its amino acid sequence and an homolo-
gous protein as a template. This approach is based on the observation that the amino
acid sequence of a protein determines its structure and that related sequenceswill fold
into similar structures [12]. The success of many homology models can be attributed
to the well conserved catalytic domain of DNMTs [32]. Before the availability of
crystal structures of DNMTs, many structure-based design studies, such as docking,
relied on homology models that used the crystal structures of bacterial DNMTs [18,
37]. Homology modeling of this type was essential for the identification of novel
DNMT inhibitors [18].

RG108 was the first DNMT inhibitor identified using a homology model of a
human DNMT in combination with virtual screening [18, 24]. Later, two more
DNMT inhibitors were discovered using the same homology model and have been
used in the optimization of novel DNMT inhibitors. Although the crystal structures
of many human DNMTs have since increased, homology modeling still provides an
excellent starting point in many molecular modeling studies.

Homology modeling was used in one of the first contributions of molecular mod-
eling to the research of DNMT inhibitors. In 2003, the catalytic domain of a human
DNMT isoform was modeled using the crystal structure of a related human DNMT
isoform. This model was used to develop N4-fluoroacetyl-5-azacytidine, which was
found to successfully inhibit DNA methylation in human tumour cell lines [23].
This homology model was also combined with docking and molecular dynamics to
develop a binding mode of hydralazine [25]. Later, using the crystal structures of
bacterial DNMTs, two homology models of the catalytic domain of a human DNMT
were constructed. Although the twomodels were created using different homologous
templates, both homology models shared common key interactions in the catalytic
site. The models were later validated by superimposing them on their recently pub-
lished crystal structure, and it was found that the homology model was in agreement
with proposed mechanisms of DNA methylation [32].

2.5 Pharmacophore Modeling

The concept of a pharmacophore has existed for over a century [31]. Although the
basic idea of a pharmacophore hasn’t changed, recently, the International Union of
Pure and Applied Chemistry (IUPAC) has formally defined a pharmacophore as

an ensemble of steric and electronic features that is necessary to ensure the optimal
supramolecular interactions with a specific biological target and to trigger (or block) its
biological response

[29]. More simply, a pharmacophore model can be defined as a structure-based
model that describes features necessary for molecular recognition [31]. It is often
used in virtual screening, docking, lead optimization and is one of the major tools in
drug discovery [31, 37].
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In 2011, Yoo and Medina-Franco proposed a computational method that could
be used in parallel with experimental data and molecular dynamics, to develop a
pharmacophore. An active conformation of the catalytic binding site of a DNMT
inhibitor was modeled using its crystal structure and molecular dynamics. Molecu-
lar docking was then conducted by using known active compounds in the catalytic
site. Comparison of the molecular docking results with previous research confirmed
the model. They proposed that the information gained from this model could be
used to determine binding behavior of DNMTs, which may lead to the develop-
ment of effective non-nucleoside inhibitors [33, 36]. This method has been shown
to be important in the drug discovery process, as it can lead to a more thorough
understanding of the molecular interactions involved with potential drugs and their
possible structures. This technique may also be used in toxicity screening and to
improve existing epigenetic drugs [19].

Pharmacophoremodeling is frequently performed alongside virtual screening and
molecular docking, and can use either homologymodels or crystal structures [17, 33,
36, 37]. This ensemble of techniques allows researchers to explore ligand-binding
interactions of DNMTs, giving insight into possible inhibitors [17]. For example,
Yoo et al. developed pharmacophore models for 16 known DNMT inhibitors. Using
the best scoring docking poses and a homology model of the catalytic binding site,
researchers found that many of the inhibitors matched the pharmacophore features
of the model [35]. Results led to the identification of aurintricarboxylic acid (ATA)
as a novel DNMT inhibitor.

2.6 Additional Methods

Identifying epigenetic targets has recently become an area of particular interest for
successful drug research. However, current research is limited by a lack of thor-
ough understanding of the underlying biology of many epigenetic targets [4]. In this
regard, researchers developed a method to gain a better understanding of genome
functionality through database analysis to determine epigenetic targets. A 2015 study
utilised several databases such as The Encyclopedia of DNA Elements Consortium
(ENCODE), the University of California Santa Cruz (UCSC) genome browser and
The National Centre for Biotechnology Information (NCBI) to collect information
that may help drive future in vivo studies. The goal of the ENCODE project is to
reveal and characterize functional elements of the human genome. This data can then
be passed to the UCSC genome browser to identify epigenetic modifications, which
can be further superimposed with functional genomic studies from NCBI. Through
this process, researchers may gain a better understanding of relevant systems and
may use this information to guide in vivo epigenetic target studies [10].

Computational approaches are also used to gather more information about epige-
netic systems. Epigenetic protein targets and drug molecules are difficult to identify
because they are highly dynamic. In 2012, Baron and Vellore approached this prob-
lem by using high-performance computing technology to dynamically visualize the
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conformational changes of different molecules. They performed a molecular dynam-
ics computer simulation onX-ray crystal structures of a protein involved in epigenetic
changes. This involved taking several static images and creating a dynamic visual-
ization of the mechanisms of the protein. Visualization of these dynamic changes
helped explain the ability of the protein to affect a variety of molecules involved
in epigenetic regulation, and gave researchers insight into designing more targeted
epigenetic drugs [2].

3 Conclusions and Prospects

Epigenetics and its relationship to disease is a complex area of research with many
aspects that still remain to be explored. Because of the limited, although growing
knowledge on epigenetic mechanisms, the availability of epigenetic drugs and thes
discovery of novel therapeutics has been restricted. Combined, epigenetics and com-
putational methods have been shown to have enormous potential in drug discovery
and development. Specifically, molecular modeling approaches, including virtual
screening, molecular dynamics, molecular docking, homology modeling and phar-
macophore modeling, as well as other techniques, have led to a better understanding
of the dynamic behaviour of DNMTs, the discovery and design of novel inhibitors
as well as the optimization of existing therapeutics, and can ultimately be used to
guide future theoretical and experimental studies.

These computational methods play a key role in the multidisciplinary effort to
develop epigenetic drugs for the treatment of various diseases. But disease is a com-
bination of epigenetic changes and genetic mutation. Although these studies have
contributed many successes to the field of epigenetic drug discovery, few efforts in
drug development exist that combine both genetic and epigenetic data. Such studies
may elucidate new epigenetic targets and have become an area of particular interest
because they may provide novel scaffolds for the treatment of disease. Additionally,
although crystal structure availability of many proteins involved in epigenetic mech-
anisms has increased, and homology modeling has been found to be a successful
alternative, many molecular modeling techniques still depend on the availability of
crystal structures. Several of these approaches can be computationally expensive, and
with the diverse field of computer science, many existing computational approaches,
other than molecular modeling, have yet to be explored. Nevertheless, with the emer-
gence of new technologies, modeling approaches, and epigenetic research, future
prospects in epigenetic drug discovery look promising.
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Dimensionality Reduction for Intrusion
Detection Systems in Multi-data
Streams—A Review and Proposal
of Unsupervised Feature Selection Scheme

Naif Y. Almusallam, Zahir Tari, Peter Bertok and Albert Y. Zomaya

Abstract An Intrusion Detection System (IDS) is a security mechanism that is
intended to dynamically inspect traffic in order to detect any suspicious behaviour or
launched attacks. However, it is a challenging task to apply IDS for large and high
dimensional data streams. Data streams have characteristics that are quite distinct
from those of statistical databases, which greatly impact on the performance of the
anomaly-based ID algorithms used in the detection process. These characteristics
include, but are not limited to, the processing of large data as they arrive (real-time),
the dynamic nature of data streams, the curse of dimensionality, limited memory
capacity and high complexity. Therefore, the main challenge in this area of research
is to design efficient data-driven ID systems that are capable of efficiently dealing
with data streams by considering these specific traffic characteristics. This chapter
provides an overview of some of the relevant work carried out in three major fields
related to the topic, namely feature selections (FS), intrusion detection systems (IDS)
and anomaly detection inmulti data streams. This overview is intended to provide the
reader with a better understanding of the major recent works in the area. By critically
investigating and combining those three fields, researchers and practitioners will be
better able to develop efficient and robust IDS for data streams. At the end of this
chapter, we provide two basicmodels: anUnsupervised Feature Selection to Improve
Detection Accuracy for Anomaly Detection (UFSAD) and its extension (UFSAD-
MS) for multi streams, that could reduce the volume and the dimensionality of the
big data resulting from the streams. The reduction is based on the selection of only
the relevant features and removing irrelevant and redundant ones. The last section of
the chapter provides an example of the developed UFSADmodel, followed by some
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experimental results. UFSAD-MS is provided as a conceptual model as it is in the
implementation phase.

1 Existing Work

This section reviews the progress that has been made in the field of Feature Selec-
tions (FS), Intrusion Detection Systems (IDS) as well as anomaly detection in data
streams. A review of these three areas will hopefully provide the reader with a com-
prehensive understanding of existing approaches, challenges and solutions that could
help properly investigating the solutions in the selected area.

1.1 Feature Selection (FS) Techniques

Extensive research has been carried out in the field of feature selections aimed at
reducing the high dimensionality of high volume data. Methods for Dimensionality
reduction can be categorised into feature selection and feature extraction [60]. FS
is an efficient data pre-processing technique that improves accuracy and reduces
computational complexity by eliminating redundant and irrelevant features while
maintaining the original features of the data [29]. FS can be carried out either by
ranking the features based on particular criteria and adopting the top N features
or by selecting the minimum subset of features without weakening the learning
performance. The former can automatically set the number of features whereas the
latter depends on a pre-defined threshold to determine the number of features [55].
On the other hand, feature extraction transforms the original feature space into a new
reduced dimensional feature space. However, it seems unable to solve the problem of
redundancy as redundant featuresmight be included in the transformation phase [42].

There are various challenges resulting from the existence of irrelevant and redun-
dant features in the datasets. Firstly, they diminish the accuracy of the mining algo-
rithms by misleading the classification or clustering process [53]. Also, the existence
of the redundant and irrelevant features would negatively affect the performance of
the algorithms due to the large volume of data [38]. Moreover, they increase the
processing time of the mining algorithms, which would result in very expensive
complexity [20]. Furthermore, a large storage capacity is required for the storing of
the large volume of data [39]. Finally, the curse of dimensionality is a challenge for
feature selection algorithmsdue to the sparseness of the data,whichwould deceive the
mining algorithms by looking equally in terms of distance between each other [11].
Consequently, various researchers have proposed feature selection as an efficient
technique, which would help to address the aforementioned challenges.

The FS process comprises (i) subset generation, (ii) subset evaluation, (iii) stop-
ping criterion and (iv) result validation [55]. This process is illustrated in Fig. 1.
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Fig. 1 Feature selection process

Subset generation searches for a set of features based on a particular strategy to
be ready for the evaluation at the next step. The three main types of search strategy,
in addition to their strengths and weaknesses, are illustrated in Table1. Subset evalu-
ation is the second step of the FS process, where every generated candidate features
is evaluated for its quality based on a specific evaluation criterion [97]. Evaluation
criterion is broadly classified into filter and wrapper approaches whether the mining
algorithms are to be applied in the evaluation of the selected features or not [82].
The filter approach [23, 62, 78] relies on the general characteristics of the data to
evaluate the quality of the generated candidate features without involving anymining
algorithm. This includes, but is not limited to distance, information and consistency
measures. Filter-based algorithms have faster processing time than wrapper-based
algorithms, as they do not include any data mining algorithm [43]. Conversely, the
wrapper-based algorithms [41, 71, 96] require the use of specific data mining algo-
rithms such as clustering in the evaluation process of the generated candidate features
by exploiting their specific performance requirements [32]. Despite the fact that the
wrapper approach can discover better quality candidate features than does the filter
approach, this incurs high computational overheads [39].

Subset generation and evaluation of the feature selection process is iteratively
repeated until they meet the requirement of the stopping criterion. The stopping cri-
terion is activated by the completeness of the search, by a maximum iteration times
or when the classification error rate is less than the pre-set threshold [54]. Then, the
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Table 1 Search strategies for subset generation

Complete search [16, 52, 89] Sequential search [56, 69, 75] Random search [8, 22, 77]

• Starts with an empty feature
set, and adds the features for
the purpose of the evaluation
and vice versa

• Starts with an empty feature
set, and adds one feature at a
time till reaching the stage
when the features do not
enhance the quality of the
subset features

• Starts the search by selecting
random subsets to be produced
for the evaluation

• Pros: guarantees the search
for the optimal result based on
the adopted evaluation
criterion

• Pros: it is simple to be
implemented and fast in
getting the results

• Pros: Ensure the global
optimality of the selected
subset

• Cons: exhaustive search,
which induces performance
overheads

• Cons: It does not produce
“optimal” features set

selected best candidate features are validated by conducting before and after experi-
ment testing of different aspects such as classification error rate, number of selected
features, the existence of redundant/irrelevant features and the time complexity [55].

Although there are many FS schemes for reducing the data dimensionality, they
are not capable of efficiently working in data streams. This is because they were
designed to select the relevant features and remove the redundant ones from statistical
databases. In fact, we believe that an FS schememust take into account the following
properties in order to work efficiently in data streams. It should be restricted to read
the data only once as it is impossible to store the entire stream. Also, it should take
into account that many stream applications stream the features one-by-one and do not
assume the existence of the entire feature space in advance (called dynamic feature
space). An FS scheme has to incrementally measure and update the relevance of
the features, as one feature might be relevant in a time t but not in t +1 (concept
drift). Furthermore, it is not enough to reduce the feature space from the stream;
the instances must be reduced as well because they usually contain great amounts
of noise, redundancy and irrelevance. An FS scheme should not be limited to data
class labels; instead, it should be (Unsupervised), as the data class labels are not
available for most applications. Finally, an FS scheme should also be able to select
the relevant features from multiple streams in order to measure the relevance of the
features accurately.

There are very few FS schemes that work in data stream applications. Every
scheme consists of some properties but not all of them. OSFS [86] handles a stream
of features one by one as they arrive. However, it requires the data to be labeled; it
removes irrelevant/redundant features but not instances and only works for a single
data stream. By contrast, Kankanhalli et al. [44] selects a subset of relevant features
frommultiple streamsbasedon theMarkovian decision problem.However, it requires
the full feature space to be known in advance and the data to be labeled, and removes
irrelevant/redundant features but not instances. Toshniwal et al. [80] developed an
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un-supervised FS that does not require the data labels in order to select the relevant
features. It is designed primarily for the purpose of outlier detection. However, it does
not handle stream features one by one as they arrive; it removes irrelevant/redundant
features but not instances, and works only for a single data stream stream. Finally,
the Zhang et al. [93] approach incrementally measures and updates the relevance of
the features in order to accurately evaluates their relevance. On the other hand, it
requires the full feature space to be known in advance and is designed to work only
in a single data stream.

1.2 Intrusion Detection Systems (IDS)

Feature selection is a pre-processing step that helps to optimise the performance of
security mechanisms (e.g. firewalls, cryptography or access controls), which have
been mainly designed to protect computer or information systems from malicious
attacks. In addition to those security mechanisms, ID systems have been devel-
oped as a second-line defence to discover attacks after they have been successfully
launched [49]. IDS can be host-based (e.g. to monitor the logs), network-based (e.g.
tomonitor the networks traffic flow) or data-driven (e.g. to detect any deviations from
the normal pattern of the data), which is the focus of our interest. Broadly, IDS is
classified in term detecting intrusions into signature based and anomaly based [66].

The signature-based ID approach [6, 21, 30] discovers suspicious behaviours by
comparing them with pre-defined signatures. Signatures are patterns associated with
attacks, which are verified in advance by the human experts and used to trace any
suspicious patterns. If the suspicious patterns and the signatures match, an alarm is
activated to warn the administrators or to take a pre-defined actions in response to
the alarm [51]. The algorithms that are signature-based ID are efficient in detecting
known attacks with low false alarms and are reasonably quick to do so. Despite the
fact that most existing commercial IDs are signature-based, most of them cannot
detect new types of attacks (also called un-known attacks), as their signatures are
new and not known in advance [85].

Unlike the signature-based ID algorithms, anomaly-based ID algorithms [17,
18, 88] can identify new attacks because they “appropriately” model the ‘normal’
behaviour of a non-attacked system. They can therefore identify serious deviations
from the normal profile to be considered as anomalies (also called outliers) [4].
Anomalies can emerge as a result of fraudulent behaviour, mechanical faults or
attacks [46]. Figure2 illustrates how the majority of the data points (triangle points)
take a particular distribution while the circle points have a significant deviation from
the rest. The circle points are considered as outliers.

Based on the form of the input data they are using, anomaly-based ID tech-
niques generally can be categorised under three approaches: supervised anomaly
detection [28, 34], semi-supervised anomaly detection [48, 87] and unsupervised
anomaly detection [76, 79]. Supervised-based anomaly detection techniques require
training data in advance along with their class labels for both normal and abnormal
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Fig. 2 Deviation of circle
points from the normal
triangle ones [35]

data, so as to accurately detect anomalies. Themodel is then trained with both classes
and applied on un-labeled data to determine the class to which it belongs. Although
there are plenty of classification methods that could be applied in this category,
the classes of the data are un-balanced because the “normal class” is much bigger
than the “anomaly class”, which therefore negatively affects the detection recall.
Additionally, it is challenging to find accurate and representative data class labels,
particularly for the anomalies, as they emerged periodically and they are uncount-
able [35]. On the other hand, semi-supervised based anomaly detection techniques
require only one class label, which is either normal or outlier . The corresponding
model could be trained with the normal class only, and then any instance that does
not belong to that class would be classified as an outlier. These techniques are more
much applicable than supervised ones because they do not require the specification
of anomalous behaviour. In addition, as the models for semi-supervised techniques
could also be trained with anomaly class only, this provides substantial limitations
because it is difficult to recognise all anomalies for the training of the data [14].

Both of the aforementioned approaches are limited as they rely on the availability
of the labeled data. As a result, they are restricted for specific applications such as
spacecraft fault detection and therefore they are not generic. On the other hand, the
unsupervised anomaly detection approach is generic and widely applicable as it does
not need the data to be labeled [70]. This approach assumes that the normal data has a
pattern that is significantly different from the pattern of the outliers. For instance, the
normal data should form groups with instances that are very similar to each other and
dissimilar to the outliers. Although this approach is widely applicable, the related
techniques experience a high rate of false alarms [67].

Anomaly-based ID can mainly be categorised into classification methods, sta-
tistical methods, proximity-based methods and clustering methods. Classification
methods [15, 25] are supervised by nature, and they are applicable only if there are
class labels in the training data. The classifier is trained with the labeled data and
then applied for the testing of unlabeled data. The test data is then classified as an
outlier if it is not classified as normal by the classifier. Classification methods seem
to provide good accuracy in distinguishing between data and their related classes.
Although such methods demonstrate good performance during the testing phase in
comparison to the other methods, their detection accuracy depends on the accuracy
of the labeled data [66].



Dimensionality Reduction for Intrusion Detection Systems in Multi-data … 473

Statistical methods [72, 74] are another type of approach, which observe the
activity of the data so as to create profiles representing acceptable behaviour. There
are two kinds of profiles: current and stored profiles. The former logs and updates
regularly the distribution of the data as long as the data is processed. Additionally, the
data is assigned with an anomaly score by comparing them with the stored profile.
If any anomaly score exceeds a pre-defined threshold, it is labeled as an outlier.
Statistical methods do not need knowledge about labeled data or attacks patterns in
advance. Hence, they seem to be efficient in detecting recent attacks. On the other
hand, it is difficult to establish a threshold that balances the occurrence of false
positives and false negatives [91].

Proximity-based methods use distance metrics to calculate the similarity between
data. It assumes that the proximity between an outlier and its nearest neighbour is
different from its proximity to the remaining data. Such methods can be distance-
based or density based. Distance-based methods [1, 12] search for a minimum pre-
defined number of neighbours of a data point within a specific range in order to decide
its normality. The point is labeled as an outlier if the neighbours within the range are
less than the pre-defined threshold. On the other hand, density-based methods [64,
94] compare the density of data with its neighbours densities so to decide about its
normality. The point is labeled as an outlier if its density is considerably less than the
density of its neighbours. Generally, the effectiveness of proximity-based methods
varies based on the adopted measure as it is challenging to ensure effectiveness in
particular situations. Furthermore, proximity-based methods seem to be inefficient
in detecting outliers that form groups and are close to each other.

Lastly, clustering methods [57, 83] work in unsupervised mode to recognise pat-
terns of un-labeled data by grouping similar instances into groups. They cluster data
by examining their relationships with other clusters. Indeed, normal data are those
data that belong to clusters that are dense as well as large. On the other hand, outliers
can be identified based on the three assumptions [46]: (1) outliers are objects, which
have not been allocated to any cluster. In fact, the initial goal of clustering is to find
clusters in particular and not the outliers; (2) outliers are objects that are far in term
of measured distance measure to their closest cluster centroids. Indeed, every object
is given a score based on its distance to its closest cluster centroid and it should
not exceed a pre-defined distance in order to be considered as normal. The limita-
tion of this assumption is that outliers cannot be found if they have already formed
a cluster. The aforementioned assumptions have a common limitation in that they
seem to detect only individual outliers but not groups of outliers, which form clusters
by themselves [35]. To overcome this limitation, (3) the last assumption defines the
outliers as objects, which have been allocated to sparse or small clusters.

Generally, clusteringmethods do not require the data to be labeled so it can handle
zero-day attacks. Also, it can adapt to cluster “complex objects” by adopting existing
clustering algorithms that can handle those particular types of objects. Furthermore,
clusteringmethods are fast in the testing phase because every object is comparedwith
the clusters only, which are relatively small in comparison with all the objects. On the
other hand, the efficiency of clusteringmethods depends on the clustering algorithms
in establishing the normal behaviour of the objects. Also, clustering methods work
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Table 2 Characteristics of clustering methods

Methods Characteristics

Partitioning [13, 19, 63, 65] • Use mostly a distance-based, where the dataset is
partitioned into n parts, each representing a cluster with
minimum data points
• Each object is allocated to only one cluster
• Does not maintain any hierarchal structure
• Adopts iterative relocation mechanism in the partitioning
to produce “optimal” results
• Works efficiently with small to medium size datasets
• k-means is an example clustering algorithm used as a
partitioning method

Hierarchical [40, 45, 58, 73] • Clustering is maintained based on hierarchal
decomposition of the dataset
• It is either agglomerative or divisive decomposition
• Uses either distance-based or density-based
• Clusters cannot be corrected when they have been merged
or split

Density-based [2, 5, 36, 47] • Has been defined under proximity-based methods
• Has good accuracy in detecting outliers
• Capable of discovering clusters with arbitrary shape as it
is based on density, not distance
• DBSCAN clustering algorithm used as density-based
algorithm

Grid-based [3, 37, 51, 84] • The feature space is divided into a limited number of cells
to form the grid
• Clustering operations are performed inside the cells
• Has fast processing time, as complexity depends on the
number of grid cells and not the number of instances

efficientlywhen the outliers are individuals but notwhen they formgroups of clusters.
Finally, clusteringmethods are still computationally expensive evenwith some recent
work attempting to resolve the performance problem [24].

Clusteringmethods can be broadly categorised into partitioningmethods, density-
based methods, hierarchal methods and grid-based methods. Table2 below provides
a classification of these methods as well as their characteristics.

1.3 Anomaly Detection for Multiple Data Streams

Anomaly detection is no longer limited to statistical databases due to the the emer-
gence of very large data (Big Data) with specific characteristics: Volume, Variety,
Velocity (3V). Volume relates to the huge amount of data generated. Such data can
be found in different formats such as videos, music and large images. Velocity refers
to the high speed at which data is generated, captured, and shared. Variety refers to
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the proliferation of new data types. The real world has produced big data in many
different formats, posing a challenge that needs to be addressed. A data stream is
an ideal example of big data because: (a) a huge (Volume) of data is gathered from
different sources (i.e. sensors) to extract knowledge by mining and analysing the
collected big data; (b) a data stream arrives in a timely manner at different speed
rates (Velocity); (c) sensors can stream different data types (Variety).

Although anomaly detection for data streams has been investigated intensively,
most of the recent research has focused only on single data stream. Therefore, we
believe it is crucial to investigate how to detect anomalies or launched attacks arriving
frommultiple data streams. In fact, attacks like Denial of Service (DoS) might cause
severe damage to the systems if they have been flooded through multiple streams.
Therefore, anomaly detection algorithms need to be improved and adapted to multi-
ple data streams. A data stream could be defined in [81] as a set of infinite data points
that consist of attribute values alongwith an implicit or explicit timestamp.Anomaly-
based ID methods are applied to detect outliers from not only a single stream but
also from various data streams. This is often carried out by mining the relationships
between those multiple streams, either by: (a) computing the correlations between
multiple data streams and identifying points who have a high correlation; or (b) com-
puting the similarity by querying multiple data streams to figure out high similarity
points; or (c) utilizing clustering methods to discover the relationship between the
streams in order to filter the outliers [90].

Existing anomaly-based algorithms, which have been covered in Sect. 1.2, might
not be able to mine the data points in data streams for the following reasons. Firstly,
data arrives in the form of streams and should be tested for outlier-ness as long as
they arrive which could result in wrong decisions due to the dynamic nature of
the data streams [33]. Secondly, data streams produce a very high volume of data,
which would be too expensive to store. In fact, it has been suggested in [50] that
data stream algorithms should be executed in the main memory and not requisite
secondary storage. Thirdly, unlike traditional methods for anomaly detection that
assume the existence of the entire datasets in advance, the mining of data streams
requires the consumption of a minimum amount of memory [10]. Therefore, the
model should have only a single scan to access the data points in the storage for the
purpose of detection.

In addition to the above-mentioned characteristics, it is challenging to determine
whether or not the data streaming points are outliers as the characteristics of the data
streams may change over time. This phenomena is called concept evolution [92],
and it takes place when new class emerges from streaming data overtime. Therefore,
clustering techniques in particular should adapt to the concept evolution in order to
reflect the real characteristics of data points. Additionally, data streams do not form
a unified distribution of the data points, which seems to increase the complexity of
detecting outliers [59]. High dimensionality is also a characteristic of data streams
due to the sparseness of the data, which could degrade the efficiency of detecting
outliers, as high dimensional data appears to be equal in terms of distance between the
data points due to the sparse data [31]. Moreover, in some situations, different data
streams with different data types need to be mined, such as categorical or numerical;

http://dx.doi.org/10.1007/978-3-319-46376-6_1
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hence, it becomes challenging to finding the relationship between them [27]. Finally,
most data mining algorithms have high computational complexity when applied to
data streams [9]. As a result, new algorithms should be designed, or improved from
existing algorithms, to meet the requirements as well as the characteristics of multi-
data streams so they can mine patterns efficiently and accurately.

There are a few existing solutions that specifically apply to anomaly detection in
multi-data streams. The algorithm proposed in [26] attempts to solve the problem of
judging the stream data points for outlier-ness as soon as they arrive due to limited
memory capacity, which could result in wrong decisions. This is carried out by
partitioning the data streams into chunks and later clustering each one by applying
the k-means algorithm. Then, every point that deviates significantly from its clusters
centroidwould be saved temporarily as a candidate outliers, and the normal points are
discarded after computing their mean values in order to free the memory. To decide
whether or not they are outliers, the mean value of the candidates clusters is then
compared with the mean value of a pre-set L number of previous chunks. Although
this algorithm seems to be computationally efficient because it does not rely on
distance measures, it has low detection accuracy. Additionally, several parameters
need to be properly defined (e.g. number of clusters and L number of chunks to
compare the mean value and the chunk size as well), which makes the algorithm less
attractive for multi-stream data.

Another clustering-based approach is proposed in [68] to detect anomalies for
multi-data streams. It partitions a stream into windows or chunks, each of which is
clustered and associated with a reference. Then, the numbers of adjacent clusters,
along with representation degree references, are computed to find outlier references
that contain potential anomalies. This model is believed to have better scalability and
accuracy.

Koupaie et al. [46] proposed an incremental clustering algorithm that has two
main phases to detect outliers in multi-data streams. In the online phase, the data
in the windows is clustered using the k-mean algorithm, where clusters that are
relatively small or quite far from other clusters are considered to be online outliers
and therefore need further investigation. During the offline phase, the outlier from
previous windows is added to the current window to be re-clustered by the k-mean
algorithm.With higher confidence, it guarantees that any small or far clusters are real
outliers as they have been given a survival chance. The work claims that the proposed
algorithm is more accurate than existing techniques in discovering outliers; however,
no evaluation results have been provided. Similarly to other algorithms, many of its
parameters need to be adjusted.

2 Issues and Methodology

Redundant and irrelevant features are two factors that result in large volume and
high dimensional data, which obviously degrade performance when outlier detection
algorithms are used for data streams. Some of the aspects that should be carefully
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looked at are storage, detection accuracy and time complexity [20].Many researchers
have adopted feature selection as a pre-processing step to help the detection models
to overcome these drawbacks or at least improve their performance by removing
redundant and irrelevant features. However, there have been few proposals to date on
feature selection that are mainly designed for outlier detection. After investigating
an important body of work, we found that the only feature selection model, which
takes outlier detection into consideration as an end goal, is the one detailed in [7].
However, theirmodelworks in supervisedmode, and hence it assumes the availability
of labeled data. Unfortunately, in most of situations, labelled data is not available.

Online FS selection is an emerging field where the relevant features are selected
from data streams. Existing schemes for FS try to solve individual problems to cope
with the data stream characteristics, although no single scheme has met the required
properties (see FS in Sect. 1.1) for working efficiently in data streams.

In summary, the fundamental research considerations that need to be tackled are
(Q1) and (Q2) below.

(Q1) How to identify representative features from un-labeled data?High dimen-
sional and large size datasets have negative consequences on any data-mining algo-
rithms because of their curse of dimensionality, high computational complexity, low
detection accuracy and large memory consumption. Redundant and irrelevant fea-
tures are commonly believed to increase dimensionality and the size of the datasets.
Therefore, the inclusion of redundant and irrelevant features is a dilemma that can
degrade the performance of the applied anomaly detection algorithms. Also, it can
mislead the clustering algorithms during their detection, which could result in a high
false positive rate.
(Q2) How to simultaneously identify representative subset of features and
instances from data streams? In addition to reducing the feature space, we believe
that it is essential to select relevant instances, and remove redundant ones, from a
big data stream rather than analysing the entire stream. This is because thousands of
instances usually contain irrelevant, noisy and redundant data, which consequently
do not help the applied anomaly-based algorithms in their detection target as they
will add extra processing time, consume extra memory space and increase the false
alarm rate of these algorithms. Therefore, it is very important to exclude those irrel-
evant or noisy instances and to include only the relevant instances in the reduced
sample. Although sampling would reduce time complexity and enhance detection
accuracy, themain challenge is how to find a reduced sample from a data streamwhile
maintaining the original characteristics of that stream. For example, it is impossible
to have the entire data in advance for sampling and alternatively sampling done on
windows of the last n elements or a specific period of time of the data stream. The
second challenge is how to simultaneously reduce the dimensionality of both features
and instances, taking into account the data stream characteristics.

The following is an overview of the methodology used to address the issues listed
above, with the ultimate aim of designing an efficient intrusion detection system for
multi-data streams.

http://dx.doi.org/10.1007/978-3-319-46376-6_1
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• To answer (Q1), we proposed a filter-based approach, called UFSAD (Unsuper-
vised Feature Selection to ImprovingDetectionAccuracy forAnomalyDetection),
that is primarily intended for outlier detection, and produces a reduced, relevant
and non-redundant feature set. The reason for adopting a filter-based approach fea-
ture selection is its ability to provide fast processing as it does not involve any data
mining algorithm to evaluate the generated feature subset, which seems to work
efficiently for large and high dimensional datasets. The k-mean algorithm is awell-
known unsupervised clustering technique for clustering features as well as finding
the relevant subset of features. However, this algorithm needs to be extended to
integrate more similarity measures so as to “properly” cluster data, as the use of a
single similarity measure will be biased towards specific models, thereby not guar-
anteeing the accurate detection of outliers.We have used three similaritymeasures,
namely PCC—Pearson Correlation Coefficient, LSRE—Least Square Regression
Error andMICI—Maximal Information Compression Index, and these cover most
possible linear dependent correlations between features. Therefore the integration
of these metrics will guarantee real accuracy during the detection.

• To answer (Q2), UFSAD has been improved to work in data streams applications.
The proposed Unsupervised Feature Selection to Improving Detection Accuracy
for Anomaly Detection in Multi Streams (UFSAD-MS) is designed taking into
account the entire properties of a FS scheme to work in data streams (see FS in
Sect. 1.1). UFSAD-MS reads the data only once due to the limited memory. It does
not assume the existence of the whole feature space but consider the applications
where the features in a stream arrive one by one. It incrementally measures and
updates the relevance of the features, as one feature might be relevant in a time t
but not in t +1. It reduces the dimensionality of the data streams simultaneously
in terms of both features and instances. UFSAD-MS is an unsupervised learning
approach that does not require the data stream classes to be known. Finally, it can
work with both single and multiple data streams.

The following software is required in order to perform the experiments such as
building and evaluating various algorithms.

• The Weka tool can be used to evaluate our developed Algorithms. It offers variety
of classification, clustering and regression algorithms. Weka is free software that
is provided by the University ofWaikato in New Zealand. This can be downloaded
from http://www.cs.waikato.ac.nz/ml/weka/downloading.html

• Matlab is a high level language which helps us to develop our algorithm. It can
be easily integrated with Weka for evaluation purposes and all the results can
be displayed in the Matlab platform. http://au.mathworks.com/academia/student_
version/

Each dataset included in this research has a class label even though our target is
to work in unsupervised model. The aim is to conduct before (labels included) and
after (labels not included) evaluation to determine the effectiveness of the model.
Some datasets that can be used for our experiments are:

• DARPA 2000 for details refer to http://www.ll.mit.edu/ideval/data/2000data.html

http://dx.doi.org/10.1007/978-3-319-46376-6_1
http://www.cs.waikato.ac.nz/ml/weka/downloading.html
http://au.mathworks.com/academia/student_version/
http://au.mathworks.com/academia/student_version/
http://www.ll.mit.edu/ideval/data/2000data.html
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• Water Treatment Plant for details refer to https://archive.ics.uci.edu/ml/datasets/
Water+Treatment+Plant

• KDD Cup 1999 for details refer to http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html

• Spambase for details refer to https://archive.ics.uci.edu/ml/datasets/Spambase
• PAMAP2 for details refer to https://archive.ics.uci.edu/ml/datasets/PAMAP2+
Physical+Activity+Monitoring

The evaluation metrics that can be used to test the performance of the various
algorithms are listed below:

• True Positive TP: the number of anomalies that have been detected correctly.
• False Negative FN: the number of anomalies that have not been detected correctly
as outliers.

• False Positive FP: the number of normal points that have been incorrectly labeled
as outliers.

• True Negative TN: the number of anomalies that have been correctly labeled as
outliers.

• Detection rate or Recall: the proportion of anomalies that have been detected
correctly to the actual size of the entire existing anomalies on the tested dataset.

• False Positive Rate FPR: the proportion of the normal points that are correctly
flagged as anomalies to the actual size of the entire existing normal points on the
tested dataset.

• Precision: used to test the robustness of IDS by minimising the FPR.
• F-measure: is the harmonic mean of precision and recall, which precisely demon-
strates the accuracy of the evaluated ID algorithm.

Here we outline the progress of our work with regards (Q1) and (Q2), namely the
development of an unsupervised feature selection algorithm and its extension towork
efficiently in data streams. The proposed UFSAD and UFSAD-MS schemes are pre-
processing steps to generate reduced, relevant and non-redundant samples as input for
anomaly detection algorithms. They remove the redundant and irrelevant features in
order to improve detection accuracy, reduce computational complexity and conserve
memory capacity. The reduced feature set can represent the entire data stream with
lower dimensionality and smaller data size. We aimed for an unsupervised learning
approach because it might be impossible to obtain in advance the data class labels
for the data streams.

UFSAD comprises twomain stages: partitioning the features space and selecting
the relevant features. The following steps broadly demonstrate the methodology of
the proposed UFSAD algorithm in selecting a reduced, relevant and non-redundant
subset of features:

• Firstly, UFSAD partitions the feature space by applying k-mean into k clus-
ters using every similarity measure, namely: MCI—Maximal Information Com-
pression Index, PCC—Pearson Correlation Coefficient and LSRE—Least Square
Regression Error. Each similarity measure is computed individually.

https://archive.ics.uci.edu/ml/datasets/Water+Treatment+Plant
https://archive.ics.uci.edu/ml/datasets/Water+Treatment+Plant
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
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• Secondly, the centroids are initialised to be thefirst features vectors from the feature
space based on the k value. For example, if k=10, then the first ten features vectors
are the initial cluster’s centroids.

• Thirdly, we assign every feature to a cluster. To do so, the similarity between
every centroid and all the features in the feature space is computed. Every feature
is therefore assigned to its relevant cluster centroid. This process is repeated until
the re-assigning of features does not change the centroids, meaning that you have
stable cluster centroids (i.e. the means of all clusters do not change).

• Fourthly, we find the relevant feature of every cluster. A feature of a cluster that has
the highest similarity (i.e. highest PCC or lowest LSRE and MICI) to its centroid
(mean) is selected as the relevant feature for the cluster.

• Lastly, UFSAD ignores all the remaining features of every cluster (and therefore
keeps only the relevant features). This guarantees the removal of both redundant
and irrelevant features, and produces a set of all relevant features.

For the purpose of evaluation, the UFSAD algorithm was compared with two
other well-known algorithms [61, 95]. All the reduced features sets, which are gen-
erated by these three algorithms, are evaluated with three classifiers, namely Naive
Bayes, Lazy Nearest Neighbour (also called IB1) and J48 decision tree. Also, the
performance metrics used to evaluate the detection accuracy are FPR, Precision and
F-measure. Figure3 shows an experimental comparison of the proposed UFSAD
with the algorithms proposed in [61, 95].

Figure3 shows that UFSAD generated a reduced feature set that achieved the
best accuracy according to the evaluation metrics for the Water Treatment Plant
dataset. It has the lowest FPR (False Positive Rate), the highest precision and
F-measure in comparison with SPEC and scheme in [61], whether the evaluation
model is Naive Bayes, Lazy Nearest Neighbour or J48 Decision Tree. The strength
of the UFSAD scheme compared to existing solutions is clearly the improvement in
detection accuracy, and this is for the following reasons. Firstly, the methodology
in selecting the relevant features contributes to improving the detection accuracy by
guarantee the relevance of the selected features. Although all the features grouped
in a given cluster are relevant, they are not enough to properly measure the rele-
vance of the features. By contrast, UFSAD strongly limits the relevance of features
to only those features that have the highest similarity to the cluster centroids, and
this for every similarity measure. This methodology of selecting relevant features
assists UFSAD to achieve better detection accuracy by guaranteeing the relevance
of the selected features. Secondly, all the features in a cluster other than relevant
features are discarded to ensure the removal of any redundant features. As a result,
the scheme ensures the generation of a reduced, relevant and non-redundant feature
set that helps the classifiers to detect outliers accurately.

UFSADwas later extended to consider the specific characteristics of data streams,
called UFSAD-MS. Below is a summary of the different steps of UFSAD-MS:

(a) Initialising the clusters
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Fig. 3 Experimental comparison of UFSAD with algorithms proposed in [61, 95]
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• Assign the features that are part of the current window, as an initial mean of
k clusters.

• For every initialised cluster, assign k= relevant feature. If k > number of fea-
tures of the current window, waits for the arrival of features from the second
window.

(b) Partitioning the stream of features in a window

• When a window of features arrives, the following steps are carried out:
– compute the similarity (PCC, LSRE or MICI) between every feature in the
window to every cluster.

– assign every feature in awindow to itsmost similar cluster (using the highest
value PCC, Lowest LSRE or MICI).

– re-compute the mean of every cluster.

(c) Finding a relevant feature from every cluster

• Compare the similarity of a highest similar feature and the relevant feature to
the cluster mean.

• Set the one with highest similarity to the mean as the relevant feature.
• retain the mean, number of features so far, and the relevant feature. Otherwise,
drop all other features to free the memory.

As illustrated in Figs. 4 and 5, this work is followed by two versions for multiple
streams: the centralised and distributed versions of UFSAD-MS. These two versions
are evaluated so as to select the best approach in terms of performance. Figure4 shows
the centralised version where UFSAD-MS waits for windows of features from every
stream, and later clusters them to find the relevant features. Conversely, Fig. 5 depicts
the distributed versionwhereUFSAD-MSclusters every stream individually and then
aggregates their selected relevant features. Experimental results are not shown as the
two versions of UFSAD-MS are currently being implemented. This implementation
covers all the required properties for FS schemes to work in multi-data streams.

Fig. 4 UFSAD-MS centralised version
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Fig. 5 UFSAD-MS distributed version
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Physical Maze Solvers. All Twelve Prototypes
Implement 1961 Lee Algorithm

Andrew Adamatzky

Abstract We overview experimental laboratory prototypes of maze solvers. We
speculate that allmaze solvers implementLee algorithmbyfirst developing a gradient
of values showing a distance from any site of the maze to the destination site and
then tracing a path from a given source site to the destination site. All prototypes
approximate a set of many-source-one-destination paths using resistance, chemical
and temporal gradients. They trace a path from a given source site to the destination
site using electrical current, fluidic, growth of slimemould,Marangoni flow, crawling
of epithelial cells, excitation waves in chemical medium, propagating crystallisation
patterns. Some of the prototypes visualise the path using a stream of dye, thermal
camera or glow discharge; others require a computer to extract the path from time
lapse images of the tracing. We discuss the prototypes in terms of speed, costs and
durability of the path visualisation.

Gradient:

…a continuous increase or decrease in the magnitude of any quantity or property along a line
from one point to another; also, the rate of this change, expressed as the change in magnitude
per unit change in distance.

Oxford English Dictionary

1 Introduction

To solve a maze is to find a route from the source site to the destination site. If
there is just a single path to the destination the maze is called a labyrinth. To solve a
labyrinth one must just avoid dead ends. In a maze there are at least two paths leading
from the entrance to the exit. To solve a maze one must find a shortest path. Not
rarely concepts of ‘maze’, ‘labyrinth’ and ‘collision-free shortest path’ are mixed in
experimental laboratory papers. We will not differentiate either. All algorithms and
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physical prototypes that solve shortest collision-free path on a planar graph solve
mazes [14]. All algorithms and prototypes that solve mazes solve labyrinths.

There are two scenarios of the maze problem: the solver does not know the whole
structure of the maze and the solver knows the structure of the maze.

The first scenario—we are inside the maze—is the original one. This is how
Theseus, the Shannon’s maze solvingmechanical mouse, was born [49].1 The mouse
per se was a magnet with copper whiskers. The mechanism was hidden under the
maze. A circuit with hundred of relays and mechanical drives grabbed the mouse
from below the floor and moved to a randomly chosen direction. When the mouse
detected an obstacle with its whiskers the underfloor mechanism moved the mouse
away from the obstacle and other direction of movement has been selected. The
task was complemented when the destination site was found. Being placed at any
site of the maze the mouse was able to find a path towards the destination site.
Several electro-mechanical devices have been built in 1950–1970, including well
know Wallace’s maze solving computer [57]. The Theseus also inspired a range
of robotic mice competitions [61]. The algorithms of a maze traversing agent, see
overviews in [12, 58] include random walk [10]; the Dead Reckoning (the mouse
travels straight, when it encounters a junction it turns randomly, when it finds itself in
the dead end it turns around),DeadEndLearning (the agent remembers dead ends and
places a virtual wall in the corridor leading to each dead end); Flood Fill (the agent
assigns a distance, as crow flies, to each site of the maze and then travel in the maze
and updates the distance values with realistic numbers); and, Pledge algorithmwhere
the maze traversing agent is equipped with a compass, which allows to maintain a
predetermined direction of motion (e.g. always north); the intersections between the
corridors oriented north-south andwalls are treated as graph vertices [1, 14]. Hybrids
of theWall Follow and the Pledge algorithms are used in industrial robotics and space
explorations: a robot knows coordinates of the destination site, has a compass, turns
on a fixed angle and counts turns [33, 34]. There are also genetic programming and
artificial neural networks for maze solving [27].

The second scenario of maze solving—we are above the maze—is the one we
study here. In 1961 Lee proposed the algorithm [31, 47] which became one of the
most famous, reused and rediscovered algorithms in last century. We start at the
destination site. We label neighbours, first order neighbours, of the site with ‘1’.
Then we label second order their neighbours with ‘2’. Being at the site labelled i we
label its non-yet-labelled neighbours with i + 1. Sites occupied by obstacles, or the
mazewalls, are not labelled.When all accessible sites are labelled the exploration task
is completed. Eventually each site gets a label showing a number of steps someone
must make to reach the site from the destination site.

To extract the path from any given site of the maze to the destination site we start
at the source site. Then we select a neighbour of the source site with lowest value of
its label. We add this neighbour to the list. We jump at this neighbour. Then we select
its neighbour with lowest value of the label. We add this neighbour to the list. We
jump at this neighbour. We continue like that till we get at the destination site. Thus

1See http://cyberneticzoo.com/mazesolvers/.

http://cyberneticzoo.com/mazesolvers/
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the algorithm computes one-destination-many-sources shortest path. A set of shortest
paths starting from each site of themaze gives us a spanning treewhich nodes are sites
of the maze and a root is the site where wave pattern of labelling started to grow. In
robotics the Lee algorithmwas transformed into a potential method pioneered in [39]
and further developed in [25, 59]. The destination is assigned an infinite potential.
Gradient is calculated locally. Streamlines from the source site to the destination site
are calculated at each site by selecting locally maximum gradient [17]. Also, some
algorithms assume that the destination has an ‘attracting’ potential and obstacles are
‘repellents’ [6, 8, 28].

All experimental laboratory prototype of maze solvers implement the Lee algo-
rithm. The gradients developed are resistance (Sect. 2), chemical (Sect. 2), temporal
(Sect. 2) and thermal (Sect. 2). The paths are traced along the gradients by electri-
cal current (Sect. 2.1), fluids (Sect. 2.2), cellular cytoplasm (Sect. 2.3), Marangoni
flow (Sect. 3.1), living cells (Sect. 3.2), excitation waves (Sect. 5.2) and crystalli-
sation (Sect. 5.3). We present brief descriptions of known experimental laboratory
prototypes of maze solvers and analyse them comparatively.

2 Resistance Gradient

Imagine a maze filled with hard balls. The entrance and the exist are open. We put
our hand in the entrance and push the balls. Balls in the dead ends have nowhere
to move. The pressure is eventually transferred to the balls nearby exit. These balls
start falling out. We add more balls thought entrance and push again. Balls fall out
through the exit. Thus a movement of balls is established. The balls are moving
along the shortest path between the entrance and the exit. The balls explore the maze
in parallel and ‘calculate’ the path from the exit to the entrance. In this section we
discuss prototypes which employe electrical and hydrodynamic resistances.

2.1 Electrical Current

Approximation of a collision-free path with a network of resistors is proposed in [53,
54]. A space is discretised as a resistor network. The resistors representing obstacles
are insulators or current thinks. Other resistors have the same initial resistance. An
electoral power source is connected to the destination and the source sites. The
destination site is the electrical current source [15]. Current flows in the grid. Current
does not flow into obstacles. To trace the path onemust follow a current streamline by
performing gradient descent in electrical potential. That is for each node a next move
is selected by measuring the voltage difference between current node and each of its
neighbours, and moving to the neighbours which shows maximum voltage. We are
not aware of any large-scale prototype of such path solver. TwoVLSI processors have
been manufactured [50]. They feature 16×16 and 18×18 cells, 2µm nwell SCMOS
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technology, 3960µ × 4240µ and 4560µ×4560µ frame size, 16-bit asynchronous
data bus. For gradient descent the source is 5V and the destination is 0V, and vice
verse for gradient ascent.

There are two ways to represent walls of a maze [15]: Dirichlet boundary condi-
tions and Neumann boundary conditions. When the Dirichlet boundary conditions is
adopted the walls, or obstacles, have zero electrical potential and act as sinks of the
electrical current [17]. Then the current lines are perpendicular to the walls and an
agent, e.g. a robot, travelling along the current lines stays away from the walls [15].
In case of the Neumann boundary conditions the walls are insulators [53]. The walls
are not ‘felt’ by the electrical current. Then the current lines are parallel to the walls.
This gives the travelling agent less clearance. The original approach of [53] has been
extended to networks of memristors (resistors with memory) [40], which could allow
for computation of a path in directed planar graph.

A shortest path can be visualised, though not digitally recorded, without dis-
cretisation of the space. A maze is filled with a continuous conductive material.
Corridors are conductors, walls are insulators. An electrical potential difference is
applied between the source and the destination sites. The electrical current ‘explores’
all possible pathways in the maze. As proposed in [11] the electrons, driven by the
applied electrical field, move along the conductive corridors in a maze until they
encounter dead end or the destination site. When the electrons reach dead end they
are cancelled inside the conductor. The electric field inside the dead ends becomes
zero. The flow of electrons on the conductive pathways leading the destination does
not stop. Thus the electrical flow calculates the shortest path. This path is detected
via glow-discharge or thermo-visualisation.

2.1.1 glow: Glow-Discharge Visualisation

This maze solver is proposed in [44]. A drawing of a maze is transferred on a glass
wafer and channels are etched in the glass. The channels are c. 250µm wide and
c. 100µm deep. Electrodes are inserted in the source and the destination sites. The
glass maze is covered tightly and filled with helium at 500Torr. A voltage of up to
30kV, above the breakdownvoltage, is applied. Luminescence of the discharge shows
the shortest path in the maze. Shortest path is visualised in 500ms.

A maze solver using much less pressure and much lower voltage is proposed
in [18]. The maze is made of a plexiglas disk, diameter 287 mm, 50 mm height.
Channels 25mm wide and 40mm deep are cut in the disk. Hole for the anode is
made in the center of the disk. Cathode is placed in the destination site. The maze is
filled with air, pressure 0.110 Torr. A gas-discharge chamber is made of polyamide in
450mm diameter and 50mm height, copper cathode in the form of rectangular plate
of 158 mm2 size is fitted on its side surface in a cathode holder. The maze is placed
in the gas-discharge chamber. Stainless steel rod anode of 10mm diameter is placed
at the center of the chamber. Voltage of 2kV is applied between the electrodes. The
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path is visualised by the glow of ionised air in the maze’s channels. Experiments
[18] also demonstrate propagation of striations, the ionisation waves [29], along the
path.

2.1.2 assembly: Assembly of Nano Particles

The maze is solved with nano particles in [35]. A maze is made of polydimethylsili-
coxane and filled with silicon oil. A drop of a dispersion of conductive nano particles:
spherical copper nano particles 10µmdiameter andmetallic carbon nanotubes 10µm
long—is added at the source site. An electrical potential 1–5kV is applied between
the source and the destination. The particles diffusing from the source site become
polarised. The polarised particles experience dipole interactions. The dipole interac-
tions make the particles to form a chain along line of the electric field with maximal
strength. The chain is formed to maximise the electrical current and to minimise
the potential drop. The chain of the particles forms a conductive bridge between the
electrodes at the source site and the destination site which represents the shortest
path.

2.1.3 thermo: Thermo-visualisation

A maze solver using electrical current is proposed in [11]. The prototype employs
thermal visualisation of the electrical current. Amaze 10×10cm ismade from copper
tracks on a printed board. Copper tracks represent corridors. The electrical current
2.4A is applied between the source and the destination sites. The flow of electrons
heats the conductor, due to Joule heating. A local temperature of the conductor is
proportional to intensity of the flow. In experiments [11] the temperature along the
shortest path increased by c. 10 ◦C.The heating is visualisedwith the infrared camera.
The shortest path is represented by the brightest loci on the thermographic image.

2.2 fluidic: Fluidic

In a fluidic maze solver developed in [19] a maze is the network of micro-channels.
The network is sealed. Only the source site (inlet) and the destination site (outlet) are
open. The maze is filled with a high-viscosity fluid. A low-viscosity coloured fluid is
pumped under pressure into the maze, via the inlet. Due to a pressure drop between
the inlet and the outlet liquids start leaving the maze via the outlet. A velocity of fluid
in a channel is inversely proportional to the length of the channel. High-viscosity
fluid in the channels leading to dead ends prevents the coloured low-viscosity fluid
from entering the channels. There is no pressure drop between the inlet and any
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of the dead ends. Portions of the ‘filler’ liquid leave the maze. They are gradually
displaced by the colour liquid. The colour liquid travels along maximum gradient of
the pressure drop, which is along a shortest path from the inlet to outlet. When the
colour liquid fills in the path the viscosity along the path decreases. This leads to
increase of the liquid velocity along the path. The shortest path—least hydrodynamic
resistance path—from the inlet to the outlet is represented by channels filled with
coloured fluid.

In the experiments [19] channel width varied from c. 90–200µm, maze size c.
40×50mm. The maze is filed with ethanol-based solution of bromophenoll. A dark
coloured solution of a food dye in mix of water and ethylene glycol is injected in
the maze at a constant flow, velocity c 5–10mm/s. A drop of pressure between the
inlet and the outlet is c. 0.75–2.25Torr. The channels along the shortest path become
coloured. The path is visualised in half-a-minute.

2.3 physarum I: Slime Mould

The prototype based on reconfiguration of protoplasmic network of acellular slime
mould Physarum polycephalum is proposed in [36]. The slime mould is inoculated
everywhere in a maze. The slime mould develops a network of protoplasmic tubes
spanning all channels of the maze. Oat flakes are placed in the source and the desti-
nation site. A tube lying along the shortest (or near shortest) path between sites with
nutrients develop increased flow of cytoplasm. This tube becomes thicker. Tubes
branching to sites without nutrients become smaller due to lack of cytoplasm flow.
They eventually collapse. The sickest tube represents the path between the sources
of nutrients, and therefore, the path between the source and the destination sites. The
selection of the shortest protoplasmic tube is implemented via interaction of prop-
agating bio-chemical, electric potential and contractile waves in the plasmodium’s
body, see mathematical model in [55].

3 Diffusion Gradient

A source of a diffusing substance is placed at the destination site. After the substance
propagates all over the maze a concentration of the substance develops. The concen-
tration gradient is steepest towards the source of the diffusion. Thus starting at any
site of the maze and following the steepest gradient one can reach the source of the
diffusion. The diffusing substance represents one-destination-many-sources shortest
paths. To trace a shortest path from any site, we place a chemotactic agent at the site
and record its movement towards the destination site.
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3.1 marangoni: Marangoni Flow

A diffusion gradient determines a surface tension gradient. A flow of liquid runs
from the place of low surface tension to the place of high surface tension. This flow
transports droplets. A maze solver proposed in [30] is as follows. A maze is made
of polydimethylsiloxane, size c. 16 × 16 mm, channels have width 1.4mm, and
walls are 1mm high. The maze is filled with a solution of potassium hydroxide. A
surfactant is added to reduce the liquid’s surface tension. An agarose block soaked in
a hydrochloric acid is placed at the destination site. In c. 40 s a pH gradient establishes
in the maze. Then a 1µL droplet of a mineral oil or dichloromethane mixed with
2-hexyldecanoic acid is placed at the source site. The droplet does not mix with the
liquid filling themaze. The dropletmoves along the steepest gradient of the potassium
hydroxide. The steepest gradient is along a shortest path. Exact mechanics of the
droplet’s motion is explained in [30] as follows. Potassium hydroxide, which fills
the maze, is a deprotonating agent. Molecule of the potassium hydroxide removes
protons frommolecules of 2-hexyldecanoic acid diffusing from the droplet. A degree
of protonation is proportional to concentration of hydrochloric acid, diffusing form
the destination site. Protonated 2-hexyldecanoic acid at the liquid surface determines
the surface tension. The gradient of the protonated acid determines a gradient of the
surface tension. The surface tension decreases towards the destination site. A flow of
liquid—the Marangoni flow—is established from the site of low surface tension to
the site of high surface tension, i.e. from the start to the destination site. The droplet
is moved by the flow [30]; see also discussion on mobility of surface in [41] and
more details on pH dependent motion of self-propelled droplets in [13].

In the prototype [30] a path from the start site to the destination site is traced by
a droplet but not visualised. To visualise the path fully one must record a trajectory
of the droplet. A visualisation is implemented in [32]. A dye powder, Phenol Rd, is
placed at the start site. The Marangoni flow transports the dye form the start to the
destination. The coloured channels represent a path connecting the source site and
the destination.

Another prototype of a droplet maze solver is demonstrated in [16]. The maze
c. 45×75mm in size, with channels c. 10mm wide, is filled with water solution of
a sodium decanoate. A nitrobenzene droplet loaded with sodium chloride grains is
placed at the destination site. A 5µL decanol droplet is placed at the source site.
The sodium chloride diffuses from its host nitrobenzene droplet at the destination
site. A gradient of salt is established. The gradient is steepest along a shortest path
leading from any site of the maze to the destination site. A decanol droplet moves
along the steepest gradient till the droplet reaches the nitrobenzene with salt droplet
at the destination site.
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3.2 Living Cells

A source of a chemo-attractant is placed at the destination site. The chemo-attractant
diffuses along the channels of the maze. It reaches the destination site eventually.
The maximum gradient is along the shortest path from any given site of a maze to
the destination site. A living cell is placed at the source site. The cell follows the
maximum gradients thus moving along the shortest path towards the destination site.

3.2.1 physarum II: Slime Mould

The slime mould maze solver based on chemo-attraction is proposed in [4]. An oat
flake is placed in the destination site. The slime mould Physarum polycephalum is
inoculated in the source site. The oat flakes, or rather bacterias colonising the flake,
release a chemoattractant. The chemo-attractant diffuses along the channels. The
Physarum explores its vicinity by branching protoplasmic tubes into openings of
nearby channels. When a wave-front of diffusing attractants reaches Physarum, the
Physarum halts the lateral exploration. Instead it develops an active growing zone
propagating along the gradient of the attractant’s diffusion. The problem is solved
when Physarum reaches the source site. The sickest tube represents the shortest path
between the destination site and the source site. Not only nutrients can be placed at
the destination site but any volatile substances that attract the slime mould, e.g. roots
of the medicinal plant Valeriana officinalis [46].

3.2.2 epithelium: Epithelial Cells

Experimental maze solver with epithelial cells is proposed in [48]. Epithelial cells
move towards sites with highest concentration of the epidermal growth factor (EGF).
An epithelial cell uptakes EGF. Thus the cell depletes EGF’s concentration in the
cell’s vicinity. A 400µm×400µm maze is made of orthogonal channels c. 10µm
wide [48]. The channels are filledwith epithelium culturemedium. There is a uniform
distribution of the EGF inside the maze at the beginning of an experiment. The maze
is placed in the medium with ‘unlimited’ supply of EGF. A cell is placed at the
entrance channel. The cell enters the maze and crawls along its first channel. The
cell consumes EGF and decreases EGF concentration in its own neighbourhood. EGF
from all channels, accessible from the current position of the cell, diffuses towards
the site with low concentration. Supply of EFG in channels ending with dead ends is
limited. Unlimited supply of EGF into themaze is provided via exit channel. An EGF
diffusion gradient from the exit through the maze to dead ends and the entrance is
established. The cell follows the diffusion gradient. The gradient is maximum along
the shortest path. The cell moves along the shortest path towards the exit.
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4 Temperature Gradient: temperature

AMarangoni flow is amass-transfer of a liquid from a regionwith low surface tension
to a region with high surface tension [32]. The mass transfer can move droplets, or
any other objects, or dyes. Any methods of establishing a surface tension gradient is
OK for tracing a shortest path with Marangoni flow. In [32] a temperature gradient
is used. A maze is made from polydimethylsiloxane with channels 1.4mm wide
and 1mm deep. The maze is filled with hot, c. 99 ◦C, aqueous solution of sodium
hydroxide with hexyldecanoic acid. A steel sphere, diameter 4mm, is cooled with
dry ice and placed at the destination site in the maze. A phenol red dye powder is
placed on the surface of the liquid at the start site. The cold sphere creates temperature
gradient. The temperature gradient creates a surface tension gradient. TheMarangoni
flow is established along a shortest path from any site of the maze to the destination
site. The dye powder applied at the source site is dragged by the flow towards the
destination site. The trace of the dye represents the shortest path.

5 Temporal Gradient

A wave front advances for a fixed distance per unit of time in a direction normal to
the front. A wave generated at the source site of a maze reaches the destination site
along the shortest path. The wave ‘finds’ the exit. We just need to record the path of
the wave.

5.1 vlsi: VLSI Array Processor

An array processor solving shortest path over terrain with elevations is reported
in [26]. This is a digital processor of 24 × 25 cells, manufactured with 2µmCMOS.
A cell size is 296 µm × 330 µm, the processor’s size is 7.9 mm × 9.2 mm. An
elevations map is encoded to 255 levels of grey and loaded into the processor array.
A signal is originated at the destination site. Wave-front of the signal propagates
on the array. Each cell delays a signal by time proportional to the ‘elevation’ value
loaded into the cells. Then the cell broadcasts the value to its neighbours. When a
processor receives signal, the incoming signal direction is stored and further inputs
to the cell are ignored. Starting from each cell we can follow the fastest path towards
the destination site.
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5.2 Wave: Excitation Waves

In [51] a labyrinth solution in excitable chemical medium is proposed. A c. 3×3 cm
labyrinth is made of vinyl-acrylic membrane. The membrane is saturated with
Belousov-Zhabotinsky (BZ) mixture. Impenetrable walls are made by cutting away
parts of the membrane. The channels are excitable. The walls are non-excitable.
Excitation waves are initiated at the source site by touching the membrane with a
silver wire. The wave-fronts propagate with a speed of c. 2mm/min. Dynamics of
the waves is recorded with 50s intervals. The locations of the wave-fronts are colour-
mapped: the colour depends on the time of recording. A shortest path from the source
site to the destination site is extracted from the time lapse colour maps. In this setup
excitation waves explore the labyrinth but the path is extracted by a computer.

The approach is slightly improved in [9]. By recording time lapse images of
excitation wave fronts propagating in a two-dimensional medium we can construct
a set of isochrones: lines which points are at the same distance from the site of the
wave origination. By extracting intersection sites of isochrones of waves propagating
from the source site to the destination site with isochrones of waves propagating from
the destination site to the source site we can extract the shortest path. Experiments
report in [9] deal not with a maze but a space with two obstacles. The approach
would work in the maze as well. The BZ medium does not do any computation.
The results are obtained on a computer by analysing dynamics of the excitation
wave fronts. Something is better than nothing: the approach is successfully used in
unconventional robotics [6, 7].

Another BZ based maze solver is proposed in [43]: it exploits light-sensitive BZ
reaction. Extraction of the path requires an extensive image analysis of the excitation
dynamics, therefore this prototype is not worthy of discussion here.

5.3 crystall: Crystallization

In [2] we proposed that a propagating excitation wave-front sets up pointers at each
site of the medium. The pointers indicate a direction from where the wave-fronts
came from. A shortest path towards the the source of the excitation can be recovered
by following the pointers. This approach is experimentally implemented in [3] where
crystals play a role of pointers. A set of one-source-many-destinations shortest path
in a room with obstacles is constructed using crystallisation of sodium acetate tri-
hydrate [3]. The room with obstacles is technically a maze with irregularly shaped
walls. Obstacles are made of an adhesive resin attached to a bottom of a Petri dish.
A super-saturated clear solution of sodium acetate trihydrate is poured into the Petri
dish. The solution is cooled down. A crystallisation is induced by briefly immersing
an aluminium wire powdered with fine crystals of the sodium acetate into the target
site in the solution. Crystals growing from nucleation sites bear distinctive elongated
shapes expanding towards their proximal ends. Not only a crystal’s overall shape but



Physical Maze Solvers. All Twelve Prototypes Implement 1961 Lee Algorithm 499

also the orientation of saw-tooth edges indicate the direction of the crystal’s growth.
The crystallisation patterns compete for space. A crystallisation pattern following
longer than shortest path is unable to reach the source site because the space available
is already occupied by the crystallisation pattern following the shortest path. Thus the
direction of crystal growth can be detected by conventional image processing tech-
niques, e.g. edge detection procedures, or by a complementary method of detecting
directional uniformity of image domains. A configuration of local vectors, which
indicate direction of crystallisation propagation, is calculated. A vector at each point
indicates the direction from where the wave of crystallisation came from.

6 Analysis

With regards to time it takes the prototypes to solve the maze, i.e. to produce a traced
path from the source to the destination, we can split the solvers into three groups:

• solve instantly (milliseconds or less): glow, thermo, vlsi, crystall
• solve in minutes: assembly, fluidic, marangoni, temperature, wave
• solve in hours: physarum i, physarum ii, epithelium

The classification is very rough. We estimate the solution times based on reported
sizes of mazes and expected propagation time of substances or perturbations in the
maze solving substrates.

Only crystall visualises a gradient. Other prototypes do not. In crystallmaze
solver the temporal gradient can be seen by an unaided eye as a pattern of crystal
needles.

With regards to path tracing two groups can be specified:

• path is visible as a state of the solver, no computer is necessary: glow, thermo,
assembly, fluidic, marangoni, temperature, physarum I, physarum II,

• a computer is necessary to extract the path from the states of the solver: vlsi,
crystall, wave, epithelium

Inmarangoni no computer assistance is required if the path is traced using dyes.
If the path is traced by a mobile droplet then we must record time lapse images of the
travelling droplet and extract the path form the images. In epithelium, if a single
cells is used to trace the path then time lapse recording is necessary. However, if
we send a procession of epithelial cells, following one another, the path will become
visible as a chain of cells. Because crystall andwave definitely require an external
computing device to visualise the path we exclude them from further analyse. We
also exclude vlsi because it a conventional hardware.

Several maze solvers are ‘too demanding’ in their requirements. Thus, glow
requires up to 0.1–500 Torr pressure and 2–30kV electrical potential; assembly
requires 1kV electrical potential; fluidic requires 0.7–2Torr pressure, and tem-
perature requires fluid to be scalding hot.
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Let us check five remaining prototypes: thermo, marangoni, physarum I,
physarum II, epithelium. The prototypes marangoni and epithelium are not
ideal because they require somekindof a lab equipment not just amaze.Theprototype
physarum I is computationally inefficient because it requires the slime mould to
be placed in all channels of the maze.

The remaining ‘contestants’ are thermo and physarum II. Both prototypes
are easy to make without a specialised lab equipment, and the whole setup of an
experiment can be implemented in few minutes. It takes hours for physarum II to
trace and to visualise the path. The prototype thermo calculates the path instantly.

To conclude, the maze solver thermo is the fastest and the easiest to implement
physical maze solver. However, the thermo does not visualise the path. We need a
thermal camera to see the path. The physarum II visualises the path by morphology
of the slime mould cell. However, the physarum II ‘computes’ the maze in many
hours.

7 Discussion

The experimental laboratory prototypes of maze solvers might look differently but
they all implement the same two tasks. First, they explore mazes in parallel and
develop resistance, chemical, thermal or temporal gradients. Thus they approximate
a one-destination-many-sources set of shortest paths. Second, they trace a path from
a given source site to the destination site using fluid flows, electricity or living cells.
Paths traced with electricity or flows are visualised with glow-charge gas, thermal
camera, droplets, dyes. Paths traced with slime mould do not require any additional
visualisation. Paths approximated with excitation wave-fronts or crystallisation pat-
terns are visualised on computers.

A comparative plot of the maze solvers is shown in Fig. 1. We estimated speeds
of maze solving from the experimental laboratory results reported, scaling all mazes
to the same size. We estimated ‘costs of prototyping’ based on descriptions of exper-
imental setups. The ‘costs’ are not in monetary terms but include fuzzy estimates
of efforts necessary to prepare a maze, experimental setup, auxiliary equipment,
and an inconvenience of using extreme physical parameters. For example, the glow-
discharge maze solver requires a high pressure of gas filling the maze and very high
electrical potential; the maze solver exploiting temperature gradients demands filling
fluid to be scalding hot.

We have not discussed optical maze solving because we found reports only of the-
oretical designs [23, 24, 38]. In [24] the symmetrical properties of optical systems are
utilised, the light diffraction is calculated and the path is extracted based on minimi-
sation of the optical interferences. A detailed design of a two-dimensional nonlinear
Fabry-Perot interferometer for maze solving is proposed in [38]. The optical solu-
tions are interesting but impractical because they require a maze to be equipped
with mirrors, so the light explores all paths in parallel; and, every junction of the
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Fig. 1 Scatter plot of physical maze solvers based on estimated efforts of their prototyping and
speed of maze solving

maze channels must be checked with interferometer. Also, to trace the path one must
analyse all data on a computer.

We have not included any results on solving mazes with living creatures but the
slime mould. Most papers published on experimental laboratory ‘maze solving’ by
living creatures do actually mean animals learning to make a left turn or a right
turn in ‘T’- or ‘Y’-shaped junctions, as reported for ants [52], honey bees [62],
nematodes [42]. Ants can approximate shortest paths [20, 21, 37, 56]. Chances are
high the ants can solve complex (not just ‘T’-junctions)mazes. Someof the laboratory
results, e.g. chemotactic behaviour and learning of nematodes [42, 45], are enriched
by simulations of a bit more complex than just ‘Y’-junction mazes. Whatever case,
most living creatures will not display the whole path in a maze. Slime mould does.
In principle, plant roots can do as well.

With regards to plants, apexes of plant roots show chemotactic behaviour. The
roots can make a choice between direction of motion in Y-shape junctions and select
a route towards the attractant [60]. Experiments on plant root maze solving, where
gravity is the only guiding force, were not successful because the roots often stuck
in a dead end [5]. This is not surprising thought cause the gravity does not provide a
length-dependent tracing of a path. More experiments should be done in future with
plant roots.

Do humans employ gradient developing and subsequent path tracing techniques
when they solve maze visually? Given a full structure of a maze, i.e. being above the
maze, humans solve the maze by scanning the maze, memorising critical cues and
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then tracing the path visually [63]. The phases of the maze exploration and the path
tracing are clearly distinct. These phases can be seen as roughly corresponding to
the gradient developing phase and the path tracing, or visualisation, phase. There is
a chance that a topological model of a maze is ‘physically’ mapped onto a neuronal
activity of a human brain cortex, where some neurons or their ensembles play a
role of obstacles, other neurons are responsible for developing a gradient, and some
neurons are responsible for tracing the path. In [22] a neuronal activity in superior
parietal lobule of human subjects solving the maze is recorded with a whole-body
magnetic resonance imaging and spectroscopy system. A mental traversing of the
maze path is reflected in directional tuning of the volume unit. As [22] suggest, this
might indicate an existence of a directionally selective synaptic activity of spatially
close neuronal ensembles. Micro-volumes of the parental lobe showing absence of
tuning might be corresponding to obstacles of the maze.
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Computer Chess Endgame Play With Pawns:
Then and Now

M. Newborn and R. Hyatt

In the past Grandmasters came to our computer tournaments to
laugh. Today they come to watch. Soon they will come to learn.
Monty Newborn 1977. [12]

Abstract Forty years ago, PEASANT, a program designed to play chess king and
pawn endgames, was tested on a set of sixteen positions. The results reflected the
weak state of play by computers during this stage of the game. To examine the
progress made since then, Crafty was recently tested on the same set, and this
paper reports on its far stronger results. A new more difficult set is then proposed in
this paper, tested on Crafty, and the results presented herein. The set is intended to
serve others wishing to measure and compare their program’s performance.

1 Introduction

Forty years ago, in the mid-1970s, computer chess programs were beginning to
be recognized as capable chess players. However, while their middle-game tactical
play was on a par with (USCF) Expert-level chess players, their end-game play was
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significantly weaker, maybe at most at the level of (USCF) B-rated players. It was
often argued that it would be many years before one could boast of their play during
this final stage of the game. Now it is forty years later, and it is time to examine the
progress made.

It was back then that a set of sixteen positions, taken from Reuben Fine’s Basic
Chess Endings [5], was used to test the capabilities of a chess program named PEAS-
ANT on king and pawn endgames. PEASANT was designed to specifically handle
this phase of a game. The program, designed by this paper’s first author, with help
from two students, Israel Gold and Leon Piasetski, an International Master, was
tested on the Fine positions, and the results were reported in Peter Frey’s 1977 book
Chess Skill in Man and Machine [17]. In essence, the program probably did better
than expected at the time, but nevertheless its results were unimpressive. To observe
the progress since then we asked the classic chess program Crafty, designed by
this paper’s second author, to attempt the same positions.

In the next section, the sixteen test positions chosen fromFine are presented (called
Test Set 1 and hereafter abbreviated as TS1). The computing system, hardware and
software, used by PEASANT in 1975 for its test are described in Sect. 3. PEASANT’s
results are summarized in Sect. 4. Following these two sections, two similar sections
are presented for Crafty. Based on the performance of Crafty on TS1, a newmore
difficult test set (calledTest Set 2 and hereafter abbreviated byTS2)was proposed and
constitutes Sect. 7. Crafty’s efforts with TS2 are given in Sect. 8. This set can serve
to compare other current and future chess engineswithCrafty’s current capabilities.
Some remarks along with an acknowledgement and a number of references end the
paper.

2 TS1

TS1 is presented below in Fig. 1. The FEN notation for each position is given in
Table6 in the Appendix. In general, the positions get increasingly more complex
with increasing Fine number. The first three positions have only three pawns on the
board, while the last four have ten or more. Exclamation characters under a position
indicate the move shown is the only winning move.

3 PEASANT’s Hardware and Software

Work on PEASANT began in 1973 when programming still meant working with a
deck of punched cards! The program was written to run on the IBM 360/370 series
computers. It consisted of about 2000 FORTRAN instructions and executed in about
25K words of memory. Data structures occupied about 3K of the 25K words. It
examined approximately 300 terminal positions per second when tested on an IBM
360/158 located in the McGill University Computing Centre. The IBM 370/158,
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Fig. 1 TS1

debuting in 1972, was given credit for executing one million instructions/second [9];
the size of its main memory was 4MB.

PEASANT was implemented as a conventional Shannon–Turing program using
the alpha-beta algorithm along with an evaluation function tailored to king and pawn
endgames and pruning heuristics to narrow the search. The killer heuristic was used
to further improve the effectiveness of the search. There were no hash tables and no
endgame tables. Two subroutines called ONEPAWN and TWOPAWNS, described
in Piasetski’s M.Sc. Thesis [20], were called to handle positions in the search tree
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with a single pawn or two pawns by one side on the board. PEASANT searched to
depths of about ten plies when there were three or four pawns on the board.

4 PEASANT’s Performance on TS1 at Two
Minutes/Position

PEASANT attempted TS1 with a limit of 2min of CPU time per position. (In those
days, IBM systems time-shared program execution on a single CPU, and the actual
time a program ran was often considerably less than the real clock time.) According
to the write-up, “PEASANT selected the correct move for eleven positions, although
the correct move was selected for reasons somewhat secondary to the main theme. In
the other five positions, PEASANT had no understanding of the real issues involved
in solving the position.” The time taken on any particular position was not given.

From the write-up in Frey, it is not clear which of the eleven positions PEASANT
correctly solved. It seems that the program saw a win in only three of them, Fine 29,
51, and 61, although it came up with the correct move in six others, Fine 26, 42, 80,
82, 90, and 100A. It failed to solve Fine 25, 53, 67, 70, and 76. The write-up leaves
unclear whether it solved Fine 58, as the write-up says it “vacillated” between two
moves, one the correct move and the other an incorrect move. Nomove was indicated
for Fine 29, but it was implied PEASANT solved the position and credit for it is given
here. In summary, of the sixteen positions, PEASANT played the wrong move in
six, the correct move in nine, and the write-up left unclear its selection in one. Of
the sixteen positions, PEASANT saw that it could reach a winning position in only
three. Table1 summarizes PEASANT’s results.

When speculating on the effort necessary for PEASANT to understand that several
of the positions were won, some predictions were made in the paper. It was felt that
Fine 25, 53, and 58 would each require 1000h of computing time and a 25-ply search
to find a win. Similarly Fine 70 would require 25,000h and a 30-ply search, while
Fine 90 and 100A would require over 300,000years and a 40-ply search.

5 CRAFTY’s Hardware and Software

For this test and the new one presented in Sect. 7, Crafty ran on a 3.2GHz, four-core
Intel I7 processor with 16GB of memory and with a 64-bit word size. The system
cost less than $2,000 even though it included a 512GB solid-state drive (SSD) and
a 21-in. color high definition monitor.

Crafty [7] is an outgrowth of the formerworld champion programCRAYBLITZ
[8]. It came into existence in themiddle 1990swhen the capabilities of theCray-series
supercomputers were being challenged by much simpler and far less expensive sys-
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tems. Tord Romstad, the developer of STOCKFISH, described Crafty as “arguably
the most important and influential chess program ever” [21].

Crafty uses the traditional ideas such as iterative deepening, alpha–beta pruning,
transposition/refutation tables and similar things. It also uses more recent ideas like
Late Move Reductions (LMR) and Late Move Pruning (LMP). The net result is
an effective branching factor well below 2.0 for the endgame positions tested. It is
designed to take advantage of hardware with multiple cores with its parallel search,
and easily searches 30M nodes per second and beyond even on the inexpensive
hardware platform used for the tests reported here. Finally, it also uses Nalimov
endgame tables [16] for three through five piece endgames and plays them perfectly.
It should be repeated out that PEASANT did not use transposition tables or endgame
tables.

6 CRAFTY’s Performance on TS1 at Three
Minutes/Position

Crafty’s output from running TS1 is summarized in Table2. Column 3 of the table
gives the initial material on the board. Column 4 gives thematerial on the board at the
end of the final continuation provided by the program. Column 5 indicates the best
move in the position followed by Crafty’s selection. Column 6 gives the time taken
byCrafty to find themove that it stuckwith thereafter. That is, often, for a very short
period of time, Crafty would bounce around from one move to another, and then
settle with one move for the rest of the time; column 6 indicates that time. Column
7 indicates the score assigned by Crafty to the selected move. Column 8 gives the
approximate number of nodes searched and Column 9 gives the approximate number
of nodes per second searched. Lastly, Column 10 gives the length of the continuation
found by Crafty. For a continuation leading to a position in an endgame table,
the length of the continuation is supplemented by a parenthetical note that indicates
the length of the continuation leading to the endgame table. (For example, for Fine
53, the entry “47 (11 + EGTB)” means that a continuation of length 11 ended at
a position in an endgame table, and that the table found a mate-in-36 at that point,
resulting in a 47ply continuation to mate.)

First and foremost, Crafty found a winning move for the side to move in all
sixteen positions. The first eleven positions were assigned mates, while the last five
were assigned scores that called for a resignation by its opponent. Although Crafty
was given 3min to search each of the sixteen positions, it needed no more than 0.03 s
to find a winning move in each position, thus solving the entire suite in less than half
a second. For Fine 80, however, while the move selected by Crafty leads to a win
and was the move Fine said was the one to play, when given more time to search the
position (as discussed later in this section), another move was found best. A question
mark appears in Column 5 for Fine’s move b6 (also questioned in Table3).
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Crafty’s five-piece endgame tables came into play in finding mates to the first
eleven of the sixteen positions. It did not find mates for positions that started with
nine or more pawns on the board, as was the case for the final five positions. The
principal continuations found for the first two of these positions, Fine 76 and Fine 80,
ended with only five pieces on the board and onemight think that Crafty’s endgame
tables would have assigned win, loss, or draw values to these positions. However,
Crafty tries to limit the I/O overhead caused by endgame table probes to a file kept
on its SSD, and is programmed not to probe positions at the last six plies of any
search branch. Because of this, some of the continuations ended in 5-piece positions
without a corresponding mate or draw assigned. Using a modern SSD, as opposed
to the outdated rotating disk drive used, would reduce the overhead in making these
probes and allow amore aggressive probing. The principal continuations for the final
three positions, Fine 82, Fine 90, and Fine 100A, each ended with seven pieces on
the board. For all these five positions, Crafty’s continuations led to scores that were
clearly wins for the side on the move. The most difficult position for Crafty was
Fine 82, ending nevertheless in a position calling for a resignation by its opponent
as shown in (Fig. 2).

While Crafty used a five-piece endgame table for this test, endgame tables exist
for all seven-piece endgames though they require far more memory than available
for Crafty [6]. Using a 7-piece endgame table that was accessible at all positions
in the search tree would have allowed Crafty to find mates in all 16 positions [13].
Six-piece endgame tables require on the order of a terabyte of memory [15].

When examining Crafty’s results on the 3-min test, the authors became curious
how Crafty would do if given more time on the five positions where mate was not
found. Thus a second run was carried out with an hour of computing time allotted to
each of these positions. Table3 summarizes the results. Crafty found a mate-in-32
for Fine 76 after computing for 52min; it also found amate-in-32 for Fine 100A after
computing for 6.32min, subsequently reducing the length of the mate to mate-in-24
after computing for 46:19min. It also found the analysis in Fine’s book for Fine 80 to
be incorrect. In fact the best move in this position is 1…Kc7, winning for Black and
winning more quickly than Fine’s choice of 1 … b5. Though Crafty was not able
to find a mate here when given an hour, it did find a line leading to a much-improved
score of 23.45 compared to a score of 13.93 when searching for only 3 min. For Fine
82 and Fine 90, much improved scores were also obtained on this second run.

One especially illuminating example of the great improvement in endgame play
is shown by efforts to solve Fine 70. In PEASANT’s write-up, it was estimated that
PEASANTwould require 25,000h, almost three years, to solve the position using its
hardware. It is now solved in a millisecond by Crafty, approximately 100 trillion
(1014) times faster than estimated. Hardware speeds have improved, but nowhere
near that much. As another example in this regard, in 1975 a CDC Cyber 176 (one
of the most powerful computers of its time running one of the strongest programs of
its time) searched 2,600 nodes per second, about 10 times as many as PEASANT.
Today Crafty easily hits 26,000,000 nodes per second on a 4-core Apple iMac. If,
for round numbers, we assume 300,000,000 nodes per second can be searched on the
best hardware currently available, then we have a performance gain of approximately
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Fig. 2 Crafty’s 28-ply
continuation 1. c5 Ke6 2. c6
b6 3. axb6 axb6 4. Ke4 g3
5. h4 f3 6. Kxf3 Kd6 7. Kxg3
Kc7 8. Kf4 Kc8 9. Kg5 Kc7
10. Kh6 Kd6 11. g4 Kc7
12. g5 Kd8 13. Kxh7 Ke7
14. g6 Ke6

106. And as a third approach to compare then and now, CHESS 4.5 (importantly,
using transposition tables, unlike PEASANT) was reported [4] to have solved Fine
70 in 26min, or 1,560s. Crafty solves it in 0.001s, more than a factor of 106 faster,
and very close to our previous comparison. There is a difference of 108 between the
first estimate of a speedup of 1014 and the second and third estimates of about 106.
This difference must be attributed to two factors: (1) an overestimate of 25,000h to
solve Fine 70, and (2) not taking into account software improvements. Given that
CHESS 4.5 solved Fine 70 in 26min, or about 50,000 times or 5 × 104 times as fast
as estimated that PEASANT would take, this would imply software improvements
accounted for a speedup by a factor of 2000. These numbers are probably easy to
dispute.

From another perspective of the performance gain, Crafty searched approxi-
mately one hundred thousand times as many nodes per second as searched by PEAS-
ANT. If the same progress had been made with rocket ships that traveled to the moon
240,000miles from Earth at say an average speed of 4000miles per hour in 1977,
and thus taking 60 h to travel to the moon, the spaceship of today would be flying at
400,000,000miles per hour and would take about 2 s for the trip, racing there at near
the speed of light’s approximately 670,000,000miles per hour!

7 A New Test Set ‘TS2’

Initially the objective of this paperwas to report on the great improvement in endgame
play made over the years by testing Crafty on the TS1 in 2015. But upon finishing
the testing, it became clear that a more difficult test set was in order to measure
future performance improvements as Crafty neared perfection on the TS1. A new
set of sixteen miscellaneous positions was thus put together and called Test Set
Two (TS2). Table3 presents the 16 positions. They are given in FEN notation in
Table7 in the Appendix. The source of the positions is given in Table4. The first
seven (Positions 1–7) are from Averbakh and Maiselis’s book Comprehensive Chess
Endings 4, Pawn Endings [1]. Peter Mackenzie suggested them as a test set for
computers in a 2000 Computer Chess Club posting [14]. Vincent Lejeune suggested



Computer Chess Endgame Play With Pawns: Then and Now 515

another six test positions at that time, although only four are included here (Positions
8–11) [11]. Lejeune’s positions had appeared earlier in John Dunn and Frederic
Friedel’s two ICCA Journal articles [18, 19], where they point out that Position 9 was
previous published by Grigoriev in 1938, and Position 10 was previously published
by J. Krivcun in 1961. Position 12 dates back to the 1919 British Chess Magazine,
where it was named “The Christmas Cracker” [3]. The final four positions are from
Averbakh and Maiselis’s Pawn Endings [2] (Fig. 3).

Table 4 Sources of TS2 positions

Position Source of position

CCE4 479 Grigoriev, 1932. CCE, V.4., pg 166.

CCE4 491a Grigoriev, 1934. CCE, V. 4, pp. 169–170.

CCE4 530 Grigoriev 1933. CCE, V. 4, pg. 184.

CCE4 608 Gheorghiu—Gligoric, Hastings 1964. CCE, V.
4, pg. 217.

CCE4 679 Eliskases—Skalicka, Podebrady 1936. CCE, V.
4, pg 354.

CCE4 680 Kryukovsky—Bishard, Leningrad 1974. CCE,
V. 4, pp. 254–255.

CCE4 765 Zinar, 1983. CCE, V. 4, pg. 290.

Lejeune 2 J. Nunn, in Nunn and Friedel, Brains of the
Earth Challenge, ICCA Journal, V. 22, No. 3,
pp. 188–189.

Lejeune 4 Grigoriev, 1938. in Dunn and Friedel (1999).
The “Brains of Earth” Challenge, ICCA
Journal, Vol. 22, No. 4, pp. 259–263. Also in
CCE, V. 4, pg. 183.

Lejenue 5 Krivcun, 1961, in Dunn and Friedel (1999).
The “Brains of Earth” Challenge, ICCA
Journal, Vol. 22, No. 4, pp. 259–263.

Lejeune 6 J. Nunn, in Nunn and Friedel, The “Brains of
Earth” Challenge, ICCA Journal, V. 22, No. 3,
pp. 188–189.

Christmas Cracker A. Baker, British Chess Magazine 1916.

Pillsbury1895 Pillsbury–Gunsberg, Hastings 1895. PE, pg.
256.

Capablanca1919 Capablanca–Condé, Hastings 1919. PE, pg.
248.

Botvinnik1944 Botvinnik–Flohr, Moscow 1944. PE, pg. 285.

Botvinnik1958 Botvinnik–Smyslov, 20th World Championship
1958. PE, pg. 270.

Note CCE = Comprehensive Chess Endings; PE = Pawn Endings
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8 CRAFTY’s Performance on TS2 at One Hour/Position

To begin, Crafty found the recommended move to all but two positions, CCE4 765
andCapablanca1919,when given an hour of computing time per position;mateswere
found to eight of the sixteen. Winning continuations were found to fourteen, while
two positions were correctly understood as drawn. While selecting a different move
to CCE4 765, Crafty’s choice of 1. Kd3 led to a draw as did the recommendedmove

Fig. 3 TS2
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1. Kc1. For the position Capablanca1919, Crafty selected 1. g4, a move different
than recommended, i.e., 1. a4, though both moves led to clear wins.

For historical purposes, the final continuation found for each position is given here
along with some information on the search. In retrospect, it would have been good if
more information were given in the paper on PEASANT regarding its efforts on each
of the Fine positions. This would have made our comparison between PEASANT
and Crafty more thorough and relevant. By doing so here with Crafty’s results,
future comparisons between Crafty and some future engine will not suffer from
this shortcoming.

CCE4 479/wtm….Crafty selected 1. e4 leading to amate-in-24 after calculating
for 21.73 s. The endgame table assigned a mate to the 15-ply continuation: 1. e4 dxe4
2. Kg3 e3 3. Kf3 e2 4. Kxe2 b5 5. Ke3 b4 6. Kd4 b3 7. Kc3 f5 8. Kxb3 {EGTB}.
Crafty liked 1. Kg3 prior to settling on 1. e4.

CCE4 491a/btm…. Crafty selected 1. … Kd7 after searching for 0.04 s, and it
stuck with this selection throughout the remainder of the 1-h search. It realized after
0.79 s that the move led to a draw, assigning it a score of −0.01. The final 27-ply
continuation found when search ended in one of its five-piece endgame tables was:
1. …Kd7 2. Kg4 Kc8 3. Kh5 Kb8 4. Kh4 Ka7 5. Kg4 c6 6. Kf4 cxb5 7. cxb5 Kb8
8. Kf5 Kc8 9. Ke5 Kc7 10. Ke6 h5 11. Ke5 h4 12. Kf4 Kd6 13. Kg4 Kc5 14. a6 bxa6
{EGTB}.

CCE4 530/wtm…. Crafty selected 1. a4 and stuck with it after 2.30 s. It initially
found the move yields mate-in-46 after 3min and 59s, and later found it led to a
shorter mate-in-42 after 4min and 15s. The final 49-ply continuation found was:
1. a4 Kd7 2. a5 Kd6 3. Kf7 Kd7 4. Kf6 Kd6 5. Kf5 Kc7 6. Ke6 Kc6 7. Ke7 Kc7
8. Ke8 Kc6 9. Kd8 bxa5 10. Ke7 Kc7 11. Ke6 Kc6 12. Ke5 Kc7 13. Kd5 Kb6
14. Kd6 Kb7 15. Kxc5 Kc7 16. Kd5 Kd7 17. c5 Kc7 18. c6 Kb8 19. Kd4 Kc8
20. Kc4 Kd8 21. Kd5 Ke7 22. Kc5 Ke6 23. c7 Kd7 24. Kb6 Kd6 25. Kxa5 {EGTB}.

CCE4 608/btm…. Crafty selected 1 … f5 after 0.01 s and stuck with this move
for the remainder of the search, ending with a continuation having a score of−33.26.
The final 35-ply continuation was: 1. …f5 2. Ke2 f4 3. Kf2 fxg3+ 4. Kxg3 h4+ 5.
Kh3 b5 6. Kg2 Kf4 7. a3 Ke3 8. f4 Kxf4 9. Kf2 a5 10. Ke2 Ke4 11. Kd2 h3 12. a4
bxa4 13. Kc3 a3 14. b3 h2 15. b4 h1=Q 16. bxa5 a2 17. Kb4 a1=Q 18. a6 Qxa6,
though Crafty’s score was failing high when search terminated.

CCE4 679/btm …. Crafty selected 1 … g5 after 0.05 s and then stuck with it
thereafter. The final score was−16.25 and the final 62-ply continuation was: 1. …g5
2. Kd2 Kf7 3. Ke3 Kg6 4. Kf3 Kh5 5. hxg5 Kxg5 6. Kg2 Kg4 7. Kf2 Kh3 8. Kf3 a6
9. a3 a5 10. a4 h5 11. Kf2 Kh2 12. Kf3 Kg1 13. g4 h4 14. g5 h3 15. Kg4 h2 16. Kf5
h1=Q 17. Kxe5 Qh2+ 18. Ke6 Qg3 19. Kf5 Qf3+ 20. Kg6 Qxe4+ 21. Kh5 Qe2+
22. Kh6 Qxc4 23. g6 Qh4+ 24. Kg7 Qxa4 25. Kg8 Qb3+ 26. Kh7 Qh3+ 27. Kg7
a4 28. Kg8 a3 29. g7 a2 30. Kf8 Qc8+ 31. Kf7.

CCE4 680/wtm …. Crafty selected 1. g4, leading to mate which it found after
searching for 0.57 s. The final 43-ply continuation was: 1. g4 fxg3+ 2. Kg2 g4 3.
hxg4 Kg5 4. gxh5 Kxh5 5. Kxg3 Kg5 6. f4+ Kh5 7. Kh3 Kh6 8. Kg4 Kg6 9. f5+
Kf6 10. Kf4 Kf7 11. Kg5 Kg7 12. f6+ Kh7 13. Kh5 Kg8 14. Kg6 Kf8 15. f7 Ke7
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16. Kg7 Ke6 17. f8=Q Kd7 18. Qb8 b5 19. axb6 Ke6 20. Qe5+ Kd7 21. Kf8 Kd8
22. Qe8#

CCE4 765/wtm …. Crafty selected 1. Kd3. Crafty’s final 35-ply continuation
was: 1. Kd3 Kc7 2. Ke4 Kd6 3. Kf3 Ke7 4. Kg2 Kf7 5. Kg3 Kf8 6. Kg4 Kf7 7. Kh5
Kg7 8. a3 a5 9. Kh4 Kf7 10. Kg3 Ke8 11. Kg2 Kd7 12. Kf3 Ke7 13. Ke3 Kd7 14.
Kf2 Kd8 15. Ke2 Ke8 16. Kf1 Kf7 17. Kg2 Ke8 18. Kf1 led to a draw. Both 1. Kc1
and 1. Kd3 lead to draws.

Lejeune 2/wtm …. Crafty selected 1. Kb2 after 0.01 s and stuck with it for the
remainder of the search. It saw amate-in-33 after 0.48 s. The final 14-ply continuation
was: 1. Kb2 e5 2. Kc3 Kb7 3. d4 Kc6 4. dxe5 Kd5 5. f4 Ke4 6. Kc4 Kf5 7. Kc5 Kxf4
{EGTB}.

Lejeune 4/wtm …. Crafty selected 1. a4 after 0.04 s and stuck with it for the
remainder of the search. It saw a mate-in-32 after 19.03 s, and then a mate-in-31 after
41.99 s. The final 40-ply continuation was: 1. a4 Kb7 2. Kh5 Kc6 3. Kg5 Kc7 4. Kg6
Kc6 5. b3 Kc7 6. Kg7 Kc6 7. Kf8 Kb7 8. Kf7 Kb8 9. Ke6 Kc7 10. Ke7 Kc6 11. Kd8
Kb7 12. Kd7 Kb8 13. Kc6 Ka7 14. Kc7 Ka6 15. Kb8 b5 16. axb5+ Kb6 17. Kc8 a4
18. bxa4 Ka5 19. Kd7 Kb4 20. b6 Kxc4 {EGTB}.

Lejeune 5/wtm…. Crafty selected 1. a3 after 0.05 s and stuck with it thereafter,
finding a mate-in-31 after 2.07 s, and a shorter mate-in-25 after 2.58 s. The final 19-
ply continuation was: 1. a3 Kf1 2. Kd2 Kf2 3. Kd3 Kf3 4. Kd4 Kf2 5. Ke4 Kg2 6.
Ke3 Kg1 7. Kf3 Kxh2 8. Kf2 Kh1 9. Kg3 Kg1 10. Kxh3 {EGTB}.

Lejeune 6/wtm….Crafty selected 1.Kh2 after 0.41 s and stuckwith it thereafter.
It saw amate-in-42 after 1min and 14s, and then after 1min and 35s, it found amate-
in-39. The final 33-ply continuation was: 1. Kh2 f6 2. Kh1 f5 3. Kg1 Kf6 4. Kf1 Ke5
5. Ke1 Kd5 6. Kd1 Ke5 7. Kc2 Kd4 8. Kd2 Ke4 9. Ke2 h6 10. Kf1 Kd4 11. Kg1 Ke5
12. Kh2 Kf6 13. Kh3 h5 14. Kh4 Kg6 15. f3 Kh6 16. g4 hxg4 17. fxg4 {EGTB}.

Christmas Cracker/wtm …. Crafty selected 1, Kd1, though initially finding
mate-in-34 with 1. Kc2 after 6.52 s. It was after 8.49 s that Crafty preferred 1. Kd1,
finding mate-in-29, then improving on that result, finding mate-in-28 after 14.15 s.
The 55-ply mating continuation was: 1. Kd1 Kc7 2. Ke2 Kd8 3. Kd2 Ke7 4. Kc3
Ke8 5. Kc4 Kd8 6. Kb5 Kc7 7. Kxa5 Kb7 8. Kb5 Ka7 9. a5 Kb7 10. a6+ Ka7 11.
Ka5 Ka8 12. Kb6 Kb8 13. a7+ Ka8 14. Kc7 Kxa7 15. Kxd7 Kb6 16. Kxd6 Kb7
17. Ke6 Ka6 18. d6 Ka5 19. d7 Kb4 20. d8=Q Kc3 21. d5 Kd4 22. d6 Ke3 23. Qf6
Kxd3 24. d7 Kc2 25. d8=Q Kb3 26. Qb6+ Kc2 27. Qfb2+ Kd1 28. Qg1#.

Pillsbury1895/wtm …. Crafty selected 1.e4 after 0.01 s and stuck with it there-
after. The final 44-ply continuation was: 1. e4 dxe4 2. Ke3 Kd6 3. d5 b4 4. Kxe4 a4
5. Kd3 Ke7 6. Kc4 b3 7. axb3 a3 8. Kc3 f5 9. gxf5 h5 10. b4 g4 11. b5 h4 12. b6 a2
13. Kb2 g3 14. d6+ Kxd6 15. b7 Kc7 16. e7 g2 17. b8=Q+ Kxb8 18. e8=Q+ Kc7
19. Qe7+ Kc6 20. Qe4+ Kd6 21. Qxg2 a1=Q+ 22. Kxa1 Ke5. The continuation
was assigned a score of 11.94, though Crafty’s search had failed high just before
time ran out, with a final score of at least 12.10.

Capablanca1919/wtm …. Crafty selected 1. g4 after calculating for 0.00 s. It
stuck with this move throughout its calculation. The final 41-ply continuation was:
1. g4 d5 2. b3 d4 3. Kf1 Kd6 4. f4 Kc6 5. h4 Kd7 6. Ke2 Ke7 7. Kd3 Ke8 8. h5 Ke7
9. a4 Ke8 10. b4 axb4 11. a5 Kd7 12. Kc2 b3+ 13. Kxb3 d3 14. Kc3 d2 15. Kxd2
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Kc7 16. g5 fxg5 17. fxg5 hxg5 18. h6 Kb7 19. h7 Ka6 20. h8=Q Kxa5 21. Ke3. It
failed high when search ended with a score of at least 10.90.

Botvinnik1944/wtm….Crafty selected 1. g4 after calculating for 0.54 s. It stuck
with this more thereafter leading to the 42-ply continuation: 1. g4 Ke7 2. h4 Kd6 3.
Ke4 Kc7 4. h5 gxh5 5. gxh5 Kd6 6. Kf5 Kxd5 7. Kxf6 Ke4 8. Kg6 Ke5 9. Kxh6 Kf6
10. b5 a5 11. b6 a4 12. Kh7 Kf7 13. h6 Kf8 14. Kg6 Kg8 15. Kf6 Kh7 16. Ke6 Kxh6
17. Kd6 Kg5 18. Kc7 Kf4 19. Kxb7 a3 20. bxa3 Ke4 21. Kc7 Kd5 and a final score
of 9.25.

Botvinnik1958/wtm …. Crafty selected 1. Kc4 after calculating for 0.56 s. It
stuck with this move thereafter leading to the 54-ply continuation: 1. Kc4 e6 2. Kd3
Kg7 3. Kd2 g5 4. hxg5 Kg6 5. Ke1 Kxg5 6. Kf2 Kg4 7. Kg2 Kh5 8. Kh3 Kg5 9. g4
Kg6 10. Kh4 Kh6 11. g5+ Kg6 12. Kg4 Kf7 13. Kh5 Kg7 14. g6 Kg8 15. Kg4 Kh8
16. Kh4 Kg8 17. Kh5 Kg7 18. Kg5 Kg8 19. Kf6 Kf8 20. g7+ Kg8 21. Kxe5 Kxg7
22. Kxe6 Kg6 23. e5 Kg5 24. Kf7 Kf4 25. e6 Ke3 26. e7 Kxe2 27. e8=Q+ Kd3,
and a score of 9.06 after calculating for 56min and 52s. It failed high when search
ended with a score of at least 9.38.

9 Remarks

The logs of Crafty’s output from the three tests summarized in Tables2, 3
and 5 can be found at: http://www.cis.uab.edu/hyatt/crafty/ICGA/x where x =
{FTS3minutes.log, FTS1hour.log, MTS1hour.log}. It might be pointed out that the
FEN notation for the test positions in the appendix can be used as input if and when
others wish to carry out these tests on their chess engines.

There is considerable room for improvement on TS2 by current and future chess
engines. While Crafty found mates to eight of the positions, future chess engines
can be expected to find mates to these eight positions much faster. And for those
for which mates were not found and for which Crafty only found winning lines
(six of the positions; two of the other eight were draws), chess engines with 6-piece
endgame tables should find mates to four of them. Crafty’s lines for CCE679 and
Casablanca1919 terminated in positions with too many pieces on the board for the
endgame tables of the current crop of chess engines to be of use.

http://www.cis.uab.edu/hyatt/crafty/ICGA/x
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While the positions considered in this paper have a narrow focus, more generally
it is pretty amazing that positions once thought to require exceptional brilliance and
to be beyond the capabilities of computers for years and years to come are now
routine for computers as was the case for many of the positions considered here.

The strongest chess engines are super-grandmasters today, and they will continue
to improve. Their endgame play certainly can no longer be considered a weakness.
Many programs today are in the FIDE 3400 territory, which is well more than 400
rating points higher than the highest human rating ever achieved. In the future, mul-
tiprocessing systems with far more processors than currently exist will be used for
increasing the strength of the programs. Memory sizes, too, will continue to grow
thus strengthening programs. On the software side, endgame databases will continue
to be developed as will better search heuristics.

More specifically for Crafty, there are several ways to improve its overall per-
formance as well as its performance on the positions considered herein. Moving to
Intel’s new 18-core processor [10] from the current 4-core system would be one way
and this is under consideration. In addition, recoding the C language instructions in
Crafty with machine instructions would be a second way. Thirdly, with increasing
memory sizes, incorporating some 6-piece endgame tables would be another way
to further strengthen the program’s endgame play. Lastly, attaching a faster SSD to
Craftywill permit more frequent probes into the endgame tables and consequently
strengthen its endgame play.

Whether one can contend that computers have artificial intelligence, they certainly
play chess king and pawn endgames at a level well beyond the most brilliant human
minds. And please do your best to relax and enjoy it when you see your first (electric)
car driving itself down the road! They will be better drivers than us too before very
long!

The quotation that began this paper might be updated to, “Once the grandmasters
came to laugh, later they came to watch, and then they came to learn. Now, in 2015,
they come to watch in awe and bewilderment while learning as well.”

Acknowledgments The authors would like to thank the anonymous reviewers who led us to the
source of many of the TS2 positions andwhomademany important specific and general suggestions
for improvements to the submission.
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Appendix

Table 6 TS1 in FEN notation

# Position Material FEN Best
move

01 Fine 25 KPPKP 6k1/7p/5P1K/8/8/8/7P/8 w Kg5

02 Fine 26 KPPKP 8/2k5/p1P5/P K5/8/8/8/8 w Kd5

03 Fine 29 KPPKP 4p3/4Pp2/5P2/4K3/8/8/8/8 w Kf5

04 Fine 42 KPPKP 8/5p2/8/4K1P1/5Pk1/8/8/8 w Ke4

05 Fine 51 KPPKPP 8/8/2pp3k/8/1P1P3K/8/8/8 w d5

06 Fine 53 KPPKPP 8/8/3pkp2/8/8/3PK3/5P2/8 w Ke4

07 Fine 58 KP(3)KPP 8/8/2ppk3/8/2PPK3/2P5/8/8 w d5+
08 Fine 61 KP(4)KP(4) 8/ppp5/8/PPP3kp/8/6KP/8/8 w b6

09 Fine 66 KP(3)KP(3) 8/1k3ppp/8/3K4/7P/5PP1/8/8 w Kd6

10 Fine 67 KP(3)KP(3) 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w b4

11 Fine 70 KP(4)KP(3) 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7/w Kb1

12 Fine 76 KP(5)KP(4) 8/8/p6p/1p3kp1/1P6/P4PKP/5P2/8 w f4

13 Fine 80 KP(6)KP(6) 8/8/1ppk4/p4pp1/P1PP2p1/2P1K1P1/7P/8 b b5

14 Fine 82 KP(5)KP(5) 8/pp5p/8/PP2k3/2P2pp1/3K4/6PP/8 w c5

15 Fine 90 KP(6)KP(6) 8/7p/2k1Pp2/pp1p2p1/3P2P1/4P3/P3K2P/8 w e4

16 Fine 100A KP(5)KP(5) 8/6p1/3k1p2/2p2Pp1/2P1p1P1/1P4P1/4K3/8 w Kf2

Table 7 TS2 in FEN notation

# Position Material FEN Best
move

01 CCE4 479 KP(3)KP(3) 8/1p4kP/5pP1/3p4/8/4P3/7K/8 w e4

02 CCE4 491a KP(3)KP(3) 8/1pp5/3k3p/PP6/2P2K2/8/8/8 b Kd7

03 CCE4 530 KP(3)KP(3) 2k2K2/8/pp6/2p5/2P5/PP6/8/8 w a4

04 CCE4 608 KP(4)KP(4) 8/pp3p2/8/6kp/8/3K1PP1/PP6/8 b f5

05 CCE4 679 KP(6)KP(6) 8/pp2k1pp/2p5/2P1p3/2P1P2P/6P1/P7/2K5 b g5

06 CCE4 680 KP(7)KP(7) 8/1p6/p1p5/P1Pp2pp/1P1P1p1k/5P1P/6PK/8 w g3/g4

07 CCE4 765 KP(5)KP(4) 8/1k6/p4p2/2p2P2/p1P2P2/2P5/P1K5/8 w Kc1

08 Lejeune 2 KP(3)KPP k7/4p3/4p3/8/8/3P1P2/5P2/K7 w Kb2

09 Lejeune 4 KP(3)KP(3) k7/8/1p6/p1p5/2P4K/8/PP6/8 w a4

10 Lejenue 5 KP(3)KPP 8/8/p7/8/1P6/7p/P4k1P/3K4 w a3

11 Lejeune 6 KP(3)KPP 8/5p1p/8/6k1/8/6P1/5PP1/7K w Kh2

12 Christmas Cracker KP(5)KP(4) 3k4/3p4/3p4/p2P2p1/P2P2P1/3P4/3K4/8 w Kd1

13 Pillsbury 1895 KP(6)KP(6) 8/7p/2k1Pp2/pp1p2p1/3P2P1/4P3/P3K2P/8 w e4

14 Capablanca 1919 KP(7)KP(6) 8/5p2/2kp1p1p/p1p2P2/2P5/7P/PP3PP1/6K1 w a4

15 Botvinnik 1944 KP(5)KP(5) 8/1p3k2/p4ppp/3P4/1P6/4K2P/1P4P1/8 w g3/g4

16 Botvinnik 1958 KP(5)KP(5) 8//4pk2/1p4p1/1P2p3/3pP2P/3K2P1/4P3/8 w Kc4
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Parallel Algorithms to Align Multiple Strings
in the Context of Web Data Extraction

Christine Gfrerer, Marián Vajteršic and Rade Kutil

Abstract The alignment of multiple strings generated from web pages represents a
crucial problem in the processing of daily increasing amounts of data in the Internet.
The complexity of this problem grows exponentially with the number of strings.
Since it is not possible to achieve practically acceptable results on serial computers
even with efficient heuristic approaches, parallel processing seems to be an inevitable
option. There already exist emerging parallel solutions for the alignment of multiple
strings in areas such as bioinformatics and genome applications. However, to our
knowledge, no parallel solution has been published so far for a problem which arises
in the context of web data extraction. In this work, we present two algorithms for
a parallel solution of this problem, where input web data records are represented
as a two-dimensional array of symbols. The algorithms differ in the assignment of
the array data to the parallel processes. In the first one a distribution according to
symbols is considered, whereas the second one operates by partitioning its columns.
Communication among processes is handled via message passing in both cases. The
algorithms are analyzed with respect to time and space complexity. We implemented
both algorithms and have studied their properties by running them on a multiproces-
sor system. For the version with distributed columns, we observed that its speedup
significantly suffers from the communication overhead. However, the results for the
version with data distribution by symbols are convincing. In this case, reasonable
performance has been obtained.
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1 Introduction

The alignment of multiple strings arises in many areas where data has to be extracted
from similarly structured sources. However, this problem belongs to a class of NP-
hard problems, and, hence, there is a pressing need for algorithmic solutions which
are able to scale with the permanently growing size of processed datasets. Until now,
most alignment algorithms are proposed for serial computers.

Recently, however, a remarkable increase of parallel approaches can be observed,
particularly in bioinformatics and genomics [9]. One of the first parallel systems in
this field was ParAlign [22], which parallelizes the Smith-Waterman algorithm and
is designed for a SIMD (Single Instruction Multiple Data) parallel system. Most effi-
cient algorithms in this research field are based on the so called progressive strategy,
which performs consecutively pairwise alignments on the most similar sequences
until all sequences become aligned. The first parallelization of these methods for a
shared-memory system was presented in [20]. Approaches based on the MPI (Mes-
sage Passing Interface) implementation for distributed-memory systems are pub-
lished e.g. in [16, 21]. A recent implementation on GPUs (Graphics Processing
Units) is presented in [12]. Algorithms for the alignment of multiple sequences in
large-scale databases on a massively parallel supercomputer system are presented
for the IBM BlueGene/P in [6]. Even the PVM (Parallel Virtual Machine) comput-
ing paradigm was considered for a design of an efficient parallel method for this
problem [18].

In this work, our focus is on the problem area of information extraction from
structured data obtained from web pages. When data records from databases are
displayed on web pages, the raw information is enriched with visual and structural
formatting elements. While this is helpful for humans to visually identify data ele-
ments, machines have to use heuristics for analyzing document structures in order
to separate formatting templates from actual data items. This can be done by trans-
forming web pages into a sequence of symbols representing HTML elements and
aligning the resulting symbol strings so that aligned elements can be identified as
template elements.

Existing algorithms for web data extraction are all sequential. A comprehensive
survey and a comparison of existing systems is given e.g. in [3]. The underlying meth-
ods often exceed polynomial complexity, even for heuristics, because they involve
comparisons of code and text regions that grow in number and size with the size of
web data. Moreover, data sets accessible through web interfaces are increasing in
size.

Processing of such large data sets imposes a big computational demand, which
justifies efforts to employ parallel computing for solving this task in order to achieve
a reasonable reduction of computing times and improvement of performance. In our
work, we present two parallel algorithms, which could be seen as a first practical
attempt for the alignment of strings originating from web pages.

This chapter is organized as follows. In Sect. 2 we introduce the web data extrac-
tion problem. We give a detailed description of how the input data is generated, and
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we define parameters for the estimation of the quality of the output. We also present
there a motivation and definitions which help to formalize the problem.

The alignment system for this application and an overview of the respective mod-
ules is presented in Sect. 3. It is also shown there how the token sequences are
generated and it encompasses a definition of parameters needed for the alignment
algorithms. In terms of these parameters, a sequential algorithm is formulated, which
is a modification of the adopted heuristic alignment strategy from [14].

The core of our contribution is Sect. 4, where we formulate and illustrate both
parallel alignment algorithms. Section 5 reports about experiments for real web data
collections and discusses obtained results. The final section is devoted to conclusions
and outlooks.

2 Model

In order to introduce our web data extraction system, we first need to lay out the
basic notions and components of web data extraction, the string alignment problem,
and their interrelationship.

2.1 Web Data Extraction

The World Wide Web has grown enormously after it was made public in the early
1990s. Meanwhile, there are countless web pages, and with every minute more and
more content is produced. The number of users also increases steadily. With the
increasing availability of documents on the web, the need for analysis of the included
data has emerged.

Relevant web data for our studies comes from the so-called deep web. The deep
web (or hidden web) is associated with public available databases, which are con-
nected to the Internet and which store the data of interest. Such databases are queried
via search forms on web pages after a user enters some key words. In most cases the
query results are presented in a list of semi-structured entries, which are denoted as
data records. Hence, the web pages containing the query results are generated dynam-
ically. What motivates us to accomplish data extraction is the fact that conventional
search engines are not able to catch the data from the deep web.

The format of the generated web content is denoted as semi-structured. This
means that the structured data from the database query is mixed up with HTML
code to present data on the web. The purpose of the extraction is to separate the
data items from the web pages, where the items are embedded. The extraction of the
data goes hand in hand with finding the generation model that formulates a possible
embedding of the data. Designated programs, which perform the latter task, are
denoted as wrappers.
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When we speak about web data extraction, the term information extraction has to
be explained. “Information extraction refers to the automatic extraction of structured
information such as entities, relationships between entities, and attributes describing
the entities from unstructured sources” [23].

Web data extraction is a kind of information extraction. For the web data extrac-
tion, the input is restricted to content available on the World Wide Web.

2.2 System Classification

In the surveys of Laender et al. [15] and Chang et al. [3], the authors present their own
taxonomies, which lead to classify a wrapper induction system in various dimensions.
Inspired by both surveys, we classify our system by the degree of automation, the
stages of the extraction, the utilized features and the applied techniques.

2.2.1 Degree of Automation

We distinguish manual, semi-automatic and fully automatic systems for web data
extraction, as it is done in [3]. The degree of automation corresponds to the degree of
user interaction. Moreover, the distinction corresponds to the historic development
of tools for web data extraction.

Early systems required users to be programmers who have to write a program
to extract data from a certain web site. Although special programming languages
reduce the effort of wrapper generation, such systems are still expensive. However,
they produce the desired output precisely.

Semi-automatic wrappers work with annotations from users. Such annotations
can be labels in training examples that provide relevant information to build the
template. For example, OLERA [4] needs a user to label a data record of interest
and the user improves the segmentation of attributes. Contrary, in IEPAD [5] the
user has to interact with the produced output. The system determines some possible
extraction patterns of the records. Thus the possible patterns are presented to a user,
who selects the most suitable target.

Most recent wrappers are classified as automatic. Automatic wrappers do not need
any human involvement during processing. Therefore, they are faster. There must be
a predefined schema that guides the template generation. Most of our studied systems
are based on heuristics like e.g. [2, 7, 13, 14, 17, 24, 31, 35, 36]. The method in [37]
uses statistical features. Ontologies support the extraction task in [26]. In general, the
experiments show that automated approaches have a fairly high degree of accuracy.
Moreover, such tools are robust against changes in the template. This means, if for
example the layout of a web page is updated and the template is altered, then the
extraction program can still be utilized.
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Data region

Data record

Data item

Fig. 1 Assumed structure of an example web page

We perform automatic data extraction. Our implementation is based on a fully
automatic approach that uses heuristics. Moreover, we want to improve overall system
performance.

2.2.2 Stages in the Extraction

Before a classification in the direction of the stage is given, let us picture the general
arrangement of web pages, which are relevant for our studies. A web page1 has
generally a centrally located data region. Within the region, one or multiple data
records are found. Further, each data record contains several data items. Figure 1
shows an example of a web page, which has the assumed structure.

1Web page excerpt from http://www.barnesandnoble.com/.

http://www.barnesandnoble.com/
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From the arrangement we derive different input/output scenarios. To our knowl-
edge, all preceding work takes one, two or multiple web pages as input. The targets
are either data records or data items. In either case the identification of a data region
is a possible intermediate stage, e.g. like in [35]. The next stage is then the distillation
of data records. Systems with this objective concentrate on the detection of record
boundaries and/or the similarity of the HTML structure covered by the records. The
extraction of data items follows optionally. In contrast, FiVaTech [14], ExAlg [2]
and RoadRunner [8] focus on the template detection of the web pages and thus data
items emerge directly. In the survey of Chang et al. [3], this latter type is referred to
as page-level extraction.

Our contribution differs from all others because we manually attain the data
records from the web pages. These web data records build the input for our
system.

2.2.3 Utilized Features

The web pages as input provide several valuable features. Usually systems utilize
text content and structure of the input web pages. Newer approaches also incorporate
visual information.

Early tools were mainly text-based. String based computations require to split up
the input into a sequence of tokens. HTML tags offer themselves as tokens. Text
between tags can be generalized to an artificial text token, as e.g. in [24] or [31].
Consequently the text content disappears for the processing. In [2], text is separated
into the words to associate different roles with text components. In DEPTA [35],
similar text values indicate matching nodes to support a tree matching algorithm.

The nested structure of HTML elements leads to a representation as a rooted tree,
the DOM (Document Object Model) tree. Zhai and Liu introduced data extraction
based on partial tree alignment (DEPTA) [35]. In [19], Miao et al. find repetitions
of tag paths and, thus, data regions and records. The work in [14] and [13] partition
the computation problem upon the tree nodes, where the tree nodes are processed
together if they are direct descendants of equal parent nodes from different page
representations.

Simon and Lausen introduced visual perception based extraction of records
(ViPER) [24]. They use visual information to identify the data region out of a range
of computed candidate regions. In [24] each candidate data region is analyzed for its
containing bounding boxes and structural similarity of the text that appears on the
web page. Liu et al. [17] propose some hypothesis about the web pages containing
data from the deep web. It is assumed that data records are similar in their appear-
ance. This includes the used fonts, the size of images and the position of the data
items inside the records.

Our system is based on the textual representation of the input. Further, we utilize
structural information from the tree representation, particularly the level of the tree
nodes. Additionally, we incorporate style related attributes. We assume that different
values of class attributes correspond to different layouts in the style sheet.



Parallel Algorithms to Align Multiple Strings in the Context of Web Data Extraction 531

2.2.4 Extraction Methods

One of the tasks in web data extraction is to distinguish tokens that belong to the
template from those that are data. In the past, several methods have been studied.
Arasu and Garcia-Molina [2] implemented a method that is based on building equiv-
alence classes of tokens. It counts the occurrences and evaluates the name and parse
the tree path of a token in web pages. Tokens with the same occurrence vector form
an equivalence class.

A given input HTML code is partitioned into a string of tokens. Next, the different
strings are aligned. Alignment means placing equal tokens opposed each other. Our
work uses string alignment. A formal description is given in Sect. 2.5.

Tree alignment incorporates the tree structure of the HTML input. The tokens of
different trees are aligned level by level subsequently. Therefore, the tokens under a
common parent node are arranged with a string alignment technique.

The construction of a suffix tree requires a sequence of tokens. If a suffix tree is
built from a sequence of multiple records, then the template results from tree paths,
which cover multiple suffixes. Suffix trees enable to detect nested structures in the
template [31]. The system called DeLa [31] requires alignment of the data after
extracting them with a wrapper, which is generated with a suffix tree.

2.3 Description of the Input

Input documents are given in the HyperText Markup Language (HTML). It is defined
by the W3C [30]. The latest specification is HTML 5.0 [29], released in October
2014. However, our input data is mostly based on the prior HTML 4.01 [28].

HTML is structured in the form of the DOM [27]. HTML pages contain data
records that conform to a common schema [2]. A template supplements the data with
structural and presentation components. Figure 2 gives an example for the structure of
an HTML document. In the first line the declaration of a Document Type Definition
(DTD) is given. The declaration defines which schema the document has to apply to.
The root element of every HTML document is called html. Within it, the elements
head and body are stated. Within the head section, meta information is given. The
text of the mandatory title element is displayed on the top of the browser window.
Additionally, it is possible to include a reference to a Cascading Style Sheet (CSS)
that contains the separated style commands. This is realized in line 7. The body
section contains everything that will be published on the web page.

HTML documents have the structure of a rooted tree according to their specifica-
tion. The interface of the DOM enables access to this tree structure. We utilize the
generated DOM tree after parsing a data record by traversing the created DOM tree
in depth-first order to acquire the content of each input document. Figure 3 shows an
example of a DOM tree which correspond to the HTML example in Fig. 2.
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1 <!DOCTYPE html PUBLIC " -//W3C//DTD HTML 4.01 Transitional //EN" "
http ://www.w3.org/TR/html4/loose.dtd">

2 <html>
3 <head>
4 <title>
5 Title of the web page
6 </title >
7 <link rel="stylesheet" type="text/css" href="style.css">
8 </head>
9 <body>

10 <div id="mainsection">
11 <h1>
12 Hello world!
13 </h1>
14 <p class="par">
15 This is a paragraph.
16 </p>
17 <ul type="circle">
18 <li class="listitem">
19 First point
20 </li>
21 <li class="listitem">
22 Second point
23 </li>
24 </ul>
25 <p>
26 Another paragraph with a picture
27 <img src="pic.jpg" alt="picture description">
28 </p>
29 </div>
30 </body>
31 </html>

Fig. 2 HTML document example

Fig. 3 An example DOM tree
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Based on the work of Arasu and Garcia-Molina [2], Kayed and Chang [14] and
Wang and Lochovsky [31], we define the composition of data items. The composition
is defined recursively by the following types:

• β is denoted as basic type. An instance of β is a data item, derived after querying
the database.

• (τ1 | τ2 | . . . | τn) is denoted as disjunctive type. For instantiation of this type,
there is exactly one τi , 1 ≤ i ≤ n, selected. The optional type (τ1 | ε) can be
expressed also as (τ )?, where ε is the type for the empty string.

• 〈τ1 τ2 . . . τn〉 is denoted as tuple type. The order of the types needs to be preserved.
• {τ } is denoted as set type. There are any number of instances.

A schema S is a type τ that describes the nested structure of data items for any data
record in the input set. The schema only consists of basic types. Thus the recursive
relationships of types must be dissolved.

Figure 4 contains the HTML code for two different data records. It is a possible
code for the examples shown in Fig. 5. The actual values from the database are bold
in the listings.

The common schema of the data records in Fig. 4 can be expressed by
S = 〈β (β)? (β)? {〈β β〉}〉. Each data record covers four different data items,
namely the title of the album, the artist, the format and the price. Conforming to
the schema requires at least the album title. The artist name is declared optionally.
Next there follow several tuples of format and price.

1 <div id="record1">
2 <img src="br_cover.jpg">
3 <strong >Bankrupt! </strong >
4 <span class="ed">[Deluxe

Edition ]</span>
5 <br>
6 by Phoenix <br>
7 <table>
8 <tr class="head_row">
9 <td>Format </td>

10 <td>Price </td>
11 </tr>
12 <tr class="content_row">
13 <td>CD </td>
14 <td>$12.58 </td>
15 </tr>
16 </table >
17 </div>

1 <div id="record2">
2 <img src="sc_cover.jpg">
3 <strong >Sound City:Real to

Reel</strong >
4 <br>
5 <table>
6 <tr class="head_row">
7 <td>Format </td>
8 <td>Price </td>
9 </tr>

10 <tr class="content_row">
11 <td>CD </td>
12 <td>$10.79 </td>
13 </tr>
14 <tr class="content_row">
15 <td>Vinyl LP </td>
16 <td>$28.49 </td>
17 </tr>
18 </table>
19 </div>

Fig. 4 HTML code extract
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Fig. 5 Two examples of data records

The template itself consists of several template strings. Template strings are usu-
ally HTML tags to structure and to present the data. Template strings may also be
extended with text content placed before or after a data item. For example, consider
“5” is a data item, then a user hardly knows what the number means. If the text
“articles are left” is placed after the number, then the meaning is clear.

Therefore, we define a template TS for a given schema S. The template TS
describes the arrangement of template strings for a given schema S. Basically it
has the same structure as the schema. Based on [2, 37], we define the composition
of the template as follows:

• A template string is a sequence of template tokens (HTML tags or text). A template
string may also be an empty string.

• There is exactly one pair of template strings associated with each instance of a
type τ . We denote tl as the left template string and tr as the right template string.

• If tl contains HTML opening tags, that are not closed in tl, then the corresponding
HTML closing tags must occur in tr of that pair.

• A template string has to be disjoint from the next occurring template string in the
template.

A template of a particular schema TS consists of all template strings to produce
a data record from the data of an arbitrary instance of schema S.

Consider the example schema S from above. The corresponding template will
be TS = tl1〈tl2 ∗ tr2 tl3 (tl4 ∗ tr4)? tr3 tl5 (tl6 ∗ tr6)? tr5 tl7 {tl8〈tl9 ∗ tr9 tl10 ∗
tr10〉tr8}tl7〉tr1. The symbol ∗ is a wild card for a data item and actually does not
belong to the template.

In Table 1, the values of the template variables are given for our example. The
template strings are listed pairwise in the table, which differs from their appearance
in the template TS . This illustrates better the partition of the tags. For instance, the
opening tag of the HTML element strong is covered in tl2 and its closing tag is
assigned to tr2. The template string tl7 contains two text instances to emphasize the
meaning of the respective data items. tr7 only contains the ending tag of the table
element, because it is left unclosed from template string tl7. tl4 and tr4 belong to
an optional type and thus these strings only occur, if an instance of this type exists.
Template strings belonging to a set type, like tl8, tr8, tl9, tr9, tl10, tr10, occur as many
times as instances of the set type occur.
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Table 1 Values for the template strings of the example in Fig. 4

Template
String Value

tl1 <div><img>

tr1 </div>

tl2 <strong>

tr2 </strong>

tl3 ε

tr3 <br>

tl4 <span>[

tr4 ]</span>

tl5 ε

tr5 ε

tl6 by

tr6 <br>

tl7 <table><tr><td>Format</td><td>Price</td></tr>

tr7 </table>

tl8 <tr>

tr8 </tr>

tl9 <td>

tr9 </td>

tl10 <td>$

tr10 </td>

2.4 Output Quality

Unless wrappers are tailor-made to handle input pages from a certain source, pro-
grams have its limitations. Generally extraction tools take different inputs as long as
they fulfill some constraints. To cover a range of possible input, as a consequence
the produced output is not perfect.

Errors in the data extraction process means the wrong interpretation of data as
template or vice versa. Data can wrongly be assumed to belong to the template,
or template tokens can be identified as data. The reasons for this can be schema
ambiguities, text tokens that can serve partly or fully as template, decorative tags
that are part of the data, multiple data items that are aggregated into a single text
string with only delimiter characters to separate them, and DOM tree level crossings
due to tags within data records.

The quality of the output is measured based on the extracted data. The standard
metrics are precision and recall. For this, we need three values:
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• the number of actual data items a, which are found in the input,
• the number of extracted data items e, which correspond to the output,
• the number of correctly extracted data items c.

The precision P is calculated as P = c
e , and the recall R is calculated as R = c

a .

2.5 The Problem of String Alignment

In the following we state the motivation for introducing the alignment problem for
the extraction of data items out of data records from web pages. Next we describe
the composition of the strings over an alphabet. This is followed by definitions for
the string alignment problem.

2.5.1 Motivation

Multiple string alignment or Multiple Sequence Alignment (MSA) is a computational
problem that has its origin in biology. Its significance lies in finding highly conserved
sub-patterns within a set of biological sequences [10, 32]. Another important reason
for its application is to infer the evolutionary history of species from their associated
sequences [10, 32]. The adjustment of multiple sequences is well studied for DNA,
RNA or for sequences from amino acids [10]. The same idea is applicable also in
other disciplines, for example in computer science for web data extraction.

The objective for our system is to get the data values for each distinct attribute
from the outgoing database query. For example, we want to place together all artist
names of music records or we want to get all album titles of the data records. Further
we want to determine the common template of the data records.

Unless the schema for record generation is straightforward, there are misalign-
ments in the input. A straightforward schema consists of basic types only. If all data
records conform to such a schema, then it makes the alignment a simple task. In this
case, the template is defined by the patterns that are found within every data record
and the data is mostly different from one record to another.

Usually, the schema includes optional, disjunctive and repetitive types. As a con-
sequence, the strings derived from the data records are misaligned. Misalignment
of data items means for example that some album titles occur wrongly in the group
of artist names. The objective of the alignment procedure is to move characters to
the right position. Characters from different strings should occupy the same position
within each respective string, when they represent the same type of information.

2.5.2 Alignment of Two Strings

Based on the work of Gusfield [11] and of Wang and Jiang [32], we describe formally
the problem of two-string alignment and the related functions.
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Fig. 6 An example for the
alignment of two strings 1 2

1 a a

2 c b

3 e c

4 d d

5 d e

�

1 2

1 a a

2 - b

3 c c

4 e -

5 d d

6 d e

Definition 1 Let X , Y be two strings. X is of length k and Y is of length l. The
strings consist of characters from an alphabet Σ . The alignment is achieved by
inserting space characters (−) at the beginning, at the end, or in between of each
string X and Y , such that the resulting strings X ′ and Y ′ have equal length m.
Resulting strings are placed next to each other, so that a character of the first string
X ′ is opposed a character of the second string Y ′. Thus the characters of X ′ and of
Y ′ are from the extended alphabet Σ ′ = Σ ∪ {−}.
Example 1 Let Σ = {a, b, c, d, e}, X = acedd, Y = abcde. A possible alignment
A consists of the strings X ′ = a − cedd and Y ′ = abc − de. Figure 6 visualizes the
input strings on the left side and the alignment is placed on the right side. Strings are
arranged column-wise.

This general definition only ensures that the resulting strings X ′ and Y ′ have
equal length m. Any two opposing characters in the alignment form either a match,
a mismatch or a character is opposite a space. A mismatch refers to the case when
the two characters are from the alphabet Σ and they are dissimilar. This is the case
for the last two characters in the example.

The alignment is a product [11]. It results as output of a procedure that requires
the two strings as input. There are several ways how an alignment is achieved. We
state some metrics for the alignment to be able to compare the achieved results later.
The score function and the value of the alignment are defined as follows.

Definition 2 Let Σ ′ be the alphabet for the obtained strings X ′ and Y ′. Let x, y be
any two characters from Σ ′. The score function s assigns a numerical value to a pair
of characters, s : Σ ′ × Σ ′ → N.

Definition 3 Let X ′ and Y ′ be the strings of an alignment A, where X ′,Y ′ are strings
over the alphabet Σ ′, each of length m. Let respectively xi , yi be the i th character
in X ′ and in Y ′. The value of the alignment V (A) is the sum of the scores of each
opposing pair of characters, V (A) = ∑m

i=1 s(xi , yi ).

Example 2 Let be Σ = {a, b, c, d, e} and Σ ′ = {Σ ∪ {−} }. The score s of two
characters x, y ∈ Σ ′ be
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s(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x = y, x, y ∈ Σ ′

1 if x = −, y ∈ Σ

1 if x ∈ Σ, y = −
2 if x 
= y, x, y ∈ Σ .

Consequently, the example alignment A with the strings X ′ = a − cedd and
Y ′ = abc − de has a value V (A) = 0 + 1 + 0 + 1 + 0 + 2 = 4.

Different alignment procedures result in different alignments. Further, each align-
ment procedure has an impact on the resulting value of the alignment. In other words,
the resulting value V (A) states the goodness of an alignment. The question arises
what the best possible alignment is.

Definition 4 The optimal alignment is an alignment A, which has the minimum
value for V (A).

According to Gusfield [11], the optimal alignment is closely related to the
(weighted) edit distance problem between the two strings.

2.5.3 Alignment of Multiple Strings

Based on the work of Gusfield [11] and of Wang and Jiang [32], we describe formally
the problem of the alignment of multiple strings and a related function.

Definition 5 For multiple string alignment, the input is a set of strings X =
{X1, X2, ...Xn}, n > 2 over the alphabet Σ . Each string is extended by chosen spaces
at the beginning, at the end or in-between any two characters, such that all resulting
strings have the same length, denoted to bem. The resulting strings are positioned into
a two-dimensional array, which has m rows and n columns. Each column contains a
string. Each row contains characters or spaces from the n different strings.

The computation of an optimal alignment of n strings, each with a string length of
k, has a time complexity of O(kn) [1, 5, 24]. This is feasible for a very small number
of strings [11]. Hence the computation cannot be handled practically if n becomes
large. Consequently, methods were developed that are faster in computation, but they
cause some errors. Such methods are denoted as approximation algorithms, as is the
algorithm presented in Sect. 3.4.

In order to measure the quality of alignment for multiple strings we use the sum-
of-pairs, which is defined as follows:

Definition 6 Let X ′ = {X ′
1, X

′
2, ...X

′
n}, n > 2, be the set of strings belonging to an

alignment A. Then the sum-of-pairs measure of the alignment A is the sum of the
score values for all pairs of strings from X ′.
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Then, the sum-of-pairs alignment problem is to find the alignment of multiple
strings with minimum sum-of-pairs value [11]. Wang and Jiang proved that this
problem is NP-complete [32].

Generally, the value of the alignment is a theoretical measure. Gusfield [11]
pointed out that the goodness of alignment should be measured by the biological
meaning. The same applies to web data extraction: It is more important to evaluate
the number of correctly determined data items than to measure the sum-of-pairs.

3 Design of the System for Web Data Extraction

In the following we describe our system for web data extraction. It starts with an
overview of the developed system to get the global overview of the processing steps.
Next, the required pre-processing is explained. The pre-processing covers the prepa-
ration of the input to acquire a matrix for subsequent alignment. This matrix has
certain properties depending on the input, i.e. the data records from the web. The
algorithm described in Sect. 3.4.2 gives an idea how to align a matrix sequentially.
The intention for its presentation is to simplify the understanding of the parallel algo-
rithms for alignment, which will be given in Sect. 4. Finally, we describe optional
post-processing of the output matrix.

3.1 Overview of the System Modules

Our developed system consists of five modules as illustrated in Fig. 7. The arrange-
ment of the modules is inspired by the work of Kayed and Chang [14].

Fig. 7 Processing modules including I/O
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A set of HTML documents serves as input, where each of them contains the HTML
code for a record. The input files are parsed and a sequence of tokens is created. The
next module produces a matrix based on the created tokens. Moreover it assigns a
symbol to each token, respective matrix element. This concludes the pre-processing.

The actual core module consists of the parallel alignment, where we focus on fast
and accurate computation. There are two versions of the (parallel) adjustment, which
we want to compare by their execution time. Both adjustments lead to an aligned
matrix as output.

The data extraction and data review complete our system for web data extraction.
The post-processing was relevant during the development of the system to ensure
accurate output of the alignment. Since in our experiments we focus on minimizing
the execution times of the alignment, we may stop at this point. Hence, the post-
processing modules are optional.

3.2 Creation of Token Sequences

After removing unneeded content, such as comment tags, line breaks, and non-text
spaces, every HTML code snippet is parsed and stored intermediately in a DOM tree.
The tree representation simplifies the partitioning procedure. Moreover, the DOM
tree nodes contain relevant information, which is required for the symbol assignment.
Further it is relevant for the alignment at which level a token corresponds to a node
in the DOM tree.

Each DOM tree is traversed in pre-order. During the traversal we create one or
two tokens per tree node. A single token results from an empty tag like <img> or
<br>. Empty tags are HTML tags, which do not have any content between their
opening and closing tag pair. Therefore, the closing tag is usually omitted. Also, one
token results from the text content of a tree node. Two tokens derive from tree nodes
that represent opening and closing tags. In between two produced tokens, the token
sequence of the child tree nodes is inserted. The procedure starts with the pair of tags
from the root node and it puts all sequences deriving from the sub-trees in between.
The procedure continues recursively until all tree nodes have been processed. The
result is a sequence of tokens, which in principle partitions the input HTML string.

Figure 8a shows the resulting tokens for the example in Fig. 4. Different text values
are represented by the term text in the figure.

As a next step, we create a two-dimensional array. The tokens belonging to a
sequence are mapped to a column in the matrix. So the width of the matrix is the
number of sequences, respective the number of data records. The mapping preserves
the order of the tokens in the sequences. The matrix height is the maximal length
of a sequence from the set of token sequences. Shorter sequences do not fill the
entire column with elements. Each element that corresponds to a token contains the
following fields:
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Fig. 8 a The tokenization of
the data records from the
example in Fig. 4. b The
assigned symbols to the
tokens from (a)

(a) (b)
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• The position in the matrix, given by the column index and the row index.
• The level, derived from the corresponding DOM tree node.
• The symbol, which is the primary indicator for alignment.

3.3 Symbol Assignment

For the symbol assignment we try to preserve structural features. The structure infor-
mation derives from the DOM tree nodes. Such features give us valuable hints for
the subsequent alignment. Each DOM tree node is associated with a token. Con-
sequently, the similarity of elements or tokens is referred to the similarity of the
associated tree nodes/tags. Tags are similar if they have the same name and type.
Furthermore, it is evaluated whether their class attributes are equal or the path in
the DOM tree is equal. We want to achieve that tokens that most probably belong
to the same part of the template, are represented by the same symbol. Symbols are
implemented by consecutive natural numbers.

In case of text tokens, only the tags which encapsulate the text are concerned,
since the text belongs to data and not to the template structure. If these surrounding
template tokens have the same symbol, then the text in between similar template
tokens very likely belong to the same data item.

In principle, all tokens are compared with each other. The same symbol is allo-
cated if the tokens have at least the same tag name and the same tag type. These
criteria reduce the number of necessary comparisons of tokens. Hence the tokens are
partitioned into groups by tag name and tag type. In the implementation all tokens
belonging to a group are compared, since tokens from other groups certainly have
different symbols.

Further conditions are evaluated only for tokens in a group. Such a condition tests
whether each of the both associated tags has an attribute named class. If the class
attributes are equal, then the same symbol is assigned.

The class attribute of tags is used to connect them with certain style information.
The style instructions, such as font shapes or positions on the web page, are stated
within a Cascading Style Sheet (CSS) document. In the CSS file the value of the
class attribute is referred as selector. The advantage of the class selector is that it can
be assigned arbitrarily often in contrast to the id selector. However, tags are most
likely to concern the same template token if the tags have equal name and type and,
further, if the tags have the same value of the class attribute. If the same style is used,
then tags probably have the same meaning. In our case, the same meaning applies to
the common part of the template.

The evaluation of the class attribute fails if it is absent in one or both cases. If
one attribute value is missing, it means the same as in case different attribute values
occur, so different symbols are assigned. If both tags do not have any class attribute,
then the paths are compared. A path consists of successive tags in the DOM tree,
which starts at the root and end at the desired node. Here also the equality leads to
the same symbol.
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The symbol assignment is a sequential task, such that symbol assignment depends
on previous determined similarities between tokens. We use transitive relations to
abbreviate the necessary comparisons between tokens. If there are 3 tokens and 2 pairs
of them are already identified as similar, then the third pair combination needs not to
be computed. The transitivity holds for both, the condition for equal class attributes
and the condition for the equal path from the root, but only without considering the
node positions. In addition, the initial segmentation of tokens by their name and
type also reduces the computational demand. We summarize the computing steps for
symbol assignment in Algorithm 1.

Algorithm 1 SymbolAssignment(T, M)
computes the symbols for all generated tokens. The input for the symbol assignment is a data
structure T that keeps the sequences of tokens. The output is given by the symbol values for the
elements in the matrix M . Symbols are represented by consecutive natural numbers.

(1) Get the list of distinct combinations of tags and their respective type from T . The list contains
e.g. <a>,</a>,<br>,<div>,</div>, etc.

(2) For each list entry from step (1) get all tokens with same name and type, e.g. all tokens with
the tag <a>. Execute steps (3) and (4) for each token set.

(3) For each ordered pair of tokens (ti , t j ), where i < j , and tokens belong to the same set after
step (2), if at least one of the tokens does not already have a symbol:

(a) If class attributes of ti and t j are equal, assign the tokens the same symbol. If ti has a
symbol, then assign this symbol to t j and vice versa. If both do not have a symbol, then
give both of them a new symbol.

(b) If both tokens have no class attribute, then the nodes on the path are compared, which
lead to the next ancestor node with class attribute or the root nodes. If paths are equal and
the ancestor nodes have the same class attribute, assign them the same symbol. Also, if
the paths lead up to the root nodes and the entire path is equal without considering the
nodes’ positions, then assign the tokens ti and t j the same symbol.

(4) If a token ti has no symbol assigned after step (3), then a new symbol is attached to ti . The
same applies to t j .

Figure 8b shows the assignment of the symbols in case of the example in
Fig. 4. For better understanding, symbols are displayed as letters. Mostly tags with
the same name and type have equal symbols. Exceptions are characters for tags
<tr>,</tr>,<td>,</td> and characters for the different strings denoted as
text. The <tr> tags have different symbols because the values of their class
attributes differ (head_row versus content_row). The same argument holds
for the corresponding tags </tr>. The tag pairs for td have different values just
like the tokens of the table row, because the equality of class attributes of the parent
nodes are checked as well. Different characters for the text depend on the ancestor
nodes of the trees.
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Comparison with the Related Procedure of FiVaTech Our symbol assignment
module has the same purpose as the peer node recognition of the FiVaTech system
in [14]. Conceptually we also compare each token with each other, but the algorithms
are completely different. Kayed and Chang [14] utilize a tree matching algorithm
to compute a similarity score for each pair of two tags, respective their DOM tree
nodes. Their algorithm accepts different text values in the leaf nodes as a match.
Furthermore, repetitive nodes in the trees are considered. The computed score is nor-
malized such that it can be compared with other scores. Basically similar structures
of the sub-trees induce the assignment of the same symbol. So the score is calcu-
lated depending on descendant tree nodes. In contrast, we use the structural features
directly connected with nodes or the structure information of ancestor nodes.

3.4 Matrix Alignment

Before we describe the sequential algorithm for matrix alignment, we introduce
some definitions for the computation. It gives a view about the functionality of the
alignment in general. Also, it gives an idea about which parts have the potential for
parallel implementation.

3.4.1 Alignment Preliminaries

An aligned row contains elements that all have the same symbol. Additionally, an
aligned row can contain empty elements, which correspond to spaces defined in
Sect. 2.5. Our algorithm does not allow any misalignments. This means that, after
the alignment of a row, there can only be one symbol. Hence, other elements are
moved, such that they do not longer occupy the aligned row.

A shift operation corresponds to the insertion of spaces between two elements
in the matrix, and these elements are above each other. All applied shifts together
transform the unaligned matrix into the aligned matrix. Obviously, with the shifts
the height of the matrix increases.

The alignment algorithm computes the necessary shifts. Relevant for shifts are
the row r , the column c, and the length l. Thus, the shift operation is performed
for all elements in the referred column c and in or below the row r by a certain
length l. The length l is equal or greater to 1 (negative values are not allowed, 0
indicates that no shift needs to be performed).

In case elements are shifted by a length of 1, the foremost aligned element is
considered for the adjustment of the next row again. If k is the height of the input
matrix, then, in the worst case, k elements are shifted down in a column.

The alignment algorithm is mainly based on the positions of the symbols in the
matrix. These positions are characterized by position parameters rdown , rup and span,
which will be defined below. Basically, the definitions are similar to the definitions
made by Kayed and Chang for FiVaTech [14].



Parallel Algorithms to Align Multiple Strings in the Context of Web Data Extraction 545

Definition 7 If a symbol s occurs in the current processed row r , then rdown is the
nearest row below r , rdown > r , where s also occurs. In addition, the symbol s has
to be in a different column in rdown . That means if s is found at possible multiple
positions (r, ci ) and (rdown, c j ), then ci 
= c j ,∀i, j .
Definition 8 If r is the current processed row, then rup defines the nearest row above
r , r > rup, where the symbol s is also found. The parameter rup is related to a row
that is already aligned, due to the fact that the matrix is aligned row by row starting
at the top.

Definition 9 The span of a symbol s is the maximal distance of two subsequent
occurrences of s in a column, taken over all matrix columns. The distance is defined
as the difference of row numbers, where s occurs in a column.

These parameters are computed per symbol and for each alignment step. An
alignment step means an iteration of a matrix row. An adjustment of a matrix row
may cause the shift of elements in the matrix if different symbols occur in a row.
When it comes to the shift of elements, these elements (symbols) change their row
positions. With an update of the row position the previous calculated parameters
become invalid.

The definition of span differs here from the source definition in FiVaTech, such
that we do not consider repetitions of symbols between two occurrences of s. One
reason is the subsequent parallel algorithm with symbol distribution. There, it is
impractical to determine possible repetitive symbols between two symbol occur-
rences in a column, because such symbols may be processed by another instance.
The second reason is the meaning of the symbols. In the original definition, symbols
of the matrix represent tree nodes of the same level and it is useful to consider rep-
etitions, whereas in our system the matrix consists of elements concerning all tree
levels. Additionally, tree nodes are split up in start tag and end tag as far as they exist.
Hence, the span measures the distance between two symbols of the same starting tag
or the same end tag. The span value gives the maximal number of produced tokens
from the underlying sub-trees plus eventually the number of some other tokens until
the symbol appears again. The sub-trees of nodes with the same symbol may differ
in size. Consequently, the number of symbols is different, because they cover all
subordinate tree levels.

Example 3 Figure 9 shows a partially aligned matrix. The arrow indicates that row
4 is the current row to adjust. For the symbol a, rdown is 6, because a in row 5 cannot
be considered for rdown . For symbol a, rup is equal to 1 and the span value is 5.

3.4.2 The Algorithm for Sequential Matrix Alignment

As already pointed out, the sequential algorithm is the basis for our parallel versions
for matrix alignment. Although not implemented, it is formulated and presented by
Algorithm 2 solely to understand the entire system.
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Algorithm 2 SequentialMatrixAlignment(M)
aligns a two-dimensional array M of size k × n. The output is the matrix M ′ of size m × n.
Practically, the algorithm updates row indices of elements in M , which correspond to shift down
of elements. The shifts of elements cause spaces in the affected matrix columns. Empty elements
correspond to these inserted spaces and they need not to be stored. The aligned elements are put in
the output matrix M ′, where each element has the same symbol as the other elements in the row.

(1) Creation of necessary data structures.
The list sr_objects keeps sr_obj tuples of a row. Each tuple of type sr_obj merges the
information concerning a symbol in a row. A sr_obj contains the values for rdown , rup and
span, the level, the count of elements with the actual symbol, and a list of the columns where
these elements are found. The array shi f ts_col keeps the shift lengths per column for a row
iteration.

Steps (2)–(6) are performed iteratively row by row.

(2) Collect elements of the current row r into the set Er , where Er does not contain empty elements.
(3) Determine from Er the distinct symbols, denoted as set Sr .

If |Sr | = 1, then the row is aligned. Go to step (2) for the next row r + 1.
(4) For each symbol si in Sr , determine necessary values for alignment as given in steps (4a)–(4e),

and store them in a structure sr_obj per symbol.

(a) Count the occurrences of si in Er .
(b) Store at which columns si occurs in Er .
(c) Determine the maximal level of si from Er .
(d) Compute rdown for si from M .
(e) Compute rup and span for si from M .

(5) Compute the alignment of row r .
Determine the symbol that remains in row r from a list sr_objects of all sr_obj . Details for
this (sub-)algorithm are given in Sect. 3.5. It returns the shift length for each matrix column in
an array shi f ts_col.

(6) Apply shift operations.
Update row values of elements for each affected column in row r and below. Continue with
the next row to align at step (2), except no more rows are left.

(7) Transform M to M ′.
Create a new matrix, where elements are positioned due to their alignment.

Fig. 9 A partially aligned
matrix to demonstrate
position parameters

1 2 3

1 a a a

2 b b b

3 c c c

→ 4 a d d

5 a e e

6 f f a
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3.4.3 Time Complexity

For Algorithm 2, we now state the theoretical time complexity considering the worst
case. The time for sequential matrix alignment Tmat is evaluated with respect to the
matrix width n, the height k of the input matrix, and the heightm of the output matrix.
We evaluate Tmat as a sum of times for each of the steps of the algorithm.

Since the construction of temporal data structures requires a constant number of
operations, the complexity of step (1) is

T1(n) = O(1) .

In the worst case there are n different elements in step (2) for one iteration. The
number of iterations is given by the height of the output matrix. Therefore,

T2(m, n) = O(mn) .

When each element carries a different symbol, the loop in step (3) needs, again,
n computational steps for each of m iterations, so

T3(m, n) = O(mn) .

Step (4) is computed per symbol in each row, which means mn times. Steps (4a)–
(4c) are linear with respect to the different symbols in the row, so a maximum of
n computing steps per row are required. The position parameter rdown is computed
in step (4d), which takes a maximum of (k − 1)(n − 1) operations per symbol and
per row. For the computation of rdown , only symbols in the rows below the current
row must be considered. Computing rup in step (4e) takes a maximum of (k − 1)n
comparisons per symbol and row. It is sufficient to consider only the rows above the
current one. The calculation of the span value in (4e) requires looking at each matrix
element, which results in kn computational steps per symbol and row. Altogether,
the complexity is

T4(k,m, n) = O(mn2 + kmn2) .

The time complexity for step (5) is O(n) for each unaligned row. For details see
Sect. 3.5. Hence,

T5(m, n) = O(mn) .

Applying shifts requires a maximum of k(n − 1) steps per row, because rows at or
below the current one are affected, giving

T6(k,m, n) = O(kmn) .

The transformation of the matrix requires kn computational steps, thus

T7(k, n) = O(kn) .
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The computation of the position parameters dominates the theoretical time
requirements as given in the time estimation for step (4). Hence, the sequential
matrix alignment requires Tmat = O(kmn2) time.

In [14], a time complexity of O(k2n2) is given. This is because of the computation
of the span value, which influences to the greatest extent the worst case estimation of
the time. If an element is shifted, then its symbol occurs again in a row below and we
need to compute span and the other position parameters again. Due to the executed
shifts, the parameters may change. The repetitive computation of parameters affects
more rows than k. Precisely, these parameters need to be determined maximal m
times for maximal n different symbols. Thus, the span value is computed in kn steps
and this explains our worst case estimation.

3.4.4 Space Complexity

Space requirements are dominated by the size of the input matrix, which is k × n.
All other necessary data structures are linear to the number of the columns n. The
structures are reused in each row iteration. These are the list for elements Er , the
array shi f ts_col and the list sr_objects. An entry of sr_objects is of type sr_obj .
The structure sr_obj needs 5 integers to store the position parameters, the level and
the count. Theoretically a sr_obj tuple has additionally a variable component. The
field for the columns, where the designated symbol is found, can be realized through
a list. Such a list has between 1 and n entries. In fact, the number of all list entries is
bounded by n. For the computation of the alignment decision for a row, O(n) space
is required. Summing up, in total O(kn) space is required.

3.4.5 Comparison with Matrix Alignment of FiVaTech

Algorithm 2 is an adaption of the matrix alignment algorithm presented by Kayed
and Chang [14, Fig. 8]. In the following, we figure out the distinctions.

• Our matrix contains symbols related to any token from the data records. The matrix
in [14] is related to tree nodes on the same level under a common parent node from
the trees that represent the records. Furthermore, there is not a single matrix to
align. Indeed the matrix alignment procedure is called recursively to cover all
nodes in the trees.

• In [14] a row is aligned, if either the same symbol occurs in the non-empty ele-
ments or the row consists of symbols corresponding to variant leaf nodes. Variant
leaf nodes are text nodes with different text values which result in symbols that
occur only once in the matrix from their symbol assignment. Further img tags
are candidates for variant leaf nodes, if the src attributes differ. In our system
design, we do not distinguish text tokens by their values and img tags are treated
like other tags. Consequently here are no variations to consider. In our system a
row is aligned, if and only if the symbol is the same in every non-empty column.
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• In [14], the columns are processed iteratively for row alignment. That means the
computation of the shifts depends on the order of the elements. We changed the
decision about shifting to be based on the symbols, because elements with the
same symbol in the same row should be shifted the same length.

• The alignment algorithm in [14] returns a list of the symbols corresponding to
the aligned matrix. In our system, we return the aligned matrix. The difference
is associated with the next processing step in which the systems require different
return types. They perform pattern recognition on the returned list of symbols,
whereas we extract data items from the obtained matrix.

3.4.6 Potential for Parallel Algorithm Design

While iterating the matrix rows, the current processed row gets aligned. Due to the
shift operations, the alignment of a row depends on all previously aligned rows. It
is crucial for the design of parallel algorithms. In fact, it restricts the concurrent
processing of rows. Therefore, it would be ineffective to compute in parallel the
alignment of the rows.

What indeed can be parallelized is the inner loop at step (4). Parameters for
different symbols can be computed individually. Also step (6) contains potential
for parallelism. Here, the shift operations can be executed per element individually.
Subsequently we identified two possibilities to decompose the elements, once by
symbols and once by columns. As a consequence, steps (2) and (3) are adapted
for the chosen decomposition. The elements and the symbols can be determined in
parallel for a given row.

For the alignment procedure at step (5), we noticed that this is a sequential task.
Thus it can be either performed by each process or one process computes the deci-
sion and communicates it. We applied the latter approach by including an additional
process. We note that processing the alignment decision that way minimizes com-
munication cost.

3.5 Alignment of a Matrix Row

Our algorithm for row alignment is similar to the functiongetShiftedColumn()
presented in the source paper [14]. Like the original algorithm, we implemented this
function based on rules.

3.5.1 Details of the Algorithm

Basically, the alignment algorithm (Algorithm 3) requires the elements of the row
and the positions of all related elements anywhere else in the matrix. The related
elements are the ones with a symbol that is also found in the current row. The
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Algorithm 3 AlignElementsOfTheRow(sr_objects, r)
computes which symbol should be kept in the row r and shift lengths for all other symbols.
The input is given in sr_objects, which is a list of sr_obj tuples. A tuple of type sr_obj summarizes
elements in r with the same symbol. Thus it stores the count of the symbol s in r and it stores the
columns, where s is found in r . Furthermore, it contains the previously computed values rdown , rup ,
span and level.

(1) Create necessary data structures shi f ts_sym and shi f ts_col.
The array shi f ts_sym stores the shift lengths for each symbol. The array shi f ts_col is
designated to store the shift lengths per column.

(2) Determine a symbol to stay.

(a) Select a symbol to stay, if rup and span exist for it and if the condition r − rup = span is
fulfilled for that symbol. If multiple symbols fulfill this condition, then choose the symbol
to stay that has the most associated elements in the row.

(b) If a symbol is determined to stay according to step (2a), then set for all other symbols
the shift lengths in the array shi f ts_sym. The shift length is 1 if rup and span exist for
a symbol and r − rup < span. Otherwise, the shift length is (rdown − r) if rdown exists
for a symbol. In all other cases, the shift length is 1 for a symbol.

(3) Determine shifts upon rup and span if at least two symbols are remaining after step (2).

(a) If rup and span exist for a remaining symbol and r − rup < span, then set its shift length
to 1.

(b) If all remaining symbols are supposed to be shifted, then no symbol would stay in the
current row r . In this case, select the symbol with the highest level value to stay in r . If
it cannot be decided by the level value, then choose the symbol with the lowest symbol
number to stay. The shift length is reset to 0 in shi f ts_sym for this symbol.

(4) Determine shifts upon rdown if at least 2 symbols are left after step (3).

(a) If rdown exists for a symbol, then set its shift length to (rdown − r).
(b) If all remaining symbols are supposed to be shifted at step (4), then determine the symbol

to stay like in step (3b).

(5) If there are at least 2 different symbols left in the row after steps (3) and (4), determine which
symbol will stay in the row.

(a) Select the elements with the most occurrences of a symbol in r to stay. In case of ambiguity,
select the symbol with the lowest value to stay.

(b) Set the shift length to 1 for remaining symbols that have not already assigned a shift
length.

(6) Transfer shifts per symbol to shifts per column.
Determine per sr_obj the columns of a symbol and then put the shift length concerning that
symbol into shi f ts_col for each relevant column.

(7) Return shi f ts_col.
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position parameters rdown , rup and span depend on the symbol and the current row.
The elements which are associated with a certain symbol, are subordinate for the
alignment. Consequently, we choose a structure that contains data per symbol as
input. Another reason concerns the performance: The number of symbols in a row
is less or equals the number of elements in a row. So we need to evaluate rules on
fewer entries.

We apply heuristics for the distribution of symbols in the matrix. Step (2) covers
the case when the span value is reached for at least one symbol. That means such
a symbol occurs repeatedly in a column and the maximal distance between two
occurrences is found for at least one symbol. Here the designated symbol has to be
kept in the current row. The example in Fig. 10 shows the application of the rule in
step (2). Therefore, row 3 needs to be aligned and symbol a is forced to stay.

The rule in step (3) applies to repetitive occurrences of a symbol in a column
including optional symbols in between. The span value gives therefore the maximal
distance between two consecutive elements with the same symbol in the same col-
umn. If the condition r − rup < span holds, then it indicates, whether the symbol is
within the span. If the symbol is within the span, then the concerning elements need
to be shifted to get a consistent alignment. Figure 11 shows how this rule is applied
to symbol a.

Step (4) of the algorithm forces elements to be shifted down to reach rdown .
Therefore, the number of elements with the same symbol in row rdown increases.
Remember that the parameter rdown states the nearest row below the current row r ,
where an element with the same symbol occurs. Additionally, the column of this

Fig. 10 Demonstration of
the rule, when
r − rup = span

1 2

1 a a

2 b b

→ 3 a c

�
1 2

1 a a

2 b b

3 a -

→ 4 - c

Fig. 11 Demonstration of
the rule, when
r − rup < span

1 2

1 a a

2 b b

3 c c

4 a a

5 b b

→ 6 d a

�

1 2

1 a a

2 b b

3 c c

4 a a

5 b b

6 d -

→ 7 - a
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Fig. 12 Demonstration of
the rule to align symbols by
rdown

1 2 3

1 a a a

2 b d b

3 c - c

4 - - d

�
1 2 3

1 a a a

2 b - b

3 c - c

4 - d d

element differs from all columns where the symbol is found in r . This rule has its
application if symbols occur optionally. From a global point of view, this means there
is some optional data in the data records. Figure 12 gives an example for this case.
Here, the alignment of the second row causes the symbol d to be moved to row 4.

Step (5) of the algorithm contains commands for the default case. It is applied to
symbols without any other occurrences in the matrix. Such symbols usually derive
from leaf nodes from the DOM tree. A suitable criterion is the count of the symbol
for the current row. If the remaining symbols occur equally often, then the symbol
with the lowest value is kept in the row r .

At some points we utilize the level value to decide secondly which symbol will
stay in the current row. The level value indicates how deep in the DOM tree the
node has been found. A high value of level means that the element derives from a
tree node near the leaf. Tags concerning the structure of the HTML from the data
record are situated near the root node in the DOM tree. Those elements have a low
level value. On the other hand, elements that are related to data items have a higher
level. Data is usually represented as text and text is positioned in the leaf nodes of a
DOM tree. The level is given per element, so the maximal value is calculated, when
elements with the same symbol are subsumed.

For example, let us assume that there is a conflict between two symbols as it is
illustrated in Fig. 13. The first symbol of the conflict concerns an opening tag of a
HTML hyperlink <a>. The second symbol concerns a closing tag of a HTML list
item </li>. Both symbols have a value for rdown . The hyperlink is nested within a
list item, so the symbol f for the tag <a> has a higher level. As a consequence, the
second symbol d needs to be moved down. In such a case, there are some missing
tags in a data record. This causes the premature end of the list item concerning the
second symbol.

By design it is ensured that the algorithm terminates. After each step one or more
symbols are left for the current row. If only one symbol is left for the row, then the
subsequent steps are not evaluated. Otherwise, the next rules are applied.

Finally, the shift lengths per symbol are transferred to another array. In the target
array are the shift lengths laid out for the row, i.e. each entry corresponds to the shift
length for a certain column. Due to the fact that elements below the current row are
affected from being shifted down, it is necessary to return a column-based array. A
shift length of a symbol s is assigned to all columns, where the elements occur with
the symbol s.
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1 2

1 <ul> <ul>

2 <li> <li>

3 text text

4 <a> </li>

5 text </ul>

6 </a> <a>

7 </li> text

8 </ul> </a>

1 2

1 a (1) a (1)

2 c (2) c (2)

3 e (3) e (3)

→ 4 f (3) d (2)

5 e (4) b (1)

6 g (3) f (1)

7 d (2) e (2)

8 b (1) g (1)

�

1 2

1 a (1) a (1)

2 c (2) c (2)

3 e (3) e (3)

4 f (3) -

5 e (4) -

6 g (3) -

7 d (2) d (2)

8 b (1) b (1)

9 - f (1)

10 - e (2)

11 - g (1)

Fig. 13 Demonstrates the shift depending on the level of each symbol

3.5.2 Time Complexity

The input of the algorithm is the number of columns, denoted as n. In the worst
case, all elements have a different symbol and in each column an element exists. In
average, some empty elements are found in a row through shifts and these entries
need not be considered for the alignment.

Step (1) is carried out in constant time. The evaluation of the rules (steps (2)–(5))
is linear to the input list. It maximally takes two times to go through the list. The
evaluation of which rule is applicable to which symbol requires n computing steps.
If the symbol parameters are all equal, then the refinement of the decision is carried
out in maximal n further steps. Thus, the rules computation concludes in O(n). Step
(6) can be computed in linear time to the length of the output array, which is n.
Altogether, computation of the alignment for a row takes O(n) time.

3.5.3 Space Complexity

For the required space we neglect some counter variables. We need two arrays for
the shift lengths, which makes 2n in worst case. An additional array helps to note
which rule applies to which symbol, again this requires n memory positions in worst
case. In total, the space requirement is O(n).
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3.5.4 Comparison with Row Alignment of FiVaTech

Our row alignment algorithm is based on the function called getShiftColumn()
presented in the FiVaTech paper [14]. We carefully studied the presented rules to
select symbols to be shifted. The situation leaves opportunities to introduce improve-
ments. The algorithm for row alignment is essential for the outcome of the alignment
of the entire matrix.

As already pointed out, our algorithm decides about the shifts for the different
symbols in contrast to an element based decision. The algorithm in [14] considers
the rules for the elements. Additionally, the authors mentioned to abbreviate compu-
tations and take advantage of already determined results for elements with the same
symbol in the row.

In our case, the alignment of a row results in elements with equal symbol. In [14],
the aligned row may contain different symbols because of the definition for variant
leaf nodes. For FiVaTech, a row is also aligned if the symbols in the row belong to
text nodes from the DOM tree with different text values or the symbols belong to
nodes with <img> tag and different values for the src attribute. We already handle
this situation with the different kind of symbol assignment.

Considering the original presented rules within function getShiftColumn(),
we reverse the order of the three rules.

Step (2) considers rule R3 in [14]. The original formulation leaves some space for
interpretation. We decided to choose a symbol to stay in the row, when the condition
r − rup = span is fulfilled. This condition prevents empty rows in the aligned matrix.

The rule applied in step (3) is based on the presented rule R1 in [14]. The only
distinction here is, that we do not consider the order of the columns. Columns may
be permuted, because their order depends on the input order of the data records. In
case all symbols in a row could be shifted due to R1, the last column stays according
to the original definition. This leads to a non-deterministic behavior, which we avoid
by extending this rule with other criteria and also in the other cases.

Step (4) shifts elements according to rdown , as with rule R2 in [14]. This rule
implies a higher shift value and so it produces more empty elements, which need
not be considered for alignment in the subsequent rows. So it reduces computation
effort. In case, we consider a symbol that is the first of a repetition, which means
span exists, but rup does not exist, it makes sense to shift elements according to
step (4). Another case is if the symbol occurs once in every column, i.e. span and
rup do not exist.

In step (5), we introduced another rule as the default case. It selects a symbol to
stay, if symbols are left. Remaining symbols are shifted down to the next row.

3.6 Data Extraction

Relevant data can be extracted from the aligned matrix. The output of this module is
a table with the assumed data items. A table column ideally contains the data for a
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data item from different data records. Due to the fact that the output of the alignment
is error-prone, the assumption of a data item per column may fail.

We consider text values of text tokens as possible data items. For text tokens it is
necessary that the values are distinct in a row. Otherwise, text tokens are considered
to belong to the template. For example, an aligned row contains text elements that
all have the content “Price:”.

The challenge of decorative tags is not covered in this post-processing module,
because our focus is on the parallel alignment module. As a consequence, decorative
tags from the input forces a data item to be separated into several parts in the output.
For example, if individual words are marked as important in a continuous text block,
then the necessary formatting tags <strong> and </strong> cause the partition
of the text block into multiple tokens. This tokenization schema results in multiple
data items, although there should be one item.

From the point of view of the input data types, we are able to recognize optional
data items. Optional data is indicated by empty elements in an aligned row, whereas
the other elements in such a row contain text values. The recognition of repetitive
and disjunctive data is left for further improvement in this work.

3.7 Review Extracted Data

In the last module we provide a procedure to measure the quality of the web data
extraction. Concretely, the extracted data is compared with the actual data. The
extracted data corresponds to the produced output from the data extraction module.
The actual data is the desired outcome of the system. A user must define which data
is actually denoted as correct. However, we provide a procedure that takes a .txt
file as input for the actual values.

The quality is measured in terms of precision and recall. That means the actual data
items and the extracted data items are counted. Furthermore, the values are compared
and matches count as correctly identified data items. From this three count variables
the precision and the recall are determined.

4 Parallel Algorithms

Based on the sequential algorithm of Sect. 3.4, we develop parallel algorithms using
the message passing paradigm. Message passing is chosen instead of shared memory
programming due to reasons of hardware independence and better cache coherence
when accessing local copies of data.

There are two approaches how to apply data parallelism to the algorithm, one
being a decomposition of data along different symbols, as presented in Sect. 4.1, the
other one a decomposition along columns of the matrix, as presented in Sect. 4.2.
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We utilize a hybrid approach that is a combination of the data-parallel model and
the master-worker model. The master process performs all computations before and
after the matrix alignment. During the row iterations, the worker processes prepare
the data and then the master process makes a decision about the alignment of each
row. Handling the decision by only one process reduces the number of necessary
messages by avoiding all-to-all communication when each worker process would
have to collect global information to make decisions redundantly. Also, contention
is reduced when I/O is delivered from and to one process.

4.1 Parallel Matrix Alignment with Element Distribution by
Symbols

In this version, matrix elements are partitioned by their symbols. The communica-
tion path is always between a worker process and the master process to keep the
communication at a minimum. The alignment parameters rdown , rup and span can be
computed for every symbol individually. These parameters depend only on positions
of other matrix entries with the same symbol. Additionally, the shifts on matrix ele-
ments can be applied independently from each other. The resulting parallel algorithm
is presented as Algorithm 4.

4.1.1 Details of the Algorithm

The number of employed worker processes is limited by the number of different
symbols. However, it turned out that the symbols outnumber the processes in our
experiments. We made the load distribution dependent on the chosen number of
processes. This design gives us flexibility to vary the number of processes. Hence,
the element sets per symbol are accumulated to larger sets. Each worker instance
handles such a portion of elements. Therefore, the per-process sets are built according
to balance the working load.

The distribution works as follows: The occurrences of each symbol are counted
in a single pass of the matrix. Next, the symbols are sorted in descending order by
their occurrences. Next, the elements for a symbol are assigned to a process in a
round-robin fashion. The first process gets the elements with the symbol that has the
most occurrences. The second process gets the elements, where the symbols have
the second most occurring number. This continues until all elements are distributed.

The workers compute their symbol’s parameters and make them available to the
master. The master process computes the different shift lengths per column and it
broadcasts the shift lengths. The worker processes apply the shifts according to the
received messages on all relevant elements. As mentioned before, shifts also affect
elements in rows below the current one. Hence a worker needs the shift lengths for
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Algorithm 4 ParallelMatrixAlignmentWithDistributedSymbols(M)
computes the alignment of the input matrix M of size k × n. The output is an aligned matrix M ′
of size m × n. The computing steps are performed by a master process and p worker processes,
p ≥ 1. At each matrix row, the workers prepare the relevant information in parallel and sends it
to the master, which then decides which elements remain in the current row. After that, shifts are
performed by the workers simultaneously.

(1) Creation of necessary data structures.

(a) Each worker process creates a tuple sr_obj to store the position parameters rdown , rup ,
span, the level of the symbol, the number of elements with the symbol as count value,
and the column numbers of the elements with the concerning symbol.

(b) The master process creates an array of tuples sr_objects to keep the same values of all
symbols in a row, an array of integers shi f ts_col to keep the intermediate shift values
for a row, and an array of integers lengths to store the intermediate row lengths for each
column.

(2) The master determines the distribution of elements of the matrix M . Due to the matrix prepa-
ration, the master process holds the complete matrix.

(a) Partition the set of matrix elements by the symbols. Elements with the same symbol si
form a set Esi , Esi ∩ Es j = ∅ ∀si 
= s j .

(b) Distribute sets Esi among the worker processes. Elements from different sets Esi are
merged to a larger set of elements Ew , which are sent to the worker process w.

Steps (3)–(5) are performed iteratively row by row.

(3) Each worker process prepares data for the alignment of the current row r .

(a) Find from Ew those elements where the row index is r and build the set Swr of distinct
symbols in the current row.

(b) For each symbol s j ∈ Swr , compute the position parameters rdown , rup and span, deter-
mine the maximum level of elements with symbol s j , count the occurrences of s j in
r , and determine the columns where the symbol s j occurs. Collect these values in the
structure sr_obj and send it to the master.

(4) The master determines the alignment of r . If the master receives just one message, then r
is already aligned. In this case, the master broadcasts that r is aligned. All processes skip
step (5) and continue with step (3) for the next row r + 1.
Otherwise, the master determines which symbol remains in r . The received tuples of type
sr_obj are put together in the array sr_objects. The algorithm, described in Sect. 3.5 is
employed. The resulting shift lengths are stored in shi f ts_col and broadcast to all workers.

(5) Each worker performs shifts of elements in parallel. Shifts are applied on each element with
the position (r ′, c), where the row r ′ >= r and c is a column where shi f ts_col[c] > 0.

(6) The master updates the values within lengths. When for each column c the condition
lengths[c] = r holds, the master sends a broadcast to the workers in order to finish the align-
ment procedure.

(7) Each worker sends aligned elements to the master, which forms the complete aligned matrix
M ′.
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all columns, because a shift operation may affect any element in its processing set.
The master does not know explicitly, where the elements reside during the iterations.

Theoretically, in a row iteration the symbols are distributed among the processes.
Thus, the parameters are computed in parallel. In the worst case scenario, however,
parameter computation could be executed by one worker process per iteration, which
is equivalent to the sequential case. Only the shift operations are indeed distributed.

The master process initiates the termination of the repeated row adjustment. It
does so by updating the number of elements per column, when an unaligned row is
processed. If the maximum length of all updated sequences is reached, then no more
elements are to be processed and the procedure can be terminated.

4.1.2 Illustration of the Algorithm

Figure 14 gives a small example. The matrix M is created by the master process. The
master instance computes the partitioning of the symbols. Next the master transfers
the two distinct parts, E1 and E2. The parts are illustrated as matrices, although they
are stored efficiently in the implementation. In this example, the row 1 is already
aligned, whereas for row 2 the master has to decide which symbol to keep. After the
shift operations, both E1 and E2 are updated, because both worker processes handle
elements in column 3.

4.1.3 Time Complexity

Now we state the theoretical time complexity of Algorithm 4 considering the worst
case. We denote the required time for theoretical analysis of the parallel algorithm
with symbol distribution as Tsym . The time Tsym is evaluated with respect to the
matrix width n, the height k of the input matrix, the height m of the output matrix,
the number of worker processes p, the maximum occurrence number of a symbol as
o and d as the number of different symbols in the matrix. We evaluate Tsym as a sum
of times for each of the steps of the algorithm. The time complexity for computation
and communication are considered together.

As in the sequential algorithm, the construction of temporal data structures has a
constant complexity

T1(n) = O(1) .

The time complexity of the distribution task depends on the size of the input matrix.
In a single pass through the matrix the sets of elements are created. The merging of
the sets into larger groups of elements requires sorting the sets by their size. This
takes O(d log d) time depending on the different symbols in M . The distribution of
the matrix elements requires p messages. Altogether,

T2(k, n, p, d) = O(kn + d log d + p) .
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Fig. 14 Illustration of the parallel algorithm with symbol distribution

Since each worker process handles about kn/p elements, the determination of which
elements are in the current row needs to iterate over its elements. The number
of different elements that a process may work on is bounded by the number of
columns n. Assuming elements of the row have all different symbols and these ele-
ments occur accidentally at the same worker instance, the number of different sym-
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bols is also at most n. For the parameter computation, we clearly benefit from the
symbol distribution. It takes at most O(o) steps for every different symbol because
for a symbol si only the corresponding subset of elements Esi within Ew is examined.
This holds for each position parameter. The computations are carried out for each
row of the output matrix. Transferring each required sr_obj from a worker process
to the master requires O(n) communication steps, because the master receives at
most n messages for each row of the output matrix. Hence,

T3(k,m, n, p, o) = O(kmn/p + mno) .

As described in Sect. 3.5, finding the shift lengths is linear with respect to the number
of different symbols in a row, which takes at most O(n) time. The row alignment
has to be computed at most m times. A broadcast is executed in log(p + 1) steps per
iteration, so

T4(m, n, p) = O(mn + m log p) .

Updating the row positions needs to consider all elements residing at a worker process
for each row of the output matrix, thus

T5(k,m, n, p) = O(kmn/p) .

The master process may need to check the maximum possible row length in each
iteration. The designated structure lengths of size n is iterated for each row. To
broadcast the termination messages takes log(p + 1) communication steps, giving

T6(m, n) = O(mn + log p) .

In the last step, the master receives p messages containing the aligned elements. The
collection of the matrix elements is bounded by O(kn) since the master process has
to receive all elements. Therefore,

T7(k, n, p) = O(kn + p) .

The time complexities are summed up as follows:

Tsym(k,m, n, p, d, o) = T1(n) + T2(k, n, p, d) + T3(k,m, n, p, o) + T4(m, n, p)

+ T5(k,m, n, p) + T6(m, n) + T7(k, n, p)

= O(1) + O(kn + d log d + p) + O(kmn/p + mno)

+O(mn + m log p) + O(kmn/p) + O(mn + log p)

+O(kn + p)

= O(kn + d log d + kmn/p + mno + mn + m log p + p) .

Since the term mn is covered by mno, k ≤ m, and p ≤ kn, this results in
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Tsym(k,m, n, p, d, o) = O(kmn/p + m log p + mno + d log d) .

Any further reductions of the terms in Tsym would require additional assumptions.
Analyzing this result, the two last terms in this complexity formula depend on the
symbols, which are characterized by o and d. The term kmn/p shows a decreasing
number of computational steps with the growth of processes. In contrast, m log p
grows logarithmically with the number of processes.

4.1.4 Space Complexity

The master process holds the input matrix of size kn. The output matrix can occupy
the space for the input matrix after the alignment and so it does not demand more
memory for that. During the iterations over the rows, it requires at most n structures
sr_obj , kept in sr_objects, and an array shi f ts_col of size n. The array called
lengths has size n. For the row alignment, the memory requirement is O(n). In
total, the master process needs O(kn) space.

Each worker processes about kn/p elements, which makes the most part of the
required memory. The other factors concern the row iterations, so they can be reused
with every new processed row. A worker process requires at most n times the structure
sr_obj and it requires the array shi f ts_col of linear size to the matrix width n.
So each worker process requires O(kn/p) space. In total, the required space is
O(kn) + p O(kn/p) = O(kn).

4.2 Parallel Matrix Alignment with Element Distribution
by Columns

From the point of view of the computation, this version has a similar concept as the
previous one. It implements the master-worker model. Worker processes prepare data
for the alignment of each row and the master process decides about the alignment.
Matrix elements are distributed by the columns. An entire column is assigned to a
single process. Thus, the position parameters are evaluated per column, which gives
intermediate results. The shift operations can be performed in parallel per column.
This process is formulated by Algorithm 5.

4.2.1 Details of the Algorithm

Data decomposition by columns provokes that elements with same symbols are
distributed among the processes. This means that the structural relations are partially
broken up and a process does not have the entire information for a symbol to compute
the position parameters. This circumstance demands an extra communication and
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Algorithm 5 ParallelMatrixAlignmentWithDistributedColumns(M)
computes the alignment of the input matrix M of size k × n. The output is an aligned matrix M ′
of size m × n. The computing steps are performed by a master process and p worker processes,
1 ≤ p ≤ n. Parameters for the alignment of a row are computed by the worker processes with a
reduce operation. The master decides, which elements stay in the current row, and workers apply
the shifts in parallel.

(1) Creation of necessary data structures.

(a) The master process creates an array of tuples sr_objects and an array of integers
shi f ts_col to keep intermediate parameters and shift values, as well as an array of
integers lengths to store the intermediate column lengths.

(b) Each worker process creates an array of tuples called params, which is used to keep
intermediate results for the position parameters rdown , rup , span, and the level values for
each possible symbol in a row.

(2) The master process determines which columns are handled by each worker and transfers them
to the workers, where they are stored in a set Eq for worker process q. Due to the matrix
preparation, the master process holds the complete matrix.

Steps (3)–(7) are performed iteratively row by row.

(3) Each worker determines the elements in the current row r from the set Eq and sends the symbol
of each element to the master.

(4) From the received elements, the master extracts the set of all distinct symbols of the current
row r , denoted as Sr . The master broadcasts the set of symbols Sr . If |Sr | = 1, then the master
process continues with the next row r + 1. Otherwise, it reduces the implicit data provided by
the elements for each symbol. It determines for each symbol s j the count of elements and the
columns, where s j occurs.

(5) Each worker process receives the set of symbols Sr . If |Sr | = 1, then each worker continues
with the next row r + 1 at step (3). Otherwise, it computes intermediate values of rdown , rup ,
span, and level for each symbol s j ∈ Sr . Intermediate means that each process can only
compute values on its available set of elements Eq .

(6) The workers reduce the parameters to min(rdown), max(rup), max(span), and max(level) for
each symbol s j ∈ Sr , and send them to the master.

(7) To compute the row alignment of r , the master process performs the algorithm described in
Sect. 3.5. The resulting shift array shi f ts_col is distributed to the workers, which perform the
shifts in parallel.

(8) The master updates the values within lengths. When for each column c the condition
lengths[c] = r holds, the master sends a broadcast to the workers in order to finish the align-
ment procedure.

(9) Each worker sends aligned elements to the master, which forms the complete aligned matrix
M ′.

computation step by determining the position parameters for each different symbol
in the row.

The advantage of this distribution is that elements are stored per column in a
sorted form. This situation simplifies the iteration procedure from one row to another.
Indices are used to remember the position of the elements within a column, which
makes the determination of the elements at the start of every loop easier.
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The number of processes is variable, although it is bounded by the number of
columns. The maximum number of employed processes is therefore the number of
columns plus 1 for the master process. The work load is distributed, such that each
worker gets a strip of columns. If there are n columns in total, then �n/p� is the
minimum number of columns per process. The first n mod p worker processes get
an additional column.

Each worker instance carries out the computation of the parameters on its available
portion of columns. As a consequence, the worker processes compute intermediate
values, which need to be collected and evaluated by the master. The master reduces
the received information to determine the final parameters per symbol. While the
workers compute the parameters, the master process counts the elements for each
symbol. This means that step (4d) and step (5b) are executed in parallel.

4.2.2 Illustration of the Algorithm

Figure 15 illustrates the algorithm for column distribution. The input matrix M is the
same as in Fig. 14. The master process partitions M by the columns into the sets E1

and E2. Row 1 is already aligned, which is indicated by the number of symbols that
are broadcast by the master. Row 2 is unaligned. After all processes know the current
set of symbols S2, they compute in parallel the parameters, while the master instance
determines the count and the columns for the symbols. The diagonal arrow indicates
a reduction, which is executed to determine the final parameters. The decision for
the shifts affects only process q = 1 in this example (compare Fig. 14).

4.2.3 Time Complexity

We define Tcol as the time required for the alignment with element distribution by
columns. The computation and communication steps are described for the width n
and height k of the input matrix, the height m of the output matrix, the number of
worker processes p, and c as the maximal number of columns for a worker. Again,
it requires constant time to allocate temporal data structures:

T1(n) = O(1) .

The distribution of elements at the start of the parallel alignment procedure depends
on the size of the input matrix and requires p messages, so

T2(k, n, p) = O(kn + p) .

The current row elements are determined in every row iteration. For each row, at
most c columns are considered. The use of an array of indices alleviates this task.
The elements are transmitted in p communication steps at m rows. Therefore,
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Fig. 15 Illustration of the parallel algorithm, column distribution
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T3(m, p, c) = O(mc + mp) .

At the master process, the reduction to the set of different symbols requires n steps
and this is done in m rows. Subsequent computations in case of an unaligned row
also require at most n computational steps in m rows. To broadcast the symbols,
log(p + 1) communication steps are required for m rows, giving

T4(m, n, p) = O(mn + m log p) .

In the worst case, a row is not aligned and the position parameters must be calcu-
lated. There are m row iterations and at most n different symbols for each row are
considered. Since each of the position parameters is computed in ck time,

T5(k,m, n, c) = O(kmnc) .

Note that this estimation is based on the maximum number of processed elements
per worker.

The parameters of a symbol can be reduced in log p computational steps, when
p processes are assumed. This is necessary in at most m rows and at most n symbols
per row. Hence,

T6(m, n, p) = O(mn log p) .

The computation of the shift lengths is linear with respect to the maximum number
of different symbols n. Sending the shift information takes a maximum of mp com-
munication steps. In the worst case, all elements in a row must be shifted except one,
where the element (or the symbol) stays in place. Consequently, this task affects c
columns and maximal k elements per column, giving

T7(k,m, n, p, c) = O(mn + kmc + mp) .

In the worst case, the termination requires the update of the length value per column
for each of the m rows. The broadcast message requires log(p + 1) time, so

T8(m, n, p) = O(mn + log p) .

The master receives p messages at the end of the procedure. After collecting the
elements, the processing of the aligned elements takes kn computing steps:

T9(k, n, p) = O(kn + p) .

This results in the total time complexity
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Tcol(k,m, n, p, c) = T1(n) + T2(k, n, p) + T3(m, p, c) + T4(m, n, p)

+ T5(k,m, n, c) + T6(m, n, p) + T7(k,m, n, p, c)

+ T8(m, n, p) + T9(k, n, p)

= O(1) + O(kn + p) + O(mc + mp) + O(mn + m log p)

+O(kmnc) + O(mn log p) + O(mn + kmc + mp)

+O(mn + log p) + O(kn + p)

= O(kn + mc + mp + mn + m log p + kmnc + mn log p + kmc)

= O(kmnc + mn log p) .

Since the number of columns c depends on the number of processes, we can replace
it with c = �n/p�. So the resulting time complexity is

Tcol(k,m, n, p, c) = O(kmn2/p + mn log p) .

From the received time estimation, some conclusions can be drawn. The first
term kmn2/p dominates the required computing and communication steps. Further,
it shows that the computational effort decreases with the growth of the number of
processes. In contrast, the second term mn log p shows a growth of computing steps
with increasing p. Thus, for reasonable speedups the inequality kn/p > log p should
be fulfilled.

4.2.4 Space Complexity

The master process holds the matrix elements, at most kn. For the alignment of a row,
the master process needs memory for n elements. Additionally, it requires an array
for the different symbols of maximal size n. Next, it needs an array sr_objects with
size n in the worst case, and an array shi f ts_col of size n. Computing the decision
needs O(n) space. In total we have a count O(kn) because the required space is
dominated by the size of the input matrix.

A worker carries out each row loop on at most kc matrix elements. The other data
structures are reused during the row iterations. Here each instance needs memory
for c elements. For the computation of the parameters for all different symbols in
the row it requires an array params with maximal size n. The shift lengths need
space for c integers. An array of indices is necessary to remember which element in
the column is currently processed. This takes again c space elements. Summarized,
all space requirements, each worker needs O(kn/p) space, because c = �n/p�. In
total, the space requirements are O(kn) + pO(kn/p) = O(kn).
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4.3 Comparison of Complexities

Both Tsym and Tcol have their own variables, which depend on the corresponding
version. Common are the variables k,m, n concerning the matrix, and the number
of processes p. Further, the time requirement for the symbol version depends on
properties depending on the symbol distribution. These properties are the number of
different symbols d and the maximum of occurrences of a symbol o. For comparison,
we assume 3 different cases for the symbol dependent variables d and o.

1. Each element of the matrix has the same symbol, i.e. d = 1, o = kn. This
gives us Tsym(k,m, n, p) = O(kmn2 + kmn/p + m log p). Compared with Tcol ,
it requires less time to compute the alignment.

2. Each element of the matrix has another symbol, i.e. d = kn, o = 1. This leads
to Tsym(k,m, n, p) = O(kmn/p + kn log kn + m log p + mn). If the inequality
log(kn) ≤ mn/p holds, then the symbol version is better. This can be achieved
easily by the proper choice of p.

3. In the matrix are m different symbols and each of them occurs at most n times,
o = n, d = m. This is close to the real case in the context of web data extrac-
tion. This results in Tsym(k,m, n, p) = O(mn2 + kmn/p + m logm + m log p).
If k/p > 1 and logm < n log p, then the symbol version has the lower time com-
plexity. If k/p < 1 and logm > n log p, then the column version is better.

The spatial complexity is equal for both parallel algorithms.

5 Experiments

In this chapter, we report about the performance of our developed algorithms. First,
we describe the corpus of the used test data. Afterwards, we give details of the parallel
shared memory system, on which the algorithms were running. Finally, sequential
and parallel execution times are measured and discussed.

5.1 Test Data

There exist a couple of test suites for the purpose of web data extraction. A widely
used suite is the test bed for the deep web, described by Yamada et al. [34]. It contains
51 different sets of web pages. Each set consists of 5 web pages, which are search
result pages from a web site. These 51 sets were randomly chosen out of over 100,000
sites from the World Wide Web. The provided test bed additionally contains the actual
data items of the first data record found on each web page. The TBDW test bed has
been used in many research projects in the field of web data extraction, e.g. in [13,
14, 19, 24]. However, we found that the test sets from the established TBDW test
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Table 2 Properties of the generated matrices for the test sets

Cat. Set name Symbols Columns Rows in Rows out +% of rows

1 Autos 128 999 177 188 +6

Music 141 1,000 138 152 +13

Rentals 61 1,000 73 73 +0

2 Books 197 500 195 488 +150

e-books 145 500 125 224 +79

3 Games 414 30 2,015 6,325 +214

Properties 530 30 1,883 2,005 +6

Sports 525 30 3,524 6,221 +77

bed result in matrices of small size. Approximately 100 data records exist for each
test set in the test bed. Additionally, many sets have fairly small data records. For
parallel execution it is desirable to have large matrices with numerous entries. Thus,
we used the TBDW test bed only during the development of the program, especially
to test the alignment algorithm.

Sleiman and Corchuelo provide a test bed within their CEDAR framework [25],
which is available online.2 They proposed the framework to introduce a more com-
parable study of different web data extraction systems. We used three sets of the
available test collection, which match our needs for resulting large matrices.

Another extensive test collection is presented by Álvarez et al. [1], which is also
available online.3 This collection covers web pages that are acquired after searching
for a certain term via the web form on the respective web site. We utilized two of
the proposed web sites, but we used different search terms to gain other search result
records.

For our experiments we collected eight different test sets. The properties of the
resulting matrices for the alignment are given in Table 2. Our test suite covers vari-
ations in size, source domain and in the template structure. The sets are divided
into three different categories depending on the width and height of the resulting
matrices. Each set consists of data records, respective HTML code snippets that are
from a certain web site. The columns number is the number of data records. The
number of input rows is the maximal length of a string of symbols within a set. The
number of symbols depends on the string lengths and the similarity of the produced
tokens from the input HTML code. The number of output rows is greater or equal
than the number of input rows. A plus of a few per cent means most rows are already
aligned. The differences between input and output rows in per cent also indicate the
similarity of the structure of the data records. A significant growing of matrix rows
may correspond to a template consisting of many variations like optional, disjunctive
or repetitive tokens.

2http://www.tdg-seville.info/Hassan/CEDAR.
3http://www.tic.udc.es/~mad/resources/projects/dataextraction/testcollection_0507.htm.

http://www.tdg-seville.info/Hassan/CEDAR
http://www.tic.udc.es/~mad/resources/projects/dataextraction/testcollection_0507.htm
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Category 1 contains three data sets, where the number of data records prevails the
string length attained from a data record. In other words, the matrices are wide and
short. Category 1 is also characterized by sets of relative homogeneous data records,
which means the alignment increases slightly the number of input rows.

Data records from category 2 have a higher variety in the template, respective in
the sequences resulting from the data records. Here the accretion of rows during the
alignment is proportionally greater in comparison to category 1. Concerning the size,
sets in category 2 are denoted as “middle” both in width and height of the matrices.

The sets from category 3 have comparable few columns, but large number of rows.
Thus the constituted matrices are “thin and long”. Category 3 contains detailed data
records, where each of them occupies an entire web page. The given test sets provides
30 columns each. In this case we execute a program run with maximal 31 processes.

The test sets are chosen to obtain a high number of matrix elements. Thus we
are able to sufficiently investigate the performance of the parallel alignment. For the
categories 1 and 2 we gained an extensive high number of data records to produce
many columns. Xia et al. [33] report for their tree alignment method, that the resulting
tree template starts to converge at 30 input pages. That means an alignment usually
requires a fraction of the sets in the first two categories. The category 3 sets are
not typical due to the size of each record. Usually, the alignment is applied to data
records, where multiple of them occur on a web page. It means, the row numbers in
category 3 outweighs.

The sources of the test sets are the following:

autos: Extracted from the AutoTrader web site4 through a search for cars within
10 miles of zip code 90210 from private sellers only, and selecting 999 of the
acquired search result records.

music: Extracted from the web site of Barnes & Noble5 for the category Brit-pop
offers from the music department.

rentals: Extracted from the overview page for flats to rent in London, provided on
the web site from Homes & Property.6

books: Extracted from Amazon7 through a search for the key word “parrot” in the
books department.

e-books: Extracted from Kobo8 for offers from the category Art and Architecture.
games, properties, sports: Taken from the CEDAR framework.

Each web page is transformed into a valid XHTML page by using the program
.tidy9 The main purpose of tidy is to repair malformed HTML code. The addi-
tional transformation into XHTML is required for parsing via thelibxml++ library.

4http://msn.autotrader.com/cars-for-sale/.
5http://productsearch.barnesandnoble.com/search/results.aspx?CAT=1000652\&STORE=music.
6http://zoopla.homesandproperty.co.uk/to-rent/property/london/.
7http://www.amazon.com/.
8http://www.kobobooks.com/browse/Art__Architecture/LjUHGEwvR0KbkEbC9oZP_Q-2.html.
9http://www.w3.org/People/Raggett/tidy/.

http://msn.autotrader.com/cars-for-sale/
http://productsearch.barnesandnoble.com/search/results.aspx?CAT=1000652&STORE=music
http://zoopla.homesandproperty.co.uk/to-rent/property/london/
http://www.amazon.com/
http://www.kobobooks.com/browse/Art__Architecture/LjUHGEwvR0KbkEbC9oZP_Q-2.html
http://www.w3.org/People/Raggett/tidy/
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Data records from category 1 and 2 need to be manually extracted, because multiple
records are embedded in a web page.

5.2 Hardware and Software Infrastructure

The source code is written in C++. Within the program we used the C bindings of the
OpenMPI library to enable multiple processes and communication with each other.
We utilize features of the Standard Template Library (STL), especially the provided
data structures. For parsing the input we use the libxml++ bindings, which is the
C++ interface for the libxml2 library. Consequently the original HTML documents
are transformed into XHTML files, which are parsed with the XML parser of the
library.

We compiled the sources by invoking mpic++, specifically the version 1.4.3
of the OpenMPI C++ wrapper compiler. Compiling the whole project, the wrapper
compiler utilizes the g++ compiler, version 4.4.6. Compilation is carried out with
option -O3 for optimizations.

We conducted the experiments on the Doppler cluster of the University of
Salzburg. The available computing power enables research experiments in various
high performance computing areas.

Our experiments are run on a single cluster node, namely doppler23. The utilized
node consists of four AMD Opteron processors, model 6274. They are placed together
on a G34 socket. Each Opteron processor has 16 cores with a clock rate of 2.2 GHz,
and 504 GB RAM memory. The installed operating system is CentOS, version 6.2.
Program runs are executed starting with 1 process up to 60 processes, so there is a
one-to-one mapping between processes and cores.

Because of variations in execution time, we run the program five times for each
setting and select the best time for the performance comparisons.

5.3 Evaluation

Primarily, we investigate the run-time of the alignment procedure for each of the two
versions of element decomposition. Computations are sequential for pre- and for
post-processing, so only the alignment module is considered here. We aim to answer
the following questions:
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• Which implemented version performs better for the sequential alignment?
• Which implemented version of the parallel alignment performs better?
• Which speedup, if any, do we achieve in each of our versions of parallel alignment?
• Do we discover differences in the performance between the test sets?

5.3.1 Sequential Execution Times

The results are given in Fig. 16. The column version performs better for data sets
of category 1 and the data set ‘e-books’. Element distribution by columns has the
advantage, that indices are kept to iterate from one row to another. Additionally the
shift operations are executed faster, because shifts affect only elements in certain
columns and elements are stored column-wise. In the symbol version, the computa-
tion of the position parameters can be evaluated faster because elements are sorted
by the symbols. This effect is more prominent when the matrices contain plenty of
symbols. Data sets ‘books’, ‘games’, ‘properties’ and ‘sports’ lead to such matrices
for the alignment. In category 3 the times are significantly higher because of the high
number of output rows.

5.3.2 Parallel Execution Times

Figure 17, 18, 19, 20, 21, 22, 23 and 24 present the results of the alignment times
for parallel execution. The parallel performance is evaluated from 1 to 60 worker
processes for the data sets in category 1 and 2. Sets in category 3 have only 30
columns, thus maximally 30 worker processes are employed.

The version with the symbol decomposition shows decreasing execution times for
increasing number of processes up to a point where the limited number of symbols
per row poses problems for efficient parallelization. Above this point, execution
times may increase due to increased communication overhead. Matrices are aligned

Fig. 16 Execution times of
the sequential alignment
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Fig. 17 Performance of the
parallel alignment for the test
set ‘autos’
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Fig. 18 Performance of the
parallel alignment for the test
set ‘music’
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faster with symbol distribution for the data set ‘books’ and the data sets belonging
to category 3.

The version with column decomposition has benefits for lower process numbers.
The additional communication steps of this version lead to severe communication
cost for 5, 6 or more worker processes, leading to a growth in the required alignment
time. For the data sets from category 1 and the data set ‘e-books’, the symbol version
becomes faster than the column distribution at a point which lies between 8 and 14
worker instances.

For the sets ‘autos’ and ‘music’, the communication dominates the run-time
because of wide matrices. The data set ‘rentals’ does not profit from the parallel
implementation because the matrix elements are practically aligned for this set. On
the other hand, the set ‘books’ shows better parallel performance because a significant
portion of the matrix rows needs to be aligned.



Parallel Algorithms to Align Multiple Strings in the Context of Web Data Extraction 573

Fig. 19 Performance of the
parallel alignment for the test
set ‘rentals’
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Fig. 20 Performance of the
parallel alignment for the test
set ‘books’
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All sets in category 3 have a decreasing run-time of the alignment for symbol
decomposition. The reasons are the reduced number of processes and the higher
total alignment times compared to the other categories. This also explains a relatively
moderate increase for the column distribution.

Basically, the results show two different pictures. For one of them, the column
version is initially better and then its performance decreases. The curve of the symbol
version starts high, falls down and then it remains steady for a high number of
processes. This picture is captured for data sets in category 1 and data set ‘e-books’.
All other sets show curves, where the symbol version always performs better than
the column version regardless of the amount of processes. This second picture is
covered by data sets of category 3 and data set ‘books’. Considering the properties
of the input matrices, it seems that the number of symbols influences the different
performance behaviours.
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Fig. 21 Performance of the
parallel alignment for the test
set ‘e-books’
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Fig. 22 Performance of the
parallel alignment for the test
set ‘games’
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The best run-times indicate which configuration should be chosen for a given
data set. Table 3 states them for each data set. The gained results provide a clear
recommendation. If computing power allows, the alignment should be computed
with the symbol version and between 16 and 30 processes, depending on the number
of symbols. In case of the data set ‘rentals’, the sequential execution for column
distribution performs best.

5.3.3 Quality of the Alignment

The quality of the matrix alignment algorithm is presented in Table 4. For the actual
data items, we omitted the template text. The extracted data items are the items,
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Fig. 23 Performance of the
parallel alignment for the test
set ‘properties’
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Fig. 24 Performance of the
parallel alignment for the test
set ‘sports’
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which we compute with the algorithm. The correct data items are determined as
matches between actual and extracted items as described in Sect. 3.6.

As the last row of Table 4 shows, overall results for recall and precision are rather
good. Particularly, data sets from the category 1 show similar results compared to
other web data extraction systems. This means that a high number of data records
does not bring down the output quality significantly. Data sets in category 2 show
satisfactory results. Recall and precision for the sets ‘games’ and ‘sports’ indicate
that the algorithm is not suitable here. These two sets from category 3 produce input
sequences with maximal length in our test data corpus. It shows that, the longer
sequences are, the more inaccurate the alignment becomes. The applied heuristics of
the row alignment tend to fail with an extensive height of the output matrix. This is the
case when the data set consists of web page covering records. The utilized heuristics
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Table 3 Best run-times for parallel execution

Cat. Set name Version Worker Time (ms)

processes

1 autos Symbol 20 28.37

music Symbol 22 26.33

rentals Column 5 11.83

2 books Symbol 24 42.93

e-books Symbol 16 23.07

3 games Symbol 30 257.76

properties Symbol 24 58.89

sports Symbol 30 225.16

Table 4 Precision and recall of the test data

Cat. Set name Actual Extracted Correct Recall (%) Precision (%)

1 autos 8,683 9,525 8,336 96 88

music 10,393 13,514 9,389 90 69

rentals 8,990 8,990 8,990 100 100

2 books 7,605 7,804 6,246 82 80

e-books 6,386 8,752 6,273 98 72

3 games 4,737 7,876 390 8 5

properties 1,067 2,301 906 85 39

sports 3,054 3,158 1,355 44 43

Total 50,915 61,920 41,885 82 68

are intended for fairly smaller matrices in the original context. The heuristics for row
alignment have been introduced to align nodes of DOM trees, which are on the same
level.

6 Conclusion

This work presents the design of parallel algorithms for solving the alignment prob-
lem in the area of web data extraction. First, we adapted and improved an existing
sequential alignment algorithm that works with heuristics. Based on that, we identi-
fied two suitable strategies for the parallel alignment. Following those, we developed
two parallel algorithms, investigated their complexities, and evaluated their imple-
mentation in a parallel computing environment.

The results of the experiments showed that these parallel implementations are ade-
quate for today’s general-purpose computers with multi-core processors. We demon-



Parallel Algorithms to Align Multiple Strings in the Context of Web Data Extraction 577

strated that parallelism is able to improve the performance of solving the alignment
problem when a sufficient number of processes is utilized.

It was shown that the best performance is achieved with the algorithm that decom-
poses the matrix by groups of symbols when the matrix has a high number of rows
and there is a sufficient number of matrix rows that need to be aligned. However, with
many rows already aligned, the computational demand decreases and communication
becomes more dominant, reducing parallel efficiency.

The work done so far leaves space for further research. From the point of view of
the algorithm development, the two versions may be combined. We expect that such
a hybrid algorithm has a potential for performance improvements. Moreover, it may
be worth investigating whether utilizing the shared memory programming paradigm
instead of message passing could improve the performance. Another research ques-
tion for the future is whether other heuristic methods could also be considered for
an efficient parallelization.
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Community Detection Using Synthetic
Coordinates and Flow Propagation

Paraskevi Fragopoulou, Harris Papadakis and Costas Panagiotakis

Abstract Various applications like findingweb communities, detecting the structure
of social networks, or even analyzing a graph’s structure to uncover Internet attacks
are just some of the applications for which community detection is important. In this
paper, we propose an algorithm that finds the entire community structure of a net-
work, based on local interactions between neighboring nodes and on an unsupervised
distributed hierarchical clustering algorithm. In this paper, we describe two novel
community detection algorithms, one for full graph communities detection and one
for single community detection. The novelty of the first proposed approach, named
SCCD (to stand for Synthetic Coordinate Community Detection), is the fact that the
algorithm is based on the use of Vivaldi synthetic network coordinates computed
by a distributed algorithm. We also present an extended version of said algorithm,
modified to deal efficiently with community detection on dynamic graphs. Finally,
we present a new algorithm which partially analyzes a graph to detect the commu-
nity of a single node. The current paper not only presents two efficient community
finding algorithms, but also demonstrates that synthetic network coordinates could
be used to derive efficient solutions to a variety of problems. Experimental results
and comparisons with other methods from the literature are presented for a variety of
benchmark graphs with known community structure, derived by varying a number of
graph parameters and real dataset graphs. The experimental results and comparisons
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to existing methods with similar computation cost on real and synthetic data sets
demonstrate the high performance and robustness of the proposed scheme.

1 Introduction

Networks in various application domains present an internal structure, where nodes
form groups of tightly connected components which are more loosely connected
to the rest of the network. These components are mostly known as communities,
clusters, groups, or modules, the first two terms interchangeably used in the rest
of this paper. Uncovering the community structure of a network is a fundamental
problem in complex networks which presents many variations. With the advent of
Web 2.0 technology, came along the emerging need to analyze network structures like
web communities, social network relations, and in general user’s collective activities.
The newly emerging applications came along with a different set of parameters and
demands due to the enormous data size, rendering prohibitive the static manipulation
of data and raising the demand for flexible solutions.

Several attempts have been made to provide a formal definition to the generally
described “community finding” concept, providing different approaches. Some of
them aim at detecting the so-called, strong communities, groups of nodes for which
each node has more edges to nodes of the same community than to nodes outside
the community [1]. Others aim at detecting weak communities, which is defined as
a subgraph in which the sum of all node degrees within the community is larger
than the sum of all node degrees towards the rest of the graph [2]. Variations also
appear in the method used to identify communities: Some algorithms follow an itera-
tive approach starting by characterizing either the entire network, or each individual
node as community, and splitting [3–5] or merging [2] communities respectively,
producing a hierarchical tree of nested communities, called dendrogram. Several
researchers aim to find the entire hierarchical community dendrogram [3, 4] while
others wish to identify only the optimal community partition [1]. More recently used
approaches aim to identify the community surrounding one or more seed nodes [6].
Some researchers aim at discovering distinct (non-overlapping) communities, while
others allow for overlaps between communities [7]. Several proposals [8, 9] have
been made to tackle the issue of efficient community detection in dynamic graphs
(i.e., graphs whose structure changes over time). Even though community detection
on dynamic graphs can be solved by running a static (i.e.: non-dynamic) algorithm
on each snapshot of the graph, most dynamic algorithms try to capitalize on the facts
that (i) graph changes between consecutive snapshots are usually small so (ii) the
communities detected in the previous snapshot can help the algorithm speed up the
detection process in the current snapshot. Finally, another main distinction between
community detection algorithms lies in the ability to detect only a single community.
Most of the aforementioned literature is comprised of examples of algorithms which
analyze the entirety of the graph and locate all communities. However, several algo-
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rithms, such as [7] can be employed to detect a single community around a node,
only partly analyzing the graph in question.

For the reminder of this paper, we shall present our contributions in the topic of
community detection both for static and dynamic graphs, as well as single and total
community detection.

2 Distributed Community Detection in Complex Dynamic
Networks Using Synthetic Coordinates

In this part we propose SCCD (to stand for Synthetic Coordinate Community Detec-
tion), an algorithm that identifies the entire community structure of a network based
on interactions between neighboring nodes. In the core of our proposal lies the spring
metaphor which inspired the Vivaldi synthetic network coordinate algorithm [10].
The algorithm comprises two main phases. First, each node selects a “local” set con-
taining mostly nodes of the same community, and a “foreign” set containing mostly
nodes of different communities. As the algorithm evolves, and the springs connect-
ing local and foreign nodes are tightened and relaxed, nodes of the same community
pull each other close together, while nodes of different communities push each other
further away. Given that the initial selection of local and foreign sets is “mostly”
correct, nodes of the same community eventually gravitate to the same area in space,
while nodes of different communities are placed further away. In other words nodes
belonging to the same community will form natural clusters in space. In the second
phase of the algorithm, a distributed hierarchical clustering algorithm has been pro-
posed to automatically identify the natural communities formed in space. Extensive
experiments on several benchmark graphs with known community structure indi-
cate that our algorithm is highly accurate in identifying community membership of
nodes. A first version of our algorithm was presented in [11]. The algorithm pre-
sented in this paper is a heavily modified and improved version. A new simpler and
more accurate algorithm termination mechanism has been introduced. More impor-
tantly, the algorithm can now dynamically make an effort to correct the “foreign”
and “local” sets as we shall see later on, increasing the obtained accuracy. Further-
more, we added an optional third phase in the algorithm, which allows for a user
defined value on the number of communities requested. As far as the experimental
evaluation is concerned, we performed experiments on real world graphs, in addi-
tion to the benchmark graphs. In particular, we performed experiments using new
benchmark graphs of diverse community sizes and node degrees. We then compared
our algorithm based on a new accuracy metric, for a total of two metrics to evaluate
performance on benchmark graphs. Finally, we present a modification of the algo-
rithm (DSCCD) to allow for fast, efficient community detection on dynamic graphs.
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Apart from its accurate detection of communities, the main reason for choosing this
algorithm is the fact that it is based on Vivaldi’s spring metaphor [10]. As we men-
tioned, the first phase of the algorithm is terminated when the nodes’ positions have
stabilized. Given that any subsequent changes in the graph (node and edge insertions
and departures) do not change the entire graph into a new one, it will take much less
time for the nodes to stabilize to new positions, in consecutive runs of the algorithm.

The remaining of the paper is organized as follows: Sect. 2.1 presents an overview
of some of the methods developed over the years for community detection in
networks. Our distributed community detection algorithm is presented and ana-
lyzed in Sect. 3.3. Section3.4 describes the experimental framework and compari-
son results with other known algorithms on a number of benchmark graphs, whereas,
Sect. 2.4 describes experimental results of the static algorithm on RealWorld graphs.
Section2.5 describes the experimental results of DSCCD. Finally, we conclude in
Sect. 3.5 with some directions for future research.

2.1 Related Work

Below we review some of the known methods for community detection and give
insight on the approach they follow. For the interested reader, two comprehensive
and relatively recent surveys covering the latest developments in the field can be
found in [12, 13]. While the first algorithms for the problem used the agglomerative
approach trying to derive an optimal community partition by merging or splitting
other communities, recent efforts concentrate on the derivation of algorithms based
exclusively on local interaction between nodes. A community surrounding a seed
node is identified by progressively adding nodes and expanding a small community.

One of the most known community finding algorithms was developed by Girvan
and Newman [3, 4]. This algorithm iteratively removes edges participating in many
shortest paths between nodes (indicating bridges), connecting nodes in different
communities. By gradually removing edges, the graph is split and its hierarchical
community structure is revealed. The algorithm is computationally intensive because
following the removal of an edge, the shortest paths between all pairs of nodes have
to be recalculated. However, it reveals not only individual communities, but the entire
hierarchical community dendrogram of the graph. In [5], a centralized method for
decomposing a social network into an optimal number of hierarchical subgroups has
been proposed. With a perfect hierarchical subgroup defined as one in which every
member is automorphically equivalent to each other, the method uses the REGGE
algorithm to measure the similarities among nodes and applies the k-means method
to group the nodes that have congruent profiles of dissimilaritieswith other nodes into
various numbers of hierarchical subgroups. The best number of clusters is determined
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by minimizing the intra-cluster variance of dissimilarity subject to the constraint that
the improvement in going to more clusters is better than a network whose n nodes
are maximally dispersed in the n-dimensional space would achieve.

In a different approach, the algorithm presented in [2], named CiBC, starts by
assuming that each node is a different community, and merges closely connected
communities. This algorithm is less intensive computationally since it starts by
manipulating individual nodes rather than the entire graph.

The authors of [6] introduce a localmethodology for community detection, named
Bridge Bounding. The algorithm can identify individual communities starting at seed
nodes. It initiates community detection from a seed node and progressively expands
a community trying to identify bridges. An edge is characterized as a bridge by
computing a function related to the edge clustering coefficient. The edge clustering
coefficient is calculated for each edge, looking at the edge’s neighborhood, and edges
are characterized as bridges depending on wether their clustering coefficient exceeds
a threshold. The method is local, has low complexity and allows the flexibility to
detect individual communities, albeit less accurately. Additionally, the entire com-
munity structure of a network can be uncovered starting the algorithms at various
unassigned seed nodes, till all nodes have been assigned to a community.

In [14], a local partitioning algorithm using a variation of PageRank with a spec-
ified starting distribution, which allows to find such a cut in time proportional to its
size. A PageRank vector is a weighted sum of the probability distributions obtained
by taking a sequence of random walk steps starting from a specified initial distribu-
tion. The cut can be found by performing a sweep over the PageRank vector, which
involves examining the vertices of the graph in an order determined by the PageRank
vector, and computing the conductance of each set produced by this order. In [15],
three distributed community detection approaches based on Simple, K-Clique, and
Modularity metrics, that can approximate their corresponding centralized methods
up to 90% accuracy.

Other community finding methods of interest involve [1] in which the problem
is regarded as a maximum flow problem and edges of maximum flow are identified
to separate communities from the rest of the graph. In clique percolation [16, 17]
a complete subgraph of k nodes (k-clique) is rolled over the network through other
cliques with k − 1 common nodes. This way a set of nodes can be reached, which is
identified as a community. Amethod based on voltage drops across networks and the
physics kirchhoff equations is presented in [18]. A mathematical Markov stochastic
flow formulation method known as MCL is presented [19], and a local community
finding method in [20], just to mention a few.

We will now describe the four state-of-the-art algorithms that we compare our
approach with, in the experimental evaluation section. An exceptionally interesting
method for community detectionwas developed by Lancichinetti et al. and appears in
[7]. Although most previous approaches identify distinct (non-overlapping) commu-
nities, this algorithm is developed based on the observation that network communities
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may have overlaps, and thus, algorithms should allow for the identification of overlap-
ping communities. Based on this principle, a local algorithm is devised developing a
community from a starting node and expanding around it based on a fitnessmeasure.
This fitness function depends on the number of inter- and intra-community edges and
a tunable parameter α. Starting at a node, at each iteration, the community is either
expanded by a neighboring node that increases the community fitness, or shrinks
by omitting a previously included node, if this action results in higher fitness for
the resulting community. The algorithm stops when the insertion of any neighboring
node would lower the fitness of the community. This algorithm is local, and able to
identify individual communities. The entire overlapping and hierarchical structure
of complex networks can be found by initiating the algorithm at various unassigned
nodes.

Another efficient algorithm is the one described by Chen et al. in [21]. The algo-
rithm follows a top down approach where the process starts with the entire graph and
sequentially removes inter-community links (bridges) until either the graph is parti-
tioned or its density exceeds a certain desired threshold. If a graph is partitioned, the
process is continued recursively on its two parts. In each step, the algorithm removes
the link between two nodes with the smallest number of common neighbors. The
density of a graph is defined as the number of edges in the graph divided by the
number of edges of a complete graph with the same number of nodes.

The algorithm described by Blondel et al. in [22] follows a bottom-up approach.
Each node in the graph comprises a singleton community. Two communities are
merged into one if the resulting community has largermodularity value [23] than both
the initial ones. This is a rapid and accurate algorithm which detects all communities
in the graph. In suffers however, in the sense, from the fact that during its execution, it
constantly requires the knowledge of some global information of the graph, namely
the number of its edges (which changes during the execution since the algorithm
modifies the graph), limiting, to a certain extend, its distributed nature.

Finally, we compare our algorithmwith the one described in [24], called Infomap.
This algorithm transforms the problem of community detection into efficiently com-
pressing the structure of the graph, so that one can recover almost the entire structure
from the compressed form. This is achieved by minimizing a function that expresses
the tradeoff between compression factor and loss of information (difference between
the original graph and the reconstructed graph).

Most of the approaches found it the literature are centralized, heuristic without a
global optimality criterion. On the contrary, in this paper, we have proposed a fully
distributedmethod that solves the community detection problem. In addition, another
strong point of the proposed method is that according to the experimental results and
comparisons to existingmethods on real and synthetic data sets, the proposedmethod
clearly outperforms the other methods.

We will now present some representative works in the dynamic graph community
detection literature. In [25], the Louvain static algorithm [22] is used to detect the
communities of the first snapshot. The communities of the following snapshots are



Community Detection Using Synthetic Coordinates … 585

calculated based on certain rules and the observed changes in the graph. Four events
are defined, namely node insertion, node departure, edge insertion and edge depar-
ture. In the case of node insertion, the new node is added to a community which
maximizes the new modularity after checking likewise whether any of its neighbors
should change community too. In the case of node departure, they use the clique per-
colation method [26] in order to find out whether the previous community should be
split into two new ones. In case of edge insertion, if the new edge connects two nodes
in the same community, the community structure is left unchanged. If it connects
nodes to different communities, it is iteratively checked whether one of the nodes
should change community along with its neighbors and so forth, in a similar manner
as new node insertion. In the case of edge removal, a similar method using clique
percolation is used, as in node departure, to check whether the previous community
should be split.

LabelRankT [8] is another state of the art algorithm for fast, dynamic, overlapping
community detection. It belongs to the second category of dynamic community
detection algorithms where the same algorithm is used for the first and subsequent
snapshots. It is based on Label propagation, where a set of random nodes is initialized
with different labels. Iteratively, each node adopts the label of the majority of its
neighbors. By allowing for more than one label per node, the algorithm is able to
detect overlapping communities. During subsequent snapshots, this algorithm only
needs to update nodes which have been modified compared to the previous snapshot,
or nodes whose neighbors’ label has changed during this procedure, making its
execution faster.

The D-GT algorithm presented in [9] is based on a game theoretic approach to
community detection. Each node of the underlying graph is a selfish agent who
periodically takes certain actions ( join, switch, leave, or no operation) to maximize
its total utility. The utility function tries to connect each node to “similar” nodes.
In the algorithm, the metric of similarity used is neighborhood similarity [27]. The
squared complexity of calculating those similarities makes this algorithm the slowest
by far of the three algorithms compared in this paper (DynamicSCCD, LabelRankT
and D-GT).

2.2 SCCD Community Finding

The proposed local community finding algorithm comprises the following steps:

• The position estimation algorithm, which is a distributed algorithm inspired by
Vivaldi [10].

• The community detection algorithm using hierarchical clustering.
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2.2.1 Vivaldi Synthetic Coordinates

Network coordinate systems predict latencies between network nodes, without the
need of explicitmeasurements using probe queries. These algorithms assign synthetic
coordinates to nodes, so that the distance between two nodes’ coordinates provides
an accurate latency prediction between them. This technique provides to applications
the ability to predict round trip time with less measurement overhead than probing.

Vivaldi is a fully decentralized, light-weight, adaptive network coordinate algo-
rithm that was initially developed to predict Internet latencies with low error. Vivaldi
uses the Euclidean coordinate system (in n-dimensional space, where n is a parame-
ter) and the associated distance function. Conceptually, Vivaldi simulates a network
of physical springs, placing imaginary springs between pairs of network nodes.

Let G = (V, E) denote the given graph comprising a set V of nodes together
with a set E of edges. Each node x ∈ V participating in Vivaldi maintains its own
coordinates p(x) ∈ �n (the position of node x that is a point in the n-dimensional
space). The Vivaldi method consists of the following steps:

• Initially, all node coordinates are set at the origin.
• Periodically, each node communicates with another node (randomly selected
among a small set nodes of nodes known to it). Each time a node communi-
cates with another node, it measures its latency and learns that node’s coordinates.
Subsequently, the node allows itself to bemoved a little by the corresponding imag-
inary spring connecting them (i.e. the positions change a little so as the Euclidean
distance of the nodes to better match the latency distance).

• When Vivaldi converges, any two nodes’ Euclidean distance will match their
latency distance, even though those nodes may never had any communication.

Unlike other centralized network coordinate approaches, in Vivaldi each node only
maintains knowledge for a handful of other nodes, making it completely distributed.
Each node computes and continuously adjusts its coordinates based on measured
latencies to a handful of other nodes. Finally, Vivaldi does not require any fixed
infrastructure as for example landmark nodes.

2.2.2 The Position Estimation Algorithm

Aswementioned, in the core of our proposal lies the spring metaphor which inspired
the Vivaldi algorithm. Vivaldi uses the spring relaxation metaphor to position the
nodes in a virtual space (the n-dimensional Euclidean space), so as the Euclidean
distance of any two node positions approximates the actual distance between those
nodes. In the original application of Vivaldi, the actual distances were the latencies
between Internet hosts. Our algorithm is based on the idea that by providing our own,
appropriate, definition of distance between nodes, we can use Vivaldi to position the
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nodes in away as to reflect communitymembership, i.e. nodes in the same community
will be placed closer in space than nodes of different communities. In other words
nodes belonging to the same community will form natural clusters in space.

LetC(x),C(y) denote the communities’ sets of two nodes x, y ∈ V , respectively,
of a given graph. Since two nodes either belong to the same community (C(x) =
C(y)) or not, we define the initial node distance between two nodes x and y as
d(x, y):

d(x, y) =
{
0, C(x) = C(y)
1, C(x) �= C(y)

(1)

When C(x) �= C(y), we have set d(x, y) = 1 in order to normalize the distances in
range between 0 and 1. Given this definition of distance, we can employ the core part
of the Vivaldi algorithm to position the nodes appropriately in the n-dimensional
Euclidean space (�n). As one can expect from those dual distances, Vivaldi will
position nodes in the same community close-by in space, while place nodes of dif-
ferent communities away from each other. This is the reason for the dual nature of
the distance function, otherwise all nodes, regardless of community membership,
would gravitate to the same point in space.

In addition, Vivaldi requires a selection of nodes to probe. Each node calculates a
“local” set containing nodes of the same community, and a “foreign” set containing
nodes of different communities. The size of the local set as well as the size of the
foreign set of a node equals the degree of the node. The perfect construction of these
sets depends on the apriori knowledge of node community membership, which is the
actual problem we are trying to solve. However, even though we do not know the
community each node belongs to, there are two facts we can exploit to make Vivaldi
work without this knowledge:

• Thefirst is the fact that, bydefinition, the number of intra-community linksof a node
exceeds the number of its inter-community links. This means that, if we assume
that all of a node’s neighbors belong to the same community, this assumption will
be,mostly, correct, which in turn means that even though some times the nodemay
move to the wrong direction, most of the time it will move to the right direction
and thus, will eventually acquire an appropriate position in space. Thus, we let the
local set L(x) of a node x ∈ V , be its “neighbor set”.

L(x) = {y ∈ V : x ∼ y} (2)

The distance from node x to nodes in L(x) is set to 1 according to Eq. (1).
• The second fact we exploit concerns the foreign links. Since we consider all a
node’s links as local links, we need to find some nodes which most likely do not
belong to the same community as that node, and therefor will be considered as
foreign nodes. This can simply be done by randomly selecting a small number
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of nodes from the entire graph. Assuming that the number of communities in the
graph is at least three, the majority of the nodes in this set will belong to a different
community than the node itself. These nodes will comprise the “foreign set” F(x)
of node x ∈ V :

F(x) ⊂ {y ∈ V : x � y}. (3)

The distance from node x to the nodes in F(x) is set to 1 according to Eq. (1).

The pseudo-code of the position estimation algorithm is given in Algorithm 1 and
it is described hereafter. The function get RandomNumber(0, 1) returns a random
number in [0, 1]. Initially, each node is placed at a random position in�n . Iteratively,
each node x ∈ V randomly selects a node from either its L(x) or its F(x) set (see
lines 8, 11 of Algorithm 1). It then uses Vivaldi to update its current position using the
appropriate distance (i.e. 0 or 1) to the selected node (see lines 9, 12 of Algorithm 1).

Each node continues this process until it deems its position to have stabilized
as much as possible (see line 36 of Algorithm 1). This is done by calculating the
sum of the distances between each two consecutive positions of the node between
40 iterations (corresponding to 40 position updates, experiments showed a larger
number only slows down the algorithm without adding to efficiency). Each node
also calculates the distance, in a straight line, between the two positions before and
after the 40 updates. Should this value be less than half the actual traveled distance
(the aforementioned sum) for 20 consecutive times, the node declares itself to have
stabilized. Each node continues, however, to execute the algorithm until at least
90% of its “foreign” and “local” sets have also stabilized. If the algorithm has not
stabilized yet, the 20 oldest distances are removed and the stabilization check will
be performed again after another 20 position updates.

As we have already mentioned, both the “local” and the “foreign” sets of a
node will initially contain erroneous nodes. One of the most important augments
of our algorithm is its ability to dynamically correct those sets (see lines 23–32 of
Algorithm 1). This is based on the fact that, as the algorithm progresses, those nodes
in the “local” set of a node x which do not actually belong in the same community as
x , will be located a long distance away from X . As a result, even though the distances
between a node and the nodes in its “local” set will initially be uniformly distributed,
after a while we will notice the nodes of the local set to be divided into two groups
of smaller and larger distance values. This is a good indication that we can separate
the wheat from the chaff, which is implemented in the following fashion:

Let i te(x)denotes the number of updates of node x (see lines 3, 14 ofAlgorithm1).
After several number of updates (5 · (|L(x)| + |F(x)|, where |L(x)|, |F(x)| denote
the number of elements of the sets L(x), F(x)), the node x as will have been updated
from most of the nodes of L(x), F(x). This means that x is able to check its “confi-
dence level” in identifying the erroneous nodes of its local-foreign sets (see line 15
of Algorithm 1).
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Let minD and maxD denote the minimum and maximum Euclidean distance
values from x to all the nodes in its “local” set, respectively (see lines 17–18
of Algorithm 1). Let μ be the average of minD and maxD (see line 19 of
Algorithm 1). Next, we calculate the normalized standard deviation σn of its dis-
tances to the nodes in its “local” set, normalizing σn based on its distance of the
closest and furthest away node in the local set (the same formula used in Eq.5):

σn =
√
Ey∈L(x)[(||p(x) − p(y)|| − μ)2]

T2
(4)
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In addition, σn is computed using the value μ instead of the mean value of distances.
This is because our “confidence” should be high when most neighbor distances
are located in the extreme ends (close to minD and maxD). Should σn exceed a
certain threshold T1 = 0.6, the node iterates between the nodes in both its “local”
and “foreign” sets, removing any inappropriate nodes (see line 22 of Algorithm 1).
In order to identify a node as “local” or “foreign” based on its distance, another
threshold is required. This threshold T2 is calculated as follows:

T2 = minD + max(
maxD − minD

3
,
1

3
), (5)

The idea behind this formula is that the distance of a “foreign” node is both related
to the distance values of the rest of the nodes but also has a fixed minimum value.
Overall, this dynamic set correction gave us on the benchmark graph tests an increase
of about 6% on average.

Figure1 shows a small time-line of the execution of our algorithm on a graph with
1024 nodes, degree 20, and a known community structure comprising four commu-
nities. We have used different colors for the nodes of each different community.
Initially, nodes were randomly placed in �2. As we can see, in the beginning all
colors are dispersed on the entire space. As the algorithm progresses, we see that
nodes of the same color, belonging to the same community, gradually gravitate to
the same area, forming distinct clusters in space.

(a) (b) (c)

(d)

Fig. 1 Snapshots of the execution of the first phase of our algorithm for a graph with known
community structure. a Initialization, b after 150 iterations, c after 400 iterations
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2.2.3 Hierarchical Clustering

After each node has converged to a point in space, we use a hierarchical clustering
algorithm to perform the actual grouping of nodes into clusters. Themain advantages
of the hierarchical clustering algorithms is that the number of clusters need not be
specified a priory, and problems due to initialization and local minima do not arise
[28]. The pseudo-code of the proposed hierarchical clustering method is given in
Algorithm 2 and it is described hereafter. Let c(x) denote the cluster id of node x .
The function getClosest (x) returns the closest neighboring cluster of x .

Firstly, each node is considered as a (singleton) cluster (see lines 2–5 of Algorithm
2). In addition, to make the procedure completely distributed, each node-cluster is
aware of the location only of its neighboring node-clusters. Then, the following loop
is executed repeatedly, until no appropriate pair of clusters can be located: Given a
pair of neighboring clusters x and y, if both of them are each other’s closest neighbor
and the distance between the two clusters is less than a threshold T3 = 1

2 , then those
two clusters are merged in the following fashion (see line 10 of Algorithm 2) (Fig. 2):

• The merged cluster contains the union of the neighbors of A and B (see lines
14–15 of Algorithm 2).

• Its position is calculated as the weighted based on the population of nodes (|x | and
|y|) in each cluster x and y average of the positions of x and y, p(x) and p(y)
(see line 12 of Algorithm 2):

p(x) = |x | · p(x) + |y| · p(y)
|x | + |y| (6)
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Fig. 2 The mean value of
accuracy under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for our
algorithm
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2.2.4 Communication Load and Computational Complexity

SSCD can be implemented as a fully distributed system, since both of the two main
parts of the proposed method are distributed (Fig. 3).

• The first part concerns the position estimation algorithm that uses the Vivaldi
synthetic network coordinates [10] (see Sects. 2.2.1 and 2.2.2). This part can be
computed by a distributed algorithm. It holds that each node onlymaintains knowl-
edge for a handful of other nodes, computing and continuously adjusting its coor-
dinates based on the coordinates of the nodes that belong on its local and foreign
sets, making it completely distributed.

• The second part concerns the hierarchical clustering that can be computed by a dis-
tributed algorithm. In order to make this procedure distributed, each node-cluster
is aware of the location only of its neighboring node-clusters (see Sect. 2.2.3).

Hereafter, we provide an analysis of the communication load and computational
complexity (Figs. 4 and 5).

• Concerning the position estimation algorithm, it holds that during the update
process each node communicates with a node of its local or its foreign set. So, the
communication load depends on the time of convergence. In order to measure the
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Fig. 3 The mean value of
accuracy under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the
Lancichinetti algorithm
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dependance of the number of messages to the size of the graphs, we performed
experiments on graphs with identical parameters but varying sizes. Namely, we
used 9 graphs with 2000, 3000, ..., 10000 nodes, with 500 nodes per community,
10 degree per node and a 0.75 ratio of local to foreign links per node. Figure7
shows that the average number of update messages per node required by Vivaldi
in order to stabilize is approximately the same, regardless of the size of the graph.
This means that the convergence time (computational complexity) per node is also
independent of the size of the graph.

• Concerning the hierarchical clustering algorithm, it holds that during the merging
process each node communicates with the nodes of its neighborhood in order to
find the closest. In a distributed implementation, the initial communication load is
O(degree) for the first merging. Next, each new cluster sends its updated position
to its neighborhood that needs O(degree) messages. In the second level of merg-
ing, each new cluster sends its updated position to its neighborhood that have size
O(21 · degree) (worst case). In the last level of merging (l = log( N

Comm )), when
the hierarchical clustering tree is balanced, each new cluster sends its updated
position to its neighborhood that have size O(21 · degree) = O( N

Comm · degree)
(worst case). The total communication load is O(N · degree + N

2 · 21 · degree +
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Fig. 4 The mean value of
accuracy under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the Chen et
al. algorithm
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· · · + N
2l · 2l · degree) = O(l · N · degree) = O(log( N

Comm ) · N · degree). The com-
putation cost per node is O(l · degree) = O(log( N

Comm ) · degree).
The communication load as well as the computational complexity of the proposed
distributed framework make possible the execution of SCCD on graphs of very large
scale (e.g. 50 millions of nodes with a billion of links) (Fig. 6).

2.2.5 DynamicSCCD

As mentioned before, SCCD is comprised of two main phases.

• The position estimation algorithm, which is a distributed algorithm inspired by
Vivaldi [10].

• The community detection algorithm using hierarchical clustering.

In the first phase of the SCCD algorithm, the Vivaldi spring metaphor is used.
On each iteration, each node slightly updates its position in order to either move
closer to one of its neighbors in the graph (which it considers as belonging in the
same graph) or further away from a random node (which is considers to belong to a
different community). The aforementioned assumptions are true for the majority of
the neighbors and the randomnodes respectively (SCCDdetects strong communities,
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Fig. 5 The mean value of
accuracy under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the Blondel
algorithm
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meaning that it holds for each member-node of the community that the majority of
its neighbors belong to the same community as itself ). This way, SCCD positions the
nodes in away as to reflect communitymembership, i.e. nodes in the same community
will be placed closer in space than nodes of different communities. In other words
nodes belonging to the same community will form natural clusters in space. The
position updates stop based on a new termination threshold described below. The
hierarchical clustering algorithm then comes into play, which we describe below.
For more information on the SCCD algorithm we refer the reader to [29] (Fig. 7).

In the first snapshot of the graph (as per its static version) each node position is
initialized to a randompoint in space. In the following snapshots, the remaining nodes
(i.e.: the majority of the graph) retain their previous positions. It is easy to realize
that, given two (relatively similar) consecutive snapshots of the dynamic graph, the
first phase will terminate much faster than in the first snapshot. The fact that the
majority of the graph nodes are already positioned in appropriate points in space,
regarding their community membership, will help any new (or pre-existing, with
modified community membership) nodes to oscillate to their own proper positions
much faster.
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Fig. 6 The mean value of
accuracy under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the Infomap
algorithm
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Fig. 7 Average number of
Vivaldi update messages per
node, per graph size
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2.2.6 Vivaldi Termination Threshold

We implemented a new termination threshold for the Vivaldi phase of our algorithm
which yielded better execution times while maintaining the same accuracy levels. A
good termination criterion is essential for dynamic community detection algorithms
since the main idea behind them is to exploit previous results in order to speed-up
community detection of later snapshots. We periodically monitor two metrics during
the execution of the first phase, as the nodes continuously update their positions. The
first is the average distance between any two communities. The second is the Jaccard
similarity between two corresponding communities (as indicated by the Hungarian
algorithm [30]) between two consecutive periods. When the value of both those met-
rics does not change for 20 consecutive periods, the algorithm stops. The first metric
is necessary due to the fact that, in complicated graphs, community memberships
do not change during the fist period of the execution, where all nodes are still far
from their appropriate positions. However, what does change is the average distance
between pairs of community centers, as nodes try to distance themselves from other
nodes which are considered to belong to different communities. The second metric
is also necessary in order for the algorithm to realise that the memberships of the
detected communities have stabilized.

2.2.7 Hierarchical Clustering

We modified the original hierarchical clustering algorithm to allow it to exploit
previous clustering information to speed up its execution. In the static version of
the algorithm, the hierarchical algorithm is initialized with a number of clusters
equal to the nodes in the graph (singleton communities). It then iteratively merges
neighboring close-by clusters. In order for two clusters to be merged several criteria
have to be met.

• The two clusters have to contain at least a pair of neighboring nodes
• Cluster A’s center has to be the closest cluster center to cluster’s B center and vice
versa.

• The distance between the centers of the two clusters has to be below a certain
threshold.

When two clusters merge, a new center is calculated for the new cluster based on
the positions of the membership nodes. When no more merges can be done, the
algorithm terminates. For more information, again we refer the reader to [29].

The dynamic version of this algorithm takes into consideration the clusters
detected in the previous snapshot. Any new nodes in the graph which appeared in the
current snapshot are added in the previous partitioning as singleton communities-
clusters. In addition, we iterate over the previous nodes. If any of those node’s current
distance from its cluster’s center is over a certain threshold (one fourth of the thresh-
old we use to merge clusters) then this node is removed from the cluster and instead
also forms a singleton cluster. This threshold is quite strict, however if the node still
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belongs to the same community in the current snapshot, it will be re-merged by the
normal execution of the algorithm which operates on the modified previous partition
instead of being initialized with only singleton clusters.

2.3 Benchmark Graph Experiments

2.3.1 Benchmark Graphs

We have created a variety of benchmark graphs with known community structure to
test the accuracy of our algorithm. Benchmark graphs are essential in the testing of a
community detection algorithm since there is an apriori knowledge of the structure
of the graph and thus one is able to accurately ascertain the accuracy of the algorithm.
Since there is no consensus on the definition of a community, using a real-world graph
makes it more difficult to assess the accuracy of a community partition (Fig. 8).

Our benchmark graphs were generated randomly given the following set of para-
meters:

Fig. 8 The mean value of
normalized mutual
information under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for our
algorithm
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Fig. 9 The mean value of
normalized mutual
information under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the
Lancichinetti algorithm
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• The number of nodes N of the graph.
• The number of communities Comm of the graph.
• The ratio of local links to node degree local/degree.
• The (average) degree of nodes degree (Fig. 9).

Notice that even though the number of the nodes, the number of the communities
and the degree of the nodes are parameters of the construction of the graph, the
degree of each node as well as the number of nodes in a single community varies
based on a pareto distribution. This enables us to create graphs of community sizes
and individual degrees varying up to an order of magnitude.

The parameters used by the algorithm and their corresponding values are shown
in Table1. In total, we created a number of 208 benchmark graphs (Fig. 10).

A demonstration of the propose method is given in,1 that contains the benchmark
graphs, related articles and an executable of the proposed method.

1http://www.csd.uoc.gr/~cpanag/DEMOS/commDetection.htm.

http://www.csd.uoc.gr/~cpanag/DEMOS/commDetection.htm
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Table 1 The different values
for the used parameters

N 1000, 5000, 10,000

Comm 5, 10, 20, 40, 80

local/degree 0.55, 0.65, 0.75, 0.85

degree 10, 20, 30, 40

Fig. 10 The mean value of
normalized mutual
information under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the Chen et
al. algorithm
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2.3.2 Comparison Metrics

We compared the five algorithms using two accuracy-related metrics found mostly
used in the literature. The first is a simple accuracy metric paired however with
the Hungarian algorithm. The simple accuracy is defined as follows: Let Si , i ∈
{1, ...,Comm} be the estimated and Ŝi , i ∈ {1, ...,Comm} the corresponding actual
communities. The accuracy (acc) is given by the average (of all communities) of the
number of nodes that belong to the intersection of Si ∩ Ŝi divided by the number of
nodes that belongs to the union Si ∪ Ŝi (Fig. 11).

acc = 1

Comm
·
Comm∑
i=1

|Si ∩ Ŝi |
|Si ∪ Ŝi |

(7)
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Fig. 11 The mean value of
normalized mutual
information under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the Blondel
algorithm
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It holds that acc ∈ [0, 1], the higher the accuracy the better the results.When acc = 1
the community detection algorithm gives perfect results. The Hungarian algorithm
[30] is used to better match the estimated communities with the actual communities,
in order to calculate and average the accuracies over all communities.

We also used the Normalized Mutual Information (NMI) metric to evaluate the
correctness of the detected communities [31]. NMI is calculated using the following
formula:

NMI =

k∑
i=1

l∑
j=1

ni, j log(
n·ni, j
ni ·n j

)

√
(

k∑
i=1

ni log(
ni
n ))(

l∑
j=1

n j log(
n j

n ))

(8)

where i iterates through the population of the “correct” communities, j iterates
through the communities detected by the algorithm, ni, j is the size of the union of
the nodes of the i th and j th communities, ni is the size of the i th community and n
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Fig. 12 The mean value of
normalized mutual
information under a different
ratios of total degree to local
links (local/degree) and
number of communities
(Comm) and b total degree
to local links (local/degree)
and densities for the Infomap
algorithm
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is the total number of nodes in the graph. In both cases, a value close to one indicates
correct detection of the communities of the graph (Fig. 12).

2.3.3 Results on Benchmark Graphs

The performance of four different algorithms, SCCD presented in this paper, the
Lancichinetti [7], Chen [21], and Blondel [22] algorithms are compared on Bench-
mark graphs. A brief description of these algorithms has been provided in the Related
Work section of the paper.

Each graph shows the performance of a single algorithm using either the first
or the second metric, on all 208 benchmark graphs. Since there are four types of
parameters which describe the graphs of the experiments, we decided to use the two
most important factors which affect the algorithms’ performances, in order to plot
the accuracies in 3D graphs. The first of these factors is always the local links to
node degree value, which dictates how strong the clear the communities in the graph
are. The second factor in some cases is the number of communities in the graph,
while in other cases is the (average) density of these communities. Thus, we decided
to plot, for each algorithm and accuracy metric, two 3D graphs using, in one case,
the number of communities as the values on one the axes and the average density
on the other. Each accuracy value in the graphs is the average of the accuracies
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Fig. 13 Percentage of “successful” experiments, given an accuracy success threshold (x axis) for
a the accuracy metric and b the NMI metric

of all the experiments based on the benchmark graphs with the same value on the
aforementioned factors (Fig. 13).

We can see from these 3D graphs how our algorithm greatly outperforms almost
all other algorithms, with the exception of the Blondel algorithm. Compared with
Blondel, we see that the performance is comparable. However overall, our algorithm
still has, on average over all experiments, a 4% higher accuracy in both metrics.
Chen and Infomap obtained very low results. Apart from SCCD and Blondel, only
Lancichinetti has produced some respectable results, however the figures show that
it fails to work on less dense graphs. Lancichinetti has the advantage of being able to
detect just one community (whereas SCCD and Blondel only produce all communi-
ties). In order to do so, however, it relies on the existence of triangles in the graph,
which is the case only in more dense graphs, hence the observed results.

Finally, Fig. 29 shows the percentage of “successful” experiments, given an accu-
racy threshold to define “success”. One can see the better performance of our algo-
rithm, especially in “tougher” cases.
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2.4 Real World Graphs Experiments

We also conducted experiments on five real world graphs of diverse sizes. Due to the
size of those graphs, the only algorithms capable of analyzing them in reasonable
time were our algorithm and the Blondel algorithm. These graphs include a network
of scientific papers and their citations [32], an email communication network from
Enron, two web graphs (of Stanford.edu and nd.edu) and an Amazon product co-
purchasing network, all obtained from [33].

2.4.1 Comparison Metrics

Three different metrics are used for the comparison of results on real world graphs,
namely modularity, conductance and coverage [34]. These are different than those
used in the case of benchmark graphs, since the real decomposition of graphs into
communities is not known and as such the resulted community structure cannot be
compared against the real one.

One of the most popular validation metrics for topological clustering, modularity
states that a good cluster should have a bigger than expected number of internal
edges and a smaller than expected number of inter-cluster edges when compared to
a random graph with similar characteristics. The modularity Q for a clustering given
below, where e ∈ �k,k is a symmetric matrix whose element ei j is the fraction of all
edges in the network that link vertices in communities i and j , and Tr(e) is the trace
of matrix e, i.e., the sum of elements from its main diagonal.

Q = Tr(e) −
k∑

i=1

(

k∑
j=1

ei j )
2 (9)

The modularity Q often presents values between 0 and 1, with 1 representing a
clustering with very strong community characteristics.

The conductance of a cut is ametric that compares the size of a cut (i.e., the number
of edges cut) and the number of edges in either of the two subgraphs induced by that
cut. The conductance φ(G) of a graph is the minimum conductance value between
all its clusters.

Consider a cut that divides G = (V, E) into k non-overlapping clusters
C1,C2, ...,Ck . The conductance of any given cluster φ(Ci ) is given by the following
ratio:

φ(Ci ) =
∑

(u,v)∈E∧u∈Ci∧v /∈Ci
1

min (α(Ci ), α(V \ Ci ))
(10)

where
α(Ci ) =

∑
(u,v)∈E∧u∈Ci∧v∈V

1 (11)
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Essentially, a(Ci ) is the number of edges with at least one endpoint in Ci . This
φ(Ci ) value represents the cost of one cut that bisects G into two vertex sets Ci and
V \ Ci (the complement ofCi ). Since we want to find a number k of clusters, we will
need k − 1 cuts to achieve that number. The conductance for the whole clustering is
the average value of those k − 1 φ cuts, as follows:

φ(G) = avg(φ(Ci )),∀Ci ⊆ V (12)

The final metric used to assess the performance of clustering algorithms on
real world graphs is called Coverage. The coverage of a clustering C (where
C = C1,C2, ...,Ck) is given as the fraction of the intra-cluster edges (EC ) with
respect to all edges (EG) in the whole graph G, coverage(C) = EC

EG
. Coverage val-

ues usually range from 0 to 1. Higher values of coverage mean that there are more
edges inside the clusters than edges linking different clusters, which translates to a
better clustering.

2.4.2 Results on Real World Graphs

In Table2, we present the results of running SCCD and Blondel [22] on these graphs,
using three metrics for comparison, namely modularity, conductance and coverage.
An explanatory survey of those metrics can be found in [23]. Both a high modularity
and a high coverage indicate a better partitioning of the graph whereas in the case
of conductance, a lower value is better. Although we included three metrics to get
a better understanding of how the two algorithms behave in real world graphs, it
is widely accepted that the modularity is the metric which better captures all the
characteristics of a good partitioning of the graph into clear communities.

Two observations are quickly apparent from the results. One is that although the
two algorithms locate a completely different number of communities for each graph,
in most cases, the respective modularities are very comparable (in the order of 0.01).
This shows that a “good” partitioning cannot be achieved in one way only. Coverage
values are also comparable. This is not the case for conductance valueswhereBlondel

Table 2 Results on real world graphs without merging

Graph Nodes Nr of coms Modularity Conductance Coverage

SCCD Blondel SCCD Blondel SCCD Blondel SCCD Blondel

Citations 27,771 375 171 0.58 0.59 0.25 0.05 0.7 0.74

Enron
email

36,693 1590 1247 0.5 0.51 0.09 0.03 0.73 0.73

Amazon 262,111 8943 177 0.87 0.89 0.3 0.1 0.88 0.92

stanford.
edu

281,904 3997 793 0.91 0.91 0.12 0.01 0.96 0.98

nd.edu 325,730 6825 475 0.91 0.93 0.2 0.04 0.93 0.96
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outperforms our algorithm. This is because conductance favors algorithms which
“produce” a smaller number of communities. The main reason our algorithm prefers
many, denser communities is the fact that it tries to locate strong communities. This
stems from the algorithm assumption that the short links per node aremore in number
than the long links.

In order to verify this, we modified our algorithm by adding a third phase which
iterativelymerges the communities found, if this results in an increase of themodular-
ity. The pseudo-code of this face is given in Algorithm 3 and it is described hereafter.
Let c′(x) denotes of updated cluster id of node x . Although the modularity is calcu-
lated on the entire graph, the change in the modularity value dm can be computed
only using information related to the communities (i , j) which are to be merged,
since the subtraction eliminates the values in the modularity table of communities
not participating in the merge. This is implemented by function get DM(., .) (see
line 9 of algorithm 3).

dm = ėi i − ȧ2i − (eii + e j j − a2i − a2j ), (13)

where ė is the modularity table before the merge and e is after the merge. Thus
eii and ėi i are the fraction of all edges in the graph with both ends connected to
nodes in community i, before and after the merge, and ȧi and ai are the fractions of
edges with at least one end vertex in community i before the merge and after the
merge, respectively. Note that community i in the merged graph corresponds to the
community that results from merging communities i and j before the merge.

The only global information required in this phase is the number of edges in the
initial graph, in order to calculate the aforementioned fractions. Although this some-
how limits the completely distributed nature of our algorithm, it is an information
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Table 3 Results on real world graphs with merging

Graph Nodes Nr of coms Modularity Conductance Coverage

SCCD Blondel SCCD Blondel SCCD Blondel SCCD Blondel

Citations 27,771 181 171 0.58 0.59 0.07 0.05 0.78 0.74

Enron
email

36,693 1300 1247 0.5 0.51 0.04 0.03 0.74 0.73

Amazon 262,111 594 177 0.88 0.89 0.1 0.1 0.93 0.92

stanford.
edu

281,904 1122 793 0.93 0.91 0.02 0.01 0.98 0.98

nd.edu 325,730 995 475 0.94 0.93 0.08 0.04 0.97 0.96

which is easily obtained and furthermore, in contrast to the Blondel algorithm, does
not change as communities are merged. Table3 shows the new results after we apply
the merging step. We can see now that both the number of communities and the
conductance value are also comparable in the two algorithms. This shows that there
is a range in the number of communities that equally produce partitions of quality
(modularity values).

It is also noteworthy that using this final step, our algorithm is able to produce any
desired (user-defined) number of communities from the range of quality partitioning
(highest modularity value)

2.5 Dynamic Graph Experiments

We have chosen two other state of the art algorithms to compare DSCCD with,
namely LabelRankT [8] and D-GT [9]. We have also used both real and synthetic
datasets to provide a better understanding of the efficiency of the algorithms.

2.5.1 Synthetic Datasets

We used the dynamic graph generator used in [35] to generate a more challenging
synthetic graph dataset than the one used in that paper. This generator is based on
the well-known static graph generator of [36]. We used several parameters values in
all combinations, which led to the generation of 72 graphs of distinct communities
(no overlap) of 10 snapshots each. Table4 summarizes the parameter values used.

The evolutionary event types are the following:

• Birth-death: a number of pre-existing communities disappear in their entirety in
the next snapshot, while other entirely new communities appear.
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Table 4 Parameter values of the synthetic benchmark graphs

Number of nodes 10,000

Average degree 10, 20

Nr of communities 50, 100, 200

Ratio of inter-community neighbors 0.4

probability of a node switching community
membership between time steps

0.1

Community evolution method (events) Birth-death, expand, hide, merge-split

Ratio of communities per time step which
experience evolution events

0.05, 0.1, 0.2

• Expand: Several nodes appear and disappear from the previous snapshot leading
to the expansion and contraction of the existing communities in the next snapshot.

• Hide: Entire communities disappear for a certain number of snapshots, after which
they appear again.

• Merge-split: Entire communities are either merged or splitted (by adding and
removing edges accordingly) in the next snapshot.

Apart from those evolutionary events, for each graph, regardless of time, there
is a 10% chance that any node in the previous snapshot will change its community
membership in the new snapshot.

We have used the same two metrics, as before, to evaluate the three algorithms on
the synthetic datasets. The first is the simple accuracy metric paired however with
the Hungarian algorithm described in (7). The second is the NMI metric described
in (8)

2.5.2 Real World Datasets

We also used three real-world datasets. Two Autonomous Systems graph datasets
(AS-Internet Routers Graph [37] andAS-OregonGraph [38]) as well as HEP citation
graph dataset used in the 2003 KDD Cup [39]. Table5 summarizes the datasets’
characteristics

In order to evaluate the algorithms in real world datasets, we used the well-
known modularity metric [23]. However, even though out algorithm only detects
non-overlapping communities, both LabelRankT and DG-T detect overlapping com-
munities. In order to be fair in out comparison, we used an extended version [40] of

Table 5 Real-world datasets information

AS-Inet Routers AS-Oregon KDDCup-HEP

Nodes 6474 10,670 27,769

Edges 13,895 22,002 250,262

Snapshots 733 9 12
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modularity whichworks on overlapping partitions, since the original metric also only
works for non-overlapping communities. The formula for the extended modularity is

QOv
E = 1

2m

∑
c

∑
i, jεc

[
Ai j − ki k j

2m

]
1

Oi O j
(14)

where m is the number of links in the graph, c the set of detected communities, array
A is the adjacency matrix of the graph nodes, ki the number of neighbors of node
i and Oi the number of communities node i belongs to. It is easy to see that for all
Oi = 1 (as is the case with non-overlapping communities) this formula is identical
to the one of the classic modularity. This metric was used for all three algorithms.

2.5.3 Results

In this section we present the experimental results of our work. Figures14 through
16 show the performance of all three algorithms, over the temporal snapshots of
the three real-world datasets. One can see how DynamicSCCD outperforms the
other two algorithms in all three cases. An interesting observation can be made in
the AS-Internet Routers dataset of Fig. 16 where we can see a sudden drop in the
modularity values for all three algorithms. This is due to the fact that at that point,
the new snapshot is vastly different that the previous one, confusing the algorithms
which rely on previous information. The KDDCup-Hep dataset appears to be the
most complicated of the three, as seen by the steady drop of modularity values in all
three algorithms, with DynamicSCCD still having higher values. Figures17 through
19 show the Jaccard similarity in time between two consecutive snapshots of each
dataset. Each point in the y axis is calculated using the following equation (Figs. 15
and 18):

change = 1 − |St ∩ St−1|
|St ∪ St−1| (15)

I.e.: The higher the value, the higher the difference between two consecutive
snapshots. One can easily, for instance, notice the aforementioned peak, around the

Fig. 14 Modularity values
in time for the AS-Oregon
dataset
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Fig. 15 Modularity values in time for the KDDCup dataset
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Fig. 16 Modularity values in time for the AS-Internet Routers dataset

Fig. 17 Change between
two consecutive snapshots in
time for the AS-Oregon
dataset
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400th snapshot in the AS-Internet Routers dataset. One can see that the changes
are very small in the AS-Oregon dataset, which explains the fact that all algorithms
exhibit a stable modularity through time, whereas in the KDDCup-HEP dataset the
majority of the graph changes during the the first snapshots and the change is still
substantial even in the later snapshots. This can explain the decreasing modularity
values we see in Fig. 15.
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Fig. 18 Change between two consecutive snapshots in time for the KDDCup dataset
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Fig. 19 Change between two consecutive snapshots in time for the AS-Internet Routers dataset
(Y axis is log scale)

We now present the results of the synthetic, benchmark graph experiments.
Tables6 through9provide an thoroughviewon the accuracy andNMIvalues obtained
for each algorithm. We have grouped the results first of all based on the graph evo-
lution event types (namely, birth-death, hide, merge-split and expand). In addition,
we provide the two most important characteristics of the graphs, which mostly affect
its complexity and thus the efficiency of the algorithms, namely the number of com-
munities in the graph as well as the average degree of its nodes. According to these
Tables, the average value of NMI of DynamicSCCD, LabelRankT and D-GT is 99.3,
99.2 and 75.7%, respectively. The average value of ACC of DynamicSCCD, Label-
RankT and D-GT is 97.2, 97.2 and 58.3%, respectively. So, one can see in these
tables that DynamicSCCD and LabelRankT exhibit comparable, high values of both
NMI and Accuracy, while D-GT exhibits much lesser performance. We have empha-
sized the corresponding values in the tables where one algorithmmostly outperforms
the other (Tables 7 and 8).
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Table 6 NMI and Accuracy values of all three algorithms for birth-death evolution events based
graphs

coms events
freq

NMI
SCCD
(%)

Acc
SCCD
(%)

NMI
LBRT (%)

Acc
LBRT (%)

NMI DGT
(%)

Acc DGT
(%)

50 0.05 99.03 94.52 99.79 99.11 63.31 44.42

50 0.1 99.65 98.99 98.77 94.68 57.77 42.77

50 0.2 99.63 99.02 98.70 95.42 45.51 41.41

100 0.05 99.25 97.32 99.22 94.66 78.32 60.19

100 0.1 99.43 97.54 99.42 98.28 73.57 60.40

100 0.2 99.36 97.03 99.60 98.68 63.60 61.37

200 0.05 99.11 95.70 99.59 98.88 87.63 80.46

200 0.1 98.96 94.07 99.69 99.03 69.03 62.08

200 0.2 98.90 93.82 99.65 98.85 67.52 67.24

Table 7 NMI andAccuracy values of all three algorithms for expand evolution events based graphs

coms events
freq

NMI
SCCD
(%)

Acc
SCCD
(%)

NMI
LBRT (%)

Acc
LBRT (%)

NMI DGT
(%)

Acc DGT
(%)

50 0.05 99.00 95.11 99.79 98.87 68.31 42.98

50 0.1 99.65 99.25 98.38 94.14 66.96 41.75

50 0.2 99.70 99.40 98.10 93.92 64.95 39.74

100 0.05 99.65 99.25 98.61 94.99 83.63 62.77

100 0.1 99.49 98.03 99.70 98.57 82.24 61.12

100 0.2 99.54 98.36 99.68 98.54 81.02 59.55

200 0.05 99.36 98.07 99.53 98.15 93.44 83.93

200 0.1 99.03 94.71 99.77 98.62 92.96 83.73

200 0.2 98.98 94.60 99.79 98.81 92.20 81.72

Figures20 and 21 show a histogram of the Accuracy and NMI values of the
two more well-performing algorithms (namely DynamicSCCD and LabelRankT)
over the entire synthetic graph dataset. It holds that the NMI of DynamicSCCD,
LabelRankT and D-GT belongs in the ranges [96.9%, 99.9%], [98.5%, 99.9%]
and [43.8%, 97.1%] respectively. The ACC of DynamicSCCD, LabelRankT and D-
GT belongs in the ranges [92.2%, 99.8%], [90.5%, 99.8%] and [11.8%, 99.4%]
respectively. Conclusively, it holds that while the performances of those two algo-
rithms in the synthetic datasets are comparable, it is clear that DynamicSCCD out-
performs LabelRankT in the real-world datasets.

Finally, Fig. 22 shows the reduction in execution time accomplished by Dynam-
icSCCD over all the snapshots following the first one, compared to the execution
time of the algorithm on the first snapshot. One can see that for the majority of the
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Table 8 NMI and Accuracy values of all three algorithms for hide evolution events based graphs

coms events
freq

NMI
SCCD
(%)

Acc
SCCD
(%)

NMI
LBRT (%)

Acc
LBRT (%)

NMI DGT
(%)

Acc DGT
(%)

50 0.05 99.13 95.19 99.80 98.90 67.30 41.81

50 0.1 99.69 99.29 98.77 95.98 65.22 41.56

50 0.2 99.68 99.27 98.75 95.96 62.09 41.71

100 0.05 99.69 99.40 97.84 93.06 81.97 63.79

100 0.1 99.49 97.94 99.63 98.22 80.14 63.22

100 0.2 99.48 97.91 99.70 98.51 76.22 62.40

200 0.05 99.59 98.46 99.64 98.43 91.87 85.13

200 0.1 98.98 94.40 99.81 98.91 89.66 84.59

200 0.2 98.98 94.31 99.79 98.78 85.66 83.43

Table 9 NMI and Accuracy values of all three algorithms for merge-split evolution events based
graphs

coms events
freq

NMI
SCCD
(%)

Acc
SCCD
(%)

NMI
LBRT (%)

Acc
LBRT (%)

NMI DGT
(%)

Acc DGT
(%)

50 0.05 98.86 95.93 99.71 98.72 67.09 41.08

50 0.1 99.65 99.25 97.64 92.06 62.63 31.95

50 0.2 99.72 99.55 98.06 93.89 61.70 29.18

100 0.05 99.57 99.08 97.84 92.98 81.18 55.41

100 0.1 99.43 97.88 99.60 98.26 79.11 49.92

100 0.2 99.32 97.54 99.66 98.62 75.67 44.59

200 0.05 99.19 97.40 99.13 96.94 91.43 75.47

200 0.1 98.95 94.86 99.74 98.68 89.40 68.46

200 0.2 98.91 95.41 99.74 98.73 85.01 57.51

experiments on the synthetic graphs, DynamicSCCD achieved a 5 to 10 times less
execution time compared to the execution time of the corresponding first snaphot.
In about 10% cases, this reduction is higher than 30 times. This mainly appears
when the graph structure changes are smooth, since it holds that the smoother graph
changes, the higher the reduction in execution time, an expected conclusion. This
shows how DynamicSCCD takes advantage of the available community information
of the previous snapshot, as compared to running the static algorithm for every single
snapshot from scratch.
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Fig. 20 Histogram of the
accuracy values of
DynamicSCCD and
LabelRankT
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2.6 Conclusions and Future Work

We presented a community finding algorithm which is based on a custom-tailored
version of the Vivaldi network coordinate system. The proposed algorithm has been
tested on a large number of benchmark graphs with known community structure
comparing itwith several state-of-the-art algorithms, proving its effectiveness against
all other algorithms. In addition we performed experiments on large, real world
datasets and compared it with the next most efficient algorithm resulting in very
comparable effectiveness. Moreover, our algorithm can employ a simple third step
to allow it to provide a wider range of similarly optimal results.

We plan to expand the algorithm, in order to enable the detection of also overlap-
ping communities. In addition, another goal is the modification of the algorithm in
order to locate only a single community. Both of these problems are of great interest
to the field of social networks, since overlaps can be appeared between communities.
In addition, it an is important to provide the single community detection (per node)
when each node of the social network ask for its community instead of entire commu-
nity detection. Another possible extension of the proposed scheme is the application
in weighted networks that can measure the strength of social relationships in social
networks [41]. In iterative process of position estimation algorithm, this extension
can be done by setting the probability of edge selection according to the edge weight,
so that the strong edges would have higher selection probability corresponding to
high-tension springs.

3 Local Community Detection via a Flow Propagation
Method

We propose a flow propagation algorithm (FlowPro) that finds the community sur-
rounding a node in a complex network. In each iteration of the main process of
FlowPro, the initial node propagates a flow that is shared among its neighbors. Each
node is able to store, propagate to its neighbors, and return, part of the flow it receives
to the initial node. When the algorithm converges, the flow stored in the nodes that
belong to the community of the initial node, is generally higher than the flow stored
in the rest of the graph nodes, thus the requested community emerges. The novelty
of the proposed approach lies in the fact that Flow-Pro is local, allows to visualize
the community and does not require the knowledge of the entire graph as most of
the existing methods found in the literature. This makes possible the application of
FlowPro in extremely large graphs or in cases where the entire graph is unknown
like in most social networks. Experimental results on real and synthetic data sets
demonstrate the high performance and robustness of the proposed scheme.
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3.1 Related Work

Wewill nowdescribe some state-of-the-art algorithms that solve the local community
detection problem that are able to detect a community starting at a given nodewithout
the knowledge of the entire graph [42]. In [43], the L-Shell algorithm is proposed
that expands a community, stopping the expansion whenever the network structure
does not allow any further expansion, i.e. the bridges are reached. This expansion
is controlled the given threshold α. Disadvantages of this method are its quadratic
computation cost and the fact that it is possible to “spill over” the community when
the starting node is close to some non-community vertex. In [44], a random walks
based local clustering algorithm is proposed called Nibble, that runs in time propor-
tional to the size of the cluster it outputs. The cluster that Nibble produces consists
of nodes that are among the most favored destinations of randomwalks starting from
initial node. However, Nibble may not find a local cluster for some input vertices and
is sensitive on the two given parameters ϕ, b. The Lancichinetti et al. algorithm [7]
is developed based on the observation that network communities may have overlaps,
and thus, algorithms should allow for the identification of overlapping communities.
Based on this principle, a local algorithm is devised developing a community from
a starting node and expanding around it based on a fitness measure. This fitness
function depends on the number of inter- and intra-community edges and a tunable
parameter α. Starting at a node, at each iteration, the community is either expanded
by a neighboring node that increases the community fitness, or shrinks by omitting
a previously included node, if this action results in higher fitness for the resulting
partitioning of the graph. The algorithm terminates when the insertion of any neigh-
boring node would lower the fitness of the community. This algorithm is local, and
able to identify individual communities. Similarlywith Lancichinetti et al. algorithm,
in [21], the authors define a density quality measure to be optimized and then recur-
sively merge clusters if this move produces an increase in the quality function. In the
experimental evaluation section, we compare our approach with the Lancichinetti et
al. algorithm, that is the most recent method solving the local community detection
problem without difficult to be tuned parameters.

3.2 Problem Formulation

This section, presents the local community detection problemand studies some issues
that have been taken into account in the proposed algorithm. LetG = (V,W ) denote
the given graph comprising a set V of nodes together with a setW of weighted edge.
In order to simplify the problem formulation, we suppose that the graph is undirected
and all edges’ weights are equal to one. So, if there exists an edge from node i ∈ V to
node j ∈ V , then the edge weight is given by W (i, j) = 1, otherwise W (i, j) = 0.
The proposed problem formulation as well as the proposed method can be extended
to undirected weighted graphs.
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According to the problem definition of local community detection, the initial
node (s ∈ V ) is given and the goal is to find the set of nodes C(s) that belong to
the community of s, with C(s) ⊇ {s}. This means that there exist a high number
of edges between the nodes of C(s) compared to the number of edges that connect
nodes of C(s) to the rest of the graph. In addition, we have assumed that the given
graph mainly has non-overlapping community structure. In the case of graphs with
overlapping communities [40], the proposed method can be also applied but we get
lower performance results (see Sect. 3.4.1). This is due to the fact that our problem
formulation is proposed mainly for non-overlapping networks, e.g. Eq. (16) is not
true for nodes that belong to several communities, since it yields low values for them.

Let p(x), x ∈ V denote the probability that node x belongs to C(s). Let local(x)
be the number of edges of node x that belong to SG(C(s)), where SG(C(s)) denotes
the subgraph that is defined by the set of nodes C(s). If community C(s) is known,
then p(x/C(s)) is defined by the ratio of local(x) to the degree of x (degree(x)):

p(x/C(s)) = local(x)

degree(x)
(16)

Let d(x), x ∈ V denote the shortest path distance between nodes x and s. Let
{e1, e2, · · · , ed(x)} be the set of edges of a shortest path between nodes s and x .
Then, an estimation of p(x) is given by the probability that e1 ∈ SG(C(s)) ∧ e2 ∈
SG(C(s)) · · · ∧ ed(x) ∈ SG(C(s)). Let ρ be the average ratio of local links to node
degree value, which dictates how strong and clear the communities of the graph are.
Thus, if we ignore the graph structure then the probability of an edge e1 to belong to
SG(C(s)) is given byρ. Therefore, a simple estimation of p(x) can be given byEq.17
under the assumption that the possibilities ei ∈ SG(C(s)) and ei+1 ∈ SG(C(s)) are
independent.

p(x) = ρ−d(x) (17)

This estimation ignores the graph structure and it takes into account only d(x). In
addition, we have assumed that Eq.18 is true for p(x).

p(x) ≤
∑

y∈n(x) p(y)

|n(x)| (18)

where n(x) denotes the set of neighbors of node x and |n(x)| denotes the number
of neighbors of node x . We have used inequality instead of equality in order to take
into account the case of a bridge, meaning that it is possible that x does not belong
to C(s) even if x is connected to s. The proposed algorithm is based on Eqs. 17 and
18 in order to estimate a quantity S(x), that we call stored flow, which is analogous
to p(x/C(s)). According to the problem formulation of FlowPro, the probability of
a node x to belong to the community of node s is analogous to its stored flow.
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3.3 Flow Propagation Algorithm

In this paper, we propose a local algorithm that can be implemented as a fully dis-
tributed method (FlowPro). The main goal of this work is not to analyze the structure
of the whole social network, but to provide a useful community detection tool for a
simple user of a social network, which is impossible to know the entire graph struc-
ture. This makes possible the application of FlowPro in extremely large graphs or in
cases where the entire graph is unknown like in most social networks. In addition,
FlowPro can be applied in weighted networks that can measure the strength of social
relationships in social networks [41]. According to the problem formulation of Flow-
Pro, the probability of a node belonging to the requested community is analogous to
its stored flow. So, the stored flow can be used as a belief (rating) of a node belonging
to that (the seed node’s) community, and to answer various questions like finding
the k-nearest neighbors of a community that are considered the most important for
several applications, such as social networks. The CoViFlowPro, described in [45],
successfully applies the stored flow of FlowPro on the visualization of a commu-
nity on the Archimedean spiral. Another novelty of the proposed method, is that we
optionally give the community size that is quite important in social networks where
the communities are not well separated, which cannot be done by other local methods
of literature. In such social networks, a community finding algorithm that automat-
ically estimates a community would probably fail. In addition, compared to other
local methods, the proposed method has the extra ability of automatically removing
(e.g. bridges) and adding edges to the initial (seed) node, decreasing the diameter of
the community. These changes on the graph structure increase the converge and the
performance of FlowPro.

In each iteration of the main process of FlowPro, the initial node propagates a
flow that is shared among its neighbors. Each node is able to store, propagate to
its neighbors, and return part of the flow it receives to the initial node. When the
algorithm converges, the flow stored in the nodes that belong to the community of
the initial node is generally higher than the flow stored in the rest of the graph nodes,
thus the requested community emerges. A flow propagation algorithm that has been
successfully used for the point clusteringproblem [46] is the affinity propagation (AP)
method [47]. AP takes as input measures of similarity between pairs of data points
using negative squared error, thus solving the entire community detection problem.
Real-valued messages are exchanged between data points until a high-quality set of
exemplars and corresponding clusters gradually emerges. The number of clusters is
automatically estimated by the AP, influenced by the values of the input preferences,
but also emerges from the message-passing procedure. A detailed and more formal
description of our algorithm follows:

FlowPro requires as input the initial node (s ∈ V ) that searches for its community.
This node has an initial flow for propagation T (s) = |n(s)|. In each iteration of the
main process of FlowPro, the initial node propagates a flow that is shared to its
neighbors. Each node x is able to store, propagate to its neighbors, and return part of
this flow to the initial node. Finally, when the algorithm converges, the flow stored
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at the nodes that belong to the community of the initial node is generally higher than
the flow stored in the rest of the graph nodes, since the stored flow of a node will be
analogous to p(x), resulting to the requested community.

The proposed method is similar to the belief propagation algorithms [48] that
are normally presented as message update equations on a factor graph, involving
messages between variable nodes and their neighboring factor nodes and vice versa.
Considering messages between regions in a graph is one way of generalizing a belief
propagation algorithm [48]. However, based on the estimation of S(x) FlowPro has
the extra ability of removing and adding edges to s in order to increase d(x) for nodes
x that do not belong to C(s) (e.g. removing bridges) and to decrease d(x) for nodes
x that belong to C(s), respectively. This property increases the convergence and the
performance of FlowPro. Hereafter, we give a detailed description of the FlowPro
algorithm which comprises the following steps:

1. At each iteration of the main process, the initial node s propagates a flow that is
shared to its neighbors according to their edge weights. Each node that receives
a flow stores half of it, and sends the other half of the flow to its neighbors only
if the flow is greater than a threshold T0 (e.g. in our experiments T0 = 0.001) in
order to allow the process to terminate. In Sect. 3.4.3, we describe how threshold
T0 affects the performance of the method and we show that the selection of T0 =
0.001 suffices to get high performance results while keeping the total number
of messages low. So, when the graph is undirected and without edge weights,
the flow is equally distributed to the neighbors since the edges are equivalent and
node x considers the probability of each of the neighbors belonging toC(s) equal.
Since s ∈ C(s), the flow propagation is executed under the assumption that node
s does not receive/store flow meaning that we set the edge weight W (x, s) = 0,
∀x ∈ V (see line 5 of Algorithm 4).
Let T (x) be the quantity of flow that node x ∈ V is going to transmit. The fact that
each node stores half of the receiving flow can be considered as a physical way
to reduce the flows and to terminate the process. So, this process will terminate
when there does not exist any flow to be sent (see lines 8–18 of Algorithm 4).
This process is based on Eq.17 in the sense that the nodes that are close to s will
have high S(x). In addition, it takes into account the graph structure in the sense
that a node x that has a lot of connections with nodes of high stored flow, will
receive high quantity of flow. Therefore, when two nodes have the same distance
from s, the node with more “important” connections2 will have higher stored
flow. For example, in Fig. 24a, nodes x and y have the same distance from s,
but S(x) > S(y), due to the connections of x with nodes a and b. Thus, node x
belongs to C(s) with higher probability than node y.

2. Based on S(.), in the next step, the proposed method removes or adds edges to s
in order to remove bridges, thus decreasing d(x) for nodes that belong to C(s).
We sort vector S in descending order getting the node indices Sind (see line 19 of
Algorithm 4). If there exists a neighbor v of node s, that does not belong to the

2Connections with nodes that have high stored flow.
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first |n(s)| nodes of Sind (Sind(1 : |n(s)|)), then v is removed from the neighbors
of s, and the stored as well as the transmitted quantity of v is transferred to node s,

T (s) = T (s) + T (v) + S(v), (19)

since, with high probability it holds that v does not belong to the community of s
(see lines 22–29 of Algorithm 4). In the next main step of the algorithm, we check
if u is the last point of Sind(1 : |n(s)|) and thenwe remove it from the neighbors of
s (see lines 31–33 of Algorithm 4). Otherwise, we add node u = Sind(|n(s)| + 1)
to node’s s neighbors (see lines 35–38 of Algorithm 4). The new edge weight is
given by the average of edge weights between node s and its neighbors (see lines
39–43 of Algorithm 4). The goal of the removal and the expansion of neighbors
of s is

• to decrease the shortest paths between the nodes that belong to the community
of s and s in order to be able to increase their stored flow in the next iterations,

• to gradually keep most of the flow to nodes of the community by removing
bridges and

• to keep |n(s)| balanced.
In order tomeasure the importance of this step,we have executed FlowProwithout
this step on the Benchmark graphs (see Sect. 3.4). Without this step, the average
acc (that measures the performance, see Sect. 3.4) is only 58.7% over all Bench-
mark graphs, while the original FlowPro yields acc = 81.7%over all Benchmark
graphs.

3. The probability of a node x belonging to the community of s is equal or less
than the average of the corresponding probabilities of node’s x neighbors (see
Eq.18). Thus, based on this inequality, in case S(x) is greater than E(S(n(x))),
we set it to the mean stored flow for the nodes n(x), E(S(n(x))), where E(.)

is the symbol for the mean value. Quantity S(x) − E(S(n(x))) is added to T (s)
(see lines 44–50 of Algorithm 4) in the next main step of the algorithm.
This step will significantly reduce the stored flow of nodes that do not belong to
the community. For example, in Fig. 24b, there exists a bridge (edge s ∼ d) and
due to this step the reduction of S(d) will be high, since node d is only connected
to the almost fully connected subgraph G2. Without this step, S(d) would be less
but close to S(a), S(b) and S(c).

4. Finally, if the size of a community is not givenwe sort vector S in descending order
and we compute the differences between adjacent elements of the sorted vector
(DS). Let K be the position of the global minimum3 of DS. The community of
node s is defined by the first K nodes with the highest S(x). This trivial procedure
is implemented by function getCluster (see line 51 of Algorithm 4).

3In order to speed up the algorithm, we search for the global minimum in the range
[|n(s)|, |{x∈V :S(x)>0}|

2 ].



Community Detection Using Synthetic Coordinates … 621

Fig. 23 Quantity S(x) for a
synthetic graph. Blue and red
colors are used for the nodes
that belong to C(s) and those
that do not belong to C(s)
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If the size of the community is given, the algorithm is called FlowPro-S. Let K0

be the number of community nodes, then the procedure getCluster yields the
first K0 − 1 nodes with highest S(x).

5. The main process ends when

• the community finding algorithm converges to a solution (e.g. the last 10
iterations we receive the same community) or

• quantity T (s)∑
x∈V S(x) is lower than a threshold meaning that S(.) has converged

(see line 57 of Algorithm 4).

In Fig. 23, we plot quantity S(x) for a synthetic graph N = 1000, Comm = 20,
degree = 20 and local/degree = 0.65 (see Sect. 3.4.1) using blue and red colors
for the nodes that belong to C(s) and those that do not belong to C(s), respectively.
It holds that quantity S(x) is generally higher for the nodes that belong toC(s), since
the stored flow of a node S(x) is almost analogous to p(x/C(s)). In these example,
the Pearson product-moment correlation coefficient r between S(x) and p(x/C(s))
is 0.92 showing a strong linear dependence between the two variables (Fig. 24).

(a) (b)

Fig. 24 a A graph with 8 nodes. b A graph with two almost fully connected subgraphs G1 and G2
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3.4 Experimental Results

We have created a variety of benchmark graphs with known community structure to
test the accuracy of our algorithm. Benchmark graphs are essential in the testing of a
community detection algorithm since there is an apriori knowledge of the structure of
the graph and thus one is able to accurately ascertain the accuracy of the algorithm.
Since there is no consensus on the definition of a community, using a real-world
graph makes it more difficult to assess the accuracy of a community partition. Our
benchmark graphs were generated randomly given the following set of parameters:
The number of nodes N of the graph, the number of communitiesComm of the graph,
the (average) degree of nodes degree and the ratio of local links (intra-community
links) to node degree local/degree. The parameters used by the algorithm and
their corresponding values are shown in Table10. In addition, we have used 14 low
overlapping density LFR [12, 40] networks. We created a total of 208 benchmark
graphs. Notice that even though the number of nodes, the number of communities
and the node degree are construction parameters of the graphs, the degree of each
node as well as the number of nodes in a single community varies based on a pareto
distribution. This enables us to create graphs of community sizes and individual
degrees varying up to an order of magnitude.

A demonstration of the proposed method is given in,4 that contain the benchmark
graphs, related articles and an executable of the proposed method.

We have used an accuracy-related metric found in the literature mostly to measure
the performance of community detection. The simple accuracy is defined as follows:
Let A be the estimated and Â the corresponding actual community. The accuracy
(acc) is given by the fraction of the number of nodes that belong to the intersection
of A ∩ Â divided by the number of nodes that belongs to the union A ∪ Â, acc =
|A∩ Â|
|A∪ Â| . It holds that acc ∈ [0, 1], the higher the accuracy the better the results. When
acc = 100% the community detection algorithm gives perfect results.

4goo.gl/867M4z.
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Table 10 The different
values for the parameters

N 1000, 5000, 10,000

Comm 5, 10, 20, 40, 80

local/degree 0.55, 0.65, 0.75, 0.85

degree 10, 20, 30, 40

Figures25, 26 and 27 show an example of the evolution of the FlowPro for the
synthetic graph with N = 1000, Comm = 10, degree = 20 and local/degree =
0.75. In Fig. 25a the variation of the stored flow (

∑
x∈V S(x)) and T (s) during the

execution of the main process are illustrated. It holds that
∑

x∈V S(x) is increasing
and T (s) is decreasing during the execution of FlowPro. In Fig. 25b the variation
of acc during the execution of the main process is plotted. The acc of the method
increases during the execution of FlowPro.

In Figs. 26 and 27 the stored flow and community detection results (see black line)
are depicted for the first, 30, 59 and 88 iterations of the main process, demonstrating
the evolution of Flow-Pro. In Fig. 26, for each node x , the x-axis shows the shortest
distance between x and initial node s (d(x)) and the y-axis shows the stored flow
of x (S(x)). In Fig. 27, the nodes are sorted in descending order of their stored flow.
It holds that during the execution of the main process the shortest distance from the
initial node s decreases for the nodes that belong to the community and increases
for the rest of the nodes due to the fact that FlowPro removes and adds edges to
s (see third step of Algorithm FlowPro in Sect. 3.3). According to the getCluster
procedure (see Sect. 3.3), the nodes are sorted by their stored flow (S). The nodes
that really belong to the community of s are plotted with blue spots while the rest of
the nodes are plotted with red circles. In this example FlowPro terminates, since it
converges to a solution. It holds that the acc after the first, 30 and 59 and 88 iterations
is 23.1, 94.8, 96.7 and 100%, respectively.
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Fig. 25 An example of the variation of the a stored flow and T (s) and b the acc during execution
of the main process of FlowPro
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Fig. 26 The FlowPro community detection results (above the black line) after the first, 30, 59 and
88 iteration of the main process

In Fig. 28, we illustrate an example of the community visualization CoViFlowPro
method [45] on a synthetic graph with N = 5000, Comm = 40, degree = 10 and
local/degree = 0.85 has been used. In this example the community size is 40 nodes.
The initial node (s = 26) has 13 neighbors. Two of them are detected as bridges.
According of CoViFlowPro, it seems that the only one out of first fivemost important
nodes of the community of s are also neighbors of s, while the node with the highest
belief to belong on the C(s) has label 14. Concerning the structure of the C(s), we
can group it into three categories, the strong community nodes: the first six nodes
(14, 12, 4, 30, 33 and 13), the medium community nodes: the next 32 nodes and the
weak community nodes: the last node (34).

3.4.1 Experiments on Benchmark Graphs

The performance of FlowPro-S, FlowPro and the Lancichinetti [7] are compared
on Benchmark graphs. Over all benchmark graphs, it holds that the mean accuracy
of FlowPro-S, FlowPro and Lancichinetti is 91.4, 81.7 and 34.1%, respectively. In
order to estimate the mean accuracy of FlowPro-S, FlowPro and Lancichinetti, we
have tested each algorithm on 10 different nodes yielding the average acc per graph.
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Fig. 27 The FlowPro community detection result (before the black line) in the first, 30, 59 and 88
iteration of the main process

Figure29 shows the percentage of “successful” experiments, given an accuracy
threshold to define “success”. One can see the high performance and the stability of
FlowPro-S and FlowPro. Each 3D graph in Figs. 30 and 31 shows the performance
of a single algorithm (FlowPro-S, FlowPro and Lancichinetti) using either the first
or the second metric, on all 208 benchmark graphs. Since there are four types of
parameters which describe the graphs of the experiments, we decided to use the two
most important factors which affect the algorithms’ performance, in order to plot
the accuracies in 3D graphs. The first of these factors is always the local links to
node degree value, which dictates how strong and clear the communities in the graph
are. The second factor in some cases is the number of communities in the graph,
while in other cases (depending on the algorithm) is the (average) density of these
communities. Thus, we decided to plot, for each algorithm two 3D graphs using,
in one case, the number of communities as the values on one of the axes and the
average density on the other. Each accuracy value in the graphs is the average of
the accuracies of all the experiments based on the benchmark graphs with the same
values of the aforementioned factors.

We can see from Fig. 29 and from the 3D graphs how FlowPro outperforms the
Lancichinetti algorithm. The performance of FlowPro-S is about 10% higher than
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Fig. 28 An example of visualization results of CoViFlowPro method [45] on a synthetic graph
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Fig. 29 Percentage of “successful” experiments, given an accuracy success threshold (x axis) for
the accuracy metric

FlowPro, since the size of the community is given. Hereafter, we have performed
several experiments to showhow theparameters size of the graph,degree,Comm and
local/degree of benchmark graphs affect the accuracy of FlowPro and Lancichinetti
algorithms. For each parameter, we have removed the most difficult cases in order
to measure its influence to the method performance.
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• If we ignore the cases of benchmark graphs that have N equal to 10,000, then the
mean accuracy of FlowPro and Lancichinetti are 82.1 and 35.1%, respectively.

• If we ignore the cases of benchmark graphs that have degree equal to 10, then the
mean accuracy of FlowPro and Lancichinetti are 85.5 and 38.4%, respectively.

• If we ignore the cases of benchmark graphs that have Comm equal to 5, then the
mean accuracy of FlowPro and Lancichinetti are 86.9 and 39.8%, respectively.

• If we ignore the cases of benchmark graphs that have local/degree equal to
0.55, then the mean accuracy of FlowPro and Lancichinetti are 87.9 and 37.8%,
respectively.

• If we ignore the cases of benchmark graphs that have local/degree equal to 0.55
or degree equal to 10 or Comm equal to 5, then the mean accuracy of FlowPro
and Lancichinetti are 94.2 and 48.5%, respectively.

According to these experiments it seems that the parameters degree, Comm and
local/degree affect the performance of FlowPro and Lancichinetti since these para-
meters are clearly related to the community density, while the size of the graph
doesn’t really affect the performance of FlowPro.

In addition, the performance of FlowPro and Lancichinetti methods has been
tested on 14 LFR overlapping networks [12, 40]. Even though the problem formu-
lation of both of the methods is mainly proposed for non-overlapping communities,
we have evaluate their performance on low overlapping density LFR networks of
1000 nodes, 10% of them are overlapping nodes. Similarly with [40], we allow the
number of communities to which each overlapping node belongs (Om) to vary from
2 to 8 indicating the overlapping diversity of overlapping nodes. By increasing the
value of Om, harder detection tasks are created. So, we have performed two tests on
LFRμ=0.1 (7 datasets) and LFRμ=0.3 (7 datasets), where the mixing parameter μ

denotes the expected fraction of links through which a node connects to other nodes
in the same community. Figure32 depicts the mean value of accuracy under the (a)
LFRμ=0.1 and (b) LFRμ=0.3 for the FlowPro-S and FlowPro and Lancichinetti algo-
rithms. On LFRμ=0.1 dataset, the average acc of FlowPro and Lancichinetti is 65.03
and 52.09%, respectively. On LFRμ=0.3 dataset, the average acc of FlowPro and
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Fig. 32 The mean value of accuracy under the a LFRμ=0.1 and b LFRμ=0.3 for the FlowPro-S
and FlowPro and Lancichinetti algorithms
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Lancichinetti is 54.26 and 18.73%, respectively. It holds that under any case, Flow-
Pro clearly outperforms Lancichinetti algorithm. FlowPro gives high performance
detection results when Om = 2 yielding 85.58 and 73.87% under LFRμ=0.1 and
LFRμ=0.3 datasets, respectively.

3.4.2 Experiments on Real World Graphs

We also conducted experiments on four real world graphs of diverse size (see
Table11). These graphs are obtained from [33] and from [49]. The conductance
metric [23] is used for the comparison of the results on real world graphs.

The conductance of a cut is a metric that compares the size of a cut (i.e., the
number of cut edges) and the number of edges in either of the two subgraphs induced
by that cut. Thus, it is a metric that can be used to measure the performance of a
single community detection. Consider a single community detection algorithm that
divides a given graph G into two non-overlapping clusters C(s) and V \ C(s). The
conductance φ(C(s)) of cluster C(s) can be obtained as shown in Eq.20, where
a(C(s)) = ∑

i∈C(s)

∑
j∈V W (i, j) is the sum of the weights of all edges with at least

one endpoint in C(s). The φ(C(s)) value represents the cost of one cut that bisects
G into two vertex sets C(s) and V \ C(s).

φ(C(s)) =
∑

i∈C(s)

∑
j /∈C(s) W (i, j)

min(a(C(s)), a(V \ C(s)))
(20)

Table 11 The Coverage of FlowPro and Lancichinetti on real world graphs

Graph FlowPro Lancichinetti

ca-GrQc (5.242 nodes, 28.980
edges)

0.264 0.996

ca-HepTh (9.877 nodes,
51.971 edges)

0.307 0.999

ego-Facebook (747 nodes,
30.025 edges)

0.135 0.239

Wiki-Vote (7.115 nodes,
103.689 Edges)

0.678 0.717

Enron email (36.692 nodes,
183.831 Edges)

0.398 –

Epinions (75.879 nodes,
508.837 Edges)

0.343 –

Slashdot (82.168 nodes,
948.464 Edges)

0.252 –

WWW (325.730 nodes,
1.497.135 Edges)

0.443 –
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Fig. 33 The FlowPro community detection results (above the black line) for a–d four nodes of the
ego-Facebook graph and e, f two nodes of the CA-HepTh graph

These metrics are different than the ones used in benchmark graphs, since the
real decomposition of a real graph into communities is not known. We have tested
each algorithm on 50 different nodes yielding the average conductance. The lower
the conductance the better the community detection. In Table11, we present the
results for the FlowPro and the Lancichinetti algorithms on real graphs using the
conductance metric. Due to the high computational cost of Lancichinetti, it was not
possible to get its results on large graphs. According to these results FlowPro clearly
outperforms Lancichinetti, since a lower conductance value is better.

Figure33 depicts the FlowPro community detection results (above the black line)
for four nodes of the ego-Facebook graph ((a),(b),(c),(d)) and two nodes of the CA-
HepTh graph ((e), (f)). The nodes are sorted in descending order according to their
stored flow. In cases, where the communities are not well discriminated like in several
real social networks examples, we can use these graphs of sorted flow to analyze the
communities, since the stored flow is highly correlated to the local/degree ratio.
More specifically, in Fig. 33a the degree of the initial node is 110. According to this
graph, it seems that this community can be separated into two sub-communities: the
first 80 nodes strongly belong to the community and the rest 200 nodesweakly belong
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to the community. The detected community has 280 nodes, due to the constraint that
the community size should be higher that |n(s)|, otherwise FlowPro would yield
the first 80 nodes (strong community). In Fig. 33b the degree of the initial node is
121. The detected community has 270 nodes. However, according to their stored
flow the first 150 nodes are strong community members. In Fig. 33c, d the degrees
of the initial nodes are 34 and 19, respectively. The two detected communities have
about 90 nodes with similar distribution of stored flow. In Fig. 33e, f the degrees
of the initial nodes are 13 and 37, respectively. In these examples, according to the
stored flow the communities are not well discriminated since the stored flow rapidly
decreases, however we can use it to extract possible solutions for the community.

In all these examples, with high probability it holds that the neighbors of s (red
circles) are nodes of the community. However, some of the neighbors of s are detected
as bridges getting low stored flow. Moreover, it seems that some nodes of high stored
flowmay not belong to the initial neighbors of s, since the stored flowmainly depends
on ratio local/degree. This also means that FlowPro is able to predict friendships
in a social network. The following experiment also proves that FlowPro predicts
friendships. In the ego-Facebook social network, we get the first ten neighbors n10(x)
according to their stored flow that belong to the community of a node s. We remove
the edges between them and s getting a graph G ′. Then, we execute FlowPro on G ′
and we measure that on average 94.9% of the nodes of n10(x) belong again to the
community of s.

3.4.3 Communication Load and Complexity

FlowPro can be implemented as a fully distributed system without any knowledge of
the entire graph. The communication load as well as the computational complexity
of the proposed distributed framework make possible the execution of FlowPro on
graphs of unlimited size (e.g. more than 100 millions of nodes with billions of links).
The communication load and computational cost is not affected by the graph size,
since the entire graph is not given and it holds that in the worst case the flow of
messages is possible to reach at most the graph nodes that have distance less than
−log(T0) + 1 from of initial node s, where T0 is a parameter of FlowPro defined in
Sect. 3.3.

Hereafter, we provide an analysis of the communication load and computational
cost. We measure the communication load by the total number of messages (mes)
that are exchanged during the execution of FlowPro. The computation cost can be
measured by the total number of iterations (i te) that are needed for the algorithm
convergence.

Figure34 illustrates the mean value of (a) mes and (b) i te under different ratios
of (local/degree) and densi ty under all benchmarks. Similarly to Sect. 3.4.1, in
3D graphs we use local/degree and densi ty to plot the mes and i te. It holds that
mes as well as i te get low values when the communities are well discriminated, e.g.
high density graphs and when local/degree is high. When the communities are not
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Fig. 34 The mean value of a mes and b i te under different ratios of (local/degree) and densi ty

Table 12 The average acc, mes and i te for different values of T0 over benchmark graphs

T0 acc (%) mes ite

0.0005 81.9 2.81 · 106 95

0.001 81.7 1.75 · 106 100

0.05 77.2 4.98 · 105 149.4

well discriminated, e.g. for low density graphs and when local/degree is low, the
algorithm is more difficult to converge and it needs more messages and iterations.

In addition, we have measured the stability of FlowPro for different values of T0
over benchmark graphs. In Table12, we present the average values for acc, mes and
i te for different values of T0 over benchmark graphs. For each benchmark graph we
have tested each configuration on 10 different nodes getting the average values. It
holds that, when T0 = 0.001 we get high performance results keeping low the total
number of messages and the number of iterations, so in our experimental results
we have used T0 = 0.001. When T0 = 0.0005, we get only 0.2% higher acc than
the acc of T0 = 0.001, however the average mes is very high. When T0 = 0.05, the
average acc is only 77.2% and average i te is very high (149.4).

3.5 Conclusions

We presented a local community finding algorithm which is based on a flow prop-
agation method. The stored flow can be used as a belief that a node belongs to the
community which has been used on related problems such as finding the k-nearest
neighbors of the community of a node that are important on several applications of
social networks and on community visualization problem. The novelty of the pro-
posed approach is the fact that FlowPro is local, fully distributed, it detects a single
community and it does not require the knowledge of the entire graph as most of the
existing methods in the literature. Thus, the application of FlowPro is possible in
extremely large graphs or in cases where the entire graph is unknown like in most
social networks. In cases, where the communities are not well discriminated like in
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several real social networks, we can use the sorted flows to analyze the community
detection results. In addition, FlowPro can be applied in weighted networks that
can measure the strength of social relationships in social networks. The proposed
algorithm has been tested on a large number of benchmark graphs with known com-
munity structure and in graphs derived from real social networks. We have compared
it with the Lancichinetti algorithm [7], proving its effectiveness against another local
community detection algorithm.
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