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Preface

From Prandtl’s work at the beginning of last century, singular perturbation tech-
niques (SPTs) have become the basic tool of fluid dynamics. Further the approach
was extended to other fields of control theory and engineering including aircraft and
racket systems, power systems and nuclear reactor systems. The dynamics of sin-
gularly perturbed systems (SPSs) contain the interaction of the slow and fast
phenomena so that the feedback design often suffers from high dimensionality and
ill-posed problem. To alleviate the numerical stiffness, engineers usually use the
singular perturbation approach to process the type of system. It lowers the model
order by neglecting the fast dynamics and improves the approximation by rein-
troducing their effects as ‘boundary layer’ corrections in separate timescales. From
the frequency domain perspective, poles farther to imaginary axis are associated
with the natural signals that decay faster than those associated with poles closer to
the imaginary axis on the left half s-plane. The fast modes dominate at the initial
stage, and the slow modes are the primary contributors later. The fast/slow
dynamics of the state trajectories correspond to the high/low-frequency parts of the
system response.

In terms of perspectives of systems and control, Kokotovic and Sannuti had
explored the optimal control problem of continuous-time SPSs. Two-point
boundary value problem of open-loop systems had been analyzed and been con-
verted controller design problem to solve the Riccati matrix equation of closed-loop
systems. The methodology of singular perturbation methods and timescale (SPaTS)
techniques, “gifted” with the remedial features of both dimensional reduction and
stiffness relief, is considered as a “boon” to systems and control engineers. Thus,
the goal of SPaTS techniques is to reduce and simplify the software and hardware
implementation. Both the theory and the technique had now attained a maturity
level for the continuous-time and discrete-time control systems described by
ordinary differential and difference equations, respectively.

However, majority of researches are focused on the time domain state space
analysis and synthesis about the SPSs. This book tries to pave a new way to fill the
gap between frequency domain transfer function (TF) based results and time
domain state space based results. We focus on topics such as H∞ control, mixed
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H−/H∞ theory, positive real control, loop-shaping techniques, and quadratic
stability, whose specifications are characterized by frequency domain inequalities
described by transfer function matrices (TFMs). Due to the existence of the small
parasitic parameters in the system model, such control problems usually suffer from
high dimensionality and ill-posed problem. Advantage of our results is thereby
taken as the unique frequency nature of SPSs to design a combined controller to
deal with the original ill-posed problem. We adopt the classical slow–fast
decomposition method or descriptor system approaches for SPSs, for convenience
of development in the sequel, which is called singular method throughout this
monograph, to design ε-independent or ε-dependent controllers for SPSs. It should
be noted that our results can be extended to more complex systems with
multi-timescale characteristics such as multiagent systems and stochastic systems.

The authors of this monograph are thankful to the whole Singular Perturbation
Research Team at Nanjing University of Science and Technology. We would like to
thank Dr. Ningfan Zhong, Dr. Ping Mei, Yanlong Huang, Wen Wang, Yan Zhang
and Zhaozhen Ding for their contribution and stimulation to write this monograph.
We are particularly thankful to Prof. James Lam for his special help when Chenxiao
Cai visited the University of Hong Kong.

We owe a debt of gratitude to our families for their sacrifice, understanding and
encouragement during the course of preparing this monograph. It is evident that we
dedicate this work to our families and to our whole Singular Perturbation Research
Team.

All these works in the monograph were supported by the National Natural
Science Foundation of China under Grant Nos. 61104064 and 61329301, and by
the Fundamental Research Funds for the Central Universities under Grant Nos.
30920140112005 and 30915011105.

Nanjing, China Chenxiao Cai
London, UK Zidong Wang
Nanjing, China Jing Xu
Nanjing, China Yun Zou
April 2016
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Part I
Preliminaries

In this part, some preliminaries will be introduced for the finite frequency control of
the SPSs. Here singular perturbation phenomenon and timescale techniques are dis-
cussed. The general KYP lemma, the bridge of time domain and frequency domain,
is deduced for finite frequency. Some performance indices are confirmed rationally.
The preliminaries would serve as a preparation for the analysis and synthesis of the
finite frequency SPSs discussed in the next part.



Chapter 1
Singular Perturbation Methods
and Time-Scale Techniques

For control engineering, typical tasks can generally be classified into three main
categories: optimal regulation, tracking and guidance. To overcome the external dis-
turbances, parameter variations and other uncertainties, control systems should pos-
sess a sufficient degree of robustness or insensitivity to extraneous effects. With the
development of controller design techniques, oversimplified models cannot accom-
plish control tasks that require higher precision, such as the taking-off and landing
of an unmanned aerial vehicle (UAV). The key feature of SPTs is at the level of
modelling, where the system order is increased with both slow and fast dynam-
ics accurately modelled. Using the classical slow-fast decomposition, reduced-order
subsystems are obtained, which can attenuate the design difficulty in the oversim-
plified design. The growth of research activities in the field of SPTs has resulted in
the publication of excellent survey papers, reports and proceedings of special con-
ferences, which provides broad space for further applications of SPTs in many fields
such as electromechanical networks and power systems, chemical kinetics, nuclear
reactors and heat exchangers. In the following, we present some fundamental prin-
ciples and application methods of SPTs.

1.1 Modelling

Traditional TF and state-space modelling approaches both have been proven to be
effective modelling tools for the analysis and design of control systems. The presence
of some parasitic parameters may cause some technical difficulties in the traditional
modelling methods, which is the source for the increased order and stiffness of sys-
tems. The stiffness, resulted from weak coupling among slow and fast modes, gave
rise to SPTs, which can be viewed as the basic singular perturbation modelling back-
ground [37]. With the development of modelling approaches, some novel SPTs were

© Springer International Publishing Switzerland 2017
C. Cai et al., Finite Frequency Analysis and Synthesis for Singularly
Perturbed Systems, Studies in Systems, Decision and Control 78,
DOI 10.1007/978-3-319-45405-4_1

3



4 1 Singular Perturbation Methods and Time-Scale Techniques

developed using δ-operators in [28] and a bond graph model in [17]. For example,
Cao introduced a new reduced-order SPS model using the actual value of ε [6]. Next,
singularly perturbed phenomena will be discussed in the following.

1.1.1 Singularly Perturbed Phenomena

Let us consider the following system [36] expressed by a linear second-order equation
with a parameter 0 < ε � 1:

εẍ(t) + ẋ(t) + x(t) = 0, x(0) = xi , x(1) = x f . (1.1)

Evidently, as ε → 0, either from positive or negative values, we can obtain

lim
ε→0+

x(t, ε) = x f exp(1 − t), 0 < t � 1,

lim
ε→0−

x(t, ε) = xi exp(−t), 0 � t < 1.

The degeneration problem of the system (1.1) obtained by letting ε = 0 can be
formulated by

ẋ (0)(t) + x (0)(t) = 0.

The main characteristics of SPTs are summarized in [36] as follows:

1. The problem (1.1) can be referred to as a singularly perturbed problem. Particu-
larly, it is called degeneration problem when the order of (1.1) is lowered setting
ε = 0.

2. Due to existence of the parameter ε, there takes shape a boundary layer, and the
solution varies rapidly over there.

3. The reduced-order degeneration problem, or the unperturbed problem cannot
satisfy all the given boundary conditions for the original full-order problem (1.1).
However, the boundary layer part will compensate the loss for system accuracy.

4. There are two widely separated groups of characteristic roots in SPS (1.1), which
results in the simultaneous existence of slow and fast modes in its solution, and
makes the problem stiff from the numerical solution point of view. In this sense,
the SPS (1.1) possesses a two-time-scale property.

The procedure on how to construct a singular perturbed model for an engineering
application problem is demonstrated as follows:

Example 1.1 An inverted pendulum system is shown in Fig. 1.1. As a high-order,
multi-variable and nonlinear system, it can be modelled in the singularly perturbed
form.
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Fig. 1.1 The inverted
pendulum system

Using Newton’s second law of motion, the model of single inverted pendulum is
given as

ẍ = (−(J + ml2)b1 ẋ
2 + m2gl2 cos θ sin θ − mlb2 cos θ θ̇

− ml θ̇2(J + ml2) sin θ + ml cos θw + (J + ml2)F)/N ,

θ̈ = (−ml cos θb1 ẋ + (M + m)mgl sin θ − b2(M + m)θ̇

− m2l2θ̇2 cos θ sin θ + (M + m)w + ml cos θF)/N ,

(1.2)

where N = (M + m)(J + ml2) − ml2 cos2 θ . The related parameters are defined in
Table 1.1.

Table 1.1 Parameters of the single inverted pendulum

Physical description Parameter Value Unit

Displacement of Car Relative to the Initial Position x — m

Angle of Swinging Rod and Vertical Upward Direction θ — rad

Forces Acting on the Inverted Pendulum System F — N

Disturbance Force on the Swinging Rod w — N

Mass of Car M 1.06 kg

Mass of the Swinging Rod m 0.109 kg

Length of the Swinging Rod L 0.5 m

Distance from the Swinging Rod Centroid to the Axis l 0.25 m

Moment of Inertia of Swinging Rod J 0.0034 kg · m2

Sliding Friction Coefficient of the Car b1 0.1 N · s/m

Sliding Friction Coefficient of the Swinging Rod b2 0.1 N · s/rad

Gravity Acceleration g 9.81 m/s2
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The linearization near the operation point θ = 0 is conducted by assuming that
cos θ ≈ 1, sin θ ≈ θ, θ̇2 = 0. The state-space equations after using linearization
techniques are represented as

⎡
⎢⎢⎣
ẋ
ẍ
θ̇

θ̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 −0.0883 0.63 −0.0024
0 0 0 1
0 −0.2357 27.8569 −0.1042

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x
ẋ
θ

θ̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
2.3566

0
104.2072

⎤
⎥⎥⎦w +

⎡
⎢⎢⎣

0
0.8822

0
2.3566

⎤
⎥⎥⎦ u,

[
y1
y2

]
=

[
1 0 0 0
0 0 1 0

]
⎡
⎢⎢⎣
x
ẋ
θ

θ̇

⎤
⎥⎥⎦ .

The eigenvalues of the above linear open-loop system is

λ1 = 0, λ2 = 0.083, λ3 = −5.3331, λ4 = 5.2235,

and the open-loop system is unstable because some of the eigenvalues are located
in the right half s-plane. The values of λi , i = 1, 2, 3, 4 can reflect frequencies
of vibration and energy levels of systems. λ1 and λ2 are very near the imaginary
axis, called fast eigenvalues, and the modes formed by the fast eigenvalues have
faster dynamics than the modes formed by the eigenvalues λ3 and λ4, called slow
eigenvalues. The fast dynamics will disappear soon. We will enlarge time-scales, in
order that what happened over there during the short initial period. Then, we define
the small parameter ε which will have the effect of magnifying glass. One special
choice is ε = 0.01, according to the absolute magnitude of all eigenvalues. Through
the introduction of ε, or the stretching in time-scales, fast eigenvalues can virtually
be moved close to slow eigenvalues, and both of them can be handles in a similar
dynamic characteristics.

Remark 1.1 Provided all fast modes, formed by fast eigenvalues, located in the left
half s−plane, in some sense, the fast modes can be treated “less important”, and the
design should focus on stabilizing slow modes, formed by slow eigenvalues which
are also dominant poles of the system.

Then, from another perspective, we analyze the characteristics of the system. Let
state matrix, input matrix and output matrix of the above inverted pendulum system
be defined as follows:

A =

⎡
⎢⎢⎣

0 1 0 0
0 −0.0883 0.63 −0.0024
0 0 0 1
0 −0.2357 27.8569 −0.1042

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0.8822

0
2.3566

⎤
⎥⎥⎦ , C =

[
1 0 0 0
0 0 1 0

]
.
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Controllability matrix, observability matrix and their ranks can easily be calculated,

rank
[
B AB A2B A3B

] = 4, rank

⎡
⎢⎢⎣

C
CA
CA2

CA3

⎤
⎥⎥⎦ = 4.

Thus, the single inverted pendulum is completely controllable and observable. Using
the singular value decomposition method in [14], the singular values of the state
matrix are

σ1 = 0, σ2 = 1, σ3 = 1.024, σ4 = 27.8716.

The degree of controllability, reciprocal of the largest singular value, can then be
derived,

δ = 1/27.8716 = 0.0359,

which easily leads to numerical stiffness in control design.
The singularly perturbed model of the single inverted pendulum is shown as

follows:
⎡
⎢⎢⎣

ẋ
ẍ
εθ̇

εθ̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 −0.0883 0.63 −0.0024
0 0 0 0.001
0 −0.002357 0.278569 −0.001042

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x
ẋ
θ

θ̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
2.3566

0
1.04

⎤
⎥⎥⎦w +

⎡
⎢⎢⎣

0
0.8822

0
0.023566

⎤
⎥⎥⎦ u,

[
y1
y2

]
=

[
1 0 0 0
0 0 1 0

]
⎡
⎢⎢⎣
x
ẋ
θ

θ̇

⎤
⎥⎥⎦ .

The state matrix is corrected into

Aε =

⎡
⎢⎢⎣

0 1 0 0
0 −0.0883 0.63 −0.0024
0 0 0 0.001
0 −0.002357 0.278569 −0.001042

⎤
⎥⎥⎦ ,

with its eigenvalues in different time-scales as

λ1 = 0, λ2 = −0.0886, p3 = −0.0165, p4 = 0.0158,

singular values as

σ1 = 0, σ2 = 0.001, σ3 = 0.6846, σ4 = 1.0068,

and the degree of controllability is

δε = 1/1.0068 = 0.9932.
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From Example 1.1, we find that there are typical singularly perturbed phenomena
in the inverted pendulum system. The SPTs reduced numerical stiffness and improved
controllability for the system.

1.1.2 Linear Time-Invariant Singularly Perturbed Systems

Let us now describe the idea of singular perturbation from the system and control
perspective. A linear time-invariant (LTI) SPS as below considered,

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t), x1(t0) = x0
1 ,

εẋ2(t) = A21x1(t) + A22x2(t) + B2u(t), x2(t0) = x0
2 ,

(1.3)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are slow and fast state vectors, respectively,
n1 + n2 = n. u(t) ∈ Rp is the control vector, and ε is a small positive scalar para-
meter, called singularly perturbed parameter. Ai j and Bi (i, j = 1, 2) are matrices
of appropriate dimensions.

The stretched system can be obtained by using the transformation τ = t/ε

dx1

dτ
= εA11x1 + εA12x2 + εB1u,

dx2

dτ
= A21x1 + A22x2 + B2u,

(1.4)

which can be used to distinguish the fast states from the slow states.

Remark 1.2 For the SPSs, slow states and fast states are relative concepts.

Remark 1.3 The standard and nonstandard singularly perturbed problem.
Assume that the matrix A22 is nonsingular, which is customarily referred to the

standard singular perturbation problem. For the case that A22 is singular, it is called
nonstandard singular perturbation problem [27, 33]. In general, throughout the mono-
graph, we will discuss standard singular perturbation problem.

Setting ε = 0 in the system (1.3), the degeneration system can be represented by

ẋ (0)
1 (t) = A11x

(0)
1 (t) + A12x

(0)
2 (t) + B1u(t), x1(t0) = x0

1 ,

0 = A21x
(0)
1 (t) + A22x

(0)
2 (t) + B2u(t), x2(t0) �= x0

2 ,
(1.5)

which is combination of “differential” system in x (0)(t) with order n1 and “algebraic”
system in x (0)

2 (t) with order n2, where n = n1 + n2. The limited form (1.5) is called
singular system or differential algebraic equation (DAE).

The function of degeneration is not only to “cripple” the order of the system
from n to n1 by “dethroning” x2(t) from its original state variable status, but also
to “desert” its initial conditions x0

2 (t). This is a harsh limitation on x2(t), which is
closely related with the singular perturbation parameter ε.
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In [51], a larger bound of ε, was provided which was a gauge on the validity of
the Chang transformation defined in [24]. Gauss-Seidel iteration method was used to
investigate the exponential stability of singularly perturbed LTI systems in [8]. A set
of ε-dependent inequalities were proposed to compute the upper bound of ε which
ensured the system was exponential stable.

1.1.3 Nonlinear Singularly Perturbed Systems

A nonlinear SPS can be described by the following equations,

ẋ1(t) = f (x1(t), x2(t), u(t), ε, t), x1(t0) = x0
1 ,

εẋ2(t) = g(x1(t), x2(t), u(t), ε, t), x2(t0) = x0
2 .

(1.6)

As a special case of the nonlinear SPS (1.6), we can develop a class of nonlinear
singularly perturbed model, which is linear with states vector x2(t),

ẋ1(t) = f1(x1(t)) + A12x2(t), x1(t0) = x0
1 ,

εẋ2(t) = g1(x1(t)) + A22x2(t), x2(t0) = x0
2 ,

(1.7)

where A12 and A22 can be either matrices of appropriate dimensions or functions of
states vector x1(t).

As for more advanced modelling methods of SPSs, bond graph model for a non-
linear SPS was presented in [1], and a new discretization scheme for two-time-scale
nonlinear continuous-time systems was proposed based on Euler’s methodology in
[3]. For singularly perturbed Hodgkin-Huxley systems, Neumann boundary condi-
tions were given from [4]. In [9], gain scheduling control was designed for a nonlinear
singularly perturbed time-varying system. In [29], a class of nonlinear memoryless
controllers was synthesized for a class of imperfectly known nonlinear SPSs with
discrete and distributed delays. In [38], a holographic explanation was given to show
how the renormalization group approach to singular perturbations in nonlinear dif-
ferential equations.

1.1.4 Hybrid Singularly Perturbed Systems

If an SPS includes both the continuous and discrete states, or both the continuous-
time and discrete-time, or both the time-driven and event-trigger properties, then
such system can be referred to as a hybrid SPS.

The stability of hybrid SPSs was analyzed in [7, 44, 48]. The oscillation conditions
of a second-order singularly perturbed hybrid linear delay dynamic equation were
discussed on different time-scales in [12]. In [47, 48], the solutions of a class of
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singularly perturbed hybrid linear delay dynamic equations were discussed. In [18],
singular perturbation theory was used to decompose a hybrid system and the global
bifurcations of the forced Van der Pol equation were studied based on the reduced
systems. Similarly, SPT in [10, 45, 52] was used to deal with hybrid systems. Also,
see [30, 53] for further results on this topic.

1.2 Time-Scale and Frequency-Scale Analysis

A fundamental problem in the control theory is the mathematical modelling of a real
physical system. The occurrence of some parasitic parameters, such as small time
constants, resistances, inductances, capacitances, moments of inertia and Reynolds
number, may increase model order and stiffness of control systems [23, 25]. In the
frequency domain, an SPS with two widely separated characteristic roots, which
arouses high-frequency and low-frequency oscillations. The corresponding system
has slow and fast components in its time domain solutions. In the control theory, we
can see that poles further to imaginary axis on the left half s-plane are associated
with natural signals that decay faster than those associated with poles closer to the
imaginary axis. The fast modes dominate response of states in initial time instants
and disappear soon with the system into the steady state. And the slow modes are
the primary contributors with the vibration disappearance due to the fast modes.
Thus, the singularly perturbed problem possess a two-time-scale or two-frequency-
scale property. To capture the dominant phenomena, scaling techniques are used via
a separation of time-scales or frequency-scales such that the numerical stiffness is
eliminated, which leads to a more efficient implementation of the controller design
of SPSs.

1.2.1 Time-Scale and Multiple Time-Scales

The concept of time-scale comes from the SPS model which contains small parame-
ters. These small parameters lead to high dimensionality and ill-posed problem of
the practical system. Aiming at the class of systems, the SPTs can more accurately
control the system than the general reduce-order methods.

Supposing that t is properly scaled for the slow phenomena, and a new time
variable τ is introduced and scaled for the fast phenomena. If t is in hours scale, for
instance, τ can be defined in seconds. The ratio of the time-scales can be characterized
as a small positive parameter ε, which is the main tool for the asymptotic analysis of
the SPS. Define τ as

τ = t − t0
ε

,

and its initial instant τ = 0 corresponds to a particular instant t0 in t time-scale.
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Generally, the above forms (1.3) or (1.6) are also known as two-time-scale sys-
tems. In addition, some practical SPSs show the multiple time-scales properties.

Considering LTI systems on arbitrary time-scales, necessary and sufficient con-
ditions for the existence of uniform exponential stability were derived in [11], also
the uniform exponential stability was characterized using spectrum of its matrix.
In [21], a class of second-order nonlinear dynamic equations on time domain was
considered, and a condition was developed to ensure the existence and uniqueness of
solutions. In [43], a novel time-frequency method to analyze the phase-locked loops
(PLLs) was presented.

For the time-scale analysis of a linear system, Chang transformation is introduced
to decompose the two-time-scale system into two low-order subsystems [24]. Time-
scale analysis is introduced by the following simple linear SPS without control inputs,

ẋ1(t) = A11x1(t) + A12x2(t),

εẋ2(t) = A21x1(t) + A22x2(t),
(1.8)

or the matrix equation form

[
ẋ1(t)
εẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
, (1.9)

under the initial conditions x1(t0) = x0
1 , x2(t0) = x0

2 , where x1(t) ∈ Rn1 and x2(t) ∈
Rn2 are state vectors, respectively, n1 + n2 = n, and ε is a small scalar parameter
satisfying 0 < ε � 1. Ai j (i, j = 1, 2) are of appropriate dimensions matrices.

When ε → 0, the degenerate system of (1.8) or (1.9) is obtained as

[
ẋ (0)

1 (t)
0

]
=

[
A11 A12

A21 A22

] [
x (0)(t)

1

x (0)(t)
2

]
. (1.10)

The procedure of degeneration can reduce the system order from n to n1 by forcing
x2(t) away from its original state variable status. Thus, the initial state values for the
degenerate system (1.10) are represented by

x (0)
1 (t0) = x0

1 , x (0)
2 (t0) �= x0

2 .

Assuming A22 is nonsingular, the degenerate system (1.10) can be rewritten in a
more simplified way:

ẋ (0)
1 (t) = (A11 − A12A

−1
22 A21)x

0
1 (t),

x (0)
2 (t) = −A−1

22 A21x
(0)
1 (t),

(1.11)

with the initial conditions x0
1 and x0

2 = −A−1
22 A21x0

1 . The degenerate problem, also
referred to as the unperturbed problem, is of reduced order and cannot meet all of
the given boundary requirements of the original singularly perturbed problem (1.8).
There is a boundary layer where the solution changes rapidly. In the simplified model
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(1.11), the boundary condition x0
2 is buried inside the boundary layer in the process

of degeneration. The key problem is to find the conditions to ensure that the solution
of the full problem (1.8) tends to the solution of the degenerate problem (1.11) in the
boundary layer.

A lemma concerning degeneration in [46] was represented here.

Lemma 1.1 The exact solutions x1(t, ε) and x2(t, ε) of the full problem (1.8) are
related to the solutions x (0)

1 (t) and x (0)
2 (t) of the degenerate problem (1.11)

lim
ε→0

[x1(t, ε)] = x (0)
1 (t), 0 � t � T,

lim
ε→0

[x2(t, ε)] = x (0)
2 (t), 0 � t � T,

under the assumptions in [35, 49].Here, T is any number such that quasi-steady-state
solution x (0)

2 (t) is an isolated stable root of (1.8) for 0 � t � T . x1(t, ε) is uniform
convergence in 0 � t � T and x2(t, ε) is also uniform convergence in interval t1 �
t � T for any 0 < t1 � T , but x2(t, ε) will usually be nonuniform at t = 0.

Remark 1.4 Note that the reduced-order system is not the standard limit as ε → 0.
To conquer that, invariant measurements of parameterized fast flow are employed to
describe the limit behaviour [36].

In order to recover the lost initial conditions, the boundary layer is stretched by
using the transformation

τ = t/ε. (1.12)

Substituting (1.12) into the second equation of (1.8), the original system can be
represented in the two-time-scale form,

dx1

dt
= A11x1 + A12x2,

dx2

dτ
= A21x1 + A22x2.

(1.13)

System (1.13) is a representation of system (1.8) in different time-scales.
Applying the block diagonalization transformation in the continuous-time systems

given by (1.8), the original state variables x1(t) and x2(t) can be expressed in terms
of the decoupled system consisting of slow and fast variables x1s(t) and x2 f (τ ).

Example 1.2 Consider the following autonomous SPS:

[
ẋ1

εẋ2

]
=

[−1 −2
3 −4

] [
x1

x2

]
. (1.14)

The state responses of this SPS and its degeration system are in Fig. 1.2.
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Fig. 1.2 Basic concepts of singularly perturbations and time-scales

Compare the two systems and corresponding state responses, we have

1. For ε = 0.01, the eigenvalues for the system (1.14) are λs = −2.5095 and λ f =
−398.4905 corresponding to slow and fast solutions.

2. The boundary layer exists near the initial point t = 0 in the SPS, but it is disap-
peared in the degeration system.

3. As ε → 0, the initial condition x0
2 is destroyed in the process of degeneration.

Some researchers have made much progress in the field of time-scale analysis in
control design. In [43], a novel time-frequency method to analyze the phase-locked
loops was presented. Singular perturbation method was used for diagnosability of
linear two time-scales (TTS) systems in [16], and reduction of the order of unsta-
ble linear time-invariant systems was done in [50]. Also see [39–41] for works on
two-time-scale discrete-time systems. Further, for multiparameter (multi-time-scale)
deterministic and stochastic systems, we decomposed a full-order system with sev-
eral small parameters into one low-order slow subsystem and several low-order fast
subsystems. See [2, 5, 34, 42] for recent results on multi-time-scale method.

Multi-time-scale method was applied to the network of livestock movements and
the dynamics of diseases [22], fractal dynamics in physiology [15], a small set of
plant, animal, and abiotic processes structure ecosystems [20]. In multiparameter
(multi-time-scale) deterministic and stochastic systems, we decomposed a full-order
system with several small parameters into one low-order slow subsystem and sev-
eral low-order fast subsystems. The method in [42] was proposed to transform multi
time-scale singularly perturbed linear systems into N independent subsystems. In
[34], multi-time-scale method was used to analyze the dynamics of a neural network
and the existence, and the uniqueness of the equilibrium were proved. The relation-
ship between the network of livestock movements in the UK and the dynamics of
two diseases: foot-and-mouth disease on different time-scales were analyzed [? ].
Scaling techniques were applied to analyzed fractal dynamics in physiology in [13].
The proposition was tested that a small set of plant, animal, and abiotic processes
structure ecosystems across scales in time and space [19]. For a class of multi-time-
scale systems, control of nondegenerate diffusions with infinite horizon risk-sensitive
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criterion was studied in [5]. In [2], considering a class of differential equations in
which both the slow and fast variables were perturbed by noise, it can be shown that
sample paths of the stochastic system were concentrated in a neighbourhood of the
slow manifold when the deterministic system admitted a uniformly asymptotically
stable slow manifold.

1.2.2 Multiple Frequency-Scales

As mentioned above, an SPS usually achieves the multi-time-scale property corre-
sponding to the multi-frequency-scale property in the frequency domain. It is more
intuitive for the multi-time-scale phenomena to be observed in real applications. The
phenomenon of two widely separated groups of eigenvalues is a key feature of the
two-frequency-scale property, and the small positive parameter ε can be calculated
based on the locations of eigenvalues.

Consider the linear SPS (1.8), and introduce the new variable as follows:

η(t) = x2(t) + Lx1(t). (1.15)

Then, system (1.8) can be rewritten by

[
ẋ1(t)
εη̇(t)

]
=

[
F1 A12

0 F2

] [
x1(t)
η(t)

]
, (1.16)

where L is selected to satisfy the following the equations

A22L − A21 − εL A11 + εL A12L = 0, (1.17)

and
F1 = A11 − A12L , F2 = A22 + εL A12. (1.18)

Based on the substitution, the system (1.8) has been partially decoupled into (1.16)
to obtain a separate fast subsystem

εη̇(t) = (A22 + εL A12)η(t). (1.19)

In addition, set the variable

ξ(t) = x1(t) − εHη(t) (1.20)

and substituting (1.20) into (1.16), we have

[
ξ̇ (t)
εη̇(t)

]
=

[
F1 0
0 F2

] [
ξ(t)
η(t)

]
, (1.21)
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where
H A22 − A12 − εA11H + εA12LH + εHLA12 = 0. (1.22)

Here, the slow subsystem can be represented by

ξ̇ (t) = (A11 − A12L)ξ(t). (1.23)

If A22 is invertible, solutions for (1.18) and (1.22) are shown as follows:

L = A−1
22 A21 + O(ε), H = A12A

−1
22 + O(ε). (1.24)

Substituting (1.24) into (1.18),

F1 = A0 + O(ε), F2 = A22 + O(ε), (1.25)

where A0 = A11 − A12A
−1
22 A21. Hence, the SPS (1.8) has n1 poles located around

the eigenvalues of A0, and n2 poles are approximately determined by A22/ε. The
two-time-scale characteristics, t and τ , are corresponding to two-frequency-scale
characteristics, s and p, in the frequency domain for the system (1.8).

Lemma 1.2 [26] If A22 is invertible, as ε → 0, the first n1 eigenvalues of the system
(1.8) tend to fixed positions in the s-plane defined by the eigenvalues of A0, namely,
λi (A0), i = 1, 2, . . . , n1. While the remaining n2 eigenvalues of the system (1.8)
tend to infinity, with the rate 1/ε, along asymptotes defined by the eigenvalues of
A22, namely, (1/ε)λ j (A22), j = n1 + 1, n1 + 2, . . . , n.

Furthermore, if the n eigenvalues of the SPS (1.8) are all distinct, where λi (A0) =
λ j (A22) is allowed, then the eigenvalues of the original system are approximated as

λi = λi (A0) + O(ε), i = 1, 2, . . . , n1; (1.26)

λi = [λ j (A22) + O(ε)]/ε, i = n1 + j, j = 1, . . . , n2. (1.27)

Applying Laplace transformation with initial conditions, (1.8) can be converted
into the following frequency model:

sX1(s) − x0
1 = A11X1(s) + A12X2(s),

εsX2(s) − x0
2 = A21X1(s) + A22X2(s).

(1.28)

Through the stretching transformation p = εs, (1.28) can be converted into a two-
frequency-scale version,

sX1(s) − x0
1 = A11X1(s) + A12X2(s),

px2(p) − x0
2 = A21X1(p) + A22X2(p).

(1.29)
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In summary, an SPS has two time-scales (TTS) t and τ , which is corresponding
to two frequency-scales p and s in the frequency domain. Their relationships are as
follows:

τ = t/ε, (1.30)

p = εs. (1.31)

Let s = jω and p = jω̄, then ω̄ = εω.

1.3 Slow-Fast Decomposition Method

In this section, we present some basic definitions and mathematical preliminaries
of SPTs. Singular perturbation approach provides a tool to overcome the lack of
system stiffness to improve the quasi-steady-state approximation that characterize the
conventional reduction-order techniques. Via the slow-fast decomposition method,
the reduced-order subsystems can be obtained within a specified precision, based on
which the composite control strategy is utilized to solve the ill-conditioned problem.

1.3.1 Decoupling Transformation

According to the transformation in Sect. 1.2.2, we obtain the separate fast subsystem
(1.19) with the initial condition η0 = x0

2 + Lx0
1 .

A feasible solution of L can be approximated as

L = A−1
22 A21 + εA−2

22 A21A0 + O(ε2), (1.32)

where A0 = A11 − A12A
−1
22 A21.

We should point out that the Eq. (1.17) has several real solutions, and only one of
them is represented by (1.32). Differentiating (1.32) with respect to ε, it is obtained
that

dL

dε
|ε=0 = A−2

22 A21A0.

The margin of ε is of great importance to control design because it determines the
range of application of the singular perturbed model. In other words, the mathematical
model fail to be effective if ε exceeds the upper bound ε∗. The upper bound ε∗ can
be estimated by the following formula [26]

ε∗ = 1

‖A−1
22 ‖(‖A0‖ + ‖A12‖‖A−1

22 A21‖ + 2(‖A0‖‖A12‖‖A−1
22 A21‖)1/2)

. (1.33)
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1.3.2 Construction of Slow and Fast Subsystems

Consider the following LTI SPS:

[
ẋ1(t)
εẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t) +

[
Bw1

Bw2

]
w(t),

y(t) = [
C1 C2

] [
x1(t)
x2(t)

]
+ D1u(t) + D2w(t),

(1.34)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the slow and fast state variables, respectively,
and n = n1 + n2 is the system dimension. u(t) ∈ Rp is the control input, w(t) ∈ Rr

is the external disturbance, and y(t) ∈ Rq is the measurement output. The small
positive constant ε ∈ (0, ε∗], ε∗ is upper bound of ε from the formula (1.33).

Remark 1.5 The small positive constant ε serves as a measure of the separation in
“speed” of the slow and fast dynamics in the sense that dx/dτ is O(ε) (a function
f (ε) is said to be O(ε) if | f (ε)| � K ε, for ε < ε∗, where K is a positive constant
independent of ε), whereas dz/dτ is O(1).

Recall that we have already defined two time variables: t , which is assumed to
be properly scaled for the slow phenomena and τ , which is related with the fast
phenomena. The ratio of these time scales is defined as ε = t/τ , which indicates that
the dynamics of the fast states x2(t) are 1/ε times faster than the slow states x1(t).

With the singular perturbation method, system (1.34) may be decoupled into
two subsystems under the assumption that A22 is invertible. The procedure of the
construction of the slow and fast subsystems is shown below.

The slow subsystem �s , obtained by formally setting ε = 0, is

ẋ1s(t) = Asx1s(t) + Busus(t) + Bwsw(t),

ys(t) = Csx1s(t) + Dusu(t) + Dwsw(t),
(1.35)

with

As = A11 − A12A
−1
22 A21, Bus = B1 − A12A

−1
22 B2,

Bws = Bw1 − A12A
−1
22 Bw2, Cs = C1 − C2A

−1
22 A21,

Dus = D1 − C2A
−1
22 B2, Dws = D2 − C2A

−1
22 Bw2,

where the quasi-steady-state x2s(t) is

x2s(t) = A−1
22 A21x1s(t) + A−1

22 B2u(t) + A−1
22 Bw2w(t).

The open-loop TFM of the slow subsystem �s from the external disturbance w(t)
to the measurement output ys(t) is a function of s:

Gs(s) = Cs(s In1 − As)
−1Bws + Dws .
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To obtain the fast parts of x1(t) and x2(t), the subsystem, denoted by � f , in the
fast time-scale τ is rewritten as

[
ẋ1(τ )

ẋ2(τ )

]
=

[
εA11 εA12

A21 A22

] [
x1(τ )

x2(τ )

]
+

[
εB1

B2

]
u(τ ) +

[
εBw1

Bw2

]
w(τ ),

y(τ ) = [
C1 C2

] [
x1(τ )

x2(τ )

]
+ D1u(τ ) + D2w(τ ).

(1.36)

Denote x2 f (τ ) = x2(τ ) − x2s(τ ). As ε → 0, the fast subsystem is represented as

ẋ2 f (τ ) = A22x2 f (τ ) + B2u f (τ ) + Bw2w(τ ),

y f (τ ) = C2x2 f (τ ) + D1u f (τ ) + D2w(τ ).
(1.37)

In this case, x1(τ ) is assumed to be constant in the fast time-scale, and only fast
variations, are the derivations of x2(τ ) from its quasi-steady-state. The approximation
for x1(t) and x2(t) are then given as

x1(t) ∼= x1s(t), x2(t) ∼= x2s(t) + x2 f (t/ε).

An SPS (1.8) is equivalent to parallel connection of slow subsystem and fast subsys-
tem in Fig. 1.3.

The corresponding open-loop TFM of the fast subsystem � f from the external
disturbance w to the measurement output y f is a function of p:

G f (p) = C2(pIn2 − A22)
−1B2 + D2.

As mentioned before, the high-frequency scale p = εs in frequency domain corre-
sponds to the fast time-scale τ = t/ε in the time domain. Let s = jω, p = jω̄, we
have the relationship between ω and ω̄ is ω̄ = εω.

The open-loop TFM G(s) of the whole system (1.34) is given by the sum of the
slow and fast TFMs,

y(s, ε) = G(s, ε)w(s) = [Gs(s) + G f (p/ε)]w(s).

Fig. 1.3 Construction of
subsystems
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Here, the TF for the open-loop full-dimensional system (1.34), omitting initial
conditions, is

G(s, ε) = [
C1 C2

] (
s I −

[
A11 A12

A21/ε A22/ε

])−1 [
Bw1

Bw2/ε

]
+ D2,

which can be converted into the following form after introducing the decoupling
transformation,

G(s, ε) = [
Cs C2

] [
(s In1 − As)

−1 0
0 (s In2 − A22/ε)

−1

] [
Bws

Bw2/ε

]
+ (Dws + D2),

It is obvious that G(s, ε) has two-frequency-scale characteristic. The TFs G low(s)
and Ghigh(p) are defined as the corresponding low-frequency and high-frequency
approximations of G(s, ε), respectively.

The external relation between the external disturbance w(t) and output y(t) is
described by y(s, ε) = G(s, ε)w(s) in which

G(s, ε) = Gs(s) + G f (p/ε).

By using the classical singular perturbation methods, the whole system (1.34) is
decoupled into the slow and fast subsystems. Correspondingly, the system TF will be
decomposed into the low-frequency and high-frequency blocks. From the frequency
domain perspective, the slow subsystem is established based on the low-frequency
components, and the fast subsystem is used to extract the high-frequency modes from
the whole dynamics.

In this sense, the related subsystems ought to work in the disjoint frequency ranges
to avoid the unnecessary frequency overlap. Based on this concept, we introduce
the cut-frequency subsystems to describe the dominant modes in the corresponding
frequency range. Considering the fact that the slow dynamics are sensitive to low-
frequency signals while the fast ones are easily affected by signals associated with
the high-frequency oscillators, the slow (fast) subsystem in the low (high) frequency
range is used to represent the low (high) frequency characteristic of SPS.

For low frequencies �l = {ω||ω| < ωc}, where ωc is cut-frequency which can dif-
ferentiate high-low dominant modes obviously, the fast TFM G f (p) can be approxi-
mated by its DC-gain, that is, G f (0) = −C2A

−1
22 Bw2 + D2. Thus, the low-frequency

approximation of G(s, ε) is estimated as

G low(s) = Gs(s) + G f (0)

= Cs(s In1 − As)
−1Bws + Ews,

where Ews = Dws − C2A
−1
22 Bw2 + D2. The corresponding high-frequency approxi-

mation ofG(s, ε) in the high-frequency range�h = {ω̄||ω̄| > εωc} is a function of p:
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Ghigh(p) = lim
s→∞ Gs(s) + G f (p)

= C2(pIn2 − A22)
−1Bw2 + Ew f ,

where Ew f = Dws + D2. To avoid the mixed impacts of state feedback design of
the fast (slow) subsystems sensitive to high-frequency (low-frequency) signals in the
low (high) frequency range, the approximation of the TFM G(s, ε) is represented as

G(s, ε) =
{
G low(s), 0 < ω < ωc,

Ghigh(εs), ω > ωc.

The unitization of related cut-off subsystems is the approximation of the TFM
G(s, ε). It should be highlighted that the precision α of the approximation of G(s, ε)
is lowest in the neighbourhood of the cut-frequency ωc because α increases as ω

gradually leaves away from ωc. The control switch frame is demonstrated in Fig. 1.4
for the equivalent model of (1.8).

Applying the state feedback controllers, Ks and K f , respectively into the related
subsystems (1.36), (1.37), the closed-loop systems of slow and fast subsystems can
be derived,

˙x1s(t) = (As + BusKs)x1s(t) + Bwsw(t),

ys(t) = (Cs + DusKs)x1s(t) + Dwsw(t),
(1.38)

and
ẋ2 f (τ ) = (A22 + B2K f )x2 f (τ ) + Bw2w(τ ),

y f (τ ) = (C2 + D1K f )x2 f (τ ) + D2w(τ ).
(1.39)

The state feedback controller gains Ks and K f are designed, respectively, based
on the stability requirement and some control performance specifications. However,
these two sub-controllers can only be applied to the related subsystems rather than the
original ill-conditioned system. Next, we discuss the method to design the composite
state feedback controller K , the sum of slow and fast controllers, to solve the original
SPS within a specified order-of-ε accuracy.

Assuming, for the moment, that we have successfully designed Ks and K f , a
composite controller is formulated as

K = [
Ks + K f A

−1
22 A21 + K f A

−1
22 B2Ks K f

]
.

Fig. 1.4 The finite-frequency switch approach
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Lemma 1.3 [32] Let G(s, ε) be a two frequency-scale TF with Gs(s) = G(s, 0)

and G f (p) = G(p/ε, ε)|ε=0 as its slow and fast TFs, respectively. Suppose that
Gs(s) and G f (p) are stable, G(s, ε) has no unstable lost poles, and ‖Gs(s)‖∞ < γ ,
‖G f (p)‖∞ < γ . Then ‖G(s, ε)‖∞ < γ + o(ε), for sufficiently small ε > 0.

Remark 1.6 Lost poles represent poles that disappear in the limiting process as
ε → 0. Lost poles were defined in [31] using parameter-dependent system matrices.

It follows from Lemma 1.3 that, for sufficiently small ε, u(t) = K

[
x1(t)
x2(t)

]
is an

internally stabilizing controller, and ‖G(s, ε)‖zw < γ + O(ε) is satisfied for SPS
(1.34).

With almost the same case, we can develop slow and fast subsystems for nonlinear
systems that are linear in the vector x2(t), that is, for

ẋ1(t) = h(x1(t)) + A12x2(t),

εẋ2(t) = g(x1(t)) + A22x2(t).
(1.40)

In this case, we have that the quasi-steady-state of the slow dynamic x2(t) is

x2s(t) = −A−1
22 g(x1(t)),

as ε → 0.

Substitute x2s(t) into (1.40), and we can obtain the slow subsystem as follows:

ẋ1s(t) = h(x1(t)) − A12A
−1
22 g(x1(t)). (1.41)

Similarly, the fast subsystem is represented as

ẋ2 f (τ ) = A22x2(τ ). (1.42)

From the subsystems (1.41), (1.42), it can be seen that, in systems with slow
nonlinearities, the linearity of the fast phenomena is preserved.

1.4 Controllability and Observability

Now, let us turn to analyze the controllability and observability of the system (1.34).
It is well known that controllability and observability are two important concepts
in modern control theory, which are used to characterize the general property of a
system.

For notational convenience, let us define the following notations:

ζ(t) =
[
x1(t)
x2(t)

]
, Aε =

[
A11 A12

A21/ε A22/ε

]
, Bε =

[
B1

B2/ε

]
, C = [

C1 C2
]
.
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An SPS (1.34) can be represented in the form of an ordinary system

ζ̇ (t) = Aεζ(t) + Bεu(t) + Bwεw(t),

y(t) = Cζ(t) + D1u(t) + D2w(t).
(1.43)

Controllability is a property of the coupling between the input and the state, which
involves the matrices Aε, Bε.

Definition 1.1 (Controllable) A state-space representation of a LTI system is

ẋ(t) = Ax(t) + Bu(t).

A initial state x(t0) is controllable at time t0 if for some finite time t1 there exists
an input u(t) that transfers the x(t) from x0 to the origin at time t1. The system
ẋ(t) = Ax(t) + Bu(t) is called completely controllable at the time t0 if every state
x(t0) in the state-space is controllable.

It should be highlighted that

1. Initial state is arbitrary finite non-zero in the state-space. The control object is
zero state.

2. When all initial states are observable, the system is controllable.
3. When there exists external disturbance that does not rely on the input u, namely,

ẋ(t) = Ax(t) + Bu(t) + Bww(t),

it will not change the controllability of the system.

In other words, a system is said to be controllable at time t0 if it is possible by means
of an unconstrained control vector to transfer the system from initial state x(t0) to
any final state in a finite time interval.

Observability is a property of the coupling between the state and the output, and
thus involves the matrices Aε and C .

Definition 1.2 (Observable) A system with an initial state x(t0), is observable if
and only if the value of the initial state can be determined from the system output
y(t) that has been observed through the time interval [t0, t1]. If the initial state cannot
be so determined, the system is unobservable. A system is said to be completely
observable if all the possible initial states of the system can be observed.

It should be noted that if a system is not completely observable, the initial state x(t0)
cannot be determined from the output, no matter how long the output is observed.

Lemma 1.4 [26] A necessary and sufficient condition for the i th eigenvalue λi of
the system (1.43) to be controlled is

rank[λi In − Aε Bε] = n, i = 1, 2, . . . , n, (1.44)
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and that for the i th eigenvalue λi of the system (1.43) to be observable is

rank

[
λi In − Aε

C

]
= n, i = 1, 2, . . . , n. (1.45)

In addition, the system (1.43) is completely controllable or completely observable if
and only if (1.44) or (1.45) is satisfied for all its eigenvalues λi . The system (1.43)
is stabilizable or detectable if and only if all its eigenvalues with nonnegative real
parts are controllable or observable.

Considering the fact that controllability and observability are invariant with regard
to similarity transformation, these properties can be analyzed based on the equivalent
models. Via the following similarity transformation

ζ(t) =
[
x1(t)
x2(t)

]
=

[
In1 εH
−L In2 − εLH

] [
ξ(t)
η(t)

]
= T

[
ξ(t)
η(t)

]
,

the system (1.43) can be transformed to the equivalent system

[
ξ̇ (t)
η̇(t)

]
= Ae

[
ξ(t)
η(t)

]
+ Beu(t), (1.46)

y(t) = Ce

[
ξ(t)
η(t)

]
, (1.47)

where

Ae =
[
Asε 0
0 A f ε/ε

]
, Be =

[
Bsε

B f ε/ε

]
, C = [

Csε C f ε
]

and

Asε = A11 − A12L , A f ε = A22 + εL A12,

Bsε = B1 − HB2 − εHLB1, B f ε = B2 + εLB1,

Csε = C1 − C2L , C f ε = C2 + ε(C1 − C2L)H.

Based on the similarity transformation, the whole system (1.34) can be decoupled
into two subsystems with reduced order. Based on the associated subsystems, more
simplified results are obtained. Noting that controllability and observability do not
vary with the similarity transformation, the following lemmas are obtained, which
can be derived based on the slow-fast decomposition method.

Lemma 1.5 [26] Let λ0
i , i = 1, 2, . . . , n1, be the eigenvalue of As = A11 − A12

A−1
22 A21 approximating the slow eigenvalue λi in Aε. If

rank[λ0
i In1 − As Bs] = n1,
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where Bs = B1 − A12A
−1
22 B2, then there exists a positive scalar ε∗ such that λi is

controllable for all ε ∈ (0, ε∗].
Similarly, let π0

j , j = 1, 2, . . . , n2, be the eigenvalue of A22 approximating the
fast eigenvalue λi of Aε according to λi = π j/ε, i = n1 + j. If

rank[π0
j In2 − A22 B2] = n2,

then there exists a positive scalar ε∗ such that λi is controllable for all ε ∈ (0, ε∗].
The observability criterion is as follows:

Lemma 1.6 [26] Let λ0
i , i=1, 2, . . . , n1, be the eigenvalue of As=A11 − A12A

−1
22

A21 approximating the slow eigenvalue λi in Aε. If

rank

[
λ0
i In1 − As

Cs

]
= n1,

where Cs = C1 − C2A
−1
22 A21, then there exists a positive scalar ε∗ such that λi is

observable for all ε ∈ (0, ε∗].
Similarly, let π0

j , j = 1, 2, . . . , n2, be the eigenvalue of A22 approximating the
fast eigenvalue λi according to λi = π j/ε, i = n1 + j. If

rank

[
π0

j In2 − A22

C2

]
= n2,

then there exists a positive scalar ε∗ such that λi is observable for all ε ∈ (0, ε∗].

1.5 Conclusion

In this chapter, some background knowledge and preliminaries have been presented.
The modelling methodology for the construction of SPSs has been proposed in linear,
nonlinear and hybrid forms in Sect. 1.1. Time-scale and frequency-scale analysis of
linear SPSs has been investigated to characterize slow and fast systems in different
time-scales in Sects. 1.2 and 1.3. We further put forward the concepts of cut-off
subsystems to avoid the conflicts of subsystems in different frequency ranges. To
best of our knowledge, it has been the first time that the idea of cut-off subsystems
has been put forward for SPSs. In Sect. 1.4, the controllability and observability of
SPSs has been introduced. We should point out only single-parameter perturbations,
i.e., TTS systems, are taken into consideration in this book.
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Chapter 2
Theoretical Foundation of Finite
Frequency Control

Finite frequency control strategy has been proven to be an important method for
modern control system. Combined with the particular frequency characteristics of
the plant, many control specifications in the full frequency domain can be simpli-
fied into finite frequency ones. Commonly used tools in the frequency division are
the weighting function and general Kalman-Yakubovich-Popov (GKYP) Lemma. In
this chapter, some background information and useful lemmas in the field of finite
frequency control have been investigated in detail.

2.1 The Laplace Transform

The Laplace transform is used to solve linear constant coefficient differential equa-
tions, which acts as a function of a positive real variable t (often time) to a function
of a complex variable s (frequency). On the other hand, the inverse Laplace trans-
form is used to obtain a solution in terms of the original variables, which takes a
function of a complex variable s to a positive real variable t . This techniques can be
applied to both single differential equation and simultaneous differential equations.
The Laplace transform can be used to produce TFMs to describe the elements of an
engineering system. As the system elements, blocks are connected together to form
the closed-loop diagram and to represent the characteristics of systems. Through
decomposing a system in this way, it is much easier to visualize that how the vari-
ous parts of the system interact. As a result, a TF model can be used to describe a
time-domain model, which is particularly important in the control system design.

Definition 2.1 (Laplace Transform) Let f (t) be a function of time t . The Laplace
transform of f (t) is F(s), which is defined by

F(s) =
∫ ∞

0
e−st f (t)dt.
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Table 2.1 The Laplace transform of some common functions

f (t) F(s) f (t) F(s)

1 1
s sinh bt b

s2−b2

t 1
s2 cosh bt s

s2−b2

t2 2
s3 e−at sinh bt b

(s+a)2−b2

tn n!
sn+1 e−at cosh bt s+a

(s+a)2−b2

eat 1
s−a t sin bt 2bs

s2+b2

e−at 1
s+a t cos bt s2−b2

s2+b2

tne−at n!
(s+a)n+1 1(t) 1

s

sin bt b
s2+b2 1(t − d) e−sd

s

cos bt s
s2+b2 δ(t) 1

e−at sin bt b
(s+a)2+b2 δ(t) e−sd

e−at cos bt s+a
(s+a)2+b2

To find the Laplace transform of a function f (t), we multiply it by e−st and
integrate between the limits 0 and ∞. Determining the Laplace transform of a given
functions f (t) is essentially an exercise in integration. In Table 2.1, we have listed
some common functions and their corresponding Laplace transform.

There are some useful properties of the Laplace transform that can be exploited,
which are namely listed as follows.

1. Linearity:
Let f (t) and g(t) be two functions of time t , and k be a constant which may be
negative, and then

L { f (t) + g(t)} = L { f (t)} + L {g(t)},
L {k f (t)} = kL { f (t)}.

2. Shift theorems:
If L { f (t)} = F(s), then

L {e−at f (t)} = F(s + a),

where a is a constant.
If L { f (t)} = F(s), then

L {u(t − d) f (t − d)} = e−sd F(s), d > 0.

3. Final value theorem:
lim
s→0

sF(s) = lim
t→∞ f (t).
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It is possible to obtain a mathematical model of an engineering system that consists
of one or more differential equations. We have already seen that the solution of
differential equations can be found using the Laplace transform, which naturally
leads to the concept of a TF.

Consider a first-order differential equation

dx(t)

dt
+ x(t) = f (t), x(0) = x0, (2.1)

where f (t) represents the control input of system (2.1), and x(t) is the output or the
response of the system. Taking the Laplace transform of (2.1), we obtain

sX (s) − x0 + X (s) = F(s). (2.2)

Assuming x0 = 0, the equivalent form of (2.2) can be formulated by

X (s)

F(s)
= 1

1 + s
. (2.3)

The function (2.3) is also referred to as a TF, which is the ratio of the Laplace
transform of the output to the Laplace transform of the input for the single-input and
single-output (SISO) system. Therefore, the TF for the system (2.1) from f (t) to the
output x(t) is

G(s) = 1

1 + s
.

The concept of a TF is very useful in engineering applications, which provides a
simple algebraic relationship between the input and the output. In other words, it
allows the analysis of dynamic system based on the differential equation to proceed
in a relatively straightforward manner. Earlier we noted that it was necessary to
assume zero initial conditions in order to form the TF. Without the assumption, the
relationship between the input and the output would have been more complicated,
and the relationship would vary depending on how much energy is stored in the
system at t = 0. Assuming the zero initial conditions, the TF depends purely on the
system characteristics.

Let R(s) = L {r(t)} be the Laplace transform of the input signal, and Y (s) =
L {y(t)} be the Laplace transform of the output signal. It can be seen from Fig. 2.1
that

Y (s) = G(s)R(s).

Fig. 2.1 Block diagram
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A summing point(a) (b) A take-off point

Fig. 2.2 Two components of block diagram

Block diagram consists of two basic components in Fig. 2.2. A summing point
adds together the incoming signals to the summing point and produces an outgoing
signal. A take-off point is the place where a signal is tapped. The process of tapping
the signal has no effects on the signal value.

There are several rules governing the manipulation of block diagrams as follows:

1. Cascade (Series) connection. The TF equivalent to a series connection of 2 blocks
with TFs G1(s) and G2(s), represented in Fig. 2.3, is given by

Gc(s) = G1(s)G2(s).

2. Parallel connection. The equivalent TF for such a connection representing a sum-
mation of signals, given in Fig. 2.4, is obtained as

Gc(s) = G1(s) + G2(s).

3. Feedback connection. The simplest form of a feedback control system is given in
Fig. 2.5. For such a system connection the TF is given by

Gc(s) = G(s)

1 + KG(s)
.

Fig. 2.3 Series connection

Fig. 2.4 Parallel connection
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Fig. 2.5 Feedback
connection

2.2 Frequency Division Strategies

2.2.1 Weighting Functions

Up till now, much progress has been made in terms of synthesizing H∞ controllers.
However, the selection method of appropriate weighting function is still very much an
art. In this subsection, we consider how to formulate some performance objectives
in finite frequency ranges using the weighting functions. For example, the finite
frequency performance represented in the form of a TF G(s) can be specified as

{
‖G( jω)‖∞ � α < 1, ∀ω � ω0,

‖G( jω)‖∞ � β > 1, ∀ω > ω0.
(2.4)

where ω0 is the cut-frequency of high-low frequency ranges. We generally reflect the
system performance objectives via the appropriate selection of weighting functions.
On this basis, the finite frequency control specifications, such as the H∞ performance
index (2.4) can be obtained the following weighted form,

‖Ws( jω)G( jω)‖ � 1,

with

‖Ws( jω)G( jω)‖∞ =
{

α−1, ∀ω � ω0,

β−1, ∀ω > ω0.

The meaning of weighted performance specifications can be shown as follows:

1. Some particular frequency components of a signal usually play very important
roles in the control design.

2. Each of the signal component may not be measured in the same metric.

Note that weighting functions are essential to identify particular frequency com-
ponents. On this basis, control design may be regarded as a process of choosing a
controller such that certain weighted control specification are satisfied in some sense.
In addition, we can see that low-frequency and high-frequency components of a plant
can be extracted by band-pass filters. The TF of a band-pass filter can be used as a
weighting function to form a weighted control specification.

Consider a weighting function W (s) after normalization in the form of
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Fig. 2.6 Amplitude-frequency characteristic of butterworth low-pass filter

W (s) = bmsm + bm−1sm−1 + · · · + b0

sn + an−1sn−1 + · · · + a0
.

If n > m, that is W (s) is rational fraction, W (s) has the low-pass property. If n � m,
then W (s) achieves the high-pass property. One of the most commonly used filter is
the Butterworth LC filter. There are two classes Butterworth filter as follows:

• Butterworth low-pass filter

Hl(s) = b0

sn + an−1sn−1 + · · · + a1s + a0

where b0 = ωn
c . Setting ωc = 1 rad/s, the normalized results of the butterworth

low-pass filter are obtained. The amplitude response, denoted by |Hl( jω)|, is

|Hl( jω)| = 1√
1 + ( ω

ωc
)n

.

Its amplitude-frequency characteristics are in Fig. 2.6.
This type of filter has some specific characteristics.

1. For all n, |Hl( j0)|2 = 1, if ω = 0.
2. For all n, |Hl( jωc)|2 = 1/2, if ω = ωc, such that there exists 3 dB amplitude

attenuation at ω = ωc.
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Fig. 2.7 Amplitude-frequency characteristic of butterworth high-pass filter

3. |Hl( jω)|2 is a monotonically decreasing and continuous function about ω.
4. When n → +∞, the butterworth low-pass filter can be viewed as a perfect low-

pass filter.
5. When ω = 0, all levels of the derivative of |Hl( jω)|2 are zero so that |Hl( jω)|2

gets the maximum value and achieves the largest plain features at this point.

• Butterworth high-pass filter

Hh(s) = sn

sn + an−1sn−1 + · · · + a1s + a0

The amplitude response, denoted by |Hh( jω)|, is

|Hh( jω)| = 1√
1 + (ωc

ω
)n

.

Its amplitude-frequency characteristics are in Fig. 2.7.

This type of filter has some specific characteristics.

1. For all n, |Hh( j0)|2 = 0, if ω = 0.
2. For all n, |Hh( jωc)|2 = 1/2, if ω = ωc, such that there exists 3 dB amplitude

attenuation at ω = ωc.
3. |Hh( jω)|2 is a monotonically increasing and continuous function about ω.
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4. When n → +∞, the butterworth high-pass filter can be viewed as an ideal high-
pass filter.

5. When ω = +∞, all levels of the derivative of |Hh( jω)|2 are zero so that
|Hh( jω)|2 gets the maximum value and achieves the largest plain features at
this point.

Remark 2.1 We would emphasize that the weighing function method is particularly
suitable for SISO systems. It is difficult for control engineers to construct satisfied
weighing function matrices for multiple-input and multiple-output (MIMO) sys-
tems, which leads to the wide application of the general Kalman-Yakubovivh-Popov
(GKYP) lemma.

2.2.2 General Kalman-Yakubovich-Popov Lemma

Up till now, a wide range of state-space approaches for controller design problems
adopt the Kalman-Yakubovich-Popov (KYP) lemma that transforms a frequency
domain inequality (FDI) into a numerically tractable linear matrix inequality (LMI)
[4, 6, 8, 9]. Although that the standard KYP lemma specifies FDIs in the entire
frequency range, practical requirements are usually described by multiple FDIs in
finite frequency ranges. For example, usually, small sensitivity in a low-frequency
range and control roll-off in a high-frequency range are utilized to ensure desired
tracking performance and disturbance attenuation capability. As a result, some sort of
adaptors, such as the weighting functions, have been adopted to the requirements into
the KYP framework. However, the design costs to search for the suitable weighting
functions would be tedious and time-consuming, and the controller complexity tends
to increase with respect to the complexity of the weighting functions, which leads to
the development of GKYP lemma.

The purpose of this section is to develop the state-space design theory that is
capable of directly treating multiple FDI specifications in various frequency ranges.
The GKYP lemma has been proven to be effective tools to handle inequalities on
curves in the complex plane defined as [9, 18],

Λ(Φ,Ψ ) = {λ ∈ C|
[

λ

1

]∗
Φ

[
λ

1

]
= 0,

[
λ

1

]∗
Ψ

[
λ

1

]
� 0}, (2.5)

with Φ, Ψ ∈ H2, where Hn stands for n × n Hermitian matrices set and [·]∗ denotes
the conjugate transpose. The set Λ(Φ,Ψ ) represents a curve in the complex plane if
and only if [16]

1. det(Φ) < 0, so that Λ(Φ, 0) corresponds to a circle or a straight line.
2. Φ and Ψ satisfy an additional condition that excludes empty or singleton sets.

The latter condition is most easily expressed with the help of a congruence transfor-
mation introduced. It can be demonstrated in [9] that if det(Φ) < 0, there exists a
nonsingular T ∈ C2×2 such that

Φ = T ∗Φ0T, Ψ = T ∗Ψ0T,
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where Φ0 =
[

0 1
1 0

]
, Ψ0 =

[
α β

β γ

]
and α, β, γ ∈ R with α � γ . In the former

case, Λ(Φ,Ψ ) coincides with the circle or straight line given by Λ(Φ, 0), while in
the latter case it is a segment of this circle or line. The imaginary axis and the unit
circle are special cases of (2.5) with Ψ = 0, and Φ equal to

Φc =
[

0 1
1 0

]
, Φd =

[
1 0
0 −1

]

for the imaginary axis and the unit circle, respectively.
Next, we present a dual version of the GKYP lemma which is more suitable

than the original GKYP lemma for feedback synthesis. A multiplier method is then
developed to render the synthesis conditions convex through a simple substitution of
variable, in the static gain feedback setting.

Consider a TF for a given system with state-space matrix (A, B,C, D),

G(λ) = C(λI − A)−1B + D,

where λ is the frequency variable.
In order to more clearly describe GKYP lemma, we give the following func-

tion definition. For G ∈ Cs×r and Π ∈ Hs+r , a function σ : Cs×r × Hs+r → Hr is
defined by

σ(G(λ),Π) =
[
G(λ)

Ir

]∗
Π

[
G(λ)

Ir

]
< 0,

for allλ ∈ Λ(Φ,Ψ ).The formulation of the performance matrixΠ will be introduced
detailedly in Sect. 2.3.3.

In the extended definition, the set Λ(Φ,Ψ ) can be interpreted as the integration
of elements (u, v),

Σ(Φ,Ψ ) = {(u, v) ∈ C × C|(u, v) �= 0,

[
u
v

]∗
Φ

[
u
v

]
= 0,

[
u
v

]∗
Ψ

[
u
v

]
� 0}.

If v �= 0, then λ �= u/v is a finite point in Λ(Φ,Ψ ) and if v = 0, then Λ(Φ,Ψ )

extends λ = ∞.

Lemma 2.1 (The GKYP Lemma) Let A ∈ Cn×n, B ∈ Cn×r , and � ∈ Hn+r , Sup-
pose Φ, Ψ ∈ H2. Define a curve Λ(Φ,Ψ ) in the complex plane, the following two
statements are equivalent.

(1) If λ ∈ Λ(Φ,Ψ ), [
u
v

]∗
�

[
u
v

]
< 0,

for all nonzero (u, v) ∈ Σ(Φ,Ψ ).
(2) There exist P, Q ∈ Hn, that satisfy
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Q > 0,

[
A B
In 0

]∗
(Φ ⊗ P + Ψ ⊗ Q)

[
A B
In 0

]
+ � < 0.

If A has no eigenvalues in Λ(Φ,Ψ ), the first statement reduces to the FDI

[
(λIn − A)−1B

Ir

]∗
�

[
(λIn − A)−1B

Ir

]
< 0, ∀λ ∈ Λ(Φ,Ψ ).

For the sake of brevity, we point out that only strict FDIs are considered in this
monograph. The GKYP lemma readily extends to non-strict inequalities if a regu-
larity condition is imposed.

Two critical lemmas in [8] are presented, which are treated as efficient mathemat-
ical tools throughout the following discussion.

Lemma 2.2 Let Φ, Ψ ∈ H2, Π ∈ Hs+r , and the system
⎡
⎣
ẋ(t)
z(t)
y(t)

⎤
⎦ =

⎡
⎣

A B1 B2

C1 D11 D12

C2 D21 0

⎤
⎦

⎡
⎣
x(t)
w(t)
u(t)

⎤
⎦ , (2.6)

where x(t) ∈ Rn is state vector, w(t) ∈ Rr is the external disturbance, u(t) ∈ Rp is
the control input, y(t) ∈ Rq is the measurement output, and z(t) ∈ Rs is the con-
trolled output. A, Bi , Ci and Di j (i, j = 1, 2) are all appropriate dimensions matri-
ces. The system (2.6) can be given with TFM from w(t) to z(t) formulated by

G(s) = C1(s I − A)−1B1 + D11.

Consider Λ(Φ,Ψ ) defined by (2.5). Suppose Λ(Φ,Ψ ) represents curves on the
complex plane and A has no eigenvalues in Λ(Φ,Ψ ). The following statements are
equivalent:

(1) σ (G(λ)∗,Π) < 0 holds for all λ ∈ Λ(ΦT , Ψ T ), whereΛ = Λ ifΛ is bounded
and Λ = Λ ∪ {∞} if unbounded.

(2) There exist P = P∗ and Q = Q∗ > 0 such that

N

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
N ∗ < 0,

where N = [
M In+s

]
T, M =

[
A B1

C1 D11

]
, and T is the permutation matrix such

that for arbitrary matrices M1, M2, M3 and M4

[
M1 M2 M3 M4

]
T = [

M1 M3 M2 M4
]
,

where matrices M1, M2, M3 and M4 have column dimensions n, r , n and s,
respectively.
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Define G(λ) ∗ K as the closed-loop TF from w(t) to z(t). A synthesis problem may
be formulated as the search for the parameters Q > 0, P and K with M defined to
be the state-space matrices of G(λ) ∗ K as

M = A + BKC =
[
A B1

C1 D11

]
+

[
B2

D12

]
K

[
C2 D21

]
.

The resulting condition is not convex due to the existence of the product term.
Lemma 2.2 in [8] is developed as a multiplier method to re-parameterize the condition
so that the problem becomes convex which can be further transformed into LMIs.

Lemma 2.3 Let R ∈ Cq×(2n+r+s), Φ, Ψ ∈ H2, Π ∈ Hr+s, P, Q ∈ Hn and the
system (2.6) be given. The following statements are equivalent.

(1) There exist a feedback gain K and a real scalar μ > 0 such that

N XN ∗ < 0, S(T XT ∗ − μR∗R)S∗ < 0,

where S =
[
M In+s

C 0

]
, X =

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
, and M is defined in

Lemma2.2.
(2) There exist matrices χ ∈ W (C , R) and κ such that

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T ∗ < He

[ −χ

A χ + BκR

]
.

If (2) holds, the gain in (1) can be given by K = κW−1.

To make the problem trackable, the multiplier χ can be specified by

W (C , R) = {C †WR + (I − C †C )V |W ∈ Cq×q , det(W ) �= 0, V ∈ C(n+r)×(2n+r+s)},

where W and V are matrices to be solved, and superscript † denotes the Moore-
Penrose inverse of matrix.

Remark 2.2 Here, for notational convenience throughout the monograph, the
Hermitian part of a square matrix M is denoted by He(M) = M + M∗.

The condition in statement (2) of Lemma 2.3 has been characterized in terms of
LMIs, which can thereby be numerically solved by semi-definite programming. Up
till now, many commercial software packages are now available for solving this task.
We strongly believe that it is beneficial for most engineers to have one of these com-
puter programs. Software to synthesize H∞ controllers has been available sometimes,
such as the Robust Control Toolbox in MATLAB�. Recently, a LMI Toolbox for
MATLAB has been widely used, which includes LMI solving program, alternative
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H∞ software, and μ-analysis and synthesis. All computation presented in this mono-
graph has been done employing such toolbox.

Then, we will give particular choices of R that lead to LMI synthesis conditions
which are nonconservative. Please see [8] for detailed explanation. Later, we will
discuss some heuristic choices of R leading to sufficient conditions for synthesis:

1. For continuous-time, small gain condition and low-frequency case, R can be
chosen as

Rl = [
0 0 I (D11B

†
1 )∗

]
.

2. For continuous-time, small gain condition and high-frequency case, R can be
chosen as

Rh = [
I 0 0 0

]
.

2.3 Characterization of Control Performance Index

2.3.1 Characterization of Finite Frequency Ranges

Denote the frequency variable as (2.5) with its properties. The continuous-time and
discrete-time variable frequency variables are, respectively, shown as

Λc = { jω|ω ∈ �c}, Λd = {e jθ |θ ∈ �d},

where �c and �d are subsets of real numbers specified by an additional choice of Ψ

in Tables 2.2 and 2.3, respectively, Φ in Λ(Φ, Ψ ) is selected as

Φc =
[

0 1
1 0

]
, Φd =

[
1 0
0 −1

]
,

for the imaginary axis and the unit circle, respectively.
For convenience presentation of main results, we divide the frequency range in

the continuous-time case into the following three parts. For low frequencies, the
frequency set Λ is specified by

Λcl = {ω| | ω |< ωl},

and for middle frequencies, Λ can be represented by

Λcm = {ω|ω1 < ω < ω2},

in the similar way, the high frequencies can be characterized by

Λch = {ω| | ω |> ωh}
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Table 2.2 The choice of Ψ

in continuous-time case
Cont. �c Ψ

LF Λcl

[
−1 0

0 ω2
l

]

MF Λcm

[
−1 jωc

− jωc −ω1ω2

]

HF Λch

[
1 0

0 −ω2
h

]

Table 2.3 The choice of Ψ

for the discrete-time case
Disc. �d Ψ

LF Λdl

[
0 1

1 −2 cos θl

]

MF Λdm

[
0 e jθc

e− jθc −2 cos θw

]

HF Λdh

[
0 −1

−1 2 cos θh

]

and the related Ψ in frequency division is summarized in Table 2.2, where ωc =
(ω1 + ω2)/2 and LF, HF, and MF stand for low, high, and middle-frequency ranges,
respectively.

Similarly, for the discrete-time system, the selection method of Ψ is stated as
follows. Consider the low-frequency condition with

Λdl = {e jθ || θ |< θl}.

Noting that | θ |� θl if and only if z = e jθ satisfies

z + z̄ � 2 cos θl = γ,

we choose

Ψ =
[

0 1
1 −2 cos θl

]
.

The middle-frequency condition is considered with

Λdm = {e jθ | θ1 �| θ |� θ2}.

Note that the frequency interval condition can be written as

| θ − θc |� θw
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or
cos(θ − θc) � cos θw,

where 0 � θw � π and

θc = θ2 + θ1

2
, θw = θ2 − θ1

2
,

which can be rewritten as σ(e jθ , Ψ ) � 0 with

Ψ =
[

0 e jθc

e− jθc −2 cos θw

]
.

Finally, the high-frequency condition with

Λdh = {e jθ | θh �| θ |� π}

can be treated similarly. In this case, we have

Ψ =
[

0 −1
−1 2 cos θh

]
.

The work above can be summarized in Table 2.3.

2.3.2 Window Norm

One natural extension is then to directly specify important frequency domain prop-
erties such as bandwidth and magnitude of resonance peaks on certain TFM. All the
work related with the TFM of a system is established in the finite frequency range
rather than the entire frequency so that the conservativeness of frequency domain
constraints is much reduced. Such property is described by using window norm.

A TF in terms of state-space model is denoted as

E(s) =
[
A B
C D

]
= C(s I − A)−1B + D.

This section reviews some mathematical preliminaries, in particular, the compu-
tation of H2 and H∞ norm of a TFM E(s).

Definition 2.2 (Finite Frequency H∞ Norm) For a stable TFM E(s), the H∞ norm
is given by

‖E‖∞ = sup
ω

σ(E( jω)), ω ∈ Λ,
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where σ(·) denotes the singular value of a matrix, and supω σ(E( jω)) denotes the
peak singular value in finite frequency set Λ.

The H∞ norm can be viewed as a direct generalization of frequency domain
specifications used in classical control for systems. For instance, it can be used to
minimize the weighted sensitivity function, and select E = ωpS, where sensitivity
function S = (I + GC)−1. The following proposition provides an equivalent condi-
tion for the H∞ norm of a rational matrix.

Proposition 2.1 Let E(s) be a rational matrix, which does not have poles on the
closed right half complex plane. Then, it can be obtained that

‖E(s)‖∞ = sup
s

{σmax(E(s)|Re(s) > 0), Im(s) ∈ Λ}.

Likewise, H2 norm is also defined for rational matrix. The strict definition is as
follows.

Definition 2.3 (Finite Frequency H2 Norm) The H2 norm of a TF E(s), namely
‖E(s)‖2, which also corresponds to the impulse response energy ‖e(t)‖2, or L2 norm
of a real signal e(t), can be formulated in either time or frequency domain as follows:

‖e(t)‖2
2 =

∫ ∞

0
e(t)e(t)dt = ‖E(s)‖2

2 = 1

π

∫ ∞

0
E( jω)E(− jω)dω.

The change from time domain to frequency domain is justified using Plancherels
theorem (which discrete version is known as Parsevals theorem). H2 norm can be
used to characterize the input energy of signal u(t).

Remark 2.3 If U (s), the Laplace transform of input signal u(t), is a vector function
such that the integral

∫ ∞
−∞ U ∗( jω)U ( jω)dω exists, then, obviously the H2 norm of

U (s) reduces to

‖U (s)‖2 = (trace(
1

2π

∫ ∞

−∞
U ∗( jω)U ( jω)dω))

1
2 .

To investigate H_/H∞ performance of continuous-time control systems in local
frequency range, a new conception of window H_/H∞ norm is presented based on
traditional H_/H∞ norm, and it is stated that traditional H_/H∞ norm is a special
case of window H_/H∞ norm.

Definition 2.4 (Finite Frequency H_/H∞ Norm) The H_ index of a TFM E(s)
over the finite frequency range [ω1, ω2] is defined as

‖E(s)‖[ω1,ω2]− = inf
ω∈[ω1,ω2]

σ [E( jω)] ,

where σ denotes the minimum singular value of the matrix E( jω).
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The H∞ norm of a TFM E(s) over the finite frequency range [0, ωl ] ∪ [ωh,∞)

is defined as
‖E(s)‖[0,ωl ]∪[ωh ,∞)

∞ = sup
ω∈[0,ωl ]∪[ωh ,∞)

σ̄ [E( jω)],

where σ̄ denotes the maximum singular value of the matrix E( jω).

To indicate the dependency on the finite frequency range [ω1, ω2], we define
the window H_ norm as ‖E(s)‖[ω1,ω2]− , which is simplified into ‖E(s)‖− when the
frequency range is made with certainty. H_ norm is used as the worst-case fault
sensitivity measure.

2.3.3 Frequency Domain Inequalities

Much of the recent work on robustness has been focused on frequency domain
characterizations. The significant results in system and control literature, such as
design specifications for practical control synthesis, depend on the characterizations
of system in terms of FDIs. Classical FDIs are specified in the full frequency range.
However, recent developments have demonstrated that finite frequency FDIs can
increase flexibility in system analysis and synthesis because that system usually
works in the specific frequency range due to the limits of external conditions or
nature of pumping signals.

If the designs of the structure and the controller are integrated, control perfor-
mance of mechanical structures can be significantly enhanced. In this subsection, we
also present how to formulate the performance matrix Π . Generally, some charac-
terizations of the system G(s) are considered as follows:

1. Positive real property:
G( jω)∗ + G( jω) > 0,

which is an important requirement for mechanical structure design to guarantee
the existence of controllers that achieve high servo-bandwidth, where G( jω) is
the TF of the mechanical system to be designed. In this case, the performance
matrix can be selected by

Π =
[

0 −I
−I 0

]
.

2. Bounded real property:
G( jω)∗G( jω) < γ 2 I,

is an important requirement for mechanical structure design to guarantee the
existence of controllers that achieves good disturbance attenuation ability with
Π as

Π =
[
I 0
0 −γ 2 I

]
.
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3. Sensitivity shaping:
A typical control design with specifications on the closed-loop TF: a plant G(s)
and a controller K (s). The sensitivity and the complementary sensitivity func-
tions are defined by

S( jω) = (1 − G( jω)K ( jω))−1,

T ( jω) = G( jω)(1 − G( jω)K ( jω))−1.

The sensitivity-shaping problem typically consists of the following requirements:

‖S( jω)‖∞ < α1, ω ∈ Λl ,

‖T ( jω)‖∞ < α2, ω ∈ Λh,

where α1 > 0 and α2 > 0. These FDIs can be further represented in terms of
open-loop TF, and the performance matrix Π can be formulated hereinafter.

Remark 2.4 There are close relationships between FDIs and TDIs. Most the signif-
icant results in systems and control literature generally characterize control system
performances using FDIs and/or time domain inequalities. Certain system proper-
ties are characterized in terms of an inequality condition on the TF. Time domain
interpretations of FDIs can provide more flexibility to capture various engineering
requirements. For instance, we can see that the bounded-realness with gain bound γ

is equivalent to the L2 gain being less than or equal to
√

γ in the time domain:

∫ ∞

0
yT (t)y(t)dt < γ

∫ ∞

0
uT (t)u(t)dt, u(t) ∈ L2.

where the nonnegative number ‖u(t)‖ = (
∫ ∞

0 uT (t)u(t)dt)
1
2 is the L2 gain of u(t),

y(t) is the response output with the input u(t) for the system G(s), and the
space L2[0,∞) is the space of all piecewise-continuous inputs defined on [0,∞)

satisfying
∫ ∞

0 ‖u(t)‖2 < ∞. With this interpretation, the FDI for bounded-realness
can encompass the worst-case disturbance attenuation (or tracking error, etc.) level
in the L2 sense, rather than the peak amplification factor with respect to a fixed sinu-
soidal input. Likewise, the positive-realness of G(s) is equivalent to the passivity of
the system in the time domain:

∫ ∞

0
uT (t)y(t)dt > 0, u(t) ∈ L2.

This interpretation allows for the concept of energy to be treated within the FDI
framework for formalizing specifications.

In addition, some recent results [1, 3, 5, 7, 9, 14] have addressed this issue and
generalized the standard KYP lemma [15, 19] to characterize FDIs within (semi)finite



46 2 Theoretical Foundation of Finite Frequency Control

frequency ranges in terms of LMIs. These results are based on the idea of the
S-procedure, and are in connection with the literature on integral quadratic constraints
[10, 12], indefinite linear quadratic control [19], and power distribution inequality
[13]. These references demonstrated that structures of practical significance can be
designed to achieve the specific property by solving LMI feasibility problem with
the aid of an existing version of the finite frequency KYP lemma. To convert FDI to
LMI, the following lemma is useful.

Lemma 2.4 (Schur Complement Lemma (SCL)) The following statements are
equivalent:

(1)

[
Q S
S∗ R

]
> 0;

(2) Q > 0, R − S∗Q−1S > 0;
(3) R > 0, Q − SR−1S∗ > 0.

SCL can be extended into semi-definite program.

Lemma 2.5 (Semi-Definite Case of SCL) The following statements are equivalent:

(1)

[
Q S
S∗ R

]
� 0;

(2) R � 0, Q − SR−1S∗ � 0.

2.4 Conclusion

This chapter mainly introduces a few of mathematical analysis and useful lemmas,
which will be used throughout the manuscript. In Sect. 2.1, the definition of the
Laplace Transform has been presented, and some commonly used forms are given.
In Sect. 2.2, we explain that both the weighting functions and the GKYP lemma
are useful methods in the frequency division, where the former one is particularly
suitable for SISO systems, and the latter one used in both SISO and MIMO systems
enjoy wider application ranges. In Sect. 2.3, we present two methods to characterize
system performances, namely window norm and FDIs. Concluding remarks are given
in Sect. 2.4.
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Part II
Singularly Perturbed Systems Analysis

and Synthesis

In this part, analysis and synthesis problems for finite frequency control of SPSs
are discussed. Stability theory is studied using fast-slow decomposition method and
descriptor system method in time domain for the SPSs. Finite frequency H∞ control
is emphatically discussed, including state feedback control, output feedback control,
shaping H∞ control, H∞ tracking problem and H∞ model matching problem, for
the SPSs. Finite frequency positive real control and sensitive-shaping problem are
also introduced in Chaps. 5 and 6, respectively.
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Chapter 3
Stabilization of Singularly Perturbed Systems

Stability analysis and controller design are significant problems of dynamic
systems in theory and practice that have attracted the interest of many investigators
[4]. In recent decades, researchers have focused on the problem of stability analysis
and stabilization for SPSs, and these approaches can improve the control precision
of system. In this chapter, we first discuss the concept of stability in general, and
then present four techniques for assessing the stability of a system: (1) introducing
Lyapunov functions; (2) finding the eigenvalues for state-space notation; (3) finding
the location of the poles in the complex frequency plane of the closed-loop TF; and
(4) providing a descriptor-system method to stabilize the SPSs. Note that the stability
of the system should be guaranteed in the entire frequency range, while the related
control system specifications should be specified in the finite frequency ranges to
reduce their conservatism.

3.1 Stability Analysis of Dynamical Systems

Let us begin to discuss the stability and instability of systems informally. For an
unstable system, there may be a huge shock with small inputs or small initial state
variation in states.

Consider the LTI continuous-time system

ẋ(t) = Ax(t) + bu(t), x(0) = x (0), (3.1)

which is known as the state transition equation, and then an equilibrium is a state
x̄(t) satisfying Ax̄(t) + bu(t) = 0 for all t � 0.
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Definition 3.1 (Equilibrium [4]) A vector x̄(t) is equilibrium state of a dynamic
system with an input function u(t), if it has the property that once the state reaches
x̄(t) it remains at x̄(t) for all future time.

Next, we give out definitions of stability for a general system. We consider four
types of stability in this chapter, namely internal stability, quadratical stability, expo-
nential stability and Hurwitz stability.

Definition 3.2 (State Stability/Internal Stability)

1. An equilibrium state x̄(t) is stable if there exists anμ0 with the following property:
for all μ1 satisfying 0 < μ1 < μ0, there is an μ such that if ‖x̄(t) − x0(t)‖ < μ,
then ‖x̄(t) − x(t)‖ < μ1, for all t > t0;

2. An equilibrium state x̄(t) is asymptotically stable if it is stable and there is an
μ > 0 such that whenever ‖x̄(t) − x(t)‖ < μ, then x(t) → x̄(t) as t → ∞;

3. An equilibrium state x̄(t) is globally asymptotically stable if it is stable and with
arbitrary initial state x0(t) ∈ X , x(t) → x̄(t) as t → ∞.

It is worth pointing out that these stability concepts are referred to as internal
stability, which represent properties of the system states involving the qualitative
behaviours of the zero-input state response, i.e., the response of a related homoge-
neous state equation that relies solely on the initial states.

Definition 3.3 (Exponential Stability) System (3.1) is globally uniformly expo-
nentially stable if there exist constants c > 0 and μ > 0 such that the solution of
(3.1) satisfies

‖x(t)‖ � exp−μt ‖x(0)‖, t > 0,

for any initial state x (0), where ‖ · ‖ denotes the standard Euclidean norm in Rn .

Remark 3.1 Asymptotic stability and exponential stability are equivalent concepts
for the LTI cases.

We also present an energy-based stability analysis which origins in the work of
Lyapunov. Lyapunov function methods can be conducted in both linear and nonlinear
systems. However, we focus on its specialization to linear systems.

Definition 3.4 (Lyapunov Function) A real-valued function V (x(t)) defined on �

is called a Lyapunov function, if the following conditions are satisfied,

1. V (x(t)) is continuous;
2. V (x(t)) has a unique global minimum at x̄(t) subject to all other points in �;
3. V (x(t)) is non-increasing in time t , for any state trajectory x(t) contained in �.

Remark 3.2 The Lyapunov function can be considered as the generalization of the
energy function in control systems. The first requirement simply means that the graph
of V (x(t)) has no discontinuities. The second requirement means that the graph of
V (x(t)) has its lowest point at the equilibrium. Moreover, the third requirement
generalizes the well-known fact that the energy in a control system should always
decrease.
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Remark 3.3 For the linear state equation (3.1), the stability analysis using the
Lyapunov function can be made more explicit. First, we can focus on energy-like
functions in the quadratic form,

V (x) = xT Px = �n
i, j=1 pi j xi x j ,

in which, without loss of generality, the matrix P = [pi j ] is assumed to be symmetric,
i.e., its elements satisfy the constraint pi j = p ji . A quadratic Lyapunov function is
positive-definite overall ofRn if and only if P is a positive-definite symmetric matrix.
In general, the constraint that V̇ (x(t)) < 0, or�V (x(t)) < 0 is sufficient to guarantee
the stability of linear and nonlinear systems, even if V (x(t)) is constrained to match
a quadratic form.

Quadratic stability is a special class of exponential stability, which implies asymp-
totic stability, and has attracted the attention of many researchers due to its impor-
tance in practice. Note that the sufficient conditions for the existence of quadratic
Lyapunov functions can be expressed in terms of LMIs. The following lemmas are
useful throughout this section.

Lemma 3.1 (Quadratic Stability Condition)There exist a positive definite symmetric
matrix P, such that

AT P + PA < 0, (3.2)

for the continuous-time case, or

AT P A − P < 0, (3.3)

for the discrete-time case, hold.

Definition 3.5 (System Stability) Consider a continuous-time linear system

ẋ(t) = Ax(t). (3.4)

It is said to be stable if all the eigenvalues of the matrix A have non-positive real
parts; in this case, we also say that the matrix A is Hurwitz critically stable, and it is
said to be asymptotically stable if all the eigenvalues of the matrix A have negative
real parts, and in this case we also say that the matrix A is Hurwitz stable.

Lemma 3.2 There are the following properties of eigenvalues for the linear system
(3.4):

(1) If at least one eigenvalue of A, Re(λi ) > 0, then the system is unstable; and
(2) The stability is asymptotic if and only if for all i , Re(λi ) < 0.
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3.2 Stability Analysis and Integration

Stability is a crucial requirement in control system design and other fields. It is
desirable to construct a state feedback controller K for the LTI SPS analyzed in
Sect. 1.3.2:

[
ẋ1(t)
εẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t) +

[
Bw1

Bw2

]
w(t),

y(t) = [
C1 C2

] [
x1(t)
x2(t)

]
+ D1u(t) + D2w(t).

(3.5)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the slow and fast states, respectively, and
n = n1 + n2 is the system dimension. u(t) ∈ Rp is the control input, w(t) ∈ Rr is
the external disturbance and y(t) ∈ Rq is the measurement output. The small positive
constant ε ∈ (0, ε∗], where ε∗ is upper bound of ε from the formula (1.33). Using
the forced singular perturbation method, the SPS (3.5) can be decoupled into a n1-
dimensional slow subsystem and a n2-dimensional fast subsystem.

The slow subsystem, denoted by �s , is represented as

ẋs(t) = Asxs(t) + Busus(t) + Bwsw(t),
ys(t) = Csxs(t) + Dusu(t) + Dwsw(t),

(3.6)

and the fast subsystem, denoted by � f , is expressed as

ẋ f (τ ) = A22x f (τ ) + B2u f (τ ) + Bw2w(τ ),

y f (τ ) = C2x f (τ ) + D1u f (τ ) + D2w(τ ).
(3.7)

It is appropriate to consider the following decomposition of feedback controls
where

us(t) = Ksxs(t), u f (τ ) = K f x f (τ ).

Then, the closed-loop subsystem using the above feedback can formulate the closed-
loop slow closed-loop subsystem:

ẋs(t) = (As + BusKs)xs(t) + Bwsw(t),
ys(t) = (Cs + DusKs)xs(t) + Dwsw(t),

(3.8)

and the closed-loop fast subsystem,

ẋ f (τ ) = (A22 + B2K f )x f (τ ) + Bw2w(τ ),

y f (τ ) = (C2 + D1K f )x f (τ ) + D2w(τ ).
(3.9)

Internal stability is a basic requirement for a practical feedback system. The reason
behind this is that all interconnected subsystems may be unavoidably subject to

http://dx.doi.org/10.1007/978-3-319-45405-4_1
http://dx.doi.org/10.1007/978-3-319-45405-4_1
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some initial conditions and some (possibly small) errors, and it cannot be tolerated
in practice that such errors at some locations will lead to unbounded signals at
some other locations in the closed-loop system. Internal stability guarantees that all
signals in a system are bounded provided that the injected signals (at any locations)
are bounded.

In the following sections, we provide the sufficient conditions for the stability
property of the system (3.5) based on a LMI approach, we develop the state feedback
controller that guarantees the following:

1. The states of linear SPSs achieves the internal stability;
2. The poles of the closed-loop SPS are within a pre-specified region.

In order to alleviate the ill-conditioning of SPSs resulting from the interaction of slow
and fast dynamic modes, the high-order LMIs are decomposed into ε-independent
and ε-dependent LMIs. The ε-independent LMIs derived in Sect. 3.3.1 are not ill-
conditioned, and the ε-dependent LMIs in Sect. 3.3.2 approximate to zero when ε

is small enough. It can be shown that when ε is sufficiently small, the original ill-
conditioned LMIs are solvable if and only if the ε-independent LMIs are solvable.
The proposed approach does not involve the separation of states into slow and fast
ones, which can be applied in both standard and nonstandard SPSs.

3.3 Stability Theory on Time Domain

3.3.1 Method Based on Slow and Fast Subsystems

In this subsection, we will discuss the design of stabilizing controllers for SPSs on
the basis of simplified models. For the stability analysis problem, the first question
is whether the whole system is stable. It is necessary to require that both the slow
and the fast subsystems are asymptotically stable.

According to Lemma 1.3, the stability of the slow subsystem and the fast subsys-
tem can guarantee the stability of the original SPS for ε ∈ (0, ε∗], where ε∗ is the
upper bounded of ε. The following work is done based on this concept.

Lemma 3.3 [1] (Projection Lemma) Let Q ∈ Rn1×n1 , ζ ∈ Rn1 and Γ ∈ Rn1×n2 . Let
ζ⊥ be any vector such that ζ⊥ζ = 0, i.e., the superscript ⊥ denotes the projection
of the vector. Then, the following statements are equivalent:

(1) ζ ∗Qζ < 0, for any Γ ∗ζ = 0, ζ �= 0;
(2) Γ ⊥QΓ ⊥∗

< 0;
(3) Exist χ ∈ Rn2×n1 , such that Q + He(Γ χ) < 0.

Theorem 3.1 For given scalars p1, q1, p2 and q2 satisfying p1q1 > 0 and p2q2 >

0, the closed-loop SPS (3.5) can achieve the internal stability for any ε ∈ (0, ε∗],
if there exist symmetric matrices Ws, Ps > 0, W f and Ph > 0, and matrices κs, κ f

such that the following LMIs hold:

http://dx.doi.org/10.1007/978-3-319-45405-4_1
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[
0 Ps
Ps 0

]
< He

[ −Ws

AsWs + Busκs

] [
q1 In1

p1 In1

]T

, (3.10)

[
0 Pf

Pf 0

]
< He

[ −W f

A22W f + B2κ f

] [
q2 In2

p2 In2

]T

. (3.11)

The state feedback sub-controller gain can be solved as Ks = κsW−1
s , K f = κ f W

−1
f .

Hence, the composite state feedback controller gain is given as

K = [
Ks + K f A

−1
22 A21 + K f A

−1
22 B2Ks K f

]
.

Proof First, the stability of the closed-loop subsystems is investigated.
Consider the following Lyapunov function:

Vs = xTs Psxs, Ps > 0.

Differentiating Vs with respect to t along the trajectories of Eq. (3.8), it is obtained

V̇s = ẋ Ts Psxs + xTs Ps ẋs,
= xTs [(As + BusKs)

T Ps + Ps(As + BusKs)]xs < 0,

which is equivalent to

(As + BusKs)
T Ps + Ps(As + BusKs) < 0.

In the same way, the Lyapunov condition for the dual system of (3.8) is represented
as

(As + BusKs)Ps + Ps(As + BusKs)
T < 0,

which can be rewritten as

[
As + BusKs In1

] [
0 Ps
Ps 0

] [
(As + BusKs)

T

In1

]T

< 0. (3.12)

According to Lemma 3.3, (3.12) can be converted to the following feasible LMI:

[
0 Ps
Ps 0

]
< He

[ −Ws

AsWs + Busκs

]
Rs. (3.13)

Taking Rs = [
q1 In1 p1 In1

]
with the constraint that p1q1 > 0 and substituting it into

(3.13) can yield

[
0 Ps
Ps 0

]
< He

[ −Ws

AsWs + Busκs

] [
q1 In1 p1 In1

]
.
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Similar results can be derived for the corresponding fast subsystem, which is omitted
here.

Second, design the composite state feedback controller:
Based on Lemma 1.3, we have the internal stability property for the whole SPS

(3.5) can be guaranteed by the stabilization of its related subsystems (3.8) and (3.9)
for all ε satisfying ε ∈ (0, ε∗]. In other words, the establishment of LMIs (3.10) and
(3.11) can ensure the internal stability of the whole system (3.5).

Considering that us = Ksxs, u f = K f x f , a composite control for the full SPS
(3.5) might then be taken as

u = us + u f = Ksxs + K f x f .

It should be pointed out that a realizable composite control requires the system states
x1, x2 rather than xs, x f . The substitution of xs = x1, x f = x2 − x2s, the composite
control can be converted into the realizable feedback form

u = Ksx1 + K f [x2 + A−1
22 (A21x1 + B2Ksx1)] := K1x1 + K f x2, (3.14)

where K1 = Ks + K f A
−1
22 B2Ks + K f A

−1
22 A21.

Remark 3.4 The associated degree of conservatism of Theorem 3.1 depends on the
selection of the real scalars p1, q1, p2 and q2. Compared with results in [3], Theo-
rem 3.1 can be treated as a special case of pole-placement, which guarantees that all
poles of SPSs should locate in the left half of s-plane.

3.3.2 A Descriptor-System Method

Deficiencies of classical slow-fast decomposition method is that more than one sub-
controllers should be designed, and a gain schedule should be provided to produce a
full-dimensional state feedback controller based on sub-controllers. In this subsec-
tion, methods from descriptor systems are introduced to provide a general framework
on how to handle the ε-dependent Lyapunov function of SPSs. Contrast with methods
in Sect. 3.3.1, the proposed methods are utilized to avoid the slow-fast decomposition,
and the designed controller can be applied directly in the original SPS.

For notational convenience, let us define the following notions:

ζ(t) =
[
x1(t)
x2(t)

]
, Aε =

[
A11 A12

A21/ε A22/ε

]
, Bε =

[
B1

B2/ε

]
, Bwε =

[
Bw1

Bw2/ε

]

and C = [
C1 C2

]
, then the SPS (3.5) can be represented as

ζ̇ (t) = Aεζ(t) + Bεu(t) + Bwεw(t),
y(t) = Cζ(t) + D1u(t) + D2w(t).

(3.15)

http://dx.doi.org/10.1007/978-3-319-45405-4_1


58 3 Stabilization of Singularly Perturbed Systems

Applying the state feedback controller u(t) = K ζ(t) into the system (3.15), the
closed-loop system is obtained,

ζ̇ (t) = (Aε + BεK )ζ(t) + Bwεw(t),
y(t) = (C + D1K )ζ(t) + D2w(t).

(3.16)

Theorem 3.2 For given scalars p, q satisfying pq > 0, the closed-loop SPS (3.5)
can achieve the internal stability property, if there exist symmetric matrices Wg,

Pε =
[

P11 εP12

εP∗
12 εP22

]
> 0 and κg such that the following LMI holds:

⎡
⎢⎢⎣

0

[
P11 εP12

PT
12 P22

]

[
P11 P12

εPT
12 P22

]
0

⎤
⎥⎥⎦ < He

[ −Wg

AWg + Bκg

] [
q In pIn

]
. (3.17)

The state feedback sub-controller gain can be solved by K = κgW−1
g .

Proof As for the stability analysis of the system (3.16), we consider the following
ε-dependent Lyapunov function

V (ζ(t)) = ζ(t)∗Pεζ(t),

where Pε =
[

P11 εP12

εPT
12 εP22

]
> 0.

Then, the derivative of V (ζ(t)) along the trajectories of Eq. (3.16) is

V̇ (ζ(t)) = ζ(t)T [(Aε + BεK )T Pε + Pε(Aε + BεK )]ζ(t) < 0,

which is equivalent to

(A + BK )T
[
P11 εP12

PT
12 P22

]
+

[
P11 P12

εPT
12 P22

]
(A + BK ) < 0,

where A =
[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
.

Similarly, the Lyapunov condition for the dual system of Eq. (3.16) is shown as

(A + BK )

[
P11 εP12

PT
12 P22

]
+

[
P11 P12

εPT
12 P22

]
(A + BK )∗ < 0,
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which can be rewritten as

[
A + BK In

]
⎡
⎢⎢⎣

0

[
P11 εP12

PT
12 P22

]

[
P11 P12

εPT
12 P22

]
0

⎤
⎥⎥⎦

[
(A + BK )T

In

]
< 0. (3.18)

Based on Lemma 3.3, it can be seen that (3.18) can be converted to the following
feasible LMI

⎡
⎢⎢⎣

0

[
P11 εP12

PT
12 P22

]

[
P11 P12

εPT
12 P22

]
0

⎤
⎥⎥⎦ < He

[ −Wg

AWg + Bκg

] [
q In pIn

]
. (3.19)

Remark 3.5 We point out that the associated degree of conservatism in Theorem 3.2
depends on the selection of the real scalars p and q, which indicates the locations of
poles of SPSs in the left half of s-plane.

Remark 3.6 Theorem 3.1 involving slow-fast decomposition may bring in more con-
servatism than Theorem 3.2. Theorem 3.2 does not require the separation of states
into slow and fast ones, which can be applied in both standard and nonstandard SPSs.

3.4 Stability Theory on Frequency Domain

This section proposes a new method to decompose the SPSs. The low-frequency and
high-frequency subsystems are obtained by the low-pass filter and the high-pass filter
detaching respectively. The new composed rule has been studied for the SPSs. It is
verified conciseness of the decomposition method and effectiveness of the proposed
composite controller on frequency domain.

Classical slow-fast decomposition methods are conducted by separating the SPS
into slow and fast subsystems in different time-scales t and τ . Slow and fast
sub-controllers are designed to realize the control specifications of slow and fast
subsystems, respectively. A composite controller has been designed based on the
sub-controllers [2]. Contrast with the existing methods, we discuss the decomposi-
tion of the SPSs in the frequency domain. The low/high-frequency model is extracted
by the low/high-pass filter, and the composite controller is formulated by sum of the
related sub-controllers.

Consider an SPS in the form of
[
ẋ1(t)
εẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t),

y(t) = [
C1 C2

] [
x1(t)
x2(t)

]
,

(3.20)
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where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the slow and fast states, respectively, and
n = n1 + n2 is the system dimension. u(t) ∈ Rp is the control input, w(t) ∈ Rr is
the external disturbance, and y(t) ∈ Rq is the measurement output. The TFM of
(3.20) from u(t) to y(t) is

G(s) = C(sEε − A)−1B,

where

Eε =
[
In1 0
0 ε In2

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [

C1 C2
]
.

Assuming that the weighting function W (s) is equivalent to the low-pass or high-pass
filter to accomplish the frequency decomposition of the SPS (3.20) in the correspond-
ing frequency range. In this concept, the TF for the related frequency subsystem is
denoted by G(s)W (s).

It has been proven that the addition of inertial element to the TFM G(s) corre-
sponds to add a new pole to G(s) such that the amplitude response of G(s) decreases
faster, which benefits the low-frequency characteristic of G(s). Conversely, an addi-
tional differentiation element is equivalent to add a new zero to G(s) such that the
amplitude response of G(s) increases faster, which can be used to change the high-
frequency characteristic of G(s). Thus, we can improve the frequency characteristic
of the SPS (3.20) by changing zeros and poles of G(s).

Here, the Butterworth filters are used to extract the low- or high-frequency com-
ponents of the system (3.20) the low-frequency Butterworth filter in the following
form:

Wl(s) = b0

sn + an−1sn−1 + · · · + a0
,

and the high-frequency Butterworth filter in the form of

Wh(s) = sn

sn + an−1sn−1 + · · · + a0
.

The TF for the low-pass Butterworth filter shown in Fig. 3.1 is

GBl(s) = 1

C1C2R1R2s2 + (C1R2 + C2R2)s + 1
,

where the quality factor, Q = 1
2

√
C1
C2

, and the related parameters are

R f = R1 = R2, fc = 1

2πR f C f
, C1 = 2QC f , C2 = C f /2Q.

Based on the low trade-off frequency ωl , ωl = 1
R f C f

, we can calculate R f , C f .
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Fig. 3.1 The structure of
low-pass Butterworth filter

Fig. 3.2 The structure of
high-pass Butterworth filter

Similarly, the TF for the high-pass Butterworth filter shown in Fig. 3.2 is

GBh(s) = C1C2R1R2s2

C1C2R1R2s2 + (C1R2 + C2R2)s + 1
,

where the quality factor Q = 1
2

√
R2
R1

, and the related parameters are

C f = C1 = C2, fc = 1

2πR f C f
, R1 = R f /2Q, C2 = 2QR f .

Based on the high trade-off frequency ωh , R f , C f are easily obtained.
In addition, the following theorems are useful to keep the stability of the SPS

(3.20).

Theorem 3.3 Consider the system (3.20) with the TFM G(s). The TFMs for the
slow subsystem and fast subsystem are denoted as Gs(s) and G f (s), respectively. If
Gsc(s) and G f s(s) are the stabilizing controllers for the two subsystems, then the
composite control to stabilize the whole system (3.20) can be formed as

Gc(s) = Θ(s)

1 − Gs(s)Gsc(s)G f (s)G f c(s)G(s),

where Θ(s) = 2Gs(s)G f (s)Gsc(s)G f c(s) + Gs(s)Gsc(s) + G f (s)G f c(s).

Proof The SPS (3.20) is paralleled by the low-frequency subsystem and the high-
frequency subsystem such that the following expression is set up:

Gs(s)Gsc(s)

Gs(s)Gsc(s) + 1
+ G f (s)G f c(s)

G f (s)G f c(s) + 1
= Gs(s)Gsc(s)

Gs(s)Gsc(s) + 1
. (3.21)
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The sub-controller Gsc(s) is used to stabilize the slow subsystem such that all the
poles of

Gs(s)Gsc(s)

Gs(s)Gsc(s) + 1

are located in the left half s-plane. Similarly, all the poles of the closed-loop high-
frequency subsystem are located in the left half s-plane, too.

From Lemma 1.2, the poles of the whole system can be estimated by the sum of
poles of related slow and fast subsystems. All the poles of

G(s)Gc(s)

G(s)Gc(s) + 1

should be placed in the left half s-plane to guarantee the internal stability of the
whole system.

By solving (3.21), we have

Θ(s)

(Gs(s)Gsc(s) + 1)(G f (s)G f c(s) + 1)
= G(s)Gc(s)

G(s)Gc(s) + 1
,

which gives

Gc(s) = Θ(s)

1 − Gs(s)Gsc(s)G f (s)G f c(s)G(s)
.

Example 3.1 Consider the following SPS:

ẋ1(t) = x1(t) + 2x2(t) + 2u(t),
εẋ2(t) = x1(t) + 2x2(t) + 2u(t),
y(t) = x1(t) + x2(t).

(3.22)

Taking ε = 0.001, the TF for the system (3.22) is shown as

G(s) = 2.002s − 6

0.001s2 − 5.001s + 3
.

The trade-off frequencies are given as ωl = 0.5 rad/s, ωh = 100 rad/s. We can get
the low-frequency subsystem in Fig. 3.3, if

Wl(s) = 1

4s2 + 4.242s + 1
.

And, the high-frequency subsystem is in Fig. 3.4, if

Wl(s) = 0.0001s2

0.0001s2 + 0.02121s + 1
.

http://dx.doi.org/10.1007/978-3-319-45405-4_1
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Fig. 3.3 The bode diagram of low-frequency subsystem
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Fig. 3.4 The bode diagram of high-frequency subsystem

Based on Theorem 3.3, the sub-controllers for slow and fast subsystems are shown
by

Gcs(s) = s4 − 5000s3 − 535.4s2 + 870.8s + 750

s4 + 2.5s3 + 1267s2 + 1081.5s + 5379
,

and

Gcf (s) = s4 − 4788.9s3 − 1.048 ∗ 106s2 − 4.932 ∗ 107s + 3 ∗ 107

s4 − 1999.85s3 + 10704s2 + 5026s + 19490
.
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Fig. 3.5 Dynamics response of an SPS

The composite controller is given by

Gc(s) = (s − 3)2(s2 − 0.2s + 1.22)

(s − 1995)(s − 6)(s − 0.6)(s2 − 0.4s + 2)
.

The effectiveness of the composite controller is revealed in Fig. 3.5.

3.5 Conclusion

In this chapter, we give out definitions of stability of control systems in Sect. 3.1, and
conduct the stability analysis of SPSs hereinafter. For SPSs with stable fast modes,
the high-order SPS can be stabilized via the stabilization of the degenerate system
[2]. As for SPSs with some unstable fast modes, Lyapunov methods have been proven
to be effective tools to stabilize SPSs. The stability analysis of SPSs is performed
based on Lyapunov function in Sects. 3.2 and 3.3, where both ε-independent and ε-
dependent Lyapunov functions are constructed. Conservatism of these methods have
been presented and compared to show their effectiveness and merits. In Sect. 3.4,
slow-fast decomposition has been conducted in the frequency domain with slow/fast
modes extracted via low/fast filter, and a new composite controller for SPSs has been
presented. Finally, we need to point out that the stability should be guaranteed in the
entire frequency range, that is why GKYP lemma is not used in this chapter.
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Chapter 4
Finite Frequency H∞ Control for Singularly
Perturbed Systems

In this chapter, we consider the finite frequency H∞ methodologies of SPSs based
on a dual version of GKYP lemma approach, which is more suitable for feedback
synthesis. Two different methods are mainly utilized, namely the classical slow-fast
decomposition method and the descriptor-system method for SPSs. The classical
slow-fast decomposition method aims at applying this dual GKYP lemma in slow
and fast subsystems, respectively, to achieve the desired performance characteristics
for the closed-loop SPSs. The descriptor-system method for SPSs is intended to solve
the problem as a whole to avoid the degradation of model accuracy resulted from the
forced decomposition method. A multiplier method is then developed to render the
synthesis conditions convex through the change of variable, in the state feedback or
output feedback setting.

4.1 Background Information for H∞ Control of Singularly
Perturbed Systems

In this section, we first state the background information for H∞ control of linear
SPSs. A general linear system is represented by

ẋ(t) = Ax(t) + B1w(t) + B2u(t),
z(t) = C1x(t) + D11w(t) + D12u(t),
y(t) = C2x(t) + D21w(t) + D22u(t),

(4.1)

where x(t) ∈ Rn is state vector, w(t) ∈ Rr is the external disturbance, u(t) ∈ Rp is
the control input, y(t) ∈ Rq is the measurement output, and z(t) ∈ Rs is the con-
trolled output. A, Bi , Ci and Di j (i, j = 1, 2) are all appropriate dimensions matri-
ces. The standard block diagram of the system (4.1) is shown in Fig. 4.1.

The TFMs G(s) and K (s) are, by assumption, real-rational and proper. The
TFM from the external disturbance w(t) to the measurement output z(t), denoted by

© Springer International Publishing Switzerland 2017
C. Cai et al., Finite Frequency Analysis and Synthesis for Singularly
Perturbed Systems, Studies in Systems, Decision and Control 78,
DOI 10.1007/978-3-319-45405-4_4
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Fig. 4.1 The standard block
diagram

Gzw(s), has the following partition

Gzw(s) =
[
G11(s) G12(s)
G21(s) G22(s)

]
.

Recalling the results in Chap. 2, it can be seen that ‖Gzw(s)‖∞ can be used to
perform the function of an amplifier from disturbance to the system output. Then,
the following H∞ problem of linear systems can be formulated.

Problem 4.1 For the linear system (4.1), we design a state feedback control law or
an output feedback law under the internal stability constraint such that the following
requirement,

‖Gzw(s)‖∞ < γ,

holds for a given positive scalar γ .

Remark 4.1 Internal stability is a fundamental property of a dynamic system, which
is merely dependent on the state-space matrix A. Moreover, H∞ control also dis-
cusses a type of external stability called bounded-input, bounded-output (BIBO)
stability, which requires the gain from external disturbance to measurement output
is restrained,

‖Gzw(s)‖∞ < γ.

Following are two examples of the standard H∞ problem.

1. Model Matching Problem
In Fig. 4.2, the block T1 represents a model to be matched by the cascade con-
nection of three blocks T2, T3 and Q. Here, Ti (i = 1, 2, 3) are given, and the
controller Q is to be designed. Assume that Ti ∈ RH∞, i = 1, 2, 3 and Q ∈ RH∞
should be required, where RH∞ denotes R space which satisfies H∞ condition.
For this purposes, the model matching criterion is represented by

Fig. 4.2 Model matching

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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sup{‖y(t)‖2 : w(t) ∈ H2, ‖w(t)‖2} < γ.

Thereby, the energy of the error y(t) can be minimized for the worst input w(t)
of unit energy. On this basis, an equivalent criterion is thereby given as

‖T1 − T2QT3‖∞ < γ.

The model matching problem can be recast as a standard problem by defining

G :=
[
T1 T2

T3 0

]
, K := −Q.

2. Tracking problem
Figure 4.3 reveals that the block P is the plant to be controlled, and the output
v(t) ought to track a reference signal r(t). Controlled input u(t) is produced by
passing r(t) and v(t) through controllers C1 and C2, respectively. Note that r(t)
is an unknown fixed signal. Here, P and W are given, and C1, C2 are the blocks
to be designed. The tracking error signal can be formulated by r(t) − v(t), and
the cost function is thereby defined as

(‖r(t) − v(t)‖2
2 + ‖ρu(t)‖2

2)
1/2,

where ρ is a positive scalar representing weighing factor. Including ρu(t) in the
cost function is to ensure the existence of an optimal proper controller. It should
be noted that the cost function is equal to the H2 norm of

y(t) :=
[
r(t) − v(t)

ρu(t)

]
.

Therefore, the tracking criterion is taken to be

‖y(t)‖∞ < γ.

Over the past few years, researches on SPSs in the H∞ sense has been highly
recognized in the control area due to its great practical importance [2–6, 12, 13,
16, 21, 22, 25, 27]. Luse and Ball [16] solved the H∞ problem in the frequency
domain. Pan and Baser [21, 22] used the theory of differential games and obtain
necessary and sufficient conditions for the existence of a suboptimal solution as well
as the construction of the suboptimal solution. Khail and Chen [12] had solved a

Fig. 4.3 Tracking problem
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more general version of the H∞ problem using the state-space algorithm. Dragan [2]
studied the asymptotic expansions for game theoretic Riccati equations and showed
how they may be used in singularly perturbed H∞ control. More recently, Fridman
[4] also considered a construction of high-order approximations to a controller that
guaranteed a desired performance level on the basis of the exact decomposition of the
full-order Riccati equations to the reduced order slow and fast equations. However,
all these papers consider the H∞ optimization over an entire frequency range. This,
in a certain sense, does not take advantage of the special frequency characteristics
analysis, which may result in some conservativeness in the designs.

The KYP lemma [23], one of the most fundamental results in control and sig-
nal processing, established the equivalence between a FDI characterized by the TF
and a LMI associated with its state-space realization. The standard KYP lemma,
however, is only applicable for the infinite frequency range. A very significant devel-
opment made by Iwasaki and Hara [8–11] was the GKYP lemma, which established
the equivalence between a frequency-domain property and a LMI over a finite fre-
quency (FF) range, and enabled designers to impose performance requirements over
chosen finite or infinite frequency ranges. Hence, it is very suitable for analysis
and synthesis problems in practical applications, where different specifications over
different frequency ranges are usually required.

4.2 Finite Frequency H∞ State Feedback Control

In this section, H∞ control synthesis of linear time-invariant SPSs based on a GKYP
lemma is investigated. By employing the GKYP lemma on low-frequency and high-
frequency ranges of SPSs, respectively, a slow (low-frequency) sub-controller and
a fast (high frequency) sub-controller are designed to stabilize slow and fast sub-
systems, and satisfy individual H∞ performance specifications. A composite con-
troller for the full-order SPS is constructed via the two well-defined lower order
sub-controllers. The problem of designing stabilizing controllers for SPSs is dis-
cussed based on simplified models. For this problem, it is necessary to require that
the slow and the fast subsystems are asymptotically stable with some prescribed H∞
constraints.

In Chaps. 1 and 2, a singularly perturbed model has already been given. Consider
an LTI SPS, which is expressed by

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t) + Bw1w(t),
εẋ2(t) = A21x1(t) + A22x2(t) + B2u(t) + Bw2w(t),
y(t) = C1x1(t) + C2x2(t),

(4.2)

where ε > 0 is a small perturbation parameter, x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are
the slow and fast states, respectively, and n = n1 + n2 is the system dimension.
y(t) ∈ Rq is measured output vector, u(t) ∈ Rp is the control input, and w(t) ∈ Rr

is the external disturbance. The matrices Ai j , Bi , Bwi and Ci (i, j = 1, 2) are of
appropriate dimensions.

The assumption in the following is established throughout the section,

http://dx.doi.org/10.1007/978-3-319-45405-4_1
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Assumption 4.1 A22 is nonsingular.

Remark 4.2 As mentioned in Chap. 1, Assumption 4.1 is widely used in SPSs, which
guarantees the existence of A−1

22 , and is the requirement for the classical decomposi-
tion method of singular perturbations. With certain conditions, the high-order com-
plicated system (4.2) could be reduced to two low-order subsystems that are called
a reduced model (slow subsystem) and a boundary layer model (fast subsystem).

With the assumption, the SPS (4.2) is customarily referred to as a standard sin-
gularly perturbed model [13].

Hence, by decomposing the SPS (4.2), we get slow and fast subsystems, namely
the slow subsystem Σs ,

ẋ1s(t) = Asx1s(t) + Busus(t) + Bwsw(t),

ys(t) = Csx1s(t) + Dusus(t) + Dwsw(t),
(4.3)

where As = A11 − A12A
−1
22 A21, Bus = B1 − A12A

−1
22 B2, Bws = Bw1 − A12A

−1
22 Bw2,

Cs = C1 − C2A
−1
22 A21, Dus = −C2A

−1
22 B2, Dws = −C2A

−1
22 Bw2, and the fast sub-

system, denoted by Σ f ,

ẋ2 f (τ ) = A22x2 f (τ ) + B2u f (τ ) + Bw2w(τ ),

y f (τ ) = C2x2 f (τ ).
(4.4)

We focus on the application of state feedback control laws of the form

us(t) = Ksx1s(t), u f (τ ) = K f x2 f (τ ),

with the goal of achieving desired H∞ performance characteristics for subsystems
Σs and Σ f . Then, the closed-loop subsystems are shown as follows, the slow closed-
loop subsystem,

ẋ1s(t) = (As + BusKs)x1s(t) + Bwsw(t),

ys(t) = (Cs + DusKs)x1s(t) + Dwsw(t),
(4.5)

and the fast closed-loop subsystem,

ẋ2 f (τ ) = (A22 + B2K f )x2 f (τ ) + Bw2w(τ ),

y f (τ ) = C2x2 f (τ ).
(4.6)

It has been shown in [15–17] that G(s, ε) has a two-frequency-scale TFM with

Gs(s) = Cs(s In1 − As)
−1Bws + Dws,

G f (p) = C2(pIn2 − A22)
−1Bw2,

if an SPS is a minimal analytic realization for G(s, ε).

http://dx.doi.org/10.1007/978-3-319-45405-4_1
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Here, the TFs Gs(s) and G f (p) are mentioned as the low-frequency (slow) and
high-frequency (fast) approximations of G(s, ε), respectively. The high-frequency
scale p = εs corresponds to the fast timescale τ = t/ε in the time domain. Thus, the
problem under discussions can be described as follows.

Problem 4.2 (H∞ Control Problem) Find a state feedback u(t) = Kx(t), such that
the closed loop of SPS (4.2) satisfies:

1. Internal stability;
2. For a given γ > 0, ‖G(s, ε)‖∞ < γ, for sufficient small parameter ε > 0.

Problem 4.3 (Slow H∞ Control Problem) For the slow subsystem (4.5), the problem
is summarized as follows: the state feedback sub-controller gain Ks is designed such
that for a given ωl the following requirements are satisfied:

1. ‖Gs(s)‖Ωl∞ < γ, Ωl := {ω||ω| < ωl};
2. The closed-loop system (4.5) is stable.

Note that here the H∞ norm optimization is restricted in a specific regional Ωl .
For convenience of later development, define Ms the state-space matrices of Gs ∗ Ks ,
that is

Ms :=
[
As Bws

Cs Dws

]
+

[
Bus

Dus

]
Ks

[
In1 0

]
.

Theorem 4.1 Let scalars p1 and q1 satisfying p1q1 > 0, and γ > 0, and matrix
Rl ∈ Rn1×(2n1+r+q) be given. The closed-loop system of the slow subsystem (4.5) is
stable and satisfies that for a given ωl > 0, when |ω| < ωl , ‖Gs(s)‖Ωl∞ < γ holds,
if there exist symmetric matrices Ps ∈ Rn1×n1 > 0, Pl ∈ Rn1×n1 , Ql ∈ Rn1×n1 > 0
and Ws ∈ Rn1×n1 , and matrices Ks ∈ Rp×n1 and Vl ∈ Rr×(2n1+r+q) such that the
following LMIs are satisfied:

[
0 Ps
Ps 0

]
< He

[ −Ws

AsWs + BusKs

] [
q1 In1 p1 In1

]
, (4.7)

⎡
⎢⎢⎣

−Ql 0 Pl 0
0 Ir 0 0
Pl 0 ω2

l Ql 0
0 0 0 −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In1 0 0
0 −Ir 0
As Bws Bus

Cs Dws Dus

⎤
⎥⎥⎦

⎡
⎣
WsRl

Vl

Ks Rl

⎤
⎦ . (4.8)

With the conditions, a feasible state feedback gain is then given by Ks = KsW−1
s .

Proof By [9], the matrices associated with the frequency separation can be
selected by

Φ =
[

0 1
1 0

]
, Ψ =

[−1 0
0 ω2

l

]
.

In this sense, the set Λ(Φ,Ψ ) can be specialized to define a low-frequency range of
variable ω.
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On the other hand,

‖Gs(s)‖Ωl∞ < γ ⇐⇒ σ(Gs( jω),Π) :=
[
Gs( jω)

Iq

]∗
Π

[
Gs( jω)

Iq

]
< 0,

where Π =
[
Ir 0
0 −γ 2 Iq

]
.

According to Lemma 2.2, we know that the above inequality holds if and only if
there exist symmetric matrices Pl = PT

l and Ql = QT
l > 0 such that the following

inequality holds,

N

[
Φ ⊗ Pl + Ψ ⊗ Ql 0

0 Π

]
NT < 0, (4.9)

where N := [
Ms In1+q

]
.

Note that the condition (4.9) is not convex due to the product terms between the
parameters Pl , Ql andKs . To solve it, a multiplier method is developed in [8], which
reparameterizes the condition so that the problem becomes convex. To be specific, a
sufficient condition based on the multiplier method is given in [8] to make condition
(4.9) hold. If there exist matrices Ws ∈ W (Cs, Rl), and Ks such that the following
LMI holds

T

[
Φ ⊗ Pl + Ψ ⊗ Ql 0

0 Π

]
T T < He

⎡
⎢⎢⎣

−In1 0 0
0 −Ir 0
As Bws Bus

Cs Dws Dus

⎤
⎥⎥⎦

⎡
⎣
WsRl

Vl

Ks Rl

⎤
⎦ , (4.10)

then the inequality (4.9) is satisfied.
On the other hand, we take the closed-loop stability into account, and a feasible

stability condition taken also from [8] is given as follows: if there exist matrices Ws ,
Ps > 0, and Ks such that the following LMI holds:

[
0 Ps
Ps 0

]
< He

[ −Ws

AsWs + BusKs

] [
q1 In1 p1 In1

]
,

then the closed-loop system (4.5) is stable. This completes the proof.

Remark 4.3 Theorem 4.1 gives a sufficient condition for the existence of a static
feedback gain that achieves H∞ performance for the slow problem. The conditions
are given in terms of LMIs and can be solved numerically. The associated con-
servativeness is dependent upon the choice of Rl . In the state feedback setting, a
reasonable choice has been proposed in [9]. In the case of the continuous-time, small
gain condition, a feasible choice of Rl in the low-frequency range can be chosen as

Rl = [
0 0 In1 (D11B

†
1 )T

]
,

which, however, presents some potentially conservativeness.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Remark 4.4 Without loss of generality, if As, Bws, Bus, Cs, Dus and Dws are all
real matrices, then Ps , Pl and Ql in Theorem 4.1 are restricted to real matrices.

Problem 4.4 (Fast H∞ Control Problem) For the fast subsystem (4.6), the following
problem aims to find a state feedback gain K f such that the following requirements
are satisfied for a given ωh :

1. When ωh ∈ Ωh := {ω||ω| > ωh}, ‖G f (p)‖Ωh∞ < γ is satisfied;
2. The closed-loop fast subsystem (4.6) can achieve the internal stability withw = 0.

Define M f as the state-space matrix of system G f ∗ K f ,

M f :=
[
A22 Bw2

C2 0

]
+

[
B2

0

]
K f

[
In2 0

]
.

Similarly, here the H∞ norm optimization is restricted on a specific regional Ωh .
One of our main results is given as follows.

Theorem 4.2 Let Rh ∈ Rn2×(2n2+r+q) and p2, q2, γ > 0 be given, with p2q2 > 0.
The closed-loop system of fast subsystem (4.6) is internally stable and satisfies that
for a given crossover frequency ωh > 0, ‖G f (p)‖Ωh∞ < γ 2, |ω| > ωh, if there exist
symmetric matrices Pf ∈ Rn2×n2 > 0, Ph ∈ Rn2×n2 , Qh ∈ Rn2×n2 > 0 and W f ∈
Rn2×n2 , and the matricesK f ∈ Rp×n2 and Vh ∈ Rr×(2n2+r+q) such that the following
LMIs are satisfied,

[
0 Pf

Pf 0

]
< He

[ −W f

A f W f + B2K f

] [
q2 In2 p2 In2

]
, (4.11)

⎡
⎢⎢⎣
Qh 0 Ph 0
0 Ir 0 0
Ph 0 −ω2

hQh 0
0 0 0 −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In2 0 0
0 −Ir 0
A f Bw f Bu f

C f Dw f Du f

⎤
⎥⎥⎦

⎡
⎣
W f Rh

Vh

K f Rh

⎤
⎦. (4.12)

And with these conditions, a feasible state feedback gain is given by K f = K f W
−1
f .

Proof From [9], we know that the set Λ(Φ,Ψ ) can be specialized to define a high-
frequency range of frequency variable by an appropriate choice of Φ and Ψ ,

Φ =
[

0 1
1 0

]
, Ψ =

[
1 0
0 −ω2

h

]
.

In this case, Λ(Φ,Ψ ) = { jω : ω ∈ Ωh}. The following is similar to the proof of
Theorem 4.1, and is omitted here.

Remark 4.5 Theorem 4.2 gives a sufficient condition for the existence of static feed-
back gain that achieves H∞ performance for the fast problem. The condition is given
in terms of LMIs and can be solved numerically. The associated conservativeness is
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dependent upon the choice of Rh . In the state feedback setting, a reasonable choice
has been proposed for the high-frequency continuous-time, small-gain condition,

Rh = [
In2 0 0 0

]
.

Based on the composite strategy shown in Fig. 4.4, the gain of a composite state
feedback controller is given as

K = [
Ks + K f A

−1
22 A21 + K f A

−1
22 B2Ks K f

]
. (4.13)

Remark 4.6 The composite controller undertaken in this section has already been
utilized in Chap. 3 to discuss the stability for SPS, which is different from the previous
literature [4, 12, 21, 22], where the composite controller in the sense is just taken as
the connection of Ks and K f , that is, K = [

Ks K f
]
. The main reason behind this

is that the states of slow and fast subsystems are x1s and x2 f , respectively, and the
sub-controllers Ks and K f are used to control x1s and x2 f , respectively. The states
of the original SPS (4.2) are (x1, x2) rather than (x1s, x2 f ), which are controlled by
the composite controller K .

The potential explanation for this difference is that we consider the H∞ control in
a FF range rather than in an entire frequency range. Here, the composite controller
form (4.13) is more effective to solve the ill-posed problem of an SPS.

Note that cross-over frequencies ωl and ωh are closely related with the con-
servatism of Theorems. Next, we present how to effectively choose the cross-over
frequencies ωl and ωh .

Algorithm 4.1 The prescribed values of ωl and ωh are given as the following algo-
rithm.

Fig. 4.4 The composite
strategy Original Linear

High-Order System

DECOUPLE

xs(t) xf(t)

Composite Controller

Slow
Subsystem

Fast
Subsystem

Slow
Subcontroller

Fast
Subcontroller

Ks(t) Kf(t)

uc(t) uc(t)

x (t)c
uc(t)

http://dx.doi.org/10.1007/978-3-319-45405-4_3
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Step1. Calculate the module of low-frequency TF Gs( jω) and high-frequency TF
G f (ε jω).

Step2. Given error accuracy e = 0.01 and sufficient small parameter ε, for ω =
0 : 0.0001 : 100, if ‖Gs( jω)‖ − ‖G f (ε jω)‖ < e, then ω is achieved.

Step3. Choose ωl ∈ [0, ω] and ωh ∈ (ω,+∞).

To summarize, we have solved the H∞ controller design problem of SPSs in the
specific frequency domain, and we have shown how to decompose the H∞ control
problem into slow and fast subproblems in each frequency scale.

4.3 Finite Frequency H∞ Output Feedback Control

To the best of the authors’ knowledge, methods to realize FF H∞ control of SPSs
remain as an open research area in the literature. This section presents approaches
for the design of static and dynamic output feedback controllers according to the
frequency characteristics of SPSs. A novel strategy for the design of mixed output
feedback controller (MOFC) is proposed in the sum of the static output feedback con-
troller (SOFC) and dynamic output feedback controller (DOFC), where the numeri-
cal stiffness of the whole SPS is alleviated. In this sense, the original ill-conditioned
control problem can be solved within a specified order-of-ε accuracy.

Consider the following linear SPS with n-dimensional dynamics representing the
fast and slow phenomena:

ẋ1(t) = A11x1(t) + A12x2(t) + Bw1w(t) + B1u(t),

εẋ2(t) = A21x1(t) + A22x2(t) + Bw2w(t) + B2u(t),

y(t) = C11x1(t) + C12x2(t) + D11w(t) + D12u(t),

z(t) = C21x1(t) + C22x2(t) + D21w(t) + D22u(t),

(4.14)

where ε is a perturbation parameter and 0 < ε 	 1; x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are
the slow and fast states, respectively, n1 + n2 = n. u(t) ∈ Rp is the control input,
w(t) ∈ Rr is the external disturbance, y(t) ∈ Rq is the measurement output, and
z(t) ∈ Rs is the controlled output. Matrices Ai j , Bwi , Bi , Ci j and Di j (i, j = 1, 2)
are constant matrices with appropriate dimensions.

Applying Laplace transform with zero initial condition, the system (4.14) can be
converted into the following frequency model:

⎡
⎢⎢⎣

λx1(s)
ελx2(s)
y(s)
z(s)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A11 A12 Bw1 B1

A21 A22 Bw2 B2

C11 C12 D11 D12

C21 C22 D21 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1(s)
x2(s)
w(s)
u(s)

⎤
⎥⎥⎦ , (4.15)

where λ is the frequency variable.
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Consider the linear SOFC:

u(t) = Kz(t), K ∈ Rp×s . (4.16)

Substituting (4.16) into (4.14) yields

ẋ1 = (A11 + B1KC21)x1 + (A12 + B1KC22)x2 + (Bw1 + B1K D21)w,

εẋ2 = (A21 + B2KC21)x1 + (A22 + B2KC22)x2 + (Bw2 + B2K D21)w,

y = (C11 + D12KC21)x1 + (C12 + D12KC22)x2 + (D11 + D12K D21)w.

(4.17)

Take the DOFC into consideration,

˙̂x = Ak x̂ + Bkz,

u = Ck x̂ + Dkz,
(4.18)

where x̂ ∈ Rnk is the state vector, and Ak , Bk , Ck , Dk , are uncertain matrices to be
identified. Denoting ξ = [

x1
T x̂ T

]T
, ξ ∈ Rn1+nk , the closed-loop system for (4.14)

can be expressed as

ξ̇ = Â11ξ + Â12z + B̂w1w,

εẋ2 = Â21ξ + Â22x2 + B̂w2w,

y = Ĉ11ξ + Ĉ12x2 + D̂ww,

(4.19)

where

Â11 =
[
A11 + B1DkC21 B1Ck

BkC21 Ak

]
, Â12 =

[
A12 + B1DkC22

BkC22

]
,

Â21 =
[
A21 + B2DkC21

B2Ck

]T

, Â22 = A22 + B2DkC22,

B̂w1 =
[
Bw1 + B1DkD21

BkD21

]
, B̂w2 = Bw2 + B2DkD21,

Ĉ11 =
[
C11 + D12DkC21

D12Ck

]T

, Ĉ12 = C12 + D12DkC22,

D̂w = D11 + D12DkD21.

Remark 4.7 (The characteristics of SOFC and DOFC) SOFC is simple and prac-
tical, but its response rate is much slower than DOFC. Considering the dynamic
performances of output feedback controllers, the SOFC is effective to suppress the
low-frequency disturbances, while the DOFC can detect the high-frequency interfer-
ences immediately to restrain them to a large extent. Note that the DOFC using here
should be of lower order than the fast subsystem to facilitate the practical implemen-
tation of the proposed control scheme.
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Definition 4.1 (Slow and Fast Transfer Function Matrix (TFM)) The TFM G(ε, s)
from the input u(s) to the output y(s, ε) is given by the sum of the slow and fast
TFMs [13],

y(s, ε) = G(s, ε)u(s) = [Gs(s, ε) + G f (p, ε)]u(s).

The slow TFM is a function of s:

G(s, ε) = Cs(s In1 − As)
−1Bs + Ds,

and the fast TFM is a function of p:

G f (p, ε) = C f (pIn2 − A f )
−1B f + D f .

The TFMs from the external disturbance to measurement output of slow and fast
subsystems are denoted as Tyws(s) and Tyw f (p), respectively.

To derive the main results, the following definition of FF H∞ control of SPSs is
needed.

Definition 4.2 (FF H∞ Control of SPSs) The LTI SPS is said to have H∞ property
if, for any initial values x1(0) and x2(0), there exists an output feedback controller
in form of (4.16) or (4.18) such that

1. the closed-loop systems of the slow and fast subsystems are asymptotically stable
when w(t) = 0;

2. H∞ norms of the closed-loop slow and fast TFMs, Tyws(s) and Tyw f (p), satisfy
the constraints below.

∥∥Tyws(s)
∥∥∞ < γ, ω ∈ {ω| |ω| ≤ ωl}, (4.20)∥∥Tyw f (p)
∥∥∞ < γ, ω̄ ∈ {ω̄| |ω̄| � ωh}. (4.21)

Remark 4.8 The full-frequency H∞ control is a special case for the FF H∞ control
when the symmetric matrix Q in the GKYP lemma is set to zero.

Hence, the aim of the section is to derive the sufficient conditions in terms of ε-
independent LMIs, and design output feedback controllers to realize the performance
indexes (4.20) and (4.21) hereinafter.

Using the classical SPMs in [13], system (4.14) can be separated into slow and
fast subsystems, with the slow subsystem established as

ẋ1 = Asx1 + Bwsw + Bsu,

y = Csx1 + Dwsw + Dsu,

z = Ys1x1 + Ys2w + Ys3u,

(4.22)
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where

As = A11 − A12A
−1
22 A21, Bws = Bw1 − A12A

−1
22 Bw2, Bs = B1 − A12A

−1
22 B2,

Cs = C11 − C12A
−1
22 A21, Dws = D11 − C12A

−1
22 Bw2, Ds = D12 − C12A

−1
22 B2,

Ys1 = C21 − C22A
−1
22 A21, Ys2 = D21 − C22A

−1
22 Bw2, Ys3 = −C22A

−1
22 B2.

The open-loop TF of system (4.22) with u = 0, denoted by Gyws(s), is

Gyws(s) = Cs(s In1 − As)
−1Bws + Dws . (4.23)

Plugging (4.16) into (4.22), the closed-loop slow subsystem via the SOFC is

ẋ1 = (As + BsKYs1)x1 + (Bws + BsKYs2)w,

y = (Cs + DsKYs1)x1 + (Dws + DsKYs2)w,
(4.24)

and Mss = Ās + B̄s K C̄s =
[
As Bws

Cs Dws

]
+

[
Bs

Ds

]
K

[
Ys1 Ys2

]
.

Plugging (4.18) into (4.22), the closed-loop slow subsystem via the DOFC is

ξ̇ = Asdξ + Bsdw,

y = Csdξ + Dsdw,
(4.25)

where

Asd =
[

A11 − A12A
−1
22 A21 (B1 − A12A

−1
22 B2)Ck

Bk (C21 − C22A
−1
22 A21) Ak − BkC22A

−1
22 B2Ck

]
, Bsd =

[
Bw1 − A12A

−1
22 Bw2

Bk (D21 − C22A
−1
22 Bw2)

]
,

Csd =
[

C11 − C12A
−1
22 A21

(D12 − C12A
−1
22 B2)Ck

]T

, Dsd = D11 − C12A
−1
22 Bw2.

The state-space realization of the closed-loop system (4.18) is represented as

Msd = Āsd + B̄sd KsdC̄sd (Dk = 0),

where

Āsd =
⎡
⎢⎣

A11 − A12A
−1
22 A21 0 Bw1 − A12A

−1
22 Bw2

0 0 0
C11 − C12A

−1
22 A21 0 D11 − C12A

−1
22 Bw2

⎤
⎥⎦ , B̄sd =

⎡
⎢⎣

0 B1 − A12A
−1
22 B2

Ink 0
0 D12 − C12A

−1
22 B2

⎤
⎥⎦ ,

C̄sd =
[

0 Ink 0
C21 − C22A

−1
22 A21 0 D21 − C22A

−1
22 Bw2

]
, Ksd =

[
Ak − BkC22A

−1
22 B2Ck Bk

Ck 0

]
,

and Ksd is the unknown parameter matrix to be determined.
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The resulting description of the fast subsystem is demonstrated as

ẋ2 = A22x2 + Bw2w + B2u,

y = C12x2 + D11w + D12u,

z = C22x2 + D21w.

(4.26)

The open-loop TF of the fast subsystem, defined by Gyw f (p), is

Gyw f (p) = C12(pIn2 − A22)
−1Bw2 + D11. (4.27)

Substituting (4.16) into system (4.26) gives us that

ẋ2 = (A22 + B2KC22)x2 + (Bw2 + B2K D21)w,

y = (C12 + D12KC22)x2 + (D11 + D12K D21)w,
(4.28)

and

M f s = Ā f + B̄ f K C̄ f =
[
A22 Bw2

C12 D11

]
+

[
B2

D12

]
K

[
C22 D21

]
.

Plugging (4.18) into (4.26) gives

ẋ2 = (A22 + B2DkC22)x2 + (Bw2 + B2DkD21)w,

y = (C12 + D12DkC22)x2 + (D11 + D12DkD21)w,
(4.29)

and

M f d = Ā f d + B̄ f d DkC̄ f d =
[
A22 Bw2

C12 D11

]
+

[
B2

D12

]
Dk

[
C22 D21

]
.

Remark 4.9 (The Frequency Domain Nature of SPSs) With the aid of the classi-
cal SPMs, the whole system is decoupled into the slow and fast subsystems. From
the frequency-domain perspective, the slow (fast) subsystem is composed of low-
frequency (high-frequency) components. To avoid the unnecessary frequency over-
lap, the related subsystems should work in the disjoint frequency bands. In other
words, the slow (fast) subsystem in the low (high) frequency range is used to repre-
sent the low (high) frequency characteristic of SPS.

In addition, the assumption in the following is established throughout the section.

Assumption 4.2 Tyws(s) and Tyw f (p) have no unstable lost poles.

Remark 4.10 Lost poles are defined in [17] through the usage of parameter-dependent
system matrices. Assumption 4.2 guarantees the stability of the uncontrollable and
unobservable part of the whole system, which essentially guarantees that there are
no singularities induced by unstable lost poles.
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Next, sufficient conditions for bounded realness with the stability constraints of
the related subsystems are given in terms of LMIs. Methods to design the composite
SOFC and DOFC for SPSs are stated. Then, the entire frequency range are divided
into three parts: the low-, middle- and high-frequency ranges. Different frequency
ranges lead to different control strategies. Furthermore, the MOFC is constructed
comprising of the composite SOFC and DOFC to achieve better control effectiveness
of the whole system.

4.3.1 The Slow Subsystem and Associated H∞ Controller
in the Low-Frequency Domain

Theorem 4.3 Let weighing matrices Rl ∈ Rs×(2n1+r+q) and Rs ∈ Rs×2n1 , crossover
frequency ωl , and the disturbance attenuation index γ > 0 be given. If there
exist positive definite matrices Ps ∈ Rn1×n1 and Ql ∈ Rn1×n1 , symmetrical matri-
ces Pl ∈ Rn1×n1 and Ws ∈ Rs×s , and matrices Vs ∈ Rn1×2n1 , Vl ∈ R(n1+r)×(2n1+r+q),
and Kss ∈ Rp×s such that the following LMIs are satisfied,

[
0 Ps
Ps 0

]
< He

[ −Y †
s1 −(In1 − Y †

s1Ys1) 0

AsY
†
s1 As(In1 − Y †

s1Ys1) Bs

] ⎡
⎣

Ws Rs
Vs

Kss Rs

⎤
⎦ , (4.30)

⎡
⎢⎢⎣

−Ql 0 Pl 0
0 Ir 0 0
Pl 0 ω2

l Ql 0
0 0 0 −γ 2 Iq

⎤
⎥⎥⎦ < He

[
−C̄†

s −(In1+r − C̄†
s C̄s) 0

Ās C̄
†
s Ās(In1+r − C̄†

s C̄s) B̄s

]⎡
⎣

Ws Rl
Vl

Kss Rl

⎤
⎦ , (4.31)

then the closed-loop slow subsystem (4.24) is stable and satisfies Eq. (4.20) for a
given ωl . With these conditions, a feasible SOFC gain is given by Kss = KssWs

−1.

Proof (1) First, the stability of the slow subsystem is proven.
Provided that w = 0, we select the Lyapunov function of the slow subsystem,

V (x(t)) = xT (t)Psx(t), Ps ∈ Rn1×n1 > 0.

Taking the derivative of V (x(t)), we have

V̇ (x(t)) = xT Ps ẋ + ẋ T Ps x = xT Ps(As + BsKssYs1)x + xT (As + BsKssYs1)T Ps x .

Since a matrix has the same eigenvalues as its transposition, it is established that

(As + BsKssYs1)Ps + Ps(As + BsKssYs1)
T < 0,
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which can be represented as

[
As + BsKssYs1 In1

] [
0 Ps
Ps 0

] [
(As + BsKssYs1)

T

In1

]
< 0.

and by Lemma 2.3, can be simplified by setting Kss = KssWs ,

[
0 Ps
Ps 0

]
< He

[ −χs

Asχs + BsKss Rs

]
, (4.32)

with χs = Y †
s1WsRs + (In1 − Y †

s1Ys1)Vs .
Substituting χs into (4.32) implies

[
0 Ps
Ps 0

]
< He

[ −Y †
s1 −(In1 − Y †

s1Ys1) 0
AsY

†
s1 As(In1 − Y †

s1Ys1) Bs

]⎡
⎣

WsRs

Vs

Kss Rs

⎤
⎦ . (4.33)

(2) Realize the FF bounded realness for the slow subsystems.
To get the target frequency set Ωl , we select

Φ =
[

0 1
1 0

]
, Ψ =

[−1 0
0 ω2

l

]
.

The low-frequency bounded-real property of the slow subsystem can be formulated
by letting

Π =
[
Ir 0
0 −γ 2 Iq

]
,

and the inequality hereinafter can be derived from Lemma 2.3,

NT

[
Φ ⊗ Pl + Ψ ⊗ Ql 0

0 Π

]
T T NT < 0, (4.34)

where N =
[
As + BsKssYs1 Bws + BsKssYs2 In1 0
Cs + DsKssYs1 Dws + DsKssYs1 0 Iq

]
= [ Mss In1+q ].

For a certain Rl satisfying conditions in Lemma 2.2, we have

T

[
Φ ⊗ Pl + Ψ ⊗ Ql 0

0 Π

]
T T < He

[ −χl

Āsχl + B̄sKss Rl

]
, (4.35)

where Kss = KssWs . Here, the multiplier χl belongs to the class of

χl ∈ W
(
C̄s , Rl

) = {C̄†
s Ws Rl + (In1+r−C̄†

s C̄s)Vl |Ws ∈ Rs×s , Vl ∈ R(n1+r)×(2n1+r+q)}.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Hence, (4.35) can be rewritten as

T

[
Φ ⊗ Pl + Ψ ⊗ Ql 0

0 Π

]
T T < He

[
−C̄†

s −(In1+r − C̄†
s C̄s ) 0

Ās C̄
†
s Ās (In1+r − C̄†

s C̄s ) B̄s

]⎡
⎣

Ws Rl
Vl

Kss Rl

⎤
⎦ , (4.36)

where Ās, B̄s and C̄s are defined in Mss , and T is the permutation matrix such that

[
M1 M2 M3 M4

]
T = [

M1 M3 M2 M4
]
.

It can be seen that (4.36) can be represented in the compact form,

⎡
⎢⎢⎣

−Ql 0 Pl 0
0 Ir 0 0
Pl 0 ω2

l Ql 0
0 0 0 −γ 2 Iq

⎤
⎥⎥⎦ < He

[
−C̄†

s −(In1+r − C̄†
s C̄s) 0

Ās C̄
†
s Ās(In1+r − C̄†

s C̄s) B̄s

] ⎡
⎣

Ws Rl
Vl

Kss Rl

⎤
⎦ . (4.37)

This completes the proof.

For the system (4.25), we can get the following result.

Theorem 4.4 Let matrices Rld ∈ R(s+nk )×[2(n1+nk )+r+q] and Rsd ∈ R(s+nk )×2(n1+nk ),
the crossover frequency ωl , and the disturbance attenuation index γ > 0 be
given. If there exist positive definite matrices Psd ∈ R(n1+nk )× (n1+nk ) and
Qld ∈ R(n1+nk )× (n1+nk ), symmetrical matrices Pld ∈ R(n1+nk ) × (n1+nk ) and
Wsd ∈ R(s+nk )×(s+nk ), and matrices Vsd ∈ R(n1+nk )×2(n1+nk ) and Vld ∈
R(n1+nk+r)×[2(n1+nk )+r+q], such that the following LMIs are satisfied,

[
0 Psd
Psd 0

]
< He

[ −C†
sd −(In1+nk − C†

sdCsd ) 0

AsdC
†
sd Asd (In1+nk − C†

sdCsd ) Bsd

]⎡
⎣
Wsd Rsd
Vsd

κsd Rsd

⎤
⎦ , (4.38)

⎡
⎢⎢⎣

−Qld 0 Pld 0
0 Ir 0 0
Pld 0 ω2

l Qld 0
0 0 0 −γ 2 Iq

⎤
⎥⎥⎦ < He

[ −C̄†
sd −(In1+nk+r − C̄†

sd C̄sd ) 0

Āsd C̄
†
sd Āsd (In1+nk+r − C̄†

sd C̄sd ) B̄sd

] ⎡
⎣
Wsd Rld

Vld
κsd Rld

⎤
⎦ , (4.39)

then the closed-loop slow subsystem (4.25) is stable and satisfies (4.20) for a givenωl .
Thus, the parameter matrices of the DOFC (4.18) can be calculated by the fol-

lowing formula,
ÃkWsd1 + BkWsd2 = κsd1,CkWsd1 = κsd2,

where

κsd =
[

κsd1

κsd2

]
, κsd1 ∈ Rnk×(nk+s), κsd2 ∈ Rs×(nk+s),

Wsd =
[
Wsd1

Wsd2

]
, Wsd1 ∈ Rnk×(nk+s), Wsd2 ∈ Rs×(nk+s),

Ãk = Ak − BkC22A
−1
22 B2Ck .
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Proof (1) Realize the stability and FF bounded realness for the slow subsystems.
Using the DOFC (4.18), the closed-loop system can be represented by (4.25). To

eliminate the coupling part in (4.25), we set Dk = 0 compulsively, which makes it
possible to convert the conditions into the LMI form. In this sense, it is easy to verify
that Â22 = A22. Thus, the slow subsystem (4.25) can be rewritten by

ξ̇ = Asdξ + Bsdw,

z = Csdξ + Dsdw,
(4.40)

where

Asd =
[

A11 − A12A
−1
22 A21 (B1 − A12A

−1
22 B2)Ck

Bk (C21 − C22A
−1
22 A21) Ak − BkC22A

−1
22 B2Ck

]
, Bsd =

[
Bw1 − A12A

−1
22 Bw2

Bk (D21 − C22A
−1
22 Bw2)

]
,

Csd =
[
C11 − C12A

−1
22 A21 (D12 − C12A

−1
22 B2)Ck

]
, Dsd = D11 − C12A

−1
22 Bw2.

The state-space matrix can be written in the standard form in Lemma 2.3,

Msd := Āsd + B̄sd KsdC̄sd ,

where

Āsd =
⎡
⎢⎣

A11 − A12A
−1
22 A21 0 Bw1 − A12A

−1
22 Bw2

0 0 0
C11 − C12A

−1
22 A21 0 D11 − C12A

−1
22 Bw2

⎤
⎥⎦ , B̄sd =

⎡
⎢⎣

0 B1 − A12A
−1
22 B2

Ink 0
0 D12 − C12A

−1
22 B2

⎤
⎥⎦ ,

C̄sd =
[

0 Ink 0
C21 − C22A

−1
22 A21 0 D21 − C22A

−1
22 Bw2

]
, Ksd =

[
Ak − BkC22A

−1
22 B2Ck Bk

Ck 0

]
.

Note that Â22 contains no uncertain parts in the case of Dk = 0 and Â−1
22 = A−1

22 . In
this way, the integral quadratic constraints can be transformed into LMIs. The next
procedure is similar as that of Theorem 4.3, which is omitted here.

(2) Calculate the parameters of the DOFC.
Partition κsd into two parts, namely

κsd =
[

κsd1

κsd2

]
, κsd1 ∈ Rnk×(nk+s), κsd2 ∈ Rs×(nk+s).

Simultaneously, we can see that Wsd can be separated into two parts in corresponding
dimensions with κsd1 and κsd2,

Wsd =
[
Wsd1

Wsd2

]
,Wsd1 ∈ Rnk×(nk+s),Wsd2 ∈ Rs×(nk+s).

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Then, κsd = KsdWsd can be rewritten as

[
κsd1

κsd2

]
=

[
Ãk Bk

Ck 0

] [
Wsd1

Wsd2

]
=

[
ÃkWsd1 + BkWsd2

CkWsd1

]
,

where Ãk = Ak − BkC22A
−1
22 B2Ck .

It is obvious that Ãk and Bk are uncertain because any Ãk , Bk satisfying
ÃkWsd1 + BkWsd2 = κsd1 are the feasible solutions. For the convenience of cal-
culation, we assume Ãk is known beforehand or selected artificially to meet the
engineering requirements. Then, the parameter matrices of the DOFC can be given
by

Ak = Ãk + BkC22A
−1
22 B2Ck,

Bk = (κsd1 − ÃkWsd1)Wsd2
†,

Ck = κsd2Wsd1
†.

This completes the proof.

In addition, for a certain R, we can derive the controller to minimize the disturbance
of the closed-loop system through searching for γ . Hence, the concept of FF H∞
suboptimal control is put forward.

Corollary 4.1 There exists a SOFC (4.16) to stabilize the slow subsystem (4.17)
and to satisfy (4.20) if (4.30) and (4.31) are feasible and

min
Ps Ql ,Pl ,Ws ,Vl

γ (4.41)

where the parameters required are defined in Theorem 4.3.

Corollary 4.2 There exists a DOFC (4.18) to stabilize the slow subsystem (4.19)
and to satisfy (4.20) if (4.38) and (4.39) are feasible and

min
Psd ,Qld ,Pld ,Wsd ,Vld

γ (4.42)

where the parameters are referred to in Theorem 4.4.

Remark 4.11 It should be noted that the minimum value of γ relates to the selection
of weighing matrices. In other words, the disturbance attenuation index γmin obtained
by Corollary 4.1 or 4.2 can be further optimized with a better choice of R, which is
the concept of design of the FF H∞ suboptimal controller. However, due to the fact
that γmin is a bit bigger but gradually tends to the real value of γmin, this method can
be used to obtain the estimation of γmin. In fact, consequences in Corollary 4.1 or 4.2
are more useful in engineering applications to estimate the disturbance attenuation
degree of the closed-loop system.
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4.3.2 The Fast Subsystem and Associated Controller
in the High-Frequency Domain

For a system (4.28), the following results are established.

Theorem 4.5 Let weighing matrices R f ∈ Rs×2n2 and Rh ∈ Rs×(2n2+r+q), the
crossover frequency ωh, and a scalar γ > 0 be given. If there exist positive def-
inite matrices Pf ∈ Rn2×n2 and Qh ∈ Rn2×n2 , symmetrical matrices Ph ∈ Rn2×n2

and W f ∈ Rs×s , and matrices Vh ∈ R(n2+r)×(2n2+r+q) and V f ∈ Rn2×2n2 , andK f s ∈
Rp×s such that LMIs below are satisfied,

[
0 Pf
Pf 0

]
< He

[ −C†
22 −(In2 − C†

22C22) 0

A22C
†
22 A22(In2 − C†

22C22) B2

]⎡
⎣

W f R f
V f

K f s R f

⎤
⎦ , (4.43)

⎡
⎢⎢⎣
Qh 0 Ph 0
0 Ir 0 0
Ph 0 −ω2

h Q
2
h 0

0 0 0 −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎣ −C̄†

f −(In2+r − C̄†
f C̄ f ) 0

Ā f C̄
†
f Ā f (In2+r − C̄†

f C̄ f ) B̄ f

⎤
⎦

⎡
⎣

W f Rh
Vh

K f s Rh

⎤
⎦ , (4.44)

then the closed-loop fast subsystem (4.28) is stable and satisfies (4.20) for a given
ω̄h. A feasible SOFC gain is given by Ks f = Ks f W f

−1.

Proof Through an appropriate choice of Φ =
[

0 1
1 0

]
, Ψ =

[
1 0
0 −ω2

h

]
, the set

Λ(Φ,Ψ ) can be specialized in a high-frequency range of the frequency-scale ω̄.
Here, Λ(Φ,Ψ ) = Ωh . The part to follow is similar to the proof of Theorem 4.3 and
is therefore ignored here. This completes the proof.

In system (4.29), we have the following result.

Theorem 4.6 For given weighing matrices R f d ∈ Rs×2n2 and Rhd ∈ Rs×(2n2+r+q),
and disturbance attenuation index γ > 0, if there exist positive definite matrices
Pf d ∈ Rn2×n2 and Qhd ∈ Rn2×n2 , symmetrical matrices Phd ∈ Rn2×n2 and W f d ∈
Rs×s , and matrices Vhd ∈ R(n2+r)×(2n2+r+q), V f d ∈ Rn2×2n2 , andK f d ∈ Rp×s such
that LMIs below hold

[
0 Pf d

Pf d 0

]
< He

[
−C†

22 −(In2 − C†
22C22) 0

A22C
†
22 A22(In2 − C†

22C22) B2

] ⎡
⎣

W f d R f d

V f d

K f d R f d

⎤
⎦ , (4.45)

⎡
⎢⎢⎣

Qhd 0 Phd 0
0 Ir 0 0
Phd 0 −ω2

h Q
2
hd 0

0 0 0 −γ 2 Iq

⎤
⎥⎥⎦ < He

[
−C̄†

f d −(In2+r − C̄†
f d C̄ f d ) 0

Ā f d C̄
†
f d Ā f d (In2+r − C̄†

f d C̄ f d ) B̄ f d

] ⎡
⎣

W f d Rhd

Vhd
K f d Rhd

⎤
⎦ , (4.46)

then the closed-loop fast subsystem (4.29) is stable and satisfies (4.21) for a given ω̄h.
Moreover, the parameter matrices of the DOFC can be given by Dd = K f dW f d

−1

with Ad , Bd and Cd being any matrices of corresponding dimensions.



4.3 Finite Frequency H∞ Output Feedback Control 87

Proof Using the DOFC (4.18), the closed-loop fast subsystem can be represented
by (4.29). Considering that ξ is rather slow compared with the fast state x2, we have

M f d = Ā f d + B̄ f d DkC̄ f d =
[
A22 Bw2

C12 D11

]
+

[
B2

D12

]
Dk

[
C22 D21

]
,

which is similar to M f s in Theorem 4.5.
It is obvious that parameters of the DOFC, Ak , Bk and Ck , are less related with

fast dynamics, which can be chosen as arbitrary matrices of corresponding appro-
priate dimensions. When the composite DOFC is designed to realize specifications
of two subsystem at the same time, the properties of the slow subsystem are mainly
determined by Ak , Bk and Ck . This completes the proof.

Similarly, the concept of the suboptimal H∞ control for the fast subsystem is stated.

Corollary 4.3 There exists a SOFC (4.16) to stabilize the fast subsystem (4.26)
and satisfy the high-frequency control system specification (4.21) if LMIs (4.43) and
(4.44) are satisfied with

min
Pf ,Q f ,Ph ,Wh ,Vh

γ,

where the parameters above are defined in Theorem 4.5.

Corollary 4.4 There exists a DOFC (4.18) to stabilize the fast subsystem (4.26)
and satisfy the high-frequency control system specification (4.21) if LMIs (4.45) and
(4.46) are satisfied with

min
Pf d ,Q f d ,Phd ,Whd ,Vhd

γ,

where the parameters referred to are defined in Theorem 4.6.

To reduce the conservativeness, the cut-off frequencies ωl and ω̄h are determined,
which are related with three factors: the parameters of the open-loop system, the
desired external disturbance attenuation degree γ and the general frequency range
of the external noise Ωn . The strategy to obtain ωl and ω̄h is presented below.

Algorithm 4.2 The prescribed values of ωl and ω̄h are given as the following algo-
rithm.

Step1. Calculate themodule of open-loop low-frequencyTFMGzws( jω)andopen-
loop high-frequency TFM Gzw f ( jω̄).

Step2. Given error accuracy e, γ and sufficient small singular perturbation para-
meter ε, for ωl , if ‖Gzws( jωl) − γ ‖ < e, then ωl is obtained. Similarly, for ω̄h, if
‖Gzw f ( jω̄h) − γ ‖ < e, ω̄h is obtained.

Step3. Choose ωl ∈ [0, ωl ] and ω̄h ∈ [ω̄h,+∞]. Also, ωh = ω̄h/ε.
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Then, the entire frequency range can be divided into three parts, namely the
low-frequency range Ω̃l , the middle-frequency range Ω̃m and the high-frequency
range Ω̃h ,

Ω̃l = {ω|0 < |ω| � ωl}, Ω̃m = {ω|ωl < |ω| < ωh}, Ω̃h = {ω||ω| � ωh}.

Remark 4.12 (The design of the stabilizing controller) The feasibility of LMIs
(4.30)–(4.43) can ensure that the internal stability of slow and fast subsystems. As
mentioned in [14], if there exists a scalar ε∗ > 0 such that, for any ε ∈ (0, ε∗], the
stability of the two related subsystem, then the stability of the original SPS can be
guaranteed. Then, we put forward the design method of the stabilizing controller.

[
0 Ps
Ps 0

]
< He

[ −Y †
s1 −(In1 − Y †

s1Ys1) 0
AsY

†
s1 As(In1 − Y †

s1Ys1) Bs

] ⎡
⎣

WRs

Vs

K Rs

⎤
⎦ ,

[
0 Pf

Pf 0

]
< He

[ −C†
22 −(In2 − C†

22C22) 0
A22C

†
22 A22(In2 − C†

22C22) B2

] ⎡
⎣

WR f

V f

K R f

⎤
⎦ ,

where the related parameters have been mentioned in Theorems 4.3 and 4.5. It follows
that the stabilizing controller gain is K = K W−1.

Remark 4.13 (The design of the composite SOFC) To realize the control system
specifications (4.20) and (4.21) by using the SOFC (4.16), it is necessary to find the
static gain K that satisfies Ineqs. (4.30), (4.31), (4.43) and (4.44) simultaneously.

Remark 4.14 (The design of the composite DOFC) Apparently, the DOFC can be
separated into two parts,

κsd =
[
Ak − BkC22A

−1
22 B2Ck Bk

Ck 0

]
, K f d =

[
0 0
0 Dk

]
.

The controller gain κsd have significant impacts on the slow dynamics, while the gain
K f d is mainly used to control the fast modes. When Dk is rather small, the composite
dynamic output feedback controller gain can be roughly chosen as κd = κsd + K f d .

Different controllers are designed to attenuate different types of disturbances.
As the measurement techniques developed, the frequency range of external noises
can be estimated. For example, a frequency metre can be used to determine the
general frequency band that external disturbances operate. On the other hand, the
SPSs contain abundant dynamics with different rates of convergence with fast (slow)
modes dominating the early (late) part of the time history, such that a SOFC can be
adopted to suppress the low-frequency disturbances while the DOFC can be utilized
to restrain the high-frequency interferences.

Next, the approach for designing the MOFC is proposed.
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Fig. 4.5 Design of the mixed output feedback controller

Remark 4.15 (The Design of the MOFC) The MOFC shown in Fig. 4.5 is composed
of three parts, namely the measurement unit, the decision-making unit and the exe-
cuting unit. The frequency range of the external disturbances, ωn , can be tested by
the measurement unit. Then, the decision-making unit derives the control strategy
which is stated as follows. Finally, according to the control strategy, the executing
unit works to get the best system performances.

The decision strategy. In case of no disturbance or middle-frequency distur-
bance exists, the stabilizing controller plays a role such that the designed system can
work stably, which is also the initial state of the mixed controller; If the external
disturbances are in the low-frequency range, ωn ∈ Ω̃l , the SOFC is chosen; when the
external disturbances are in the high-frequency range, ωn ∈ Ω̃h , the decision-making
unit switches to the DOFC to increase the response rate to track the fast dynamics
and decreases the effects of the high-frequency disturbances. Hence, the MOFC is a
piecewise controller.

Remark 4.16 An abrupt switch between controllers may cause unacceptable closed-
loop behaviours such as transients or bumps. A high-gain feedback F can be activated
in the switching time to drive the off-line signal to be close to the online signal, and
be removed when the switching process ends.

Example 4.1 Consider the SPS with parameters given by

A11 =
[

1 3
2 1

]
, A12 =

[
2

−2

]
, A21 =

[
1
2

]T

, A22 = [−3] , Bw1 =
[

2
1

]
,

Bw2 = 3, B1 =
[−1 −3

1 1

]
, B2 =

[
1.5
1.5

]T

, C11 =
[

2
1.5

]T

, C12 = [0.8] ,

C21 =
[

1
1

]T

, C22 = [1.5] , D11 = [−1.5] , D12 =
[−1

1

]T

, D21 = [−2] .
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Fig. 4.6 FF H∞ of slow subsystem via static output feedback controller
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Fig. 4.7 FF H∞ control of slow subsystem via DOFC

According to Figs. 4.6, 4.7, 4.8 and 4.9, it can be seen that ωl = 12 rad/s and ω̄h =
185 rad/s. Based on Algorithm 4.2, the whole frequency range can be divided into
three parts: the low-frequency range: Ω̃l = {ω|0 < |ω| < 12}, the middle-frequency
range: Ω̃m = {ω|12 � |ω| � 185} and the high-frequency range: Ω̃h = {ω̄||ω̄| >

185}.
In Figs. 4.6, 4.7, 4.8 and 4.9, the left side shows the relationship between 2 norm

of the TFM of the closed-loop system and the frequency variable ω. Meanwhile, the
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Fig. 4.8 FF H∞ control of fast subsystem via SOFC
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Fig. 4.9 FF H∞ control of fast subsystem via DOFC

right side represents the bode diagram of the closed-loop system with log magnitude-
frequency characteristics and log phase-frequency characteristics shown. Specially,
the phase-frequency diagram reflects the response rate of the whole system.

In the slow subsystem, ωl, γ, ε are chosen as ωl = 5 rad/s, γ = 1 and ε = 0.01.
With aid of the MATLAB� LMI Toolbox, a feasible solution to Ineqs. (4.30) and
(4.31) can be obtained
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Ws = [1.2470] , Ps =
[

157.0954 −27.9568
−27.9568 66.0124

]
, Pl =

[
12.3234 −3.2853
−3.2853 3.1487

]
,

Ks =
[

7.4679
1.9662

]
, Ql =

[
0.1578 −0.0518

−0.0518 0.0255

]
,

Vs =
[

27.3760 30.0588 −4.4518 −14.7617
30.0588 −47.7531 −14.7617 −42.0719

]
,

Vl =
⎡
⎣

−44.3155 −585.7411 524.8048 244.9483 −229.7876 874.5
−33.4304 −791.3471 751.0901 109.4174 −294.8302 1155.7
27.6860 177.7587 −191.7318 1.2475 45.8796 304.9

⎤
⎦ .

From Theorem 4.3, we can find the SOFC gain as

Ks =
[

5.9889
1.5768

]
.

According to Theorem 4.3, we can conclude that the slow subsystem (4.17) has FF
H∞ property in the low-frequency range. The simulation result is shown in Fig. 4.6
where the dotted box indicates the bound on the gain of the TFMs.

Similarly, we can validate Theorem 4.4. Solving (4.38) and (4.39), the following
feasible results are obtained.

Wsd =
[−0.0086 −0.0002

−0.0002 −0.0928

]
, Psd =

⎡
⎣

929.0617 −681.1686 −0.9183
−681.1686 514.0504 0.6444
−0.9183 0.6444 0.0920

⎤
⎦ ,

Pld =
⎡
⎣

−9.2908 −1.7119 −2.3380
−1.7119 3.1227 0.2594
−2.3380 0.2594 −0.0979

⎤
⎦ , Qld =

⎡
⎣

9.1082 −0.5993 0.3612
−0.5993 0.0728 −0.0132
0.3612 −0.0132 0.0413

⎤
⎦ ,

Vsd =
⎡
⎣

−306.4979 640.6144 57.8813 −108.8448 221.4955 18.4215
469.9120 192.6315 77.4581 86.6957 −157.8142 23.8542

0 0 0 0 0 0

⎤
⎦ .

Vld =
⎡
⎢⎣

105.8 3390.3 −2164.9 −600.8654 230.3230 866.1944 616.5531 −1500.6
547.6 4260.1 −2886.6 −603.2756 −54.7234 715.8236 822.1322 −2267.0

0 0 0 0 0 0 0 0
146.7 −1066.4 721.2 113.3871 198.8414 −203.6730 −207.3898 567.0

⎤
⎥⎦ .

The controller gain of the DOFC is calculated as

Ksd = κsdW
−1
sd =

⎡
⎣

−5.2201 −0.4746
−63.8668 14.0588
−27.5465 4.9730

⎤
⎦ .
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According to Theorem 4.4, it is obvious that the slow subsystem achieves FF H∞
performance in the finite low-frequency range via using the DOFC. The simulation
is demonstrated in Fig. 4.7.

Obviously, comparing the two phase-frequency diagrams in Figs. 4.6 and 4.7, we
can see the response rate of the slow subsystem via DOFC is much faster than that
of the SOFC. In this case, we set Ãk = 10 to determine the parameters.

Ak = [−22.9280] , Bk = [−0.5035] , Ck =
[−60.7568

−26.4464

]
, Dk =

[
0
0

]
.

By virtue of Theorems 4.5 and 4.6, we can get the results of the fast subsystem
in the high-frequency range when choosing ωh = 200 rad/s and γ = 1. Based on
Theorem 4.5, the following feasible solutions are derived:

W f = [17.6185] , Pf = [47.2767] , Ph = [−2.7423] , Qh = [0.0048] ,

V f = [
0 0

]
, Vh =

[
196.4597 −214.7538 56.5945 −391.6568

−253.4059 146.4538 65.0159 577.1747

]
, K f =

[
16.1927
−0.1871

]
.

The simulation results are shown in Fig. 4.8, where the dotted box indicates the bound
on the gain of the TFMs. Moreover, the SOFC gain is represented by

K f =
[

0.9191
−0.0106

]
.

By Theorem 4.6, the resulting frequency responses can be seen in Fig. 4.9, where
the solid one is for the open-loop system and the dashed is for the closed-loop one.
In addition, the bode diagrams are also shown in Fig. 4.9. The simulations are shown
below,

W f d = [3.7337] , Pf d = [12.4260] , Phd = [−2.3141] , Qh = [0.0013], V f = [
0 0

]
,

Vhd =
[

847.1 −752.7460 −17.3874 −1083.5
−1127.9 973.2321 65.7611 1462.2

]
, K f d=

[
3.4116

−0.4195

]
.

Likewise, the parameters of the DOFC are

Ak = [0] , Bk = [0] , Ck =
[

0
0

]
, Dk =

[
0.9137
−0.1124

]
.

According to Remark 4.12, the stabilizing controller is

K =
[−0.2326

1.3790

]
.
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Fig. 4.10 The effectiveness of the composite via SOFC

The gain of the composite SOFC can be calculated, which is shown as

Ksc =
[−0.3550

−0.7962

]
,

with the effectiveness demonstrated in Fig. 4.10.
Similarly, the gain of the composite DOFC is

Kdc =
[
Ak Bk

Ck Dk

]
=

⎡
⎣

−22.9280 −0.5035
−60.757 0.9137
−26.446 −0.1124

⎤
⎦ ,

with the effectiveness revealed in Fig. 4.11. To realize the control system specifica-
tions of slow and fast subsystems simultaneously, we remove the constraint Dk = 0
in Theorem 4.4 and hence sacrifices part of the performance of the closed-loop slow
subsystem to balance that of the fast subsystem. The equilibrium point of the com-
posite gain should be selected carefully. Due to the approximation method mentioned
above, the DOFC is less effective than the static one when stabilizing and realizing
the H∞ norm properties of the whole system. This problem needs to be improved in
the future work.

On this basis, we can design the MOFC according to Remark 4.15. The simu-
lation result is revealed in Fig. 4.12 respectively. The effectiveness of the MOFC
is apparent because the H∞ norm of Tzw(s) is restrained in a fixed region, and we
can give considerations to both the response rate and design cost. To better show
the effectiveness of the MOFC, we do the time-domain simulations. The external
disturbances are chosen as wl(t) = sin(t) and wh(t) = sin(300t). The interference
responses of the closed-loop SPSs are suppressed to some extent, which is shown in



4.3 Finite Frequency H∞ Output Feedback Control 95

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

Frequency[rad/s]

|T
sz

w
(s

)|(
so

lid
),|

G
sz

w
(s

)|(
da

sh
ed

)

Magnitude Response of the Closed_loop SPS via Composite Dynamic Feedback Controller

|Gzw(s)|
|Tzw(s)|

Fig. 4.11 The effectiveness of the composite DOFC
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Fig. 4.12 The effectiveness of the MOFC

Fig. 4.13. We observe that the amplitude of the measurement output is restrained in
a fixed region.

By setting Q = 0, Theorems 4.3–4.6 provide full-frequency conditions for con-
trol system specifications (4.20) and (4.21). In Fig. 4.14, γmin(full frequency) >

γmin(finite frequency) when R is set equal. It is obvious that the FF cases achieve
better performances and have less conservatism when compared with the existing
full-frequency approaches.
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4.4 A Descriptor-System Approach for H∞ Control of
Singularly Perturbed Systems

In this section, a descriptor-system method originating in singular (or descriptor)
systems is introduced here to solve the ill-conditioning H∞ control problem of SPSs,
which avoid the degradation of model accuracy in the classical SPTs. This method
can be applied in both standard and nonstandard SPSs. It is worth pointing out that
the formulation of high-order composite controller is not needed in this method.
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Singular systems have been proven to be the limiting models of SPSs. As ε → 0,
two different singular systems are obtained, which could be viewed as the slow lim-
iting model and fast limiting model, respectively. Such limiting models can achieve
the slowest speed and fastest speed, respectively. The basic concept of this method is
to use the slow (fast) limiting model to describe the low-frequency (high-frequency)
characteristics of an SPS. Through specifying the finite frequency control specifi-
cations of corresponding limiting models, the original SPS can achieve the desired
frequency characteristics.

A LTI SPS in the fast timescale τ is represented by

[
ẋ1(τ )

ẋ2(τ )

]
=

[
εA11 εA12

A21 A22

] [
x1(τ )

x2(τ )

]
+

[
εB1

B2

]
u(τ ) +

[
εBw1

Bw2

]
w(τ ),

y(τ ) = [
C1 C2

] [
x1(τ )

x2(τ )

]
+ D1u(τ ) + D2w(τ ),

(4.47)

where x1(τ ) ∈ Rn1 is the slow state vector, x2(τ ) ∈ Rn2 is the fast state vector with
n1 + n2 = n representing the system dimension, u(τ ) ∈ Rp is the control input,
w(τ ) ∈ Rr is the external disturbance, and y(τ ) ∈ Rq is the measurement output.
The small positive constant ε serves as a measurement of the separation in “speed”
of the slow and fast dynamics in the sense that dx1/dτ is O(ε) (a function f (ε) is said
to be O(ε) if | f (ε)| � με, for ε < ε∗, where μ is a positive constant independent
of ε), whereas dx2/dτ is O(1).

In the literature of SPSs, it is common to represent the system in a slow timescale
that t = ετ ,

[
ẋ1(t)
εẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t) +

[
Bw1

Bw2

]
w(t),

y(t) = [
C1 C2

] [
x1(t)
x2(t)

]
+ D1u(t) + D2w(t).

(4.48)

In the mathematical modelling of a physical system, both of the state-space equations
(4.47) and (4.48) can be used to describe the simultaneous occurrence of slow and
fast phenomena. For a small parameter ε, SPSs (4.47) and (4.48) can possess a two-
timescale property, where the eigenvalues generally cluster into two widely separated
groups.

Remark 4.17 In practical applications, the presence of some parasitic parameters
such as small constants, resistances, inductances, capacitances and moment of inertia,
is often the source of singular perturbation phenomena, which gives rise to timescale
techniques. In the process control, such as some chemical changes, the control sys-
tem specification is mainly associated with the performance of the slow-varying
dynamics. For this case, the representation (4.48) is used. However, in the higher
accuracy control, such as the attitude control of UAV, the fast varying modes cannot
be neglected directly. They are scaled in the fast timescale τ in order to facilitate the
design of control strategy.
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Remark 4.18 Denoting the invertible transform T =
[

ε In1 0
0 In2

]
, we have

T

[
ẋ1(t)
εẋ2(t)

]
= T

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+ T

[
B1

B2

]
u(t) + T

[
Bw1

Bw2

]
w(t),

y(t) = [
C1 C2

] [
x1(t)
x2(t)

]
+ D1u(t) + D2w(t),

which can be rewritten as
[

εẋ1(t)
εẋ2(t)

]
=

[
εA11 εA12

A21 A22

] [
x1(t)
x2(t)

]
+

[
εB1

B2

]
u(t) +

[
εBw1

Bw2

]
w(t),

y(t) = [
C1 C2

] [
x1(t)
x2(t)

]
+ D1u(t) + D2w(t),

(4.49)

Defining the fast timescale τ as τ = t/ε, we can see that Eq. (4.49) can be represented
in the fast timescale version as (4.47). Thus, through some elementary transforma-
tions, Eqs. (4.47) and (4.48) can be converted mutually.

As ε → 0, the limiting models in the form of Eqs. (4.47) and (4.48) are obtained
as follows:

[
ẋ (0)

1 (τ )

ẋ (0)
2 (τ )

]
=

[
0 0
A21 A22

] [
x (0)

1 (τ )

x (0)
2 (τ )

]
+

[
0
B2

]
u(τ ) +

[
0
Bw2

]
w(τ ),

y(τ ) = [
C1 C2

] [
x (0)

1 (τ )

x (0)
2 (τ )

]
+ D1u(τ ) + D2w(τ ).

(4.50)

In Eq. (4.50), the slow variable x (0)
1 is simplified into be known values, and the fast

variable x (0)
2 is modelled accurately, which can be considered as the fastest model

for the SPS (4.47). Hence, system (4.50) is derived such that the high-frequency
components are extracted, with the slow components simplified into the algebraic
constraints, i.e., x1 = constant. Thus, Eq. (4.50) can be used to represent the SPS in
the high-frequency range.

Setting ε → 0 causes the fast dynamics x (0)
2 to become algebraic, which implies

that the dynamics x (0)
2 respond instantaneously in the slow timescale t ,

[
ẋ (0)

1 (t)
0

]
=

[
A11 A12

A21 A22

] [
x (0)

1 (t)
x (0)

2 (t)

]
+

[
B1

B2

]
u(t) +

[
Bw1

Bw2

]
w(t),

y(t) = [
C1 C2

] [
x (0)

1 (t)
x (0)

2 (t)

]
+ D1u(t) + D2w(t).

(4.51)
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The limiting model (4.51) can be viewed as the slowest model for the original system
(4.48) with the fast modes simplified into algebraic constraints such that the initial
condition x (0)

2 is lost. In this case, the low-frequency modes are picked out.
For notational convenience, we define

η(t) =
[
x1(t)
x2(t)

]
, A1(ε) =

[
εA11 εA12
A21 A22

]
, B1(ε) =

[
εB1
B2

]
, E1(ε) =

[
εBw1
Bw2

]
,

E(ε) =
[
In1 0
0 ε In2

]
, A2 =

[
A11 A12
A21 A22

]
, B2 =

[
B1
B2

]
, E2 =

[
Bw1
Bw2

]
,C = [

C1 C2
]
,

and then the continuous-time SPSs (4.47) and (4.48) can be rewritten in the following
compact form: the high-frequency model,

η̇(τ ) = A1(ε)η(τ ) + B1(ε)u + E1(ε)w(τ ),

y(τ ) = Cη(τ) + D1u(τ ) + D2w(τ ),
(4.52)

and the low-frequency model,

E(ε)η̇(t) = A2η(t) + B2u(t) + E2w(t),

y(t) = Cη(t) + D1u(t) + D2w(t).
(4.53)

Introducing the state feedback controller u = Kη, the closed-loop system of SPS
(4.52) is represented as

η̇(τ ) = A1c(ε)η(τ ) + E1(ε)w(τ ),

y(τ ) = Ccη(τ) + D2w(τ ),
(4.54)

where A1c(ε) = A1(ε) + B1(ε)K and Cc = C + D1K .

The closed-loop system for the SPS (4.53) is described as

E(ε)η̇(t) = A2cη(t) + E2w(t),

y(t) = Ccη(t) + D2w(t).
(4.55)

in which A2c = A2 + B2K .
The TFM for the SPSs (4.52) and (4.53) from the disturbances w to the output y

are described by y(p) = Gh(p)u(p) and y(s) = Gl(s)u(s), respectively, where

Gh(p) = Cc(pIn − A1c(ε))
−1E1(ε) + D2,

Gl(s) = Cc(sE(ε) − A2c)
−1E2 + D2.

Next, we will present method to shape the frequency characteristics of an SPS based
on the limiting models.



100 4 Finite Frequency H∞ Control for Singularly Perturbed Systems

4.4.1 Shaping the High-Frequency Characteristics
of a Singularly Perturbed Systems

The high limiting model, comprising of accurate fast modes and approximate slow
modes, possesses the fastest variation rates of states. Such model can be used to shape
the high-frequency characteristics of an SPS. In this subsection, H∞ control design
is demonstrated as an example. According to the inequality techniques, it should be
pointed out that an SPS can achieve the high-frequency H∞ property if the limiting
model (4.50) exhibits the H∞ property in the high-frequency range.

Problem 4.5 (High-frequency H∞ control problem) For the fast limiting model
(4.50), the state feedback sub-controller gain K f is searched such that, for a given
ωh , the following requirements are satisfied,

1. When ωh ∈ Ωh := {ω||ω| > ωh}, ‖Gh(p)‖Ωh∞ < γ ;
2. The closed-loop system (4.54) is stable.

By solving the high-frequency H∞ control problem, the controller gain K f is
obtained so that the amplitude response of the high-frequency model (4.54) in the
high-frequency range can be suppressed below γ . In addition, the same K f can also
restrain the high-frequency amplitude response of the original SPS (4.47) below γ .

Theorem 4.7 For a given matrix Rh, and scalars γ , p1 and q1 satisfying γ > 0 and
p1q1 > 0, the closed-loop system of SPS (4.47) possesses the FF H∞ property with
stability constraint in the high-frequency range Λh, if there exist matrices Vbh and
κh, and symmetric matrices Psh > 0, Ph, Qh > 0 and Wh such that the following
LMIs hold,

[
0 Psh
∗ 0

]
< He

[
Wsh

A1(0)Wsh + B1(0)κh

] [
q1 In p1 In

]
, (4.56)

⎡
⎢⎢⎣
Qh 0 Ph 0
∗ Ir 0 0
∗ ∗ −ω2

hQh 0
∗ ∗ ∗ −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0

A1(0) E1(0) B1(0)

C D2 D1

⎤
⎥⎥⎦

⎡
⎣
WhRh

Vbh

κh Rh

⎤
⎦ . (4.57)

Then, the controller gain is given by K f = κhW
−1
sh .

Proof When the external disturbance is in the high-frequency range, the fast timescale
version (4.47) is adopted in which the fast dynamics are modelled accurately rather
than neglected directly.

(1) Stability analysis.
Select the Lyapunov function as V1 = ηT Pshη, Psh = PT

sh > 0 ∈ Rn×n . The
derivative of V1 is given by

V̇1 = ηT Psh η̇ + η̇T Pshη,

= ηT (PshA1c + AT
1c Psh)η < 0,

(4.58)
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which guarantees the internal stability of the closed-loop system (4.47). The Lya-
punov condition for the dual system of (4.47) is written as

PshA1c(ε)
T + A1c(ε)Psh < 0,

or [
A1c(ε)

T

In

]T [
0 Psh
Psh 0

] [
A1c(ε)

T

In

]
< 0. (4.59)

Partitioning A1c(ε) into two parts indicates that

A1c(ε)
T = ρh1 + ερh2,

where ρh1 = A1(0) + B1(0)K In and ρ2 =
[
A11 A12

0 0

]
+

[
B1

0

]
K In.

Plugging ρh1, ρh2 into (4.59), it is derived that

[
ρT
h1
In

]T [
0 Psh
Psh 0

] [
ρT
h1
In

]

+ ε

([
ρT
h1
In

]T [
0 Psh
Psh 0

] [
ρT
h2
In

]
+

[
ρT
h2
In

]T [
0 Psh
Psh 0

] [
ρT
h1
In

])

+ ε2

[
ρT
h2
In

]T [
0 Psh
Psh 0

] [
ρT
h2
In

]
< 0,

(4.60)

which is equivalent to

[
ρT
h1
In

]T [
0 Psh
Psh 0

] [
ρT
h1
In

]
< 0. (4.61)

Based on Lemma 2.2, it can be seen that (4.61) can be converted into the following
LMI, [

0 Psh
∗ 0

]
< He

[ −In
A1(0) + B1(0)K

]
WshRsh. (4.62)

Taking Rsh = [−q1 In p1 In
]

and substituting Rsh into (4.62) yields

[
0 Psh
∗ 0

]
< He

[
Wsh

A1(0)Wsh + B1(0)κh

] [
q1 In p1 In

]
. (4.63)

(2) Disturbance attenuation capability.
To suppress the effects form the external disturbance w(t) to the measurement

output y(t) to a preserved extent, the constraint below characterized by the FDI in
the specified frequency range should be satisfied,

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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GT
h (p)Gh(p) < γ 2 Ir , p ∈ Λh . (4.64)

Based on the linear system theory, it is easy to verify that (4.64) can be derived from
the similar disturbance attenuation condition of the dual system of (4.47), which is
represented as

Gh(p)G
T
h (p) < γ 2 Iq , p ∈ Λh,

or equivalently, [
GT

h (p)
Iq

]T

Π

[
GT

h (p)
Iq

]
< 0, p ∈ Λh, (4.65)

where Π =
[
Ir 0
0 −γ 2 Iq

]
.

According to the GKYP lemma, we can see that (4.65) can be converted into the
following form,

N1Θ1N
T
1 < 0, (4.66)

where

Θ1 = T

[
Φ ⊗ Pl + Ψ ⊗ Qh 0

0 π

]
, N1 =

[
A1c(ε) E1(ε) In 0
Cc D2 0 Iq

]
.

Note that N1 can be partitioned into two parts,

N1 =
[

A1(0) + B1(0)K E1(0) In 0
C + D1 ∗ K D2 0 Iq

]

+ ε

⎡
⎣

[
A11 A12

0 0

]
+

[
B1

0

]
K

[
Bw1

0

]
0 0

0 0 0 0

⎤
⎦ ,

:= N11 + εN12.

Using N11 and N12 in (4.66), it gives

N11Θ1N
T
11 + ε(N12Θ1N

T
11 + N11Θ1N12) + ε2N12Θ1N

T
12 < 0. (4.67)

Based on Lemma 2.3, it can be seen that (4.67) is equivalent to

N11Θ1N
T
11 < 0 (4.68)

where N11 = [
M1 In+q

]
, and M1 can be rewritten into the standard form as

M1 =
[

A1(0) + B1(0)K E1(0)

C + D1K D2

]
=

[
A1(0) E1(0)

C D2

]
+

[
B1(0)

D1

]
K

[
In 0

]
.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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From Lemma 2.2, we can transform (4.68) into the following feasible LMI form

Θ1 < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0

A1(0) E1(0) B1(0)

C D2 D1

⎤
⎥⎥⎦

⎡
⎣
WhRh

Vbh

κh Rh

⎤
⎦ , (4.69)

where κh = WhKh, and the state feedback gain can be calculated by Kh = κhW
−1
h .

In the high-frequency range, we can formulate Θ1 as

Θ1 =

⎡
⎢⎢⎣
Qh 0 Ph 0
∗ Ir 0 0
∗ ∗ −ω2

hQh 0
∗ ∗ ∗ −γ 2 Iq

⎤
⎥⎥⎦ .

Substituting Θ1 into (4.68) yields

⎡
⎢⎢⎣
Qh 0 Ph 0
∗ Ir 0 0
∗ ∗ −ω2

hQh 0
∗ ∗ ∗ −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0

A1(0) E1(0) B1(0)

C D2 D1

⎤
⎥⎥⎦

⎡
⎣
WhRh

Vbh

κh Rh

⎤
⎦ .

This completes the proof.

4.4.2 Shaping the Low-frequency Characteristics
of a Singularly Perturbed Systems

Similarly, we obtain the low-frequency counterpart.

Problem 4.6 (Low-Frequency H∞ Control Problem) For the slow limiting model
(4.51), a state feedback sub-controller gain Ks is searched such that for a given ωl

the following requirements are satisfied:

1. when ωl ∈ Ωl := {ω||ω| < ωl}, ‖Gl(s)‖Ωl∞ < γ ;
2. the closed-loop system (4.53) is stable.

By solving the low-frequency H∞ control problem, the controller gain Ks is
obtained such that the amplitude response of the low-frequency model (4.54) in the
low-frequency range can be suppressed below γ . In addition, the same Ks can also
restrain the low-frequency amplitude response of the original SPS (4.47) below γ .

Theorem 4.8 For a givenweighingmatrix Rl , and scalars γ , p2, q2 satisfying γ > 0
and p2q2 > 0, if there exist symmetric matrices Psl > 0, Pl , Ql > 0 and Wl, and
matrices Vbl , κl , P∗

sl = Psl E(0), P�
l = Pl E(0) and Q�

l = E(0)Ql E(0) such that if
the following LMIs are feasible:

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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[
0 P�

sl∗ 0

]
< He

[ −Wl

A2Wsl + B2κsl

] [
q2 In p2 In

]
. (4.70)

⎡
⎢⎢⎣

−Ql 0 P�
l 0

∗ Ir 0 0
∗ ∗ Q�

l 0
∗ ∗ ∗ −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0

A2 E2 B2

C D2 D1

⎤
⎥⎥⎦

⎡
⎣
Wl Rl

Vbl

κl Rl

⎤
⎦ , (4.71)

Then, the closed-loop system (4.48) has FF H∞ property with stability constraint in
Λl . The controller gain is Ks = κlW

−1
l .

Proof When the external disturbance is in the low-frequency range, the slow
timescale version (4.48) is adopted, where the slow dynamics are modelled with
fast modes represented by algebraic conditions.

(1) First, we do the stability analysis of system (4.48).
Select the Lyapunov function as V2 = ηT E(ε)Psl E(ε)Pslη, Psl = PT

sl > 0. The
derivation of V2 is represented as

V̇2 = ηT E(ε)Psl E(ε)η̇ + (E(ε)η̇)T Psl E(ε)η,

= ηT (E(ε)Psl A2c + AT
2c Psl E(ε))η < 0.

(4.72)

The Lyapunov condition for the dual system of (4.48) is

E(ε)Psl A
T
2c + A2c Psl E(ε) < 0,

which can be rewritten as

[
AT

2c
In

]T
⎡
⎣ 0

[
Psl11 εPsl12

PT
sl12 Psl22

]

∗ 0

⎤
⎦

[
AT

2c
In

]
< 0, (4.73)

where Psl =
[
Psl11 εPsl12

PT
sl12 Psl22

]
.

Based on Lemma 2.2, (4.73) can be converted into the following form, namely

⎡
⎣ 0

[
Psl11 εPsl12

PT
sl12 Psl22

]

∗ 0

⎤
⎦ < He

[ −In
A2 + B2K

]
WlRsl. (4.74)

Taking Rsl = [−q2 In p2 In
]
, it can be seen that (4.74) can be simplified into

⎡
⎣ 0

[
Psl11 εPsl12

PT
sl12 Psl22

]

∗ 0

⎤
⎦ < He

[ −Wl

A2Wl + B2κsl

] [
q2 In p2 In

]
. (4.75)

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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According to Lemma 2.3, the sufficient condition for the establishment of (4.76) for
certain ε ∈ (0, ε∗] is

[
0 P�

sl∗ 0

]
< He

[ −Wl

A2Wl + B2κsl

] [
q2 In p2 In

]
. (4.76)

where P�
sl =

[
Psl11 0
PT
sl12 Psl22

]
.

(2) Then, we deal with the disturbance attenuation capability of system (4.48).
To restrain the effects from the external disturbance w(t) in the low-frequency

range to the measurement output y(t) to a preserved extent, the requirement below
characterized by the FDI in the specified frequency range should be satisfied,

GT
l (s)Gl(s) < γ 2 Ir , s ∈ Λl, (4.77)

which implies [
GT

l (s)
Iq

]T

Π

[
GT

l (s)
Iq

]
< 0, s ∈ Λl, (4.78)

and can be rewritten in the following form based on Lemma 2.2,

[
A2c E2 E(ε) 0
Cc D2 0 Iq

]
TΘ2T

T

⎡
⎢⎢⎣

AT
2c Cc

ET
2 D2

E(ε) 0
0 Iq

⎤
⎥⎥⎦ < 0, (4.79)

where Θ2 =
[

Φ ⊗ Pl + Ψ ⊗ Ql 0
0 Π

]
.

Setting

N2 =
[

A2c E2 In 0
Cc D2 0 Iq

]
,

and using it in (4.79) can yield

N2

⎡
⎢⎢⎣
In 0 0 0
∗ Ir 0 0
∗ ∗ E(ε) 0
∗ ∗ ∗ Iq

⎤
⎥⎥⎦ TΘ2T

T

⎡
⎢⎢⎣
In 0 0 0
∗ Ir 0 0
∗ ∗ E(ε) 0
∗ ∗ ∗ Iq

⎤
⎥⎥⎦ NT

2 < 0. (4.80)

which, according to Lemma 2.2, can be represented by

⎡
⎢⎢⎣

−Ql 0 Pl E(ε) 0
∗ Ir 0 0
∗ ∗ E(ε)Ql E(ε) 0
∗ ∗ ∗ −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0

A2 E2 B2

C D2 D1

⎤
⎥⎥⎦

⎡
⎣
Wl Rl

Vbl

κl Rl

⎤
⎦ . (4.81)

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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A special choice of Pl can be given by

Pl =
[
Pl11 Pl12

∗ 1
ε
Pl22

]
,

and applying it in (4.80) gives

⎡
⎢⎢⎣

−Ql 0 P�
l 0

∗ Ir 0 0
∗ ∗ Q�

l 0
∗ ∗ ∗ −γ 2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0

A2 E2 B2

C D2 D1

⎤
⎥⎥⎦

⎡
⎣
Wl Rl

Vbl

κl Rl

⎤
⎦ , (4.82)

where P�
l =

[
Pl11 0
PT
l12 Pl22

]
and Q�

l = E(0)Ql E(0). This completes the proof.

4.5 Finite Frequency H∞ Tracking Problem

In this section, we will apply our proposed method to the tracking problem of the
system (4.2). The problem under investigation is to design a state feedback controller
u = Kη such that the output y tracks a reference signal r , which can be characterized
by a polynomial Ψ (s) = 1/s without static error.

Note that the solution of this problem requires inclusion of an internal mode of
Ψ (s) = 1/s in the feedback loop [1]. The polynomial Ψ (s) is not dependent on ε

that represents a situation where the roots of Ψ (s) are of the same order as the slow
poles of the plant, which means that the low-frequency loop shaping is needed. To
make use of H∞ control of SPS demonstrated in the previous sections, it is necessary
to convert the tracking problem into a standard H∞ control problem [24].

To be specific, in the first step we consider the fast model (4.4). The control
problem for the fast closed-loop system is simply to stabilize system (4.4) and realize
the high-frequency H∞ control system performance. Next, the low-frequency H∞
control problem of slow closed-loop system is considered. To include an internal
model of the reference, the modified slow model is taken as

˙̄xs = Āx̄s + B̄us + F̄ws +
[

0
1

]
r,

ȳs = C̄ x̄s + Dsus + Esws .

Here,

x̄s = [
xs xc

]
, xc = e = r − ys , Ā =

[
As 0

−Cs 0

]
, B̄ =

[
Bs
Cs

]
, F̄ =

[
Fs
Es

]
, C̄ = [

Cs 0
]
.

In this case, the control problem can be converted to stabilize the modified slow
model (4.3), and to meet H∞ performance in the low-frequency domain.
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The results and discussions of the previous sections are now summarized as fol-
lows.

Step 1. Following Theorem 4.2, a stabilizing fast controller u f = K f x f is
designed to stabilize the fast model and meet H∞ performance specifications in
the high-frequency domain.

Step 2. Following Theorem 4.1, a stabilizing slow controller u = K (s)x̄ is
designed to stabilize the modified slow model and meet H∞ performance speci-
fications in the low-frequency domain. Here K (s) = [Ks

1
s k].

Step 3. The composite controller is achieved based on the strategy described in
Fig. 4.4 for the full-order SPS.

Next, an example is given to show the efficiency.

Example 4.2 Now consider an SPS,

Eε ẋ(t) =
[

1 2
1 5

]
x +

[
2
2

]
u +

[
1
3

]
w,

z = [
1 1

]
x .

From the procedure mentioned above, one has ω = 2.674 rad/s with crossover fre-
quencies ωl and ωh selected as ωh = 100 rad/s and ωl = 2.5 rad/s. It can be seen
that K f , Ks can be solved following Theorems 4.1 and 4.2 respectively. Then,

Ks(s) = [−74.7643 111.3440/s
]
, K f = −5.5359,

K (s) = [
89.6843 −136.3198/s −5.5359

]
.

Figure 4.15 reveals the comparison between H∞ design in the FF domain (FFD)and
the entire frequency domain (EFD). How the values of ωl and ωh affect the tracking
results is shown in Figs. 4.16 and 4.17.

Fig. 4.15 Design results comparison between FFD and EFD
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Fig. 4.16 Design results with ωl = 0.5, 1, 2.5 rad/s

Fig. 4.17 Design results with ωh = 100, 1000 rad/s

4.6 Finite Frequency H∞ Model Matching Problem

To the best of the authors’ knowledge, H∞ model matching problem has been a heat
research topic in the literature, which has been studied in [4, 12, 18–22, 26]. Oloomi
and Sawan [19] studied the suboptimal matching problem for SISO systems and
obtained a suboptimal H∞ solution through solving the model matching problems
for the low and high-frequency models, respectively. Tan et al. [26] have derived
a set of ε-independent sufficient and necessary conditions for the existence of an
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H∞ suboptimal controller in a different and simple way. Pan and Basar [21, 22]
have solved the H∞ model matching problem for MIMO SPSs via using the theory
of differential games, and then presented an ε-independent two-stage procedure for
the construction of a suboptimal solution. However, their results were based on the
entire frequency, without considering the frequency characteristics of subsystems
sufficiently in some sense.

This section is concerned with the model matching problem for SISO SPSs in
(semi)finite frequency ranges. Sufficient and necessary conditions for the existence
of an H∞ suboptimal controller are derived based on the GKYP lemma. The controller
is particularly designed in the singularly perturbed form, which is obtained through
designing its fast and slow parts, and the composite controller is then constructed
based on.

It has been shown that the slow and fast subsystems could be interpreted as
the descriptions of the full-order system at low and high frequencies respectively.
The main method in the literature for solving control problem of SPS is that: (1)
decompose the ill-conditioned problem into slow and fast parts; (2) design slow and
fast sub-controllers respectively; and (3) lay out the composite control strategy. The
method in this section adopts such framework to design a full-dimensional controller
for the SPS.

The SPS Gp(s) is the plant to be controlled, which can be represented as

ẋ = A11x1 + A12x2 + B1u,

εẋ2 = A21x1 + A22x2 + B2u,

yp = C1x1 + C2x2 + Du,

(4.83)

where x1 ∈ Rn1 and x2 ∈ Rn2 are, respectively the slow and the fast state vectors,
u ∈ R is the input to be designed, and y ∈ R is the output. The matrix A22 is assumed
to be nonsingular.

The target SPS, defined by Gm(s), is given by

˙̃x1 = Ã11 x̃1 + Ã12 x̃2 + B̃1e,
ε ˙̃x2 = Ã21 x̃1 + Ã22 x̃2 + B̃2u,

yt = C̃1 x̃1 + C̃2 x̃2 + D̃u,

(4.84)

where x̃1 ∈ Rn1 and x̃2 ∈ Rn2 are the target slow and the fast state vectors with e
defined as the error signal, e = yp − yt , and Ã22 is assumed to be nonsingular.

We aim at finding (if possible) a controller Gc(s) ∈ ϕε such that

1. ‖Gp(s)Gc(s) − Gm(s)‖∞ < γ0 : |ω| < ωl ;
2. ‖Gp(s)Gc(s) − Gm(s)‖∞ < γ0 : |ω| > ωh ,

where ωl < ωh .
The following assumptions will be made throughout the section, where the sub-

scripts s and f represent the slow and fast models respectively.
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Assumption 4.3 (1) Gps(s),Gpf (s),Gms(s),Gmf (s) ∈ RH∞;
(2) Gps( jω) �= 0 for |ω| < ωl ;
(3) Gpf ( jω) �= 0 for |ω| > ωh;
(4) Gp(s) and Gm(s) have no unstable lost poles.

The following lemma is introduced to derive the main results.

Lemma 4.1 Let G(s) be a two-frequency-scale rational matrix. Suppose that Gs(s)
and G f (s) have no pure imaginary poles, or G(s) has no pure imaginary lost poles.
Then

sup
s∈D

∥∥G(s) − Gs(s) − G f (s) + V
∥∥ = O(ε), (4.85)

where V = Gs(s)|s=∞ = G f (s)
∣∣
εs=0, ‖ · ‖ is some matrix norm, and D is the imag-

inary axis.

Using SPTs, slow and fast subsystems of Gp(s) have the state-space realizations

Gps :=
[
As Bs

Cs Ds

]
, Gpf :=

[
A22/ε B2/ε

C2 D

]
,

where As = A11 − A12A
−1
22 A21, Bs = B1 − A12A

−1
22 B2, Cs = C1 − C2A

−1
22 A21 and

Ds = D − C2A
−1
22 B2.

Similarly, we have

Gms :=
[
Ã0 B̃0

C̃0 D̃0

]
, Gmf :=

[
Ã22/ε B̃2/ε

C̃2 D̃

]
,

where Ãs = Ã11 − Ã12 Ã
−1
22 Ã21, B̃s = B̃1 − Ã12 Ã

−1
22 B̃2, C̃s = C̃1 − C̃2 Ã

−1
22 Ã21 and

D̃s = D̃ − C̃2 Ã
−1
22 B̃2.

Design a singularly perturbed controller Gc(s),

Gc :
⎧⎨
⎩

ṗ = E11 p + E12q + F1e,
εq̇ = E21 p + E22q + F2e,
u = G1 p + G2q + He,

where p ∈ Rn1 is the slow state vector, q ∈ Rn2 is the fast state vector, e is the error,
u is the single input to be designed, and E22 is assumed to be nonsingular.

The slow and fast parts of Gc(s) have the state-space realizations:

Gcs :=
[
Es Fs

Gs Hs

]
, Gcf :=

[
E22/ε F2/ε

G2 H

]
,

where E0 = E11 − E12E
−1
22 E21, F0 = F1 − E12E

−1
22 F2, G0 = G1 − G2E

−1
22 E21 and

H0 = H − G2E
−1
22 F2.
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The PID controller is applied to direct open-loop shaping in multiple frequency
ranges in [7], whereas, this controller has a pure imaginary pole, which is not suitable
in the following discussion. We make a simple improvement of PID controller such
that Gcs(s) and Gcf (s) have the following forms:

Gcs(s) = kp + ki
s + a

+ kds

Tds + 1
, Gcf (s) = k̃ p + k̃i

εs + a
+ k̃dεs

Tdεs + 1
,

with the constraint Gcs(s)|s=∞ = Gcf (s)
∣∣
εs=0, that means

kp + kd
Td

= k̃ p + k̃i
a

,

where kp, ki , kd and k̃ p, k̃i , k̃d are PID parameters, and Td > 0 and a > 0 are both
small constants. The state-space realizations of Gcs(s), Gcf (s) are chosen such that
F0, H0, F2 and H are affine functions of the design parameters (kp, ki , kd) and
(k̃ p, k̃i , k̃d) respectively.

Denote

[
E0 F0

G0 H0

]
=

⎡
⎢⎣

−a 0 ki
0 − 1

Td
− kd

T 2
d

1 1 kp + kd
Td

⎤
⎥⎦ , (4.86)

[ E22
ε

F2
ε

G2 H

]
=

⎡
⎢⎢⎣

− a
ε

0 k̃i
ε

0 − 1
Tdε

− k̃d
T 2
d ε

1 1 k̃ p + k̃d
Td

⎤
⎥⎥⎦ , (4.87)

and

G(s) = Gp(s)Gc(s) − Gm(s),

Gs(s) = Gps(s)Gcs(s) − Gms(s),

G f (s) = Gpf (s)Gcf (s) − Gmf (s).

It is easy to verify that Gs(s) and G f (s) are slow and fast subsystems of G(s)
respectively. As an extension of Lemma 4.1, the following result is obtained.

Theorem 4.9 Under assumptions in Lemma4.1, for givenW1 = {ω ∈ R : |ω| ≤ ωl}
and W2 = {ω ∈ R : |εω| ≥ ωh}, we define

V = Gs(s)|s=∞ = G f (s)
∣∣
εs=0,
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where εωl < ωh. Suppose that

‖Gs(s) − V ‖∞ ≤ O(ε), ∀ω ∈ W2,

and ∥∥G f (s) − V
∥∥∞ ≤ O(ε), ∀ω ∈ W1.

If
‖Gs(s)‖∞ ≤ γ, ∀ω ∈ W1,

∥∥G f (s)
∥∥∞ ≤ γ, ∀ω ∈ W2,

then
‖G(s)‖∞ ≤ γ + O(ε), ∀ω ∈ W0, W0 = W1 ∪ W2.

Proof According to Lemma 4.1, we have

∥∥G(s) − Gs(s) − G f (s) + V
∥∥∞ ≤ O(ε),

which is established for any ω ∈ W2.
By virtue of the norm characteristics, one can obtain

‖G(s)‖∞ ≤ ‖Gs(s) − V ‖∞ + ∥∥G f (s)
∥∥∞ + O(ε), (4.88)

for all ω ∈ W2.
Suppose that the following inequalities hold,

‖Gs(s) − V ‖∞ ≤ O(ε), ∀ω ∈ W2, and
∥∥G f (s)

∥∥∞ < γ, ∀ω ∈ W2. (4.89)

Substituting (4.89) into (4.88) yields ‖G(s)‖∞ ≤ γ + O(ε) for any ω ∈ W2.
Similarly, if constraints,

∥∥G f (s) − V
∥∥∞ ≤ O(ε), ∀ω ∈ W1, and ‖Gs(s)‖∞ ≤ γ, ∀ω ∈ W1,

hold, then it is easy to obtain that

‖G(s)‖∞ ≤ γ + O(ε), ∀ω ∈ W1.

Summing up all above gives that

‖G(s)‖∞ ≤ γ + O(ε), ∀ω ∈ W0 = W1 ∪ W2.

This completes the proof.

In fact, it is easy to satisfy the following assumptions,

‖Gs(s) − V ‖∞ ≤ O(ε), ∀ω ∈ W2,
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and ∥∥G f (s) − V
∥∥∞ ≤ O(ε), ∀ω ∈ W1,

in the corresponding high and low-frequency ranges, respectively.
In this sense, crossover frequencies of low and high-frequency ranges, ωl max and

ωh min, are defined by

ωl max = max
{
ωl > 0| ∥∥G f (s) − Gs(∞)

∥∥∞ ≤ O(ε), |ω| ≤ ωl
}
,

ωh min = min {ωh > 0| ‖Gs(s) − Gs(∞)‖∞ ≤ O(ε), |ω| ≥ ωh} .

According to Theorem 4.9, the model matching problem for a full-order SPS in
(semi)finite frequency ranges can be converted into two lower order model matching
problems.

Denote
G̃c(s) := Gcs(s) + Gcf (s) − Gcs(∞).

It thereby follows from Lemma 4.1 that the composite controllerGc(s) can be approx-
imated by G̃c(s), namely

∥∥∥Gc(s) − G̃c(s)
∥∥∥∞

= O(ε).

The following result of the slow subsystem can be derived based on [9].

Theorem 4.10 Let W1 = {ω ∈ R : |ω| ≤ ωl} be given. Suppose that det( jωI −
A) �= 0, for any ω ∈ W1. Then, the constraint that ‖Gs(s)‖∞ < γ , for any ω ∈ W1

holds if there exist real symmetric matrices P and Q, such that Q > 0, and

⎡
⎣
AP + PAT − AQAT + ω2

l Q −AQCT + PCT B
−CQAT + CP −CQCT − γ 2 D1

BT DT
1 −1

⎤
⎦ < 0,

where

A =
⎡
⎣
A0 B0G0 0
0 E0 0
0 0 Ã0

⎤
⎦ , B =

⎡
⎣
B0H0

F0

B̃0

⎤
⎦ ,

C = [
C0 D0G0 −C̃0

]
, D1 = D0H0 − D̃0.

Proof According to Lemmas 2.2 and 2.4, it can be seen that Ψ and Π can be selected
as

Ψ =
[−1 0

0 ω2
l

]
, Π=

[
1 0
0 −γ 2

]
.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Then, it can be derived that

∥∥C(s I − A)−1B + D1

∥∥∞ < γ, ∀ω ∈ W1. (4.90)

The state-space realization of Gs(s) is

Gs =

⎡
⎢⎢⎣

A0 B0G0 0 B0H0

0 E0 0 F0

0 0 Ã0 B̃0

C0 D0G0 −C̃0 D0H0 − D̃0

⎤
⎥⎥⎦ .

It can be seen that (4.90) is equivalent to

‖Gs(s)‖∞ < γ, ∀ω ∈ W1.

This completes the proof.

Let p = εs, ω̄ = εω, and p = jω̄. Similar results of fast subsystem can be given
as follows.

Theorem 4.11 Let W2 = {ω̄ ∈ R : |ω̄| ≥ ωh} be given. Suppose det( jωI − A) �=
0, for any ω ∈ W2. Then,

∥∥G f (p)
∥∥∞ < γ , for any ω̄ ∈ W2 holds, if there exist real

symmetric matrices P, Q, such that Q > 0, and

⎡
⎣
AP + PAT + AQAT − ω2

hQ AQCT + PCT B
CQAT + CP CQCT − γ 2 D2

BT DT
2 −1

⎤
⎦ < 0,

where

A =
⎡
⎣
A22 B2G2 0
0 E22 0
0 0 Ã22

⎤
⎦ , B =

⎡
⎣
B2H
F2

B̃2

⎤
⎦ ,

C = [
C2 DG2 −C̃2

]
, D2 = DH − D̃.

Proof The proof is similar to Theorem 4.10.

We have designed an H∞ suboptimal controller to solve the model matching prob-
lem for SPSs in (semi)finite frequency ranges. Considering that the similar problem
solved in [20], the results in this book can be compared with the existing ones through
a simple example. The main difference is that results in [20] are established in the
entire frequency range, whereas, our results are built in the (semi)finite frequency
ranges.

Example 4.3 Consider the following systems, where

Gm(s) = s + 0.5

(s + 2)(εs + 2)
, Gp(s) = (s − 1)(εs − 1)

(s + 1)(εs + 1)
,
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and ε = 0.001. Choose ω1 = 0.2 rad/s, ωh = 5000 rad/s, Td = α = 0.05, and γ =
0.1. Applying the design method formulated in this section, the controller can be
obtained by

Gc1(s) = 0.9363s2 + 0.04707s + 0.055

0.05s2 + 1.002s + 0.05

+ 0.0001(εs)2 + 0.04704εs + 0.9406

0.05(εs)2 + 1.002εs + 0.05
− 18.7293.

Following the algorithm developed in [20], the controller is obtained as follows,

Gc2(s) = − (s + 1)(7s − 5.5)

6(s + 2)(7s + 1)
− εs + 1

3(εs + 2)
+ 1

6
.

Error functions in low and high-frequency ranges are depicted in Figs. 4.18 and 4.19,
respectively.

Example 4.4 Consider the tracking problem, where

Gp(s) = (s + 2)

(s + 3)(εs + 1)
,

and ε = 0.001. Select the parameters as ω1 = 0.001 rad/s, Td = α = 0.05 and k̃ p =
k̃i = k̃d = 0.

In the following processes, we design two different controllers under different
specifications.
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Fig. 4.18 Error functions in the low-frequency range
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Fig. 4.19 Error functions in the hig-frequency range

1. When γ = 0.1 and Gm(s) = 1
γ

+ γ − 1.
Here, a controller is designed such that requirements

‖Gs(s)‖∞ < γ,

∥∥∥∥
1

1 + Gp(s)Gc(s)

∥∥∥∥
∞

< γ,

are satisfied.
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Fig. 4.20 Step responses
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2. When γ = 0.01 and Gm(s) = γ + 1/γ − 1.
In this case, the controller can be obtained,

Gc(s) = 147.6s + 7.426

0.05s2 + 1.002s + 0.05
.

Step responses of the unity negative feedback system are plotted in Fig. 4.20.

4.7 Conclusion

In this chapter, we are mainly concerned with the FF H∞ control problem of SPSs.
The main theoretical results are given. First, the background knowledge of H∞ con-
trol of SPSs are given to facilitate the understanding of readers, which are established
in the entire frequency range. State feedback and output feedback synthesis of FF
H∞ control of SPSs are given in Sects. 4.2 and 4.3. A descriptor-system approach
for H∞ control of SPSs is demonstrated in Sect. 4.4, with the ill-conditioning of suf-
ficient conditions much reduced. A special case of H∞ control is shown in Sect. 4.5
to enable the plant track the given references. In Sect. 4.6, we have investigated the
FF H∞ model tracking issues. The validity of the proposed methods has been proven
by the numerical results.
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Chapter 5
Finite Frequency Positive Real Control
for Singularly Perturbed Systems

With the development of high-performance mechatronics, the feedback control
system is often required to exhibit some particular control system specifications such
as high control bandwidth and FF disturbance suppression capability. Meanwhile,
the integrated design of both mechanical plant and controller design is carried out to
achieve performance specifications. In this chapter, a GKYP lemma-based algorithm
is proposed for simultaneous finite frequency design of a mechanical SPS plant and
controller through a convex separable parametrization. In Sect. 5.1, basic definitions
and some related engineering background of passivity and positive real property are
introduced. The design procedure using the classical slow-fast decomposition is rep-
resented in Sect. 5.2. To extend the results to nonstandard SPS, a descriptor-system
method for SPSs are demonstrated in Sect. 5.3.

5.1 Passivity and Positive Real Property

In this section, we introduce the background knowledge of the passive theory, while
the SPTs have been shown before. It has been mentioned in [28] that traditional
passive system theory was a powerful tool for system analysis and synthesis. Passive
system theory initially stemmed from electrical circuit theory, where networks of
passive circuit components were known to be stable in various configurations. Using
the traditional notion of energy, passivity theory had been applied in analysis and
synthesis of many control systems. More generally speaking, the concept of passivity
can be applied when there is no traditional notion of energy. In this case, we resort to
define the generalized energy with the aid of an energy storage function. Note that,
if the energy stored in a system can be bounded above by the energy supplied to the
system, the system is passive.

As seen in [28], if passive systems have a special property that when connected
in either a parallel or negative feedback manner as shown in Fig. 5.1(a) and (b),
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(a)

Parallel interconnection

(b)

Negative feedback interconnection

Fig. 5.1 Interconnections that preserve passivity

respectively, then the overall system remains passive. In other words, passive property
can be preserved when the energy is stored in such interconnections, where a storage
function that satisfies the passivity definition for the interconnected system can be
calculated by the sum of the storage functions of the individual systems. With these
results, we can see that large-scale systems can be stable through verifying passivity
for each system component by following simple interconnection rules.

Definition 5.1 (System Passivity) Consider the following system,

ẋ(t) = f (x(t), u(t)),
y(t) = h(x(t), u(t)),

(5.1)

where x(t) is the process state, u(t) is the control input, and y(t) is the output of
the system. System (5.1) is said to be passive if there exists a storage function
V (x(t)) > 0 such that, for any time t1 > t0, t0 be an initial time,

V (x(t1)) − V (x(t0)) <

∫ t1

t0

uT (t)y(t)dt.

Note that if V (x(t)) is differentiable, we can alternatively write

V̇ (x(t)) < uT (t)y(t), t > 0.

Remark 5.1 Intuitively speaking, V (x(t)) can be referred to as the energy content
of a control system, while uT (t)y(t) can be regarded as the power being fed to the
system. Passivity implies that energy is being dissipated from the system. Notice that
such an intuition holds exactly for electrical circuits. For more general systems, this
can merely be used as a guidance.

It is worth pointing out that there are several variations of this definition in the
literature, but essentially all definitions demonstrated that the output energy should
be bounded such that the system did not produce more energy than the energy initially
stored [6, 23].

As for the passive system theory, the following important definitions are given.



5.1 Passivity and Positive Real Property 121

Definition 5.2 (Positive Real) The TFM

G(s) = C(sI − A)−1B + D

is called positive real, if it is square and satisfies

G∗(s) + G(s) > 0, s ∈ C, Re(s) > 0 (5.2)

Definition 5.3 (Strict Positive Real) A square TFM G(s) is strict positive real if

1. G(s) is analytic in the closed right half complex plane;
2. G∗(jω) + G(jω) > 0 for all ω ∈ (−∞,∞);
3. G∗(∞) + G(∞) � 0;
4. limω→∞ ω2[G∗(jω) + G(jω)] > 0, if G∗(∞) + G(∞) is singular.

The concept of passivity and positive realness plays an important role in the
analysis and controller design of linear systems, which actually represents the same
property with the time-domain feature and frequency-domain feature, respectively.

As defined above, passivity is only a binary characterization of system behaviours,
which depends on whether the system dissipates sufficient energy. Passive system
theory provides a strong foundation for a composite framework for the stability of
control systems [4, 23]. As mentioned in [4], it is easy to verify that passive systems
have infinite gain margin and at least 90◦ of phase margin such that large loop gains
can be tolerated. To conclude, passive control theory is very general and broad, which
can be used in linear, nonlinear, continuous, and discrete-time control systems. In the
following sections, we have investigated the FF positive real control of SPSs with
the aid of some existing results in passive system theory.

5.2 Methods Based on Slow-Fast Decomposition

For a linear system, necessary and sufficient conditions for the existence of a stabiliz-
ing state feedback controller are given based on the GKYP lemma. Using the results
to study SPSs, a composite state feedback controller is constructed, which preserves
the stability and positive real property. It is well known that the mathematical treat-
ment of systems with slow and fast dynamics has traditionally involved singularly
perturbation theory, which have attracted much interest due to the great practical
importance in recent years. There are many related research works such as [3, 9, 12,
15–17], which sub-controllers were designed for fast and modified slow subsystems,
respectively, and then the composite controller was established. Whereas, most of
the above-mentioned methods are based on the entire frequency, in fact, the fast and
slow subsystems can be interpreted as descriptions of full system in the high-and
low-frequency ranges [13]. The traditional methods did not consider the frequency
characteristics of subsystems, and the conservatism tends to increase with the tedious
design procedures. Positive realness appears in the field of system and control the-
ories as an essential property, a well-known result is that when a positive real (PR)



122 5 Finite Frequency Positive Real Control …

dynamic system is connected to a strictly positive real (SPR) controller through neg-
ative feedback, the closed-loop system is internally stable [21]. The finite frequency
positive real (FFPR) property was proposed in [22], and a variety of reasons to believe
that FFPR is crucial for achieving good control performance was also provided. In
decades, the KYP lemma has been recognized as one of the most important tools in
the field of developing systems theory [18, 25, 27] such that the equivalence between
FDIs and LMIs is established. However, the standard KYP lemma is not completely
suitable when practical specifications are often given in different frequency ranges.
Through generalizing the KYP lemma, Iwasaki et al. [5, 7, 8, 22] developed the
GKYP lemma, which could convert a certain FDI in (semi)finite frequency range to
a tractable LMI directly.

In this section, we consider SPR control for SPSs in (semi)finite frequency. First,
we study the state feedback control for general linear systems in (semi)finite fre-
quency, and use the results to study the finite frequency strictly positive real (FFSPR)
control for SPSs.

Consider the following SPS, which is denoted by G(s),

ẋ(t) = A11x1(t) + A12x2(t) + B1u(t),
εẋ2(t) = A21x1(t) + A22x2(t) + B2u(t),
y(t) = C1x1(t) + C2x2(t),

(5.3)

where ε is a perturbation parameter satisfying 0 < ε � 1, x1(t) ∈ Rn1 and x2(t) ∈
Rn2 are the slow and fast state vectors, respectively, u(t) ∈ Rp is the control input,
y(t) ∈ Rq is the measurement output, and A22 is assumed to be nonsingular. Matrices
Aij, Bi and Ci (i, j = 1, 2) are constant matrices of appropriate dimensions.

Consider a state feedback controller in the form of

u(t) = Kx(t).

Assume that the system G(s) has no unstable lost poles.

Problem 5.1 Let Ḡ(s) denote the closed-loop TF of the system (5.3) from the con-
trol input u(t) to the output y(t). Our general goal is to find a stabilizing feedback
controller K such that

1. Ḡ(jω) + Ḡ∗(jω) > 0, for all |ω| ≤ ωl;
2. Ḡ(jω) + Ḡ∗(jω) > 0, for all |εω| ≥ ωh and εωl < ωh.

In order to discuss the above problem for the SPS (5.3), let us first consider the state
feedback control for general linear systems in the next subsection.

5.2.1 State Feedback Control for General Linear Systems

As mentioned before, using SPTs, the ill-conditioned LTI SPS can be decomposed
into standard linear systems. The ill conditioning can be alleviated using time-scale
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separation. Next, we give out methods for the state feedback control for linear sys-
tems, which can be applied in the reduced-order slow and fast subsystems directly.

Consider the linear system Gm as follows,

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(5.4)

where x(t) ∈ Rn is state vector, u(t) ∈ Rp is input vector, and y(t) ∈ Rq is output
vector (p = q). The matrices A, B, C and D are constant matrices of appropriate
dimensions.

Using the state feedback control u(t) = Kx(t), the closed-loop TFM Ḡm of the
system (5.4) is represented by

ẋ(t) = (A + BK)x(t),
y(t) = (C + DK)x(t).

(5.5)

In order to achieve the PR property with the stability constraint of the closed-loop
system Ḡm, we obtain the necessary and sufficient conditions based on Lemmas
1.2 and 2.2 for the existence of a stabilizing state feedback controller, and develop a
formula for all such state feedback controllerK that can solve the problem mentioned
above.

The main result is given as follows.

Theorem 5.1 Let Φ,Ψ ∈ H2, Π ∈ Hp+q and Ḡm(s) be given. Suppose that Λ rep-
resents curves on the complex plane. The following statements are equivalent.

(1) There exists a stabilizing state feedback gain K such that

Ḡm(s) + Ḡ∗
m(s) > 0

holds for all s ∈ Λ̄(ΦT , Ψ T ).
(2) There exist X, Y , H, P = P∗, Q = Q∗ and Pa = P∗

a such that

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎡
⎢⎢⎣

−YZ
−XZ

AYZ + BHZ + BXZ
CYZ + DHZ + DXZ

⎤
⎥⎥⎦ , (5.6)

[
0 Pa

Pa 0

]
< He

[ −YL
AYL + BHL

]
. (5.7)

where

Π =
[

0 −Ip
−Iq 0

]
, Z =

[
I2n+p+q

0n×(2n+p+q)

]
, L =

[
0(2n+p+q)×n 0

−q̂In p̂In

]
,

scalars p̂ ∈ C and q̂ ∈ C are fixed vectors satisfying p̂q̂∗ + q̂p̂∗ < 0.

http://dx.doi.org/10.1007/978-3-319-45405-4_1
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Furthermore, when (5.6) and (5.7) hold, all such solutions K are given by

K = HY † + RY⊥,

where R is an arbitrary p × (3n + p + q)-dimensional matrix.

Proof Letting Π =
[

0 −Ip
−Iq 0

]
, it is easy to verify that Ḡm(s) + Ḡ∗

m(s) > 0 is equiv-

alent to

σ(Ḡ∗
m(s),Π) =

[
Ḡ∗

m(s)
Iq

]∗ [
0 −Ip

−Iq 0

] [
Ḡ∗

m(s)
Iq

]
< 0.

According to Lemma 2.2, σ(Ḡ∗
m(s),Π) < 0 for all s ∈ Λ̄(ΦT , Ψ T ) is equivalent to

the existence of W , P = P∗, Q = Q∗ > 0 such that

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

[−In+q

M

]
W,

where P,Q ∈ Cn×n, W ∈ C(n+q)×(2n+p+q) and M =
[
A + BK B
C + DK D

]
.

Now write W as W =
[
Wa

Wb

]
, which yields

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎡
⎢⎢⎣

−In 0
0 −Ip

A + BK B
C + DK D

⎤
⎥⎥⎦

[
Wa

Wb

]
, (5.8)

where Wa ∈ Cn×(2n+p+q), Wb ∈ Cp×(2n+p+q), and can be further represented by

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎡
⎢⎢⎣

−Wa

−Wb

AWa + BKWa + BWb

CWa + DKWa + DWb

⎤
⎥⎥⎦ .

Remark 5.2 σ(Ḡ∗
m(s),Π) < 0 can be regarded as the shaping of closed-loop TF

Ḡm(s) in frequency domain, whereas, the stability is not included. In order to guar-
antee the stability of the closed-loop system, Lemmas 1.2 and 2.2 is taken into
consideration.

The closed-loop system is stable if and only if the real part of each eigenvalue λ of

A + BK is negative. Set Φ =
[

0 1
1 0

]
, and we have

σ(λ,ΦT ) = λ + λ∗ < 0.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_1
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Based on this, the closed-loop system is stable if and only if there exist Wc, Pa =
Pa

∗ > 0 such that

[
0 Pa

Pa 0

]
< He

[ −In
A + BK

]
Wc

[−q̂In p̂In
]
, (5.9)

where Wc ∈ Cn×n, Pa ∈ Cn×n,
[
p̂ q̂

] [
0 1
1 0

] [
p̂ q̂

]∗ = p̂q̂∗ + q̂p̂∗ < 0.

The condition (5.9) can be rewritten as

[
0 Pa

Pa 0

]
< He

[ −Wc

AWc + BKWc

] [−q̂In p̂In
]
. (5.10)

Hence, there exists a stabilizing state feedback gain K such that

Ḡm(s) + Ḡ∗
m(s) > 0

holds for all s ∈ Λ̄(ΦT , Ψ T ) if and only if conditions (5.6) and (5.7) are both met.
Comparing (5.10) with (5.7), the two conditions are unfeasible because both the

product terms and Wa, Wc are irrelative matrices with different dimension. In order
to unify Wa and Wc, new variables are introduced. Now rewrite condition (5.7), and
then we have

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−In 0
0 −Ip

A + BK B
C + DK D

⎤
⎥⎥⎦

[
Wa Wc
Wb Wd

] [
I2n+p+q

0n×(2n+p+q)

]
⎞
⎟⎟⎠ .

(5.11)
Here, it is obvious that condition (5.11) is independent of matrix variables Wc, Wd ,
which means Wc and Wd can be added to condition (5.11) as an additional matrix.

Similarly, condition (5.9) can be rewritten as

[
0 Pa

Pa 0

]
< He

([ −In
A + BK

] [
Wa Wc

] [
0(2n+p+q)×n

In

] [−q̂In p̂In
])

, (5.12)

where Wa is independent of condition (5.12).
Until now, Wa and Wc have both appeared in the conditions (5.11) and (5.12).
Taking [

Wa Wc
] = Y ,

[
Wb Wd

] = X,

then the above conditions can be rewritten as
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T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−In 0
0 −Ip

A + BK B
C + DK D

⎤
⎥⎥⎦

[
Y
X

] [
I2n+p+q

0n×(2n+p+q)

]
⎞
⎟⎟⎠

(5.13)[
0 Pa

Pa 0

]
< He

([ −In
A + BK

]
Y

[
0(2n+p+q)×n

In

] [−q̂In p̂In
])

.

(5.14)

Furthermore, it can be seen that (5.13) and (5.14) can be simplified through matrix
multiplying

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎡
⎢⎢⎣

−YZ
−XZ

AYZ + BKYZ + BXZ
CYZ + DKYZ + DXZ

⎤
⎥⎥⎦ ,

[
0 Pa

Pa 0

]
< He

[ −YL
AYL + BKYL

]
,

where Z =
[

I2n+p+q

0n×(2n+p+q)

]
, L =

[
0(2n+p+q)×n 0

−q̂In p̂In

]
, which are equivalent to the fol-

lowing two inequalities by taking KY = H,

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎡
⎢⎢⎣

−YZ
−XZ

AYZ + BHZ + BXZ
CYZ + DHZ + DXZ

⎤
⎥⎥⎦ ,

[
0 Pa

Pa 0

]
< He

[ −YL
AYL + BHL

]
.

All the solutions satisfy KY = H are given by

K = HY † + RY⊥.

This completes the proof.

Remark 5.3 It is worth pointing out that Lemma 2.2 does not capture the closed-
loop stability. Hence, an additional design specification, for example, regional poles
constraints, which guarantees the stability is generally introduced.

Remark 5.4 It seems that the (5.11) and (5.13) are not needful, since they are equiv-
alent to (5.8) and (5.9), respectively. However, the matrix variables Wa and Wc are
irrelative matrices with different dimensions such that conditions (5.11) and (5.13)

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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could unify the Wa and Wc without introducing conservatism. Our results are neces-
sary and sufficient conditions, which capture not only the frequency-domain shaping
of closed-loop TFs but also the closed-loop stability.

5.2.2 Finite Frequency Positive Real Control
for Singularly Perturbed Systems

Until now, we have derived the necessary and sufficient conditions for the existence
of a stabilizing state feedback gain K . In the following discussion, we will use the
results to study SPSs.

It is well known that SPSs have multiple time-scale properties, also with multiple
frequency-scale properties. The decomposition of a control problem into slow and fast
parts is very effective, and most of decomposition methods employ SPTs. Following
the usual treatment, a scaling ratio of p = εs in the frequency domain is introduced.
Hence, we decompose G(s) with slow and fast subsystems expressed, respectively,
as

Gs :
{
ẋs = Asxs + Bsus
ys = Csxs + Dsus

and

Gf :
{

εẋf = A22xf + B2uf
yf = C2xf ,

where As = A11 − A12A
−1
22 A21, Bs = B1 − A12A

−1
22 B2, Cs = C1 − C2A

−1
22 A21, Ds =

−C2A
−1
22 B2. Composite state feedback control for SPSs has been investigated in

[4, 13], where a controller was constructed by designing controllers for slow and fast
subsystems, respectively. In this subsection, we adopt the composite state feedback
controller as follows:

u = [
Ks + Kf A

−1
22 A21 + Kf A

−1
22 B2Ks Kf

] [
x1

x2

]
.

Then, the slow and fast subsystems of closed-loop system Ḡ(s) are shown as
follows:

Ḡs :
{
ẋs = (As + BsKs)xs + BsTus
ys = (Cs + DsKs)xs + DsTus

and

Ḡf :
{

εẋf = (A22 + B2Kf )xf + Bf uf
yf = C2xf ,
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where T = (I + K2A
−1
22 B2)

−1. Also, as mentioned in [11], if As + BsKs and A22 +
B2K2 are both Hurwitz stable, then the closed-loop systems Ḡ(s) are stable for
sufficiently small ε.

Correspondingly, we can get the TFs of slow and fast subsystems in different
frequency scales, respectively:

Ḡs(s) = (Cs + DsKs)(sI − As − BsKs)
−1BsT + DsT , (5.15)

Ḡf (p) = C2(pI − A22 − B2K2)
−1B2. (5.16)

Moreover, it follows from [6] that the slow and fast subsystems can approximate
the full system in the appropriate low- and high-frequency ranges, respectively. It
means that, if Ḡs(s) and Ḡf (p) are both stable and SPR in low and high frequencies
respectively, then Ḡ(s) will also be stable and SPR in the low and high frequencies
for sufficiently small ε.

Set ω̄ = εω, then p = jω̄. Now, the relevant result of fast subsystem is given as
follows:

Theorem 5.2 Let W1 = {ω̄ ∈ R : |ω̄| ≥ ωh} and Ḡf (p) be given. The following
statements are equivalent.

(1) There exists a stabilizing state feedback gain Kf such that

Ḡf (p) + Ḡ∗
f (p) > 0

holds for all ω̄ ∈ W1.
(2) There exist matrices X,Y ,H, P = P∗, Q = Q∗ and Pa = P∗

a > 0 such that

T

⎡
⎢⎢⎣

Q P 0 0
P −ω2

hQ 0 0
0 0 0 −Ip
0 0 −Iq 0

⎤
⎥⎥⎦T∗ < He

⎡
⎢⎢⎣

−YZ
−XZ

A22YZ + B2HZ + B2XZ
C2YZ

⎤
⎥⎥⎦ (5.17)

[
0 Pa
Pa 0

]
< He

[ −YL
A22YL + B2HL

]
(5.18)

where

Z =
[

I2n2+p+q

0n2×(2n2+p+q)

]
, L =

[
0(2n2+p+q)×n2 0

−q̂In2 p̂In2

]
, p̂, q̂ ∈ C

are fixed vectors satisfying p̂q̂∗ + q̂p̂∗ < 0, and T is the permutation matrix.
Furthermore, if (5.17) and (5.18) hold, then all such solutions Kf are given by
Kf = HY † + RY⊥.

Proof Setting Φ =
[

0 1
1 0

]
, Ψ =

[
1 0
0 −ω2

h

]
, and the frequency set can be given by
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Λ(Φ,Ψ ) = {jω̄ ||ω̄| ≥ ωh }

The remaining is similar as the proof of Theorem 5.1.

Similar result of slow subsystem is given as follows:

Theorem 5.3 LetW2 = {ω ∈ R : |ω| ≤ ωl}and Ḡs(s)begiven. The following state-
ments are equivalent.

(1) There exists a stabilizing state feedback gain Ks such that

Ḡs(s) + Ḡ∗
s (s) > 0

holds for all ω ∈ W2.
(2) There exist X,Y ,H, P = P∗, Q = Q∗ > 0, and Pa = P∗

a > 0 such that

T

⎡
⎢⎢⎣

−Q P 0 0
P ω2

l Q 0 0
0 0 0 −Ip
0 0 −Iq 0

⎤
⎥⎥⎦T∗ < He

⎡
⎢⎢⎣

−YZ
−XZ

A0YZ + B0HZ + B0TXZ
C0YZ + D0HZ + D0TXZ

⎤
⎥⎥⎦ (5.19)

[
0 Pa

Pa 0

]
< He

[ −YL
A0YL + B0HL

]
(5.20)

where

Z =
[

I2n1+p+q
0n1×(2n1+p+q)

]
, L =

[
0(2n1+p+q)×n1 0

−q̂In1 p̂In1

]
, and p̂, q̂ ∈ C, p̂q̂∗ + q̂p̂∗ < 0,

and T is the permutation matrix. Furthermore, all such solutions Ks are given
by

Ks = HY † + RY⊥.

Proof Setting Φ =
[

0 1
1 0

]
, Ψ =

[−1 0
0 ω2

l

]
, we have

Λ(Φ,Ψ ) = {jω ||ω| ≤ ωl } .

Note that Ḡs(s) is a slightly different from Ḡm(s) in the form. Let us recall the
procedure of proving Theorem 5.1, and we make a simple change of (5.8), namely

T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−In1 0
0 −Ip

A + BK BT
C + DK DT

⎤
⎥⎥⎦

[
Y
X

] [
I2n1+p+q

0n1×(2n1+p+q)

]
⎞
⎟⎟⎠

which is equivalent to
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T

[
Φ ⊗ P + Ψ ⊗ Q 0

0 Π

]
T∗ < He

⎡
⎢⎢⎣

−YZ
−XZ

AYZ + BKYZ + BTXZ
CYZ + DKYZ + DTXZ

⎤
⎥⎥⎦ .

The following proof is similar to that of Theorem 5.1, which is omitted here.

Remark 5.5 If we set

Π =
[
Ip 0
0 −γ 2Iq

]
,

Theorems 5.2 and 5.3 can be applied to (semi)finite frequency H∞ control, and the
composite state feedback controller is also

K = [
Ks + Kf A

−1
22 A21 + Kf A

−1
22 B2Ks Kf

]
.

SPR control for SPSs in (semi)finite frequency ranges has been investigated in
this section. Necessary and sufficient conditions for the existence of a stabilizing
state feedback controller for the general linear systems are derived based on GKYP
lemma, and the related results are used to study SPSs. Through designing controllers
for the fast and modified slow subsystems, a composite feedback controller for SPSs
is constructed, which preserves the stability and positive real property.

5.3 A Descriptor-System Method for Strictly Positive Real
Control of Singularly Perturbed Systems

As mentioned before, the dynamics of SPSs contain the interaction of the slow and
fast phenomena so that the feedback design often suffers from high dimension and
ill-posed problem [10, 11]. SPTs are used in analytical investigations of robustness of
system properties at the cost of model accuracy [2, 11, 14]. The stability and control
specifications of the original system can be inferred from the analysis of lower-
order subsystems in separate time scales. Despite the great practical significance for
analysis and design, there are still restrictions and limitations with classical methods
because only a small group of SPSs are capable for slow-fast decomposition.

Contrast with the existing methods, a descriptor-system method of SPSs will be
introduced to avoid the slow-fast decomposition, which can also be easily applied
into both standard and nonstandard SPSs. Nowadays, the theory of singular systems
is well developed to pave the way to find a new synthesis approach to SPSs. In
[24, 26], many results previously known only for regular state-space systems have
been extended to the singular systems. It has been pointed out that the singular
systems are limiting forms of SPSs. Via constraint of the algebraic condition that
the limiting solution is available to approach that of the SPSs, the limiting models
are employed to design controllers for the original SPSs. In [29], the problems of
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robust stability analysis and robust stabilization for a class of linear SPSs with norm-
bounded time-varying uncertainties were solved with the aid of the existing results for
singular systems under certain conditions. Singular method to nonlinear singularly
perturbed optimal control problem has been proposed in [1, 19, 20, 30], which also
illustrated that the optimal (ε-independent) regulators for the singular systems were
near-optimal regulators for the corresponding SPSs.

In this section, we adopt the singular method to design the ε-dependent or ε-
independent state feedback controller to realize the PR property of the SPS.

Consider the SPS G(s) as follows:

ẋ1 = A11x1 + A12x2 + B1u,
εẋ2 = A21x1 + A22x2 + B2u,
y = C1x1 + C2x2.

(5.21)

Define a new variable as η(t) :=
[
x1(t)
x2(t)

]
, and then G(s) can be rewritten in a more

concise and explicit form as follows:

Eη̇ = Aη + Bu

y = Cη
(5.22)

where

E =
[
In1 0
0 εIn2

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [

C1 C2
]
.

Then, the open-loop TFM from the input u to the measurement output y is

Gyu(s) = C(sE − A)−1B,

which can be viewed as a matrix function about small parameter ε. Let a state
feedback controller with the form of u = Kη + r. The closed-loop system of G(s)
is written as

Eη̇ = (A + BK)η + Br,

y = Cη,
(5.23)

where r(t) is the reference input vector. Hence the TFM of the reference input r(t)
to the measurement output y(t) is

Tyr(s) = C(sE − (A + BK))−1B,

or represented in the standard form in Lemma 2.2,

M =
[
A B
C 0

]
+

[
B
0

]
K

[
In 0

]
.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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The qualitative analysis of TF properties and its relationship with stability analy-
sis have a long history back to the year 1892. Control performance of mechanical
structure design can be significantly improved when the system structure has certain
specifications such as PR property. Based on the following theorem, both ε-dependent
and ε-independent controllers can be designed.

For sake of representation, three target frequency sets are defined, respectively,
in the low-, middle- and high-frequency range:

1. the low-frequency range: Λl = {ω : |ω| < ωl};
2. the middle-frequency range: Λm = {ω : ω1 < ω < ω2};
3. the high-frequency range: Λh = {ω : |ω| > ωh}.
Theorem 5.4 For given matrices Rl, Rm, Rh and scalar γ > 0, the closed-loop
system (5.23) satisfies PR property in the low-frequency range,

Tyr
∗(jω) + Tyr(jω) > 0, ω ∈ Λl,

if there exist symmetric matrices Q > 0,W andmatrices Pε =
[
P11 0
P21 P22

]
, V2, κ and

scalar ε∗ such that for any ε ∈ (0, ε∗], the following LMI holds:

⎡
⎢⎢⎣

−Q 0 Pε 0
0 0 0 −Ip
Pε 0 ω2

l Q 0
0 −Ip 0 0

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ip 0
A B B
C 0 0

⎤
⎥⎥⎦

⎡
⎣
WRl

V2

κRl

⎤
⎦ , (5.24)

where ωl , defined in Λl , is given in advance.
Or, the closed-loop system (5.23) achieves thePRproperty in themiddle-frequency

range,
Tyr

∗(jω) + Tyr(jω) > 0, ω ∈ Λm,

if the following LMI holds:

⎡
⎢⎢⎣

−Q 0 Pε + jωcQ 0
0 0 0 −Ip

Pε + jωcQ 0 −ω1ω2Q 0
0 −Ip 0 0

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ip 0
A B B
C 0 0

⎤
⎥⎥⎦

⎡
⎣
WRm

V2

κRm

⎤
⎦ , (5.25)

where ωc = (ω1 + ω2)/2 is defined in Λm and given in advance.
Or, the closed-loop system (5.23) satisfies the PR property in the high-frequency

range,
Tyr

∗(jω) + Tyr(jω) > 0, ω ∈ Λh,

which is equal to the feasibility of LMI below:
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⎡
⎢⎢⎣

Q 0 Pε 0
0 0 0 −Ip
Pε 0 −ω2

hQ 0
0 −Ip 0 0

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ip 0
A B B
C 0 0

⎤
⎥⎥⎦

⎡
⎣
WRh

V2

κRh

⎤
⎦ , (5.26)

where ωh is determined beforehand.
Furthermore, the gain of the state feedback controller is shown as K = κW−1.

Proof Given Π =
[

0 Ip
Ip 0

]
, then the finite frequency inequality

[
Tyr(jω)

Ip

]∗
Π

[
Tyr(jω)

Ip

]
< 0, ω ∈ (−∞, + ∞)

becomes
T∗
yr(jω) + Tyr(jω) > 0, (5.27)

and the closed-loop system (5.24) has the passive property.
Based on Lemma 2.2, we can obtain the sufficient conditions for the establishment

of (5.27) as follows,

[
A B
In 0

]∗
Ξ

[
A B
In 0

]
+

[
C 0
0 Ip

]∗
Π

[
C 0
0 Ip

]
< 0, (5.28)

where Ξ =
[−Q PE
EP ω2

l Q

]
, which is equivalent to

[
A In
C 0

]
Ξ

[
A In
C 0

]∗
+

[
B 0
0 Ip

]
Π

[
B 0
0 Ip

]∗
< 0. (5.29)

Based on Lemma 2.2, it gives that (5.29) can be rewritten by

⎡
⎢⎢⎣

−Q 0 PE 0
0 0 0 −Ip
EP 0 ω2

l EQE 0
0 −Ip 0 0

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ip 0
A B B
C 0 0

⎤
⎥⎥⎦

⎡
⎣
WRm

V2

κRm

⎤
⎦ , (5.30)

where P =
[
P11 P21

P21 εP22

]
.

Taking PE =
[
P11 0
P21 P22

]
:= Pε and EQE =

[
Q11 0
0 0

]
, we can derive that (5.30)

is equivalent to

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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⎡
⎢⎢⎢⎢⎢⎢⎣

−Q 0

[
P11 εP12

P21 P22

]
0

0 0 0 −Ip[
P11 P∗

21
εP21 P22

]
0 ω2

l

[
Q11 0
0 0

]
0

0 −Ip 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎢⎣

−In 0 0
0 −Ip 0
A B B
C 0 0

⎤
⎥⎥⎦

⎡
⎣
WRl

V2

κRl

⎤
⎦ , (5.31)

which gives

⎡
⎢⎢⎢⎢⎢⎢⎣

−Q 0

[
P11 0
P21 P22

]
0

0 0 0 −Ip[
P11 P∗

21
0 P22

]
0 ω2

l

[
Q11 0
0 0

]
0

0 −Ip 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎢⎣

−In 0 0
0 −Ip 0
A B B
C 0 0

⎤
⎥⎥⎦

⎡
⎣
WRl

V2

κRl

⎤
⎦ , (5.32)

for the continuity of the function about ε.
For the middle-frequency case and high-frequency case, Ξm and Ξh are, respec-

tively

Ξm =
[ −Q PE + jωcQ
EP − jωcQ −ω1ω2EQE

]
, Ξh =

[
Q PE
EP −ω2

hEQE

]
.

The proofs are the similar as the case of low-frequency one.

In the end, we derive sufficient conditions for the SPSs to achieve the PR property
in different frequency ranges via a novel method inspiring from singular systems. It
should be pointed out that the method in this section can be applied to both standard
and nonstandard SPSs, which have broader application perspectives.

5.4 Conclusion

Finite frequency positive real control for SPSs has been investigated in this chapter.
In Sect. 5.1, basic background knowledge for passivity and positive realness has been
given. The high order and ill-conditioning characteristics of SPSs make it difficult
to apply the existing results in SPSs directly. Two methods are demonstrated. In
Sect. 5.2, SPAs are employed with slow and fast subsystems constructed, respectively.
Sufficient conditions for the finite frequency PR control of slow and fast subsystems
are given, and a composite controller is given by composing the slow and fast control
law. To avoid the degradation of the model accuracy, a descriptor-system method for
PR control of SPSs is given in Sect. 5.3. Finally, conclusions are given here.
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Chapter 6
The Sensitivity-Shaping Problem
for Singularly Perturbed Systems

In this chapter, a design technique is carried out by applying robustness criteria to
obtain stability and satisfy some performances. A loop-shaping technique has been
researched by selecting a suitable open-loop TF and then the robust controller is
constructed. This chapter is arranged as follows: the basic definitions are presented
in Sect. 6.1. The loop-shaping design procedure for SISO SPSs via using the finite
frequency strategy is demonstrated in Sect. 6.2. Such method has been extended to
be applied in MIMO SPSs in Sect. 6.3. Using observer-based controllers, the fault
detection (FD) issue for SPSs based on finite frequency methods has been investigated
in Sect. 6.4. Simulation examples are given respectively to show the validity and
effectiveness of the design procedure.

6.1 Sensitivity Function and Complementary
Sensitivity Function

The design specifications, such as tracking performance, bandwidth and robustness
to model uncertainty, are expressed by constraints on the gain responses of the closed-
loop TFs. These problems of the closed-loop TFs are called loop shaping. One typical
example of loop-shaping is called the sensitivity-shaping problem, which aims at
realizing good tracking performance and disturbance attenuation ability.

Suppose that the feedback system is designed, and the level of sensitivity reduction
is given by

|S( jω)| = | 1

1 + Gp( jω)Gc( jω)
| � ε < 1, ∀ω ∈ [0, ωl],

© Springer International Publishing Switzerland 2017
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Fig. 6.1 Unity feedback
plant with controller

where Gp and Gc are TFs of the plant and corresponding controller, respectively,
ε > 0 is a given constant.

Bandwidth constraints in feedback design typically require that the open-loop
TF is small above a specified frequency. These constraints are commonly needed to
ensure stability robustness despite the presence of modeling uncertainty in the plant
model, particularly at high frequencies. One way of quantifying such bandwidth
constraints is via requiring the open-loop TF to satisfy

|L( jω)| � Mh

ω1+β
� ε̃ < 1, ∀ω ∈ [ωh,∞),

where ωh > ωl , and Mh > 0, β > 0 are some given constants.
Consider a control system given in Fig. 6.1. A controller C provides stability if it

provides internal stability for every plant in the uncertainty set P . If L denotes the
open-loop TF (L = PC), then the sensitivity function S can be written as

S = 1

1 + L
,

while the complimentary sensitivity function or the input-output TF can be repre-
sented as

T = 1 − S = L

1 + L
.

To make the closed loops with desired shapes, one must choose appropriate weighting
functions, such as W1, W2 as follows to shape the closed-loop TF using control
technique.

For a multiplicative perturbation model, robust stability condition is met if and
only if ‖W2T ‖∞ < 1 [1, 4], which implies that

|W2( jω)L( jω)

1 + L( jω)
| < 1,

or

|Ω( jω)W2( jω)L( jω)| < |1 + L( jω)|, ω ∈ (−∞,+∞), ‖Ω‖∞ < 1.
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(a)

Feedback loop with uncertainty representation.

(b)

Feedback loop in standard
reduced form.

Fig. 6.2 Interconnections that preserve passivity

The block diagram of a typical perturbed system, ignoring all inputs, is shown in
Fig. 6.2(a). The TF from output of Ω to the input of Ω equals −W2T . The properties
of the block diagram can be reduced to those of the configuration given in Fig. 6.2(b)
[1, 3].

The maximum loop gain ‖−W2T ‖∞ is less than 1 for all allowable Ω if and only
if the small gain condition ‖W2T ‖∞ < 1 holds. The nominal performance condition
for an internally stable system is given as ‖W1S‖∞ < 1, where W1 is a real-rational,
stable, minimum phase TF, also called a weighting function. If the plant P is perturbed
by some uncertainties, there is P̃ = (1 + ΩW2)P , similarly, S will be

S̃ = 1

1 + (1 + ΩW2L)
= S

1 + ΩW2T
.

The robust performance condition should thereby be

‖W2T ‖∞ < 1, and ‖ W1S

1 + ΩW2T
‖∞ < 1, ∀‖Ω‖ < 1.

Combining all the above, it can be shown that a necessary and sufficient condition
for robust stability and performance is [4]:

‖|W1S| + |W2T |‖∞ < 1.

Overall, loop shaping is a graphical procedure to design a proper controller C
satisfying robust stability and performance criteria given above. The basic idea of
the method is to construct the loop TF L to satisfy the robust performance criterion
approximately, and then to obtain the controller from the relationship C = L/P .
Internal stability of the plants and properness of C constitute the constraints of the
method. Condition L = PC should not have any pole zero cancellation. Different
from the existing results mentioned before, the GKYP lemma is used as the frequency
division tool to replace the use of the weighing functions, from which new results
are obtained.
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6.2 Finite Frequency S/T Mixed Sensitivity Design
for SISO Singularly Perturbed Systems

The section derives sufficient conditions for the feasibility of a kind of non-convex
problem based on GKYP lemma approach. A controller for the SPS is designed
in detail to satisfy frequency domain loop-shaping specifications which are given
in terms of H∞ norm. It has been further shown that this controller is obtained
by designing its fast and slow parts, respectively. The effectiveness of the proposed
method is demonstrated through being compared with traditional H∞ design method.

For engineering applications, this section aims at investigating the mixed sensi-
tivity problems of SISO SPSs via finite frequency strategy. We extract the dominant
frequency components in FF ranges from the the dynamics of SPSs, and design a
controller to achieve frequency domain loop-shaping specifications. Based on the
GKYP lemma, the controller for the full system is designed, which has the simi-
lar singularly perturbed structure with the full system. Furthermore, the parameters
of this controller can be derived through designing its fast and slow parts. Finally,
the example comparison with traditional H∞ method shows the superiority of our
results. The main feature of this method is that the controller for the full system is
designed directly, without the composition of the suboptimal controllers.

Loop-shaping is a typical control design, which requires small sensitivity in a
low-frequency range and small complementary sensitivity in a high-frequency range
[23]. Simultaneously, the stability margin specification should be satisfied in a middle
frequency range.

An SISO singularly perturbed system Gp(s) is given:

ẋ1 = A11x1 + A12x2 + B1u,

εẋ2 = A21x1 + A22x2 + B2u,

y = C1x1 + C2x2 + Du,

(6.1)

where x1 ∈ Rn1 , x2 ∈ Rn2 , u ∈ R, y ∈ R, and A22 is assumed to be non-singular.

Problem 6.1 A controller Gc(s) is designed to achieve the following specifications:

(1)
∣∣∣ 1

1+Gp( jω)Gc( jω)

∣∣∣ < γ1, |ω| ≤ ωl ;

(2)
∣∣1 + Gp( jω)Gc( jω)

∣∣ > γ0, ωl ≤ |ω| ≤ ωh ;

(3)
∣∣∣ Gp( jω)Gc( jω)

1+Gp( jω)Gc( jω)

∣∣∣ < γ3, ωh ≤ |ω|,
where ωl < ωh .

Specification (1) represents good tracking performance with small γ1. The specifi-
cation (2) ensures a reasonable stability margin with large γ0. The specification (3)
represents robustness against unmodeled dynamics of the plant in high-frequency
range with small γ3. Specifications (1) and (2) will lead to non-convex regions on
the complex plane such that the GKYP lemma can not be directly applied to them.
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In addition, the three specifications above will be rewritten in other forms, which
are more rigorous. Based on the GKYP lemma, we obtain the sufficient conditions
for the feasibility of the non-convex problem, and the results and some relevant
propositions will be applied to the loop-shaping control design based on the GKYP
lemma. The similar specifications are presented in [6, 9], the main difference is that
the specifications they introduced were based on the real and imaginary parts of
open-loop TF.

Through classical slow-fast decomposition methods, the slow subsystem Gps(s)
and fast subsystem Gpf (s) of Gp(s) can be expressed as

ẋs = Asxs + Bsus,

ys = Csxs + Dsus,
(6.2)

and

εẋ f = A22x f + B2u f ,

y f = C2x f + Du f ,
(6.3)

where As = A11 − A12A
−1
22 A21, Bs = B1 − A12A

−1
22 B2, Cs = C1 − C2A

−1
22 A21,

Ds = D − C2A
−1
22 B2.

To solve the numerical stiffness in Gp(s), we design a controller Gc(s) which has
a similar structure as the original system:

ṗ = E11 p + E12q + F1e,

εq̇ = E21 p + E22q + F2e,

u = G1 p + G2q + He,

where p ∈ Rñ1 , q ∈ Rñ2 , e ∈ R, u ∈ R and E22 is non-singular.
Decomposing the controller, the slow part Gcs(s) and fast part Gcf (s) are

obtained:

ṗs = Es ps + Fses,

us = Gs ps + Hses,

and

ε ṗ f = E22 p f + F2e f ,

u f = G2 p f + He f ,

where Es = E11 − E12E
−1
22 E21, Fs = F1 − E12E

−1
22 F2, Gs = G1 − G2E

−1
22 E21 and

Hs = H − G2E
−1
22 F2.

Since loop-shaping design problem requires small sensitivity in a low-frequency
range and small complementary sensitivity in a high-frequency range, we define
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sensitivity function S(s) and complementary sensitivity function T (s) as follows:

S(s) = 1

1 + GpsGcs
, T (s) = Gpf Gcf

1 + Gpf Gcf
.

Problem 6.2 Taking the definition of H∞ norm in finite frequency range into con-
sideration, the following specifications are obtained:

(1) ‖S( jω)‖∞ < γ1, |ω| ≤ ωl ;
(2)

∥∥1 + Gps( jω)Gcs( jω)
∥∥∞ > γ2, |ω| ≤ ωh ;

(3) ‖T ( jω)‖∞ < γ3, ωh ≤ |ω|;
(4)

∥∥1 + Gpf ( jω)Gcf ( jω)
∥∥∞ > γ4, ωl ≤ |ω|,

where ωl < ωh .

Specifications (1) and (3) ensure the small sensitivity and small complementary
sensitivity with small γ1 and γ3 in low-and high-frequency ranges respectively, and
the specifications (2) and (4) guarantee a certain stability margin with large γ2 and γ4.

According to results of Iwasaki [19], the relevant result of slow subsystem is given
as follows:

Theorem 6.1 Let W1 = {ω ∈ R : |ω| ≤ ωl}, W2 = {ω ∈ R : |ω| ≤ ωh} be given,
where ωl < ωh. Suppose det( jωI − A) �= 0 (ω ∈ W2). Then, the constraints,
‖S(s)‖∞ < γ1 for any ω ∈ W1 and

∥∥1 + GpsGcs

∥∥∞ > γ2 for any ω ∈ W2, hold
if there exist real symmetric matrices P1, P2 and Q1 > 0, Q2 > 0, such that the
following inequalities are satisfied,

⎡
⎣
AP1 + P1AT − AQ1AT + ω2

l Q1 −AQ1CT + P1CT B
−CQ1AT + CP1 −CQ1CT − γ1

2 I D1

BT D1
T −I

⎤
⎦ < 0 (6.4)

and
[
AP2 + P2AT − AQ2AT + ω2

hQ2 − BBT −AQ2CT + P2CT − BDT
2

−CQ2AT + CP2 − D2BT −CQ2CT − D2D2
T + γ2

2 I

]
< 0,

(6.5)
where

A =
[
As BsGs

0 Es

]
, B =

[
BsHs

Fs

]
, C = [

Cs DsGs
]
,

D1 = DsHs −
(

1

γ1
+ γ1 − 1

)
, D2 = DsHs + 1.

Proof Combining Lemma 2.2 with SCL 2.4 and taking

Ψ =
[−1 0

0 ω2
l

]
, π=

[
I 0
0 −γ 2

1 I

]
, D = D1,

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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we have

[
A I
C 0

] ([
0 P
P 0

]
+ Ψ T ⊗ Q

) [
A I
C 0

]T

+
[
B 0
D I

]
π

[
B 0
D I

]T

< 0,

which gives ∥∥C(s I − A)−1B + D1

∥∥∞ < γ1, ∀ω ∈ W1. (6.6)

Defining

Ψ =
[−1 0

0 ω2
l

]
, π=

[
I 0
0 −γ 2

1 I

]
, D = D2,

then (6.5) is equivalent

∥∥C(s I − A)−1B + D2

∥∥∞ > γ2, ∀ω ∈ W2 (6.7)

The state space realization of Gps(s)Gcs(s) is

[
ẋs
ṗs

]
=

[
As BsGs

0 Es

] [
xs
ps

]
+

[
BsHs

Fs

]
es

ys = [
Cs DsGs

] [
xs
ps

]
+ D0H0es .

Then, the inequality (6.6) is equivalent to

∥∥∥∥GpsGcs −
(

1

γ1
+ γ1 − 1

)∥∥∥∥∞
< γ1, ∀ω ∈ W1.

Remark 6.1 It can be seen thatGp(s) andGc(s) are SISO systems, and the sensitivity
problem can be specified with a scalar γ1 < 1 such that

‖S(s)‖∞ =
∥∥∥∥

1

1 + GpsGcs

∥∥∥∥
∞

< γ1, ∀ω ∈ W1.

Inequality (6.7) is equivalent to

∥∥1 + GpsGcs

∥∥∞ > γ2, ∀ω ∈ W2.

Similar result of fast subsystem is given as follows:

Theorem 6.2 Let W1 = {ω ∈ R : |ω| � ωh}, W2 = {ω ∈ R : |ω| � ωl} be given,
where ωl < ωh. Suppose det( jωI − A) �= 0(ω ∈ W2). Then, the requirements,
‖T (s)‖∞ < γ3 for any ω ∈ W1 and

∥∥1 + GpsGcs

∥∥∞ > γ4 for any ω ∈ W2, hold
if there exist real symmetric matrices P1, P2 and Q1 > 0, Q2 > 0, such that the
following inequalities are satisfied,
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⎡
⎣
AP1 + P1AT − AQ1AT + ω2

l Q1 −AQ1CT + P1CT B
−CQ1AT + CP1 −CQ1CT − β2 I D1

BT D1
T −I

⎤
⎦ < 0, (6.8)

and
[
AP2 + P2AT − AQ2AT + ω2

hQ2 − BBT −AQ2CT + P2CT − BDT
2

−CQ2AT + CP2 − D2BT −CQ2CT − D2D2
T + γ2

2 I

]
< 0,

(6.9)

where β = γ3

1+γ3
, A =

[
A22/ε B2G2/ε

0 E22/ε

]
, B =

[
B2H/ε

F2/ε

]
, C = [

C2 DG2
]
and

D1 = DH, D2 = DH + 1.

Proof Similar to the proof of Theorem 6.1.

It has been shown how to design a controller for a SPS to satisfy loop-shaping
specifications. Since similar problem has been discussed in [10], the results obtained
are compared with theirs in the following examples. The main difference is that they
consider the problem in the entire frequency range, whereas our results are built in
the finite frequency ranges.

Example 6.1 Consider the following SISO SPS,

Gp(s) = s + 1

(s + 2)(εs + 1)
,

where ε = 0.0001.

In order to make the comparison clearly, we choose ωl = 2 × 10−5, ωh = 2 ×
105. Applying the design method, we obtain the controller as follows:

Gc(s) = 284.7s + 5.691 × 106

s2 + 10002s + 1 × 104 .

The composite controller is obtained (Fig. 6.3),

Gc(s) = 0.0001949s4 + 1.952s3 + 23.86s2 + 90.95s + 102.1

1 × 10−11s5 + 2.051 × 10−5s4 + 0.1025s3 + 0.6659s2 + 0.8195s + 0.2561
.

The sensitivity functions and the step response are depicted in Fig. 6.4.

Example 6.2 Let the plant with the small parameter ε = 0.001 be

Gp(s) = s + 0.5

(s + 2)(εs + 2)
.

A controller will be designed such that both γ2 and γ4 will approach 1, and γ1 ≤
0.1, γ3 ≤ 0.1.
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Fig. 6.3 Sensitivity
functions in the finite
frequency ranges

Fig. 6.4 Sensitivity
functions in the finite
frequency ranges

In this example, select parameters ωl = 2 × 10−4, ωh = 2 × 104 and G2 = 1,

E22 = −1, E11 = −2, E12 = E21 = G1 = 1, H = 0. To make our results more
convincing, we provide two groups of specifications, and then design two different
controllers according to the different specifications:

(1) γ1 = 0.1, γ3 = 0.01
Using the design procedure in this subsection, a controller is developed as

Gc(s) = 413.1s + 7.282 × 104

s2 + 1002s + 1000
.

(2) γ1 = 0.01, γ3 = 0.01
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Similarly, another controller to satisfy specification (2) is obtained:

Gc(s) = 772.8s + 7.921 × 105

s2 + 1002s + 1000
.

It is easily to verify that the parameters selected meet γ4 = 0.97 and γ2 = 1.18 that
means a certain stability margin has been guaranteed. The sensitivity functions and
the step response are depicted in Fig. 6.4.

Loop-shaping design for SPSs has been investigated in these examples. A sin-
gularly perturbed form controller is also constructed. The most remarkable is that
the controller can be design directly without the composition of the suboptimal con-
trollers.

6.3 Finite Frequency H_/H∞ Control for MIMO
Singularly Perturbed Systems

There are many research results along the H∞ control problem for singularly per-
turbed. Oloomi and Sawan [15] studied the suboptimal matching problem for SISO
two frequency-scale systems and obtained a suboptimal H∞ solution through solv-
ing the model matching problems for low-and high-frequency models. Tan et al.
[20] have derived a set of ε-independent sufficient and necessary conditions for the
existence of an H∞ suboptimal controller in a different and simple way. Pan and
Basar [16, 17] have solved the H∞ control problem for the MIMO SPS using the
theory of differential games, and presented an ε-independent two-stage procedure
for the construction of a suboptimal solution. Luse and Ball [12] studied a weighted
sensitivity problem and derived an approximate solution in which the problem is
decomposed into slow and fast subproblems. However, their results are based on the
entire frequency, without considering the frequency characteristics of subsystems
sufficiently.

One of the most fundamental results relation frequency domain and time domain is
the KYP lemma, which establishes the equivalence between the FDI and the LMI [18,
21]. As the extension of the standard KYP lemma, the GKYP lemma was introduced
by Iwasaki et al., which provided an LMI characterization of FDIs in (semi)finite
frequency range [6, 8, 19]. Finite frequency control of SPS were developed in [13,
14]. Mei et al. [14] studied for H∞ Control of SPS by a GKYP lemma based approach.
Huang et al. [7] discussed finite frequency positive real control for SPS.

In this section, the H_/H∞ control issue are considered for MIMO SPS in
(semi)finite frequency ranges, and a singularly perturbed form controller is designed
to satisfy different FF specifications. Introducing H_ index and H∞ norm of TFM
in different frequency set, the SPS can achieve desired robustness and good sensor
noise rejection capability. Finally, a example is given to demonstrate the superiority
of our results.
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Consider the following SPS G(s):

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t),

εẋ2(t) = A21x1(t) + A22x2(t) + B2u(t),

y(t) = C1x1(t) + C2x2(t) + Du(t),

(6.10)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 (n = n1 + n2) are the states vectors, u(t) ∈ Rp

is the input vector, y(t) ∈ Rq is the output vector and 0 < ε 	 1 is a small real
parameter. The TFM is represented by

G(s) = C(s In − A)−1B + D :=
[
A B
C D

]
∈ RH∞,

where A =
[
A11 A12
A21
ε

A22
ε

]
, B =

[
B1
B2
ε

]
, C = [

C1 C2
]
, and D are constant matrices of

appropriate dimensions.
As r(t) = 0, the desired disturbance rejection capability of G(s) with good

dynamic characteristics would require designing a controller Gc(s) such that the
following requirement is satisfied

σ̄
((

Iq + G(s)Gc(s)
)−1

)
< γ1, |ω| ≤ ωl . (6.11)

As d(t) = 0, the desired disturbance rejection capability of G(s) with good dynamic
characteristics would require designing a controller Gc(s) such that the following
requirement is satisfied

σ̄
(
G(s)Gc(s)

(
Iq + G(s)Gc(s)

)−1
)

< γ2, |ω| ≥ ωh, (6.12)

where γ1 and γ2 are two small real constants.

Remark 6.2 The output sensitivity matrix So(s) = (
Iq + G(s)Gc(s)

)−1
, shown in

Fig. 6.5, is defined as the TF from the disturbance d to measurement output y, and
the output complementary sensitivity matrix is denoted by

To(s) = Iq − So(s) = G(s)Gc(s)
(
Iq + G(s)Gc(s)

)−1
.

Fig. 6.5 The residual output
subject to the low-frequency
noise
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Remark 6.3 It should be noted that the inequality (6.11) has reveal that the singular
value of S0(s) is supposed small for good dynamic performance of the plant output
in the low-frequency range [−ωl , ωl ], while inequality (6.12) has shown that the sin-
gular value of G(s) is supposed small to guarantee desired robustness and sufficient
sensor noise rejection capability in the high-frequency range (−∞,−ωh ] ∪ [ωh,∞).

Based on Lemma 2.1, we can obtain the following lemmas in the equivalent form.

Lemma 6.1 Define the rational function G(λ) = (λIn − A)−1B, where A ∈ Cn×n,
B ∈ Cn×p. Given Hermitian matrix Π ∈ C(n+p)×(n+p), the complex frequency set Λ
can be defined by

Λ(Φ,Ψ ) =
{
λ ∈ C :

[
λ

1

]∗
Φ

[
λ

1

]
= 0,

[
λ

1

]∗
Ψ

[
λ

1

]
� 0

}
, (6.13)

where λ is the frequency variable (s for continuous-time and z for discrete-time
cases), and Hermitian matrices Φ,Ψ ∈ C2×2. The following statements are equiva-
lent,

(1)

[
G(λ)

Ip

]∗
Π

[
G(λ)

Ip

]
< 0(>0), for any λ ∈ Λ(Φ,Ψ );

(2) There exist Hermitian matrices P and Q > 0, such that

[
A B
In 0

]∗
(Φ ⊗ P + Ψ ⊗ Q)

[
A B
In 0

]
+ Π < 0(> 0).

For clarity of explanation, the dual version of the GKYP lemma is introduced.

Lemma 6.2 Define the rational function G(λ) = C(λIn − A)−1, where A ∈ Cn×n,
C ∈ Cq×n. Given Hermitian matrix Γ ∈ C(n+q)×(n+q), the complex frequency set
Λ(Φ,Ψ ) can be denoted by (6.13). The following statements are equivalent,

(1)
[
G(λ) Iq

]
Γ

[
G(λ) Iq

]∗
< 0(> 0), for any λ ∈ Λ(Φ,Ψ ).

(2) There exist Hermitian matrices P and Q > 0, such that the following inequality
is satisfied

[
A In
C 0

]
(Φ ⊗ P + Ψ ⊗ Q)

[
A In
C 0

]∗
+ Γ < 0(> 0).

As an extension of Lemmas 6.1 and 6.2, the following lemma is given.

Lemma 6.3 Let W =
{
ω ∈ R :

[
jω
1

]∗
Ψ

[
jω
1

]
≥ 0

}
, with the relationship

between W and Ψ shown in Table6.1. Assume det( jωIn − A) �= 0 (ω ∈ W ).

The constraint condition ‖G(s)‖W− = ∥∥C(s In − A)−1B + D
∥∥W

− > β holds if and
only if exist Hermitian matrices P1 and Q1 > 0, such that

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Table 6.1 Comparison of W − Ψ

W Ψ

|ω| ≤ ωl

[
−1 0

0 ω2
l

]

0 ≤ ω ≤ ωl

[
−1 − jωl/2

jωl/2 0

]

ωl ≤ ω ≤ ωh

[
−1 j (ωl + ωh)/2

− j (ωl + ωh)/2 −ωlωh

]

|ω| ≥ ωh

[
1 0

0 −ω2
h

]

ω ≥ ωh

[
0 j

− j −2ωh

]

0 ≤ ω < ∞
[

0 0

0 0

]

[
A B
In 0

]∗ ([
0 P1

P1 0

]
+ Ψ ⊗ Q1

)[
A B
In 0

]
+

[
C∗C C∗D
D∗C D∗D − β2 Ip

]
> 0. (6.14)

Similarly, the constraint condition ‖G(s)‖W∞ = ∥∥C(s In − A)−1B + D
∥∥W

∞ < γ

holds if and only if exist Hermitian matrices P2 and Q2 > 0, such that

[
A In
C 0

] ([
0 P2

P2 0

]
+ Ψ ⊗ Q2

)[
A In
C 0

]∗
+

[
BB∗ BD∗
DB∗ DD∗ − γ 2 Iq

]
< 0. (6.15)

Proof According to definition of H_ index, ‖G(s)‖W− > β is equivalent to
inf
ω∈W[G( jω)] > β, which is rewritten by G∗( jω)G( jω) > β2 Ip, for any ω ∈ W , i.e.,

(
C( jωIn − A)−1B + D

)∗ (
C( jωIn − A)−1B + D

) − β2 Ip > 0, ∀ω ∈ W,

(6.16)
based on the minimum singular value definition.

It can be seen that (6.16) can be further represented by

[
( jωIn − A)−1B

Ip

]∗ [
C∗C C∗D
D∗C D∗D − β2 Ip

] [
( jωIn − A)−1B

Ip

]
> 0, ∀ω ∈ W.
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Hence, according to Lemma 6.1, the inequality (6.15) holds if and only if there
exist Hermitian matrices, P1 and Q1 > 0, such that

[
( jωIn − A)−1B

Ip

]∗
(Φ ⊗ P1 + Ψ ⊗ Q1)

[
( jωIn − A)−1B

Ip

]
+ Π > 0, ∀ω ∈ W,

where Π =
[
C∗C C∗D
D∗C D∗D − β2 Ip

]
.

Here, we define λ = jω, which means the real part of λ is zero, i.e., λ∗ + λ = 0
with its matrix form [

λ

1

]∗ [
0 1
1 0

] [
λ

1

]
= 0. (6.17)

The frequency variable ω ∈ λ can be characterized by λ ∈ Λ(Φ,Ψ ), Φ =
[

0 1
1 0

]
,

and Ψ can be used in the frequency division. The proof of the equivalence between
‖G(s)‖W∞ < γ and inequality (6.15) is similar to the above proof, which is omitted
here [8].

According to the Table 6.1, in the low-frequency range |ω| ≤ ωl , one can obtain
that (6.14) is equivalent to

[
A B
In 0

]∗ [−Q1 P1

P1 ω2
l Q1

] [
A B
In 0

]
+

[
C∗C C∗D
D∗C D∗D − β2 Ip

]
> 0.

In the high-frequency range |ω| ≥ ωh , one can achieve that inequality (6.15) is
equivalent to

[
A In
C 0

] [
Q2 P2

P2 −ω2
hQ2

] [
A In
C 0

]∗
+

[
BB∗ BD∗
DB∗ DD∗ − γ 2 Iq

]
< 0.

Using the tradition singularly perturbed method, slow subsystem Gs(s) and fast
subsystem G f (εs) are obtained

ẋs = Asxs + Bsus,

ys = Csxs + Dsus,
(6.18)

and

εẋ f = A22x f + B2u f ,

y f = C2x f + Du f ,
(6.19)

where As = A11 − A12A
−1
22 A21, Bs = B1 − A12A

−1
22 B2, Cs = C1 − C2A

−1
22 A21,

Ds = D − C2A
−1
22 B2. Throughout this subsection, the following assumptions are

required.
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Assumption 6.1 As is stable matrix.

Assumption 6.2 A22 has no eigenvalues on the imaginary axis.

It has been shown in [5] that the TF of a SPS can be written as sum of two TFs
in two different frequency-scales, s and εs, corresponding to the time-scales t and
τ = t/ε:

G(s) = Gs(s) + G f (εs),

which means that Gs(s) and G f (εs) can approximate G(s) in low and high frequen-
cies, respectively. Then, let Gcs(s) be a controller for slow subsystem Gs(s) and
Gcf (εs) be a controller for fast subsystem G(εs).

It can be assumed that the controllers have the following state-space realizations

Gsc(s) :
{
ẋsc = Ascxsc + Bsc(ρ)ysc,
usc = Cscxsc + Dsc(ρ)ysc,

G f c(εs) :
{

εẋ f c = A f cx f c + B f c(ζ )y f c,

u f c = C f cx f c + D f c(ζ )y f c,

where xsc ∈ Rns and x f c ∈ Rn f (nk = ns + n f ).

Assumption 6.3 Bsc(ρ), Dsc(ρ), B f c(ζ )and D f c(ζ )are proper dimension affinely
function of ρ and ζ , respectively. Asc, Csc, A f c and C f c are constant proper dimen-
sion matrices.

It means that Gs(s) and G f (εs) depend affinely on the design parameters ρ and
ζ , respectively, which also shows that the poles of Gs(s) and G f (εs) are fixed, and
the zeros are designed through the choice of ρ and ζ [6].

Assumption 6.4 Asc is stable matrix.

The following theorem is one of our main results, and formally states the suffi-
cient conditions of SPS controller to satisfy the performance of the plant output in
the low-frequency range [−ωl, ωl ] and noise rejection in the high-frequency range
(−∞,−ωh] ∪ [ωh,∞).

Theorem 6.3 Suppose Assumptions 6.3 and 6.4 are satisfied. Inequalities (6.14)
and (6.15) hold if there exist small constants β > 0, γ > 0 and ε> 0, Hermitian
matrices P1, P2 and Q1 > 0, Q2 > 0 such that the following LMIs hold

⎡
⎢⎢⎢⎢⎣

P1 Â + Â∗P1 + Ĉ∗Ĉ Ĉ∗ D̂ P1 0 Â∗

D̂∗Ĉ (1 − β2)In1+ns + DsDsc + D∗
scD

∗
s 0 B̂∗ B̂∗

P1 0 In1+ns 0 0
0 B̂ 0 Ip 0
Â B̂ 0 0 Q−1

1

⎤
⎥⎥⎥⎥⎦

> 0,

(6.20)
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⎡
⎢⎢⎣
P2 Ā∗ + ĀP2 − ω2

hQ2 P2C̄∗ B̄ ĀQ2

C̄ P2 −γ 2 Ip D̄ C̄Q2

B̄∗ D̄∗ −Il 0
Q2 Ā∗ Q2C̄∗ 0 −Q2

⎤
⎥⎥⎦ < 0, (6.21)

where

Â =
[
As BsCsc

0 Asc

]
, B̂ =

[
BsDsc

Bsc

]
, Ĉ = [

Cs DsCsc
]
, D̂ = DsDsc + Ip,

Ā = ε−1

[
A22 B2C f c

0 A f c

]
, B̄ = ε−1

[
B2D f c

B f c

]
, C̄ = [

C2 DC f c
]
, and D̄ = DD f c.

Proof Considering that

σ̄
((

Ip + G(s)Gc(s)
)−1

)
= 1(

Ip + G(s)Gc(s)
) < γ1 : |ω| ≤ ωl

and

σ̄
(
G(s)Gc(s)

(
Ip + G(s)Gc(s)

)−1
)

= 1
1

σ̄ (G(s)Gc(s))
+ 1

< γ2 : |ω| ≥ ωh,

i.e., (
Ip + G(s)Gc(s)

)
> β : |ω| ≤ ωl , (6.22)

σ̄ (G(s)Gc(s)) < γ : |ω| ≥ ωh, (6.23)

where β = 1
γ1

and γ = γ2

1−γ2
≈ γ2, it can be seen that inequalities (6.22) and (6.23)

are, respectively, equivalent to

∥∥Ip + G(s)Gc(s)
∥∥[−ωl ,ωl ]

− > β, (6.24)

‖G(s)Gc(s)‖(−∞,−ωh ]∪[ωh ,∞)
∞ < γ. (6.25)

Hence, for the slow subsystem Gs(s) and its controller Gcs(s), condition (6.24) is
equivalent to ∥∥Ip + Gs(s)Gsc(s)

∥∥[−ωl ,ωl ]
− > β. (6.26)

Similarly, for the fast subsystem G f (εs) along with its controller Gcf (εs), con-
dition (6.25) is equivalent to

∥∥G f (εs)G f c(εs)
∥∥(−∞,−ωh ]∪[ωh ,∞)

∞ < γ. (6.27)
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Moreover, we have

Ip + Gs(s)Gsc(s) = Ip +
[
As Bs

Cs Ds

] [
Asc Bsc

Csc Dsc

]

=
⎡
⎣
As BsCsc Bs Dsc

0 Asc Bsc

Cs DsCsc DsDsc + I

⎤
⎦ :=

[
Â B̂

Ĉ D̂

]

and

G f (εs)G f c(εs) =
[
A22

/
ε B2

/
ε

C2 D

] [
A f c

/
ε B f c

/
ε

C f c D f c

]

=
⎡
⎣
A22

/
ε B2C f c

/
ε B2D f c

/
ε

0 A f c
/
ε B f c

/
ε

C2 DC f c DD f c

⎤
⎦ :=

[
Ā B̄
C̄ D̄

]
.

According to Lemma 6.2, in the low-frequency range [−ωl , ωl], the inequality
(6.26) holds if and only if there exist symmetric matrices P1 and Q1 > 0 such that

[
Â B̂

In1+ns 0

]T [−Q1 P1

P1 ω2
l Q1

] [
Â B̂

In1+ns 0

]
+

[
ĈT Ĉ ĈT D̂
D̂T Ĉ D̂T D̂ − β2 Ip

]
> 0,

i.e.,

[− Â∗Q1 Â + P1 Â + Â∗P1 + ω2
l Q1 + Ĉ∗Ĉ − Â∗Q1 B̂ + P1 B̂ + Ĉ∗ D̂

� −B̂∗Q1 B̂ + D̂∗ D̂ − β2 Ip

]
> 0.

(6.28)

However,

[−P2
1 −P1 B̂

� −B̂∗ B̂

]
≤ 0, and the inequality (6.28) can be rewritten by

[ − Â∗Q1 Â + P1 Â + Â∗P1 + ω2
l Q1 + Ĉ∗Ĉ − P2

1 − Â∗Q1 B̂ + Ĉ∗ D̂
� −B̂∗Q1 B̂ + D̂∗ D̂ − β2 Ip − B̂∗ B̂

]
> 0.

Based on Schur complementary Lemma, inequality (6.28) can be written equiv-
alently as

⎡
⎢⎢⎢⎢⎣

P1 Â + Â∗P1 + ω2
l Q1 + Ĉ∗Ĉ Ĉ∗ D̂ P1 0 Â∗

� D̂ D̂∗ − β2 Ip 0 B̂∗ B̂∗
� � In1+ns 0 0
� � � In1+ns 0
� � � � Q−1

1

⎤
⎥⎥⎥⎥⎦

> 0 (6.29)
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Due to the constraints Q1 > 0 and (DsDsc)
∗DsDsc ≥ 0, the (1, 1) element and

(2, 2) element of left matrix of inequality (6.29) are

P1 Â + Â∗P1 + ω2
l Q1 + Ĉ∗Ĉ > P1 Â + Â∗P1 + Ĉ∗Ĉ

and
D̂∗ D̂ = (DsDsc + Ip)

∗(DsDsc + Ip) ≥ Ip + DsDsc + D∗
scD

∗
s .

In the high-frequency range, (−∞,−ωh] ∪ [ωh,∞), the control performance
(6.27) holds if and only if there exist symmetric matrices P2 and Q2 > 0 such that

[
Ā In2+n f

C̄ 0

] [
Q2 P2

P2 −ω2
hQ2

] [
Ā In2+n f

C̄ 0

]∗
+

[
B̄ B̄∗ B̄ D̄∗
D̄ B̄∗ D̄ D̄∗ − γ 2 Ip

]
< 0,

i.e.,

[
ĀQ2 Ā∗ + P2 Ā∗ + ĀP2 − ω2

hQ2 + B̄ B̄∗ ĀQ2C̄∗ + P2C̄∗ + B̄ D̄∗
� C̄Q2C̄∗ + D̄ D̄∗ − γ 2 Ip

]
< 0.

Based on Schur complementary Lemma, inequality (6.29) can be written equiv-
alently as (6.21).

Next, we discuss the stability of slow control subsystem. Take Â =
[
As BsCsc

0 Asc

]
,

where Asc and Csc be constant matrices in the controller Gsc(s), and the stability of
Â is equivalent to the that of As and Asc.

Theorem 6.4 Consider a SPS described by G(s), with the subsystems controllers
Gsc(s) and G f c(s). Suppose that Assumptions 6.3 and 6.4 are satisfied, and the
closed-loop system Gs is stable. Control performances (6.11) and (6.12) hold, if
exist Hermitian matrices P1, P2 and Q1 > 0, Q2 > 0 such that LMIs (6.20) and
(6.21) hold. Then, the controller can be formulated by

Gc(s) = Gcs(s) + Gcf (εs).

Example 6.3 Consider the one-link robotic manipulator with flexible joint illustrated
in [5],

ẋ1 = x2,

ẋ2 = J−1
2 (mgl sin x1 − βs z3 − βd z4),

εż1 = −z1 + x1,

εż2 = −z2 + x2,

εż3 = z4,

εż4 = J−1
2 mgl sin x1 − (J1 + J2)J

−1
2 J−1

1 (βs z3 + βd z4) + J−1
1 u,

y1 = x1,

y2 = z2,

(6.30)
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Table 6.2 Physical parameters of one-link robotic manipulator with flexible joint

Physical description Parameter Value Unit

Angular displacements of the rotor θ1 – rad

Angular displacements of the link θ2 – rad

Real small parameter μ – –

Moment of inertia of the rotor J1 1 kg · m2

Moment of inertia of the link J2 1.333 kg · m2

Mass of the link m 1 kg

Half length of link l 1 m

Gravitational acceleration constant g 1.62 m/s2

Spring constant of linear torsional spring βs 3 N/m

Damping coefficient of linear torsional damper βd 3 Ns /m

where x1 := θ2, x2 := θ̇2, εż1 = −z1 + θ2, εż2 = −z2 + θ̇2, z3 := ε−2(θ2 − θ1),

z4 := ε−1(θ̇2 − θ̇1). Some parameters in (6.30) are listed in Table 6.2.
Letting sin x1 ≈ x1 and substituting the related parameters into (6.30) can yield

ẋ1 = x2,

ẋ2 = 1.215x1 − 2.15z3 − 2.15z4,

εż1 = −z1 + x1,

εż2 = −z2 + x2,

εż3 = z4,

εż4 = 1.215x1 − 5.25z3 − 5.25z4 + u,

y1 = z1,

y2 = z2,

where

A11 =
[

0 1
1.215 0

]
, A12 =

[
0 0 0 0
0 0 −2.25 −2.25

]
,

A21 =

⎡
⎢⎢⎣

1 0
0 1
0 0

1.215 0

⎤
⎥⎥⎦ , A22 =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −5.25 −5.25

⎤
⎥⎥⎦ ,

B1 =
[

0
0

]
, B2 = [

0 0 0 1
]T

, C1 =
[

0 0
0 0

]
, C2 =

[
1 0 0 0
0 1 0 0

]
, D =

[
0
0

]

Related parameters of the slow and fast subsystems of (6.30) are listed as follows

As =
[

0 1
0.7174 1

]
, Bs =

[
0

−0.4095

]
, Cs =

[
1 0
0 1

]
, Ds =

[
0
0

]
,
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A22 =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −5.25 −5.25

⎤
⎥⎥⎦ , B2 = [

0 0 0 1
]T

, C2 =
[

1 0 0 0
0 1 0 0

]
, D =

[
0
0

]
.

The PID strategy is adopted in this example. For the slow subsystem Gs(s), it is
obtained

Gsc(s) = [
Ks1(s) Ks2(s)

]
,

where

Ks1(s) = kp1 + ki1
s

+ kd1

1 + Td1s
,

Ks2(s) = kp2 + ki2
s

+ kd2

1 + Td2s
,

in which Td1 > 0 and Td2 > 0 are small time constants, and parameters kpj , ki j and
kd j ( j = 1, 2) are designed parameters. We can obtain its state-space realization as

[
Asc Bsc(ρ)

Csc Dsc(ρ)

]
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 ki1 0
1 −1

/
Td1 0 0 ki1 − kd1

/
T 2
d1 0

0 0 0 0 0 ki2
0 0 1 −1

/
Td2 0 ki2 − kd2

/
T 2
d2

0 1 0 1 kp1 + kd1
/
Td1 kp2 + kd2

/
Td2

⎤
⎥⎥⎥⎥⎥⎦

Similarly, for fast subsystem G f (s), the state-space realization controller G f c(εs)
can be represented by

[
A f c

/
ε B f c(ζ )

/
ε

C f c D f c(ζ )

]
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 k̄i1
/
ε 0

1 −1
/
εT̄d1 0 0 k̄i1

/
ε − k̄d1

/
εT̄ 2

d1 0
0 0 0 0 0 k̄i2

/
ε

0 0 1 −1
/
εT̄d2 0 k̄i2

/
ε − k̄d2

/
εT̄ 2

d2

0 1 0 1 k̄ p1 + k̄d1
/
T̄d1 k̄ p2 + k̄d2

/
T̄d2

⎤
⎥⎥⎥⎥⎥⎦

where T̄d1 > 0 and T̄d2 > 0 are small time constants, and k̄ pj , k̄i j and k̄d j ( j = 1, 2)

are designed parameters.

Overall, H_/H∞ control for MIMO SPSs in the finite frequency ranges has been
investigated in this section. Sufficient conditions for the existence of an H_/H∞
suboptimal controller are derived based on GKYP lemma. A singularly perturbed
form controller is constructed through designing its fast and slow parts. The result
is applied to deal with the H_/H∞ control problem in different frequency ranges to
achieve the desired robustness and better sensor noise rejection.
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6.4 Fault Detection for Singularly Perturbed Systems

This section addresses the FD synthesis for a class of linear SPSs with disturbances.
The observer is designed via using a singular method, in which the SPSs could be
processed within a uniform framework instead of the classical slow-fast decompo-
sition. The problem of robust FD is converted into a standard H∞ model-matching.
Based on the GKYP lemma and parameter-dependent Lyapunov functions, a full-
order observer is designed such that the corresponding error dynamic system is
asymptotically stable and satisfies a prescribed finite frequency H_/H∞ perfor-
mance index. A novel three-step design procedure is then proposed to extract the
fault feature from strong background disturbances. An illustrative example is given
to demonstrate the validity and applicability of the proposed approaches in the sim-
ulation part.

The main contributions of this method are outlined as follows.

1. Different from the existing slow-fast decomposition method, a novel approach
stemming from singular systems based on the matrix inequality machinery is
utilized, which enjoys great potential and vast application prospects because they
are also effective for the widespread non-standard SPSs. With the aid of these new
approaches, both ε-dependent and ε-independent FD observers can be designed.

2. The frequency nature of SPSs is considered in design of a well-conditioned FD
observer to reduce the conservatism of design procedure. It is noted that the slow
modes are sensitive to oscillators associated with low-frequency signals while the
fast modes are more easily affected by the high-frequency power source. On this
basis, the window H∞ specification index from the external disturbance to mea-
surement output is particularly fixed in the low or high frequency ranges to obtain
stable resistance to various of unknown disturbances. The window H_ index from
the fault input to measurement output is specified in the middle frequency range
to improve the fault-sensitivity capability of the overall system.

3. To best of our knowledge, it is the first time that finite frequency issues have
been investigated for the FD of SPSs, and the results can be extended to more
sophisticated systems with multi time-scale property. Due to the existence of
modes with distinctive rates of convergence, the control specifications such as
H_/H∞ specification index can be further loosen combined with the frequency
characteristics of the whole system.

Consider the SPS as follows:

ẋ1(t) = A11x1(t) + A12x2(t) + Bw1w(t) + Bu1u(t) + B f1 f (t),

εẋ2(t) = A21x1(t) + A22x2(t) + Bw2w(t) + Bu2u(t) + B f2 f (t),

y(t) = C1x1(t) + C2x2(t) + D1u(t) + D2 f (t) + D3w(t),

(6.31)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 (n = n1 + n2) are the slow and fast state vec-
tors, y(t) ∈ Rq is the measured output, u(t) ∈ Rp is the control input, w(t) ∈ Rr

reveals the disturbance vector, f (t) ∈ Rs represents the fault input vector. It should
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be noted that Ai j , Bwi , Bui , B fi , Ci , Dk (i, j = 1, 2; k = 1, 2, 3) are constant
matrices of appropriate dimensions. The perturbed parameter ε, 0 < ε 	 1, serves
as a measurement of the separation in “scale” of the slow and fast dynamics.

For convenience of development in the sequel, define a new variable as

η(t) :=
[
x1(t)
x2(t)

]
,

and then (6.31) can be rewritten in a more concise and explicit form,

Eεη̇(t) = Aη(t) + Bww(t) + Buu(t) + B f f (t),

y(t) = Cη(t) + D1u(t) + D2 f (t) + D3w(t),
(6.32)

where

Eε =
[
In1 0
0 ε In2

]
, A =

[
A11 A12

A21 A22

]
, Bw =

[
Bw1

Bw2

]
,

Bu =
[
Bu1

Bu2

]
, B f =

[
B f1
B f2

]
, C = [

C1 C2
]
.

To detect the fault, a FD observer in the form of SPS is constructed as

Eε
˙̌η(t) = Aη̌(t) + Buu(t) + L(y(t) − y̌(t)),

y̌(t) = C η̌(t) + D1u(t),

r(t) = y(t) − y̌(t),

(6.33)

where η̌(t) ∈ Rn(n = n1 + n2) and y̌(t) ∈ Rq denote the state and output estimation
vectors, respectively; and r(t) is the residual signal, which relies on the fault input
f (t) and the external disturbance w(t). The design parameter is the observer gain

matrix L =
[
L1

L2

]
.

Remark 6.4 It is clear that if a system is controllable and the system states are
available for feedback, then the system closed-loop poles can be assigned arbitrarily
through a constant feedback. However, for most practical applications, the system
states are not completely accessible and all the designer knows are the input–output
data, which brings in increasingly more attention on observer-based controllers.

Denoting a new variable as η̂(t) = η(t) − η̌(t), the following state error dynamic
SPS is then obtained,

Eε
˙̂η(t) = Āη̂(t) + B̄ww(t) + B̄ f f (t),

r(t) = C η̂(t) + D2 f (t)+D3w(t),
(6.34)

where
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Ā = A − LC =
[
A11 − L1C1 A12 − L1C2

A21 − L2C1 A22 − L2C2

]
:=

[
Â11 Â12

Â21 Â22

]
,

B̄w = Bw − LD3 =
[
Bw1 − L1D3

Bw2 − L2D3

]
:=

[
B̂w1

B̂w2

]
,

B̄ f = B f − LD2 =
[
B f1 − L1D2

B f2 − L2D2

]
:=

[
B̂ f1

B̂ f2

]
.

Remark 6.5 We aim to detect the occurrence of a fault in the presence of unknown
disturbances. Nominally, the residual process r(t) is zero in the absence of a fault
and non-zero otherwise. However, when driven by unknown disturbing sources with
high amplitudes, the residual process can fail to go to zero even in the absence of
a fault. If this happens, the FD observer detects but cannot isolate the fault. In this
case, the state error dynamic system (6.34) is constructed to convert the FD issue
into the H∞ model matching problem.

On this basis, the corresponding TFMs from fault signal f (t) to the residual r(t)
and from the external disturbances w(t) to the residual r(t), denoted by Gr f (s) and
Grw(s) respectively, are derived.

G f r (s) = C(sEε − Ā)−1 B̄ f + D2,

Gwr (s) = C(sEε − Ā)−1 B̄w + D3.

To investigate H_/H∞ performance of continuous-time control systems in local
frequency ranges, a new conception of window H_/H∞ norm is presented, and it is
stated that traditional H_/H∞ norm is a special case of window H_/H∞ norm.

Remark 6.6 The H_ index of a TFM G(s) over the finite frequency range [ω1, ω2]
and its H∞ norm over the finite frequency range [0, ωl ] ∪ [ωh,+∞) are defined as
Definition 2.4.

Remark 6.7 H_ norm is used as the worst-case fault sensitivity measure. To indicate
the dependency on the finite frequency range [ω1, ω2], we define the window H_
norm as ‖G(s)‖[ω1,ω2]− , which is simplified into ‖G(s)‖− when the frequency range
is made with certainty.

Problem 6.3 Based on the above motivation, the design problem of a robust FD
observer for the linear SPS (6.31) should satisfy, for any ε ∈ (0, ε∗], as follows:

1. The internal stability constraint: (Eε, Ā) is stable.
2. The disturbance attenuation ability:

‖Grw(s)‖[0,ωl ]∪[ωh ,+∞)
∞ < β. (6.35)

3. The fault sensitivity capability:

‖Gr f (s)‖[ω1,ω2]− > γ. (6.36)

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Remark 6.8 The internal stability requirement ensures the asymptotical stability of
the error dynamic SPS (6.34) in the absence of unknown disturbances. Condition
(6.35) is used to reduce the norm of the closed-loop TFM from the disturbance to
the control output to a preserved level. To some extent, the suppression of low- or
high-frequency disturbances, divided by trade-off frequencies ωl and ωh , can reduce
conservatism than the suppression of the disturbances in the entire frequency ranges.
In addition, the constraint (6.36) is a FF performance index which increases the fault
sensitivity in the fixed frequency range because the frequency characteristics of the
fault input, imposed artificially, is known in advance. The frequencies ω1 and ω2

given beforehand are used to reflect the general frequency range of the fault input.
The noise-signal gain ratio is defined as

δ = β

γ
,

which can be used to evaluate the FD observers. A better FD observer ought to
achieve smaller δ.

Then, a reliable FD mechanism is required to make the system capable of detect-
ing the occurrence of a fault, identifying the faulty component and determining a
course of action that restores safe operation of the system. The threshold detection
mechanism is utilized in this section, described in Fig. 6.6, which announces a fault
when the size of a residual exceeds some prescribed value [2, 11]. This prescribed
value could be determined to balance a rate of fault alarm against a rate of miss
alarm. Hence, the following logical relationship for FD is in Fig. 6.7.

Here

‖ r(t) ‖2,T =
[∫ t2

t1

r T (t)r(t)dt

]1/2

, T = t2 − t1,

t ∈ (t1, t2] is the finite-time window, and Jth > 0 is setted threshold [22].

Remark 6.9 The following useful remarks are given.

1. In a FD progress, a residual signal should be constructed and a residual evaluation
function be computed, which is then compared with a predefined threshold. If the

Fig. 6.6 Fault identification scheme for SPSs
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Fig. 6.7 Fault judgment for SPSs

residual exceeds the setted threshold, the fault will be detected and an alarm of
fault be generated.

2. As mentioned before, a configurable threshold is used to extract fault features
from strong background disturbances. To avoid the false alarm caused by external
disturbance, the scalar β in the requirement (6.35) should be set not larger than
the threshold Jth . Similarly, the parameter γ in (6.36), representing the fault
sensitivity capability, should be imposed larger than Jth to improve accuracy and
efficiency of alarm. The noise-signal gain ratio J is used to optimize the solutions
to get more effective FD observer.

3. The threshold mechanism can also be viewed as the smooth filtering device. Due
to the existence of the external noise, especially for the high-frequency ones, there
exist many glitches in the residual outputs. The threshold mechanism can make
the residual evaluation process smoothly when the finite-time window length T
is chosen appropriately.

The following lemma is used throughout this section.

Lemma 6.4 Given matrices T1, T2, T3 ∈ Cn×n, T3 < 0 holds, if there exists a con-
stant 0 < ε∗ 	 1 such that

ε2T1 + εT2 + T3 � 0

holds for all ε ∈ (0, ε∗].
Proof Consider the following function:

f (ε) = ν∗(ε2T1 + εT2 + T3)ν

= ε2ν∗T1ν + εν∗T2ν + ν∗T3ν, (6.37)

where ν ∈ Cn . Using property of the quadratic function f (ε), we have

f (ε) � 0, ε ∈ (0, ε∗], (6.38)

where f (ε) is a continue function about ε, and ε∗ is a small positive parameter. The
sufficient condition for the existence of (6.38) is
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f (0) = ν∗T3ν < 0.

According to the definition of negative definite matrix, T3 < 0 is derived. This com-
pletes the proof.

6.4.1 Internal Stability Conditions

Internal stability is an essential system requirement in control system design, which
guarantee smooth operation of all dynamics in the absence of external disturbances.
In this subsection, a parameter-dependent Lyapunov functions is adopted to alleviate
the stiffness of SPSs, which can be converted to LMIs to obtain feasible solutions.

Theorem 6.5 For given real constants p̂ and q̂ satisfying p̂q̂ > 0, if there exist a

matrix κs , and symmetric matrices Ps =
[
Ps11 Ps12

� 1
ε
Ps22

]
> 0, and Ws such that the

LMI below is established,

⎡
⎢⎢⎣

0 0 Ps11 0
� 0 P∗

s12
Ps22

� � 0 0
� � � 0

⎤
⎥⎥⎦ < He

[ −Ws

A∗Ws + C∗κs

] [
p̂ In q̂ In

]
, (6.39)

then there exists a scalar 0 < ε∗ 	 1 such that for any ε ∈ (0, ε∗], the closed-loop
error dynamic system (6.34) is internally stable. The state feedback gain can then be
given by L = (κsW−1

s )∗.

Proof Select the Lyapunov function related with the parameter ε as

V (η̂(t)) = η̂∗(t)Psεη̂(t),

where

Psε = EεPs Eε =
[
Ps11 εPs12

� εPs22

]
.

According to the SCL 2.4, Psε > 0 can be guaranteed by Ps11 − εPs12 P
−1
s22

P∗
s12

> 0.
Denote a quadratic function as

f (ε) = ν∗Ps11ν − εν∗Ps12 P
−1
s22

P∗
s12

ν,

where ν is a vector. Thus, f (ε) is a unary function about ε. From Lemma 2.2, we can
obtain that there exists 0 < ε∗ 	 1 such that f (ε) > 0 is established, for any ε ∈
(0, ε∗]. So it has f (0) = ν∗Ps11ν > 0. According to the definition of positive definite
matrix, we have Ps11 > 0. Then, the derivative of V (η̂(t)) along the trajectories of
(6.34) with no external inputs is

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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V̇ (η̂(t)) = η̂∗(t)[(A − LC)∗Ps Eε + EεPs(A − LC)]η̂(t) < 0,

which is equivalent to

(A∗ − C∗L∗)Ps Eε + EεPs(A − LC) < 0,

or it is written in the standard form in Lemma 2.2,

[
Ā∗
n I

] [
0 Ps Eε

EεPs 0

] [
Ā
In

]
< 0, (6.40)

where Ā∗ = A∗ + C∗(−L∗)In.
According to Lemma 2.2, (6.40) can be converted into the following LMI:

[
0 Ps Eε

EεPs 0

]
< He

[−In
Ā∗

]
WsRs . (6.41)

Substituting Ps =
[
Ps11 Ps12

� 1
ε
Ps22

]
into (6.41), we have

⎡
⎢⎢⎣

0 0 Ps11 εPs12

� 0 P∗
s12

Ps22

� � 0 0
� � � 0

⎤
⎥⎥⎦ < He

[ −Ws

A∗Ws + C∗κs

]
Rs, (6.42)

where κs = −L∗Ws .
Plugging Rs = [

p̂ In q̂ In
]

into (6.42) yields that

⎡
⎢⎢⎣

0 0 Ps11 εPs12

� 0 P∗
s12 Ps22

� � 0 0
� � � 0

⎤
⎥⎥⎦ < He

[ −Ws

A∗Ws + C∗κs

] [
p̂ In q̂ In

]
, (6.43)

where p̂ and q̂ are scalars which satisfy the constraint p̂q̂ > 0.
Based on Lemma 6.4, it can be seen that (6.43) holds for any ε ∈ (0, ε∗], if

⎡
⎢⎢⎣

0 0 Ps11 0
� 0 P∗

s12
Ps22

� � 0 0
� � ∗ 0

⎤
⎥⎥⎦ < He

[ −Ws

A∗Ws + C∗κs

] [
p̂ In q̂ In

]
(6.44)

is true. This completes the proof.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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6.4.2 Disturbance Attenuation Conditions

This subsection presents a solution to the problem of disturbance attenuation con-
straint (6.35) via FD observer (6.33) for a linear SPS (6.31). The frequency nature
of SPSs, active disturbance attenuation ability in the middle frequency range, is
taken into consideration. The H∞ norm in the low-and high-frequency ranges for
the SPS (6.31) is specified to ensure the good resistance ability against all kinds of
disturbances.

Theorem 6.6 For given matrices Rl, Rh and a positive scalar β > 0, if there exist
matrices V12 and κ1, and symmetric matrices

P1 =
[
P111 P112

� 1
ε
P122

]
, Q1 =

[
Q111 Q112

� Q122

]
> 0,

and W1 such that the error dynamic SPS (6.34) satisfies the system performance
(6.35) for any ε ∈ (0, ε∗], then the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎢⎣

−Q111 −Q112 0 P111 0 0
� −Q122 0 P∗

112 P122 0
� � Iq 0 0 0
� � � ω2

l Q111 0 0
� � � � 0 0
� � � � � −β2 Ip

⎤
⎥⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎦

[
W1Rl
V12
κ1Rl

]
(6.45)

and
⎡
⎢⎢⎢⎢⎢⎢⎣

Q111 Q112 0 P111 0 0
� Q122 0 P∗

112 P122 0
� � Iq 0 0 0
� � � −ω2

hQ111 0 0
� � � � 0 0
� � � � � −β2 Ip

⎤
⎥⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎦

[
W1Rh
V12

κ1Rh

]
, (6.46)

where ωl and ωh are cut-off frequencies. Then, the FD observer gain of (6.33) can
be calculated by L1 = (−κ1W

−1
1 )∗.

Proof Condition (6.36) can be represented as follows:

G∗
wr (s)Gwr (s) < β2 Ir ,

which gives

[
Bw

∗(sEε − Ā∗)−1
Ir

]
Θ1

[
(sEε − Ā)

−1
Bw

Ir

]
< 0, (6.47)
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where Θ1 =
[
C∗ 0
D∗

3 Ir

] [
Iq 0
0 −β2 Ir

] [
C D3

0 Ir

]
.

Based on the Lemma 2.2, the inequality (6.47) can be converted into

[
Ā∗ Eε C∗ 0
B∗
w 0 D∗

3 Ir

]
Θ2

⎡
⎢⎢⎣

Ā Bw

Eε 0
C D3

0 Ir

⎤
⎥⎥⎦ < 0, (6.48)

where Θ2 =
⎡
⎣

Φ ⊗ P1 + Ψ ⊗ Q1 0 0
0 Iq 0
0 0 −β2 Ir

⎤
⎦ .

Leading in the elementary transformation T , it can be seen that (6.48) can be
simplified into

[
Ā∗ C∗ Eε 0
B∗
w D∗

3 0 Ir

]
TΘ2T

∗

⎡
⎢⎢⎣

Ā Bw

C D3

Eε 0
0 Ir

⎤
⎥⎥⎦ < 0. (6.49)

Defining a new variable as N1 =
[
Ā∗ C∗ Eε 0
B∗
w D∗

3 0 Ir

]
, it is obtained that

M1 =
[
Ā∗ C∗
B∗
w D∗

3

]
=

[
A∗ C∗
B∗
w D∗

3

]
+

[
C∗
D∗

3

]
(−L∗)

[
In 0

]

:= A1 + B1(−L∗)C1,

which is represented in the standard form of Lemma 2.2. Hence, (6.49) can be rewrit-
ten as

N1

⎡
⎢⎢⎣
In 0 0 0
0 Iq 0 0
0 0 Eε 0
0 0 0 Ir

⎤
⎥⎥⎦ TΘ2T

∗

⎡
⎢⎢⎣
In 0 0 0
0 Iq 0 0
0 0 Eε 0
0 0 0 Ir

⎤
⎥⎥⎦ N∗

1 < 0, (6.50)

Plugging the matrices characterizing Φ =
[

0 1
1 0

]
, Ψ =

[−1 0
0 ω2

l

]
of the low-

frequency range into (6.50), it yields

⎡
⎢⎢⎣

−Q1 0 P1Eε 0
� Iq 0 0
� � ω2

l EεQ1Eε 0
� � � −β2 Ir

⎤
⎥⎥⎦ < He

[−I(n+q)×(n+r)

M1

]
χ1, (6.51)

where

χ1 = C †
1 W1Rl + (In+r − C †

1 C1)

[
V11

V12

]
=

[
W1R1

V12

]
.

http://dx.doi.org/10.1007/978-3-319-45405-4_2
http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Substituting the symmetric matrices P1 =
[
P111 P112

� 1
ε
P122

]
and Q1 =

[
Q111 Q112

� Q122

]

into (6.51), we have
δ1(ε) < 0, (6.52)

where

δ1(ε) =

⎡
⎢⎢⎢⎢⎣

−Q111 −Q112 0 P111 εP112 0
� −Q122 0 P∗

112 P122 0
� � Iq 0 0 0
� � � ω2

l Q111 εω2
l Q112

� � � � ε2ω2
l Q122 0

� � � � � −β2 Ir

⎤
⎥⎥⎥⎥⎦

− He

⎡
⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎦

[
W1Rl
V12
κ1Rl

]
,

κ1 = −L∗W1.

From Lemma 2.2, we can obtain that if there exists 0 < ε∗ 	 1 such that (6.52) is
set up for any ε ∈ (0, ε∗], it is established

δ1(0) < 0,

which is equivalent to

⎡
⎢⎢⎢⎢⎢⎣

−Q111 −Q112 0 P111 0 0
� −Q122 0 P∗

112 P122 0
� � Iq 0 0 0
� � � ω2

l Q111 0 0
� � � � 0 0
� � � � � −β2 Ir

⎤
⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎥⎦

⎡
⎣
W1Rl
V12
κ1Rl

⎤
⎦ . (6.53)

Similarly, it is established for the high-frequency case that

⎡
⎢⎢⎢⎢⎢⎣

Q111 Q112 0 P111 0 0
� Q122 0 P∗

112 P122 0
� � Iq 0 0 0
� � � −ω2

h Q111 0 0
� � � � 0 0
� � � � � −β2 Ir

⎤
⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎥⎦

⎡
⎣
W1Rh
V12

κ1Rh

⎤
⎦ , (6.54)

in which the matrices characterizing the high-frequency range are selected as

Φ =
[

0 1
1 0

]
, Ψ =

[
1 0
0 −ω2

h

]
.

This completes the proof.

Corollary 6.1 If the error dynamic SPS (6.34) satisfies the system performance
(6.35) for any ε ∈ (0, ε∗] in the entire frequency range, then the following LMI is
established:

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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⎡
⎢⎢⎣

0 0 P1 0
� Iq 0 0
� � 0 0
� � � −β2 Ir

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎥⎦

⎡
⎣
W1Rl

V12

κ1Rl

⎤
⎦ , (6.55)

where P1 =
[
P111 0
P∗

112 P122

]
.

Proof Let Q = 0, condition (6.35) is equal to

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 P111 0 0
� 0 0 P∗

112 P122 0
� � Iq 0 0 0
� � � 0 0 0
� � � � 0 0
� � � � � −β2 Ir

⎤
⎥⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎥⎦

⎡
⎣
W1Rl

V12

κ1Rl

⎤
⎦ , (6.56)

which is the corresponding full frequency condition, and a special case of the finite
frequency condition in Theorem 6.6.

Substituting P1 =
[
P111 0
P∗

112 P122

]
into (6.56), we have

⎡
⎢⎢⎣

0 0 P1 0
� Iq 0 0
� � 0 0
� � � −β2 Ir

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
w D∗

3 D∗
3

⎤
⎥⎥⎦

⎡
⎣
W1Rl

V12

κ1Rl

⎤
⎦ . (6.57)

This completes the proof.

6.4.3 Fault Sensitivity Conditions

In this subsection, fault sensitivity is analyzed for the error dynamic SPS (6.34),
which can provide a health monitoring and maintenance system of smooth operation.
The worst case fault sensitivity measure is formulated in terms of LMIs to provide
sufficient conditions for (6.36).

Theorem 6.7 For a givenmatrix Rm and a positive scalar γ > 0, if there exist matri-

ces V22, κ2 and symmetric matrices P2 =
[
P211 P212

� 1
ε
P222

]
, Q2 =

[
Q211 Q212

� Q222

]
>

0,W2 such that the error dynamic SPS (6.34) satisfies the system performance (6.36)
for any ε ∈ (0, ε∗], where 0 < ε∗ 	 1. Then the following LMI holds:
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⎡
⎢⎢⎢⎢⎢⎢⎣

−Q211 −Q212 0 P211 + jωcQ211 0 0
� −Q222 0 PT

212 + jωcQ∗
212 P222 0

� � −Iq 0 0 0
� � � −ω1ω2Q211 0 0
� � � � 0 0
� � � � � γ 2 Is

⎤
⎥⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗
f D∗

2 D∗
2

⎤
⎥⎥⎦

⎡
⎣
W2Rm
V22

κ2Rm

⎤
⎦ ,

(6.58)

where ω1 and ω2 are cut-off frequencies, ωc = (ω1 + ω2)/2. The FD observer gain
of (6.33) is L2 = (−κ2W

−1
2 )∗.

Proof According to Lemma 2.2, the finite frequency FDI (6.36) holds, if there exist
Hermitian matrices P2 and Q2 > 0 such that

[
Ā∗ E
B̄∗

f 0

]
Ξ

[
Ā B̄ f

E 0

]
+

[
C∗ 0
D∗

2 Is

]
Π

[
C D2

0 Is

]
< 0, (6.59)

where Ξ=
[ −Q2 P2 + jωcQ2

P2 − jωcQ2 −ω1ω2Q2

]
, Π =

[−Iq 0
0 γ 2 Is

]
.

To improve the solvability of (6.59), P2 and Q2 are set in the forms as follows to
alleviate the numerical stiffness of (6.59)

P2=
[
P211 P212

� 1
ε
P222

]
, Q2 =

[
Q211 Q212

� Q222

]
.

Leading in the transformation matrix T , it is apparent that (6.59) can be written
in a more simplified way as follows,

N2

⎡
⎢⎢⎣
In 0 0 0
0 Iq 0 0
0 0 Eε 0
0 0 0 Is

⎤
⎥⎥⎦ TΘ3T

∗

⎡
⎢⎢⎣
In 0 0 0
0 Iq 0 0
0 0 Eε 0
0 0 0 Is

⎤
⎥⎥⎦ N ∗

2 < 0, (6.60)

where

N2 = [
M2 In+s

] =
[
Ā∗ C∗ In 0
B̄∗

f D∗
2 0 Is

]
,

M2 =
[
Ā∗ C∗
B̄∗

f D∗
2

]
=

[
A∗ C∗
B∗

f D∗
2

]
+

[
C∗
D∗

2

]
(−L∗)

[
In 0

]

= A2 + B2(−L∗)C2,

Θ3 =
[

Ξ 0
0 Π

]
=

⎡
⎢⎢⎣

−Q2 P2 + jωcQ2 0 0
P2 − jωcQ2 −ω1ω2Q2 0 0

0 0 −Iq 0
0 0 0 γ 2 Is

⎤
⎥⎥⎦ .

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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Then, we have that (6.60) can be represented as the standard form in Lemma 2.2,
namely

N2

⎡
⎢⎢⎣

−Q2 0 P2Eε + jωcQ2Eε 0
� −Iq 0 0
� � −ω1ω2EεQ2Eε 0
� � � γ 2 Is

⎤
⎥⎥⎦ N ∗

2 < 0,

which can be converted into the feasible LMI as follows

δ2(ε) < 0, (6.61)

where

δ2(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Q211 −Q212 0 P211 + jωcQ211 ε(P212 + jωcQ212) 0
� −Q222 0 P∗

212 + jωcQ∗
212 P222 + ε jωcQ222 0

� � −Iq 0 0 0
� � � −ω1ω2Q211 −εω1ω2Q212 0
� � � � −ε2ω1ω2Q222 0
� � � � � γ 2 Is

⎤
⎥⎥⎥⎥⎥⎥⎦

−He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗

f D∗
2 D∗

2

⎤
⎥⎥⎦

⎡
⎣
W2Rm

V22

κ2Rm

⎤
⎦ .

From Lemma 6.4, one can derive that (6.61) is set up for any ε ∈ (0, ε∗], where
0 < ε∗ 	 1, if and only if δ2(0) < 0, which gives

⎡
⎢⎢⎢⎢⎢⎢⎣

−Q211 −Q212 0 P211 + jωcQ211 0 0
� −Q222 0 P∗

212 + jωcQ∗
212 P222 0

� � −Iq 0 0 0
� � � −ω1ω2Q211 0 0
� � � � 0 0
� � � � � γ 2 Is

⎤
⎥⎥⎥⎥⎥⎥⎦

< He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗

f D∗
2 D∗

2

⎤
⎥⎥⎦

⎡
⎣
W2Rm

V22

κ2Rm

⎤
⎦ .

(6.62)

This completes the proof.

Corollary 6.2 If the error SPS (6.34) satisfies the system performance (6.36) for
any ε ∈ (0, ε∗] in the entire frequency range, where 0 < ε∗ 	 1, then the following
LMI is established:

http://dx.doi.org/10.1007/978-3-319-45405-4_2
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⎡
⎢⎢⎣

0 0 P2 0
� −Iq 0 0
� � 0 0
� � � γ 2 Is

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Iq 0
A∗ C∗ C∗
B∗

f D∗
2 D∗

2

⎤
⎥⎥⎦

⎡
⎣
W2Rm

V22

κ2R2

⎤
⎦ , (6.63)

where P2 =
[
P211 0
P∗

212 P222

]
.

Proof It can be worked out along the same line as that in the proof of Corollary 6.1.

Finally, we demonstrate the usefulness of the results by developing a new algo-
rithm that can stabilize the whole error dynamic system (6.34) and detect the occur-
rence of fault in presence of background disturbances. To design a well-conditioned
FD observer (6.33) for the SPS (6.31) to achieve internal stability and constraints
(6.35), (6.36) simultaneously. The noise-signal gain ratio J is utilized as performance
index to stop the step-by-step process.

Algorithm 6.1 Given system matrices A, Bw, Bu, B f , C, D1, D2, D3 and the
desired noise-to-signal ratio α. Let μ1 � 0 and μ2 � 0 be sufficiently small para-
meters, which are the adjustable step-sizes. Set i = 0, j = 0 and m ∈ Z+.

Step 1. Choose the initial performance indexes β, γ (β < Jth < γ ) and the required
trade-off frequencies ωl , ωh, ω1, ω2.

Step 2. Main iterative steps:
(i) Solve (6.39), (6.45), (6.46) and (6.58) and get the feasible solutions Ps,
P1, Q1, P2, Q2 and L
(ii) Put i = i + 1. With P, Q obtained in Step 2(a) and with

γ = γ + μ1 > ‖D3‖, β = β − μ2 < ‖D2‖, Ji = β

γ
,

find a feasible L for LMIs (6.39), (6.45), (6.46) and (6.58). Store Li = L and
Ji . If a feasible solution cannot be found, then Li = Li−1.
(iii) If the performance Ji < α, then a desired observer gain L = Li is found.
Stop.

Step 3. Set j = j + 1. If j < p, repeat Step 2, else Stop (the feasible solution cannot
be found).

Example 6.4 Simulations were carried out on MATLAB� based on the LMI toolbox
to test the efficacy of the proposed approaches. MATLAB provides a numerical
computing platform to observe the theoretical validation of the algorithm. Consider
the system in the form of SPS:

ẋ1(t) = x1(t) + 2x2(t) + w(t) + u(t) + 2 f (t),

εẋ2(t) = x1(t) + 5x2(t) + 3w(t) + u(t) + 2 f (t),

y(t) = x1(t) + x2(t) + w(t) + u(t) + f (t).
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1. Generalized stability criterion:
Solving (6.39), p̂ = 1, q̂ = 1, the following feasible solutions is obtained to

guarantee the internal stability property of all dynamics in the absence of background
disturbances

Ws =
[−355.6168 −34.7736

−34.7736 −61.9120

]
, Ps =

[
708.8443 0
530.1923 285.8950

]
.

It’s noted that Ps11 = 708.8443 > 0, which satisfies the stability constraint Ps11 > 0.
The corresponding robust FD observer gain matrix L is obtained as

L =
[

0.8666
8.8659

]
.

From Fig. 6.8, both the slow and fast modes, originally radiating outward, reach the
steady states with aid of the robust FD observer in the form of (6.33). From the
frequency domain perspective, the poles in the s-plane are moved from the right half
plane to the left half one to achieve the internal property of the whole system.

2. Disturbance attenuation ability:
Given β = 0.4, we set the trade-off frequencies as ωl = 5 rad/s and ωh = 40

rad/s according to the open-loop system frequency characteristic of the SPS. In other
words, the SPS, itself, achieves active disturbance ability in the frequency band Λm =
[ωl, ωh]. To solve the disturbance attenuation constraint (6.45) and (6.46) in the
band-elimination region Λn = {ω|ω ∈ (0, ωl] ∪ [ωh,+∞)}, the feasible solutions
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Fig. 6.8 The stabilization of the continuous-time SPS
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Fig. 6.9 The disturbance attenuation ability of the continuous-time SPS

are listed as follows:

W1 =
[−3.3930 0.0970

0.0970 −0.0115

]
, P1 =

[
0.2069 0

−0.4053 0.3816

]
,

Q1 =
[

0.0031 −0.0095
−0.0095 16.4503

]
> 0,

V12 = [−1.2930 −0.1566 −19.1343 3.0767 3.7886 2.8808
]
.

It is obvious that the amplitude–frequency characteristic of the error dynamic system
(6.34) is shown Fig. 6.9, where the colored parts represent the target region Λn . The
amplitude of (6.34) in the required region Λn is restricted below β, so that the
good disturbance attenuation ability is achieved in the entire frequency range. This
method is particularly suitable for SPSs due to the unique frequency nature, that is
active disturbance attenuation ability in the middle frequency range. The disturbance
attenuation ability is satisfied originally outside the target region Λn . Through solving
the finite frequency constraints (6.45) and (6.46), the disturbance attenuation ability
can be realized in the full-frequency spectrum which reduces the conservatism.

Remark 6.10 Based on the unique frequency nature of SPS, finite frequency sys-
tem specifications can lead to the establishment of entire-frequency ones, which
have some theory basis. The trade-off frequencies ωl , ωh , characterizing the tar-
get frequency Λn , are also the start point and end point of the region Λm . In the
band-elimination region Λn , the disturbance attenuation constraint is guaranteed.
Considering the continuity of the amplitude–frequency characteristic curve from the
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disturbance w(t) to the residual output r(t), the disturbance attenuation constraint in
Λm can be guaranteed to a certain extent by the start point ωl and the end point ωh .

3. Fault sensitivity ability:
The frequency characteristics of the fault signal, imposed artificially, is known

beforehand, which are the foundation of the values of ωl , ωh . It is assumed that the
general frequency range of faults are set as Λ f = {ω|ω ∈ [80 rad/s, 100 rad/s]} by
engineers. Given the worst fault-sensitivity index γ = 1.5 and trade-off frequencies
ω1 = 80 rad/s, ω2 = 100 rad/s, we get the following feasible solutions by solving
(6.58):

W2 =
[

21.3246 0.9399
0.9399 0.1613

]
, P2 =

[
9.5369 0

−0.7965 −0.0206

]
,

Q1 =
[

0.2399 −0.0465
−0.0465 272.0003

]
> 0,

V22 = [
130.1518 22.7187 −79.9690 −211.7720 13.8318 63.7811

]
.

From Fig. 6.10, the amplitude of the frequency response from the fault input f (t)
to the residual output r(t) in Λ f is adjusted larger than the index γ with aid of FD
observer, in which the colored region is used to represent Λ f .

Solving (6.39), (6.45), (6.46), (6.58) simultaneously based on Algorithm 6.1, the
observer gain matrix is calculated
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Fig. 6.10 The fault sensitivity of the continuous-time SPS
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L =
[

5.3097
4.6047

]
,

where the threshold is chosen as Jth = 1.
In order to further explain the effectiveness of our results, we have conducted a

series of time-domain simulations. To analyze the effects of faults and disturbances
on the residual of detection observer simultaneously, we consider the faults as

f (t) :
{= 1, t > 0.5 s,

= 0, 0 < t < 0.5 s.

The disturbances are selected as sinusoidal signals: w1(t) = 0.8 sin(t)
(low-frequency noises) and w2(t) = sin(400t) (high-frequency noises). The cor-
responding residual outputs in presence of both fault signals and external distur-
bances are demonstrated in Figs. 6.11 and 6.12. It is obvious that fault features can
be extracted from disturbances. In addition, residual outputs can trace the desired
faults accurately with fast response rate. To better alarm when the faults occur, the
threshold Jth = 1 is adopted to detect the occurrence of faults by comparing the
residual evaluation with the threshold. From Fig. 6.13, it can be found that the fault
can easily be detected at the point t = 0.5 s. To demonstrate the superiority of our
method, it is apparent that the finite frequency approaches achieve better performance
in Fig. 6.14, where the dot-dash line denotes the residual output of the finite frequency
approach and the solid line denotes the residual output of the full frequency one.
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Fig. 6.14 Comparison between the finite frequency approaches and the full frequency approaches

Remark 6.11 It is apparent that finite frequency approaches usually have less con-
servatism than the full frequency ones because the constraints should only be kept
in the specified frequency ranges. By employing finite frequency approaches, the
smaller β and larger γ can be designed a well-conditioned FD observer.

6.5 Conclusion

To sum up, we have developed new methodologies in this section for synthesizing a
robust FD observer to achieve H∞/H_ performance in the finite frequency ranges.
Sufficient conditions for the existence of the feasible robust FD observers are pre-
sented in terms of LMIs via the existing results from the singular systems. A literature
LMI design procedure is proposed to optimize the noise-signal ratio in this paper.
From the numerical examples, our design methods are seen to be more applicable
and less conservable.
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Part III
Applications

In this part, the engineering backgrounds and the applications for finite frequency
control of SPSs are introduced. It includes aerospace, machinery, electronic and
electrical, chemical kinetics problem, biology and so on. The wind turbines model is
set up using the slow-fast decomposition method and the corresponding controller is
researched using linear parameter varying SPM. Another typical application is robust
H∞ control of miniature quadrotors in hovering given to show the effectiveness and
merits of our methods from practical point of view.



Chapter 7
Applications

7.1 Background of Applications of Singular
Perturbation Methods

7.1.1 Applications of Singular Perturbation Methods
in Aerospace

The theory of SPM originated from fluid dynamics and applied widely in the area
of aerospace systems [110]. In [134], a design method was proposed for the manual
flight control system corresponding to the lateral motion of the aircraft based on
SPaTSs. In [108], genetic algorithm was used to minimize the flight time using
SPMs, and the optimal flight guidance law was obtained.

In [125], SPM was used to design a reduced-order controller with high accuracy
for two-time-scale aircraft dynamics systems. Diagnosis and modelling were con-
sidered for multiple time-scale nonlinear flight mechanics in [87]. In [49], an aircraft
Auxiliary Power Unit turbine system was modelled as an SPS. The least-square
optimal estimation of the fault parameter vector was obtained, and a finite impulse
response differentiator was designed for the system.

SPMs were utilized to separate the nonlinear model of super manoeuverable air-
craft into slow and fast subsystems, and dynamic inversion was applied to design
the control laws [155]. A singular perturbation control strategy was proposed for
regulating the longitudinal flight dynamics of an unmanned air vehicle based on the
four-time-scale decomposition in [36].

In [12], considering a class of nonlinear systems actuated by actuators whose
actuator dynamics were assumed to be fast, baseline controller was designed, and
SPM was applied to prove that the closed loop system achieved the control objective.

A postbuckling analysis was presented for nano-composite cylindrical shells rein-
forced by single-walled carbon nano-tubes subjected to combined axial and radial
mechanical loads in thermal environment in [124], and a boundary layer theory and

© Springer International Publishing Switzerland 2017
C. Cai et al., Finite Frequency Analysis and Synthesis for Singularly
Perturbed Systems, Studies in Systems, Decision and Control 78,
DOI 10.1007/978-3-319-45405-4_7

181
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associated singular perturbation technique were employed to determine the buckling
loads and postbuckling equilibrium paths.

A singular perturbation-like approach was proposed in [54] to compensate the
effects of fin-actuator dynamics in the nonlinear missile system. SPT was applied to
obtain a two-loop mathematical model of a nonlinear multivariate model of air-to-air
missile in [34] and to obtain a near-optimal midcourse guidance law for medium-
range air-to-air missile in [109].

7.1.2 Applications of Singular Perturbation Methods
in Mechanical Systems

Another interesting area of the application of SPM was mechanical dynamics and
control. For a multi-link flexible robot with uncertainties, an improved composite
controller was designed based on singular perturbation theory in [26]. In [120], a new
control strategy for flexible-joint manipulators with joint friction was proposed. The
proposed controller includes two main components: a friction compensating torque
and a composite controller torque which was designed using SPM.

A finite-dimensional model of a flexible arm was presented in [80] with its approx-
imate representation through the slow and fast decomposition, and a combined
PD-H∞ control strategy was developed. See [18, 27, 28, 32, 33, 102, 104, 123,
135, 136, 138, 141] for more results about applications of SPaTSs technique to
flexible robots.

In [86], a group of robotic systems were modelled as two coupled systems repre-
sented by dynamics of the centre of mass and dynamics of the formation. Using high
gain feedback, asymptotic decoupling was gained and singular perturbation analysis
was studied. Velocity field control of uncertain robotic manipulators was studied in
[21]. Based on modelling error compensation ideas and singular perturbation theory,
a PI-type controller was drived which guaranteed the closed-loop was semi-global
practical stable, namely “given any compact set of initial velocity field errors, there
exist PI control gains which guarantee that the robot tracks a desired velocity field
with arbitrary accuracy”.

It was considered walking system of a power transmission line inspection robot
in [145]. The closed-loop systems was devided into fast and slow subsystems using
SPM and a composite controller was designed that contains an adaptive PD controller
applied to slow subsystem and optimal controller applied to fast subsystem. In [31],
closed kinematic chains (CKC) were modelled as DAEs which are transferred to
SPSs and the properties of singular perturbation model were analyzed. The validity
domain and the error characterization of the singular perturbation formulation of
CKC were presented compared with the DAEs model in [150]. In [146], conditions
of locally asymptotically stability were derived based on the SPM.

In [38], results on partial stability of differential form of speed-gradient control
for SPS were generalized to the case of speed-gradient control in finite form. A new
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wave-net controller was designed based on SPM for the bilateral teleoperation of
robots through the internet in [46]. According to SPTs, direct torque control (DTC)
was derived in [129] and a link between DTC and feedback linearization was pre-
sented. An explicit relationship between DTC performance and machine character-
istics has been revealed, which can used to improve DTC performance by designing
an induction motor.

In [147], the singular perturbation formulation was compared to control based
on input-output linearization. Their advantages and disadvantages of each method
are described. Travelling wave solutions of viscous conservation laws were studied
in [1]. The eigenvalue problem corresponding to the linearization around a viscous
shock wave were viewed as a singularly perturbed problem, and geometric singu-
lar perturbation theory was used for the analysis of the Evans function. And the
Gardnerand Zumbrun result about the first derivative of the Evans function were
proved at the origin.

A new coming correction algorithm, basing on the SPTs, was proposed for the
attitude update computation with non-ideal angular rate information [43]. Singular
perturbation theory was applied to show that the Boltzmann-Enskog equation results
in the Navier-Stokes equation for incompressible fluids together with two different
Boussinesq relations and temperature fluctuation equations in [58] and the proof of
a rigorous result was given in [59].

In addition to the above applications, singular perturbation theory was also applied
to air-conditioning systems [111], an axially moving cable with large sag [115], a
four-wheeled steering and four-wheeled drive vehicle [106], early detection systems
with multiple-bottleneck links [150], harmonic drive systems [45], pneumatic vibra-
tion isolators [50], the voice coil motor [103], hypersonic vehicles [92], hydraulic
systems, a flexible beam used in underwater exploration [93], infinite-dimensional
mechanics of fluids and plasmas [160], dual-loop exhaust gas recirculation air-path
systems [158], underactuated biped robots [29], hydrostatic drive or cylinder [84],
single-axis rate gyro [24], bimolecular association mechanism [39], 2D thermal con-
vection loop [142], and so on.

7.1.3 Applications of Singularly Perturbed Methods
in Electrical and Electronic Circuits Systems

Neglecting dynamic saliency in synchronous machines of power systems is a com-
mon simplified way [83]. This section [23] is a summary to explain how to model
power systems using SPM through neglecting the fast dynamics to obtain a simpli-
fied power system model. The error associated with neglecting dynamic saliency was
eliminated by inserting a singularly perturbed term into the machine model [105]. In
[130, 140], SPM was used to synchronous generator systems to study free-chattering
composite control and sliding mode control. In [73], a doubly-fed induction generator
was considered to design a controller based on multi-time-scale theory. In [131, 132],
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sliding mode control and variable structure control were applied to synchronous gen-
erator systems based on singular perturbation theory.

For singularly perturbed relay systems [40, 41], a theorem about existence and sta-
bility of the periodic solutions was proved and an algorithm of asymptotic represen-
tation for this periodic solutions was presented using boundary layer method. Forced
singular perturbations were proposed to reduce computations of mutilate strapdown
terrestrial navigation algorithm in [144]. The transmission problem was studied for
the system of piezoelectricity having piecewise constant coefficients in [63].

For a class of direct-current-direct-current (DC-DC) power converters, current-
mode control problem was studied in [2]. Singular perturbation was used to separate
the fast and slow states of DC-DC converters systems in [68], and a relationship
between inductance, capacitance, load resistance and loss resistances was obtained
from analysis of an approximate model. Compared with [68], discrete-time analysis
was added in [69].

For a wind power system, a fifth-order precise model was obtained using seg-
mentation method in [42]. The art wind power generators systems were modelled
in [119], and SPM was used to simplify the differential equations. Considering the
wind energy conversion systems in [113], a novel control structure was introduced
to explore the delivered power as a control input. The new structure was based on
the two reduced subsystems obtained by singular perturbation theory. Papers such
as [96, 97] studied the singular perturbation analysis and synthesis of wind energy
conversion systems. Singular perturbation theory was used to analyzed wind energy
conversion systems in [60], and then time-scale method and model predictive control
(MPC) were combined to control wind energy conversion systems in [161].

For servomotor systems [163], a general line voltage controller controller was
taken into the original system, and then the closed loop system was decomposed to
two subsystems using SPaTSs to represent the position control loop and the high
frequency dynamics, respectively. Singular perturbation theory was used to design
an observer of sliding mode type for the flux estimation of an induction machine in
[139]. In order to provide insight into the connections between the different nodes
of a power network, a method based on differential geometric control theory was
obtained in [5]. In [53], circuit-averaging techniques were applied to simplify a
lumped-parameter model of the cardiovascular system.

Considering the non-coherent digital delay lock loops on chip timing synchroniza-
tion in [51], the mean time to lose lock was calculated using diffusion approximation
and SPMs. Loop bandwidth was optimized for the first order loop. The stability of
a large-scale power system was analyzed by Jacobian analysis based on singular
perturbation in [154]. Considering the converter-interfaced wind turbines in [114],
singular perturbation theory was used to decompose the system dynamics based on
which a controller was designed to isolate wind-power fluctuations from the power
grid.

In [148], a singularly perturbed model was developed for additive increase and
multiplicative decrease/random early detection systems with multiple bottlenecks
and feedback delays, and then stability was analyzed. The delay-dependent LMIs
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conditions for the stability were established, and sufficiently small parameters were
selected to guarantee the asymptotic stability of the system.

In [85], SPTs were applied to the permanent magnet synchronous machine system.
Based on the decoupled subsystems, the control speed and the Id current were car-
ried out by neuro-fuzzy regulators. Based on the combination of permanent-magnet
synchronous generator and super sparse matrix converter, a novel variable-speed
wind energy generation scheme was developed in [159]. Emitter-coupled multivi-
brators were modelled and analyzed using the singular perturbation theory in [107].
A sampled-data strategy for a boundary control problem of a heat conduction sys-
tem modelled as partial differential equation was developed in [25]. Using singular
perturbation theory, the reduced subsystems are presented.

Considering the power system model in [77], SPM was used to decompose the
system into slow and fast subsystems and the relationship between the stability of
reduced-order system and original system was analyzed. In [156], a class of power
systems with detailed excitation and power system stabilizer controller was modelled
as an SPS. A LMI-based approach was developed to estimate the stability region.
Considering multi-machine power systems with matched additive uncertainty and
input multiplicative uncertainty in [22], several time-scale separation designs were
used for robust stabilization and performance recovery.

A complementary controller was designed to improve power systems stability in
[137] based on singular perturbation theory. Considering an oscillator model which
was composed of a fast membrane potential dynamics and a slow recovery dynamics
in [95], phase response curves for both the dynamics and plausibility of feedback
inputs to the slow dynamics rather than the fast dynamics were shown using singular
perturbation theory.

7.1.4 Applications of Singular Perturbation Methods
in Chemical Reactions and Reactors

Two different reducing order methods were compared to singularly perturbed form
for chemical kinetics equations in [62]. An SPM was applied for model reduction of
stiff chemical Langevin equations and chemical kinetics problems in [30, 72]. Global
Quasi-Linearization method which was based on TTS theory was presented for an
automatic reduction of chemical kinetics models in [15]. Equations for the descrip-
tion of chemical reactions of dissociation and recombination were transformed into
singularly perturbed equations in [44]. A new concept of critical simplification for
chemical kinetics was proposed which was valid in the presence of a dominant com-
petitive reaction and critical phenomena in [157].

An SPM was used to analyzed and synthesize the model of thermal explosion in a
gas-droplets mixture [14], and a chemical reactor and a feed effluent heat exchanger
in [61]. Viewing the prompt jump approximation nuclear reactor dynamics as



186 7 Applications

the zeroth-order approximation of an asymptotic expansion to SPSs of ordinary dif-
ferential equations, [6] derived the equations describing its first-order approximation.

Two-point linear controllers for binary distillation columns were designed based
on singular perturbation theory in [19]. Considering a singularly perturbed
convection-diffusion equation with constant coefficients in a half plane, with
Dirichlet boundary conditions [66], precise pointwise bounds for the derivatives
of the solution were obtained.

7.1.5 Applications of Singular Perturbation Methods
in Biology

Models describing the biotechnical process behaviour were usually high order, non-
linear with time-varying parameters. In [64], decomposition techniques based on
singular perturbation analysis or batch phase analysis were used to simplify the
model.

Considering a host-vector model for a disease without immunity in [118], the
stability of the steady states using the contracting-convex-sets technique was studied
using the geometric singular perturbation method, and the existence of travelling
wavesolutions was established.

The work of [162] revealed that travelling wave solutions existed for a modified
vector-disease model using the geometric singular perturbation theory. Models that
incorporated local and individual interactions were introduced in [128], in addition,
epidemiological time-scales were used to reduce the dimensionality of the model
and SPMs were used to corroborate the results of time-scale approximations.

In [112] a mathematical model was proposed for the differentiation of osteoblastic
and osteoclastic populations in bone, and singular perturbation theory was used
to analyze the highly diversified dynamics. Considering the model describing the
growth of microalgae, the authors of [20] maximized the specific growth rate of
microalgae by manipulating the irradiance using singular perturbation theory.

The topic of [122] focused on the analysis of a nonlinear dynamical model of
a class of bioprocesses in order to obtain reduced order models, and SPMs and
quasi-steady state assumption were used.

A novel ion channel biosensor was modelled in [90], and singular perturbation
theory was used to designed an optimal input voltage to the biosensor to minimize
the covariance of the estimation error.

A mechanism was proposed in bio-molecular systems to attenuate retroactivity in
[? ]. By coordinating transforms and singular perturbation theory, retroactivity can
be arbitrarily attenuated by internal system gains.

In [71], the model was analyzed to predict the performance of the biosensor in
transient and steady-state regimes. Singular perturbation was used to determine the
conditions for globally uniformly stability of a class of biological networks with
different time-scales under parameter perturbations in [89].
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Based on singular perturbation theory, dynamical system theory and DAEs, a
mathematical framework was developed to analyze and design on-line schemes for
fixed point recur-rent neural learning in [116].

7.1.6 Applications of Singular Perturbation Methods
in Other Areas

In [127], the moisture-induced deformation in an elastic panel was modelled as SPSs.
Compared with experimental results, the solution was analyzed based on the material
of the elastic panel. Optimal climate control problem was studied for a potato storage
facility to exploit the favourable weather conditions in [65].

A upper bound for the fast time-scale was derived. Using SPM and based
on Fenichel’s theorems, extensions of Hirsch’s generic convergence theorem for
monotone systems were studied in [149]. Considering a large-scale nonlinear net-
work system, singular perturbation was used to decompose the states into fast and
slow subsystems in [9, 10], and the validity of the reduced-model approximation
was proved on the infinite time interval.

Notion of TTS distributions was introduced [101] and TTS distribution was ana-
lyzed in two different time-scales. Singular perturbation was applied to choose the
PageRank factor in a bow-tie web graph [3]. Boundary value theory was applied to
analyze the gravitational-tidal evolution of planetary subsystems in [11]. The topic
of [4] was about the spectral properties of the Neumann-Laplacian on the singularly
perturbed periodic quasi-cylinder. Singular perturbation theory was used to analyze
the global asymptotic stability of positive equilibria of ratio-dependent predator-prey
models with stage structure for the prey in [100].

In [47], singular perturbation theory was applied to analyzed the quadratic
family with multiple poles. The author of [117] analyzed the stokes flow in a sin-
gularly perturbed exterior domain. Considering static and dynamic behaviour of
two-dimensional droplets in [121], an evolution equation for the droplet thickness
was obtained using singular perturbation theory. In [133], “vorticity distributions
over the diffracted shock both from Lighthill’s theory applicable for small bends and
Sakurai and Takayama’s theory applicable for larger bends have been investigated
for Mach numbers 1.80 and 1.95” using singular perturbation theory.

7.2 Wind Turbines Control Using Linear Parameter
Varying Singularly Perturbed Model

The rotor speed tracking problem of variable-speed wind turbine systems operating
below rated wind speed is studied in this section. A linear parameter varying (LPV)
model is used to approximate the nonlinear SPM. Following, stability and robust
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properties of the open-loop linear SPS are analyzed using LMI and LPV. An algorithm
to design a stabilizing state feedback controller is proposed, which can guarantee the
robust property of the closed-loop system.

In this section, the mathematical model of wind turbine systems with permanent
magnet synchronous generators is developed. Note that the electrical part of the
system changes much faster than the mechanical part, namely, the states of the wind
energy conversion systems have two different time-scales. Based on the TTS property
of wind turbine systems, stretching transformation is used to obtain the singularly
perturbed nonlinear model. LPV techniques are then used to linearize the singularly
perturbed nonlinear system.

Our consideration is focused on partial load, which is the optimal tip-speed ratio of
the wind rotor speed with respect to the wind speed changing. For this control purpose,
all the concluding aerodynamics, drive train dynamics, and generator dynamics are
considered.

Commonly, the aerodynamic torque Tr is given as follows [126, 151]:

Tr = 1

2
ρπR3CQ(λ)V 2, (7.1)

where ρ is the air density, V is the wind speed, and R is the radius of the wind rotor
plane. Power coefficient CQ(λ) is approximated by a second-order polynomial of
tip-speed ratio λ [8],

CQ(λ) = CQmax − kQ(λ − λQmax)
2, (7.2)

where CQmax is the maximum power coefficient, λQmax is the optimal tip-speed ratio
corresponding to CQmax, and λ is defined by

λ = ωrR

V
, (7.3)

with ωr as the wind rotor speed.
The drive train block has the model as below [91, 99]:

ω̇r = − i

ηJr
TH + 1

Jr
Tr, (7.4)

ω̇g = 1

Jg
TH − 1

Jg
Tg, (7.5)

ṪH = iKgωr − Kgωg − Bg

(
1

Jg
+ i2

ηJr

)
TH + iBg

Jr
Tr + Bg

Jg
Tg, (7.6)

where ωg is the generator speed, TH is the internal torque, Jr is the wind rotor inertia,
Jg is the generator inertia, Kg is the stiffness coefficient of the high-speed shaft (the
generator shaft), Bg is the damping coefficient of the high-speed shaft (the generator
shaft), i is the gearbox ratio, and η is the gearbox efficiency.
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Then, the generator dynamics are modelled as follows [99, 151]:

i̇d = −Rs

Ld
id + pLq

Ld
iqωg − 1

Ld
ud, (7.7)

i̇q = −Rs

Lq
iq − p

Lq
(Ldid − φm)ωg − 1

Lq
uq, (7.8)

Tg = pφmiq

where Tg is the generator electromagnetic torque, id , Ld , ud and iq, Lq, uq are the
d and q components of the stator current, inductance, voltage, respectively, Rs is
the stator resistance, p is the number of pole pairs, and φm is the flux. Combining
(7.4)–(7.8), the complete nonlinear model of the wind energy conversion system is
obtained.

Considering the order of magnitude of Ld and Lq, we select the singular pertur-
bation parameter as ε = 1 × 10−2, and obtain:

εi̇d = −Rs

Ld
id + pLq

Ld
iqωg − 1

Ld
ud, (7.9)

εi̇q = −Rs

Lq
iq − p

Lq
(Ldid − φm)ωg − 1

Lq
uq, (7.10)

where Ld = Ld × 102 and Lq = Lq × 102. Then, the singularly perturbed nonlinear
system is obtained by uniting (7.4)–(7.6) and (7.9)–(7.10).

Now we are ready to derive the linear model using LPV method. Choose an oper-
ating point θ1 = [ω̂r V̂ ω̂g îd îq]T , and linearize the nonlinear parts in the singularly
perturbed nonlinear system at point θ1:

Tr(λ, V ) − Tr(λ̂, V̂ ) = −Br(θ1)δωr + Krv(θ1)δV, (7.11)

ωgiq − ω̂g îq = Bgq(θ1)δiq + Bqg(θ1)δωg, (7.12)

ωgid − ω̂g îd = Bgd(θ1)δid + Bdg(θ1)δωg, (7.13)

where

δωr = ωr − ω̂r, δV = V − V̂ , δiq = iq − îq,

δid = id − îd, δωg = ωg − ω̂g, λ̂ = Rω̂r/V̂ ,

Br(θ1) = −∂Tr
∂ωr

⏐⏐⏐
(ω̂r ,V̂ )

= −Tr(λ̂, V̂ )

ω̂r

∂CQ/∂λ

CQ/λ

⏐⏐⏐
(λ̂,V̂ )

= ρπR4kQ
(
Rω̂r − λQmaxV̂

)
, (7.14)
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Krv(θ1) = ∂Tr
∂V

|(ω̂r ,V̂ )=
Tr(λ̂, V̂ )

V̂

(
2 − ∂CQ/∂λ

CQ/λ

⏐⏐⏐
(λ̂,V̂ )

)

= ρπR4kQ
(
Rω̂r − (1 − CQmax

kQλ2
Qmax

)λQmaxV̂
)
, (7.15)

Bgq(θ1) = ω̂g, Bqg(θ1) = îq, Bgd(θ1) = ω̂g, Bdg(θ1) = îd .

Substituting (7.11)–(7.13) into (7.4)–(7.6) and (7.9)–(7.10) yields the following
singularly perturbed linear system at the operating point θ1:

⎡
⎢⎢⎢⎢⎣

δ̇ωr

δ̇ωg

δ̇TH
εδ̇id
εδ̇iq

⎤
⎥⎥⎥⎥⎦

= A(θ1)

⎡
⎢⎢⎢⎢⎣

δωr

δωg

δTH
δid
δiq

⎤
⎥⎥⎥⎥⎦

+ B(θ1)

⎡
⎣

δV
δud
δuq

⎤
⎦ , (7.16)

where

A(θ1) =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Br(θ1)
Jr

0 − i
ηJr

0 0

0 0 1
Jg

0 − 1
Jg
Pφm

iKg − iBgBr(θ1)

Jr
−Kg −Bg

( 1
Jg

+ i2
ηJr

)
0 Bg

Jg
Pφm

0
PLq
Ld

Bqg(θ1) 0 − Rs
Ld

PLq
Ld

Bgq(θ1)

0 P
Lq

(φm − LdBdg(θ1)) 0 − P
Lq
LdBgd(θ1) − Rs

Lq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B(θ1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
Jr
Krv(θ1) 0 0

0 0 0
iBgKrv(θ1)

Jr
0 0

0 − 1
Ld

0

0 0 − 1
Lq

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Furthermore, denoting x = [δωr δωg δTH ]T , z = [δid δiq]T and u = [δud δuq]T ,
rewrite (7.16) as

Eε

[
ẋ
ż

]
= A(θ1)

[
x
z

]
+ B(θ1)

⎡
⎣

δV (t)
δud
δuq

⎤
⎦

= A(θ1)

[
x
z

]
+ B1(θ1)δV + B2u, (7.17)
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where

Eε =
[
I3 0
0 εI2

]
, B(θ1) = [

B1(θ1) B2
]
.

Then, by appropriately choosing operating points θi as a convex polytope with θi
being vertices

� = Co{θ1, θ2, θ3, θ4, θ5} (7.18)

with i = 1, . . . , 5. Note that the LPV model (7.17), with Br(θ) and Krv(θ) approxi-
mated by (7.14) and (7.15), is affine in parameters. There exist scalars a, b, c, and d
such that Br(θ) = aθ + b and Krv(θ) = cθ + d. Hence, it is easy to verify that, for
any θ ∈ �, there exist a set of positive numbers αi > 0 with i = 1, . . . , 5 such that

A(θ) =
5∑

i=1

αiA(θi), B1(θ) =
5∑

i=1

αiB1(θi), (7.19)

where
∑5

i=1 αi = 1. Therefore, for any θ ∈ �, we have derived the singularly per-
turbed LPV model as below:

Eε

[
ẋ
ż

]
= A(θ)

[
x
z

]
+ B1(θ)δV + B2u. (7.20)

Remark 7.1 For the details of skills to choose operating points appropriately, please
refer to [8].

7.2.1 Stability Analysis of Open-Loop System

In this subsection, our objective is to hold the optimal tip-speed ratio by adjusting
wind rotor speed with respect to the wind speeds. The operating points are chosen
such that the tip-speed ratio is optimal. States x and z in (7.20) are required to decay
to zero, which indicates that errors between the actual states and the desired states
tend to zero. In this sense, the wind turbine runs to extract all the available power.

Therefore, we will analyze the stability of the SPS (7.20) when the control input
u = 0 based on LMI techniques. If u = 0, from (7.20), we can obtain the SPS as
follows:

Eε

[
ẋ
ż

]
= A(θ)

[
x
z

]
+ B1(θ)δV (t). (7.21)
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Theorem 7.1 For an SPS in the form (7.21) and a given positive scalar γ > 0, if
there exist positive symmetrical matrices Pi > 0, i = 1, . . . , 5, satisfying that

⎡
⎣
AT (θi)PiEε + ET

ε PiA(θi) � �

BT
1 (θi)PiEε −γ2I �

C 0 −I

⎤
⎦ < 0 (7.22)

where

θ =
5∑

i=1

αiθi,

5∑
i=1

αi = 1, A(θ) =
5∑

i=1

αiA(θi), B1(θ) =
5∑

i=1

αiB1(θi)

and αi > 0, then the equilibrium point of system (7.21) at θ is asymptotically stable,
and the condition that ‖C(sEε − A)−1B1‖ < γ is satisfied.

Proof Construct a Lyapunov function as

W (X) = XTET
ε PEεX, (7.23)

where X = [
x z

]T
and P = ∑5

i=1 αiPi. Since Pi > 0 and αi > 0, we have P > 0
such that W (X) > 0 holds.

Firstly, the asymptotically stability of the system is proved under conditions in
Theorem 7.1, when the disturbance δV (t) is zero. With δV (t) = 0, differentiating
W (X) with the respect to t along the trajectory of (7.21) yields

dW (X)

dt
= XT {AT (θ)PEε + ET

ε PA(θ)}X. (7.24)

According to the LMI (7.22), we have

AT (θi)PiEε + ET
ε PiA(θi) < 0. (7.25)

Then, adding the weight values (i.e., αi) of θi to (7.25) yields

{
5∑

i=1

αiA
T (θi)

}{
5∑

i=1

αiPi

}
Eε + ET

ε

{
5∑

i=1

αiPi

}{
5∑

i=1

αiA(θi)

}

= AT (θ)PEε + ET
ε PA(θ) < 0. (7.26)

Therefore, Ẇ (X) < 0. Hence, the system of (7.21) at point θ is asymptotically stable
when δV (t) = 0.

Next, we prove the robust property of the system (7.21) when the disturbance
δV (t) �= 0.
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Considering αi > 0 and using the LMI (7.22), it yields

5∑
i=1

αi

5∑
i=1

αi

⎡
⎣
AT (θi)PEε + ET

ε PA(θi) � �

BT
1 (θi)PEε −γ2I �

C 0 −I

⎤
⎦ < 0, (7.27)

which leads to
⎡
⎣
AT (θ)PEε + ET

ε PA(θ) � �

BT
1 (θ)PEε −γ2I �

C 0 −I

⎤
⎦ < 0. (7.28)

Then, by using SCL twice, LMI (7.28) can be transformed into

AT (θ)PEε + ET
ε P

TA(θ) + CTC + 1

γ2
ET

ε P
TB1(θ)B

T
1 (θ)PEε < 0. (7.29)

Differentiating W (X) along the trajectory of (7.21) and using (7.29) yield

dW (X)

dt
= XT {AT (θ)PEε + ET

ε PA(θ)}X + δV TBT
1 (θ)PEεX + XTET

ε PB1(θ)δV

< XT {−CTC − 1

γ2
ET

ε P
TB1(θ)B

T
1 (θ)PEε}X

+ δV TBT
1 (θ)PEεX + XTET

ε PB1(θ)δV

= −yTy + γ2δV TδV − γ2
(
δV − 1

γ2
BT

1 PEεX
)T (

δV − 1

γ2
BT

1 PEεX
)
.

(7.30)

Based on the asymptotically stability proved at the first part of this proof, we have
X(∞) = 0. Provided that X(0) = 0, integrating both sides of (7.30) from t = 0 to
t = ∞ yields

0 < −
∫ ∞

0
yT (t)y(t)dt +

∫ ∞

0
γ2δV T (t)δV (t)dt

−
∫ ∞

0
γ2(δV − γ−2BT

1 (θ)PEεX)T (δV − γ−2BT
1 (θ)PEεX)dt (7.31)

Then, one can obtain that

∫ ∞

0
yT (t)y(t)dt −

∫ ∞

0
γ2δV T (t)δV (t)dt

< −
∫ ∞

0
γ2(δV − γ−2BT

1 (θ)PEεX)T

(δV − γ−2BT
1 (θ)PEεX)dt. (7.32)
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Therefore,

∫ ∞

0
yT (t)y(t)dt −

∫ ∞

0
γ2V T (t)V (t)dt < 0. (7.33)

It is obvious that ‖C(sEε − A(θ))−1B1(θ)‖ < γ holds. This completes the proof.

Remark 7.2 Even though Theorem 7.1 can guarantee the stability and robust prop-
erty of the system (7.21), LMI (7.22) is dependent on small parameter ε.

The following result improves the ill-conditioned condition in Theorem 7.1.

Theorem 7.2 For an SPS in the form of (7.21) and a given positive scalar γ > 0, if
there exist symmetrical matrices Pi, i = 1, . . . , 5, satisfying

ET
ε Pi = PT

i Eε > 0, (7.34)⎡
⎣
AT (θi)Pi + PiA(θi) � �

BT
1 (θi)Pi −γ2I �

C 0 −I

⎤
⎦ < 0, (7.35)

where

θ =
5∑

i=1

αiθi,

5∑
i=1

αi = 1, A(θ) =
5∑

i=1

αiA(θi), B1(θ) =
5∑

i=1

αiB1(θi)

andαi > 0, then the equilibriumpoint of the system (7.21) at point θ is asymptotically
stable and ‖C(sEε − A(θ))−1B1(θ)‖ < γ holds.

Proof Define a Lyapunov function as

W (X) = XTET
ε PX, (7.36)

where X = [
x z

]T
and P = ∑5

i=1 αiPi. According to the condition (7.34), we have

ET
ε P = PTEε > 0. (7.37)

As a consequence, W (X) > 0 is satisfied. Then, the time-derivative of W (X) along
the solution of (7.20) is given by

Ẇ (X) = XT {AT (θ)P + PTA(θ)}X + δV TBT
1 (θ)PX + XTPTB1(θ)δV . (7.38)

The following part is similar to the proof of Theorem 7.1 and is omitted here.
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7.2.2 Controller Design

In this subsection, we will design a robust state-feedback controller for the system
(7.20), and analyze the stability property of its closed-loop system.

Since the coefficients of the system (7.20) depend on the θ, it is reasonable to
design a controller whose feedback gain matrix also depends on θ.

From (7.19) and (7.21), for any point θ ∈ �, the dynamic equation of the nonlinear
SPS can be expressed as a weight-sum of the dynamic equations at the vertices
θi (i = 1, . . . , 5) of �. Therefore, we will design controllers for the LTI systems
operating at the vertices θi (i = 1, . . . , 5) of � and use a weight-sum of the controllers
at vertices as the control input to the system at point θ ∈ �.

At the vertex point θi, i ∈ {1, 2, 3, 4, 5}, design a robust state feedback controller
as below:

ui = K(θi)X. (7.39)

The closed-loop system of (7.21) at the vertex point θi with (7.39) as control input
is of the following form,

EεẊ = Ac(θi)X + B1(θi)δV, (7.40)

where Ac(θi) = A(θi) + B2K(θi).
Then, for a nonlinear SPS (7.20) at θ, the state-feedback controller is given by

u(θ) = K(θ)X =
5∑

i=1

αiK(θi)X, (7.41)

where αi > 0 and
∑5

i=1 αi = 1.
Applying (7.41) in system (7.20), the closed-loop system is obtained as

Eε

[
ẋ
ż

]
= (A(θ) + B2K(θ))

[
x
z

]
+ B1(θ)V . (7.42)

The properties of closed-loop system of (7.42) are analyzed in the next
Theorem 7.3. To develop Theorem 7.3, the following lemma from [48] is needed.

Lemma 7.1 [48] For matrices X,Y ∈ Rm×n and H > 0, and a scalar δ > 0, then
we have

XTHY + YTHX � δXTHX + δ−1YTHY . (7.43)

Theorem 7.3 The closed-loop system of (7.20) with (7.41) as control input is asymp-
totically stable, and
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‖C(sEε − Ac(θ))
−1B1(θ)‖ < γ

is satisfied for a given γ > 0, if there exist matrices Pi and K(θi) of appropriate
dimension, such that the following LMIs hold

ET
ε Pi = PT

i Eε > 0, (7.44)⎡
⎢⎢⎢⎢⎣

AT (θi)Pi + PT
i A(θi) � � � �

B2K(θi) −I � � �

Pi 0 −I � �

BT
1 (θi)Pi 0 0 −γ2I �

C 0 0 0 −I

⎤
⎥⎥⎥⎥⎦

< 0. (7.45)

Proof Similar to the proof of Theorem 7.1, because

A(θ) =
n∑

i=1

αiA(θi), B1(θ) =
n∑

i=1

αiB1(θi), K(θ) =
n∑

i=1

αiK1(θi),

n∑
i=1

αi = 1

and αi > 0. According to (7.45), we have

⎡
⎢⎢⎢⎢⎣

AT (θ)Pi + PT
i A(θ) � � � �

B2K(θ) −I � � �

Pi 0 −I � �

BT
1 (θ)Pi 0 0 −γ2I �

C 0 0 0 −I

⎤
⎥⎥⎥⎥⎦

< 0. (7.46)

Setting P = ∑n
i=1 αiPi, from (7.44) and (7.46), the following inequalities hold

ET
ε P = PTEε > 0, (7.47)⎡

⎢⎢⎢⎢⎣

AT (θ)P + PTA(θ) � � � �

B2K(θ) −I � � �

P 0 −I � �

BT
1 (θ)P 0 0 −γ2I �

C 0 0 0 −I

⎤
⎥⎥⎥⎥⎦

< 0. (7.48)

According to SCL 2.4, inequality (7.48) is equivalent to

AT (θ)P + PTA(θ) + (B2K(θ))T (B2K(θ)) + PTP

+CTC + 1

γ2
PTB1(θ)B

T
1 (θ)P < 0 (7.49)

From Lemma 7.1, it is easy to obtain

(B2K(θ))TP + PT (B2K(θ)) � (B2K(θ))T (B2K(θ)) + PTP. (7.50)
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Hence, from (7.49) and (7.50), we have

AT (θ)P + PTA(θ) + (B2K(θ))TP + PT (B2K(θ))

+CTC + 1

γ2
PTB1(θ)B

T
1 (θ)P < 0, (7.51)

which is equivalent to

(A(θ) + B2K(θ))TP + PT (A(θ) + B2K(θ))

+CTC + 1

γ2
PTB1(θ)B

T
1 (θ)P < 0. (7.52)

Define a Lyapunov function as

W (X) = XTET
ε PX, (7.53)

where X = [
x z

]T
. Then, the time-derivative of W (X) along the solution of (7.20)

is given by

Ẇ (X) = XT {(A(θ) + B2K(θ))TP + PT (A(θ) + B2K(θ))}X
+ V TBT

1 (θ)PX + XTPTB1(θ)V .

The following part is similar to the proof of Theorem 7.1 and is omitted here.

7.2.3 Algorithm of Synthesis

In order to clarify the whole process of designing a parameter-dependent controller
for the original nonlinear system (7.4)–(7.8), the following algorithm is presented.

Step 1. Choose five operating points θ1, . . . , θ5.
Step 2. Determine singular perturbation parameter ε, and get the nonlinear SPSs

(7.4)–(7.6) and (7.9)–(7.10).
Step 3. Linearize the nonlinear SPSs (7.4)–(7.6), (7.9)–(7.10) at θi, and obtain the

linear parameter-dependent coefficient A(θi) and B(θi) (i = 1, . . . , 5).
Step 4. For a given γ, at each operating point θi, LMIs (7.44) and (7.45) are solved

to obtain control gain matrices Ki (i = 1, . . . , 5).
Step 5. At time tk , the variable θ(tk) = θk is measured, and the weighting coefficients

αi satisfying

θk =
5∑

i=1

αi(tk)θi (7.54)

are computed with 0 � αi � 1 and
∑5

i=1 αi = 1.
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Step 6. The control gain matrix at time tk is obtained as below:

K(θ(tk)) =
5∑

i=1

αi(tk)Ki (7.55)

Step 7. Apply the controller (7.55) to the original nonlinear system (7.4)–(7.8).
Step 8. At time tk+1, repeat Step 5 to Step 8.

Remark 7.3 This algorithm can only be applied to the point θ ∈ �, where � is
defined by (7.18). If θ /∈ �, it can not be guaranteed that we can computed αi > 0,
i = 1, . . . , 5, with

∑5
i=1 αi = 1 satisfied.

Remark 7.4 Since the operating point θ = [ω̂r V̂ ω̂g îd îq]T involves wind speed V ,
� implies the range of the wind speed within which our algorithm is effective.

7.2.4 Simulation Examples

In this subsection, our goal is to track the desired wind rotor speed and maintain
the optimal tip-speed ratio with the wind speed changing. The simulation study
is performed to verify the effectiveness of the proposed control algorithms. The
parameters of the wind turbine from [98] are used in the next examples as given in
Table 7.1.

Example 7.1 Consider a wind turbine system with the parameters depicted in
Table 7.1. The wind speed is assumed as a constant 13 m/s in this example. Using
the developed Algorithm, the wind rotor tracking is shown in Fig. 7.1. It can be seen
that the tracking error between actual rotor speed and the desired rotor speed decays
to zero.

Example 7.2 In this example, the wind input file is selected as the mean wind speed
15 m/s changing within a range of 5 m/s. The wind file is based on data collected at
100 Hz. The other parameters are the same as Table 7.1. Figure 7.2 shows the wind
input file.

Our objective is to track the desired rotor speed ωref(t) = λopt ∗ V (t)/R. Because
of the slow response characteristics of wind turbine systems, it is impossible to track
the high frequency part of the wind rotor reference. We aim to track the desired
rotor speed at low frequency part, and reduce the tracking error at the high frequency
part. Figure 7.3 shows the wind rotor tracking performance. It can be seen that the
controlled rotor speed can track the desired rotor speed accurately after four seconds,
and the control scheme achieves the desired tracking performance.
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Table 7.1 Parameters of wind turbine [98]

Physical description Parameter Value Unit

Cut-in wind speed V 4 m/s

Mean wind speed VR 15 m/s

Optimal tip-speed ratio λQmax 6.2 –

Rotor radius R 2.5 m

Optimal power coefficient CPmax 0.4633 –

Air density ρ 0.98 kg/m3

Gearbox efficiency η 1 –

Wind rotor inertia Jr 3.88 kg · m2

Generator inertia Jg 0.22 kg · m2

Number of pole pairs P 3 –

Gearbox ratio i 6 –

Flux linkage φm 0.4382 wb

Shaft damping coefficient Bg 0.3 kg · m2/s

Shaft stiffness coefficient Kg 75 N m/rad

Stator d-axis inductance Ld 41.56 mH

Stator q-axis inductance Lq 41.56 mH

Stator resistance Rs 3.3 �
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7.3 Robust H∞ Controller for Miniature Quad-Rotors
in Hovering

This section is concerned with the H∞ control synthesis of miniature quad-rotors
to improve its hovering capability in presence of wind disturbances. With aid of
SPaTSs, the six-degree-freedom flight dynamics can be decoupled into two subsys-
tems: one for translational motion corresponding to the low-frequency subsystem
and the other for the orientational motion referred to as the high-frequency subsys-
tem. To avoid the unnecessary frequency overlap, the GKYP lemma is employed in
the irrelevant dominant frequency ranges of the related subsystems. Sub-controllers
are designed to stabilize the low- and the high-frequency subsystems and satisfy the
associated H∞ performance specifications, respectively. The composite controller
composed of sub-controllers is applied directly to the overall flight system of minia-
ture quad-rotors. The characteristics of wind are considered, and different composite
controllers are designed in various flight regimes to ensure an adequate response in
all flight modes. Based on this, a novel switch strategy is then put forward to guaran-
tee desired hovering capability under different weather conditions. Detail analysis of
the performance achieved by the piece-wise controller is provided when it is applied
to the original system. The effectiveness and merits of the proposed switch strategy
are illustrated with a numerical result.

There has been an exponential increase in the prevalence of miniature UAVs
over past decades. To date, both miniature fixed-wing and rotary-wing aircraft are
extensively used in numerous military and civil applications [16]. Due to some unique
features such as low cost, small size, good manoeuverability and hover capability,
miniature UAVs are well suited for missions such as fire detection, victims local-
ization, etc. A precise model plays an important role in prediction for the behav-
iours of various dynamic systems. The significance for modelling a quad-rotor
vehicle dynamics has been addressed in the documented research results such as
[13, 56, 75]. The flight dynamic model for miniature UAV is derived using well-
established aircraft and rotorcraft theories, and the related model parameters are esti-
mated through system identification using practical input-output data collected from
particular experiments. To achieve autonomous flight, miniature UAVs are equipped
with microcomputers such that control laws can be executed onboard to replace the
action of a human pilot [16, 17]. Control strategy is formulated according to various
flight regimes to guarantee satisfactory performance over the full flight envelope.

Many dynamical systems such as aircraft and racket systems and electric power
systems feature TTS characteristics, namely, an interaction of fast and slow dynamics
[78, 94, 153]. Such systems are governed by both fast and slow dynamics, and
customarily referred to as SPSs. For miniature UAVs, translational dynamics are
regarded as slow dynamics, whereas orientation dynamics are considered to be fast.
Feedback design for SPSs commonly suffers from high dimensionality and ill-posed
problems. Consequently, the design based on the overall system or some simplified
models may cause the closed-loop system far from its desired performance or even
unstable. SPTs have been proven to be common tools for modelling, analysis and
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design of flight control systems, and the numerical stiffness is much alleviated.
Engineers usually separate states into two parts, and introduce a small parameter ε
to determine the degree of separation between the slow and fast modes. In [153], the
nature of multi-time-scale systems is presented, and it is possible to obtain controllers
that are independent of ε. The success of perturbation techniques involving multiple
time-scales shed light on the research of the frequency-domain approaches which
characterize the frequency behaviours of slow and fast subsystems, repsectively. In
[81, 82], transfer-function matrices for SPSs are considered, and conditions that
guarantee system behaviours are decomposed into several frequency scales.

In the literature, a variety of SPTs have been applied into the controller design of
UAVs to achieve their missions not only with increasing efficiency, but also with more
safety and security. A Lyapunov-based control in [37] using singular perturbation
theory is proposed and applied in a miniature UAV. The research work presented
in [7] addressed the stability analysis of a hierarchical controller of a UAV. More
superficially, position and attitude control laws were successively designed via a
time-scale separation between the translational dynamics and orientational dynam-
ics of a six degrees-of-freedom vertical take off and landing UAV model. In [35],
Esteban and Rivas proposed a singular perturbation control strategy for regulating the
longitudinal flight dynamics of a UAV, where control strategy was based on a time-
scale decomposition that included the altitude, velocity, pitch, and flight path angle
dynamics. SPTs were used in [52] to develop a full-authority trajectory controller for
an autonomous helicopter. In [143], time-controlled optimal flight-trajectory gener-
ation methods, which included the effects of risk caused by threat environment, had
been proposed, and singular perturbation method was used to obtain reduced-order
airplane models that allow static rather than dynamic optimization.

Good hovering capability is a key system specification for missions such as vision
inspection of buildings for maintenance and post-disaster relief. In the content ofH∞
control of SPSs, over the past decades, a variety of singularly perturbed models have
been proposed and investigated. Combined with the distinctive behaviours between
slow and fast states, the concept of H∞ control of SPSs was raised in [67] with H∞
properties of the two subsystems established, respectively. In [79], a fuzzy model was
used to represent the SPSs, and both the state feedback and SOFCs were developed to
achieve the H∞ disturbance attenuation performance. Li, Wang and Liang proposed
a new methodology to design sub-optimal controllers for SPSs, which can be further
extended to other robust and multi-objective control problems for SPSs [76]. Con-
sidering that the system commonly works in some specific frequency ranges under
certain operating conditions, it is, thus, too strict and unpractical to keep H∞ perfor-
mance index established in the full frequency range, which leads to the research of
the finite frequency H∞ control (FF H∞ control). During the past few years, some
good results of the FF H∞ control of SPSs have been documented in the literature.
In [88], a method to design a composite state feedback controller was constructed to
realize the FF H∞ control of SPSs based on the GKYP lemma. Huang et al. extended
this method to realize positive real control of SPSs [57]. In [55], an output feedback
controller for SISO SPSs was designed to meet frequency-domain loop-shaping
specifications. Despite its theoretical significance and engineering importance, the
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Fig. 7.4 Quad-rotor aerial vehicle developed at the Khalifa University

concept of frequency dividing control for SPSs, however, has not attracted much
research attention yet, not to mention the composite design on the SPSs.

In this section as shown in Fig. 7.4, a miniature UAV is formulated into an SPS
to meet the requirements of high precision and quality in modern engineering, and a
positive parameter ε is served as a measurement of “speed” to separate the transla-
tional dynamics and orientational dynamics. H∞ control is then conducted based on
the unique frequency nature of SPSs.

The main contributions of this section are outlined as follows.

(1) We present the stability and control performance analysis of the miniature UAV
using singular perturbation theory. The flight control system, represented in the
form of an SPS, is decoupled into two reduced-order subsystems in separate
time-scales: the translational subsystem (slow subsystem) in the slow time-scale
and the orientational subsystem (fast subsystem) in the fast time-scale. The flight
system of the miniature UAV is modelled in terms of SPS such that the model
accuracy is increased to a large extent.

(2) Sub-controllers are designed, respectively, for the corresponding slow and fast
subsystems to increase their robustness to different types of external distur-
bances. Advantage is thereby taken of the singularly perturbed nature of the
problem to design a well-conditioned composite feedback controller to solve
the original SPS within a specified order-of-ε accuracy.

(3) The frequency nature of SPSs is considered in the design of H∞ hovering con-
troller for miniature UAVs. Note that the slow modes are sensitive to oscillators
associated with low-frequency signals, while the fast modes are more easily
affected by high-frequency power sources. Thus, slow and fast subsystems are
constructed, separately, in the low and high frequency ranges to avoid the unnec-
essary frequency band overlap, and referred to as the low-frequency cut-off
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subsystem and high-frequency cut-off subsystem in the literature. Such cut-off
frequency subsystems with lower system order can characterize the frequency
characteristic of the high-dimensional flight system in disjoint frequency ranges.

(4) The conservatism of the H∞ performance index is highly reduced with the aid of
finite frequency H∞ control. Contrast with the existing method, finite frequency
control is put forward, and the H∞ index for the related cut-off frequency sub-
system is established in the corresponding dominant frequency range.

(5) Wind gust contains abundant frequency components, and is thus regarded as
the external disturbance. Due to this, we adopt a novel control strategy based
on switch between different composite controllers to meet the requirements of
different flight regimes. More specifically, an index switching function is used
to select the candidate sub-controller according to different weather conditions.

7.3.1 Modelling

In this section, a six-degree-of-freedom (6-DOF) miniature UAV developed at the
Khalifa University, SAQER, is used as an example for the controller design with
state variables and parameters shown in Tables 7.2 and 7.3, respectively.

Motion equations are derived from Newton’s second law. The force equation is
given by

u̇ = −(wq − vr) + X/m − g sin θ,

v̇ = −(ur − wp) + Y/m + g cos θ sin φ,

ẇ = −(vp − qu) + Z/m + g cos θ cos φ,

(7.56)

Table 7.2 Body frame variables

Physical description x axis y axis z axis

Angular rates p q r

Velocity components u v w

Force components X Y Z

Moment components L M N

Moment of inertia Ixx Iyy Izz
Product of inertia Iyz Ixz Ixy

Table 7.3 Motor variables Physical description Parameter

Thrust of i-th motor Ti
Torque of i-th motor Mi

Total mass of the vehicle m

Length between a motor and
the centre

l
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where forces acting on the vehicle are given by

X = mXuu + mXθθ + mXqq,

Y = mYvv + mYφφ + mYpp,

Z = mZww + T1 + T2 + T3 + T4.

The moment equation is given by

Ixxṗ = (Iyy − Izz)qr + Ixz(ṙ + pq) + L,

Iyyq̇ = (Izz − Ixx)rp + Ixz(r
2 − p2) + M,

Izz ṙ = (Ixx − Iyy)pq + Ixz(ṗ − qr) + N,

(7.57)

where

L = IxxLuu + IxxLvv + IxxLpp + 2(T4 − T2)l,

M = IyyMuu + IyyMvv + IyyMqq + 2(T1 − T3)l,

N = IzzNrr − M1 − M3 + M2 + M4.

Due to the symmetric structure of the vehicle, all products of inertias are zero:
Ixy = Ixz = Iyz = 0. The following relationship is considered,

⎡
⎣
p
q
r

⎤
⎦ =

⎡
⎣

1 0 − sin θ
0 cos φ sin φ cos θ
0 − sin φ cos φ cos θ

⎤
⎦

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ ,

which can be rewritten as

φ̇ = p + p sin φ tan θ + r cos φ tan θ,

θ̇ = q cos φ − r sin φ,

ψ̇ = q sin φ sec θ + r cos φ sec θ.

(7.58)

The complete system is composed of the translational dynamics (7.56) and the orien-
tation dynamics (7.57)–(7.58). Then, we aim to design the H∞ controller to improve
the hovering capability of the complete system.

Current practice in the design of H∞ hovering controller for miniature UAVs is to
linearize the aircraft dynamics near the operating point with several trim conditions
to reduce the coupling among related aircraft dynamics. We assume that the vehicle
operates at hover, and the trimmed states are given by

u = 0, v = 0, w = 0, p = 0, q = 0, r = 0.

With regard to the fact that the variation range of angles φ, θ, ψ near the operating
point is not larger than 5◦, we have
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sin φ = 0, cos φ = 1, sin θ = 0,

cos θ = 1, sin ψ = 0, cos ψ = 1,

which can be further used in model simplification.
If the linearization of the system (7.56)–(7.57) is conducted near the operating

point, the following 6-DOF model can be obtained as
⎡
⎢⎢⎢⎢⎢⎢⎣

δ̇u
δ̇v
δ̇p
δ̇q
δ̇w
δ̇r

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Xu 0 0 Xq 0 0
0 Yv Yp 0 0 0
Lu Lv Lp 0 0 0
Mu Mv 0 Mq 0 0
0 0 0 0 Zw 0
0 0 0 0 0 Nr

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

δu
δv
δp
δq
δw
δr

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
Llat 0 0 0
0 Mlon 0 0
0 0 Zcol 0
0 0 0 Nped

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

δlat
δlon
δcol
δped

⎤
⎥⎥⎦ (7.59)

Taking the effects of the wind into consideration, additional items are added into
(7.59) to represent the external disturbances,
⎡
⎢⎢⎢⎢⎢⎢⎣

δ̇u
δ̇v
δ̇p
δ̇q
δ̇w
δ̇r

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Xu 0 0 Xq 0 0
0 Yv Yp 0 0 0
Lu Lv Lp 0 0 0
Mu Mv 0 Mq 0 0
0 0 0 0 Zw 0
0 0 0 0 0 Nr

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

δu
δv
δp
δq
δw
δr

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

Bwu
Bwv
Bww
Bwp
Bwq
Bwr

⎤
⎥⎥⎥⎥⎥⎦

� +

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
Llat 0 0 0
0 Mlon 0 0
0 0 Zcol 0
0 0 0 Nped

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

δlat
δlon
δcol
δped

⎤
⎥⎥⎦

(7.60)

where � is considered as the wind, the constant matrices Bwu, Bwv, Bww, Bwp, Bwq

and Bwr are used as the weighing matrices to characterize the components of wind
on related dynamics in different directions. The related parameters of SAQER’s bare
flight dynamics model after system identification is given in Table 7.4. On this basis,
we obtain three reduced subsystems, one of which can be modelled in the singularly
perturbed form,

(1) w subsystem in the slow time-scale t:

δ̇w = Zcolδcol, (7.61)

Table 7.4 Parameters of SAQER’s bare flight dynamics model after linearization

Variable Value Variable Value

Xu −0.02 Mu 0.05

Xθ −9.8 Mv 0

Xq 0.21 Mq −0.58

Yv 0.02 Zw 0

Yφ 9.8 Nr 0

Yp 0.21 Llat 141.21

Lu 0 Mlon 138.71

Lv 0.05 Zcol 11.12

Lp 0.59 Nped 7.83
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(2) r subsystem in the fast time-scale τ :

δ̇r = Npedδped, (7.62)

where Nped = εNped ,
(3) uvpq subsystem:

⎡
⎢⎢⎢⎢⎣

δ̇u

δ̇v

δ̇p

δ̇q

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Xu 0 0 Xq

0 Yv Yp 0

Lu Lv Lp 0

Mu Mv 0 Mq

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

δu

δv

δp

δq

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0

0 0

Llat 0

0 Mlon

⎤
⎥⎥⎥⎥⎦

[
δlat

δlon

]

:= P

⎡
⎢⎢⎢⎢⎣

δu

δv

δp

δq

⎤
⎥⎥⎥⎥⎦

+ B

[
δlat

δlon

]
.

(7.63)

Using the local linearization method, the whole flight system can be decoupled into
three subsystems: the w subsystem, r subsystem, and uvpq subsystem. Apparently,
the value of velocity component w is determined merely by the voltage δcol, and the
control input δped is a decisive factor for the flight dynamic r. Note that the uvpq
subsystem can be represented in the singularly perturbed form (7.63) because the
eigenvalues of the state matrix P cluster into two groups

λ(P) = {−0.0018, − 0.5982, 0.0021, 0.6079}.

The presence of two separate sets of eigenvalues of P is an inherent property of SPSs.
The design of H∞ controller for w subsystem and r subsystem can use the clas-

sical H∞ control approaches, which has already been intensively researched in the
literature. To highlight the key point of this section, that is, the following work is
mainly focused on the reduced TTS subsystem.

Denoting the slow part as ξ = [
δu δv

]T
, the fast part as ς = [

δp δq
]T

and the

control input u as u = [
δlat δlon

]T
, the singularly perturbed form of the reduced

system (1.36) is derived,

[
ξ̇
ες̇

]
=

[
A11 A12

A21 A22

] [
ξ
ς

]
+

[
B1

B2

]
u +

[
Bw1

Bw2

]
w, (7.64)

http://dx.doi.org/10.1007/978-3-319-45405-4_1
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where

A11 =
[
Xu 0
0 Yv

]
, A12 =

[
0 Xq

Yp 0

]
,

A21 =
[

εLu εLv
εMu εMv

]
, A22 =

[
εLp 0
0 εMq

]
,

B1 =
[

0 0
0 0

]
, B2 =

[
εLlat 0

0 εMlon

]
.

Remark 7.5 Wind is the external disturbance in the SPS model (7.64), which affects
the position and attitude of the UAV. Wind can be divided into different classifications
based on time or geography. Despite complex weather conditions, weighing matrices
Bw1 and Bw2 are used to characterize wind components in different directions. In
[74], it can be seen that wind dynamics are the combination of short-, medium- and
long-term wind speed fluctuations, but the power of wind is mainly concentrated in
low frequency range. Turbulence such as wind dust, a special type of wind occurring
frequently in real life, is the main contributor to high-frequency components of wind.

Applying the SPA into the SPS (7.64), we have the following subsystems, that is
translational subsystem in the slow time-scale t, denoted as �uv,

ξ̇s = (As + BusKs)ξs + Bwsw,

ys = (Cs + DusKs)ξs + Dwsw,
(7.65)

As = A11 + A12A
−1

22 A21, Bus = B1 + A12A
−1

22 B2,

Bws = Bw1 + A12A
−1

22 Bw2, Cs = C1 + C2A
−1

22 A21,

Dus = D1 + C2A
−1

22 B2, Dws = D2 + C2A
−1

22 Bw2,

and orientational subsystem in the fast time-scale τ , denoted as �pq,

ς̇f = (A22 + B2Kf )ςf + Bw2w,

yf = (C2 + D1Kf )ςf + D2w,
(7.66)

TTS characteristic of system (7.64) implies that

max |λ(A22)| � min |λ(As)|,

where As and A22 are the slow and fast subsystem state matrices. Based on this, the
parameter ε can be determined by

ε = min |λ(As)|/ max λ|(A22)|.
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Using SPTs in (7.65) and (7.66), cut-off frequency subsystems for (7.64) are con-
structed with the closed-loop transfer-function matrices as

Tlow(s) = Csc(sIn − Asc)
−1Bws + Ews,

whereEws = Dws − C2A
−1

22 Bw2 + D2, Asc = As + BusKl,Csc = Cs + DusKl, and

Thigh(p) = Cfc(pIm − Afc)
−1Bw2 + Ewf ,

where Ewf = Dws + D2, Afc = A22 + Bu2Kh, Cfc = C2 + D1Kh.

7.3.2 Design of H∞ Controller for Miniature UAVs
in Hovering

Waving with wind is a good status for the flight system rather than staying stationary
in the air, which requires less input energy. Stability and disturbance attenuation
capability of orientational dynamics is a necessary requirement for the hovering
task to keep the sustainable flight of the UAV while the position (the translational
dynamics) of the UAV is not that important for such task. Based on this concept, we
present methods to design the H∞ controller in hovering for the miniature UAV.

Theorem 7.4 (Design of Normal Controller) For a given cut-off frequency ωc,
scalars γ1 > 0, p1, q1, p2 and q2 satisfying p1q1 > 0 and p2q2 > 0, and matrices Rl,
the closed-loop SPS (7.64) achievesH∞ property to resist the effects of low-frequency
wind,

1. the closed-loop subsystem (7.64) is internally stable for ε ∈ (0, ε∗],
2. ‖Tlow(s)‖�l∞ < γ1,

if there exist symmetric matrices Ws, Ps > 0, Pf > 0, Pl and Ql > 0 such that the
following LMIs hold:

[
0 Ps
Ps 0

]
< He

[ −Ws
AsWs + Busκs

] [
q1In p1In

]
, (7.67)

[
0 Pf
Pf 0

]
< He

[ −Wf
A22Wf + B2κf

] [
q2Im p2Im

]
, (7.68)

⎡
⎢⎢⎣

−Ql 0 Pl 0
� Ir 0 0
� � ω2

cQl 0
� � � −γ2

1 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0
As Bws Bus
Cs Ews Dus

⎤
⎥⎥⎦

⎡
⎣
WsRl
Vl2
κsRl

⎤
⎦ . (7.69)

Feasible state feedback sub-controller gains are then given by Kl = κsW−1
s and

Kh = κf W
−1
h such that the composite state feedback controller gain is

Kp = [
Kl + KhA

−1
22 A21 + KhA

−1
22 B2Kl Kh

]
.
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Proof Under normal weather conditions, the major energy of wind is concentrated in
the low frequency range, and the slow modes (translational dynamics) are more easily
affected by the external disturbance compared with the fast modes (orientational
dynamics). Low frequency characteristic of the whole fight system can be represented
by the low-frequency cut-off subsystem �l. In other words, fast modes have the
high-pass property, and they can resist the low-frequency disturbance without input
control. In this case, the following requirement should be satisfied:

1. The internal stability property of the whole system (7.64) should be satisfied.
2. TheH∞ norm index for the low-frequency cut-off subsystem �l should be kept,

‖Tlow(s)‖∞ < γ1.

State feedback controller gains Kl and Kh are designed, respectively. Next, we
present methods to design the composite state feedback controller which can be
applied to the original ill-conditioned system (7.64).

It follows from Lemma 1.3 that, for sufficiently small ε, u = Kpx is an inter-
nally stabilizing controller, and ‖G(s, ε)‖zw < γ + O(ε) is satisfied for singularly
perturbed system (3.5). From [70], a composite controller in the normal weather
conditions is formulated as

Kp = [
Kl + KhA

−1
22 A21 + KhA

−1
22 B2Kl Kh

]
.

Theorem 7.5 (Design of Wind Dust Controller) For given cut-off frequency ωc,
given scalars γ1 > 0, γ2 > 0, p1, q1, p2 and q2 satisfying p1q1 > 0, p2q2 > 0 and
γ1 	 γ2, and matrices Rl and Rh, the closed-loop SPS (7.64) achieves H∞ property
in the entire frequency range, namely

1. the closed-loop subsystem (7.64) is internally stable for ε ∈ (0, ε∗],
2. ‖Tlow(s)‖�l∞ < γ1, ‖Thigh(p)‖�h∞ < γ2,

if there exist symmetricmatricesWs, Wf ,Ps > 0, Pf > 0, Pl, Ph andQl > 0, Qh > 0
such that the following LMIs hold:

[
0 Ps
Ps 0

]
< He

[ −Ws
AsWs + Busκs

] [
q1In
p1In

]T
, (7.70)

[
0 Pf
Pf 0

]
< He

[ −Wf
A22Wf + B2κf

] [
q2Im
p2Im

]T
, (7.71)

⎡
⎢⎢⎣

−Ql 0 Pl 0
� Ir 0 0
� � ω2

cQl 0
� � � −γ2

1 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−In 0 0
0 −Ir 0
As Bws Bus
Cs Ews Dus

⎤
⎥⎥⎦

⎡
⎣
WsRl
Vl2
κsRl

⎤
⎦ , (7.72)

⎡
⎢⎢⎣
Qh 0 Ph 0
� Ir 0 0
� � −(ωc/ε)

2Ql 0
� � � −γ2

2 Iq

⎤
⎥⎥⎦ < He

⎡
⎢⎢⎣

−Im 0 0
0 −Ir 0

A22 Bw2 Bu2
C2 Ewf D1

⎤
⎥⎥⎦

⎡
⎣
Wf Rh
Vh2
κf Rh

⎤
⎦ . (7.73)
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Feasible state feedback sub-controller gains are given by Kl = κsW−1
s and Kh =

κf W
−1
h such that the composite state feedback controller gain subject to wind dust

turbulence is
Kt = [

Kl + KhA
−1
22 A21 + KhA

−1
22 B2Kl Kh

]
.

Proof Wind dust is a special type of wind, which contains abundant high frequency
components. The attitudes corresponding to fast modes are easily affected at the
existence of wind dust. Under these conditions, the following constraints should be
satisfied:

1. the closed-loop subsystem (7.64) is internally stable for ε ∈ (0, ε∗],
2. ‖Tlow(s)‖�l∞ < γ1, ‖Thigh(p)‖�h∞ < γ2, γ1 > γ2.

Note that Requirement 2 balances the input energy saving with hovering capability
of the UAV. The following proof is similar as that of Theorem 7.4, which is omitted
here.

7.3.3 The Flexible Strategy

Next, we introduce the control strategy for the miniature UAV. Contrast with the
existing H∞ hovering control, external disturbance characteristics are taken into
consideration to achieve better disturbance attenuation capability and save the energy
of control input u. Different types of disturbances are handled by different composite
controllers.

• Under normal weather conditions, the miniature UAV hovers in the air with external
disturbances such as breeze and background noises. Under this circumstance, the
power spectrum of wind is mainly fixed in the low frequency range such that
translational dynamics corresponding to slow modes are easily affected. According
to Theorem 7.4, the proper controller Kp is adopted to restrain the low-frequency
disturbances.

• Under severe weather conditions such as wind gusts, the H∞ hovering control
should also play a role to guarantee the desired hovering capability of the UAV.
In this case, there is a significant power bump in the high frequency ranges with
the main power spectrum still in the low frequency range. Effects from high-
frequency disturbances to orientational dynamics cannot be neglected directly.
Thus, we design a particular controller Kt based on Theorem 7.5 to restrain both
low- and high-frequency disturbances.

• We set the stop frequency wstop to protect the aircraft health. If wind frequency
exceeds wstop, a UAV should not execute the associated flight task.

The composite state feedback algorithm is

K =
{
Kp 0 < ω < ωc

Kt ωc < ω < ωstop
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Fig. 7.5 The switch strategy for H∞ hovering control

which aims at balancing hardware cost with system performances, and the switch
strategy is illustrated in Fig. 7.5.

Remark 7.6 We found that the finite frequency control is well suited for the miniature
UAV which have abundant dynamics due to the unique frequency nature of SPSs.
Moreover, wind disturbances are considered to avoid the unnecessary frequency
overlap of reduced-order subsystems. The key feature of the switching strategy is
stated:

1. Frequency division in states: the construction of the low- and high-frequency
subsystems is realized through slow-fast decomposition, and sub-controllers are
designed based on these subsystems. The dominant frequency components in
related frequency ranges are extracted.

2. Frequency division in external disturbance: wind is taken into consideration due
to the distinctive disturbance sensitivity of low- and high-frequency components.
Turbulence is a special type of wind whose power spectrum is focused in the
high frequency range. We set the trade-off frequency ωc to detect the existence
of turbulence flows. In this sense, we design the control law Kp and Kt to retrain
different types of disturbances.

7.3.4 Numerical Examples

Prior to the practical implementation, we have carried out a series of MATLAB�-
based simulations to demonstrate the validity of the proposed method. For given
parameters in Table 7.4, trade-off frequencies are selected as ωc = 50 rad/s and
ωstop = 100 rad/s.

With aid of SPTs, a miniature UAV modelled in (7.64) can be decoupled into slow
and fast subsystems, and the related low- and high-frequency cut-off subsystems
�l, �h are constructed based on them.

Based on Theorem 7.4, we have designed theH∞ controller for the system �l, and
the frequency responses of the open-loop and closed-loop transfer-function matrices
are shown in Fig. 7.6, respectively. From the left picture of Fig. 7.6, we can see that
the low-frequency components have been extracted because all these modes have
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Fig. 7.6 The frequency
response of low-frequency
subsystem
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low-pass property. In other words, for the high-frequency external disturbances,
these slow states, themselves, can restrain such disturbances to some extent without
the help of state feedback controllers. The right side of Fig. 7.6 has shown that the
amplitude response from the external disturbance to the measurement output after
introduction of Kl has been restrained below γ1 in which γ1 = 1.266. The LMI
solutions are shown below:

Ps =
[

7333 6387
6387 10949

]
> 0, κs =

[
130.9524 209.4434

−148.8170 −120.9878

]
,

Ql =
[

0.3908 −0.4800
−0.4800 1.7243

]
> 0, Pl =

[
2440 −5289

−5289 11470

]
, Ws =

[ −2453 5268
5268 −11496

]
.

The sub-controller Kl is formulated as

Kl =
[−5.8379 −2.6936

−2.6936 2.4186

]
.

Similarly, the frequency responses of the open-loop and closed-loop high-
frequency subsystems, are demonstrated in Fig. 7.7. The high-frequency oscilla-
tors are totally extracted which have the high pass property and achieve high
speed of state variation than the low-frequency ones. In the high frequency range
�h = |w̄| > 50 rad/s, the effects from the external disturbances to the measurement
output has been restrained under 0.13. In this sense, the orientational dynamics can
be viewed as keeping unchanged.
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Fig. 7.7 The frequency
response of high-frequency
subsystem
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The related solutions for Theorem 7.5 are shown below,

Ps =
[

1.6632 −0.3798
−0.3798 1.2179

]
> 0, κf =

[
0.2514 −0.0598

−0.0598 0.1834

]
,

Qh =
[

0.2030 −0.0158
−0.0158 0.2473

]
> 0, Ph =

[
0.2249 −0.0071

−0.0071 0.2151

]
, Ws =

[ −0.2249 0.0071
0.0071 −0.2151

]
.

The sub-controller Kh is formulated as

Kh =
[−1.1100 0.2414

0.2379 −0.8448

]
.

Based on the composite strategy, the composite state feedback control which is
applied into the whole system (7.64) is

K =
[

1700.6 573.2 −1.1 0.2
−879.2 337.7 0.2 −0.8

]
.

The effectiveness of the composite controller K is depicted in Fig. 7.8. The compar-
ison between Figs. 7.6, 7.7 and 7.8 indicates that the frequency characteristics of the
original flight system in the low (high) frequency range can be described by that of
its low-frequency subsystem �l (high-frequency subsystem �h).

Based on Theorems 7.4–7.5, we design the normal controllerKp and the turbulence
controller Kt to restrain different types of disturbances.

Kp =
[

456.6 −434.2 1.6 0.8
−79.2 304.7 0.2 −0.7

]
, Kt =

[−56.6 34.2 −1.55 0.8
78.2 −44.7 0.8 −1.7

]
.
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Fig. 7.8 The frequency
response of the whole system
(7.64)
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Fig. 7.9 The disturbance
attenuation ability of
u, v, p, q under basic wind
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To further explain the effectiveness of our results, we have conducted a series
of time-domain simulations. From the frequency domain perspective, the wind can
be viewed as a combination of multiple frequency components. The first simulation
assumes a UAV is subject to a constant but relatively mild wind disturbance with the
amplitude of V = 0.8 m/s and w = 3 rad/s. Figure 7.9 demonstrates the effectiveness
of our proposed method in terms of disturbance rejection for both translational and
oriental dynamics. It can be observed that the velocities u and v are restrained to
0.4 m/s so that the UAV slightly wave with the wind. In this case, there is almost no
affects from the wind disturbances to the orientational dynamics p, q. In other words,
the disturbance attenuation ability of the translational dynamics is undemanding to
save the input energy whereas we should improve the disturbance attenuation ability
of the orientational dynamics to guarantee the UAV maintains its steady state.
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(a) V=5 m/s
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(b) V=12 m/s

Fig. 7.10 The disturbance attenuation ability of u, v, p, q under wind gust
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(a) V=19 m/s
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(b) V=26 m/s

Fig. 7.11 The disturbance attenuation ability of u, v, p, q under wind gust

As mentioned in the previous sections, wind gust causes sudden increase in speed
or frequency, and thus cannot be neglected in miniature UAV control at hover. To
demonstrate the effectiveness of the turbulence controller in presence of wind dust,
have carried out simulations for wind gusts with different amplitudes. More specif-
ically, wind gusts ranging from 5 to 26 m/s with the increment of 7 m/s are studied
in Figs. 7.10 and 7.11. Note that disturbances have more effects on the translational
dynamics u, v than the orientational dynamics p, q to save the input energy and keep
the attitude of the UAV. Via the comparison of Figs. 7.10 and 7.11 with Fig. 7.9,
we observe that the wind dust (high-frequency component) makes UAV shake more
frequently. Through the turbulence controller, the status of the UAV is restricted in
a small neighbourhood of the operating point (i.e., u = v = 0 m/s, p = q = 0 rad/s)
so that the UAV will not lose its balance in the presence of different wind.

In this section, we have investigated theH∞ control synthesis of miniature UAVs to
improve its hovering capability by reduce the effects from wind to the measurement
output. First and foremost, low- and high-frequency subsystems are constructed,
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respectively, in the disjoint frequency ranges. Robust control specifications for sub-
systems are given in terms of multiple frequency domain inequalities in (semi)finite
ranges, which can be converted into feasible LMIs by aid of the GKYP lemma.
The composite controller, which consists of multiple sub-controllers, can be directly
applied to stabilize the whole flight system and achieve the H∞ control specification.
A novel switch strategy is also proposed to guarantee good hovering capability under
different weather conditions. A numerical example has been provided to show the
usefulness of the proposed results.

7.4 Conclusion

In this chapter, we have investigated the engineering background of finite frequency
control of SPSs. A detailed overview is given in Sect. 7.1. Two typical application
examples are presented with wind turbines control using linear parameter varying
singularly perturbed model given in Sect. 7.2 and robust H∞ control of miniature
quad-rotors in hovering given in Sect. 7.3 to show the effectiveness and merits of our
methods from practical point of view.
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