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Preface

About the Subject

Fractional systems and fractional control have received great attention recently,
both from an academic and industrial viewpoint, because of their increased flexi-
bility (with respect to integer order systems) which allows a more accurate mod-
eling of complex systems and the achievement of more challenging control
requirements.

Chaotic systems have been studied for recent decades after the discovery of the
first classical chaotic attractor in 1963. Chaos control and chaos synchronization are
especially remarkable and important research fields aiming to affect the dynamics of
chaotic systems in order to use them for different kinds of applications that can be
examined within many different fields such as computer sciences, mechanics,
communication, economics and finance, biology, chemistry, medicine, and geol-
ogy, among others.

About the Book

The new Springer book, Fractional Order Control and Synchronization of Chaotic
Systems, consists of 30 contributed chapters by subject experts who are specialized
in the various topics addressed in this book. The special chapters have been brought
out in this book after a rigorous review process in the broad areas of chaos theory,
control systems, computer science, fuzzy logic, neural network, and modeling and
engineering applications. Special importance was given to chapters offering prac-
tical solutions and novel methods for the recent research problems in the main areas
of this book, viz. fractional order control and synchronization of chaotic systems.
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Objectives of the Book

This book aims at presenting the latest developments, trends, research solutions,
and applications of fractional order control and synchronization of chaotic systems.
There are different methods that have been proposed for performing fractional order
control, chaos control, and chaos synchronization tasks. But because of some
limitations of these methods, newer approaches are designed and proposed by
researchers to improve the related works within the field. Also, there are many
studies already introduced in order to improve more advanced solutions for prob-
lems of fractional order control, chaos control, and chaos synchronization. Most
of these studies include the usage of intelligent approaches, optimization methods,
and hybrid techniques on the related problems of the control theory. Both novice
and expert readers should find this book a useful reference in the field of fractional
order control and chaos synchronization.

Organization of the Book

This well-structured book consists of 30 full chapters. They are organized into two
parts.

Part I: Fractional Order Control Systems
Part II: Applications of Fractional Order Chaotic Systems

Book Features

• The chapters in this book deal with the recent research problems in the areas of
fractional order control, chaos theory, control, synchronization, and engineering
applications.

• The chapters in this book contain a good literature survey with a long list of
references.

• The chapters in this book are well written with a good exposition of the research
problem, methodology, numerical examples, simulation results, and block
diagrams.

• The chapters in this book discuss the details of engineering applications and
future research areas.

Audience

This book is primarily meant for researchers from academia and industry, who are
working in the research areas—Fractional Order Control and Synchronization of
Chaotic Systems with applications in engineering, automation, chaos, and control
engineering. This book can also be used at the graduate or advanced undergraduate
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level as a textbook or major reference for courses such as control systems, fractional
differential equations, fractional control systems, mathematical modeling, compu-
tational science, numerical simulation, fuzzy logic control, and many others.

Acknowledgements

As the editors, we hope that the chapters in this well-structured book will stimulate
further research in fractional order control systems, fractional order chaotic systems,
and synchronization of chaotic systems and utilize them in the real-world
applications.

We hope sincerely that this book, covering so many different topics, will be very
useful for all readers.

We would like to thank all the reviewers for their diligence in reviewing the
chapters.

Special thanks go to Springer, especially the book Editorial team.

Cairo, Egypt Ahmad Taher Azar
Chennai, India Sundarapandian Vaidyanathan
Tebessa, Algeria Adel Ouannas

Preface vii



Contents

Part I Fractional Order Control Systems

Comparative Study on Fractional Order PID and PID
Controllers on Noise Suppression for Manipulator
Trajectory Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Vineet Kumar and K.P.S. Rana

Control of the Temperature of a Finite Diffusive
Interface Medium Using the CRONE Controller . . . . . . . . . . . . . . . . . . . 29
X. Moreau, R. Abi Zeid Daou and F. Christophy

Grey Predictor Assisted Fuzzy and Fractional Order
Fuzzy Control of a Moving Cart Inverted Pendulum. . . . . . . . . . . . . . . . 57
Amanvir Singh Sidana, Akarsh Kumar, Akshit Kanda, Vineet Kumar
and K.P.S. Rana

H∞ Design with Fractional-Order PIλDμ Type Controllers . . . . . . . . . . . 91
De-Jin Wang

On the Electronic Realizations of Fractional-Order
Phase-Lead-Lag Compensators with OpAmps
and FPAAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Carlos Muñiz-Montero, Luis A. Sánchez-Gaspariano,
Carlos Sánchez-López, Víctor R. González-Díaz
and Esteban Tlelo-Cuautle

Robust Adaptive Supervisory Fractional Order
Controller for Optimal Energy Management in Wind
Turbine with Battery Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B. Meghni, D. Dib, Ahmad Taher Azar, S. Ghoudelbourk
and A. Saadoun

ix



Robust Adaptive Interval Type-2 Fuzzy Synchronization
for a Class of Fractional Order Chaotic Systems . . . . . . . . . . . . . . . . . . . 203
Khatir Khettab, Yassine Bensafia and Samir Ladaci

Optimal Fractional Order Proportional—Integral—Differential
Controller for Inverted Pendulum with Reduced Order Linear
Quadratic Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
M.E. Mousa, M.A. Ebrahim and M.A. Moustafa Hassan

Towards a Robust Fractional Order PID Stabilizer
for Electric Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Magdy A.S. Aboelela and Hisham M. Soliman

Application of Fractional Order Controllers
on Experimental and Simulation Model of Hydraulic
Servo System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
M. El-Sayed M. Essa, Magdy A. S. Aboelela
and M. A. M. Hassan

Control and Synchronization of Fractional-Order
Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Ahmed G. Radwan, Wafaa S. Sayed and Salwa
K. Abd-El-Hafiz

Adaptive Control of a Novel Nonlinear Double
Convection Chaotic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Sundarapandian Vaidyanathan, Quanmin Zhu
and Ahmad Taher Azar

On the Terminal Full Order Sliding Mode
Control of Uncertain Chaotic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Anchan Saxena, Apeksha Tandon, Awadhi Saxena,
K. P. S. Rana and Vineet Kumar

Stabilization of Fractional Order Discrete
Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
M. K. Shukla and B. B. Sharma

Part II Applications of Fractional Order Chaotic Systems

A Three-Dimensional No-Equilibrium Chaotic System:
Analysis, Synchronization and Its Fractional Order Form . . . . . . . . . . . 449
Viet-Thanh Pham, Sundarapandian Vaidyanathan,
Christos K. Volos, Ahmad Taher Azar,
Thang Manh Hoang and Vu Van Yem

x Contents



Comparison of Three Different Synchronization
Schemes for Fractional Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 471
S. T. Ogunjo, K. S. Ojo and I. A. Fuwape

On New Fractional Inverse Matrix Projective
Synchronization Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Adel Ouannas, Ahmad Taher Azar, Toufik Ziar
and Sundarapandian Vaidyanathan

Fractional Inverse Generalized Chaos Synchronization
Between Different Dimensional Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 525
Adel Ouannas, Ahmad Taher Azar, Toufik Ziar
and Sundarapandian Vaidyanathan

Behavioral Modeling of Chaos-Based Applications
by Using Verilog-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
J. M. Munoz-Pacheco, V. R. González Díaz,
L. C. Gómez-Pavón, S. Romero-Camacho, F. Sánchez-Guzmán,
J. Mateo-Juárez, L. Delgado-Toral, J. A. Cocoma-Ortega,
A. Luis-Ramos, P. Zaca-Morán and E. Tlelo-Cuautle

A New Method to Synchronize Fractional Chaotic
Systems with Different Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Adel Ouannas, Toufik Ziar, Ahmad Taher Azar
and Sundarapandian Vaidyanathan

A Three-Dimensional Chaotic System with Square
Equilibrium and No-Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Viet-Thanh Pham, Sundarapandian Vaidyanathan,
Christos K. Volos, Sajad Jafari and Tomas Gotthans

A Study on Coexistence of Different Types
of Synchronization Between Different Dimensional
Fractional Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
Adel Ouannas, Ahmad Taher Azar, Toufik Ziar
and Ahmed G. Radwan

Generalized Synchronization of Different Dimensional
Integer-Order and Fractional Order Chaotic Systems . . . . . . . . . . . . . . . 671
Adel Ouannas, Ahmad Taher Azar, Toufik Ziar
and Ahmed G. Radwan

A New Fractional-Order Jerk System and Its
Hybrid Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
Abir Lassoued and Olfa Boubaker

Contents xi



An Eight-Term 3-D Novel Chaotic System with
Three Quadratic Nonlinearities, Its Adaptive Feedback
Control and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
Sundarapandian Vaidyanathan, Ahmad Taher Azar
and Adel Ouannas

Dynamics of Fractional Order Complex Uçar System . . . . . . . . . . . . . . . 747
Sachin Bhalekar

Hyperchaos and Adaptive Control of a Novel
Hyperchaotic System with Two Quadratic Nonlinearities . . . . . . . . . . . . 773
Sundarapandian Vaidyanathan, Ahmad Taher Azar
and Adel Ouannas

Chaotic Planning Paths Generators by Using
Performance Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
C. H. Pimentel-Romero, J. M. Munoz-Pacheco,
O. Felix-Beltran, L. C. Gomez-Pavon and Ch.K. Volos

Chaotic System Modelling Using a Neural Network
with Optimized Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
Kheireddine Lamamra, Sundarapandian Vaidyanathan,
Ahmad Taher Azar and Chokri Ben Salah

A New Fractional-Order Predator-Prey System
with Allee Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
Afef Ben Saad and Olfa Boubaker

xii Contents



Part I
Fractional Order Control Systems



Comparative Study on Fractional
Order PID and PID Controllers on Noise
Suppression for Manipulator Trajectory
Control

Vineet Kumar and K.P.S. Rana

Abstract The main contribution of this chapter is to demonstrate the sensor and
controller noise suppression capabilities of the best tuned Fractional
Order-Proportional plus Integral plus Derivative (FO-PID) and classical PID con-
trollers in closed-loop.A complex non-linear and coupled system, a 2-link rigid planar
manipulator was considered for the study as it encounters noise in many forms such as
sensor and controller noise during the operation in industry. Uniform White Noise
(UWN) and Gaussian White Noise (GWN) were considered both for the sensor and
the controller in the closed-loop and a comparative study was performed for FO-PID
and PID controllers. Both the controllers were tuned using Genetic Algorithm and all
the simulations were performed in LabVIEW environment. The simulation results
have revealed that FO-PID controller demonstrates superior sensor and controller
noise suppression as compared to conventional PID controller in the closed-loop.

Keywords Fractional order PID controller ⋅ PID ⋅ Sensor noise ⋅ Controller
noise ⋅ Noise suppression and uncertainty

1 Introduction

Noise is generally an inherent part of every measurement and control system. Noise
affects the decision-making capability of the controller in the plant as it introduces
uncertainty in the process variable and control action. There are several causes of
measurement noise in the process industry such as loose wiring, improper solder-
ing, thermal noise, electromagnetic interference, etc. Furthermore, the execution of
control action in a closed-loop control system may be seriously affected due to the

V. Kumar (✉) ⋅ K.P.S. Rana
Department of Instrumentation and Control Engineering, Netaji Subhas Institute
of Technology, Sector-3, Dwarka, New Delhi 110078, India
e-mail: vineetkumar27@gmail.com
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improper connection of signal line from the controller to the final control element
particularly in a vibrating environment. This action may add considerable noise in
the control action and may even try to destabilize the process being controlled.
Most general nature of sensor and controller noise is likely to be random. Robotic
manipulator being a highly non-linear, time-varying and uncertain system noise has
adverse effect on the positioning and accuracy of the end-effectors of robotic
manipulator. Therefore, it is a challenging task to design such a robust controller
which can effectively deal with external noises and uncertainties [5, 7–9, 11, 22, 30,
33, 55, 59].

Conventional PID controller has been the most popular controller in the
industries for last sixty years due to its simple structure, low cost, easy design and
robust performance. For its implementation it is available in many forms in
industry, like pneumatic, hydraulic and electronic etc. Due to these features, it is
one of the popular choices of control engineers in robotics as well [1, 3, 6].

The fractional order calculus has a very long mathematical history, but its
applications to science and engineering are just recent. One of its popular appli-
cations is in fractional order chaotic system [4, 10, 51–53]. Many good works have
been reported regarding the control and synchronization of fractional order chaotic
system [15, 16, 46–50]. Also, in the last few years, fractional-order calculus has
gained extensive attention of researchers and scientists in the area of control
engineering to develop fractional order PID (FO-PID) controller [32, 37, 54]. Due
to advancements in the electronics now it has become possible to design and realize
the FO-PID controllers. It offers additional design Degree of Freedom (DOF) to the
control engineers. Advancements also have been observed in the controller tuning
methods for customized performance indices. Now-a-days the trend has been the
usage of optimization methods such as Genetic Algorithm (GA) and other
bio-inspired techniques for tuning the controllers. Therefore, the main goal of this
chapter is to demonstrate the capabilities of FO-PID controller to cater the effect of
noise in closed loop. In this regard, an intensive simulation studies were performed
in closed loop by controlling a complex coupled system i.e. 2-link rigid planar
robotic manipulator in presence of sensor and controller noise and using fractional
and integer order PID controllers. Uniform White Noise (UWN) and Gaussian
White Noise (GWN) were considered for this study. Both the controllers were tuned
using GA for minimum Integral of Absolute Error (IAE). The performed com-
parative study reveals that FO-PID controller with low fractional order derivative
term effectively suppress the noise in closed loop. The main contributions of this
chapter can be summarized as follows:

• It demonstrates the effect of sensor and controller noise in closed loop for
trajectory tracking control of 2-link rigid planar robotic manipulator using
fractional and integer order PID controllers.

• It shows that FO-PID controller having low order derivative term effectively
suppress the noise effect in closed loop as compared to its counterpart integer
order PID controller.

4 V. Kumar and K.P.S. Rana



• The performance of fractional and integer order PID controllers tuned with GA
were assessed for IAE and it has been found that FO-PID controller outper-
formed integer order PID controller for sensor as well as controller noise sup-
pression study.

The rest of the chapter is organized as follows: A brief literature review of the
related works have been presented in Sect. 2. The implementation of fractional
order operator is presented in Sect. 3. In Sect. 4, fractional order PID controller is
presented. In Sect. 5, the performance criteria chosen are explained. In Sect. 6, the
mathematical model of the 2-link robotic manipulator is described. The detailed
description of the performed simulation experiments and obtained results are pre-
sented in the Sect. 7. Finally, the conclusions of the present work are drawn in
Sect. 8.

2 Literature Survey

Noise in any form may degrade the performance of any controller in closed
loop. Therefore, it has drawn attention of various researchers and scientists over the
time especially in the field of control system. Many research works have been
reported in this regard and presented as follows.

Tsai et al. presented the robustness testing for sensor noise for the fuzzy
model-following control applied to a 2-link robotic manipulator [45]. Chaillet et al.
investigated the robustness study of PID controller for the external disturbance for a
robotic manipulator. A uniform semi-global practical asymptotic stability for PID
controller for robotic system with external disturbance was investigated. Simulation
was done for the 2-link robotic manipulator with viscous and coulomb friction
effects [17]. Song et al. presented a computed torque controller scheme with fuzzy
as compensator for the uncertainties in a robotic manipulator. The robustness
testing was done with nonlinearities, uncertainties and flexibilities [41]. Tang et al.
presented a modified fuzzy PI controller for a flexible–joint robotic manipulator for
path tracking performance in handling uncertainty and nonlinearity. The uncer-
tainties used were within 10% tolerance of all nominal system parameter values
[42]. Bingul and Karahan investigated the fuzzy logic controller for a 2-link robotic
manipulator. The robustness testing was done with model uncertainties, change in
used trajectory and white noise addition to the system. White noise with different
noise powers were added to each link [12]. Chen presented dynamic structure
neural-fuzzy network adaptive controller for robotic manipulator. The robustness
was tested with payload variation at second link [18]. Tian and Collins studied the
robustness testing of the adaptive neuro-fuzzy control of a flexible manipulator with
the tip payload variations [44].

Bingul and Karahan presented a comparative study of fractional PID controllers
tuned by Particle Swarm Optimization (PSO) and GA for a 2-link robotic manip-
ulator. The robustness testing included parameter change, trajectory change and

Comparative Study on Fractional Order PID and PID Controllers … 5



addition of white noise. Simulation results, for the robot trajectory experiment,
showed that the FO-PID controller tuned by PSO has better performance than the
FO-PID controller tuned by the GA [13].

Lin and Huang presented a hierarchical supervisory fuzzy controller for the robot
manipulators with oscillatory base. The proposed method had various benefits such
as reduced chattering effect, lesser overshoot, faster convergence and lesser online
computation time [28]. Peng and Woo investigated a neural-fuzzy controller for the
2-link planar robotic manipulator. In this work, the simulation results suggested that
the controller based on online weight adjustment is robust in the presence of
uncertainties like friction, unknown disturbance and changing payload [36].
El-Khazali introduces a new design method of FO-PD and FO-PID controllers.
A biquadratic approximation of a fractional order differential operator is used to
introduce a new structure of finite-order FO-PID controllers. They claimed that
using the new FO-PD controller, the controlled system can achieve the desired
phase margins without migrating the gain crossover frequency of the uncontrolled
system. The proposed FO-PID controller has smaller number of parameters to tune
than its existing counterparts. The viability of the design methods is verified using a
simple numerical example [21]. Li and Huang presented an adaptive fuzzy terminal
sliding mode controller for robotic manipulator. It has several advantages like
eliminates chattering, good response with uncertainties and disturbances etc. [27].
Yildirim and Eski presented different neural network implementations as noise
analyzer for the robotic manipulator. The performance of Radial Basis Function
Neural Network was better than all other networks [56]. Oya et al. investigated a
continuous time tracking controller without using velocity measurements of the
robotic manipulator. The noise due to quantization error was studied. The proposed
controller offered better results than those based on Eular approximation [34]. Zhu
and Fang presented a fuzzy neural network algorithm for parallel manipulators. It
was designed to cope with external disturbance, payload variation and model
uncertainties. The neural network was used to modify the fuzzy rules [58].

Petras presented the hardware implementation of digital FO-PID control for
permanent magnet DC motor. The digital and analog realization of proposed
controller was done with microprocessor and fractance circuits, respectively [37].
Delavari et al. reported a fractional adaptive PID controller for robotic manipulator
in which parameters of PID are updated online and the fractional order parameters
are obtained offline [20]. Bingul and Karahan applied a FO-PID controller to a
robotic manipulator for trajectory tracking problem using PSO. The simulation
results showed that FO-PID controller performed better than that conventional PID
[14]. Silva et al. proposed the superiority of fractional order controller over integer
order controller for a hexapod robot in which flexibilities and viscous friction were
present at the joints of the legs [40]. Sharma et al. presented a comparative per-
formance analysis of fractional order fuzzy PID controller, fuzzy PID, FO-PID and
PID controller for a trajectory tracking and disturbance rejection of a 2-link robotic
manipulator. Simulation studies revealed that fractional order FPID outperformed
rest of the controller [39]. Kumar et al. proposed a robust fractional order Fuzzy
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P + Fuzzy I + Fuzzy D controller for nonlinear and uncertain system which offered
superior performance as compared to its integer order counterpart fuzzy controller
[24].

Pan and Das proposed a FO-PID controller for automatic voltage regulator
(AVR) with chaotic multi-objective optimization. In this work, FO-PID controller
was not completely superior to PID controller as the simulations results were better
for FO-PID for some cases and for conventional PID in other cases [35]. Zamani
et al. investigated the performances of FO-PID controllers for AVR systems [57].
Tang et al. developed FO-PID controller for AVR system. The performance of
FO-PID was superior to PID controller for the system with or without uncertainties.
The Chaotic Ant Swarm algorithm was used for finding optimized parameters [43].
Luo and Chen proposed a systematic tuning procedure for the FO-PD controller for
a FO system. The performance of the proposed controller was superior to both
FO-PD and integer order PD controller [29]. Monje et al. presented a tuning method
of FO-PID controller and ensured the robustness for the noise as well as gain
variation. Also, an auto-tuning method using relay test has investigated. Experi-
mental results showed the effectiveness of the proposed tuning methods [32].
Ladaci et al. designed an adaptive internal model controller (AIMC) with a FO
system. The robustness of the proposed controller was done against noise. It was
superior to conventional AIMC and also, to conventional PID controller [26]. Many
other recent applications, such as, binary distillation column control [31] and
control of hybrid electric vehicle [25] have also been reported in the literature for
making use of fractional order control system.

The literature survey conducted above clearly indicates that several authors have
investigated effects of the model uncertainties and external disturbances for the
robotic manipulators but the effects of sensor as well as controller noise has not
been well explored by the researchers and therefore needs attention.

3 Fractional Order Calculus

In the present work, fractional order operators (differ-integral) are implemented
using Grünwald-Letnikov (G-L) method [38, 54]. The definition of GL fractional
differ-integral can be expressed as follows:

aDγ
t gðtÞ= lim

h→ 0

1
hγ

∑
ðt− aÞ h̸½ �

j=0
ð− 1Þ j γ

j

� �
gðt− jhÞ ð1Þ

where t and a are the limits, γ is the order of the mathematical operation i.e. µ and
-λ, D is the differ-integral operator, h is the step size considered to be very small and
γ
j

� �
= ðγÞðγ − 1Þðγ − 2Þ......ðγ − j+1Þ

Γðj− 1Þ
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In the present study, fractional order calculus was realized in z-domain. Back-
ward difference method i.e. s= ð1− z− 1

T Þ, where T is sampling time, is considered to
transform the differentiator operator from s-domain to z-domain. Therefore, frac-
tional differentiator operator ‘sγ’ is transformed into z-domain as follows:

sγ =
1− z− 1

T

� �γ

ð2Þ

or

sγ = T − γ ∑
∞

j=0
ð− 1Þ j ðγÞðγ − 1Þðγ − 2Þ . . . . . . ðγ − j+1Þ

Γðj− 1Þ z− j ð3Þ

In terms of discrete time, the differentiator operator ‘D’ is defined as

Dγ =T − γ ∑
∞

j=0
ð− 1Þ j γ

j

� �
z− j ð4Þ

or

Dγ = T − γ ∑
∞

j=0
djz− j ð5Þ

where, dj = ð− 1Þ j γ
j

� �
a Binomial coefficient, which can be further arrange in an

recursive algorithm.

dj = 1−
1+ γ

j

� �
dj− 1; j = 1, 2, 3, . . . . . . . . . . ð6Þ

So, the fractional order operator (differentiator/integrator) of a sequence g½n� can
be expressed as follows:

Dγðg½n�Þ=T − γ ∑
∞

j=0
djg½n− j� ð7Þ

Now, it has been clear from the Eq. (8) that in order to realize the fractional
order differ-integral operator infinite number of memory is required which seems to
unrealistic. Therefore, for the implementation of these fractional order operators a
short memory concept was introduced. In this regard, only last few samples have to
be stored. In the present case, a memory of 1000 was opted for realization of
fractional order mathematical order.

8 V. Kumar and K.P.S. Rana



Dγðg½n�Þ= T − γ ∑
1000

j=0
djg½n− j� ð8Þ

4 Fractional Order PID Controller (PIkDµ)

The PID controller, in general, can be expressed as

UPIDðtÞ=KCeðtÞ+KI ∫ eðtÞdt+KD
deðtÞ
dt

ð9Þ

In time domain the Fractional Order PID Controller ðPIλDμÞ can be expressed as
follows:

UFO−PIDðtÞ=KCeðtÞ+KI
d − λeðtÞ
dt − λ

+KD
dμeðtÞ
dtμ

ð10Þ

where KC is proportional constant; KI is integral constant; KD is derivative constant;
λ is the fractional integral value and μ is the fractional derivative value. UFO−PIDðtÞ
is the aggregate output of FO-PID controller and eðtÞ is the tracking error.

In s-domain, the PIλDμ controller would become

UFO−PIDðsÞ= KC +KI
1
sλ

+KDsμ
� �

EðsÞ ð11Þ

From the Fig. 1, one can clearly understand that the classical PI, PD and PID
controllers are unique cases of the FO-PID controller. Particularly, PID can be
formed by letting the variables λ and μ as unity. It is due to the selection of values of
variables λ and μ, which provides two more DOF to the control engineer in addition
to the three controller constants. Hence, for designing a FO-PID controller, five
variables need to be tuned in order to get the best desired response.

Fig. 1 FO-PID controller

Comparative Study on Fractional Order PID and PID Controllers … 9



In the present work, the parameters of FO-PID and PID controllers were opti-
mally determined using GA for a defined performance criterion as described in the
following section for a 2-link planar rigid manipulator. With the experiments
conducted it can be concluded that the overall control behavior of the FO-PID
controller is much superior to the classical PID controller.

5 Performance Criteria

For evaluating the set-point tracking performance of the system in closed-loop the
IAE and Integral Square of Change in Controller Output (ISCCO) for each link
having equal weight were considered as a performance criteria. The IAE and
ISCCO are defined as:

IAE= ∫
t

0
eðtÞj jdt ð12Þ

ISCCO= ∫
t

0
Δu2ðtÞdt ð13Þ

The above performance indices were used for adjusting the various parameters
(KC, KI, KD, λ, µ) of FO-PID and PID controllers.

6 Dynamic Model of 2-Link Manipulator

A 2-link planar rigid manipulator having two DOF is shown in Fig. 2. It has two
links having length l1 and l2, mass m1 and m2, respectively. The angular position of
link-1 and link-2 are θ1 and θ2, respectively and τ1 and τ2 are the respective torque
for link-1 and link-2. The dynamic model of 2-link planar rigid manipulator
described in [2, 19] has been utilized in this work.

The mathematical model of the 2-link planar rigid manipulator is as follows:

τ1 =m2l22 θ1
..
+ θ2

..� �
+m2l1l2c2 2 θ1

..
+ θ2

..� �
+ m1 +m2ð Þl21 θ1

..
−m2l1l2s2 θ22

.

− 2m2l1l2s2 θ1
.
θ2
.
+m2l2gc12 + m1 +m2ð Þl1gc1

ð14Þ

τ2 =m2l1l2c2 θ1
..
+m2l1l2s2 θ21

.

+m2l2gc12 +m2l22 θ1
..
+ θ2

..� �
ð15Þ

where s2 = sinðθ2Þ, c1 = cosðθ1Þ, c2 = cosðθ2Þ, and c12 = cosðθ1 + θ2Þ.

10 V. Kumar and K.P.S. Rana



Equations 14 and 15 give the required torques at the actuators as a function of
joint positions, velocities, and accelerations. The parameters of the manipulator are
listed in Table 1.

7 Experimental Results

The noise suppression investigations were organized as follows. Firstly, sensor
noise suppression was investigated followed by the controller’s noise suppression
as a second case. Both the experiments were simulated in closed-loop for 2-link
rigid manipulator trajectory control using FO-PID and PID controllers. The block
diagram of closed-loop control system is shown in Fig. 3. Simulations were per-
formed using National Instrument

®

software, LabVIEW™ 8.5 and its add-ons
Simulation and Control Design toolkit. In the simulation loop, 4th order Runge–
Kutta method, an ordinary deferential equation (ODE) with a fixed step size of
10 ms was used.

Ayala and Coelho [2] have considered a reference trajectory based on cubic
interpolation polynomial nature to be followed by the proposed 2-link manipulator.
The same reference trajectory has been taken in this work. It was defined in [2, 19]:

Fig. 2 A 2-link planar rigid
manipulator

Table 1 Parameters for a
2-link planar rigid robotic
manipulator

Parameters Link-1 Link-2

Mass (kg) 0.1 0.1
Length (m) 0.8 0.4
Acceleration due to gravity (g) (m/s2) 9.81 9.81

Comparative Study on Fractional Order PID and PID Controllers … 11



θrt, jðtÞ= a0 + a1t+ a2t2 + a0t3, j=1, 2 ð16Þ

Therefore the joint velocity and acceleration along the reference trajectory
becomes

θṙtf , jðtÞ= a1 + 2a2t+3a0t2, j=1, 2 ð17Þ

θṙtf , jðtÞ=2a2 + 6a0t, j=1, 2 ð18Þ

where θrt, jðtÞ [θrt, 1ðtÞ; θrt, 2ðtÞ] is the instantaneous desired position for link-1 and
link-2, respectively. Also, θrtf , jðtÞ and θrtf , jðtÞ are the final desired values for the
position (θrtf , 1 tð Þ=1 rad and θrtf , 2ðtÞ=2 rad in t=2 s and θrtf , 1ðtÞ=0.5 rad and
θrtf , 2ðtÞ=4 rad in final time tf =4s) and velocity (θ ̇rtf , 1ðtÞ= θṙtf , 2ðtÞ=0 rad/s in
t=2 s and tf =4 s) of link-1 and link-2 respectively.

The various parameters of FO-PID and PID controllers, in the absence of noise,
were tuned using GA, developed in the used LabVIEW environment [23]. The
population size was considered to be 20 and the tolerance level was kept as 10−6

and the maximum numbers of iterations were kept as 100. The used cost function
(J), to be minimized, was the weighted sum of the IAE and ISCCO as defined
below.

J = ∫
∞

0
½w1

1* e1ðtÞj j+w2
1* e2ðtÞj j+w1

2*Δu
2
1ðtÞ+w2

2*Δu
2
2ðtÞ�dt ð19Þ

In the present work, equal weights i.e., w1
1 =w1

2 =w2
1 =w2

2 = 0.25 were assigned
to IAE and ISCCO while optimizing the parameters of FO-PID and PID controllers.
Figure 4 shows cost function versus generation plot for both the controllers.

Fig. 3 The block diagram of closed-loop control system
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The tuned parameters values for both the controllers are given in Table 2 along with
the cost function values. For these gains the obtained values of IAE are tabulated in
Table 3. The complete set-point tracking response of 2-link rigid manipulator
without sensor and controller noise in closed-loop with FO-PID and PID controllers
is shown in Fig. 5. It can be observed that set-point tracking performance of
FO-PID controller is better than PID controller. Also, lower variations in the torque
of link-1 and link-2 were observed for FO-PID controller as compared to PID
controller.

In the present work, point by point UWN and GWN were considered for
measurement/sensor and controller noise study. Sensor and controller noise were
introduced in the closed-loop control system in both the links of manipulator as
shown in the Fig. 3. Noise suppression study, of FO-PID and PID controllers, for
sensor and controller noise in closed-loop, is presented in the following section.

7.1 Sensor Noise Suppression

All control systems, in practical cases, are subject to some kind of noise during their
operation. Thus, in addition to responding to the input signal, the system should
also be able to reject and suppress noise and unwanted signals. There are many
forms and sources of noise but the sensor noise play significant impact on the
performance of the system. Such noise is typically dominated by high frequencies.
Measurement noise usually sets an upper limit on the bandwidth of the loop. Also,
it introduces uncertainty in the system. In the subsequent section the sensor noise
suppression of FO-PID and PID controllers in the closed-loop is presented.

Fig. 4 Cost function versus generation curve for FO-PID and PID controllers

Comparative Study on Fractional Order PID and PID Controllers … 13



T
ab

le
2

O
pt
im

al
pa
ra
m
et
er
s
of

FO
–
PI
D

an
d
PI
D

co
nt
ro
lle
r

C
on

tr
ol
le
r
ty
pe

M
an
ip
ul
at
or

lin
k

Pe
rf
or
m
an
ce

in
de
x

M
in
im

um
co
st
fu
nc
tio

n
C
on

tr
ol
le
r
pa
ra
m
et
er
s

K
C

K
I

K
D

λ
µ

PI
λ D

µ
L
in
k-
1

IA
E
an
d
IS
C
C
O

0.
00

79
36

0
50

7.
10

2
10

35
.5
5

43
0.
61

6
0.
99

77
09

0.
17

49
8

L
in
k-
2

10
.5
17

10
19

.0
6

31
2.
08

3
0.
89

41
67

0.
60

30
51

PI
D

L
in
k-
1

IA
E
an
d
IS
C
C
O

0.
01

77
89

2
44

9.
89

5
0.
52

4
5.
55

0
1

1
L
in
k-
2

23
8.
33

8
7.
75

5
22

.3
42

1
1

14 V. Kumar and K.P.S. Rana



7.1.1 Uniform White Noise

UWN was introduced as sensor noise in link-1 then in link-2 and finally it was
injected in both links together. For this study, in all the cases, amplitude of UWN
was varied and the corresponding IAE of FO-PID and PID controllers in
closed-loop were recorded. The variation of IAE of FO-PID and PID controllers in
closed-loop and amplitude of UWN are plotted in Fig. 6. It can be noted that PID
controller fails to suppress the sensor noise even for very small amplitude of UWN
while FO-PID controller is able to suppress even the large amplitude UWN sensor
noise effectively. This outcome clearly shows the superiority of FO-PID controller
over PID controller. To further elaborate a typical case the time response of robotic
manipulator in closed-loop with FO-PID and PID controllers and with UWN sensor
noise of amplitude 0.002 in both links was shown in Fig. 7. It clearly demonstrates

Table 3 Performance index Controller type Manipulator link Performance index
IAE

PIλDµ Link-1 0.00215675
Link-2 0.00196381

PID Link-1 0.00902466
Link-2 0.00951855

Fig. 5 Closed-loop response of link-1 and link-2 of robotic manipulator without sensor and
controller noise. a Position. b Applied torque. c Error. d xy curve
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that when sensor noise is present in the both links of robotic manipulator, PID
controller fails to track the trajectory and start oscillating around the reference
trajectory with increasing amplitude in comparison to FO-PID controller which
sticks to the trajectory and follow it without any deviation. In Fig. 7 (d) the
resulting xy curve shows it effectively.

7.1.2 Gaussian White Noise

Further, in line with the above, GWN was added as a measurement noise in the
link-1, link-2 and link-1 and 2. Figure 8 shows the variation in IAE values for
FO-PID and PID controllers as the standard deviation of GWN increases. Again, it
can be observed that conventional PID controller fails to suppress this measurement
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Fig. 6 Effect of sensor noise (UWN) in closed-loop. a and b in link-1. c and d in link-2. e and f in
link-1 and link-2
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noise as its standard deviation is increased. Also, as the intensity of noise increase
manipulator deviates from the desired trajectory and finally become unstable. On
the other hand, FO-PID controller effectively handles the sensor noise and elimi-
nates its effect so that robotic manipulator follows the trajectory without any
deviation for a sufficient GWN measurement noise as shown in Fig. 8. This
investigation clearly demonstrates the superiority of FO-PID controller over PID
controller. Figure 9 shows a typical reference trajectory tracking response of
manipulator in closed-loop with GWN noise of 0.007 standard deviations, in both
links. The time response demonstrates the utility of FO-PID controller over PID
controller for sensor noise suppression. From Fig. 9 the trajectory tracking, control
action, error and xy curve illustrate it clearly.

7.2 Controller Noise Suppression

Generally, in closed-loop control system the control action is implemented through
a manipulate variable. So a control signal is sent from controller to final control
element in the plant in order to regulate the manipulate variable to achieve desired
set-point. Actually, a physical connection between controller and final control

Fig. 7 Closed-loop response of link-1 and link-2 of robotic manipulator with UWN sensor noise
of amplitude 0.002 in both links. a Position. b Applied torque. c Error. d xy curve
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element is required to realize it. In process industry generally the final control
elements are placed in the field and due to hazardous area with lots of vibration.
Many times connection may become loose and may add additional random noise in
the control action. The magnitude of random noise depends upon the environment
around the final control element. Also, it has been noted in the industry that many
mammals such as mouse cut the wire. In case of partially broken wires, it may pick
up the random noise and the magnitude of noise will depend upon the exposure of
the conductor to environment and elements around the final control element.
Therefore the unexpected noises added in the control signal and corrupt the control
action and may try to destabilize the plant or process.
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Fig. 8 Effect of sensor noise (GWN) in closed-loop. a and b in link-1. c and d in link-2. e and f in
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In the present work, UWN and GWN are added in the control action as a
controller noise. In the next section, the impacts of both controller noises on the
system response are presented.

7.2.1 Uniform White Noise

UWN was added as controller noise in the links independently and then in both
links simultaneously. The amplitude of UWN was increased linearly and corre-
sponding IAE for FO-PID and PID controller were recorded. Figure 10 illustrates
the variation of the amplitude of UWN and IAE for FO-PID and PID controllers in
closed-loop. It can be noted that PID controller acquired considerable IAE and
became unstable around the amplitude of UWN has a value 50. While FO-PID
controllers have moderate value of IAE and follow trajectory effectively up to the
amplitude of UWN having a value 200. The time response curve of the robotic
manipulator trajectory control for amplitude of UWN of 24 in both links was shown
in Fig. 11. It undoubtedly demonstrates the superiority of FO-PID controller in
comparison of PID controller for controller noise suppression.

Fig. 9 Closed-loop response of link-1 and link-2 of robotic manipulator with GWN sensor noise
of standard deviation of 0.0007 in both links. a Position. b Applied torque. c Error. d xy curve
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7.2.2 Gaussian White Noise

Now, GWN was introduced as a controller noise in closed-loop. The standard
deviation of controller noise was varied and the corresponding variation in IAE for
FO-PID and PID controller was plotted in Fig. 12. It has been observed that IAE of
PID controller increases rapidly and system become unstable around the 40 stan-
dard deviation of GWN. In contrast, FO-PID controller keeps its IAE quite small
and as the standard deviation of GWN is increased up to 200 and still it has
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Fig. 10 Effect of controller noise (UWN) in closed-loop. a and b in link-1. c and d in link-2.
e and f in link-1 and link-2
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reasonable value of IAE. Figure 13 illustrates the set-point tracking response of
FO-PID and PID controller for standard deviation of GWN of 21 in both links.
Again, it shows the advantage of FO-PID controller over PID controller.

7.3 Sensor and Controller Noise

In the highly noisy environment, the operation of robotic manipulator can be
contaminated by random noises at various areas of closed loop system which would
considerably degrade the effectiveness and accuracy of the manipulator. In this
section, UWN and GWN are added together in the control action as well as in the
sensor in both links. The tracking performance responses of robotic manipulator
with UWN sensor and controller noise of the amplitude 0.002 and 24 respectively
in both links are shown in Fig. 14. Also, the closed loop responses of the manip-
ulator with GWN sensor and controller noise of the standard deviation of 0.0007
and 21 respectively in both links are shown in Fig. 15.

Fig. 11 Closed-loop response of link-1 and link-2 of robotic manipulator with UWN controller
noise of amplitude 24 in both links. a Position. b Applied torque. c Error. d xy curve

Comparative Study on Fractional Order PID and PID Controllers … 21



The FO-PID controller shows better noise suppression in controller as well as in
the sensor due to the fractional order derivative. The frequency response of the
fractional and complete derivative is shown in Fig. 16. It is clear from the fre-
quency response that fractional derivative has lower attenuation rate as compared to
complete derivative. Specially, in the investigated case of link-1, the order of
fractional derivative was around 0.17 and the gain remains below 0 dB till 100 Hz.
Further, it is clear from the graph that slope of the fractional derivative is restricted
below 20 dB/decade. Therefore, FO-PID is able to successfully suppress the sensor
and controller noise for a manipulator.
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Fig. 12 Effect of controller noise (GWN) in closed-loop. a and b in link-1. c and d in link-2.
e and f in link-1 and link-2
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Fig. 13 Closed-loop response of link-1 and link-2 of robotic manipulator with GWN controller
noise of amplitude 21 in both links. a Position. b Applied torque. c Error. d xy curve

Fig. 14 Closed-loop response of link-1 and link-2 of robotic manipulator with UWN sensor and
controller noise of amplitude 0.002 and 24 respectively in both links. a Position. b Applied torque.
c Error. d xy curve
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Fig. 15 Closed-loop response of link-1 and link-2 of robotic manipulator with GWN sensor and
controller noise of standard deviation of 0.0007 and 21 respectively in both links. a Position.
b Applied torque. c Error. d xy curve

Fig. 16 Frequency response of the fractional derivative controller Dμ with μ=1.0, 0.17498 and
0.603051
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8 Conclusion

Noise is an integral part of any real measurement and control experiment. It appears in
many forms in control loop in process industry and introduces uncertainty in the
system. Uncertain systems become a challenge for a control engineer. Conventional
parallel PID controller fails to suppress all kind of random noise due to complete
derivative term in it. But the fractional order derivative, employing effectively lower
order derivative increases the noise suppression capability of Fractional
Order-Proportional plus Integral plus Derivative (FO-PID) controller. The main con-
tribution of this chapter has been to demonstrate the sensor and controller noise sup-
pression of FO-PID over PID controller for 2-link rigid manipulator trajectory control.

In this chapter, FO-PID and PID controller were successfully implemented in
closed-loop. The controllers were tuned for minimum weighted sum of Integral of
the Absolute value of the Error (IAE) and Integral Square of Change in Controller
output (ISCCO), for a non-linear 2-link rigid planner robotic manipulator, using
Genetic Algorithm. UWN and GWN were considered for sensor and controller
noise in the loop. It has been observed that FO-PID controller outperformed PID
controller in both sensor and controller noise suppression in closed-loop.

The present study can be further extended in the future by realizing the fractional
order calculus using different implementations techniques reported in the literature.
Furthermore, similar investigation can also be performed on intelligent control
schemes applied to complex plant. Also, the simulated results can be verified
experimentally.
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Control of the Temperature of a Finite
Diffusive Interface Medium Using
the CRONE Controller

X. Moreau, R. Abi Zeid Daou and F. Christophy

Abstract This chapter deals with the control of the temperature across a finite
diffusive interface medium using the CRONE controller (French acronym: Com-
mande Robuste d’Ordre Non Entier). In fact, the plant transfer function presents
two special properties: a fractional integrator of order 0.5 and a delay factor of a
fractional order (when controlling the temperature far from the boundary where the
density of flux is applied). The novel approach of this work resides by the use of a
fractional controller that would control a fractional order plant. Also note that the
choice of the CRONE generation is important as this controller is developed in
three generations: the first generation CRONE strategy is particularly appropriate
when the desired open-loop gain crossover frequency ωu is within a frequency
range where the plant frequency response is asymptotic (this frequency band will be
called a plant asymptotic-behavior band). As for the second generation, it is defined
when ωu is within a frequency range where the plant uncertainties are gain-like
along with a constant phase variation. Concerning the third generation, it would be
applied when both a gain and a phase variations are observed when dealing with
plant’s uncertainties. This generation will not be treated in this chapter due to some
space constraints. Thus, this chapter will present some case scenarios which will
lead to the use of the first two CRONE generations when using three different
plants: the first one is constituted of iron, the second of aluminum and the third of
copper with variable lengths L and several placements of the temperature sensor
x. Simulation results will show the temperature variation across the diffusive
interface medium in both time and frequency domains using Matlab and Simulink.
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These results show how the temperature behaves at different positions for the three
materials in use.

Keywords Finite diffusive interface ⋅ CRONE controller ⋅ Temperature control
in homogeneous bars ⋅ Robustness ⋅ Users specifications ⋅ Gain and phase
margin variation ⋅ Fractional order control

1 Introduction

The fractional calculus is a very old topic that was born following letter exchanges
between L’Hopital and Leibtniz in September 30th, 1695 [15, 16]. Most of engi-
neering domains have started the implementation of this topic either in the mod-
elling process or in the control of their dynamic behavior [8]. Hence, the
recognition of the fractional order in a system may reside in the identification of the
plant transfer function or the control of a whole process using well known fractional
controllers as the CRONE controller or the generalized PID controller [9, 17].

The diffusive interface medium is a fractional order system. In fact, the mod-
elling of this medium has shown a semi integration (integration of order half) when
considering the density of flux as the input of this medium and the temperature at
any given point as the system output [7, 10]. Thus, we will consider in this work the
temperature control of a finite diffusive interface after modelling, in previous works,
the finite and the semi-infinite diffusive interface media [2, 3].

Hence, the novelty of this work resides in the deployment of a fractional order
regulator in order to control a non-integer order plant. For this purpose, the CRONE
controller will be used in its first two generations.

As each generation is used for a specific variation in the plant’s transfer function,
two case studies will be proposed in order to analyze the behavior and the
robustness of the first two CRONE generations [1, 13].

However, lots of controllers were already synthesized and applied to several
engineering fields and have shown great results. The controllers could be synthe-
sized in both, time or frequency domain. For both cases, the fractional order has
been applied. Interested readers can refer to the following papers [4–6] for more
controller synthesis methods and applications.

This chapter will be divided as follow: in Sect. 2, the previous works concerning
the modelling of the diffusive interface will be presented. The exact model will be
proposed as well as the simplified one. Section 3 will present the CRONE con-
troller along with the first two generations. The same example will be applied for
both generations with three different gain margins. The main aim is to show the way
to synthesis the CRONE controller as well as to compare between these genera-
tions. Section 4 will conclude the proposed work and will introduce some future
work that may enrich this system.
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2 Presentation of the Finite Diffusive Interface Medium

When presenting a finite diffusive interface medium, the heat transfer function is
governed by three partial differential equations along with an initial condition
regarding the initial time:

∂T x, tð Þ
∂t = α ∂

2T x, tð Þ
∂x2 , x>0, t>0

− λ ∂T x, tð Þ
∂x =φ tð Þ, x=0, t>0

− λ ∂T x, tð Þ
∂x =0, x= L, t>0

T x, tð Þ=0, 0≤ x< L, t=0

8>>><
>>>:

. ð1Þ

As the temperature initial condition is null, the Laplace transform of the first
equation of system (1) leads to a differential equation of order 2 with respect to the
variable x, as shown in Eq. (2):

∂
2T x, sð Þ
∂x2

−
s
αd

T x, sð Þ=0 where T x, sð Þ=𝖫 T x, tð Þf g. ð2Þ

The solution of this equation is of the following form [7, 19]:

T ̄ x, sð Þ=K1 sð Þ ex
ffiffiffiffiffiffi
s α̸d

p
+K2 sð Þ e− x

ffiffiffiffiffiffi
s α̸d

p
. ð3Þ

When taking into consideration the boundary conditions (x = 0 and x = L), a
system of two equations with two unknown values, K1(s) and K2(s), is derived as
shown in (4):

K1 sð Þ−K2 sð Þ= − 1
λ
ffiffiffis
αd

p φ ̄ sð Þ
K1 sð ÞeL

ffiffiffis
αd

p
−K2 sð Þ e− L

ffiffiffis
αd

p
=0

.

(
ð4Þ

The solution of this system, after the introduction of a new parameter
λ= αd ρCp, leads to the expressions of K1(s) and K2(s), as shown below:

K1 sð Þ= 1ffiffiffiffiffiffiffiffiffiffi
λ ρCp s

p e−L
ffiffiffiffiffi
s α̸d

p

eL
ffiffiffiffiffi
s α̸d

p
−e−L

ffiffiffiffiffi
s α̸d

p φ sð Þ
K2 sð Þ= 1ffiffiffiffiffiffiffiffiffiffi

λ ρCp s
p eL

ffiffiffiffiffi
s α̸d

p

eL
ffiffiffiffiffi
s α̸d

p
−e−L

ffiffiffiffiffi
s α̸d

p φ sð Þ

8><
>: . ð5Þ

The introduction of system Eq. (5) in Eq. (3) and the replacement of the flux
density φ sð Þ by the flux ϕ sð Þ φ ̄ sð Þ=ϕ sð Þ S̸� �

lead to the below transfer function of
the whole system:
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H x, s,Lð Þ= T x, s,Lð Þ
ϕ sð Þ =

1
S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ρ Cp s

p e− L− xð Þ ffiffiffiffiffiffis α̸d
p

+ e L− xð Þ ffiffiffiffiffiffis α̸d
p

eL
ffiffiffiffiffiffi
s α̸d

p
− e− L

ffiffiffiffiffiffi
s α̸d

p , ð6Þ

which can be also presented as follow after introducing the hyperbolical functions
[3]

H x, s,Lð Þ= T ̄ x, s,Lð Þ
ϕ sð Þ =

1
S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ρ Cp s

p 1

tanh L
ffiffiffiffi
s
αd

q� � cosh L− xð Þ
ffiffiffiffi
s
αd

q� �

cosh L
ffiffiffiffi
s
αd

q� � . ð7Þ

Hence, to sum up, the system transfer function can be partitioned in several
blocks as shown in Fig. 1 and as mentioned in systems (8)–(10).

H x, s,Lð Þ= H0 I0.5 sð Þ F 0, s,Lð Þ G x, s,Lð Þ, ð8Þ

where

H0 =
s0.5 T 0, s,∞ð Þ

ϕ sð Þ = 1
S ηd

I0.5 sð Þ= T 0, s,∞ð Þ
s0.5T ̄ 0, s,∞ð Þ =

1
s0.5

F 0, s,Lð Þ= T 0, s,Lð Þ
T 0, s,∞ð Þ =

1

tanh
ffiffiffiffi
s
ωL

p� �

G x, s,Lð Þ= T x, s,Lð Þ
T 0, s,Lð Þ =

cosh
ffiffiffiffiffi
s

ωLx

p� �
cosh

ffiffiffiffi
s
ωL

p� �

8>>>>>>>>>>><
>>>>>>>>>>>:

, ð9Þ

knowing that

ηd =
ffiffiffiffiffiffiffiffiffiffiffiffi
λ ρCp

p
ωL = αd

L2

ωLx = αd
L− xð Þ2

,

8><
>: ð10Þ

where ηd represents the thermal effusivity.

Fig. 1 Block diagram of the finite medium transfer function
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Note that, for analysis purposes, a relation between ωL, ωLx and the diffusive
time constant, τL, were introduced:

ωL = 1− x
L

� �2
ωLx

τL = 1
ωL

= L2
αd

(
. ð11Þ

The approximation of this system was already presented in several previous
works. Interested authors can refer to the following references [3, 10, 12]. Just need
to know that Oustaloup approximation and Maclaurin series were at the core of this
approximation. As a conclusion, the finite diffusive interface medium can be
approximated by the following transfer function:

H x, s,Lð Þ= T x, s,Lð Þ
ϕ sð Þ =H0

1
s0.5

1

tanh
ffiffiffiffi
s
ωL

q� � e−
ffiffiffi
s
ωx

p
, ð12Þ

where ωx = αd/x
2.

At the end of this section, let us define the different materials to be used for the
control process. In fact, the aluminum, the copper and the iron were used for the
simulations later in this chapter. All physical values of these three materials will be
presented in Table 1.

3 CRONE Controller

CRONE is the acronym for Commande Robuste d’Ordre Non Entier (non-integer
order robust control). While the first two approaches use the real fractional inte-
gration or differentiation operator, the third uses the complex differentiation oper-
ator. In the frequency domain, they enable to synthesize simply and
methodologically, linear robust control laws. The control schematic used is based
on the classic unity-feedback configuration. Thus, Fig. 2 shows a general scheme
used for the control-system design.

The equations associated to this scheme are given by:

∙ Output: Y sð Þ= S sð ÞDm sð Þ+ SP sð ÞDu sð Þ+ T sð Þ Yref sð Þ ð13Þ

∙ Errorsignal: ε sð Þ= − S sð ÞDm sð Þ− SP sð ÞDu sð Þ+ S sð Þ Yref sð Þ ð14Þ
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∙ Controlsignal:U sð Þ= − SC sð ÞDm sð Þ+ T sð ÞDu sð Þ+ SC sð Þ Yref sð Þ ð15Þ

with

S sð Þ= 1
1+ β sð Þ : sensitivity function

T sð Þ=1− S sð Þ: complementary sensitivity function
SP sð Þ= S sð ÞP sð Þ
SC sð Þ= S sð ÞC sð Þ
β sð Þ=C sð ÞG sð Þ: open− loop transfer function

8>>>><
>>>>:

. ð16Þ

As the main purpose is not to present the CRONE controller but to provide the
tools used to fit the user specifications concerning the stability degree, the rapidity,
the precision in the steady state mode, the saturation as well as the sensibility of the
system towards the disturbances, we will present hereafter the general transfer
functions of the first two CRONE generations along with the conditions that must
be filled in order to apply each of these generations.

The user specifications lead us to set the following parameters:

• Concerning the stability degree, the phase margin MΦ varies between
90° ≥ MΦ ≥ 45°;

• Concerning the speed, desired open-loop gain crossover frequency ωu (or ωcg) is
equal to 1 rad/s;

• Concerning the precision in the steady state response, a null static error;
• Concerning the saturation, a maximum input value of 12 W is allowed.

3.1 Synthesis with Gain Variations Only

In this first part, we will treat the gain variations only while considering a constant
phase. Thus, the first CRONE generation could be used as well as the second one.

C(s)

Controller

P(s)

Plant model

+ +

Du(s)
Input disturbance

Dm(s)
Sensor noise

Ym(s) + (s)
Error signal

Yref (s)
Reference

signal

U(s)

- Measured
output

Fig. 2 Scheme used for the
control-system design
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3.1.1 First Generation CRONE Controller

The transfer function of the synthesized model of the plant that would be used for
the control purposes at the boundary where the flux is applied (e.g., for x = 0 mm)
is Poinot and Trigeassou [18], Malti et al. [14]:

P1 sð Þ=H 0, s,Lð Þ=H0
1
s0.5

1

tanh
ffiffiffiffi
s
ωL

q� � , ð17Þ

where the nominal state parameters (for the aluminum case) are:

H0 =H0 Aluð Þ=0.416 K s0.5 W− 1

ωL =ωL Alu, L=1mð Þ=0.97 10− 4 rad s̸

	
, ð18Þ

and their variation ranges taking into account the two other materials already shown
in Table 1:

H0 ∈ H0 =H0 Copð Þ=0.269 ; H0 =H0 Ironð Þ=0.596

 �

K s0.5 W− 1

ωL ∈ ωL =ωL Iron, L=1mð Þ=0.23 10− 4 rad s̸ ; ωL =ωL Cop,L=0.25mð Þ=19 10− 4 rad s̸

 �	

ð19Þ

As for the first generation CRONE controller, its transfer function is of the
following form [11]:

CFðsÞ=C0
1 + s ω̸I

s ω̸I

� �mI 1+ s ω̸l

1+ s ω̸h

� �m 1
1+ s ω̸Fð ÞmF

, ð20Þ

where mI, mF ∈ N, ωI <ωF ∈ℝ and ωl <ωh ∈ℝ.
If we choose ωI = ωl and ωh = ωF in order to simplify the transfer function of

the controller while taking into consideration the user specifications already defined
at the beginning of this section, we can get:

CFðsÞ=C0
ωl

s

� �mI 1+ s ω̸lð ÞmI +m

1+ s ω̸hð ÞmF +m . ð21Þ

Referring to the synthesis characteristics, we choose:

• mI = 1, in order to get a null static error as the plant contains an integration of
order 1 at low frequencies;

• m= MΦ − 180◦ − argP1 jωuð Þð Þ 9̸0◦, which is based on the definition of the
phase margin MΦ, knowing that argP1 jωuð Þ= − 45◦, thus MΦ ∈ 45◦; 90◦½ �,
hence m∈ − 1; − 0.5½ �;

• mF = 1, in order to limit the input sensitivity;
• ωunom = 1 rad/s, value defined by the authors;
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Based on these values, the expression of CF(s) can be rewritten as follow:

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �1+m

. ð22Þ

Thus, knowing that m∈ − 1; − 0.5½ � and ωl < ωh, the fractional form of the
controller CF(s) can be expressed by an integrator of order 1 in series with a lead
compensator of order 1 + m, m being a non-integer value. The expression of CF(s)
is thus characterized by four parameters (m, ωl, ωh et C0) that could be defined
based on three below steps:

Step 1 m is determined based on the phase margin MΦ;
Step 2 ωl and ωh are defined in such a way that the fractional asymptotic behavior

of the controller should vary in a frequency range between [ωA, ωB] around
the nominal gain cutoff frequency ωunom. In order to keep the stability
degree robustness, it is necessary to set the following:

∀ωu ∈ ωumin;ωumax½ �, ωA ≤ωu ≤ωB ⇒
ωA ≤ωumin

ωB ≥ωumax

	
, ð23Þ

and

ωl =ωA b̸
ωh = bωB

	
, where b>1. ð24Þ

If we consider that ωl and ωh are geometrically distributed around the
cutoff frequency ωunom and if we suppose that r = ωB/ωA, ωl and ωh would
be calculated as follow:

ffiffiffiffiffiffiffiffiffiffiffi
ωl ωh

p
=ωunom

ωh
ωl

= b2 r ⇒
ωl =ωunom ̸ b

ffiffi
r

pð Þ
ωh =ωunomb

ffiffi
r

p
	

.
	

ð25Þ

The value of the ratio r is deduced from the slope −n20 dB/dec (n being
defined based on the open loop transfer function order around ωunom) and
from the gain variation Δβ due to the parametric uncertainties, thus:

r=Δβ1 n̸. ð26Þ

Step 3 C0 is calculated in order to respond to the speed specifications. Hence, C0

can be calculated based on the following relation:

β jωuð Þj j=1 ⇔ CF jωuð Þj j P1 jωuð Þj j=1, ð27Þ
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which can be also expressed as follows:

C0
ωl

ωu

� �
1+ ωu ω̸lð Þ2
1 + ωu ω̸hð Þ2
 ! 1+m

2ð Þ
P1 jωuð Þj j=1, ð28Þ

thus,

C0 =
ωl

ωu

� �
1+ ωu ω̸lð Þ2
1 + ωu ω̸hð Þ2
 ! 1+m

2ð Þ
P1 jωuð Þj j

2
4

3
5

− 1

. ð29Þ

Finally, the last step consists on presenting the controller fractional order
transfer function CF(s) in a rational form CR(s). Different approaches were
proposed but Oustaloup approximation remains one of the best. Hence,
applying it will lead to the following general form of the controller:

CRðsÞ=C0
ωl

s

� �
∏
N

i=1

1+ s ω̸′

i

1+ s ω̸i

� �
, ð30Þ

where

ω′

i+1
ω′

i
= ωi+1

ωi
= αη>1

ωi
ω′

i
= α et ω′

i+ 1
ωi

= η

αη= ωh ω̸lð Þ1 N̸

α= αηð Þ1+m et η= αηð Þ−m

ω′

1 =ω1η1 2̸ et ωN =ωhη− 1 2̸

.

8>>>>>><
>>>>>>:

ð31Þ

The remaining part of this paragraph will show the 1st generation CRONE
controller computation for three phase margin values MΦ = 45°, 67.5° and 90° and
its robustness when applying it to the three materials (aluminum, copper and iron).

Example 1: Phase Margin MΦ = 45°

If MΦ = 45°, then m= MΦ − 180◦ − argP1 jωuð Þð Þ 9̸0◦ = − 1. The controller
transfer function can be expressed as shown in Eq. (32):

CFðsÞ=C0
ωl

s

� �
. ð32Þ
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This is a particular case as the controller is expressed as an integrator of order 1
characterized by only one parameter C*

0 =C0 ωl whose main purpose is to take in
consideration the speed specification, thus:

β jωuð Þj j=1 ⇔ CF jωuð Þj j P1 jωuð Þj j=1, ð33Þ

which can also be expressed as follow:

C*
0

ωu
P1 jωuð Þj j=1, ð34Þ

thus,

C*
0 =

ωu

P1 jωuð Þj j ⇒ C*
0 = 2.405V ̸◦. ð35Þ

As the controller is of an integer form in this case, the transfer functions of CF(s)
and CR(s) are similar.

Example 2: Phase Margin MΦ = 67.5°

If MΦ = 67.5°, then m= MΦ − 180
◦ − argP1 jωuð Þ� �

9̸0
◦

= − 0.75. The controller
transfer function can be expressed as shown in Eq. (36):

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.25

. ð36Þ

In this second example, the controller could be expressed as an integrator of
order 1 in series with a lead compensator of order 0.25. The gain C0 and the
open-loop gain crossover frequency are defined as follow:

ωA =ωumin = 72.77 10− 2rad ̸s
ωB =ωumax = 137.43 10− 2 rad ̸s

�
⇒ r=1.89

b=25 ⇒
ωl =2.91 10− 2rad ̸s
ωh =34.36 rad ̸s

	
C0 = 34.125V s ̸◦

.

8>>>><
>>>>:

ð37Þ

The rational form of this controller (who is expressed in Eq. (30)) will have the
below values:
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N =6
ω

0
1 = 8.17 10− 2 rad ̸s ω1 = 3.37 10− 2 rad ̸s

ω
0
2 = 26.55 10− 2 rad ̸s ω2 = 10.96 10− 2 rad ̸s

ω
0
3 = 86.3 10− 2 rad ̸s ω3 = 35.64 10− 2 rad ̸s

ω
0
4 = 2.81 rad ̸s ω4 = 1.159 rad ̸s

ω
0
5 = 9.12 rad ̸s ω6 = 3.77 rad ̸s

ω
0
6 = 29.65 rad ̸s ω7 = 12.25 rad ̸s

.

8>>>>>>>><
>>>>>>>>:

ð38Þ

Example 3: Phase Margin MΦ = 90°

If MΦ = 90°, then m= MΦ − 180
◦ − argP1 jωuð Þ� �

9̸0
◦

= − 0.5. The controller
transfer function can be expressed as shown in Eq. (39):

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.5

. ð39Þ

In this example, the controller could be expressed as an integrator of order 1 in
series with a lead compensator of order 0.5. The gain C0 and the open-loop gain
crossover frequency are defined based on system (40):

ωA =ωumin = 67.21 10− 2 rad ̸s
ωB =ωumax = 148.8 10− 2 rad ̸s

�
⇒ r=2.214

b=25⇒ ωl =2.69 10− 2 rad ̸s
ωh =37.2 rad ̸s

	
C0 = 14.67V s ̸◦

8>>>><
>>>>:

, ð40Þ

As for the parameters of the rational transfer function CR(s), they are as follow:

N =6
ω

0
1 = 6.64 10− 2 rad s̸ ω1 = 3.63 10− 2 rad ̸s

ω
0
2 = 22.16 10− 2 rad s̸ ω2 = 12.13 10− 2 rad ̸s

ω
0
3 = 73.98 10− 2 rad s̸ ω3 = 40.49 10− 2 rad ̸s

ω
0
4 = 2.47 rad ̸s ω4 = 1.352 rad ̸s

ω
0
5 = 8.24 rad ̸s ω6 = 4.51 rad ̸s

ω
0
6 = 27.52 rad ̸s ω7 = 15.06 rad ̸s

8>>>>>>>><
>>>>>>>>:

. ð41Þ

Performances

Figures 3, 4, 5, 6, 7, 8 show the frequency domain and time domain performances
for the three examples when applying the three different materials. In fact, Fig. 3
shows the Bode diagrams of CF(s) for the three listed examples (MΦ = 45° (a),
MΦ = 67.5° (b) and MΦ = 90° (c)).
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Fig. 3 Bode diagrams for CRONE controller CF(s) for MΦ = 45° (a), MΦ = 67.5° (b) and
MΦ = 90° (c)
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Fig. 4 Bode diagrams for the open loop transfer function over the interval [10−6 rad/s; 10 rad/s]
(a, c, e), and with a zoom around the gain crossover frequency ωu = 1 rad/s (b, d, f), for
MΦ = 45° (a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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Figure 4 shows the open loop Bode diagrams over the frequency bandwidth
[10−6 rad/s; 10 rad/s] in (a) (c) (e), with a particular zoom around the open-loop
gain crossover frequency ωu = 1 rad/s in (b) (d) (f), for MΦ = 45° (a) (b),
MΦ = 67.5° (c) (d) and MΦ = 90° (e) (f).

Figure 5 presents the Black-Nichols plots of the open loop transfer function over
the interval [−40 dB; 180 dB] in (a) (c) (e) with a particular zoom around the
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Fig. 5 Black-Nichols plots for the open loop transfer function over the interval [−40 dB; 180 dB]
(a, c, e) and with a zoom around the gain crossover frequency ωu = 1 rad/s (b, d, f), for MΦ = 45°
(a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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open-loop gain crossover frequency ωu = 1 rad/s in (b) (d) (f), for MΦ = 45°
(a) (b), MΦ = 67.5° (c) (d) and MΦ = 90° (e) (f).

Figure 6 shows the gain diagrams for the sensitivity functions S(jω) in (a) (c)
(e) and T(jω) in (b) (d) (f), for MΦ = 45° (a) (b), MΦ = 67.5° (c) (d) and MΦ = 90°
(e) (f).
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Fig. 6 Gain diagrams for the sensitivity functions: S(jω) (a, c, e) and T(jω) (b, d, f), forMΦ = 45°
(a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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Figure 7 presents the gain diagrams of the sensitivity functions SC(jω) in (a) (c)
(e) et SP(jω) in (b) (d) (f), for MΦ = 45° (a) (b), MΦ = 67.5° (c) (d) and MΦ = 90°
(e) (f).
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Fig. 7 Gain diagrams for the sensitivity functions: SC(jω) (a, c, e) and SP(jω) (b, d, f), for
MΦ = 45° (a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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Finally, Fig. 8 shows the output temperature variations for step input of
amplitude 1 °C in (a) (c) (e) and for the control signal in (b) (d) (f), for MΦ = 45°
(a) (b), MΦ = 67.5° (c) (d) and MΦ = 90° (e) (f).
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Fig. 8 Time domain responses for a step input of 1 °C: output temperature (a, c, e) and control
signal (b, d, f), for MΦ = 45° (a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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The robustness study is also presented in these figures as the plots contain the
behavior of the three different materials.

3.1.2 Second Generation CRONE Controller

Let’s start by a review of the plant simplified transfer function. In fact, the model
P2.1(s) will be used to synthesize the second generation CRONE controller. Its
transfer function is as follow:

P2.1 sð Þ=H*
0

1 + s ω̸Lð Þ0.5
s ω̸L

, ð42Þ

where

H*
0 =

H0

ω0.5
L

, ð43Þ

and where the values of the variables H0 and ωL were already presented in Eq. (14)
along with their intervals (system (19)).

As for the CRONE controller synthesis, it is done a posteriori when applying the
second generation. Hence, the open loop transfer function is expressed as follow:

βðsÞ= β0
1 + s ω̸l

s ω̸l

� �nl 1+ s ω̸h

1+ s ω̸l

� �n 1
1+ s ω̸hð Þnh , ð44Þ

where ωl and ωh represent the transitional low and high frequencies, n a real
non-integer order between 1 and 2 near the frequency ωu, nl and nh are the orders of
the asymptotic behavior at low and high frequencies and β0 a constant which
ensures unity gain at frequency ωu.

Thus, after defining the open loop transfer function, the computation of the
fractional order CRONE controller is defined as follow:

CF sð Þ= β sð ÞP− 1
2.1 sð Þ. ð45Þ

Hence, CF(s) could be written as follow:

CF sð Þ= β0
1 + s ω̸l

s ω̸l

� �nl 1+ s ω̸h

1+ s ω̸l

� �n 1
1+ s ω̸hð Þnh

s ω̸L

H*
0 1 + s ω̸Lð Þ0.5 . ð46Þ

Referring to the user specifications already shown at the start of this section, the
parameters values of Eq. (46) are set as follow:

• nl = 2, in order to get a null static error;
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• n = (180° − MΦ)/90°, in order to have a phase margin MΦ ∈ 45◦; 90◦½ �; thus
n∈ 1; 1.5½ �;

• nh = 1.5, in order to limit the input sensitivity;
• ωunom = 1 rad/s, value defined by the user and applied for all examples for a

comparative study.

Hence, expression (46) can be rewritten as follow:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �2− n 1+ s ω̸h

1+ s ω̸L

� �0.5

, ð47Þ

where

C0 =
β0 ωl

H*
0 ωL

. ð48Þ

As for the first generation, this paragraph will also study the system behavior
while applying the second generation CRONE controller for three different cases
when the phase margin MΦ is equal to 45°, 67.5° and 90°.

Example 4: Phase Margin MΦ = 45°

If MΦ = 45°, then n= ð180◦ −MΦÞ ̸90◦ =1.5. The open loop transfer function can
be expressed as follow:

βðsÞ= β0
1 + s ω̸lð Þ0.5

s ω̸lð Þ2 , ð49Þ

and the controller transfer function would be:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸L

� �0.5

. ð50Þ

If we suppose that ωl = ωL, CF(s) can be rewritten as shown in Eq. (51):

CF sð Þ=C0
ωl

s

� �
. ð51Þ

This expression is identical to the one of the first generation CRONE controller
obtained in example 1 of Sect. 3.1.1.

48 X. Moreau et al.



Example 5: Phase Margin MΦ = 67.5°

If MΦ = 67.5°, then n = (180° − MΦ)/90° = 1.25. The open loop transfer function
can be expressed as shown in Eq. 52:

βðsÞ= β0
ωl

s

� �2 1 + s ω̸lð Þ0.75
1 + s ω̸hð Þ0.25 . ð52Þ

Thus, the controller transfer function would be as follow:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸lð Þ0.75
1 + s ω̸Lð Þ0.5

1

1+ s ω̸hð Þ0.25 . ð53Þ

As for the first example, if we choose ωl = ωL, the form of CF(s) will be similar
to the first generation CRONE controller as it appears in Eq. (54)

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.25

. ð54Þ

Example 6: Phase Margin MΦ = 90°

If MΦ = 90°, then n = (180° − MΦ)/90° = 1. The open loop transfer function can
be expressed as shown in Eq. (55):

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.5

. ð55Þ

Hence, the controller CF(s) transfer function would be:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸lð Þ
1+ s ω̸Lð Þ0.5

1

1 + s ω̸hð Þ0.5 . ð56Þ

As the two previous cases, when choosing ωl = ωL, the form of CF(s) of the
second generation will be similar to the first generation CRONE controller as
presented in relation (57):

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.5

. ð57Þ
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Performances

In this last section, the study will be divided into two parts referring to value of x.

For x = 0

To sum up, for the three cases studied regarding the value of the phase margin
(MΦ = 45°, 67.5° and 90°), the form of the synthesized controller when using the
first generation and the second generation CRONE controllers is the same. Thus,
the transfer function of this controller is the same for examples 1 and 4.

However, some small differences exist between examples 5 and 6 on one hand
and examples 2 and 3 on the other hand because of the choice of ωl = ωL. This
assumption leads to ωl = 0.97 10−4 rad/s (nominal case for the Aluminum for
L = 1 m). In fact, in the open loop, this difference can be expressed by the absence
of an asymptotical behavior around the phase −135° over the interval [10−4 rad/s;
10−2 rad/s] as it was the case for examples 2 and 3.

Nevertheless, for the low frequencies (ω < 10−4 rad/s), around the open-loop
gain crossover frequency ωu = 1 rad/s and at high frequencies, the open loop
behavior is identical when comparing examples 2 and 5 or examples 3 and 6. This
can explain the fact that the closed loop dynamics are similar for both CRONE
generations.

For X > 0

It is important to analyze the sensitivity of the stability degree at position of
x through the phase margin a posteriori when controlling the temperature T(0,t) for
x = 0 and studying the influence of the temperature sensor when this latter is not
placed at x = 0 exactly.

Hence, for x > 0, the open loop transfer function β(s, x) can be expressed as
follow:

β s, xð Þ=C sð ÞP2.1 sð Þ e− s
ωxð Þ0.5 , ð58Þ

which can be simplified when introduction the nominal open loop transfer function
βnom(s),

β s, xð Þ= βnom sð Þ e− s
ωxð Þ0.5 , ð59Þ

whose frequency response β(jω, x) is of the following form

β jω, xð Þ= βnom jωð Þ e− j ωωxð Þ0.5 . ð60Þ
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Knowing that

e− j ωωxð Þ0.5 =m x,ωð Þe− jθ x,ωð Þ where m x,ωð Þ= e−
ω

2ωxð Þ0.5 = e
− x ω

2αd

� �0.5

θ x,ωð Þ= − ω
2ωx

� �0.5
= − x ω

2αd

� �0.5
8><
>: ,

ð61Þ

the open loop gain and phase can be expressed as follow:

β jω, xð Þj j= βnom jωð Þj jm x,ωð Þ
arg β jω, xð Þ= arg βnom jωð Þ+ θ x,ωð Þ

	
. ð62Þ

The expression of the phase margin MΦ(x) at the gain crossover frequency, ωu,
can be represented as follow:

MΦ xð Þ= π + arg β x, jωuð Þ
= π + arg βnom jωuð Þ+ θ x,ωuð Þ

= π − n
π

2

� �
−

ffiffiffiffiffiffiffiffi
ωu

2αd

r
x.

ð63Þ

Referring to Eq. (63), one can conclude the following:

• Concerning well defined values of n, ωu and αd, MΦ(x) is a decreasing linear
function depending on x;

• The negative slope is proportional to ωu and inversely proportional to the
thermal diffusivity of the material αd;

• The value of the order n selected based on the phase margin value does not
affect the slope; thus, it does not alter the sensitivity of the stability degree of the
controller for position x.

However, a special sensor placement, noted xcrit, allows to get a null phase
margin (which yields to an oscillatory system on closed loop). Above this value, the
system becomes unstable. Thus, the value xcrit is the following:

MΦ xð Þ=0 ⇒ xcrit = π − n
π

2

� � ffiffiffiffiffiffiffiffi
2αd
ωu

r
. ð64Þ

When x varies between 0 and xcrit, another particular position exists. It will be
known as the limit position, xlim, which corresponds to a minimal phase margin,
MΦmin, that will be set depending on the user specifications as shown in Eq. (65):

xlim =

ffiffiffiffiffiffiffiffi
2αd
ωu

r
π − n

π

2
−MΦmin

� �
∈ 0; xcrit½ �. ð65Þ
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Thus, Fig. 9 shows the variation of the position x for the three materials when
the phase margin MΦ(x) varies between 45° and 0°. For this example, the critical
values are: 0.65 cm for the iron, 1.52 cm for the aluminum and 1.91 cm for the
copper. Another example resides by the determination of the phase margin when
x is equal to 0.5 cm: for the iron, MΦ = 10.5°, for the aluminum, MΦ = 30.2° and
MΦ = 33.2° for the copper.

As an example, two simulations were realized when using the controller
obtained through example 4 (MΦ(0) = 45°). In the first simulation (Fig. 10a), the
feedback is realize based on the temperature value T(t,0) measured at x = 0 cm.
The temperature variation T(t,0) at x = 0 and T(t,x) at x = 5 mm are shown in
Fig. 10a, c, e). In the second simulation (Fig. 10b), the feedback is realized using
temperature value T(t,x) measured at x = 5 mm. The temperature variation T(t,0) at
x = 0 and T(t,x) at x = 5 mm are shown in Fig. 10b, d, f. Through this second case
study, the influence of the sensor position uncertainties (by a value of 5 mm) is
shown clearly.

Thus, Fig. 11 shows the responses for the temperature T(t,0) at x = 0 (figures a
et b), T(t,x) at x = 5 mm (figures c et d) at the corresponding control signal u(t)
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Fig. 9 Phase margin
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Fig. 10 Control blocks of the two study cases based on the synthesized controller of example 4
(MΦ(0) = 45°): a feedback realized based on the temperature at x = 0 ; b feedback realized based
on the temperature at x = 5 mm
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Fig. 11 Temperature response of T(t,0) at x = 0 (1st line: a, b T(t,x) at x = 5 mm (2nd line: c,
d) and for the control signal u(t) (3rd line: e, f) for a step input of 1 °C for the aluminum, the
copper and the iron, when considering a feedback control based on the temperature at x = 0
(figures a, c, e) and for a temperature measured at x = 5 mm (figures: b, d, f)

Control of the Temperature of a Finite Diffusive Interface … 53



(figures e et f) for a step input of 1 °C for the aluminum, the copper and the iron
when considering a feedback control based on the temperature at x = 0 (figures a, c
et e) and for a temperature measured at x = 5 mm (figures: b, d et f). Based on these
figures, one can conclude the following:

When the positioning sensor uncertainties are absent at x = 0 mm, the
robustness of the stability degree is confirmed (Fig. 11a). Thus, the three step
responses are almost equal. So, when comparing them with the nominal response
obtained for the aluminum, the two other responses would be expressed as a
dilatation (for the copper) or a contraction (for the iron) concerning the time domain
axis. However, when x > 0 mm, this property is no more conserved (referring to
the simulation where the sensor is positioned at 5 mm—Fig. 11c).

However, when the positioning uncertainties are present at x = 5 mm, the
robustness of the stability degree is no more conserved whatever the material in use
is and for any positioning of the temperature sensor (for x = 0, Fig. 11b). This
result is logic as the variation of x affects the phase margin as already presented in
Fig. 8.

A particular attention should be point out on the control signal u(t) whose value
remains below the saturation limit (Umax = 12 W).

4 Conclusions

In this chapter, we have introduced first the general transfer function of a finite
diffusive interface medium in order to study the heat diffusion across its central axis.
The study is conducted over three different materials (Iron, Copper and Aluminum)
to study the robustness of the controller.

The CRONE controller was the one used in this study. The first two generations
were applied. The controller of the first generation is calculated a priori where the
phase is constant over all the frequency bandwidth whereas the second generation is
deduced using the loop shaping and it applies whenever the phase is constant with
gain variations for the plant.

Two scenarios were proposed: the first one shows a gain variation with a con-
stant phase and both CRONE generations were applied. All results were almost
similar. For the second scenario, the plant’s gain was varying while the phase was
maintained constant around ωu which yield in the use of the second CRONE
generation.

Concerning the future works, lot of adjustments could be made to enrich this
work. First, some new scenarios could be proposed in order to analyze the behavior
of the third generation CRONE controllers and to compare this controller to other
ones. Added to that, the implementation of some observers could be interesting as
we will not be able to measure the temperature at any point of the bar due to some
physical/technical limitations. The last and most interesting point is to implement
physically this system and to be able to compare the real measurements to the
simulated ones. Whenever the test bench is realized, the identification of the
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equation that would model this system will be made and a comparison between the
real one and the approximated one will be proposed. Then, the control of this plant
using the LabView software along with the data acquisition board will be per-
formed. The performance analysis of the observers will be a novel study applied in
a fractional order environment.
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Grey Predictor Assisted Fuzzy
and Fractional Order Fuzzy Control
of a Moving Cart Inverted Pendulum

Amanvir Singh Sidana, Akarsh Kumar, Akshit Kanda, Vineet Kumar
and K.P.S. Rana

Abstract In this chapter, a fractional order fuzzy PD controller with grey predictor
(FOFPD-GP) is presented for effective control of a moving cart inverted pendulum.
FOFPD-GP was tuned with the help of Genetic Algorithm for minimum settling
time and its performance has been assessed using Integral of Absolute Error
(IAE) and Integral of Square Error (ISE). Further, a comparative study of
FOFPD-GP with its potential counterparts such as fuzzy PD with grey predictor
(FPD-GP) controller, a fractional order fuzzy PD (FOFPD) controller and fuzzy PD
(FPD) controller has also been carried out to assess its relative performance.
Additionally, the pendulum was subjected to the impulse and sinusoidal distur-
bances and the disturbance rejection capabilities of the investigated controllers were
analyzed and have been presented in this chapter. The simulation results revealed
that FOFPD-GP controller outperformed all the other controllers under study by
offering least IAE and ISE values.
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1 Introduction

Inverted pendulum, an inherently non-linear and unstable system, has always been a
topic of interest for control engineers since many decades. It has been a classical
benchmark problem for designing, testing and evaluating contemporary control
techniques. Inverted pendulum finds uses in military and space application, such as
space shuttles and missiles, where there is requirement to maintain a precise vertical
orientation.

Conventional PID controllers have been in use for a very long time. They have
proved to be efficient controllers, providing satisfactory response at a very moderate
cost. The evidence of their popularity lies in the fact that even today, 90% of the
industry employs PID controller, one of the most popular conventional controller.
PID controllers have been able to provide efficient output when tuned appropriately.
However, conventional controllers fail to serve the purpose when the plant is
non-linear and uncertain. This has led the scholars to search for alternative
solutions.

For the past three decades lots of research has been reported on in the intelligent
controllers. One of the most important outcomes of this research has been fuzzy
logic control. It tries to mimic the process of human decision making based on
‘if-else’ logic. Fuzzy logic controller (FLC) is seen as the most suitable option to
replace the conventional PID as it provides an easier option of implementing rules
that resemble instructions given by a human operator. However, fuzzy logic lacks
the capability to predict future data and take necessary actions. This aspect can be
incorporated into the plant by using a grey predictor (GP).

Grey system theory was first introduced by Professor Deng Julong [17]. A sys-
tem can be defined with a color that represents the amount of clear information
about that system. For instance, a system can be called as “black box”, if its internal
characteristics or mathematical equations that describe its dynamics are completely
unknown. On the other hand, if the description of the system is completely known,
it is named as a white system. Similarly, a system that has both known and
unknown information is defined as a grey system. In real life, every system can be
considered as a grey system because there are always some uncertainties associated
with the physical systems.

The use of fractional order calculus in the field of control engineering is another
interesting development that has taken place over the last several years. Fractional
order calculus has been used to define chaotic systems accurately. It allows
description and modeling of a real system more accurately than the classical integer
order calculus methods. When fractional order calculus is used as a part of the
controller, its action resembles that of adding more tuning knobs to the controller,
which helps in the generation of the desired response.

Good works have been reported on intelligent fractional controllers and grey
prediction, but their combined potential appears to be underexplored. This has been
the main motivation for this chapter, which aims to investigate GP based fractional
order fuzzy PD (FOFPD) controller. In this chapter, a fractional order fuzzy PD
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controller with grey predictor (FOFPD-GP) has been implemented on a moving cart
inverted pendulum. The performance of the FOFPD-GP has been compared with
fuzzy PD (FPD), fuzzy PD with grey predictor (FPD-GP) and FOFPD for settling
time when an impulse disturbance is given at the controller output. The gains of the
controllers were tuned with the help of inbuilt optimization tool genetic algorithm
(GA). Later, the pendulum was subjected to impulse and sinusoidal disturbances,
and the disturbance rejection capabilities of the controllers were investigated by
comparing the Integral of Absolute Error (IAE) and Integral of Square Error
(ISE) values.

This chapter is organized as follows: Following the introduction in Sect. 1, a
brief literature survey in Sect. 2 related to the proposed study has been presented. In
Sect. 3, a complete description of the moving cart inverted pendulum is given.
Fractional order calculus and its implementation on a controller as Oustaloup’s
recursive approximation (ORA) are described in Sect. 4. In Sect. 5, GP and its
mathematical model are described. Subsequently, mathematical model of FPD,
design and implementation of FPD, FOFPD, FPD-GP and FOFPD-GP controllers
are described with the help of block diagrams and their corresponding Simulink
diagrams in Sect. 6. Finally, results for settling time of investigated controllers and
their comparison on robustness have been presented in Sect. 7 followed by the
conclusion and future scope in Sect. 8.

2 Literature Survey

As already has been mentioned above, the popularity of PID is due to its ease of
implementation, cost effectiveness and its ability to provide a satisfactory response.
Large numbers of PID variants have been developed to suit the needs of verities of
the plants. Azar and Serrano presented an internal model control plus PID tuning
procedure for cascade control systems based on the gain and phase margin speci-
fications of the inner and outer loop [2]. Azar and Serrano also developed PI loop
shaping control design implementing a describing function to find the limit cycle
oscillations and the appropriate control gains, thus showing the stabilization of
cart-pendulum system with the proposed control scheme [6]. However, conven-
tional controllers do not give successful results when used with non-linear plants.
A survey on classical PID as well as fuzzy PID (FPID) controllers has been pre-
sented by Kumar et al. where it was realized that classical PID controllers are
effective for linear systems but not suitable for nonlinear systems [21]. Conse-
quently, the focus has been shifted from conventional to intelligent control.

For the last four decades, with the advent of soft computing, it has become
possible to implement relatively complex control structures with ease. There have
been numerous successful attempts for control using intelligent control systems [9].
Among the different intelligent techniques, fuzzy logic was proposed by Zadeh
[45–51] and FLC was initially proposed by Mamdani [27, 28]. Meghni et al.
presented a second-order sliding mode and FLC for optimizing energy management
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[29]. Giove et al. used fuzzy logic to prevent dialysis hypotensive episodes [15].
Wang et al. presented an observer-based adaptive fuzzy neural network controller
with supervisory mode for a certain class of higher order unknown non-linear
dynamic systems [44]. An implementation in industries, for the first time, was
presented by King and Mamdani for a complex dynamic and poorly defined system
[20]. Nour et al. modeled a non-linear inverted pendulum on Simulink and
implemented PID controller and FLC on it [32]. It was observed that FLC provided
a better control action than PID controller. A similar trend was noticed in the works
of Prasad et al. and Tyagi et al. [23, 40]. Kumar et al. proposed a new formula-
based fuzzy PI controller and the effectiveness of the controller was assessed by
controlling outlet flow concentration of a nonlinear non-thermic catalytic continu-
ous stirred-tank reactor [22]. Boulkroune et al. presented an interesting work
dealing with adaptive fuzzy control-based function vector synchronization between
two chaotic systems with both, unknown dynamic disturbances and input nonlin-
earities [12]. In another stimulation work, Boulkroune et al. used a fuzzy adaptive
controller for a fractional order chaotic system with uncertain dynamics to realize a
practical projective synchronization [11]. However, fuzzy wasn’t predictive in
nature as mentioned above, thus, it gave way to GP.

GP theory distinguished with its ability to deal with systems that have partially
unknown parameters. With the use of grey system mathematics (for instance, grey
equations and grey matrixes) it is possible to generate meaningful information using
little poor data. GP has ability to predict the future outputs of a system by using
recently obtained data [19]. Over the last two decades, grey system theory has been
developed rapidly and caught the attention of researchers with its successful
real-time practical applications. It has been applied to analysis, modeling, predic-
tion, decision making and control of various systems such as social, economic,
financial, scientific and technological, agricultural, industrial, transportation,
mechanical, meteorological, ecological, geological, medical, military, etc. [18]. GP
has been used with sliding mode control of higher order non-linear systems and
non-linear liquid level systems [42]. In both these cases, it was observed that using
a GP along with the sliding mode and fuzzy controller independently, the response
of the system improved. This showed superior performance of the GP.

Some of the areas of application of advanced intelligent systems in modeling and
control of multi-disciplinary complex processes are electronic, chemical, mechan-
ical, and aerospace, as explained by Azar and Vaidyanathan [7, 8]. Azar and Zhu
presented quality works on control of non-linear, uncertain and coupled systems
like robot arms, internal combustion engines etc. using sliding mode control tuned
by GA [10]. Zhu and Azar also presented different soft computing methods for
management of waste, wind-up control and application in biomedical systems [52].
Azar and Serrano presented soft computing method for wind-up control [5]. Azar
and Serrano also devised an adaptive sliding mode consisting of a sliding mode
control law with an adaptive gain, making the controller more flexible and reliable
than other sliding mode control algorithms and nonlinear control strategies, for a
furuta pendulum [3]. Mekki et al. highlighted the benefits of sliding modes when
applied to the field of fault tolerant control [30]. Azar and Serrano proposed a novel

60 A.S. Sidana et al.



approach for the dead beat control of multivariable discrete time systems [4]. Azar
presented an adaptive neuro-fuzzy inference system as a novel approach for
post-dialysis urea rebound prediction [1].

Another development in control engineering has been that of the fractional order
control systems which make use of fractional order calculus. Fractional order cal-
culus was described as a paradox from which useful results can be obtained. It has
been used to describe systems, especially chaotic systems, and provide an effective
control structure [16, 38]. Fractional controller helps in providing intermediate
options to the plant. Ghoudelbourk et al. implemented a fractional pitch angle
controller in a wind turbine to tap maximum energy in wind power generation [14].
FOFPD and fractional order fuzzy PI have (FOFPI) been used in cascaded loops for
speed control of highly non-linear hybrid electric vehicle [24]. Recently, Sharma
et al. investigated a fractional order fuzzy PID (FOFPID) on a two-link planar rigid
robotic manipulator. The resulting response was seen to outperform fuzzy PID
(FPID), fractional order PID (FOPID) and conventional PID [41].

The survey presented above shows that lots of work has been done on intelligent
fractional controllers and grey prediction, but their combined utility appears to be
underexplored. Thus the aim of the chapter is to investigate the GP based FOFPD
controller and check its effectiveness against the potential counterparts.

3 Problem Formulation and Plant Model

This section presents the problem formulation and mathematical model of the
considered moving cart inverted pendulum system along with its respective initial
conditions and system parameters. Before delving into designing a controller for the
plant, one needs to have an accurate mathematical model that can be replicated.

3.1 Inverted Pendulum

An inverted pendulum is a pendulum that has its centre of mass above its pivot
point. Whereas a pendulum is stable when hanging downwards, an inverted pen-
dulum is in its unstable equilibrium position when upright. Even a slight distur-
bance from its upright position can bring the pendulum down, so it requires active
control. There are various kinds of inverted pendulums that are used in the research
field by scholars, such as moving cart inverted pendulum and multiple segmented
inverted pendulums on a cart. Another platform is a two wheeled balancing inverted
pendulum having the ability to spin on the spot offering a great deal of
manoeuvrability.

A moving cart inverted pendulum has been used in this chapter. One of the main
reasons for its choice is its wide practical applications such as rocket launchers,
hover boards, etc. The pendulum is maintained at a desired reference angle by
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changing the position of the cart, so effectively it is a form of stabilization control.
In this chapter, a reference angle of 1° has been considered for positioning the
pendulum. For the purpose of effective control, it is necessary to understand the
dynamics of the moving cart pendulum system, which can be done by deriving the
mathematical model of the pendulum.

3.2 Mathematical Modeling

The moving cart inverted pendulum under investigation is shown in Fig. 1 [13, 33].
It consists of a rod free to move about the pivot in the x-axis. The mass of the cart is
M, the mass of the rod is m, the length of the rod is 2l, x is the displacement of the
cart from the origin, the angle of the rod with the perpendicular at the pivot is θ and
u is the control force acting on the cart so as to the reference angle. The surface is
taken to be frictionless and the mechanical joint is assumed to be smooth.

Figure 2 shows the free body diagram of the plant from which the non-linear
dynamics of the system are derived. Both the forces H and V are internal forces
which the pivot and rod exert on each other whenever the rod is subjected to any
disturbance. H is the horizontal force acting on both the rod and the pivot but in
opposite directions. Similarly, V is the vertical force acting on rod and pivot but in
the opposite directions.

Net torque about the end of the rod not pivoted is,

I*θ ̇=V*l*sinθ−H*l*cosθ ð1Þ

where I is the moment of inertia of the rod about the rod’s end.

Fig. 1 A moving cart
inverted pendulum
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Force balancing in the x-direction for the rod,

m
d2ðx+ l * sinθÞ

dt2
=H ð2Þ

Force balancing in the y-direction for the rod,

m
d2ðl * cosθÞ

dt2
=V −mg ð3Þ

Force balancing in the x-direction for the cart,

M
d2x
dt2

= u−H ð4Þ

Using Eqs. 2 and 4,

M*x ̈= u− fmx ̈+m * l * ðθ ̇cosθ− θ2sinθÞg ð5Þ

x ̈ðM +mÞ= u−m*l*ðθ ̇cosθ− θ2sinθÞ ð6Þ

Putting value of x ̈ from Eq. 6 in Eq. 4,

H = u−Mðu+mlðθ2 sin θ− θ̇ cos θÞ
M +m

Þ ð7Þ

Fig. 2 Free body diagram of
an inverted pendulum
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H =
mu−Mm*l* θ2 sin θ− θ̇ cos θ

� �
M +m

ð8Þ

Force balance in y-direction of the rod,

V −mg= −m * l * ðθ2sinθ+ θ ̇cosθÞ ð9Þ

V =m g− l * θ2sinθ+ θ ̇cosθ
� �� � ð10Þ

Using values of H and V from Eqs. 8 and 10 respectively and subsequently
putting in Eq. 1,

Iθ ̇=m g− l θ2sinθ+ θ ̇cosθ
� �� �

l * sinθ− l * cosθ
mu−Mm * l θ2sinθ− θ ̇cosθ

� �
M +m

( )

ð11Þ

Using the value of moment of inertia,

I =
m 2 * lð Þ2

3
=

4m * l2

3
ð12Þ

θ̇
ml

4ml2

3
+ml2 sin2θ−

Mml2 cos2θ
M +m

� �
=

g sin θ− u cos θ
M +m − lθ2 sin θ cos θ

+
M*l*cos θ sin θ θ2ð Þ

M +m

 !
ð13Þ

θ ̇ * l *
4
3
−

mcos2θ
M +m

� �
= gsinθ+ cosθ

− u−m * l * θ2sinθ
M +m

� �
ð14Þ

θ ̇=
gsinθ+ cosθ − u−m * l * θ2sinθ

M +m

� 	
l * 4

3 −
mcos2θ
M +m

� � ð15Þ

As can be clearly seen from Eq. 15, the dynamics of the plant is non-linear and a
suitable controller is required to maintain the pendulum at a certain position. In this
study, the value of m is 1 kg, M is 2 kg and l is 1 m.

4 Fractional Order Calculus

The mention of fractional calculus can be dated back to 1695, when L’ Hôpital
commented on the ‘meaning of derivatives with non-integer order’ as “It will be an
apparent paradox fromwhich one day useful consequences will be derived”. For a few
centuries, the development of fractional calculus has been in theory, but with the
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advent of high computational devices, it can be utilized in effective control of complex
plants. Fractional derivatives describe memory and hereditary properties in an extre-
mely appropriate manner. This is the main advantage of fractional order derivatives
when compared with integer-order models, in which such effect is neglected.

The use of fractional order calculus for the purpose of control emerged with
Bode [31]. Bode presented an elegant solution to robust design problem where it
was desired to have the closed loop performance invariant to changes in the
amplifier gain. He came up with fractional order integrator with transfer function
G sð Þ= ωcg

s

� �α, known as Bode’s ideal transfer function where ωcg is the gain
crossover frequency. Fractional calculus is a generalization of integration and dif-
ferentiation to a non-integer order fundamental operator aDr

t , where a and t are the
limits of the operation. The continuous integro-differential operator is defined as:

aDr
t =

dr
dtr , R rð Þ>0
1, R rð Þ=0Rt
a

dτð Þ− r, R rð Þ<0

8>><
>>: ð16Þ

where r is the order of the operation, generally r∈R, but r could also be a complex
number.

The three equivalent forms of the fractional integro-differential most commonly
used are the Grunwald-Letnikov (GL) definition, the Riemann-Liouville (RL) and
the Caputo definition. The GL definition is given as:

aDr
t f tð Þ= limh→ 0h− r ∑

t− a
h½ �

j=0
− 1ð Þ j r

j

 !
f t− jhð Þ, ð17Þ

where [.] means the integer part.
The RL definition is given as:

aDr
t f tð Þ= 1

Γ n− rð Þ
dn

dtn

Z t

a

f τð Þ
t− τð Þr− n+1dτ ð18Þ

where ðn− 1< r< nÞ and Γð.Þ is the Gamma function.
The Caputo definition can be written as:

ωz, 1 =ωL
ffiffiffi
η

p ð19Þ

for ðn− 1< r< nÞ. The initial conditions for the fractional order differential equa-
tions with the Caputo derivatives are in the same form as for the integer-order
differential equations.
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The most usual way of making use, both in simulations and hardware imple-
mentations, of transfer functions involving fractional powers of ‘s’ is to approxi-
mate them with usual (integer order) transfer functions with a similar behaviour
[35–37]. So as to perfectly mimic a fractional transfer function, an integer transfer
function would have to include an infinite number of poles and zeroes. Oustaloup’s
approximation makes use of recursive distribution of poles and zeros to obtain
series of rational functions whose frequency response fit the frequency response of
the irrational function within specific frequency band. This method, also known as
ORA is defined as follows for frequency band of ½ωl;ωh�.

sλ½ωl ,ωh� = k ∏
N

n=1

1+ S
ωz, n

1+ S
ωp, n

ð20Þ

ωz, 1 =ωL
ffiffiffi
η

p
, ð21Þ

ωp, n =ωz, nα, n=1 . . .N,
ωz, n+1 =ωp, nη, n=1 . . .N − 1, ð22Þ

α=
ωh

ωl

� �λ
N

ð23Þ

η=
ωh

ωl

� �ð1− λÞ N̸
ð24Þ

where k is a constant that should be chosen such that the magnitude of the
approximate shall have unity gain (0 dB) at 1 rad/s. N represents the number of
poles and zeros which should be chosen beforehand. Large value of N permits good
approximation but increases the computational complexity. On the other hand,
small value results in simpler approximation but could cause appearance of ripple in
gain and phase behavior. Low and high frequencies band limitations could avoid
the use of infinite numbers of rational transfer function besides limiting the high
frequency gain of the derivative effect [44].

5 Grey Predictor

GP is employed when there is a lack of information about the system model. It
extracts present and past information from a plant to generate future values in order
to minimize the error. In real life, due to noise that arises from both the inside and
outside of the system (and the limitations of our cognitive abilities), the information
one perceives about that system is always uncertain and limited in scope [19]. One
of the characteristics of grey system is the construction of model with small amount
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of data. Grey prediction models can be used to predict the future values of the
system with high accuracy.

5.1 GP Model

Themain task of grey system theory is to extract realistic governing laws of the system
using available data. This process is known as the generation of the grey sequence. It
is argued that even though the available data of the system,which generally consists of
white numbers, is too complex or chaotic, it always contains some governing laws. If
the randomness of the data obtained from a system is somehow smoothed, it is easier
to derive any special characteristics of that system. For instance, the sequence that
represents the speed values of a motor might be given as:

Q 0ð Þ= 820, 840, 835, 850, 890ð Þ ð25Þ

It is obvious that the sequence does not have a clear regularity. If accumulating
generation is applied to original sequence, Q 1ð Þ is obtained which has a clear
growing tendency [25].

Q 1ð Þ= 820, 1660, 2495, 3345, 4235ð Þ ð26Þ

As one plots the data points from Eq. 25 which represents the speed values of a
motor, a random graph as shown in Fig. 3 with no definite pattern or future growing
tendency, is obtained.

Fig. 3 The original data set
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As data points of accumulated data are plotted from Eq. 26, a graph as shown in
Fig. 4 is obtained. This graph has a clear growing tendency and gives more
information about the system than the original data set.

5.2 GM (n, m) Model

In grey systems theory, GM (n, m) denotes a grey model, where n is the order of the
difference equation and m is the number of variables. Although various types of
grey models can be mentioned, most of the previous researchers have focused their
attention on GM (1, 1) model for their predictions because of its computational
efficiency. It should be noted that in real time applications, the computational
burden is the most important parameter after performance [18].

5.2.1 GM (1, 1) Model

GM (1, 1) type of grey model is the most widely used in literature and is pro-
nounced as “Grey Model First Order One Variable”. This model is a time series
forecasting model. The differential equations of the GM (1, 1) model have
time-varying coefficients. In other words, the model is renewed as the new data
becomes available to the prediction model. The GM (1, 1) model can only be used
in positive data sequences [19]. In this chapter, an inverted pendulum plant with

Fig. 4 The accumulated data set
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reference angle more than 0° is used, so that the value of θ is never negative. Hence,
the GM (1, 1) model can be used to forecast the position of the pendulum.

In order to smooth the randomness, the primitive data obtained from the system
to form a GM (1, 1) it is subjected to an operator named accumulating generation
operation (AGO) [19]. The differential equation (i.e. GM (1, 1)) thus evolved is
solved to obtain the n-step ahead predicted value of the system. Finally, using the
predicted value, the inverse accumulating operation (IAGO) is applied to find the
predicted values of original data [18].

5.2.2 Mathematical Modeling of GP

Consider a single input and single output system. Assuming that the time sequence
Qð0Þ represents the output of the system

Qð0Þ = ðqð0Þð1Þ, qð0Þð2Þ, . . . qð0ÞðmÞÞ, m≥ 4 ð27Þ

where Qð0Þ is a non-negative sequence and m is the sample size of the data. This
sequence is then subjected to AGO to obtain the sequence, Qð1Þ. Through Eq. 28, it
can be observed that Qð1Þ is monotone increasing

Qð1Þ = ðqð1Þð1Þ, qð1Þð2Þ, . . . qð1ÞðmÞÞ, m≥ 4 ð28Þ

where qð1ÞðjÞ= ∑
j

i=1
qð0ÞðiÞ, j=1, 2, 3, . . .m

This shows that each term in the Qð1Þ sequence is actually a cumulated sum of all
the terms from the beginning till that term.

The mean sequence W ð1Þ of Qð1Þ, is defined as:

W ð1Þ = ðwð1Þð1Þ,wð1Þð2Þ, . . .wð1ÞðmÞÞ ð29Þ

where wð1ÞðjÞ terms in Eq. 29 are actually the mean values of adjacent data terms,
which can be obtained as shown in Eq. 30,

wð1ÞðjÞ=0.5qð1ÞðjÞ+0.5qð1Þðj− 1Þ, j=2, 3, . . . ,m ð30Þ

The least square estimate sequence of the grey difference equation of GM (1, 1)
is defined as follows:

qð0ÞðjÞ+ cwð1ÞðjÞ= v ð31Þ

Grey Predictor Assisted Fuzzy and Fractional Order … 69



The whitening equation is therefore written as follows:

dqð1ÞðtÞ
dq

+ cqð1ÞðtÞ= v ð32Þ

In Eq. 32, ½c, v�T is a sequence of parameters that can be found from Eq. 33:

½c, v�T = ðOTOÞ− 1OTP ð33Þ

where,

P= ½qð0Þð2Þ, qð0Þð3Þ, . . . qð0ÞðmÞ�T ð34Þ

O=

−wð1Þð2Þ 1
−wð1Þð3Þ 1

⋮ ⋮
−wð1ÞðnÞ 1

0
BB@

1
CCA ð35Þ

The solution of qð1ÞðtÞ at time k is obtained as follows:

qð1Þz ðj+1Þ= ½qð0Þð1Þ− v
c
�e− cj +

v
c

ð36Þ

To obtain the predicted value of the primitive data at time (j + 1), IAGO is used
to establish the grey model as shown in Eq. 37:

qð0Þz ðj+1Þ= ½qð0Þð1Þ− v
c
�e− cjð1− ecÞ ð37Þ

The parameter ‘−c’ in the GM (1, 1) model is called ‘development coefficient’
and gives information about the development of states. The parameter ‘v’ is called
the ‘grey action quantity’ which reflects changes in the data that have arisen
because of being derived from the background values [18].

GM (1,1) Rolling Model: GM (1,1) rolling model is based on the forward data
sequence to build the GM (1,1). For instance, using q(0)(j), q(0)(j+1), q(0)(j+2) and
q(0)(j+3), model predicts the value of the next point q(0)(j+4). In the next step, the
first point is always shifted to the second. It means that q(0)(j+1), q(0)(j+2), q(0)(j
+3) and q(0)(j+4) are used to predict the value of q(0)(j+5). This procedure is
repeated till the end of the sequence and the method is called rolling check. GM
(1,1) rolling model is used to predict the long continuous data sequences such as the
output of a system, price of a specific product, trend analysis for finance statements,
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social parameters, etc. In this chapter, GM (1,1) rolling model is used to predict the
future outputs of the moving cart inverted pendulum system [10].

6 Integer/Fractional Order FPD Controller
with/without GP

This section introduces the integer and fractional order FLC design and its
implementation. For this task, initially the FPD controller is described along with its
mathematical equations and block diagram in Sect. 6.1. Following this, in Sect. 6.2,
FOFPD controller is introduced by replacing the integer order derivative with a
fractional order derivative and its application model is explained. Sections 6.3 and
6.4 describe the way GP is combined with FPD and FOFPD controllers in order to
transform them into FPD-GP and FOFPD-GP controllers respectively. The mem-
bership functions, rule base, inference mechanism and defuzzification technique
which have been used in the operation of all the four controllers are elaborated in
Sect. 6.5.

6.1 FPD Controller

The standard equation of a conventional PD controller in time domain is defined as:

uPD tð Þ=K ′

p e tð Þ+Tde ̇ tð Þ½ � ð38Þ

or

uPD tð Þ= K ′

pe tð Þ+K ′

de ̇ tð Þ
h i

ð39Þ

where K ′

p is the proportional constant, Td is the derivative time constant, K ′

d is the
derivative gain, uPDðtÞ is the output of PD controller, eðtÞ is error.

In discrete form, Eq. 39 can be written as:

uPD kð Þ= K ′

pe kð Þ+K ′

dr kð Þ
h i

ð40Þ

where r kð Þ= ðe kð Þ− eðk− 1ÞÞ ̸T is the rate of change of error and T is the sampling
period.

Now, the FPD controller can be designed based on the discrete form of the
conventional PD controller as given in Eq. 40. The inputs to the FPD controller are
error e kð Þ and rate of change of error r kð Þ and the output is uFPD kð Þ [39].
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uFPD kð Þ=KupdDF FF Kpe kð Þ,Kdr kð Þ� �� � ð41Þ

Equation 41 gives the control action of a FPD controller, where Kp and Kd are
the scaling factors of the inputs and Kupd is the scaling factor of the defuzzified
output. FF refers to the fuzzification of inputs and DF refers to the defuzzification of
the fuzzified output. The implementation of the FPD controller can be shown
through a block diagram in Fig. 5.

6.2 FOFPD Controller

When fractional calculus is implemented in conjunction with FPD controller, a
better response can be expected than a conventional FPD. This can be attributed to
the fact that the FOFPD controller would be less sensitive to the parametric vari-
ations of the system due to an extra degree of freedom. In terms of mathematical
variations from the FPD controller, the d

dt term in Eq. 39 would be replaced by dλ
dtλ

where λ∈ ð0, 1Þ. The block diagram in Fig. 6 shows the design of the FOFPD
controller.

As can be observed from Fig. 6, putting back λ=1 would result in FPD con-
troller. The actual FOFPD controller has been realized using a transfer function

Fig. 5 Block diagram of FPD controller

Fig. 6 Block diagram of FOFPD controller
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which employs ORA as discussed earlier in Sect. 3. The Simulink model imple-
menting the same is shown in Fig. 7.

6.3 FPD-GP Controller

The GP designed for the inverted pendulum uses data terms obtained from previous
four samples to predict the future value. This helps in minimization of error and
consequently, in a better transient response. GP is positioned in the feedback path of
the FPD controller. Hence, the error received by FPD controller is more or less
similar to the error which would have resulted in the next sample time in absence of
GP. Thus, in a way, GP can be said to have accelerated the error detection process
and help in the error reduction a step ahead. GP was implemented with the help of
‘Interpreted MATLAB function’. The above working can be demonstrated using a
block diagram shown in Fig. 8.

6.4 FOFPD-GP Controller

FOFPD-GP controller is constructed by juxtaposition of FOFPD controller and
GP. It combines the advantages of fractional calculus and GP, i.e. the fractional part
compensates for the dynamical instabilities of the plant and makes the response
more robust, while the GP helps in prediction of future values which the controller

Fig. 7 Simulink model of FOFPD controller on inverted pendulum
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can act upon and reduce the error. The block diagram in Fig. 9 clearly depicts the
entire setup.

The practical realization of the FOFPD-GP controller using a Simulink model
can be shown in Fig. 10.

6.5 Framework of Fuzzy Controllers

A typical FPD controller consists of the arrangement shown in Fig. 11.
The membership functions and their universes of discourse need to be designed

depending upon the plant model. Following this, the rule base must be defined for
all the possible combination of inputs. Fuzzy inference would then map the given
inputs into output according to the rule base. Finally, a suitable defuzzification
technique is required to convert the fuzzy output signal into a crisp control signal,
which is made available to the plant input. The fuzzy logic used for all the con-
trollers in this study is identical.

Fig. 8 Block diagram of FPD-GP controller

Fig. 9 Block diagram of a FOFPD-GP controller
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6.5.1 Membership Functions

Seven membership functions have been used for both the inputs and the output.
Membership functions for error and rate of change of error are same and defined in
the range − π ̸2< eðkÞ ̸rðkÞ< π ̸2 as shown in Fig. 12. The reason for choice of
this universe of discourse is accredited to the fact that outside this range, the
pendulum rod falls down and needs different control techniques like swing up
control to get back to its unstable equilibrium position.

Membership function for output is defined in the range − 15< u<15 as shown
in Fig. 13. Asymmetric membership functions are selected instead of the usual
symmetric ones because of the fact that the practical range of angle θ never exceeds
5◦ and for error larger than this value, the system becomes less dynamic. Therefore,

Fig. 10 Simulink model of FOFPD-GP controller on inverted pendulum

Fig. 11 Block diagram of a FPD controller
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the membership functions close to the 0◦ mark are spaced close to each other so as
to provide better sensitivity and more amplification [26].

6.5.2 Rule Base

In the matrix form, the rules are defined in Table 1. The reasoning behind the rule
base can be explained by taking a particular case as an example, if the error and rate
of change of error are NB and NM respectively, this suggests that the current output

Fig. 12 Input membership functions for error and rate of change of error

Fig. 13 Output membership functions

Table 1 Rule table ė e

NB NM NS Z PS PM PB

NB PB PB PB PB PM PS Z
NM PB PB PB PM PS Z NS
NS PB PB PM PS Z NS NM
Z PB PM PS Z NS NM NB
PS PM PS Z NS NM NB NB
PM PS Z NS NM NB NB NB
PB Z NS NM NB NB NB NB
where NB, NM, NS, Z, PS, PM and PB represent Negative Big,
Negative Medium, Negative Small, Zero, Positive Small, Positive
Medium and Positive Big respectively
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is at a very large distance from the reference and moving away from it at a con-
siderable speed. Therefore, PB is required to bring the output back close to refer-
ence position [37].

6.5.3 Inference Engine and Defuzzification Method

The inference method used in the above analysis for all the controllers is Mam-
dani’s max-min inference process.

Defuzzification refers to the process of converting the fuzzy output signal to a
crisp non-fuzzy value. It is done because fuzzy values cannot be directly used for
actuators applications. The defuzzification technique employed in this study is
centroid method. Mathematically, it’s given as

z* =

R
μC zð Þ ⋅ z dzR
μC zð Þ dz ð42Þ

7 Results and Discussions

Application of FPD and FPD-GP controller on an inverted pendulum aims to
control the rod at the reference position when an impulse disturbance is given.
However, in order to further reduce the settling time, a transfer function employing
ORA is used to convert FPD and FPD-GP into FOFPD and FOFPD-GP controllers
respectively. A comparative study for settling time is demonstrated for the four
abovementioned controllers and their controller gains tuned through GA are pre-
sented in Sect. 6.1. The error and control signal comparisons for all the controllers
have also been shown. Further, all the controllers are subjected to sinusoidal dis-
turbances at plant input and plant output individually for their robust testing. This
study has been presented in Sects. 6.2 and 6.3. The performance of FOFPD and
FOFPD-GP controller is found to be more efficient than FPD and FPD-GP con-
troller respectively with significant reduction in settling time.

7.1 Optimization of Controllers

The gains and the fractional order exponent (for FOFPD and FOFPD-GP), used in
the controllers are tuned for their optimum performance in the given bounds for all
the controllers used in the chapter. The tuning is done using GA which is available
as an inbuilt optimization tool in MATLAB. Three gains (Kp, Kd and Kupd) and the
fractional order exponent λ (in case of FOFPD and FOFPD-GP) are tuned. The
parameters’ settings used for tuning are shown in Table 2.
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The gains are tuned so as to produce minimum settling time. A pulse of width
10 ms and amplitude 100 N is applied at 1 s to the plant at the controller output,
which disturbs the plant from its initial position. The best fitness plots for all the
four types of controllers are shown below.

The convergence plot in Fig. 14 comes out to be smooth and becomes almost
constant after 15 generations.

From Fig. 15, it can be observed that there are only minor variations after 10
generations. However, the graph settles completely only towards the latter part.

Figure 16 depicts the plot that is monotonically decreasing and more or less
settles around 20th generation.

The graph in Fig. 17 shows that the plot for mean fitness settles very late to the
best fitness plot (around 25th generation). However, the major fall occurs by the
10th generation only.

Table 2 Various parameters
values for GA

Parameter Values

Population size 50
Generation 30
Function tolerance 1E-6
Lower bound gains 1E-6
Upper bound gains 100
Solver Runga-Kutta (ode4)
Step size 1 ms

Fig. 14 Convergence plot for FPD
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From the above convergence plots, it can be observed that the mean fitness value
settles very close to the best value and continues to be stable till the last generation.
The exact settling time and tuned gains’ values for various controllers are listed in
Table 3.

The reference set point tracking responses for all the investigated controllers are
shown in Fig. 18 for the case when an impulse was given at the controller output.

As it can be observed from Fig. 18, the settling time obtained from FOFPD-GP
is minimum as compared to all the other controllers. Also, the undershoot is least

Fig. 15 Convergence plot for FOFPD

Fig. 16 Convergence plot for FPD-GP
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Fig. 17 Convergence plot for FOFPD-GP

Table 3 Tuned gains and obtained settling time values for the controllers

Parameters FPD FPD-GP FOFPD FOFPD-GP

Kp 99.976 93.7628 98.106 40.2241
Kd 1.449 1E-6 1.7 35.0111
Kupd 22.908 99.7668 32 86.9323
λ 1 1 0.91 0.254
Settling time (sec) 0.0504 0.0370 0.0351 0.0175
where λ refers to the order of derivative

Fig. 18 Set point tracking responses of controllers
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for FOFPD-GP controller, thereby demonstrating its effectiveness in maintaining
the pendulum angle at reference position. The corresponding error and the control
signal comparisons for all the controllers are shown in Figs. 19 and 20.

It can be observed from Fig. 19, that the error signals of FOFPD and FOFPD-GP
controllers come out to be smaller in amplitude and tend to settle earlier than the
error signal of their integral counterparts, FPD and FPD-GP. Also, it can be clearly
seen that the error for FOFPD-GP comes out to be the least.

Fig. 19 Error comparison for all the controllers

Fig. 20 Control signal comparison for all the controllers

Grey Predictor Assisted Fuzzy and Fractional Order … 81



As it is visible in Fig. 20, the control signals for FOFPD and FOFPD-GP are
smoother and faster than FPD and FPD-GP respectively. This dominant perfor-
mance of the control signals is responsible for better overall settling time response
of the fractional controllers. Again, FOFPD-GP outperformed all the other
controllers.

Further, the controllers developed, with their tuned gains, were subjected to
various disturbances at different points to test their robustness and disturbance
rejection capabilities. The following subsections present the relevant investigations.

7.2 Disturbance at Controller Output

This disturbance is analogous to a vibrating cart which has inverted pendulum
mounted on cart. For the same, a sinusoidal disturbance was given at the controller
output, D1 at time 0 s. Now, additionally; an impulse signal at 1 s was introduced
as shown in Fig. 5. The impulse given at time t = 1 s has a pulse width of 10 ms
and amplitude 100 N. The sinusoidal disturbance was varied in two different ways.
First, the frequency was kept constant and the amplitude was varied, then the
amplitude was kept constant and frequency was varied. IAE and ISE values were
calculated for all the four responses obtained from different controllers. In all the
cases, the tuned values of gains computed earlier were used. Firstly, a sinusoidal
signal with constant amplitude and varying frequencies was given as a disturbance.
The amplitude of the signal is taken to be 5 N. A plot for responses of FOFPD-GP,
FPD-GP, FOFPD and FPD controllers when sine disturbance of frequency 50 rad/s
and an impulse at t = 1 s is given is shown in Fig. 21 as a sample case study.

Fig. 21 Disturbance rejection study for sinusoidal disturbance of 5 N and 50 rad/s
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It can be observed from Fig. 21 that the response obtained for FOFPD-GP is the
most robust as it doesn’t oscillate from its mean position as much as responses of
other controllers. Therefore, the IAE and ISE values are also found to be lower for
FOFPD-GP controller. The IAE and ISE values for constant amplitude and varying
frequencies are shown in Table 4.

Again, it can be confirmed from Table 4 that the addition of fractional com-
ponents improves the response by a significant factor. FOFPD-GP outperformed
FPD-GP, FOFPD and FPD controllers as its IAE and ISE values for all the con-
sidered frequencies came out to be lowest.

Next, a sinusoidal signal with constant frequency and varying amplitude was
applied. The frequency of the sinusoidal disturbance was taken to be 100 rad/s.
Comparative plot depicting responses of FOFPD-GP, FPD-GP, FOFPD and FPD
controllers for amplitude 6 N and frequency 100 rad/s is shown in Fig. 22 as a
typical study.

It can be observed from Fig. 22 that the response obtained for FOFPD-GP is
most robust, as its amplitude variations are very less in response to sinusoidal
signal. Therefore, the IAE and ISE values are also lowest for FOFPD-GP. Table 5
shows the IAE and ISE values for constant frequency and varying amplitudes.

As can be clearly noted from Table 5, the controllers with fractional derivatives
performed considerably better than those without fractional components.
FOFPD-GP outperformed FPD-GP, FOFPD and FPD controllers as its IAE and ISE
values for all the frequencies came out to be lowest.

Table 4 Performance
analysis: Disturbance of
constant amplitude and
varying frequency at D1

Frequency
(rad/s)

FOFPD-GP FPD-GP
IAE ISE IAE ISE

50 0.0400 9.94E-06 0.1095 3.45E-05
75 0.0399 9.88E-06 0.1127 3.48E-05
100 0.0392 9.81E-06 0.1170 3.52E-05
125 0.0388 9.35E-06 0.1222 3.56E-05
150 0.0385 9.72E-06 0.1278 3.61E-05
175 0.0390 9.72E-06 0.1330 3.65E-05
Frequency
(rad/s)

FOFPD FPD
IAE ISE IAE ISE

50 0.1348 7.03E-05 0.2773 1.47E-04
75 0.1236 7.01E-05 0.2507 1.47E-04
100 0.1162 6.98E-05 0.2297 1.43E-04
125 0.1112 6.93E-05 0.2105 1.39E-04

150 0.1037 6.89E-05 0.1926 1.34E-04
175 0.1029 6.81E-05 0.1765 1.29E-04
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7.3 Disturbance at Plant Output

Referring to Fig. 5, a sinusoidal disturbance was added to the plant output at D2 to
further analyze the relative performances of the investigated controllers. The
sinusoidal disturbance was given at t = 1.5 s for 1 time period and it was varied in
two ways in line with the previous case i.e. frequency and amplitude one at a time.
In all the cases, the tuned values of gains computed earlier were used.

Fig. 22 Disturbance rejection study for sinusoidal disturbance of 6 N and 100 rad/s

Table 5 Performance
analysis: disturbance of
constant frequency and
varying amplitude at D1

Amplitude FOFPD-GP FPD-GP
IAE ISE IAE ISE

1 0.0186 9.58E-06 0.0426 3.15E-05
2 0.0235 9.57E-06 0.0609 3.20E-05
3 0.0287 9.62E-06 0.0794 3.27E-05
4 0.0336 9.68E-06 0.0981 3.38E-05
5 0.0392 9.81E-06 0.1170 3.52E-05
6 0.0445 9.99E-06 0.1361 3.69E-05
Amplitude FOFPD FPD

IAE ISE IAE ISE
1 0.0542 6.17E-05 0.0977 1.24E-04
2 0.0689 6.31E-05 0.1290 1.28E-04
3 0.0840 6.57E-05 0.1615 1.32E-04
4 0.1002 6.76E-05 0.1950 1.37E-04
5 0.1168 6.98E-05 0.2297 1.43E-04
6 0.1327 7.24E-05 0.2653 1.51E-04
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First, a sinusoidal signal with varying amplitudes and constant frequency was
given as a disturbance. The frequency of the signal was taken to be 2πrad/s.
Controller outputs for amplitude 5π/180 rad and frequency 2πrad/s are shown in
Fig. 23 as a sample case study.

It can be observed from Fig. 23 that the response obtained from FOFPD-GP is
the least unwavering, as it doesn’t oscillate from its mean position as much as the
response of other controllers. Therefore, the IAE and ISE values also come out to be
lowest for FOFPD-GP. Table 6 shows the IAE and ISE values of the controllers for
the case of constant frequency and varying amplitudes.

Table 6 again confirms that controllers with fractional components outperformed
the controllers with integer derivatives and FOFPD-GP offers the best response
among all the controllers.

Next, amplitude of the sinusoidal disturbance is taken to be π/180 rad/s. Con-
troller outputs for amplitude π/180 rad and frequency π rad/s are shown in Fig. 24.

Fig. 23 Disturbance rejection study for sinusoidal disturbance of 5π/180 rad and 2π rad/s

Table 6 Performance
analysis: disturbance of
constant frequency and
varying amplitude at D2

Amplitude
(rad)

FOFPD-GP FPD-GP
IAE ISE IAE ISE

π/180 0.0113 2.39E-07 0.0147 1.03E-06
3π/180 0.0340 1.97E-05 0.0466 3.19E-05
5π/180 0.0570 6.20E-05 0.0850 1.1E-04
Amplitude
(rad)

FOFPD FPD
IAE ISE IAE ISE

π/180 0.0346 1.88E-06 0.0437 4.1E-06
3π/180 0.0928 3.59E-05 0.1368 7.24E-05

5π/180 0.1551 1.36E-04 0.2342 2.19E-04

Grey Predictor Assisted Fuzzy and Fractional Order … 85



Again, it is revealed from Fig. 24 that the response obtained from FOFPD-GP is
more robust, as it doesn’t oscillate from its mean position as much as the response
of FPD-GP, FOFPD and FPD controllers. Therefore, the IAE and ISE values are
also lowest for FPD-GP. Table 7 compares the IAE and ISE values for constant
amplitude and varying frequencies:

As can be proved from Table 7, FOFPD-GP and FOFPD controllers perform
considerably better than their integer counterparts, FPD-GP and FPD respectively.
Further, it is to be noted from Table 7, that FOFPD-GP outperformed FPD-GP,
FOFPD and FPD controllers.

Fig. 24 Disturbance rejection study for sinusoidal disturbance of π/180 rad and π rad/s

Table 7 Performance
analysis: disturbance of
constant amplitude and
varying frequency at D2

Frequency
(rad/s)

FOFPD-GP FPD-GP
IAE ISE IAE ISE

π/2 0.0052 5.10E-08 0.0209 2.23E-07
π 0.0093 4.49E-07 0.0268 8.65E-07
2π 0.0147 2.39E-07 0.0437 4.10E-06
Frequency
(rad/s)

FOFPD FPD
IAE ISE IAE ISE

π/2 0.0160 8.50E-08 0.0429 3.32E-07
π 0.0086 2.26E-07 0.0244 6.16E-07
2π 0.0113 1.00E-06 0.0346 1.88E-06
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8 Conclusions and Future Scope

Fractional Order Fuzzy PD with Grey Predictor (FOFPD-GP), Fuzzy PD with Grey
Predictor (FPD-GP), Fractional Order Fuzzy PD (FOFPD) and Fuzzy PD
(FPD) controllers were successfully implemented and compared on a moving cart
inverted pendulum. The simulations were done using Simulink on MATLAB.
Initially, an impulse disturbance was given to the plant model for which the plant
was tuned for minimum settling time using inbuilt optimization tool Genetic
Algorithm. It was observed that the settling time of FOFPD-GP was improved from
FPD by 2.88 times, from FPD-GP by 2.11 times and FOFPD by 2 times. Based on
these facts, it is deduced that FOFPD-GP controller outperformed the other con-
trollers under investigation.

Further, when sinusoidal disturbances were given at plant input and plant output,
it was noted that the Integral of Absolute Error (IAE) and Integral of Square Error
(ISE) values for FOFPD-GP came out to be better than FOFPD, FPD-GP and FPD
for both the disturbances when the amplitude was kept constant and frequency was
varied or when frequency was kept constant and amplitude was varied. Overall
FOFPD-GP offered better responses than FOFPD, FPD-GP and FPD controllers in
all the investigated cases for the moving cart inverted pendulum.

As a future scope, effectiveness of other inference mechanisms, different
membership functions, defuzzification methods and other control varieties of fuzzy
control schemes may be explored for moving cart inverted pendulum or such
complex plants. Additionally, new and advanced and optimization techniques can
also be applied to further effectively tune the control gains.
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H∞ Design with Fractional-Order PIλDμ

Type Controllers

De-Jin Wang

Abstract This chapter focuses on H∞ performance design for fractional-delay
systems with fractional-order PIλDμ type controllers, including PIλDμ controller,
PIλ controller and PDμ controller. The method adopted here is based on parameter
plane approach. Firstly, the stabilizing region boundary lines in the plain of the two
controller’s gains are drawn for other parameters of the controller to be fixed, and
the stabilizing region is identified using a graphical stability criterion applicable to
fractional-delay systems. Secondly, in the stabilizing region, the modern H∞-norm
constraint of sensitivity function or complementary sensitivity function is mapped
into the stabilizing region by means of the explicit algebraic equations obtained
according to the definition of H∞-norm. Thirdly, in the stabilizing region, the
classical phase-margin and gain-margin curves are drawn using the technique of the
gain and phase margin tester. Thus, the co-design of the modern and classical
performances is realized. Finally, in time-domain, the dynamic behaviors and the
robustness to the plant uncertainties are simulated via Matlab toolbox and compared
with integer-order PID controller. Also, the influence of varying the fractional
orders (λ and μ) on the step responses is simulated.

Keywords Fractional-order PIλDμ controllers ⋅ H∞-norm ⋅ Gain and phase
margins ⋅ Sensitivity functions ⋅ Complementary sensitivity functions ⋅
Parameter plane approach

1 Introduction

This chapter mainly concerns with the H∞ performance design of control systems
with fractional-order PIλDμ type controllers, including fractional-order PDμ, PIλ
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and PIλDμ controllers, based on the parameter plane approach. From the point of
view of application, the parameters tuning of PIλDμ type controllers is an important
issue in order to achieve better control effects, just as in the case of conventional
(integer-order) PID controllers. It is well-known that H∞ performance is a
robustness measure of control systems. The H∞ design with PIλDμ type controllers
discussed in this chapter gives a new parameters tuning of fractional-order con-
trollers, and this is the motivation behind this work. The main contribution of the
chapter lies in the following three aspects: (1) A graphical stability criterion for
time-delay systems is applied to fractional-delay systems, giving a new approach to
the stability analysis of fractional-order systems and the design of fractional-order
controllers. The stabilizing region in the two gains’ plane of PIλλDμ type controller,
for other parameters to be fixed, is drawn and identified directly, avoiding the
complicated stability testing of other methods, such as D-partition technique used in
Hamamci [8]. (2) In the stabilizing region, the gain and phase margins design is
considered via the gain and phase margin tester (GPMT) technique [8]. (3) H∞
design with fractional-order controllers is proposed by calculating the H∞-norm of
sensitivity or complementary sensitivity function of the closed-loop in the stabi-
lizing region using an algebraic method, and the relationship between the H∞

region and the fractional orders of PIλDμ controller is discussed via examples. The
design procedure given in this chapter is simple and flexible in the parameters
tuning of fractional-order controllers. The content of this chapter is mainly based on
the authors work published in the literature [26, 28, 29].

The rest of the chapter is organized as follows. The next section is the
description of the related work in the field. Section 3 presents the basic knowledge
used in the following sections. Sections 4, 5 and 6 are the main results of the
chapter, discussing, in the parameter plane of the controller, the stabilizing regions,
the phase and gain margins regions and the H∞ constraint regions using
fractional-order PDμ, PIλ and PIλDμ controllers, respectively. Finally, in Sect. 7
concluding remarks are given.

2 Related Work

In recent years, the investigation of fractional-order systems has attracted consid-
erable attention. In this field, the parameter’s tuning of fractional-order controllers is
an important issue. The existing simple fractional-order controllers include the
following four types: TID (tilt-integral-derivative) controller [16], CRONE Con-
troller [19, 20], fractional lead-lag compensator [17, 24] and PIλDμ controller [22,
23] The PIλDμ controller is the extension of conventional PID controller, which
introduces two more tunable parameters, i.e., the order of the integrator and the
order of the differentiator. Two special cases of PIλDμ controller are fractional-order
PIλ [15, 18], and PDμ [10, 26] controllers. The parameter’s tuning of PIλDμ type
controllers can be classified into two groups, i.e., the analytical method [5, 15, 18]
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and the graphical approach [8–10, 26]. The former considers calculating the con-
troller parameters based on some frequency domain design specifications, such as
phase margin, gain cross-over frequency and robustness to the gain variation of the
plant (ISO-damping). The later focuses on plotting the stabilizing boundary curves
in the parameter space of the controller. These boundary curves are described by
real root boundary (RRB), infinite root boundary (IRB) and complex root boundary
(CRB). Then, in the stabilizing region, the performance specifications are taken into
account. The gain-margin and the phase-margin design was given in [8, 9] using
GPMT technique. Other investigations on the tuning of PIλDμ controllers can be
found in [1, 14, 21, 31]. In Akbari [1], the problem related to robust BIBO stability
analysis of the fractional PID-based control systems was studied for a class of
uncertain plants modeled by a four-parameter model structure. Another type of
fractional-order PD controller, called FO-[PD] controller, was proposed in Lou [14]
and the fairness issue in comparing with other controllers was addressed. The
authors in Padula [21], presented a set of tuning rules for PID and fractional-order
PID controllers for integral and unstable processes in order to minimize the inte-
grated absolute error criterion, and the results can be used to quantify the perfor-
mance improvement that can be obtained by using the fractional-order controller
instead of the integer one. In Yeroglu and Tan [31], two design techniques for
tuning the parameters of fractional-order PID controller were given. The first one
used the idea of the Ziegler-Nichols and the Astrom-Hagglund methods. The sec-
ond one was related with the robust fractional-order PID controllers, and a design
procedure was given using the Bode envelopes of the control systems with para-
metric uncertainty. It is worthy of mentioning that the fractional-order chaotic
systems were also studied in the recent literature [4].

On the other hand, it is well-known that H∞-norm is a robustness measure of
closed-loop systems. For integer-order processes, using integer-order PID controller
or other types of low-order controllers, sensitivity function, complementary sensi-
tivity function and robust performance of the closed-loop systems were considered
[3, 12, 13, 25, 30], respectively, and the corresponding controllers were designed.
To the best of our knowledge, no fractional-order PID type controller synthesis
exists for achieving H∞ specification in the literature. This chaptor attempts to fill
this gap.

3 Preliminaries

In this section, we give some elementary concepts and definitions related in the
following sections, including the form of fractional-order PIλDμ controllers, the
parameter plane approach for the stability analysis of fractional-delay systems
controlled by PIλDμ controllers, and the definition of H∞-norm of a transfer
function.

H∞ Design with Fractional-Order … 93



3.1 Fractional-Order PIλDμ Controllers

The conventional PID controller has the following form in time domain

uðtÞ=K eðtÞ+ 1
Ti

Z t

0

eðτÞdτ+Td
deðtÞ
dt

0
@

1
A ð1Þ

where u is the control variable and e the control error. The control variable is thus a
sum of three terms: the P-term, which is proportional to the error, the I-term, which
is proportional to the integral of the error, and the D-term, which is proportional to
the derivative of the error. The controller parameters are proportional gain K, the
integral time Ti and the derivative time Td. A higher proportional action (higher
proportional gain K) gives a faster response speed and a lower steady-state error,
but a bigger overshoot (more oscillatory response behavior). A stronger integral
action (smaller integral time Ti) can reduce and eliminate the steady-state error. The
derivative action (the derivative time Td) increases the damping of the system and
improves the stability property.

The PID algorithm given by (1) can be represented by the transfer function

CðsÞ=Kð1+ 1
Tis

+TdsÞ ð2Þ

where s is the Laplace variable. Another representation of the PID algorithm is of
the form

CðsÞ= kp +
ki
s
+ kds ð3Þ

The parameters between (2) and (3) have the following relations

kp =K

ki =
K
Ti

kd =KTd

where kp is called the proportional-gain, ki the integral-gain and kd the
derivative-gain, respectively.

By contrast with the conventional PID controller, the output of the
fractional-order PIλDμ controller, in time domain, is
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u tð Þ= kpe tð Þ+ kiD− λeðtÞ+ kdDμeðtÞ ð4Þ

where Dμ is Caputo’s fractional derivative of order μ with respect to t and with the
starting point at t=0

Dμe tð Þ= 1
Γð1− δÞ

Z t

0

e m+1ð Þ τð Þ
t− τð Þδ dτðμ=m+ δ,m∈Z, 0 < δ<1Þ ð5Þ

D− λ is Caputo’s fractional integral of order λ

D− λeðtÞ= 1
ΓðλÞ

Z t

0

e τð Þ
t− τð Þ1− λdτðλ>0Þ ð6Þ

where Γð∙Þ is the gamma function. The transfer function of such a controller has the
form in frequency domain

CðsÞ= kp +
ki
sλ

+ kdsμ, ð0< λ, μ<2Þ ð7Þ

Setting μ=0 gives a PIλ controller, and letting λ=0 corresponds to a PDμ

controller. They are two special cases of fractional PIλDμ controller.
In comparison with the conventional PID controller, the fractional PIλDμ con-

troller has two more tunable parameters, i.e., the integral order λ and the derivative
order μ. Taking λ= μ=1, one recovers a conventional PID controller. So the PIλDμ

controller is a generalization of PID controller. It is shown in Podlubny [22] that a
suitable way to the more efficient control of fractional-order systems is to use the
fractional PIλDμ type controllers. Thus, the parameter’s tuning of the PIλDμ con-
troller is an important topic from the point of view of application.

3.2 Parameter Plane Approach

From (7) in the previous subsection, one observes that there exist five tunable
parameters in PIλDμ controller, i.e., three gains kp, ki and kd, and two fractional
orders λ and μ (in the case of PIλ controller and PDμ controller, only three
parameters remained, i.e., kp, ki and λ, and kp, kd and μ, respectively). Select three
parameters, e.g., λ, μ and kp, to be fixed, one can study the stability region in the
plane of the other two parameters, e.g., in kd , kið Þ-plane. The general principle of the
stability analysis of a control system in the parameter plane is stated as follows [6].

Let the characteristic equation of a control system be
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F α, β, sð Þ=0 ð8Þ

where s is the Laplace variable, α, β∈R denote a two-dimensional parameter plane,
i.e., ðα, βÞ-plane. With the help of the Implicit Function Theorem, solving the
equation

Fðα, β, jωÞ=0 ð9Þ

for (α, β) as a function of ω∈R finds the stability boundary in (α, β)-plane such that
for ðα, βÞðα, βÞ on such a boundary, the characteristic equation has a root exactly on
the imaginary axis in s-plane. These boundary curves divide the parameter plane
into regions, and by additional arguments, when α and β appear linearly, it is
possible to conclude which side of the boundary curve corresponds to stability
region or instability region. In practice, it may require a computer to draw the
corresponding boundary curves inðα, βÞ-plane parameterized by ω.

To conclude this subsection, one gives a graphical stability criterion applicable
to fractional-delay systems. Given a characteristic equation as defined in (9), one
partitions Fðα, β, jωÞ into its real and imaginary parts

F α, β, jωð Þ=F1 α, β,ωð Þ+ jF2ðα, β,ωÞ ð10Þ

where

F1 α, β,ωð Þ=ReFðα, β, jωÞ
F2 α, β,ωð Þ= ImFðα, β, jωÞ ð11Þ

Suppose one has found, in one way or another, a point ðα0, β0Þ in the (α, β)-
plane such that

F1 α0, β0,ω
� �

=0

F2 α0, β0,ω
� �

=0
ð12Þ

i.e., the characteristic equation has a root at position ω on the imaginary axis in
s-plane. Let J denote the Jacobian Matrix of partial derivatives with respect to ðα, βÞ
evaluated at that point, i.e.,

J =
∂F1
∂α

∂F1
∂β

∂F2
∂α

∂F2
∂β

" #
ðα0, β0,ωÞ

ð13Þ

Then, according to the Explicit Function Theorem, if the Jacobian (13) is
non-singular, the Eq. (12) has a unique local solution curve ðαðωÞ, βðωÞÞ. More-
over, the following proposition holds.
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Proposition 1 The critical roots are in the right half-plane if the point in the parameter
plane, relative to the selected values of α and β, lies at the left side of the curve (α(ω),
β(ω)) when one follows this curve in the direction of increasing ω, whenever det J <0
and at the right side when det J >0. Here J is the Jacobian Matrix defined in (13).

As the coefficients in the characteristic Eq. (9) are real, one concludes that if jω
is a root of (9), so is the complex conjugate of it. Therefore, it is sufficient to
consider ω∈ ½0,∞Þ. Correspondingly, the boundary curves between the stability
and instability regions in the parameter plane are defined by the following three
parts: (1) Real root boundary (RRB) for ω=0 (A real root crosses over the
imaginary axis at s=0). (2) Complex root boundary (CRB) for ω∈ ð0,∞Þ (A pair
of complex roots crosses over the imaginary axis at s= jω). (3) Infinite root
boundary (IRB) for ω=∞ (A real root crosses over the imaginary axis at s=∞).

3.3 H∞-Norm of Sensitivity and Complementary Sensitivity

Consider SISO LTI unity feedback system as shown in Fig. 1, which is composed
of a plant GðsÞ and a controller CðsÞ. The sensitivity transfer function is defined as

SðsÞ≡ 1
1+CðsÞGðsÞ ð14Þ

i.e., the transfer function from the reference input to the tracking error. On the other
hand, the transfer function from the reference input to the output of the closed-loop
system is

T sð Þ≡ 1− S sð Þ= CðsÞGðsÞ
1+CðsÞGðsÞ ð15Þ

referred to as the complementary sensitivity transfer function. From (15), it is clear
that the two functions T and S are co-complementary. The name sensitivity function
comes from the fact that S is the sensitivity of the closed-loop transfer function T to
an infinitesimal perturbation in G [7].

H∞-norm of a transfer function GðsÞ is defined as

Fig. 1 Unity feedback
system
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GðsÞk k∞ ≡ supω GðjωÞj j ð16Þ

Note that the H∞-norm of G equals the distance in the complex plane from the
origin to the farthest point on the Nyquist plot of G. It also appears as the peak
value on the Bode magnitude plot of G.

Now, recall the sensitivity function defined in (14). one wants the tracking error
to have amplitude less than ε, a measure of goodness of tracking. Then the per-
formance specification can be expressed as

SðsÞk k∞ < ε ð17Þ

or

W1ðsÞSðsÞk k∞ <1 ð18Þ

where W1 sð Þ=1 ε̸, called the weighting function. Usually, W1ðsÞ is a stable
frequency-dependent function, and is chosen as a low pass filter to get a good
tracking.

A typical robust stability test, one for the multiplicative uncertain model, is the
following H∞-norm constraint of the weighted complementary sensitivity function
defined in (15)

W2ðsÞTðsÞk k∞ <1 ð19Þ

where W2ðsÞ is the weighting function. Typically, W2ðjωÞj j is an increasing func-
tion of ω, representing that uncertainty increases with increasing frequency.

4 H∞ Design with Fractional PDμ Controllers

We first begin with the H∞ design with simple fractional PDμ controllers. The
parameter plane approach discussed in Sect. 3.2 is adopted to draw and identify the
stabilizing region in the two gains’ plane of the controller. Then, in the stabilizing
region, the H∞-norm constraint of complementary sensitivity function is
considered.

4.1 Stabilizing Region

Consider SISO LTI unity feedback system as shown in Fig. 1, which is composed
of a plant G(s) and a PDμ controller C(s) given by, respectively
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GðsÞ= NðsÞ
DðsÞ e

− Ls ð20Þ

CðsÞ= kp + kdsμ ð21Þ

where N(s) and D(s) are integer-order or fractional-order polynomials, L>0
demotes the time-delay, μ∈ ð0, 2Þ is the derivative-order of the controller, kp and kd
are the proportional-gain and derivative-gain, respectively, of PDμ controller. The
objective of this subsection is to determine the stabilizing parameters region of PDμ

controller in ðkd, kpÞ-plane, for a fixed μ∈ ð0, 2Þ, using the parameter plane
approach given in Sect. 3.2. To this end, the closed-loop characteristic
quasi-polynomial is first given

ΔðsÞ=DðsÞ+NðsÞðkp + kdsμÞe− Ls

Multiplying both sides of the above equality by eLs yields

Δ*ðsÞ=DðsÞeLs +NðsÞðkp + kdsμÞ ð22Þ

Substituting s= jω into (22) gives rise to

Δ*ðjωÞ=DðjωÞejLω +NðjωÞ½kp + kdðjωÞμ� ð23Þ

Let

DðjωÞ=DrðωÞ+ jDiðωÞ
NðjωÞ=NrðωÞ+ jNiðωÞ

ð24Þ

and notice that

jα = cos
απ

2
+ j sin

απ

2
, ð0< α<2Þ ð25Þ

where DrðωÞ (or NrðωÞ) and DiðωÞ (or NiðωÞ) stand for the real and imaginary
components of DðjωÞ (or NðjωÞ), respectively, one partitions Δ*ðjωÞ into its real
and imaginary parts

Δ*ðjωÞ=ΔrðωÞ+ jΔiðωÞ

where

ΔrðωÞ= DðjωÞj j cos½Lω+ αðωÞ�+ kdωμ

NðjωÞj j cos½βðωÞ+ μπ 2̸�+ kpNrðωÞ
ð26Þ
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ΔiðωÞ= DðjωÞj j sin½Lω+ αðωÞ�+ kdωμ

NðjωÞj j sin½βðωÞ+ μπ 2̸�+ kpNiðωÞ
ð27Þ

With DðjωÞj j (or NðjωÞj j) being the modulus of the complex variable DðjωÞ (or
NðjωÞ), and αðωÞ (or βðωÞ) being the phase function of DðjωÞ (or NðjωÞ).

From (26) and (27), it is clear that both Δr and Δi depends on the parameters
ðkd, kp, μ,ωÞ. Suppose one has found, in one way or another, a point ðk0d , k0p , μ,ωÞ in
ðkd, kpÞ-plane, for a fixed μ, such that

Δr =Δrðk0d , k0p, μ,ωÞ=0
Δi =Δiðk0d, k0p, μ,ωÞ=0

(
ð28Þ

i.e., there exists a root on the imaginary axis. According to the Explicit Function
Theorem, if the Jacobian

J =
∂Δr
∂kd

∂Δr
∂kp

∂Δi
∂kd

∂Δi
∂kp

" #
ðk0d , k0p , μ,ωÞ

ð29Þ

is nonsingular, then the Eq. (28) has a unique local solution curve ðkdðωÞ, kpðωÞÞ.
Moreover, the proposition stated in the Sect. 3.2 holds, where the Jacobian is
defined by (29).

As the coefficients in the characteristic Eq. (23) and L are real, if jω is a root of
(23), so is the complex conjugate of it. Therefore, it’s sufficient to consider
ω∈ ½0,∞Þ. For ω=0, let Δ*ðjωÞ=0, one obtains a part of the marginal stability
curve (RRB)

kp = −Dðj0Þ N̸ðj0Þ ð30Þ

For ω∈ ð0,∞Þ one first solves Eq. (28) for kd and kp in terms of μ and ω

kd = −
DðjωÞj j sin½Lω+ αðωÞ− βðωÞ�

ωμ NðjωÞj j sinðμπ2 Þ
ð31Þ

kp =
DðjωÞj j sin½Lω+ αðωÞ− βðωÞ− μπ

2 �
NðjωÞj j sinðμπ2 Þ

ð32Þ

then, (31) and (32) gives another part of the marginal stability curve (CRB) in
ðkd, kpÞ-plane, and from Proposition 1, one can determine which side of the curve
belongs to stability region, according to the sign of det J given by
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det J = −ωμ NðjωÞj j2 sinðμπ
2
Þ<0, ∀ω>0, μ∈ ð0, 2Þ ð33Þ

Note that in this case the IRB does not exist.

Example 1 Consider the following fractional-order integrating process with time
delay

GðsÞ= 1
s1.5

e− 0.1s ð34Þ

which is investigated in Hamamci [8]. Apply PDμ controller (21) to this process,
one plots the stabilizing boundary curves in ðkd, kpÞ-plane, using (31) and (32), and
(30) kp =0

� �
, for different fractional-order μ as shown in Fig. 2. The arrows along

the curves denote the direction of increasing ω. Then, according to Proposition 1
and the sign of the determinant of Jacobian (33), the stabilizing regions can be
identified as the closed areas above the kd-axis for each μ (for μ=1, the area filled).
It is clear that different μ corresponds to different shapes and areas of stabilizing
regions.

4.2 H∞ Design of Complementary Sensitivity

In this subsection, the H∞-norm constraint of complementary sensitivity function

TðsÞ= CðsÞGðsÞ
1+CðsÞGðsÞ =

LðsÞ
1+ LðsÞ ð35Þ

where L sð Þ=CðsÞGðsÞ stands for the open-loop transfer function, is considered in
the stabilizing region of PDμ controller. As mentioned in Sect. 3.3, the H∞-norm

Fig. 2 Stabilizing regions for
different μ
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constraint of TðsÞ is related to the robust stability of the closed-loop for the mul-
tiplicative uncertain model. Introducing a weighting function W2ðsÞ and a positive
scalar M, according to the definition of H∞-norm (16), one has the following
equivalent relations

W2ðsÞTðsÞk k∞ ≤M

⇔ sup
ω

W2ðjωÞTðjωÞj j≤M

⇔ W2ðjωÞTðjωÞj j≤M, ∀ω∈R

ð36Þ

The weight W2ðsÞ describes the frequency characteristic of the H∞ specification.
To determine the ðkp, kdÞ values in the stabilizing region for which the H∞-norm
constraint (36) of the weighted complementary sensitivity is satisfied, consider the
following controller transformation

CðsÞ= kp + kdsμ = kpð1+ kd
kp

sμÞ= xð1+ ysμÞ ð37Þ

where x= kp, y= kd k̸p, and the open-loop transfer function can be written as

LðsÞ=CðsÞGðsÞ= x½GðsÞ+ ysμGðsÞ�

Letting s= jω yields

LðjωÞ= x½GðjωÞ+ yðjωÞμGðjωÞ�

Partition GðjωÞ into its real and imaginary components,

GðjωÞ=AðωÞ+ jBðωÞ

and notice (25), one has

LðjωÞ= x½AðωÞ+ yA1ðωÞ�+ jx½BðωÞ+ yB1ðωÞ� ð38Þ

where

A1ðωÞ=ωμ½AðωÞ cos μπ
2

−BðωÞ sin μπ
2
�

B1ðωÞ=ωμ½BðωÞ cos μπ
2

+AðωÞ sin μπ
2
�

From (35) and (36), the following holds

W2ðjωÞLðjωÞ
1+LðjωÞ

����
����≤M, ∀ω∈R ð39Þ
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Define

f 1 = 1+ LðjωÞj j2 −M1 LðjωÞj j2

where

M1 =
W2ðjωÞ

M

����
����
2

and from (38), one gets

f 1 = 1+ 2xðA+ yA1Þ+ x2½ðA+ yA1Þ2 + ðB+ yB1Þ2�ð1−M1Þ≥ 0 ð40Þ

Inequality (40) defines an optimization problem, and when the equality holds for
some frequency ω, the minimum value of f1 is reached. One wants to find the pair
ðx, yÞ, accordingly the pair ðkp, kdÞ, for a fixed parameter μ, such that the equality in
(40) is satisfied for some frequency ω. To this end, differentiating f1 with respect to
ω and letting the corresponding derivative at that frequency to be zero gives

f 2 = df 1 d̸ω=2xðȦ+ yA1̇Þ+ x2½2ðA+ yA1Þ
ðA ̇+ yA1̇Þ+2ðB+ yB1ÞðḂ+ yB ̇1Þ�
ð1−M1Þ− x2½ðA+ yA1Þ2 + ðB+ yB1Þ�M ̇1

Eliminate x2 in equations

f1 = 0
f2 = 0

�

one solves

x=
2ðȦ+ yA1̇Þ

C0 +C1y+C2y2
ð41Þ

where

C0 = 2ðAȦ+BB ̇Þðγ1 − 1Þ+ γ1̇ðA2 +B2Þ
C1 = 2ðAȦ1 + ȦA1 +BḂ1 + ḂB1Þðγ1 − 1Þ+2γ1̇ðAA1 +BB1Þ
C2 = 2ðA1Ȧ1 +B1Ḃ1Þðγ1 − 1Þ+ γ1̇ðA2

1 +B2
1Þ
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Substitute (41) into f1 = 0 in (40), one obtains a fourth-order equation about y for
each ω

D0 +D1y+D2y2 +D3y3 +D4y4 = 0 ð42Þ

where

D0 =C2
0 + 4AA ̇C0 + 4ð1− γ1Þe00

D1 = 2C0C1 + 4e10 + 8ð1− γ1Þe11
D2 = 2C0C2 +C2

1 + 4e20 + 4ð1− γ1Þe21
D3 = 2C1C2 + 4e30 + 8ð1− γ1Þe31
D4 =C2

2 + 4A1Ȧ1C2 + 4ð1− γ1Þe40

e00 = ðA2 +B2ÞȦ2

e10 =AA ̇C1 + ðȦA1 +AA1̇ÞC0

e11 = ðAA1 +BB1ÞȦ2 + ðA2 +B2ÞA ̇Ȧ1

e20 =AA ̇C2 + ðȦA1 +AA1̇ÞC1 +A1A1̇C0

e21 = ðA2
1 +B2

1ÞA2̇ + 4ðAA1 +BB1ÞȦA1̇ + ðA2 +B2ÞȦ2
1

e30 = ðAA1̇ + ȦA1ÞC2 +A1Ȧ1C1

e31 = ðA2
1 +B2

1ÞA ̇Ȧ1 + ðAA1 +BB1ÞȦ2
1

e40 = ðA2
1 +B2

1ÞA2̇
1

The pair ðx, yÞ, accordingly the pair ðkp, kdÞ, which defines the H∞ boundary
curve for a range of frequencies, can be found in the following manner. Solve the
fourth-order Eq. (42) for y, for an appropriately selected frequency ω, one gets 4
roots, and substitute these 4 roots into (41), respectively, one obtains the corre-
sponding 4 parameters x. Then, recover the original controller parameters by
relations kp = x and kd = xy, and the solution pair, if any, is the real pair ðkp, kdÞ
which is located in the stabilizing region. By changing the frequency ω, the real
pairs ðkpðωÞ, kdðωÞÞ plot the H∞ boundary curve in the stabilizing region.

Remark 1 When the sensitivity function is considered, the above H∞ design pro-
cedure for complementary sensitivity function can be applied similarly.

Example 2 Example 1 revisited. In this case, we consider the problem of deter-
mining the admissible parameters of PDμ controllers in the stabilizing region for
which W2ðsÞTðsÞk k∞ ≤M, where the weighting function W2ðsÞ is chosen as a high
pass filter
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W2ðsÞ= s+0.1
s+1

and M =2. For a fixed μ, solving Eqs. (42) and then (41) for different ω gives rise
to the pair ðkpðωÞ, kdðωÞÞ, which defines the H∞ boundary curves in the stabilizing
region in ðkd , kpÞ-plane as shown in Fig. 3. The arrows along the curves indicate the
direction of increasing ω. The filled area corresponds to the H∞ region
W2ðsÞTðsÞk k∞ <M in the case of μ=1. It is observed that different μ gives different

shapes of H∞ region. In fact, further observation shows that for μ>1, a larger
admissible kp value is allowed. On the contrary, when μ<1, as μ decreases, a wider
range of kd value is expected, showing that with fractional-order PDμ controller, the
ranges of kp and kd values are wider than those with conventional PD controllers,
which means that when one considers other specifications in the H∞ region, a better
performance can be achieved using fractional-order controllers.

5 H∞ Design with Fractional PIλ Controllers

The classical relative stability tests are the gain-margin and the phase-margin. In this
section, we utilize the gain and phase margin tester technique to handle this problem,
and consider the stability margins and the H∞ co-design with fractional-order PIλ

controllers.

Fig. 3 H∞ regions for
different μ

jAe ϕ− ( )C s ( )G sR(s) Y(s)

GPMT PID PLANT

Fig. 4 General structure of
unity feedback
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5.1 Stability Margin Region

Consider the general structure of SISO LTI unity feedback with a compensator of
so-called GPMT as shown in Fig. 4, where G(s) is the plant given in (20) and C(s)
is the controller to be designed which is of the fractional-order PIλ form

CðsÞ= kp +
ki
sλ

ð43Þ

where kp and ki are the proportional-gain and integral-gain, respectively, λ∈ ð0, 2Þ
is the integral-order of the integrator. Ae−ϕ in Fig. 4 denotes the GPMT, which
provides information on plotting the boundary lines of constant gain-margin and
phase-margin in the parameter plane of PIλ controller, corresponding to the fol-
lowing three cases: (a) setting A = 1, one obtains the boundary for a given
phase-margin φ. (b) setting φ=0, the boundary lines for a desired gain-margin A.
And (c) to find the stability boundary lines, one needs to set A = 1 and φ=0,
simultaneously. In practical control systems, the block GPMT does not exist, it is
only employed to design control systems satisfying desired gain-margin and/or
phase-margin.

The objective of this subsection is to determine the stabilizing region in ðkp, kiÞ-
plane for a fixed λ∈ ð0, 2Þ, and then, the regions, in the stability region, satisfying
the gain-margin and phase-margin, utilizing the parameter plane approach dis-
cussed in Sect. 3.2. To this end, the closed-loop characteristic quasi-polynomial in
Fig. 4 is first computed as

ΔðsÞ= sλDðsÞeðLs+ jφÞ +Aðki + kpsλÞNðsÞ=0 ð44Þ

Substituting s= jω into (44) gives rise to

ΔðjωÞ= ðjωÞλDðjωÞejðLω+φÞ +A½ki + kpðjωÞλ�NðjωÞ=0 ð45Þ

Let

DðjωÞ=DrðωÞ+ jDiðωÞ= DðjωÞj jejαðωÞ
NðjωÞ=NrðωÞ+ jNiðωÞ= NðjωÞj jejβðωÞ

where DrðωÞðorNrðωÞÞ and DiðωÞðorNiðωÞÞ represent the real and imaginary parts,
respectively, of DðjωÞðorNðjωÞÞ, and DðjωÞj jðor NðjωÞj jÞ and αðωÞðorβðωÞÞ stand
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for the modulus and the phase, respectively, of the complex variable
DðjωÞðorNðjωÞÞ. Decomposing ΔðjωÞ into its real and imaginary components
yields

ΔðjωÞ=ΔrðωÞ+ jΔiðωÞ

where

ΔrðωÞ=ωλ DðjωÞj j cosðLω+ αðωÞ− βðωÞ+φ+
λπ

2
Þ

+A NðjωÞj jðki + kpωλ cos
λπ

2
Þ

ð46Þ

ΔiðωÞ=ωλ DðjωÞj j sinðLω+ αðωÞ− βðωÞ+φ+
λπ

2
Þ

+A NðjωÞj jkpωλ sin
λπ

2

ð47Þ

Note that in the deriving of (46) and (47), one has utilized the expression (25).
Similar to the analysis in the previous section, only the frequency interval

ω∈ ½0,∞Þ needs to be considered. For ω=0, letting ΔðjωÞ=0 leads to a piece of
stabilizing boundary line (RRB)

ki =0, if Nðj0Þ≠ 0 ð48Þ

and for ω∈ ð0,∞Þ, solving the following equations

ΔrðωÞ=B1ðωÞkp +C1ðωÞki +D1ðωÞ=0
ΔiðωÞ=B2ðωÞkp +C2ðωÞki +D2ðωÞ=0

�
ð49Þ

for kp and ki, using Gramer’s rule, yields

kpðω, λ,A,φÞ= C1ðωÞD2ðωÞ−C2ðωÞD1ðωÞ
JðA,φÞ , ∀ω>0 ð50Þ

kiðω, λ,A,φÞ= −B1ðωÞD2ðωÞ+B2ðωÞD1ðωÞ
JðA,φÞ , ∀ω>0 ð51Þ

where
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B1ðωÞ=A NðjωÞj jωλ cos
λπ

2
C1ðωÞ=A NðjωÞj j
D1ðωÞ= DðjωÞj jωλ cosðLω+ αðωÞ− βðωÞ+φ+

λπ

2
Þ

B2ðωÞ=A NðjωÞj jωλ sin
λπ

2
C2ðωÞ=0

D2ðωÞ= DðjωÞj jωλ sinðLω+ αðωÞ− βðωÞ+φ+
λπ

2
Þ

And

JðA,φÞΔ B1 C1

B2 C2

����
����= −B2C1 = −A2 NðjωÞj j2ωλ sin

λπ

2
< 0,

∀ω>0, λ∈ ð0, 2Þ
ð52Þ

denotes the Jacobian of Eq. (49). By setting A = 1 and φ=00 in (50) and (51), one
has

kpðω, λ,A=1,φ=00Þ= −
DðjωÞj j sinðLω+ αðωÞ− βðωÞ+ λπ

2 Þ
NðjωÞj j sin λπ

2

, ∀ω>0 ð53Þ

kiðω, λ,A=1,φ=00Þ= ωλ DðjωÞj j sinðLω+ αðωÞ− βðωÞÞ
NðjωÞj j sin λπ

2

, ∀ω>0 ð54Þ

Using (53) and (54), another piece of stabilizing boundary curve (CRB) in
ðkp, kiÞ-plane, for a fixed λ∈ ð0, 2Þ, can be drawn. This curve separates the ðkp, kiÞ-
plane into stable parameter region (SPR) and unstable parameter region (UPR).
Using the arguments as in Proposition 1, if JðA=1,φ=00Þ>0, ∀ω>0, λ∈ ð0, 2Þ,
the SPR is to the left of the stabilizing boundary curve following the direction of
increasing ω. Similarly, the SPR is to the right of the stabilizing boundary curve
following the direction of increasing ω, while JðA=1,φ=00Þ<0, ∀ω>0,
∀λ∈ ð0, 2Þ.

Next, for a desired gain-margin A or a phase-margin φ, from (50) and (51), it
follows that

kpðω, λ,A,φÞ= −
DðjωÞj j sinðLω+ αðωÞ− βðωÞ+φ+ λπ

2 Þ
A NðjωÞj j sin λπ

2

, ∀ω>0 ð55Þ

kiðω, λ,A,φÞ= ωλ DðjωÞj j sinðLω+ αðωÞ− βðÞ+φÞ
A NðjωÞj j sin λπ

2

,∀ω>0 ð56Þ
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It is clear that for a fixed λ the pairs ðkpðω,λ,A,φ=00Þ,kiðω,λ,A,φ=00ÞÞ,∀ω>0,
draw the curve, in the stabilizing region, satisfying the desired gain-margin A, and
the pairs ðkpðω,λ,A=1,φÞ,kiðω,λ,A=1,φÞÞ,∀ω>0, plot the curve, in the stabilizing
region, satisfying the given phase-margin φ. The area, in the stabilizing region,
which meets that the gain-margin or the phase margin is greater than the desired
one, can be identified as to the right of the curve following the direction of
increasing ω, according to the sign of JðA,φÞ given in (52).

Example 3 Consider the following fractional-order integrating process with
time-delay

GðsÞ= 1
s1.2

e− 0.1s ð57Þ

which is studied in Hamamci [8]. Applying PIλ controller (43) to the process (57),
one plots the stabilizing boundary curves in ðkp, kiÞ-plane for different

Fig. 5 Stabilizing regions for
different λ
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for different λ
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fractional-order λ, using the pairs ðkpðω, λ,A=1,φ=00Þ, kiðω, λ,A=1,φ=00ÞÞ
given in (53) and (54), as shown in Fig. 5. The arrows along each curve denote the
direction of increasing ω. Because, in our case, JðA=1,φ=00Þ<0,
∀ω>0, ∀λ∈ ð0, 2Þ, the SPR for each λ is to the right of the stabilizing boundary
curve following the direction of increasing ω as shown in Fig. 5 by the filled area
for λ=1. Clearly, different λ corresponds to different shapes and areas of SPR.
Select λ=0.1 and λ=1.6, respectively, corresponding to relatively larger SPR, one
plots the phase margin curves in the SPR as shown in Fig. 6. Choose the inter-
section point of the two curves, one reads kp =2.868 and ki =2.785. The step
responses using this set of parameters are depicted in Fig. 7. It is observed that
smaller λ corresponds to a better response behavior in time domain.

5.2 H∞ Design of Sensitivity

This subsection considers the H∞-norm performance design of the sensitivity
function of the closed-loop system shown in Fig. 4 without the GPMT block. The
open-loop transfer function is described by

LðsÞ=CðsÞGðsÞ

Then, the sensitivity function is written as

SðsÞ= 1
1+ LðsÞ ð58Þ
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Fig. 7 Step responses for
different λ

110 D.-J. Wang



Introducing a weighting function W1ðsÞ and a positive scalarM, according to the
definition of H∞-norm in (16), one has the following equivalent relations

W1ðsÞSðsÞk k∞ ≤M

⇔ sup
ω

W1ðjωÞSðjωÞj j≤M

⇔ W1ðjωÞSðjωÞj j≤M, ∀ω∈R

ð59Þ

In order to determine the real pairs ðkp, kiÞ in the stabilizing region for which the
H∞-norm constraint (59) of the weighted sensitivity is satisfied, consider the fol-
lowing controller transformation

CðsÞ= kp +
ki
sλ

= kpð1+ ki k̸p
sλ

Þ= xð1+ y
sλ
Þ ð60Þ

where x= kp, y= ki k̸p. Then, the open-loop transfer function can be expressed as

LðsÞ=CðsÞGðsÞ= x GðsÞ+ yGðsÞ
sλ

� �

Let s= jω, one gets

LðjωÞ=CðjωÞGðjωÞ= x½GðjωÞ+ yGðjωÞ
ðjωÞλ � ð61Þ

Decomposing GðjωÞ into its real and imaginary parts

GðjωÞ=AðωÞ+ jBðωÞ

and noting (25) and the following

GðjωÞ
ðjωÞλ =A1ðωÞ+ jB1ðωÞ

where

A1ðωÞ= 1
ωλ

½AðωÞ cos λπ
2

+BðωÞ sin λπ
2
�

B1ðωÞ= 1
ωλ

½BðωÞ cos λπ
2

−AðωÞ sin λπ
2
�

H∞ Design with Fractional-Order … 111



one obtains

LðjωÞ= x½AðωÞ+ yA1ðωÞ+ jðBðωÞ+ yB1ðωÞÞ� ð62Þ

From (58) and (59), the following holds

W1ðjωÞ
1+LðjωÞ
����

����≤M, ∀ω∈R ð63Þ

Define the following function of ω

f 1ðωÞ= 1+LðjωÞj j2 −M1 ≥ 0

where

M1 =
W1ðjωÞ

M

����
����
2

and from (63), one has

f 1ðωÞ=1+2xðA+ yA1Þ+ x2ðA+ yA1Þ2 + x2ðB+ yB1Þ2 −M1 ≥ 0 ð64Þ

Inequality (64) defines an optimization problem, and when the equality holds for
some frequency ω, one gets the minimum value of f1ðωÞ. For a prescribed positive
scalar M >0, one wants to find the pair ðx, yÞ, accordingly, the pair ðkp, kiÞ, for a
fixed fractional-order λ∈ ð0, 2Þ, such that the equality in (64) is obtained for some
frequency ω. To this end, differentiating f1ðωÞ with respect to ω and letting the
corresponding derivative at that frequency to be zero yields

f 2ðωÞ=
df 1ðωÞ
dω

=2xðȦ+ yA1̇Þ+2x2ðA+ yA1ÞðA ̇+ yȦ1Þ
+2x2ðB+ yB1ÞðḂ+ + yB ̇1Þ−M ̇1 = 0

Eliminating x2 in equations

f1ðωÞ=0
f2ðωÞ=0

�

One solves

x=
g0 + g1y+ g2y2

h0 + h1y+ h2y2 + h3y3
ð65Þ
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where

g0 = 2ð1−M1ÞðAA ̇+BḂÞ+M ̇1ðA2 +B2Þ
g1 = 2ð1−M1ÞðAA ̇1 + ȦA1 +BB1̇ + ḂB1Þ+2M1̇ðAA1 +BB1Þ
g2 = 2ð1−M1ÞðA1Ȧ1 +B1B1̇Þ+M1̇ðA2

1 +B2
1Þ

h0 = 2ȦðA2 +B2Þ− 4AðAA ̇+BB ̇Þ
h1 = 2Ȧ1ðA2̇ +B2Þ+4A ̇ðAA1 +BB1Þ− 4A1ðAA ̇+BḂÞ

− 4AðAA1̇ + ȦA1 +BḂ1 + ḂB1Þ
h2 = 2ȦðA2

1 +B2
1Þ+4Ȧ1ðAA1 +BB1Þ− 4AðA1A1̇ +B1Ḃ1Þ

− 4A1ðAA1̇ + ȦA1 +BB1̇ + ḂB1Þ
h3 = 2Ȧ1ðA2

1 +B2
1Þ− 4A1ðA1Ȧ1 +B1B1̇Þ

Substituting x in (65) into f1ðωÞ=0 in (64) gives rise to a sixth-order equation
about y for each ω

v0 + v1y+ v2y2 + v3y3 + v4y4 + v5y5 + v6y6 = 0 ð66Þ

where

v0 = ð1−M1Þh20 + ðA2 +B2Þg20 + 2g0h0A

v1 = 2ð1−M1Þh0h1 + 2ðAA1 +BB1Þg20 + 2ðA2 +B2Þg0g1
+ 2½ðg0h1 + g1h0ÞA+ g0h0A1�

v2 = ð1−M1Þð2h0h2 + h21Þ+ ðA2
1 +B2

1Þg20 + 4ðAA1 +BB1Þg0g1
+ ðA2 +B2Þð2g0g2 + g21Þ+2½ðg0h2 + g1h1 + g2h0ÞA
+ ðg0h1 + g1h0ÞA1�

v3 = 2ð1−M1Þðh0h3 + h1h2Þ+2ðA2
1 +B2

1Þg0g1
+ 2ðAA1 +BB1Þð2g0g2 + g21Þ+2ðA2 +B2Þg1g2
+ 2½ðg0h3 + g1h2 + g2h1ÞA+ ðg0h2 + g1h1 + g2h0ÞA1�

v4 = ð1−M1Þð2h1h3 + h22Þ+ ðA2
1 +B2

1Þð2g0g2 + g21Þ
+4ðAA1 +BB1Þg1g2 + ðA2 +B2Þg22
+ 2½ðg1h3 + g2h2ÞA+ ðg0h3 + g1h2 + g2h1ÞA1�

v5 = 2ð1−M1Þh2h3 + 2ðA2
1 +B2

1Þg1g2 + 2ðAA1 +BB1Þg22
+ 2½g2h3A+ ðg1h3 + g2h2ÞA1�
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v6 = ð1−M1Þh23 + ðA2
1 +B2

1Þg22 + 2g2h3A1

The pair ðx, yÞ, accordingly, the pair ðkp, kiÞ, which define the H∞ boundary
curve for a range of frequencies, can be found in the following manner. Solve the
sixth-order Eq. (66) for y, for an appropriately selected frequency ω, one gets 6
roots, and substitute these 6 roots into (65), respectively, one obtains the corre-
sponding 6 parameters x. Then, recover the original controller parameters by
relations kp = x and ki = xy, and the solution pair, if any, is the real pair ðkp, kiÞ
which is located in the stabilizing region. By changing the frequency ω, the real
pairs ðkpðωÞ, kiðωÞÞ plot the H∞ boundary curve in the stabilizing region.

Example 4 Example 3 revisited. In this example, we first consider the H∞ design
for the integrating process using PIλ controller, then, give the stability margins and
H∞ co-design. In order to obtain a better performance in time domain, one fixes the
fractional-order λ=0.1, see Fig. 7. The corresponding stabilizing region in ðkp, kiÞ-
plane is shown in Fig. 5. The weighted H∞-norm constraint of sensitivity function
is given by W1ðsÞSðsÞk k∞ ≤M, where the weighting function W1ðsÞ is chosen as a
low pass filter

W1ðsÞ= 5
s+1

and the scalar M =1.8. Solving the sixth-order Eq. (66) and then Eq. (65) at an
appropriately selected frequency ω gives rise to the six pairs ðkpðωÞ, kiðωÞÞ. One
selects the pair from the six pairs, which is real and located in the stabilizing region,
and this pair defines the H∞ boundary curve, in the stabilizing region, as ω changes,
as shown in Fig. 8 by the dash-dotted line. Next, one draws the phase-margin curve
of φ=450, as shown by the dashed line in Fig. 8, and the gain-margin curve of
A=3, as shown by the solid line in Fig. 8. To the right along each curve are the
regions satisfying φ>450, A>3 and M <1.8, respectively. Finally, the union of the

Fig. 8 GM, PM and H∞
co-design
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three regions, shown by the filled area in Fig. 8, gives the solution of phase-margin,
gain-margin and H∞ co-design.

6 H∞ Design with Fractional PIλDμ Controllers

In this section, the general form of fractional-order PIλDμ controller is used to
conduct the H∞ design in the stabilizing region. First, two fractional orders of the
controller is optimized to expect a larger stabilizing region. Then, in the stabilizing
region, the curves of H∞-norm constraint are drawn along the similar line as in the
previous two sections. Finally, the influence of the two fractional orders on the step
responses, in time domain, is discussed by simulation.

6.1 Stabilizing Region

Consider SISO unity feedback system as shown in Fig. 1, where GðsÞ represents
the plant given in (20) and CðsÞ is the PIλDμ controller of the following form

CðsÞ= kP +
ki
sλ

+ kdsμ ð67Þ

with kp, ki and kd being the proportional-gain, integral-gain and derivative-gain,
respectively, of the controller, λ and μ, 0 < λ, μ<2, being the integral-order and the
derivative-order, respectively, of the controller.

The objective of this subsection is to determine the stabilizing regions in ðkd, kiÞ-
plane for fixed kp, λ and μ values, using the parameter plane approach stated in
Sect. 3.2 To this end, the closed-loop characteristic quasi-polynomial in Fig. 1 is
first computed as

ΔðsÞ= sλDðsÞ+ ðkpsλ + ki + kdsλ+ μÞNðsÞe− Ls ð68Þ

Since the delay term e− Ls has no finite roots in s-plane, the stability property of
ΔðsÞ is equivalent to that of Δ*ðsÞ, where

Δ*ðsÞ= sλDðsÞeLs + ðkpsλ + ki + kdsλ+ μÞNðsÞ ð69Þ

Next, substituting s= jω into (69), one has

Δ*ðjωÞ= ðjωÞλDðjωÞejLω + ½kpðjωÞλ + ki + kdðjωÞλ+ μ�NðjωÞ ð70Þ

Using the relation (25) and the followings
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DðjωÞ=DrðωÞ+ jDiðωÞ ð71Þ

NðjωÞ=NrðωÞ+ jNiðωÞ ð72Þ

and partitioning Δ*ðjωÞ into its real and imaginary components yields

Δ*ðjωÞ=ΔrðωÞ+ jΔiðωÞ

where

ΔrðωÞ=ωλjDðjωÞj cos½Lω+ αðωÞ− βðωÞ+ λπ

2
�

+ jNðjωÞjðkpωλ cos
λπ

2
+ ki + kdωλ+ μ cos

λ+ μ

2
πÞ

ð73Þ

ΔiðωÞ=ωλjDðjωÞj sin½Lω+ αðωÞ− βðωÞ+ λπ

2
�

+ωλjNðjωÞjðkp sin λπ2 + kdωμ sin
λ+ μ

2
πÞ

ð74Þ

with jDðjωÞj representing the modular of the complex function DðjωÞ in (71),
jNðjωÞj the modular of NðjωÞ in (72), and αðωÞ denoting the phase of DðjωÞ, βðωÞ
the phase of NðjωÞ, respectively.

Along the similar line as the discussion in Sect. 4.1, only the frequency interval
ω∈ ½0,∞Þ is considered. For ω=0, letting Δ*ðjωÞ=0, one arrives at

ki =0, if NðjωÞ≠ 0 ð75Þ

Condition (75) defines a straight-line in ðkd, kiÞ-plane, which gives a piece of
stabilizing boundary line (RRB). For ω∈ ð0,∞Þ, considering the following
equations

ΔrðωÞ=0

ΔiðωÞ=0

(
ð76Þ

one solves this equations for kd and ki in terms of kp, λ and μ. Then, according to the
Implicit Function Theorem, if the Jacobian
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J =

∂Δr

∂kd

∂Δr

∂ki
∂Δi

∂kd

∂Δi

∂ki

��������

��������
= −ωλ+ μjNðjωÞj sin λ+ μ

2
π ð77Þ

is not equal to zero, the Eq. (76) has a unique local solution curve ðkdðωÞ, kiðωÞÞ
given by

kdðωÞ= −
jDðjωÞj sin½Lω+ αðωÞ− βðωÞ+ λπ

2 �+ kpjNðjωÞj sin λπ
2

ωμjNðjωÞj sin λ+ μ
2 π

ð78Þ

kiðωÞ=
jDðjωÞj sin½Lω+ αðωÞ− βðωÞ− μπ

2 �− kpjNðjωÞj sin μπ
2

jNðjωÞj sin λ+ μ
2 π

ð79Þ

The pairs ðkdðωÞ, kiðωÞÞ,ω>0, plot another piece of stabilizing boundary curve
(CRB) in ðkd, kiÞ-plane. This curve separates the ðkd, kiÞ-plane into stable parameter
region and unstable parameter region. Using the Proposition 1, where J is the
Jacobian defined in (77). one can identify to which side of the curve is the stable
parameter region.

In our case, from (77), the followings are true.

(1) When λ+ μ<2, to the right of the curve ðkdðωÞ, kiðωÞÞ is the stabilizing
region.

(2) When λ+ μ>2, to the left is the stabilizing region.

Fig. 9 Stabilizing regions for μ=1 and different λ
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(3) When λ+ μ=2, the criterion cannot be applied.

Example 5 Consider a DC motor with the following transfer function

GðsÞ= k
s2
e− 0.1s ð80Þ

which has two poles at the origin of the complex plane. Taking k=1 and kp =1, one
plots the stabilizing regions in ðkd, kiÞ-plane for μ=1 and different λ as shown in
Fig. 9. The arrows along the curves represent the direction of increasing ω. The
stabilizing regions are to the right of each curve. In the figure, λ=1 is approximated
by taking λ=0.9999. It is observed that the stabilizing regions are of sector forms,
and for λ= μ=1 (integer-order PID), the stabilizing region corresponds to a tri-
angle. When μ takes other values, the change of the stabilizing regions with λ is
similar to that in Fig. 9. It is worthy of noting that when λ+ μ>2, the stabilizing
regions are to the left of the curve ðkdðωÞ, kiðωÞÞ, and become smaller as λ+ μ
increases.

From Fig. 9, bigger stabilizing regions can be realized by setting smaller
fractional-order λ. This means that a better system performance can be achieved by
using fractional-order PID instead of integer-order one.

6.2 Fractional Order Optimization

In control system synthesis, bigger stabilizing regions are expected to provide wider
room for system performances. From Example 5 in the previous subsection, it is
shown that the shapes and areas of the stabilizing regions change with the fractional
orders λ and μ. In this subsection, optimal λ and μ are computed in the sense of
achieving bigger stabilizing regions.

It is observed, from Fig. 9, that when kiðωÞ=0, the stabilizing boundary curves
intersect with kd-axis, and the corresponding intersection frequencies ω1 and ω2 are
the first and second solutions of the following equation

jDðjωÞj sin½Lω+ αðωÞ− βðωÞ− μπ

2
�− kpjNðjωÞj sin μπ2 = 0 ð81Þ

which is obtained by letting kiðωÞ=0 in (79). For instance, in Fig. 9, the two
intersection frequencies ω1 and ω2, the first and second solutions of the Eq. (81),
read ω1 = 1.0025 and ω2 = 15.6672, respectively. It is clear, from (81), that the
solutions ω1 and ω2 are independent of λ for fixed μ and kp. This fact leads one to
utilize the Leibniz Sector Formula [12] to calculate the areas of the stabilizing
regions
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SðλÞ= 1
2

Z ω2

ω1

½kdðωÞki̇ðωÞ− kḋðωÞkiðωÞ�dω ð82Þ

where x ̇ðωÞ denotes the first-derivative of x with respect to ω. From (82), the
relation curve between SðλÞ and λ can be drawn for fixed μ and kp, and by gridding
μ, 3-dimensinal mesh lines of SðλÞ with respect to λ and μ can be plotted as shown
in the following example.

Example 6 Example 5 revisited. For the same k and kp values as in Example 5, by
using Formula (82), the 3-D mesh lines of SðλÞ with respect to λ and μ are plotted in
Fig. 10, from which the optimal values of λ and μ can be selected corresponding to
bigger stabilizing regions. Hence, the 3-D mesh lines provide a guard line for the
selection of the fractional orders in the tuning of PIλDμ parameters.

6.3 H∞ Design of Sensitivity

In Fig. 1, one considers the H∞-norm constraint of sensitivity function

W1ðsÞSðsÞk k∞ <M ð83Þ

For simplicity, the weighting function is taken to be W1 sð Þ=1. Then according
to the definition of H∞-norm in (16), the sensitivity function is bounded for all
frequencies
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Fig. 10 3-D mesh lines
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j 1
1+CðjωÞGðjωÞ j≤M, ∀ω≥ 0 ð84Þ

From this condition, when M→∞, Eq. (84) becomes the closed-loop charac-
teristic equation

1+CðjωÞGðjωÞ=0

If controller CðjωÞ is taken to be of the form of PIλDμ as in (67), then, the same
equation Δ*ðjωÞ=0 as in (70) can be obtained, i.e., as M approaches to ∞, the
stabilizing boundary curve is recovered. This point can be verified in the following
example.

In order to determine the ðkd, kiÞ values in the stabilizing region for which the
sensitivity constraint (84) is satisfied, one performs the following controller
transformation

CðsÞ= kp + ki
1
sλ

+ kdsμ

= kp + kdðsμ + ki k̸d
sλ

Þ

= kp + xðsμ + y
1
sλ
Þ

ð85Þ

where x= kd, y= ki k̸d . Under this transformation, the open-loop transfer function is
written as

LðsÞ=CðsÞGðsÞ= kpGðsÞ+ x½G1ðsÞ+ yG2ðsÞ� ð86Þ

where G1ðsÞ= sμGðsÞ, G2ðsÞ=GðsÞ s̸λ. Substituting s= jω into LðsÞ and parti-
tioning GðjωÞ, G1ðjωÞ and G2ðjωÞ into their real and imaginary parts

GðjωÞ=AðωÞ+ jBðωÞ
G1ðjωÞ=A1ðωÞ+ jB1ðωÞ
G2ðjωÞ=A2ðωÞ+ jB2ðωÞ

one gets

LðjωÞ= kpðA+ jBÞ+ x½A1 + jB1 + yðA2 + jB2Þ� ð87Þ

where the frequency dependency of A, B, A1, B1, A2 and B2 has been omitted. From
(84), it follows that
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j1+LðjωÞj2 ≥ 1
M2

Define

f1ðωÞ= j1+ LðjωÞj2 −M1

where M1 = 1 M̸2, and from (87), one has

f1ðωÞ=C1 + 2xD1 + x2E1 ≥ 0 ð88Þ

where

C1 = 1−M1 + 2kPA+ k2pðA2 +B2Þ
D1 =A1 + yA2 + kP½AðA1 + yA2Þ+BðB1 + yB2Þ�
E1 = ðA1 + yA2Þ2 + ðB1 + yB2Þ2

Inequality (88) defines an optimization problem, and when the equality is solved
for some frequency ω, the minimum value of f1ðωÞ is reached. The design objective
is to find the pair ðx, yÞ, accordingly the pair ðkd, kiÞ, for fixed parameters λ, μ and
kp, such that the equality in (88) holds for some ω. To this end, one differentiates
f1ðωÞ with respect to ω and let the corresponding derivative at that frequency to be
zero

f2ðωÞ= df1ðωÞ
dω

=C2 + xD2 + x2E2 = 0 ð89Þ

where

C2 = kPA ̇+ k2pðAA ̇+BB ̇Þ
D2 = Ȧ1 + yA2̇ + kP½ȦðA1 + yA2Þ+AðA1̇ + yA2̇Þ+B ̇ðB1 + yB2Þ+BðḂ1 + yB2̇Þ�
E2 = ðA1 + yA2ÞðȦ1 + yA2̇Þ+ ðB1 + yB2ÞðḂ1 + yB2̇Þ

Eliminating x2 in equations

f1ðωÞ=0

f2ðωÞ=0

(

one solves

x=
C2E1 −C1E2

2D1E2 −D2E1
=

e00 + e01y+ e02y2

e10 + e11y+ e12y2 + e13y3
ð90Þ

H∞ Design with Fractional-Order … 121



where

e00 =C2a10 −C1b10
e01 =C2a11 −C1b11
e02 =C2a12 −C1b12
e10 = 2d10b10 − d20a10
e11 = 2ðd10b11 + d11b10Þ− ðd21a10 + d20a11Þ

e12 = 2ðd11b11 + d10b12Þ− ðd20a12 + d21a11Þ
e13 = 2d11b12 − d21a12

a10 =A2
1 +B2

1

a11 = 2ðA1A2 +B1B2Þ
a12 =A2

2 +B2
2

b10 =A1Ȧ1 +B1B1̇

b11 =A1Ȧ2 +A1̇A2 +B1Ḃ2 + Ḃ1B2

b12 =A2Ȧ2 +B2B2̇

d10 =A1 + kpðAA1 +BB1Þ
d11 =A2 + kpðAA2 +BB2Þ
d20 = Ȧ1 + kpðȦA1 +AA1̇ + ḂB1 +BB1̇Þ
d21 = Ȧ2 + kpðȦA2 +AA2̇ + ḂB2 +BB2̇Þ

Substituting (90) into f1ðωÞ=0 in (88) yields the following sixth-order equation
about y for each ω.

f0 + f1y+ f2y2 + f3y3 + f4y4 + f5y5 + f6y6 = 0 ð91Þ

where

f0 =C1e210 + 2d10e00e10 + a10e200
f1 = 2C1e10e11 + 2ðd10e00e11 + d10e01e10 + d11e00e10 + a10e00e01Þ+ a11e200
f2 =C1ðe211 + 2e10e12Þ+2ðd10e00e12 + d10e02e10 + d11e01e10 + d10e01e11 + d11e00e11

+ a10e00e02 + a11e00e01Þ+ a10e201 + a12e200
f3 = 2C1ðe10e13 + e11e12Þ+2ðd10e00e13 + d11e02e10 + d10e01e12 + d11e00e12

+ d10e02e11 + d11e01e11 + a10e01e02 + a11e00e02 + a12e00e01Þ+ a11e201
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f4 =C1ðe212 + 2e11e13Þ+2ðd10e01e13 + d11e00e13 + d11e02e11 + d10e02e12 + d11e01e12

+ a11e01e02 + a12e00e02Þ+ a10e202 + a12e201
f5 = 2C1e12e13 + 2ðd10e02e13 + d11e01e13 + d11e02e12 + a12e01e02Þ+ a11e202
f6 =C1e213 + 2d11e02e13 + a12e202

The pair ðx, yÞ can be found in the following way. Solve the sixth-order linear
Eq. (91) for y, for an appropriately selected frequency ω, one gets 6 roots, and

Fig. 11 Sensitivity constraints for different M

Fig. 12 Sensitivity constraint
for M =1.46
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substitute these roots into (90), respectively, one obtains the corresponding 6
parameters x. Then, using the relations kd = x and ki = xy, one recovers the original
controller gains. The solution pair, if any, is the real pair ðkd, kiÞ which is located in
the stabilizing region. For an appropriately chosen frequency interval, the real pairs
ðkdðωÞ, kiðωÞÞ draw the sensitivity boundary curve for the given M in the stabi-
lizing region.

Example 7 Examples 5 and 6 revisited. In this example, for fixed fractional orders
λ=0.5 and μ=0.9, corresponding to a relatively large stabilizing region, see

Fig. 13 Step responses corresponding to point A

Fig. 14 Step responses
corresponding to point B
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Fig. 10, one wants to find the pairs ðkdðωÞ, kiðωÞÞ in the stabilizing region such that
the sensitivity meets M ≤ 1.46.

For different sensitivity bound M, the sensitivity boundary curves in the stabi-
lizing region are depicted in Fig. 11. Figure 12 is the zoomed-in version of Fig. 11
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Fig. 15 Sensitivity curve corresponding to point A

Fig. 16 Robustness to the change of open-loop gain
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for M =1.46. It is observed that as M decreases, the region satisfying (84) becomes
smaller and smaller, and when M =1.26, the sensitivity curve is tangent to the kd-
axis, i.e., M =1.26 gives the minimal achievable sensitivity constraint. On the
contrary, as M increases, the sensitivity boundary curve approaches to the

Fig. 17 Step responses for λ=0.5 and different μ

Fig. 18 Step responses for μ=0.9 and different λ
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stabilizing boundary, and for sufficiently large M, the two curves coincide with each
other, i.e., the stabilizing boundary curve is recovered.

Next, one considers the dynamic behaviors in time domain and the robustness to
the plant uncertainties and compares these properties with integer-order PID con-
troller. First, the step responses via Matlab simulation are studied. Select a point
A on the sensitivity boundary curve for M =1.46 (corresponding to a phase margin
40° approximately [31]), see Fig. 12, one reads the gain parameters of the controller
as kd =3.57 and ki =4.75. The step responses of PIλDμ controller λ=0.5, μ=0.9ð Þ
and the integer-order PID controller λ= μ=1ð Þ are plotted in Fig. 13. It is seen that
the integer PID (dotted line) gives an unstable response, because the gain parameter
pair ðkd, kiÞ= ð3.57, 4.75Þ is outside the stabilizing region of integer PID. Choose
another point B inside the constraint curve for M =1.46, see Fig. 12, corresponding
to kd =3.25 and ki =2.00. The step responses of the two controllers are plotted in
Fig. 14. The overshoot of the response of the PIλDμ controller at point B is less than
that at Point A shown in Fig. 13, since point B is inside the constraint for M =1.46
and gives a phase margin greater than 40°. In this case, the response of integer PID
(dotted line) is stable, but has severe oscillatory behavior. Second, one investigates
the robustness of the design. For the point A along the curve of M =1.46, the
sensitivity curve given by the left-hand side of (84) is drawn, see Fig. 15. It is
observed that sensitivity meets the constraint M ≤ 1.46 ð7.57 dBÞ for all frequen-
cies. To verify the robustness to the change of the plant gain, one adds a load
impulse to the plant at 15 s, see Fig. 16, and observes the responses for k=1.2 and
k=0.8 (±20% variations around the nominal value of k=1.0). Clearly, the
robustness to the change of the gain within its interval is satisfactory. To compare
the robustness with integer PID controller, one considers point B in Fig. 12, cor-
responding to stable responses for both fractional and integer PID controllers, see
Fig. 14. Similar to Fig. 15, the sensitivity curves can be drawn, and the maximum
achievable sensitivities read M =1.37 at ω=5.65 rad s̸ for λ=0.5 and μ=0.9, and
M =1.32 at ω=9.50 rad s̸ for λ= μ=1. Clearly, the robustness measure achieved
by fractional PID controller is better than that by integer PID controller.

Finally, the influence of varying λ and μ on the step responses is simulated.
Considering point B in Fig. 12, for fixed λ=0.5, as μ increases, one observes that
the overshoot of the step response decreases, see Fig. 17, showing that the damping
of the system is increased and the stability is improved with stronger derivative
action. For fixed μ=0.9, as λ increases, the integral action becomes stronger, and
more oscillatory behavior of the response happens, see Fig. 18. Similarly, the
influence of varying the gains kd and ki around point B and the gain kp on the
response can be discussed, and the results are similar to that of integer PID. Details
can be found in [2, 27].
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7 Conclusions

In this chapter, two problems have been discussed. One is the determination of
stabilizing parameters set of fractional-order PIλDμ type controllers, based on a
graphical stability criterion fit for fractional-order systems with time-delay,
exhibiting simple and direct characteristics in identifying the stabilizing regions for
fractional-order systems. The other is the computation of both of the classical phase
and gain margins and the modern H∞ constraints in the stabilizing region. In the
case of two margins, the GPMT technique has been used, and for the computation
of H∞ boundary lines, an algebraic approach to the design of PIλDμ type controllers
has been developed. Further design along this line is to consider other system
performances in the stabilizing regions of the fractional order controllers, such as
the H2-norm calculation.
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On the Electronic Realizations
of Fractional-Order Phase-Lead-Lag
Compensators with OpAmps and FPAAs

Carlos Muñiz-Montero, Luis A. Sánchez-Gaspariano,
Carlos Sánchez-López, Víctor R. González-Díaz
and Esteban Tlelo-Cuautle

Abstract It is well known that the fractional-order phase-lead-lag compensators can

achieve control objectives that are not always possible by using their integer-order

counterparts. However, up to now one can find only a few of publications discussing

the strategies for parameters’ tuning of these compensators, with only simulation

results reported. This is due in part to the implicit difficulties on the implementation

of circuit elements with frequency responses of the form s±𝜆 that are named “frac-

tances”. In this regard, there exist approximations with rational functions, but the

drawback is the difficulty to approximate the required values with the ones of the

commercially-available resistances and capacitors. Consequently, fractional com-

pensators have not been appreciated by the industry as it is in the academia. There-

fore, motivated by the lack of reported implementations, this chapter is structured

as a tutorial that deals with the key factors to perform, with the frequency-domain

approach, the design, simulation and implementation of integer-order and fractional-

order phase-lead-lag compensators. The circuit implementations are performed with
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Operational Amplifiers (OpAmps) and with Field Programmable Analog Arrays

(FPAA). Emphasis is focused in the obtaining of commercially-available values

of resistances and capacitors. Therefore, the design procedure starts with the use

of equations that provide the exact and unique solution for each parameter of the

compensator, avoiding conventional trial-and-error procedures. Then, five OpAmp-

based configurations for integer-order and fractional-order realizations are described

in terms of basic analog building blocks, such as integrators or differential ampli-

fiers, among others. The corresponding design equations are also provided. Then,

six examples are presented for both, OpAmp-based and FPAA-based implementa-

tions with the simulation and experimental results discussed regarding other results

reported in the literature.

Keywords Fractional calculus ⋅ Fractional-order lead/lag compensators ⋅ Field

programmable analog array

1 Introduction

Proportional-Integral-Derivative (PID) controllers [4–6], and lead/lag compensators

are the control strategies most used in today’s industry. The phase-lag compen-

sator reduces the static error by increasing the low-frequency gain without any

resulting instability, and increases the phase margin of the system to yield the

desired overshoot [30]. Meanwhile, the phase-lead compensator change the phase

diagram to reduce the percent overshoot and to reduce the peak time [30]. The

design of lead/lag compensators may require four-step and twelve-step trial-and-

error approaches, respectively [30]. Typically, during the design stage the plant is

modeled by its transfer function with integer orders q on the Laplace frequency sq
.

However, experimental evidences show that physical systems can be modeled with

higher accuracy using fractional-order transfer functions [16, 20, 46]. On this direc-

tion, it is known that the fractional-order PID controllers and phase-lead-lag com-

pensators have better performance than their integer counterparts [16, 22, 27, 28,

35]. That is due to the addition of degrees of freedom, which can be used to incorpo-

rate additional control objectives. For instance, in the case of lead/lag compensators

it can be established a constrain in the initial value of the error signal (actuator’s

constraint) [35].

Although fractional calculus has been studied from Leibniz in 1965, its practical

use has been restricted. It was not until the development of new computing envi-

ronments and numerical calculus (e.g. MATLAB) when researchers introduced this

theory to the modeling and control of systems [16, 24, 36, 38]. In fact, those com-

puting environments allowed other complex control strategies such as the reported

in [7–10, 12, 13, 47]. That way, in 1999 Podlubny proposed the first fractional PID

controller [32]. Up to now one can find several realizations for this kind of controller

[22, 24, 27, 28, 32, 38, 41, 46]. In addition, researchers have developed the corre-

sponding rules for parameters’ tuning, some of them considering Ziegler-Nichols

rules [17, 25, 40], optimization methods [29, 36], techniques in the frequency
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domain [18, 25, 39], which offer robustness to the controller facing parametric

uncertainties of the process and presence of external perturbations [2]; or also in

techniques for intelligent computing, such as: neural networks [31], genetic algo-

rithms [14], or fuzzy logic [43, 45]. In general, these techniques can be classified as

analytical, numeric or rules-based ones. A summary of them is given in [29, 41, 42].

Unfortunately, the fractional-order lead/lag compensators have not been reported as

abundantly as the fractional PID controllers. In [29, 34] there have been studied the

following fractional-order lead/lag compensator (and rational-order approximations

for such a compensator)

C(s) = K
(1 + 𝛼𝜏s
1 + 𝜏s

)𝜆

, 𝜆 ∈ (0,∞) (1)

In [35] it was reported a method for the unique solution of the parameters 𝛼, 𝜏

and q of the compensator

C(s) = K
(1 + 𝛼𝜏sq

1 + 𝜏sq

)
, q ∈ (0, 2) (2)

Unfortunately, to the best of the authors’ knowledge, analog implementations of

this compensator have not been reported. As in the case of PID controllers, it is

due to the difficulties to accomplish the design of circuit elements with frequency

responses of the form s−𝜆 or s𝜇 that are named “fractances”. The fractances are cir-

cuit elements with constant phase response at all frequencies [23]. For instance,

very few physical realizations have been reported related to “fractal capacitances”

[11, 21]. Unfortunately, those elements are bulky, require chemical compounds with

difficult manipulation and the order 𝜆 cannot be modified easily. As alternatives,

there exist approximations with rational functions in s for the operators s−𝜆 or s𝜇,

that are obtained from Carlson methods, Oustaloup, continuous fractions expansion

(CFE) [16, 33], among others. The resulting functions are implemented with arrays

of resistances, capacitors and inductors in ladder networks [33]. The drawback of

these realizations is the difficulty to approximate the required values with the ones

of the commercially-available resistances and capacitors [19], in addition they can

require negative impedance converters [3, 33], or inductors [15].

From the difficulties on the implementations mentioned above and motivated by

the lack of reported implementations of (2), this chapter is structured as a tutor-

ial that deals with the key factors to perform the design, simulation and implemen-

tation of integer and fractional-order phase-lead-lag compensators. It is proposed

the use of first-order analog approximations for fractional derivatives and integrals,

with the main advantage of using integrators of integer order, differential ampli-

fiers, two-inputs adder amplifiers, and conventional lead-lag networks, all of them

realized with OpAmps. Most important is that the resulting circuits can be imple-

mented with commercially-available resistances and capacitors, avoiding the use of

negative impedance converters or inductors. Each design is realized obtaining the

parameters of (2) with the procedure reported in [35]. Five configurations for integer
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and fractional-order compensators are verified experimentally from realizations using

OpAmps uA741 and using an Application Specific Integrated Circuit (ASIC) that is

known as Field-programmable Analog Array (FPAA) AN231E04 from Anadigm

[1]. Six design examples of both integer and fractional-order phase-lead-lag com-

pensators are presented.

2 Theoretical Background

This section describes the calculus of derivatives and integrals of fractional order,

the corresponding Laplace transforms, and the fractional order transfer function.

From these concepts fractional order phase-lead-lag compensators are described in

Sect. 2.3.

2.1 Derivative and Integral of Fractional Order

The Riemann-Lieuville definition for calculation of fractional derivatives and inte-

grals establishes [20]

D𝛼

t f (t) = 1
𝛤 (m − 𝛼)

( d
dt

)m

∫
t

0

f (𝜏)
(t − 𝜏)𝛼−m+1d𝜏

(3)

where 𝛼 ∈ ℝ, m − 1 < 𝛼 < m,m ∈ ℕ and 𝛤 (⋅) is Gamma function. For 𝛼 > 0, 𝛼 < 0
and 𝛼 = 0 one gets the fractional derivative, integral and identity function.

2.2 Laplace Fractional Operator and Fractional-Order
Transfer Function

Laplace Transform with initial conditions equal to zero of (3) is given by [20]

L
{
D𝛼

t f (t)
}
= s𝛼F(s) (4)

where F(s) denotes Laplace transform of f (t), and s𝛼 is the Laplace operator of frac-

tional order expressed as

s𝛼 = (j𝜔)𝛼 = 𝜔
𝛼

[
cos

(
𝛼𝜋

2

)
+ j sin

(
𝛼𝜋

2

)]
(5)

Since Laplace transform is a lineal operator, (4) can be applied to a differential

equation of fractional order with coefficients ak, bk ∈ ℝ and input and output signals

u(t) and e(t) to obtain the transfer function [2]
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H(s) = U(s)
E(s)

=
bms𝛽m + bm−1s𝛽m−1 +⋯ + 𝛽0s𝛽0
ans𝛼n + an−1s𝛼n−1 +⋯ + 𝛼0s𝛼0

(6)

where U(s) = L {u(t)} and E(s) = L {e(t)}.

2.3 Integer and Fractional-Order Phase-Lead-Lag
Compensators

The phase-lag compensator reduces the static error by increasing the low-frequency

gain without any resulting instability. This compensator also increases the phase mar-

gin of the system to yield the desired overshoot in the transient response [30]. In

most cases reported in the literature, that design process is a four-step trial-and-error

approach based on graphic approximation (Bode plots) [30]. On the other hand, the

phase-lead compensator is designed, via Bode plots, to change the phase diagram

in order to increase the phase margin, reduce the percent overshoot, and increase

the bandwidth (by increasing the gain crossover frequency) to obtain a faster tran-

sient response with a reduced peak time [30]. Typically, the design procedure of this

compensator requires a twelve-step trial-and-error approach.

In 2003 and 2013 Wang and Tavazoei reported, respectively, exact and unique

solutions for integer-order and fractional-order phase-lead-lag compensators when

the gain and phase that the compensator must provide are known for a given

frequency. The advantage of those methods is that no trial-and-error or other guess-

work is needed. Considering this advantage, in this work are employed the proce-

dures described by Wang and Tavazoei. This way, this section summarizes the design

equations developed in [35, 44]. Examples of the use of these equations are provided

in Sect. 5.

2.3.1 Exact Solution for Integer-Order Phase-Lead-Lag Compensation
[44]

Consider M dB and p rad (−𝜋∕2 ≤ p ≤ 𝜋∕2) as the required magnitude and phase

which should be provided by the integer-order phase-lead-lag compensator at a fre-

quency 𝜔 = 𝜔c to yield the desired transient response. This goal is obtainable by

means of the compensator

C(s) = 1 + 𝛼𝜏s
1 + 𝜏s

(7)

if and only if

c >

√
1 + 𝛿2 and 0 < p < 𝜋∕2 (phase-lead compensation) (8)

c <
1√

1 + 𝛿2
and − 𝜋∕2 < p < 0 (phase-lag compensation) (9)



136 C. Muñiz-Montero et al.

where c = 10M∕20
and 𝛿 = tan(p). If (8) or (9) are satisfied, the compensator para-

meters 𝛼 and 𝜏 can be calculated as

𝛼 = c(c
√
1 + 𝛿2 − 1)

c −
√
1 + 𝛿2

and 𝜏 = c −
√
1 + 𝛿2

c𝛿𝜔c
(10)

2.3.2 Exact Solution for Fractional-Order Phase-Lead-Lag
Compensation [35]

Consider M dB and p rad (−𝜋∕2 ≤ p ≤ 𝜋∕2) as the required magnitude and phase

which should be provided by a fractional-order compensator at the frequency 𝜔 =
𝜔

q
c . This objective is obtainable by means of

Cf (s) = K
(1 + 𝛼𝜏sq

1 + 𝜏sq

)
, q ∈ (0, 2) (11)

if and only if

cot
(q𝜋

2

)
<

c cos(p) − 1
c sin(p)

, 0 < p <
𝜋

2
(phase-lead compensation) (12)

cot
(q𝜋

2

)
<

c − cos(p)
sin(p)

, − 𝜋

2
< p < 0 (phase-lag compensation) (13)

If (12) or (13) are satisfied, the parameters 𝛼 and 𝜏 can be calculated as

𝛼 =
uv tan

(q𝜋
2

)
− 1

v tan
(q𝜋

2

)
− 1

, 𝜏 = 1
𝜔

q
c

[
v sin

(q𝜋
2

)
− cos

(q𝜋
2

)]
(14)

where

u = c
c − cos(p)

c cos(p) − 1
, v =

c cos(p) − 1
c sin(p)

(15)

In the case of the fractional-order phase-lead compensator (0 < p < 𝜋∕2), the

value of q is selectable in the range (q∗, 2), where

q∗ = 2
𝜋
tan−1

(
c sin(p)

c cos(p) − 1

)
, for c >

1
cos(p)

(16)

q∗ = 2 + 2
𝜋
tan−1

(
sin(p)

c − cos(p)

)
, for c <

1
cos(p)

(17)

Similarly, for the fractional-order phase-lag compensator (−𝜋∕2 < p < 0), the

value of q is selectable in the range (q∗, 2), where
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q∗ = 2
𝜋
tan−1

(
sin(p)

c − cos(p)

)
, for c < cos(p) (18)

q∗ = 2 + 2
𝜋
tan−1

(
c sin(p)

c cos(p) − 1

)
, for c > cos(p) (19)

2.3.3 Exact Solution for Integer-Order Phase-Lead-Lag Compensation
with Actuator’s Constrains [35]

One advantage of the fractional-order phase-lead and phase-lag compensators regard-

ing their integer-order counterparts is the fact that the order q, selectable in the range

(q∗, 2), represents and additional degree of freedom, which can be used to satisfy

another control objective. This way, the exact value of q can be chosen based on an

acceptable value for the initial peak of the control signal, i.e., establishing an actuator

constraint.

Supposing that it is desired that the initial peak of the control signal be equal to

u0 when the input is a unit step reference, for lead compensation (u0 ∈ (K,∞)) the

exact value of q must be selected as

q =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) > 0

1 if v(u0 − Ku) = 0

2 + 2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) < 0

(20)

and in the case of lag compensation (u0 ∈ (0,K)) the order q must be calculated as

q =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2 + 2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) > 0

1 if v(u0 − Ku) = 0
2
𝜋
tan−1

(
u0 − K

v(u0 − Ku)

)
if v(u0 − Ku) < 0

(21)

2.4 Realization of Analog Fractances

The challenge in implementing fractional-order transfer functions and, consequently,

fractional-order phase-lead-lag compensators is related to the non-existence of cir-

cuit elements that reproduce the operator (5). Those elements are called fractances

[23], which are characterized by a magnitude response with roll-off ±20𝛼 deci-
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Fig. 1 Method of Cauer for circuit synthesis

bels by decade, and a constant-phase response at all frequencies of ±90𝛼 degrees.

For instance, very few physical realizations have been reported related to “frac-

tal capacitances”, capacitors with impedance Z = 1∕(s𝛼C) [11, 21]. Unfortunately,

those elements are bulky, require chemical compounds with difficult manipulation

and the order 𝛼 cannot be modified easily. Alternatively, the fractances can be

approached in a desired bandwidth with rational functions from the methods of

Newton, Carlson, Muir, Oustaloup, Matsuda, power series expansion (PSE), con-

tinuous fractions expansion (CFE), among others [16, 23, 33]. Once a rational func-

tion is obtained it can be synthesized with ladder networks of Cauer, or Foster [33],

tree structure, or transmission lines [16, 33]. The circuit components can be resis-

tors, inductors [15], capacitors and sometimes negative impedance converters [3,

33]. One example for synthesis by Cauer method is given in Fig. 1. The drawback of

these realizations is the difficulty to approximate the required values with the ones

of the commercially-available resistances and capacitors [19].

Once the procedures to design integer-order and fractional-order phase-lead-lag

compensators have been described, in the following sections will be focused the

problem of circuit implementation.

3 Basic Building Blocks

This section presents the OpAmp-based basic building blocks that will be employed

in Sect. 4 to perform the synthesis of integer-order and fractional-order phase-lead-

lag compensators.



On the Electronic Realizations of Fractional-Order Phase-Lead-Lag . . . 139

3.1 Inverting Integrator (IInt)

The OpAmp-based Inverting Integrator of Fig. 2a uses capacitive feedback to inte-

grate the input signal Vin1. The transfer function of this circuit is given by

Vout1

Vin1
= − 1

RgCgs
= −1

s
(22)

where Cg can be used as degree of freedom and Rg = 1∕Cg. Then, magnitude (Zm)

and frequency (𝛺f ) denormalizations can be used to obtain commercially available

values of the passive elements and the desired frequency response.

3.2 Non-inverterting and Inverting Amplifiers (NIA, IA)

The OpAmp-based Non-inverting Amplifier (NIA) and Inverting Amplifier (IA)

depicted in Fig. 2b and c use resistive feedback to amplify the input signals Vin2
and Vin3. The corresponding transfer functions are

Vout2

Vin2
= 1 +

Re2
Re1

,

Vout3

Vin3
= −

Rf2

Rf1
(23)

3.3 Weighted Differential Amplifier and Differential
Amplifier

The Weighted Differential Amplifier (WDA) amplifies the weighted difference

between two voltages. A particular case is the Differential Amplifier (DA), which

amplifies the difference between the two voltages but does not amplify the particular

voltages. Fig. 2d shows an implementation of a WDA with Rg1 and Rg2 used to con-

trol the gains and with Rg as degree of freedom. By nodal analysis the output voltage

Vout4 results

Vout4 =
Rg

Rg1
V1A −

Rg

Rg2
V2A (24)

Alternatively, by omitting in Fig. 2d the landed resistors Rg1 and Rg2 and by choos-

ing Rg1 = Rg2 = Rg3 is obtained the DA of Fig. 2e with output voltage

Vout5 =
Rg

Rg3

(
V1B − V2B

)
(25)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 OpAmp building blocks: a Inverting Integrator (IInt). b Non-inverting Amplifier (NIA).

c Inverting Amplifier (IA). d Two-input weighted differential amplifier (WDA). e Differential

Amplifier (DA). f Two-input weighted adder amplifier (WAA). g Low-Pass Amplifier (LPA).

h Lead/lag network
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3.4 Two-Input Weighted Adder Amplifier (WAA)

It produces an output Vout6 equal to the weighted sum of the two inputs V1C and V2C.

The realization of Fig. 2f uses Rg as degree of freedom and Rh1 and Rh2 to control

the weighted factors by means of

Vout6 =
Rg

Rh1
V1C +

Rg

Rh2
V2C (26)

3.5 Lowpass Amplifier (LPA)

Figure 2g shows a first-order inverting Low Pass Filter Amplifier (LPA) (“bilinear

filter”). The DC gain and corner frequency of this circuit are |H|s=0 = R2p∕R1p and

𝜔c = 1∕(R2pCg) (Cg can be used as degree of freedom), R2p determines the corner

frequency and R1p the DC gain. The transfer function Vout7∕Vin7 results

Vout7

Vin7
= −

1
R1pCg

s + 1
R2pCg

(27)

3.6 Lead/Lag Network (L-L)

The transfer function of the circuit of Fig. 2h, its pole, its zero and its DC gain can

be calculated as
Vout8

Vin8
= −

R2c

R1c

(1 + sR1cCg

1 + sR2cCg

)
(28)

𝜔z =
1

R1cCg
, 𝜔p = 1

R2cCg
, |H|(s=0) =

R2c

R1c
(29)

Clearly, this network provides positive (leading) phase shift if the zero of the

transfer function is closer to the origin of the s-plane than the pole, which occurs if

R1c > R2c. Conversely, with R1c < R2c the pole is closer than the zero to the origin

of the s-plane, and the network provides negative (lagging) phase shift of the output

signal relative to the input signal at all frequencies.
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Fig. 3 First-order

approximation of a

Fractional-order Integrator

(FInt)

3.7 Fractional Integrator (FInt)

As mentioned before, the operator s−q
cannot be implemented directly, it is required

to perform an approximation. Consider the transfer function Vout9∕Vin9 = −s−q
. Then,

an approximation of order one of a Fractional-order Integrator given by

Vout9

Vin9

= − 1
sq ≈ −

(1 − q)s + (1 + q)
(1 + q)s + (1 − q)

= −As + 1
s + A

= − 1
A

⎛
⎜⎜⎝
1 + As
1 + s

A

⎞
⎟⎟⎠
, A =

1 − q
1 + q

(30)

can be implemented with an adequate selection of the capacitors and resistances of

the Lead-Lag network in Fig. 2h, resulting the circuit of Fig. 3.

4 OPAMP-Based Realization of Integer-Order and
Fractional-Order Phase-Lead-Lag Compensators

This section presents OPAMP-based realization of integer-order and fractional-order

phase-lead-lag compensators performed with the basic building blocks of Figs. 2

and 3.

4.1 Integer-Order Phase-Lead-Lag Compensator

A phase-lead-lag compensator with DC unity-gain can be realized by means of the

OpAmp-based network shown in Fig. 4, which consists of a L-L network connected

in series with an IA block (with Rf1 = R1c and Rf2 = R2c). The transfer function of

this network is expressed by

Voc

Vic
=

1 + sR1cCg

1 + sR2cCg
= 1 + 𝛼𝜏s

1 + 𝜏s
(31)
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Fig. 4 Integer-order phase-lead-lag compensator

where

𝜏 = R2cCg, 𝛼 =
R1c

R2c
(32)

Therefore, for 𝛼 > 1 (i.e. with R1c > R2c) and 𝛼 < 1 (i.e. with R2c > R1c) are

obtained, respectively, phase-lead and phase-lag responses.

4.2 Fractional-Order Phase-Lead-Lag Compensator
(𝟏 < q < 𝟐)

Consider the fractional-order phase-lead-lag transfer function given by

Voc(s)
Vic(s)

= 1 + 𝛼𝜏sq

1 + 𝜏sq (33)

where 1< q <2 is assumed. Algebraic manipulation on (33) leads to

Voc(s) + Voc(s)𝜏sq = Vic(s) + Vic(s)𝛼𝜏ssq−1
(34)

and after dividing both sides of (34) by 𝜏sq
and regrouping similar terms, it results

in

Voc(s) =
Vic(s) − Voc(s)

𝜏ssq−1 + 𝛼Vic(s) (35)

This way, the fractional-order phase-lead-lag compensator with 1< q <2 can

be realized starting from the block diagram shown in Fig. 5a. The corresponding

implementation using OpAmps is shown in Fig. 5b. Here, the algebraic operation

(Vic(s) − Voc(s))∕𝜏 is performed by the block DA of Fig. 2e, with Rg3 = 𝜏Rg. The

operation 1∕sq = (1∕s)(1∕sq−1) is realized by means of the series array of an integer-

order Inverter Integrator IInt (with Rg = 1∕Cg) and a Fractional-order Integrator FInt

whit Ã calculated from (30) as
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(a)

(b)

Fig. 5 Fractional-order phase-lead-lag compensator (case 1 < q < 2)

Ã =
1 − (q − 1)
1 + (q − 1)

= 2
q
− 1 (36)

Finally, to complete (35), the output of FInt is added to 𝛼Vic by means of the block

WAA, using Rg∕Rh1 =1 and Rg∕Rh2 = 𝛼.

4.3 Fractional-Order Phase-Lead-Lag Compensator
(𝟎 < q < 𝟏)

For the case of fractional-order phase-lead-lag compensators with 0< q <1, the

block IInt of Fig. 5 must be omitted. Consequently, the block WAA must be changed

by a block WDA to avoid a positive feedback, with the output of the block FInt

connected to the inverting input of the block WDA, resulting the implementation

depicted at Fig. 6. In this circuit, the block DA is designed with Rg3 = 𝜏Rg, the block

WDA is realized with Rg1 = Rg∕𝛼 and Rg2 = Rg, and A is calculated with (30).

Two alternative implementations for fractional-order phase-lead-lag networks

with 0 < q < 1 and with fewer active but more passive elements are presented below.
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Fig. 6 Fractional-order phase-lead-lag compensator (case 0 < q < 1)

4.4 Fractional-Order Phase-Lead-Lag Compensators
𝟎 < q < 𝟏 (Cauer’s Approximation)

The circuit of Fig. 7a is a well known phase-lead configuration, but with a capacitor

C substituted by a fractal capacitor with fractance 1∕(sqC). It can be easily demon-

strated with nodal analysis that the transfer function of this circuit becomes

Voc(s)
Vic(s)

=
1 + R1caCsq

1 +
(
R1ca||R2ca

)
Csq

= 1 + 𝛼𝜏sq

1 + 𝜏sq (37)

𝜏 =
(
R1ca||R2ca

)
C, 𝛼 = 1 +

R1ca

R2ca
(38)

and the fractal capacitor can be approximated with any of the methods mentioned in

Sect. 2.4 (for a given n-th order of approximation) and, subsequently, implemented

by Cauer networks by means of Continuous Fraction Expansion method.

Analogously, the circuit of Fig. 7b is a well known phase-lag configuration with

the capacitor C substituted by a fractal capacitor with fractance 1∕(sqC). In this case

the transfer function takes the form

Voc(s)
Vic(s)

=
1 + R2caCsq

1 +
(
R1ca + R2ca

)
Csq

= 1 + 𝛼𝜏sq

1 + 𝜏sq (39)

𝜏 =
(
R1ca + R2ca

)
C, 𝛼 =

R2ca

R1ca + R2ca
(40)
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(a) (b)

Fig. 7 Fractional-order compensators with 0 < q < 1 and Cauer networks. a Phase-lead compen-

sator. b Phase-lag compensator

5 Examples of Phase-Lead-Lag Compensated Systems
Implemented with OpAmps

To validate the proposals of implementation of Sect. 4, this Section presents sim-

ulation or experimental results of systems that use the circuits in Figs. 4, 5, and 7

as compensators connected in series with an integer-order plant in unity-gain neg-

ative feedback configuration. Additionally, to explain the procedures described in

Sect. 2.3 to design integer-order and fractional-order phase-lead-lag compensators,

will be employed the system modeled by the following transfer function

G(s) = 100K
s(s + 36)(s + 100)

(41)

This system has been considered as an academic example in [30, 44] for integer-

order compensation, and in [35] for fractional-order compensation. Gains K = 5839
and K = 1440 have been employed in the lag and lead compensators, respectively,

to satisfy steady-state error specifications. Figure 8 shows an OpAmp-based imple-

mentation of G(s) by means of blocks IInv, LPA and IA. By equating the transfer

function of this circuit with (41), results

(
1

R1pCg

)(
1

R1pCg

)

s
(

s + 1
R2pCg

)(
s + 1

R3pCg

) = 100K
s(s + 36)(s + 100)

(42)

and by choosing 1∕(R2pCg) = 36, 1∕(R3pCg) = 100, 1∕(R1pCg) = 10
√

K,Cg = 1 F

and Rg = 1Ω are obtained: R1p = 1∕
√
100K Ω, R2p = 0.0277Ω and R3p = 0.01Ω.
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Fig. 8 Implementation of the plant G(s) with OpAmps

Table 1 Design details of the plant G(s)
Block Element Theoretical value Employed value (commercially available)

IInt Rg 100 KΩ 100 KΩ
Cg 10 nF 10 nF

LPA1 R1p 130 Ω for K = 5839 120 Ω
260 Ω for K = 1440 270 Ω

R2p 2.77 KΩ 2.7 KΩ
Cg 10 nF 10 nF

LPA2 R1p 130 Ω for K = 5839 120 Ω
260 Ω for K = 1440 270 Ω

R3p 1 KΩ 1 KΩ
Cg 10 nF 10 nF

IA Rg 100 KΩ 100 KΩ

Then, impedance (Zm = 1E5) and frequency (𝛺f = 1000) denormalizations are car-

ried out over this elements to obtain the values detailed in Table 1.

5.1 Example 1: Integer Order Phase-Lag Compensator
(K = 5839)

Figure 9a shows the Bode diagram of G(s) with K = 5839. As can be observed, the

system presents a phase margin of 67◦ and a gain of 22.9 dB at the desired crossover

frequency 𝜔c = 11 rad/s. Assuming a required phase margin PM = 62◦ to yield the

desired transient response, a phase p = −5◦ and a magnitude M = −22.9 dB must be

provided by the phase-lag compensator to obtain a composite Bode diagram that goes

through 0 dB at 𝜔c = 11 rad/s. Therefore, using the procedure presented in Sect. 2.3

for integer-order compensators are calculated c = 10M∕20 = 0.0711 and 𝛿 = tan(p) =
−0.087. Substituting these values of c and 𝛿 in (10) are obtained 𝛼 = 0.0711 and

𝜏 = 14.3472, resulting the integer order phase-lag compensator

C(s) = 1 + 𝛼𝜏s
1 + 𝜏s

= 1 + (0.0711)(14.3472)s
1 + 14.3472s

(43)
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Fig. 9 Bode magnitude and phase plots of G(s) = 100K∕s(s + 36)(s + 100) with a K = 5839; b
K = 1440

Table 2 Design details of the integer-order phase-lag compensator of Fig. 4 and Example 1 with

K = 5839
Block Element Theoretical value Employed value (commercially available)

L-L R1c 100 KΩ 100 KΩ
R2c 1.43 MΩ 1.5 MΩ
Cg 10 nF 10 nF

InvA R1c 100 KΩ 100 KΩ
R2c 1.43 MΩ 1.5 MΩ

Additionally, it can be verified that with 𝛿 = −0.087 and c = 0.0711 the condi-

tion (9) is satisfied, guarantying the existence of the compensator, which is imple-

mented with the circuit of Fig. 4. Therefore, by choosing Cg = 1 and 𝛼 = 0.0711
in (32) are obtained R2c = 14.34Ω and R1c = 1.02Ω. Then, impedance (Zm = 1E5)

and frequency (𝛺f = 1000) denormalizations are carried out to obtain the values of

elements detailed in Table 2.

The system in Fig. 8 in the unity negative feedback structure with the lag-phase

compensator of Fig. 4 was simulated using HSPICE and the model of the OpAmp

uA741. The details of design are listed in Tables 1 and 2. Figure 10 shows the results

for an step-input of 1 V and frequency 166.6 Hz. The resulted overshoot was 9.7%

with a peak time 258.4 µs. This overshoot corresponds to a second order system

with phase margin PM = 58.93◦ and damping factor 𝜁 = 0.596. These results show

a good agreement with the results given in [44] (PM = 62◦, 𝜁 = 0.591, overshoot =
10%) and [30] (overshoot = 9.8%, denormalized peak time = 260µs), validating the

proposal of implementation.
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Fig. 10 Time-domain simulation results of the integer-order phase-lag compensator C(s) = [1 +
(0.0711)(14.3472)s]∕[1 + 14.3472s] realized with the circuit of Fig. 4 with design details of Table 2,

in unity negative feedback configuration, in which the plant G(s) = 583900∕[s(s + 36)(s + 100)]
is implemented with the circuit of Fig. 8 with the design details of Table 1. Denormalizations in

impedance and frequency Zm = 1E5 and 𝛺f = 1000 were also performed

5.2 Example 2: Integer Order Phase-Lead Compensator
(K = 𝟏𝟒𝟒𝟎)

Figure 9b shows the Bode diagram of G(s) with K = 1440. The phase margin and

gain of the system at the expected crossover frequency 𝜔c = 39 rad/s are PM =
180◦–159◦ = 21◦ and M = −3.7668 dB, respectively. Consider a required phase

margin PM = 45.5◦ to yield the desired transient response. Consequently, the

phase-lead compensator must provide a phase of p = 24.5◦ and a gain of M = 3.7668
dB to yield the desired transient response with a Bode diagram that goes through 0
dB at 𝜔c = 39 rad/s. By means of the procedure presented in Sect. 2.3, for integer-

order compensators, are calculated: c = 10M∕20 = 1.5429 and 𝛿 = tan(p) = 0.4473.

Substituting these values of c and 𝛿 in (10) results 𝛼 = 2.3799 and 𝜏 = 0.0166. The

corresponding integer-order phase-lead compensator becomes

C(s) = 1 + 𝛼𝜏s
1 + 𝜏s

= 1 + (2.3799)(0.0166)s
1 + 0.0166s

= 2.3795
( s + 25.31

s + 60.24

)
(44)

and the existence of this phase-lead compensator is guaranteed because of with

𝛿 = 0.4473 and c = 1.54 the condition (8) is satisfied. To proceed with the imple-

mentation it is employed the circuit of Fig. 4. By selecting Cg = 1 F and 𝛼 = 2.3799
in (32) are obtained R2c = 0.0166Ω and R1c = 0.0395Ω. Then, impedance (Zm =
1E5) and frequency (𝛺f = 1000) denormalizations are carried out to obtain the

details of design summarized in Table 3.
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The system in Fig. 8 in the unity negative feedback structure with the integer-order

phase-lead compensator of Fig. 4 was simulated using HSPICE and the model of the

OpAmp uA741. The details of design are listed in Tables 1 and 3. Figure 11 shows

the results for an step-input of 1 V and frequency 166.6 Hz. The resulted overshoot

was 18.2% with a peak time 77.5µs. This overshoot corresponds to a second order

system with phase margin 49.9◦ (compared with the theoretical value of 45.5◦) and

damping factor 𝜁 = 0.476. These results show a good agreement with the results

given in [44] (PM = 45.5◦, 𝜁 = 0.427, overshoot = 22.6%) and [30] (overshoot =
22.6%, denormalized peak time = 72µs), validating the implementation.

Table 3 Design details of the integer-order phase-lead compensator of Fig. 4 and Example 2 with

K = 1440
Block Element Theoretical value Employed value (commercially available)

L-L R1c 3.95 KΩ 3.9 KΩ
R2c 1.66 KΩ 1.2 KΩ + 470Ω
Cg 10 nF 10 nF

InvA R1c 3.95 KΩ 3.9 KΩ
R2c 1.66 KΩ 1.2 KΩ + 470Ω

Fig. 11 Time-domain simulation results of the phase-lead compensator C(s) = [1 +
(2.3799)(0.0166)s]∕[1 + 0.0166s] realized with the circuit of Fig. 4 with design details of Table 3,

in unity negative feedback configuration, in which the plant G(s) = 144000∕[s(s + 36)(s + 100)]
is implemented with the circuit of Fig. 8 with the design details of Table 1. Denormalizations in

impedance and frequency Zm = 1E5 and 𝛺f = 1000 were also performed
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5.3 Example 3: Fractional-Order Phase-Lead Compensator
(𝟏 < q < 𝟐)

Consider the system G(s) given by (41) with K = 1440. As was explained in Example

2, a desired phase margin 45.5◦ with a gain cross-frequency of 39 rad/s

correspond to M = 3.76 dB, c = 1.5429, p = 24.1 and 𝛿 = 0.4473. Using the proce-

dure described in Sect. 2.3 for fractional-order compensators and according to (16),

this goal is achievable by means of a fractional-order phase-lead compensator with

q ∈ (q∗, 2) = (0.6338, 2). By taking advantage of the additional grade of liberty it

can be obtained the exact value of q by establishing a desired value of the initial

peak of the control signal, i.e., by using an actuator constraint. For instance, assum-

ing a desired initial peak of the control signal of u0 = 2500 and according to (20)

and (15) it is obtained q = 1.33. Substituting this value in (14) and (15) the resulting

fractional-order phase-lead compensator is expressed by

C(s) = 1 + 𝛼𝜏sq

1 + 𝜏sq =
1 + (1.736)

(
8.1395 × 10−3

)
s1.33

1 + 8.1395 × 10−3s1.33
(45)

This fractional-order phase-lead compensator satisfies the condition (12) with 𝛿 =
0.4557 and c = 1.5429. The implementation is performed with the circuit of Fig. 5

selecting Rg = 1Ω, 𝛼 = 1.736, 𝜏 = 8.1395 × 10−3 and q̃ = q − 1 = 0.33. This way,

the following results are obtained: Ã = (1 − q̃)∕(1 + q̃) = 0.5037, 𝜏Rg = 8.1395 ×
10−3 Ω,Rg∕Ã = 1.9853Ω, Ã∕Rg = 0.5037 F and Rg∕𝛼 = 0.576Ω.

Then, impedance (Zm = 1E5) and frequency (𝛺f = 1000) denormalizations are car-

ried out to obtain the details of design summarized in Table 4.

The system in Fig. 8 in the unity negative feedback structure with the fractional-

order lead-phase compensator of Fig. 5 was implemented on protoboard with

OpAmps uA741 and the details of design listed in Tables 1 and 4. The experimental

Table 4 Design details of the fractional-order phase-lead compensator of Fig. 4 and Example 3

with K = 1440
Block Element Theoretical value Employed value (commercially available)

DA Rg 100 KΩ 100 KΩ
𝜏Rg 813.9 Ω 820 Ω

IInt Rg 100 KΩ 100 KΩ
Cg 10 nF 10 nF

L-L Rg 100 KΩ 100 KΩ
Rg∕Ã 200 KΩ 200 KΩ
ÃCg 5 nF 5 nF

Cg 10 nF 10 nF

WAA Rg 100 KΩ 100 KΩ
Rg∕𝛼 57.6 KΩ 47 KΩ + 10 KΩ
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(a)

(b)

Fig. 12 a Experimental setup of the fractional-order phase-lead compensator C(s) = [1 +
(1.736)(8.1395 × 10−3)s1.33]∕[1 + 8.1395 × 10−3s1.33] realized with the circuit of Fig. 5 in unity

negative feedback configuration with plant G(s) = 144000∕[s(s + 36)(s + 100)] implemented with

the circuit of Fig. 8. b Time-domain experimental results
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setup is shown in Fig. 12a. It consists of an input square signal of 1 V in ampli-

tude, offset = 0.5 V, and frequency of 100 Hz, supplied from the experimental plat-

form ELVIS II from National Instruments. This device also provides bias voltages

of ±15 V to the OpAmps. Figure 12b shows the measured time response. The output

was measured with an Oscilloscope HD4096 Teledyne Lecroy. The resulted over-

shoot was 21.9%. This overshoot corresponds to a second order system with phase

margin 46.32◦ and damping factor 𝜁 = 0.435. It can be noted that the theoretical

(overshoot = 22.7%, 𝜁 = 0.426, PM = 45.5◦), the simulation (overshoot = 21.13%,

𝜁 = 0.4434, PM = 47.05
◦
), the experimental results (overshoot = 21.9%, 𝜁 = 0.435,

PM = 46.32
◦
) and the results reported in Fig. 7 of [35] are in good agreement, thus

validating the proposal of implementation.

5.4 Example 4: Fractional-Order Phase-Lead Compensator
with 𝟎 < q < 𝟏 and Cauer Approximation

With an unconstrained initial peak of the control signal, the value of q in Example

3 may be any in the range (q∗, 2) = (0.6338, 2). Consider q = 0.7. Substituting this

value in (14) and (15) the fractional-order phase-lead compensator becomes

C(s) = 1 + 𝛼𝜏sq

1 + 𝜏sq =
1 + (7.442)

(
9.5243 × 10−3

)
s0.7

1 + 9.5243 × 10−3s0.7
(46)

and this compensator satisfies the condition (12) with 𝛿 = 0.4557 and c = 1.5429.

In this case, the circuit implementation can be performed with the circuit of Fig. 6.

However, this implementation is similar to the presented in Example 3. Instead,

in this example will be explored the realization with network approximation by

means of the Cauer method. Then, consider the circuit implementation of Fig. 7.

With q = 0.7,C = 1 and a fourth-order approximation of the impedance 1∕sq
is

obtained [23]

1
sq =

Q0s4 + Q1s3 + Q2s2 + Q3s + Q4

Q4s4 + Q3s3 + Q2s2 + Q1s + Q0

= 0.037s4 + 2.324 ∗ s3 + 9.921s2 + 7.8s + 1
s4 + 7.8s3 + 9.92s2 + 2.324s + 0.037

(47)

where

Q0 = q4 − 10q3 + 35q2 − 50q + 24
Q1 = −4q4 + 20q3 + 40q2 − 320q + 384
Q2 = 6q4 − 150q2 + 864 (48)

Q3 = 4q4 − 10q3 + 40q2 + 320q + 384
Q4 = q4 + 10q3 + 35q2 + 50q + 24



154 C. Muñiz-Montero et al.

Alternatively, the approximation of 1∕sq
can be obtained by other methods of

approximation, such as Crone, Carlson or Matsuda, employing the Ninteger tool box

of MATLAB [26]. Moreover, the synthesis of the fractance (47) can be obtained with

the repeated division process of terms described in Sect. 2.4 (Continued Fraction

Expansion) by means of the tool box FOMCON of MATLAB and the following

code [26, 37]

≫ a1 = [1 7.807 9.921 2.323 0.037];
≫ b1 = [0.037 2.3239 9.921 7.807 1];
≫ [q, expr] = polycfe(b1, a1)

resulting

1
s0.7

= R1 +
1

sC2 +
1

R3 +
1

sC4 +
1

R5 +
1

sC6 +
1

R7 +
1

sC8 +
1

R9

(49)

The values of R1,C2,R3,C4,R5,C6,R7,C8 and R9 are shown in Table 5.

Impedance (Z = 1E5) and frequency (Ω = 1000) denormalizations were carried out.

Finally, using 𝛼 = 7.442,C = 1 and 𝜏 = 9.5243 × 10−3 are solved simultaneously

both equations in (38) to obtain R1ca = 0.07088Ω and R2ca = 0.011Ω. Again by

using the impedance denormalization Z = 1E5 over these elements are obtained the

values indicated in Table 5.

The system in Fig. 8 in the unity negative feedback structure with the fractional-

order lead-phase compensator with Cauer network approximation of Fig. 7 was

simulated using HSPICE and the model of the OpAmp uA741. The details of design

Table 5 Design details of the fractional-order phase-lead compensator of Fig. 7 and Example 4

with q < 1 and K = 1440
Element Value Element Value

R1 3.7 KΩ R7 534 KΩ
C2 4.9 nF C8 9.8 nF

R3 65.38 KΩ R9 1.87 MΩ
C4 5.6 nF R1ca 7 KΩ
R5 224.8 KΩ R2ca 1.12 KΩ
C6 6.8 nF
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Fig. 13 Time-domain simulation results of the fractional-order phase-lead compensator C(s) =
[1 + (7.442)(9.5243 × 10−3)s0.7]∕[1 + 9.5243 × 10−3s0.7] realized with the circuit of Fig. 7 with

design details of Table 5, in unity negative feedback configuration, in which the plant G(s) =
144000∕[s(s + 36)(s + 100)] is implemented with the circuit of Fig. 8 with the design details of

Table 1. Denormalizations in impedance and frequency Z = 1E5 and 𝛺 = 1000 were also per-

formed

are listed in Tables 1 and 5. Figure 13 shows the results for an step-input of 1 V, off-

set 0.5 V and frequency 100 Hz. The resulted overshoot was 25% with a peak time

75.3 µs. This overshoot corresponds to a second order system with phase margin

43.46◦ and damping factor 𝜁 = 0.4037. These results show a good agreement with

the results given in Example 3 and in Fig. 6 of [35], validating the implementation.

However, in Fig. 13 it can also be observed that the network approximation is not

appropriate in this case when the order of the approximation is less than 4. It is due

to the limited bandwidth where the approximation is valid.

6 Phase-Lead Compensated Systems Implemented
with FPAA

In this section is illustrated, starting from the designs of Examples 2 and 3, the imple-

mentation and experimental validation of integer-order and fractional-order phase-

lead compensators by means of FPAAs, which are processors for analog signals,

equivalents to the digital processors FPGAs (Field Programmable Gate Arrays).

FPAAs are devices of specific purpose with the characteristics of being recon-

figurable electrically. They are used to implement a variety of analog functions,

such as: integration, derivation, weighted sum/subtraction, filtering, rectification,

comparator, multiplication, division, analog-digital conversion, voltage references,

signal conditioning, amplification, nonlinear functions, generation of arbitrary sig-

nals, among others. Since FPAAs are reconfigurable, one can implement complex
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prototypes in a short time. In this work the FPAA AN231E04 from Anadigm [1],

is used. It uses technology of switched capacitors and it is organized into four con-

figurable analog blocks (CABs). Those CABs are distributed in a matrix of size 2× 2,

supported by resources of programmable interconnections, seven configurable

analog cells of input-output with active elements for amplification and dynamic

reduction of offset and noise, an on-chip generator of multiple non-overlapped

clock-signals and internal voltage references to eliminate temperature effects. It also

includes a look-up table (LTU) of 8× 256 bits for function synthesis and nonlin-

ear signals, and for analog-digital conversion. The configuration data is saved into

an internal SRAM, which allows reprogramming the device without interrupting its

operation. The circuits are designed using the software Anadigmdesigner2, in which

the user has access to a library of functional circuits CAMs (Configurable Analog

Modules). Those CAMs are mapped in a portion for each CAB. The CABs have

matrices of switches and capacitors, two OpAmps, a comparator, and digital logic

for programming.

6.1 Example 5: FPAA Implementation of the Integer-Order
Phase-Lead Compensator of Example 2

Figure 14a shows an implementation, using the FPAA AN231E04, equivalent to the

closed-loop system designed in Example 2. The corresponding experimental setup

is illustrated in the same figure. Details of the design and the corresponding transfer

functions of every employed building block are listed in Table 6. The comparator

producing the signal error e(t) = Vin(t) − Vout(t) is realized using a CAM “SumDiff”

(adder-subtractor) with gains 1 and−1 at each input. The integer order lead controller

(44) is implemented by CAM “FilterBilinear 1” (Bilinear filter), designed to produce

a transfer function with DC gain 2.3795, and one pole (𝜔p = 60.24 rad/s) and one

zero (𝜔z = 25.31 rad/s), both denormalized by a factor 𝛺f = 1000 (fp = 9.57 kHz,

fz = 4.02 kHz).

On the other hand, the plant (41) with K = 1440 is modeled by two low-pass filters

H2(s) = −36∕(s + 36) and H3(s) = −100∕(s + 100) (CAM “Bilinear Filter 2” and

CAM “Bilinear Filter 3”, respectively), and by an “integrator” CAM, H1(s) = −40∕s,

in series with a block of gain -1 (CAM “GainInv1”). The frequency denormalization

𝛺f = 1000 was realized by substituting in each block s by s∕𝛺f .

The experimental configuration of Fig. 14a has a differential input of 0.5 V in

amplitude and frequency 500 Hz, and a common-mode component of 1.5 V. It is

provided by the array of three OpAmps and the target ELVIS II from National Instru-

ments. This device also provides bias voltages of ±15 V to the

OpAmps. The output is converted from differential mode to simple mode with a

differential amplifier. The output is measured with an Oscilloscope HD4096 Tele-

dyne Lecroy (see Fig. 14b). The resulted overshoot was 21.1%. This overshoot corre-
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Table 6 Details of the design in FPAA of the closed-loop system conformed by the plant (41) and

the integer-order phase-lead controller (44) with 𝛺f = 1000
Operation CAM Transfer function Characteristics

Comparator SumDiff

(Sum/difference)

Vo = Vin − Vout G1 = 1
G2 = −1

Lead controller Filter bilinear 1

(pole-zero filter)

−G
( 1 + s∕𝜔z

1 + s∕𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (60.24)(1000)

2𝜋
=

9.57 kHz

fz =
𝜔z𝛺f

2𝜋
= (25.31)(1000)

2𝜋
=

4.02 kHz

Plant Filter bilinear 2

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (36)(1000)

2𝜋
=

5.74 kHz

Filter bilinear 3

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (100)(1000)

2𝜋
=

15.9 kHz

Integrator
Kint

s
Kint ∗ 𝛺f = 40 ∗ 1000 =
40000 = 0.04∕µs

GainHold (Inverter

amplifier)

−G G = 1

Gi: gain of the CAM. f : corner frequency of the CAM. Kint: integration constant of the CAM

sponds to a second order system with phase margin 47◦ (compared with the theoreti-

cal value of 45.5◦) and damping factor 𝜁 = 0.443. The simulation results of Example

2 and the experimental results of the system of Fig. 14a are in good agreement, thus

validating this proposal of implementation.

6.2 Example 6: FPAA Implementation of the
Fractional-Order Phase-Lead Compensator of Example 3

Consider the fractional-order phase-lead compensator with q = 1.33 presented in

Example 3 (see (45)). This controller can be reformulated by using a first-order

approximation of the fractional derivator sq̃ = (Bs + 1)∕(s + B), with 0< q̃ < 1,

resulting
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(a)

(b)

Fig. 14 a Experimental setup of the integer-order phase-lead compensator C(s) = [1 +
(2.3799)(0.0166)s]∕[1 + 0.0166s] realized with an FPAA, in unity negative feedback configuration,

with plant G(s) = 144000∕[s(s + 36)(s + 100)] also implemented in the FPAA. A denormalization

in frequency 𝛺f = 1000 was performed. b Time-domain experimental results
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C(s) = 1 + 𝛼𝜏sq

1 + 𝜏sq = 1 + 𝛼𝜏s1+q̃

1 + 𝜏s1+q̃
=

1 + 𝛼𝜏s
(Bs + 1

s + B

)

1 + 𝜏s
(Bs + 1

s + B

)

= 𝛼

⎛
⎜⎜⎜⎜⎝

s2 +
𝜔z

Qz
s + 𝜔

2
z

s2 +
𝜔p

Qp
s + 𝜔

2
p

⎞
⎟⎟⎟⎟⎠

(50)

where

q̃ = q − 1, sq̃ ≈ Bs + 1
s + B

, B =
1 + q̃
1 − q̃

(51)

and

Table 7 Details of the design in FPAA of the closed-loop system conformed by the plant (41)

and the fractional-order lead controller (50) with 𝛼 = 1.736, 𝜏 = 8.1395 × 10−3, q = 1.33 and 𝛺f =
3000
Operation CAM Transfer function Characteristics

Comparator SumDiff

(Sum/Difference)

Vo = Vin − Vout G1 = 1
G2 = −1

Lead controller Filter biquad

(pole-zero filter)

G

⎛
⎜⎜⎜⎜⎝

s2 +
𝜔z

Qz
s + 𝜔

2
z

s2 +
𝜔p

Qp
s + 𝜔

2
p

⎞
⎟⎟⎟⎟⎠

G = 1.736
fp =

𝜔p𝛺f

2𝜋
= (11.084)(3000)

2𝜋
=

5.29 kHz

Qp = 0.1776

fz =
𝜔z𝛺f

2𝜋
= (8.4122)(3000)

2𝜋
=

4.016 kHz

Qz = 0.2326

Plant Filter bilinear 2

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (36)(3000)

2𝜋
=

17.22 kHz

Filter bilinear 3

(lowpass filter)

−G
(

𝜔p

s + 𝜔p

)
G = 1
fp =

𝜔p𝛺f

2𝜋
= (100)(3000)

2𝜋
=

47.7 kHz

Integrator
Kint

s
Kint ∗ 𝛺f = 40 ∗ 3000 =
120000 = 0.12∕µs

GainHold

(Inverter

amplifier)

−G G = 1

Gi: gain of the CAM. f : corner frequency of the CAM. Kint: integration constant of the CAM
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𝜔p = 1√
𝜏

, Qp =
√
𝜏B

𝜏 + 1
, 𝜔z =

1√
𝛼𝜏

, Qz =
√
𝛼𝜏B

𝛼𝜏 + 1
(52)

This way, the fractional-order phase-lead compensator with 1 < q < 2 can be

realized by means of a biquad filter. Based on this idea, Fig. 14a shows the imple-

mentation in FPAA AN231E04 of the closed-loop controlled system designed in

Example 3. Details of the design and the transfer functions of every building block

are listed in Table 7. The comparator producing the signal error e(t) = Vin(t) − Vout(t)
is realized using a CAM “SumDiff” (adder-subtractor). The fractional-order lead

controller (50) is implemented by CAM “FilterBiquad1” (Biquad filter, see Fig. 14a).

The parameters of this block are calculated using (51) and (52) with 𝛼 = 1.736, 𝛼𝜏 =
1.4131 × 10−2, 𝜏 = 8.1395 × 10−3 and q̃ = 0.33, been obtained: 𝜔p = 11.084 rad/s,

𝜔z = 8.412 rad/s, Qp = 0.1776 and Qz = 0.2326. Then, a frequency denormalization

𝛺f = 3000 is realized, resulting fp = 5.29 kHz and fz = 4.02 kHz. The same denor-

malization is performed in the plant, which is designed as in the Example 5 (see

Fig. 14a). The design details are summarized in Table 7.

The experimental configuration is equal to the reported in Fig. 14a, but with the

CAM “FilterBiquad1” instead of the CAM “FilterBilinear1”. It has a differential

input of 0.5 V in amplitude, offset 0.25 V and frequency 500 Hz, and a common-

mode component of 1.5 V from the array of three OpAmps and target ELVIS II

from National Instruments. This device also provides bias voltages of ±15V to the

OpAmps. The output is converted from differential mode to simple mode with a

Fig. 15 Time-domain experimental result of the fractional-order phase-lead compensator C(s) =
[1 + (1.736)(8.1395 × 10−3)s1.33]∕[1 + (8.1395 × 10−3)s1.33] realized with an FPAA, in unity

negative feedback configuration, with plant G(s) = 144000∕[s(s + 36)(s + 100)] also implemented

in the FPAA. A denormalization in frequency 𝛺f = 3000 was performed
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differential amplifier. The output is measured with an Oscilloscope HD4096 Tele-

dyne Lecroy (see Fig. 15). The resulted overshoot was 16.2%, compared with the

21.9% obtained with the implementation of Example 3. This overshoot corresponds

to a second order system with phase margin 51.9◦ and damping factor 𝜁 = 0.5. The

simulation results of Example 3 and the experimental results of Example 6 are simi-

lar, but with a difference of 5% regarding the overshoot. This difference is attributed

to the different amplitudes and frequencies of the input signals (the FPAA has swing

limits), the resolution of the programmable gains that can be implemented with the

FPAA and the different denormalization frequencies.

7 Conclusion

The OPAMP-based and FPAA-based design of integer-order and fractional-order

phase-lead-lag compensators for the case of q ∈ (0, 1) and q ∈ (1, 2), have been

introduced. Each design was realized considering: (i) the parameters obtained with

the procedures reported in [44] (integer-order) and [35] (fractional-order) when

the gain and the phase required at a particular frequency are known for a desired

time-domain response; (ii) Five configurations of compensators realized with basic

OPAMP building blocks and (iii) Two more configurations (fractional and integer

orders) with FPAAs. The OPAMP building blocks employed include inverter inte-

grators, inverter and non-inverter amplifiers, differential amplifiers, weighted adders,

first order low-pass filters, fractional-order phase-lead-lag ladders and fractional

integrators. With all those blocks, the design equations were established taking care

that some resistor and all capacitor values were chosen like degrees of freedom. Six

design examples of both integer and fractional-order phase-lead-lag compensators

were presented. In order to compare the performance of the different compensators,

an integer-order plant was used. The compensation was made in series with the plant

in a unity feedback loop. Simulation and experimental results agree with theory. An

interesting result is the fact that the proposed solutions are good enough for the case

of q ∈ (1, 2) when the order of the approximation of sq
is one; however, those are

not adequate when q ∈ (0, 1). In those cases is necessary employ an approximation

of higher order. It was evident with the third example that when the Cauer ladders

are not employed, it is possible to synthesize realizations with commercial values

of capacitors and resistors based on frequency and impedance transformations. Nev-

ertheless, according with the fourth example, when q ∈ (0, 1), the number of active

elements can rise significantly since the approximation of the operator s±𝛼 is required

to be of high-order. In this case, the Cauer ladder solution might be an option despite

of its inherent complexity for the computation of the commercial element values. To

the author’s knowledge, there very few (two) fractional-order phase lead-lag com-

pensators reported in the literature. Therefore, the circuit solutions presented in this

chapter offer useful alternatives that can be occupied for diverse controllers. Further-

more, some other applications such as memristors, filters and chaotic systems might

benefit from the proposed strategies of implementation.
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Robust Adaptive Supervisory Fractional
Order Controller for Optimal Energy
Management in Wind Turbine
with Battery Storage

B. Meghni, D. Dib, Ahmad Taher Azar, S. Ghoudelbourk
and A. Saadoun

Abstract To address the challenges of poor grid stability, intermittency of wind
speed, lack of decision-making, and low economic benefits, many countries have
set strict grid codes that wind power generators must accomplish. One of the major
factors that can increase the efficiency of wind turbines (WTs) is the simultaneous
control of the different parts in several operating area. A high performance con-
troller can significantly increase the amount and quality of energy that can be
captured from wind. The main problem associated with control design in wind
generator is the presence of asymmetric in the dynamic model of the system, which
makes a generic supervisory control scheme for the power management of WT
complicated. Consequently, supervisory controller can be utilized as the main
building block of a wind farm controller (offshore), which meets the grid code
requirements and can increased the efficiency of WTs, the stability and intermit-
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tency problems of wind power generation. This Chapter proposes a new robust
adaptive supervisory controller for the optimal management of a variable speed
turbines (VST) and a battery energy storage system (BESS) in both regions (II and
III) simultaneously under wind speed variation and grid demand changes. To this
end, the second order sliding mode (SOSMC) with the adaptive gain super-twisting
control law and fuzzy logic control (FLC) are used in the machine side, BESS side
and grid side converters. The control objectives are fourfold:

(i) Control of the rotor speed to track the optimal value;
(ii) Maximum Power Point Tracking (MPPT) mode or power limit mode for

adaptive control;
(iii) Maintain the DC bus voltage close to its nominal value;
(iv) Ensure: a smooth regulation of grid active and reactive power quantity, a

satisfactory power factor correction and a high harmonic performance in
relation to the AC source and eliminating the chattering effect.

Results of extensive simulation studies prove that the proposed supervisory control
system guarantees to track reference signals with a high harmonic performance
despite external disturbance uncertainties.

Keywords Power management ⋅ A high performance ⋅ Supervisory control ⋅
Wind turbine ⋅ Fuzzy logic ⋅ Second order sliding mode control, power limit

1 Introduction

Because of the environmental problems, the oil crisis and the growing demand for
energy, wind energy is one of the most mature of the different renewable energy
technologies which received a lot of concern and attention in perceptible many parts
of the world [1].

Nowadays, specifically related to offshore wind turbines, wind conversion
technology showed new aspects of its construction and operation. Current WT
operate at variable speed based PMSG and without speed multiplier, this type of
wind turbines increase energy efficiency, reduce mechanical stress, can work with a
high power factor and improve the quality of the electrical energy produced by WT
compared to fixed speed [2].

For this type (VSWT), doubly fed induction generator (DFIG) and permanent
magnet synchronous generators PMSGs are the most used technologies [3]. Today,
due to its simple structure with characteristic self-excitation that can work with: a
good performance, high reliability, good performance control and a great capacity
for maximizing the power extracting by the MPPT, the PMSG topology is required,
it is recommended to be connected to the variable speed wind turbines (VSWTs)
[4]. Moreover, this technology is better in the case of offshore wind, as maintenance
is simpler and less expensive compared to a technology using a gearbox.
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Practically and for safety reasons turbines and uniform stability between supply
and demand of energy, wind turbines work only in a specified range of wind speeds
limited by ðv cut− inÞ and ðv cut − outÞ as is shown in Fig. 1, where the possibility
of three different operating zones [5].

• Region 1: when the wind speed is below the speed V cut− inð Þ wind, no
maximize efficiency that occurs in this region.

• Region 2: when the wind speed exceeds V cut− inð Þ but under the rated
ðVnomÞ. In this area the main controller is to increase the efficiency of the power
extracted from the WTs, so it operates at its maximum power point (MPP).

• Region 3: when the wind speed is greater than ðVnomÞ but under the cut− out
wind speed ðVmaxÞ; the task of the controller is to keep the power captured at a
fixed or nominal value instead of trying to maximize it. Another important
controller objective in this last region, is to keep the electrical and structural
conditions in a safety region [5, 6].

Despite this characteristic, the utmost challenge of wind power generation is the
inherently sporadic nature of the wind which can deviate quickly. Its intermittent
availability is the main impediment to power quality and flow control. Therefore,
the stability and power quality of the grid operation is affected. Consequently, the
fluctuations of wind power should be reduced to prevent a degradation of the grid’s
performance [7].

In the new universal grid code for wind power generation, the power oscillation
damping by wind energy is included. For instance, the energy storage system (ESS) is
integrated with the renewable sources which are connected into the power grid to
maintain the safe operationof the power grid, balance the supply anddemand sides, and
enhance fault ride-through ability and damp short-term power oscillation [8]. There are
different types of ESSs in the power systems such as batteries ESS, superconducting
magnetic ESS, compressed air, hydrogen ESS, gravitational potential energy with
water reservoirs, electric double layer capacitor, and flywheels [9]. The BESS is one of
the most rapid growing storage technologies. The BESS installation cost and gener-
ating noise are relatively lower than the other storage technologies.

However, these features remain restricted with respect to the practical domain of
variation of wind speed. Therefore, effective architecture of control systems are one
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of the major issues in hybrid VSWT (managing variations in load demand and to
extract maximum power) to prevent possible degradation on the quality of electrical
energy delivered into the electric grid, where variations of the loads and generations
are significant in the system.

This goal has been and is a motivation for researchers and investors to search on
robust and effective control strategies for VSWT to overcome various constraints
such as the optimal tracking point controller has been developed in many literatures
especially for wind energy systems [5], to track the maximum wind power available
at each instant. They include namely, tip speed ratio (TSR) [5], sliding mode
control (SMC) [10], the hill-climb searching (HCS) [5] and fuzzy logic control
(FLC) [11] techniques. Several methods of power limitation control and pitch
power control have been advanced in some studies [12–14]. Effective techniques
have been developed in many papers to control the optimal rotational speed of the
wind turbine in order to determine the maximum power coefficient for a given wind
speed. Some of these variable speed techniques are FOSMC [15], SOSMC [16] and
FLC [17], robust control [18]. Numerous recent studies [9] advanced the benefit of
the energy storage techniques to mitigate the unpredictable character of wind
energies, ensuring more efficient management of the available resources and pro-
vide operation freedom to wind generation that allows time-shifting between gen-
eration and demand. More robust and efficient strategies based on modern control
techniques such as fuzzy logic control [19], robust control [20] and sliding mode
control [21] have been widely developed and implemented to smooth regulation of
the grid active and reactive powers exchanges between the PMSG and the grid.

1.1 Contribution of the Paper

Based on our previous research experience on WT/battery hybrid power system and
their supervisory control system [22], a key contribution of this study is to present a
comprehensive model of the proposed structure based on WT/battery hybrid power
system and to implement the novel supervisory control system in order to
optimize the power output and protecting all the system. This proposed man-
agement strategy is achieved through the combination of the efficient and robust
control methods described in recent publications in order to develop a perfect wind
system.

Furthermore, contrary to the works found in the literature, this work presents a
new approach to control and management for extended Control & of VSWT that
includes simultaneously the two operating regions (II and III) whatever the speed
variation the wind. This adaptation (commutation of control system in both
regions) may provide better performance in all possible operational scenarios of the
wind: extract the maximum power from the wind, storage of excess power, com-
pensation of power between supply and demand, limiting the upper power at
nominal generator or demand.
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For this reason (To reach this goal), the control objectives are three in number;
the first on the generator side converter, the second on bidirectional DC/DC con-
verter and the last one on the grid side converter.

1. The main function of the generator side controller is to track the maximum power
via speed loop control based on SOSMC. An MPPT control algorithm, based on
an FLC, has been used to regulate the rotational speed in order to tack accurately
the PMSG working point to its maximum power point (MPP) and to derive the
rotational speed reference. (Force the working point of the PMSG to its MPP and
to provide the rotational speed reference). In the case studied in control sub-
system, two adaptive and commutative operation modes are distinguished:

• When the aerodynamic power is not enough to reach the synchronous speed,
the system operates at mode 1(tracking mode MPPT): maximum power
extraction, whereas, if the wind speed exceeds the rated value, the system
switches to mode 2 (Power Limitation mode): power limitation, which leads
the PMSG to provide its rated power below nominal speed of the rotor.

2. A bidirectional DC/DC converter is connected between the battery and the DC
bus. This converter is controlled to maintain the DC bus voltage at its rated
value, allowing the active power, bi-directional active power flow from the
battery, through the charge/discharge of the device in response to the variations
of the operating conditions (regardless of the variations of the operating
conditions).

3. In the grid side converter, a SOSMC controller has been used to achieve smooth
regulation of active and reactive power quantities exchange between the BESS
and the grid according to grid demand under real fluctuating wind speed (region
II and III).

1.2 Organization of the Research Work

The paper is organized as follows. In Sect. 2, are view of the previous related work is
presented. In Sect. 3, the modeling of the PMSG wind turbine and ESS is described.
Section 4 presents in detail the proposed supervisory control applied in this work.
The simulations results and robustness test are illustrated in Sect. 5. Finally, the
conclusions of the obtained results and future work are shown in Sect. 6.

2 Related Work

Much research has been do in recent years to improve system performance mon-
itoring and management of the energy produced by the WTs where several tech-
niques have been proposed various structures of WT, such as artificial neural
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networks (ANN) [23–25], FLC [26–28], the first order sliding mode [15, 29, 30]
and the SOSMC [31–33]. The main reason for this interest is that these techniques
and structures were used to achieve a new and robust optimization that actually
works for VSWT problems that cannot be solved by conventional techniques.
Similarly, recent contributions remained within certain limits due to multiple
ignored or neglected issues such as MPPT, power control, power limit, speed
control and energy storage system. These problems contribute to the degradation of
the performance of WTs.

In Ref. [34], a PSIM software integration study was performed in more than one
MPPT used FLC technique where the results are limited, because the study is
applied to as simple structure without a storage system, security system in rated
wind speed and without power control for the grid side.

Moreover, in the second part of the study by [35], the authors proposed a
technique based on the strategy FOSMC to control the active and reactive power
injected to the grid. The simulation results show a poor power quality produced in
the presence of the chattering phenomenon.

Furthermore, the reference [3] shows an original method for the sensorless
MPPT of a small power wind turbine using a permanent magnet synchronous
generator (PMSG). On the other hand the operating range of this system is limited
in the region 2, because it not contains any limit power control or pitch control in
rated wind speed.

On [9, 36–38] the authors treated with details, modeling and control of a hybrid
system composed of DFIG/WT and ESS. The results are convincing, but the
authors have not applied effective and robust control techniques in key points such
as MPPT, speed control, power control of the grid, which makes these reliable
studies only normal and stable working conditions (wind speed constant, no default
in the wind channel and no fault in the grid).Also In these studies the authors
adopted only on the operating area 2 (This is what makes activity limited by WT).

The advanced control algorithms FLC and SOMSC were proposed by [11] to
simulate VSWT-based DFIG. Although the results were attractive, choosing the
type of machine used remains not determinant. Further- more, the authors assessed
a method of limiting the power extracted from a gust of wind, while they have
ignored the use of storage means to earn excess wind power. In the Refs. [39–42],
the authors have developed MPPT techniques to optimize the performance of the
power extracted from the wind in (region II). These contributions have given a great
success in this field. These studies are not considered to be a perfect solution unless
we can successfully integrate advanced techniques for power management to
consumption (power control). Other hand, when the demand for power exceeds the
power extracted, the MPPT technology will not be able to satisfy the demand;
hence, the need for a compensation system ESS.

In reference [22] the authors generally succeed in the choice of the supervisory
control system which applied in hybrid VSWT. But they are neglect the protection
of the wind system (electric and mechanic) under the rated wind speed in addition
they are limiting the operating range of wind turbine.
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Despite the amazing results presented in the previous studies, these remains
limited and insufficient to face various restrictions (because these control strategies
are usually used separately for each type of study to VSWT). The new supervisory
control system proposed in WTs has become a solution necessary for the optimal
management of the electric and mechanical power in any part of the wind channel.
This new system is based on the combination in the same type WT of new algo-
rithms (robust, effective and flexible) to work in various areas simultaneously
(Region II and III) with high precision, which makes it universal for different types
of WT.

3 Dynamic Model of PMSG-WT

In this section the studied system is presented. In order to achieve the system
control and a first study by simulation before implementation, its modelling is
required. Figure 2 shows a representative topology of the investigated wind energy
system. As illustrated in this figure the offshore VSWT a horizontal axis turbine
with a three-bladed rotor design directly transmits the aerodynamic torque and
power to PMSG (without a gearbox). The generator power is then fed to the utility
grid by means of power electronic devices (two back-to-back IGBT bridges
AC/DC/AC) interconnected by a common DC bus. This WT is supported by an
ESS associated with DC bus system composed of a lead acid battery with a bidi-
rectional DC/DC converter.

3.1 Wind Turbine Aerodynamic

For a variable speed wind turbine, the mechanical power and torque extracts from
the wind turbine is proportional to the wind speed and can be calculated by the
following formulas [10]:

Fig. 2 Wind generation system configuration
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Pt =
1
2
ρπR2

t v
3Cp λ, βð Þ ð1Þ

Tt =
Pt

Ωt
=

1
2λ

ρπR3
t v

2Cp λ, βð Þ ð2Þ

Which λ present the ratio between the wind speed and the turbine angular speed.
This ratio is called tip speed ration:

λ=
RtΩt

v
ð3Þ

where: λ is the tip speed ratio, Cp is the power coefficient, β is the pitch angle, Ωt is
the rotor speed (rad/s), Rt is the rotor-planeradius (m), ρ is the air density (Kg/m3Þ.

The coefficient Cp is a variable magnitude as a function of λ, the theoretically
possible maximum value of the power is β. The Cp is different for each wind
turbine, as shown in [43]. Theoretically, the Betz limit is ≈0.5926 further and
practically, friction and the force dragged reduce this value to 0.5 for large wind
turbines [44]. Calculating another analytic expression CpðλÞ for different values of β
is also possible.

For a pitch angle β given, the analytical expression commonly used is a poly-
nomial regression as follows [45]:

Cp =0.073
151
λi

− 0.058β− 0.002β2.14 − 13.2
� �

e
− 18.4
λi ð4Þ

Where λi = 1
1

λ− 0.02, β−
0.003
β2 + 1

The aerodynamic characteristics of a variable speed turbine are usually repre-
sented by the relationship Cp λð Þ as illustrated in Fig. 3.
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From this figure and according to Eqs. (1, 3), we can conclude that for a fixed
value of β=0, Cp only becomes a nonlinear function of λ. According to Eq. (3),
there is a relationship between λ and Ωt and at some, power is maximized at some
Ωt optimal speed Ωtopti. This rate corresponds to a λopti. The value of λ is constant
for all the maximum power point (MPP) [5].

Thus, to extract maximum power at wind speeds of variable λ must be adjusted
to its optimum value λopti followed a maximal power coefficient value Cp, to follow
the optimum operating point. From Eqs. (1, 3), we get [46]:

Ptmax =
1
2
ρ π R5

t ð
Cp.max

λ3opti
Þ Ω3

topti ð5Þ

Ωtopti =
λoptiv
Rt

ð6Þ

3.2 Model of PMSG

The simple dynamic model of three-phase PMSG in d, q reference frame can be
represented by the following voltages equations [45]:

Vsd =RsIsd +Ld
dIsd
dt

−ωeLqIsq ð7Þ

Vsq =RsIsq +Lq
dIsq
dt

+ωe LdIsd +ψmð Þ ð8Þ

Where Vsd,Vsq Vð Þ are the direct and quadrature components of the PMSG voltages,
Rs,Ld and Lq respectively are the resistance, the direct and the quadrature induc-
tance of the PMSG winding, ψmðwbÞ represents the magnet flux, ωeðrad s̸Þ is the
electrical rotational speed of PMSG Isd, IsqðAÞ are the direct and quadrature com-
ponents of the PMSG currents respectively.

Now the mechanical dynamic equation of a PMSG is given by [47]:

dΩt

dt
=

1
JT

Te +
DT

JT
Ωt −

1
JT

Tt ð9Þ

The electromagnetic torque of a p-pole machine is obtained as [47]:

Te =
3
2
npðψmIsq + ðLd − LqÞIsdIsqÞ ð10Þ

Where N.mð Þ is the electromagnetic torque,np is the number of pole pairs, DT is the
damping coefficient, JT is the moment of inertia.

Robust Adaptive Supervisory Fractional Order Controller … 173



3.3 Model of the Grid

The dynamic model of the grid connection in reference frame rotating syn-
chronously with the grid voltage is given as follows [10].

Vdg =Vdi −RgIdg − Ldg
dIdg
dt

+LqgwgIqg ð11Þ

Vqg =Vqi −RgIqg − Lqg
dIqg
dt

−LdgwgIdg ð12Þ

The DC-link system equation can be given by:

C
dVDC

dt
=

3
2
Vdg

VDC
Idg − IDC ð13Þ

Where:Vdg,VqgðVÞ are the direct and quadrature components of the grid voltages,
Vdi,VqiðVÞ are the inverter voltages components, ðRg,Ldg,LqgÞ are resistance, the
direct and quadrature grid inductance respectively, Idg, Iqg Að Þ are the direct and
quadrature components of the grid currents respectively, VDC is the DC-link volt-
age, IDC is the grid side transmission line current and C is the DC-link capacitor.

The power equations in the synchronous reference frame are given by [34]:

Pg =
3
2
ðVdgIdg +VqgIqgÞ ð14Þ

Qg =
3
2
ðVdgIqg −VqgIdgÞ ð15Þ

After orienting the reference frame along the grid voltage, Vqg equals to zero by
aligning the d-axis. Then, the active and reactive power can be obtained in this new
reference from the following equations [34]:

Pg =
3
2
VdgIdg ð16Þ

Qg =
3
2
VdgIqg ð17Þ

3.4 Model of the ESS

The lead-acid battery used in this work is modeled by the battery model included in
Sim Power Systems [48] where it is modeled as a variable voltage source in series
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with an equivalent internal resistance (see Fig. 4). The battery voltage is given by
Eq. (18).

Vbat =Ebat −Rii ð18Þ

The voltage of the rated load for the period of the charging or discharging of the
battery depends on the internal battery parameters such as: the battery current, the
hysteresis phenomenon of the battery during the charging and discharging cycles
and the capacity extracted [36].

Ebatdisch =E0 −K Q
Q− it

i* −K Q
Q− it

it + fhyst − disch ið Þ
Ebatcharg =E0 −K Q

0.1Q+ itj j i
* −K Q

Q− it
it + fhyst− charðiÞ

(
ð19Þ

Where Vbat is the battery rated voltage, Ebatdisch is the discharge voltage,Ebatcharg is
the charge voltage, E0 is internal EMF, Ri is internal resistance, K is the polarisation
constant (V/Ah), Q is battery capacity (Ah), it is the actual battery charge and i* is
the filtered current.

In most electrochemical batteries, it is important to maintain the SOC within
limits recommended to prevent internal damage. The instantaneous value of the
load condition is calculated by [36]:

SOC =1−
Qe

Cð0, θÞ , DOC=1−
Qe

CðIavg, θÞ ð20Þ

Where:SOC is battery state of charge, QeðA.sÞ is the battery’s charge, DOC is
battery depth of charge, IavgðAÞ is the mean discharge current, CðA.sÞ is the bat-
tery’s capacity.

3.5 Battery Converter Modeling

Different converters based PWM DC/DC are used to connect the various energy
sources to the DC bus, these converters are used to control the flow of energy
between sources to maintain the DC bus at a constant value. In this present work,
the electro-chemical battery is connected to the DC bus of PMSG through a bidi-
rectional converter (buck-boost) DC/DC power. The structure of this converter is
shown in Fig. 5. It consists of a high-frequency inductor, an output filtering
capacitor, and two IGBT-diodes switches.

+
-

Fig. 4 Lead-acid battery
simplest model [49]
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This makes it possible to charging and discharging the battery in both directions
to keep the DC bus voltage to a reference value independent of variations the
battery voltage. During the charging phase, the power flows from the DC link bus to
the BESS through the B1 switch and B2 diode. Therefore, the converter can acts like
a unidirectional buck converter. On another side, the battery discharges through the
B2 switch and B1 diode, furnishing energy to the DC bus. In this period, the
converter acts like a unidirectional boost converter [7].

4 Proposed Control System

The supervisory control system of hybrid WT has the responsibility to provide
appropriate regulation, stability, protection, optimization and tracking objectives for
the WT rotor speed in various constraints (supply and demand changing, sporadic
nature of the wind, different operating region (region II or III) and the unexpected
faults in the grid).

In order to achieve this goal, we have optimized our concept of classical
supervisory control [22], for makes the WT operate in a wide range of wind speeds
(region II and III).

The major objective most of the control systems used in this paper are:

• In Region II: Capture of maximum energy from the wind, through the combi-
nation advanced control based on FLC-SOSMC applied to machine side con-
verter (MSC).

• In Region III: Power limitation, above the rated wind speed, this control must
limit the extracted power by adaptive control (FLC-SOSMC-MPPT and the
sensed extracted power as a feedback).

• In both regions (II and III): Managing energy between generated and consumed
energies of the hybrid system components using the supervisory controller
(through the battery side converter BSC).

• In both regions (II and III): Power quality improvement, through the robust and
efficiency strategy control (SOSMC) applied in the grid side converter (GSC).

Fig. 5 Bidirectional DC/DC
battery power converter
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4.1 Control of the Machine Side Converter (MSC)

VSWTs are designed to achieve maximum aerodynamic effective on a wide range
of wind speeds, which sometimes include several areas of operation. However, this
degree of freedom requires a system of speed/sophisticated and robust power
control to overcome various constraints to monitor the point of maximum available
power (Region II) and to limit the power captured when the wind speed exceeds a
certain par value (region III). In this section, we showed the design of the machine
side controller as shown in Fig. 6. (Control side of the converter machine (MSC))
that includes two additional operating modes (adaptive).

1. Tracking mode (Region II)

In this area and to meet the total demand for power, the turbine operates at variable
speed under a nominal wind speed between vcut− inð Þ and ðvcut− outÞ. For this
reason the cascade control structure with two control loop have been created. In the
outer loop, a (MPPT) algorithm based on advanced technology FLC-SOSMC is
designed to permanently extract the optimal aerodynamic energy in order to generate
the electromagnetic torque reference. Whereas, in the inner loop we controlled the
dq-axis current of the generator according to the Eq. (8) and by field oriented control
strategy (FOC) of the PMSG to ensure that the system works around the optimal
point, which corresponds to the maximum power extracted by the turbine [50].

For a fixed value of β=0 and for each wind speed, the MPPT algorithm uses
fuzzy logic controller generates the reference speed that maximizes the extracted
power from the turbine as shown in Fig. 7.

To ensure a quick and smooth tracking of the maximum power without the
knowledge of the characteristic of the turbine and the wind speed measurement,

Fig. 6 Control block diagram of machine side converter
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FLC technique is used for generating a reference speed allowing the WT run around
the maximum points at varying wind speeds as shown in Fig. 8. This technique has
become universal for the different types of WT [11]. The proposed fuzzy controller
has two inputs and an output. The base rule of the system is given in Table 1, and
the variation step in the speed reference and power is indicated in Fig. 9.

The Eq. (21) show that the relationship between the optimum speed rotation, the
extracted power and wind speed are linear. For this reason, the MPPT-FLC device
based on measurement of power change ΔPt and rotational speed ΔΩt propose a
variation ΔΩtref of the turbine rotational speed reference according to the following
equations:

ΔPt =Pt kð Þ−Pt k− 1ð Þ
ΔΩt =Ωt kð Þ−Ωt k− 1ð Þ
Ωtref =Ωtðk− 1Þ+ΔΩtref

8<
: ð21Þ
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Fig. 8 Input and output of
fuzzy controller

Table 1 Rules of fuzzy logic controller

ΔΩt ΔPt

NBB NB NM NS ZE PS PM PB PBB
N PBB PB PM PS ZE NS NM NB NBB
ZE NB NB NM NS ZE PS PM PB PB
P NBB NM NS NB ZE PM PM PM PBB
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In the same part, the reference speed (along which tracks the MPPs) is used in the
speed regulator input to generate the q-axis current component as shown in Fig. 8.
Therefore, a novel SOSMC algorithm is proposed to achieve the speed control of
PMSG for each wind speed in order to maximize the extracted power at the turbine
output. In this algorithm, the chattering phenomenon can be limited so as to improve
the PMSG performance when compared to the classical FOSMC (Fig. 10).

Let us introduce the following sliding surface for the speed Ω.

sΩt =Ωtref −Ωt ð22Þ

Then we have:

sΩ̇t =Ω ̇tref −Ω ̇t =Ω ̇tref −
1
J

Tt + Te −FΩtð Þ

If we define the functions GΩt as follows:

GΩt =Ω ̇tref −
1
J

Tt −FΩtð Þ

Thus: sΩ̈t = ĠΩt −
T ̇e
J

The control algorithm proposed which is based on super twisting algorithm
(ST) has been introduced by Levant [51].
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Fig. 10 Detailed block
diagram of the power limit
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The second order sliding mode controllers contain two parts:

Isqref = Isqeq + IsqN ð23Þ

Where:IsqN = I1 + I2

With: I 1̇ = −N1sign sΩtð Þ
I2 =N2

ffiffiffiffiffiffiffiffiffi
sΩtj jp

signðsΩtÞ
�

In order to ensure the convergence of the sliding manifolds to zero in finite time,
the constants N1 and N2 can be chosen as follows [52]:

N1 >
μi
Lg

N2 ≥
μi ki + μið Þ
L2

g ki − μið Þ

8<
: ð24Þ

2. Power limit (region III)

In this region, above the rated wind speed 11.75 m/s as shown in Fig. 11. The control
must limit the extracted power in the tolerable beach between Pl − 1.2Pl and theΩt of
the turbine in the stable operation mode to protect the wind turbine and PMSG, so
when the extracted power increases during the nominal value the control circuit
shown in Fig. 10, lowered the reference speed, to prevent steady-state high power
amounts. A speed controller circuit added to the previous SOSMC-FLC-MPPT
design, the sensed stator power as a feedback.When the power exceeds the maximum
value, the reference speed must be reduced by the amount, K [53]. The new reference
speed Ωt ref new is given by:

Ωt ref new =Ωt ref −ΔΩt ð25Þ

4.2 Control of the Battery (ESS) Side Converter (BSC)

This converter is controlled in order to maintain the DC bus voltage close to its
nominal value (800 v) at different operating conditions (wind speed). Since
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increasing the output power (grid side) rather than the input power to DC-link
capacitor (PMSG side) causes a decrease of the ESS voltage and vice versa.

More detailed, Fig. 12, describes the control strategy for the bidirectional
DC/DC converter; this controller uses contains two cascaded control loops. The
outer control loop compares the measured DC link voltage VDC link to the desired
VDC ref DC link in order to generate the reference battery current IDC ref for the inner
control loop. The current IDC ref is compared to the measured battery current IDCmes

in order to generate the gating signals for the IGBT switches. The DC/DC converter
charges or discharges the battery according to the duty ratio of the two IGBT
switches [54].

The algorithm presented below in Fig. 13 describes excessively different oper-
ating modes (charging and discharging of the battery) in nominal and instantaneous
variations of the following variables (wind speed (T, N), rated power the turbine
(N), the supply and demand side of the network power and the power extracted).

Fig. 12 Control block
diagram of the Battery ESS

Fig. 13 Flowchart of the charges or discharges cycle in the battery (ESS) side converter
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This algorithm is based on the following criteria:
If the power captured by the WT is less than the nominal power of the turbine

can select the operating region of the turbine/PMSG by MPPT. In the same case,
the power extracted for each wind speed is compared with the power specified by
the demand: this means the way of power between the battery and the PMSG
(charge or discharge).Otherwise, if the speed exceeds the nominal wind, the
operating area of the turbine is moved to the region III, mode 2 (power limitation)
and therefore the power produced to be always constant where the load and the
system of discharge VDC are imposed by the amount of power required at the
electrical grid.

4.3 Control of the Grid Side Converter (GSC)

The main purpose of the GSC is to provide and organized the power required by the
user, regardless of the operating conditions. In this part, a new DPC using SOSMC
approach and space vector modulation SVM is proposed and realized for the control
of the both active and reactive power. Figure 14 shows the schematic diagram of
the control of GSC. In the first one, the external loop for controlling the DC link
uses a voltage BESS with a bidirectional DC/DC converter is designed.In the task
of the second one, internal loop contains an active and reactive power controller
based on nonlinear controller SOSMC. The approach of the DPC-SOSMC-SVM
strategy directly generates the reference voltage references for the grid side con-
verter unlike the conventional vector method [35].

Fig. 14 Control block diagram of grid side converter “DPC-SVM based on SOSMC”
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Improved control performance and quality of the power fed to the grid requires
advanced and robust control techniques to overcome various constraints. For this
reason, a common practice in the treatment of problems of control of the flow of
active and reactive power of the grid is to use a conventional linearization approach
[55, 56]. However, due to the invisibility of the system uncertainties and external
disturbances marring the process control such methods come at the price of poor
system performance and low reliability.

To consider these problems, a nonlinear and robust control is required [10, 57–68].
Many methods can be used for this purpose, the SMC control is shown to be partic-
ularly suitable for non-linear systems, offering effective structures [11, 21, 22, 30–32].

• High order sliding mode controller design

The phenomenon of chattering is the major disadvantage to the practical imple-
mentation of a control by sliding mode of order 1. An effective method to deal with
this problem is to use a higher order control by sliding mode that generalizes the
idea of simple order sliding mode. A command of nth order is the nth derivatives to
mitigate the effect chattering keeping the main properties of the original approach as
the robustness [69].

The active and reactive grid powers are derived as follows:

Pg = 3
2VdgIdg

Qg = 3
2VdgIqg

�
ð26Þ

The optimal reactive power is set to zero to ensure a unity power factor operation of
this system: Qgref =0 whereas the optimal active power Pgref can be written
depending on the needs of the grid. The block diagram of the SOSMC applied to
the grid side converter is illustrated in Fig. 14.

Let us introduce the following sliding surface for the active and reactive powers
pg,Qg.

sP =Pgref −Pg

sQ =Qgref −Qg

�
ð27Þ

After the first derivation of the both surfaces:
Then we will have

sṖ = Ṗgref −
1.5Vdg

Lg
−Vdg −RgIdg + LgwgIqg

� �
− Vid

Lg

sQ̇ =Q ̇gref −
1.5Vqg

Lg
−Vqg −RgIqg − LgwgIdg

� �
− Viq

Lg

(
ð28Þ

If we define the functions and GP and GQ as follows:

GP =Pġref −
1.5Vdg

Lg
−Vdg −RgIdg +LgwgIqg

� �
GQ =Q ̇gref −

1.5Vqg

Lg
−Vqg −RgIqg −LgwgIdg

� �
(

ð29Þ
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After the second derivation of the both surfaces:
Thus we have

s ̈P = Ġp − V ̇id
Lg

sQ̈ = ĠQ − V ̇iq
Lg

8<
: ð30Þ

The control algorithm proposed which is based on super twisting algorithm
(ST) has been introduced by Levant [31]. The second order sliding mode controllers
contain two parts:
where

Vref
P =VN

p +Veq
p

VN
p =w1 +w2

(
ð31Þ

with

ẇ1 = − k1sign sPð Þ
w2 = −M1

ffiffiffiffiffiffiffi
sPj jp

signðsPÞ
�

ð32Þ

and

Vref
Q =VN

Q +Veq
Q

VN
Q =w1 +w2

(
ð33Þ

ẇ1 = − k2sign sQð Þ
w2 = −M2

ffiffiffiffiffiffiffiffi
sQ
�� ��q

sign sQð Þ

(
ð34Þ

In order to ensure the convergence of the sliding manifolds to zero in finite time,
the constants ki and Mi can be chosen as follows [70].

ki >
μi
Lg

Mi ≥ μi ki + μið Þ
L2g ki − μið Þ

Gij j< μi; i=1, 2

8><
>:

5 Results and Discussion

The performance of the proposed supervisory control system has been evaluated by
numerous simulations (in several areas and in different conditions) using Matlab–
Simulink package, under a wind speed profile of (11.75 m/s) mean value as
depicted in Fig. 15. The system parameters are given in the Appendix A.
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It is noted that in Fig. 15 at nominal wind speed of 11.75 m/s, the WT operates
in MPPT Mode (Region II) and the MPPT controller proposed in this paper
(FLC-SOSMC-MPPT) ensures the optimum monitoring point of maximum power
with high reliability while maintaining the power coefficient to maximum
Cpmax =0.48 with an optimum value of λopti =8.1, as shown in Figs. 16a, b.

Figure 16c, d, describes the performance of the control law (FLC-SOSMC-
MPPT), i.e., the quality of tracking the maximum power point, and one can see the
corresponding distribution of the operating point around ORC. From this Figure: a
smooth tracking with a high efficiency of the power extracted, with minimal
mechanical stress on the turbine shaft.

To protect the wind power generation system (turbine/PMSG) above the rated
wind speed (region III), a control mode 2nd was applied (power limitation).
Consequently the Cp and λ are reduced. The curve shown in Fig. 16c, demon-
strating the reliability and the ability to adapt (switching) of the Control & System
in (parts II and III).

The fuzzy logic controller is used to find the optimum speed Ωtopti that follows
the maximum power point to variable wind speedsin mode 1(tracking mode), also
this Ωtopti is used as the input to generate a new reference speed Ωt ref new in con-
trolmode 2 (power limitation mode).

On the other hand, a SOSMC algorithm is then applied to control the speed of a
PMSG, the robustness of which is investigated and finally the performance of the
SOSMC is compared with that obtained by a FOSMC as illustrated in Fig. 17a. In
both regions, two controllers are able to track the desired slip trajectory precisely
which is an inherent advantage of the sliding mode controller. However, the result
using conventional FOSMC shows some chattering in all the response as illustrated
in Fig. 17a, this phenomenon is highly undesirable as it may lead to vibration on
the mechanical part (high-frequency mechanical efforts on the turbine shaft).
The SOSMC, on the other hand, get rid of the chattering phenomenon, giving a
smooth tracking trajectory and lower slip error and lower control effort as it can be
seen in Fig. 17b, where the value for the speed error is limited by a maximum value
[0.1, −0.1] rad/s (negligible error).

0 2 4 6 8 10 12 14 16 18 19

7

10

11.75

14

Time [s]

w
in

d 
sp

ee
d[

m
/s

]

Limatation Mode Nominal Wind

Fig. 15 Wind speed variation in (m/s)

Robust Adaptive Supervisory Fractional Order Controller … 185



2 4 6 8 10 12 14 16 18 19
0,2

0,3

0,48

Time [s]

P
ow

er
 C

oe
ffi

ci
en

t C
p

Cp 
max Cp

MPPT mode

Limtation mode

2 4 6 8 10 12 14 16 18 19
3

5

8.1

Time [s]

Ti
p 

sp
ee

d 
ra

tio
 λ

λopti λ

0 2 4 6 8 10 12 14 16 18 19
0

2000

4000

6000

8000

Time [s]

P
ow

er
 [W

]  

Pt nomi Pt extra

0 10 20 30 40 50 60 70 80 90
0

2000

4000

6000

Rotor speed Ω  [rad/s]

W
in

d 
po

w
er

 [W
]

Real ORC (MPPT Mode)

Nominal point (11.75m/s)

Real Limitation Power Mode

(a)

(b)

(c)

(d)

Fig. 16 MPPT FLC-SOSMC, a Power coefficient Cp, b The tip speed ratio λ, c The power
generation in both region (II, III) and d The real power characteristic of the WT used in this study
(II and III)

186 B. Meghni et al.



Under instantaneous variation for the (generated power, power demand), the
battery is used to stabilize the voltage at the PMSG DC bus, the second main task of
the control system is to maintain the DC Link voltage close to its nominal value
800 V, as it can be seen in Fig. 18a, by designing a battery DC/DC power converter
for this purpose. The active power response, measured at different points of the
hybrid system (in region II and III, is shown in Fig. 18b, c.

The requested power (demand power ‘reference’) is initially set to 3000 W in the
first (5 s). A t = 5 s, the demand is increased to a value up to 4000 W t = 10 s and
after she continues to increase to 7000 W during the period of [10–14 s], finally an
decreased of 5000 W has been produced in the rest of the simulation time [14–19 s]
as shown in Fig. 18b, c. In all cases we take into consideration the operating area of
WT (2 or 3).

1. From [0 s to 5 s] as shown in Fig. 18b, c. The active power demanded by the
grid is Pdeman =3000W . During this period, the reference power is lower than
the available wind power [Pdeman <Pextr]. At that moment, a battery recharging
cycle begins and lasts until the SOC achieved 50.048% or higher. During the
recharging time, the battery is charged by the power surplus provided by the
PMSG. The advantage of storing excess wind power has become an important
option in the field of WTs.
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2. For instance we find, from [5 s s to 10 s], the active power demanded by the
grid is Pdeman =4000W(a predetermined value) which is “lower or higher” the
available wind power as presented in Fig. 18b, c. For this reason: First, when the
active power demanded by the grid is higher [Pdeman >Pextr], than the available
wind power(extracted power), the battery supplements (discharging mode) the
output of PMSG in order to provide the demanded power until it reaches its
lowest recommended SOC of 50.03%. Then, when the power demanded by the
grid is lower [Pdeman <Pextr], below the available wind power, this power surplus
provided by the PMSG is also stored in the battery (charging mode), enabling
SOC to increase (50.044%) as observed in Fig. 18d.

3. During the period [10–14 s] where the demand for power is 7000 W maximum,
the latter is greater than the power extracted by the turbine ½Pdeman > Pextr� as
observed in Fig. 18b, c. In this case, the ESS provides electrical power (dis-
charging mode) to compensate for lack of the power supplied to the power grid
(the gap between demand and production). During this period, a battery dis-
charge cycle begins and lasts until 14 s, and a remarkable decrease in SOC
continues up to 49.97% as illustrated in Fig. 18d. This hybrid system is able to
work in unpredictable conditions and overcoming various constraints. Accord-
ing to Fig. 18b, c.

4. The same phenomena of the first interval [5–10 s] is similar to the during the
time interval [14–19 s]. During the period [14–19 s] where the demand for
power is 5000 W, the latter or lower is greater than the power extracted by the
turbine Pdeman > <Pextr as observed in Fig. 18b, c. In this case, the ESS
(provides/absorbed) electrical power (discharging/charging) to compensate or
store for (lack/surplus) of the power (supplied to the grid/provided by the
PMSG).

This hybrid system is able to work in unpredictable conditions (region II or III)
and overcoming various constraints. According to Fig. 18d. In the previous four
steps, SOS rapidly varied to achieve every moment the cycles of charge/discharge
of the battery.

In the last one: active and reactive power control has been achieved by direct
power control DPC-SVM.

To assess the merit of our choice SOSMC, a comparison was made between four
types of controllers (PI conventional, fractional PI, FOSMC and SOSMC), these
controllers are compared with a separately [(PI/PIfractional) (FOSMC/SOSMC) and
(PIfractional/SOSMC)] for objective to clarify their efficacy compared to our selec-
tion. Other shares, these results are supported by a harmonic analysis of each
regulator as shown in Table 2.

Table 2 A comparison of the four Controller types

Controller types PI (conventional) PI (fractional) FOSMC SOSMC

Current THD 3.96% 0.93% 3.86% 0.59%
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Figures 19 and 20 display the (active and reactive powers) on the grid side,
controlled via the proposed DPC-SVM and used four different types of regulators.

From Figs. 19a and 20a, both types of controllers (SOSMC) and (FOSMC) are
able to track the desired slip trajectory precisely but, under the super twister control
algorithm, the (direct, quadrature currents and active, reactive powers grid) track
their reference values with chattering-free smooth profiles. By comparison, the
result of the conventional FOSMC shows some chattering in all the responses. This
phenomenon is highly undesirable as it may produce current distortion. The reac-
tive power is set at zero for unity power factor is shown in Fig. 20a.
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While comparatively, the Figs. 19b and 20b describes these quantities (grid
active and reactive power) under the conventional PI and PI fractional. From these
figures we have observed that the two controllers are able to track the desired
reference precisely with a clear priority to the PI fractional controller.

Figures 19c and 20c assembly the two best resulting regulators (SOSMC,
PIfractional) in “Figs. 19a, b and 20a, b”, this comparison are given a general way the
reason and contentment of our choice of the (SOMSC) controller. After these
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Figures we have observed a high efficiency and smooth to track the desired slip
trajectory precisely unlike the “PIfractional”.

The results obtained in this section show a good performance to follow the
desired path (active and reactive power) compared to conventional regulators such
as (FOSMC, PI and PIfractional).
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Figure 21 illustrates a sample waveform of the grid current for phase A. To see
the efficiency of the proposed control strategy (SOMSC), a Harmonic frequency
spectrum and total harmonic distortion (THD) of the grid current controlled by
(SOSMC, FOSMC, PIfrac and PI) controllers are shown in Figs. 22, 23, 24, and 25a,
b. The THD shown in Figs. 23(b) and Fig. 25b are bigger and reaches 3.86% and
3.96% respectively.

That means, some unwanted distortion in the current waveform as shown in
Figs. 23a and 25a, it means a poor quality of the power delivered to the power grid
when we use (PIconventional and FOSMC). Compared with (SOSMC/PIfractional)
Where is reduced THD (0.59% and 0.93%) respectively as summarized in Table 2.
In the proposed control system (SOMSC), we noticed that the distortion of the
electrical current no longer appears Fig. 22a. This efficiency is due to the elimi-
nation by filtering odd harmonics Fig. 22b.

In Table 2, A comparison of the four strategies of controller types is summa-
rized. The current THD shows that an important improvement in terms of odd
harmonic mitigation (3–11). It can be concluded that the proposed method
(SOMSC) can filter more than 80 and 40% of single harmonics compared to
classical methods (FOSMC, PIconventional) and (PIfractional).
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6 Conclusion and Future Work

Wind speed is often considered as one of the most difficult parameters to estimate
because of its intermittent, which can deviate quickly. Although much effort has
been dedicated to make WTs in wide operating range (to include more than one
region at the same time).

In this chapter, a novel supervisory control scheme has been proposed to opti-
mize the power management of a hybrid renewable energy system in the both
regions (II and III) and to evaluate the coordinate operation of a grid connected of
PMSG wind turbine and BESS.

In comparison with the existing works, our proposed architecture of control
systems (supervisory control) provide to the WTs a freedom to work in a wide
range with high protection in rated wind speed. The effectiveness of the control
architecture has been checked by simulation study and compared to conventional
control techniques, the proposed configuration considered was tested under varied
operating conditions.

The significance of this work is indicated below:

a. System Design

• The WT proposed in this study is (Horizontal-axis/variable speed wind
turbine/three-bladed).

• Due to its simple structure with characteristic self-excitation that can work
with. The PMSG is nowadays a popular choice for variable speed WTs.

• Due to the inherently sporadic nature of the wind which can deviate quickly.
The utilization of the BESS in WT increases the safe operation of the power
grid, balance the supply and demand sides.

• The three converters are controlled precisely to mitigate grid power distur-
bances and ensure the maximum power extraction for each wind speed.

b. control system Design

• The generator side controller used to track and limited the maximum power
generated from WT by controlling the rotational speed of the PMSG in the
(region II and III) for this reason a FLC-SOSMC were designed to extract the
maximum aerodynamic power up to the rated power (tracking mode),
regardless of the turbine power-speed slope. If the wind power exceeds the
rated value, the system switches to power regulation mode, via the power
limitation circuit (limitation power mode).

• The battery DC/DC converter is controlled to maintain the DC bus voltage at
its rated value. The ESS provides or stores the power mismatching between
the actual wind power and grid demand. As a result, the hybrid system is
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able to provide constant power to the grid as the incoming wind varies and
increases the power transferred to the grid when required.

• In the grid side converter, the described DPC-SVM based on high order
SMC has been designed to control the active and reactive powers exchanged
between the PMSG and the grid. On the other hand, the grid power quantities
provided by the SOSMC strategy shows smooth waveforms with good
tracking indices and small THD compared with (FOSMC, PIconventional and
PIfractional).

c. Results judged (obtained contribution)

• It can be judged that the proposed structure (VSWT, PMSG, BESS) along
with the integrating of the supervisory control strategy based on robust
nonlinear techniques (FLC, SOSMC) turns the classical system into an
enhanced stable, reliable and effective hybrid system with uniform protec-
tion, ensuring the power quality and management in the system under var-
ious operating conditions (region II and III).

d. Future work

• In future research, the authors wish to explore a methodology to store excess
wind power when the BESS is in a state of saturation, there is more wind
power and a decrease in demand.

• In addition, the present work focused on the implementation of efficient and
robust control system for power management (limitation, tracking and
delivered) by the wind hybrid system. To evaluates this work, the experi-
mental results are necessary (test bench).

• We also plan to implement this method on several proposed wind turbines
(small wind farm with high power), with optimization in untreated Points by
others as: intelligent control for limiting the power in rated wind speeds or
above par and controlling the AC/DC/AC.

Appendix A

Tables 3, 4 and 5.
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Table 3 Nomenclatures and Abbreviations

Nomenclature

Vsd, Vsq, Isd, Isq The direct and quadrature components of the PMSG voltages and currents
respectively

Rs, Ld, Lq The resistance, the direct and the quadrature inductance of the PMSG
respectively

ψm The magneticflux
Te The electromagnetic torque
ωe The electrical rotational speed of PMSG
np The number of pole pairs

Vdg, Vqg, Idg, Iqg The direct and quadrature components of the grid voltages and currents
respectively

Vdi, Vqi The inverter voltages components

Rg, Ldg, Lqg The resistance, the direct and quadrature grid inductance respectively

Vbat, E0 The battery rated voltage and the internal EMF respectively
Ebatdisch, Ebatcharg The discharge and charge voltage respectively

Ri, Q The internal resistance and the battery capacity respectively

it, i* The actual battery charge and the filtered current respectively

BESS The battery energy storage system
WTG The wind turbine generator
MPP The maximum power point
FLC The fuzzylogiccontroller
SOSMC The second order sliding mode control
FOSMC The first order sliding controller
WECS The wind energy conversion system
PMSG The permanent magnetsynchronousgenerators
MPPT The Maximum Power Point Tracking
ESS The energystorage system
TSR The tip speed ratio
HCS The hill-climbsearching
MSC The machine sideconverter
GSC The gridsideconverter
BSC The batterysideconverter
WT The wind turbine

Table 4 PMSG parameters Nominal power P= 6 kw

Stator resistance Rs = 0.4 Ω
Direct stator inductance Ld = 8.4 mH
Stator inductance quadrature Lq = 8.4 mH

Field flux ψfl = 0.4 wb
Number of pole pairs np = 12

Inertia Jt = 0.089 kg.m2

Friction f = 0.0016 N.m
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Abstract This chapter presents a novel Robust Adaptive Interval Type-2 Fuzzy
Logic Controller (RAIT2FLC) equipped with an adaptive algorithm to achieve
synchronization performance for fractional order chaotic systems. In this work, by
incorporating the H∞ tracking design technique and Lyapunov stability criterion, a
new adaptive fuzzy control algorithm is proposed so that not only the stability of
the adaptive type-2 fuzzy control system is guaranteed but also the influence of the
approximation error and external disturbance on the tracking error can be attenuated
to an arbitrarily prescribed level via the H∞ tracking design technique. The main
contribution in this work is the use of the interval type-2 fuzzy logic controller and
the numerical approximation method of Grünwald-Letnikov in order to improve the
control and synchronization performance comparatively to existing results. By
introducing the type-2 fuzzy control design and robustness tracking approach, the
synchronization error can be attenuated to a prescribed level, even in the presence
of high level uncertainties and noisy training data. A simulation example on chaos
synchronization of two fractional order Duffing systems is given to verify the
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1 Introduction

Fractional calculus deals with derivatives and integrations of arbitrary order [41, 53]
and has found many applications in many fields of physics, applied mathematics and
engineering. Moreover, many real-world physical systems are well characterized by
fractional order differential equations, i.e., equations involving both integer and non
integer order derivatives [25]. It is observed that the description of some systems is
more accurate when the fractional derivative is used. For instance, electrochemical
processes and flexible structures are modeled by fractional order models [38, 41].
Nowadays, many fractional-order differential systems behave chaotically, such as
the fractional-order Chua system [52], the fractional-order Duffing system [2], the
fractional-order Lu system, the fractional order Chen system [51].

Recently, due to its potential applications in secure communication and control
processing, the study of chaos synchronization in fractional order dynamical sys-
tems and related phenomena is receiving growing attention.

The synchronization problem of fractional order chaotic systems was first
investigated by Deng and Li who carried out synchronization in the case of the
fractional Lü system. Afterwards, they studied chaos synchronization of the Chen
system with a fractional order in a different manner [18, 19].

Fuzzy logic controllers are generally considered applicable to plants that are
mathematically poorly understood and where experienced human operators are
available for providing a qualitative “rule of thumb”.

Based on the universal approximation theorem [11, 60] (fuzzy logic controllers
are general enough to perform any nonlinear control actions) there is rapidly
growing interest in systematic design methodologies for a class of nonlinear sys-
tems using fuzzy adaptive control schemes. An adaptive fuzzy system is a fuzzy
logic system equipped with a training algorithm in which an adaptive controller is
synthesized from a collection of fuzzy IF–THEN rules and the parameters of the
membership functions characterizing the linguistic terms in the IF–THEN rules
change according to some adaptive law for the purpose of controlling a plant to
track a reference trajectory.

In this work we consider Type-2 fuzzy sets which are extension of type-1 fuzzy
sets introduced in the first time by Zadeh [66]. Basic concepts of type-2 fuzzy sets
and systems were advanced and well established in [9, 20, 45, 54]. In 1998, Mendel
and Karnik [20] introduced five different kinds of type reduction methods which are
extended versions of type-1 defuzzification methods. Qilian and Mendel [54]
proposed an efficient and simplified method for computing the input and antecedent
operations for interval type-2 fuzzy logic controller (IT2FLC) using the concept of
upper and lower Membership functions. Karnik and Mendel developed the centroid
of an interval type-2 fuzzy set (IT2FS), not only for an IT2FS and IT2FLCs but also
for general type-2 FSs and introduced an algorithm for its computation. Mendel [17,
44] described important advances for both general and interval type-2 fuzzy sets
and systems in 2007. Because of the calculation complexity especially in the type
reduction, use of IT2FLC is still controversial. Seplveda et al. showed that using
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adequate hardware implementation, IT2FLC can be efficiently utilized in applica-
tions that require high speed processing. Thus, the type-2 FLS has been success-
fully applied to several fuzzy controller designs [12, 17, 36, 42, 62].

In this paper, by incorporating the H∞ tracking design technique [35, 38, 43] and
Lyapunov stability criterion, a new adaptive fuzzy control algorithm is proposed so
that not only the stability of the adaptive type-2 fuzzy control system is guaranteed
but also the influence of the approximation error and external disturbance on the
tracking error can be attenuated to an arbitrarily prescribed level via the H∞

tracking design technique. The proposed design method attempts to combine the
attenuation technique, type-2 fuzzy logic approximation method, and adaptive
control algorithm for the robust tracking control design of the nonlinear fractional
order systems with a large uncertainty or unknown variation in plant parameters and
structures.

This chapter is organized as follows: Sect. 2 presents a brief review on the state
of the art for the addressed problem. In Sect. 3, an introduction to fractional
derivatives and its relation to the approximation solution will be addressed and the
basic definition and preliminaries for fractional order systems. A description of the
interval type-2 fuzzy logic is presented in Sect. 4. Section 5 and 6 generally pro-
pose adaptive type-2 fuzzy robust H∞ control of uncertain fractional order systems
in the presence of uncertainty and its stability analysis. In Sect. 7, application of the
proposed method on fractional order expression chaotic systems (Duffing oscillator)
is investigated. Finally, the simulation results and conclusion will be presented in
Sect. 8.

2 Related Work: A Brief Review

Fractional adaptive control is a growing research topic gathering the interest of a
great number of researchers and control engineers [32]. The main argument of this
community is the significant enhancement obtained with these new real-time
controllers comparatively to integer order ones [53].

Since the pioneering works of Vinagre et al. [59] and Ladaci and Charef [26,
27], an increasing number of works are published focusing on various fractional
order adaptive schemes such as: fractional order model reference adaptive control
[13, 27, 63], fractional order adaptive pole placement control [34], fractional
high-gain adaptive control [29], fractional multi-model adaptive control [33], robust
fractional adaptive control [30], fractional extremum seeking control [48], Frac-
tional IMC-based adaptive control [31], fractional adaptive sliding mode control
[15], fractional adaptive PID control [28, 47] … etc.

The study and design of fractional adaptive control laws for nonlinear systems is
also an actual leading research direction [5, 6, 50, 57]. Many control strategies have
been proposed in literature to deal with the control and synchronization problems of
various nonlinear and chaotic fractional order systems [1, 55]. Nonlinear fractional
adaptive control is wide meaning concept with many different control approaches
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such as: fractional order adaptive backstepping output feedback control scheme
[64], adaptive feedback control scheme based on the stability results of linear
fractional order systems [49], Adaptive Sliding Control [36, 65], Adaptive syn-
chronization of fractional-order chaotic systems via a single driving variable [67],
H∞ robust adaptive control [22, 37], etc. Whereas, in order to deal with nonlinear
systems presenting uncertainties or unknown model parameters, many authors have
used fuzzy systems [3, 7, 8, 58]. In this work, we use Type-2 Fuzzy logic systems
[4, 40].

3 Basic Preliminaries for Fractional Order Systems

Fractional calculus (integration and differentiation of arbitrary ‘fractional’ order) is
an old concept which dates back to Cauchy, Riemann Liouville and Leitnikov in the
19th century. It has been used in mechanics since at least the 1930s and in elec-
trochemistry since the 1960s. In control field, several theoretical physicists and
mathematicians have studied fractional differential operators and systems [14, 53].

Fractional order operator is a generalization of integration and differentiation to
non integer order fundamental operators, denoted by aDα

t , where a and t are the
limits of the operator. This operator is a notation for taking both the fractional
integral and functional derivative in a single expression defined as [22–24, 51]:

aDq
t =

dq
dtq q>0
1 q=0Rt
a

dτð Þ− q q<0

8>><
>>:

ð1Þ

There are some basic definitions of the general fractional integration and dif-
ferentiation. The commonly used definitions are those of Riemann–Liouville and
Grünwald-Letnikov [29, 30, 56].

The Riemann-Liouville (R-L) integral of order λ > 0 is defined as:

IλRLf ðtÞ=D− λf ðtÞ =
1

ΓðλÞ
Z t

0

ðt− τÞλ− 1f ðτÞdτ ð2Þ

and the expression of the R-L fractional order derivative of order μ > 0 is:

Dμ
RLf ðtÞ=

1
Γðn− μÞ

dn

dtn

Z t

0

ðt− τÞn− μ− 1f ðτÞdτ ð3Þ
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with Г(.) is the Euler’s gamma function and the integer n is such that (n − 1) < μ < n.
This fractional order derivative of Eq. (3) can also be defined from Eq. (2) as:

Dμ
RLf ðtÞ=

dn

dtn
Iðn− μÞ
RL f ðtÞ

n o
ð4Þ

The Grünwald–Letnikov definition of the fractional derivative, is expressed as:

GL
t0 Dq

t f ðtÞ= lim
n→ 0

1
hn

∑
t− q
h½ �

j=0
ð− 1Þ j q

j

� �
f ðt− jhÞ ð5Þ

where t− q
h

� �
indicates the integer part and ð− 1Þ j q

j

� �
are binomial coefficients

cðqÞj j=0, 1, . . .ð Þ.
The calculation of these coefficients is done by formula of following recurrence:

cðqÞ0 = 1, cðqÞj = ð1− 1+ q
j

ÞcðqÞj− 1

The general numerical solution of the fractional differential equation:

GL
a Dq

t yðtÞ= f ðyðtÞ, tÞ,

can be expressed as follows:

y tkð Þ= f y tkð Þ, tkð Þhq − ∑
k

j= v
c qð Þ
j y tk− j

� �
. ð6Þ

The Fundamental Predictor-Corrector Algorithm
The fractional Adams-Bashforth-Moulton method used to approximate the

fractional order integral operator was introduced in [14]. In fact it is more practical
to use a numerical fractional integration method to compute fractional order inte-
gration or derivation as the approximating transfer functions are of relatively high
orders.

Consider the differential equation

DαyðxÞ= f x, yðxÞð Þ ð7Þ

with initial conditions:

yðkÞð0Þ= yðkÞ0 , k=0, 1, . . . ,m− 1, ð8Þ

where m= ½α� and the real numbers yðkÞð0Þ= yðkÞ0 , k=0, 1, . . . ,m− 1, are assumed
to be given.
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The basics of this technique take profit of an interesting analytical property: the
initial value problem (4), (5) is equivalent to the Volterra integral equation

yðxÞ= ∑
½α�− 1

k=0
yðkÞð0Þ x

k

k!
+

1
ΓðαÞ

Z∞

0

ðx− tÞα− 1f t, yðtÞð Þdt ð9Þ

Introducing the equispaced nodes tj = jh with some given h>0 and by applying
the trapezoidal integral technique to compute (6), the corrector formula becomes

yhðtn+1Þ= ∑
½α�− 1

k=0

tn+1

k!
yðkÞð0Þ+ hα

Γðα+2Þ f tn+1, yPh ðtn+1Þ
� �

+
hα

Γðα+2Þ ∑
n

j=0
aj, n+1f tj, yhðtjÞ

� � ð10Þ

where

a0, n+1 = nα+1 − ðn− αÞðn+1Þα

aj, n+1 = ðn− j+2Þα+1 + ðn− jÞα+1 − 2ðn− j+1Þα+1,

ð1≤ j≤ nÞ
ð11Þ

and yPh ðtn+1Þ is given by,

yPh ðtn+1Þ= ∑
½α�− 1

k=0

tn+1

k!
yðkÞð0Þ+ 1

ΓðαÞ ∑
n

j=0
bj, n+1f tn, yhðtjÞ

� � ð12Þ

where now

bj, n+1 =
hα

α
ðn+1− jÞα − ðn− jÞαð Þ ð13Þ

This approximation of the fractional derivative within the meaning of Grünwald-
Letnikov is on the one hand equivalent to the definition of Riemann-Liouville for a
broad class of functions [46], on the other hand, it is well adapted to the definition
of Caputo (Adams method) because it requires only the initial conditions and has a
physical direction clearly. In this work, the Grünwald–Letnikov method is used for
numerical evaluation of the fractional derivative.

4 Interval Type-2 Fuzzy Systems

A brief overview of the basic concepts of Interval type-2 fuzzy systems is presented
in the following [21, 37, 40]. If we consider a type-1 membership function, as in
Fig. 1, then a type-2 membership function can be produced. In this case, for a
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specific value x′ the membership function ðu′Þ, takes on different values, which are
not all weighted the same, so we can assign membership grades to all of those
points.

A type-2 fuzzy set in a universal set X is denoted as Ã and can be characterized
in the following form:

Ã=
Z

x∈X

μA ̃ðx, vÞ x̸,∀v∈ Jx⊆½0, 1� ð14Þ

μÃðxÞ=
Z
v∈ Jx

fxðvÞ v̸,

in which 0≤ μÃðxÞ≤ 1.
The 2-D interval type-2 Gaussian membership function with uncertain mean

m∈ ½m1,m2� and a fixed deviation σ is shown in Fig. 2.
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Fig. 1 Example of a type-1
membership function

Fig. 2 Interval type-2
membership function
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μÃðxÞ=exp −
1
2

x−m
σ

� 	2

 �

A fuzzy logic system (FLS) described using at least one type-2 fuzzy set is called
a type-2 FLS. Type-1 FLSs are unable to directly handle rule uncertainties, because
they use type-1 fuzzy sets that are certain. On the other hand, type-2 FLSs, are
useful in circumstances where it is difficult to determine an exact numeric mem-
bership function, and there are measurement uncertainties [40].

A type-2 FLS is characterized by IF–THEN rules, where their antecedent or
consequent sets are now of type-2. Type-2 FLSs, can be used when the circum-
stances are too uncertain to determine exact membership grades such as when the
training data is affected by noise. Similarly, to the type-1 FLS, a type-2 FLS
includes a fuzzifier, a rule base, fuzzy inference engine, and an output processor, as
we can see in Fig. 3 for a Mamdani-model.

An IT2FS is described by its Lower μ
Ã
ðxÞ and Upper μ̄A ̃ðxÞ membership func-

tions. For an IT2FS, the footprint of uncertainty (FOU) is described in terms of
lower and upper MFs as:

FOU Ã
� �

= ⋃
x∈X

μ
Ã
ðxÞ, μÃ̄ðxÞ

h i

The type-reducer generates a type-1 fuzzy set output, which is then converted in
a numeric output through running the defuzzifier. This type-1 fuzzy set is also an
interval set, for the case of our FLS we used center of sets type reduction, yðXÞ
which is expressed as [10] :

yðXÞ= ½yl, yr�

where yl =
∑M

i=1 f
i
l y

i
l

∑M
i=1 f

i
l

and yr =
∑M

i= 1 f
i
r y

i
r

∑M
i=1 f ir

Fig. 3 Type-2 fuzzy logic system
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The values of yl and yr define the output interval of the type-2 fuzzy system,
which can be used to verify if training or testing data are contained in the output of
the fuzzy system. This measure of covering the data is considered as one of the
design criteria in finding an optimal interval type-2 fuzzy system. The other opti-
mization criteria, is that the length of this output interval should be as small as
possible.

From the type-reducer, we obtain an interval set y Xð Þ, to defuzzify it we use the
average of yl and yr, so the defuzzified output of an interval singleton type-2 FLS is
[10]:

yðXÞ= 1
2

� �
yl + yrð Þ ð15Þ

where yl and yr are the left most and right most points of the Interval type-1 set:

yl = ∑
M

i=1
yilξ

i
l = ξTl θl and yr = ∑

M

i=1
yirξ

i
r = ξTr θr

y Xð Þ= ðyl + yrÞ ̸2= ξTθ ð16Þ

where ξT = 1 2̸ð Þ½ξTr ξTl � and θ= ½θr θl�

5 H∞ Adaptive Interval Type-2 Fuzzy Control Scheme

Consider an incommensurate fractional order SISO nonlinear dynamic system of
the form [22, 37, 40]

x q1ð Þ
1 = x2
⋮
xðqn− 1Þ
n− 1 = xn
x qnð Þ
n = f X, tð Þ+ g X, tð Þu+ d tð Þ
y= x1

8>>>><
>>>>:

if q1 = q2 = . . . = qn = q the above system is called a commensurate order system,
then equivalent form of the above system is described as:

x nqð Þ = f X, tð Þ+ g X, tð Þu+ d tð Þ
y= x1

�
ð17Þ

where X = x1, x2, . . . , xn½ �T = x, xðqÞ, xð2qÞ, . . . , xð n− 1ð ÞqÞ� �T
is the state vector,

f X, tð Þ and g X, tð Þ are unknown but bounded nonlinear functions which express
system dynamics, dðtÞ is the external bounded disturbance and uðtÞ is the control
input. The control objective is to force the system output y to follow a given

Robust Adaptive Interval Type-2 Fuzzy Synchronization … 211



bounded reference signal yd, under the constraint that all signals involved must be
bounded. For simplicity, in this paper adaptive IT2FLC for a commensurate order
system is proposed only, since the stability condition for the incommensurate order
system can be converted to that for the commensurate order system [21, 24, 40].

To begin with, the reference signal vector yd and the tracking error vector e will
be defined as

y
d
= yd, y

ðqÞ
d , . . . , yððn− 1ÞqÞ

d

h iT
∈Rn

e= y
d
− y= e, eðqÞ, . . . , eð n− 1ð ÞqÞ

h iT
∈Rn,

eðiqÞ = yðiqÞd − yðiqÞ.

Let k= k1, k2, . . . , kn½ �T ∈Rn to be chosen such that the stable condi-
tionjargðeigðAÞÞj> qπ 2̸ is met, where 0< q<1 and eigðAÞ represents the eigen-
values of the matrix A given in (23).

If the functions f X, tð Þ and g X, tð Þ are known and the system is free of external
disturbance d, then the control law of the certainty equivalent controller is obtained
as [38, 61].

ueq =
1

gðX, tÞ − f X, tð Þ+ y nqð Þ
d + kTe

h i
. ð18Þ

Substituting (19) into (18), we have:

eðnqÞ + kne n− 1ð Þq + . . . + k1e=0

which is the main objective of control, lim
t→∞

e tð Þ=0.

However, f X, tð Þ and g X, tð Þ are unknown and external disturbance d tð Þ≠ 0, the
ideal control effort (18) cannot implemented. We replace f X, tð Þ and g X, tð Þ by the

interval type-2 fuzzy logic system f Xjθf
� 	

and g Xjθg
� 	

in a specified form as (16,

17), i.e.,

f Xjθf
� 	

=
fl + fr
2

=
1
2

ξTflθfl + ξTfrθfr

� 	
= ξTf θf

g Xjθg
� 	

=
gl + gr

2
=

1
2

ξTglθgl + ξTgrθgr

� 	
= ξTg θg

ð19Þ

where θf = θfr θfl
� �

and θg = ½ θgr θgl �.
Here the fuzzy basis function ξ Xð Þ= 1

2

� �
ξ
r

ξ
l

h i
= ξf Xð Þ= ξg Xð Þ depends on

the type-2 fuzzy membership functions and is supposed to be fixed, while θf and θg
are adjusted by adaptive laws based on a Lyapunov stability criterion.
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Therefore, the resulting control effort can be obtained as [24, 39],

u=
1

g Xjθg
� 	 − f Xjθf

� 	
+ y nqð Þ

d + kTe− ua
h i

so

u=
1

1
2 ξTglθgl + ξTgrθgr

� 	 −
1
2

ξTflθfl + ξTfrθfr

� 	
+ y nqð Þ

d + kTe− ua


 �
ð20Þ

where the robust compensator ua is employed to attenuate the external disturbance
and the fuzzy approximation errors.

By substituting (20) into (17), we have

x nqð Þ = f X, tð Þ+ g X, tð Þu+ d tð Þ+ g Xjθg
� 	

u− g Xjθg
� 	

u

= f X, tð Þ− 1
2

ξTflθfl + ξTfrθfr

� 	
 �
+ y nqð Þ

d + kTe− ua

+ g X, tð Þ− 1
2

ξTglθgl + ξTgrθgr

� 	
 �
u+ dðtÞ

ð21Þ

then

e nqð Þ = f X, tð Þ− 1
2

ξTflθfl + ξTfrθfr

� 	
 �
+ kTe− ua + d tð Þ

+ g X, tð Þ− 1
2

ξTglθgl + ξTgrθgr

� 	
 �
u=0

ð22Þ

Equation (22) can be rewritten in state space representation as:

eðqÞ =Ae+B
1
2

ξTflθfl + ξTfrθfr

� 	
− f X, tð Þ+ ua +

1
2

ξTglθgl + ξTgrθgr

� 	�


− g X, tð Þu− dðtÞÞ�
ð23Þ

where A=

0 1 0 0 ⋯ 0 0
0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ ⋮ 1

− k1 − k2 − k3 − k4 ⋯ − kðn− 1Þ − kn

2
66664

3
77775, B=

0

0

⋮
0

1

2
6666664

3
7777775
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The optimal parameter estimations θ*f and θ
*
g are defined:

θ*f = arg min
θf εΩf

½sup
xϵΩx

f Xjθf
� 	

− f X, tð Þ
 � ð24Þ

θ*g = arg min
θgεΩg

½sup
xϵΩx

g Xjθg
� 	

− g X, tð Þ
 � ð25Þ

where Ωf ; Ωg andΩx are constraint sets of suitable bounds on θf , θg and x respec-

tively and they are defined as Ωf = θf
 θf ≤Mf

n o
, Ωg = θg

 θg ≤Mg

n o
et

Ωx = xj xj j≤Mxf g where Mf , Mg et Mx are positive constants.
By using (24)–(25), an error dynamic Eq. (23) can be expressed as:

eðqÞ =Ae+B f Xjθf
� 	

− f Xjθ*f
� 	

+ ua + g xjθg
� 	

− g Xjθ*g
� 	� 	

u− d tð Þ
h i

ð26Þ

Also, the minimum approximation error is defined as:

ω1 = g Xjθ*g
� 	

− g X, tð Þ+ f Xjθ*f
� 	

− f X, tð Þ− d tð Þ ð27Þ

If θf = θf − θ*f and θg = θg − θ*g, (27) can be rewritten as:

eðqÞ =Ae+B ξðXÞTθf + ξðXÞTθgu+ ua +ω1

h i
ð28Þ

Following the preceding consideration, the following theorem can be obtained
[35].

6 Stability Analysis

Theorem 1 Consider the commensurate fractional order SISO nonlinear dynamic
system (17) with control input (20), if the robust compensator ua and the type-2
fuzzy-based adaptive laws are chosen as

ua = −
1
r
BTPe ð29Þ

θðqÞfr = − r1ξfrB
TPe ð30Þ
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θðqÞfl = − r2ξflB
TPe ð31Þ

θðqÞgr = − r3ξgrB
TPeu ð32Þ

θðqÞgl = − r4ξglB
TPeu ð33Þ

where θðqÞf = θðqÞfr θðqÞfl

h i
, θðqÞg = θðqÞgr θðqÞgl

h i
, ξT

f
= 1

2

� �
ξT
fr

ξT
fl

h i
and

ξT
g
= 1

2

� �
ξT
gr

ξT
gl

h i
where r>0, ri >0, i=1∼ 4, and P=PT >0 is the solution of the following

Riccati-like equation :

PA+ATP+Q−PB
2
r
−

1
ρ2

� �
BTP=0 ð34Þ

where Q=QT >0 is a prescribed weighting matrix. Therefore, the H∞ tracking
performance can be achieved for a prescribed attenuation level ρ which satisfies
2ρ2 ≥ r and all the variables of the closed-loop system are bounded.
In order to analyze the closed-loop stability, the Lyapunov function candidate is
chosen as

VðtÞ= 1
2
eT tð ÞPe tð Þ+ 1

2r1
θ ̃Tfr

� 	
θf̃r
� �

+
1
2r2

θ ̃Tfl
� 	

θf̃l
� �

+
1
2r3

θ ̃Tgr
� 	

θg̃r
� �

+
1
2r4

θ ̃Tgl
� 	

θg̃l
� � ð35Þ

Taking the derivative of (36) with respect to time, we get

V qð Þ tð Þ= 1
2

e qð Þ tð Þ
� 	T

Pe tð Þ+ 1
2
eT tð ÞPe tð Þ

+
1
r1

θ ̃Tfr
� 	

θð̃qÞfr

� 	
+

1
r3

θ ̃Tgr
� 	

θð̃qÞgr

� 	
+

1
r2

θ ̃Tfl
� 	

θð̃qÞfl

� 	
+

1
r4

θ ̃Tgl
� 	

θð̃qÞgl

� 	

=
1
2

Ae+B ξTθf̃ + ξTθg̃u+ ua +ω1
� �� �T

Pe+
1
2
eT tð ÞP Ae+B ξTθf̃

��

+ ξTθg̃u+ ua +ω1
��

+
1
r1

θ ̃Tfr
� 	

θ ̃ qð Þ
fr

� 	
+

1
r3

θ ̃Tgr
� 	

θ ̃ qð Þ
gr

� 	
+

1
r2

θ ̃Tfl
� 	

θ ̃ qð Þ
fl

� 	

+
1
r4

θ ̃Tgl
� 	

θ ̃ qð Þ
gl

� 	

ð36Þ
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obtained after a simple manipulation

VðqÞðtÞ= 1
2
eTðAT +PAÞe+ eTPBua + eTPBω1 + fθTfr½ξfrBTPe

+
1
r1
ðθðqÞfr Þ�g+ θTfl ξflB

TPe+
1
r2
ðθðqÞfl Þ


 �� �
+ fθTgr½ξgrBTPeu

+
1
r3
ðθðqÞgr Þ�g+ θTgl ξglB

TPeu+
1
r4
ðθðqÞgl Þ


 �� �
ð37Þ

From (29) the robust compensator ua, and the fuzzy-based adaptive laws are
given (30)–(33), V qð Þ tð Þ in (37) can be rewritten as:

V qð Þ tð Þ= −
1
2
eTQe−

1
2ρ2

eTPBBTe+ eTPBω1

= −
1
2
eTQe−

1
2

1
ρ
BTPe− ρω1

� �T 1
ρ
BTPe− ρω1

� �
+

1
2
ρ2ωT

1ω1

≤ −
1
2
eTQe+

1
2
ρ2ωT

1ω1

ð38Þ

Integrating (38) from t = 0 to t = T, we have

V Tð Þ−V 0ð Þ≤ −
1
2
∫
T

0
eTQedt +

1
2
ρ2ωT

1ω1

� �
dt ð39Þ

Since V Tð Þ≥ 0, (39) can be rewritten as follows:

∫
T

0
eTQedt ≤ eT 0ð ÞPe 0ð Þ+ θT 0ð Þθ 0ð Þ

+ ρ2 ∫
T

0
ωT
1ω1dt

ð40Þ

Therefore, the H∞ tracking performance can be achieved. The proof is
completed.

7 Simulation Results

The chaotic behaviors in a fractional order modified Duffing system studied
numerically by phase portraits are given by [16, 22]. In this section, we will apply
our adaptive fuzzy H∞ controller to synchronize two different fractional order
chaotic Duffing systems.
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Consider the following two fractional order chaotic Duffing systems [23]:

• Drive system:

Dqy1 = y2
Dqy2 = y1 − 0.25y2 − y31 + 0.3cosðtÞ

�
ð41Þ

• Response system:

Dqx1 = x2
Dqx2 = x1 − 0.3x2 − x31 + 0.35 cos tð Þ+ u tð Þ+ dðtÞ

�
ð42Þ

where the external disturbance dðtÞ=0.1sinðtÞ. The main objective is to control
the trajectories of the response system to track the reference trajectories obtained
from the drive system. The initial conditions of the drive and response systems
are chosen as:

x1ð0Þ
x2ð0Þ


 �
=

0
0


 �
and

y1ð0Þ
y2ð0Þ


 �
=

0.2
− 0.2


 �
, ðrespectivelyÞ.

The simulations results for fractional order q=0.98 are illustrated as follows:
The Fig. 4 represents the 3D phase portrait of the drive and response systems

without control input. It is obvious that the synchronization performance is bad
without a control effort supplied to the response system.

The different values of 0< q<1 are considered in order to show the robustness
of the proposed adaptive fuzzy H∞ control with our law.

According to the two state output ranges, the membership functions of xi, for

f Xjθf
� 	

and g Xjθg
� 	

are selected as follows:
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Fig. 4 3D phase portrait of
the drive and response
systems without control input
(Before the control input)
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μFliðxiÞ= exp − 0.5 xi −x
0.8

� 	2

 �

i=1, 2 and l=1, . . . , 7 where x ̄ is selected from

the interval − 1, 2½ �. (Figure 5)
From the adaptive laws (30)–(33) and the robust compensator (29), the control

law of the response system can be obtained as:

u=
1

ξTðXÞθg
− ξTðXÞθf + y nqð Þ

d + kTe− ua
h i

ð43Þ

According to Theorem 1, the controlled error system can be stabilized, i.e., the
master system (41) can synchronize the slave system (42) with the control law (20).

The Figs. 6, 7, 8, 9, 10 represent the different simulation results of the drive and
response systems with control input (43) for the fractional order q = 0.98.

Fig. 5 Interval Type-2 Fuzzy
sets Gaussian with uncertain
standard deviation σ
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Fig. 6 3D phase portrait,
synchronization performance,
of the drive and response
systems
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It is clearly seen from Fig. 10 that the tracking errors e1(t) and e2(t) converge
both to zero in less than 5 s. Synchronization is perfectly achieved as shown by the
state trajectories in Figs. 7 and 8.

The control signal can be observed in the Fig. 9. It indicates that the obtained
results are comparable with the solution presented in [23], but fluctuations of the
control function are much smaller.

In order to have a quantitative comparison between both methods, a white
Gaussian noise is applied to the measured signal with various signals to Noise and
Integral of Absolute Error (IAE) is selected as the criterion.

The results in Table 1 clearly indicate that the performance of our proposed
type-2 fuzzy controller surpasses the type-1fuzzy method [22]. As can be seen in
high SNRs both of the methods have similar performance, however in low SNRs
type-1 controller [22] has large IAEs while our proposed controller has still low
IAEs. Despite the presence of additive noises in measured signals, the obtained
simulation results illustrate the robustness of the proposed control strategy and the
utility of introducing type-2 fuzzy modelization approach.
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Fig. 10 Errors signals: e1&e2

Table 1 IAE comparison between AT2FC and AT1FC

q Noises
0.1sint 0.3sint 0.5sint 0.7sint

q = 0.89 T1-Fuzzy 3.3787 3.4135 3.4481 3.4725
T2-Fuzzy 3.3720 3.4044 3.4348 3.4607

q = 0.98 T1-Fuzzy 3.9251 4.0016 4.0731 4.1320
T2-Fuzzy 3.8879 3.9163 3.9418 3.9607
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8 Conclusion

In this paper a novel adaptive interval type-2 fuzzy using H∞ control is proposed to
deal with chaos synchronization between two different uncertain fractional order
chaotic systems. The use of interval type-2 helps to minimize the added compu-
tational burden and hence renders the overall system to be more practically
applicable.

Based on the Lyapunov synthesis approach, free parameters of the adaptive
fuzzy controller can be tuned on line by the output feedback control law and
adaptive laws. The simulation example, chaos synchronization of two fractional
order Duffing systems, is given to demonstrate the effectiveness of the proposed
methodology. The significance of the proposed control scheme in the simulation for
different values of q is manifest. Simulation results show that a fast synchronization
of drive and response can be achieved and as q is reduced the chaos is seen reduced,
i.e., the synchronization error is reduced, accordingly.

Future research efforts will concern observer-based nonlinear adaptive control of
uncertain or unknown fractional order systems. The problem of online identification
and parameters estimation for such systems is also a good challenge. Another topic
of interest is the design of new robust adaptive control laws for the class of frac-
tional nonlinear systems based on various control configurations such as: (Internal
model control) IMC, (Model reference Adaptive Systems) MRAS and the Strictly
Positive realness property.
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Optimal Fractional Order Proportional—
Integral—Differential Controller
for Inverted Pendulum with Reduced
Order Linear Quadratic Regulator

M.E. Mousa, M.A. Ebrahim and M.A. Moustafa Hassan

Abstract The objective of this chapter is to present an optimal Fractional Order
Proportional—Integral-Differential (FOPID) controller based upon Reduced Linear
Quadratic Regulator (RLQR) using Particle Swarm Optimization (PSO) algorithm
and compared with PID controller. The controllers are applied to Inverted Pendu-
lum (IP) system which is one of the most exciting problems in dynamics and
control theory. The FOPID or PID controller with a feed-forward gain is respon-
sible for stabilizing the cart position and the RLQR controller is responsible for
swinging up the pendulum angle. FOPID controller is the recent advances
improvement controller of a conventional classical PID controller. Fractional-order
calculus deals with non-integer order systems. It is the same as the traditional
calculus but with a much wider applicability. Fractional Calculus is used widely in
the last two decades and applied in different fields in the control area. FOPID
controller achieves great success because of its effectiveness on the dynamic of the
systems. Designing FOPID controller is more flexible than the standard PID con-
troller because they have five parameters with two parameters over the standard PID
controller. The Linear Quadratic Regulator (LQR) is an important approach in the
optimal control theory. The optimal LQR needs tedious tuning effort in the context
of good results. Moreover, LQR has many coefficients matrices which are designer
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dependent. These difficulties are talked by introducing RLQR. RLQR has an
advantage which allows for the optimization technique to tune fewer parameters
than classical LQR controller. Moreover, all coefficients matrices that are designer
dependent are reformulated to be included into the optimization process. Tuning the
controllers’ gains is one of the most crucial challenges that face FOPID application.
Thanks to the Metaheuristic Optimization Techniques (MOTs) which solves this
dilemma. PSO technique is one of the most widely used MOTs. PSO is used for the
optimal tuning of the FOPID controller and RLQR parameters. The control problem
is formulated to attain the combined FOPID controllers’ gains with a feed forward
gain and RLQR into a multi-dimensions control problem. The objective function is
designed to be multi-objective by considering the minimum settling time, rise time,
undershoot and overshoot for both the cart position and the pendulum angle. It is
evident from the simulation results, the effectiveness of the proposed design
approach. The obtained results are very promising. The design procedures are
presented step by step. The robustness of the proposed controllers is tested for
internal and external large and fast disturbances.

Keywords Fractional order Proportional-Integral-Derivative ⋅ Inverted pendu-
lum ⋅ Linear quadratic regulator ⋅ Particle swarm optimization technique ⋅
Proportional-Integral-Derivative ⋅ Reduced linear quadratic regulator ⋅ Robust-
ness verification

1 Introduction

The Inverted Pendulum (IP) System is a classical benchmark for the control
designers. The IP system is a physical system consists of pendulum carried by a cart
and swinging around the fixed pivot [1]. The concept of the IP system is used in
many modern technological applications like the landing of aircraft, space satellites,
launching and guidance of the missile operations, spacecraft, statistics applications,
and biomechanics [2]. Also, IP system is used on a large scale in many areas and
applications including medical, transportation, robotics, aerospace, and military [3].
The IP system is considered the heart of many industrial applications. Some of these
industrial applications are control of our ankle joint during quiet standing up,
Segway’s, quad rotor helicopters and walking robots [4]. IP system is the subject of
an interesting from the standpoint of control because of their intrinsic nonlinearity
[5]. It is used to illustrate the ideas in the nonlinear control and control of the
chaotic system. The evaluation of various control theories is based on the inverted
pendulum system.

IP system is a physical system consists of a bar which is usually made of
aluminum and swinging around the fixed pivot. This fixed pivot will be installed on
the vehicle which moves in the horizontal direction only. The center of gravity of
the normal pendulum is under the axis of rotation and therefore, his condition is
stable when it is directed to the bottom while the center of gravity of the inverted
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pendulum is over its axis of rotation. In the inverted pendulum problem, the pen-
dulum tried to be in a vertical position to be heading up. The swinging up of the
pendulum makes the situation of the system abnormal. So, the permanent controller
should be applied to the system to keep the pendulum vertically upright. The
nonlinearity and inherently instability of the system adding complexity to the
problem especially when the proposed controllers will apply to the nonlinear sys-
tem without any linearization [6]. Fast swinging up of the pendulum angle and
stabilizing the cart at a certain position is required. The proposed controllers should
be robust against the various system disturbances. Different control techniques are
applied on the inverted pendulum to show the performance and effectiveness of the
techniques [7].

In the IP problem, a lot of control techniques are proposed to make the pendulum
balance in inverted to be heading up. Since this situation is abnormal, the status of
“unbalanced” Basically, a permanent effort is needed to keep it this way, at any
moment this effort is stopped, the system will collapse but return again to put the
natural stability beyond. Normally be inaugurated with a turnover point centered on a
moving vehicle accidentally. If the pendulum starts from a vertical position without
applying any control strategy, it will begin to fall off and the cart will move in the
opposite direction which means that any change in pendulum moving will effect on
the cart and vice versa. The desired objectives of inverted pendulum control are:

(a) Maintaining the pendulum vertically upright.
(b) Stabilizing the cart.

The major objectives of the chapter are:

1 Modeling the IP system and presenting the linearized model at the
certain operating point.

2 Design Reduced Linear Quadratic Regulator (RLQR) with minimum
tuning parameters.

3 Design HybridPID controller in conjunction with feed forward and
RLQR.

4 Design Hybrid Fractional Order PID controller with RLQR.
5 Develop multi-objective function which guarantees overall system sta-

bility in terms of minimum overshoot, settling time and steady state error
for the both outputs of the IPsystem.

6 Propose Particle Swarm Optimization (PSO) technique for tuning the IP
control system parameters.

7 Verify the robustness of the proposed controllers on changing the IP
system parameters.

8 Validate the effectiveness of the proposed controllers using various types
of disturbances.

The rest of the chapter is organized as follows: Sect. 2 illustrates a comprehensive
literature survey of all related works. Section 3 formulates the dynamic model of a
simple IP system. In Sect. 4, different classical and metaheuristic optimization
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techniques are used for optimality regions classification and verification. Addi-
tionally, the selection criteria of the most robust controller is reported. Simulation
results are considered in Sect. 5. The conclusions and the perspectives are drawn in
Sect. 6. Finally, the future work is illustrated in Sect. 7.

2 Related Work

There are many types of control techniques that are applied on the IP which has two
outputs: position and angle. The presented methods for IP control are classified into
seven groups:

• Classical methods such as PID controllers [8].
• Adaptation methods [9].
• Artificial methods such as fuzzy logic control [10], neural network [11], Genetic

Algorithm [12] and PSO [13].
• Hybrid control [14].
• Sliding mode control [15].
• Time optimal control [16].
• Predictive control [17].

Some of these techniques are applied for tuning the angle controller gains while the
position controller gains are constant. These strategies try to find the best gains to
achieve the desired angle response. After that, the same procedures are carried out
for tuning the position controller gains while maintaining the angle controller gains
constant. The old control strategies deal with the IP as a single input single output
system (SISO). In recent years, there are many control strategies deal with the IP as
Single Input Multi Output System (SIMO). Some of control techniques are applied
to the Inverted Pendulum system as follow:

Fuzzy Logic Controller

Fuzzy logic controller is used based on the single input rule modules. The input
terms of the fuzzy controller are: the angle, angular velocity of the pendulum, the
position and velocity of the cart and the output term is driving force. The authors in
[18] represented a nonlinear plant with a Takagi-Sugeno fuzzy model. Each control
rule is derived by using “parallel distributed compensation” in the controller design.
To solve linear matrix inequality problems, Convex programming techniques are
used as the control design problems can be reduced to LMI.

Lyapunov Approach

Lyapunov approach is used in PID adaptive control for self-tuning method for a
class of nonlinear control systems [19]. There are three PID control gains param-
eters are adjustable and updated online with a stable adaptation mechanism. By
introducing a supervisory control and a modified adaptation law with projection, the
stability of closed-loop nonlinear PID control system is analyzed. Finally; a
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tracking control of an inverted pendulum system is used to demonstrate the control
performance. Properties of simple strategies for swinging up an inverted pendulum
are discussed in [20]. It turns out that the inverted pendulum swing behavior
depends mainly on, the ratio of the maximum acceleration of the pivot to the
acceleration of gravity. There are great ideas to minimum time solutions by make a
comparison of energy-based strategies with minimum time strategy.

Energy Control Methods

In [21] generalized energy control methods are used to swing-up and stabilization of a
cart–pendulum system with some restriction such, cart track length and control force.
By using energy control principles, the pendulum is swung up to the upright unstable
equilibrium configuration with Starting from a pendant position. In order to prevent
the cart from going outside the limited length, an “energy well” must be built within
the cart track. When getting adequate amount of energy by the pendulum and main-
tained it, it goes into a “cruise” mode. Finally, the stabilizing controller is activated
around a linear zone about the upright configuration when the pendulum is closed to
the upright configuration. This way has workedwell both in simulation and a practical
setup and derived the conditions for stability by using the multiple Lyapunov func-
tions approach. The feedback of an inverted pendulum is not linear although inverted
pendulum is one of the typical examples of nonlinear control systems. A new method
to design back stepping-like controller is proposed by Saeki in [22]. By combining
Saeki’s method with the energy function method, produces a swing-up controller.
Firstly, to prevent the effect of the pendulum, the control input is given of the cart.
Secondly, design the input that guarantees the convergence of the acceleration of the
cart to the desired value. Thirdly, an energy function was used to design the swing-up
control law. The energy function-based controller is used to swing up the pendulum
and the potential function-based controllers used to stabilize the inverted pendulum.

Sliding Mode Control

In [15], the authors developed a Second-order sliding mode control synthesis for
under-actuated mechanical systems and operates it under uncertainty conditions.
The output is specified in such a way that the corresponding zero dynamics is
locally asymptotically stable in order to locally stabilize an under-actuated system
around an unstable equilibrium. And then, provide the desired stability property of
the closed-loop system by applying a quasi-homogeneous second-order sliding
mode controller, driving the system to the zero dynamics manifold in finite time
[23]. It does not rely on the generation of first-order sliding modes, although the
present synthesis exhibits an infinite number of switches on a finite time interval,
while providing robustness features similar to those possessed by their standard
sliding mode counterparts. The performance issues of the proposed method are
illustrated in numerical and experimental studies of a cart–pendulum system.

Optimal Control

Optimal control with time invariant nonlinear controller is presented in [24] for the
inverted pendulum, which is defined for all pendulum angles. The external field is
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calculated by solving the Euler–Lagrange equations backward in time. The
time-optimal feedback control that brings a pendulum to the upper unstable equi-
librium position is obtained in [25]. The technique is based on the maximum
principle and analytical investigations and numerical computations.

The nonlinear model predictive control is applied in [26] to an inverted pen-
dulum apparatus. A standard sequential quadratic programming approach is used to
solve non-convex constrained optimization problem involves 61-variables with
241-constraints.

In this chapter, a new objective function with new artificial intelligent based
technique for tuning the controllers’ gains of SIMO inverted pendulum system is
proposed. The difficulty of the proposed strategy comes from that any change in
angle will effect on the position and vice versa. The tuning process of FOPID
controller and RLQR is not aneasy task as there are five parameters for the FOPID
and two weighting matrices for RLQR. These gains directly affect the angle and cart
response so it is a complicated problem.

3 Mathematical Modeling

Modeling and control of the IP are the prerequisites of autonomous walking. The
primary approach to derive the model is the Euler-Lagrange approach. The IP is one
of the most difficult systems in control theory due to the non-linearity [27]. It is
inherently unstable system with single input and multi-outputs so applying classical
control methods did not lead to good results. If there is a stick on hand and the
objective is to make it always in a vertical position, it is needed to move the hand to
keep the stick in a vertical position. On the other hand, a force is applied to keep the
stick in a vertical position. Similarly in the control of inverted pendulum, a force is
applied to make the pendulum always upright vertical without any deviation about
zero. The IP system has two degrees of freedom of motions as shown in Fig. 1. The
first degree of freedom is the motion of the cart along the x-axis and the second

Fig. 1 Inverted pendulum
system modeling
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degree of freedom is the rotation of the pendulum aboutthex-zplane. The mathe-
matical model can be defined as, a set of mathematical equations representing some
of the phenomena in a way that gives insight into the origins and the consequences
of the behavior of the system. The more accurate the mathematical model is, the
more complex the equations will be. The mathematical model should be easy to
understand. So accuracy and the simplicity are the two main parameters that should
take into consideration while modeling. It can be seen that the equations describing
the system are non-linear. Taylor series expansion is used in order to obtain a linear
model to convert the non-linear equations to linear ones; finally, produce a linear
model that will be helpful in linear control design. The system has two equilibrium
points: one point is stable such as the pendant position and the other point is the
unstable equilibrium point such as the inverted position. For our purpose, the
second is required to make linearization to the model about it. So, a very small
deviation from the vertical is assumed.

The parameters of the IP system are illustrated in Table 1.
The IP System is nonlinear and inherently unstable system. The modeling

equations of the IP system are very important which allow the controller to stabilize
the cart position and swinging up the pendulum angle. The dynamic differential
equation of the system is derived according to the Euler-Lagrange equations. The IP
system is a highly coupling system as it not allowable to derive each output
equation individually. The Euler-Lagrange formula can derive the system as a
multi-outputs system and get the state-space representation of the system states.

3.1 Applying Lagrangian to Inverted Pendulum System

The following steps should be followed to put the IP system in Lagrangian formula
[28]:

(a) Obtain the kinetic and potential energies.
(b) Substitute in the Lagrangian formula L=K −P
(c) Find ∂L ∂̸q
(d) Find ∂L ∂̸q ̇ then find d

dt ð∂L∂q̇Þ.
(e) Solve the Euler-Lagrange equation with the generalized force d

dt ð∂L∂q ̇Þ− ∂L
∂q =Qq

Table 1 Inverted pendulum system parameters

Symbol Parameter Value Unit

M Mass of the cart 0.455 Kg
m Mass of the pendulum 0.21 Kg
l The distance from the pivot to the mass center of the pendulum 0.61/2 m
g The acceleration of gravity 9.8 m/s2
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where:

Qq The generalized forces
q The generalized coordinates

The nonlinear differential equations of the motion are as follow:

X ̈=
Fx −mg cos θ sin θ+mlθ

2
sin θ

M +m sin2 θ
ð1Þ

θ ̇=
ðM +mÞg sin θ−mlθ

2
sin θ cos θ−Fx cos θ

Ml+ml sin2 θ
ð2Þ

Here, the states of the system are defined as the following to represent the state
space on the inverted pendulum:

X1 =X ̸X2 =X ̇ ̸X3 = θ ̸X4 = θ;

where:

X The position of the cart that move along the x-axis
X ̇ The velocity of the cart that moves along x-axis
θ The angle position from the vertical position
θ The velocity of the pendulum that swings along Z-axis

When the system is linearized, the state space representation could easily be
obtained as:

x1̇
x2̇
x3̇
x4̇

2
664

3
775=

0 1 0 0
0 0 − 4.5231 0
0 0 0 1
0 0 46.9609 0

2
664

3
775

x1
x2
x3
x4

2
664

3
775+

0
2.1978

0
− 7.2059

2
664

3
775F ð3Þ

y=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

X1

X2

X3

X4

2
664

3
775+

0
0
0
0

2
664

3
775FX ð4Þ

4 The Proposed Control Techniques:

The proposed control techniques for the IP system in this chapter are:

• Linear Quadratic Regulator.
• Proportional Integral Derivative Controller.
• Fractional Order Proportional Integral Derivative Controller.
• Particle Swarm Optimization based PI/RLQR and FOPID/RLQR.
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(a) Linear Quadratic Regulator

Given a linear time-invariant state-space model of the system:

x ̇=Ax+B ð5Þ

y=Cx+Du ð6Þ

The LQR is used to minimize the following cost function [29]:

J =
1
2

Z∞

0

½xTQx+ uTRu�dt ð7Þ

where:
Q and R are weighting matrices which are selected by the designer.

This selection process depends on the experience of the designer which in turn is
a tedious effort in multi-dimensions problems. In LQR, the following Riccati
equation should be solved [29]:

PA+ATP−PBRTBTP+Q=0 ð8Þ

The matrix P is obtained by solving the above equation so the controller gain can
be calculated according to Eq. (9) as explained in [14]:

K =R− 1BTP ð9Þ

The Q and R matrices are the main design parameters which greatly affect on the
controller gain. In this chapter; PSO technique is used to get Q and R matrices
according to specific constraints.

(b) Proportional Integral Derivative Controller

The proportional-integral-derivative (PID) controller is used in most control sys-
tems. It consists of three gains: proportional gain (Kp), integral gain (Ki) and
derivative gain (Kd). Each of the PID controller gains has an action on the error.
The error is the difference between a setpoint designed by the user and some
measured process variables. The continuous form of a PID controller, with input e
and output U, is presented in Eq. (10).

UPID =KPeðtÞ+Ki

Z t

0

eðtÞdt+Kd
d
dt
eðtÞ ð10Þ
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(c) Fractional Order PID Controller with Feed Forward Gain (FOPID)

Fractional Order Proportional-Integral-Derivative (FOPID) controller is the recent
advances improvement controller of a conventional classical PID controller [30].
The earliest studies concerning fractional calculus presented in the 19th century
made by some researchers such as Liouville (1832), Holmgren (1864), and Rie-
mann (1953) as introduced in [31], and others made some contributions in this field
in the past. Fractional-order calculus deals with non-integer order systems. It is the
same as the traditional calculus but with a much wider applicability. Fractional
Calculus is used widely in the last two decades and applied in different fields in the
control area.

Fractional order Proportional-Integral-Derivative controller achieves great suc-
cess because of its effectiveness on the dynamic of the systems. Designing FOPID
Controller is more flexible than the standard PID Controller because they have five
parameters with two parameters over the standard PID controller. The operator aD

q
t

is commonly used in fractional calculus which is defined as the differentiation
integration operator and discussed as presented in Eq. (11):

aD
q
i =

dq
dtq q>0
1 q=0Rt

a
ðdτÞ− q q<0

8>><
>>:

9>>=
>>;

ð11Þ

where:

q Fractional order (can be complex)
a and t The limits of operation

There are different definitions for fractional derivatives. The widely used defi-
nitions are as following:

(a) Grunwald–Letnikov definition.
(b) Riemann–Liouville definition.
(c) Caputo definition.

These definitions will be discussed below:

(a) Grunwald–Letnikov definition

The Grunwald–Letnikov definition is given by Eq. (12):

aDq
t f ðtÞ=

dqf ðtÞ
dðt− aÞq = lim

N→∞

t− a
N

h i
∑
N − 1

j=0
ð− 1Þ j q

j

� �
f ðt− j

t− a
N

h i
Þ ð12Þ

(b) Riemann–Liouville definition

The Riemann–Liouville definition is the easiest definition and defined as presented
in Eq. (13):
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aDa
t f ðtÞ=

dqf ðtÞ
dðt− aÞq =

1
Γðn− qÞ

dn

dtn

Z t

0

ðt− τÞn− q− 1f ðτÞdτ ð13Þ

where:

n The first integer (n− 1≤ q< n)
Γ

The Gamma function (ΓðzÞ= R∞
0
tz− 1e− tdt)

(c) Caputo definition

The Caputo definition is given by Eq. (14):

aDq
t f ðtÞ=

1
Γðm− qÞ

Rt
0

f ðmÞ

ðt− τÞq+1−m dτ m− 1< q<m

dm
dtm f ðtÞ q=m

8<
:

9=
; ð14Þ

where:
m: The first integer larger than q

Fractional differential equation simulation is not easy as compared with the ordinary
differential ones. Approximation and numerical methods are used for solving
fractional order differential equations Fractional order control calculus presented by
Tustin for the position control of massive objects a half century ago. Provided some
of the other researches were presented by Manabe around (1960). However, the
fractional-order control was not included in the control engineering because of the
major limitations of the possibilities and a lack of adequate amount of mathematical
knowledge and computational power at this. The researchers have concluded in the
past decades that the (fractional order differential equations) could model diverse
systems fuller than integer-order ones and provide an excellent instrument for
describing dynamic processes. In fractional order controllers, in addition to
parameters of the classical proportional-integral-derivative constants, there are two
extra parameters (λ and μ) as discussed in [32]. The parameters λ and μ are the order
of s in integral and derivative respectively so a specific algorithm is required to
make tuning for the parameters of the FOPID Controller. This will improve the
system performance in terms of flexibility and durability better than the classical
PID controller.

The differential equation of the FOPID controller is described as:

UðtÞ=KPeðtÞ+KiD− λeðtÞ+KdDμeðtÞ ð15Þ

After the introduction of this definition, it became easy to see that the classical
types of PID controller such as integral order PID, PI, or PD become special cases
of the most general fractional order PID controller. In other words, the FOPID
controller expands the integer-order PID controller from point to plane, as shown in
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Fig. 2. Taking Laplace Transform of Eq. (15), the controller expression in
s-domain is obtained as:

CðsÞ= UðsÞ
EðsÞ =KP +

Ki

sλ
+Kdsμ ð16Þ

(d) Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization technique devel-
oped by Eberhart and Kennedy in 1995 as given in [33]. The PSO algorithm is
inspired by social behavior of bird flocking, animal hoarding, or fish schooling.
In PSO, the potential solutions, called particles, fly through the problem space by
following the current optimum particles as explained in [34]. PSO has been suc-
cessfully applied in many areas [35, 36], [37] and [38, 39].

PSO simulates the behavior of bird flocking. When a group of birds flying in the
sky searching for the food. The food is located at the specific place through the
searching area but not all the birds know where the food is. Each bird estimates a
position of the food and the bird which have the least distance from the food
position, will follow the group. By iterations, the birds can reach to the food easily.
PSO started with random values for the particles and searching for the optimal
solution that achieves the minimum values of the objective functions. During each
iteration, the best value of the objective functions obtained in each iteration is called
local best (pbest). The best value of the local best values obtained through the
iterations is called global best (gbest) as explained in [40]. After finding the local
best and global best values in each iteration, the particles update its velocity and
position according to Eqs. (17)–(18) respectively as introduced in [33].

Fig. 2 Schematic view of PID for all probabilities
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Fig. 3 Flowchart of the PSO
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Vi
k+1 =wvik + c1r1ðpbesti − xikÞ+ c2r2ðgbest− xikÞ ð17Þ

xik+1 = xik + vik+1 ð18Þ

where:

vik Velocity of ith particle at kth iteration
xik Current position of the ith particle,
r1 and r2 random numbers generated uniformly between 0 and 1
c1 Self-confidence (cognitive) factor
c2 swarm confidence (social) factor
w is the inertia weight factor

The 1st term in Eq. (18) represents the effect of the inertia of the particle, the 2nd
term represents the particle memory influence, and the 3rd term represents the
swarm (society) influence. The flow chart of the procedure is illustrated in Fig. 3.
The velocities of the particles on each dimension may be clamped to a maximum
velocity Vmax, which the parameter is specified by the user. If the sum of the
accelerations causes the velocity on that dimension to exceed Vmax, then the
velocity is limited to Vmax.

4.1 Control Strategy:

Various control strategies are applied to the IP. PID controller is one of the most
popular ones among them. Some researches concentrate on swinging up the angle
in vertical upright without considering the dynamics of the cart. Employing two
PID controllers to stabilize the cart position and swinging up the pendulum angle
was presented in [41]. The tuning of two PID controllers is atedious effort by using
conventional methods. Recently, the artificial intelligent computational techniques
were used to tune the PID parameters. Linear Quadratic Regulator (LQR) is sug-
gested as a replacement for one of the two PID controllers [42] for swinging up the
pendulum angle. LQR design is depending on solving the Riccati equation. Riccati
equation is based on two designing matrices Q and R which have seventeen
parameters.

They must be positive definite and positive semi-definite respectively. Tuning of
seventeen parameters of LQR, feedforward gain, and in addition to the three
parameters of FOPID or PID controller is time-consuming and more complex. The
reduction of tuning parameters is one of the most important topics in the compu-
tational evolutionary field [43]. A reduced order LQR with FOPID and with PID
controller was presented in this chapter. In this proposed technique the tuning
parameters were reduced to be thirteen instead of twenty-one in the case of using
PID and reduced from twenty-three to fifteen in the case of using FOPID. It sim-
plifies the optimization problem and has a great effect on the computation time.
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Designing the gains of LQR is mainly depending on the choice of the Q and R
matrices which selected by the designer. This may take a long time to obtain the best
values of the two matrices parameters. Therefore, trial and error method is
time-consuming. The process of selecting the matrices becomes more difficult when
the system has a large dimension of system state space matrices. In this chapter, an
evolutionary optimization based RLQR controller, FOPID controller and compen-
sating gain (Kf ) design for an inverted pendulum system is introduced and compared
to another one with PID controller. The weighting matrices Q and R are positive
semi-definite and positive-definite respectively. This means that the term xTQx in
Eq. (7) is always positive or zero at each time t for all functions x(t). Furthermore,
the second term in Eq. (7) is always positive at each time t for all values of u(t).
Therefore J is always positive at each time. To ensure that the weighting matrices Q
and R are positive semi-definite and positive-definite respectively and to reduce the
dimension of Q and R matrices as explained in [43], it is assumed that:

Q=WT *W ð19Þ

R=VT *V ð20Þ

where:

W amatrixof m * n dimension
V matrix of k * l dimension

In this chapter, It is assumed that: m = 2, n = 4, k = 1, l = 1.
So the modified Riccati equation is given by Eq. (21):

PA+ATP−PBðVT *VÞTBTP+ ðWT *WÞ=0 ð21Þ

The proposed optimization technique is used to tune the W and V matrices to
guarantee that Q and R will be positive semi-definite and positive-definite
respectively. After that, the modified Riccati equation is solved to find the reduced
Linear Quadratic Regulator gains according to the following equation:

K = ðVT *VÞ− 1BTP ð22Þ

Hint: The modified Riccati equation can be solved in Matlab by using the
command lqr (A, B, Q, R)
where:
A and B: System State-space matrices.
Q and R: weighting matrices of RLQR gains.
K: RLQR gain (K = ½K1K2K3K4])

The four gains ðK1,K2,K3,K4Þ of the RLQR will be calculated. The states that
affect the pendulum angle are cart velocity, pendulum position, and the pendulum
velocity so the feedback from the angle output having these states. Hence, there is
no necessity to use the controller gain K1 which controls the cart position state.

Optimal Fractional Order Proportional—Integral—Differential … 239



4.2 Problem Formulation

The optimization problem has 15 variables ðKP,Ki,Kd , λ, μ,KF ,Wmatrix and
VmatrixÞ in the case of using FOPID controller. Also, it has 13 variables
ðKP,Ki,Kd,KF ,Wmatrix and VmatrixÞ in the case of using PID controller. PSO run
to find the best values for all variables that achieve the minimum Overshoot, Steady
state error and Settling Time. The difficulty of the algorithm is to achieve the
minimum Overshoot, Steady state error and settling time for both the cart position
and the pendulum angle at the same time as presented in Eq. (23). In this chapter,
the algorithm runs according to a Multi-objective function that has the constraints
which give an acceptable response to the two outputs.

The global _best_ Fitness is determined according to:

Global− best− fitness=minðess, o.s, TsÞ ð23Þ

Fig. 4 The flow chart of the proposed control strategy
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The steps of the proposed algorithm are illustrated in Fig. 4 as follow:

Step1: Generating the inverted pendulum system parameters.
Step2: Initialize values of PSO particles.
Step3: Solve Riccati equation.
Step4: Obtain the proposed RLQR gain.
Step5: Consider last three values only of the RLQR gain.
Step6: Run the Simulink model.
Step7: Computing the objective function of the algorithm.
Step8: Check achieving minimum value for steady state error, settling time and

overshoot.
Step9: Stop the algorithm when achieving minimization for the objective

function or exceeding the maximum iteration number.

5 Simulation and Results:

The IP is among the most difficult systems to control in the field of control engi-
neering. It consists of two control loops as presented in Fig. 5. For the purpose of
effective comparison, the system is equipped with FOPID with RLQR and PID with
RLQR. The first one is FOPID with RLQR (FOPID/RLQR) controller. The
(FOPID/RLQR) gains are responsible for stabilizing the cart and swinging up the
pendulum to be in a vertical position. The second one is PID with RLQR
(PID/RLQR) controller. In the first control loop there is a feedback signal from the
cart position output to the summing point with the input signal (unit step) then a
feed forward controller is applied. The feedback in the second control loop is
extremely different as the factors that effect on swinging up the angle are the speed
of the cart, the pendulum angle and the angular velocity of the pendulum. A feed-
forward estimator is used to estimate the speed of the cart and the angular velocity
of the pendulum as presented in the model as illustrated in Fig. 5. The estimations
for the speed and angular velocity are collected and then introduced into the
inverted pendulum. A feed forward amplifier (Kf) affects the dynamic response of
the inverted pendulum.

Fig. 5 Block diagram of inverted pendulum system
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The obtained gains from PSO are given in Table 2. The results are presented in
Figs. 6 and 7.

The RLQR gains for both FOPID/RLQR and PID/RLQR are Klqr = [−50.03
−353.79 −85.9] and Klqr=[−62.03 −251.45 −72.69] respectively.

The simulation results illustrate that both controllers had succeeded in stabilizing
the cart position and swinging up the pendulum angle effectively. Although,
FOPID/RLQR controller stabilized the angle of the inverted pendulum with less
over shoot and under shoot than PID/RLQR. Moreover, PID/RLQR controller
stabilized the inverted pendulum position with less settling time than
FOPID/RLQR. Tables 3 and 4 presented the output specifications of the cart
position and the pendulum angle respectively.

To ensure that the proposed controllers are robust, three robustness tests are
performed to measure the effectiveness of the system. The cases are as follows:

(a) Set points with different amplitudes.
(b) Increasing the step input with different ranges.
(c) System parametersperturbation.

Table 2 The obtained gains from PSO

KP Ki Kd λ μ Kf

FOPID/RLQR 10 19.4 −2.1 −1 1.6 55.7
PID/RLQR 10 0.009 −29.2320 1 1 −50

Fig. 6 System response of cart position with different controllers
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(a) Set points with different amplitudes

A series of set points as shown in Fig. 8 are applied to the IP system to validate the
effectiveness of the proposed controllers. It is evident from the results the effec-
tiveness of the controllers in stabilizing the cart position and swinging up the
pendulum angle. Both controllers are succeeded in stabilizing the cart position and
swinging up the pendulum angle as shown in Figs. 9 and 10.

Fig. 7 System response of pendulum angle with different controllers

Table 3 The output specifications of the cart position

Time response specifications PID/RLQR using PSO FOPID/RLQR using PSO

Rise time (s) 1.5638 2.58
Settling time (s) 2.7873 4.6234
Overshoot (%) 1.2% 0.00072206%
Undershoot (%) 2.4988% 0.8306%

Table 4 The output specifications of the pendulum angle

Time response specifications PID/RLQR using PSO FOPID/RLQR using PSO

Maximum value (rad.) 0.1109 0.0312
Minimum value (rad.) −0.0432 −0.0191
Settling time (s) 3.5758 5.6728
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Fig. 8 Series of set points with different amplitudes

Fig. 9 System cart position response of different controllers with series of set points
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Robustness Verification

(a) Increasing the step input with different ranges.

To measure the effectiveness of the system, the step input is increased with different
ranges. The controller which cannot withstand the increasing of the step input will
be not a robust controller design. Firstly, step input is increased with 10% then it
will be increased by 20%. Figures 11 and 12 illustrate dynamic responses of the cart
position and the pendulum angle respectively when the step input increased with
10%. It is noted that the two proposed controllers succeeded in keeping balance to
the inverted pendulum system when the step input increased with 10%.

The step input increased with 20% from its value. Although PID/RLQR con-
troller using PSO can stabilize the inverted pendulum system with 10% increasing
of the step input, it cannot keep the system in balance with 20% increase.
FOPID/RLQR controllers using PSO only the controller that succeeded in the
robustness test related to the increasing of the step input. Figure 13 presented the
response of the cart position. Figures 14 and 15 illustrated the pendulum angle
response in case of PID/RLQR and FOPID/RLQR using PSO.

(b) System parameters perturbation.

This test is one of the most important tests in checking the robustness of the inverted
pendulum system. In this test, inverted pendulum parameters are increased with 10%
from their values. Each controller will be applied to the nonlinear systemwith the new
parameters. If the FOPID/RLQR controller is succeeded in controlling the same
system with the new parameters, the controller will be very robust. Table 5 Illustrates

Fig. 10 System pendulum angle response of different controllers with series of set points
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the IP system parameters with 10% increasing. It is noted that the FOPID/RLQRusing
PSO can stabilize the cart position and swing up the pendulum angle while
PID/RLQR using PSO failed in balancing the system (Figs. 16, 17 and 18)

Fig. 12 Dynamic response of pendulum angel with 10% increase of step input

Fig. 11 Dynamic response of cart position with 10% increase of step input
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Fig. 14 Dynamic response of pendulum angel with 20% increase of step input using PID/RLQR
controller

Fig. 13 Dynamic response of cart position with 20% increase of step input
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Fig. 15 Dynamic response of pendulum angel with 20% increase of step input using
FOPID/RLQR controller

Table 5 Parameters of the inverted pendulum system with 10% increasing

System
parameters

Mass of the
cart (M)

Mass of the
pendulum (m)

Distance from the pivot to the mass
center of the pendulum (l)

Parameters
values

0.455 0.21 0.61/2

Increasing
with 10%

0.5005 0.2310 0.3355

Fig. 16 Dynamic response of cart position (10% Increase of System Parameters)
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Fig. 17 Dynamic response of pendulum angle using PID/RLQR controller (10% increase of
system parameters)

Fig. 18 Dynamic response of pendulum angle using FOPID/RLQR Controller (10% increase of
system parameters)
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6 Conclusion

In this chapter, a new effective control method integrating both PSO-based Frac-
tional Order Proportional Integral Derivative (FOPID) and Reduced Linear Quad-
ratic Regulator (RLQR) was introduced. This chapter demonstrates that PSO can
solve searching and tune the controller parameters more efficiently than conven-
tional ones. The inherited instabilities in the inverted pendulum were treated
effectively. Modeling of the inverted pendulum was performed using MATLAB.
The simulation was conducted in order to cover the full range of operating con-
ditions and severe disturbances. The application of the proposed control method
showed its ability to stabilize the inverted pendulum. The obtained results are very
promising.

7 Future Work

In control system engineering there are a lot of techniques for balancing the
inverted pendulum system. PSO is one of the evolutionary computational tech-
niques which proposed in this chapter. Balancing the inverted pendulum system
with other techniques is left as a future work. Adaptive control and using other
computational techniques can be used for this purpose.
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Towards a Robust Fractional Order PID
Stabilizer for Electric Power Systems

Magdy A.S. Aboelela and Hisham M. Soliman

Abstract This chapter deals with the design and application of a robust Fractional
Order PID (FOPID) power system stabilizer tuned by Genetic Algorithm (GA). The
system’s robustness is assured through the application of Kharitonov’s theorem to
overcome the effect of system parameter’s changes within upper and lower pounds.
The FOPID stabilizer has been simplified during the optimization using the Ous-
taloup’s approximation for fractional calculus and the “nipid” toolbox of Matlab
during simulation. The objective is to keep robust stabilization with maximum
attained degree of stability against system’s uncertainty. This optimization will be
achieved with the proper choice of the FOPID stabilizer’s coefficients (kp, ki, kd, λ,
and δ) as discussed later in this chapter. The optimization has been done using the
GA which limits the boundaries of the tuned parameters within the allowable
domain. The calculations have been applied to a single machine infinite bus (SMIB)
power system using Matlab and Simulink. The results show superior behavior of
the proposed stabilizer over the traditional PID.
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1 Intoduction

Low or negative damping in a power system can lead to spontaneous appearance of
large power oscillations. Several methods for increasing the damping in a power
system are available such as static voltage condenser (SVC), high voltage direct
current (HVDC) and power system stabilizer (PSS). Operating conditions of a
power system are continually changing due to load patterns, electric generation
variations, disturbances, transmission topology and line switching [18].

To enhance system damping; the generators are equipped with power system
stabilizers that provide supplementary feedback stabilizing signals in the excitation
systems [23]. The control strategy should be capable of manipulating the PSS
effectively. The PSS should provide robust stability over a wide range of operating
conditions, easy to implement, improves transient stability, low developing time
and least cost [18]. Various topologies and many control methods have been pro-
posed for PSS design, such as adaptive controller [33], robust controller [3, 8, 9],
extended integral controller [41], state feedback controller [19], fuzzy logic con-
troller [4] and variable structure controller [11]. In Kothari et al. [15] an adaptive
fuzzy PSS that behaves like a PID controller that provides faster stabilization of the
frequency error signal with less dependency on expert knowledge is proposed. In
Malik et al. [20], an indirect adaptive PSS is designed using two input signals, the
speed deviation and the power deviation to a neural network controller.

The robust PSS has the ability to maintain stability and achieves desired per-
formance while being insensitive to the perturbations. Among the various robust-
ness techniques, H∞ optimal control [5] and the structured singular value (SSV or
μ) technique [31] have received considerable attention. But, the application of μ
technique for controller design is complicated due to the computational require-
ments of μ design. Besides the high order of the resulting controller, also introduces
difficulties with regard to implementation [14, 34].

The H∞ optimal controller design is relatively simpler than the μ synthesis in
terms of the computational burden [5, 35, 36].

Since power systems are highly non-linear, conventional fixed-parameter PSSs
cannot cope with wide changes of the operating conditions. There are two main
approaches to stabilize a power system over a wide range of operating conditions;
namely adaptive control [1, 10, 37] and robust control [3, 19, 35]. However,
adaptive controllers have generally poor performance during the learning phase;
unless they are properly initialized. Successful operation of adaptive controllers
requires the measurements to satisfy strict persistent excitation conditions; other-
wise the adjustment of the controller’s parameters fail [2, 5, 13].

This chapter is organized as follow: In Sect. 2, we present a brief introduction to
fractional calculus and its approximation. Section 3 presents the GA. Section 4
illustrates the system under investigation. Section 5 presents the problem formu-
lation and the problem solution is discussed in Sect. 6. The design procedure of
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FOPID PSS is introduced in Sect. 7 with different loading and working conditions.
Section 8 and some references are given in Sect. 9. The chapter has three
Appendices A, B, and C.

2 Fractional Order PID Controller (PIkDd) Design

The PSS proposed in this chapter belongs to the class of robust controllers. It relies
on the Kharitonov’s theorem and GA optimization. The use of the Kharitonov’s
theorem enables us to consider a finite number of plants to be stabilized. The
resulting controller will be able to stabilize the original system at any operating
point within the design range. We propose to tune the controller’s parameters using
the genetic algorithm optimization technique [11, 12, 16].

Proportional-Integral-Derivative (PID) controllers are widely being used in
industries for process control applications. The merit of using PID controllers lie in
its simplicity of design and good performance including low percentage overshoot
and small settling time for slow industrial processes. The performance of PID
controllers can be further improved by appropriate settings of fractional-I and
fractional-D actions [24, 25, 28, 29].

In a fractional PID controller, the I- and D-actions being fractional have wider
scope of design. Naturally, besides setting the proportional, derivative and integral
constants Kp,Td and Ti respectively, we have two more parameters: the power of s
in integral and derivative actions-λ and δ respectively. Finding [kp, ki, kd, λ, and δ]
as an optimal solution to a given process thus calls for optimization on the
five-dimensional space. Classical optimization techniques cannot be used here
because of the roughness of the objective function surface. We, therefore, use a
derivative-free optimization, guided by the collective behavior of social swarm and
determine optimal settings of kp, ki, kd, λ, and δ [1].

The performance of the optimal fractional PID controller is better than its integer
counterpart. Thus the proposed design will find extensive applications in real
industrial processes. Traces of work on fractional PID are available in the current
literature [1, 7, 22, 24–29, 32] on control engineering. A frequency domain
approach based on the expected crossover frequency and phase margin is men-
tioned in Vinagre et al. [39]. A method based on pole distribution of the charac-
teristic equation in the complex plane was proposed in Petras [24]. A state-space
design method based on feedback poles placement can be viewed in Dorcak et al.
[7]. The fractional controller can also be designed by cascading a proper fractional
unit to an integer-order controller [26].

Moreover, researchers reported that controllers making use of factional order
derivatives and integrals could achieve performance and robustness results superior
to those obtained with conventional (integer order) controllers. The Fractional-order
PID controller (FOPID) controller is the expansion of the conventional PID con-
troller based on fractional calculus [1].
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The differential equation of the PIλDδ controller is described in time domain by

uðtÞ= kpeðtÞ+ kiD− λ
t eðtÞ+ kdDδ

t eðtÞ ð1Þ

The continuous transfer function of the PIλDδ controller is obtained through
Laplace transform as

GcðsÞ= kp + kis− λ + kdsδ ð2Þ

It is obvious that, the FOPID controller does not only need the design three
parameters kp, ki and kd, but also the design of two orders λ, δ of integral and
derivative controllers. The orders λ, δ are not necessarily integer, but any real
numbers [25].

3 Genetic Algorithm Operation

To illustrate the working process of genetic algorithm, the steps to realize a basic
GA are listed below [11, 12, 16]:

Step 1: Represent the problem variable domain as a chromosome of fixed length;
choose the size of the chromosome population N, the crossover proba-
bility Pc and the mutation probability Pm.

Step 2: Define a fitness function to measure the performance of an individual
chromosome in the problem domain. The fitness function establishes the
basis for selecting chromosomes that will be mated during reproduction.

Step 3: Randomly generate an initial population of size N: x1, x2, …, xN.
Step 4: Calculate the fitness of each individual chromosome: f(x1), f(x2), …,

f(xN).
Step 5: Select a pair of chromosomes for mating from the current population.

Parent chromosomes are selected with a probability related to their fit-
ness. High fit chromosomes have a higher probability of being selected
for mating than less fit chromosomes.

Step 6: Create a pair of offspring chromosomes by applying the genetic
operators.

Step 7: Place the created offspring chromosomes in the new population.
Step 8: Repeat Step 5 until the size of the new population equals that of initial

population, N.
Step 9: Replace the initial (parent) chromosome population with the new (off-

spring) population.
Step 10: Go to Step 4, and repeat the process until the termination criterion is

satisfied.
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A GA is an iterative process. Each iteration is called a generation. A typical
number of generations for a simple GA can range from 50 to over 500. A common
practice is to terminate a GA after a specified number of generations and then
examine the best chromosomes in the population. If no satisfactory solution is
found, then the GA is restarted [21, 31].

The GA moves from generation to generation until a stopping criterion is met.
The stopping criterion could be maximum number of generations, population
convergence criteria, lack of improvement in the best solution over a specified
number of generations or target value for the objective function.

Evaluation functions or objective functions of many forms can be used in a GA
so that the function can map the population into a partially ordered set. The
computational flowchart of the GA optimization process employed in the present
study is given in Fig. 1.

Fig. 1 The computational flowchart of the GA
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4 System Investigated

A single machine-infinite bus (SMIB) system is considered for the present inves-
tigations. A machine connected to a large system through a transmission line may
be reduced to a SMIB system, by using Thevenin’s equivalent of the transmission
network external to the machine. Because of the relative size of the system to which
the machine is supplying power, the dynamics associated with machine will cause
virtually no change in the voltage and frequency of the Thevenin’s voltage (infinite
bus voltage). The Thevenin’s equivalent impedance shall henceforth be referred to
as equivalent impedance (i.e. Re + jXe) [6].

Figure 2 shows the system under study which consists of a single machine
connected to an infinite bus through a tie-line. The machine is equipped with a static
exciter. The non-linear equations of the system are

ω ̇=
Tm −Te

M
δ ̇=ω0ω

E ̇′q =
1

T ′do
Efd −

xd + xe
xd′+ xe

E′q +
xd + x′d
xd′+ xe

V cosδ
� �

Eḟd =
1
TE

ðkEEref − kEVt −EfdÞ

ð3Þ

The synchronous machine is described as the fourth order model. The two-axis
synchronous machine representation with a field circuit in the direct axis but
without damper windings is considered for the analysis. The equations describing
the steady state operation of a synchronous generator connected to an infinite bus
through an external reactance can be linearized about any particular operating point
as follows:

Fig. 2 The block diagram for closed loop SMIB System
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ΔTm −ΔP=M
d2Δδ
dt2

ð4Þ

ΔP=K1Δδ+K2ΔE′q ð5Þ

ΔE′q =
K3

1 + sT ′d0K3
ΔEfd −

K3K4

1 + sT′d0K3
Δδ ð6Þ

ΔVt =K5Δδ+K6ΔE′q ð7Þ

The synchronous machine is described by Heffron-Philips model as described in
Fig. 2. The K-constants are given in Appendix A. The data definitions are given in
Appendix B. The system data are illustrated in Appendix C.

The interaction between the speed and voltage control equations of the machine
is expressed in terms of six constants k1–k6. These constants with the exception of
k3, which is only a function of the ratio of impedance, are dependent upon the
actual real and reactive power loading as well as the excitation levels in the machine
[6].

The system equation can be expressed in the following state variable form:

X ̇ðtÞ=AXðtÞ+BuðtÞ
yðtÞ=CxðtÞ ð8Þ

XðtÞ= Δδ Δω ΔE′q ΔEfd½ �T ,

A=

0 ω0 0 0
− k1
M 0 − k2

M 0

− k4
TT′do

0 − 1
T − 1

T′do

− k5 kE
TE

0 − k6 kE
TE

− 1
TE

2
66664

3
77775 ,

B= 0 0 0 kE
TE

h i
′,C= 0 1 0 0½ �.

ð9Þ

5 Problem Formulation

The system can be represented by the block diagram proposed by deMello and
Concordia [40] which can be cast as shown in Fig. 2. The parameters of the model
are load dependent, thus, they have to be calculated at each operating point.
Analytical expressions for the parameters k1–k6, as derived in Soliman et al. [35],
Soliman and Sakr [36], are listed in Appendix A. The parameters, k1–k6, are
functions of the loading condition (P and Q). By varying P and/or Q to cover a wide
range of system loading, the parameters K1–K6 are computed.
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The use of the high-gain voltage regulators usually destabilizes the system. This
effect is usually complemented compensated by the inclusion of a stabilizing signal
generated by the PSS to provide the required damping. In most cases, the speed
deviation signal Δω is used as an input to the PSS.

To design the PSS, it is convenient to represent the system in the transfer
function form as shown in Fig. 3. An analytical expression for the transfer function
is derived based on the obtained parameters by using Mason’s rule. The resulting
transfer function is

Δω
U

ðsÞ= bs
a4s4 + a3s3 + a2s2 + a1s+ a0

ð10Þ

The transfer-function coefficients expressed in terms of the k-parameters are:

a4 =MTTE
a3 =MðT + TEÞ
a2 =M =314k1TTE + kEk3k6M

a1 = 314k1ðT +TEÞ− 314k2k3k4TE
a0 = 314ðk1 − k2k3k4 + kEk1k3k6Þ
b= kEk2k3

ð11Þ

The coefficients of the transfer function are load-dependent. So, the PSS has to
be adjusted at different loads. To scan the whole range of operation, the load
dependency may require the analysis of a large number of points with a new model
generated at each operating condition.

Fig. 3 System response to 0.2 pu torque disturbance at (P = 0.8, Q = 0.3)
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A proposed technique, based on the Kharitonov’s theorem and GA, is used to
design a fixed parameters robust FOPID controller to stabilize the non-linear system
over the specified range of operating conditions [Pmin, Pmax] and [Qmin, Qmax]. In
this technique, the problem is transformed to simultaneous stabilization of a finite
number of extreme plants. We will show in the next section that we need to stabilize
exactly eight characteristic polynomials.

5.1 Mathematical Tools and Problem Solution

5.1.1 Kharitonov’s Theorem

The Kharitonov’s theorem studies the robust stability of an interval polynomial
family [40]. A polynomial

p= ansn + an− 1sn− 1 +⋯+ a0 ð12Þ

is said to be an interval polynomial if each coefficient ai is independent of the others
and varies within an interval having lower and upper bounds that is,

ai = ½a−
i , a+

i � ð13Þ

The Kharitonov’s theorem states that “An interval polynomial

p = ∑n
i=0 a−

i , a+
i

� �
si ð14Þ

is robustly stable if and only if the following four Kharitonov’s polynomials

p1 = a−
0 + a−

1 s+ a+
2 s2 + a+

3 s3 + a−
4 s4 +⋯

p2 = a+
0 + a+

1 s+ a−
2 s2 + a−

3 s3 + a+
4 s4 +⋯

p3 = a+
0 + a−

1 s+ a−
2 s2 + a+

3 s3 + a+
4 s4 +⋯

p4 = a−
0 + a+

1 s+ a+
2 s2 + a−

3 s3 + a−
4 s4 +⋯

ð15Þ

are stable”.
Assuming that the coefficient function ai depends continuously on the vec-

tor = [P Q]T(machine loading P and Q), we define the bounds

a* −
i = min

r
ðaiÞ

a* +
i = min

r
ðaiÞ

ð16Þ

and simply construct the polynomial described by
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p*ðsÞ= ∑n
i=0 ½a* −

i , a* +
i �si ð17Þ

Then the robust stability of polynomial (17) implies the robust stability of (12),
El-Metwally et al. [10].

5.1.2 Oustaloup’s Recursive Filter to Approximate FOPID

Some continuous filters have been summarized in [36]. Among the filters, the
well-established Oustaloup recursive filter has a very good fitting to the
fractional-order differentiators. Assume that the expected fitting range is (ωb, ωh).
The filter can be written as

Gf ðsÞ=K ∏
N

K = −N

s+ω′k
s+ωk

ð18Þ

where the poles, zeros, and gain of the filter can be evaluated such that

ω′k =ωb
ωh

ωb

� �k+N + 1
2ð1− γÞ

2N + 1

ωk =ωb
ωh

ωb

� �k+N + 1
2ð1+ γÞ

2N + 1

ð19Þ

and

K =ωγ
h

Thus, the any signal y(t) signal can be filtered through this filter and the output of
the filter can be regarded as an approximation for the derivative term of the FOPID
with γ = δ or the integral counterpart with γ = −λ. The resulted transfer function of
the FOPID is the sum of the proportional term kp plus the filter approximation of the
integral term (kis− λ) plus the derivative term ðkDsδÞ. The result will be the
approximated transfer function of the FOPID controller GcðsÞ as given by Eq. (2).

In general GcðsÞ can be assumed to be in the form:

GcðsÞ= NðsÞ
DðsÞ ð20Þ

As shown in Fig. 3, the closed loop characteristic equation can be written as

1 +GcðsÞGpðsÞ =0 ð21Þ

where GpðsÞ= Δω
U (s) is the plant transfer function [10].
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5.1.3 The 16 Kharitonov’s Polynomials

Given the plant family with Kharitonov’s polynomials N1, …, N4 and D1, …, D4

for the numerator and denominator, respectively, we define the 16 Kharitonov’s
plants as El-Metwally et al. [10].

Gi
cðsÞ=

Ni1ðsÞ
Di2ðsÞ

, i1 = 1, 2, . . . , 4 and i2 = 1, 2, . . . , 4 ð22Þ

where i = 1, 2, …, 16. If the controller can stabilize all the 16 closed loop poly-
nomials given as

1 +Gi
cðsÞGpðsÞ=0 ð23Þ

Then the closed loop system (23) is robustly stable, where
i1 = 1, 2, . . . , 4 and i2 = 1, 2, . . . , 4, El-Metwally et al. [10].

Applying the above mathematical tools to the single machine–infinite bus sys-
tem (Fig. 1), we have the vector r which is composed of two independent
components.

r= P Q½ �T ð24Þ

In the system under study, the numerator of the transfer function is a first order
polynomial (bs). Thus, the coefficient b has two extreme values b+ and b−; that is,
the 16 plants corresponding to (23) are reduced to 8 plants only.

6 Problem Solution

To stabilize the system over the required ranges of P and Q, the following eight
polynomials must be stable.

We will use the genetic algorithm to find the values of kp, ki, kd, λ, and δ that
correspond to the following optimization problem

min
kp, ki, kd, λ, andδ

ðmax ðλeÞ ð25Þ

Subject to

kminp ≤ kp ≤ kmaxp

kmini ≤ ki ≤ kmaxi

kminD ≤ kD ≤ kmaxD

λmin ≤ λ≤ λmax

γmin ≤ γ ≤ γmax

ð26Þ
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where λe is a vector containing the real parts of the roots of the eight equations
resulting from (25). This means that the parameters k, z and p must stabilize the
eight polynomials in Eq. (25). On the other hand, the swarm optimization algorithm
attempts to push the closed loop poles to the left as far as possible by minimizing
the maximum real part of the roots resulting from (25). The problem can be tackled
using a different approach. If we divide the range of P and Q into small steps, the
resulting grid will represent the possible operating points.

For each point on the grid, a model can be derived. Applying the genetic
algorithm optimization technique to stabilize such systems is possible. However,
there is no guarantee that stability is preserved for intermediate points inside the
grid. The proposed technique eliminates this shortcoming via the Kharitonov’s
theorem.

7 PSS Design for Different Machine Loadability

The design objective, in this chapter, is to implement the machine loadability, of the
system under study, over the range Q ∈ [− 0.4, 0.4] and P ∈ [0.2, 1.2]. The design
procedure can be summarized as follows:

• Develop the linearized model as shown in Fig. 2. The machine parameters and
the k-parameter calculations are given in the Appendices A and C.

• Based on the analytical expressions for a0, a1, . . . , a4 and b in (11), calculate the
maximum and minimum values of the aforementioned parameters using any
standard optimization technique. Note that a3 and a4 do not depend on the
values of P and Q.

• Using (29) and replacing ai by a*i , construct the four Kharitonov’s polynomials
as in (15). Compute the roots of the 8 extreme polynomials and take the largest
real part of the roots as the objective function to be minimized.

• Use the GA to find a solution for the optimization problem (26) such that the
roots of (25) lie in the left hand side of the s-plane away from the imaginary axis
as much as possible. Thus the shortest settling time of oscillations is achieved

The above procedure is applied to the system under study as follows: Consider
the system transfer function (10). The extreme values of its coefficients are cal-
culated as

a* −
i = min

P,Q
ðaiÞ and a* +

i = max
P,Q

ða*i Þ
b* −
i = min

P,Q
ðbiÞ and b* +

i = max
P,Q

ðb*i Þ
ð27Þ
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The results of the above calculations are

a*4 = 1, a*3 = 22, a*2 ∈ ½64 106�, a*1 ∈ ½388 1002�,
a*0½392 2624� and b* ∈ ½2.7 12.4�

Then, the four Kharitonov’s polynomials are:

p1 = 392+ 388s+106s2 + 22s3 + s4

p2 = 2624+ 1003s+64s2 + 22s3 + s4

p3 = 2624+ 388s+64s2 + 22s3 + s4

p4 = 392+ 1003s+106s2 + 22s3 + s4

ð28Þ

7.1 Design of a Robust PSS Using GA

The plant transfer function (10) is analyzed using eight extreme plants given by

Gp sð Þ= Δω
U

ðsÞ= b− s
pi

, i=1, 2, . . . , 4

Gp sð Þ= Δω
U

ðsÞ= b+ s
pi

, i=1, 2, . . . , 4
ð29Þ

To reach the optimization goal, proper adjustment of the GA parameters are
needed. This requires the determination of population size (N = 100 is sufficient),
the bit size for each binary parameter (16 is reasonable size), and the upper and
lower bounds of the optimization of FOPID PSS (for kp, ki, and kd, [0 100] is an
acceptable range but for λ and δ [0 1.5] is found to be a proper choice in our case
[38].

The results obtained using the GA on FOPID PSS design procedure mentioned
in this chapter are delineated in Table 1. The same procedure can be successfully
applied to the case of PID PSS considering the limits of λ and δ of the FOPID PSS
as [1 1]. Results of this case are also shown in Table 1.

The proposed PSS is tested over three operating condition.

Table 1 GA estimated parameters for PID and FOPID PSS

Controller kp ki kd δ λ
PID
(minimum = −1.3961)

45.36 45.452 62.2 N/A N/A

FOPID
(minimum = −1.3849)

48.50 93.666 79.8 0.61 1.3
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7.2 The Normal Loading Test

The first operating point is P = 0.8 pu and Q = 0.3 pu represents the normal
loading conditions. The system was exposed to a 0.20 p.u step increase in the input
torque reference at 0.5 s. The disturbance was removed at 15 s, .e. the signal
duration is 14.5 s, and the system returned to the original operating point by the end
of disturbance. The regulated system without a stabilizer is stable at this point [10].
However, the mechanical disturbance pushes the system close to the stability
bound. Figure 3 shows the machine speed deviation and the machine power angle
(δ). It is clear that if the power system stabilizer is not employed, the rotor angle
oscillation will have a very slow damping behavior. On the other hand, the pro-
posed FOPID stabilizer successfully suppresses and damps the oscillations in
almost three seconds. The controller signal is shown in Fig. 3. It is clear that the
controller is utilizing the full control range limited by the maximum standard power
system stabilizer signal ±0.1 pu.

The Simulink models for the FOPID PSS applications are illustrated in Figs. 4
and 5. The FOPID PSS block is represented by “NIPID” block of “ninteger”
blockset of Matlab [14, 38].

Fig. 4 Matlab/Simulink Model with FOPID PSS and Torque Disturbance Signal
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7.3 Overload Test

In this test, the machine was operating at P = 1.2 pu and Q = 0.2 pu. The machine
speed deviation is unstable at this operating point [10]. Figure 6 shows the effec-
tiveness of the proposed FOPID PSS to stabilize the system during over loading
conditions [17].

7.4 Full Load with Leading Power Factor Test

The second operating point is P = 1 pu and Q = −0.4 pu. This point lies in the
unstable region for the regulated system without a stabilizer as illustrated in Fig. 7a.
The system at this operating point was exposed to a three phase to ground short
circuit at 3 s and this will stay only for 100 m s and then cured. Figure 7b illustrates
that the proposed FOPID stabilizer can damp the power angle and angular fre-
quency oscillations within a short period of time with the same value of tuned
parameters given in Table 1.

Finally, for the more illustration, the effect of the PID and FOPID PSSs on the
stabilization of the SMIB power system described herein is shown in Figs. 8 and 9
for only the case of normal operation with P = 0.8 pu and Q = 0.3 pu without
disturbance. It is clear that The damping effect of the FOPID PSS is noticeable
compared with that of the PID PSS. The control effort in both PID and FOPID PSSs
are shown in Fig. 10a, b. Obviously, the control effort of the FOPID PSS is much
less than that of the PID in both magnitude and mean square error.

Fig. 5 Matlab/Simulink Model of SMIB with FOPID PSS
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Fig. 6 Δδ and Δω after adding FOPID PSS type in normal operation at (P = 1.2, Q = 0.2)

Fig. 7 a Δδ without Controller (P = 1, Q = −0.4). b Δδ and Δω due to a three line to ground
fault at 3 s staying for 100 ms after adding FOPID PSS type (P = 1, Q = −0.4)
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Fig. 8 Δδ and Δω after adding PID PSS type in normal operation (P = 0.8, Q = 0.3)

Fig. 9 Δδ and Δω after adding FOPID PSS type in normal operation (P = 0.8, Q = 0.3)

Fig. 10 a Control Effort of the FOPID PSS in normal operation (P = 0.8, Q = 0.3) b Control
Effort of the PID PSS in normal operation (P = 0.8, Q = 0.3)
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Moreover, the minimum negative eigenvalue of the stabilized SMIB system
using the PID and FOPID PSS is almost the same as shown in Table 1. The change
of this value for the case of FOPID PSS with iteration is delineated if Fig. 11.

It is apparent that the presented tuning algorithm for the fractional order PID
controllers has been found robust at different loading conditions of a single machine
connected to an infinite bus (SMIB) power system. The convergence rate of the
presented algorithm is noticeable which encourage the application of the fractional
order PID (FOPID) controllers on some other industrial applications.

8 Conclusion

The design of a robust FOPID PSS using the Kharitonov’s theorem has been
proposed. The k-parameters of the model are parameterized in terms of the oper-
ating point (P, Q). Accordingly, the coefficients ‘bounds of the transfer function
relating the stabilizing control signal to the speed deviation have been calculated
over the whole range of operating points. The design is based on simultaneous
stabilization of eight extreme plants to achieve a satisfactory dynamic performance.
The calculations are based on the GA optimization algorithm. Simulation results
based on a non-linear model of the power system confirm the ability of the pro-
posed compensator to stabilize the system over a wide range of operating points as
illustrated with various examples.

Fig. 11 The Objective Function vs. Iterations in case of FOPID PSS
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The performance of the conventional PID PSS, designed with the same proce-
dure, as compared with the FOPID PSS shows less oscillation damping of both the
changes in angle δ and the angular speed ω.

For future work, authors recommend the extension of the method to the case of
multi machines power systems. Also some other evolutionary techniques such as
bat inspiration, gravitational techniques and imperialist colony may be tried to
determine the best tuning of the fractional order PID controllers.

Appendix A: Derivation of k-Constants

All the variables with subscript 0 are values of variables evaluated at their
pre-disturbance steady-state operating point from the known values of P0, Q0

and Vt0.

iq0 =
P0Vtoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP0xqÞ2 + ðV2
t0 +Q0xqÞ2

q ðA1Þ

vd0 = iq0xq ðA2Þ

vqo =
ffiffiffiffiffiffi
V2
t0

q
− v2t0 ðA3Þ

id0 =
Q0 + xqi2q0

vq0
ðA4Þ

Eq0 = vq0 + id0xq ðA5Þ

E0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvd0 + xeiq0Þ2 + ðvq0 − xeid0Þ2

q
ðA6Þ

δ0 = tan− 1 ðvd0 + xeiq0Þ
ðvq0 − xeid0Þ ðA7Þ

K1 =
xq − x′d
xe + x′d

iq0E0 sin δ0 +
Eq0E0 cos δ0

xe + xq
ðA8Þ

K2 =
E0 sin δ0
xe + x′d

ðA9Þ

K3 =
x′d + xe
xd + xe

ðA10Þ
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K4 =
xq − x′d
xe + x′d

E0 sin δ0 ðA11Þ

K5 =
xq

xe + xq

vd0
Vt0

E0 cos δ0 −
x′d

xe + x′d

vq0
Vt0

E0 sin δ0 ðA12Þ

K6 =
xe

xe + x′d

vq0
Vt0

ðA13Þ

Appendix B

Nomenclature

All quantities are per unit on machine base.

D Damping Torque Coefficient
M Inertia constant
ω Angular speed
δ Rotor angle
Id, Iq Direct and quadrature components of armature current
xd and xq Synchronous reactance in d and q axis
x′d and x′q Direct axis and Quadrature axis transient reactance
Efd Equivalent excitation voltage
KE Exciter gain
TE Exciter time constant
Tm and Te Mechanical and Electrical torque
T ′do Field open circuit time constant
Vd and Vq Direct and quadrature components of terminal voltage
K1 Change in Te for a change in δ with constant flux linkages in the d axis
K2 Change in Te for a change in d axis flux linkages with constant δ
K3 Impedance factor
K4 Demagnetizing effect of a change in rotor angle
K5 Change in Vt with change in rotor angle for constant E′q
K6 Change in Vt with change in E′q constant rotor angle
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Appendix C

The system data are as follows:
Machine (p.u):

xd =1.6 x′d =0.32

xq =1.55 T ′d0 = 6 s

D= 0.0 M =10 s

ðC1Þ

Transmission line (p.u):

re = 0.0 xe = 0.4 ðC2Þ

Exciter:

KE = 25.00 TE = 0.05 s ðC3Þ

Nominal Operating point:

Vt0 = 1.0 P0 = 0.8

Q0 = 0.3 δ0 = 45◦

ω0 = 314

ðC4Þ

Others

k3 = 1 2̸.78

v= 1.0

Tw = 5

ðC5Þ
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Application of Fractional Order
Controllers on Experimental
and Simulation Model of Hydraulic
Servo System

M. El-Sayed M. Essa, Magdy A.S. Aboelela and M.A.M. Hassan

Abstract Hydraulic Servo System (HSS) plays an important role in industrial
applications and other fields such as plastic injection machine, material testing
machines, flight simulator and landing gear system of the aircraft. The main reason
of using hydraulic systems in many applications is that, it can provide a high torque
and high force. The hydraulic control problems can be classified into force, posi-
tion, acceleration and velocity problems. This chapter presents a study of using
fractional order controllers for a simulation model and experimental position con-
trol of hydraulic servo system. It also presents an implementation of a non-linear
simulation model of Hydraulic Servo System (HSS) using MATLAB/SIMULINK
based on the physical laws that govern the studied system. A simulation model and
experimental hardware of hydraulic servo system have been implemented to give an
acceptable closed loop control system. This control system needs; for example, a
conventional controller or fractional order controller to make a hydraulic system
stable with acceptable steady state error. The utilized optimization techniques for
tuning the proposed fractional controller are Genetic Algorithm (GA). The utilized
simulation model in this chapter describes the behavior of BOSCH REXROTH of
Hydraulic Servo System (HSS). Furthermore the fractional controllers and con-
ventional controllers will be tuned by Genetic Algorithm. In addition, the hydraulic
system has a nonlinear effect due to the friction between cylinders and pistons, fluid
compressibility and valve dynamics. Due to these effects, the simulation and
experimental results show that using fractional order controllers will give better
response, minimum performance indices values, better disturbance rejection, and
better sinusoidal trajectory than the conventional PID/PI controllers. It also shows

M.E.-S.M. Essa (✉)
IAET, Imbaba Airport, Giza, Egypt
e-mail: mohamed.essa@iaet.edu.eg

M.A.S. Aboelela ⋅ M.A.M. Hassan
Faculty of Engineering, Electric Power and Machines Department,
Cairo University, Giza, Egypt
e-mail: aboelelamagdy@gmail.com

M.A.M. Hassan
e-mail: mmustafa_98@hotmail.com; mmustafa@eng.cu.edu.eg

© Springer International Publishing AG 2017
A.T. Azar et al. (eds.), Fractional Order Control and Synchronization
of Chaotic Systems, Studies in Computational Intelligence 688,
DOI 10.1007/978-3-319-50249-6_10

277



that the fractional controller based on Genetic Algorithm has the desired robustness
to system uncertainties such as the perturbation of the viscous friction, Coulomb
friction, and supply pressure.

Keywords Hydraulic servo system ⋅ Genetic Algorithm ⋅ PID ⋅ Fractional
order controllers ⋅ MATLAB/SIMULINK ⋅ BOSCH REXROTH

1 Introduction

Hydraulic control systems are widely used in many industrial fields due to their
small size-to-power ratio and the ability to apply very large force and torque. The
Hydraulic Servo System (HSS) applications include: manufacturing systems,
material test machines, active suspension systems, mining machinery, fatigue
testing, paper machines, injection molding machines, robotics, and aircraft fields.

In hydraulic control system, the main purpose of control is to achieve a desirable
response from the system. In light of this requirement; the development of the
controller has been established for adjusting measured response to be as close as
possible to the desired response. The control signal errors are generally compared
with velocity, position, force, pressure, and other system parameters. An HSS is a
system consisting of motor, servo, controller, power supply, and other system
accessories [19]. In HSS, the system controls the cylinder position to track a certain
position trajectory values enforced by the operator. The cylinder movement must
precisely follow position, speed, and acceleration profiles. Controller tuning was
one of the difficulties that has been faced during implementation of the controllers.
Many approaches have been developed for tuning the controller response optimally.
This ranges from trial and error, root locus, Zeigler Nicholas (ZN) method and
evolutionary techniques [33]. Evolutionary techniques have been evolved from
observing complex behaviors of human and other animals, event happening in
nature and arrive at a mathematical model representing criteria under study [40].
One of the evolutionary techniques is Swarm Intelligence (SI), which models social
behavior of organisms living in swarms.

In the field of hydraulic system control, a wide selection of control design
techniques and applications have been figured out. Electro-hydraulic problems are
classified into many control problems such as:

(a) Position control problems.
(b) Velocity control problems.
(c) Force control problems.

Due to the importance of hydraulic systems in industrial applications, so many
researchers have studied HSS. The dynamics of hydraulic systems are highly
nonlinear as stated in [39] and the system may be subjected to non-smooth and
discontinuous nonlinearities due to directional change of valve opening, friction…
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etc. There have been some studies on analysis and implementation of the nonlinear
tracking control law for HSS. This provided exponential stability for force tracking
and position tracking to furnish an accurate friction model [39].

In this chapter, the experimental setup of cylinder load has different connection
with the recent research. There are different types of automatic controllers that have
been applied to HSS to give accurate tracking of position, acceleration, pressure and
force. A mathematical modeling and simulation of HSS have been implemented to
obtain the observed system response with sinusoidal input. It is then used to design
a PID controller based on GA as introduced in [20]. The mathematical modeling of
HSS and experimental setup have been developed for force tracking control using
the nonlinear fuzzy controller as given in [2]. Whilst the using of Particle Swarm
Optimization (PSO) to design an optimal robust PI-controller for HSS that achieves
both the robustness and performance measures has been explained in [30]. The
using of PSO technique has been extended to identify controller’s gains for the
Scott Russell mechanism as investigated in [16]. The objective of the HSS con-
troller is to give almost a zero steady state error in motion of the actuator and force
output. Thus, these requirements have been satisfied by using PSO based on H∞
loop shaping control for MIMO HSS, as stated in [31]. The enhancement of sta-
bility and robustness of HSS by utilizing the fuzzy strategy approximation for
antibodies inhibit adjustment function with immune algorithm based on PSO for
PID tuning has been presented in [45]. While the study of external torque of
hydraulic actuator and then design a controller using modern control theory have
been introduced in [41]. The using of Fuzzy Logic Controller (FLC) for position
control of electro hydraulic actuator and ant colony optimization technique that is
used to attain the best value for parameters of fuzzy neural network has been stated
in [25]. The improvement of position tracking performance based on invariance
principle and feed-forward compensation is developed by pole-zero placement
theory of the system as described in [44]. A hydraulic position servo system control
is implemented by utilizing a Particle Swarm Optimization (PSO) algorithm for
control PID loops is presented in [35]. The force control of hydraulic servo system
is implemented by designing fuzzy controllers to minimize the force overshoot and
preserve the load from failure as illustrated in [8]. The two most common
approaches that have been developed to compensate the nonlinear behavior of HSS
are adaptive control and variable structure control. The acceleration feedback
control by using the variable structure controller in the presence of important
friction nonlinearities is introduced and described in [7]. A nonlinear controller
based on Lyapunov stability theories that considers the valve’s dynamics is used for
position control of HSS, as stated in [37].

The dynamic characteristics of HSS are usually very complex and highly non-
linear, so a self organizing and self learning fuzzy algorithm for position control of
hydraulic servo drive is represented and discussed in [10]. A sliding mode control,
enhanced by the fuzzy PI controller to a typical position control of electro-hydraulic
system is confirmed in [27]. Whereas the optimization of PID controller parameters
and overcomes of the nonlinearities of HSS based on GA are explained in [3].
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A simulation Model of position control of HSS with MATLAB/SIMULINK
program is performed and the model is verified experimentally using the Data
Acquisition card.

The HSS real time consists of the following hydraulic elements:

• Oil tank with capacity of 100 L.
• Pressure, Temperature and Flow Displays.
• Filter for oil return.
• An axial piston pump swash plate type with variable flow rate pump.
• Servo valve with electrical position feedback (−10 to 10 V), Type 4WRSE, both

are made by Rexroth Bosch.
• Pressure relief valve.
• Two hydraulic cylinders with face-to-face connection.
• External length measurement (Position transducer).
• Pressure, Temperature and Flow sensors.

The two cylinders are connected in such away to simulate hydraulic symmetric
linear actuator. In addition, the nominal oil pressure is 10 Map. The oil pump is
driven by three phase electrical motor 5.5 kW at 1500 rpm. The measuring system
consists of one length transducer (measurement range 0–500 mm) which is con-
nected to the piston rod. It is supplied from 24 VDC to generate an electrical signal
from −10 to 10 V. The measuring signals are acquired by Data Acquisition card
(PCI-NI 6014) from National Instruments with sampling rate 200 ski/s, and then
sent to the PC-HP with 1 GB RAM, Windows XP operating system on 2.72 GHz
processor.

1.1 Objectives of the Chapter

The objectives of The Study can be summarized as:

• Investigate a simulation model for HSS.
• Prepare the HSS for laboratory testing.
• Develop a Genetic Algorithm (GA) based PID/PI and FOPID/FOPI controllers

tuning methodology for optimizing the control of simulated HSS and real time
HSS.

1.2 Organization of the Chapter

Section 1 presents an introduction to the chapter. While Sect. 2 displays a
description of Hydraulic servo system. Section 3 explains the mechanical and
experimental setup. Whilst, system controllers design is given in Sect. 4 but the
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tuning method of the proposed controllers is displayed in Sect. 5. Section 6 pre-
sents application of GA to hydraulic servo system. While conclusion and future
work are given in Sects. 7 and 8 respectively.

2 Hydraulic Servo Systems (HSS)

Electro-hydraulic problems are classified into position control problems, velocity
control problems and force control problems. The common types of electro-
hydraulic servos are [13]:

• Position servo (linear or angular)
• Velocity or speed servo (linear or angular)
• Force or torque servo.

2.1 Modeling and Simulation of HSS

A mathematical model of a HSS is presented, which includes the most non-linear
effects that are involved in the hydraulic system. The problem that has been studied
is illustrated in Figs. 1 and 2. The objective of the modeling and simulation of the
electro-hydraulic servo system is to design a suitable controller for piston position
control. In this section a nonlinear model of a HSS is developed by simulation using
SIMULINK/MATLAB program. For more details about the same model but for
force tracking control that is illustrated and discussed in [2]. The model describes
the behavior of a servo system BOSCH REXROTH [22] servo valve and includes
the nonlinearities due to friction forces, valve dynamics, oil compressibility and
load influence.

Figure 3 illustrates a focus view of hydraulic cylinder connection and real photo
of valve and cylinders connection inside the laboratory. An electro hydraulic servo
valve under regulated supply pressure Ps drives the double rod cylinder. Two
cylinders can achieve a double rod cylinder configuration, which are mounted into

Fig. 1 Block diagram of hydraulic servo system
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the frame with the face-to-face connection, as illustrated in Fig. 3. The two
cylinders are connected in such a way to simulate hydraulic symmetric linear
actuator where the piston side of each cylinder is connected to the piston rod side of
the other cylinder. The piston position is considered the feedback signal by using
linear displacement transducer. The amount of flow rate QA in chamber (A) and the

Fig. 2 Schematic diagram of the experimental system

Fig. 3 Real hydraulic servo system
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other amount flow rate QB in chamber (B) of the cylinder are function of both the
valve spool position xv and the cylinder pressures PA and PB. The objective of this
system is to control the piston position of a hydraulic cylinder to track a desired
position as closely as possible.

The simplification of nonlinear HSS modeling based on standard assumptions in
practical are summarized as:

(1) Low frequency operation.
(2) Pipeline effects do not play a role in the input-output behavior.
(3) Ideal oil supply, constant pressure supply and constant tank pressure.
(4) The possible dynamic behavior of the pressure in the pipelines between valve

and actuator is assumed negligible.

Due to the previous assumption, the model of a HSS is composed of two
subsystems (valve and cylinder) as shown in Fig. 4 and explained in [12, 15]. The
Complete block diagram of HSS is illustrated in Fig. 5.

Where

AP Piston area (m2)
α Ratio of ring side area to piston side area
mP Piston mass (kg)
PA Pressure in chamber A (Pa)
PB Pressure in chamber B (Pa)
PS Supply pressure (Pa)
PT Tank pressure (Pa)
QA Flow rate in chamber A (m3/s)

Fig. 4 Valve-cylinder combinations with variables definitions
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QB Flow rate in chamber B (m3/s)
QLi, QLe Internal and external leakage flow (m3/s)
xP, xṖ, xP̈ Piston position, velocity, acceleration, respectively (m)
xv Valve spool position (m)
Fext External force (N).

2.1.1 Hydraulic Cylinder Modeling

The hydraulic cylinder includes the pressure, dynamic modeling, the load equally
and the piston friction with the cylinder. The differential equations governing the
dynamics of the actuator are given in [15, 26]. More details about the hydraulic
cylinder modeling can be found in [2, 13]. The total overview of the differential
cylinder SIMULINK model is displayed in Fig. 6.

2.1.2 Pressure Dynamics of Hydraulic Chamber

The pressure dynamics equations for the chamber (A) and chamber (B) are dis-
played in Eqs. (1) and (2).

P ̇A =
1
ChA

ðQA −APxṖ +QLi −QLeAÞ ð1Þ

ṖB =
1
ChB

ðQB + αAPxṖ −QLi −QLeBÞ ð2Þ

Fig. 5 Complete hydraulic servo system model
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where: QLi is the internal leakage flow. Assume that external leakage flow QLeA and
QLeB are negligible may be due to the high performance of REXROTH Equipment
Company. The hydraulic capacitance of chamber A, ChA, and chamber B, ChB, are
given by Eqs. (3) and (4).

ChA =ChðPA, xPÞ= VAðxpÞ
βðPAÞ

=
VP1,A xP0 + xPð ÞAP

βðPAÞ
ð3Þ

ChB =ChðPB, xPÞ= VBðxpÞ
βðPBÞ

=
VP1,B xP0 − xPð ÞαAP

βðPBÞ
ð4Þ

VA =VP1,A +
S
2
+ xP

� �
AP =VA0 + xPAP ð5Þ

VB =VP1,B +
S
2
− xP

� �
αAP =VB0 − xPαAP ð6Þ

where: S is the cylinder stroke. VP1,A and VP1,B are the pipeline volumes at A-side
and B-side respectively. The initial chamber volumes are assumed that the piston is
centered such that these are equal. That is:

VA0 =VB0 =V0 ð7Þ

The commonly used equation for calculation the effective bulk modulus β for
hydraulic cylinders is given by Eq. (8) as given in [26].

Fig. 6 Block diagram of differential cylinder
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βðpÞ= a1βmax logða2
p

pmax
+ a3Þ ð8Þ

where a1 = 50, a2 = 90, a3 = 3, βmax =1800MPa, and pmax =28MPa. The simula-
tion model of dynamic pressure in chamber A and B are illustrated in Figs. 7 and 8.

2.1.3 Load Equation

Equation (9) illustrates the equation of piston motion which governing the load
motion. After applying the Newton’s second law to the forces that applied to the
piston, the resultant equation is given as follows [15].

mtxP̈ +KSxp +Ff xṖð Þ= ðPA − αPBÞAP ð9Þ

where

KS Spring stiffness
Ff Friction force
mt Total mass.

In Eq. (9), there is an external force (Fext) equal to KSxp which has been applied
as an input force or a disturbing force on the piston. It is achieved by connecting a

Fig. 7 Pressure dynamics of Side A model
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spring at the outer end of the piston. For simplicity, we assume this external force to
be zero. This means that, the external force is neglected.

The total mass mt consists of the piston mass mP, the mass of hydraulic fluid in
the cylinder chambers and in the pipelines, mAfl and mBfl respectively. Assume the
mass of fluid is neglected compared to the piston mass.

mt =mP +mAfl +mBfl ð10Þ

From Eq. (9) The SIMULINK model of piston, motion is presented in Fig. 9.

2.1.4 Piston Friction

The asymmetry of the friction forces that occurs in differential cylinders can be
represented by using one experimental function with referred to stribeck curve as
illustrated in Eq. (11). The friction model is shown in Fig. 10 and explained by
Jelali and Kroll [15], Merritt [26].

Ff xṖð Þ=
σ + xṖ + Sign xṖð Þ F +

CO +F +
SOexp − xṖj j

C +
S

� �h i
∀xṖ ≥ 0

σ − xṖ + Sign xṖð Þ F −
CO +F −

SOexp − xṖj j
C −
S

� �h i
∀xṖ <0

8<
:

9=
; ð11Þ

Fig. 8 Pressure dynamics of Side B model
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Fig. 9 Piston motion model

Fig. 10 Friction model
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where

σ Viscous friction parameter
F +
CO,F

−
CO Differential cylinder Coulomb friction parameter

F +
SO,F

−
SO Differential cylinder Stribeck friction parameter

C +
S ,C −

S Stribeck velocity range.

An auxiliary force is required to be added to the friction function to prevent the
non unique relation between x ̇P and Ff at xṖ =0 and between xp and Fc at xp =0 and
then capable to calculate Ff and Fc. More details about auxiliary force are explained
in [15]. The friction model SIMULINK block diagram is presented in Fig. 11.

The Figs. 7, 8, 9 and 11 can be arranged to form the total block diagram of a
hydraulic cylinder as illustrated in Fig. 6.

2.1.5 Servo Valve Model

The type of the utilized servo valve type (4WRSE) is a four-way spool valve with a
critical center, which it is illustrated in Fig. 12.

The classical continuity equation, which governs flow direction in the servo
valve, is presented in Eqs. (12), (13), (14) and (15).

QA =Q1 −Q2 ð12Þ

Fig. 11 Friction model diagram
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QA =CV1sg xvð ÞSign PS −PAð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS −PAj j

p
−CV2sg − xvð ÞSign PA −PTð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PA −PTj j

p
ð13Þ

QB =Q3 −Q4 ð14Þ

QB =CV3sg − xvð ÞSign PS −PBð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS −PBj j

p
−CV4sg xvð ÞSign PB −PTð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PB −PTj j

p
ð15Þ

where CVi is a discharge coefficients of the valve orifices and subscript (i) takes a
value from 1 to 4 (no. of valve orifice). The CVi will be equal if all orifices are
identical. The definition of function sgðxÞ is shown in Eq. [16]. Simplified block
diagram of servo valve is illustrated in Fig. 13 and is given in [2].

sg xð Þ= x for x≥ 0
0 for x<0

� �
ð16Þ

Fig. 12 Zero lapped four
ports spool valve

Fig. 13 Simplified block diagram of servo valve
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For simplicity, a first order model for the servo valve is development using
system identification toolbox in MATLAB to capture most of dynamic behavior
that includes large number of parameters as given in [2, 20]. Equation (17) shows
the general form of first order model as given in [2]. The development model of
valve dynamics is introduced in Eq. (18).

xv̇ =
1
τ
xv +

Kv

τ
u ð17Þ

where τ is the time constant, Kv is the valve gain and u is the valve input signal.
Considering the valve dynamics in Eq. (17) with a time constant 0.0033 s and valve
gain 0.98 that yields the resulting transfer function in Eq. (18).

xvðsÞ
uðsÞ =KConv.

300.7
s+306.8

ð18Þ

where the input u(s) is the command voltage input for the valve and the conversion
factor, KConv. converts the voltage reading out of the valve Linear Variable Dif-
ferential Transducer (LVDT) to actual spool displacement in meters. The type of
valve center is defined by the width of the land compared to the width of the port in
the valve sleeve when the spool is in neutral position. The utilized type is a
critical-center or zero-lapped valve which has a land width identical to the port
width.

At this end, from Eq. (1) to Eq. (17) can be combined to form a total simulated
model of HSS. Finally, the complete block diagram of HSS consists of the main
following block diagrams.

• Differential Cylinder Block Diagram.
• Valve Dynamics Block Diagram.
• Flow Orifice Block Diagram.

3 Mechanical and Experimental Setup

The hydraulic power unit is illustrated in Fig. 14 and a real time picture of the
experimental HSS is illustrated in Fig. 15 and the system components are shown in
Fig. 16.

The experimental hydraulic system is mainly consists of the following compo-
nents as described by [13]:

• Oil tank with capacity of 100 L.
• Pressure, Temperature and Flow Displays.
• Filter for return oil.
• An axial piston pump swash plate type with variable flow rate pump A10VSO.
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Fig. 14 Hydraulic power unit

Fig. 15 Real time picture of the experiment HSS
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• Servo valve with electrical position feedback (−10 to 10 V), Type 4WRSE, both
are made by Rexroth Bosch.

• Pressure relief valve.
• Two hydraulic cylinders with face-to-face connection.
• External length measurement (Position transducer).
• Pressure, Temperature and Flow sensors.

The main purpose of experimental setup is to verify the simulation model for
piston position of HSS and applying the controller design on practical system. Real
time photos of the experimental HSS are illustrated in Figs. 14, 15 and 16. In the
Experimental system, the two cylinders are connected to simulate hydraulic sym-
metric linear actuator. The utilized nominal oil pressure is 10 MPa and the oil pump
is driven by a three phase electrical motor 5.5 kW at 1500 rpm. The measured
system consists of one length transducer has the range of 0–500 mm, which con-
nected to the piston rod, as illustrated in Fig. 15. When a 24 V supplies the
transducer, it generates a signal from −10 to 10 V. Data Acquisition Card (PCI-NI
6014) from National Instruments [28] acquires the measuring signals, and then they
are sent to the hp-PC with 2.71 GHz processor, 2 GB RAM, and operating system
Windows XpSP3. It has a sampling rate (200 kS/s), number of channels (16
single-ended or 8 differential) and 16 bit resolution. The final SIMULINK/
MATLAB model of HSS is illustrated in Fig. 17.

Fig. 16 Real time picture of the experiment components
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3.1 System Identification

The System Identification allows to build a mathematical models of a dynamic
system based on measured data. The model quality is typically measured in terms of
the error between the (disturbed) process output and the model output. This error is
utilized to adjust the parameters of the model. Schematic diagram of system
identification definition is illustrated in Fig. 18 [13, 29].

The main steps that have to be performed for successful identification of a
system are illustrated in Fig. 19 and explained in details by Ljung [18].

The purpose of this step is to collect a set of input/output data that describes how
the system acts over its entire range of operation. The idea is to motivate the system
with a random input u, and observe the impact on the output y.

3.2 Model Representations for System Identification

System identification can be classified into two approaches based on model rep-
resentation. The first one is input-output model form which is identical to the

Fig. 17 SIMULINK model of experimental HSS

Fig. 18 System identification
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transfer function representation. The second approach produces models in state
space form. Models with state space representation allow identification of multi
input multi output (MIMO) systems. The first approach has been utilized in position
control of HSS. System Identification Toolbox constructs mathematical models of
dynamic systems from measured input-output data. It provides MATLAB func-
tions, SIMULINK blocks, and an interactive tool for creating and using models of
dynamic systems not easily modeled from first principles or specifications. Time
domain and frequency domain input-output data can be used to identify continuous
time, discrete time transfer functions, process models, and state-space models.

3.3 HSS Identification for Position Control

The process models in the system identification toolbox [20] are used to build a
continuous time model. It has been used to build and estimate a continuous transfer
function for the position control of HSS. Process models consist of the basic type
static gain, time constant and time delay as presented in [21]. The mathematical
representation of process model is illustrated in Eq. (19). The process model with
integrator is described in Eq. (20).

P1 sð Þ=K ⋅ e−Td * s 1 +TZ * s
1+TP1 * sð Þð1+TP2 * sÞ ð19Þ

P2 sð Þ=K ⋅ e−Td * s 1 +TZ * s
s ⋅ 1+TP1 * sð Þð1+TP2 * sÞ ð20Þ

EXPERIMENT

SELECT MODEL 
STRUCTURE

MODEL
ESTIMATION

MODEL
VALIDATION

Not
 accepted

Accepted

Fig. 19 System identification
steps [13]
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where the number of real poles (0, 1, 2 or 3) can be determined, as well as the
occurrence of a zero in the numerator, the presence of an integrator term (1/s) and
the presence of a time delay (Td). In addition, an under damped (complex) pair of
poles may replace the real poles. The excitation signal for identification is
multi-step signal with variable amplitudes (−2.5 to 2.5 V) and variable frequencies
and over arrange of 3000 samples. The first 1500 sample are used to estimate the
model while the other 1500 sample are used to the validation step. The experiment
is done in closed loop. To calculate the estimated model, the percentage Best Fit
(BF) criterion is used as explained in [18]. It measures how much better the model
describes the process compared to the mean of the output. The Best Fit description
is illustrated in Eq. (21).

Best Fit = 1−
y− y ̂j j
y− y ̄j j

� �
× 100 ð21Þ

where y is the measured output, y ̂ is the simulated or predicted model output, and y ̄
is the mean of y. A part of measured and simulated outputs is illustrated in Fig. 20
for the identified 3rd order model with integrator. It shows that the model perfectly
captures most of the dynamics of the system. The measured and simulated output is
illustrated in Fig. 21. The identified continuous-time model here gives Best Fit of
91.88%, which it is an acceptable result.

After the above identification, Eq. (22) introduces the identified continuous time
transfer function model and then this equation is discretized to be in z-domain as
shown in Eq. (23).

xPðsÞ
uvðsÞ =

1520 s+ 100
s ðs3 + 93.2 s2 + 1122 s+ 45.32Þ ð22Þ

Fig. 20 Input and output
signals for HSS identification
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xPðzÞ
uvðzÞ =

0.000202 z− 1 + 0.0004 z− 2 − 0.0005 z− 3 − 0.0001 z− 4

1− 3.321 z− 1 + 4.037 z− 2 − 2.109 z− 3 + 0.3938 z− 4 ð23Þ

4 System Controllers Design

4.1 PID Controller

The PID controller abbreviation is a proportional–Integral–Derivative controller.
PID controller is the most common controller form of feedback control system,
which is widely used in industrial control systems [43]. The objective of using PID
controller is to minimize the difference between a measured process variable and a
desired set point by adjusting the process control inputs [5]. Block diagram of a
process with a feedback controller is illustrated in Fig. 22 and depicted in [1].
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Fig. 21 Measured and
simulated model output

Fig. 22 Block diagram of a process with a feedback controller [12]
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PID controller form is represented mathematically and described by [1, 42]:

u tð Þ=Kp e tð Þ+ 1
Ti

Z t

0

e τð Þdτ+Td
de tð Þ
dt

0
@

1
A ð24Þ

u tð Þ=Kpe tð Þ+Ki

Z t

0

e τð Þdτ+Kd
de tð Þ
dt

ð25Þ

where

u tð Þ Controller output
y(t) System output
Kp, Ki and Kd Proportional, Integral and Derivative coefficients respectively
Ti, Td Integral and derivative time respectively
e tð Þ The system error.

The system error (e(t)) is the difference between the output y(t) and the desired
set point as shown in Fig. 22. The mathematical representation of PID controller is
displayed in Eqs. (24) and (25).

4.2 Fractional Order PID Controller

Fractional order controller is one of the elegant way that enhance the performance
of conventional PID controllers, where integral and derivative actions have, in
general, non-integer orders.

In a fractional order controller, besides the proportional, integral and derivative
constants, denoted by Kp, Ki and Kd respectively, there are two more adjustable
parameters such that the powers of ‘s’ in integral and derivative actions are λ and δ
respectively. The values of λ and δ lies between 0 and 1. This provides more
flexibility and opportunity to better adjust the dynamical properties of the control
system. The fractional order controller revels good robustness. The robustness of
fractional controller is more highlighted in presence of a non-linear actuator. The
concept of a fractional order PID control system is explained by Das [9], Machado
[24], Podlubny [32] and is illustrated in Fig. 23. The fractional order controller is
considered as a special case of the classical controller, so that when putting the
values of λ and δ equal to 1, it will give the conventional PID controller and when
put the values of λ = 1 and δ = 0, it will give the PI controller.
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Where:

x(t) Input Signal
e(t) Error Signal
G(s) System or Plant Transfer Function
y(t) Output Signal
u(t) Controller Signal.

Fractional order PID controller form is represented mathematically as follows
[9]:

uðtÞfc =Kp ⋅ e tð Þ+Ki ⋅ s− λ ⋅ e tð Þ+Kd ⋅ sδ ⋅ eðtÞ ð26Þ

where: uðtÞfc is the controller output and e tð Þ is the system error.

5 PID and FOPID Controller Tuning

PID controllers and FOPID controller tuning for position control of HSS is
designed in this chapter by incorporating Genetic Algorithm (GA). They have been
designed and implemented in simulation model of HSS and experimental hardware.

5.1 Genetic Algorithm (GA)

Genetic Algorithm (GA) is an important tool to search and optimize many engi-
neering and scientific problems. These applications includes different fields such
that airlines management revenue, artificial creative and automated design for
computers and mechatronics. The basic principles of GA were first proposed by
Holland [38]. GA is considered as a stochastic optimization algorithm that was
originally motivated by the mechanisms of natural selection and evolutionary
genetics [6, 38]. It uses a direct analogy of such natural evolution to do global

Fig. 23 Fractional order PID control system [13]
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optimization in order to solve highly complex problems [14]. It supposes that the
scope solution of a problem is an individual and can be formed by a set of
parameters. These parameters are regarded as the genes of a chromosome and can
be structured by concatenated values of string. The form of variables representation
is defined by the encoding scheme. But these representations of the variables may
be represented by binary, real numbers, or other forms, depending on the appli-
cation data. Its range is usually defined by the problem.

GA includes a population of individuals, referred to as chromosomes, and each
chromosome consists of a string of cells called genes [38]. Chromosomes undergo
selection in the presence of variation inducing operators such as crossover and
mutation. The crossover in GA occurs with a user specified probability called the
“crossover probability” and is problem dependant. The mutation operator is con-
sidered to be a background operator that is mainly used to explore new areas within
the search space and to add diversity to the population of chromosomes in order to
prevent them from being trapped within a local optimum. But the mutation is applied
to the offspring chromosomes after crossover is performed. A selection operator
selects chromosomes for mating in order to generate offspring. The selection process
is usually biased toward fitter chromosomes. A fitness function is used to evaluate
chromosomes and reproductive success varies with fitness. The Genetic Algorithm
(GA) works on a population using a set of operators that are applied on the popu-
lation. This population is a set of points in the design space and the initial population
is generated randomly by default. Where the next generation of the population is
computed using the fitness of the individuals in the current generation.

The genetic algorithm involves a population of individuals called chromosomes
where each on represents the solution of the studied problem (parameters of PID/PI
and FOPID/FOPI controllers) which its performance is evaluated based on fitness
function [11]. A group of chromosomes is selected to undergo to selection,
crossover and mutation stages based on the fitness of each individual. The appli-
cation of selection, crossover and mutation operations yields to create new indi-
viduals that give better solutions then the parents leading to optimal solution. The
steps of tuning the proposed controllers by GA as follow [36]:

i. Setting of the GA parameters and generate initial, random population of
individuals.

ii. Evaluate the fitness function for each chromosome.
iii. Perform selection, crossover and mutation.
iv. Repeat the fitness evaluation until end of generation.

In general, genetic algorithms use some variation of the following procedure to
search for an optimal solution [11, 36]:

(a) Initialization
(b) Selection
(c) Crossover
(d) Mutation
(e) Repeat
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In the first step (Initialization), an initial population of solutions is randomly
generated, and the objective function is estimated for each member of this initial
generation as described in [3]. While in the selection step, the individual members
are chosen stochastically either to parent the next generation or to be passed on to it.
The parent or the passing will occur in the members whose fitness is higher. The
solution of fitness based on its objective value which the better objective value
means higher fitness. Whereas the cross over means that some of the selected
solutions are passed to a crossover operator. The crossover operator combines two
or more parents to produce new offspring solutions for the next generation. The
crossover operator tends to produce new offspring that keep the common charac-
teristics of the parent solutions, while combining the other behavior in new ways. In
this way new areas of the search space are explored, hopefully while retaining

Fig. 24 Flow chart of genetic algorithm for tuning FOPID/FOPI controllers [13]
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optimal solution characteristics. In mutation step some of the next-generation
solutions are passed to a mutation operator, which introduces random variations in
the solutions. The purpose of the mutation operator is to ensure that the solution
space is adequately searched to prevent premature convergence to a local optimum.
Finally, the current generation of solutions is replaced by the new generation. If the
stopping criterion is not satisfied, the process returns to the selection phase. Fig-
ure 24 presents the flowchart of GA for tuning PID/PI and FOPID/FOPI controllers
as adopted from [36].

6 Application of GA to HSS

6.1 Position Control of HSS

Hydraulic control systems are widely used in many industrial fields, including
manufacturing systems; materials test machines, active suspension systems, mining
machinery, fatigue testing, flight simulation, paper machines, ships, injection
moulding machines, robotics, and aluminum mill equipment. Hydraulic systems are
also common in aircraft, where their high power-to-weight ratio [34] and accurate
control makes them an ideal choice for actuation of flight surfaces. The control
objective is to control the piston position for hydraulic actuator, a PSO, GA, and
AWPSO based on PID and FPID controllers have been implemented for piston
position control. Error signal acts as an input to the controller. The performance
indices (IAE, ISE and ITAE) are used as objective function. The mathematical
equations for the performance indices and the cost functions are as follows [4, 23]:

• Integral of Absolute Error (IAE)

IAE=
Z∞

0

eðtÞj jdt ð27Þ

• Integral of Squared Error (ISE)

ISE=
Z∞

0

eðtÞ2dt ð28Þ

• Integral of Time Absolute Error (ITAE)

ITAE=
Z∞

0

t eðtÞj jdt ð29Þ
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For GA the objective function is defined as follows [12, 13, 17]:

f =
1

ðperformance indexÞ ð30Þ

6.2 Parameters of HSS Model

The descriptions and values for position control parameters of HSS model are
illustrated in Table 1 [12].

6.3 Simulation Results

The step time of the utilized unit step in the simulation model is 1 s. The settling
time, overshoot, undershoot, cross correlation between the reference sinusoidal and
output signals of the model, conventional and fractional order gains values for the
three performance indices (IAE, ISE and ITAE) are shown in Table 2. The step
response and the error of fractional controller and conventional that based on GA
with IAE, PID/FOPID and PI/FOPI controllers are shown in Fig. 25. While the

Table 1 Parameters values and description for HSS model

Parameter Description Value

AP Piston area 0.0012 m2

C +
S ,C −

S Stribeck velocity range 0.015 m/s

Cv Discharge coefficient of the valve orifices 9.4281 × 10− 5m3s̸
ffiffiffiffi
N

p

F +
CO,F

−
CO Cylinder Coulomb friction parameters 300 N, 250 N

KS Spring stiffness coefficient 0 N/m
mt Total moving mass 20 kg
PS Working supply pressure 20 MPa
PT Tank pressure 0.1 MPa
Pn Nominal pressure 10 MPa
Qn Nominal flow rate 1.333 × 10−4 m3/s
S1, S2 Cylinder Stroke 0.25 m
VP1,A,VP1,A Pipeline volumes at A-side and B-side 0.000001 m3

σ + , σ − Cylinder viscous friction parameters 20 N s/m
α Ratio of ring side area to piston side area 1
F +
SO,F

−
SO Cylinder Stribeck friction parameters 50 N, 120 N

xmax, xmin Cylinder stroke limit ±0.28m
xv,max Maximum valve stroke 2 × 10− 3

		 		 m
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piston position and the error with ISE based on GA are displayed in Fig. 26. Whilst
the step response and the error based on GA with ITAE are illustrated in Fig. 27.

From Table 2, it is visible that the GA for different performance indexes IAE,
ISE and ITAE gives different values for the control gains. There are two main
reasons for this difference in gains by using different methods and different per-
formance indices. The first one is the different setting of the gains’ range for GA in
the Matlab code and different setting of the algorithm initial parameters. The user
has to consider only positive values of the optimization parameters and conse-
quently a constrained optimization algorithm will be invoked. The way of inter-
action of this constrained optimization with the initial conditions of each algorithm
may also lead to different results. The second reason is the different objective
function for the technique, where it may be IAE, or ISE or ITAE.

6.4 Experimental Results

The step time of the utilized unit step in the experimental system is 1 s. The settling
time, overshoot, undershoot, cross correlation between the reference sinusoidal and
output signals of the model, conventional and fractional order gains values for the
three performance indices (IAE, ISE and ITAE) for GA is shown in Table 3. In
addition, for the comparison between fractional controller and conventional

Table 2 Simulation results values using GA

Tuning 
Method

Performance
Index

Contro-
ller

Type
Kp

Integral 
term

Derivative 
term

Settling 
time
(sec.)

Over 
Shoot 
(%) 

XCF(*)
Values

Ki λ Kd δ

GA

IAE
PID 52.7271 21.97 1 1.21 1 6.39 11.51 0.932

FOPID 50.3399 23.82 0.05 0.52 0.1 1.65 1.4 0.998
PI 30.82 13.56 1 0 --- 7.20 18.7 0.923

FOPI 33.0016 12.10 0.14 0 --- 2.43 No
O.S

0.997

ISE
PID 53.84 20.74 1 1.47 1 6.64 11.5 0.912

FOPID 53.5242 20.36 0.01 0.37 0.7 1.64 1.4 0.997
PI 47.05 17.38 1 0 --- 6.92 11.87 0.909

FOPI 30.6712 12.91 0.27 0 --- 2.68 1.4 0.993

ITAE

PID 51.3985 24.26 1 0.59 1 5.98 14.03 0.895
FOPID 50.6874 20.51 0.13 0.54 0.3 1.70 0.71 0.998

PI 42.4784 17.34 1 0 --- 6.82 13.66 0.926
FOPI 30.84 12.66 0.34 0 --- 2.79 No

O.S
0.996

Where: XCF is the cross correlation coefficient between sinusoidal reference 
signal and output signal for different techniques.  
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controller, the step response and the error of system based on GA with IAE,
PID/FOPID and PI/FOPI controllers are illustrated in Fig. 28. Whilst the piston
position and the error with ISE based on GA are shown in Fig. 29. While the step
response and the error based on GA with ITAE are displayed in Fig. 30. The same
reasons for parameters different that has been discussed in Sect. 6.3 are the same in
the experimental work.
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Fig. 25 Piston position and error of HSS simulation model with FOPID/FOPI and PID/PI based
on GA and IAE
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6.5 Discussion of Simulation Results

The argument of the simulation model depends on the results for GA that have been
illustrated in Table 2. In case of IAE, the GA for conventional and fractional
controllers gave an acceptable settling time in seconds which are within the per-
missible range (0–30 s). But due to the nonlinearities of the HSS, the settling time
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Fig. 26 Piston position and error of HSS simulation model with FOPID/FOPI and PID/PI based
on GA and ISE
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of the system response based on fractional order controller is the minimum value
which is around 1.5 s compared with the other results. Furthermore the percentage
of system overshoot in case of fractional controller is 1% which is the minimum
value compared with the other results. While in case of ISE, the GA for conven-
tional and fractional controllers also gave an adequate settling time in seconds
which are inside the permissible range (0–30 s). But the settling time of the system
response anchored in fractional order controller is the minimum value which is
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Fig. 27 Piston position and error of HSS simulation model with FOPID/FOPI and PID/PI based
on GA and ITAE
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around 1.5 s in relation to the other types of controllers. In addition, there isn’t a
system overshoot in case of fractional order controller compared with available
system overshoot in conventional controllers. In addition to the results, in case of
ITAE, it shows that the used optimization technique ‘GA’ gave an acceptable
settling time values for fractional controllers, which within the permissible range.
But the settling time of the system response based on fractional order controller is
the minimum value which around 1.5 s compared with the other technique results.
Additionally, there isn’t a system overshoot in case of fractional order controller
compared with available system overshoot in the other Evolutionary techniques.

The simulation results show that, there isn’t systems undershoot for the three
performance indices (IAE, ISE and ITAE) in the case of using PID/PI and
FOPID/FOPI controllers. When using the same mentioned parameters of the PID/PI
and FOPID/FOPI controllers in Table 2, the Fractional Order controller that based
on GA technique give an efficient sinusoidal wave tracking, where it gives an
acceptable cross correlation coefficients. On a global view to the responses, it is
found that the nonlinear controller or the fractional order controller based on GA is
the better controller than classical controller in determination the optimal parame-
ters of the proposed controller. Moreover, the settling time and system overshoot of
the three performance indices in case of Fractional Order PID (FOPID) controller is
the minimum value compared with the other results. In fact the fractional controller
shows its good performance in reducing the settling time and overshoot from
available overshoot value to non overshoot. It is also found that there isn’t system
undershoot for all the optimization techniques. Furthermore the used FOPID gives a
better system response and results compared with FOPI controller results.

Table 3 Experimental results values using PSO, AWPSO and GA

Tuning 
Method

Performance
Index

Control-
ler

Type
Kp

Integral 
term

Derivative 
term

Settling 
time
(sec.)

Over 
Shoot 
(%) 

XCF(*)
Values

Ki λ Kd δ

GA

IAE 

PID 52.7271 21.97 1 1.21 1 6.7327 11.51 0.89
FOPID 50.3399 23.82 0.05 0.52 0.1 2.22 No

O.S
0.92

PI 30.82 13.56 1 0 --- 7.5516 18.7 0.93
FOPI 33.0016 12.10 0.14 0 --- 3.17 1 0.985

ISE 

PID 53.84 20.74 1 1.47 1 7.0548 11.87 0.94
FOPID 53.5242 20.36 0.01 0.37 0.7 2.07 No

O.S
0.98

PI 47.05 17.38 1 0 --- 8.0585 11.87 0.89
FOPI 30.6712 12.91 0.27 0 --- 3.79 0.71 0.91

ITAE

PID 51.3985 24.26 1 0.59 1 6.4047 14.39 0.89
FOPID 50.6874 20.51 0.13 0.54 0.3 2.54 No

O.S
0.98

PI 42.4784 17.34 1 0 --- 7.336 16.18 0.92
FOPI   30.84 12.66 0.34 0 --- 3.93 0.71 0.95
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The resultant performance indices that are displayed in the figures must be multi-
plied by 10− 3 to get the actual values for the performance indices.

6.6 Effects of Changing Reference Profile
for the Simulation HSS

A changing of reference profile with 50% of the set point value is added to the
control signal (unit step input) at the process input and drive the system away from
its desired operating point from (t = 20) seconds to (t = 40) seconds during the
stability condition of the system. The changing in profile based on GA with

2 4 6 8 10 12 14 16 18 20
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

    (a) Step Response with GA Based On PID/PI
 and FOPID/FOPI Controllers                                           

Time (sec)

Pi
st

on
 P

os
iti

on
 (m

)

Reference
GA- IAE- PID
GA- IAE- PI
 GA- IAE- FOPID
 GA- IAE- FOPI

0 2 4 6 8 10 12 14 16 18 20
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

(b) Error of the System with GA Based On PID/PI 
and FOPID/FOPI Controllers

Time (sec)

E
rr

or
 (m

)

GA- IAE- PID
GA- IAE- PI
 GA- IAE- FOPID
 GA- IAE- FOPI

Fig. 28 Piston position and error of experimental HSS with FOPID/FOPI and PID/PI based on
GA and IAE
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classical controller is shown in Fig. 31. Whereas the profile’s changing of the HSS
model based on GA with nonlinear controller is displayed in Fig. 32. The figures
show that the fractional order controller based on GA has better results in the case
of profile changing in relation to other techniques and the system behaves stronger
ant changing profile ability.
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6.7 Discussion of Experimental Results

The cases of the experimental system depend on the results Table for PSO,
AWPSO, GA that illustrated in Table 3. The settling time of the system response
based on fractional order controller using GA is the minimum value which around
2.5 s in relation to the other controller results. Moreover there isn’t a system
overshoot in case of fractional controller in compared with the available overshoot
values in conventional controllers. In addition, the settling time of the system
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response anchored in fractional order controller is the minimum value which
approximately 2.5 s with regard to the other results. Additionally, there isn’t a
system overshoot in case of fractional order controller compared with available
system overshoot in the conventional controllers. The settling time of the system
response based on fractional order controller is the minimum value which around
2.5 s corresponding to the other results. Moreover, there isn’t a system overshoot in
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Fig. 31 Response of HSS simulation model with 50% changing in profile based on GA
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case of fractional order controller compared with available system overshoot in the
other controllers.

The experimental results illustrate that, there isn’t systems undershoot for the
three performance indices (IAE, ISE and ITAE) in the case of using PID/PI and
FOPID/FOPI controllers. When using the same mentioned parameters of the PID/PI
and FOPID/FOPI controllers in Table 3, the Fractional Order controller that based
on GA technique give an efficient sinusoidal wave tracking, where it gives an
acceptable cross correlation coefficients. On a global analysis to the responses, it is
found that the nonlinear controller or the fractional order controller based on GA is
the better controller than classical controller in determination the best parameters of
the projected controller. On the way, the settling time and system overshoot of the
three performance indices in case of Fractional Order PID (FOPID) controller is the
minimum value compared with the other results. In fact the fractional controller
provides its robustness in reducing the settling time and overshoot from available
overshoot value to non overshoot. It is also found that there isn’t system undershoot
for all the optimization techniques. In addition, the used FOPID gives a better
system response and results compared with FOPI controller results.

6.8 Effects of Changing Reference Profile
for the Experimental HSS

The same changing in profile signal that has been added in the previous signal is
also has been added in experimental system. The changing in profile reference
based on GA with classical controller is shown in Fig. 33. Whereas the changing in
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Fig. 33 Response of experimental HSS with 50% changing in profile based on GA
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profile of the HSS model based on GA with nonlinear controller is displayed in
Fig. 34. The figures illustrate that the fractional order controller based on GA has
better resistance the changing in profile with regard to conventional controllers. It
also shows that the system behaves stronger ant changing in profile ability.

6.9 Sensitivity of HSS Parameters

The hydraulic systems have many numbers of perturbations in parameters such as
perturbation in supply pressure, Coulomb friction and viscous friction. It was
assumed that the system parameters have a perturbation of 20%. Tables 4 and 5
show the settling time and system overshoots of the position control of HSS
according to the perturbation of the supply pressure, viscous and coulomb frictions.
The simulation and experimental results show that the settling time and system
overshoots are still around the same values in case of nominal parameters. It also
shows that the proposed controller based on the GA technique have the desired
robustness to system uncertainties such as the perturbation of the viscous friction,
Coulomb friction and pump’s supply pressure. In addition it shows that the frac-
tional order controller is still give good time performance with compared to clas-
sical controllers.
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Table 4 Time performance of HSS due to supply pressure sensitivity

Table 5 Time performance of HSS due to friction parameters sensitivity

Tuning 
Method

Performance
Index

Contro-
ller 

Type

Simulation Model of HSS Experimental HSS

Increasing in 
Supply Pressure 

by 20 %

Decreasing in 
Supply Pressure 

by 20 %

Increasing in 
Supply Pressure 

by 20 %

Decreasing in 
Supply Pressure 

by 20 %

Settling 
time
(sec.)

Over 
Shoot 
(%)

Settling 
time
(sec.)

Over 
Shoot 
(%)

Settlin
g time
(sec.)

Over 
Shoot 
(%)

Settling 
time
(sec.)

Over 
Shoot 
(%)

GA

IAE

PID 6.192 11.21 6.99 12.81 6.62 11.01 6.93 11.91
FOPID 1.553 1.1 1.95 1.98 2.02 No

O.S
2.52 No

O.S
PI 7.12 17.9 7.80 19.87 7.13 18.1 7.8516 19.7
FOPI 2.23 No

O.S
2.873 No

O.S
3.17 1 3.17 1

ISE

PID 6.446 10.2 6.864 12.85 6.96 10.89 7.6548 12.97
FOPID 1.445 1.34 1.984 1.94 2.07 No

O.S
2.578 No

O.S
PI 6.724 10.97 7.45 12.47 8.05 10.89 8.659 12.87
FOPI 2.482 1.24 3.28 1.84 3.71 0.5 3.95 1.75

ITAE

PID 5.88 13.53 6.88 15.63 6.24 13.12 6.98 15.39
FOPID 1.60 0.61 2.10 1.61 2.54 No

O.S
2.98 No

O.S
PI 6.62 13.16 7.92 14.96 7.336 16.18 7.336 16.18
FOPI   2.595 No

O.S
3.69 No

O.S
3.87 0.62 4.56 1.71

Tuning 
Method

Performance
Index

Contro-
ller 

Type

Simulation Model of HSS Simulation Model of HSS

Increasing in 
Viscosity 

Friction by
20 %

Decreasing in 
Viscosity 

Friction by
20 %

Increasing in 
Coulomb 

Friction  by 
20 %

Decreasing in 
Coulomb Friction  

by 20 %

Settling 
time
(sec.)

Over 
Shoot 
(%)

Settling 
time
(sec.)

Over 
Shoot 
(%)

Settlin
g time
(sec.)

Over 
Shoot 
(%)

Settling 
time
(sec.)

Over 
Shoot 
(%)

GA

IAE

PID 6.611 10.43 6.611 10.43 6.614 10.432 6.613 10.432
FOPID 1.775 1.6 1.769 1.69 1.776 1.68 1.775 1.6
PI 6.952 15.64 6.955 15.66 6.953 15.63 6.952 15.64
FOPI 2.735 No 

O.S
2.736 No 

O.S
2.736 No 

O.S
2.736 No

O.S

ISE

PID 6.95 11.96 6.955 11.97 6.955 11.97 6.955 11.97
FOPID 1.775 1.5 1.775 1.5 1.775 1.5 1.775 1.5
PI 6.916 11.96 6.95 11.96 6.946 11.96 6.916 11.96
FOPI 2.665 No 

O.S
2.665 No 

O.S
2.665 No

O.S
2.665 No

O.S

ITAE

PID 5.984 15.04 5.984 15.04 5.984 15.04 5.984 15.04
FOPID 1.915 1 1.918 1 1.916 1 1.918 1

PI 6.843 7.58 6.845 7.59 6.844 7.582 6.846 7.584
FOPI   2.987 No 

O.S
2.988 No 

O.S
2.979 No

O.S
2.9799 No

O.S
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After a deep study of position control of HSS, The recommended controller that
gives good time performance, tracking the change in reference profile and robust
controller for parameters sensitivity is the fractional order controllers. Figures 35
and 37 present the system response based on GA in case of increasing and
decreasing in HSS parameters for conventional controllers. While Figs. 36 and 38
illustrate the system response based on GA and fractional order controllers in case
of parameters sensitivity in HSS for the simulation HSS model and experimental
hardware respectively.
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Fig. 35 Step response of simulation HSS based on GA with increasing and decreasing in system
parameters
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6.10 Validation Between Simulation and Experimental
Results

The main objective of this Section is to illustrate the convergence and validation of
results and graphics between the methods, which represents the Hydraulic Servo
System (HSS). The results show that a good validation between the following
method.
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Fig. 36 Step response of simulation HSS based on FOPID/FOPI with increasing and decreasing
in system parameters
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I. Simulation model based on physical laws.
II. Experimental system.
III. Identified model based on input–output data.

The decision of good validation between the above mentioned models is based
on that there are a small deviation between the settling time, overshoot and graphs.
Figures 39 and 40 show the validation of the results using PID/FOPID controllers
based on GA.
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Fig. 37 Step response of experimental HSS based on GA with increasing and decreasing in
system parameters
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7 Conclusion

This chapter presents application of GA to design the following controllers;

(a) PID/PI controllers.
(b) Fractional Order PID/PI controllers.

This design is implemented on simulation model and real time of Position
Control for Hydraulic Servo System. The utilized optimization technique and
tuning method in this research is Genetic Algorithm (GA).

A SIMULINK model for a typical electro-hydraulic servo system was imple-
mented and modified which included major nonlinearities and was verified on an
experimental system. The hardware components are related to Bosch REXROTH
German Company. The HSS plays an important role in the industrial applications
such as the machine tool industry, material handling, mobile equipment, plastics,
steel plants, oil exploration and automotive testing, so it is important to design a
robust control system in this field. The experimental and simulation model of HSS
are considered as a single optimization problems. The three performance indices
(IAE, ISE and ITAE) have been used as the objective functions in GA. Defining the
objective function for the system depends on the dynamics of the system and the
desired performance for the system. The results demonstrated that the minimum
settling time in case of GA based on conventional and fractional order controllers
are 5.98 s and 1.64 s respectively. In addition, in case of GA based on classical and
fractional controller, the minimum settling times are 6.404 and 2.017 s respectively.
A changing in profile signal with 50% from the set point signal are is applied to
HSS model and real time system with GA, it showed that there are a spikes and dips
in GA based on conventional controller. But in case of fractional order controller, it
showed that better achievement of changing in profile in relation to other techniques
and the system behaves stronger ant changing in profile ability.

The simulation and experimental results showed that the nonlinear controller or
fractional order controller achieved a desired performance for position control of
HSS by reducing settling time and overshoots with measurable values. There are no
spikes or dips appeared in the output response, while the system reached steady
state smoothly compared to the other utilized techniques. It also displayed that the
system responses of simulation model and experimental system with the fractional
order controller based on GA are reliable and robust system with disturbance
rejection. Due to the nonlinearities of HSS because of the frictions forces, valve
dynamics, oil compressibility and load influence, it is recommended to utilize a non
linear controller such Fractional Order Controller to avoid these effects of HSS
nonlinearities.
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8 Future Work

The simulation and experimental results showed that the fractional order controller
achieved better dynamic response of the HSS system accurately tracks the trajectory
and remains robust to disturbances. More desirable performance and future work of
the HSS system can be achieved by utilizing the following considerations:

• Using conventional controller with Fuzzy Logic Controller (FLC) based on
PSO, AWPSO and GA.

• Utilizing fractional order controllers with nonlinear controllers like Fuzzy Logic
Controller (FLC) to adequate with the nonlinearities of HSS.

• Implementing a two degree of freedom controller.
• Implementing HSS model for tracking the higher frequency signals.
• Implementing force and pressure trajectory for HSS to be familiar with the

operation of HSS.
• Controller design to assurance stability and performance for change from

position tracking to pressure/force tracking.
• Design a fractional controller based on GA to achieve better and more desirable

performance of the system in terms of pressure and force tracking.
• Design a controller based on PSO, AWPSO and GA with multi objective

functions of settling time and overshoots.
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Control and Synchronization
of Fractional-Order Chaotic Systems
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Abstract The chaotic dynamics of fractional-order systems and their applications in

secure communication have gained the attention of many recent researches.

Fractional-order systems provide extra degrees of freedom and control capability

with integer-order differential equations as special cases. Synchronization is a nec-

essary function in any communication system and is rather hard to be achieved for

chaotic signals that are ideally aperiodic. This chapter provides a general scheme of

control, switching and generalized synchronization of fractional-order chaotic sys-

tems. Several systems are used as examples for demonstrating the required mathe-

matical analysis and simulation results validating it. The non-standard finite differ-

ence method, which is suitable for fractional-order chaotic systems, is used to solve

each system and get the responses. Effect of the fractional-order parameter on the

responses of the systems extended to fractional-order domain is considered. A con-

trol and switching synchronization technique is proposed that uses switching para-

meters to decide the role of each system as a master or slave. A generalized scheme

for synchronizing a fractional-order chaotic system with another one or with a linear

combination of two other fractional-order chaotic systems is presented. Static (time-

independent) and dynamic (time-dependent) synchronization, which could generate

multiple scaled versions of the response, are discussed.

Keywords Active nonlinear control ⋅ Amplitude modulation ⋅ Hidden attractors ⋅
Lyapunov stability ⋅ Non-standard finite difference schemes ⋅ Static and dynamic

synchronization

A.G. Radwan (✉) ⋅ W.S. Sayed ⋅ S.K. Abd-El-Hafiz

Faculty of Engineering, Engineering Mathematics and Physics Department,

Cairo University, Giza 12613, Egypt

e-mail: agradwan@ieee.org

W.S. Sayed

e-mail: wafaa.s.sayed@eng.cu.edu.eg

S.K. Abd-El-Hafiz

e-mail: salwa@computer.org

A.G. Radwan

Nanoelectronics Integrated Systems Center, Nile University, Cairo 12588, Egypt

© Springer International Publishing AG 2017

A.T. Azar et al. (eds.), Fractional Order Control and Synchronization
of Chaotic Systems, Studies in Computational Intelligence 688,

DOI 10.1007/978-3-319-50249-6_11

325



326 A.G. Radwan et al.

1 Introduction

Chaotic systems and their implementations have been studied heavily during the last

four decades [41, 42, 45, 50, 80]. The sensitivity of chaotic systems to parame-

ters and initial conditions is required for many applications such as chemical reac-

tions [18], biological systems [33, 67], circuit theory [40, 46, 51, 52], electron-

ics [62], control [4, 5], secure communication [14, 16, 27] and cryptography [1, 2,

6, 26, 47, 48, 56, 58–60]. Much attention has been devoted to the search for bet-

ter and more efficient methods for obtaining the analytical or numerical solutions or

controlling the responses of chaotic systems. During the last few decades, fractional

calculus has also become a powerful tool in describing the dynamics of complex sys-

tems which appear frequently in several branches of science and engineering. There-

fore, fractional differential equations and their numerical techniques find numerous

applications in the field of viscoelasticity, robotics, feedback amplifiers, electrical

circuits, control theory, electro analytical chemistry, fractional multi-poles, electro-

magnetics, bioengineering, and image encryption [10, 17, 30, 39, 49, 54, 55, 57,

63, 64].

The chaotic dynamics of fractional-order systems began to attract the interest of

the scientific community in recent years associated with the advances in numeri-

cal methods for solving fractional-order systems and their electronic implementa-

tions [10]. In addition, fractional calculus is more suitable for modeling the con-

tinuous non-standard behaviors of nature due to the flexibility offered by the extra

degrees of freedom. Recently, most of the chaotic dynamical systems based on

integer-order calculus have been extended into the fractional-order domain to fit the

experimental data much precisely than the integer-order modeling.

The coupling of two or more chaotic systems is referred to as synchronization.

Control and synchronization of fractional-order chaotic systems have found their way

to many applications such as biological and physical systems, structural engineering,

ecological models, secure communication and cryptography [3, 7–9, 11, 12, 15,

22, 35, 36, 66, 76, 79]. Since the introduction of the concept of synchronization of

two chaotic signals starting at different initial conditions [38], there has been a lot

of work on chaos control and synchronization. Chaotic synchronization represents a

challenge due to the sensitivity to initial conditions characteristic of chaotic systems.

Two trajectories starting at slightly different initial conditions exponentially diverge

from each other in the long-term evolution. Several papers handled conventional

synchronization of two identical chaotic systems, their anti-synchronization [21],

as well as synchronization of two different systems [77]. More recent researches

extended the concept to fractional-order domain [33], introduced generalized scaled

dynamic (time-dependent) synchronization [43, 61], and provided the capability

of control and switching for exchanging roles between master and slave systems

[19, 44].

The aim of this chapter is to introduce several methods for control and synchro-

nization of fractional-order chaotic systems using active nonlinear control technique.

Several chaotic systems are extended to fractional-order domain and the effect of the
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fractional-order parameter on the output responses is studied. The concept of active

control using two on/off switches for the synchronization between two fractional-

order chaotic systems is proposed. A generalized synchronization scheme is applied

to synchronize two identical or different fractional-order chaotic systems. In addition,

a new chaotic system is formed as a linear combination of two systems where the

generalized synchronization scheme is applied to synchronize a system with the lin-

ear combination of two other systems. A block diagram of the generalized synchro-

nization scheme and the associated mathematical analysis are presented. The control

signals are obtained in terms of the responses, parameters and scaling factors. Gener-

alizations permit conventional synchronization, anti-synchronization, static scaling,

as well as dynamic scaling where the type of synchronization and the scaling factor

vary as time advances. Mathematical analysis and various examples are presented

at different values of fractional-orders using Grünwald-Letnikov method of approx-

imation and Non-Standard Finite Difference (NSFD) discretization technique [24].

Simulation results, including time series and strange attractors, are consistent with

the performed analysis.

Section 2 of this chapter provides a brief introduction to relevant concepts and

a survey of previous works on control and synchronization of chaotic dynamics.

Section 3 provides the preliminaries of numerical solution of fractional-order differ-

ential equations and reviews the properties of the systems chosen for numerical sim-

ulations. Section 4 illustrates the effect of parameters and fractional-orders on the

responses of the utilized chaotic systems. Section 5 presents active nonlinear con-

trol and synchronization using two on/off switches for the synchronization between

two different chaotic systems. Section 6 discusses the analysis required to get the

control signals, which is suitable for achieving any required synchronization case.

This analysis is validated through simulation results for two identical or different

fractional-order chaotic systems. Section 7 proposes analysis and simulation results

in case of synchronizing a fractional-order chaotic system with a linear combination

of two other systems. In addition, results show that the linear combination provides

another way of controlling the obtained attractor diagram. Finally, Sect. 8 summa-

rizes the main contributions of the chapter.

2 Control and Synchronization of Chaotic Dynamics

System parameters and fractional-orders represent a way of controlling the type of

obtained response with no external control procedure. Chaos control requirements

differ according to the given specifications and application. It is sometimes required

to stabilize the system and force it to follow a certain periodic solution, while other

cases require conservative systems with quasi-periodic solutions. Other modeling

applications as well as pseudo-random number generation and utilization in cryp-

tography require chaotic responses.



328 A.G. Radwan et al.

Continuous flows expressed in terms of ordinary differential equations can have

numerous types of post transient solution(s). Reporting when these systems of dif-

ferential equations exhibit chaos represents a rich research field. Research efforts

have been exerted (e.g., [25, 65]) to come up with simple novel chaotic flows other

than the well-known conventional systems (Lorenz, Rössler, . . . ). These researches

depend on Poincaré-Bendixson theorem, [20] which states that for any autonomous

first-order ordinary differential equations with continuous functions to have chaotic

solutions it requires at least three dimensions with at least one nonlinear term. Some

systematic numerical search methods have been developed for detecting the presence

of chaotic solutions for new equations that contain multiple parameters. These para-

meters mainly appear as the coefficients of each term in the system of differential

equations. Methods aim at setting many coefficients to zero with the others set to ±1
if possible or otherwise to a small integer or decimal fraction with the fewest possible

digits. These systems, with the least number of existing coefficients and nonlinear

terms, should exhibit chaotic properties of aperiodic bounded long-time evolution

and sensitive dependence on initial conditions for some ranges of parameters.

Continuous chaotic systems can be classified into two wide categories. Dissipa-

tive systems, to which most of the studied systems belong, usually exhibit chaos

for most initial conditions in a specified range of parameters. On the other hand, a

conservative system exhibits periodic and quasi-periodic solutions for most values

of parameters and initial conditions, and can exhibit chaos for special values only.

Consequently, dissipative systems usually appear in most applications of chaos the-

ory such as chaos-based communication, physical and financial modeling. It should

be noted that conservative systems have another different set of applications where

they are useful to study the development of chaos in some kinds of systems.

Another important classification of chaotic or strange attractors is either self-

excited or hidden attractors. A self-excited attractor has a basin of attraction that

is associated with or excited from unstable equilibria. For example, the well-known

Lorenz and Rössler attractors are self-excited. From a computational point of view,

this allows one to use a numerical method in which a trajectory started from a point,

on the unstable manifold in the neighborhood of an unstable equilibrium, reaches an

attractor and identifies it. On the other hand, a hidden attractor has a basin of attrac-

tion that does not intersect with small neighborhoods of any equilibrium points. Hid-

den attractors cannot be found by the previous method and are important in engineer-

ing applications because they allow unexpected and potentially disastrous responses

to perturbations in a structure like a bridge or an airplane wing.

As for external control methods, Pecora and Carroll [38] were the first to intro-

duce the concept of synchronization of two systems with different initial conditions.

Many chaotic synchronization schemes have also been introduced during the last

decade such as adaptive control [68–73], time delay feedback approach [13, 37],

sliding mode control [11, 23], nonlinear feedback synchronization, and active con-

trol [22]. However, most of these methods have been tested for two identical chaotic

systems. When Ho and Hung [22] presented and applied the concept of active con-

trol method on the synchronization of chaotic systems, many recent papers inves-

tigated this technique for different systems and in different applications [28, 74].
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The synchronization of three chaotic fractional-order Lorenz systems with bidirec-

tional coupling in addition to the chaos synchronization of two identical systems via

linear control were investigated in [34, 78]. Moreover, two different fractional-order

chaotic systems can be synchronized using active control as in [7]. The hyper-chaotic

synchronization of the fractional-order Rössler system, which exists when its order

is as low as 3.8, was shown by Yua and Lib [78].

Anti-synchronization is a phenomenon in which the state vectors of the synchro-

nized systems have the same amplitude but opposite signs to those of the driving

system. Therefore, the sum of two signals is expected to converge to zero when anti-

synchronization appears. Since the discovery of anti-synchronization experimentally

in the context of self-synchronization, it has been applied in many different fields,

such as biological and physical systems, structural engineering, and ecological mod-

els [75]. Liu et al. [29] shows that either synchronization or anti-synchronization can

appear depending on the initial conditions of the coupled pendula. Active control

method is used to study the anti-synchronization for two identical and nonidentical

systems [7, 22].

Before we proceed to presenting our work on control and synchronization of

fractional-order chaotic systems, the numerical methods associated with fractional-

order differential equations are briefly reviewed in the next section.

3 Fractional-Order Chaotic Systems and Their Numerical
Solution

Finding robust and stable numerical and analytical methods for solving the frac-

tional differential equations has recently been an active research topic. These meth-

ods include the fractional difference method, the Adomian decomposition method,

the homotopy-perturbation method, the variational iteration method, and the Adams-

Bashforth-Moulton method. Recently, the non-standard finite difference (NSFD)

scheme [31, 32] has been applied for the numerical solutions of fractional differential

equations [24]. The scheme has been developed as an alternative method for solving

a wide range of problems whose mathematical models involve algebraic, differen-

tial, biological models, and chaotic systems. The definition of Grünwald-Letnikov

derivative has been used in numerical analysis to discretize the fractional differen-

tial equations. The technique has many advantages over the classical techniques, and

provides an efficient numerical solution.

The Caputo fractional derivative [17] of order 𝛼 is defined as:

D𝛼f (t) = d𝛼 f (t)
dt𝛼

=

{ 1
𝛤 (m−𝛼)

∫ t
0

f m(𝜏)
(t−𝜏)𝛼−m+1 d𝜏 m − 1 < 𝛼 < m

dm

dtm f (t) 𝛼 = m
,

(1)
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where m is the first integer greater than 𝛼 and 𝛤 (.) is the gamma function defined by:

𝛤 (z) =
∞

∫
0

e−ttz−1dt, 𝛤 (z + 1) = z𝛤 (z). (2)

Consider the fractional-order differential equation

D𝛼x(t) = f (t, x). (3)

Grünwald-Letnikov method of approximation [24] is defined as follows:

D𝛼x(t) = lim
h→0

h−𝛼
t∕h∑
j=0

(−1)j
(
𝛼

j

)
x(t − jh), (4)

where h is the step size. This equation can be discretized as follows:

n+1∑
j=0

cj
𝛼x(t − jh) = f (tn, x(tn)), j = 1, 2, 3,… (5)

where tn = nh and cj
𝛼

are the Grünwald-Letnikov coefficients defined as:

cj
𝛼 =

(
1 − 1 + 𝛼

j

)
cj−1

𝛼
, j = 1, 2, 3,… , c0𝛼 = h−𝛼. (6)

The NSFD discretization technique is based on replacing the step size h by a function

𝜙(h) [24, 33] and applying it with (5) to solve (3). In the rest of this paper, NSFD

with 𝜙(h) = 1 − e−h
is used to solve the systems of differential equations. In addi-

tion, a time step of 0.005 is employed according to the system properties and a total

simulation time of 200 points is used except where stated otherwise.

Same algebraic manipulation can be applied to a system of three fractional-order

differential equations

D𝛼x = f1(x, y, z), (7a)

D𝛽y = f2(x, y, z), (7b)

D𝛾z = f3(x, y, z), (7c)

where 0 < 𝛼, 𝛽, 𝛾 ≤ 1, to obtain the corresponding solutions. All state variables (x,

y, z, . . . ), scaling factors (sx, sy, sz, . . . ), and control functions (ux, uy, uz, . . . ) that

will appear later on are in general functions of time, i.e., their values may change at

every time instant.
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3.1 Systems Utilized for Synchronization Purposes

The first three systems are Lü, Newton-Leipnik and Chua’s circuit, which have

appeared before in fractional-order form in [39, 53] and others. The rest of the uti-

lized systems appeared before in integer-order [25, 65], yet, in this section, they are

extended to fractional-order domain. One of the systems is the slave, while the master

may be one of the other two systems or a linear combination of them as detailed later

on in Sect. 7. Table 1 shows the equations of the selected systems in fractional-order

domain and their strange attractors in the integer-order case. They are a dissipative

Table 1 Equations of the utilized systems, their properties, discretized solutions and attractor dia-

grams
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hidden attractor with no equilibria and quadratic non-linearity [25], a dissipative

self-excited attractor with quadratic non-linearity [65], and a conservative one [25]

with the equations shown in Table 1.

Discretized solutions to the systems could be obtained using (5) and NSFD. Non-

linear terms including the same state variable that is being calculated are replaced

with the aid of the nonlocal discrete representations. For example, in the equation of

D𝛽y, the following rules are used for replacement:

y ≈ yn y2 ≈ ynyn+1, xy ≈ 2xn+1yn − xn+1yn+1, and zy ≈ 2znyn − znyn+1. (8)

The relations used for solving the systems are given in Table 1.

Subscripts will be used later on to characterize different roles that a system could

act as a master or slave. There are various possible values for the fractional-orders

where the effect of fractional-orders and criteria of choosing them are studied in the

next section.

4 Sensitivity to Fractional-Orders and Parameters
Variation

In this section, we discuss the sensitivity of the six presented systems to parameters

and fractional-orders. Numerical simulations are used to identify when they generate

periodic or chaotic responses. In addition, we compare the shape of their attractors

in integer-order and fractional-order. For simplicity, the three fractional-orders in

Table 2 Lü system responses versus fractional-order 𝛼 and parameter a
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Table 3 Newton-Leipnik system responses versus fractional-order 𝛼 and parameters

Table 4 Chua’s circuit system responses versus fractional-order 𝛼 and parameter a

the system of fractional differential equations are assumed to be equal, i.e., in this

section 𝛼 = 𝛽 = 𝛾 and the unified fractional-order is denoted by 𝛼.

Tables 2, 3, 4, 5, 6 and 7 show the post-transient time series of the 3 phase space

dimensions x, y and z as well as the post-transient attractor diagram with the initial

point marked in red illustrating the obtained type of solution (periodic or chaotic)

for different values of the fractional-order. It should be noted that in the upcoming
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Table 5 Response type of the dissipative system with hidden attractor at various values of

fractional-order 𝛼 and parameter a
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Table 6 Response type of the dissipative system with self-excited attractor at various values of

fractional-order 𝛼 and parameters a and b

Table 7 Conservative system responses versus fractional-order 𝛼 and parameter a
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sections, transient regions of the time series and attractors are shown to illustrate that

synchronization takes place early at the beginning of simulation time.

The dissipative system with hidden attractor exhibits a narrow range of fractional-

orders that yield chaotic behavior and may exhibit divergent responses. Conse-

quently, it is utilized in Sects. 6 and 7 as a slave system to control its response. For

the dissipative system with self-excited attractor, the parameter c is just a scaling

parameter [65], so the effect of a, b as well as 𝛼 is considered.

5 Control and Switching Synchronization

In this section, a control and switching technique for synchronizing the response

of any chaotic system to follow another pattern is presented. This can be achieved

through two switches that control the role of each system whether it acts as a master

or a slave. Figure 1 shows the general block diagram that describes the proposed tech-

nique for two chaotic systems. Conventional synchronization is defined as changing

the response of the slave system to synchronize with the master chaotic system and

exactly follow its pattern. This purpose is achieved using active control functions

which affect only the slave response without any loading on the master system [7,

43].

The switching synchronization technique is applied to the Lü system and the

Newton-Leipnik system. Hence, their equations with the switches and control func-

tions effect being considered are given by:

D𝛼x1 = a1(y1 − x1) − S1ux, (9a)

D𝛽y1 = b1y1 − x1z1 − S1uy, (9b)

D𝛾z1 = x1y1 − c1z1 − S1uz, (9c)

and

D𝛼x2 = −a2x2 + y2 + 10y2z2 + S2ux, (10a)

D𝛽y2 = −x2 − 0.4y2 + 5x2z2 + S2uy, (10b)

D𝛾z2 = b2z2 − 5x2y2 + S2uz, (10c)

where S1 and S2 are on-off parameters (digital bit), which either have the values

“1” or “0” according to the required dependence between both systems as shown in

Fig. 1. The unknown terms (ux, uy, uz) in (9) and (10) are active control functions to

be determined, and the error functions can be defined as:
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Fig. 1 Block diagram of the switched synchronization scheme between two different fractional-

order chaotic systems

ex = x2 − x1, ey = y2 − y1, ez = z2 − z1. (11)

Equation (11) together with (9) and (10) yield the error system

D𝛼ex = −a2(ex + x1) + (1 + 10(ez + z1))(ey + y1) − a1(y1 − x1) + (S1 + S2)ux,

(12a)

D𝛽ey = −(ex + x1) − 0.4(ey + y1) + 5(ex + x1)(ez + z1) − b1y1 + x1z1 + (S1 + S2)uy,

(12b)

D𝛾ez = b2(ez + z1) − 5(ex + x1)(ey + y1) − x1y1 + c1z1 + (S1 + S2)uz. (12c)

The active control functions (ux, uy, uz) are defined as follows

(S1 + S2)ux = Vx(ex) − (1 + 10(ez + z1))(ey + y1) + a1(y1 − x1) + a2x1, (13a)

(S1 + S2)uy = Vy(ey) + ex + x1 + (0.4 + b1)y1 − 5(ex + x1)(ez + z1) − x1z1, (13b)

(S1 + S2)uz = Vz(ez) − (b2 + c1)z1 + 5(ex + x1)(ey + y1) + x1y1. (13c)

The terms Vx, Vy and Vz are linear functions of the error terms ex, ey and ez. With

the choice of ux, uy and uz given by (13) the error system between the two chaotic

systems (12) becomes

D𝛼ex = −a2ex + Vx(ex), D𝛽ey = −0.4ey + Vy(ey), D𝛾ez = b2ez + Vz(ez). (14)
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There is no need to solve (14) if the solution converges to zero. Therefore, the control

terms Vx, Vy and Vz can be chosen such that the system (15) becomes stable with zero

steady state.

⎛
⎜⎜⎝

Vx(ex)
Vy(ey)
Vz(ez)

⎞
⎟⎟⎠
= A

⎛
⎜⎜⎝

ex
ey
ez

⎞
⎟⎟⎠
, (15)

where A is a 3 × 3 real matrix chosen so that all eigenvalues 𝜆i of the system (15)

satisfy the following condition:

|arg(𝜆i)| > 𝛼𝜋

2
. (16)

Hence, the matrix A is chosen as follows

A =
⎛
⎜⎜⎝

a2 − kx 0 0
0 0.4 − ky 0
0 0 −b2 − kz

⎞
⎟⎟⎠
. (17)

Then the eigenvalues of the linear system (15) satisfy the necessary and sufficient

condition (16) for all fractional-orders 𝛼 < 2 [53]. In this specific case, kx = ky =
kz = 100 is chosen to overcome the large difference between ranges of x, y and z
between the two chosen systems.

Fig. 2 Static switching setting Lü as a master and Newton-Leipnik as a slave a Time series,

b Attractor diagrams
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Fig. 3 Static switching setting Newton-Leipnik as a master and Lü as a slave a Time series,

b Attractor diagrams

Simulation results validate the previous analysis as shown in Fig. 2. Time

series and attractor diagrams are shown for the case (S1, S2) = (0, 1) at (𝛼, 𝛽, 𝛾) =
(0.95, 0.96, 0.97). Lü system works normally and the Newton-Leipnik system adapts

its response to follow the Lü system. Time series of Lü are represented by the solid

lines while the dotted lines correspond to those of Newton-Leipnik. Similarly, Fig. 3

shows time series and attractor diagrams in the reverse case when (S1, S2) = (1, 0).
Dynamic or mixed synchronization could also be achieved in which the switches

become functions of time. In this case, the role of each system is not fixed throughout

the simulation time, i.e., both systems can exchange their roles at any time instant.

6 Synchronization of Two Fractional-Order Chaotic
Systems

6.1 Generalized Synchronization

Generalized synchronization aims at changing the response of the slave system to

follow a given relation with the master system. Based on the active control method

for synchronization and anti-synchronization [21] and the generalized synchroniza-
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Fig. 4 Block diagram of the generalized synchronization scheme between two different fractional-

order chaotic systems

tion that has been applied to identical systems [43], a more general synchroniza-

tion scheme is adapted as shown in Fig. 4 such that it becomes suitable for different

systems too. For 3D phase space systems, the error vector between the generated

responses of the two synchronized systems is given by

e =
⎛
⎜⎜⎝

ex
ey
ez

⎞
⎟⎟⎠
=
⎛
⎜⎜⎝

xm + sxxs
ym + syys
zm + szzs

⎞
⎟⎟⎠
, (18)

where (xm, ym, zm) and (xs, ys, zs) are the responses of the master and slave systems,

respectively. Hence,

xs(t) = −
xm(t)
sx(t)

, ys(t) = −
ym(t)
sy(t)

, zs(t) = −
zm(t)
sz(t)

. (19)

This generalized synchronization permits various special cases to appear at dif-

ferent values of the scaling factors. The cases listed below are used in this section to

validate the proposed generalized synchronization technique.

6.1.1 Case 1: Scaled Synchronization and Anti-synchronization

In this case, each si, i ∈ {x, y, z}, is a constant value which is time-independent. All

responses (x, y and z for 3-D) could be scaled with the same factor or each with a

different factor. For si negative, the slave response is in phase (synchronized) with

the master response, while for positive values of si they have an opposite phase (anti-
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Fig. 5 Examples on scaling factors a s(t) = −2 + int(t∕20) and b s(t) = 1 + (mod(t∕20))∕20

synchronized). Moreover, when |si| < 1, the slave response has a higher amplitude

than the master response, whereas it has a lower amplitude when |si| > 1 according

to (19).

6.1.2 Case 2: Scaling Factors si(t) Are Functions of Time

Multiple cases in which si is a function of time could be described. For example,

si(t) = c + int(t∕m), where c, m are constants and int(.) returns the quotient of integer

division. This is a stair-case function which performs scaling in a variable manner as

time advances. The type of synchronization (anti-synchronization) and/or its scale

change every m time units as the example shown in Fig. 5a. Another example is

si(t) = c + (mod(t∕m))∕m, where c, m are constants and mod(.) returns the remainder

of integer division. This is a periodic ramp function which is time-dependent too. The

value of the scaling factor increases within every interval of m time units and resets

at the end of each interval as the example shown in Fig. 5b.

6.2 Simulation Results for Two Fractional-Order Systems

First, we consider generalized synchronization of two identical systems in which

only parameters and/or initial conditions differ. For this purpose, fractional-order

Chua’s circuit is used which is a 4-D system. The slave (response) and master (drive)

systems are described, respectively, by the following equations. However, the initial

condition of the drive system is different from that of the response system.

D𝛼x1 = a1(y1 − f (w1)x1) + ux, D𝛽y1 = z1 − x1 + uy,

D𝛾z1 = −b1y1 + c1z1 + uz, Dw1 = x1 + uw. (20)
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D𝛼x2 = a2(y2 − f (w2)x2), D𝛽y2 = z2 − x2,
D𝛾z2 = −b2y2 + c2z2, Dw2 = x2. (21)

Extending Eq. (18) to 4-D, substituting in it and calculating the fractional deriv-

atives of the error functions, the set of Eq. (22) is obtained.

D𝛼ex = a2(y2 − f (w2)x2) + sx(a1(y1 − f (w1)x1) + ux), (22a)

D𝛼ey = z2 − x2 + sy(z1 − x1 + uy), (22b)

D𝛼ez = −b2y2 + c2z2 + sz(−b1y1 + c1z1 + uz), (22c)

D𝛼ew = x2 + sw(x1 + uw). (22d)

For the purpose of synchronization, all terms except those which are function of

the corresponding error term should be canceled. For example, in the equation of

D𝛼ex only ex should appear. Hence, the vector of control functions u is given by:

ux =
1
sx

(
−a2(y2 − f (w2)x2) − sx(−a1(y1 − f (w1)x1)) − kxex

)
, (23a)

uy =
1
sy

(
−z2 + x2 − sy(z1 − x1) − kyey

)
, (23b)

uz =
1
sz

(
b2y2 − c2z2 − sz(−b1y1 + c1z1) − kzez

)
, (23c)

uw = 1
sw

(
−x2 − swx1 − kwew

)
, (23d)

which result in decaying error functions as the values of kx, ky, kz and kw are posi-

tive. The procedure is simple for this case, however, a more detailed analysis for the

general case is provided in Sect. 7.

Figure 6 shows samples of successfully achieved generalized synchronization

between the slave and master system at (𝛼, 𝛽, 𝛾) = (0.93, 0.95, 0.97) for different

parameter values (a1, b1, c1) = (4.5, 0.9, 0.6) and (a2, b2, c2) = (4, 1, 0.65) and start-

ing at different initial conditions (x10, y10, z10,w10) = (0.02, 0.03, 0.02, 0.06) and

(x20, y20, z20,w20) = (0.01, 0.02, 0.01, 0.05).
Figure 6a shows static synchronization with sx = −3 where the x-time series of

the slave synchronizes with that of the master system at a scaling factor of (1/3).

Figure 6b shows static synchronization with sy = 0.25 where the y-time series of
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Fig. 6 Generalized synchronization of Chua’s circuit at a sx = −3, b sy = 0.25, c sz = −0.5 +
int(t∕20) and d Attractor diagrams of the slave system (in red) different from the original attractor

(in blue)

the slave is anti-synchronized with that of the master system at a scaling factor of

4. Figure 6c shows dynamic synchronization at sz(t) = −0.5 + int(t∕20) where the

scaling factor starts with a value equals −0.5 and increases by 1 every 20 time units.

Figure 6d shows the resulting attractor diagram with new shape after applying these

scaling functions.

Further simulation results are also presented to illustrate the generalized synchro-

nization of two different fractional-order systems whether they generate periodic

or chaotic responses. The following equations represent a dissipative hidden attrac-

tor [25] as the slave system (system 1) as well as a dissipative self-excited attrac-

tor [65] (system 2) and a conservative system [25] (system 3) as the master systems

alternatively.

D𝛼x1 = −y1 + ux, D𝛽y1 = x1 + z1 + uy, D𝛾z1 = 2y12 + x1z1 − a1 + uz.

(24)

D𝛼x2 = y2, D𝛽y2 = z2, D𝛾z2 = −y2 − a2z2 + b2

(
x22

c2
− c2

)
. (25)

D𝛼x3 = y3, D𝛽y3 = −x3 − z3y3, D𝛾z3 = y32 − a3. (26)

The methodology of obtaining the control signals using active nonlinear control

method is performed similar to the previous section and as discussed in [44].
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Fig. 7 Static synchronization (Case 1) with system 2 as master and system 1 as slave at a
{𝛼, 𝛽, 𝛾} = {0.97, 1, 0.95} and sx = 1, b sx = sy = sz = −1, c {𝛼, 𝛽, 𝛾} = {0.93, 0.93, 0.93} and

sy = −2, and d sx = sy = sz = −1

Consider the synchronization of the slave system with system 2 as the master

system. The plots in Fig. 7 match the expected behavior where at sx = 1, the slave

response is the exact anti-synchronization of the master response, and at sy = −2 it

is the halved-synchronization. The master and slave attractor diagrams are shown

to be co-incident in the case of full-synchronization sx = sy = sz = −1. It is worth

mentioning that the system exhibits different attractors when varying the values

of fractional-orders as illustrated by the two y-z projections plotted at {𝛼, 𝛽, 𝛾} =
{0.97, 1, 0.95} and {𝛼, 𝛽, 𝛾} = {0.93, 0.93, 0.93}.

Figure 8 shows the synchronization of the slave system with system 3 as the master

system. The integer-order case, or autonomous system of three first order ordinary

differential equations, is shown to follow the same expected behavior as a special

case of generalized fractional-order.

Figure 9 shows dynamic synchronization at sy(t) = −2.5 + int(t∕20) where the

scaling factor starts with a value of −2.5 and increases by 1 every 20 time units.

It also shows dynamic synchronization at sx = −0.5 + int(t∕40) where the scaling

factor starts with a value of −0.5 and increases by 1 every 40 time units.
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Fig. 8 Static synchronization (Case 1) with system 3 as master and system 1 as slave at a
{𝛼, 𝛽, 𝛾} = {1, 1, 1} and sy = 2, b sx = sy = sz = −1, c {𝛼, 𝛽, 𝛾} = {0.97, 1, 0.99} and sz = −0.5,

and d sx = sy = sz = −1

Fig. 9 Dynamic synchronization (Case 2) with system 2 as master and system 1 as slave at a
{𝛼, 𝛽, 𝛾} = {0.93, 0.93, 0.93} and sy = −2.5 + int(t∕20) and b {𝛼, 𝛽, 𝛾} = {0.97, 1, 0.99} and sx =
−0.5 + int(t∕40)

7 Synchronization of a Fractional-Order Chaotic System
and a Linear Combination of Two Other Systems

In this section, a novel fractional-order chaotic system is formed as a linear combi-

nation of two fractional-order systems and another system is synchronized with this

linear combination. This linear combination represents another means of controlling

the system response and forcing it to yield chaos. The block diagram of the gener-

alized synchronization scheme is shown in Fig. 10 where the linear combination of

systems 2 and 3 is the master and system 1 is the slave.
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Fig. 10 Block diagram of generally synchronizing a fractional-order chaotic system with a linear

combination of two systems

Table 8 shows the attractor diagrams of different linear combinations of systems

2 and 3 at various values of fractional-orders where the post-transient part is colored

in blue. Several examples show that the linear combination can yield more chaotic

responses or sequences with long periods in fractional-order in comparison with the

single systems shown in Tables 6 and 7. These cases can be proven to exhibit chaotic

behavior through well-known techniques such as maximum Lyapunov exponent cal-

culation.

The procedure in [44] is applied but with an added capability of generalized syn-

chronization with the cases explained in Sect. 6. As previously mentioned, all state

variables, scaling factors and control functions are in general functions of time. The

combined responses of the two systems shown in Fig. 10 can be written as:

xm = m1x2 + m2x3, (27a)

ym = m1y2 + m2y3, (27b)

zm = m1z2 + m2z3, (27c)

substituting in (18) and calculating the fractional derivatives, the set of equations (28)

is obtained. For the purpose of synchronization, all terms except those which are

function of the corresponding error term should be canceled. For example, in the

equation of D𝛼ex only ex should appear. Hence, the vector of control functions u is

given by (29).
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Table 8 Attractor diagrams of different linear combinations of systems 2 and 3 at various values

of fractional-orders

D𝛼ex = D𝛼
(
xm + sxxs

)
= D𝛼

(
m1x2 + m2x3 + sxx1

)
= m1y2 + m2y3 − sxy1 + sxux

= m1y2 + m2y3 − sx

(ey − ym

sy

)
+ sxux, (28a)

D𝛽ey = D𝛽
(
ym + syys

)
= D𝛽

(
m1y2 + m2y3 + syy1

)

= m1z2 − m2x3 − m2z3y3 + syx1 + syz1 + syuy

= m1z2 − m2x3 − m2z3y3 + sy

(
ex − xm

sx

)
+ sy

(ez − zm

sz

)
+ syuy, (28b)
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D𝛾ez = D𝛾
(
zm + szzs

)

= −m1y2 − m1a2z2 + m1b2

(
x22

c2
− c2

)
+ m2y32 − m2a3

+ 2szy12 + szx1z1 − sza1 + szuz

= −m1

(
y2 + a2z2 − b2

(
x22

c2
− c2

))
+ m2

(
y32 − a3

)

+ sz

(
2
(ey − ym

sy

)2

+
(

ex − xm

sx

)(ez − zm

sz

)
− a1 + uz

)
. (28c)

Therefore, the control functions can be obtained by using (15) as follows:

ux = Vx(ex) −
m1
sx

y2 −
m2
sx

y3 −
1
sy

ym + 1
sy

ey = Vx(ex) −
1
sx

ym − 1
sy

ym + 1
sy

ey,

(29a)

uy = Vy(ey) −
m1
sy

z2 +
m2
sy

x3 +
m2
sy

z3y3 +
1
sx

xm + 1
sz

zm − 1
sx

ex −
1
sz

ez, (29b)

uz = Vz(ez) +
m1
sz

y2 +
m1
sz

a2z2 −
m1
sz

b2

(
x22

c2
− c2

)
−

m2
sz

y32 +
m2
sz

a3

− 2
(ey − ym

sy

)2

−
(

ex − xm

sx

)(−zm

sz

)
+ a1. (29c)

Recalling that (ex − xm)∕sx = x1 from (18), the following equations for fractional

derivatives of error are, thus, obtained:

D𝛼ex = sxVx(ex), (30a)

D𝛽ey = syVy(ey), (30b)

D𝛾ez = szVz(ez) + x1ez. (30c)

Based on the nonlinear control theory and Lyapunov stability theory [53], these

derivatives should be decaying functions of the error. The terms Vx(ex), Vy(ey), and

Vz(ez) form a system of linear equations in the errors ex, ey, and ez. They should be

chosen carefully to form a stable system with zero steady state [44]. Consequently,

they should force negative eigen values for the synchronization system:
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⎛
⎜⎜⎝

Vx(ex)
Vy(ey)
Vz(ez)

⎞
⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

− kx

sx
0 0

0 − ky

sy
0

0 0 −
(

kz+x1
sz

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

ex
ey
ez

⎞
⎟⎟⎠
. (31)

Here, the coefficients kx, ky, kz are simply chosen as ones. It could be proved, similar

to [43, 44], that the designed controller achieves the general required synchronization

function.

Simulation results are presented, which validate the synchronization of a chaotic

system with a linear combination of two other systems. The plots shown in Figs. 11,

12 and 13 match the explanation of different cases of generalized synchronization

explained in Sect. 6 with the same parameters and initial values given in Table 1.

Various generalized static and dynamic synchronization cases for different values of

the linear combination’s coefficients m1 and m2 are demonstrated.

The case m1 = m2 = 1 represents synchronizing the slave system with the sum

of the two other systems. In addition, the response of the slave system follows the

selected synchronization case among the cases illustrated in Sect. 6 and according

to (19). For example, when sx = 0.5, x-time series of the slave system is the dou-

bled anti-synchronization of that of the linear combination (master system). When

sz(t) = 1 + (mod(t∕50))∕50, the z-time series of the slave starts as the exact anti-

synchronized version of that corresponding to the master. Then, the scaling factor

Fig. 11 Static synchronization (Case 1) of system 1 with a linear combination of systems 2

and 3 at m1 = m2 = 1 and a {𝛼, 𝛽, 𝛾} = {1, 1, 1} and sy = −3, b sx = sy = sz = −1, c {𝛼, 𝛽, 𝛾} =
{0.97, 1, 0.95} and sx = 0.5, and d sx = sy = sz = −1
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Fig. 12 Static synchronization (Case 1) of system 1 with a linear combination of systems 2 and 3

at m1 = 1.4 and m2 = −0.6 and a {𝛼, 𝛽, 𝛾} = {0.97, 0.99, 0.99} and sx = 1.5, b sx = sy = sz = −1,

c {𝛼, 𝛽, 𝛾} = {0.98, 0.98, 0.98} and sy = −0.5, and d sx = sy = sz = −1

Fig. 13 Dynamic synchronization (Case 2) a m1 = m2 = 1, {𝛼, 𝛽, 𝛾} = {0.97, 1, 0.95} and sz =
1 + (mod(t∕50))∕50 and b m1 = 2 and m2 = −0.5, {𝛼, 𝛽, 𝛾} = {0.98, 0.98, 0.98} and sz = −0.5 +
int(t∕40)

increases gradually such that the amplitude of the slave system decreases till t = 50.

At t = 50, the system returns to exact anti-synchronization followed by the gradual

decrease in the amplitude of the slave. Synchronization at other values of m1 and m2
could be described similarly, e.g., m1 = 1.4 and m2 = −0.6 shown in Fig. 12. The

resulting attractor diagram is usually similar to that of the system which has a higher

value for the coefficient, or weight.

The time series at values of fractional-orders around those in Figs. 11, 12 and 13

show that the response of the linear combination is chaotic, i.e., the values do not

repeat. Setting m1 = 1 and m2 = 0, or alternatively m1 = 0 and m2 = 1, yields the

same results as those in Sect. 6. Other values for the coefficients are possible and

yield consistent results too.
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8 Conclusions

Six chaotic systems were selected and utilized in their fractional-order form to ana-

lyze and validate three proposed block diagrams of synchronization systems. Dis-

cretized solutions to the systems were obtained using the Grünwald-Letnikov method

of approximation and the nonstandard finite difference method for discretization.

Synchronization techniques were based on active nonlinear control and Lyapunov

stability. The nonlinear controller is designed to ensure the stability and convergence

of the proposed synchronization scheme.

The first block diagram presents a switching synchronization scheme between

two different chaotic systems or one chaotic system with different parameters using

the active control method. By using the proposed technique, it is possible to per-

form static synchronization (switching control independent of time), mono-dynamic

synchronization (one of the control switches depends on time) or bi-dynamic syn-

chronization (the two switches are time dependent). The concepts introduced in this

block diagram have been verified by using the fractional-order version of two dif-

ferent known chaotic systems, which are the Lü and the Newton-Leipnik chaotic

systems. Moreover, the switching parameters can be a function of time to introduce

a new concept of static and dynamic switching of synchronizations, which makes

the system more flexible as shown from the results.

The second block diagram presents a generalized synchronization scheme that

has been validated to work for different chaotic systems as well as identical systems.

This generalized synchronization permits both static and dynamic synchronization or

anti-synchronization with various scaling factors. Hence, conventional synchroniza-

tion is considered a very narrow subset from the proposed technique where the scale

between the output response and the input response can be controlled via control

functions and this scale may be either constant (positive, negative) or time depen-

dent. Many examples including synchronization and anti-synchronization, between

identical or different systems with the same or different system parameters and initial

conditions, are discussed. The scaling functions are chosen to be positive/negative

and constant/dynamic, which covers all possible cases.

The proposed technique utilizing dynamic scaling functions can be useful in

amplitude modulation applications in which the amplitude of the output signal

should be a function of the input signal. The scaling factors in this case play the

role of information signal, which is modulated by the chaotic dynamics of the sys-

tem to give the modulated signal. Demodulation can be done similarly by reversing

the operation.

Finally, a new chaotic system, constructed as a linear combination of two dif-

ferent systems, was introduced with two extra parameters that correspond to more

degrees of freedom and response controlling capability. The generalized synchro-

nization method was shown to successfully synchronize a third system with the

system formed by the linear combination through both mathematical analysis and

simulation results. All cases of the generalized synchronization scheme were vali-

dated in generalized fractional-order domain, with integer-order as a special case,
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for different choices of the linear combination’s coefficients and values of the scal-

ing factors. Time series for various system responses and attractor diagrams were

plotted to demonstrate different cases of generalized synchronization.
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Adaptive Control of a Novel Nonlinear
Double Convection Chaotic System

Sundarapandian Vaidyanathan, Quanmin Zhu and Ahmad Taher Azar

Abstract This researchworkdescribes a six-termnovel nonlinear double convection
chaotic system with two nonlinearities. First, this work presents the 3-D dynamics of
the novel nonlinear double convection chaotic system and depicts the phase portraits
of the system. Our novel nonlinear double convection chaotic system is obtained by
modifying the dynamics of the Rucklidge chaotic system (1992). Next, the qualita-
tive properties of the novel chaotic system are discussed in detail. The novel chaotic
system has three equilibrium points. We show that the equilibrium point at the ori-
gin is a saddle point, while the other two equilibrium points are saddle-foci. The
Lyapunov exponents of the novel nonlinear double convection chaotic system are
obtained as L1 = 0.2089, L2 = 0 and L3 = −3.2123. The Lyapunov dimension of
the novel chaotic system is obtained as DL = 2.0650. Next, we present the design
of adaptive feedback controller for globally stabilizing the trajectories of the novel
nonlinear double convection chaotic systemwith unknown parameters. Furthermore,
we present the design of adaptive feedback controller for achieving complete syn-
chronization of the identical novel nonlinear double convection chaotic systems with
unknown parameters. The main adaptive control results are proved using Lyapunov
stability theory. MATLAB simulations are depicted to illustrate all the main results
derived in this research work for the novel nonlinear double convection system.
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1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to
initial conditions, topologically mixing and with dense periodic orbits [1–3]. Sensi-
tivity to initial conditions of chaotic systems is popularly known as the butterfly effect.
Small changes in an initial state will make a very large difference in the behavior of
the system at future states.

Poincaré [4] suspected chaotic behaviour in the study of three bodies problem at
the end of the 19th century, but chaos was experimentally established by Lorenz [5]
only a few decades ago in the study of 3-D weather models.

In the chaos literature, there is great interest in the modelling and applications of
chaotic systems in several fields such as mechanics, electrical systems, memristors,
neurology, economics, lasers, chemical reactions, population dynamics, gyroscopes,
communication devices, cryptosystems, neural networks, etc. [1–3].

In the last five decades, there is significant interest in the literature in discover-
ing new chaotic systems [6]. Some popular chaotic systems are Lorenz system [5],
Rössler system [7], Arneodo system [8], Henon-Heiles system [9], Genesio-Tesi sys-
tem [10], Sprott systems [11], Chen system [12], Lü system [13], Rikitake dynamo
system [14], Liu system [15], Shimizu system [16], Rucklidge system [17], etc.

In the recent years, many new chaotic systems have been found such as Pandey
system [18], Qi system [19], Li system [20], Wei-Yang system [21], Zhou system
[22], Zhu system [23], Sundarapandian systems [24, 25], Dadras system [26], Tacha
system [27], Vaidyanathan systems [28–55], Vaidyanathan-Azar systems [56–60],
Pehlivan system [61], Sampath system [62], Akgul system [63], Pham system [64–
67], etc.

Chaos theory and control systems have many important applications in science
and engineering [1, 2, 68–71]. Some commonly known applications are oscillators
[72–78], lasers [79, 80], chemical reactions [81–91], biology [92–99], ecology [100,
101], encryption [102, 103], cryptosystems [104, 105], mechanical systems [106–
110], secure communications [111–113], robotics [114–116], cardiology [117, 118],
intelligent control [119, 120], neural networks [121–123], memristors [124, 125],
etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature.
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Major works on synchronization of chaotic systems deal with the complete syn-
chronization of a pair of chaotic systems called the master and slave systems. The
design goal of the complete synchronization is to apply the output of the master
system to control the slave system so that the output of the slave system tracks the
output of the master system asymptotically with time. Active feedback control is
used when the system parameters are available for measurement. Adaptive feedback
control is used when the system parameters are unknown.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers [126, 127]. The active control method [128–137] is typi-
cally used when the system parameters are available for measurement.

Adaptive control method [138–154] is typically used when some or all the system
parameters are not available for measurement and estimates for the uncertain para-
meters of the systems. Adaptive control method has more relevant for many practical
situations for systems with unknown parameters. In the literature, adaptive control
method is preferred over active control method due to the wide applicability of the
adaptive control method.

Intelligent control methods like fuzzy control method [155, 156] are also used for
the synchronization of chaotic systems. Intelligent control methods have advantages
like robustness, insensitive to small variations in the parameters, etc.

Sampled-data feedback control method [157–160] and time-delay feedback con-
trol method [161–163] are also used for synchronization of chaotic systems. Back-
stepping control method [164–171] is also used for the synchronization of chaotic
systems, which is a recursive method for stabilizing the origin of a control system in
strict-feedback form.

Another popular method for the synchronization of chaotic systems is the sliding
mode control method [172–180], which is a nonlinear control method that alters the
dynamics of a nonlinear system by application of a discontinuous control signal that
forces the system to “slide” along a cross-section of the system’s normal behavior.

In fluid dynamics modelling, cases of two-dimensional convection in a horizontal
layer of Boussinesq fluid with lateral constraints were studied by Rucklidge [17].
When the convection takes place in a fluid layer rotating uniformly about a vertical
axis and in the limit of tall thin rolls, convection in an imposed vertical magnetic field
and convection in a rotating fluid layer are both modeled by the Rucklidge chaotic
system, which exhibits chaotic attractor similar to the Lorenz system [5].

In this research work, by modifying the Rucklidge dynamics [17], we obtain a
six-term novel nonlinear double convection chaotic system. Section2 describes the
3-D dynamical model and phase portraits of the novel chaotic system.

Section3 describes the dynamic analysis of the novel double convection chaotic
system. We show that the novel chaotic system has three equilibrium points. In
addition, we show that the equilibrium point at the origin is a saddle point, while
the other two equilibrium points are saddle-foci. Thus, it follows that all the three
equilibrium points of the novel double convection chaotic system are unstable.

The Lyapunov exponents of the novel nonlinear double convection chaotic sys-
tem are obtained as L1 = 0.2089, L2 = 0 and L3 = −3.2123. Since the sum of the
Lyapunov exponents of the novel chaotic system is negative, this chaotic system is
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dissipative. Also, the Lyapunov dimension of the novel chaotic system is obtained
as DL = 2.0650.

Section4 describes the adaptive feedback control of the novel nonlinear double
convection chaotic system with unknown parameters. Section5 describes the adap-
tive feedback synchronization of the identical novel nonlinear double convection
chaotic systems with unknown parameters. The adaptive feedback control and syn-
chronization results are proved using Lyapunov stability theory [181].

MATLAB simulations are depicted to illustrate all the main results for the 3-D
novel nonlinear double convection chaotic system. Section6 concludes this work
with a summary of the main results.

2 A Novel Nonlinear Double Convection Chaotic System

In fluid dynamics, Rucklidge chaotic system [17] for nonlinear double convection is
described by the 3-D dynamics

ẋ1 = −ax1 + bx2 − x2x3
ẋ2 = x1
ẋ3 = −x3 + x22

(1)

where x1, x2, x3 are the states and a, b are constant, positive parameters.
Rucklidge system (1) is chaotic when the parameter values are taken as

a = 2, b = 6.7 (2)

For numerical simulations,we take the initial state of theRucklidge chaotic system
(1) as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2 (3)

The Lyapunov exponents of the Rucklidge chaotic system (1) for the parameter
values (2) and the initial values (3) are numerically determined as

L1 = 0.1868, L2 = 0, L3 = −3.1890 (4)

The Lyapunov dimension of the Rucklidge chaotic system (1) is calculated as

DL = 2 + L1 + L2

|L3| = 2.0586, (5)

which is fractional.
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In thiswork,wepropose a novel nonlinear double convection systembymodifying
the third differential equation of the Rucklidge system (1).

Our novel nonlinear double convection system is described as follows.

ẋ1 = −ax1 + bx2 − x2x3
ẋ2 = x1
ẋ3 = −x3 + |x2|

(6)

where x1, x2, x3 are the states and a, b are constant, positive parameters.
In this work, we show that novel chaotic system (6) exhibits a strange chaotic

attractor, when the parameter values are taken as

a = 2, b = 12 (7)

For numerical simulations,we take the initial state of theRucklidge chaotic system
(6) as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2 (8)

The Lyapunov exponents of the novel chaotic system (6) for the parameter values
(7) and the initial values (8) are numerically determined as

L1 = 0.2089, L2 = 0, L3 = −3.2123 (9)

The Lyapunov dimension of the novel double convection system (6) is calculated
as

DL = 2 + L1 + L2

|L3| = 2.0650, (10)

which is fractional.
We note that theMaximal Lyapunov Exponent (MLE) of the novel chaotic system

(6) is L1 = 0.2089, which is greater than theMaximal Lyapunov Exponent (MLE) of
the Rucklidge chaotic system (1), viz. L1 = 0.1868. Also, we find that the Lyapunov
dimension of the novel chaotic system (6) is DL = 2.0650, which is greater than the
Lyapunov dimension of the Rucklidge chaotic system (1), viz. DL = 2.0586.

Figure1 describes the phase portrait of the strange chaotic attractor of the novel
double-convection chaotic system (6). Thus, the strange attractor of the novel double-
convection chaotic system (6) is a two-scroll attractor.

Figure2 describes the 2-D projection of the strange chaotic attractor of the novel
double-convection chaotic system (6) on (x1, x2)-plane.

Figure3 describes the 2-D projection of the strange chaotic attractor of the novel
double-convection chaotic system (6) on (x2, x3)-plane.

Figure4 describes the 2-D projection of the strange chaotic attractor of the novel
double-convection chaotic system (6) on (x1, x3)-plane.
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Fig. 1 Strange attractor of the novel double convection chaotic system in IR3

Fig. 2 2-D projection of the novel double convection chaotic system on (x1, x2)-plane
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Fig. 3 2-D projection of the novel double convection chaotic system on (x2, x3)-plane

Fig. 4 2-D projection of the novel double convection chaotic system on (x1, x3)-plane
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3 Analysis of the Novel Nonlinear Double Convection
Chaotic System

This section gives the qualitative properties of the novel nonlinear double convection
chaotic system (6).

3.1 Dissipativity

In vector notation, the novel system (6) can be expressed as

ẋ = f (x) =
⎡
⎣

f1(x)
f2(x)
f3(x)

⎤
⎦ , (11)

where
f1(x) = −ax1 + bx2 − x2x3
f2(x) = x1
f3(x) = −x3 + |x2|

(12)

We take the parameter values as

a = 2, b = 12 (13)

The divergence of the vector field f on IR3 is obtained as

div f = ∂ f1(x)

∂x1
+ ∂ f2(x)

∂x2
+ ∂ f3(x)

∂x3
= −a + 0 − 1 = −μ (14)

where
μ = a + 1 = 3 > 0 (15)

Let Ω be any region in IR3 with a smooth boundary. Let Ω(t) = Φt (Ω), where
Φt is the flow of the vector field f . Let V (t) denote the volume of Ω(t).

By Liouville’s theorem, it follows that

dV (t)

dt
=

∫

Ω(t)

(div f )dx1 dx2 dx3 (16)

Substituting the value of div f in (16) leads to

dV (t)

dt
= −μ

∫

Ω(t)

dx1 dx2 dx3 = −μV (t) (17)
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Integrating the linear differential equation (17), V (t) is obtained as

V (t) = V (0) exp(−μt) (18)

From Eq. (18), it follows that the volume V (t) shrinks to zero exponentially as
t → ∞.

Thus, the novel nonlinear double convection chaotic system (6) is dissipative.
Hence, any asymptotic motion of the system (6) settles onto a set of measure zero,
i.e. a strange attractor.

3.2 Symmetry

It is easy to verify that the nonlinear double convection chaotic system (6) is invariant
under the coordinates transformation

(x1, x2, x3) �→ (−x1,−x2,−x3) (19)

Since the transformation (19) persists for all values of the system parameters, it
follows that the nonlinear double convection chaotic system (6) has rotation symme-
try about the x3-axis and that any non-trivial trajectory of the system (6) must have
a twin trajectory.

3.3 Invariance

It is easily seen that the x3-axis is invariant for the flow of the novel chaotic system
(6). The invariant motion along the x3-axis is characterized by the scalar dynamics

ẋ3 = −x3, (20)

which is globally exponentially stable.

3.4 Equilibria

The equilibrium points of the novel chaotic system (6) are obtained by solving the
nonlinear equations

f1(x) = −ax1 + bx2 − x2x3 = 0
f2(x) = x1 = 0
f3(x) = −x3 + |x2| = 0

(21)
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We take the parameter values as in the chaotic case, viz. a = 2 and b = 12.
Solving the nonlinear system (21), we obtain three equilibrium points of the novel

chaotic system (6), viz.

E0 =
⎡
⎣
0
0
0

⎤
⎦ , E1 =

⎡
⎣

0
12
12

⎤
⎦ , E2 =

⎡
⎣

0
−12
12

⎤
⎦ (22)

The Jacobian matrix of the novel chaotic system (6) at (x1, x2, x3) is obtained as

J (x) =
⎡
⎣

−2 12 − x3 −x2
1 0 0
0 sign(x2) −1

⎤
⎦ (23)

The matrix J0 = J (E0) has the eigenvalues

λ1 = −1, λ2 = −4.6056, λ3 = 2.6056 (24)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
The matrix J1 = J (E1) has the eigenvalues

λ1 = −3.4348, λ2,3 = 0.2174 ± 1.8564i (25)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
The matrix J2 = J (E2) has the eigenvalues

λ1 = −3.4348, λ2,3 = 0.2174 ± 1.8564i (26)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.
The matrix J3 = J (E3) has the eigenvalues

λ1 = −5.4615, λ2,3 = 1.7307 ± 2.0469i (27)

Hence, E0, E1, E2 are all unstable equilibrium points of the novel double-
convection chaotic system (6), where E0 is a saddle point and E2, E3 are saddle-foci.

3.5 Lyapunov Exponents and Lyapunov Dimension

We take the initial values of the novel chaotic system (6) as in (8) and the parameter
values of the novel chaotic system (6) as in (7).

Then the Lyapunov exponents of the novel chaotic system (6) are numerically
obtained as

L1 = 0.2089, L2 = 0, L3 = −3.2123 (28)
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Fig. 5 Lyapunov exponents of the novel double convection chaotic system

Since L1 + L2 + L3 = −3.0034 < 0, the system (6) is dissipative.
Also, the Lyapunov dimension of the system (6) is obtained as

DL = 2 + L1 + L2

|L3| = 2.0650, (29)

which is fractional.
Figure5 depicts the Lyapunov exponents of the novel double convection chaotic

system (6). From this figure, it is seen that the Maximal Lyapunov Exponent (MLE)
of the novel chaotic system (6) is L1 = 0.2089.

4 Adaptive Control of the Novel Double Convection
Chaotic System

This section derives new results for the adaptive controller design in order to stabilize
the unstable novel double convection chaotic system with unknown parameters for
all initial conditions.

The controlled novel 3-D chaotic system is given by

ẋ1 = −ax1 + bx2 − x2x3 + u1
ẋ2 = x1 + u2
ẋ3 = −x3 + |x2| + u3

(30)
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where x1, x2, x3 are state variables, a, b are constant, unknown, parameters of the
system and u1, u2, u3 are adaptive feedback controls to be designed.

An adaptive feedback control law is taken as

u1 = â(t)x1 − b̂(t)x2 + x2x3 − k1x1
u2 = −x1 − k2x2
u3 = x3 − |x2| − k3x3

(31)

where â(t), b̂(t) are estimates for the unknown parameters a, b, respectively, and
k1, k2, k3 are positive gain constants.

The closed-loop control system is obtained by substituting (31) into (30) as

ẋ1 = −[a − â(t)]x1 + [b − b̂(t)]x2 − k1x1
ẋ2 = −k2x2
ẋ3 = −k3x3

(32)

To simplify (32), we define the parameter estimation error as

ea(t) = a − â(t)
eb(t) = b − b̂(t)

(33)

Using (33), the closed-loop system (32) can be simplified as

ẋ1 = −eax1 + ebx2 − k1x1
ẋ2 = −k2x2
ẋ3 = −k3x3

(34)

Differentiating the parameter estimation error (33) with respect to t , we get

ėa = −˙̂a
ėb = − ˙̂b (35)

Next, we consider the quadratic Lyapunov function defined by

V (x1, x2, x3, ea, eb, ec, ep) = 1

2

(
x21 + x22 + x23 + e2a + e2b

)
, (36)

which is positive definite on IR5.
Differentiating V along the trajectories of (34) and (35), we get

V̇ = −k1x
2
1 − k2x

2
2 − k3x

2
3 + ea

[
−x21 − ˙̂a

]
+ eb

[
x1x2 − ˙̂b

]
(37)
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In view of Eq. (37), an update law for the parameter estimates is taken as

˙̂a = −x21˙̂b = x1x2
(38)

Theorem 1 The novel double convection chaotic system (30) with unknown system
parameters is globally and exponentially stabilized for all initial conditions x(0) ∈
IR3 by the adaptive control law (31) and the parameter update law (38), where
ki , (i = 1, 2, 3) are positive constants.

Proof The result is proved using Lyapunov stability theory [181]. We consider the
quadratic Lyapunov function V defined by (36), which is positive definite on IR5.

Substitution of the parameter update law (38) into (37) yields

V̇ = −k1x
2
1 − k2x

2
2 − k3x

2
3 , (39)

which is a negative semi-definite function on IR5.
Therefore, it can be concluded that the state vector x(t) and the parameter esti-

mation error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞. (40)

We define
k = min {k1, k2, k3} (41)

Then it follows from (39) that

V̇ ≤ −k‖x‖2 or k‖x‖2 ≤ −V̇ (42)

Integrating the inequality (42) from 0 to t , we get

k

t∫

0

‖x(τ )‖2 dτ ≤ −
t∫

0

V̇ (τ ) dτ = V (0) − V (t) (43)

From (43), it follows that x(t) ∈ L2.
Using (34), it can be deduced that ẋ(t) ∈ L∞.
Hence, using Barbalat’s lemma, we can conclude that x(t) → 0 exponentially as

t → ∞ for all initial conditions x(0) ∈ IR3.
This completes the proof. �

For numerical simulations, the parameter values of the novel system (30) are
taken as in the chaotic case, viz. a = 2 and b = 12. The gain constants are taken as
ki = 6, (i = 1, 2, 3).
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Fig. 6 Time-history of the states x1(t), x2(t), x3(t)

The initial values of the parameter estimates are taken as

â(0) = 15.4, b̂(0) = 4.7 (44)

The initial values of the novel double convection chaotic system (30) are taken as

x1(0) = 8.7, x2(0) = 23.6, x3(0) = 17.9 (45)

Figure6 shows the time-history of the controlled states x1(t), x2(t), x3(t).
Figure6 depicts the exponential convergence of the controlled states and the effi-

ciency of the adaptive controller defined by (31).

5 Adaptive Synchronization of the Identical 3-D Novel
Chaotic Systems

This section derives new results for the adaptive synchronization of the identical
novel chaotic systems with unknown parameters.

The master system is given by the novel chaotic system

ẋ1 = −ax1 + bx2 − x2x3
ẋ2 = x1
ẋ3 = −x3 + |x2|

(46)
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where x1, x2, x3 are state variables and a, b, c, p are constant, unknown, parameters
of the system.

The slave system is given by the controlled novel chaotic system

ẏ1 = −ay1 + by2 − y2y3 + u1
ẏ2 = y1 + u2
ẏ3 = −y3 + |y2| + u3

(47)

where y1, y2, y3 are state variables and u1, u2, u3 are adaptive controls to be designed.
The synchronization error is defined as

ei = yi − xi , (i = 1, 2, 3) (48)

The error dynamics is easily obtained as

ė1 = −ae1 + be2 − y2y3 + x2x3 + u1
ė2 = e1 + u2
ė3 = −e3 + |y2| − |x2| + u3

(49)

An adaptive control law is taken as

u1 = â(t)e1 − b̂(t)e2 + y2y3 − x2x3 − k1e1
u2 = −e1 − k2e2
u3 = e3 − |y2| + |x2| − k3e3

(50)

where â(t), b̂(t) are estimates for the unknown parameters a, b, respectively, and
k1, k2, k3 are positive gain constants.

The closed-loop control system is obtained by substituting (50) into (49) as

ė1 = − [
a − â(t)

]
e1 +

[
b − b̂(t)

]
e2 − k1e1

ė2 = −k2e2
ė3 = −k3e3

(51)

To simplify (51), we define the parameter estimation error as

ea(t) = a − â(t)
eb(t) = b − b̂(t)

(52)

Using (52), the closed-loop system (51) can be simplified as

ė1 = −eae1 + ebe2 − k1e1
ė2 = −k2e2
ė3 = −k3e3

(53)
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Differentiating the parameter estimation error (52) with respect to t , we get

ėa = −˙̂a
ėb = − ˙̂b (54)

Next, we find an update law for parameter estimates using Lyapunov stability
theory.

Consider the quadratic Lyapunov function defined by

V (e1, e2, e3, ea, eb) = 1

2

(
e21 + e22 + e23 + e2a + e2b

)
, (55)

which is positive definite on IR5.
Differentiating V along the trajectories of (53) and (54), we get

V̇ = −k1e
2
1 − k2e

2
2 − k3e

2
3 + ea

[
−e21 − ˙̂a

]
+ eb

[
e1e2 − ˙̂b

]
(56)

In view of Eq. (56), an update law for the parameter estimates is taken as

˙̂a = −e21˙̂b = e1e2
(57)

Theorem 2 The identical novel chaotic systems (46) and (47) with unknown system
parameters are globally and exponentially synchronized for all initial conditions
x(0), y(0) ∈ IR3 by the adaptive control law (50) and the parameter update law
(57), where ki , (i = 1, 2, 3) are positive constants.

Proof The result is proved using Lyapunov stability theory [181].
We consider the quadratic Lyapunov function V defined by (55), which is positive

definite on IR7.
Substitution of the parameter update law (57) into (56) yields

V̇ = −k1e
2
1 − k2e

2
2 − k3e

2
3, (58)

which is a negative semi-definite function on IR7.
Therefore, it can be concluded that the synchronization error vector e(t) and the

parameter estimation error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ L∞. (59)

Define
k = min {k1, k2, k3} (60)
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Then it follows from (58) that

V̇ ≤ −k‖e‖2 or k‖e‖2 ≤ −V̇ (61)

Integrating the inequality (61) from 0 to t , we get

k

t∫

0

‖e(τ )‖2 dτ ≤ −
t∫

0

V̇ (τ ) dτ = V (0) − V (t) (62)

From (62), it follows that e(t) ∈ L2.
Using (53), it can be deduced that ė(t) ∈ L∞.
Hence, using Barbalat’s lemma, we can conclude that e(t) → 0 exponentially as

t → ∞ for all initial conditions e(0) ∈ IR3.
This completes the proof. �

For numerical simulations, the parameter values of the novel systems (46) and
(47) are taken as in the chaotic case, viz. a = 2 and b = 12.

The gain constants are taken as ki = 6 for i = 1, 2, 3.
The initial values of the parameter estimates are taken as

â(0) = 9.2, b̂(0) = 4.9 (63)

The initial values of the master system (46) are taken as

x1(0) = 15.2, x2(0) = 7.3, x3(0) = −5.4 (64)

The initial values of the slave system (47) are taken as

y1(0) = 3.4, y2(0) = 12.5, y3(0) = 9.8 (65)

Figures7, 8 and 9 show the complete synchronization of the identical chaotic
systems (46) and (47).

Figure7 shows that the states x1(t) and y1(t) are synchronized in 1 s (MATLAB).
Figure8 shows that the states x2(t) and y2(t) are synchronized in 1 s (MATLAB).
Figure9 shows that the states x3(t) and y3(t) are synchronized in 1 s (MATLAB).
Figure10 shows the time-history of the synchronization errors e1(t), e2(t), e3(t).

From Fig. 10, it is seen that the errors e1(t), e2(t) and e3(t) are stabilized in 1 s
(MATLAB).
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Fig. 7 Synchronization of the states x1 and y1

Fig. 8 Synchronization of the states x2 and y2
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Fig. 9 Synchronization of the states x3 and y3

Fig. 10 Time-history of the synchronization errors e1, e2, e3
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6 Conclusions

In this researchwork,we described novel nonlinear double convection chaotic system
with two nonlinearities. Our novel nonlinear double convection chaotic system was
derived by modifying the dynamics of the Rucklidge chaotic system (1992). We
discussed the qualitative properties of the novel double convection system in detail.
We showed that the novel chaotic system has three unstable equilibrium points. We
derived the Lyapunov exponents of the novel nonlinear double convection chaotic
system as L1 = 0.2089, L2 = 0 and L3 = −3.2123. The Lyapunov dimension of
the novel chaotic system has been deduced as DL = 2.0650. Next, we presented the
designs of adaptive feedback controller and adaptive synchronizer for the nonlinear
double convection chaotic system with unknown parameters. The main adaptive
control results were proved using Lyapunov stability theory. MATLAB simulations
were shown to validate and illustrate all the main results derived in this research
work for the novel nonlinear double convection system.
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On the Terminal Full Order Sliding Mode
Control of Uncertain Chaotic Systems

Anchan Saxena, Apeksha Tandon, Awadhi Saxena, K.P.S. Rana
and Vineet Kumar

Abstract Over the years, several forms of sliding mode control (SMC), such as
conventional SMC, terminal SMC (TSMC) and fuzzy SMC (FSMC) have been
developed to cater to the control needs of complex, non-linear and uncertain sys-
tems. However, the chattering phenomenon in conventional SMC and the singu-
larity errors in TSMC make the application of these schemes relatively impractical.
In this chapter, terminal full order SMC (TFOSMC), the recent development in this
line, has been explored for efficient control of the uncertain chaotic systems. Two
important chaotic systems, Genesio and Arneodo-Coullet have been considered in
fractional order as well as integer order dynamics. The investigated fractional and
integer order chaotic systems are controlled using fractional order TFOSMC and
integer order TFOSMC, respectively and the control performance has been assessed
for settling time, amount of chattering, integral absolute error (IAE) and integral
time absolute error (ITAE). To gauge the relative performance of TFOSMC, a
comparative study with FSMC, tuned by Cuckoo Search Algorithm for the mini-
mum IAE and amount of chattering has also been performed using settling time,
amount of chattering, IAE and ITAE performances. The intensive simulation
studies presented in this chapter clearly demonstrate that the settling time, amount
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of chattering and steady-state tracking errors offered by TFOSMC are significantly
lower than that of FSMC; therefore, making TFOSMC a superior scheme.

Keywords Slidingmode control ⋅ Chaotic system ⋅ Fractional order ⋅ Genesio ⋅
Arneodo-Coullet

1 Introduction

Chaos is a non-linear complex phenomenon characterized by a high sensitivity to
initial conditions which implies that two chaotic trajectories starting infinitesimally
close to each other will diverge exponentially with time, giving rise to an infinite
number of unstable periodic orbits. Chaotic dynamics result in a trajectory wherein
the system states move in the neighborhood of one of these periodic orbits for a
while, then erratically move to a different unstable, periodic orbit where it remains
for a limited time, and so forth [23]. Coupled with the fact that experimental
conditions are never known perfectly, these systems are inherently unpredictable
even while being mathematically deterministic [10, 31].

Chaos has been found to occur in a wide variety of disciplines such as the
Raleigh-Bernard convection in fluid dynamics, the Belousov-Zhaobitinsky reaction
in chemistry [47], multimode solid state lasers in optics [51], the Chua-Matsumoto
oscillator in electronics [30], population models [49], meteorology, in physiological
models such as certain heart and respiratory rhythms [32] and so on. Dynamics of
chaotic systems can be described using integer as well as non-integer (fractional)
order calculus. Novel methods of modeling and control system designing of chaotic
systems has always been a sought after area of research [11, 12, 54, 55]. Fractional
order calculus allows us to describe and model a real system more accurately than
the classical integer order calculus methods. Consequently, it has been reported that
the dynamics of several chaotic systems can also be elegantly described by frac-
tional order dynamical equations making use of fractional order operators [29, 35,
46, 66, 67, 76]. In the light of aforementioned potential applications and related
issues, stabilization and control of fractional order chaotic systems can be consid-
ered to be of fundamental importance [9, 14, 28, 66, 70].

Over the course of time, several schemes have been proposed for control of
non-linear complex systems; one of the most recent one has been the terminal full
order sliding mode control (TFOSMC) proposed by Feng et al. [26]. It has been
claimed to be more efficient over its counter parts. Claimed superiority of TFOSMC
has motivated the authors to explore its applications on the Genesio and
Arneodo-Coullet chaotic systems for their effective control. Therefore, the objective
of this chapter is to demonstrate the application of TFOSMC scheme to effectively
control both fractional as well as integer order Genesio and Arneodo-Coullet
chaotic systems in the presence of system uncertainties and external disturbances.
The numerical simulations, as demonstrated later, clearly indicate that the output of
TFOSMC is smooth and chatter-free to a good extent while simultaneously it is able
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to address the problems of singularity and finite-time convergence. Further, to
gauge the relative performance of TFOSMC controller, a comparative study has
also been performed with fuzzy sliding mode control (FSMC), whose gains have
been tuned by cuckoo search algorithm (CSA) [27] for minimum integral absolute
error (IAE) and amount of chattering [25]. Extensive simulation studies have been
presented which demonstrate that the settling time, amount of chattering, IAE and
integral time absolute error (ITAE) offered by TFOSMC are significantly lower
than that of FSMC; therefore, making TFOSMC a superior scheme. Several con-
tributions of this chapter can be listed as follows:

1. For the first time, implementation of TFOSMC for effective control of chaotic
systems has been demonstrated in this chapter.

2. Genesio and Arneodo-Coullet chaotic systems have been successfully controlled
in the presence of system uncertainties and external disturbances.

3. Control performance of TFOSMC, assessed in terms of settling time, amount of
chattering, IAE and ITAE has been found to be superior over its potential
counterpart, FSMC (tuned using CSA).

Rest of the chapter is organized as follows. Section 2 provides a brief survey of
the related works carried out in the domain of chaotic system control. In Sect. 3,
some requisite preliminaries of fractional calculus are presented. Section 4 provides
the dynamical models of the two investigated systems (fractional and integer order
Genesio and Arneodo-Coullet) along with their 3D chaotic attractors and the

Fig. 1 Organization of various control schemes applied to the considered chaotic systems
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problem formulation. In Sect. 5, description and design of the various SMC vari-
ants namely conventional SMC, FSMC and TFOSMC are presented followed by
MATLAB simulation results illustrating their performances. Finally, Sect. 6 pro-
vides a comparative study between FSMC and TFOSMC and Sect. 7 concludes the
findings with some future directions.

To summarize the presented work, flowchart in Fig. 1 depicts various combi-
nations of control schemes and the considered chaotic systems in this chapter. As
seen in Fig. 1, eight case studies have been investigated in this chapter resulting
from the two chaotic systems of integer as well as fractional order dynamics and
two control schemes.

2 Literature Survey

The stabilization and control of complex systems with characteristic non-linearities
and uncertainities has been one of the prime topics of research inviting works on
several control methodologies based on classical, modern and robust control [5–8].
For chaotic systems, in the initial phase, two approaches used for their control were
the OGY (Ott, Grebogi and Yorke) method [42] and the Pyragas continuous control
method [48] both of which require a preliminary determination of the unstable
orbits of the system before the control law can be designed. Over the time, several
forms of sliding mode control (SMC) have emerged to cater to the control needs of
complex, non-linear and uncertain chaotic systems [13, 56, 63]. SMC is a
non-linear control method wherein the system state trajectories are driven to a
predefined manifold called the sliding surface and are subsequently kept in a close
vicinity of the surface through high frequency switching [1, 37, 45]. Several works
have been reported on the implementation of SMC on integer as well as fractional
order systems [24, 39, 52, 64, 73]. Chen et al. [21] proposed application of SMC to
control a class of fractional order chaotic systems. However, the finite time delays in
conventional SMC where the switching is not infinitesimally fast, resulted in a
phenomenon called chattering in the controller output, which can cause damage to
system components in practical engineering systems.

To limit the chattering about switching surface, the boundary layer approach was
introduced by Liu et al. [37]. When the system uncertainties are large, a higher
switching gain with a wider boundary layer was required to eliminate the increased
chattering effect. But, if the boundary layer width is progressively increased, the
system effectively reduces to one without sliding mode. Additionally, conventional
SMC makes use of a linear sliding surface which can only guarantee asymptotic
convergence of the tracking errors. In [3], Aghababa proposed terminal sliding
mode control (TSMC) of chaotic Lorenz and Arneodo systems which guarantees
finite-time convergence of the system states to the desired trajectory but suffers
from chattering and singularity errors. Non-singular TSMC addressed the problem
of singularity errors [2].
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Since the introduction of fuzzy set theory by Zadeh [75], fuzzy logic based
schemes have been successfully applied to a variety of applications over the past
four decades [18–20, 52, 74]. Yau and Chen proposed to control the chaotic
Genesio system by replacing the discontinuous signum function in the reaching law
by fuzzy logic control (FLC) [72]. Several key breakthroughs have been brought
about in the control and synchronization of chaotic systems using adaptive tech-
niques. Vaidyanathan and Azar have led the way in this regard with numerous
successful applications of different adaptive control methods such as feedback and
backstepping on many complex chaotic systems with unknown parameters [57–62].
Additionally, adaptive fuzzy controllers have also been used to control and syn-
chronize chaotic systems [9, 15, 16, 34, 36, 40].

Recently, Feng et al. [26] proposed TFOSMC for two general non-linear systems
in which a full order sliding manifold is utilized. During the full order sliding mode,
the system had desirable full-order dynamics, rather than reduced-order dynamics.
Furthermore, the derivatives of the terms with fractional powers do not appear in
the control law, avoiding the control singularities. However, being relatively new
TFOSMC has not yet been implemented on chaotic systems. Thus, the aim of this
chapter is to effectively control the aforementioned two chaotic systems by means
of TFOSMC and to prepare a performance analysis between the results obtained by
TFOSMC and those obtained by FSMC on the basis of settling time, amount of
chattering, IAE and ITAE.

3 Some Preliminaries of Fractional Calculus

For the past three decades, significant progress has been witnessed in fractional
order calculus (FOC) as it finds extensive applications in modeling phenomena such
as diffusion, turbulence, electromagnetism, signal processing, and quantum evo-
lution of complex systems [4].

Several types of fractional order sliding mode controllers have been proposed in
literature as they offer greater robustness and lower chattering in comparison to
integer order controllers, though at the cost of higher computational requirements
[22]. The design idea of the fractional order controller was first proposed by
Oustaloup [43, 44]. To obtain a finite approximation of fractional order systems in a
desired range of frequencies, he gave the approximation algorithm that is widely
used wherein a frequency band of interest is considered within which the following
approximation holds.

Suppose that the desired frequency range is given by ωl,ωh½ �. The function
considered for fractional order integrator/differentiator [17, 55] approximation is of
the form:

HðsÞ= sγ, γ ∈R, γ ∈ − 1; 1½ � ð1Þ
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The Oustaloup’s approximation function to this fractional order differentiator sγ

can be written as,

bHðsÞ= ωu

ωh

� �γ

∏
N

k= −N

1+ s ω̸′

k

1+ s ω̸k
ð2Þ

where,

ω′

k =ωl
ωh

ωl

� �k+N +1 2̸− γ 2̸
2N + 1

ð3Þ

and

ωk =ωl
ωh

ωl

� �k+N +1 2̸+ γ 2̸
2N + 1

ð4Þ

are respective zeros and poles of rank k. The total number of zeros or poles is given
by 2N +1. Frequency ωu =

ffiffiffiffiffiffiffiffiffiffi
ωlωh

p
is the geometric mean of lower and upper

bounds of the frequencies.

4 Chaotic System Descriptions and Problem Formulation

This section presents the mathematical models of the considered chaotic systems
along with their respective initial conditions and system parameters. The systems
are graphically introduced with the help of their resulting chaotic attractor and
uncontrolled state trajectories. It may be noted that the considered systems are
(i) Fractional order γ =0.993ð Þ and Integer order γ =1ð Þ Genesio system and
(ii) Fractional order γ =0.993ð Þ and Integer order γ =1ð Þ Arneodo-Coullet system.
These systems are described in brief in the following sub-sections with the help of
their uncontrolled chaotic attractor and their uncontrolled system states.

4.1 Genesio Chaotic System

The Genesio chaotic system arises from a jerk equation and represents jerky
dynamics, which is the third derivative of position. Genesio chaotic system is
described as [72]:

Dγx1 = x2
Dγx2 = x3

Dγx3 = − cx1 − bx2 − ax3 + x21

ð5Þ
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where x1, x2 and x3 are state variables and a, b and c are the positive real con-
stants. For instance, the Genesio system is chaotic for the parameter values of
a=1.2, b=2.92, c=6 and γ =0.993. In this work, initial conditions of this system
are considered as x1 = 3, x2 = − 4 and x3 = 2.

Figures 2 and 3 show the uncontrolled Genesio three-dimensional chaotic
attractor and the time responses of the states, respectively.

Fig. 2 Chaotic attractor of
Genesio system
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Fig. 3 Uncontrolled trajectories of Genesio system: a state x1; b state x2; c state x3
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4.2 Arneodo-Coullet System

The Arneodo-Coullet chaotic system represents the dynamics of a forced oscillator.
The system is mathematically described as [53]:

Dγx1 = x2
Dγx2 = x3

Dγx3 = cx1 − bx2 − ax3 − x31

ð6Þ

where x1, x2 and x3 are state variables and a, b and c are the positive real con-
stants. For instance, the Arneodo-Coullet system is chaotic for the parameter values
of a=0.45, b=1.1, c=0.8 and γ =0.993. In this work, initial conditions of this
system are considered as x1 = − 1.2, x2 = 1.2 and x3 = 0.4. Figures 4 and 5 show
the uncontrolled Arneodo-Coullet three-dimensional chaotic attractor and the time
response of the individual system states, respectively.

It can be clearly seen from the above chaotic dynamics that it consists of a
motion in the three-dimensional space where the system state moves in the
neighborhood of one of the periodic orbits for a while, then falls close to a different
unstable, periodic orbit where it remains for a limited time, and so forth. This results
in a complicated and unpredictable wandering over longer periods of time. Control
of chaos is the stabilization of these unstable periodic orbits. The result is to render
an otherwise chaotic motion more stable and predictable. In the subsequent sec-
tions, varied forms of sliding mode control law are proposed to control chaos in a
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Fig. 4 Chaotic attractor of Arneodo-Coullet system
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class of fractional and integer order chaotic systems [47, 48]. The controllers are
derived to stabilize the states of these chaotic systems, even if the systems with
uncertainty are in the presence of external disturbance.

5 Sliding Mode Control

This section is organized as follows. Section 5.1 presents the description and design
of conventional SMC along with numerical simulations to demonstrate the chat-
tering phenomenon. In Sect. 5.2, the FSMC design for each of the considered
systems is presented. The simulations are graphically illustrated and the resulting
performance indices are given in tabular form. A brief overview of the CSA is also
provided. Section 5.3 presents the design of TFOSMC for each of the considered
systems along with the requisite finite-time stability analysis. The simulations are
graphically illustrated and the resulting performance indices are given in tabular
form.

SMC is a variable structure, non-linear control technique that possesses desirable
features of accuracy and robustness. SMC is designed to drive the system states
onto a particular manifold called the sliding surface. Once the sliding surface is
reached, SMC keeps the states in a close neighborhood of the sliding surface.
In SMC, the feedback control law is not a continuous function of time. Instead,
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Fig. 5 Uncontrolled trajectories of Arneodo-Coullet system: a state x1; b state x2; c state x3
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it switches from one continuous control structure to another based on the current
position of the system trajectories in the state space. Thus, the control path has a
negative gain if the state trajectory of the plant is “above” the surface and a positive
gain if the trajectory drops “below” the surface. The two primary advantages of
sliding mode control are elucidated as follows:

1. In the formulation of any control problem there are bound to be discrepancies
between the actual plant and the mathematical model of the plant used for the
controller design. This mismatch may be due to variation in system parameters,
unmodeled dynamics or the approximation of complex plant behavior by a
simplified model. With SMC, the closed loop response of the system becomes
relatively insensitive to parametric uncertainties.

2. The dynamic behavior of the system may be controlled by an appropriate choice
of the switching function.

5.1 Conventional Sliding Mode Control

As shown in Fig. 6, conventional SMC comprises typically of a sliding surface
described by s=0 and the sliding motion along the surface [41]. The sliding motion
comprises of a reaching phase and a sliding phase. The SMC controller design
involves the design of the switching surface and a second phase derives the control
law required to drive the system state trajectories onto the sliding surface.

5.1.1 Sliding Surface Design

A typical nth order non-linear chaotic dynamical system with the relative degree
n may be directly described as follows [72]:

)( 0tx

2x

1x

)( 1tx
Sliding Phase

Reaching Phase

Sliding Surface

0=s

( )0,0

Fig. 6 Phase plane plot of a
system with sliding mode
control
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xi̇ = xi+1, 1≤ i≤ n− 1
xṅ = b0ðX, tÞ+ΔbðX, tÞ+ dðtÞ+ uðtÞ, X = x1 x2 ⋯ xn½ � ð7Þ

where XðtÞ= x1ðtÞ x2ðtÞ . . . xnðtÞ½ �= xðtÞ x ̇ðtÞ ⋯ xðn− 1ÞðtÞ
� �

∈Rn is the
state vector, ΔbðX, tÞ and b0ðX, tÞ are uncertain part and known part of chaotic
systems, respectively, uðtÞ∈R is the controller output, and dðtÞ is the external
disturbance of system. In general, the uncertain term ΔbðX, tÞ and disturbance term
dðtÞ are assumed to be bounded i.e.

ΔbðX, tÞj j≤ α and dðtÞj j≤ β ð8Þ

where α and β are positive.
From a geometrical point of view, s=0 defines a surface in the error space. The

control problem is to get the system to track an n-dimensional desired vector XdðtÞ,
such that,

XdðtÞ= xd1ðtÞ xd2ðtÞ . . . xdnðtÞ½ �= xdðtÞ xḋðtÞ ⋯ xðn− 1Þ
d ðtÞ

h i
ð9Þ

The tracking error can be then defined as,

EðtÞ=XðtÞ−XdðtÞ
= xðtÞ− xdðtÞ x ̇ðtÞ− xḋðtÞ ⋯ xðn− 1ÞðtÞ− xðn− 1Þ

d ðtÞ
h i

= eðtÞ e ̇ðtÞ ⋯ eðn− 1ÞðtÞ
� �

= e1ðtÞ e2ðtÞ ⋯ enðtÞ½ �
ð10Þ

The resulting state response of tracking error vector should satisfy,

lim
t→∞

EðtÞk k= lim
t→∞

XðtÞ−XdðtÞk k→ 0 ð11Þ

where, ∙k k is the Euclidean norm of a vector.
The sliding surface depends on the tracking error e and its derivatives, and is

usually of the Proportional-Derivative (PD) form given as follows [72],

s= en + ∑
n− 1

i=1
ciei ð12Þ

When the closed-loop system is in the sliding mode, it satisfies s ̇=0 and then the
equivalent control law is obtained by,

ueq = − b0ðX, tÞ−ΔbðX, tÞ− dðtÞ− ∑
n− 1

i=1
ciei+1 + xðnÞd ðtÞ ð13Þ
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If the reaching law is ur, then the overall control u is determined by,

u= ueq + ur ð14Þ

5.1.2 Reaching Laws

Generally three reaching laws as described below are used.

Constant Rate Reaching Law This reaching law is normally used in conventional
SMC and is given by:

s ̇= −K sgnðsÞ, K >0

s ̇=
K, s<0

−K, s>0

� ð15Þ

It constraints the switching variable to reach the switching surface s at a constant
rate K. If K is too small, the reaching time will be too long and on the other hand if
K is too large, there will be severe chattering.

Exponential Reaching Law It is given by the following expression:

s ̇= −KsgnðsÞ− βs,K >0, β>0 ð16Þ

where, − βs is the exponential term, and its solution is s= sð0Þe− βt. Clearly, by
adding the proportional term − βs, the state is forced to approach the switching
manifolds faster when s is large.

Power Rate Reaching Law This law, as stated below, offers a fast and low chat-
tering reaching mode.

s ̇= −K sj jαsgnðsÞ, K >0.1> α>0 ð17Þ

This reaching law increases the reaching speed when the state is far away from
the switching manifold. However, it reduces the rate when the state is near the
manifold.

5.1.3 SMC Implementation on Chaotic Systems

The design and implementation of conventional SMC for Genesio and
Arneodo-Coullet chaotic systems has been described in this section. The resulting
state trajectories and controller output have been graphically depicted in order to
demonstrate the phenomenon of chattering. It may be noted that this specific study
is notional with a purpose to demonstrate in closed loop while the control was
manually tuned.
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Conventional SMC of Genesio Chaotic System

The dynamical model of the Genesio system is as follows,

Dγx1 = x2
Dγx2 = x3

Dγx3 = − cx1 − bx2 − ax3 + x21 +ΔbðX, tÞ+ dðtÞ+ uðtÞ
ð18Þ

The initial conditions of the system are x1 = 3, x2 = − 4, x3 = 2 and γ =1. The
system is perturbed by an uncertainty term ΔbðX, tÞ and excited by a disturbance
term dðtÞ. Here, ΔbðX, tÞ=0.1 sin 4πx1 sin 2πx2 sin πx3 and dðtÞ=0.1 sinðtÞ satisfy,
respectively, ΔbðX, tÞj j≤ α=0.1 and dðtÞj j≤ β=0.1. Control objective is to drive
the uncertain chaotic system to the desired trajectory xdðtÞ. Selecting
c1 = 10 and c2 = 6 to result in a stable sliding mode. Therefore, the switching
surface is,

sðtÞ= e3ðtÞ+ c1e1ðtÞ+ c2e2ðtÞ ð19Þ

The equivalent control law is obtained as,

ueq =1.2x1 + 2.92x2 + 6x3 − x21 − c1e2ðtÞ− c2e3ðtÞ ð20Þ

Taking K =1 the constant rate reaching law becomes,

ur = −KsgnðsÞ= − sgnðsÞ ð21Þ

Thus, the overall control law becomes,

u=1.2x1 + 2.92x2 + 6x3 − x21 − c1e2ðtÞ− c2e3ðtÞ− sgnðsÞ ð22Þ
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The simulations were run for t=50 s using the 4th order Runge-Kutta method
with a step time of 0.001 s. The obtained simulation results are shown in Figs. 7, 8
and 9 representing the states’ time responses, controller output and sliding surface
dynamics, respectively.

As indicated by the resulting plots, the system states settle at t≈ 3.8 s (computed
for the worst trajectory) and as expected, the chattering behaviour of conventional
SMC is clearly demonstrated in the controller output. It may be noted that though
the chattering can be reduced but cannot be removed in this scheme.
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Conventional SMC of Arneodo-Coullet Chaotic System

The dynamical model of the Arneodo-Coullet system is as follows,

Dγx1 = x2
Dγx2 = x3

Dγx3 = cx1 − bx2 − ax3 − x31 +ΔbðX, tÞ+ dðtÞ+ uðtÞ
ð23Þ

The initial conditions of the system are x1 = − 1.2, x2 = 1.2, x3 = 0.4 and γ =1.
The system is perturbed by an uncertainty term ΔbðX, tÞ and excited by a distur-
bance term dðtÞ. Here, ΔbðX, tÞ=0.1 sin 4πx1 sin 2πx2 sin πx3 and dðtÞ=0.1 sinðtÞ
satisfy, respectively, ΔbðX, tÞj j≤ α=0.1 and dðtÞj j≤ β=0.1. Control objective is
to drive the uncertain chaotic system to the desired trajectory xdðtÞ. Selecting
c1 = 10 and c2 = 6 to result in a stable sliding mode. Now, the switching surface is,

sðtÞ= e3ðtÞ+ c1e1ðtÞ+ c2e2ðtÞ ð24Þ

The equivalent control law is obtained as,

ueq = − 0.8x1 + 1.1x2 + 0.45x3 + x31 − c1e2ðtÞ− c2e3ðtÞ ð25Þ

Taking K =12, the constant rate reaching law becomes,

ur = −KsgnðsÞ= − 12sgnðsÞ ð26Þ

Thus, the overall control law becomes,

u= − 0.8x1 + 1.1x2 + 0.45x3 + x31 − c1e2ðtÞ− c2e3ðtÞ− 12sgnðsÞ ð27Þ
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The obtained simulation results are shown in Figs. 10, 11 and 12 representing the
states’ time responses, controller output and sliding surface dynamics, respectively. As
indicated by the resulting plots, the system states settle at t≈ 5.8 s (computed for the
worst trajectory) and the problem of chattering is obtained in the controller output.

5.1.4 Problems with Conventional SMC

As observed in the results of the simulations, conventional SMC suffers from two
main problems [50]. (1) Chattering: In the theoretical description of sliding mode
control, the system stays confined to the sliding surface and need only be viewed as
sliding along the surface. However, real implementations of sliding mode control
approximate this theoretical behaviour with a high-frequency switching control
signal that causes the system to “chatter” in a tight neighbourhood of the sliding
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surface. This phenomenon is called chattering and it may damage the actuators in a
practical system. (2) Asymptotic Convergence: The sliding surface adopted in
conventional sliding mode control is a linear dynamical equation
sðtÞ= e3ðtÞ+ c1e1ðtÞ+ c2e2ðtÞ. The linear sliding surface can only guarantee
asymptotic error convergence in the sliding motion, i.e., the output error cannot
converge to zero in finite time. This is practically undesired.

5.2 Fuzzy Sliding Mode Control

Fuzzy logic formalizes the human ability to reason and judge under uncertainty [50,
75]. In traditional SMC, the reaching law is selected as ur = kwuw and the overall
control u is determined by [55]:

u= ueq + ur = ueq + kwuw ð28Þ

where kw is the switching gain (positive) and uw is obtained by

uw = − sgnðsÞ ð29Þ

where,

sgnðsÞ=
1, for s>0,
0, for s=0,
− 1, for s<0,

8<
: ð30Þ

However, the signum function in the overall control law u will cause chattering
in the controller output due to finite time delays in the switching. This problem can
be tackled by using FLC [65]. A set of rules derived from expert knowledge
determine the dynamic behavior of the FLC. On the basis of these rules, the
Takagi-Sugeno-Kang fuzzy inference mechanism provides the necessary control
action. Since the rules of the fuzzy controller are based on SMC, it is called fuzzy
SMC (FSMC) [24, 68, 69].

The employed control scheme is depicted in Fig. 13 [72]; the overall control law
is the algebraic sum of the equivalent control part and the FSMC output.

The equivalent control part is obtained from the system equations and the
reaching law is selected as:

ur = kfsufs ð31Þ

where, kfs is the normalization factor (fuzzy gain) of the output variable, and ufs is
the output obtained from FSMC, which is determined by s and s ̇. The overall
control law u is then obtained as:
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u= ueq + ur = ueq + kfsufs ð32Þ

The fuzzy control rules depend on the sliding surface s and the rate of change of
the sliding surface s ̇.

ufs =FSMCðs, s ̇Þ ð33Þ

The membership functions of input linguistic variables s and s ̇, and the mem-
bership functions of output linguistic variable ufs are shown in Figs. 14 and 15,
respectively. They are partitioned into seven fuzzy membership functions expressed
as negative big (NB), negative medium (NM), negative small (NS), zero (ZE),
positive small (PS), positive medium (PB) and positive big (PB) in order to cover
the entire sample space. The fuzzy rule table is given in Table 1 [72].
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ix
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Fig. 13 FSMC implementation scheme
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Fig. 14 Membership
functions for FSMC
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5.2.1 Design and Implementation of FSMC

As determined by Eq. (32), the overall control action u is obtained as

u= ueq + ur = ueq + kfsufs ð34Þ

In the practical system, the system uncertainty ΔbðX, tÞ and external disturbance
are not known and the equivalent controller output reduces to,

ueq = − b0ðX, tÞ− ∑
n− 1

i=1
ciei+1 + xðnÞd ðtÞ ð35Þ

Now the overall control becomes,

u= ueq + kfsufs = − b0ðX, tÞ− ∑
n− 1

i=1
ciei+1 + xðnÞd ðtÞ+ kfsufs ð36Þ

-1/3-2/3-1 1/3 2/3 10

ZE PS PM PBNSNMNB

fsu

Fig. 15 Fuzzy output singletons

Table 1 Fuzzy rules for FSMC

ufs S

NB NM NS ZE PS PM PB

s ̇ NB PB PB PB PB PM PS ZE
NM PB PB PB PM PS ZE NS
NS PB PB PM PS ZE NS NM
ZE PB PM PS ZE NS NM NB
PS PM PS ZE NS NM NB NB
PM PS ZE NS NM NB NB NB
PB ZE NS NM NB NB NB NB
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The constants appearing in the control law as well as the fuzzy gains were
optimised using CSA for minimum IAE and amount of chattering. The algorithm is
described in the following subsection:

Cuckoo Search Algorithm

CSA is a new meta-heuristic search algorithm of global optimization based on the
behaviour of cuckoos proposed by Yang & Deb. This algorithm is based on the
parasitic behaviour of some cuckoo species in combination with the Lévy flight
behaviour of some birds and fruit flies [71].

It is based on the following natural operations:

1. How cuckoos lay their eggs in the host nests.
2. How, if undetected, the eggs are hatched to chicks by the hosts.

Before applying CSA over various structural engineering problems, CSA was
benchmarked using standard problems such as the Travelling Salesman’s problem.
The theoretical analysis of CSA deals with how the cuckoo eggs banish the host
eggs, thus allowing for an environment where their survival rate is improved. It is
based on the following three idealized rules [27]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
2. The best nests with high quality of eggs (solutions) will carry over to the next

generations.
3. The number of available host nests is fixed, and a host can discover an alien egg

with a probability Pa ∈ 0, 1½ �. In this case, the host bird can either throw the egg
away or abandon the nest so as to build a completely new nest in a new location.
Each egg in a nest represents a solution and a cuckoo egg represents new
solution.

When generating new solutions xðt+1Þ for, say cuckoo i, a Lévy flight is
performed and the formula used is:

xiðt+1Þ= xiðtÞ+ α⊕Lev́yðλÞ ð37Þ

Where α is the step size and λ is the Lev́y coefficient
The following is a pseudo-code for CSA [33]:
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In this work, for CSA, following parameter settings were used:

1. Discovery rate of alien eggs = 0.25
2. Number of nests = 20
3. Total iterations = 30
4. λ=1.5

The fitness/cost function to be minimized using CSA was taken as
y=0.2 × IAEðe1 + e2 + e3Þ+0.4 ×Amount of chattering.

FSMC of Genesio Chaotic System

In this section, results of simulations for both the integer and fractional order
Genesio chaotic system [63, 64] are presented. Considering the fractional order
Genesio chaotic system, the control objective is to drive the uncertain chaotic
system to the desired trajectory xdðtÞ.

Therefore, the fractional order switching surface is proposed as,

sðtÞ=Dγ − 1e3ðtÞ+ c1Dγ − 1e1ðtÞ+ c2Dγ − 1e2ðtÞ ð38Þ
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The overall control law is obtained as,

uðtÞ=1.2x1 + 2.92x2 + 6x3 − x21 + xð3Þd ðtÞ− c1e2 − c2e3 + kfsufs ð39Þ

For γ =0.993 and initial conditions x1 = 3, x2 = − 4 and x3 = 2, the CSA opti-
mised values of the aforementioned fuzzy gains are given in Table 2.

All subsequent simulations were run for t=10s using the 4th order Runge-Kutta
method with a step time of 0.001 s.

The simulation results obtained with the CSA optimised values of the afore-
mentioned fuzzy gains are shown in Figs. 16 and 17. Table 3 presents the
assessment of the system for the performances indices viz. settling time, amount of
chattering, IAE, ITAE and the cost function.

For γ =1, the integer order Genesio system exhibits the following results, as
shown in Figs. 18 and 19, using the CSA optimised gains given in Table 4.

The depicted figures clearly show that the tracking errors and state trajectories
converge to zero with a settling time t≈ 4.5 s for fractional order Genesio chaotic
system and t≈ 3.4 s for integer order Genesio chaotic system, indicating that sta-
bilisation is indeed realised and the controller output is almost chatter-free. The
performance parameters for fractional and integer FSMC are recorded in Tables 3
and 5, respectively.

Table 2 CSA tuned fuzzy
gains for fractional order
Genesio System

Parameter CSA optimized values

kfs 17.5333

ks 7.8159
ksdot 14.7451
c1 10.9875
c2 5.9221
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Fig. 16 State trajectories of
fractional order Genesio
system controlled using
FSMC
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Table 3 Performance
parameters of FSMC for
fractional order Genesio
system

Performance index Value

Settling time (s) 4.5

∑ Δuj j 181.95

IAE e1: 1454.5
e2: 3001.8
e3: 4082.4

ITAE e1: 586.06
e2: 1483.4
e3: 3071.8

Cost Function 1703.980
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Fig. 18 State trajectories of
integer order Genesio system
controlled using FSMC
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FSMC of Arneodo-Coullet Chaotic System

In this section, results of simulations for both the integer and fractional order
Arneodo-Coullet chaotic system [63, 64] are presented. The control objective is to
drive the uncertain chaotic system to the desired trajectory xdðtÞ.
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Table 4 CSA tuned fuzzy
gains for integer order
Genesio system

Parameter CSA optimized values

kfs 19.1568

ks 4.8771
ksdot 25.4487
c1 18.6205
c2 2.7342

Table 5 Performance
parameters for FSMC of
integer order Genesio system

Performance index Value

Settling time (s) 3.4

∑ Δuj j 223.19

IAE e1: 1429.3
e2: 3005.6
e3: 4416.2

ITAE e1: 552.2
e2: 1432.0
e3: 3192.4

Cost Function 1617.692
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Therefore, the fractional order switching surface is proposed as,

sðtÞ=Dγ − 1e3ðtÞ+ c1Dγ − 1e1ðtÞ+ c2Dγ − 1e2ðtÞ ð40Þ

The overall control law is obtained as,

uðtÞ= − 0.8x1 + 1.1x2 + 0.45x3 + x31 + xð3Þd ðtÞ− c1e2 − c2e3 + kfsufs ð41Þ

The CSA optimised values of the aforementioned fuzzy gains are given in
Table 6. For γ =0.993 and initial conditions x1 = − 1.2, x2 = 1.2 and x3 = 0.4, the
obtained simulation results are shown in Figs. 20 and 21 and are summarized in
(Table 7).

For γ =1, the Arneodo-Coullet system has an integer order and the CSA opti-
mised values of the fuzzy gains are given in Table 8. The obtained simulation
results are shown in Figs. 22 and 23.

The depicted figures show that the tracking errors and state trajectories converge
to zero with a settling time t≈ 2.2 s for fractional order Arneodo-Coullet chaotic
system and t≈ 2.5 s for integer order Arneodo-Coullet chaotic system, indicating
that stabilisation is indeed realised. Further, the controller output as shown in
Figs. 21 and 23 is smooth and chatter-free. The performance parameters for frac-
tional and integer FSMC are recorded in Tables 7 and 9, respectively.

Table 6 CSA tuned fuzzy
gains for fractional order
Arneodo-Coullet system

Parameter CSA optimized values

kfs 85.7679

ks 0.0500
ksdot 0.1000
c1 55.3645
c2 9.7040
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Fig. 20 State trajectories of
fractional order
Arneodo-Coullet system
controlled using FSMC
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5.3 Terminal Full Order Sliding Mode Control

Conventional SMC employs a reduced order sliding surface which results in the
singularity errors in TSMC and chattering in both conventional SMC and TSMC.
Therefore, a variant of TSMC, i.e., TFOSMC was proposed by Feng et al. [26],
wherein a full order sliding surface was chosen so that the control law can be
directly obtained from the sliding surface. Consequently, the need for taking the
derivative of the sliding surface containing terms having fractional powers is
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Table 7 Performance
parameters of FSMC for
fractional order
Arneodo-Coullet system

Performance index Value

Settling time (s) 2.2

∑ Δuj j 380.62

IAE e1: 700.18
e2: 1208.0
e3: 4391.8

ITAE e1: 275.03
e2: 725.91
e3: 2171.8

Cost function 1084.272

Table 8 CSA tuned fuzzy
gains for integer order
Arneodo-Coullet system

Parameter CSA optimized values

kfs 50.9436

ks 22.0565
ksdot 12.1092
c1 39.5731
c2 9.3487
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Table 9 Performance
parameters for FSMC of
integer order Arneodo-Coullet
system

Performance index Value

Settling time (s) 2.5

∑ Δuj j 240.94

IAE e1: 940.07
e2: 1309.3
e3: 3602.5

ITAE e1: 447.95
e2: 1004.8
e3: 2376.4

Cost Function 1180.697
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eliminated, thereby avoiding control singularities. Here, a continuous control
strategy is developed to achieve a chattering free sliding mode control. Since sliding
mode control is a system dependent scheme, during ideal sliding mode motion, the
systems has desirable full order dynamics rather than reduced-order dynamics.

5.3.1 Sliding Surface Design

Considering a non-linear system with order n [26]:

x ̇1 = x2
x2̇ = x3

⋮
xṅ− 1 = xn

xṅ = f ðX, tÞ+ dðtÞ+ bðX, tÞu

ð42Þ

where, XðtÞ= x1ðtÞ x2ðtÞ . . . xnðtÞ½ �∈Rn represents the system state vector,
f ðX, tÞ and bðX, tÞ≠ 0 are two non-linear functions and u is the controller output.
The function dðtÞ represents the external disturbance.

SMC is implemented for non-linear systems to force the system states onto the
desired trajectory along the pre-defined sliding surface, through an induced ideal
sliding motion along the surface. A control strategy is developed to realize the
illustrated technique utilizing a finite-time reaching phase.

A terminal sliding mode (TSM) manifold for the above system can be selected as
follows:

s= xðnÞ1 + cnsgn xðn− 1Þ
1

� 	
xðn− 1Þ
1




 


αn +⋯+ c1sgn x1ð Þ x1j jα1

= xṅ + cnsgn xnð Þ xnj jαn +⋯+ c1sgn x1ð Þ x1j jα1
ð43Þ

Where ci and αiði=1, 2, . . . , nÞ are constants. Parameter ci can be selected such
that the polynomial pn + cnpn− 1 +⋯+ c2p2 + c1, which corresponds to TSM
manifold, satisfies Hurwitz criterion. αi can be determined according to the fol-
lowing relation:

α1 = α, n = 1
αi− 1 = αiαi+ 1

2αi+1 − αi
, i = 2, 3, . . . , n ∀n≥ 2 ð44Þ

where, αn+1 = 1, αn = α, α∈ ð1− ζ, 1Þ, ζ∈ ð0, 1Þ.
Establishing ideal sliding mode satisfied by s=0, the system dynamics follow

xṅ + cnsgn xnð Þ xnj jαn +⋯+ c1sgn x1ð Þ x1j jα1 = 0 ð45Þ

or
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x1̇ = x2
x2̇ = x3

⋮
xṅ− 1 = xn

xṅ = − cnsgnðxnÞ xnj jαn −⋯− c1sgnðx1Þ x1j jα1
ð46Þ

The above non-linear system will reach s=0 in finite time and then converge to
zero, the equilibrium point, along s=0 within finite-time, if the sliding mode
surface s is selected as (43) and the control is designed as follows:

u= b− 1ðX, tÞðueq + unÞ ð47Þ

ueq = − f ðX, tÞ− cnsgnðxnÞ xnj jαn −⋯− c1sgnðx1Þ x1j jα1 ð48Þ

uṅ + Tun = v ð49Þ

v= − kd + kT + ηð ÞsgnðsÞ ð50Þ

where unð0Þ=0; ci and αiði=1, 2, . . . , nÞ are all constants, as defined in (44); η is a
positive constant; kd is a constant defined as follows:

The derivative of dðtÞ in system (43) is bounded— dð̇tÞ

 

≤ kd where kd >0 is a
constant. Two constants T ≥ 0 and kT are selected to satisfy the following
condition:

kT ≥Tld ð51Þ

In the above condition, the control signal is equivalent to a low-pass filter, where
vðtÞ is the input and unðtÞ is the output of the filter. The Laplace transfer function of
the filter (49) is:

unðsÞ
vðsÞ =

1
s+T

ð52Þ

where ω= T is the bandwidth of the low-pass filter, vðtÞ is the virtual control and is
non-smooth because of the switching function and unðtÞ is the output of the
low-pass filter, softened to be a smooth signal. It may be noted that a pure integrator
is more difficult for hardware implementation in practical applications than the
low-pass filter that is why it has been replaced with the above low-pass filter.
Differentiating terms cisgnðxiÞ xij jαi are prevented in the TSM manifold from
deriving the control laws. Therefore, singularity is avoided, and the ideal TSM,
s=0 is nonsingular.
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The Lyapunov stability [38] is shown to be satisfied by taking the Lyapunov
function as V = 1

2 s
2. For the considered TSM manifold,

s= dðtÞ+ un ð53Þ

Taking the time derivative,

ṡ= dð̇tÞ+ uṅ = dð̇tÞ+Tun − Tun = dð̇tÞ+ v− Tun ð54Þ

Substituting (50) into the above equation,

s ̇= dð̇tÞ− ðkd + kT + ηÞsgnðsÞ−Tun ð55Þ

ss ̇= dð̇tÞs− ðkd + kT + ηÞ sj j−Tuns= dð̇tÞs− kd sj j
� �

+ −Tuns− kT sj jð Þ− η sj j ð56Þ

From above equations,

V ̇= ss ̇≤ − η sj j<0 for sj j≠ 0 ð57Þ

which implies that the system takes finite time to reach s=0.

5.3.2 Design and Implementation of TFOSMC

The design and implementation of TFOSMC for both fractional and integer order
Genesio and Arneodo-Coullet chaotic systems has been described in this section.

TFOSMC of Genesio Chaotic System

Considering the fractional order Genesio chaotic system, a TSM manifold is
designed as follows:

s=Dγx3 + 15sgnx3 x3j j7 1̸0 + 66sgnx2 x2j j7 1̸3 + 80sgnx1 x1j j7 1̸6 ð58Þ

where, the parameters α1, α2 and α3 are kept as 7/10, 7/13 and 7/16, respectively.
The polynomial is selected as p3 + 15p2 + 66p+80= ðp+2Þðp+5Þðp+8Þ satis-
fying Hurwitz criterion. It may be noted that the considered sliding surface designed
is free from the system dynamics.

Based on Eq. (47), u= ueq + un is designed as:

ueq =1.2x1 + 2.92x2 + 6x3 − x21 − 15sgnx3 x3j j7 1̸0

− 66sgnx2 x2j j7 1̸3 − 80sgnx1 x1j j7 1̸6
ð59Þ
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uṅ +0.1un = v ð60Þ

v= − 10sgnðsÞ ð61Þ

For γ =0.993 and initial conditions x1 = 3, x2 = − 4 and x3 = 2, the results
obtained are illustrated in Figs. 24 and 25.

For γ=1, the Genesio system has an integer order and the results obtained are
illustrated in Figs. 26 and 27.

The depicted Figs. 24 and 26 show that the state trajectories converge to zero
with a settling time t≈ 1.81 s for fractional order Genesio chaotic system and
t≈ 2.35 s for integer order Genesio chaotic system. Further, the controller outputs
shown in Figs. 25 and 27 are smooth and chatter-free. The performance parameters
for fractional and integer order TFOSMC are recorded in Tables 10 and 11,
respectively.
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Fig. 24 State trajectories of
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Fig. 26 State trajectories of
integer order Genesio system
controlled using TFOSMC
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Table 10 Performance
parameters for TFOSMC of
fractional-order Genesio
system

Performance index Value

Settling time (s) 1.81

∑ Δuj j 79.61

IAE e1: 1422.2
e2: 3001.1
e3: 3999.3

ITAE e1: 507.68
e2: 1438.5
e3: 3036.2
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TFOSMC of Arneodo-Coullet Chaotic System

Considering the fractional order Arneodo-Coullet chaotic system, a TSM manifold
is designed as follows:

s=Dγx3 + 15sgnx3 x3j j7 1̸0 + 66sgnx2 x2j j7 1̸3 + 80sgnx1 x1j j7 1̸6 ð62Þ

where, the parameters α1, α2 and α3 are kept as 7/10, 7/13 and 7/16, respectively.
The polynomial is selected as p3 + 15p2 + 66p+80= ðp+2Þðp+5Þðp+8Þ satis-
fying Hurwitz criterion. It may be noted that the considered sliding surface designed
is free from the system dynamics.

Based on Eq. (47), u= ueq + un is designed as:

ueq = − 0.8x1 + 1.1x2 + 0.45x3 + x31 − 15sgnx3 x3j j7 1̸0

− 66sgnx2 x2j j7 1̸3 − 80sgnx1 x1j j7 1̸6
ð63Þ

uṅ +0.1un = v ð64Þ

v= − 10sgnðsÞ ð65Þ

For γ =0.993 and initial conditions x1 = − 1.2, x2 = 1.2 and x3 = 0.4, the results
for the state trajectories and the controller output are shown in Figs. 28 and 29,
respectively.

For γ =1, the Arneodo-Coullet system has an integer order and the results
obtained are shown in Figs. 30 and 31.

The depicted Figs. 28 and 30 show that the state trajectories converge to zero
with a settling time t≈ 1.8 s for fractional order Arneodo-Coullet chaotic system
and t≈ 1.9 s for integer order Arneodo-Coullet chaotic system, indicating that
stabilisation is indeed realised. Further, the controller output as shown in Figs. 29
and 31 is smooth and chatter-free. The performance parameters for fractional and
integer FSMC are recorded in Tables 12 and 13, respectively.

Table 11 Performance
parameters for TFOSMC of
integer order Genesio system

Performance index Value

Settling time (s) 2.35

∑ Δuj j 51.507

IAE e1: 1426.1
e2: 3003.9
e3: 4023.7

ITAE e1: 509.62
e2: 1427.9
e3: 3041.6
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Fig. 28 State trajectories of
fractional order
Arneodo-Coullet system
controlled using TFOSMC
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6 Results and Discussions

In this chapter, TFOSMC and FSMC control schemes are successfully implemented
for the considered two chaotic systems namely Genesio and Arneodo-Coullet. The
chaotic systems are considered in integer as well as in fractional order dynamics and
both the control schemes are therefore implemented in the form of integer as well as
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8Fig. 31 Control action
versus time plot for TFOSMC
controlled integer order
Arneodo-Coullet system

Table 12 Performance
parameters for TFOSMC of
fractional-order
Arneodo-Coullet system

Performance index Value

Settling time (s) 1.8

∑ Δuj j 29.1851

IAE e1: 624.21
e2: 1200.2
e3: 1381.6

ITAE e1: 232.66
e2: 631.49
e3: 1230.3

Table 13 Performance
parameters for TFOSMC of
integer order Arneodo-Coullet
system

Performance index Value

Settling time (s) 1.9

∑ Δuj j 31.832

IAE e1: 625.54
e2: 1201.2
e3: 1396.6

ITAE e1: 233.50
e2: 629.914
e3: 1231.8
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fractional order controllers. The fractional order controllers were applied to frac-
tional order chaotic systems and the integer order controllers were applied to integer
order chaotic systems. External disturbances and uncertainties were also considered
for all the resulting eight cases:

1. Integer order FSMC on integer order Genesio system
2. Integer order TFOSMC on integer order Genesio system
3. Fractional order FSMC on fractional order Genesio system
4. Fractional order TFOSMC on fractional order Genesio system
5. Integer order FSMC on integer order Arneodo-Coullet system
6. Integer order TFOSMC on integer order Arneodo-Coullet system
7. Fractional order FSMC on fractional order Arneodo-Coullet system
8. Fractional order TFOSMC on fractional order Arneodo-Coullet system

For arriving at the final results, following comparative studies are performed
between the performances of TFOSMC and FSMC. For this purpose, the perfor-
mance of fractional order TFOSMC, applied to the fractional order chaotic systems,
was compared with the fractional order FSMC, applied to the same plant. Similarly,
the performance of integer order TFOSMC, applied to the integer order chaotic
systems, was compared with the integer order FSMC, applied to the same plant. For
each case, the state trajectories and controller output were compared graphically in
addition to the other performance indices like settling time, amount of chattering,
IAE and ITAE organized and presented in a tabular form. Resulting percentage
improvements were also calculated and have been presented for each of these per-
formance indices which clearly demonstrate the efficiency of TFOSMC over FSMC.

6.1 Comparison Between FSMC and TFOSMC

The state trajectories of the fractional order Genesio system when controlled by
fractional order FSMC and TFOSMC are as shown along with the controller out-
puts for the same in Fig. 32. Figure 32a–c show the comparative time response of
the individual state trajectories and Fig. 32d depicts the controller output for each of
the two control schemes.

The state trajectories of the integer order Genesio system when controlled by
integer order FSMC and TFOSMC are as shown along with the controller outputs
for the same in Fig. 33. Figure 33a–c show the comparative time response of the
individual state trajectories and Fig. 33d depicts the controller output for each of the
two control schemes.

The data comparing the performance indices of FSMC and TFOSMC for
Genesio chaotic system is recorded in Table 14. As tabulated, the settling time
shows an improvement of 59.77% and 30.88% for fractional and integer TFOSMC,
respectively. Further, the chattering also reduces by 56.24% and 76.5% in the case
of fractional and integer order TFOSMC, respectively. It can be inferred all the
performance indices show a positive percentage improvement.
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Fig. 32 Comparative performance of Fractional order FSMC and fractional order TFOSMC on
fractional order Genesio System: a state x1; b state x2; c state x3; d controller output
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Fig. 33 Comparative performance of integer order FSMC and TFOSMC on integer order Genesio
System: a state x1; b state x2; c state x3; d controller output
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The state trajectories of the fractional order Arneodo-Coullet system when
controlled by fractional order FSMC and TFOSMC are as shown along with the
controller outputs for the same in Fig. 34. Figure 34 (a)-(c) show the comparative
time response of the individual state trajectories and Fig. 34 (d) depicts the con-
troller output for each of the two control schemes.

The state trajectories of the integer order Arneodo-Coullet system when con-
trolled by integer order FSMC and TFOSMC are as shown along with the controller

Table 14 Controller performance comparison for Genesio chaotic system

Performance
index

Fractional order system ðγ =0.993Þ Integer order system ðγ =1Þ
Fractional
FSMC

Fractional
TFOSMC

Improvement
(%)

FSMC TFOSMC Improvement
(%)

Settling time 4.5 1.81 59.77 3.4 2.35 30.88

∑ Δuj j 181.95 79.61 56.24 223.19 51.50 76.50

IAE e1
e2
e3

1454.50
3001.80
4082.40

1422.20
3001.10
3999.30

2.20
0.02
2.03

1429.30
3005.60
4416.20

1426.10
3003.90
4023.70

0.20
0.08
8.89

ITAE e1
e2
e3

586.06
1483.40
3071.80

507.68
1438.50
3036.20

13.40
3.03
1.13

552.27
1432.00
3192.40

509.62
1427.90
3041.60

7.78
0.34
4.73
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Fig. 34 Comparative performance of fractional FSMC and TFOSMC on fractional order
Arneodo-Coullet System: a state x1; b state x2; c state x3; d controller output
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outputs for the same in Fig. 35. Figure 35 (a)-(c) show the comparative time
response of the individual state trajectories and Fig. 35 (d) depicts the controller
output for each of the two control schemes.

The data comparing the performance parameters of FSMC and TFOSMC for
Genesio chaotic system is recorded in Table 15. As tabulated, the settling time
shows an improvement of 29.42% and 24% for fractional and integer TFOSMC,
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Fig. 35 Comparative performance of integer order FSMC and TFOSMC on integer order
Arneodo-Coullet System: a state x1; b state x2; c state x3; d controller output

Table 15 Controller performance comparison for Arneodo-Coullet Chaotic system

Performance
index

Fractional order system ðγ =0.993Þ Integer order system ðγ =1Þ
Fractional
FSMC

Fractional
TFOSMC

Improvement
(%)

FSMC TFOSMC Improvement
(%)

Settling time 2.2 1.8 29.42 2.5 1.9 24.00

∑ Δuj j 380.62 29.19 92.30 240.94 31.83 86.70

IAE e1
e2
e3

700.18
1208.00
4391.80

624.21
1200.20
1381.60

10.80
0.66
68.40

940.07
1309.30
3602.50

625.54
1201.20
1396.60

33.52
8.23
61.20

ITAE e1
e2
e3

275.03
725.91
2171.80

232.66
631.49
1230.30

15.63
15.63
43.30

447.95
1004.80
2376.40

233.50
629.91
1231.80

47.80
37.30
48.10

On the Terminal Full Order Sliding Mode Control … 425



respectively. Further, the chattering also reduces by 92.30% and 86.70% in the case
of fractional and integer order TFOSMC, respectively. It can be inferred from the
table that all the performance indices show a positive percentage improvement.

7 Conclusions and Future Scope

In this chapter, application of a recently developed control scheme known as ter-
minal full order sliding mode control (TFOSMC) has been successfully explored
for efficient control of uncertain chaotic systems. Two important chaotic systems,
Genesio and Arneodo-Coullet have been considered in fractional order as well as
integer order dynamics. The investigated fractional and integer order chaotic sys-
tems are controlled using fractional order TFOSMC and integer order TFOSMC,
respectively and the control performance has been assessed for settling time,
amount of chattering, integral absolute error (IAE) and integral time absolute error
(ITAE). Furthermore, to gauge the relative performance of TFOSMC, a compara-
tive study with its potential counterpart, Fuzzy Sliding Mode Control (FSMC),
tuned by Cuckoo Search Algorithm for minimum IAE and amount of chattering
was also carried out and the relative performance was assessed using settling time,
amount of chattering, IAE and ITAE. From the presented intensive simulation
studies on integer order and fractional order Genesio and Arneodo-Coullet chaotic
systems, it was clearly observed that all the above mentioned performance indices
exhibited significant improvements when TFOSMC was employed instead of
FSMC. Another notable outcome of this study has been the significantly lower and
smoother controller output and reduced chattering in case of TFOSMC. Based on
these detailed investigations and presented results it is concluded that TFOSMC is a
better control scheme over FSMC to control the chaotic systems.

Future work, in this line, can be pursued with the performance investigations of
cross implementations of the controllers and systems i.e. application of
fractional-order controllers on integer order plants and vice versa. Furthermore,
applications on the other chaotic systems can also be taken up. Apart from con-
trolling the sys-tem trajectories, investigations on the chaotic systems’ synchro-
nization can also be considered.
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Stabilization of Fractional Order Discrete
Chaotic Systems

M.K. Shukla and B.B. Sharma

Abstract Chaos is almost ubiquitous in field of science and engineering. The
insurgent and typically unpredictable behavior exhibited by nonlinear systems is
seen as chaos. In recent decades, fractional (non-integer) order chaotic systems have
also been developed and their applications have invited a lot of interest of research
community. Along with fractional order continuous time chaotic systems,
researchers have also explored fractional order discrete chaotic systems to some
extent. These systems can also be exploited for the same application for which
continuous versions are used, thus providing increased flexibility and reliability.
Although the mathematics of fractional discrete calculus is still in development
phase, still with the help of available knowledge, research community has started
giving attention to this emerging field. A number of contributions are available in
literature in the area of fractional discrete calculus and its applications in control
systems. One can represent linear systems using fractional difference equations in
state space domain. Similarly, fractional difference equations can be used to rep-
resent nonlinear dynamical systems, especially chaotic systems. Fractional order
discrete chaotic systems offer a new domain of exploration to research fraternity. As
the work reported is limited, so the need arises to review and consolidate it. The
analysis, control and synchronization of fractional order chaotic systems is the aim
of this chapter. This chapter initially, gives a brief overview of fractional difference
equations and their solution. Thereafter, the results obtained so far in this area are
discussed and presented. Chaotic behavior of discrete fractional versions of the
famous Logistic map and Henon map is studied first. Further, control of the same
class of systems is tackled. The main contribution of the work is to present analysis
of control of fractional Henon map using backstepping control which is a
well-known technique to researchers in area of nonlinear control. Simulation results
are obtained using MATLAB and are presented at the end to validate the results.
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1 Introduction

In recent decades, fractional (non-integer) order chaotic systems have also been
developed and their applications have invited a lot of interest of research com-
munity. Fractional calculus which has been considered as the extension of the
integer-order calculus to non-integer order calculus, came into picture in the 17th
century. Due to unavailability of solution techniques, fractional calculus has not
been explored much for almost three hundred years. In recent years, various
methods for approximation of the fractional derivative and integral came into
existence, which further enabled us to use it in wide areas such as, bioengineering
[1], diffusion of heat [2], signal processing [3], robotics [4], electrical engineering
[5], etc. Fractional calculus finds wide applicability in control systems too. The
application revolves around two pillars: one is of fractional order systems and the
other is fractional order control. It has been established that fractional calculus gives
a more realistic modelling of systems and the best performance is achieved when a
fractional order controller is employed for a fractional order system [6].

Chaos is one of the ubiquitous phenomenon found in nature. A large amount of
literature is available covering their behavior, control and synchronization. Different
control and synchronization strategies are presented in [7–13]. Some of the recent
contributions in this area is given in [14–23]. The study of chaotic behavior of
various systems have also been a great topic of interest. Various researchers have
shown interest in this area also [24–30].

Chaotic systems can also be modelled more accurately by non-integer order
differential equations and hence are called fractional order chaotic systems. It is
known that chaotic behavior is exhibited by the systems, for system order more than
three, but recently, researchers have established that some fractional-order differ-
ential systems exhibit chaotic behavior for total order less than three as explained in
the pioneering work by Hartley et al. [31]. Chaotic behavior and analysis of con-
tinuous fractional order chaotic systems has now become a well-studied field with a
number of research papers and applications oriented results. In last ten years,
researchers have employed various control strategies for stabilization and syn-
chronization of fractional order chaotic systems and applied the results for real time
applications also. Several fractional order chaotic systems have been studied such
as fractional-order Chen system [32, 33], fractional-order Lorenz system [34, 35].
Various other fractional order chaotic systems have also been studied in recent
years such as, Rössler’s system [36], Coullet system [37], modified Van der Pol
Duffing system [38] and Liu’s system [39]. Recent developments in the area of
fractional order chaos can be found in [40–43].
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Recently, the prominent definitions of continuous fractional derivatives and
integrals have been discretized and lead to a new area of research and study i.e.
fractional difference equations. It is developing at a vast pace and is being applied to
various fields. Atici and Eloe [44] described the discrete initial value problem and
presented the existence results. Laplace transform for solving discrete fractional
equations in the nabla’s sense, was given by Holm [45]. Abedel [46] systemically
discussed the Caputo and the Riemann–Liouville fractional differences as well as
their properties. More details on discrete fractional calculus can be found in
[47–52]. Although, enough work has been done in the area of fractional order
discrete linear systems, nonlinear systems version has not been studied much. As
we know that discrete time systems are represented by difference equations, one
may think of using fractional order difference equations for modelling discrete time
systems. In this course, fractional difference may be proved to be powerful tool for
the more realistic modeling of dynamics of discrete complex systems. Various
definitions of discrete derivatives have been put forward by researchers [53]. In the
view of this development, it is required to see the effect of fractional difference in
nonlinear dynamical systems. To study the effect of this fractional order in the
chaotic behavior of the nonlinear systems is the motivation behind this work. Also,
once the chaotic behavior is ascertained, the need arises to design controllers for the
stabilization and synchronization of this category of systems. With these devel-
opments in this area, the real time problems like secure communication, cryptog-
raphy etc. can be solved efficiently and satisfactorily.

Very few research papers have been published till now, in this area. Analysis of
fractional order logistic map and its synchronization has been carried out by Wu
et al. [54–56]. Fractional order Henon map has been introduced by Hu [57]. Fur-
ther, extending the work, in this chapter, we will investigate the chaotic behaviors
of some fractional order discrete chaotic systems (logistic map and Henon map).
Bifurcation diagrams are given which validate the chaotic behaviors of these sys-
tems. Further, we shall apply backstepping based strategy for control of fractional
order discrete chaotic systems which belong to strict-feedback class of systems. The
fractional order Henon map which belong to this class is studied and a backstepping
controller is designed for its stabilization. Backstepping is a well-known recursive
technique, based on Lyapunov stability criterion and is used for controller design
for nonlinear systems. The simulation results confirm the efficacy of the proposed
controller.

The organization of the chapter is as follows: Sect. 2 gives a brief introduction of
discrete fractional calculus. A brief mathematical background is discussed here.
Section 3 deals with study of fractional order logistic map and Henon system.
Chaotic behavior is proved by bifurcation diagram. Backstepping based control of
fractional order Henon map has been described in Sect. 3.4 along with simulation
results for validation. The chapter is concluded in Sect. 4.
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2 Fundamentals of Discrete Fractional Calculus

Discrete fractional calculus is still in development phase and is topic of research in
the field of mathematics. Keeping this point in mind, we will just give a brief
introduction which will be sufficient for the reader and will help in understanding
the analysis of fractional order discrete chaotic systems. In order to define fractional
sum, we can express first order difference as

Δf tð Þ= f t+1ð Þ− f tð Þ ð1Þ

On the similar grounds, second order difference will be,

Δ2f tð Þ=Δf t+1ð Þ−Δf tð Þ

Δ2f tð Þ= f t+2ð Þ− 2f t+1ð Þ+ f tð Þ ð2Þ

The general nth order difference is given as

Δnf tð Þ=Δn− 1f t+1ð Þ−Δn− 1f tð Þ= ∑
n

k=0

n
k

� �
− 1ð Þkf t+ n− kð Þ ð3Þ

On the similar grounds we can define fractional sum of order α.

Definition 1 For f :ℕa →ℝ and 0< α, fractional order sum of order α is defined
below as in [44],

Δ− α
a f tð Þ= 1

Γ αð Þ ∑
t− α

s= a
t− σ sð Þð Þ α− 1ð Þf sð Þ ð4Þ

where, t∈Na+ α, a is the starting point, a∈ℝ, σ sð Þ= s+1, and the generalized

falling factorial, t αð Þ = Γ t+1ð Þ
Γ t+1−αð Þ. Some important properties of factorial function are

given below as in [58].

(i) Δt αð Þ = αt α− 1ð Þ

(ii) t− μð Þt μð Þ = t μ+1ð Þ, where μ∈ℝ
(iii) μ μð Þ =Γ μ+1ð Þ
(iv) If t≤ r, then t αð Þ ≤ r αð Þ for any α> r

(v) If 0 < α<1, then t αvð Þ ≥ t vð Þ� � αð Þ

(vi) t α+ βð Þ = t− βð Þ αð Þt βð Þ

Caputo has given the two basic definitions of fractional difference which are
derived from the continuous definition of fractional derivative given by Caputo.

434 M.K. Shukla and B.B. Sharma



Definition 2 Caputo like delta fractional difference of f tð Þ on ℕa and ℕb is defined
as, [46]

Δα
C f tð Þ= 1

Γ n− αð Þ ∑
t− n− αð Þ

s= a
t− σ sð Þð Þ n− α− 1ð ÞΔn

s f sð Þ ð5Þ

∇α
C f tð Þ= 1

Γ n− αð Þ ∑
b

s= t+ n− αð Þ
ρ sð Þ− tð Þ n− α− 1ð Þ∇n

b f sð Þ ð6Þ

where, for two real numbers a and b,
ℕa = a, a+1, a+2, . . .f g and ℕb = b, b− 1, b− 2, . . .f g.
Also, n= α½ �+1, ρ sð Þ= s− 1.
It is clear from the above definitions, that fractional difference on time scales

gives a potential approach for discrete fractional modeling.

2.1 Fractional Order Difference Equation

With the above definitions in mind we can define fractional order nonlinear dif-
ference equation as

Δα
au tð Þ= f t+ α− 1, u t+ α− 1ð Þð Þ

Δku að Þ= uk,m= α½ �+1, k=0, 1, . . . ,m− 1
ð7Þ

The above equation has a finite fractional difference form but the output is
dependent on the difference results of all the past states. This feature depicts the
discrete systems’ long memory effects or long interactions. Solution of the above
equation is not obvious and has to be dealt in a different manner. The solution as
given in [51] can be expressed as,

u tð Þ= u0 tð Þ+ 1
Γ αð Þ ∑

t− α

s= a+m− α
t− σ sð Þð Þ α− 1ð Þf sð Þ f s+ α− 1, u s+ α− 1ð Þð Þ ð8Þ

where the initial condition, u0 tð Þ= ∑
m− 1

k=0

t− að Þ kð Þ

k! Δku að Þ .

3 Fractional Order Discrete Chaotic Systems

Chaos and chaos synchronization find a variety of applications. Discrete maps are
easy to use and can readily generate chaos and hence, are being used in the different
areas of engineering and science. In this section we shall first study the existing
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fractional discrete chaotic systems and the effect of fractional difference on their
chaotic behavior. We shall describe fractional order logistic map and Henon map,
one by one.

3.1 Fractional Order Logistic Map

The classical logistic map, which gives the basic representation of demographical
model, is given by

u n+1ð Þ= μu nð Þ 1− u nð Þð Þ, u 0ð Þ= c ð9Þ

The fractional logistic map with fractional order α, is expressed as,

Δα
au tð Þ= μu t+ α− 1ð Þ 1− u t+ α− 1ð Þð Þ

t∈ℕa = a, a+1, a+2, . . . a∈ℝ, u að Þ= c, 0 < α≤ 1.

The solution of the above equation is expressed as,

u tð Þ= u 0ð Þ+ μ

Γ αð Þ ∑
t− α

s=1− α
t− s− 1ð Þ α− 1ð Þu s+ α− 1ð Þ 1− u s+ α− 1ð Þð Þ ð10Þ

For numerical solution, the above expression can be written as,

u nð Þ= u 0ð Þ+ μ

Γ αð Þ ∑
n

j=1

Γ n− j+ αð Þ
Γ n− j+1ð Þ u j− 1ð Þ 1− u j− 1ð Þð Þ ð11Þ

As explained in [56], the fractional version of logistic map has a discrete kernel
function. The memory effect is exhibited here as the present state of evolution
depends on all previous states. For α=0.1, u 0ð Þ=0.3 and n=100, the behavior of
fractional order logistic map is depicted in Figs. 1 and 2. Figure 1 depicts bifur-
cation diagram of fractional order logistic map. As it is evident from the Fig. 2, the
system exhibits chaotic behavior for μ=3.0. Fractional order logistic map can
exhibit chaotic behavior for different values of values of fractional order α. The
parameter μ may be varied to obtain the chaotic behavior.

3.2 Fractional Order Henon Map

Henon map is one of the common example of discrete maps which exhibits chaotic
behavior. Classical Henon map has been well studied and analyzed. A number of
control and synchronization techniques have been developed for Henon map.
Integer order Henon map can be expressed as,
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Fig. 1 Bifurcation diagram of fractional order logistic map for order α=0.1 when system
parameter μ is varied from 1 to 3
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Fig. 2 Chaotic behavior of fractional order logistic map for order α=0.1 when system parameter
μ=3.0

Stabilization of Fractional Order Discrete Chaotic Systems 437



x nð Þ= by n− 1ð Þ
y nð Þ= x n− 1ð Þ+1− a y n− 1ð Þð Þ2 + u ð12Þ

The fractional order version of Henon map has not been studied much. A recent
paper by Hu [57] describes fractional order Henon map and shows that it exhibits
chaos for various values of fractional order α. The fractional order Henon map as
expressed in [57], is given as:

Δα
ax tð Þ= by t+ α− 1ð Þ− x t+ α− 1ð Þ

Δα
ay tð Þ= x t+ α− 1ð Þ+1− a y t+ α− 1ð Þð Þ2 − y t+ α− 1ð Þ+ u ð13Þ

For simulation purpose the numerical formula can be written as,

x n+1ð Þ= x að Þ+ 1
Γ αð Þ ∑

n

j=1

Γ n− j+ αð Þ
Γ n− j+1ð Þ by nð Þ− x nð Þð Þ

y n+1ð Þ= y að Þ+ 1
Γ αð Þ ∑

n

j=1

Γ n− j+ αð Þ
Γ n− j+1ð Þ x nð Þ+1− a x nð Þð Þ2 − y nð Þ

� �
ð14Þ

The fractional order Henon map exhibits chaotic behavior for different values of α
and different parameter values. The bifurcation diagram is presented in Fig. 3 for
fractional order α=0.95 and system parameter a, varying from 0.2 to 1.8. The
phase portrait is shown in Fig. 4 for system parameters a=1.5, b=0.2.
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Fig. 3 Bifurcation diagram of fractional order Henon map for order α=0.95 when system
parameter a is varied from 0.2 to 1.8
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3.3 Stabilization of Fractional Order Henon Map

In this section we design a Lyapunov based stabilizing controller using backstep-
ping technique in order to achieve stability of Henon map. Backstepping technique
is applied on the systems which are in strict-feedback form. In each step a virtual
controller is obtained satisfying the Lyapunov stability criterion, and further we step
back towards the final state equation which contains the final control. In the final
step, controller for whole system is obtained and the time derivative of the overall
Lyapunov function is made negative semi-definite. Here, Lyapunov function for
discrete system has been chosen as a modulus function.

For the first equation in (13), let z1 t+ α− 1ð Þ= x t+ α− 1ð Þ and z2 t+ α− 1ð Þ=
y t+ α− 1ð Þ− β1 t+ α− 1ð Þ, where β1 is the virtual controller.

We can have,

Δα
az1 tð Þ=Δα

ax tð Þ
⇒Δα

az1 tð Þ= b z2 t+ α− 1ð Þ+ β1 t+ α− 1ð Þð Þ− x t+ α− 1ð Þ ð15Þ

The Lyapunov function for the above subsystem can be chosen as,

V1 tð Þ= z1 tð Þj j
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Fig. 4 Phase portrait of fractional order Henon map for order α=0.95 and system parameters
a=1.5, b=0.2
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Taking the fraction difference of Lyapunov function, we can have,

Δα
aV1 tð Þ≤ Δα

az1 tð Þ�� ��− z1 t+ α− 1ð Þj j
≤ b z2 t+ α− 1ð Þ+ β1 t+ α− 1ð Þð Þ− x t+ α− 1ð Þj j− z1 t+ α− 1ð Þj j

The virtual controller is chosen as

β1 t+ α− 1ð Þ= 1
b

c1 + 1ð Þx t+ α− 1ð Þ ð16Þ

which results in,

Δα
aV1 tð Þ≤ c1 − 1ð Þ z1 t+ α− 1ð Þj j+ bz2 t+ α− 1ð Þj j

Similarly, for the second subsystem we have,

Δα
az2 tð Þ=Δα

ay tð Þ−Δα
aβ1 tð Þ

Δα
az2 tð Þ= x n− 1ð Þ+1− a y n− 1ð Þð Þ2 + u−Δα

aβ1 tð Þ ð17Þ

Overall Lyapunov function will be

V2 tð Þ=V1 tð Þ+ z2 tð Þj j
⇒Δα

aV2 tð Þ≤ c1 − 1ð Þ z1 t+ α− 1ð Þj j+ bz2 t+ α− 1ð Þj j
+ x n− 1ð Þ+1− a y n− 1ð Þð Þ2 + u−Δα

aβ1 tð Þ
� ���� ���

− bz2 t+ α− 1ð Þj j

The final controller can be obtained as,

u= c2 y t+ α− 1ð Þ− 1
b

c1 + 1ð Þx t+ α− 1ð Þ
	 


− x t+ α− 1ð Þ

+ a y t+ α− 1ð Þð Þ2 + y t+ α− 1ð Þ+ c1 + 1ð Þy t+ α− 1ð Þ ð18Þ

And the final Lyapunov function will satisfy the following condition

Δα
aV2 tð Þ≤ c1 − 1ð Þ z1 t+ α− 1ð Þj j+ c2 − b− 1ð Þ z2 t+ α− 1ð Þj j ð19Þ

Here c1 and c2 are the design parameters which can be chosen arbitrarily.

3.4 Results and Discussions

The simulations have been performed on MATLAB software. For the parameters
a=1.2, b=0.15 and design parameters c1 = c2 = 0.1, the stabilization of states is

440 M.K. Shukla and B.B. Sharma



depicted in Figs. 5 and 6. The initial conditions are chosen as, x 0ð Þ=0.5,
y 0ð Þ=0.6. The control action has been employed at n=50.

It can be seen in the figures that states x and y of the system are bounded after
n=50, as controller is applied at this instant. We can conclude that the chaotic
behavior of the fractional order Henon map has been suppressed and the system has
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Fig. 5 Stabilization of state x of fractional order Henon map
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Fig. 6 Stabilization of state y of fractional order Henon map
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been stabilized by employing the proposed controller. This proves the efficacy of
the derived backstepping controller. The stability has been ensured by using a
Lyapunov function and keeping it negative definite which further indicates that the
system energy is decaying. This controller design scheme can be further used to
address the synchronization problem of the category of fractional order discrete
chaotic systems belonging to the strict-feedback class.

4 Conclusion

Study of fractional order discrete time chaotic maps is a new area of study. In this
paper, the recent developments in this area have been discussed and a contribution
has been made regarding stabilization of such systems. Chaotic behavior of frac-
tional logistic map and Henon map has been discussed here. Backstepping based
control strategy has been used for stabilization of Henon map. The simulation
results validate the control scheme proposed here. The fractional order discrete
chaotic systems are going to find various application as they show variety of chaotic
behaviors for various values of system parameters and fractional order α. This
special characteristic enables us to use chaotic systems in the area of chemistry,
cryptography, secure communication etc.

For this, the need is to design a controller which can lead to synchronization of
two chaotic systems in master-slave configuration. In case of continuous-time
fractional order chaotic systems, enough literature in there addressing the control
and synchronization issues. Future work can be focused towards analyzing chaotic
behaviors of fractional order discrete-time chaotic systems along with their control
and synchronization. These developments will enable us to use fractional order
discrete-time chaotic systems for various applications which are beneficial for the
upliftment of the society.
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A Three-Dimensional No-Equilibrium
Chaotic System: Analysis, Synchronization
and Its Fractional Order Form

Viet-Thanh Pham, Sundarapandian Vaidyanathan, Christos K. Volos,
Ahmad Taher Azar, Thang Manh Hoang and Vu Van Yem

Abstract Recently, a new classification of nonlinear dynamics has been introduced

by Leonov and Kuznetsov, in which two kinds of attractors are concentrated, i.e.

self-excited and hidden ones. Self-excited attractor has a basin of attraction excited

from unstable equilibria. So, from that point of view, most known systems, like

Lorenz’s system, Rössler’s system, Chen’s system, or Sprott’s system, belong to

chaotic systems with self-excited attractors. In contrast, a few unusual systems such

as those with a line equilibrium, with stable equilibria, or without equilibrium, are

classified into chaotic systems with hidden attractor. Studying chaotic system with

hidden attractors has become an attractive research direction because hidden attrac-

tors play an important role in theoretical problems and engineering applications.

This chapter presents a three-dimensional autonomous system without any equilib-

rium point which can generate hidden chaotic attractor. The fundamental dynamics

properties of such no-equilibrium system are discovered by using phase portraits,
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Lyapunov exponents, bifurcation diagram, and Kaplan–Yorke dimension. Chaos

synchronization of proposed systems is achieved and confirmed by numerical

simulation. In addition, an electronic circuit is implemented to evaluate the theo-

retical model. Finally, fractional-order form of the system with no equilibrium is

also investigated.

Keywords Chaos ⋅ Hidden attractor ⋅ No-Equilibrium ⋅ Lyapunov exponents ⋅
Bifurcation ⋅ Synchronization ⋅ Circuit ⋅ SPICE

1 Introduction

In 1963, Lorenz found a chaotic system when studying a model for atmospheric

convection [50]. The most well-known feature of a chaotic system is the sensitiv-

ity on initial conditions, named “butterfly effect”. This means that a small variation

on initial conditions of a system will generate a totally different chaotic trajectory.

After the invention of Lorenz, there has been significant interest in chaos theory,

chaotic systems, and chaos-based applications [5–8, 18, 19, 67, 72, 104]. Espe-

cially, various new chaotic systems have been discovered such as Rössler’s system

[61], Arneodo’s system [4], Chen’s system [18], Lü’s system [51], Vaidyanathan’s

systems [79, 85, 87, 88, 90], time-delay systems [11], nonlinear finance system [75],

four-scroll chaotic attractor [2] and so on [58, 82]. Complex behaviors of chaotic sys-

tem were used in different applications. True random bits were generated by using

a double-scroll chaotic attractor [103]. Volos et al. controlled autonomous mobile

robots via chaotic path planning [96]. Han et al. implemented a fingerprint images

encryption scheme based on chaotic attractors [27]. Hoang and Nakagawa proposed

applications of time delay systems in secure communication due to their complex

dynamics [31]. Application of synchronization of Chua’s circuits with multi-scroll

attractors in communications was introduced in [24]. In addition, Akgul et al. pre-

sented engineering applications of a new four-scroll chaotic attractor [2].

When studying chaotic systems, their equilibrium points play important role [69,

98]. As have been known, most reported chaotic systems have a countable number

of equilibrium points [68]. Therefore, chaos in these systems can be proved by using

Shilnikov criteria where at least one unstable equilibrium for emergence of chaos is

required [66]. However, a few chaotic systems without equilibrium have been pro-

posed recently [34]. We cannot apply the Shinikov method for verifying chaos in

such systems because they have neither homoclinic nor heteroclinic orbits. Chaotic

systems without equilibrium are categorized as systems with “hidden attractor" and

have been received significant attention [44, 46].

In this chapter, a novel system is introduced and its chaotic attractors are dis-

played. The special is that such new system does not have equilibrium points. This

chapter is organized as follows. The related works are summarized in the next

section. The model of the new system is proposed in Sect. 3. Dynamics and proper-

ties of the new system are investigated in Sect. 4. The adaptive anti-synchronization
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scheme is studied in Sect. 5. Section 6 presents a circuital implementation of the the-

oretical model. Fractional-order form of the new no-equilibrium system is proposed

in Sect. 7. Finally, conclusions are drawn in the last section.

2 Related Work

The terminology “hidden attractor” has been proposed recently when Leonov and

Kuznetsov introduced types of attractors: self-excited attractors and hidden attractors

[42, 44, 46, 47]. A self-excited attractor has a basin of attraction that is excited

from unstable equilibria. In contrast, hidden attractor cannot be found by using a

numerical method in which a trajectory started from a point on the unstable manifold

in the neighbourhood of an unstable equilibrium [33]. “Hidden attractor” plays a

vital role in nonlinear theory and practical problems [41, 46, 54, 59, 65]. Therefore,

various noticeable results relating to this topic has been reported in recent years.

The presence of hidden attractors has witnessed in a smooth Chua’s system [48], in

mathematical model of drilling system [45], in nonlinear control systems [43], or

in a multilevel DC/DC converter [107]. Hidden attractors appear in a 4-D Rikitake

dynamo system [94], in 5-D hyperchaotic Rikitake dynamo system [92], in a 5D

Sprott B system [52] or in a chaotic system with an exponential nonlinear term [56].

Other works on hidden attractors were introduced in [16, 35, 64, 69] and references

therein.

Interesting that chaotic systems without equilibrium belong to a class of nonlin-

ear systems with “hidden attractor” [34]. A few three-dimensional chaotic systems

without equilibrium points have been discovered. Wei applied a tiny perturbation

into the Sprott D system to create a new system with no equilibia [99]. Wang and

Chen proposed a no-equilibrium system when constructing a chaotic system with

any number of equilibria [98]. Especially, Jafari et al. found catalog of chaotic flows

with no equilibria [34].

Moreover, four-dimensional chaotic systems without equilibrium points have

been investigated recently. Based on a memristive device, a novel four-dimensional

system has been proposed [57]. The peculiarity of the memristive system is that it

does not display any equilibria and exhibits periodic, chaotic, and also hyperchaotic

dynamics. Vaidyanathan has presented analysis, control and synchronization of a

ten-term novel 4-D highly hyperchaotic system with three quadratic nonlinearities

[81]. The author have been shown that it is a novel hyperchaotic system does not

have any equilibrium point. Dynamics, synchronization and SPICE implementation

of a memristive system with hidden hyperchaotic attractor have been reported in

[55]. Investigation of new systems without equilibrium is still an attractive topic and

should receive further attention.
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3 Model of the No-Equilibrium System

Jafari et al. introduced a list of simple chaotic flows without equilibrium (denoted

NE1-NE14) [34]. Interestingly, the system NE8 can display coexisting hidden attrac-

tors [64]. The system NE8 is described as

⎧
⎪⎨⎪⎩

ẋ = y
ẏ = −x − yz
ż = xy + 0.5x2 − a,

(1)

where x, y, z are state variables and a is a positive parameter. The Lyapunov expo-

nents of system NE8 in (1) are 𝜆1 = 0.0314, 𝜆2 = 0, 𝜆3 = −10.2108 and the Kaplan–

Yorke dimension is DKY = 2.0031 (for a = 1.3) [34].

Based on system NE8 in (1), in this work we study a new system in the following

form

⎧
⎪⎨⎪⎩

ẋ = y
ẏ = −x − yz
ż = xy + ax2 + by2 − c,

(2)

where a, b, c are three positive parameters and c ≠ 0. A detailed study of dynamics

and properties of no-equilibrium system in (2) is presented in the next section.

4 Dynamics and Properties of the No-Equilibrium System

The equilibrium points of the system in (2) are found by solving ẋ = 0, ẏ = 0, and

ż = 0, that is

y = 0, (3)

− x − yz = 0, (4)

xy + ax2 + by2 − c = 0, (5)

From (3), (4), we have x = y = 0. Therefore Eq. (5) is inconsistent. In the other

words, there is no real equilibrium in the system (2).

We consider the system (2) for the selected parameters a = 0.5, b = 0.1, c = 1.3
and the initial conditions are

(x (0) , y (0) , z (0)) = (0, 0.1, 0) . (6)

Lyapunov exponents, which measure the exponential rates of the divergence and

convergence of nearby trajectories in the phase space of the chaotic system [68, 72],
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are calculated by using the algorithm in [102]. As a result, the Lyapunov exponents

of the system (2) are

𝜆1 = 0.0453, 𝜆2 = 0, 𝜆3 = −3.2903. (7)

The non-equilibrium chaotic system is dissipative because the sum of the Lyapunov

exponents is negative. It is worth noting that this non-equilibrium system can be

classified as a nonlinear system with hidden strange attractor because its basin of

attractor does not contain neighbourhoods of equilibria [44, 46]. The 2-D and 3-D

projections of the chaotic attractors without equilibrium in this case are presented in

Figs. 1, 2, 3 and 4.

It has been known that the Kaplan–Yorke dimension, which presents the com-

plexity of attractor [23], is defined by

DKY = j + 1
|||𝜆j+1

|||

j∑
i=1

𝜆i, (8)

Fig. 1 2-D projection of the

chaotic system without

equilibrium in (2) in the

(x, y)-plane
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Fig. 3 2-D projection of the

chaotic system without

equilibrium in (2) in the

(y, z)-plane
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where j is the largest integer satisfying

j∑
i=1

𝜆i ≥ 0 and

j+1∑
i=1

𝜆i < 0. Thus, the calculated

fractional dimension of no-equilibrium system in (2) when a = 0.5, b = 0.1, c = 1.3
is

DKY = 2 +
𝜆1 + 𝜆2
||𝜆3||

= 2.0138. (9)

Equation (9) indicates a strange attractor.

It is easy to see that the system in (2) has rotational symmetry with respect to

the z-axis as evidenced by their invariance under the transformation from (x, y, z) to

(−x,−y, z). Therefore, any projection of the attractor has symmetry around the origin.

In the other words there is a symmetric coexisting attractor as shown in Fig. 2. In

addition, the attractor of the system is displayed in Fig. 4. The bifurcation diagrams of

system in (2) illustrated in Fig. 5 indicate the presence of muti-stability. For example,

there are coexisting attractors when b = 0.15 as shown in Figs. 6, 7, 8, and 9.
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Fig. 5 Bifurcation diagram

of the chaotic system without

equilibrium (2) when

varying the value of the

parameter b for a = 0.5,

c = 1.3, and the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)
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Fig. 6 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(x, y)-plane
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Fig. 7 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(x, z)-plane for the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)
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Fig. 8 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(y, z)-plane for the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)
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Fig. 9 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(x, y, z)-space for the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)
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5 Adaptive Anti-synchronization of the No-Equilibrium
System

The most vital practical feature relating to chaotic systems is the possibility of syn-

chronization of two coupled chaotic systems [12, 21, 38, 53]. Synchronization of

nonlinear systems has been discovered extensively in literature [17, 24, 39, 59, 70,

80, 83, 84, 91, 106]. Some important obtained results can be listed as follows:

synchronized states in a ring of mutually coupled self-sustained nonlinear electri-

cal oscillators [101], ragged synchronizability of coupled oscillators [71], various

synchronization phenomena in bidirectionally coupled double-scroll circuits [95],

observer for synchronization of chaotic systems with application to secure data trans-

mission was studied in [1], or shape synchronization control [32]. Moreover, various

kinds of synchronizations have been reported, for example lag synchronization [60],

frequency synchronization [3], projective-anticipating synchronization [30], anti-

synchronization [78], adaptive synchronization [86, 93], hybrid chaos synchroniza-

tion [39], generalized projective synchronization [89], fuzzy control-based function

synchronization [15] or fast synchronization [37] etc. It is interesting that fuzzy adap-

tive synchronization of uncertain fractional-order chaotic systems has been intro-

duced in [14].
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In this Section, we study the adaptive anti-synchronization of identical no-

equilibrium systems with three unknown parameters. Here the no-equilibrium

system in (2) is considered as the master system as

⎧
⎪⎨⎪⎩

ẋ1 = y1
ẏ1 = −x1 − y1z1
ż1 = x1y1 + ax12 + by12 − c,

(10)

in which x1, y1, z1 are state variables. The slave system is considered as the controlled

no-equilibrium system and its dynamics is described as

⎧
⎪⎨⎪⎩

ẋ2 = y2 + ux
ẏ2 = −x2 − y2z2 + uy
ż2 = x2y2 + ax22 + by22 − c + uz,

(11)

where x2, y2, z2 are the states of the slave system. Here the adaptive controls are

ux, uy, and uz. These controls will be designed for the anti-synchronization of the

master and slave systems. A(t), B(t) and C(t) are used in order to estimate unknown

parameters a, b and c.

The anti-synchronization error between no-equilibrium systems (10) and (11) is

given by the following relation

⎧
⎪⎨⎪⎩

ex = x1 + x2
ey = y1 + y2
ez = z1 + z2.

(12)

As a result, the anti-synchronization error dynamics is described by

⎧
⎪⎨⎪⎩

ėx = ey + ux
ėy = −ex −

(
y1z1 + y2z2

)
+ uy

ėz =
(
x1y1 + x2y2

)
+ a

(
x12 + x22

)
+ b

(
y12 + y22

)
− 2c + uz.

(13)

Our aim is to construct the appropriate controllers ux, uy, uz to stabilize system

(13). Therefore, we propose the following controllers for system (13):

⎧
⎪⎨⎪⎩

ux = −ey − kxex
uy = ex +

(
y1z1 + y2z2

)
− kyey

uz = −
(
x1y1 + x2y2

)
− A(t)

(
x12 + x22

)
−B(t)

(
y12 + y22

)
+ 2C(t) − kzez.

(14)
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in which kx, ky, kz are positive gain constants for each controllers and the estimate

values for unknown system parameters are A(t), B(t), and C(t). The update laws for

the unknown parameters are determined as

⎧
⎪⎨⎪⎩

Ȧ = ez
(
x12 + x22

)
Ḃ = ez

(
y12 + y22

)
Ċ = −2ez.

(15)

Then, the main result of this section will be introduced and proved.

Theorem 15.1 If the adaptive controller (14) and the updating laws of parameter
(15) are chosen, the anti-sychronization between the master system (10) and the slave
system (11) is achieved.

Proof It is noting that the parameter estimation errors ea(t), eb(t) and ec(t) are given

as

⎧
⎪⎨⎪⎩

ea (t) = a − A (t)
eb (t) = b − B (t)
ec (t) = c − C (t) .

(16)

Differentiating (16) with respect to t, we have

⎧
⎪⎨⎪⎩

ėa (t) = −Ȧ (t)
ėb (t) = −Ḃ (t)
ėc (t) = −Ċ (t) .

(17)

Substituting adaptive control law (14) into (13), the closed-loop error dynamics

is defined as

⎧
⎪⎨⎪⎩

ėx = −kxex
ėy = −kyey
ėz = (a − A (t))

(
x12 + x22

)
+ (b − B (t))

(
y12 + y22

)
− 2 (c − C (t)) − kyey

(18)

Then substituting (16) into (18), we have

⎧
⎪⎨⎪⎩

ėx = −kxex
ėy = −kyey
ėz = ea (t)

(
x12 + x22

)
+ eb (t)

(
y12 + y22

)
− 2ec (t) − kzez.

(19)

We consider the Lyapunov function given as
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V (t) = V
(
ex, ey, ez, ea, eb, ec

)

= 1
2

(
e2x + e2y + e2z + e2a + e2b + e2c

)
. (20)

The Lyapunov function (20) is clearly definite positive.

Taking time derivative of (20) along the trajectories of (12) and (16) we have

V̇ (t) = exėx + eyėy + ezėz + eaėa + ebėb + ecėc. (21)

From (17), (19), and (21) we get

V̇ (t) = −kxe2x − kye2y − kze2z + ea
[
ez
(
x12 + x22

)
− Ȧ

]

+eb
[
ez
(
y12 + y22

)
− Ḃ

]
− ec

(
2ez + Ċ

)
. (22)

Then by applying the parameter update law (15), Eq. (22) become

V̇ (t) = −kxe2x − kye2y − kze2z . (23)

Obviously, derivative of the Lyapunov function is negative semi-define. According

to Barbalat’s Lemma in Lyapunov stability theory [40, 63], it follows that ex (t) → 0,

ey (t) → 0, and ez (t) → 0 exponentially when t → 0, i.e. anti-synchronization

between master and slave system is achieved. This completes the proof. □
We illustrate the proposed anti-synchronization scheme with a numerical exam-

ple. The parameters of the no-equilibrium systems are selected as a = 0.5, b = 0.1,

c = 1.3 and the positive gain constant as k = 4. The initial conditions of the mas-

ter system in (10) and the slave system in (11) have been chosen as x1 (0) = 0.0,

y1 (0) = 0.1, z1 (0) = 0, and x2 (0) = 0.5, y2 (0) = 1, z2 (0) = 0.8, respectively. We

assumed that the initial values of the parameter estimates are A (0) = 1, B (0) = 0.4,

and C (0) = 1.5.

We see that when adaptive control law in (14) and the update law for the parameter

estimates in (15) are applied, the anti-synchronization of the master in (10) and slave

Fig. 10 Anti-

synchronization of the states

x1(t) and x2(t)

0 50 100 150
−4

−2

0

2

4

Time

x 1
,x

2
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Fig. 11 Anti-

synchronization of the states

y1(t) and y2(t)
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Time
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Fig. 12 Anti-

synchronization of the states

z1(t) and z2(t)
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Fig. 13 Time series of the

anti-synchronization errors
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system in (11) occurs as illustrated in Figs. 10, 11 and 12. Time series of master states

are denoted as blue solid lines while corresponding slave states are plotted as red

dash-dot lines in such figures. Moreover, the time-history of the anti-synchronization

errors ex, ey, and ez is reported in Fig. 13. The anti-synchronization errors converge

to the zero, which indicates that the chaos anti-synchronization between the no-

equilibrium systems is realized.
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6 Circuit Implementation of the No-Equilibrium System

Electronic circuits have been used for emulating theoretical chaotic models [13, 17,

22, 74]. In addition, circuit implementation of chaotic models plays an important role

from the point of application view. Circuital realization of chaotic systems has been

applied in various engineering fields such as secure communication, signal process-

ing, random bit generator, or path planning for autonomous mobile robot etc. [10,

24, 62, 96, 97, 103].

Therefore, in this section, we introduce an electronic circuit which emulates the

theoretical model in (2). By using the operational amplifiers approach [22], the cir-

cuit is designed and presented in Fig. 14. The state variables x, y, z of no-equilibrium

system in (2) are the voltages across the capacitor C1, C2, and C3, respectively. As

seen in Fig. 14, theoretical model in (2) is realized by using only common electronic

components such as resistors, capacitors, operational amplifiers and analog multipli-

ers. By applying Kirchhoff’s laws to the electronic circuit in Fig. 14, its correspond-

ing circuital equations are derived in the following form

⎧
⎪⎪⎨⎪⎪⎩

dvC1
dt

= 1
R1C1

vC2
dvC2

dt
= − 1

R2C2
vC1

− 1
10R3C2

vC2
vC3

dvC3
dt

= 1
10R4C3

vC1
vC2

+ 1
10R5C3

v2C1
+ 1

10R6C3
v2C2

− 1
R7C3

Vc,

(24)

Fig. 14 Schematic of the designed circuit which modelling system without equilibrium in (2)
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in which vC1
, vC2

, and vC3
are the voltages across the capacitors C1, C2, and C3,

respectively.

In this work, the power supply to all active devices are ±15VDC and we use the

operational amplifiers TL084. The values of components in Fig. 14 are chosen as

follows: R1 = R2 = R6 = R7 = R = 10kΩ, R3 = R4 = 1kΩ, R5 = 2kΩ, Vc = 1.3VDC,

and C1 = C2 = C3 = 10nF. For the chosen set of components, the values of parame-

ters in system (2) are: a = 0.5, b = 0.1, and c = 1.3.

The designed circuit has implemented in SPICE. The obtained results are reported

in Figs. 15 and 16 which display the attractors of the circuit in different phase planes

(vC1
, vC2

), (vC1
, vC3

), and (vC2
, vC3

) respectively (Fig. 17). It is easy to see that there is

a good agreement between the theoretical attractors (Figs. 1–2) and the circuital ones

(Figs. 15 and 16). It can be concluded that the circuit simulations are consistent with

the numerical simulations. Moreover, the designed circuit, which is built by using

off-the-shelf electronic components, can be applied in practical applications.

Fig. 15 Obtained SPICE attractor of the designed circuit in the (vC1
, vC2

) phase plane
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Fig. 16 Obtained SPICE attractor of the designed circuit in the (vC1
, vC3

) phase plane

7 Fractional Order Form of the No-Equilibrium System

As have been known that, practical models such as heat conduction, electrode-

electrolyte polarization, electronic capacitors, dielectric polarization, viso-elastic

systems are more adequately described by the fractional-order different equations

[9, 29, 36, 73, 77, 100]. Existence of chaos in fractional-order systems are investi-

gated [26, 28, 49, 105]. In this section, we consider the fractional-order from of the

no-equilibrium system which is described as

⎧
⎪⎨⎪⎩

dqx(t)
dtq = y

dqy(t)
dtq = −x − yz

dqz(t)
dtq = xy + ax2 + by2 − c,

(25)

where a, b, c are three positive parameters and c ≠ 0 for the commensurate order 0 <

q ≤ 1. Fractional-order system (25) has been studied by applying Adams–Bashforth-

Mounlton numerical algorithm [20, 25, 76]. It is interesting that chaos exists in

fractional-order system (25). Figures 18, 19, and 20 display chaotic attractors gen-

erated from fractional-order system (25) for the commensurate order q = 0.99, the

parameters a = 0.5, b = 0.1, c = 1.3 and the initial conditions
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Fig. 17 Obtained SPICE attractor of the designed circuit in the (vC2
, vC3

) phase plane

Fig. 18 2-D projection of

the fractional-order system

without equilibrium (2) in

the (x, y)-plane

−4 −2 0 2 4
−6

−4

−2

0

2

x

y

(x (0) , y (0) , z (0)) = (0, 0.1, 0) . (26)

This research would enable future engineering applications by considering the advan-

tages of the system without equilibrium and the fractional order theory.
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Fig. 19 2-D projection of

the fractional-order system

without equilibrium (2) in

the (x, z)-plane
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Fig. 20 2-D projection of

the fractional-order system

without equilibrium (2) in

the (y, z)-plane
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8 Conclusion

This work introduces a new autonomous chaotic system with special features. There

is no any equilibrium points in the proposed system, therefore it is classified as a sys-

tem with hidden attractor. There is a coexistence of different attractors in the system

when changing the values of initial conditions. We have discovered the dynamical

properties of such system without equilibrium by using phase portraits, bifurcation

diagram, Lyapunov exponents and Kaplan–Yorke dimension. The possibility of syn-

chronization of no-equilibrium systems is studied through an anti-synchronization

scheme. The proposed no-equilibrium system are suitable for chaos-based engineer-

ing applications because of its complex behavior as well as its feasibility, which has

been confirmed by designing an electronic circuit. Fractional order of the proposed

system has been given and the result showed that the attractor has no equilibrium.

Potential applications of the proposed system should be investigated. Further

studies about fractional-order chaotic systems without equilibrium will be presented

in our future works.
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Comparison of Three Different
Synchronization Schemes
for Fractional Chaotic Systems

S.T. Ogunjo, K.S. Ojo and I.A. Fuwape

Abstract The importance of synchronization schemes in natural and physical

systems including communication modes has made chaotic synchronization an

important tool for scientist. Synchronization of chaotic systems are usually con-

ducted without considering the efficiency and robustness of the scheme used. In

this work, performance evaluation of three different synchronization schemes: Direct

Method, Open Plus Closed Loop (OPCL) and Active control is investigated. The

active control technique was found to have the best stability and error convergence.

Numerical simulations have been conducted to assert the effectiveness of the pro-

posed analytical results.

1 Introduction

Strogatz [40] defined chaos as the aperiodic long term behaviour in a determinis-

tic system that exhibit sensitive dependence on initial conditions. Using Lyapunov

exponents, a chaotic system is one with at least one positive Lyapunov exponent. A

system with more than one positive Lyapunov exponent is referred to as an hyper-

chaotic system. Since the proposition of the first chaotic system by Lorenz [19], the

study of chaos has evolved due to development of high computing resources and

mathematical procedures for analysis [39]. Chaotic systems has been developed in

the form of maps, ordinary differential equations, partial differential equations and

fractional order differential equations and presence of chaos investigated. Due to

complex nature of natural systems, the study of chaos has been extended to time
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series analysis in natural systems with the development of appropriate tools [25].

The sensitivity of chaotic system to initial conditions implies that two more systems

with different initial conditions will exhibit different dynamics. However, with the

addition of appropriate functions, trajectories of similar or different chaotic systems

can be made to coincide [24]. This is referred to as synchronization.

Synchronization of chaos refers to a process wherein two (or many) chaotic sys-

tems (either equivalent or nonequivalent) adjust a given property of their motion

to a common behavior due to a coupling or to a forcing (periodical or noisy) [5].

The first evidence of synchronization phenomenon was given by Huygen’s pendu-

lum clocks [17] while the first synchronization of chaotic system was proposed by

Pecora and Carroll [37]. Since the pioneering work of Pecora and Carroll [37], the

study of chaos synchronization has gained a lot of interest because of its applica-

tions. Several methods of secure communication and encryption has been proposed

based on chaos synchronization [30]. The principle assumes that communication

between two persons X and Y embedded in a chaotic signal can only be retrieved if

the right system parameters (keys) are known. A practical demonstration of secure

communication is presented in Strogatz [40].

As the study of chaos synchronization evolves, several types of synchronization

such as generalized synchronization [35], lag synchronization [20], complete syn-

chronization, phase synchronization and projective synchronization [32], modified

and function projective synchronization [18], etc. have been discovered. In order to

achieve any of these type of synchronization, different synchronization techniques

such as backstepping [31], active control, direct method [42], Open Plus Close Loop

(OPCL) [16] etc. have been developed and implemented. Early studies of differ-

ent types of synchronization using any of the mentioned techniques on dynamical

systems usually involves two systems. Over the years, real life applications of syn-

chronization requires the synchronization of different systems and a given number

of systems higher than the traditional two systems. This has given rise to reduced

and increased order synchronization [24, 35], combination synchronization [26, 33,

34], combination-combination synchronization [27, 29] and compound combination

synchronization [28].

The Caputo’s definition of fractional order differ-integral equations are given as

C
a D

𝛼

t f (t) =
1

𝛤 (𝛼 − m) ∫
t

a

f (m)𝜏
(t − 𝜏)𝛼+1−m

d𝜏 (1)

where m − 1 < 𝛼 ≤ m 𝜀 ℕ and 𝛼 𝜀 ℝ is a fractional order of the differ-integral of the

function f (t) [10]. Applications of fractional order are found in transmission line the-

ory, chemical analysis of aqueous solutions, design of heat-flux meters, rheology of

soils, growth of intergranular grooves on metal surfaces, quantum mechanical calcu-

lations, and dissemination of atmospheric pollutants [7]. Analysis of football player’s

motion has been analysed using fractional calculus [9]. Several chaotic fractional

order systems have been proposed, these include: fractional order Lorenz system,

fractional order Chua system, fractional order memristor based system, fractional
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order Duffing system, fractional order Chen system etc. There is a growing inter-

est in fractional order systems due to its many applications in control and natural

systems.

The use of Grunwald-Letnikov’s definition for solving fractional order differential

equations is described by Concepcion et al. [8] and stated here.

Using the approximation

𝔇𝛼f (t) ≈ 𝛥
𝛼

h f (t) (2)

𝛥
𝛼

h f (t)|t=kh = h−𝛼
k∑

j=0
(−1) j

(
𝛼

j

)
f (kh − jh). (3)

For a system given by a𝔇𝛼u(t) + bu(t) = q(t), with a = 1 and zero initial condi-

tions

h−𝛼
k∑

j=0
w(𝛼)
j yk−j + byk = qk (4)

where tk = kh, yk = y(tk), y0 = 0, qk = q(tk), k = 0, 1, 2,⋯, and

w(𝛼)
j = (−1) j

(
𝛼

j

)
(5)

the numerical solution is then obtained using

yk = −bh𝛼yk−1 −
k∑

j=1
w(𝛼)
j yk−j + h𝛼qk (6)

Synchronization of fractional order systems have been conducted by many

researchers. Synchronization of a system consisting of multiple drive and one

response was carried out in Zhou et al. [44]. Design, realization, control and syn-

chronization of a novel 4D hyperchaotic fractional order system was carried out

using time-delayed feedback control [11]. Generalized synchronization of a novel

fractional order chaotic system in different order and dimension has been investi-

gated with success using nonlinear feedback control [43].

In realization of chaos synchronization for real life application such as communi-

cation systems, it is intuitive to choose a method and technique which will minimize

cost and error while giving the desired robust outputs. Ojo et al. [31] compared the

backstepping and active control technique for complete synchronization of chaotic

systems. From their results, active control transient error dynamics convergence and

synchronization time are achieved faster via the backstepping than that of the active

control technique but the control function obtained via the active control is simpler

with a more stable synchronization time and hence, it is more suitable for practical

implementation. There is the need to investigate an efficient and robust method of

synchronization in light of growing interest in fractional order chaotic systems. The
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aim of this chapter is to compare the performance of three different techniques for

complete synchronization of an hyperchaotic fractional order chaotic system. System

performance will be investigated using both linear and nonlinear tools.

2 Related Work

Comparison of two different synchronization scheme was carried out on integer order

chaotic systems [31]. Recent advances in synchronization of fractional chaotic sys-

tems has seen results such as hybrid synchronization [36], exponential synchroniza-

tion with mixed uncertainties [22], combination-combination synchronization [21],

synchronization of nonidentical systems using modified active control [13], synchro-

nization of fractional order switching chaotic system [15], synchronization of frac-

tional order hyperchaotic systems using a new adaptive sliding mode control [23],

combination synchronization using nonlinear feedback control method [3], reduced

order synchronization of fractional order systems using adaptive control [2], fuzzy

adaptive synchronization [6] and robust methods [36] have been reported. Circuit

realization of a fractional order chaotic systems has also been implemented [11].

3 Synchronization Methods

A mathematical definition of synchronization was proposed by Wu and Chua [42].

Two systems ẋ = f (x, y, t) and ẏ = g(x, y, t) are uniform-synchronized with error

bound 𝜀 if there exist 𝛿 > 0 and T ≥ 0 such that

‖xi,j(t0) − yk,l(t0)‖ ≤ 𝛿 (7)

In order to achieve this, several techniques have been proposed. In the following

subsections, three of the popular techniques are discussed.

3.1 Direct Method

The mathematical definition of Lyapunov Direct Method was given by Wu and Chen

[42] and is stated here. Consider the systems ẋ = f (x, t) and ẏ = f (y, t). Supposed that

there exist a Lyapunov function V(t, x, y) such that for all t ≥ t0

a(‖x − y‖) ≤ V(t, x, y) ≤ b(‖x − y‖)
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where a(⋅) and b(⋅) are functions. Supposed that there exist 𝜇 > 0 such that for all

t > t0 and ‖x − y‖ ≥ 𝜇

V̇(t, x, y) ≤ −c

for some constant c > 0 where V̇(t, x, y) is the generalized derivative of V along the

trajectories of the systems Wu and Chua [42]. The Lyapunov direct method has been

used successfully for the synchronization of ...., anti-synchronization etc.

3.2 Open Plus Closed Loop (OPCL)

The method of Open Plus Closed Loop was proposed by Grosu [16]. The method

has been used for robust synchronization [14].

Consider a drive system ẏ = F(y) and a response system given by ẋ = F(x) +
D(x, g) where x, y𝜀ℜn

and g = 𝛼y, 𝛼 is a constant. The goal is to satisfy the condition

lim
t→∞

(x(t) − g(t)) = 0

From the OPCL theory, there exist an open-loop action, H given by

H(g, dg∕dt, t) =
dg
dt

− F(g, t)

and a linear feedback (closed-loop), K given as

K(g, x, t) =
(
dF
dg

− A
)
[g(t) − x(t)]

where g(t)𝜀ℜn
is an arbitrary smooth function and A is an arbitrary constant Hurwitx

matrix with negative real part [14]. The driving term D, can be written as the sum

of the open-loop and closed-loop as

D =
dg
dt

− F(g, t) +
(
dF
dg

− A
)
[g(t) − x(t)] (8)

3.3 Active Control

The Active Control method of synchronization was proposed by Bai and Lonngren

[4]. Considering a drive system ẋ = f (x) and a response defined as ẏ = f (y) + u(t),
where u(t) are the control functions. Defining the error function as
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lim
t→∞

‖e(t)‖ = lim
t→∞

‖f (x) − f (y)‖ = 0 (9)

we define a subcontroller v(t) = −𝕂e, where 𝕂 is a linear controller gain for control

of response feedback strength. The error term can be written as

ė(t) = Aie(t) + v(t)

where Ai are residuals of the system parameters. Substituting the values of v(t)m, we

obtain

ė(t) = Ze(t) (10)

where Z = (Ai − K). If all the eigenvalues of the matrix Z have negative real parts, it

is an Hurwitz matrix, which implies that the zero solution of the closed loop system

is globally asymptotically stable [1].

4 System Description

The Lorenz system was proposed by Lorenz [19] and can be regarded as the first

deterministic system. It is a 3D autonomous system given by

ẋ1 = a(x2 − x1)
ẋ2 = cx1 − x2 − x1x3
ẋ3 = x1x2 − bx3

(11)

The system has been found to be chaotic when a = 10, b = 8∕3, c = 28 with Lya-

punov exponents 1.49, 0, −22.46 indicating a strange attractor. Chaotic synchroniza-

tion of the Lorenz system has been done using different techniques such as increased

and reduced order using Active control [24], complete synchronization using OPCL

[14].

Gao et al. [12] introduced the 3D fractional order chaotic Lorenz system with

order 0.98.
dq1x1
dtq1

= a(x2 − x1)

dq2x2
dtq2

= cx1 − x2 − x1x3
dq3x3
dtq3

= x1x2 − bx3

(12)

By adding a nonlinear term ẋ4 = −x2x3 + rx4 to Eq. 11, a new system given by
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ẋ1 = a(x2 − x1) + x4
ẋ2 = cx1 − x2 − x1x3
ẋ3 = x1x2 − bx3
ẋ4 = −x2x3 + rx4

(13)

was obtained. The system was found to be hyperchaotic when r = −1.

A 4D hyperchaotic fractional system developed based on Eqs. (12) and (13) sys-

tem will be used in this paper

dq1x1
dtq1

= a(x2 − x1) + x4
dq2x2
dtq2

= cx1 − x2 − x1x3
dq3x3
dtq3

= x1x2 − bx3
dq4x4
dtq4

= −x2x3 + rx4

(14)

where the parameters are chosen as a = 10, b = 8∕3, c = 28, r = −1. The system

has Lyapunov exponents 𝜆1 = 0.3362, 𝜆2 = 0.1568, 𝜆3 = 0, 𝜆4 = −15.172 when

the order of the system is 0.98 [38, 41]. The attractor of the fractional order Lorenz

system is shown in Fig. 1 and the uncontrolled time series in Fig. 2.
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5 Synchronization of Chaos in Fractional Order Lorenz
System Using Direct Method

5.1 Design of Controllers

Let the drive system of the 4D fractional order Lorenz system be as described in

Eq. 14 and the response system as

dq1y1
dtq1

= a(y2 − y1) + y4 + u1(t)

dq2y2
dtq2

= cy1 − y2 − y1y3 + u2(t)

dq3y3
dtq3

= y1y2 − by3 + u3(t)

dq4y4
dtq4

= −y2y3 + ry4 + u4(t)

(15)

where ui(t)(i = 1, 2, 3, 4) is the control function to be determined. We define the error

function of the form

e1 = y1 − 𝛼1x1
e2 = y2 − 𝛼2x2
e3 = y3 − 𝛼3x3
e4 = y4 − 𝛼4x4

(16)
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where 𝛼i(i = 1, 2, 3, 4) are scaling parameters.

Definition 1 If the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1

complete synchronization of the drive-response system is achieved.

Definition 2 If the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = −1

complete anti-synchronization of the drive-response system is achieved.

Definition 3 If the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = p

where p ≠ 0 or 1 projective synchronization of the drive-response system is achieved.

Definition 4 The drive-response system is said to experience projective antisyn-

chronization if the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = −p

where p ≠ 0 or 1.

Definition 5 The drive-response system is said to experience modified projective

antisynchronization if the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 ≠ 𝛼2 ≠ 𝛼3 ≠ 𝛼4 ≠ −p

where p ≠ 0 or 1.

Definition 6 If 𝛼1 = 𝛼3 = 1 and 𝛼2 = 𝛼4 = −1, hybrid synchronization is achieved.

Definition 7 If 𝛼1 = 𝛼3 and 𝛼2 = 𝛼4 = p, where p ≠ 0,±1 projective hybrid syn-

chronization is achieved.

Definitions (1)–(7) can be obtained from any of the synchronization method

described in this chapter.

The error system is then obtained as

Dqe1 = a(e2 − e1) + e4 + u1
Dqe2 = ce1 − e2 − (y1y3 − 𝛼2x1x3) + u2
Dqe3 = −be3 + y1y2 − 𝛼3x1x2 + u3
Dqe4 = re4 − (y2y3 − 𝛼4x2x3) + u4

(17)
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Choosing a quadratic Lyapunov function of the form

V = 1
2

4∑
i=1

e2i (18)

Its derivative is obtained as

V̇ =
4∑
i=1

eiDqei (19)

Applying this to the system,

V̇ = e1[a(e2 − e1) + e4 + u1] + e2[ce1 − e2 − (y1y3 − 𝛼2x1x3) + u2]
+ e3[−be3 + y1y2 − 𝛼x1x2 + u3] + [re4 − (y2y3 − 𝛼4x2x3) + u4)] (20)

If,

u1 = −ae2 − e4
u2 = −ce1 + (y1y3 − 𝛼x1x3)
u3 = −y1y2 + 𝛼x2x3
u4 = −re4 + (y2y3 − 𝛼4x2x3) − ke4

(21)

Then,

V̇ = −ae21 − e22 − be23 − ke24 < 0 (22)

since a, b, k are positive numbers. We assume k = 1.

5.2 Numerical Simulation Results

To verify the effectiveness of the synchronization between the drive and response

systems using the Lyapunov Direct Method, we used Eq. (6) with the initial

conditions xi(i = 1, 2, 3, 4) and yi(i = 1, 2, 3, 4) taken as (−80 50 50 100) and

(0.08 −0.5 1 0) respectively. The order of the system is taken to be 0.98. A

time step of 0.005 was used the systems parameters used are a = 10, b = 8∕3, c =
28, r = −0.99 to ensure chaotic dynamics of the state variables. Solving the drive

(Eq. 14) and response (Eq. 15) with the control defined in Eq. (21). The results are

shown in Figs. 3, 4, 5, 6 and 7 for the different scaling parameters (𝛼 = 1,−1, 2,−2).

The drive and response systems could be seen to achieve synchronization as indi-

cated by the convergence of the error state variables to zero (i.e. ei(1, 2, 3, 4) → 0).

From the results obtained, the effectiveness of the controller was confirmed.
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Fig. 7 Error dynamics between Slave and Master system using direct method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 1

6 Synchronization of Chaos in Fractional Order Lorenz
System Using OPCL

6.1 Design of Controllers

If the drive system is taken as Eq. 14 and the response as Eq. 15, then the error state

of the system can be written as

e1 = y1 − g1
e2 = y2 − g2
e3 = y3 − g3
e4 = y4 − g4

(23)

where

⎡
⎢⎢⎢⎣

g1
g2
g3
g4

⎤
⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎣

𝛼1x1
𝛼2x2
𝛼3x3
𝛼4x4

⎤
⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎣

ġ1
ġ2
ġ3
ġ4

⎤
⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎣

𝛼1ẋ1
𝛼2ẋ2
𝛼3ẋ3
𝛼4ẋ4

⎤
⎥⎥⎥⎦

Defining the drive system as a function of g
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f (g) =
⎡
⎢⎢⎢⎣

a(g2 − g1) + g4
cg1 − g2 − g1g3
g1g2 − bg3
−g2g3 + rg4

⎤
⎥⎥⎥⎦

(24)

Also, the Jacobian is obtained as

𝜕fg
𝜕g

=
⎛
⎜⎜⎜⎝

−a a 0 1
(c − g3) −1 −g 0

g2 g1 −b 0
0 −g3 −g2 r

⎞
⎟⎟⎟⎠

(25)

To ensure the stability of the system, we choose as Hurwitz matrix

H =
⎛
⎜⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

(26)

Using the OPCL theory, the controller is defined as

U = ġ − f (g) +
[
H −

𝜕fg
𝜕g

]
e (27)

The control ui(i = 1, 2, 3, 4) is then obtained as

u1 = 𝛼1ẋ1 − a(g2 − g1) − g4 + (a − 1)e1 − a2e2 − e4
u2 = 𝛼2ẋ2 − [cg1 − g2 − g1g3] − (c − g3)e1 + g1e3
u3 = 𝛼3ẋ3 − [g1g2 − bg3] − g2e1 − g1e2 + (b − 1)e3
u4 = 𝛼4ẋ4 − [rg4 − g2g3] + g3e2 + g2e3 − (1 + r)e4

(28)

6.2 Numerical Simulation Results

To verify the effectiveness of the synchronization between the drive and response

systems using the OPCL method, we used Eq. (6) with the initial conditions xi(i =
1, 2, 3, 4) and yi(i = 1, 2, 3, 4) taken as (−80 50 50 100) and (0.08 −0.5 1 0)
respectively. The order of the system is taken to be 0.98. A time step of 0.005 was

used the systems parameters used are a = 10, b = 8∕3, c = 28, r = −0.99 to ensure

chaotic dynamics of the state variables. Solving the drive (Eq. 14) and response

(Eq. 15) with the control defined in Eq. (28). The results are shown in Figs. 8, 9,

10, 11 and 12 for the different scaling parameters (𝛼 = 1,−1, 2,−2). The drive and
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Fig. 8 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 1
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Fig. 9 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = −1

response systems could be seen to achieve synchronization as indicated by the con-

vergence of the error state variables to zero (i.e. ei(1, 2, 3, 4) → 0). From the results

obtained, the effectiveness of the controller was confirmed.
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Fig. 12 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 1

7 Synchronization of Chaos in Fractional Order Lorenz
System Using Active Control

7.1 Design of Controllers

If the drive system is taken as Eq. 14, the response as Eq. 15, then the error state of

the system as Eq. 16, in line with the method of Active Control, we can eliminate

terms which cannot be expressed as linear terms in e1, e2, e3, e4 as

u1 = v1(t)
u2 = y1y3 − 𝛼2x1x3 + v2(t)
u3 = −y1y2 + 𝛼3x1x2 + v3(t)
u4 = y2y3 − 𝛼4x2x3 + v4(t)

(29)

the parameter vi(t)(i = 1, 2, 3, 4) will be obtained later. Substituting Eq. (29) into

Eq. (17) yields

Dqe1 = a(e2 − e1) + e4 + v1(t)
Dqe2 = ce1 − e2 + v2(t)
Dqe3 = −be3 + v3(t)
Dqe4 = re4 + v4(t)

(30)
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Using the Active Control method, a constant matrix D is chosen which will control

the error dynamics (Eq. 30) such that the feedback matrix is

⎛
⎜⎜⎜⎝

v1(t)
v2(t)
v3(t)
v4(t)

⎞
⎟⎟⎟⎠
= D

⎛
⎜⎜⎜⎝

e1
e2
e3
e4

⎞
⎟⎟⎟⎠

where D is a 4 × 4 matrix. There are various choices of the feedback D which can be

chosen to control the error dynamics but we optimize this choice so that the problem

of controller complexity is significantly reduced [31]. Hence, D is chosen to be of

the form

D =
⎛
⎜⎜⎜⎝

(a − 𝜆1) −a 0 −1
−c (1 − 𝜆2) 0 0
0 0 (b − 𝜆3) 0
0 0 0 −(r + 𝜆4)

⎞
⎟⎟⎟⎠

(31)

The eigenvalues 𝜆i(i = 1, 2, 3, 4) are chosen to be negative in order to achieve a stable

synchronization between the drive and response system.

7.2 Numerical Simulation Results

To verify the effectiveness of the synchronization between the drive and response

systems using the Active control method, we used Eq. (6) with the initial
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Fig. 13 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = 1
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conditions xi(i = 1, 2, 3, 4) and yi(i = 1, 2, 3, 4) taken as (−80 50 50 100) and

(0.08 −0.5 1 0) respectively. The order of the system is taken to be 0.98. A

time step of 0.005 was used the systems parameters used are a = 10, b = 8∕3,
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Fig. 14 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = −1
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Fig. 15 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = 2
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c = 28, r = −0.99 to ensure chaotic dynamics of the state variables. Solving the

drive (Eq. 14) and response (Eq. 15) with the control defined in Eq. (31). The results

are shown in Figs. 13, 14, 15, 16 and 17 for the different scaling parameters (𝛼 =
1,−1, 2,−2). The drive and response systems could be seen to achieve synchro-
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Fig. 16 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = −2
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Fig. 17 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = 1
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nization as indicated by the convergence of the error state variables to zero (i.e.

ei(1, 2, 3, 4) → 0). From the results obtained, the effectiveness of the controller was

confirmed.

8 Comparison of Direct Method, OPCL and Active Control
Techniques

The performance of the three different synchronization scheme is to be compared.

The error components for the system and error magnitude are presented in Figs. 18

and 19 respectively. From Fig. 18, apart from the top-left figure, the convergence of

the synchronization technique in order of increasing speed is: active control, Lya-

punov Direct Method and OPCL. The same trend and order could be observed in

the error magnitude as shown in Fig. 19. The behaviour of the error dynamics before

achieving convergence is important. The speed of convergence is referred to as syn-

chronization time [24, 31]. From Fig. 18, the active control technique was found to

have minimal variations before attaining convergence while the two other techniques

show different behaviours in fluctuation. From the dynamics of the error dynamics,

it could be observed that the OPCL method showed the highest variation in error

amplitude before convergence while the active control has the lowest amplitude vari-

ation.

Time
0 1 2 3 4 5

e 1
,e

2,
e 3

0

50

100

150

200
OPCL
AC
LDM

Time
0 1 2 3 4 5

e 1
,e

2,
e 3

-600

-400

-200

0

200

400

600
OPCL
AC
LDM

Time
0 1 2 3 4 5

e 1
,e

2,
e 3

-500

0

500
OPCL
AC
LDM

Time
0 1 2 3 4 5

e 1
,e

2,
e 3

-2000

-1500

-1000

-500

0

500

1000
OPCL
AC
LDM

Fig. 18 Error dynamics between Slave and Master system for each component of the system for

each of the synchronization techniques under consideration when 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 2
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Fig. 19 Error dynamics between Slave and Master system for the three synchronization techniques

when 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1

9 Conclusion

The synchronization of chaotic fractional order Lorenz system has been investigated

using three techniques: active control, Lyapunov direct method and OPCL. In each

of the synchronization scheme, control functions have been achieve for the complete

synchronization between the drive and response systems. Numerical simulations

have been conducted to assert the effectiveness of the proposed analytical results.

Comparing the three techniques, active control offers the best stability and fast con-

vergence of error terms. The synchronization dynamics of fractional order systems

under periodic driving force can be investigated. There is the need to study the per-

formance of the different synchronization schemes considered here under different

types of noise and noise strength to test their reliability. This study can be extended

to maps and integer order systems. Practical realization using electronic simulations

and/or circuit for communication can be investigated to determine efficiency and

practicability of these results under field scenario. In real life applications of syn-

chronization schemes for secure communication, there is interaction between mul-

tiple users, hence, further work can be carried out to study the best scheme under

multiple drive and multiple response system with applications to secure communi-

cation systems.
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1 Introduction

Fractional calculus, as generalization of integer order integration and differentiation

to its non-integer (fractional) order counterpart, has proved to be valuable tool in

the modeling of many physical phenomena [1–5] and engineering problems [6–13].

Fractional derivatives provide an excellent instrument for the description of memory

and hereditary properties of various materials and processes [14, 15]. The main rea-

son for using integer-order models was the absence of solution methods for fractional

differential equations [16, 17]. The advantages or the real objects of the fractional

order systems are that we have more degrees of freedom in the model and that a

“memory” is included in the model [18]. One of the very important areas of appli-

cation of fractional calculus is the chaos theory [19, 20].

Chaos is a very interesting nonlinear phenomenon which has been intensively

studied [21–26]. It is found to be useful or has great application potential in many

fields such as secure communication [27], data encryption [28], financial systems

[29] and biomedical engineering [30]. The research efforts have been devoted to

chaos control [31–33] and chaos synchronization [34–40] problems in nonlinear sci-

ence because of its extensive applications [41–57].

Recently, studying fractional order systems has become an active research area.

The chaotic dynamics of fractional order systems began to attract much attention in

recent years. It has been shown that the fractional order systems can also behave

chaotically, such as the fractional order Chua’s system [58], the fractional order

Lorenz system [59], the fractional order Chen system [60, 61], the fractional order

Rössler system [62], the fractional-order Arneodo’s system [63], the fractional

order Lü system [64], the fractional-order Genesio-Tesi system [65], the fractional

order modified Duffing system [66], the fractional-order financial system [67], the

fractional order Newton–Leipnik system [68], the fractional order Lotka-Volterra

system [69] and the fractional order Liu system [70]. Moreover, recent studies show

that chaotic fractional order systems can also be synchronized [71–78]. Many scien-

tists who are interested in this field have struggled to achieve the synchronization of

fractional–order chaotic systems, mainly due to its potential applications in secure

communication and cryptography [79–81].

A wide variety of methods and techniques have been used to study the synchro-

nization of the fractional–order chaotic such as sliding mode controller [82–84],

active and adaptive control methods [85–87], feedback control method [88, 89], lin-

ear and nonlinear control methods [90, 91], scalar signal technique [92, 93]. Many

types of synchronization for the fractional-order chaotic systems have been presented

[94–127]. Among all types of synchronization, projective synchronization (PS) has

been extensively considered. In PS, slave system variables are scaled replicas of

the master system variables. A variation of projective synchronization is the so-

called matrix projective synchronization (MPS) (or full state hybrid projective syn-

chronization) [128–130]. Also, matrix projective synchronization (MPS) between

fractional order chaotic systems has been studied [131–134]. In this type of synchro-

nization the single scaling parameter originally introduced in [135] is replaced by
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a diagonal scaling matrix [136, 137] or by a full scaling matrix [138]. Recently, an

interesting scheme has been introduced [139], in which each master slave system

state achieves synchronization with any arbitrary linear combination of slave system

states. Since master system states and slave system states are inverted with respect

to the MPS, the proposed scheme is called inverse matrix projective synchroniza-

tion (IMPS). Obviously, the problem of inverse matrix projective synchronization

(IMPS) is an attractive idea and more difficult than the problem of matrix projective

synchronization (MPS). The complexity of the IMPS scheme can have important

effect in applications.

Based on these considerations, this study presents new control schemes for the

problem of IMPS in fractional-order chaotic dynamical systems. Based on Laplace

transform and fractional Lyapunov stability theory, the study first analyzes a new

IMPS scheme between n−dimensional commensurate fractional-order master sys-

tem and m−dimensional commensurate fractional-order slave system. Successively,

by using some properties of fractional derivatives and stability theory of fractional-

order linear systems, IMPS is proved between n−dimensional incommensurate

fractional-order master system and m−dimensional commensurate fractional-order

slave system. Finally, several numerical examples are illustrated, with the aim to

show the effectiveness of the approaches developed herein.

This study is organized as follow. In Sect. 2, some basic concepts of fractional-

order systems are introduced. In Sect. 3, the master and the slave systems are

described to formulate the problem of IMPS. In Sect. 4, two control schemes are

proposed which enables IMPS to be achieved for commensurate master system and

incommensurate master system cases, respectively. In Sect. 5, simulation results

are performed to verify the effectiveness and feasibility of the proposed schemes.

Finally, concluding remarks end the study.

2 Basic Concepts

In this section, we present some basic concepts of fractional derivatives and stabil-

ity of fractional systems which are helpful in the proving analysis of the proposed

approaches.

2.1 Caputo Fractional Derivative

The idea of fractional integrals and derivatives has been known since the develop-

ment of the regular calculus, with the first reference probably being associated with

Leibniz in 1695. There are several definitions of fractional derivatives [140]. The

Caputo derivative [141] is a time domain computation method. In real applications,

the Caputo derivative is more popular since the un-homogenous initial conditions

are permitted if such conditions are necessary. Furthermore, these initial values are
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prone to measure since they all have idiographic meanings [142]. The Caputo deriv-

ative definition is given by

Dp
t f (t) = Jm−pf m (t) , (1)

where 0 < p ≤ 1,m = [p], i.e., m is the first integer which is not less than p, f m
is

the m-order derivative in the usual sense, and Jq (q > 0) is the q-order Reimann-

Liouville integral operator with expression:

Jqf (t) = 1
𝛤 (q)

t

∫
0

(t − 𝜏)q−1f (𝜏) d𝜏, (2)

where 𝛤 denotes Gamma function.

Some basic properties and Lemmas of fractional derivatives and integrals used in

this study are listed as follows.

Property 1 For p = n, where n is an integer, the operation Dp
t gives the same result

as classical integer order n. Particularly, when p = 1, the operation Dp
t is the same

as the ordinary derivative, i.e., D1
t f (t) = df (t)

dt
; when p = 0, the operation Dp

t f (t) is
the identity operation: D0

t f (t) = f (t).

Property 2 Fractional differentiation (fractional integration) is linear operation:

Dp
t
[
af (t) + bg (t)

]
= aDp

t f (t) + bDp
t g (t) . (3)

Property 3 The fractional differential operator Dp
t is left-inverse (and not right-

inverse) to the fractional integral operator Jp, i.e.

Dp
t Jpf (t) = D0f (t) = f (t) . (4)

Lemma 1 [143] The Laplace transform of the Caputo fractional derivative rule
reads

𝐋
(
Dp

t f (t)
)
= sp𝐅 (s) −

n−1∑
k=0

sp−k−1f (k) (0) , (p > 0, n − 1 < p ≤ n) . (5)

Particularly, when 0 < p ≤ 1, we have

𝐋
(
Dp

t f (t)
)
= sp𝐅 (s) − sp−1f (0) . (6)

Lemma 2 [144] The Laplace transform of the Riemann-Liouville fractional integral
rule satisfies

𝐋 (Jqf (t)) = s−q𝐅 (s) , (q > 0) . (7)
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Lemma 3 [103] Suppose f (t) has a continuous kth derivative on [0, t] (k ∈ N,

t > 0), and let p, q > 0 be such that there exists some 𝓁 ∈ N with 𝓁 ≤ k and p,
p + q ∈ [𝓁 − 1,𝓁]. Then

Dp
t Dq

t f (t) = Dp+q
t f (t) , (8)

Remark 1 Note that the condition requiring the existence of the number 𝓁 with the

above restrictions in the property is essential. In this work, we consider the case that

0 < p, q ≤ 1, and 0 < p + q ≤ 1. Apparently, under such conditions this property

holds.

2.2 Stability of Linear Fractional Systems

Consider the following linear fractional system

Dpi
t xi(t) =

n∑
j=1

aijxj(t), i = 1, 2, ..., n, (9)

where pi is a rational number between 0 and 1 and Dpi
t is the Caputo fractional deriv-

ative of order pi, for i = 1, 2, ..., n. Assume that pi =
𝛼i

𝛽i
,
(
𝛼i, 𝛽i

)
= 1, 𝛼i, 𝛽i ∈ ℕ, for

i = 1, 2, ..., n. Let d be the least common multiple of the denominators 𝛽i’s of pi’s.

Lemma 4 [145] If pi’s are different rational numbers between 0 and 1, then the
system (9) is asymptotically stable if all roots 𝜆 of the equation

det
(
diag

(
𝜆

dp1 , 𝜆dp2 , ..., 𝜆dpn
)
− A

)
= 0, (10)

satisfy |arg (𝜆)| > 𝜋

2d
, where A =

(
aij
)

n×n.

2.3 Fractional Lyapunov Method

Definition 1 A continuous function 𝛾 is said to belong to class-K if it is strictly

increasing and 𝛾 (0) = 0.

Theorem 1 [146] Let X = 0 be an equilibrium point for the following fractional
order system

Dp
t X (t) = F (X (t)) , (11)

where 0 < p ≤ 1. Assume that there exists a Lyapunov function V (X (t)) and class-K
functions 𝛾i (i = 1, 2, 3) satisfying

𝛾1 (‖X‖) ≤ V (X (t)) ≤ 𝛾2 (‖X‖) . (12)
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Dp
t V (X (t)) ≤ −𝛾3 (‖X‖) . (13)

Then the system (11) is asymptotically stable.

Theorem 2 [147] If there exists a positive definite Lyapunov function V (X (t)) such
that Dp

t V (X (t)) < 0, for all t > 0, then the trivial solution of system (11) is asymp-
totically stable.

In the following, a new lemma for the Caputo fractional derivative is presented.

Lemma 5 [148] ∀X(t) ∈ 𝐑n
, ∀p ∈

]
0, 1

]
and ∀t > 0

1
2

Dp
t
(
XT (t)X(t)

) ≤ XT (t)Dp
t (X(t)) . (14)

3 System Description and Problem Formulation

We consider the following fractional chaotic system as the master system

Dp
t X (t) = AX (t) + f (X (t)) , (15)

where X (t) =
(
x1 (t) , x2 (t) , ..., xn (t)

)T
is the state vector of the master system (15),

A =
(
aij
)

n×n is a constant matrix, f =
(
fi
)
1≤i≤n is a nonlinear function, Dp

t =
[
Dp1

t ,

Dp2
t , ...,Dpn

t
]

is the Caputo fractional derivative and pi, i = 1, 2, ..., n, are rational

numbers between 0 and 1.

Also, consider the slave system as

Dq
t Y (t) = g (Y (t)) + U, (16)

where Y(t) =
(
y1 (t) , y2 (t) , ..., ym (t)

)T
is the state vector of the slave system (16),

g =
(
gi
)
1≤i≤m, Dq

t is the Caputo fractional derivative of order q, where q is a rational

number between 0 and 1 and U =
(
ui
)
1≤i≤m is a vector controller to be designed.

Before proceeding to the definition of inverse matrix projective synchronization

(IMPS) for the coupled fractional chaotic systems (15) and (16), the definition of

matrix projective synchronization (MPS) is provided.

Definition 2 The n-dimensional master system X(t) and the m-dimensional slave

system Y(t) are said to be matrix projective synchronization (MPS), if there exists

a controller U =
(
ui
)
1≤i≤m and a given constant matrix 𝛬 =

(
𝛬ij

)
m×n, such that the

synchronization error

e(t) = Y(t) − 𝛬 × X(t), (17)

satisfies that lim t⟶+∞ ‖e (t)‖ = 0.
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Definition 3 The n-dimensional master system X(t) and the m-dimensional slave

system Y(t) are said to be inverse matrix projective synchronization (IMPS), if there

exists a controller U =
(
ui
)
1≤i≤m and a given constant matrix M =

(
Mij

)
n×m, such

that the synchronization error

e(t) = X(t) − M × Y(t), (18)

satisfies that lim t⟶+∞ ‖e (t)‖ = 0.

Remark 2 The problem of inverse matrix projective synchronization in chaotic

discrete-time systems have been studied and carried out, for example, in Ref. [149].

4 Fractional IMPS Schemes

In this section, we discuss two schemes of IMPS between the master system (15)

and the slave system (16): The first scheme is proposed when the master system is

commensurate system and the second one is constructed when the master system is

incommensurate system. In this study, we assume that n < m.

4.1 Case 1

In this case, we assume that p1 = p2 = ... = pn = p and q < p. The error system of

IMPS, in scalar form, between the master system (15) and the slave system (16) is

defined by

ei(t) = xi(t) −
m∑

j=1
Mij × yj(t), i = 1, 2, ..., n. (19)

Suppose that the controllers ui, i = 1, 2, ...,m, can be designed in the following

form

ui = −gi (Y (t)) + Jp−q (vi
)
, i = 1, 2, ...,m, (20)

where vi, 1 ≤ i ≤ m, are new controllers to be determined later.

By substituting Eq. (20) into Eq. (16), we can rewrite the slave system as

Dq
t yi (t) = Jp−q (vi

)
, i = 1, 2, ...,m. (21)

Now, applying the Laplace transform to (21) and letting

𝐋
(
yi(t)

)
= 𝐅i(s), i = 1, 2, ...,m, (22)
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we obtain,

sq𝐅i(s) − sq−1yi(0) = sq−p𝐋
(
vi
)
, i = 1, 2, ...,m, (23)

multiplying both the left-hand and right-hand sides of (23) by sp−q
, and again apply-

ing the inverse Laplace transform to the result, we obtain

Dp
t yi(t) = vi, i = 1, 2, ...,m. (24)

Now, the Caputo fractional derivative for order p of the error system (19) can be

derived as

Dp
t ei (t) = Dp

t xi(t) −
m∑

j=1
Mij × Dp

t yj(t)

=
n∑

j=1
aijxj (t) + fi (X (t)) −

m∑
j=1

Mij × vj, i = 1, 2, ..., n. (25)

Furthermore, the error system (25) can be written as

Dp
t ei (t) =

n∑
j=1

(
aij − cij

)
ej + Ri −

m∑
j=1

Mij × vj, i = 1, 2, ..., n, (26)

where
(
cij
)
∈ 𝐑n×n

are control constants and

Ri =
n∑

j=1

(
cij − aij

)
ej +

n∑
j=1

aijxj (t) + fi (X (t)) , i = 1, 2, ..., n. (27)

Rewriting the error system (26) in the compact form

Dp
t e (t) = (A − C) e (t) + R − M × V , (28)

where e (t) =
(
e1 (t) , e2 (t) , ..., en (t)

)T
, C =

(
cij
)

n×n is a control matrix to be selected

later, R =
(
R1,R2, ...,Rn

)T
and V =

(
v1, v2, ..., vn, vn+1, ..., vm

)T
.

Theorem 3 If the control matrix C ∈ 𝐑n×n is chosen such that P = A − C is a nega-
tive definite matrix, then the master system (15) and the slave system (16) are globally
inverse matrix projective synchronized under the following control law

(
v1, v2, ..., vn

)T = M̂−1 × R, (29)

and
vn+1 = vn+2 = ... = vm = 0, (30)
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where M̂−1 is the inverse matrix of M̂ =
(
Mij

)
n×n .

Proof By using (30), the error system (28) can be writtes as

Dp
t e (t) = (A − C) e (t) + R − M̂ ×

(
v1, v2, ..., vn

)T
, (31)

where M̂ =
(
Mij

)
n×n. Applying the control law given in Eqs. (29) to (31) yields the

resulting error dynamics as follows

Dp
t e (t) = (A − C) e (t) . (32)

If a Lyapunov function candidate is chosen as

V (e (t)) = 1
2

eT (t) e (t) , (33)

then the time Caputo fractional derivative of order p of V along the trajectory of the

system (32) is as follows

Dp
t V (e (t)) = 1

2
Dp

t
(
eT (t) e (t)

)
, (34)

and by using Lemma 5 in Eq. (34) we get

Dp
t V (e (t)) ≤ eT (t)Dp

t e (t)
= eT (t) (A − C) e (t) = eT (t)Pe (t) < 0.

Thus, from Theorem 2, it is immediate that is the zero solution of the system (32)

is globally asymptotically stable and therefore, systems (15) and (16) are globally

inverse matrix projective synchronized.

4.2 Case 2

Now, in this case, we assume that p1 ≠ p2 ≠ … ≠ pn and q < pi for i = 1, 2, ..., n.
The vector controller U =

(
ui
)
1≤i≤m can be designed a

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
⋮
un

un+1
⋮

um

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−g1 (Y (t)) + Jp1−q (v1
)

−g2 (Y (t)) + Jp2−q (v2
)

⋮
−gn (Y (t)) + Jpn−q (vn

)
−gn+1 (Y (t))

⋮
−gm (Y (t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (35)
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where vi, i = 1, ..., n, are new controllers. By substituting Eq. (35) into Eq. (16), we

can rewrite the slave system as

Dq
t yi (t) = Jpi−q (vi

)
, i = 1, ..., n, (36)

and

Dq
t yi (t) = 0, i = n + 1, n + 2, ...,m. (37)

By applying the Caputo fractional derivative of order pi − q to both the left and

right sides of Eq. (36) and by using Lemma (3), we obtain

Dpi
t yi (t) = Dpi−q

t
(
Dq

t yi (t)
)

= Dpi−q
t Jpi−q (vi

)
= vi, i = 1, ..., n. (38)

In this case, the error system between the master system (15) and the slave system

(16) can be derived as

Dpi
t ei (t) = Dpi

t xi (t) − Dpi
t

(
m∑

j=1
Mijyj (t)

)

=
m∑

j=1
aijxj (t) + fi (X (t)) −

m∑
j=1
j≠i

MijD
pi
t yj(t) − Miivi, i = 1, 2, ..., n. (39)

Furthermore, the error system (39) can be written as

Dpi
t ei (t) =

n∑
j=1

aijej + Ti − Miivi, i = 1, 2, ..., n, (40)

where

Ti = −
n∑

j=1
aijej +

n∑
j=1

aijxj (t) + fi (X (t)) −
m∑

j=1
j≠i

MijD
pi
t yj(t). (41)

Rewriting the error system (41) in the compact form

Dp
t e (t) = Ae (t) + T − diag

(
M11,M22, ...,Mnn

)
× V , (42)

where Dp
t =

[
Dp1

t ,Dp2
t , ...,Dpn

t
]
, e (t) =

[
e1 (t) , e2 (t) , ..., en (t)

]T
, T =

(
T1,T2, ...,Tn

)T

and V =
(
v1, v2, ..., vn

)T
.

To achieve IMPS between the master system (15) and the slave system (16), we

assume that Mii ≠ 0, i = 1, 2, ..., n. Hence, we have the following result.
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Theorem 4 There exists a feedback gain matrix L ∈ 𝐑n×n to realize inverse matrix
projective synchronization between the master system (15) and the slave system (16)
under the following control law

V = diag
(

1
M11

,
1

M22
, ...,

1
Mnn

)
× (T + Le (t)) . (43)

Proof Applying the control law given in Eq. (43) to Eq. (42), the error system can

be described as

Dp
t e (t) = (A − L) e (t) . (44)

The feedback gain matrix L is chosen such that all roots 𝜆, of

det
(
diag

(
𝜆

dp1 , 𝜆dp2 , ..., 𝜆dpn
)
+ L − A

)
= 0, (45)

satisfy |arg (𝜆)| > 𝜋

2d
, where d is the least common multiple of the denominators of

pi, i = 1, 2, ..., n. According to Lemma 4, we conclude that the zero solution of the

error system (44) is globally asymptotically stable and therefore, systems (15) and

(16) are IMPS synchronized.

5 Numerical Examples

In this section, two numerical examples are used to show the effectiveness of the

derived results.

5.1 Example 1

In this example, we consider the commensurate fractional order Lorenz system as the

master system and the controlled hyperchaotic fractional order, proposed by Zhou

et al. [151], as the slave system.

The master system is defined as

Dpx1 = 𝛼
(
x3 − x1

)
, (46)

Dpx2 = 𝛾x1 − x2 − x3x1,
Dpx3 = −𝛽x3 + x2x1,

where x1, x2 and x3 are states. For example, chaotic attractors are found in [150],

when (𝛼, 𝛽, 𝛾) = (10, 8
3
, 28) and p = 0.993. Different chaotic attractors of the frac-

tional order Lorenz system (46) are shown in Figs. 1 and 2.
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Compare system (46) with system (15), one can have

A =
⎛
⎜⎜⎝

−10 10 0
28 −1 0
0 0 −8

3

⎞
⎟⎟⎠
, f =

⎛
⎜⎜⎝

0
−x1x3
x1x2

⎞
⎟⎟⎠
.

The slave system is described by

Dqy1 = 0.56y1 − y2 + u1, (47)

Dqy2 = y1 − 0.1y2y23 + u2,
Dqy3 = 4y2 − y3 − 6y4 + u3,
Dqy4 = 0.5y3 + 0.8y4 + u4,

where y1, y2, y3, y4 are states and ui, i = 1, 2, 3, 4, are synchronization controllers.

The uncontrolled fractional hyperchaotic system (47) (i.e. the system (47) with

u1 = u2 = u3 = u4 = 0) exhibits hyperchaotic behavior when q = 0.95. Attractors in

2-D and 3-D of the uncontrolled fractional hyperchaotic system (47) are shown in

Figs. 3 and 4.

Fig. 1 Phase portraits of the master system (46) in 2-D
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Fig. 2 Phase portraits of the master system (46) in 3-D

Fig. 3 Phase portraits of the slave system (47) in 2-D
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Fig. 4 Phase portraits of the slave system (47) in 3-D

In this example, the error system of IMPS between the master system (46) and

the slave system (47) is defined as

e1 = x1 −
4∑

j=1
M1jyj, (48)

e2 = x2 −
4∑

j=1
M2jyj,

e3 = x3 −
4∑

j=1
M3jyj,

where

M =
(
Mij

)
3×4 =

⎛
⎜⎜⎝

2 0 0 4
0 1 0 5
0 0 3 6

⎞
⎟⎟⎠
.

So,

M̂ =
⎛
⎜⎜⎝

2 0 0
0 1 0
0 0 3

⎞
⎟⎟⎠

and M̂−1 =
⎛
⎜⎜⎝

1
2
0 0

0 1 0
0 0 1

3

⎞
⎟⎟⎠
.
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According to Theorem 3, there exists a control matrix C ∈ 𝐑3×3
so that systems

(46) and (47) realize the IMPS. For example, the control matrix C can be chosen as

C =
⎛
⎜⎜⎝

0 10 0
28 0 0
0 0 0

⎞
⎟⎟⎠
. (49)

It is easy to show that A − C is a negative definite matrix. Then the control func-

tions are designed as

u1 = −0.56y1 + y2 + J0.043
(
−10y1 − 20y4 + 5x3

)
, (50)

u2 = −y1 + 0.1y2y23 + J0.043
(
−y2 − 4y4 + 28x1 − x3x1

)
,

u3 = −4y2 + y3 + 6y4 + J0.043
(
−8
3

y3 −
16
3

y4 +
1
3

x2x1
)
,

u4 = −0.5y3 − 0.8y4.

Hence, the IMPS between the master system (46) and the slave system (47) is

achieved. The error system can be described as follows

D0.993e1 = −10e1, (51)

D0.993e2 = −e2,

D0.993e3 = −8
3

e3.

For the purpose of numerical simulation, fractional Euler integration method

has been used. In addition, simulation time Tm = 120 s and time step h = 0.005s
have been employed. The initial values of the master system and the slave system

are [x1(0), x2(0), x3(0)] = [3, 4, 5] and [y1(0), y2(0), y3(0), y4(0)] = [−1, 1.5,−1,−2],
respectively, and the initial states of the error system are [e1(0),
e2(0), e3(0)] = [13, 12.5, 20]. Figure 5 displays the time evolution of the errors of

IMPS between the master system (46) and the slave system (47).

5.2 Example 2

In this example, we assumed that the incommensurate fractional order Liu system is

the master system and the incommensurate fractional order hyperchaotic Liu system

[153] is the slave system. The master system is defined as

Dp1x1 = a
(
x2 − x1

)
, (52)

Dp2x2 = bx1 − x1x3,
Dp3x3 = −cx3 + 4x21,
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Fig. 5 Time evolution of synchronization errors between the master system (46) and the slave

system (47)

where x1, x2 and x3 are states. For example, chaotic attractors are found in [152],

when
(
p1, p2, p3

)
= (0.93, 0.94, 0.95) and (a, b, c) = (10, 40, 2.5). The Liu chaotic

attractors are shown in Figs. 6 and 7.

Compare system (52) with system (15), one can have

A =
⎛
⎜⎜⎝

−10 10 0
40 0 0
0 0 −2.5

⎞
⎟⎟⎠
, f =

⎛
⎜⎜⎝

0
−x1x3
4x21

⎞
⎟⎟⎠
.

The slave system is given by

Dqy1 = 10
(
y2 − y1

)
+ y4 + u1, (53)

Dqy2 = 40y1 + 0.5y4 − y1y3 + u2,
Dqy3 = −2.5y3 + 4y21 − y4 + u3,

Dqy4 = −
(10
15

y2 + y4
)
+ u4,

where y1, y2, y3, y4 are states and ui, i = 1, 2, 3, 4, are synchronization controllers.
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Fig. 6 Phase portraits of the master system (52) in 2-D

Fig. 7 Phase portraits of the master system (52) in 3-D
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The fractional order hyperchaotic Liu system (i.e. the system (53) with u1 = u2 =
u3 = u4 = 0) exhibits hyperchaotic behavior when q = 0.9 [153]. Attractors in 2-D

and 3-D of the fractional hyperchaotic Liu system are shown in Figs. 8 and 9.

In this example, the error system of IMPS between the master system (52) and

the slave system (53) is defined as

e1 = x1 −
4∑

j=1
M1jyj, (54)

e2 = x2 −
4∑

j=1
M2jyj,

e3 = x3 −
4∑

j=1
M3jyj,

where

M =
(
Mij

)
=
⎛
⎜⎜⎝

6 3 −2 4
0 −5 0 5
2 1 4 −1

⎞
⎟⎟⎠
.

Fig. 8 Phase portraits of the slave system (53) in 2-D
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Fig. 9 Phase portraits of the slave system (53) in 3-D

So,

diag
(
M11,M22,M33

)
=
⎛
⎜⎜⎝

6 0 0
0 −5 0
0 0 4

⎞
⎟⎟⎠
.

According to Theorem 4, there exists a feedbak gain matrix L ∈ 𝐑3×3
so that

systems (52) and (53) realize the IMPS. For example, the feedbak gain matrix L can

be selected as

L =
⎛
⎜⎜⎝

0 10 0
40 5 0
0 0 0

⎞
⎟⎟⎠
.

and the control functions are constructed as follows

u1 = 10
(
y1 − y2

)
− y4 + J0.03 1

6
(
10e1 + 10

(
x2 − x1

)
− 3D0.93

t y2

+ 2D0.93
t y3 − 4D0.093

t y4
)
, (55)

u2 = −40y1 − 0.5y4 + y1y3 − J0.04 1
5
(
5e2 + 40x1 − x1x3 − 5D0.94

t y4
)
,

u3 = 2.5y3 − 4y21 + J0.05 1
4
(
2.5e3 − 2.5x3 + 4x21 − 2D0.95

t y1 − D0.95
t y2 + D0.95

t y4
)
,

u4 =
10
15

y2 + y4.
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The roots of det
(
diag

(
𝜆

d0.93
, 𝜆

d0.94
, 𝜆

d0.95) + L − A
)
= 0, where d is the least

common multiple of the denominators of the numbers 0.93, 0.94 and 0.95, can be

written as follows

𝜆1 = 10
1

d0.93

[
cos

(
𝜋

d0.93

)
+ 𝐢 sin

(
𝜋

d0.93

)]
,

𝜆2 = 5
1

d0.94

[
cos

(
𝜋

d0.94

)
+ 𝐢 sin

(
𝜋

d0.94

)]
,

𝜆3 = 2.5
1

d0.95

[
cos

(
𝜋

d0.95

)
+ 𝐢 sin

(
𝜋

d0.95

)]
.

It is easy to see that arg
(
𝜆i
)
>

𝜋

2d
, i = 1, 2, 3, and therefore, the IMPS between

systems (52) and (53) is achieved.

The error system can be described as follows

D0.93e1 = −10e1, (56)

D0.94e2 = −5e2,
D0.95e3 = −2.5e3.

Fig. 10 Time evolution of synchronization errors between the master system (52) and the slave

system (53)
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For the purpose of numerical simulation, fractional Euler integration method

has been used. In addition, simulation time Tm = 120 s and time step h = 0.005s
have been employed. The initial values of the master system and the slave system

are [x1(0), x2(0), x3(0)] = [0, 3, 9] and [y1(0), y2(0), y3(0), y4(0)] = [2,−1, 1, 1],
respectively, and the initial states of the error system are [e1(0), e2(0), e3(0)] =
[−11,−7, 3]. Figure 10 displays the time evolution of the errors of IMPS between

the master system (52) and the slave system (53).

6 Conclusions

In this study, two new complex schemes of the inverse matrix projective synchro-

nization (IMPS) were proposed between a master system of dimension n and a

slave system of dimension m. Namely, by exploiting the fractional Lyapunov tech-

nique and stability theory of fractional-order linear system, the IMPS is rigorously

proved to be achievable including the two cases: commensurate and incommensu-

rate master systems. Finally, the effectiveness of the method has been illustrated

by synchronizing a three-dimensional commensurate fractional Lorenz system with

four-dimensional commensurate hyperchaotic fractional Zhou-Wei-Cheng system,

and a three-dimensional incommensurate fractional order Liu system with four-

dimensional commensurate fractional order hyperchaotic Liu system

The proposed approach presents some useful features:

(i) it enables chaotic (hyperchaotic) fractional system with different dimension to

be synchronized;

(ii) it is rigorous, being based on theorems;

(iii) it can be applied to a wide class of chaotic (hyperchaotic) fractional systems;

(iv) due to the complexity of the proposed scheme, the fractional IMPS may enhance

security in communication and chaotic encryption schemes.

References

1. Jumarie, G. (1992). A Fokker-Planck equation of fractional order with respect to time. Journal
of Mathematical Physics, 33, 3536–3541.

2. Metzler, R., Glockle, W. G., & Nonnenmacher, T. F. (1994). Fractional model equation for

anomalous diffusion. Physica A, 211, 13–24.

3. Mainardi, F. (1997). Fractional calculus: some basic problems in continuum and statistical

mechanics. In A. Carpinteri & F. Mainardi (Eds.), Fractals and Fractional Calculus in Con-
tinuum Mechanics. Springer.

4. Hilfer, R. (2000). Applications of fractional calculus in physics. World Scientific.

5. Parada, F. J. V., Tapia, J. A. O., & Ramirez, J. A. (2007). Effective medium equations for

fractional Fick’s law in porous media. Physica A, 373, 339–353.

6. Koeller, R. C. (1984). Application of fractional calculus to the theory of viscoelasticity.

Journal of Applied Mechanics, 51, 299–307.



518 A. Ouannas et al.

7. Axtell, M., & Bise, E. M. (1990). Fractional calculus applications in control systems.

In Proceedings of the IEEE National Aerospace and Electronics Conference New York (pp.

563–566).

8. Dorčák, L. (1994). Numerical models for the simulation of the fractional-order con-
trol systems, UEF-04-94., Institute of Experimental Physics Košice, Slovakia: The

Academy of Sciences.

9. Pires, E. J. S., Machado, J. A. T., & de Moura, P. B. (2003). Fractional order dynamics in a

GA planner. Signal Process, 83, 2377–2386.

10. Magin, R. L. (2006). Fractional calculus in bioengineering. Begell House Publishers.

11. Tseng, C. C. (2007). Design of FIR and IIR fractional order Simpson digital integrators.

Signal Process, 87, 1045–1057.

12. da Graca, M. M., Duarte, F. B. M., & Machado, J. A. T. (2008). Fractional dynamics in

the trajectory control of redundant manipulators. Communications in Nonlinear Science and
Numerical Simulation, 13, 1836–1844.

13. Hedrih, K. S., & Stanojevic, V. N. (2010). A model of gear transmission: fractional order

system dynamics. Mathematical Problems in Engineering, 1–23.

14. Nakagava, N., & Sorimachi, K. (1992). Basic characteristic of a fractance device. IEICE
Transactions on Fundamentals of Electronics, 75, 1814–1818.

15. Westerlund, S. (2002). Dead Matter Has Memory!. Causal Consulting.

16. Oldham, K. B., & Spanier, J. (1974). The fractional calculus. Academic.

17. Miller, K. S., & Ross, B. (1993). An Introduction to the fractional calculus and fractional
differential equations. Wiley.

18. Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos, Solitons & Fractals,

38, 140–147.

19. West, B. J., Bologna, M., & Grigolini, P. (2002). Physics of fractal operators. Springer.

20. Zaslavsky, G.M. (2005). Hamiltonian chaos and fractional dynamics. Oxford University

Press.

21. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design, studies
in computational intelligence (vol. 581). Germany: Springer.

22. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control.
Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer. ISBN 978-3-319-

30338-3.

23. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling
and control. Studies in Computational Intelligence (vol. 575). Germany: Springer. ISBN 978-

3-319-11016-5.

24. Azar, A. T., & Vaidyanathan, S. (2015). Handbook of research on advanced intelligent control
engineering and automation. Advances in Computational Intelligence and Robotics (ACIR)

Book Series, IGI Global, USA. ISBN 9781466672482.

25. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent
soft computations. Studies in Fuzziness and Soft Computing (vol. 319). Germany: Springer.

ISBN 978-3-319-12882-5.

26. Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control sys-
tems. Studies in Computational Intelligence (vol. 576). Germany: Springer. ISBN 978-3-319-

11172-8.

27. Filali, R. L., Benrejeb, M., & Borne, P. (2014). On observer-based secure communication

design using discrete-time hyperchaotic systems. Communications in Nonlinear Science and
Numerical Simulation, 19, 1424–1432.

28. Sheikhan, M., Shahnazi, M., & Garoucy, S. (2013). Hyperchaos synchronization using PSO-

optimized RBF-based controllers to improve security of communication systems. Neural
Computing & Applications, 22(5), 835–846.

29. Fernando, J. (2011). Applying the theory of chaos and a complex model of health to establish

relations among financial indicators. Procedia Computer Science, 3, 982–986.

30. Zsolt, B. (1997). Chaos theory and power spectrum analysis in computerized cardiotocog-

raphy. European Journal of Obstetrics & Gynecology and Reproductive Biology, 71(2),

163–168.



On New Fractional Inverse Matrix Projective . . . 519

31. Chen, G., & Dong, X. (1989). From chaos to order. World Scientific.

32. Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controling chaos. Physical Review Letters, 64,

1196–1199.

33. Boccalettis, C., Grebogi, Y. C., LAI, M. H., & Maza, D. (2000). The control of chaos: theory

and application. Physics Reports, 329, 103–197.

34. Yamada, T., & Fujisaka, H. (1983). Stability theory of synchroized motion in coupled-

oscillator systems. Progress of Theoretical Physics, 70, 1240–1248.

35. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review
Letters, 64, 821–827.

36. Carroll, T. L., & Pecora, L. M. (1991). Synchronizing a chaotic systems. IEEE Transactions
on Circuits and Systems, 38, 453–456.

37. Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization an universal concept in
nonlinear sciences. Cambridge university press.

38. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchro-

nization of chaotic systems. Physics Reports, 366, 1–101.

39. Aziz-Alaoui, M. A. (2006). Synchronization of chaos. Encyclopedia of Mathematical
Physics, 5, 213–226.

40. Luo, A. (2009). A theory for synchronization of dynamical systems. Communications in Non-
linear Science and Numerical Simulation, 14, 1901–1951.

41. Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identi-

cal chaotic systems via novel sliding mode control method and its application to Zhu system.

International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.

42. Vaidyanathan, S., Azar, A. T., Rajagopal, K., & Alexander, P. (2015). Design and SPICE

implementation of a 12-term novel hyperchaotic system and its synchronization via active

control, (2015). International Journal of Modelling. Identification and Control (IJMIC),
23(3), 267–277.

43. Vaidyanathan, S., & Azar, A. T. (2016). Takagi-sugeno fuzzy logic controller for liu-chen

four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2),

135–150.

44. Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016). A new type of hybrid synchronization

between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cyber-
netics. doi:10.1007/s13042-016-0566-3.

45. Vaidyanathan, S., Azar, A. T. (2015). Anti-Synchronization of identical chaotic systems using

sliding mode control and an application to vaidyanathan-madhavan chaotic systems. In A. T.

Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in

Computational Intelligence book Series (vol. 576, pp. 527–547), GmbH Berlin/Heidelberg:

Springer. doi:10.1007/978-3-319-11173-5_19.

46. Vaidyanathan, S., & Azar, A. T. (2015). Hybrid synchronization of identical chaotic systems

using sliding mode control and an application to vaidyanathan chaotic systems. In A. T. Azar

& Q. Zhu, (Eds.), Advances and applications in sliding mode control systems. Studies in

Computational Intelligence book Series, (vol. 576, pp. 549–569), GmbH Berlin/Heidelberg:

Springer. doi:10.1007/978-3-319-11173-5_20.

47. Vaidyanathan, S., & Azar, A. T. (2015). analysis, control and synchronization of a Nine-Term

3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos Modeling and
Control Systems Design, Studies in Computational Intelligence (vol. 581, pp. 3–17), GmbH

Berlin/Heidelberg: Springer. doi:10.1007/978-3-319-13132-0_1.

48. Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic

system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design,

Studies in Computational Intelligence (vol. 581, pp. 19–38), GmbH Berlin/Heidelberg:

Springer. dpoi:10.1007/978-3-319-13132-0_2.

49. Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015). Backstepping controller design for the

global chaos synchronization of sprott’s jerk systems. In A. T. Azar & S. Vaidyanathan (Eds.),

chaos modeling and control systems design, Studies in Computational Intelligence, (vol. 581,

pp. 39–58), GmbH Berlin/Heidelberg: Springer. doi:10.1007/978-3-319-13132-0_3.

http://dx.doi.org/10.1007/s13042-016-0566-3
http://dx.doi.org/10.1007/978-3-319-11173-5_19
http://dx.doi.org/10.1007/978-3-319-11173-5_20
http://dx.doi.org/10.1007/978-3-319-13132-0_1
http://dx.doi.org/10.1007/978-3-319-13132-0_2
http://dx.doi.org/10.1007/978-3-319-13132-0_3


520 A. Ouannas et al.

50. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchro-

nization of uncertain fractional-order chaotic systems. In A. T Azar & S. Vaidyanathan (Eds.),

Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing

(vol. 337). Germany: Springer.

51. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchro-

nization of unknown chaotic systems with dead-zone input. Advances in chaos theory and
intelligent control. Studies in Fuzziness and Soft Computing (vol. 337), Germany: Springer.

52. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and syn-

chronization of an Eight-Term 3-D novel chaotic system with three quadratic nonlinearities.

Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing

(vol. 337). Germany: Springer.

53. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel

4-D hyperchaotic system with three quadratic nonlinearities. Advances in chaos theory and
intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.

54. Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-D four-wing chaotic system with four

quadratic nonlinearities and its synchronization via adaptive control method. Advances in
chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (vol. 337).

Germany: Springer.

55. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of halvorsen

circulant chaotic systems. Advances in chaos theory and intelligent control. Studies in Fuzzi-

ness and Soft Computing (vol. 337). Germany: Springer.

56. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization

of a novel 3-D jerk system with an exponential nonlinearity. Advances in chaos theory and
intelligent control. Studies in Fuzziness and Soft Computing (vol. 337). Germany: Springer.

57. Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel

hyperchaotic Four-Wing system via adaptive control method. Advances in chaos theory and
intelligent control. Studies in Fuzziness and Soft Computing. (vol. 337). Germany: Springer.

58. Hartley, T., Lorenzo, C., & Qammer, H. (1995). Chaos in a fractional order Chua’s system.

IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 42,

485–490.

59. Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system.

Physical Review Letters, 91, 034101.

60. Li, C., & Chen, G. (2004). Chaos in the fractional order Chen system and its control. Chaos
Solitons Fractals, 22, 549–554.

61. Lu, J. G., & Chen, G. (2006). A note on the fractional-order Chen system. Chaos Solitons
Fractals, 27, 685–688.

62. Li, C., & Chen, G. (2004). Chaos and hyperchaos in fractional order R össler equations.

Physica A, 341, 55–61.

63. Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s sys-

tems. Chaos Solitons Fractals, 26, 1125–1133.

64. Deng, W. H., & Li, C. P. (2005). Chaos synchronization of the fractional Lü system. Physica
A, 353, 61–72.

65. Guo, L. J. (2005). Chaotic dynamics and synchronization of fractional-order Genesio-Tesi

systems. Chinese Physics, 14, 1517–1521.

66. Ge, Z. M., & Ou, C. Y. (2007). Chaos in a fractional order modified Duffing system. Chaos
Solitons Fractals, 34, 262–291.

67. Chen, W. C. (2008). Nonlinear dynamic and chaos in a fractional-order financial system.

Chaos Solitons Fractals, 36, 1305–1314.

68. Sheu, L. J., Chen, H. K., Chen, J. H., Tam, L. M., Chen, W. C., Lin, K. T., et al. (2008). Chaos

in the Newton-Leipnik system with fractional order. Chaos Solitons Fractals, 36, 98–103.

69. Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. A. (2007). Equilibrium points, stability and

numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathe-
matical Analysis and Applications, 325, 542–553.



On New Fractional Inverse Matrix Projective . . . 521

70. Gejji, V. D., & Bhalekar, S. (2010). Chaos in fractional order Liu system. Computers & Math-
ematics with Applications, 59, 1117–1127.

71. Li, C., & Zhou, T. (2005). Synchronization in fractional-order differential systems. Physica
D, 212, 111–125.

72. Wang, J., Xiong, X., & Zhang, Y. (2006). Extending synchronization scheme to chaotic

fractional-order Chen systems. Physica A, 370, 279–285.

73. Li, C. P., Deng, W. H., & Xu, D. (2006). Chaos synchronization of the Chua system with a

fractional order. Physica A, 360, 171–185.

74. Peng, G. (2007). Synchronization of fractional order chaotic systems. Physics Letters A, 363,

426–432.

75. Yan, J., & Li, C. (2007). On chaos synchronization of fractional differential equations. Chaos
Solitons Fractals, 32, 725–735.

76. Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos
Solitons Fractals, 32, 751–757.

77. Zhou, S., Li, H., Zhu, Z., & Li, C. (2008). Chaos control and synchronization in a fractional

neuron network system. Chaos Solitons Fractals, 36, 973–984.

78. Zhu, H., Zhou, S., & Zhang, J. (2009). Chaos and synchronization of the fractional-order

Chua’s system. Chaos Solitons Fractals, 39, 1595–1603.

79. Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new

fractional-order hyperchaotic system and its application to secure communication. Nonlinear
Analysis: Real World Applications, 13(2012), 1441–1450.

80. Liang, H., Wang, Z., Yue, Z., & Lu, R. (2012). Generalized synchronization and control for

incommensurate fractional unified chaotic system and applications in secure communication.

Kybernetika, 48, 190–205.

81. Muthukumar, P., & Balasubramaniam, P. (2013). Feedback synchronization of the fractional

order reverse butterfly-shaped chaotic system and its application to digital cryptography. Non-
linear Dynamics, 1169–1181.

82. Chen, L., Wu, R., He, Y., & Chai, Y. (2015). Adaptive sliding-mode control for fractional-

order uncertain linear systems with nonlinear disturbances. Nonlinear Dynamics, 80, 51–58.

83. Liu, L., Ding, W., Liu, C., Ji, H., & Cao, C. (2014). Hyperchaos synchronization of fractional-

order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear
Dynamics, 76, 2059–2071.

84. Zhang, L., & Yan, Y. (2014). Robust synchronization of two different uncertain fractional-

order chaotic systems via adaptive sliding mode control. Nonlinear Dynamics, 76,

1761–1767.

85. Srivastava, M., Ansari, S. P., Agrawal, S. K., Das, S., & Leung, A. Y. T. (2014). Anti-

synchronization between identical and non-identical fractional-order chaotic systems using

active control method. Nonlinear Dynamics, 76, 905–914.

86. Agrawal, S. K., & Das, S. (2013). A modified adaptive control method for synchroniza-

tion of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 73,

907–919.

87. Zhou, P., & Bai, R. (2015). The adaptive synchronization of fractional-order chaotic system

with fractional-order 1 < q < 2 via linear parameter update law. Nonlinear Dynamics, 80,

753–765.

88. Odibat, Z. (2010). Adaptive feedback control and synchronization of non-identical chaotic

fractional order systems. Nonlinear Dynamics, 60, 479–487.

89. Yuan, W. X., & Mei, S. J. (2009). Synchronization of the fractional order hyperchaos Lorenz

systems with activation feedback control. Communications in Nonlinear Science and Numer-
ical Simulation, 14, 3351–3357.

90. Odibat, Z. M., Corson, N., Aziz-Alaoui, M. A., & Bertelle, C. (2010). Synchronization of

chaotic fractional-order systems via linear control. International Journal of Bifurcation and
Chaos, 20, 81–97.

91. Chen, X. R., & Liu, C. X. (2012). Chaos synchronization of fractional order unified chaotic

system via nonlinear control. International Journal of Modern Physics B, 25, 407–415.



522 A. Ouannas et al.

92. Cafagna, D., & Grassi, G. (2012). Observer-based projective synchronization of fractional

systems via a scalar signal: application to hyperchaotic Rössler systems. Nonlinear Dynamics,

68, 117–128.

93. Peng, G., & Jiang, Y. (2008). Generalized projective synchronization of a class of fractional-

order chaotic systems via a scalar transmitted signal. Physics Letters A, 372, 3963–3970.

94. Odibat, Z. M. (2012). A note on phase synchronization in coupled chaotic fractional order

systems. Nonlinear Analysis: Real World Applications, 13, 779–789.

95. Chen, F., Xia, L., & Li, C. G. (2012). Wavelet phase synchronization of fractional-order

chaotic systems. Chinese Physics Letters, 29, 6–070501.

96. Razminiaa, A., & Baleanu, D. (2013). Complete synchronization of commensurate fractional

order chaotic systems using sliding mode control. Mechatronics, 23, 873–879.

97. Pan, L., Zhou, W., Fang, J., & Li, D. (2010). Synchronization and anti-synchronization of new

uncertain fractional-order modified unified chaotic systems. Communications in Nonlinear
Science and Numerical Simulation, 15, 3754–3762.

98. Liu, F. C., Li, J. Y., & Zang, X. F. (2011). Anti-synchronization of different hyperchaotic

systems based on adaptive active control and fractional sliding mode control. Acta Physica
Sinica, 60, 030504.

99. Al-sawalha, M. M., Alomari, A. K., Goh, S. M., & Nooran, M. S. M. (2011). Active anti-

synchronization of two identical and different fractional-order chaotic systems. International
Journal of Nonlinear Science, 11, 267–274.

100. Li, C. G. (2006). Projective synchronization in fractional order chaotic systems and its control.

Progress of Theoretical Physics, 115, 661–666.

101. Shao, S. Q., Gao, X., & Liu, X. W. (2007). Projective synchronization in coupled fractional

order chaotic Rössler system and its control. Chinese Physics, 16, 2612–2615.

102. Wang, X. Y., & He, Y. J. (2008). Projective synchronization of fractional order chaotic system

based on linear separation. Physics Letters A, 372, 435–441.

103. Si, G., Sun, Z., Zhang, Y., & Chen, W. (2012). Projective synchronization of different

fractional-order chaotic systems with non-identical orders. Nonlinear Analysis: Real World
Applications, 13, 1761–1771.

104. Agrawal, S. K., & Das, S. (2014). Projective synchronization between different fractional-

order hyperchaotic systems with uncertain parameters using proposed modified adap-

tive projective synchronization technique. Mathematical Methods in the Applied Sciences,

37, 2164–2176.

105. Chang, C. M., & Chen, H. K. (2010). Chaos and hybrid projective synchronization of com-

mensurate and incommensurate fractional-order Chen-Lee systems. Nonlinear Dynamics, 62,

851–858.

106. Wang, S., Yu, Y. G., & Diao, M. (2010). Hybrid projective synchronization of chaotic frac-

tional order systems with different dimensions. Physica A, 389, 4981–4988.

107. Zhou, P., & Zhu, W. (2011). Function projective synchronization for fractional-order chaotic

systems. Nonlinear Analysis: Real World Applications, 12, 811–816.

108. Zhou, P., & Cao, Y. X. (2010). Function projective synchronization between fractional-order

chaotic systems and integer-order chaotic systems. Chinese Physics B, 19, 100507.

109. Xi, H., Li, Y., & Huang, X. (2015). Adaptive function projective combination synchronization

of three different fractional-order chaotic systems. Optik, 126, 5346–5349.

110. Peng, G. J., Jiang, Y. L., & Chen, F. (2008). Generalized projective synchronization of frac-

tional order chaotic systems. Physica A, 387, 3738–3746.

111. Shao, S. Q. (2009). Controlling general projective synchronization of fractional order Rössler

systems. Chaos Solitons Fractals, 39, 1572–1577.

112. Wu, X. J., & Lu, Y. (2009). Generalized projective synchronization of the fractional-order

Chen hyperchaotic system. Nonlinear Dynamics, 57, 25–35.

113. Zhou, P., Kuang, F., & Cheng, Y. M. (2010). Generalized projective synchronization for frac-

tional order chaotic systems. The Chinese Journal of Physics, 48, 49–56.

114. Deng, W. H. (2007). Generalized synchronization in fractional order systems. Physical
Review E, 75, 056201.



On New Fractional Inverse Matrix Projective . . . 523

115. Zhou, P., Cheng, X. F., & Zhang, N. Y. (2008). Generalized synchronization between different

fractional-order chaotic systems. Communications in Theoretical Physics, 50, 931–934.

116. Zhang, X. D., Zhao, P. D., & Li, A. H. (2010). Construction of a new fractional chaotic system

and generalized synchronization. Communications in Theoretical Physics, 53, 1105–1110.

117. Jun, W. M., & Yuan, W. X. (2011). Generalized synchronization of fractional order chaotic

systems. International Journal of Modern Physics B, 25, 1283–1292.

118. Wu, X. J., Lai, D. R., & Lu, H. T. (2012). Generalized synchronization of the fractional-

order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear
Dynamics, 69, 667–683.

119. Xiao, W., Fu, J., Liu, Z., & Wan, W. (2012). Generalized synchronization of typical fractional

order chaos system. Journal of Computer, 7, 1519–1526.

120. Martínez-Guerra, R., & Mata-Machuca, J. L. (2014). Fractional generalized synchronization

in a class of nonlinear fractional order systems. Nonlinear Dynamics, 77, 1237–1244.

121. Yi, C., Liping, C., Ranchao, W., & Juan, D. (2013). Q-S synchronization of the fractional-

order unified system. Pramana, 80, 449–461.

122. Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Exponential synchronization for

fractional-order chaotic systems with mixed uncertainties. Complexity, 21, 114–125.

123. Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order

nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding

mode technique. Nonlinear Dynamics, 69, 247–261.

124. Li, D., Zhang, X. P., Hu, Y. T., & Yang, Y. Y. (2015). Adaptive impulsive synchronization

of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing,

167, 165–171.

125. Xi, H., Yu, S., Zhang, R., & Xu, L. (2014). Adaptive impulsive synchronization for a class of

fractional-order chaotic and hyperchaotic systems. Optik, 125, 2036–2040.

126. Ouannas, A., Al-sawalha, M. M., & Ziar, T. (2016). Fractional chaos synchronization schemes

for different dimensional systems with non-Identical fractional-orders via two scaling matri-

ces. Optik, 127, 8410–8418.

127. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional

hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 1–9.

128. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2007). Adaptive full state hybrid projective synchroniza-

tion of chaotic systems with the same and different order. Physics Letters A, 365, 315–327.

129. Zhang, Q., & Lu, J. (2008). Full state hybrid lag projective synchronization in chaotic (hyper-

chaotic) systems. Physics Letters A, 372, 1416–1421.

130. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2007). Parameters identification and adaptive full state

hybrid projective synchronization of chaotic (hyperchaotic) systems. Physics Letters A, 361,

231–237.

131. Tang, Y., Fang, J. A., & Chen, L. (2010). Lag full state hybrid projective synchronization

in different fractional-order chaotic systems. International Journal of Modern Physics B, 24,

6129–61411.

132. Feng, H., Yang, Y., & Yang, S. P. (2013). A new method for full state hybrid projective syn-

chronization of different fractional order chaotic systems. Applied Mechanics and Materials,

385–38, 919–922.

133. Razminia, A. (2013). Full state hybrid projective synchronization of a novel incommensurate

fractional order hyperchaotic system using adaptive mechanism. Indian Journal of Physics,

87, 161–167.

134. Zhang, L., & Liu, T. (2016). Full state hybrid projective synchronization of variable-order

fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown

parameters. The Journal of Nonlinear Science and Applications, 9, 1064–1076.

135. Manieri, R., & Rehacek, J. (1999). Projective synchronization in three-dimensional chaotic

systems. Physical Review Letters, 82, 3042–3045.

136. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2008). Full state hybrid projective synchronization in

continuous-time chaotic (hyperchaotic) systems. Communications in Nonlinear Science and
Numerical Simulation, 13, 456–464.



524 A. Ouannas et al.

137. Hu, M., Xu, Z., Zhang, R., & Hu, A. (2008). Full state hybrid projective synchronization

of a general class of chaotic maps. Communications in Nonlinear Science and Numerical
Simulation, 13, 782–789.

138. Grassi, G. (2012). Arbitrary full-state hybrid projective synchronization for chaotic discrete-

time systems via a scalar signal. Chinese Physics B, 21, 060504.

139. Ouannas, A., & Abu-Saris, R. (2016). On matrix projective synchronization and inverse

matrix projective synchronization for different and identical dimensional discrete-time

chaotic systems. Journal of Control Science and Engineering, 1–7.

140. Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations

of fractional order. In A. Carpinteri & F. Mainardi (Eds.), The book Fractals and fractional
calculus, New York.

141. Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent-II.

Geophysical Journal of the Royal Astronomical Society, 13, 529–539.

142. Samko, S. G., Klibas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives:
theory and applications. Gordan and Breach.

143. Podlubny, I. (1999). Fractional differential equations. Academic Press.

144. Heymans, N., & Podlubny, I. (2006). Physical interpretation of initial conditions for fractional

differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta, 45,

765–772.

145. Matignon, D. (1996). Stability results of fractional differential equations with applications to

control processing. In: IMACS, IEEE-SMC, Lille, France.

146. Li, Y., Chen, Y., & Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic sys-

tems: Lyapunov direct method and generalized Mittag Leffler stability. Computers & Mathe-
matics with Applications, 59, 21–1810.

147. Chen, D., Zhang, R., Liu, X., & Ma, X. (2014). Fractional order Lyapunov stability theorem

and its applications in synchronization of complex dynamical networks. Communications in
Nonlinear Science and Numerical Simulation, 19, 4105–4121.

148. Aguila-Camacho, N., Duarte-Mermoud, M. A., & Gallegos, J. A. (2014). Lyapunov functions

for fractional order systems. Communications in Nonlinear Science and Numerical Simula-
tion, 19, 2951–2957.

149. Ouannas, A., & Mahmoud, E. (2014). Inverse matrix projective synchro-nization for discrete

chaotic systems with different dimensions. Intelligence and Electronic Systems, 3, 188–192.

150. Wang, X.-Y., & Zhang, H. (2013). Bivariate module-phase synchronization of a fractional-

order lorenz system in diFFerent dimensions. Journal of Computational and Nonlinear
Dynamics, 8, 031017.

151. Zhou, P., Wei, L. J., & Cheng, X. F. (2009). A novel fractional-order hyperchaotic system and

its synchronization. Chinese Physics B, 18, 2674.

152. Liu, C., Liu, T., Liu, L., & Liu, K. (2004). A new chaotic attractor. Chaos Solitons Fractals,

22, 1031–1038.

153. Han, Q., Liu, C. X., Sun, L., & Zhu, D. R. (2013). A fractional order hyperchaotic system

derived from a Liu system and its circuit realization. Chinese Physics B, 22, 6–020502.



Fractional Inverse Generalized Chaos
Synchronization Between Different
Dimensional Systems

Adel Ouannas, Ahmad Taher Azar, Toufik Ziar
and Sundarapandian Vaidyanathan

Abstract In this chapter, new control schemes to achieve inverse generalized syn-

chronization (IGS) between fractional order chaotic (hyperchaotic) systems with dif-

ferent dimensions are presented. Specifically, given a fractional master system with

dimension n and a fractional slave system with dimension m, the proposed approach

enables each master system state to be synchronized with a functional relationship of

slave system states. The method, based on the fractional Lyapunov approach and sta-

bility property of integer-order linear differential systems, presents some useful fea-

tures: (i) it enables synchronization to be achieved for both cases n < m and n > m;

(ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any

chaotic (hyperchaotic) fractional systems. Finally, the capability of the approach is

illustrated by synchronization examples.
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1 Introduction

Because of its deep and natural connections with many fields of applied physics and

engineering, in recent decades, researchers from several fields stop to consider frac-

tional calculus as a pure mathematics without real applications [1–8] . It was found

that fractional calculus is useful for modeling electromagnetic waves, Mechanic, vis-

coelasticity, quantum evolution of complex systems, electrical engineering, control

systems, robotics, signal processing, chemical mixing, bioengineering and nuclear

reactor dynamics [9–30]. That is, the fractional differential systems are more suit-

able to describe physical phenomena that have memory and genetic characteristics

[31–33].

On the other hand, in recent years, many scientists have become aware of the

potential use of chaotic dynamics in physics, chemistry, biology, ecology, eco-

nomics, finance, computer science, engineering, and other areas [34–53]. One of

the very important areas that chaos can occur is fractional order systems [54, 55].

Recently, with the development of the fractional-order algorithm, the dynamics of

fractional order systems have received much attention. Studying chaos in fractional-

order dynamical systems is an interesting topic as well. It is well known that chaos

cannot occur in continuous integer order systems of total order less than three. It

has been shown that many fractional-order dynamical systems behave chaotically

with total order less then three. Similar to nonlinear integer-order differential sys-

tems, nonlinear fractional-order differential systems may also have complex dynam-

ics, such as chaos and bifurcation [56–61]. To date, chaotic motions have been found

in fractional systems, for example in the fractional versions of the Chua circuit [62,

63], Lorenz system [64], Rössler system [65], Chen system [66, 67], Arneodo sys-

tem [68], Lü system [69, 70], Duffing system [71, 72], van der Pol system [73, 74],

Volta’s system [75, 76] and Liu system [77].

Synchronization of chaos has become an active research subject in nonlinear

science [78–89]. The current problems of synchronization are very interesting, non-

traditional, and indeed very challenging [90–102] . Recently, study on synchroniza-

tion of chaotic fractional order differential equations has starts to attract increasing

attention of many researchers [103–113] , due to its potential applications [114–118].

Until now, a wide variety of fractional techniques have been used to design a

synchronization control in fractional–order chaotic systems such as sliding-mode

control [119–121], linear control [122], nonlinear control [123], active control [124],

adaptive control [125, 126], feedback control [127, 128], scalar signal technique

[129–132].

At present, various types of synchronization for the fractional-order chaotic sys-

tems have been presented, such as phase synchronization [133, 134], complete

synchronization [135], anti-synchronization [136], projective synchronization [137–

141], hybrid projective synchronization [142, 143], function projective synchroniza-

tion [144–146], generalized projective synchronization [147–151], full state hybrid
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projective synchronization [152], Q-S synchronization [153], exponential synchro-

nization [154], finite-time synchronization [155], impulsive synchronization [156,

157].

Due to the complexities of chaos synchronization, such tasks are always difficult

to achieve. In fact, in real physical systems or experimental situations some certain

complex systems components cannot supposed to be identical or of the same orders,

thus, it is much more attractive and challenging to realize the synchronization of

two different chaotic systems with different dimensions or orders. Recently, many

approaches have been proposed to study the chaos synchronization between differ-

ent dimensional systems such as matrix projective synchronization [158], inverse

matrix projective synchronization [159], Q-S synchronization [160], Λ − 𝜙 general-

ized synchronization [161, 162], 𝛩 −𝛷 synchronization [163–165] and hybrid syn-

chronization [166, 167].

Among the aforementioned methods, generalized synchronization (GS) is the

most effective synchronization method that has been used widely to achieve the

chaos synchronization with different dimensions. Generalized synchronization (GS)

implies the establishment of functional relation between the master and the slave

systems. It has received a great deal of attention for its universality in the recent

years. Nowadays, numerous researches of GS in fractional-order chaotic systems

have been done theoretically and experimentally [168–174]. Recently, another inter-

esting synchronization type was appeared called inverse generalized synchroniza-

tion (IGS). The relevant researches for inverse generalized synchronization (IGS)

still in an initial stage. However, IGS was applied successfully in continuous and

discrete-time chaotic systems with integer-order [175, 176]. The problem of inverse

generalized synchronization (IGS) is an attractive idea and more difficult than the

problem of generalized synchronization (IGS). The complexity of the inverse gen-

eralized synchronization scheme can be used to enhance security in communication

and encryption.

Based on these considerations, the aim of this chapter is to present constructive

schemes to investigate the problem of inverse generalized synchronization (IGS)

between arbitrary fractional chaotic systems with different dimensions. Using a

fractional calculus property, Lyapunov stability theory of integer order differen-

tial systems, Laplace transform and stability property of integer order linear dif-

ferential systems, two theorems are proved, which enable synchronization between

n-dimensional and m-dimensional fractional chaotic systems to be achieved for the

cases: n < m and n > m, respectively. Examples of synchronization are given to val-

idate the theoretical results derived in this chapter.

The outline of the rest of this chapter is organized as follows. Section 2 provides

a brief review of the fractional order calculus. In Sect. 3, the problem of fractional

IGS is formulated. Our main results are presented in Sect. 4. In Sect. 5, illustrative

examples are performed to show the effectiveness the proposed analysis. Section 6

is the brief conclusion.
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2 Preliminaries

The idea of fractional integrals and derivatives has been known since the develop-

ment of the regular calculus, with the first reference probably being associated with

Leibniz in 1695. There are several definitions of fractional derivatives [177]. The

Caputo derivative [178] is a time domain computation method. In real applications,

the Caputo derivative is more popular since the un-homogenous initial conditions

are permitted if such conditions are necessary. Furthermore, these initial values are

prone to measure since they all have idiographic meanings. The Riemann-Liouville

fractional integral operator of order p ≥ 0 of function f (t) is defined as,

Jpf (t) = 1
Γ(p) ∫

t

0
(t − 𝜏)p−1f (𝜏)d𝜏, p > 0, t > 0. (1)

where Γ denotes Gamma function.

For p, q ≥ 0 and 𝛾 > −1, we have,

JpJqf (t) = Jp+qf (t), (2)

Jqt𝛾 = Γ(𝛾 + 1)
Γ(q + 𝛾 + 1)

tq+𝛾
. (3)

In this study, Caputo definition is used and the fractional derivative of f (t) is defined

as,

Dp
t f (t) = Jm−p

( dm

dtm f (t)
)
= 1

Γ(m − p) ∫
t

0

f (m)(𝜏)
(t − 𝜏)p−m+1 d𝜏, (4)

for m − 1 < p ≤ m, m ∈ IN, t > 0. The fractional differential operator Dp
t f (t) is left-

inverse (and not right-inverse) to the fractional integral operator Jp
, i.e. Dp

t Jp = I
where I is the identity operator.

Lemma 1 [179] The Laplace transform of the Caputo fractional derivative rule
reads

𝐋
(
Dp

t f (t)
)
= sp𝐅 (s) −

n−1∑
k=0

sp−k−1f (k) (0) , (p > 0, n − 1 < p ≤ n) . (5)

Particularly, when p ∈ (0, 1], we have 𝐋
(
Dp

t f (t)
)
= sp𝐅 (s) − sp−1f (0).

Lemma 2 [180] The Laplace transform of the Riemann-Liouville fractional integral
rule satisfies

𝐋 (Jqf (t)) = s−q𝐅 (s) , (q > 0) . (6)
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Lemma 3 [140] Suppose f (t) has a continuous kth derivative on [0, t] (k ∈ N, t >
0), and let p, q > 0 be such that there exists some 𝓁 ∈ N with 𝓁 ≤ k and p, p + q ∈
[𝓁 − 1,𝓁]. Then

Dp
t Dq

t f (t) = Dp+q
t f (t) (7)

Remark 1 Note that the condition requiring the existence of the number 𝓁 with the

above restrictions in the property is essential. In this paper, we consider the case

that p, q ∈ (0, 1] and p + q ∈ (0, 1]. Apparently, under such conditions this property

holds.

3 Problem Statement

The master system is defined by

Dp
t X(t) = F(X (t)), (8)

where X(t) =
(
x1(t), x2(t), ..., xn(t)

)T
is the state vector of the master system (8), F ∶

𝐑n → 𝐑n
, p is a rational number between 0 and 1 and Dp

t is the Caputo fractional

derivative of order p.

The slave system is described as

Dq
t Y(t) = G(Y(t)) + U, (9)

where Y(t) =
(
y1(t), y2(t), ..., ym(t)

)T
is the state vector of the slave system (9),

G ∶ 𝐑m → 𝐑m
, q is a rational number between 0 and 1, q is the Caputo fractional

derivative of order q and U =
(
ui
)
1≤i≤m is a vector controller to be determined later.

Before proceeding to the definition of inverse generalized synchronization (IGS)

between the master system (8) and the slave system (9), the definition of generalized

synchronization (IGS) is provided.

Definition 1 The master system (8) and the slave system (9) are said to be gen-

eralized synchronized, if there exists a controller U =
(
ui
)
1≤i≤m and differentiable

function 𝜙 ∶ 𝐑n ⟶ 𝐑m
such that the error

e (t) = Y (t) − 𝜙 (X (t)) , (10)

satisfies the lim t⟶+∞e (t) = 0.

Definition 2 The master system (8) and the slave system (9) are said to be inverse

generalized synchronized, if there exists a controller U =
(
ui
)
1≤i≤m and differen-

tiable function 𝜑 ∶ 𝐑m ⟶ 𝐑n
such that the error

e (t) = X (t) − 𝜑 (Y (t)) (11)

satisfies the lim t⟶+∞e (t) = 0.
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Remark 2 Inverse generalized synchronization of integer-order chaotic dynamical

systems with different dimensions, based on Lyapunov stability theory, has been

studied and carried out, for example, in Refs. [94, 95].

4 Main Results

Now, we consider the master system in the form

Dp
t X(t) = AX(t) + f (X (t)), (12)

where X(t) =
(
x1(t), ..., xn(t)

)T ∈ 𝐑n
is the state vector of the master system (12),

A ∈ 𝐑n×n
and f ∶ 𝐑n → 𝐑n

is a nonlinear function, Dp
t is the Caputo fractional deriv-

ative of order p and 0 < p ≤ 1.

The slave system is defined by

Dq
t Y(t) = g(Y(t)) + U, (13)

where Y(t) =
(
y1(t), ..., ym(t)

)T ∈ 𝐑m
is the state vector of the slave system (13), 0 <

q ≤ 1, Dq
t is the Caputo fractional derivative of order q, g(Y(t)) =

(
gi(Y(t))

)
1≤i≤m

and U =
(
ui
)
1≤i≤m is a controller to be designed.

In the following we discuss two kinds of cases: n < m and n > m, respectively.

4.1 Case: n < m

Theorem 1 If the control law U =
(
ui
)
1≤i≤m is selected as

(
u1, u2, ..., un

)T = −
(
g1(Y(t)), ..., gn(Y(t))

)T + J1−q [Q−1 × R
]
, (14)

and (
un+1, ..., um

)T = −
(
gn+1(Y(t)), ..., gm(Y(t))

)T
, (15)

where Q−1 is the inverse of the of matrix Q

Q =

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝜑1
𝜕y1

𝜕𝜑1
𝜕y2

⋯ 𝜕𝜑1
𝜕yn

𝜕𝜑2
𝜕y1

𝜕𝜑2
𝜕y2

⋯ 𝜕𝜑2
𝜕yn

⋮ ⋮ ⋱ ⋮
𝜕𝜑n

𝜕y1

𝜕𝜑n

𝜕y2
⋯ 𝜕𝜑n

𝜕yn

⎞
⎟⎟⎟⎟⎟⎠

, (16)
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and
R = (A − K) [X (t) − 𝜑 (Y (t))] + Ẋ (t) , (17)

where K ∈ 𝐑n×n is a feedback gain matrix. Then the master system (12) and the slave
system (13) are globally inverse generalized synchronized.

Proof The error system between the master system (12) and the slave system (13)

can be derived as

ė (t) = Ẋ (t) − 𝐃𝜑 (Y (t)) × Ẏ (t) , (18)

where

𝐃𝜑 (Y (t)) =

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝜑1
𝜕y1

𝜕𝜑1
𝜕y2

⋯ 𝜕𝜑1
𝜕yn

𝜕𝜑2
𝜕y1

𝜕𝜑2
𝜕y2

⋯ 𝜕𝜑2
𝜕yn

⋮ ⋮ ⋱ ⋮
𝜕𝜑n

𝜕y1

𝜕𝜑n

𝜕y2
⋯ 𝜕𝜑n

𝜕yn

⎞
⎟⎟⎟⎟⎟⎠

. (19)

The error system (18) can be written as

ė (t) = Ẋ (t) − Q ×
(
ẏ1, ẏ2, ..., ẏn

)T − Q̂ ×
(
ẏn+1, ẏn+2, ..., ẏm

)T
, (20)

where

Q =

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝜑1
𝜕y1

𝜕𝜑1
𝜕y2

⋯ 𝜕𝜑1
𝜕ym

𝜕𝜑2
𝜕y1

𝜕𝜑2
𝜕y2

⋯ 𝜕𝜑2
𝜕ym

⋮ ⋮ ⋱ ⋮
𝜕𝜑n

𝜕y1

𝜕𝜑n

𝜕y2
⋯ 𝜕𝜑n

𝜕ym

⎞
⎟⎟⎟⎟⎟⎠

, (21)

and

Q̂ =

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝜑1
𝜕yn+1

𝜕𝜑1
𝜕yn+2

⋯ 𝜕𝜑1
𝜕ym

𝜕𝜑2
𝜕yn+1

𝜕𝜑2
𝜕yn+2

⋯ 𝜕𝜑2
𝜕ym

⋮ ⋮ ⋱ ⋮
𝜕𝜑n

𝜕yn+1

𝜕𝜑n

𝜕yn+2
⋯ 𝜕𝜑n

𝜕ym

⎞
⎟⎟⎟⎟⎟⎠

. (22)

Now, by inserting Eqs. (14) and (15) into Eq. (13), we can rewrite the slave system

as follows (
Dq

t y1 (t) , ...,D
q
t yn (t)

)T = J1−q [Q−1 × R
]
, (23)

and (
Dq

t yn+1 (t) , ...,D
q
t ym (t)

)T = 0. (24)

By applying the fractional derivative of order 1 − q to both the left and right sides

of Eqs. (23) and (24), we obtain
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D1−q
t

((
Dq

t y1 (t) , ...,D
q
t yn (t)

)T
)
=
(
ẏ1, ẏ2, ..., ẏn

)T

= D1−q
t J1−q (Q−1 × R

)

= Q−1 × R, (25)

and (
ẏn+1, ẏn+2, ..., ẏm

)T = 0. (26)

By using Eqs. (25) and (26), the error system (20) can be written as follow

ė (t) = (A − K) [X (t) − 𝜑 (Y (t))]
= (A − K) e (t) . (27)

Construct the candidate Lyapunov function in the form

V (e(t)) = eT (t)e(t), (28)

we obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t) (A − K)T e(t) + eT (t) (A − K) e(t)
= eT (t)

[
(A − K)T + (A − K)

]
e(t).

The control matrix K is selected such that (A − K)T + (A − K) is a negative defi-

nite matrix, then we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, it

is immediate that all solutions of error system (27) go to zero as t → ∞. Therefore,

systems (12) and (13) are globally inverse generalized synchronized.

4.2 Case: m < n

Now, the error system between the master system (12) and the slave system (13), can

be written in scalar form as

ėi(t) = ẋi(t) −
m∑

j=1

[
𝜕𝜑i (Y(t))
𝜕yj(t)

× ẏj

]
. (29)

In this case, the controllers ui are given by

ui = −gi (Y(t)) + J1−q (vi
)
, i = 1, 2, ...,m, (30)

where vi are new controllers. By using (30), the slave system can be written as

Dq
t yi (t) = J1−q (vi

)
, i = 1, 2, ...,m, (31)



Fractional Inverse Generalized Chaos Synchronization . . . 533

Applying the Laplace transform to (31) and letting

𝐅i(s) = 𝐋
(
yi(t)

)
, i = 1, 2, ...,m, (32)

we obtain,

sq𝐅i(s) − sq−1yi(0) = sq−1𝐋
(
vi
)
, i = 1, 2, ...,m, (33)

multiplying both the left-hand and right-hand sides of (33) by s1−q
and applying the

inverse Laplace transform to the result, we get the following equation

ẏi (t) = vi, i = 1, 2, ...,m, (34)

Now, the error system (29), can be described as

ėi(t) = ẋi(t) −
m∑

j=1

[
𝜕𝜑i (Y(t))
𝜕yj(t)

× vj

]

=
n∑

j=1

(
aij − lij

)
ej (t) + Ti −

m∑
j=1

[
𝜕𝜑i (Y(t))
𝜕yj(t)

× vj

]
, i = 1, 2, ..., n, (35)

where
(
lij
)
∈ 𝐑n×n

are control constants and

Ti =
n∑

j=1

(
lij − aij

) (
xj(t) − 𝜑j (Y(t))

)
+ ẋi(t), i = 1, 2, ..., n. (36)

To achieve inverse generalized synchonization between the master system (12)

and the slave system (13), new controllers are defined as

wi =
m∑

j=1

[
𝜕𝜑i (Y(t))
𝜕yj(t)

× vj

]
, i = 1, 2, ..., n, (37)

and we assume that
𝜕𝜑i(Y(t))
𝜕yj(t)

, 1 ≤ j ≤ m, are not all equal zero.

Now, rewriting the error system described in Eq. (35) in the compact form

ė(t) = (A − L) e(t) + T − W, (38)

where L =
(
lij
)

n×n is a control constant matrix to be selected, T =
(
Ti
)
1≤i≤n and W =(

wi
)
1≤i≤n is a new vector controller.

Theorem 2 Inverse generalized synchronization between the master system (12)
and the slave system (13), will occur if the following conditions are satisfied:

(i) W = T .
(ii) All eigenvalues of A − L have negative real part.
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Proof By substituting the control law (i) into Eq. (38), the error system can be

described as

ė(t) = (A − L) e(t). (39)

Thus, by asymptotic stability of linear continuous-time systems, if the control matrix

L is selected such that all eigenvalues of A − L have have negative real part, it is

immediate that all solutions of error system (39) go to zero as t → ∞. Therefore,

systems (12) and (13) are globally inverse generalized synchronized.

5 Illustrative Examples

In this section, in order to show the effectiveness of our approaches, two numerical

examples are considered.

5.1 Example 1

In this example, we assume that the fractional order permanent magnet synchronous

motor model (PMSM) [181] is the master system and the controlled new fractional

order hyperchaotic system, proposed by Wu et al. in [116], is the slave system.

The master system is described by

Dp
t x1 = −x1 + x2x3, (40)

Dp
t x2 = −x2 − x1x3 + ax3,

Dp
t x3 = b

(
x2 − x3

)
,

where (a, b) = (100, 10) and p = 0.95. In this case, the matrix A =
(
aij
)
3×3 and the

nonlinear function f of the master system (40) are given by

A =
⎛
⎜⎜⎝

−1 0 0
0 −1 100
0 10 −10

⎞
⎟⎟⎠
, f =

⎛
⎜⎜⎝

x2x3
−x1x3
0

⎞
⎟⎟⎠
.

Figures 1 and 2 show the 2-D and 3-D chaotic attractors of the fractional order

PMSM system (40), respectively.

The slave system is given as follows

Dq
t y1 = 10

(
y2 − y1

)
+ u1, (41)

Dq
t y2 = 28y1 + y2 − y4 − y1y3 + u2,
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Fig. 1 Chaotic attractors of the fractional order PMSM system (40) in 2-D, when (a, b) = (100, 10)
and p = 0.95

Fig. 2 Chaotic attractors of the fractional order PMSM system (40) in 3-D when (a, b) = (100, 10)
and p = 0.95
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Fig. 3 Chaotic attractors of the uncontrolled system (41) in 2-D

Dq
t y3 = y1y2 −

8
3

y3 + u3,

Dq
t y3 = 0.1y2y3 + u4,

where ui, i = 1, 2, 3, 4, are controllers. System (41), when q = 0.94, exhibits hyper-

chaotic behaviours without control as shown in Figs. 3 and 4.

Define the errors of IGS between the master system (40) and the slave system

(41) by:

⎡
⎢⎢⎣

e1
e2
e3

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

x1
x2
x3

⎤
⎥⎥⎦
− 𝜑

(
y1, y2, y3, y4

)
, (42)

where

𝜑
(
y1, y2, y3, y4

)
=
⎡
⎢⎢⎢⎣

y1 + y2 + y3 +
1
3
y34

y1 + y2 + y3 +
1
2
y24

y1 + y2 + y3 +
3
2
y24 + y4

⎤
⎥⎥⎥⎦
.
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Fig. 4 Chaotic attractors of the uncontrolled system (41) in 3-D

So

𝐃 (𝜑 (Y (t))) =
⎛
⎜⎜⎝

1 0 0 y24
0 1 0 y4
0 0 2 3y4 + 1

⎞
⎟⎟⎠
.

By applying our approach of IGS, described in Sect. 4.1, we get

Q =
⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 2

⎞
⎟⎟⎠
, Q−1 =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1

2

⎞
⎟⎟⎠
,

and the feedback gain matrix K is chosen as

K =
⎛
⎜⎜⎝

0 0 0
0 0 100
0 10 0

⎞
⎟⎟⎠
. (43)

It is easy to know that (A − K)T + (A − K) is a negative definite matrix. Then,

according to Theorem 1, the master system (40) and the slave system (41) are glob-

ally inverse generalized synchronized. In this case, the error system between system

(40) and (41) can be written as follow:
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Fig. 5 The evolution of the error functions e1, e2 as e3 as t → +∞

ė1 = −e1, (44)

ė2 = −e2,
ė3 = −10e3.

For the purpose of numerical simulation, fourth order Runge–Kutta

integration method method has been used. In addition, simulation time

Tm = 120 s and time step h = 0.005 s have been employed. The initial values

of the master system and the slave system are [x1(0), x2(0), x3(0)] = [2,−1, 1] and

[y1(0), y2(0), y3(0), y4(0)] = [2, 3, 4, 6], respectively, and the initial states of the error

system are [e1(0), e2(0), e3(0)] = [−135,−28,−68]. The error functions evolution, in

this case, is shown in Fig. 5.

5.2 Example 2

In this example, we choose the fractional order hyperchaotic Liu system [182] as the

master system and the controlled fractional order Liu system, presented in [183], as

the slave system. The master system is
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Dpx1 = 10
(
x2 − x1

)
+ x4, (45)

Dp
t x2 = 40x1 − x1x3 + 0.5x4,

Dp
t x3 = −2.5x3 + 4x21 − x4,

Dp
t x4 = −10

15
x2 − x4,

where p = 0.9. In this case, the matrix A =
(
aij
)
3×3 and the nonlinear function f of

the master system (45) are given by

A =
⎛
⎜⎜⎜⎝

−10 10 0 1
40 0 0 0.5
0 0 −2.5 −1
0 −10

15
0 −1

⎞
⎟⎟⎟⎠
, f =

⎛
⎜⎜⎜⎝

0
−x1x3
4x21
0

⎞
⎟⎟⎟⎠
.

Figures 6 and 7 show the 2-D and 3-D chaotic attractors of the fractional order

hyperchaotic Liu system, respectively.

Fig. 6 Chaotic attractors of the fractional order hyperchaotic Liu system (45) in 2-D, when p = 0.9
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Fig. 7 Chaotic attractors of the fractional order hyperchaotic Liu system (45) in 3-D, when p = 0.9

The slave system is

Dqy1 = −y1 − y22 + u1, (46)

Dqy2 = 2.5y2 − 4y1y3 + u2,
Dqy3 = −5y3 + 4y1y2 + u3,

where ui, i = 1, 2, 3, 4, are controllers. System (46), when q = 0.94, exhibits chaotic

behaviours without control as shown in Figs. 8 and 9.

Now let us define the errors of GS between the master system (26) and the slave

system (27) by:

⎡
⎢⎢⎢⎣

e1
e2
e3
e4

⎤
⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎥⎦
− 𝜑

(
y1, y2, y3

)
, (47)

where

𝜑
(
y1, y2, y3

)
=
⎡
⎢⎢⎢⎣

y1 + y2 + y3
y1 + y2 − y3

y1 − y2 − 2y3
y1 − y2 + 2y3

⎤
⎥⎥⎥⎦
.

So

𝐃 (𝜑 (Y (t))) =
⎛
⎜⎜⎜⎝

1 1 1
1 1 −1
1 −1 −2
1 −1 2

⎞
⎟⎟⎟⎠
.
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Fig. 8 Chaotic attractors of the uncontrolled system (46) in 2-D

Fig. 9 Chaotic attractors of the uncontrolled system (46) in 3-D
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By using our control IGS control scheme presented in Sect. 4.2, the control con-

stant matrix L is selected as

L =
⎛
⎜⎜⎜⎝

0 10 0 1
40 6 0 0.5
0 0 0 −1
0 −10

15
0 −1

⎞
⎟⎟⎟⎠
. (48)

We can show that all eigenvalues of A − L have negative real part. Therefore,

according to Theorem 2, systems (45) and (46) are globally inverse generalized syn-

chronized.

In this case, the error system will be

ė1 = −10e1, (49)

ė2 = −6e2,
ė3 = −2.5e3,
ė4 = −e4.

Fig. 10 The evolution of the error functions e1, e2, e3 and e4 as t → +∞
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For the purpose of numerical simulation, fourth order Runge-Kutta method have

been used. In addition, simulation time Tm = 120 s and time step h = 0.005 s has

been employed. The initial values of the master system and the slave system are

[x1(0), x2(0), x3(0), x4(0)] = [2,−1, 1, 1] and [y1(0), y2(0), y3(0)] = [0.2, 0, 0.5],
respectively, and the initial states of the error system are [e1(0), e2(0), e3(0), e4(0)] =
[1.3,−0.7, 1.8,−0.2]. The error functions evolution, in this case, is shown in Fig. 10.

6 Conclusion

We have illustrated a new scheme of synchronization, called inverse generalized syn-

chronization (IGS), in fractional order chaos (hyperchaos) systems between a master

system of dimension n and a slave system of dimension m. The proposed approach,

which enables each master system state to be synchronized with a functional rela-

tionship of slave system states, has shown some remarkable features. Namely, by

exploiting the Lyapunov stability theory and the pole placement technique, inverse

generalized synchronization is rigorously proved to be achievable for any fractional

order chaotic (hyperchaotic) systems defined to date, including the two cases n < m
and n > m. Finally, the effectiveness of the method has been illustrated by numerical

examples.
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Abstract In general, a system can be defined as a collection of interconnected

components that transforms a set of inputs received from its environment to a set of

outputs. From an engineering point of view, chaos-based applications can be clas-

sified as a electronic system where the vast majority of the internal signals used as

interconnections are electrical signals. Inputs and outputs are also provided as elec-

trical quantities, or converted from, or to, such signals using sensors or actuators.

To gain insight about the overall performance of the particular chaos-based appli-

cation, the whole system must be characterized and simulated simultaneously. That

is not a trivial task because the complexity of each one of the blocks that comprises

the system, as well as the intrinsic complex behavior of chaotic generators. In this

chapter, a modeling strategy suited to represent chaos-based applications for differ-

ent control parameters of chaotic systems is presented. Based on behavioral descrip-

tions obtained from a Hardware Description Language (HDL), called Verilog-A,

two applications of chaotic systems are analyzed and designed. More specifically, a

chaotic sinusoidal pulse width modulator (SPWM) which is useful to develop control

algorithms for motor drivers in electric vehicles, and a chaotic pulse position mod-

ulator (CPPM) widely used in communication systems are presented as cases under

analysis. Those applications are coded in Verilog-A and by using different abstrac-

tion levels, the indications of the degree of detail specified on how the function is to

be implemented are obtained. Therefore, these behavioral models try to capture as

much circuit functionality as possible with far less implementation details than the

device-level description of the electronic circuit. Several circuit simulations applying
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H-Spice simulator are presented to demonstrate the usefulness of the proposed mod-

els. In this manner, behavioral modeling can be a possible solution for the successful

development of robust chaos-based applications due to various types of systems that

can be represented and simulated by means of an abstract model.

Keywords Modeling ⋅ Verilog ⋅ Chaos ⋅ Pulse width modulator ⋅ Pulse position

modulator ⋅ Logistic map ⋅ Chaotic system

1 Introduction

Nowadays, one of the most studied phenomena is chaos into the nonlinear dynam-

ical systems. Particularly, chaotic systems are mainly characterized by its behav-

ior complex and like random. Their significance has been increased during the last

decade because of several applications in diverse fields ranging from living systems,

such as synchronization in neurobiology, chemical reactions among pancreatic cells,

social events, to non-living systems including robotics, low power high-speed data

transceivers for medical applications, chaotic electrochemical oscillators, encrypted

communications, control algorithms for motor drivers in electric vehicles, and so

on [1–16]. This new and challenging research and development area has become a

scientific interdisciplinary, involving system and control engineers, theoretical and

experimental physicist, applied mathematicians, physiologists and above all, circuit

and devices specialists [1–31].

From engineering point of view, the goal is to obtain a chaos-based applica-

tion from a mathematical description [32–40]. However, there is a gap between the

chaotic system and its physical realization with electronic devices. It means that cir-

cuit implementation of chaos-based applications depends on critical design require-

ments (e.g., dynamic range, bandwidth, slew-rate, voltage supply, appropriate dif-

ferential amplifiers or a convenient scaling of voltages) that regularly there are no

taken into account in a general design flow [3, 10, 13].

Roughly, a chaos-based application can be defined as a system where encom-

passes various blocks with a chaos generator being the main block. Although some

papers have reported chaos-based applications using electronic devices, those are

custom designs. This indicates that it is necessary a deeper understanding on chaotic

dynamics of the system. In addition, these designs are only valid for a certain range

of values for the parameters. If one needs to modify the behavior of the whole sys-

tem, it should be necessary to evaluate the entire design. Even, physical conditions

could limit or prohibit such chaos-based application [8].

Considering the aforementioned issues, a systematic methodology for circuit

design of chaos-based applications must be addressed. Therefore, the aim of this

chapter is to investigate a modeling approach for determining the design require-

ments of chaos-based applications using electronic devices whose performance can

be analyzed and determined by applying behavioral modeling and simulation. In this

manner, the proposed approach is focus on creating a low-level representation (low-
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level abstraction) of a chaos-based application from a higher-level (more abstract)

representation. Where, the obtained representation should have the same function as

the higher-level representation.

Verilog-A is used herein to perform the behavioral modeling with aim of the gen-

eration of the architecture and the selection of its building blocks and their perfor-

mance values. Therefore, a design engineer can make decisions at an early stage of

the design cycle, thus ensuring correct design.

This chapter contains in Sect. 2 the related work oriented to behavioral modeling,

top-down design flows, chaotic systems, and Verilog-A behavioral modeling. An

analysis and Verilog-A-based design of a chaotic pulse position modulator (CPPM)

is presented in Sect. 3, while Sect. 4 deals with the analysis and Verilog-A-based

design of a sinusoidal pulse width modulator based on chaotic amplitude frequency

modulator (CAFM-SPWM). Finally, a detailed discussion of the results are given in

Sect. 5 and conclusions in Sect. 6.

2 Related Work

2.1 Behavioral Modeling

Engineers analyze and design various types of systems frequently. In general, a sys-

tem can be defined as a collection of interconnected components that transforms a

set of inputs received from its environment to a set of outputs [33–36, 38, 40]. In an

electronic system, the vast majority of the internal signals used as interconnections

are electrical signals. Actually, behavioral modeling can be a possible solution for

the successful development of various types of systems (i.e., chaos-based applica-

tions) that can be represented by means of an abstract model where the abstraction

levels are indications of the degree of detail specified on how the system is to be

implemented [8, 32, 39].

Therefore, behavioral models try to capture as much circuit functionality as pos-

sible with far less implementation details than the electronic device-level description

of the chaos-based applications. To do that, description and abstraction levels must

be described [33, 36, 38, 40].

Description level: A description level is a pair of two sets; a set of elementary

elements and a set of interconnection types.

Abstraction level: The abstraction level of a description is the degree to which

information about non-ideal effects or structure is neglected compared to the

dominant behavior of the entire system.
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A system may be described with a certain description level at different levels of

abstraction. Although it is clear to consider the functional level at a high abstraction

level and the physical level at a low abstraction level, it is not straightforward to

compare the abstraction levels of different description levels [33, 36, 38, 40]. Due

to the overlap one can easily jump, for instance, from the behavioral to the circuit

level.

As consequence, a chaos-based application could be designed by converting the

functional specification at the highest abstraction level to a physical realization at the

lowest abstraction level via operations between description and abstraction levels [8,

32, 39]. Thereby, automatic synthesis of chaos-based applications can formally be

represented as operations between different levels. Four fundamental types of such

operations are distinguished in behavioral modeling, which are introduced below.

‘Refinement: Translates a system described with a certain description level,

into a representation at a lower abstraction level with the same description

level.’

‘Simplification: Translates a system described with a certain description level,

into a representation at a higher abstraction level with the same description

level.’

‘Translation: Translates a system described with a certain description level,

into a representation with another description level preserving the level of

abstraction.’

‘Transformation: Translates a system described with a certain description

level, into a representation at the same abstraction level and the same descrip-

tion level.’

Systematic synthesis implies the application of subsequent refinement operations

on the system. Such an operation may introduce more detailed information about

the system and therefore the performance of the system can then be re-evaluated.

A refinement operation can also be used to introduce a subdivision of the system.

Hence, additional knowledge about the structure or building blocks of a system cor-

responds to descending the hierarchy of descriptions. Such operation also includes

the derivation of values for the parameters used in the models of the building blocks

for chaos-based applications [33, 36, 38, 40].
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2.2 Top-Down Design Flow for Electronics Systems

A design process formally consists of the application of a chain of operations defined

in the previous subsection from specification (High-level) to implementation (Low-

level). The design starts from a description of the functionality of the system, pos-

sibly written in some HDL such as Verilog-A, and ends with a layout ready to be

fabricated [33, 36]. The four basic operations can be put together in an iterative

design process, where if the design fails to meet the specifications, a transforma-

tion of either the architecture or its parameters should be applied. Simplification can

remove details to make it easier to choose which transformation should be selected.

On the other hand, if the specifications are met, but the abstraction level does not cor-

respond to the wishes of the designer, details should be added or removed by apply-

ing simplification or refinement operations. Finally, the design within the description

level finishes once all specifications are met. Translation will be required to convert

the current representation of the system to the next description level in top-down

direction [33].

Top-down Methodology [38, 40]: To cope with complex electronic designs

starting from functional specifications, a large system is divided into smaller

blocks in the top-down design methodology. The design at a high abstrac-

tion level of a complex system corresponds to deriving the behavioral models

for the building blocks. Simplification operations are not used in this method.

From this point of view, the design methodology must indicate the kind and

order of the operations to be applied during the design process and include

an appropriate modeling strategy to determine how a system is represented.

Selecting a good modelling strategy make it easier to execute the synthesis

process.

2.3 Chaotic Systems

Chaotic systems refer to one type of complex nonlinear dynamical system that pos-

sesses some very special features such as extreme sensitivity to tiny variations of

initial conditions and parameters, and bounded trajectories in the phase space but

with a positive maximum Lyapunov exponent. For deterministic chaos to exist, a

nonlinear dynamical system must have a dense set of periodic orbits, be transitive,

and sensitive to initial conditions. Density in periodic orbits implies that any peri-

odic trajectory of the orbit visits an arbitrarily small neighborhood of a non-periodic

one. Transitivity relates to the existence of points a, b for which a third point c can

be found that is arbitrarily close to a and whose orbit passes arbitrarily close to b.

Finally, sensitivity to initial conditions is the property to arbitrarily close initial con-

ditions to give rise to orbits that are eventually separated by a finite amount [7].
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Over the last two decades, theoretical design and circuit implementation of

various chaos generators have been a focal subject of increasing interest due to their

promising applications in various real-world chaos-based technologies and infor-

mation systems [1–16]. In particular, Chua’s circuit is considered as a paradigm of

chaos and a bridge between electronic circuits and the chaos theory, has been widely

studied and used as a platform for engineering applications. This subsection offers

an overview of the design methodologies and circuit implementations. Recently,

chaotic systems with their variants, i.e., n-scroll chaotic systems, muli-scroll chaotic

systems with 1D, 2D and 3D orientations, PWL chaotic systems, chaotic systems

with hidden attractors, hyperchaotic systems, fractional order chaotic systems; have

been designed by using several electronic devices, such as, OpAmps, CFOAs, OTAs,

CCII+, OTRAs, SETs, PICs, FPGAs, FPAAs, micro computers, etc. [3, 7, 8, 10, 12,

13].

Extended from chaotic systems, theoretical design and hardware implementa-

tion of different kinds of chaos-based applications have attracted increasing atten-

tion, especially for those that can create various complex modulation schemes, for

instance PWM, PPM, PAM, and so on. Those modulation schemes are the core of

novel engineering applications including navigation techniques for mobile robots,

motor drivers of electric vehicles, secure communications and encryption, and power

converters.

2.4 Verilog-A: A Hardware Description Language

Synthesis is the process of creating a low-level representation (low-level abstraction)

from a higher-level (more abstract) representation. The synthesized representation

should have the same function as the higher-level representation. High-level syn-

thesis advantages: continuous and reliable design flow, shorter design cycle, fewer

errors, easy and flexible to search the design space, and shared knowledge. In order

to support the synthesis process, a Hardware Description Language (HDL) is highly

needed because it exists to describe hardware. They differ from traditional program-

ming languages, which generally exist to describe algorithms. To properly describe

hardware, one must be able to describe both the behavior of the individual compo-

nents as well as how they are interconnected [32–40].

In this manner, Verilog-A is used herein to carry out two primary functions: sim-

ulation and synthesis of the chaos-based applications [33, 36]. More particularly,

Verilog-A can help to find the design requirements for advanced chaos based appli-

cations due to it can be used to model components, to create test benches, to accel-

erate simulation, to support the top-down design process, and to verify mixed-signal

systems.

As well known, SPICE provides a limited set of built-in models that limits the

design, simulation, and synthesis of chaos based applications. In contrast, Verilog-

A provides a very wide variety of features and can be used to efficiently describe

a broad range of models since basic components, semiconductor, logics, multidis-

ciplinary until functional blocks [38]. Other advantage by using Verilog-A is the
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capability to create test benches The term test bench is used to refer to circuitry that

is added to the circuit under test so as to provide it with an environment in which the

chaos-based application can properly operate. Both aforementioned characteristics

enable to accelerate simulation. With designs of chaos-based applications becoming

larger and their behavior becoming more complex, it is taking longer and longer to

verify them with simulation [36]. Then, the simulation time can be reduced if the

non-critical portions of the system are replaced with behavioral models. As a result,

the top-down design process is supported, which provides a foundation of designing

and verifying the system at an abstract or block diagram level before starting the

detailed design of the individual blocks [24]. Also, even if the chaos based applica-

tion requires a mixed-signal design where Verilog-A is very useful as it allows both

digital and analog circuits to be described in a way that is most suitable for each type

of circuit [40].

3 Chaotic Pulse Position Modulation, CPPM

In this section is shown the behavioral modeling of a Chaos-based Pulse Posi-

tion Modulation (CPPM) by using Verilog-A. In the pulse position modulation,

we change any parameter of a uniform pulse wave, it could be amplitude, time or

pulse. Two cases are recognized: an analog pulse modulation where information is

processed in an analog way, but the processing occurs in discrete time; and a digi-

tal pulse modulation in which the information signal is discrete both amplitude and

time, letting digital transmission as one codified pulse sequence, all with the same

amplitude. This kind of transmission has not equivalent in continues wave systems.

In latter case, output wave is a binary (logic zeros and ones) flow with same voltage

amplitude and time width. Therefore, a pulse stream is generated from a PPM where

the elapsed time between pulses is defined by the voltage amplitude of the input sig-

nal. Typical input signals are periodic waves such as sinusoidal, ramp, saw-tooth,

etc. As consequence, the output bit stream is also periodic. Contrary, when the input

is a chaotic signal, the position of pulses is uncertain, i.e., a CPPM [41].

‘The Pulse Position Modulation (PPM) is one of the most used methods

in satellite communications. When chaotic behavior is added to this kind of

modulation, a CPPM is obtained. CPPMs are widely used in secure commu-

nications schemes, e.g. in chaos-based optical fiber links [41]’

3.1 Sampling of Chaotic Signals

The sampling process is common in all pulse modulation systems and generally its

description is characterized in time domain. By sampling, a continuous time ana-
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Fig. 1 Ideal sampling of a

continuous time signal by

satisfying the sample

theorem

log signal is transformed in a sequence of discrete signals, with regular intervals.

Sampling theorem sets that a finite continuous energy signal and band-limited, with-

out spectral components over a frequency fmax, it is complete defined by specifying

values for signal in times of 1∕2fmax seconds. The sampled signal can be recovered

through with a lowpass filter. The frequency 2fmax is termed as Nyquist frequency. If a

band-limited signal, x(t), is multiplied by a pulse wave with constant interval T , given

by; 𝛿(t) =
∑∞

n=−∞ 𝛿 (t − nT), the resulting signal is xM(n) = x(t)𝛿T (t) = x(t − nT)
Where n represents discrete time intervals every T seconds. The wave x(t − nT) is,

therefore, a discrete signal like shown in the Fig. 1 and its sampling points amplitude

corresponds to the original signal. Furthermore, the sample and hold is an operation

based on sampling method used commonly to hold the sampled value, and it is holded

till the next sample.

3.2 Verilog-A-based Behavioral Modeling of a Chaotic PPM

The proposed CPPM is divided in four modules: a sample and hold module, a ramp

wave generator, a voltage comparator, and a digital inverter; as shown in Fig. 2.

The basic operation of CPPM is as follows. First, the sample and hold SH takes

a sample of the input signal. Simultaneously, a ramp function is generated by block

ramp wave generator. When the ramp signal equals sample value, the comparator

generates a control signal SH to reset both SH as well as the ramp wave generator.

Then, a new sample is obtained and the process is repeated. On the other hand, the

pulse width of the control signal SH is defined by delay time dt, rise time tr, and

slew-rate SR of the voltage comparator. Finally, the position of pulse width is a

function of the sample value taken from a chaotic input signal, and also the elapsed

time when ramp amplitude reaches the sample value. The parameters dt, tr, and SR
are set in the Verilog-A operator transition.

The main blocks of CPPM are described in Verilog-A as a structural behavioral

model, as given in Listing 1:
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Fig. 2 Main blocks of the proposed CPPM

Listing 1 CPPM behavioral model

1 ‘ i n c l ud e ” d i s c i p l i n e s . vams”
2 ‘ i n c l ud e ” i n t e g r a 2 . vams”
3 ‘ i n c l ud e ” sh1 . vams”
4 ‘ i n c l ud e ” comparador v1 . vams”
5 ‘ i n c l ud e ” i n v e r s o r d i g i t a l . vams”
6

7 module ppm( in , sa l com , s a l s h , s a l r amp ) ;
8 output sa l com , s a l s h , s a l r amp ;
9 input i n ;
10 e l e c t r i c a l in , s a l i d a , sa l com , s a l r amp ;
11 ground gnd ;
12 sh1 # ( . d t ( 0 . 1 u ) , . t r ( 0 . 0 1 u ) )
13 s amp l e ho l d ( in , sa l com , s a l s h ) ;
14 i n t e g r a 2 # ( . t r ( . 5 ) , . p e n d i e n t e (100000 ) , . Vol Max

( 1 0 . 2 ) )
15 gen rampa ( s a l r amp , gnd , sa l com , gnd ) ;
16 comparador v1 # ( . Vmax ( 5 ) , . Vmin ( 0 ) , . SR ( 1 . 9 e7 ) , . d t

( 0 . 0 1 u ) , . t r ( 0 . 0 1 u ) )
17 comparador1 ( s a l s h , s a l r amp , sa l com , gnd ) ;

18 i n v e r s o r d i g i t a l # ( . SR ( 1 . 9 e7 ) , . d t ( 0 . 7 n ) , . t r ( 0 . 8 n ) ,
. t o l e r a n c i a v o l t a j e m a x im o ( 0 . 8 ) , .

v o l t a j e um b r a l s a l i d a ( 5 ) )
19 i n v e r s o r d i g 1 ( sa l com , sa l ppm ) ;
20 endmodule

The ramp wave generator is modeled by integrating a constant value with Verilog-

A operator idtmod as shown in Listing 2. To reset the ramp signal, it was defined a

variable called reset, which depends on the value V(hab1, hab2), if it detects a posi-
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tive value, reset transfers the value to the output to be resetted, otherwise the output

value is set to the maximum voltage. This task is achieved because the Verilog-A

operator idtmod, as its third parameter, receives the proposed reset value. Addi-

tionally, a non-linear effect, slew-rate, is considered, which is added by using the

Verilog-A operator slew. This parameter is setting in 1.9 × 107 due to that value is

taken from the operational amplifier’s data sheet TL081, for the case ramp wave

generator would be designed with operational amplifiers. The frequency of ramp

frequency is calculated by:

Listing 2 Ramp wave generator behavioral model

1 ‘ i n c l ud e ” d i s c i p l i n e s . vams”
2 module i n t e g r a 2 ( s a l 1 , s a l 2 , hab1 , hab2 ) ;
3 parameter r e a l t r = 0 ;
4 parameter r e a l p e n d i e n t e = 50000 ;
5 parameter r e a l Vol Max = 5 ;
6 output s a l 1 , s a l 2 ;
7 input hab1 , hab2 ;
8 e l e c t r i c a l s a l 1 , s a l 2 , hab1 , hab2 ;
9 r e a l va l t emp = 0 ;
10 r e a l va l t emp2 =0;
11 r e a l r e s e t = 0 ;
12

13 a n a l og begin
14 v a l t emp = s lew ( id tmod ( va l t emp2 , 0 , r e s e t , 0 )

, 1 . 9 e7 , −1.9 e7 ) − 5 ;
15 i f (V( hab1 , hab2 ) >= t r ) begin
16 r e s e t = Vol Max ;

17 v a l t emp2 = p e n d i e n t e ;
18 end
19 e l s e
20 begin
21 r e s e t = va l t emp ;
22 v a l t emp2 = 0 ;
23 v a l t emp = −5; / /−5 / / 0
24 end
25 V( s a l 1 , s a l 2 ) <+ va l t emp ;
26 end
27 endmodule
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f = m
Vpp

(1)

where m is the value of the slope; Vpp is the value of the peak to peak voltage. In

this case, m = 100000, Vpp = 10.2, then f = 9.8 KHz. It means is required the input

signal frequency (for a chaotic signal the fundamental frequency) is around 10KHz.

The sample and hold module SH is modeled by using Verilog-A operators cross
and transition as shown in Listing 3. The sample is obtained in the falling edge of

the input signal clk. The response time of the sample and hold is set by dt and tr.

Listing 3 Sample and hold behavioral model

1 ‘ i n c l ud e ” d i s c i p l i n e s . vams”
2 module sh1 ( in , c lk , s a l i d a ) ;
3 parameter d t = 0 . 1 u , t r = 0 . 01 u ;
4 output s a l i d a ;
5 input in , c l k ;
6 e l e c t r i c a l in , c lk , s a l i d a ;
7 r e a l va l t emp = 0 ;
8

9 a n a l og begin
10 @( c r o s s (V( c l k ) −2.5 , −1.0) ) begin
11 v a l t emp = V( i n ) ;
12 end
13 V( s a l i d a ) <+ t r a n s i t i o n ( va l t emp , dt , t r ) ;
14 end
15 endmodule

The comparator is modeled by using Verilog-A operator transition. Slew-rate is

included in this comparator to analyze nonlinear effects such as delay and growth

rate of the output. The Verilog-A code is given in Listing 4.
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Listing 4 Voltage comparator behavioral model

1 ‘ i n c l ud e ” d i s c i p l i n e s . vams”
2 module comparador v1 ( ps , ns , p , n ) ;
3 parameter r e a l Vmax = 10 from ( 0 : i n f ) ;
4 parameter r e a l Vmin = 0 from (−1: i n f ) ;
5 parameter r e a l SR = 1 . 9 e9 ;
6 parameter d t = 0 . 7 u , t r = 0 . 8 u ;
7 output p , n ;
8 input ps , ns ;
9 e l e c t r i c a l ps , ns , p , n ;
10 r e a l vtemp1 = 0 ;
11

12 a n a l og begin
13 i f (V( ps ) >= V( ns ) )
14 vtemp1 = Vmax ;
15 e l s e
16 vtemp1 = Vmin ;
17 V( p ) <+ slew ( t r a n s i t i o n ( vtemp , dt , t r , t r ) ,SR,−1∗SR) ;
18 end
19 endmodule

Finally, the behavioral model for the digital inverter is described in Verilog-A

as shown in Listing 5. This block is added to CPPM to generate an inverted pulse

position modulation, however it does not affect the global response of CPPM.
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Listing 5 Digital inverter behavioral model

1 ‘ i n c l ud e ” d i s c i p l i n e s . vams”
2 module i n v e r s o r d i g i t a l ( e n t r a d a , s a l i d a ) ;
3 parameter r e a l SR = 1 . 9 e9 ;
4 parameter r e a l
5 parameter r e a l t o l e r a n c i a v o l t a j e m a x im o = 0 . 8 ;
6 parameter r e a l v o l t a j e um b r a l s a l i d a = 5 ;
7 output e n t r a d a ;
8 input s a l i d a ;
9 e l e c t r i c a l e n t r a d a , s a l i d a ;
10 r e a l l i m i n f = 0 , l im sup = 0 ;
11 r e a l vtemp1 = 0 ;
12

13 a n a l og begin

14 l i m i n f = t o l e r a n c i a v o l t a j e m a x im o ∗
v o l t a j e um b r a l s a l i d a ;

15 i f ( l im i n f <=V( e n t r a d a )&&V( e n t r a d a )<=
v o l t a j e um b r a l s a l i d a )

16 vtemp1 = 0 ;
17 e l s e
18 vtemp1 = v o l t a j e um b r a l s a l i d a ;
19 V( s a l i d a ) <+ slew ( t r a n s i t i o n ( vtemp1 , dt , t r , t r ) ,

SR,−1∗SR) ;
20 end
21 endmodule

We have analyzed and simulated the resulting CPPM by using the SPICE circuit

simulator with the proposed Verilog-A behavioral models. First, the PPM is simu-

lated by considering as its input a sinusoidal signal as shown in Fig. 3. In this figure,

we can observe the ramp wave generation, the sample and hold, and the PPM output

and its inverted output. The elapsed time between PPM pulses is defined by the volt-

age amplitude of sinusoidal signal. The behavior of the pulses form PPM is detailed

in Fig. 4.

4 Verilog-A-based Behavioral Modeling of a Chaotic
SPWM

The chaotic pulse width modulation is a relative recent method used in the power

electric generation control because of the high immunity against electric noise. In

this section a design of a CAFM-SPWM is developed by employing a chaotic ramp

generator and a sinusoidal sign comparator described in Verilog-A.
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Fig. 3 SPICE simulation results of PPM by a sinusoidal signal as input

Fig. 4 Zoom on time transitions of PPM to determine the pulse position

Recently there are many modulation techniques based on telecommunications

algorithms like pulse wide modulation, this technique are applied in motors or power

inverters, control in electric propulsion systems such as hybrid vehicles and full elec-

tric vehicles [42]. Each proposed technique try to improve at least one characteristic

in the process i.e., commutation loss, conversion deficiencies or harmonic content in

the output. This factors are important because of the undesirable effects the harmonic

signals. The most relevant undesirable effects are sinusoidal distortion, power factor

reduction, increment of leaks in the machinery, over heat, vibrations, torque loss,

and machinery life time reduction. Some published papers demonstrate the Sinu-

soidal Pulse Width Modulation (SPWM) has advantages contrary other approaches

because the harmonic content in the resultant signal is minimized. Then, researches

have proposed modern PWM methods trying to improve SPWM [42].

Nowadays, chaotic approaches to design PWM have been studied. The basic idea

consist on using a chaotic signal as the carrier due to it has a distributed continuous

frequency spectrum; this means that the energy or power may be distributed uni-
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formly in the frequency band. As a result, the electromagnetic interference can be

suppressed in electric propulsion units when chaotic signals are used [42].

Therefore, the aim of this section is to propose and design a behavioral model of a

SPWM. The modulation technique SPWM is a carrier-based signal which in general

uses a periodic or like-random triangle signal; and it is classified as a continuous

method because each cycle of the carrier a switch is generated [42]. In this method

a modulated pulse is obtained by comparing the modulated with the carrier signal

at different frequencies, where the carrier signal defines the switching frequency. In

this chapter, we study a SPWM based on a chaotic amplitude frequency modulator

(CAFM). The logistic map is used as the core to generate the chaotic signal.

Afterwards, the carrier frequency is defined by.

fc = FC + 𝜉𝛥f sin(2𝜋fmt) (2)

where FC is a reference frequency and 𝛥f is the frequency deviation. The fm is the

modulation frequency, in this case a sinusoidal signal. On the other hand, a chaos

generator is created by using the logistic map given by.

𝜉i+1 = r𝜉i(1 − 𝜉) (3)

where r is the logistic map constant and 𝜉 is a number within 0 and 1. In order to get

the behavioral model, Verilog-A operators eventcross and initialstep where applied

to describe the behavior of sinusoidal and chaotic signal in (2) and (3), respectively.

The CAFM-SPWM modulator model is divided in two sections (Figs. 5 and 6).

1. Chaotic triangle signal block.

2. Modulation from the chaotic triangle and sinusoidal signals block.

Fig. 5 Block diagram of proposed CAFM-SPWM
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Fig. 6 Flow diagram of CAFM-SPWM described by Verilog-A

These blocks are shown in Fig. 7. Also, flow diagrams of each block are given in

Figs. 8 and 9. The chaotic triangle signal block was coded in Verilog-A. This code

uses (3) to get different values of 𝜉 who changes the period of triangle signal. This

change occurs when a maximum or a minimum value is detected. The code is shown

in Listing 6.
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Listing 6 Chaotic triangle signal block behavioral model

1 ‘ i n c l ud e ” d i s c i p l i n e s . vams”
2 module V t r i a n g l e g e n e r a t o r ( ou t ) ;
3 output ou t ;
4 v o l t a g e ou t ;
5 parameter r e a l R=4;
6 r e a l Zhi ;
7 parameter r e a l p e r i o d = 1m from [ 0 : i n f ) ,
8 ampl = 5 ;
9 parameter r e a l p e r i o db = 10m from [ 0 : i n f ) ;
10

11 i n t e g e r s l o p e ;
12 r e a l o f f s e t , p e r i o d1 ;
13 r e a l m;
14

15 a n a l og
16

17 begin
18 @( i n i t i a l s t e p )
19 begin
20 Zhi = 0 . 1 ;
21 Zhi=Zhi ∗R∗(1−Zhi ) ;
22 p e r i o d1 = p e r i o d +( p e r i o db ∗Zhi ) ;
23 s l o p e =1;
24 end
25

26 @( c r o s s (V( ou t )−(ampl ) ,+1 ) )

27 begin
28 Zhi=Zhi ∗R∗(1−Zhi ) ;
29 p e r i o d1 = p e r i o d +( p e r i o db ∗Zhi ) ;
30 s l o p e = −1;
31 end
32

33 @( c r o s s (V( ou t ) +( ampl ) ,−1) )
34 begin
35 Zhi=Zhi ∗R∗(1−Zhi ) ;
36 p e r i o d1 = p e r i o d +( p e r i o db ∗Zhi ) ;
37 s l o p e = +1;
38 end
39

40 @( t ime r ( 0 , p e r i o d 1 / 2 ) )
41 begin
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42 o f f s e t = \ $ r e a l t i m e ;
43 end
44

45 V( ou t ) <+ ampl ∗ s l o p e ∗ ( 4∗ (\ $ r e a l t i m e − o f f s e t )
/ p e r i o d1 − 1) ;

46 end
47 endmodule

Fig. 7 Flow diagram of chaotic triangle signal block
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The other block is the modulator, which realizes a comparison between the chaotic

triangle signal and the sinusoidal signal as is described by the Verilog-A code shown

in Listing 7. Then, those blocks where simulated with SPICE circuit simulator to get

chaotic modulated signal. The code is shown in Listing 8.

Listing 7 CAFM-SPWM behavioral model

1 / / CAFM−SPWM

2 ‘ i n c l ud e ” d i s c i p l i n e s . vams”
3

4 module SPWM(mods , chaoss , spwm) ;
5

6 parameter r e a l vdd = 5 ;
7 parameter r e a l vs s = 0 ;
8 r e a l modsx , chaossx , spwmx1 ;
9 input mods , chao s s ;
10 output spwm ;
11 e l e c t r i c a l mods , chaoss , spwm ;
12

13 a n a l og begin
14 modsx = V(mods ) ;
15 c hao s sx = V( chaos s ) ;
16 i f ( modsx >= chaos sx )
17 spwmx1 = vdd ;
18 e l s e
19 spwmx1 = vs s ;
20 V( spwm) <+ t r a n s i t i o n ( spwmx1 , 1 n , 1 n ) ;
21 end
22 endmodule

Listing 8 SPICE master

1 . hd l spwm code . va
2 . hd l T r i a n g l e g e n . va
3

4 Vmod mod 0 s i n ( 0 , 6 , 1 00 )
5 X1 cha CTWG R=3.99 ampl =6 .5 p e r i o d =100u
6 X2 mod cha spwmo SPWM vdd=5 vs s =0
7 . t r a n s 0 . 05m 40m
8 . p r i n t t r a n s V(mod ) V( cha ) V( spwmo )
9 . end
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Fig. 8 Chaotic input signal (red), pulse position modulation signal (purple), ramp generator signal

(red), sample and hold signal (blue)

Fig. 9 Inout results of Verilog-A-based CPPM: Chaotic input signal and pulse position modulation

signal

SPICE simulations are carried out to demonstrate the chaotic behavior of the tri-

angle signal as a function of the constant mapping in the logistic map, detect the

variation rate for each ramp regarding the deviation frequency, and observe CAFM-

SPWM resultant signal as shown in next section.
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5 Discussion and Analysis

This section is dedicated to analyze and discuss the chaos-based engineering appli-

cations by using Verilog-A.

First, we analyze and discuss the CPPM, given in Sect. 3, by considering as input

signal to CPPM a chaotic system as shown in Fig. 8. A state variable of a chaotic

system is used to feed the PPM. Similarly, the elapsed time between output pulses

is set by the amplitude of chaotic signal. The more the amplitude, the bigger the

separation between output pulses. Otherwise, the less the amplitude, the smaller the

separation between output pulses as demonstrated in Fig. 8. The chaotic ramp wave

generation and sample and hold are given in Fig. 8. A close-up of the output in CPPM

is sketched in Fig. 9. In simulations is observed that when the ramp reach the sampled

value this still is growing due to by the non-ideal effects introduced in the comparator.

The trigger of comparator has a delay (line green) plus the delay of digital inverter as

shown in Fig. 4. This effect can be reduced if the delays are reduced. As previously

mentioned, the digital inverter is used to increase the CPPM performance. Because

this CPPM is to transfer signals, it is more efficient the pulse in high than in low

level. Herein, the digital outputs as shown in Listing 5.

As second case, we we analyze and discuss the CAFM-SPWM given in Sect. 4.

Five simulations were executed as defined below.

1. Fc =
1

33.3µs
, 𝛥f = 1

33.3µs
, r = 3.6

2. Fc =
1

33.3µs
, 𝛥f = 1

33.3µs
, r = 3.89

3. Fc =
1

33.3µs
, 𝛥f = 1

33.3µs
, r = 4

4. Fc =
1

33.3µs
, 𝛥f = 1

66.6µs
, fm = 1 kHz, r =4

5. Fc =
1

33.3µs
, 𝛥f = 1

333µs
, fm = 273Hz, r = 4

The amplitudes are set in 4.9V for the sinusoidal signal and 5V for the chaotic trian-

gle signal. The simulation results are given in Figs. 10, 11 and 12.

It is evident that a large variation and randomness in the ramp signal is present

regarding the values of r between 3.89 to 4. This behavior depends on the bifurcations

of Logistic map. When r = 4, the bifurcation reaches a maximum value of xi from

0 to 1. As r approximates maximum value, the ramp signal is generated with higher

variations as shown in Figs. 13, 14 and 15.

In Figs. 14 and 15 is shown the chaotic triangle signals with r = 4, however the

sudden changes are more evident when 𝛥f = 1∕333µs, this is because the deviation

in the frequency is 10 times the base frequency multiplied with a factor 𝜉 in a interval

0 to 1. The CAFM-SPWM signals generates more pulses with different duty cycles

by 𝛥f = 1∕333µs, fm = 273Hz, while in 𝛥f = 1∕66.6µs, fm = 1 kHz the duty cycle

tends to be higher. A window from 15.5ms and 18.1ms was settled in order to get a

improved chaotic triangle signal.

The maximum and minimum period of each ramp is given by the expression

T = Ta + Tb𝜉. Since Ta = 33.3µs and 𝜉 varies between 0 and 1, the interval of T
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Fig. 10 Resulting chaotic triangle signal with r = 3.6

Fig. 11 Resulting chaotic triangle signal with r = 3.89

Fig. 12 Resulting chaotic triangle signal with r = 4
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Fig. 13 Chaotic triangle signal, sinusoidal and CAFM-SPWM with simulation parameters case

= 4 (𝛥f = 1∕66.6µs, fm = 1 KHz)

Fig. 14 Chaotic triangle signal, sinusoidal and CAFM-SPWM with simulation parameters number

case = 5 (𝛥f = 1/333µs, fm = 273 Hz)

is from 33.3 s to 99.9µs. Tt demonstrates that Tb is highly affected from the sudden

variations of the ramps in the chaotic triangle signal.

As a conclusion, SPICE simulations of CPPM and CAFM-SPWM agrees with

those on literature. However, Verilog-A allows different description levels by incor-

porating the main effects under test. So, we are able to find the design trade-offs for

both chaos-based applications at circuit level.

6 Conclusions

In this chapter, it have been demonstrated the description, analysis and design of

modulation schemes based on chaos by using behavioral modeling. In particular,

two schemes were analyzed, a chaotic pulse position modulation (CPPM), and a

sinusoidal pulse width modulator based on chaotic amplitude frequency modulator
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Fig. 15 Zoom of the chaotic triangle signal, sinusoidal signal, and CAFM-SPWM with simulation

parameters case = 5 (𝛥f = 1/333µs, fm = 273 Hz)

(CAFM-SPWM). The behavior of both modulators are codified by using Verilog-

A. Several simulations results were carried out by applying SPICE circuit simula-

tor. From the simulation results, chaos-based applications are designed and sim-

ulated correctly with Verilog-A. In this manner, circuit synthesis of chaos-based

applications can be performed as a Top-down design methodology. Further, the pro-

posed approach can be extended to multiphysics chaos applications due to Verilog-

A can co-simulate systems in different domains. Not only this research will enable

future engineering applications, but also, will help to analyze and validate theoretical

results of chaos-based engineering applications.

As future work, other chaos-based applications could be analyzed and proved,

such as synchronization schemes for chaotic secure communications. It is also nec-

essary to consider other second order effects of electronics devices in high-level

simulations. It means, moving forward to lower abstraction levels such as: physical

implementation of CPPM and CAFM-SPWM with electronic discrete components.

A first step forward would be to replace some verilog-a blocks for a macro-model

circuit or a transistor level representations in order to perform a mixed simulation.

Finally, a integrated circuit design may give insight about precision and robustness

of the proposed Verlog-A-based design approach for chaos-based applications.

Acknowledgements This work has been partially supported by the scientific projects: CONACYT
No. 258880, PRODEP Red de Nanociencia y Nanotecnología, VIEP-BUAP-2016.

References

1. Arena, P., De Fiore, S., Fortuna, L., Frasca, M., Patané, L., & Vagliasindi, G. (2008). Reactive

navigation through multiscroll systems: From theory to real-time implementation.Autonomous
Robots, 25(1–2), 123–146. doi:10.1007/s10514-007-9068-1.

http://dx.doi.org/10.1007/s10514-007-9068-1


Behavioral Modeling of Chaos-Based Applications by Using Verilog-A 577

2. Cheng, C. J. (2012). Robust synchronization of uncertain unified chaotic systems subject to

noise and its application to secure communication. Applied Mathematics and Computation,

219(5), 2698–2712. doi:10.1016/j.amc.2012.08.101.

3. Faraji, S., & Tavazoei, M. (2013). The effect of fractionality nature in differences between

computer simulation and experimental results of a chaotic circuit. Central European Journal
of Physics, 11(6), 836–844. doi:10.2478/s11534-013-0255-8.

4. Gotthans, T., & Hrubos, Z. (2013). Multi grid chaotic attractors with discrete jumps. Journal
of Electrical Engineering, 64(2), 118–122. doi:10.2478/jee-2013-0017.

5. Kanno, T., Miyano, T., Tokuda, I., Galvanovskis, J., & Wakui, M. (2007). Chaotic electri-

cal activity of living 𝛽-cells in the mouse pancreatic islet. Physica D: Nonlinear Phenomena,

226(2), 107–116. doi:10.1016/j.physd.2006.11.007.

6. Kwon, O., Park, J., & Lee, S. (2011). Secure communication based on chaotic synchroniza-

tion via interval time-varying delay feedback control. Nonlinear Dynamics, 63(1–2), 239–252.

doi:10.1007/s11071-010-9800-9.

7. Lu, J., & Chen, G. (2006). Generating multiscroll chaotic attractors: Theories, methods and

applications. International Journal of Bifurcation and Chaos, 16(4), 775–858. doi:10.1142/

S0218127406015179.

8. Munoz-Pacheco, J., & Tlelo-Cuautle, E. (2010). Electronic design automation of multi-scroll
chaos generators. doi:10.2174/97816080516561100101.

9. Munoz-Pacheco, J., Zambrano-Serrano, E., Felix-Beltran, O., Gomez-Pavon, L., & Luis-

Ramos, A. (2012). Synchronization of pwl function-based 2d and 3d multi-scroll chaotic sys-

tems. Nonlinear Dynamics, 70(2), 1633–1643. doi:10.1007/s11071-012-0562-4.

10. Munoz-Pacheco, J., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sanchez-Lopez, C., & Trejo-Guerra,

R. (2014). Frequency limitations in generating multi-scroll chaotic attractors using cfoas. Inter-
national Journal of Electronics, 101(11), 1559–1569. doi:10.1080/00207217.2014.880999.

11. Pecora, L., & Carroll, T. (1990). Synchronization in chaotic systems. Physical Review Letters,
64(8), 821–824. doi:10.1103/PhysRevLett.64.821.

12. Piper, J., & Sprott, J. (2010). Simple autonomous chaotic circuits. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 57(9), 730–734. doi:10.1109/TCSII.2010.2058493.

13. Sanchez-Lopez, C., Munoz-Pacheco, J., Tlelo-Cuautle, E., Carbajal-Gomez, V. & Trejo-

Guerra, R. (2011) On the trade-off between the number of scrolls and the operating frequency

of the chaotic attractors. In Proceedings—IEEE International Symposium on Circuits and Sys-
tems (pp. 2950–2953). doi:10.1109/ISCAS.2011.5938210.

14. Sira-Ramirez, H., & Cruz-Hernandez, C. (2001). Synchronization of chaotic systems: A gen-

eralized hamiltonian systems approach. International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering, 11(5), 1381–1395. doi:10.1142/S0218127401002778.

15. Tsuda, I. (2009). Hypotheses on the functional roles of chaotic transitory dynamics. Chaos,
19(1). doi:10.1063/1.3076393.

16. Zhang, Z., & Chen, G. (2005). Chaotic motion generation with applications to liquid mixing.

In Proceedings of the 2005 European Conference on Circuit Theory and Design (Vol.1, pp.

225–228). doi:10.1109/ECCTD.2005.1522951.

17. Azar, A. T., & Vaidyanathan, S. (2014). Chaos modeling and control systems design. Incorpo-

rated: Springer.

18. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling
and control. Incorporated: Springer.

19. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control (1st

ed.). Incorporated: Springer.

20. Boulkroune A, Bouzeriba, A., Bouden, T., & Azar, A. T. (2016) Fuzzy adaptive synchroniza-

tion of uncertain fractional-order chaotic systems. In T. A. Azar & S. Vaidyanathan (Eds.),

Advances in chaos theory and intelligent control (pp. 681–697). Springer. doi:10.1007/978-3-

319-30340-6_28.

21. Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016) Fuzzy control-based func-

tion synchronization of unknown chaotic systems with dead-zone input. In T. A. Azar & S.

Vaidyanathan (Eds.)Advances in Chaos Theory and Intelligent Control, Springer International
Publishing (pp. 699–718) doi:10.1007/978-3-319-30340-6_29.

http://dx.doi.org/10.1016/j.amc.2012.08.101
http://dx.doi.org/10.2478/s11534-013-0255-8
http://dx.doi.org/10.2478/jee-2013-0017
http://dx.doi.org/10.1016/j.physd.2006.11.007
http://dx.doi.org/10.1007/s11071-010-9800-9
http://dx.doi.org/10.1142/S0218127406015179
http://dx.doi.org/10.1142/S0218127406015179
http://dx.doi.org/10.2174/97816080516561100101
http://dx.doi.org/10.1007/s11071-012-0562-4
http://dx.doi.org/10.1080/00207217.2014.880999
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1109/TCSII.2010.2058493
http://dx.doi.org/10.1109/ISCAS.2011.5938210
http://dx.doi.org/10.1142/S0218127401002778
http://dx.doi.org/10.1063/1.3076393
http://dx.doi.org/10.1109/ECCTD.2005.1522951
http://dx.doi.org/10.1007/978-3-319-30340-6_28
http://dx.doi.org/10.1007/978-3-319-30340-6_28
http://dx.doi.org/10.1007/978-3-319-30340-6_29


578 J.M. Munoz-Pacheco et al.

22. Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016) A new type of hybrid synchronization

between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cyber-
netics, 1–8. doi:10.1007/s13042-016-0566-3.

23. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional

hybrid chaos synchronization. Mathematical Methods in the Applied Sciences. doi:10.1002/

mma.4099.

24. Vaidyanathan, S., & Azar, A.T. (2016) Adaptive backstepping control and synchronization of

a novel 3-d jerk system with an exponential nonlinearity. In T. A. Azar & S. Vaidyanathan

(Eds.), Advances in chaos theory and intelligent control (pp. 249–274). Springer. doi:10.1007/

978-3-319-30340-6_11.

25. Vaidyanathan, S., & Azar, A.T. (2016) Adaptive control and synchronization of a halvorsen

circulant chaotic systems. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory
and intelligent control (pp. 225–247). Springer. doi:10.1007/978-3-319-30340-6_10.

26. Vaidyanathan, S., & Azar, A.T. (2016) Dynamic analysis, adaptive feedback control and syn-

chronization of an eight-term 3-d novel chaotic system with three quadratic nonlinearities. In

T.A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp.

155–178). Springer. doi:10.1007/978-3-319-30340-6_7.

27. Vaidyanathan, S., & Azar, A.T. (2016) Generalized projective synchronization of a novel

hyperchaotic four-wing system via adaptive control method. In T. A. Azar & S. Vaidyanathan

(Eds.), Advances in chaos theory and intelligent control (pp. 275–296). Springer. doi:10.1007/

978-3-319-30340-6_12.

28. Vaidyanathan, S., & Azar, A.T. (2016) A novel 4-d four-wing chaotic system with four

quadratic nonlinearities and its synchronization via adaptive control method. In T. A. Azar

& S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 203–224)

Springer. doi:10.1007/978-3-319-30340-6_9.

29. Vaidyanathan, S., & Azar, A.T. (2016) Qualitative study and adaptive control of a novel 4-d

hyperchaotic system with a three quadratic nonlinearities. In T. A. Azar & S. Vaidyanathan

(Eds.), Advances in chaos theory and intelligent control (pp. 179–202). Springer. doi:10.1007/

978-3-319-30340-6_8.

30. Vaidyanathan, S., & Azar, A. T. (2016). Takagi-sugeno fuzzy logic controller for liu-chen four-

scroll chaotic system. Int J Intell Eng Inform, 4(2), 135–150. doi:10.1504/IJIEI.2016.076699.

31. Zhu, Q., & Azar, A. T. (Eds.), (2015). Complex system modelling and control through intelli-
gent soft computations, studies in fuzziness and soft computing, (Vol. 319). Springer. doi:10.

1007/978-3-319-12883-2.

32. Bueno-Ruiz, J., Arriaga-Arriaga, C., Huerta-Barrera, R., Cruz-Dominguez, G., Pimentel-

Romero, C., Munoz-Pacheco, J., et al. (2015). 16th Latin-American Test Symposium. LATS,

2015. doi:10.1109/LATW.2015.7102507.

33. FitzPatrick, D., & Miller, I. (1997). Analog behavioral modeling with the VERILOG-a lan-
guage (1st ed.). Norwell, MA, USA: Kluwer.

34. Gal, G., Fattah, O., & Roberts, G. (2012). A 30–40 ghz fractional-n frequency synthesizer

development using a verilog-a high-level design methodology. In Proceedings of midwest sym-
posium on circuits and systems (pp. 57–60). doi:10.1109/MWSCAS.2012.6291956.

35. Gonzalez-Diaz, V., Munoz-Pacheco, J., Espinosa-Flores-Verdad, G., & Sanchez-Gaspariano,

L. (2016). A verilog-a based fractional frequency synthesizer model for fast and accurate noise

assessment. Radioengineering, 25(1), 89–97. doi:10.13164/re.2016.0089.

36. Kundert, K., & Zinke, O. (2013). The designer’s guide to Verilog-AMS. Incorporated: Springer.

37. Liao, S., & Horowitz, M. (2013). A verilog piecewise-linear analog behavior model for mixed-

signal validation. In Proceedings of the custom integrated circuits conference. doi:10.1109/

CICC.2013.6658461.

38. Martens, E. S. J., & Gielen, G. G. E. (2008). High-Level Modeling and Synthesis of Analog
Integrated Systems (1st ed.). Incorporated: Springer.

39. Munoz-Pacheco, J., Tlelo-Cuautle, E., Trejo-Guerra, R., & Cruz-Hernandez, C. (2008). Syn-

chronization of n-scrolls chaotic systems synthesized from high-level behavioral modeling. In
Proceedings of the 7th international Caribbean conference on devices, circuits and systems,
ICCDCS. doi:10.1109/ICCDCS.2008.4542634.

http://dx.doi.org/10.1007/s13042-016-0566-3
http://dx.doi.org/10.1002/mma.4099
http://dx.doi.org/10.1002/mma.4099
http://dx.doi.org/10.1007/978-3-319-30340-6_11
http://dx.doi.org/10.1007/978-3-319-30340-6_11
http://dx.doi.org/10.1007/978-3-319-30340-6_10
http://dx.doi.org/10.1007/978-3-319-30340-6_7
http://dx.doi.org/10.1007/978-3-319-30340-6_12
http://dx.doi.org/10.1007/978-3-319-30340-6_12
http://dx.doi.org/10.1007/978-3-319-30340-6_9
http://dx.doi.org/10.1007/978-3-319-30340-6_8
http://dx.doi.org/10.1007/978-3-319-30340-6_8
http://dx.doi.org/10.1504/IJIEI.2016.076699
http://dx.doi.org/10.1007/978-3-319-12883-2
http://dx.doi.org/10.1007/978-3-319-12883-2
http://dx.doi.org/10.1109/LATW.2015.7102507
http://dx.doi.org/10.1109/MWSCAS.2012.6291956
http://dx.doi.org/10.13164/re.2016.0089
http://dx.doi.org/10.1109/CICC.2013.6658461
http://dx.doi.org/10.1109/CICC.2013.6658461
http://dx.doi.org/10.1109/ICCDCS.2008.4542634


Behavioral Modeling of Chaos-Based Applications by Using Verilog-A 579

40. Rutenbar, R., Gielen, G., & Roychowdhury, J. (2007). Hierarchical modeling, optimization,

and synthesis for system-level analog and rf designs. Proceedings of the IEEE, 95(3), 640–

669. doi:10.1109/JPROC.2006.889371.

41. Xuan Quyen, N., Van Yem, V., & Manh Hoang, T. (2012). A chaotic pulse-time modulation

method for digital communication. Abstract and Applied Analysis, 2012. doi:10.1155/2012/

835304.

42. Zhang, Z., Ching, T., Liu, C., & Lee, C. (2012) Comparison of chaotic pwm algorithms for

electric vehicle motor drives. In IECON proceedings (industrial electronics conference) (pp.

4087–4092). doi:10.1109/IECON.2012.6389236.

http://dx.doi.org/10.1109/JPROC.2006.889371
http://dx.doi.org/10.1155/2012/835304
http://dx.doi.org/10.1155/2012/835304
http://dx.doi.org/10.1109/IECON.2012.6389236


A New Method to Synchronize Fractional
Chaotic Systems with Different Dimensions

Adel Ouannas, Toufik Ziar, Ahmad Taher Azar
and Sundarapandian Vaidyanathan
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different dimensional fractional order chaotic systems in different dimensions is
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1 Introduction

The study of fractional order chaotic systems has become an interdisciplinary field

of many scientific disciplines [1–24]. Recently, the applications of fractional chaotic

dynamical systems have attracted considerable attention, for example, in secure com-

munication and encryption [25–35].

The synchronization problem means making two systems oscillate in a synchro-

nized manner. The dynamical behavior of two copies of a chaotic system may be

identical after a transient when the second system is driven by the first one. Since the

synchronization of chaotic system (integer-order differential systems and discrete-

time systems) is understood well [36–42] and widely explored [43–67], the synchro-

nization of fractional order chaotic dynamical systems has started to attract increas-

ing attention of many researchers [68–80], due to its potential applications [81–84].

Several control approaches, have already been successfully applied to the problem

of synchronization of fractional order chaotic dynamical systems such as sliding-

mode control [85–87], linear control [88], nonlinear control [89], active control

[90], adaptive control [91, 92], feedback control [93–100] and scalar signal tech-

nique [101]. Many types of synchronization of fractional chaotic systems have been

studied such as phase synchronization [102, 103], complete synchronization [104],

anti-synchronization [105], projective synchronization [106–109], hybrid projective

synchronization [110, 111], function projective synchronization [112–114], general-

ized projective synchronization [115–118], generalized synchronization [119–125],

full state hybrid projective synchronization [126], Q-S synchronization [127], expo-

nential synchronization [128], finite-time synchronization [129], impulsive synchro-

nization [130, 131].

To the best of our knowledge most of theoretical results about synchronization of

chaos focus on the systems whose models are identical or strictly different systems

and systems of different order, especially the systems in biological science and social

science. One example is the synchronization that occurs between heart and lung,

where one can observe that both circulatory and respiratory systems behave in syn-

chronous way, but their models are essentially different and they have different order.

So, the study of synchronization for strictly different dynamical systems and differ-

ent order dynamical systems is both very important from the perspective of control

theory and very necessary from the perspective of practical application. Recently,

many effective synchronization approaches have been used widely to achieve syn-

chronization of chaotic systems with different dimensions such as matrix projective

synchronization [132], inverse matrix projective synchronization [133], generalized

synchronization [134], inverse generalized synchronization [135],𝛬 − 𝜑 generalized

synchronization [136, 137], Q-S synchronization [138] and hybrid synchronization

[139, 140].

Not long ago, a new approach to synchronize different dimensional chaotic sys-

tem by using two scaling matrices has been introduced. The method has been called

𝛩 −𝛷 synchronization. In [141], Ouannas and Al-sawalha used two scaling con-

stant matrices to synchronize different dimensional discrete-time chaotic systems.
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The new approach was applied between integer-order differential chaotic systems

with different dimension by Ouannas and Al-sawalha in [142]. By using scaling con-

stant matrix and scaling function matrix, the synchronization problem of different

dimensional fractional order chaotic systems in different dimensions was developed

by Ouannas et al. in [143].

In this chapter, the problem of synchronization for different dimensional frac-

tional chaotic dynamical systems using two scaling function matrices is proposed

and experimented. This chapter provides further contribution to the topic of 𝛩 −𝛷

synchronization. The sufficient conditions for achieving 𝛩 −𝛷 synchronization,

between n-dimensional fractional chaotic system and m-dimensional fractional, are

derived based on Lyapunov stability theory of integer-order differential systems.

Analytic expressions of the controllers are shown. The proposed control methods

are efficient and easy to implement in practical applications. Illustrative examples of

fractional chaotic and hyperchaotic systems are used to show the effectiveness of the

proposed approaches.

The rest of the present chapter is organized as follows. In Sect. 2 some theoretical

basis are given. In Sect. 3 different schemes for fractional 𝛩 −𝛷 synchronization

are proposed. In Sect. 4 the derived criterions and the proposed schemes are applied

to some typical different dimensional fractional chaotic and hyperchaotic systems.

Finally, the chapter is concluded in Sect. 5.

2 Theoretical Basis

2.1 Fractional Derivative and Integral

Fractional calculus plays an important role in modern science. In this chapter, we use

both Reimann Liouville and Caputo fractional operators as our main tools. Caputo

fractional derivative is defined as follows [144].

Dp
t x (t) = Jm−pxm (t) , 0 < p ≤ 1, (1)

where m = [p], i.e. m is the first integer which is not less than p, xm
is the m-order

derivative in the usual sense, and Jq (q > 0) is the q-order Reimann-Liouville integral

operator with expression:

Jqy (t) = 1
Γ (q)

t

∫
0

(t − 𝜏)q−1y (𝜏) d𝜏, (2)

where Γ denotes Gamma function.
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Lemma 1 ([145]) The Laplace transform of the Caputo fractional derivative rule
reads

𝐋
{

Dp
t f (t)

}
= sp𝐅 (s) −

n−1∑
k=0

sp−k−1f (k) (0) , (p > 0, n − 1 < p ≤ n) . (3)

Particularly, when p ∈ (0, 1], we have 𝐋
{

Dp
t f (t)

}
= sp𝐅 (s) − sp−1f (0).

Lemma 2 ([146]) The Laplace transform of the Riemann-Liouville fractional inte-
gral rule satisfies

𝐋 {Jqf (t)} = s−q𝐅 (s) , (q > 0) . (4)

Lemma 3 ([147]) Suppose f (t) has a continuous kth derivative on [0, t] (k ∈ N, t >
0), and let p, q > 0 be such that there exists some 𝓁 ∈ N with 𝓁 ≤ k and p, p + q ∈
[𝓁 − 1,𝓁]. Then

Dp
t Dq

t f (t) = Dp+q
t f (t) . (5)

Remark 1 Note that the condition requiring the existence of the number 𝓁 with the

above restrictions in the property is essential. In this paper, we consider the case

that p, q ∈
]
0, 1

]
and p + q ∈

]
0, 1

]
. Apparently, under such conditions this property

holds.

2.2 𝜣 −𝜱 Synchronization

The master and the slave systems are in the following forms

Dp
t X(t) = F(X(t)), (6)

Dq
t Y(t) = G(t)) + U, (7)

where X(t) ∈ 𝐑n
, Y(t) ∈ 𝐑m

are state vectors of the master system and the slave

system, respectively, 0 < p, q ≤ 1, Dp
t , Dq

t are the Caputo fractional derivatives of

orders p and q, respectively, F ∶ 𝐑n → 𝐑n
, G ∶ 𝐑m → 𝐑m

and U =
(
ui
)
1≤i≤m is a

vector controller.

Definition 1 The master system (6) and the slave system (7) are said to be 𝛩 −𝛷

synchronized in dimension d, if there exists a controller U =
(
ui
)
1≤i≤m and two func-

tion matrices 𝛩 (t) = (𝛩 (t))d×m and 𝛷 (t) = (𝛷 (t))d×n such that the synchronization

error

e(t) = 𝛩 (t)Y(t) −𝛷 (t)X(t), (8)

satisfies that limt⟶+∞ ‖e (t)‖ = 0.
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3 Theoretical Analysis

In this section, we discuss different schemes of 𝛩 −𝛷 synchronization in different

dimensions.

3.1 𝜣 −𝜱 Synchronization in Dimension m

Consider the following master system

Dp
t X(t) = f (X(t)), (9)

where X(t) ∈ 𝐑n
is the state vector of the master system, 0 < p ≤ 1, Dp

t is the Caputo

fractional derivative of order p and f ∶ 𝐑n → 𝐑n
.

As the slave system, we consider the following controlled system

Dq
t Y(t) = BY(t) + g(Y(t)) + U, (10)

where Y(t) ∈ 𝐑m
is the state vector of the slave system, respectively, 0 < q ≤ 1, Dq

t
is the Caputo fractional derivative of order q, B ∈ 𝐑m×m

, g ∶ 𝐑m → 𝐑m
are the lin-

ear and the nonlinear parts of the slave system, respectively, and U =
(
ui
)
1≤i≤m is a

vector controller.

In this case, the error system between the master system (9) and the slave system

(10), is defined as

e (t) = 𝛩 (t)Y(t) −𝛷 (t)X(t), (11)

where 𝛩 (t) =
(
𝛩ij (t)

)
m×m and 𝛷 (t) =

(
𝛷ij (t)

)
m×n. Hence, we have the following

result.

Theorem 1 The master system (9) and the slave system (10) are globally 𝛩 −𝛷

synchronized in m-D, if the following conditions are satisfied:
(i) 𝛩 (t) is an invertible matrix and 𝛩

−1 (t) its inverse matrix.
(ii) U = −BY(t) − g(Y(t)) + J1−q (−𝛩−1 (t) × R1

)
, where

R1 =
(
L1 − B

)
e (t) + �̇� (t)Y(t) − �̇� (t)X(t) −𝛷 (t) Ẋ(t), (12)

and L1 ∈ 𝐑m×m is a control matrix.
(iii)

(
L1 − B

)T +
(
L1 − B

)
is a positive definite matrix.

Proof The error system between the master system (9) and the slave system (10) can

be derived as

ė (t) = 𝛩 (t) Ẏ(t) + �̇� (t)Y(t) − �̇� (t)X(t) −𝛷 (t) Ẋ(t). (13)
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Substituting the control law (ii) into Eq. (10), the slave system can be described as

Dq
t Y(t) = J1−q (−𝛩−1 (t) × R1

)
. (14)

Applying the Laplace transform to Eq. (14) and letting

𝐅(s) = 𝐋 (Y(t)) , (15)

we obtain,

sq𝐅(s) − sq−1Y(0) = sq−1𝐋
(
−𝛩−1 (t) × R1

)
, (16)

multiplying both the left-hand and right-hand sides of Eq. (16) by s1−q
and applying

the inverse Laplace transform to the result, we get the following equation

Ẏ (t) = −𝛩−1 (t) × R1. (17)

The error system (13) can be derived as

ė (t) =
(
B − L1

)
e (t) . (18)

Construct the candidate Lyapunov function in the form

V (e(t)) = eT (t)e(t), (19)

we obtain,

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t)

(
B − L1

)T e(t) + eT (t)
(
B − L1

)
e(t)

= −eT (t)
[(

L1 − B
)T +

(
L1 − B

)]
e(t).

By using (iii), we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, it is

immediate that limt⟶+∞ ‖e (t)‖ = 0. So, the zero solution of the error system (18)

is globally asymptotically stable, and therefore, the master system (9) and the slave

system (10) are globally 𝛩 −𝛷 synchronized in m-D.

3.2 𝜣 −𝜱 Synchronization in Dimension n

The master system and the slave system can be described as

Dp
t X(t) = AX(t) + f (X(t)), (20)

Dq
t Y(t) = g(Y(t)) + U, (21)
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where X(t) ∈ 𝐑n
, Y(t) ∈ 𝐑m

are state vectors of the master system and the slave sys-

tem, respectively, 0 < p, q ≤ 1, Dp
t , Dq

t are the Caputo fractional derivatives of orders

p and q, respectively, A ∈ 𝐑n×n
, f ∶ 𝐑n → 𝐑n

are the linear and the nonlinear parts

of the master system, respectively, g =
(
gi
)
1≤i≤m ∶ 𝐑m → 𝐑m

and U =
(
ui
)
1≤i≤m is

a vector controller.

In this case, we assume that the synchronization dimension d = n, where

n < m. The error system between the master system (20) and the slave system (21)

is considered as

e (t) = 𝛩(t)Y(t) −𝛷(t)X(t), (22)

where 𝛩 (t) =
(
𝛩ij (t)

)
n×m and 𝛷 (t) =

(
𝛷ij (t)

)
n×n.

The error system (22) can be described as

ė (t) =
(
A − L2

)
e (t) + 𝛩(t)Ẏ(t) + R2, (23)

where L2 ∈ 𝐑n×n
is a feedback gain matrix and

R2 =
(
L2 − A

)
e (t) + �̇�(t)Y(t) − �̇� (t)X(t) −𝛷 (t) Ẋ(t). (24)

Hence, we can conclude the following result.

Theorem 2 The master system (20) and the slave system (21) are globally 𝛩 −𝛷

synchronized in n-D, if the following conditions are satisfied:
(i) �̂� (t) =

(
𝛩ij (t)

)
n×n is an invertible matrix and �̂�

−1 (t) its inverse matrix.
(ii)

(
u1, u2,… , un

)T = −Ĝ − J1−q (
�̂�

−1 (t) × R2
)

and
(
un+1, un+2,… , um

)T =
−Ǧ(Y(t)), where Ĝ =

(
gi
)
1≤i≤n and Ǧ =

(
gi
)

n+1≤i≤m.
(iii)

(
A − L2

)T +
(
A − L2

)
is a negative definite matrix.

Proof By inserting the control law (ii) into Eq. (21), we can rewrite the slave system

as follows (
Dq

t y1 (t) ,… ,Dq
t yn (t)

)T = J1−q (−�̂�−1 (t) × R2
)
, (25)

and (
Dq

t yn+1 (t) ,… ,Dq
t ym (t)

)T = 0. (26)

By applying the fractional derivative of order 1 − q to both the left and right sides

of Eqs. (25) and (26), we obtain

D1−q
t

((
Dq

t y1 (t) ,… ,Dq
t yn (t)

)T
)
=
(
ẏ1(t), ẏ2(t),… , ẏn(t)

)T

= D1−q
t J1−q (

�̂�
−1 (t) × R2

)

= −�̂�−1 (t) × R2, (27)

and
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(
ẏn+1(t), ẏn+2(t),… , ẏm(t)

)T = 0. (28)

The error system (23) can be written as

ė (t) =
(
A − L2

)
e (t) . (29)

Construct the candidate Lyapunov function in the form

V (e(t)) = eT (t)e(t), (30)

we obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t)

(
A − L2

)T e(t) + eT (t)
(
A − L2

)
e(t)

= eT (t)
[(

A − L2
)T +

(
A − L2

)]
e(t),

and by using (iii), we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, it

is immediate that all solutions of error system (29) go to zero as t → ∞. Therefore,

the master system (20) and the slave system (21) are globally 𝛩 −𝛷 synchronized

in n-D.

3.3 𝜣 −𝜱 Synchronization in Dimension d

In this case, we assume that d < m, d ≠ n and the master and the slave systems can

be considered in the following forms

Dp
t X(t) = f (X(t)), (31)

Dq
t Y(t) = g(Y(t)) + U, (32)

where X(t) ∈ 𝐑n
, Y(t) ∈ 𝐑m

are state vectors of the master system and the slave

system, respectively, 0 < p, q ≤ 1, Dp
t , Dq

t are the Caputo fractional derivatives of

orders p and q, respectively, f ∶ 𝐑n → 𝐑n
, g ∶ 𝐑m → 𝐑m

and U =
(
ui
)
1≤i≤m is a

vector controller.

The error system between the master system (31) and the slave system (32) is

given as

e (t) = 𝛩 (t)Y(t) −𝛷 (t)X(t), (33)

where 𝛩 (t) =
(
𝛩ij (t)

)
d×m, 𝛷 (t) =

(
𝛷ij (t)

)
d×n.

We suppose that the vector controller U can be designed in the following form:

U = −g(Y(t)) + J1−q (V) , (34)

where V =
(
vi
)
1≤i≤m is a new control law.
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Now, by using Eqs. (32) and (34), we can get

Dq
t Y(t) = J1−q (V) . (35)

By applying Lemma 3, we obtain

D1−q
t Dq

t Y(t) = Ẏ(t)
= D1−q

t J1−q (V)
= V . (36)

Then, the error system (33), can be derived as

ė (t) = L3e(t) + 𝛩 (t)V + R3, (37)

where

R3 = −L3e(t) + �̇� (t)Y(t) − �̇� (t)X(t) −𝛷 (t) Ẋ(t), (38)

L3 = diag
(
l1, l2,… , ld

)
and li, i = 1, 2,… , d, are unknown control constants.

To achieve 𝛩 −𝛷 synchronization between systems (31) and (32), we choose the

controller V as

V =
(
v1,… , vd, 0,… , 0

)T
. (39)

By substituting Eq. (39) into Eq. (37), the error system can be described as

ė(t) = L3e(t) + �̌� (t) V̂ + R3, (40)

where

�̌� (t) =
⎛
⎜⎜⎝

𝛩11 (t) ⋯ 𝛩1d (t)
⋮ ⋱ ⋮

𝛩d1 (t) ⋯ 𝛩dd (t)

⎞
⎟⎟⎠
, (41)

and V̂ =
(
v1,… , vd

)T
.

Theorem 3 For an invertible matrix �̌� (t), the 𝛩 −𝛷 synchronization between the
master systems (31) and the slave system (32) will occur in d-D, if the following
conditions are satisfied:

(i) V̂ = −�̌�−1 (t) × R3, where �̌�
−1 (t) is the inverse matrix of �̌� (t).

(ii) The control constants li are chosen as li < 0, i = 1, 2,… , d.

Proof By substituting (i) into Eq. (40), the error system can be written as:

ėi(t) = liei(t), 1 ≤ i ≤ d, (42)



590 A. Ouannas et al.

and let us consider the following quadratic Lyapunov function: V (e (t)) =
∑d

i=1
1
2
e2i (t) , then we obtain V̇ (e(t)) =

∑d
i=1 lie2i (t). By using (iii), we get V̇ (e(t)) < 0.

Thus, by Lyapunov stability it is immediate that limt→∞ ei(t) = 0, (1 ≤ i ≤ d), then

the master system (31) and the slave system (32) are globally 𝛩 −𝛷 synchronized.

4 Numerical Analysis

In this section, we will present some numerical simulations for 𝛩 −𝛷 synchroniza-

tion to verify and illustrate the effectiveness of the theoretical analysis introduced in

Sect. 3.

4.1 𝜣 −𝜱 Synchronization Between Fractional Order Liu
System and Fractional Order Hyperchaotic Lorenz
System in 𝟒D

As the master system we consider the fractional order Liu system and the controlled

hyperchaotic fractional Lorenz system as the slave system. The master system is

described as follows

Dpx1 = 𝛼
(
x2 − x1

)
, (43)

Dpx2 = 𝛽x1 − x1x3,
Dpx3 = −𝛾x3 + 4x21,

where x1, x2 and x3 are states. This system, as shown in [148], exhibits chaotic behav-

iors when (𝛼, 𝛽, 𝛾) = (10, 40, 2.5) and p = 0.9. The chaotic attractors of the system

(43) are shown in Figs. 1 and 2.

The slave system is defined as

Dqy1 = a
(
y2 − y1

)
+ y4 + u1, (44)

Dqy2 = cy1 − y2 − y1y3 + u2,
Dqy3 = y1y2 − by3 + u3,
Dqy4 = −y2y3 + dy4 + u4,

where y1, y2, y3, y4 are states and U = (u1, u2, u3, u4)T is the vector controller. The

fractional-order hyperchaotic Lorenz system (i.e. the uncontrolled system (44))

exhibits hyperchaotic behaviors when q = 0.98 and (a, b, c, d) = (10, 28, 8
3
,−1)

[149]. Attractors of the fractional order hyperchaotic Lorenz system are shown in

Figs. 3 and 4.
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Fig. 1 Simulation result of the master system (43) in 2D when (𝛼, 𝛽, 𝛾) = (10, 40, 2.5) and p = 0.9

Fig. 2 Simulation result of the master system (43) in 3D when (𝛼, 𝛽, 𝛾) = (10, 40, 2.5) and p = 0.9
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Fig. 3 Simulation result of the slave system (44) in 2D when (a, b, c, d) = (10, 8
3
, 28,−1), q = 0.98

and u1 = u2 = u3 = u4 = 0

Fig. 4 Simulation result of the slave system (44) in 3D when (a, b, c, d) = (10, 8
3
, 28,−1), q = 0.98

and u1 = u2 = u3 = u4 = 0
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Compare the slave system (44) with system (10), one can have

B =
⎛
⎜⎜⎜⎝

−10 10 0 1
28 −1 0 0
0 0 −8

3
0

0 0 0 −1

⎞
⎟⎟⎟⎠
, g =

⎛
⎜⎜⎜⎝

0
−y1y3
y1y2
−y2y3

⎞
⎟⎟⎟⎠
.

The error system of 𝛩 −𝛷 synchronization, between the master system (43) and

the slave system (44), is defined as

⎛
⎜⎜⎜⎝

e1
e2
e3
e4

⎞
⎟⎟⎟⎠
= 𝛩 (t) ×

⎛
⎜⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎟⎠
−𝛷 (t) ×

⎛
⎜⎜⎝

x1
x2
x3

⎞
⎟⎟⎠
, (45)

where

𝛩(t) =
⎛
⎜⎜⎜⎝

t + 1 0 0 0
0 t2 + 2 0 0
0 0 exp (t) 0
0 0 0 4

⎞
⎟⎟⎟⎠
, (46)

and

𝛷(t) =
⎛
⎜⎜⎜⎝

t 1 0
2 0 t + 1
0 exp (t) 0
1 0 1

⎞
⎟⎟⎟⎠
. (47)

So,

𝛩
−1(t) =

⎛
⎜⎜⎜⎜⎝

1
t+1

0 0 0
0 1

t2+2
0 0

0 0 exp (−t) 0
0 0 0 1

4

⎞
⎟⎟⎟⎟⎠
. (48)

Using the notations described in Sect. 3.1, the control matrix L1 can be chosen as

L1 =
⎛
⎜⎜⎜⎝

0 10 0 1
28 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠
, (49)

and the control functions u1, u2, u3 and u4 are designed as follows

u1 = −10
(
y2 − y1

)
− y4 + J0.02

[ 1
t + 1

(
−10e1 − y1 + x1 + tẋ1 + ẋ2

)]
, (50)
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u2 = −28y1 + y2 + y1y3 + J0.02
[

1
t2 + 2

(
−e2 − 2ty2 + x3 + 2ẋ1 + (t + 1) ẋ3

)]
,

u3 = −y1y2 +
8
3

y3 + J0.02
(
−8
3
exp (−t) e3 − y3 + x2 + ẋ2

)
,

u4 = y2y3 + y4 + J0.02
(
−1
4

e4 +
1
4

ẋ1 +
1
4

ẋ3
)
.

It is easy to show that
(
L1 − B

)T +
(
L1 − B

)
is a positive definite matrix. Then

the conditions of Theorem 1 are satisfied and the 𝛩 −𝛷 synchronization between

systems (43) and (44) is achieved. The error system, in this case, can be described

as follows

ė1 = −10e1, (51)

ė2 = −e2,

ė3 = −8
3

e3,

ė4 = −e4.

For the purpose of numerical simulation, Euler integration method has been

used. In addition, simulation time Tm = 120 s and time step h = 0.005 s have been

employed. The initial values of the master system and the slave systems

are [x1(0), x2(0), x3(0)] = [7,−9, 5] and [y1(0), y2(0), y3(0), y4(0)] = [12, 22, 31, 4],
respectively, and the initial states of the error system are [e1(0), e2(0), e3(0), e4(0)] =
[21, 25, 26, 4]. The error functions evolution, in this case, is shown in Fig. 5.

From Fig. 5, we can conclude that the components of the error system (51),

e1, e2, e3 and e4, decay towards zero as t → +∞, and so the master system (43) and

the slave system (44) are 𝛩 −𝛷 synchronized in 4-D.

4.2 𝜣 −𝜱 Synchronization Between Fractional-Order
Volta’s System and Fractional-Order Modified
Hyperchaotic Chen System in 3-D

In this example, we consider the fractional-order Volta’s system as the master system

and the controlled hyperchaotic fractional Lorenz system as the slave system. The

master system can be described as

Dpx1 = −x1 −
(
𝛼 + x3

)
x2, (52)

Dpx2 = −x2 −
(
𝛽 + x3

)
x1,

Dpx3 = 𝛾x3 + x2x1 + 1,
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Fig. 5 Synchronization errors between the master system (43) and the slave system (44)

where x1, x2 and x3 are states. This system, as shown in [150], exhibits chaotic behav-

iors when (𝛼, 𝛽, 𝛾) = (19, 11, 0.73) and p = 0.98. The chaotic attractors of the com-

mensurate fractional-order Volta’s system (52) are shown in Figs. 6 and 7.

Compare the master system (52) with system (20), one can have

A =
⎛
⎜⎜⎝

−1 −19 0
−11 −1 0
0 0 0.73

⎞
⎟⎟⎠
, f =

⎛
⎜⎜⎝

−x2x3
−x1x3
x2x1

⎞
⎟⎟⎠
.

The slave is given by

Dqy1 = a
(
y2 − y1

)
+ u1, (53)

Dqy2 = by1 + cy2 − y1y3 − y4 + u2,
Dqy3 = −dy3 + y1y2 + u3,
Dqy4 = y1 + g + u4,
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Fig. 6 Simulation result of the slave master system (52) in 2-D when (𝛼, 𝛽, 𝛾) = (19, 11, 0.73) and

p = 0.98

Fig. 7 Simulation result of the slave master system (52) in 3-D when (𝛼, 𝛽, 𝛾) = (19, 11, 0.73) and

p = 0.98
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Fig. 8 Simulation result of the slave system (53) in 2D when (a, b, c, d, g) = (36,−16, 28, 3, 0.5),
q = 0.9 and u1 = u2 = u3 = u4 = 0

where y1, y2, y3, y4 are states and U = (u1, u2, u3, u4)T is the vector controller. The

fractional-order modified hyperchaotic Chen system (i.e. the uncontrolled system

(53)) has chaotic attractors when q = 0.9 and (a, b, c, d, g) = (36,−16, 28, 3, 0.5)
[151]. The chaotic attractors of the commensurate fractional order hyperchaotic

Lorenz system are shown in Figs. 8 and 9.

In this case, the error system between the master system (52) and the slave system

(53) can be defined as

⎛
⎜⎜⎝

e1
e2
e3

⎞
⎟⎟⎠
= 𝛩 (t) ×

⎛
⎜⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎟⎠
−𝛷 (t) ×

⎛
⎜⎜⎝

x1
x2
x3

⎞
⎟⎟⎠
, (54)

where

𝛩(t) =
⎛
⎜⎜⎜⎝

1
t+2

0 0 t
0 1

t2+1
0 exp (−t)

0 0 t + 3 1

⎞
⎟⎟⎟⎠
, (55)
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Fig. 9 Simulation result of the slave system (53) in 3D when (a, b, c, d, g) = (36,−16, 28, 3, 0.5),
q = 0.9 and u1 = u2 = u3 = u4 = 0

and

𝛷(t) =
⎛
⎜⎜⎝

1 0 3
0 t 0
2 0 t2 + 1

⎞
⎟⎟⎠
. (56)

So,

�̂�(t) =
⎛
⎜⎜⎜⎝

1
t+2

0 0
0 1

t2+1
0

0 0 t + 3

⎞
⎟⎟⎟⎠

and �̂�
−1(t) =

⎛
⎜⎜⎜⎝

1
t+2

0 0
0 1

t2+1
0

0 0 t + 3

⎞
⎟⎟⎟⎠
.

Using the notations presented in Sect. 3.2, the control matrix L2 is selected as

L2 =
⎛
⎜⎜⎝

0 0 0
0 0 0
0 0 1

⎞
⎟⎟⎠
, (57)

and the synchronization controllers u1, u2, u3 and u4 can be constructed as follows
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u1 = 36
(
y1 − y2

)
− J0.1

[
1

t + 2

(
e1 +

−1
(t + 2)2

y1 + y4 − ẋ1 − 3ẋ3

)]
, (58)

u2 = 16y1 − 28y2 + y1y3 + y4 − J0.1
[

1
t + 2

(
e2 −

2t(
t2 + 1

)2 y2 − exp (−t) y4 − x2 − tẋ2

)]
,

u3 = 3y3 − y1y2 − J0.1
[
(t + 3)

(
0.27e3 + y3 − 2tx3 − 2ẋ1 −

(
t2 + 1

)
ẋ3
)]

,

u4 = −y1 − 0.5.

We can see
(
A − L2

)T +
(
A − L2

)
is a negative definite matrix, and the conditions

of Theorem 2 are satisfied.

Hence the 𝛩 −𝛷 synchronization between systems (52) and (53) is achieved. The

error system, in this case, can be described as follows

ė1 = −e1, (59)

ė2 = −e2,
ė3 = −0.27e3.

For the purpose of numerical simulation, Euler integration method has been

used. In addition, simulation time Tm = 120 s and time step h = 0.005 s have been

employed. The initial values of the master system and the slave system

are [x1(0), x2(0), x3(0)] = [8, 2, 1] and [y1(0), y2(0), y3(0), y4(0)] = [−1, 1.5,−1,−2],
respectively, and the initial states of the error system are [e1(0), e2(0), e3(0)] =
[−11.5,−0.5,−22]. The error functions evolution, in this case, is shown in Fig. 10.

From Fig. 10, we can conclude that the components of the error system (59),

e1, e2, e3 and e4, decay towards zero as t → +∞, and so the master system (52) and

the slave system (53) are 𝛩 −𝛷 synchronized in 3D.

4.3 𝜣 −𝜱 Synchronization Between Fractional Order Lü
System and Fractional Order Modified Hyperchaotic
Lorenz System in 2D

In this example, the fractional order Lü system is taken as the master system and

the controlled fractional-order modified hyperchaotic Lorenz system is taken as the

slave system. The master system can be described as

Dp1x1 = 𝛼
(
x2 − x1

)
, (60)

Dp2x2 = 𝛾x2 − x3x1,
Dp3x3 = −𝛽x3 + x2x1,
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Fig. 10 Synchronization errors between the master system (52) and the slave system (53)

where x1, x2 and x3 are states. This system, as shown in [70], exhibits chaotic behav-

iors when (𝛼, 𝛽, 𝛾) = (36, 3, 20) and p = 0.95. The chaotic attractors of the commen-

surate fractional order Lü system (60) are shown in Figs. 11 and 12.

The slave system can be described by

Dqy1 = a
(
y2 − y1

)
+ u1, (61)

Dqy2 = by1 + y2 − y1y3 − y4 + u2,
Dqy3 = −cy3 + y1y2 + u3,
Dqy4 = dy2y3 + u4,

where yi and ui, i = 1, 2, 3, 4, are states and controllers, respectively. The fractional-

order modified hyperchaotic Lorenz system (i.e. the uncontrolled system (61)) has

chaotic attractors when q = 0.94 and (a, b, c, d) =
(
10, 28, 8

3
, 0.1

)
[151]. The chaotic

attractors of the commensurate fractional order modified hyperchaotic Lorenz sys-

tem are shown in Figs. 13 and 14.

In this case, the error system between the master system (60) and the slave system

(61) is defined as



A New Method to Synchronize Fractional Chaotic Systems . . . 601

Fig. 11 Simulation result of the master system (60) in 2-D when (𝛼, 𝛽, 𝛾) = (36, 3, 20) and p =
0.95

Fig. 12 Simulation result of the master system (60) in 3-D when (𝛼, 𝛽, 𝛾) = (36, 3, 20) and p =
0.95
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Fig. 13 Simulation result of the slave system (61) in 2-D when (a, b, c, d) =
(
10, 28, 8

3
, 0.1

)
, q =

0.94 and u1 = u2 = u3 = u4 = 0

Fig. 14 Simulation result of the slave system (61) in 3-D when (a, b, c, d) =
(
10, 28, 8

3
, 0.1

)
, q =

0.94 and u1 = u2 = u3 = u4 = 0
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(
e1
e2

)
= 𝛩 (t) ×

⎛
⎜⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎟⎠
−𝛷 (t) ×

⎛
⎜⎜⎝

x1
x2
x3

⎞
⎟⎟⎠
, (62)

where

𝛩(t) =
( exp (−t) 0 2 t + 1

0 exp (t) 1 1
t2+1

)
, (63)

and

𝛷(t) =
(

t 2 t2
0 t exp (t)

)
. (64)

So,

�̌�(t) =
(
exp (−t) 0

0 exp (t)

)
and �̌�

−1(t) =
(
exp (t) 0

0 exp (−t)

)
.

Using the same method proposed in Sect. 3.3, we ca find a control matrix L3 so

that systems (30) and (31) realize the 𝛩 −𝛷 synchronization in 2-D. For example,

the control matrix L3 is taken as

L3 =
(
−1 0
0 −2

)
, (65)

then the control functions are designed as

u1 = −10
(
y2 − y1

)
− J0.06

[
exp (t)

(
−e1 − exp (−t) y1 + y4 − x1 − 2tx3 − tẋ1 − 2ẋ2 − t2ẋ3

)]
, (66)

u2 = −28y1 − y2 + y1y3 + y4

− J0.06
(
−exp (−t) e2 + y2 −

exp (−t) 2t
(
t2 + 1

)2 y4 − exp (−t) x2 − x3 − exp (−t) tẋ2 − ẋ3

)
,

u3 = 8
3

y3 − y1y2,

u4 = −0.1y2y3.

Simply, we can show that all conditions of Theorem 3 are satisfied. Hence the

𝛩 −𝛷 synchronization between systems (60) and (61) is achieved.

ė1 = −e1, (67)

ė2 = −2e2.
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Fig. 15 Synchronization errors between the master system (60) and the slave system (61)

For the purpose of numerical simulation, Euler integration method has been

used. In addition, simulation time Tm = 120 s and time step h = 0.005 s have been

employed. The initial values of the master system and the slave system are

[x1(0), x2(0), x3(0)] = [1.1, 3.5, 2] and [y1(0), y2(0), y3(0), y4(0)] = [2, 3, 4, 6], respec-

tively, and the initial states of the error system are [e1(0), e2(0)] = [7, 10]. The error

functions evolution, in this case, is shown in Fig. 15.

From Fig. 15, we can conclude that the components of the error system (67), e1
and e2, decay towards zero as t → +∞, and so the master system (60) and the slave

system (61) are 𝛩 −𝛷 synchronized in 2-D.

5 Conclusion

In this chapter, new control approaches were presented to study the problem of

𝛩 −𝛷 synchronization with two scaling function matrices between n-dimensional

fractional-order master system and m-dimensional fractional-order slave system. The

new criterions derived were proved theoretically using nonlinear fractional con-

trollers and Lyapunov stability theory of integer-order differential systems. Firstly,

to achieve the 𝛩 −𝛷 synchronization, when dimension of the synchronization equal

m, the synchronization criterion was obtained via controlling the linear part of the

slave system. Secondly, to observe 𝛩 −𝛷 synchronization, when the synchroniza-

tion is equal n, the synchronization scheme was based on the control of the linear part

of the master system. Finally, 𝛩 −𝛷 synchronization is guaranteed in dimension d
where d < m and d ≠ n, by a diagonal matrix. Numerical examples and simulations

results have been carried out, with the aim to highlight the capabilities of the new

synchronization schemes conceived herein.
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Abstract Recently, Leonov and Kuznetsov have introduced a new definition “hid-

den attractor”. Systems with hidden attractors, especially chaotic systems, have

attracted significant attention. Some examples of such systems are systems with

a line equilibrium, systems without equilibrium or systems with stable equilib-

ria etc. In some interesting new research, systems in which equilibrium points are

located on different special curves are reported. This chapter introduces a three-

dimensional autonomous system with a square-shaped equilibrium and without equi-

librium points. Therefore, such system belongs to a class of systems with hidden

attractors. The fundamental dynamics properties of such system are studied through

phase portraits, Poincaré map, bifurcation diagram, and Lyapunov exponents. Anti-

synchronization scheme for our systems is proposed and confirmed by the Lyapunov

stability. Moreover, an electronic circuit is implemented to show the feasibility of the

mathematical model. Finally, we introduce the fractional order form of such system.
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1 Introduction

Chaos theory, chaotic systems, and chaos-based applications have been studied in

last decades [5–8, 18, 19, 54, 71, 76, 106]. A significant amount of new chaotic

systems has been introduced and discovered such as Lorenz [54], Rössler system

[66], Arneodo system [4], Chen system [18], Lü system [55], Vaidyanathan sys-

tem [83], time-delay systems [11], nonlinear finance system [78], four-scroll chaotic

system [2].

Chaotic systems, that are highly sensitive to initial conditions, were applied in dif-

ferent areas. A new four-scroll chaotic system was used to design a random number

generator [2]. Tang et al. implemented image encryption using chaotic coupled map

lattices with time-varying delays [79]. Reconfiguration chaotic logic gates based on

novel chaotic circuit were discovered in [12]. Chenaghlu et al. introduced a novel

keyed parallel hashing scheme based on a new chaotic system [20]. Kajbaf et al.

proposed fast synchronization of non-identical chaotic modulation-based secure sys-

tems using a modified sliding mode controller [38]. A new hybrid algorithm based on

chaotic maps for solving systems of nonlinear equations was presented in [44]. Tacha

et al. studied analysis, adaptive control and circuit simulation of a novel nonlinear

finance system [78]. Performance improvement of chaotic encryption via energy and

frequency location criteria was studied in [70]. Orlando investigated a discrete math-

ematical model for chaotic dynamics in economics [58].

Recent developments include systems with hidden attractors which are important

in engineering applications [34, 35, 48, 61, 85, 110, 112]. Especially, chaotic sys-

tems with hidden attractors such as chaotic systems without any equilibrium points,

chaotic systems with infinitely many equilibrium points and chaotic systems with

stable equilibria have been introduced [34, 35, 43, 56, 99]. Finding new chaotic

systems with different families of hidden attractors should be studied further.

In this chapter, we introduce a novel three-dimensional (3D) chaotic system. Espe-

cially the new system displays both hidden chaotic attractor with square equilibrium

and hidden chaotic attractor without equilibrium. This chapter is organized as fol-

lows. The related works are reported in the next section. Section 3 presents the the-

oretical model of the new system. Dynamics and properties of the new system are

investigated in Sect. 4 while the adaptive anti-synchronization scheme for such new

system is proposed in Sect. 5. Section 6 presents circuital implementation of the the-

oretical model. Moreover, fractional-order form of the new no-equilibrium system

is described in Sect. 7. Finally, conclusions are drawn in Sect. 8.

2 Related Work

Recently, Leonov and Kuznetsov have proposed a new approach to classify nonlinear

systems. They considered dynamical systems with self-excited attractors and dynam-

ical systems with hidden attractors [46, 48, 50, 51]. A self-excited attractor has a
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basin of attraction that is excited from unstable equilibria. Therefore, self-excited

attractors can be localized numerically by using the standard computational proce-

dure. In contrast, hidden attractor cannot be found by using a numerical method in

which a trajectory started from a point on the unstable manifold in the neighbourhood

of an unstable equilibrium [34, 48]. “Hidden attractor” is important both in nonlinear

theory and practical problems [45, 50, 60, 63, 69]. Thus various researches relating

hidden attractors have been introduced [16, 36, 68, 73].

Hidden attractors have discovered in a smooth Chua’s system [52], in mathe-

matical model of drilling system [49], in a relay system with hysteresis [112], in

nonlinear control systems [47], in Van der Pol-Duffing oscillators [16], in a sim-

ple four-dimensional system [105], in an impulsive Goodwin oscillator with time

delay [111] or in a multilevel DC/DC converter [110]. In addition, hidden chaotic

attractors are observed in 3-D chaotic autonomous system with only one stable equi-

librium [43], in elementary quadratic chaotic flows with no equilibria [35], in simple

chaotic flows with a line equilibrium [34], in a 4-D Rikitake dynamo system [97], in

5-D hyperchaotic Rikitake dynamo system [95], in a 5-D Sprott B system [57], in a

chaotic system with an exponential nonlinear term [62] or in a system with memris-

tive devices [10].

It is interesting that chaotic systems with an infinite number of equilibrium points

or without equilibrium belong to a class of dynamical systems with “hidden attrac-

tor” [35]. A few three-dimensional chaotic systems with infinite equilibria and with-

out equilibrium have been reported. Jafari and Sprott found chaotic flows with a line

equilibrium [34]. New class of chaotic systems with circular equilibrium was pre-

sented in [26]. Gotthans et al. introduced a 3-D chaotic system with a square equilib-

rium in [27]. By applying a tiny perturbation into the Sprott D system, Wei obtained

a new system with no equilibria [101]. Wang and Chen proposed a no-equilibrium

system when constructing a chaotic system with any number of equilibria [100].

Especially, Jafari et al. found a gallery of chaotic flows with no equilibria [35]. How-

ever, investigation of new systems which can display both hidden chaotic attractors

with infinite equilibria and hidden chaotic attractors without equilibrium is still an

attractive research direction.

3 Model of the No-Equilibrium System

Gotthans et al. proposed an interesting three-dimensional chaotic system with a

square equilibrium [27]. Gotthans’s system is given by

⎧
⎪⎨⎪⎩

ẋ = z
ẏ = −z (ay + b |y|) − x |z|
ż = |x| + |y| − 1,

(1)
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where x, y, z are state variables, while a, b are two positive parameters. System (1)

is the simplest system with a square equilibrium and chaotic behavior. Moreover it

is an example of a system with hidden attractor [27].

In this work, we study a new 3-D system based on system (1):

⎧
⎪⎨⎪⎩

ẋ = z
ẏ = −z (ay + b |y|) − x |z| − c
ż = |x| + |y| − 1,

(2)

in which x, y, z are state variables and a, b, c are three positive parameters. Dynamics

and properties of new nonlinear system (2) are studied in the next section.

4 Dynamics and Properties of the Proposed System

The equilibrium points of system (2) are found by solving ẋ = 0, ẏ = 0, and ż = 0.

Therefore, we have

z = 0, (3)

− z (ay + b |y|) − x |z| − c = 0, (4)

|x| + |y| − 1 = 0, (5)

From (3), (4), we have z = 0 and

c = 0. (6)

Therefore system (2) has an infinite number of equilibrium points when c = 0. More-

over equilibrium points are located on a square (5). This case has been studied in [27],

so we do not discuss about it. We focus on the case for c ≠ 0. Obviously, Eq. (6) is

inconsistent when c ≠ 0. On the other word, there is no real equilibrium in system

(2). Interestingly, system (2) belongs to a newly introduced class of systems with

hidden attractors because its basin of attractor does not contain neighbourhoods of

equilibria [48, 50].

We consider the new system (2) for the selected parameters a = 5, b = 3, c = 0.02
and the initial conditions are

(x (0) , y (0) , z (0)) = (0, 0.0, 0) . (7)

Lyapunov exponents, which measure the exponential rates of the divergence and

convergence of nearby trajectories in the phase space of the chaotic system [72, 76],

are calculated by using the algorithm in [104]. As a result, the Lyapunov exponents

of the system (2) are
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𝜆1 = 0.1386, 𝜆2 = 0, 𝜆3 = −1.1731. (8)

The 2-D and 3-D projections of the chaotic attractors without equilibrium in this

case are illustrated in Figs. 1, 2, 3 and 4.

It has been known that the Kaplan–Yorke fractional dimension, which presents

the complexity of attractor [23], is given by

DKY = j + 1
|||𝜆j+1

|||

j∑
i=1

𝜆i, (9)

where j is the largest integer satisfying

j∑
i=1

𝜆i ≥ 0 and

j+1∑
i=1

𝜆i < 0. Thus, the calculated

fractional dimension of no-equilibrium system (2) when a = 5, b = 3, c = 0.02 is

DKY = 2 +
𝜆1 + 𝜆2
||𝜆3||

= 2.1181. (10)

Fig. 1 2-D projection of

system (2) in the (x, y)-plane,

for a = 5, b = 3, c = 0.02
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Fig. 2 2-D projection of

system (2) in the (x, z)-plane,

for a = 5, b = 3, c = 0.02
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Fig. 3 2-D projection of

system (2) in the (y, z)-plane,

for a = 5, b = 3, c = 0.02
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Fig. 4 3-D projection of

system (2) in the

(x, y, z)-space, for a = 5,

b = 3, c = 0.02
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Fig. 5 Poincaré map of

system (2) in the (x, y)-plane,

for a = 5, b = 3, c = 0.02
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Equation (10) indicates a strange attractor. In addition, as seen in Fig. 5, the Poincaré

map of system (2) in the (x, y)-plane also illustrates the strange of attractor.

The bifurcation diagram provides a useful tool in nonlinear science. It gives the

change of system’s dynamical behavior. In more details, Fig. 6 presents the bifur-

cation diagram of the variable y versus the parameter c. The system’s complexity

has also been verified by the corresponding diagram of largest Lyapunov exponents

versus the parameter c (see Fig. 7). In the regions where the value of the largest Lya-

punov exponent is equal to zero the system is in a periodic state, while in the regions

where the largest Lyapunov exponent has a positive value the system is in a chaotic
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Fig. 6 Bifurcation diagram

of system (2) when changing

c for a = 5, b = 3
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Fig. 7 Largest Lyapunov

exponent of system (2) when

varying c for a = 5, b = 3
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Fig. 8 Limit cycle of

system (2) for a = 5, b = 3,

and c = 0.1
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state. As seen in Fig. 6, there is a reverse period doubling to chaos when increasing

the value of parameter c from 0 to 0.15. When c < 0.057 a more complex behav-

ior is emerged. For example, system exhibits chaotic behavior for c < 0.039. When

c > 0.057 the system remains always in periodic states. For instant, system presents

periodic behavior for c = 0.1 (see Fig. 8).



620 V.-T. Pham et al.

5 Adaptive Anti-synchronization of the Proposed System

Synchronization of nonlinear systems has been discovered extensively in literature

because of its vital practical applications [13, 17, 22, 24, 39, 40, 59, 63, 74, 84,

86, 87, 94, 109]. Results about synchronization of various systems are reported such

as synchronized states in a ring of mutually coupled self-sustained nonlinear elec-

trical oscillators [103], ragged synchronizability of coupled oscillators [75], various

synchronization phenomena in bidirectionally coupled double-scroll circuits [98],

observer for synchronization of chaotic systems with application to secure data trans-

mission was studied in [1], or shape synchronization control [33]. Futhermore differ-

ent kind of synchronizations have been investigated, for example lag synchronization

[65], frequency synchronization [3], projective-anticipating synchronization [31],

anti-synchronization [82], adaptive synchronization [88–91, 93, 96], hybrid chaos

synchronization [40], generalized projective synchronization [92], fuzzy synchro-

nization [14, 15] or fast synchronization [38] etc. Interestingly, anti-synchronization

has received significant attention [32, 42, 82, 108]. Anti-synchronization indicates

the relationship between two oscillating systems that have the same absolute values

at all times, but opposite signs [32, 42, 108].

In this section, the adaptive anti-synchronization of identical proposed systems

with three unknown parameters is proposed. The newly introduced system (2) is

considered as the master system:

⎧
⎪⎨⎪⎩

ẋ1 = z1
ẏ1 = −ay1z1 − b ||y1|| z1 − x1 ||z1|| − c
ż1 = ||x1|| + ||y1|| − 1,

(11)

in which x1, y1, z1 are state variables. The slave system is considered as the controlled

system and its dynamics is described by:

⎧
⎪⎨⎪⎩

ẋ2 = z2 + ux
ẏ2 = −ay2z2 − b ||y2|| z2 − x2 ||z2|| − c + uy
ż2 = ||x2|| + ||y2|| − 1 + uz,

(12)

where x2, y2, z2 are the states of the slave system. Here the adaptive controls are

ux, uy, and uz. These controls will be designed for the anti-synchronization of the

master and slave systems. We used A(t), B(t) and C(t) in order to estimate unknown

parameters a, b and c.

The anti-synchronization error between systems (11) and (12) is given by the

following relation

⎧
⎪⎨⎪⎩

ex = x1 + x2
ey = y1 + y2
ez = z1 + z2.

(13)
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As a result, the anti-synchronization error dynamics is described by

⎧
⎪⎨⎪⎩

ėx = ez + ux
ėy = −a

(
y1z1 + y2z2

)
− b

(||y1|| z1 + ||y2|| z2
)
−
(
x1 ||z1|| + x2 ||z2||

)
− 2c + uy

ėz = ||x1|| + ||x2|| + ||y1|| + ||y2|| − 2 + uz.

(14)

Our aim is to construct the appropriate controllers ux, uy, uz to stabilize system

(14). Therefore, we propose the following controllers for system (14):

⎧
⎪⎨⎪⎩

ux = −ez − kxex
uy = A(t)

(
y1z1 + y2z2

)
+ B(t)

(||y1|| z1 + ||y2|| z2
)
+
(
x1 ||z1|| + x2 ||z2||

)
+2C(t) − kyey

uz = − ||x1|| − ||x2|| − ||y1|| − ||y2|| + 2 − kzez.

(15)

in which kx, ky, kz are positive gain constants for each controllers and the estimate

values for unknown system parameters are A(t), B(t), and C(t). The update laws for

the unknown parameters are determined as

⎧
⎪⎨⎪⎩

Ȧ = −ey
(
y1z1 + y2z2

)
Ḃ = −ey

(||y1|| z1 + ||y2|| z2
)

Ċ = −2ey.

(16)

Then, the main result of this section will be introduced and proved.

Theorem 5.1 If the adaptive controller (15) and the updating laws of parameter
(16) are chosen, the anti-sychronization between the master system (11) and the slave
system (12) is achieved.

Proof It is noting that the parameter estimation errors ea(t), eb(t) and ec(t) are given

as

⎧
⎪⎨⎪⎩

ea (t) = a − A (t)
eb (t) = b − B (t)
ec (t) = c − C (t) .

(17)

Differentiating (17) with respect to t, we have

⎧
⎪⎨⎪⎩

ėa (t) = −Ȧ (t)
ėb (t) = −Ḃ (t)
ėc (t) = −Ċ (t) .

(18)

Substituting adaptive control law (15) into (14), the closed-loop error dynamics

is defined as
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⎧
⎪⎨⎪⎩

ėx = −kxex
ėy = − (a − A (t))

(
y1z1 + y2z2

)
− (b − B (t))

(||y1|| z1 + ||y2|| z2
)
− 2 (c − C (t)) − kyey

ėz = −kzez

(19)

Then substituting (17) into (19), we have

⎧
⎪⎨⎪⎩

ėx = −kxex
ėy = −ea (t)

(
y1z1 + y2z2

)
− eb (t)

(||y1|| z1 + ||y2|| z2
)
− 2ec (t) − kyey

ėz = −kzez.

(20)

We consider the Lyapunov function given as

V (t) = V
(
ex, ey, ez, ea, eb, ec

)

= 1
2

(
e2x + e2y + e2z + e2a + e2b + e2c

)
.

(21)

The Lyapunov function (21) is clearly definite positive.

Taking time derivative of (21) along the trajectories of (13) and (17) we have

V̇ (t) = exėx + eyėy + ezėz + eaėa + ebėb + ecėc. (22)

From (18), (20), and (22) we get

V̇ (t) = −kxe2x − kye2y − kze2z − ea
[
ey
(
y1z1 + y2z2

)
+ Ȧ

]
−eb

[
ey
(||y1|| z1 + ||y2|| z2

)
+ Ḃ

]
− ec

(
2ey + Ċ

)
.

(23)

Then by applying the parameter update law (16), Eq. (23) become

V̇ (t) = −kxe2x − kye2y − kze2z . (24)

Obviously, the time-derivative of the Lyapunov function V is negative semi-definite.

According to Barbalat’s lemma in the Lyapunov stability theory [41, 67], it follows

that ex (t) → 0, ey (t) → 0, and ez (t) → 0, exponentially when t → 0. That is, anti-

synchronization between master and slave system exponentially. This completes the

proof. □

A numerical example is presented to illustrate the effectiveness of our proposed

anti-synchronization scheme. The parameters of the no-equilibrium systems are

selected as a = 5, b = 3, c = 0.02 and the positive gain constant as k = 6. The initial

conditions of the master system (11) and the slave system (12) have been chosen

as x1 (0) = 0, y1 (0) = 0, z1 (0) = 0, and x2 (0) = 0.5, y2 (0) = 1, z2 (0) = 0.9, respec-

tively. We assumed that the initial values of the parameter estimates are A (0) = 10,

B (0) = 2, and C (0) = 0.
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Fig. 9 Anti-synchronization

of the states x1(t) and x2(t)
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Fig. 10 Anti-synchronization

of the states y1(t) and y2(t)
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It is easy to see that when adaptive control law (15) and the update law for the

parameter estimates (16) are applied, the anti-synchronization of the master (11)

and slave system (12) occurred as illustrated in Figs. 9, 10 and 11. Time series of

master states are denoted as blue solid lines while corresponding slave states are

plotted as red dash-dot lines in such figures. Moreover, the time-history of the anti-

synchronization errors ex, ey, and ez is reported in Fig. 12. The anti-synchronization

errors converge to the zero. Therefore the chaos anti-synchronization between the

no-equilibrium systems is realized.

6 Electronic Circuit of the Proposed System

Implementation of theoretical chaotic model by electronic circuits is an approach

to confirm the feasibility of the theoretical one [2, 64, 78, 97]. In this section, we

choose integrator synthesis to synthesize a circuit from the differential equations in

system (2) as shown in Fig. 13.
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Fig. 11 Anti-synchronization

of the states z1(t) and z2(t)
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Fig. 12 Time series of the

anti-synchronization errors
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As seen in Fig. 13, there are only some basic blocks such as integrators, summing

amplifiers, multipliers or absolute value blocks. These blocks have been realized

easily by electronic components (resistors, capacitors, operational amplifiers, analog

multipliers). As a result, the circuit have been implemented in PSpice as illustrated

in Fig. 14. Signals in the circuit are measured at the outputs of inverting integrators.

Figures 15, 16, 17 present the obtained PSpice results. The designed circuit emulates

well the theoretical model.

7 Fractional Order Form of the No-Equilibrium System

As have been known that practical models such as heat conduction, electrode-

electrolyte polarization, electronic capacitors, dielectric polarization, viso-elastic

systems are more adequately described by the fractional-order different equations

[9, 30, 37, 77, 81, 102]. Adams-Bashforth-Mounlton numerical algorithm is often

used to investigate fractional-order differential equations [21, 25, 80]. Here we

present this algorithm briefly.
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Fig. 13 Block schematic to synthesize the circuit of system (2)

Fig. 14 Observation of the electronic circuit implemented by using PSpice

We consider the fractional-order differential equation as follows:

{
dqx(t)

dtq = f (t, x (t)) , 0 ≤ t ≤ T ,
x(i) (0) = x(i)0 i = 0, 1, ...,m − 1,

(25)
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Fig. 15 PSpice phase

portrait of the circuit in

−V(−x) − V(y) plane

Fig. 16 PSpice phase

portrait of the circuit in

−V(−x) − V(z) plane

where m − 1 < q ≤ m ∈ Z+
. Equation (25) is equivalent to the following Volterra

integral equation:

x (t) =
m−1∑
i=0

ti

i!
x(i)0 + 1

𝛤 (q)

t

∫
0

(t − 𝜏)q−1f (𝜏, x (𝜏)) d𝜏, (26)
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Fig. 17 PSpice phase

portrait of the circuit in

V(y) − V(z) plane

in which the Gamma function 𝛤 (.) is defined as

𝛤 (q) =
∞

∫
0

e−ttq−1dt. (27)

We set h = T
N

, N ∈ Z+
, and tn = nh (n = 0, 1, ...,N). So we can discrete Eq. (26)

as follows

xh
(
tn+1

)
=

m−1∑
i=0

ti
n+1
i!

x(i)0 + hq

𝛤 (q+2)
f
(
tn+1, x

p
h

(
tn+1

))

+ hq

𝛤 (q+2)

n∑
j=0

aj,n+1f
(
tj, xh

(
tj
))
,

(28)

where

aj,n+1 =
⎧
⎪⎨⎪⎩

nq+1 − (n − q) (n + 1)q, if j = 0,
(n − j + 2)q+1 + (n − j)q+1
−2(n − j + 1)q+1, if 1 ≤ j ≤ n,
1, if j = n + 1.

(29)

It is noting that the predicted value xp
h

(
tn+1

)
is calculated as

xp
h

(
tn+1

)
=

m−1∑
i=0

ti
n+1

i!
x(i)0 + 1

𝛤 (q)

n∑
j=0

bj,n+1f
(
tj, xh

(
tj
))
, (30)
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in which

bj,n+1 =
hq

q
(
(n + 1 − j)q − (n − j)q

)
, 0 ≤ j ≤ n. (31)

Here the estimation error e in the method is given by

e = max |||x
(
tj
)
− xh

(
tj
)||| = O (hp) (j = 0, 1, ...,N) , (32)

with p = min (2, 1 + q).
Existence of chaos in fractional-order systems are investigated [28, 29, 53, 107].

In this section, we consider the fractional-order from of the no-equilibrium system

which is described as

⎧
⎪⎨⎪⎩

dqx(t)
dtq = z

dqy(t)
dtq = −z (ay + b |y|) − x |z| − c

dqz(t)
dtq = |x| + |y| − 1,

(33)

where a, b, c are three positive parameters and c ≠ 0 for the commensurate order 0 <

q ≤ 1. Fractional-order system (33) has been studied by applying Adams-Bashforth-

Mounlton numerical algorithm [21, 25, 80]. It is interesting that chaos exists in

fractional-order system (33). Figures 18, 19, 20 display chaotic attractors generated

from fractional-order system (33) for the commensurate order q = 0.999, the para-

meters a = 5, b = 3, c = 0.02 and the initial conditions

(x (0) , y (0) , z (0)) = (0, 0, 0) . (34)

However, when decreasing the value of the commensurate order i.e. q = 0.995,

fractional-order system (33) generates limit cycles as illustrated in Fig. 21.

Fig. 18 2-D projection of

the fractional-order system

(33) in the (x, y)-plane
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Fig. 19 2-D projection of

the fractional-order system

(33) in the (x, z)-plane
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Fig. 20 2-D projection of

the fractional-order system

(33) in the (y, z)-plane
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Fig. 21 3-D projection of

the fractional-order system

(33) in the (x, y, z)-space for

the commensurate order

q = 0.995, the parameters

a = 5, b = 3, c = 0.02, and

the initial conditions

(x (0) , y (0) , z (0)) = (0, 0, 0)
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8 Conclusion

A new three-dimensional autonomous system is proposed in this chapter. This

system can exhibit chaotic attractors with square equilibrium and without equi-

librium. As a result, such system is considered as a system with “hidden attrac-

tor”. Fundamental dynamical properties of the introduced system are investigated

through calculating equilibrium points, phase portraits of chaotic attractors, Poincaré

map, bifurcation diagram, largest Lyapunov exponents and Kaplan-Yorke dimension.

Moreover, synchronization and electronic implementation of our novel system are
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discussed and verified by numerical examples. This work is not only to present a

new system with hidden attractors but also to extend the knowledge about systems

with different families of hidden attractors. Other chaotic systems with different fam-

ilies of hidden attractors will be presented in our next researches. In addition, further

studies about potential applications of such system in secure communications and

cryptography will be done in our future works.
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1 Introduction

Fractional order calculus theory is one of the hottest topics of discussion in recent

years and it’s importance has been documented extensively [1–5]. However, the

applications of fractional calculus [6–34], are just a recent focus of interest. It was

found that many nonlinear fractional order differential systems that exhibit chaotic

or hyperchaotic behavior are interesting as its study links between the science and

nature [35–53]. Scientists who inquire into the laws of nature have struggled to

achieve the synchronization of fractional order chaotic and hyperchaotic systems,

mainly due to its potential applications especially in information processing and

secure communications [54–58].

Recently there are many recent publications that discuss the analog and digital

realizations of chaotic systems as well as some hardware applications. Some of them

are focused on the generalization of the conventional chaotic maps such as the gen-

eralized logistic map [59] where extra degrees of freedom have been added for more

control. Other realization are based on transistor-level realization of some famous

chaotic generators such as Lorenz and Chua’s circuit which are suitable for on-chip

fabrication [60–62]. Moreover, the concept of mixed analog-digital system design

has been introduced to build different chaotic generators such as [63] where digital

counter can control the number of scrolls as well as their locations. In addition due

to the extensive need of digital applications, more multi-scroll chaotic generators

as well as pseudo random number generator (PRNG) have been introduced totally

based on digital designs and FPGA for encryption applications [64, 65].

In most of the chaos synchronization approaches, the master-slave or drive-

response formalism is used. If a particular chaotic system is called the master or

drive system and another chaotic system is called the slave or response system, then

the idea of synchronization is to use the output of the master system to control the

slave system so that the output of the slave system tracks the output of the master sys-

tem asymptotically. Since the seminal work by Pecora and Carroll [66], a variety of

impressive approaches and applications have been proposed for the synchronization

of the chaotic systems [67–88].

Synchronization of fractional chaotic systems becomes a challenging and inter-

esting problem [89–100]. The research on fractional order chaos synchronization

can be classified into two main directions (i) analysis and (ii) synthesis. However,

the problem of synchronization analysis consists of understanding and/or giving

theoretical description of synchronization, and there exist many types of synchro-

nization such as phase synchronization [101, 102], complete synchronization [103],

anti-synchronization [104], projective synchronization [105, 106], hybrid projective

synchronization [107, 108], generalized projective synchronization [109, 110], func-

tion projective synchronization [111, 112], generalized synchronization [113, 114],

Q-S synchronization [115], full state hybrid projective synchronization [116–118],

finite-time synchronization [119], impulsive synchronization [120, 121] and expo-

nential synchronization [122]. On the other hand the problem of synchronization

synthesis concerns on finding or designing a synchronization control, such that two
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chaotic systems exhibit different types of synchronization behaviors. Until now, a

wide variety of fractional techniques have been used to design a synchronization

control, for example, sliding-mode control [123–125], linear control [126], nonlin-

ear control [127], active control [128], adaptive control [129, 130], feedback control

[131, 132], scalar signal technique [133, 134].

In full state hybrid projective synchronization (FSHPS), each slave system state

achieves synchronization with linear constant combination of master system states

[135–138]. When the linear constant combinations in FSHPS are replaced by linear

function combinations, an interesting type of synchronization that may occur is the

full state hybrid function projective synchronization (FSHFPS) [139]. Recently, an

interesting type of synchronization has been introduced, in which each slave system

state synchronizes with a linear function combination of slave system states. The pro-

posed scheme is called inverse full state hybrid function projective synchronization

(IFSHFPS). A particular case is represented, when the scaling functions are con-

stants, for which the inverse full state hybrid projective synchronization (IFSHPS)

is obtained [140].

In generalized synchronization (GS), the master system and the slave system are

nonidentical dynamical systems. This type of synchronization is characterized by the

existence of a functional relationship 𝜙 between the state X of the master system and

the state Y of the slave system, so that Y = 𝜙 (X) after a transient time. Nowadays

numerous researches of GS of fractional chaotic systems have been done theoreti-

cally and experimentally [141–143]. Recently, another interesting synchronization

type was appeared called inverse generalized synchronization (IGS), where the syn-

chronization condition becomes X = 𝜑 (Y), where𝜑 is a differentiable function, after

a transient time. The relevant researches for IGS in fractional chaotic systems still

in an initial stage. However, IGS was applied successfully in continuous-time and

discrete-time chaotic systems with integer-order [144, 145].

When studying the synchronization of chaotic systems, an interesting phenom-

enon that may occur is the co-existence of several synchronization types. Recently,

there are many papers studing the problem of co-existence of different types of

chaos synchronization. For example, the co-existence of PS, FSHPS and GS between

hyperchaotic maps was studied in [146]. A general control scheme was proposed

in [147], to study the co-existence of inverse projective synchronization (IPS), IGS

and Q-S synchronization between arbitrary 3D hyperchaotic maps. For integer-order

chaotic systems, two synchronization schemes of co-existence has been introduced

in [148]. The co-existence of FSHPS and IFSHPS between different dimensional

incommensurate fractional order chaotic systems was presented in [149]. In [150], a

robust method was applied to study coexistence of GS and IGS in fractional chaotic

system with different dimensions. The co-existence of synchronization types is very

useful in secure communication and chaotic encryption schemes.

Based on these considerations, this work presents new approaches to rigor-

ously study the co-existence of some chaos synchronization types between frac-

tional dynamical systems with different dimensions. By exploiting stability theory

of fractional-order differential equations, the study first analyzes the coexistence

of FSHFPS, IGS, IFSHPS and GS when the master system is a three-dimensional
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incommensurate fractional system and the slave system is a four-dimensional incom-

mensurate fractional system. Successively, the co-existence of four different syn-

chronization types is illustrated, i.e., FSHFPS, IFSHFPS, IGS and GS are proved to

co-exist between three-dimensional incommensurate fractional master system and

four-dimensional commensurate fractional slave system. Numerical examples of co-

existence of synchronization types are illustrated, with the aim to show the effective-

ness of the novel approaches developed herein.

The rest of this study is organized as follows. In Sect. 2, some preliminaries of

fractional-order calculus and stability results of fractional systems are provided. In

Sect. 3, the definitions of FSHFPS, IFSHFPS, GS and IGS are presented. Our main

synchronization approaches are introduced in Sects. 4 and 5. Finally, Sect. 6 draws

some concluding remarks.

2 Preliminaries

2.1 Fractional Calculus

There are several definitions of a fractional derivative [1, 151]. The two most com-

monly used are the Riemann-Liouville and Caputo definitions. Each definition uses

Riemann-Liouville fractional integration and derivatives of whole order. The differ-

ence between the two definitions is in the order of evaluation. The Riemann-Liouville

fractional integral operator of order p > 0 of the function f (t) is defined as,

Jpf (t) = 1
𝛤 (p) ∫

t

0
(t − 𝜏)p−1f (𝜏)d𝜏, t > 0. (1)

where 𝛤 denotes Gamma function. Some properties of the operator Jp
can be found,

for example, in [2, 4]. We recall only the following, for p, q > 0 and 𝛾 > −1, we

have,

JpJqf (t) = Jp+qf (t), (2)

Jpt𝛾 = 𝛤 (𝛾 + 1)
𝛤 (p + 𝛾 + 1)

tp+𝛾
. (3)

In this study, Caputo definition is used and the fractional derivative of f (t) is

defined as,

Dp
t f (t) = Jm−p

( dm

dtm f (t)
)
= 1

𝛤 (m − p) ∫
t

0

f (m)(𝜏)
(t − 𝜏)p−m+1 d𝜏, (4)

for m − 1 < p ≤ m, m ∈ IN, t > 0.
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The fractional differential operator Dp
t is left-inverse (and not right-inverse) to the

fractional integral operator Jp
, i.e. Dp

t Jp = I where I is the identity operator.

The Laplace transform of the Caputo fractional derivative rule reads

𝐋
(
Dp

t f (t)
)
= sp𝐅 (s) −

n−1∑
k=0

sp−k−1f (k) (0) , (p > 0, n − 1 < p ≤ n) . (5)

Particularly, when p ∈
]
0, 1

]
, we have 𝐋

(
Dp

t f (t)
)
= sp𝐅 (s) − sp−1f (0).

The Laplace transform of the Riemann-Liouville fractional integral rule satisfies

𝐋 (Jpf (t)) = s−p𝐅 (s) , (p > 0) . (6)

Caputo fractional derivative appears more suitable to be treated by the Laplace trans-

form technique in that it requires the knowledge of the (bounded) initial values of the

function and of its integer derivatives of order k = 1, 2,… ,m − 1, in analogy with

the case when p = n.

Lemma 1 [105] Suppose f (t) has a continuous kth derivative on [0, t] (k ∈ N, t >
0), and let p, q > 0 be such that there exists some 𝓁 ∈ N with 𝓁 ≤ k and p, p + q ∈
[𝓁 − 1,𝓁]. Then

Dp
t Dq

t f (t) = Dp+q
t f (t) . (7)

Remark 1 Note that the condition requiring the existence of the number 𝓁 with the

above restrictions in the property is essential. In this study, we consider the case

that p, q ∈
]
0, 1

]
and p + q ∈

]
0, 1

]
. Apparently, under such conditions this property

holds.

2.2 Stability of Linear Fractional Systems

Consider the following linear fractional system

Dp
t X(t) = AX(t), (8)

where Dp
t =

[
Dp1

t ,Dp2
t , ...,Dpn

t
]

is the Caputo fractional derivative, pi are different

rational numbers between 0 and 1, for i = 1, 2, ..., n. Assume that pi =
𝛼i

𝛽i
,
(
𝛼i, 𝛽i

)
=

1, 𝛼i, 𝛽i ∈ ℕ, for i = 1, 2, ..., n. Let M be the least common multiple of the denomi-

nators 𝛽i’s of pi’s.

Lemma 2 [152] The system (8) is asymptotically stable if all roots 𝜆 of the equation

det
(
diag

(
𝜆

Mp1 , 𝜆Mp2 , ..., 𝜆Mpn
)
− A

)
= 0, (9)

satisfy |arg (𝜆)| > 𝜋

2M
.
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2.3 Fractional Lyapunov Method

For stability analysis of fractional order systems, a fractional-order extension of Lya-

punov direct method has been proposed.

Definition 1 A continuous function 𝛾 is said to belong to class-K if it is strictly

increasing and 𝛾 (0) = 0.

Theorem 1 [153] Let X = 0 be an equilibrium point for the following fractional
order system

Dp
t X (t) = F (X (t)) , (10)

where p ∈
]
0, 1

]
. Assume that there exists a Lyapunov function V (X (t)) and class-K

functions 𝛾i (i = 1, 2, 3) satisfying

𝛾1 (‖X‖) ≤ V (X (t)) ≤ 𝛾2 (‖X‖) , (11)

Dp
t V (X (t)) ≤ −𝛾3 (‖X‖) . (12)

Then the system (10) is asymptotically stable.

From Theorem 1, we can come to the following theorem.

Theorem 2 [154] If there exists a positive definite Lyapunov function V (X (t)) such

that Dp
t V (X (t)) < 0, for all t > 0, then the trivial solution of system (10) is asymp-

totically stable.

Lemma 3 [155] ∀X(t) ∈ 𝐑n
, ∀p ∈

]
0, 1

]
and ∀t > 0

1
2

Dp
t
(
XT (t)X(t)

) ≤ XT (t)Dp
t (X(t)) . (13)

3 Definitions of FSHFPS, IFSHPS, IFSHFPS, GS and IGS

Consider the following master system

Dpi
t xi(t) = Fi(X (t)), i = 1, 2, ..., n, (14)

where X(t) =
(
x1(t), x2(t), ..., xn(t)

)T
is the state vector of the master system,

Fi ∶ 𝐑n → 𝐑, 0 < pi ≤ 1, Dpi
t is the Caputo fractional derivative of order pi.

The slave system is described by the following fractional system

Dqi
t yi(t) = Gi(Y(t)) + ui, i = 1, 2, ...,m, (15)
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where Y(t) =
(
y1(t), y2(t), ..., ym(t)

)T
is the state vector of the slave system,

Gi ∶ 𝐑m → 𝐑, 0 < qi ≤ 1, Dqi
t is the Caputo fractional derivative of order qi and

ui, i = 1, 2, ...,m, are synchronization controllers.

Definition 2 The master system (14) and the slave system (15) are said to be full

state hybrid function projective synchronized (FSHFPS), if there exist controllers

ui, i = 1, 2, ...,m, and given differentiable functions 𝛼j (t) , j = 1, 2, ..., n, such that

the synchronization errors

ei (t) = yi (t) −
n∑

j=1
𝛼j (t) xj (t) , i = 1, 2, ...,m, (16)

satisfy that limt→∞ ei(t) = 0.

Definition 3 The master system (14) and the slave system (15) are said to be inverse

full state hybrid function projective synchronized (IFSHFPS), if there exist con-

trollers ui, i = 1, 2, ...,m, and given differentiable functions 𝛽j (t) , j = 1, 2, ...,m, such

that the synchronization errors

ei (t) =
m∑

j=1
𝛽j (t) yi (t) − xi (t) , i = 1, 2, ..., n, (17)

satisfy that limt→∞ ei(t) = 0.

Definition 4 The master system (14) and the slave system (15) are said to be inverse

full state hybrid projective synchronized (IFSHPS), if there exist controllers ui, i =
1, 2, ...,m, and given real numbers 𝛽i, i = 1, 2, ...,m, such that the synchronization

errors

ei (t) =
m∑

j=1
𝛽jyi (t) − xi (t) , i = 1, 2, ..., n, (18)

satisfy that limt→∞ ei(t) = 0.

Definition 5 The master system (14) and the slave system (15) are said to be gen-

eralized synchronized (GS), if there exist controllers ui, i = 1, 2, ...,m, and given

differentiable functions 𝜙j ∶ 𝐑n → 𝐑, j = 1, 2, ...,m, such that the synchronization

errors

ei (t) = yi (t) − 𝜙i (X (t)) , i = 1, 2, ...,m, (19)

satisfy that limt→∞ ei(t) = 0.

Definition 6 The master system (14) and the slave system (15) are said to be inverse

generalized synchronized (IGS), if there exist controllers ui, i = 1, 2, ...,m, and given

differentiable functions 𝜑i ∶ 𝐑m → 𝐑, i = 1, 2, ..., n, such that the synchronization

errors
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ei (t) = 𝜑i (Y (t)) − xi (t) , i = 1, 2, ..., n, (20)

satisfy that limt→∞ ei(t) = 0.

4 Coexistence of FSHFPS, IGS, IFSHPS and GS

4.1 Systems Description and Problem Statement

Consider the following master system

Dp1
t x1(t) = f1(X (t)), (21)

Dp2
t x2(t) = f2(X (t)),

Dp3
t x3(t) = f3(X (t)),

where X(t) =
(
x1(t), x2(t), x3(t)

)T
is the state vector of the master system (21),

fi ∶ 𝐑3 → 𝐑, i = 1, 2, 3, 0 < pi ≤ 1 for i = 1, 2, 3, Dpi
t is the Caputo fractional deriv-

ative of order p
i
.

Suppose that the slave system is in the following form

Dq1
t y1(t) =

4∑
j=1

b1jyj(t) + g1(Y(t)) + u1, (22)

Dq2
t y2(t) =

4∑
j=1

b2jyj(t) + g2(Y(t)) + u2,

Dq3
t y3(t) =

4∑
j=1

b3jyj(t) + g3(Y(t)) + u3,

Dq4
t y4(t) =

4∑
j=1

b4jyj(t) + g4(Y(t)) + u4,

where Y(t) =
(
y1(t), y2(t), y3(t), y4(t)

)T
is the state vector of the slave system (22),(

bij
)
∈ 𝐑4×4

, gi ∶ 𝐑4 → 𝐑, i = 1, 2, 3, 4, are nonlinear function, 0 < qi ≤ 1 for

i = 1, 2, 3, 4, Dqi
t is the Caputo fractional derivative of order qi and ui, i = 1, 2, 3, 4,

are controllers to be determined.

The problem of the coexistence of FSHFPS, IGS, IFSHPS and GS between

the master system (21) and the slave system (22) is formulated by the following

definition.

Definition 7 We say that FSHFPS, IGS, IFSHPS and GS co-exist in the syn-

chronization of the master system (21) and the slave system (22), if there exists



A Study on Coexistence of Different Types of Synchronization . . . 645

controllers ui, i = 1, 2, 3, 4, differentiable functions
(
𝛼j (t)

)
1≤j≤3 , differentiable func-

tion 𝜑 ∶ 𝐑4 → 𝐑, real numbers
(
𝛽j
)
1≤j≤3 and differentiable function 𝜙 ∶ 𝐑3 → 𝐑,

such that the synchronization errors

e1(t) = y1 (t) −
3∑

j=1
𝛼j (t) xj (t) , (23)

e2(t) = 𝜑 (Y (t)) − x2 (t) ,

e3(t) =
4∑

j=1
𝛽jyj (t) − x3,

e4(t) = y4 (t) − 𝜙 (X (t)) ,

satisfy that limt→∞ ei(t) = 0, i = 1, 2, 3, 4.

4.2 Analytical Results

The error system between the master system (21) and the slave system (22), can be

derived as follows

Dq1
t e1(t) = Dq1

t y1 (t) − Dq1
t

( 3∑
j=1

𝛼j (t) xj (t)

)
, (24)

ė2(t) =
𝜕𝜑

𝜕y2
ẏ2 (t) +

4∑
j=1
j≠2

𝜕𝜑

𝜕yj
ẏj − ẋ2 (t) ,

Dq3
t e3(t) = 𝛽3Dq3

t y3 (t) +
4∑

j=1
j≠3

𝛽jD
q3
t yj (t) − Dq3

t x3 (t) ,

Dq4
t e4(t) = Dq4

t y4 (t) − Dq4
t (𝜙 (X (t))) .

We suppose that the controllers ui, i = 1, 2, 3, 4, can be designed in the following

forms

u1 = v1, (25)

u2 = −
4∑

j=1
b2jyj (t) − g2 (Y (t)) + J1−q2

(
v2
)
,

u3 = v3,
u4 = v4,

where vi, 1 ≤ i ≤ 4, are new controllers to be determined later.
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By substituting (25) into (22), we can rewrite the slave system as

Dqi
t yi (t) =

4∑
j=1

bijyj (t) + gi (Y (t)) + vi, i = 1, 3, 4, (26)

and

Dq2
t yi (t) = J1−q2

(
v2
)
. (27)

By applying the Caputo fractional derivative of order 1 − q2, to both the left and

right sides of Eq. (27), we obtain

ẏ2 (t) = D1−q2
t

(
Dq2

t y2 (t)
)

(28)

= D1−q2
t J1−q2

(
v2
)

= v2.

Note that 1 − q2 satisfies 1 − q2 ∈ (0, 1]. According to Lemma 1 the above state-

ment holds.

Furthermore, the error system (24) can be written as

Dq1
t e1(t) = − ||b11|| e1 (t) + v1 + R1, (29)

Dq3
t e3(t) = − ||b33|| e3 (t) + 𝛽3v3 + R3,

Dq4
t e4(t) = − ||b44|| e4 (t) + v4 + R4,

and

ė2(t) =
(
b22 − c

)
e2 (t) +

𝜕𝜑

𝜕y2
v2 + R2, (30)

where c is a control constant and

R1 = ||b11|| e1 (t) +
4∑

j=1
b1jyj (t) + g1 (Y (t)) − Dq1

t

( 3∑
j=1

𝛼j (t) xj (t)

)
, (31)

R2 =
(
c − b22

)
e2 (t) +

4∑
j=1
j≠2

𝜕𝜑

𝜕yj
ẏj − ẋ2 (t) ,

R3 = ||b33|| e3 (t) +
4∑

j=1
𝛽3b3jyj (t) + 𝛽3g3 (Y (t)) +

4∑
j=1
j≠3

𝛽jD
q3
t yj (t) − Dq3

t x3 (t) ,

R4 = ||b44|| e4 (t) +
4∑

j=1
b4jyj (t) + g4 (Y (t)) − Dq4

t (𝜙 (X (t))) .
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To achieve synchronization between the master system (21) and the slave system

(22), we assume that
𝜕𝜑

𝜕y2
, 𝛽3 ≠ 0. Hence, we have the following result.

Theorem 3 The co-existence of FSHFPS, IFSHPS, IGS and GS between the master
system (21) and the slave system (22) is achieved under the following control laws

v1 = −R1, (32)

v3 = −
R3
𝛽3

,

v4 = −R4,

and
v2 = −

R2
𝜕𝜑

𝜕y2

. (33)

Proof Firstly, by substituting Eq. (32) into Eq. (29), on can have

Dq
t e(t) = Ke(t), (34)

where Dq
t e(t) = (Dq1

t e1(t),D
q3
t e3(t),D

q4
t e4(t)) and

K =
⎛
⎜⎜⎝

− ||b11|| 0 0
0 − ||b33|| 0
0 0 − ||b44||

⎞
⎟⎟⎠
. (35)

The roots of det
(
diag

(
𝜆

Mq1 , 𝜆Mq3 , 𝜆Mq4
)
− K

)
= 0, where M is the least common

multiple of the denominators of qi’s, i = 1, 3, 4, can be described as

𝜆1 = ||b11||
1

Mq1

(
cos 𝜋

Mq1
+ 𝐢 sin 𝜋

Mq1

)
,

𝜆2 = ||b33||
1

Mq3

(
cos 𝜋

Mq3
+ 𝐢 sin 𝜋

Mq3

)
,

𝜆3 = ||b44||
1

Mq4

(
cos 𝜋

Mq4
+ 𝐢 sin 𝜋

Mq4

)
.

It is easy to see that arg
(
𝜆i
)
= 𝜋

qiM
>

𝜋

2M
, i = 1, 3, 4. Then, according to Lemma 2,

the zero solution of the system (34) is a globally asymptotically stable, i.e.

lim
t→∞

e1(t) = lim
t→∞

e3(t) = lim
t→∞

e4(t) = 0. (36)

Secondly, by applying the control law described by Eq. (33) to Eq. (30), the dynamics

of error e2 (t) can be written as
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ė2(t) = −
(
b22 − c

)
e2 (t) . (37)

If the control constant c is chosen such that b22 − c < 0, then we get

lim
t→∞

e2(t) = 0. (38)

Finally, from Eqs. (36) and (37), we conclude that the master system (21) and the

slave system (22) are globally synchronized.

4.3 Simulation Results

Consider the incommensurate fractional order financial system studied by Chen in

[156]

Dp1x1 = x3 +
(
x2 − a

)
x1, (39)

Dp2x2 = 1 − bx2 − x21,
Dp3x3 = −x1 − cx3,

as a master system. This system exhibits chaotic behaviors when
(
p1, p2, p3

)
=

(0.97, 0.98, 0.99) , (a, b, c) = (1, 0.1, 1) and the initial point is (2,−1, 1) . Attractors

of the master system (39) are shown in Figs. 1 and 2.

The slave system is

Dq1y1 = 0.56y1 − y2 + u1, (40)

Dq2y2 = y1 − 0.1y2y23 + u2,
Dq3y3 = 4y2 − y3 − 6y4 + u3,
Dq4y4 = 0.5y3 + 0.8y4 + u4,

where y1, y2, y3, y4 are states and u1, u2, u3, u4 are synchronization controllers. This

system, as shown in [157], exhibits hyperchaotic behavior when (u1, u2, u3, u4) =
(0, 0, 0, 0) and

(
q1, q1, q1, q1

)
= (0.98, 0.98, 0.95, 0.95). The attractors of the

uncontrolled system (40) are shown in Figs. 3 and 4.

Using the notations presented in Sect. 4.1, the errors between the master system

(39) and the slave system (40) are defined as follows

e1 = y1 − 𝛼1 (t) x1 − 𝛼2 (t) x2 − 𝛼3 (t) x3, (41)

e2 = 𝜑
(
y1, y2, y3, y4

)
− x2,

e3 = 𝛽1y1 + 𝛽2y2 + 𝛽3y3 + 𝛽4y4 − x3,
e4 = y4 − 𝜙

(
x1, x2, x3

)
,
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Fig. 1 Chaotic attractors in 2-D of the master system (39)

Fig. 2 Chaotic attractors in 3-D of the master system (39)
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Fig. 3 Chaotic attractors in 2-D of the slave system (40) with (u1, u2, u3, u4) = (0, 0, 0, 0)

Fig. 4 Chaotic attractors in 3-D of the slave system (40) with (u1, u2, u3, u4) = (0, 0, 0, 0)
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where

(
𝛼1 (t) , 𝛼2 (t) , 𝛼3 (t)

)
=
(
t, t + 2, t2

)
,

𝜑
(
y1, y2, y3, y4

)
= y2 + y3y1y4,(

𝛽1, 𝛽2, 𝛽3, 𝛽4
)
= (1, 2, 3, 4) ,

𝜙
(
x1, x2, x3

)
= x1x2 + x3.

So,

𝜕

𝜕y2
𝜑
(
y1, y2, y3, y4

)
= 1 and 𝛽3 = 3.

Then according to Theorem 3, the error system can be described as

D0.98e1 = −56e1, (42)

D0.95e3 = −e3,
D0.95e4 = −0.8e4,

Fig. 5 Time evolution of the errors e1, e3 and e4 the master system (39) and the slave system (40)
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Fig. 6 Time evolution of

the error e2 between the

master system (39) and the

slave system (40)

and

ė2 = ce2, (43)

where c = −5.
The fractional Euler integration method and fourth order Runge–Kutta integration

method have been used to solve the error system described by (42) and (43), respec-

tively. In addition, simulation time Tm = 120 s and time step h = 0.005 s have been

employed. The initial values of the master system (39) and the slave system (40) are

[x1(0), x2(0), x3(0)] = [2,−1, 1] and [y1(0), y2(0), y3(0), y4(0)] = [−1, 1.5,−1,−2],
respectively, and the initial states of the error system are [e1(0),
e3(0), e4(0)] = [1,−8,−3] and e2(0) = −1.5. Figures 5 and 6 displays the synchro-

nization errors between the master system (39) and the slave system (40).

5 Coexistence of FSHFPS, IFSHFPS, IGS and GS

5.1 Systems Description and Problem Statement

Now, we consider the master and the slave systems as,

Dp1
t x1(t) = f1(X (t)), (44)

Dp2
t x2(t) = f2(X (t)),

Dp3
t x3(t) = f3(X (t)),
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and

Dq
t y1(t) =

4∑
j=1

b1jyj(t) + g1(Y(t)) + u1, (45)

Dq
t y2(t) =

4∑
j=1

b2jyj(t) + g2(Y(t)) + u2,

Dq
t y3(t) =

4∑
j=1

b3jyj(t) + g3(Y(t)) + u3,

Dq
t y4(t) =

4∑
j=1

b4jyj(t) + g4(Y(t)) + u4,

where X(t) =
(
x1(t), x2(t), x3(t)

)T
, Y(t) =

(
y1(t), y2(t), y3(t), y4(t)

)T
are the states vec-

tor of the master system (44) and the slave system (45), respectively, fi ∶ 𝐑3 → 𝐑,
i = 1, 2, 3,

(
bij
)
∈ 𝐑4×4

, gi ∶ 𝐑4 → 𝐑, i = 1, 2, 3, 4, are nonlinear

function, 0 < pi ≤ 1 for i = 1, 2, 3, 0 < q ≤ 1, Dpi
t , Dq

t are the Caputo fractional

derivatives of orders p
i

and q, respectively, and ui, i = 1, 2, 3, 4, are controllers to

be determined.

The definition of coexistence of FSHFPS, IFSHFPS, IGS and GS between the

master system (44) and the slave system (45) is given by

Definition 8 We say that FSHFPS, IFSHFPS, IGS and GS co-exist in the synchro-

nization of the master system (44) and the slave system (45), if there exists con-

trollers ui, i = 1, 2, 3, 4, given differentiable functions
(
𝛼j (t)

)
1≤j≤3,

(
𝛽j(t)

)
1≤j≤4, and

two differentiable functions 𝜑 ∶ 𝐑4 → 𝐑, 𝜙 ∶ 𝐑3 → 𝐑, such that the synchroniza-

tion errors

e1(t) = y1 (t) −
3∑

j=1
𝛼j (t) xj (t) , (46)

e2(t) =
4∑

j=1
𝛽j (t) yj (t) − x2 (t) ,

e3(t) = 𝜑 (Y (t)) − x3,
e4(t) = y4 (t) − 𝜙 (X (t)) ,

satisfy that limt→∞ ei(t) = 0, i = 1, 2, 3, 4.
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5.2 Analytical Results

The error system (46) can be differentiated as follows:

Dq
t e1(t) = Dq

t y1 (t) − Dq
t

( 3∑
j=1

𝛼j (t) xj (t)

)
, (47)

ė2(t) =
4∑

j=1
�̇�j (t) yj (t) +

4∑
j=1

𝛽j (t) ẏj (t) − ẋ2 (t) ,

ė3(t) =
4∑

j=1

𝜕𝜑

𝜕yj
ẏj − ẋ3,

Dq
t e4(t) = Dq

t y4 (t) − Dq
t (𝜙 (X (t))) .

In this case, the controllers ui, i = 1, 2, 3, 4, can be constructed as

u1 = v1, (48)

u2 = −
4∑

j=1
b2jyj (t) − g2 (Y (t)) + J1−q2

(
v2
)
,

u3 = −
4∑

j=1
b3jyj (t) − g3 (Y (t)) + J1−q3

(
v3
)
,

u4 = v4,

where vi, 1 ≤ i ≤ 4, are new controllers to be determined later.

From Eqs. (45)–(48), we get

Dq
t yi (t) =

4∑
j=1

bijyj (t) + gi (Y (t)) + vi, i = 1, 4, (49)

and

Dq
t yi (t) = J1−q (vi

)
, i = 2, 3. (50)

Now, applying the Laplace transform to Eq. (50), and letting

𝐅i(s) = 𝐋
(
yi(t)

)
, i = 2, 3, (51)

we obtain

sq𝐅i(s) − sq−1yi(0) = sq−1𝐋
(
vi
)
, i = 2, 3, (52)

multiplying both the left-hand and right-hand sides of Eq. (52) by s1−q
and again

applying the inverse Laplace transform to the result, we obtain
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ẏi(t) = vi, i = 2, 3. (53)

From Eqs. (47)–(49) and (53), we get the error dynamical system as follows

Dq
t e1(t) =

(
b11 − c11

)
e1 (t) +

(
b14 − c14

)
e4 (t) + v1 + R1, (54)

ė2(t) =
(
b22 − c22

)
e2 (t) +

(
b23 − c23

)
e3 (t) + 𝛽2 (t) v2 + 𝛽3 (t) v3 + R2,

ė3(t) =
(
b32 − c32

)
e3 (t) +

(
b33 − c33

)
e3 (t) +

𝜕𝜑

𝜕y2
v2 +

𝜕𝜑

𝜕y3
v3 + R3,

Dq
t e4(t) =

(
b41 − c41

)
e1 (t) +

(
b44 − c44

)
e4 (t) + v4 + R4,

where c11, c14, c22, c23, c32, c33, c41, c44 are control constants and

R1 =
(
c11 − b11

)
e1 (t) +

(
c14 − b14

)
e4 (t) +

4∑
j=1

b1jyj (t) + g1 (Y (t))

−Dq
t

( 3∑
j=1

𝛼j (t) xj (t)

)
, (55)

R2 =
(
c22 − b22

)
e2 (t) +

(
c23 − b23

)
e3 (t) +

4∑
j=1

�̇�j (t) yj (t) + 𝛽1 (t) ẏ1 (t) + 𝛽4 (t) ẏ4 (t) − ẋ2 (t) ,

R3 =
(
c32 − b32

)
e2 (t) +

(
c33 − b33

)
e3 (t) +

𝜕𝜑

𝜕y1
ẏ1 (t) +

𝜕𝜑

𝜕y4
ẏ4 (t) − ẋ3 (t) ,

R4 =
(
c41 − b41

)
e1 (t) +

(
c44 − b44

)
e4 (t) +

4∑
j=1

b4jyj (t) + g4 (Y (t)) − Dq
t (𝜙 (X (t))) .

Rewriting the error system described by Eq. (54) in the following compact forms

Dq
t eI(t) =

(
BI − CI

)
eI(t) + VI + RI , (56)

and

ė(t) =
(
BII − CII

)
eII(t) +𝐌 × VII + RII , (57)

where Dq
t eI(t) =

(
Dq

t e1(t), Dq
t e4(t)

)T
, ėII(t) =

(
ė2(t), ė3(t)

)T
, BI =

(
b11 b14
b41 b44

)
,

BII =
(

b22 b23
b32 b33

)
, CI =

(
c11 c12
c21 c22

)
, CII =

(
c33 c34
c43 c44

)
, 𝐌 =

(
𝛽2 (t) 𝛽3 (t)
𝜕𝜑

𝜕y2
𝜕𝜑

𝜕y3

)
,

RI =
(
R1, R4

)T
, RII =

(
R2, R3

)T
,VI =

(
v1, v4

)T
and VII =

(
v2, v3

)T
.

To achieve synchronization between the master system (44) and the slave system

(45), we assume that the matrix 𝐌 is invertible. Hence, we have the following result.

Theorem 4 If the control matrices CI and CII are chosen such that
(
BI − CI

)
and

(BI − CI)T + (BI − CI) are negative matrices, then the co-existence of FSHFPS,
IFSHFPS, IGS and GS between the master system (44) and the slave system (45)
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is achieved under the following control laws

VI = −RI , (58)

and
VII = −𝐌−1 × RII , (59)

where 𝐌−1 is the inverse matrix of 𝐌.

Proof Firstly, by substituting Eq. (58) into Eq. (56), one can have

Dq
t eI(t) =

(
BI − CI

)
eI(t). (60)

If a Lyapunov function candidate is chosen as

V
(
eI(t)

)
= 1

2
eT

I (t)eI(t). (61)

Then, the time Caputo fractional derivative of order q of V along the trajectory of

the system (60) is as follows

Dq
t V (e (t)) = Dq

t

(1
2

eT
I (t)eI(t)

)
, (62)

using Lemma 3 in Eq. (62), we get

Dq
t V (e (t)) ≤ eT

I (t)Dq
t eI (t)

= eT
I (t)

(
BI − CI

)
eI (t) < 0,

from Theorem 2, the zero solution of the system (60) is a globally asymptotically

stable, i.e.

lim
t→∞

e1(t) = lim
t→∞

e4(t) = 0. (63)

Secondly, applying the control law described by Eq. (59) to Eq. (57) yields the result-

ing error dynamics as follows:

ėII(t) =
(
BII − CII

)
eII(t). (64)

Construct the candidate Lyapunov function in the form: V
(
eII(t)

)
= eT

II(t)eII(t), we

obtain



A Study on Coexistence of Different Types of Synchronization . . . 657

V̇ (e(t)) = ėT
II(t)eII(t) + eT

II(t)ėII(t)
= eT

II(t)(BII − CII)TeII(t) + eT
II(t)

(
BII − CII

)
eII (t)

= eT
II(t)

[
(BII − CII)T + (BII − CII)

]
eII(t) < 0.

Thus, from the Lyapunov stability theory of integer-order systems, that is

lim
t→∞

e2(t) = lim
t→∞

e3(t) = 0. (65)

Finally, from Eqs. (63) and (65), we conclude that the master system (44) and the

slave system (45) are globally synchronized.

5.3 Simulation Results

Consider the fractional version of the modified coupled dynamos system proposed

by Wang and Wang [158]

Dp1x1 = −𝛼x1 +
(
x3 + 𝛽

)
x2, (66)

Dp2x2 = −𝛼x2 +
(
x3 − 𝛽

)
x1,

Dp3x3 = x3 − x1x2,

as a master system. The system (66) exhibits chaotic behaviors when (p1, p2, p3) =
(0.9, 0.93, 0.96) and (𝛼, 𝛽) = (2, 1). Attractors of the master system (66) are shown

in Figs. 7 and 8.

As a slave system, we consider the following system

Dqy1 = a
(
y2 − y1

)
+ y4 + u1, (67)

Dqy2 = dy1 + cy2 − y1y3 + u2,
Dqy3 = −by3 + y1y2 + u3,
Dqy4 = ry4 + y2y3 + u4,

where y1, y2, y3, y4 are states and u1, u2, u3, u4 are synchronization controllers.

This system is the fractional version of the new hyperchaotic Chen proposed by Li

et al. [159]. the slave system (67), as shown in [160], exhibits hyperchaotic behav-

ior when (u1, u2, u3, u4) = (0, 0, 0, 0) , (a, b, c, d, r) = (35, 3, 12, 7, 0.5) and q = 0.96.
The attractors of the uncontrolled system (67) are shown in Figs. 9 and 10.

Using the notations described in Sect. 5.1, the errors system between the master

system (66) and the slave system (67) are given as
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Fig. 7 Chaotic attractors in 2-D of the master system (66)

Fig. 8 Chaotic attractors in 3-D of the master system (66)
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Fig. 9 Chaotic attractors in 2-D of the slave system (67) with (u1, u2, u3, u4) = (0, 0, 0, 0)

Fig. 10 Chaotic attractors in 3-D of the slave system (67) with (u1, u2, u3, u4) = (0, 0, 0, 0)
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e1(t) = y1 (t) −
3∑

j=1
𝛼j (t) xj (t) , (68)

e2(t) =
4∑

j=1
𝛽j (t) yj (t) − x2 (t) ,

e3(t) = 𝜑 (Y (t)) − x3,
e4(t) = y4 (t) − 𝜙 (X (t)) ,

where

(
𝛼1 (t) , 𝛼2 (t) , 𝛼3 (t)

)
= (t, 2, 3t) ,(

𝛽1 (t) , 𝛽2 (t) , 𝛽3 (t) , 𝛽4 (t)
)
=
(
t + 1, 2t, 3t, t2

)
,

𝜑
(
y1, y2, y3, y4

)
= y21 + 6y2 + 8y3 + y24,

𝜙
(
x1, x2, x3

)
= x1x22 + x23.

So,

𝐌 =
(
6 8
2 2

)
, (69)

and

𝐌−1=

(
−1
2

2
1
2

−3
2

)
. (70)

According to Theorem 4, there exists two control matrices CI and CII so that

FSHFPS, IFSHFPS, IGS and GS co-exists in the synchronization of the master sys-

tem (66) and the slave system (67). For example, if we select CI and CII as

CI =
(
14 0
0 0

)
, (71)

and

CII =
(
−35 1
0 1

)
, (72)

then it is easy to know that BI − CI is a negative definite matrix where

BI =
(
12 0
0 −7

)
. (73)

Also we can see that (BII − CII)T + (BII − CII) is a negative definite matrix where

BII =
(
−35 1
0 0.5

)
. (74)
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Hence the synchronization between systems (66) and (67) is achieved and the

error system can be described as follows:

D0.96e1 = −2e1, (75)

D0.96e4 = −7e4,

and

ė2 = −35e2, (76)

ė3 = −0.5e3.

Fractional Euler integration method and fourth order Runge–Kutta integration

method have been used to solve the error system described by (75) and (76), respec-

tively. In addition, simulation time Tm = 120s and time step h = 0.005s have been

employed. The initial values of the master system (66) and the slave

Fig. 11 Time evolution of the errors e1 and e4 between the master system (66) and the slave system

(67)

Fig. 12 Time evolution of the errors e2 and e3 between the master system (66) and the slave system

(67)
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system (67) are [x1(0), x2(0), x3(0)] = [−0.25,−0.25, 0.25] and [y1(0), y2(0), y3(0),
y4(0)] = [2, 2, 1,−1], respectively, and the initial states of the error system are

[e1(0), e4(0)] = [2.5,−1.2343] and [e2(0), e3(0)] = [2.25, 24.75]. Figures 11 and 12

displays the synchronization errors between the master system (66) and the slave

system (67).

6 Conclusion

This study has developed new approaches to study the co-existence of various types

of chaos synchronization between different dimensional fractional order chaotic

systems. Firstly, Specifically, by using some properties of fractional derivatives,

stability theory of linear fractional-order differential equations and stability theory

linear integer–order differential equations, the study has analyzed the co-existence of

FSHFPS, IGS, IFSHPS and GS between 3D incommensurate fractional order mas-

ter system and 4D incommensurate fractional order slave system. Secondly, based on

Laplace transform, fractional Lyapunov-based approach and integer–order Lyapunov

stability theory, the authors have proved the co-existence of four different types of

chaos synchronization. More in detail, FSHFPS, IFSHFPS, IGS and GS have been

proved to co-exist between 3D incommensurate fractional order master system and

4D commensurate fractional order slave system. Finally, several numerical examples

of co-existence of synchronization types have been illustrated. These examples have

clearly shown the effectiveness of the novel approaches developed herein.

Further developments and extended analysis related to the application of the new

hybrid synchronization in chaotic communication devices and secure communica-

tion systems and new complex fractional schemes of synchronization will be inves-

tigated in future works.
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1 Introduction

Nature is intrinsically nonlinear. So, it is not surprising that most of the systems we

encounter in the real world are nonlinear. These nonlinear models of real-life prob-

lems generally exhibit chaotic behaviors which possess some special features, such

as having bounded trajectories with a positive leading positive Lyapunov exponent

of the dynamics of the chaotic system, extreme sensitivity to initial conditions and

having noise-like behaviors. This behavior makes chaos undesirable and unwanted

in many cases of research as it reduces their predictability over long time scales. But

this special attribute may be a valuable advantage in certain areas of research [1–8].

Chaotic dynamics has the ability to amplify small perturbations which improves their

utility for reaching specific desired states with very high flexibility and low energy

cost. In other words, we could try to control chaos for the benefit of our needs [9–

16]. Stability, synchronization of different chaotic or hyperchaotic systems is one of

the few main control methods popularly discussed recently [17–36, 36–43]. Many

chaotic realizations have been discussed recently from different prospectives based

on: generalized chaotic maps [44], analog transistor-level with grounded capacitors

[45–47], digital implementation [48, 49], and mixed designs such as in [50].

The idea of chaos synchronization is to use the output of the master system to

control the slave system so that the output of the response system follows the output

of the master system asymptotically. Recently there has been growing interest in the

investigation of various kinds of synchronization in chaotic or hyperchaotic systems

[51–59]. This interest is spurred by the possible applications of synchronous chaos

particularly in secure communications [60–70].

In the last recent decades, it has been found that nonlinear fractional models are

useful for modeling many physical systems [71–96]. It has been demonstrated by

scientists that nonlinear fractional order differential systems can display a variety of

behaviors including chaos and hyperchaos [97–121]. Chaotic and hyperchaotic frac-

tional order systems can also be synchronized [103, 104, 122–133]. Recently, more

and more attentions were paid to the synchronization of different fractional–order

chaotic (hyperchaotic) systems [134–151], due to its potential applications [152–

156].

The topic of synchronization between fractional order and integer-order chaotic

systems is a new domain in the research field of chaos synchronization. However,

there are many papers studying the problem of synchronization between integer order

chaotic systems and fractional order chaotic system. Various methods and techniques

have been proposed to synchronize integer order and fractional-order chaotic sys-

tems. For example, general control schemes have been described in [157, 158]. A

sliding mode method has been designed in [159–161] and a new fuzzy sliding mode

method has been proposed in [162]. A practical method based on circuit simula-

tion has been presented in [163]. The idea of tracking control has been applied in

[164, 165]. In [166], a nonlinear feedback control method has been introduced and a

robust observer technique has been used in [167]. Also, some synchronization types

has been studied between integer order and fractional order chaotic system such as
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complete synchronization [168], anti-synchronization [169], anticipating synchro-

nization [170], function projective synchronization [171] and Q-S synchronization

[172].

Amongst all types of chaos synchronization, generalized synchronization (GS) is

one of the most noticeable types. It has received a great deal of attention for its univer-

sality in the recent years [173–177]. It has been widely used in the synchronization

of chaotic maps [178–181], integer-order chaotic systems [182–184] and fractional-

order chaotic systems [186–192]. In generalized synchronization (GS), the master

system and the slave system are said to be synchronized if a functional relationship

exists between the states of the master and the slave systems.

The main aim of this work is to present constructive schemes to investigate GS

between different dimensional integer order and fractional order chaotic systems.

Based on the integer order Lyapunov stability and suitable integer order controllers,

GS between n-dimensional fractional order master system and m-dimensional inte-

ger order slave system is achieved. By using fractional control law and fractional

Lyapunov-based approach, GS between integer order master system with dimension

n and fractional order slave system with dimension m is observed. The effectiveness

and feasibility of the proposed schemes are illustrated by numerical examples.

The outline of the rest of this work is organized as follows. Section 2 provides

some preliminaries and basic concepts which are helpful in the proving analysis of

the proposed approaches. In Sect. 3, GS between n-D fractional order master system

and m-D integer order slave system is studied. In Sect. 4, GS between n-D integer-

order master system and m-D fractional order slave system is investigated. Finally,

conclusion is drawn in Sect. 5.

2 Preliminaries and Basic Concepts

2.1 Fractional Calculus

Definition 1 [193] The Riemann-Liouville fractional integral operator of order p >

0 of the function f (t) is defined as,

Jpf (t) = 1
𝛤 (p) ∫

t

0
(t − 𝜏)p−1f (𝜏)d𝜏, t > 0. (1)

Remark 1 Some properties of the operator Jp
can be found, for example, in

[194, 195].

Definition 2 [196] The Caputo fractional derivative of f (t) is defined as,

Dp
t f (t) = Jm−p

( dm

dtm f (t)
)
= 1

𝛤 (m − p) ∫
t

0

f (m)(𝜏)
(t − 𝜏)p−m+1 d𝜏, (2)
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for m − 1 < p ≤ m, m ∈ IN, t > 0.

Remark 2 The fractional differential operator Dp
t is left-inverse (and not right-inverse)

to the fractional integral operator Jp
, i.e. Dp

t Jp = I where I is the identity operator

[197, 198] and has been used for many applications [199–201].

2.2 Fractional Lyapunov-Based Approach

Definition 3 A continuous function 𝛾 is said to belong to class−K if it is strictly

increasing and 𝛾 (0) = 0.

Theorem 1 [202] Let X = 0 be an equilibrium point for the following fractional
order system

Dp
t X (t) = F (X (t)) , (3)

where p ∈
]
0, 1

]
. Assume that there exists a Lyapunov function V (X (t)) and class-K

functions 𝛾i (i = 1, 2, 3) satisfying

𝛾1 (‖X‖) ≤ V (X (t)) ≤ 𝛾2 (‖X‖) , (4)

Dp
t V (X (t)) ≤ −𝛾3 (‖X‖) . (5)

Then the system (3) is asymptotically stable.

Theorem 2 [203] If there exists a positive definite Lyapunov function V (X (t)) such
that Dp

t V (X (t)) < 0, for all t > 0, then the trivial solution of system (3) is asymptot-
ically stable.

Lemma 1 ([204]) ∀X(t) ∈ 𝐑n
, ∀p ∈

]
0, 1

]
and ∀t > 0 ∶

1
2

Dp
t
(
XT (t)X(t)

) ≤ XT (t)Dp
t (X(t)) (6)

2.3 Fractional Numerical Method

Consider the following initial value problem of fractional-order differential equation

in the Caputo sense:

Dp
t Y (t) = F (t,Y(t)) , 0 ≤ t ≤ T , (7)

Y (k) (0) = Y (k)
0 , k = 0, 1, 2, ...,m − 1, (m =

[
p
]
).

In [205], authors have given a predictor correctors scheme for numerical solution

of fractional differential equation, which is a generalization of the classical one-step
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Adams–Bashforth–Moulton algorithm for first order ordinary differential equations.

The fractional predictor–corrector (PC) algorithm is based on the analytical prop-

erty. The fractional differential equation (7), is equivalent to the following Volterra

integral equation:

Y (t) =
m−1∑
k=0

Y (k)
0

tk

k!
+ 1

𝛤 (p)

t

∫
0

(t − s)p−1 F (s,Y(s)) ds. (8)

Now, set h = T
N

, tn = nh, n = 0, 1, 2, ...,N. Let Yh
(
tn
)

be approximation to Y
(
tn
)
.

Assume that we have already calculated approximations Yh
(
tj
)

and we want to obtain

Yh
(
tn+1

)
by means of the equation

Yh
(
tn+1

)
=

m−1∑
k=0

Ck
tkn+1
k!

+ hp

𝛤 (p + 2)
F
(
tn+1,Y

p
h (tn+1)

)
+ hp

𝛤 (p + 2)

n∑
j=0

aj,n+1F
(
tj,Yh(tj)

)
, (9)

where

aj,n+1 =
⎧
⎪⎨⎪⎩

np+1 − (n − p) (n + 1)p if j = 0,
(n − j + 2)p+1 + (n − j)p+1 − 2 (n − j − 1)p+1 if 1 ≤ j ≤ n,

1 if j = n + 1,
(10)

and

Yq
h

(
tn+1

)
=

m−1∑
k=0

Ck
tk
n+1

k!
+ 1

𝛤 (p)

n∑
j=0

bj,n+1F
(
tj,Yh(tj)

)
, (11)

in which bj,n+1 =
hp

p

(
(n + 1 − j)p − (n − j)p

)
. Therefore, the estimation error of this

approximation is max |||Y
(
th
)
− Yh

(
tj
)||| = O (hp) , where q = min(2, 1 + p).

3 GS Between n-D Fractional Order Master System
and m-D Integer order Slave System

3.1 Theory

In this case, the master system is considered as follow

Dp
t X(t) = f1(X(t)), (12)

where X(t) ∈ 𝐑n
is the state vector of the master system (12), f1 ∶ 𝐑n → 𝐑n

, p is

a rational number between 0 and 1 and Dp
t is the Caputo fractional derivative of

order p.
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The slave system is defined as

Ẏ(t) = AY(t) + g1(Y(t)) + U, (13)

where Y(t) ∈ 𝐑m
is the state vector of the slave system (13), A ∈ 𝐑m×m

is a con-

stant matrix, g1 ∶ 𝐑m → 𝐑m
is a nonlinear function and U =

(
ui
)
1≤i≤m is a vector

controller to be determined.

The error system of GS between the master system (12) and the slave system (13)

is defined as

e(t) = Y(t) − 𝜙1 (X(t)) , (14)

where 𝜙1 ∶ 𝐑n → 𝐑m
is a differentiable function. Then, the aim of GS is to find a

controller U such that the error system satisfies

lim
t→∞

‖e(t)‖ = 0, (15)

where ‖.‖ is the Euclidian norm.

The integer-order derivative of the error system (14) can be derived as follow

ė (t) = Ẏ(t) − �̇�1 (X(t))
= AY(t) + g1(Y(t)) + U − 𝐃𝜙1 (X(t)) × Ẋ(t), (16)

where 𝐃𝜙1 (X(t)) is the jacobian matrix of the function 𝜙1.

The error system (16), can be written as

ė (t) =
(
A − L1

)
e(t) + L1Y(t) +

(
A − L1

)
𝜙1 (X(t)) + g1(Y(t))

− 𝐃𝜙1 (X(t)) × Ẋ(t) + U, (17)

where L1 ∈ 𝐑m×m
is a constant control matrix to be selected.

Theorem 3 If we select the control matrix L1 such that P1 =
(
A − L1

)T +
(
A − L1

)
is a negative definite matrix, then the master system (12) and the slave system (13) are
globally generalized synchronized with respect to 𝜙1, under the following controller

U = −L1Y(t) − g1(Y(t)) −
(
A − L1

)
𝜙1 (X(t)) + 𝐃𝜙1 (X(t)) × Ẋ(t). (18)

Proof Applying the control law given in Eq. (18) to Eq. (17) yields the resulting

error dynamics as follows

ė (t) =
(
A − L1

)
e(t). (19)

Construct the candidate Lyapunov function in the form

V (e(t)) = eT (t)e(t), (20)
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we obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t)

(
A − L1

)T e(t) + eT (t)
(
A − L1

)
e(t)

= eT (t)
[(

A − L2
)T +

(
A − L1

)]
e(t) = eT (t)P1e(t) < 0

Thus, from the Lyapunov stability theory, it is immediate that all solutions of error

system (19) go to zero as t → ∞. Therefore, the master system (12) and the slave

system (13) are globally generalized synchronized.

3.2 Application

As the master system we consider the following 3-D fractional order Lorenz system

Dpx1 = 10
(
x2 − x1

)
, (21)

Dpx2 = 28x1 − x1x3 − x2,

Dpx3 = x1x2 −
8
3

x3.

The fractional order Lorenz system (21) has a chaotic attractor, shown in Figs. 1

and 2, for p = 0.993 [206].

We consider the controlled integer order hyperchaotic Lorenz system as the slave

system. The slave system can be written in the form

Ẏ (t) = AY (t) + g1 (Y (t)) + U, (22)

where Y (t) = (yi (t))1≤i≤4,

A =
⎡
⎢⎢⎢⎣

−a1 a1 0 1
a2 −1 0 −1
0 0 −a3 0
0 0 0 0

⎤
⎥⎥⎥⎦
, g1 (Y (t)) =

⎡
⎢⎢⎢⎣

0
−y1y3
y1y2

0.1y2y3

⎤
⎥⎥⎥⎦
,

and U = (u1, u2, u3, u4)T is a controller to be determined. The integer order hyper-

chaotic Lorenz system (i.e., the uncontrolled system (22)) has a chaotic behavior

when
(
a1, a2, a3

)
=
(
10, 28, 8

3

)
[207]. Different views of the attractor of integer-

order Lorenz hyperchaotic system are shown in Figs. 3 and 4.

Let us define the errors of GS between the master system (21) and the slave system

(22) as

⎡
⎢⎢⎢⎣

e1
e2
e3
e4

⎤
⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎣

y1
y2
y3
y4

⎤
⎥⎥⎥⎦
− 𝜙1

(
x1, x2, x3

)
, (23)
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Fig. 1 Different 2-D projections of the fractional-order Lorenz chaotic system (21)

Fig. 2 Different 3-D projections of the fractional Lorenz chaotic system (21)
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Fig. 3 Different 2-D projections of the integer order hyperchaotic Lorenz system (22)

Fig. 4 Different 3-D projections of the integer order Lorenz hyperchaotic system (22)
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where the function 𝜙1 ∶ 𝐑3 → 𝐑4
is selected as

𝜙1
(
x1, x2, x3

)
=
⎡
⎢⎢⎢⎣

x1 + x2x3
x22 + x1x3

x3x2x1
x2 + x1x3

⎤
⎥⎥⎥⎦
. (24)

So,

𝐃𝜙 =
⎡
⎢⎢⎢⎣

1 x3 x2
x3 2x2 x1

x3x2 x1x3 x2x1
x3 1 x1

⎤
⎥⎥⎥⎦
. (25)

To achieve GS between the master system (21) and the slave system (22), the

control matrix L1 is chosen as

L1 =
⎡
⎢⎢⎢⎣

0 10 0 1
28 0 0 −1
0 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦
, (26)

According to Eq. (18), the vector controller U =
(
u1, u2, u3, u4

)T
can be designed

as follow

u1 = −10y2 − y4 + 10x1 + 10x2x3 + ẋ1 + x3ẋ2 + x2ẋ3, (27)

u2 = −28y1 + y4 + y1y3 + x22 + x1x3 + x3ẋ1 + 2x2ẋ2 + x1ẋ3,
u3 = −y1y2 + 8∕3x3x2x1 + x3x2ẋ1 + x1x3ẋ2 + x2x1ẋ3,
u4 = −y4 − 0.1y2y3 + x2 + x1x3 + x3ẋ1 + ẋ2 + x1ẋ3.

We can see that
(
A − L1

)T +
(
A − L1

)
is a negative definite matrix. Then, accord-

ing to Theorem 9, the fractional- order Lorenz chaotic system and the integer order

hyperchaotic Lorenz system are globally generalized synchronized. The error system

of generalized synchronization between the systems (21) and (22) can be described

as follow:

ė1 = −10e1, (28)

ė2 = −e2,

ė3 = −8
3

e3,

ė4 = −e4.

Fourth order Runge–Kutta integration method has been used. In addition, time step

size simulation time Tm = 120 s and time step h = 0 ∶ 005 s have been employed.

The initial values of the master system and the slave systems are [x1(0), x2(0),
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Fig. 5 Time-history of the synchronization errors e1, e2, e3 and e4

x3(0)] = [3, 4, 5] and [y1(0), y2(0), y3(0), y4(0)] = [3, 4, 5, 6], respectively, and the

initial states of the error system are [e1(0), e2(0), e3(0), e4(0)] = [−20,−27,−55,
−13]. The state variables of the error system (28) versus time are depicted in Fig. 5.

4 GS Between n-D Integer-Order Master System and m-D
fractional-Order Slave System

4.1 Theory

Now, the master and the slave chaotic systems are considered in the following

forms

Ẋ(t) = f2(X(t)), (29)

and

Dq
t Y(t) = BY(t) + g2(Y(t)) + V , (30)



682 A. Ouannas et al.

where X(t) ∈ 𝐑n
, Y(t) ∈ 𝐑m

are the states of the master system (29) and the slave

system (30), respectively, f2 ∶ 𝐑n → 𝐑n
, B ∈ 𝐑m×m

is a constant matrix, g2 ∶ 𝐑m →
𝐑m

is a nonlinear function, q is a rational number between 0 and 1, Dq
t is the Caputo

fractional derivative of order q, and V is a controller to be designed.

In this case, the error system of GS between the master system (29) and the slave

system (30) is given by

e(t) = Y(t) − 𝜙2 (X(t)) , (31)

where 𝜙2 ∶ 𝐑n → 𝐑m
is a differentiable function.

The Caputo fractional derivative of the order q of the error system (31) can be

derived as follow

Dq
t e(t) = Dq

t Y(t) − Dq
t 𝜙 (X(t))

= BY(t) + g2(Y(t)) + V − Dq
t 𝜙2 (X(t)) . (32)

The error system can be described as

Dq
t e(t) =

(
B − L2

)
e(t) + L2Y(t) +

(
B − L2

)
𝜙2 (X(t)) + g2(Y(t))

− Dq
t 𝜙2 (X(t)) + V , (33)

where L2 ∈ 𝐑m×m
is a constant control matrix to be chosen.

Theorem 4 If we select the control matrix L2 ∈ 𝐑m×m such that P2 = B − L2 is a
negative definite matrix, then the master system (29) and the slave system (30) are
globally generalized synchronized with respect to 𝜙2, under the following controller

V = −L2Y(t) −
(
B − L2

)
𝜙2 (X(t)) − g2(Y(t)) + Dq

t 𝜙2 (X(t)) . (34)

Proof From Eqs. (34)–(33), we get the error dynamical system as follows

Dq
t e (t) =

(
B − L2

)
e (t) . (35)

Constructing the candidate Lyapunov function in the form

V (e (t)) = 1
2

eT (t) e (t) , (36)

we obtain

Dq
t V (e (t)) = Dp

t

(1
2

eT (t) e (t)
)
, (37)

and by using Lemma 8

Dq
t V (e (t)) ≤ eT (t)Dq

t e (t)
= eT (t)

(
B − L2

)
e(t) = eT (t)P2e(t) < 0.
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Thus, from Theorem 7, that is the zero solution of the error system (35) is globally

asymptotically stable and therefore the master system (29) and the slave system (30)

are globally generalized synchronized.

4.2 Application

We consider the integer order hyperchaotic chen system as the master system.

The master system can be described as follows

ẋ1 = 35(x2 − x1) + x4, (38)

ẋ2 = 7x1 − x1x3 + 12x2,
ẋ3 = x1x2 − 3x3,
ẋ4 = x2x3 + rx4,

where r is a parameter. System (38) is hyperchaotic for r = 0.5 [208]. Hyperchaotic

attractors of the system (38) are given in Figs. 6 and 7.

Fig. 6 Different 2-D projections of the integer-order hyperchaotic Chen system (38)
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Fig. 7 Different 3-D projections of the integer order hyperchaotic Chen system (38)

We consider the controlled fractional order Chen system as the slave system. The

slave system can be written in the form

Dq
t Y (t) = BY (t) + g2 (Y (t)) + V , (39)

where Y (t) = (yi (t))1≤i≤3,

B =
⎡
⎢⎢⎣

−b1 b1 0
b2 28 0
0 0 −b3

⎤
⎥⎥⎦
, g2 (Y (t)) =

⎡
⎢⎢⎣

0
−y1y3
y1y2

⎤
⎥⎥⎦
,

and V =
(
v1, v2, v3

)T
is a controller to be determined. The fractional order Chen

system (i.e., the uncontrolled system (39)) has a chaotic behavior when
(
b1, b2, b3

)
=

(35, 7, 3) and q = 0.95 [209]. Different views of the attractor of fractional order Chen

system are shown in Figs. 8 and 9.

Now, we define the errors of GS between the master system (38) and the slave

system (39) as

⎡
⎢⎢⎣

e1
e2
e3

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

y1
y2
y3

⎤
⎥⎥⎦
− 𝜙2

(
x1, x2, x3, x4

)
, (40)
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Fig. 8 Different 2-D projections of the fractional order hyperchaotic Chen system

Fig. 9 Different 3-D projections of the fractional order Chen system
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where the function 𝜙2 ∶ 𝐑4 → 𝐑3
is given as

𝜙2
(
x1, x2, x3, x4

)
=
⎡
⎢⎢⎣

x1x2x3x4
x21 + x22 + x3x4

x1x2 + x3x4

⎤
⎥⎥⎦
. (41)

To achieve GS between the master system (38) and the slave system (39), the

control matrix L2 is proposed as

L2 =
⎡
⎢⎢⎣

0 35 0
7 56 0
0 0 19

⎤
⎥⎥⎦
, (42)

According to Eq. (34), the vector controller V =
(
v1, v2, v3

)T
can be constructed

as follow

v1 = −35y2 + 35x1x2x3x4 + D0.95
t

(
x1x2x3x4

)
, (43)

v2 = −7y1 − 56y2 + y1y3 + 28
(
x21 + x22 + x3x4

)
+ D0.95 (x21 + x22 + x3x4

)
,

v3 = 19y3 + −y1y2 + 21
(
x1x2 + x3x4

)
+ D0.95 (x1x2 + x3x4

)
,

and the error functions can be written as

⎡
⎢⎢⎣

D0.95e1
D0.95e2
D0.95e3

⎤
⎥⎥⎦
=
(
B − L2

) ⎡⎢⎢⎣

e1
e2
e3

⎤
⎥⎥⎦
, (44)

where

B − L2 =
⎡
⎢⎢⎣

−35 0 0
0 −28 0
0 0 −21

⎤
⎥⎥⎦
. (45)

It is easy to show that
(
B − L2

)
is a negative definite matrix. Then, according

to Theorem 10, the integer order hyperchaotic chen system (38) and the controlled

fractional Chen system (39) are globally generalized synchronized. For the purpose

of numerical simulation, fractional Euler integration method has been used. In addi-

tion, time step size simulation time Tm = 120 s and time step h = 0 ∶ 005 s have

been employed. The initial values of the master system and the slave systems are

[x1(0), x2(0), x3(0), x4(0)] = [3, 4, 5, 6] and [y1(0), y2(0), y3(0)] = [−9,−5, 14],
respectively, and the initial states of the error system are [e1(0), e2(0), e3(0)] =
[−369,−60,−28]. The state variables of the error system (44) versus time are

depicted in Fig. 10.
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Fig. 10 Time-history of the synchronization errors e1, e2 and e3

5 Conclusion

In this work, new generalized synchronization schemes between integer-order and

fractional-order chaotic systems with different dimensional were presented. The

New control schemes were proved theoretically using integer order Lyapunov sta-

bility theory and fractional order Lyapunov-based approach. Firstly, to achieve GS

between n-dimensional fractional order master system and m-dimensional integer

order slave system, the synchronization criterion was obtained via integer order con-

trol of the linear part of the slave system. Secondly, to observe GS behavior between

n−dimensional integer order master system and m-dimensional fractional order slave

system, the synchronization scheme was proposed based on the fractional order con-

trol of the linear part of the slave system. Simulations results were used to verify the

effectiveness of the proposed control schemes.
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A New Fractional-Order Jerk System
and Its Hybrid Synchronization

Abir Lassoued and Olfa Boubaker

Abstract In this chapter, a new Jerk chaotic system with a piecewise nonlinear

(PWNL) function and its fractional-order (FO) generalization are proposed. Both

the FO and the PWNL function, serving as chaotic generators, make the proposed

system more adopting for electrical engineering applications. The highly complex

dynamics of the novel system are investigated by theoretical analysis pointing out its

elementary characteristics such as the Lyapunov exponents, the attractor forms and

the equilibrium points. To focus on the application values of the novel FO system

in multilateral communication, hybrid synchronization (HS) with ring connection

is investigated. For such schema, where all systems are coupled on a chain, com-

plete synchronization (CS) and complete anti-synchronization (AS) co-exist where

the state variables of the first system couple the Nth system and the state variables of

the Nth system couple the (N − 1)th system. Simulations results prove that the syn-

chronization problem is achieved with success for the multiple coupled FO systems.

Keywords Fractional-Order (FO) ⋅ Chaotic systems ⋅ Jerk equation ⋅ Piecewise

nonlinear (PWNL) functions ⋅ Hybrid synchronization (HS)

1 Introduction

Chaotic systems are defined as nonlinear systems exhibiting unpredictable dynam-

ical trajectories. In this frameworks, several chaotic systems have been discov-

ered these last decades [15] and have been used in many engineering applications

[11, 13]. Many researches have attempted to build such dynamical systems with sim-

ple algebraic structures highly recommended for electronic implementations. One of
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the most famous chaotic systems with a simple algebraic structure is the Jerk system.

For the general Jerk system [19], some specific nonlinearities are proposed such as

the exponential function [29] and the piecewise linear function [2, 25] whereas, in

our best knowledge, the piecewise nonlinear (PWNL) function is not used, yet.

On the other hand, the fractional calculus is an old concept discovered 300 years

ago. Furthermore, many basic chaotic systems have been generalized into their cor-

responding fractional order (FO) models generating stranger attractors. Moreover,

it has been proved in many research works, that FO systems are more adopting for

modeling effectively complex real problems.

On the other side, synchronization of chaotic systems has attracted considerable

interest nowadays due to its great potential application in control processing and

secure communication. In this context, several synchronization schemas are pro-

posed [18, 21]. The hybrid synchronization (HS) is one of the most interesting

schemas. The HS is applied for multiple different or identical chaotic systems [30],

with chain connection [16] or with ring connection [3]. The synchronization of sev-

eral different systems is considered higher useful in engineering applications such

as it is more effective to enhance the security in digital communication and leads to

more bright future in multilateral communication. Note that the HS with ring con-

nection is not applied for FO systems, yet.

The purpose of this paper is to propose a new FO system with a simple algebraic

structure and a very complex dynamical behavior, at the same time. Expecting that

the PWNL function gives us more complex chaotic proprieties than the piecewise

linear one, a new Jerk chaotic system with PWNL function is proposed. This PWNL

function is constructed from an absolute function. To enhance the potential appli-

cation of the Jerk system, HS with ring connection for multiple FO systems will be

achieved. We realize, first, the AS behavior and after we apply the CS behavior under

the AS controllers.

The rest of this chapter is organized as follows. In Sect. 2, basic definitions of

fractional calculus are presented. In Sect. 3, the new chaotic system based on the

general Jerk equation is proposed and analyzed. Then, its FO model is designed and

analyzed based on stability theory of fractional calculus. In Sect. 4, HS problem of

multiple FO systems with ring connection is achieved.

2 Preliminaries

Despite the inherent complexity of fractional calculus [9], the application of the FO

has attracted the attention of many researches in nontraditional fields like chaos the-

ory [6], secure communication [31] and encryption [1]. All definitions of fractional

calculus used in this paper are given below.

Definition 1 The Caputo FO definition is given by [23]

Dqx(t) = Jm−qx(m)(t), q > 0. (1)
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where q is the FO. x(m)
is the m order derivative of x with m the integer part of q. J

is the integral operator described as

J𝛽x(t) = 1
𝛤 (𝛽)

∫ ∞
0
(t − 𝜎)𝛽−1y(𝜎) d𝜎. (2)

where 𝛤 (𝛽) = e−tt𝛽−1dt is the Gamma function.

In the rest of this paper, we consider the following FO model [12, 17]

dqx(t)
dtq = Dqx(t) = f (t, x(t)). (3)

where Dq
is the Caputo fractional derivative and q is the corresponding FO such as

q ∈]0, 1[.
The stability analysis of FO systems are different from the integer ones. Thus, we

introduce the corresponding definitions.

Definition 2 [7] Consider the following FO system described by

dqx(t)
dtq = f (x(t)); (4)

where 0 < q < 1 and x ∈ ℝn
. The equilibrium points of f (x(t)) are locally asymptot-

ically stable if all eigenvalues 𝜆i of the Jacobian matrix J = 𝜕f (x(t))∕𝜕x(t) evaluated

at the equilibrium points statisfy |arg(𝜆i)| > q 𝜋

2
. For more details, Fig. 1 illustrates

the stable and unstable regions [26].

Definition 3 [26] A three dimensional system has three eigenvalues for each equi-

librium as 𝜆1 a real number and (𝜆2, 𝜆3) a pair of complex conjugate number. An

equilibrium is a saddle point if it has at least one eigenvalue in the stable region and

one in the unstable region.

Nevertheless, there are two types of saddle points: a saddle point of index 1 and a

saddle point of index 2. The first type has one eigenvalue in the unstable region and

two eigenvalues in the stable region. However, the saddle point of index 2 has one

Fig. 1 Stable and unstable

regions of the

fractional-order system with

0 < q < 1
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eigenvalue in the stable region and two eigenvalues in the unstable region. In strange

attractors, scrolls are generated only around the saddle point of index 2.

3 The Fractional-Order Jerk Chaotic System

In this section, a new Jerk chaotic system will be designed and its FO model will be

developed. The first Jerk system was discovered by Sprott [24], in 1994, based on

the well known third order Jerk equation x⃛ = J(ẍ, ẋ, x) [8].

3.1 The Jerk Chaotic System

Let consider the following Jerk chaotic system

⎧
⎪⎨⎪⎩

ẋ = y,
ẏ = z,
ż = −az − by − cx + kx|x|.

(5)

where (x, y, z) are the state variables and (a, b, c, k) are the system parameters.

To ensure that the Jerk chaotic system can exhibit chaotic behaviors, the general

condition of dissipativity should be satisfied. Note that

∇V = 𝜕ẋ
𝜕x

+
𝜕ẏ
𝜕y

+ 𝜕ż
𝜕z

= −a < 0

with V the volume element of the flow. Thus, system (5) is dissipative only if the

parameter a is positive. Hence, Jerk system converges to an exponential rate. This

means that its asymptomatic behaviors are fixed on a strange attractor. When the

initial conditions are chosen as (1, 1, 1) and the system parameters (a, b, c, k) are

equal to (1, 1, −2.625, −0.25), system (5) generates the strange attractor displayed

in Fig. 2 and characterized by two scrolls and composite dynamical behaviors. For

system (5), it is clear that the PWNL function described by

{
x2, if x > 0,

−x2, if x < 0, (6)

represents the main chaotic generator.

On the one hand, system (5) is sensitive to initial conditions as a small variation

can generate a big change in the final trajectory. Three time series of the state vari-

ables (x, y, z) are shown in Fig. 3. They start from the initial conditions (1, 1, 1)
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Fig. 2 Phase portraits of

system (1) with the

parameters a = 1, b = 1,

c = −2.625 and k = −0.25
and initial values (1, 1, 1): a
x-y-z; b x-y; c x-z; d y-z
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Fig. 3 Sensitive dependence on initial conditions: trajectories of x, y and z, respectively
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Fig. 4 Lyapunov spectrum of the Jerk chaotic system

(blue) and (1.001, 1, 1) (red), respectively. We can observe that the two trajectories

are the same in the beginning but after a short period they diverge completely.

On the other hand, it is known that a chaotic system exhibits three Lyapunov

exponents giving the measure of the growth decline rate related to the small per-

turbation along the dynamical trajectories. In system (5), the largest positive expo-

nent 𝜆1, which increases the expansion degree of the attractor in the phase space, is

equal to 0.14122 where 𝜆3 = −1.1361 and 𝜆2 = 0. Note that 𝜆2 and 𝜆3 increase the

contraction degree and the critical nature of the chaotic attractor, respectively. The

corresponding Lyapunov exponent spectrum is depicted in Fig. 4. The Lyapunov

dimension of system (5) is given by [10]

DL = j + 1
|𝜆j+1|

∑j
i=1(𝜆i) = 2 + 𝜆1+𝜆2

|𝜆3|
= 2.124. (7)

where j is equal to n − 1 with n the number of Lyapunov exponents. Thus, system

(5) exhibits an attractor with a FO dimension.

Comparing the results obtained for a Jerk system with a piecewise linear func-

tion proposed in [2], to those obtained using the system (5), we can conclude that

the PWNL function is able to give more complex dynamical behaviors with greater

Lyapunov exponent (0.14122 > 0.036).
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3.2 The Fractional-Order Jerk Chaotic Model

Consider the FO Jerk chaotic model derived from system (5), described by the fol-

lowing system

⎧
⎪⎨⎪⎩

Dqx = y,
Dqy = z,
Dqz = −az − by − cx + kx|x|.

(8)

where 0 < q < 1.

By maintaining the same numerical values of the parameters (a, b, c, k) and vary-

ing the parameter q, different attractor forms are obtained. When q < 0.85, system

(8) converges to a fixed point. However, when 0.91 < q < 0.98, system (8) gener-

ates periodic orbits. Finally, the FO system (8) is chaotic only for q ∈]0.99..1[. The

different phase portraits of possible attractor forms of system (8) are presented in

Fig. 5.

4 Stability Analysis

In this section, we will identify and analyze the equilibrium points of system (8).

The equilibrium points are the roots of the equations ẋ = 0, ẏ = 0 and ż = 0. Thus,

by solving the last equations for (a, b, c, d) = (1, 1,−2.625,−0.25), we obtain

⎧
⎪⎨⎪⎩

y = 0,
z = 0,
−cx + kx|x| = 0.

(9)

Therefore, since the parameters c and k are negative constants, system (8) admits

only three equilibrium points. These equilibrium points are the origin E1(0, 0, 0),
E2(

c
k
, 0, 0) and E3(

−c
k
, 0, 0). We aim, now, to determine the Jacobian matrix J and

its corresponding eigenvalues for each equilibrium point. The numerical results are

summarized in Table 1.

According to the Definition 2, the FO system can exhibit chaotic behavior if the

following condition is satisfied at least for one equilibrium point

q >
2
𝜋

arctan
|Im(𝜆)|
|Re(𝜆)| (10)

where 𝜆 is an eigenvalue corresponding to one equilibrium, and Im(𝜆) and Re(𝜆) are

the imaginary and real part of 𝜆.

According to the Definition 3, Fig. 2 and referring to Table 1, we find that for the

first equilibrium E1, 𝜆1 belongs to the unstable region where 𝜆2 and 𝜆3 belong to the
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Fig. 5 Phase portraits of the FO system (8): a q = 0.85, b q = 0.95, c q = 0.995
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Table 1 The Jacobian matrix J and their corresponding eigenvalues for each equilibrium point

Equilibrium point Jacobian matrix Corresponding

eigenvalues

arg(𝜆i)

E1(0, 0, 0)
⎛
⎜⎜⎜⎝

0 1 0
0 0 1
−c −b −a

⎞
⎟⎟⎟⎠

𝜆1 = 0.934
𝜆2 = −0.967 + 1.386i
𝜆3 = −0.967 − 1.386i

arg(𝜆1) = 0
arg(𝜆2) = 2.186
arg(𝜆3) = −2.186

E2(
c
k
, 0, 0)

⎛
⎜⎜⎜⎝

0 1 0
0 0 1
c −b −a

⎞
⎟⎟⎟⎠

𝜆1 = −1.500
𝜆2 = 0.250 + 1.299i
𝜆3 = 0.250 − 1.299i

arg(𝜆1) = 3.141
arg(𝜆2) = 1.380
arg(𝜆3) = −1.380

E3(
−c
k
, 0, 0)

⎛
⎜⎜⎜⎝

0 1 0
0 0 1
c −b −a

⎞
⎟⎟⎟⎠

𝜆1 = −1.500
𝜆2 = 0.250 + 1.299i
𝜆3 = 0.250 − 1.299i

arg(𝜆1) = 3.141
arg(𝜆2) = 1.380
arg(𝜆3) = −1.380

stable region. Thus, E1 is a saddle point of index 1. On the other hand, E2 and E3 have

the same eigenvalues. 𝜆1 belongs to the stable region where 𝜆2 and 𝜆3 belong to the

unstable region. Thus, E2 and E3 are saddle points of index 2. Finally, we conclude

that system (8) had two saddle points of index 2 and one of index 1.

5 Hybrid Synchronization with Ring Connection

In this section, The HS of multiple FO systems including the FO Jerk chaotic sys-

tem with the PWNL function is realized. The HS [20, 28] includes at the same time

the complete synchronization [4] and the anti-synchronization [5, 27]. The synchro-

nization schema applied in this section extends our approach reported in a conference

paper [14] and the approach reported in [3] for integer-order systems. It is illustrated

in Fig. 6 where the first system anti-synchronizes the second and the first system syn-

chronizes the third. In additional, the (N − 2)th system synchronizes the Nth and the

(N − 1)th system anti-synchronizes the Nth.

Fig. 6 Diagram of coupled

fractional-order systems with

ring connections
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5.1 Problem Formulation

Let consider a multiple FO system coupled via a ring connection and described as

follows

⎧
⎪⎨⎪⎩

Dqx1 = A1x1 + g1(x1) + D1(xN − x1),
Dqx2 = A2x2 + g2(x2) + D2(x1 − x2),

⋮
DqxN = ANxN + gN(xN) + DN(xN−1 − xN),

(11)

where the state vector xi, with (1 ≤ i ≤ N), is defined as xi = (xi1, xi2, xi3) and N is

the number of multiple FO system. Each system is divided in two parts, a linear part

and a nonlinear one, expressed by the matrices Ai and the gi functions, respectively.

Di are diagonal matrices to be designed such that the dij, i ∈ [1..N] and j ∈ [1..3],
represent the coupled positive parameters of the diagonal matrices.

To achieve the HS, the FO controlled system is given by

⎧
⎪⎨⎪⎩

Dqx1 = A1x1 + g1(x1) + D1(xN − x1),
Dqx2 = A2x2 + g2(x2) + D2(x1 − x2) + u1,

⋮
DqxN = ANxN + gN(xN) + DN(xN−1 − xN) + uN−1.

(12)

where ui, i ∈ [1..N − 1], are the control laws.

Definition 4 The AS error vector eA = [eA1 ⋯ eA(N−1)] and the CS error vector eC =
[eC1 ⋯ eC(N−1)], corresponding to system (12), are depicted as eAi = xi(t) + xi+1(t)
and eCj = xj+2(t) − xj(t), respectively. Also, both parameters i and j are included in

the interval [1..N − 1]. The HS is achieved if the error vectors eA and eC satisfy the

following conditions

lim
t→+∞

∣∣ eAi ∣∣= 0, i ∈ [1..N − 1],
lim

t→+∞
∣∣ eCj ∣∣= 0, j ∈ [1..N − 1]. (13)

Thus, we can conclude that the dynamical errors, corresponding to system (12), are

asymptotically stable if the conditions (13) are satisfied.

The purpose of the HS problem is to design the matrices Di (i ∈ [1..N]) and the

controllers laws uj (j ∈ [1..N − 1]) such as the conditions (13) are satisfied.

5.2 Main Results

Theorem 1 For the system (12), if there exist controller laws ui(t), i ∈ [1⋯N − 1],
defined by
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⎧
⎪⎪⎪⎨⎪⎪⎪⎩

u1 = v1 −
(
(−1 − (−1)N)D1 + 2D2

−(A2 − A1)

)
x1 − g2(x2) − g1(x1),

u2 = v2 − (−2(D2 − D3) − (A3 − A2))x2 − g3(x3) − g2(x2) − u1,
⋮

uN−1 = vN−1 −
(
−2(DN−1 − DN)xN−1 − (AN − AN−1)xN−1

+gN(xN) + gN−1(xN−1)

)
− uN−2.

(14)

such that the conditions (13) are satisfied, thus, the synchronization error vectors eA
and eC are asymptotically stable and the HS is correctly achieved. For system (14),
the matrices vi are expressed such as [v1..vN−1]T = H[eA1..eA(N−1)]T where H is a
constant matrix to be computed.

Proof The AS errors are defined as eAi(t) = xi(t) + xi+1. Their corresponding FO

derivatives can be written as

DqeAi = Dqxi + Dqxi+1. (15)

We obtain

DqeA = L(eA)eA = (M + H)eA. (16)

where L(eA) = L1(eA) + L2. L1 and L2 are two constant matrices to be computed and

M is defined as

M =

⎡
⎢⎢⎢⎢⎣

K1 K2 K3 D1
D2 A3 − D3 0 ⋯ 0
0 D3 A4 − D4 0

⋮ ⋱ ⋮
0 0 0 AN − DN

⎤
⎥⎥⎥⎥⎦

where K1 = A2 − (−1)N−1D1 − D2, K2 = −(−1)N−2D1, K3 = −(−1)N−3D1 and K4 =
AN − DN .

If L1 and L2 satisfy the following condition

LT
1 (eA) = −L1(eA) (17)

such that L2 = diag(l1, ..., lN) and li < 0, i ∈ [1⋯N], then the AS error vector eA is

asymptotically stable. Obviously, the AS is correctly applied under the controllers

ui(t), i ∈ [1⋯N − 1], defined in Eq. (14).

Therefore, according to Definition 4, we can rewrite the CS error vector eC by the

following equations with j ∈ [1⋯N − 1]

eCj(t) = xj+2(t) − xj+1(t) + xj+1(t) − xj(t). (18)
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Indeed, we obtain

lim
t→+∞

∣∣ xj+2 + xj+1 ∣∣ − lim
t→−∞

∣∣ xj+1 + xj ∣∣= 0. (19)

We can conclude, then, that the CS under the same controllers is achieved. At that

point, the HS of multiple coupled FO systems is also realized.

5.3 Application

To verify the effectiveness and the feasibility of the proposed synchronization

schema, four non-identical FO systems are used. The AS is applied such as the first

FO system anti-synchronizes the second system. The second FO system, in turn,

anti-synchronizes the third system. Finally, the third system anti-synchronizes the

FO fourth system. Also, the CS is applied such as the first system synchronizes the

third system and the second system synchronizes the fourth system. The four FO

systems include two FO Jerk systems with PWNL functions, a FO Chen system [22]

and a Lü system [22], respectively. The four synchronized systems are described,

respectively, by

⎧
⎪⎨⎪⎩

Dqx11 = x12 + d11(x41 − x11),
Dqx12 = x13 + d12(x42 − x12),
Dqx13 = −ax13 − bx12 − cx11 + kx11|x11| + d13(x43 − x13).

(20)

⎧
⎪⎨⎪⎩

Dqx21 = x22 + d21(x11 − x21) + u11,
Dqx22 = x23 + d22(x12 − x22) + u12,
Dqx23 = −ax23 − bx22 − cx21 + kx21|x21| + d23(x13 − x23) + u13.

(21)

⎧
⎪⎨⎪⎩

Dqx31 = −35x31 + 35x32 + d31(x21 − x31) + u21,
Dqx32 = −7x31 + 28x32 − x31x33 + d32(x22 − x32) + u22,
Dqx33 = −3x33 + x31x32 + d33(x23 − x33) + u23.

(22)

⎧
⎪⎨⎪⎩

Dqx41 = −36x41 + 36x42 + d41(x31 − x41) + u31,
Dqx42 = 20x42 − x41x43 + d42(x32 − x42) + u32,
Dqx43 = −3x43 + x41x42 + d43(x33 − x43) + u33.

(23)

where q is a rational number as 0 < q < 1. u1, u2 and u3 are the control inputs with

ui = [ui1, ui2, ui3], i = 1...3. Di = diag(di1, ..., di4), i = 1...4, are the coupled matrices.
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For each system, the matrices Ai (i = 1...4) are given by

A1 = A2 =
⎡
⎢⎢⎣

0 1 0
0 0 1
−c −b −a

⎤
⎥⎥⎦
, A3 =

⎡
⎢⎢⎣

−35 35 0
−7 28 0
0 0 −3

⎤
⎥⎥⎦

and A4 =
⎡
⎢⎢⎣

−36 36 0
0 26 0
0 0 −3

⎤
⎥⎥⎦
.

Similarly, the matrices gi (i = 1...4) are given by

g1(x1) =
⎡
⎢⎢⎣

0
0

kx11|x11|

⎤
⎥⎥⎦
, g2(x2) =

⎡
⎢⎢⎣

0
0

kx21|x21|

⎤
⎥⎥⎦
, g3(x3) =

⎡
⎢⎢⎣

0
−x31x33
−x31x32

⎤
⎥⎥⎦

and g4(x4) =
⎡
⎢⎢⎣

0
−x31x33
−x31x32

⎤
⎥⎥⎦
.

The AS is achieved when the AS state errors converge to zero. The error vector

eA is defined as eA = [eA1eA2eA3] such that eAi = xi(t) + xi+1(t), i ∈ [1..3].
Using Eq. (14), the designed controllers are given by

⎧
⎪⎨⎪⎩

u1 = H1eA + 2(D1 − D2)x1 − g2(x2) − g1(x1),
u2 = H2eA − (−2(D2 − D3) − (A3 − A2))x2 − g3(x3) − g2(x2) − u1,
u3 = H3eA − (−2(D3 − D4) − (A4 − A3))x3 − g4(x4) − g3(x3) − u2.

(24)

where H1, H2 and H3 are constant matrices computed using the relation (17). They

are given by

H1 =
⎡
⎢⎢⎣

0 0 c 0 0 0 0 0 0
−1 0 b 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0

⎤
⎥⎥⎦
,

H2 =
⎡
⎢⎢⎣

N1 0 0 0 0 0 −d31 0 0
0 N2 0 −28 0 0 0 −d32 0
0 0 N3 0 0 0 0 0 −d33

⎤
⎥⎥⎦

with N1 = d11 − d21, N2 = d12 − d22 and N3 = d13 − d23,

H3 =
⎡
⎢⎢⎣

−d11 0 0 0 0 0 0 0 0
0 −d12 0 0 0 0 −36 0 0
0 0 −d13 0 0 0 0 0 0

⎤
⎥⎥⎦
.

For the four FO systems, the matrices M and H are obtained using the Eq. (16).

They are given by

M =
⎡
⎢⎢⎣

A2 + D1 − D2 −D2 D1
−D2 A3 − D3 0
0 D3 A4 − D4

⎤
⎥⎥⎦

and H =
⎡
⎢⎢⎣

H1
H2
H3

⎤
⎥⎥⎦
,
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The final expression of the dynamical errors are written as

DqeA = L(eA)eA =
[
Lij
]

eA (i = 1⋯ 3 and j = 1⋯ 3) where

L11 =
⎡
⎢⎢⎣

d11 − d21 1 c
−1 d12 − d22 1 + b
−c −1 − b −a + d13 − d23

⎤
⎥⎥⎦
,

L13 = L21 = −L12 = −L31 =
⎡
⎢⎢⎣

d11 0 0
0 d12 0
0 0 d13

⎤
⎥⎥⎦
,

L22 =
⎡
⎢⎢⎣

−35 − d31 35 0
−35 28 − d32 0
0 0 −3 − d33

⎤
⎥⎥⎦
,

L32 = −L23 =
⎡
⎢⎢⎣

d31 0 0
0 d32 0
0 0 d33

⎤
⎥⎥⎦
,

L33 =
⎡
⎢⎢⎣

−36 − d41 36 0
−36 26 − d42 0
0 0 −3 − d43

⎤
⎥⎥⎦

According to Eq. (17), the following conditions must be satisfied in order to

achieve correctly the AS.

d11 − d21 < 0,

d12 − d22 < 0,

−a + d13 − d23 < 0,

35 − d31 < 0,

28 − d32 < 0,

−3 − d33 < 0,

−36 − d41 < 0,

26 − d42 < 0
and −3 − d43 < 0.

Relying on the previous conditions, we choose the diagonal parameters such as

(d11, d12, d13, d21, d22, d23, d31, d32, d33, d41, d42, d43,) are equal to (0, 0, 0, 20, 60, 80,
60, 80, 100, 80,) For numerical simulations, the initial conditions are fixed such as

x1(0) = (1, 1, 1), x2(0) = (1, 1, 1), x3(0) = (4, 5, 4) and x4(0) = (4, 5, 3). The parame-

ter q is fixed to 0.98. All numerical simulations are obtained by using the package

MATCONT in MATLAB.

The initial conditions of the AS errors are chosen such as e11(0) = e12(0) =
e13(0) = e21(0) = e22(0) = e23(0) = e31(0) = e32(0) = e33(0) = 10. Figure 7 illust-

rates the evolution of the state trajectories of th AS error vector eA. We can observe

that the errors eAi converge to zero as t → +∞, which means that the AS and CS are

realized. Thus, the HS is achieved under the proposed controller laws.



714 A. Lassoued and O. Boubaker

Fig. 7 State trajectories of the dynamical errors eA = [eij], i = 1⋯ 3 and j = 1⋯ 3

The state trajectories of the four coupled FO systems are shown in Figs. 8 and

9, under the controllers u1, u2 and u3. In Fig. 8, note that the couples (x1(t), x2(t)),
(x2(t), x3(t)) and (x3(t), x4(t)) express the AS where as the couples (x1(t), x3(t)) and

(x2(t), x4(t)) express the CS. It is also clear in Fig. 9, displaying a zoom on the dynam-

ical modes, that the four state trajectories are different in the beginning but after a

short period, they converge, in pairs.

6 Conclusions

In this chapter, a new Jerk chaotic system with a PWNL function is proposed

and its FO generalization is developed. For both systems, chaotic behaviors are

analyzed. It is shown that the PWNL function gives more complex dynamical pro-

prieties than the piecewise linear one. Finally, HS problem of multiple coupled frac-

tional order systems with ring connections is formulated and solved. This technology

provided evidence for the potential application of the proposed system in engineer-

ing applications. We have investigated the complete synchronization and the anti-

synchronization approaches in order to coexist. Furthermore, numerical simulations

have been carried out in order to prove the well achievement of the synchronization

problem.



A New Fractional-Order Jerk System and Its Hybrid Synchronization 715

Fig. 8 State trajectories of

each coupled systems: a
x11, x21, x31, x41; b
x12, x22, x32, x42; c
x13, x23, x33, x43
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Fig. 9 Zoom on the state

trajectories of each coupled

systems: a x11, x21, x31, x41; b
x12, x22, x32, x42; c
x13, x23, x33, x43
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Abstract This research work describes an eight-term 3-D novel polynomial chaotic

system consisting of three quadratic nonlinearities. First, this work presents the 3-D

dynamics of the novel chaotic system and depicts the phase portraits of the system.

Next, the qualitative properties of the novel chaotic system are discussed in detail.

The novel chaotic system has four equilibrium points. We show that two equilib-

rium points are saddle points and the other equilibrium points are saddle-foci. The

Lyapunov exponents of the novel chaotic system are obtained as L1 = 0.4715,L2 = 0
and L3 = −2.4728. The Lyapunov dimension of the novel chaotic system is obtained

as DL = 2.1907. Next, we present the design of adaptive feedback controller for

globally stabilizing the trajectories of the novel chaotic system with unknown para-

meters. Furthermore, we present the design of adaptive feedback controller for

achieving complete synchronization of the identical novel chaotic systems with

unknown parameters. The main adaptive control results are proved using Lyapunov

stability theory. MATLAB simulations are depicted to illustrate all the main results
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1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to

initial conditions, topologically mixing and with dense periodic orbits [10, 11, 13].

Sensitivity to initial conditions of chaotic systems is popularly known as the but-
terfly effect. Small changes in an initial state will make a very large difference in the

behavior of the system at future states.

Poincaré [15] suspected chaotic behaviour in the study of three bodies problem

at the end of the 19th century, but chaos was experimentally established by Lorenz

[41] only a few decades ago in the study of 3-D weather models.

The Lyapunov exponent is a measure of the divergence of phase points that are

initially very close and can be used to quantify chaotic systems. It is common to

refer to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).

A positive maximal Lyapunov exponent and phase space compactness are usually

taken as defining conditions for a chaotic system.

In the last five decades, there is significant interest in the literature in discov-

ering new chaotic systems [73]. Some popular chaotic systems are Lorenz system

[41], Rössler system [63], Arneodo system [2], Henon-Heiles system [27], Genesio-

Tesi system [25], Sprott systems [72], Chen system [19], Lü system [42], Rikitake

dynamo system [62], Liu system [40], Shimizu system [71], etc.

In the recent years, many new chaotic systems have been found such as Pandey

system [46], Qi system [54], Li system [35], Wei-Yang system [171], Zhou system

[178], Zhu system [179], Sundarapandian systems [76, 81], Dadras system [21],

Tacha system [84], Vaidyanathan systems [92, 93, 95–98, 101, 112, 126–133, 135–

137, 139, 148, 150, 159, 161, 163, 165–167], Vaidyanathan-Azar systems [142,

143, 145–147], Pehlivan system [48], Sampath system [64], Akgul system [1], Pham

system [49, 51–53], etc.

Chaos theory and control systems have many important applications in science

and engineering [3, 10–12, 14, 180]. Some commonly known applications are oscil-

lators [115, 119, 121–124, 134], lasers [37, 174], chemical reactions [102, 103,

107–109, 111, 113, 114, 117, 118, 120], biology [22, 33, 100, 104–106, 110, 116],

ecology [26, 74], encryption [34, 177], cryptosystems [61, 85], mechanical systems

[5–9], secure communications [23, 44, 175], robotics [43, 45, 169], cardiology [55,

172], intelligent control [4, 38], neural networks [28, 31, 39], memristors [50, 170],

etc.

Synchronization of chaotic systems is a phenomenon that occurs when two or

more chaotic systems are coupled or when a chaotic system drives another chaotic

system. Because of the butterfly effect which causes exponential divergence of the

trajectories of two identical chaotic systems started with nearly the same initial con-

ditions, the synchronization of chaotic systems is a challenging research problem in

the chaos literature.

Major works on synchronization of chaotic systems deal with the complete syn-

chronization of a pair of chaotic systems called the master and slave systems. The

design goal of the complete synchronization is to apply the output of the master sys-
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tem to control the slave system so that the output of the slave system tracks the output

of the master system asymptotically with time. Active feedback control is used when

the system parameters are available for measurement. Adaptive feedback control is

used when the system parameters are unknown.

Pecora and Carroll pioneered the research on synchronization of chaotic systems

with their seminal papers [18, 47]. The active control method [30, 65, 66, 75, 80,

86, 90, 151, 152, 155] is typically used when the system parameters are available

for measurement.

Adaptive control method [67–69, 77–79, 88, 94, 125, 138, 144, 149, 153, 154,

160, 164, 168] is typically used when some or all the system parameters are not

available for measurement and estimates for the uncertain parameters of the systems.

Adaptive control method has more relevant for many practical situations for systems

with unknown parameters. In the literature, adaptive control method is preferred over

active control method due to the wide applicability of the adaptive control method.

Intelligent control methods like fuzzy control method [16, 17] are also used for

the synchronization of chaotic systems. Intelligent control methods have advantages

like robustness, insensitive to small variations in the parameters, etc.

Sampled-data feedback control method [24, 36, 173, 176] and time-delay feed-

back control method [20, 29, 70] are also used for synchronization of chaotic

systems. Backstepping control method [56–60, 83, 156, 162] is also used for the

synchronization of chaotic systems, which is a recursive method for stabilizing the

origin of a control system in strict-feedback form.

Another popular method for the synchronization of chaotic systems is the sliding

mode control method [82, 87, 89, 91, 99, 140, 141, 157, 158], which is a nonlinear

control method that alters the dynamics of a nonlinear system by application of a

discontinuous control signal that forces the system to “slide” along a cross-section

of the system’s normal behavior.

In this research work, we describe an eight-term 3-D novel polynomial chaotic

system with three quadratic nonlinearities. Section 2 describes the 3-D dynamical

model and phase portraits of the novel chaotic system.

Section 3 describes the dynamic analysis of the novel chaotic system. We show

that the novel chaotic system has four equilibrium points of which two equilibrium

points are saddle points and the other two equilibrium points are saddle-foci.

The Lyapunov exponents of the eight-term novel chaotic system are obtained as

L1 = 0.4715, L2 = 0 and L3 = −2.4728. Since the sum of the Lyapunov exponents

of the novel chaotic system is negative, this chaotic system is dissipative. Also, the

Lyapunov dimension of the novel chaotic system is obtained as DL = 2.1907.

Section 4 describes the adaptive feedback control of the novel chaotic system with

unknown parameters. Section 5 describes the adaptive feedback synchronization of

the identical novel chaotic systems with unknown parameters. The adaptive feedback

control and synchronization results are proved using Lyapunov stability theory [32].

MATLAB simulations are depicted to illustrate all the main results for the 3-D

novel chaotic system. Section 6 concludes this work with a summary of the main

results.
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2 A Novel 3-D Chaotic System

In this research work, we announce an eight-term 3-D chaotic system described by

ẋ1 = −ax2 + x2x3
ẋ2 = px1 + bx2 − x1x3
ẋ3 = x1 − cx3 + x1x2

(1)

where x1, x2, x3 are the states and a, b, c, p are constant, positive parameters.

The 3-D system (1) is chaotic when the parameter values are taken as

a = 2.2, b = 3, c = 5, p = 0.1 (2)

For numerical simulations, we take the initial state of the chaotic system (1) as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2 (3)

The Lyapunov exponents of the novel chaotic system (1) for the parameter values

(2) and the initial values (3) are numerically determined as

L1 = 0.4715, L2 = 0, L3 = −2.4728 (4)

The Lyapunov dimension of the novel chaotic system (1) is calculated as

DL = 2 +
L1 + L2
|L3|

= 2.1907, (5)

which is fractional.

The presence of a positive Lyapunov exponent in (4) shows that the 3-D novel

system (1) is chaotic (Fig. 1).

The novel 3-D chaotic system (1) exhibits a strange chaotic attractor. It is inter-

esting to note that the strange chaotic attractor looks like a trumpet. Hence, the novel

chaotic system (1) can be also called as a trumpet attractor.

Figure 2 describes the 2-D projection of the strange chaotic attractor of the novel

chaotic system (1) on (x1, x2)-plane.

Figure 3 describes the 2-D projection of the strange chaotic attractor of the novel

chaotic system (1) on (x2, x3)-plane.

Figure 4 describes the 2-D projection of the strange chaotic attractor of the novel

chaotic system (1) on (x1, x3)-plane.
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Fig. 1 Strange attractor of the novel chaotic system in IR3

3 Analysis of the 3-D Novel Chaotic System

This section gives the qualitative properties of the novel chaotic system (1).

3.1 Dissipativity

In vector notation, the system (1) can be expressed as

ẋ = f (x) =
⎡
⎢⎢⎣

f1(x)
f2(x)
f3(x)

⎤
⎥⎥⎦
, (6)

where

f1(x) = −ax2 + x2x3
f2(x) = px1 + bx2 − x1x3
f3(x) = x1 − cx3 + x1x2

(7)



724 S. Vaidyanathan et al.

Fig. 2 2-D projection of the novel chaotic system on (x1, x2)-plane

We take the parameter values as

a = 2.2, b = 3, c = 5, p = 0.1 (8)

The divergence of the vector field f on IR3
is obtained as

div f =
𝜕f1(x)
𝜕x1

+
𝜕f2(x)
𝜕x2

+
𝜕f3(x)
𝜕x3

= −(c − b) = −𝜇 (9)

where

𝜇 = c − b = 2 > 0 (10)

Let 𝛺 be any region in IR3
with a smooth boundary. Let 𝛺(t) = 𝛷t(𝛺), where 𝛷t

is the flow of the vector field f . Let V(t) denote the volume of 𝛺(t).
By Liouville’s theorem, it follows that

dV(t)
dt

= ∫
𝛺(t)

(divf )dx1 dx2 dx3 (11)
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Fig. 3 2-D projection of the novel chaotic system on (x2, x3)-plane

Substituting the value of divf in (11) leads to

dV(t)
dt

= −𝜇 ∫
𝛺(t)

dx1 dx2 dx3 = −𝜇V(t) (12)

Integrating the linear differential equation (12), V(t) is obtained as

V(t) = V(0) exp(−𝜇t) (13)

From Eq. (13), it follows that the volume V(t) shrinks to zero exponentially as

t → ∞.

Thus, the novel chaotic system (1) is dissipative. Hence, any asymptotic motion

of the system (1) settles onto a set of measure zero, i.e. a strange attractor.
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Fig. 4 2-D projection of the novel chaotic system on (x1, x3)-plane

3.2 Invariance

It is easily seen that the x3-axis is invariant for the flow of the novel chaotic system

(1). The invariant motion along the x3-axis is characterized by the scalar dynamics

ẋ3 = −cx3, (c > 0) (14)

which is globally exponentially stable.

3.3 Equilibria

The equilibrium points of the novel chaotic system (1) are obtained by solving the

nonlinear equations

f1(x) = −ax2 + x2x3 = 0
f2(x) = px1 + bx2 − x1x3 = 0
f3(x) = x1 − cx3 + x1x2 = 0

(15)
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We take the parameter values as in the chaotic case, viz.

a = 2.2, b = 3, c = 5, p = 0.1 (16)

Solving the nonlinear system (15) with the parameter values (16), we obtain four

equilibrium points of the novel chaotic system (1), viz.

E0 =
⎡
⎢⎢⎣

0
0
0

⎤
⎥⎥⎦
, E1 =

⎡
⎢⎢⎣

0.5
0

0.1

⎤
⎥⎥⎦
,E2 =

⎡
⎢⎢⎣

−4.7422
−3.3196
2.2000

⎤
⎥⎥⎦
, E3 =

⎡
⎢⎢⎣

3.3137
2.3196
2.2000

⎤
⎥⎥⎦

(17)

The Jacobian matrix of the novel chaotic system (1) at (x⋆1 , x
⋆

2 , x
⋆

3 ) is obtained as

J(x⋆) =
⎡
⎢⎢⎣

0 −a + x⋆3 x⋆2
p − x⋆3 b −x⋆1
1 + x⋆2 x⋆1 −c

⎤
⎥⎥⎦

(18)

The matrix J0 = J(E0) has the eigenvalues

𝜆1 = −5, 𝜆2 = 0.0752, 𝜆3 = −5 (19)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.

The matrix J1 = J(E1) has the eigenvalues

𝜆1 = −0.0705, 𝜆2 = −4.9418, 𝜆3 = 3.0123 (20)

This shows that the equilibrium point E1 is a saddle point, which is unstable.

The matrix J2 = J(E2) has the eigenvalues

𝜆1 = −4.6466, 𝜆2,3 = 1.3233 ± 3.2148i (21)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.

The matrix J3 = J(E3) has the eigenvalues

𝜆1 = −5.4615, 𝜆2,3 = 1.7307 ± 2.0469i (22)

This shows that the equilibrium point E3 is a saddle-focus, which is unstable.

Hence, E0,E1,E2,E3 are all unstable equilibrium points of the 3-D novel chaotic

system (1), where E0,E1 are saddle points and E3,E4 are saddle-foci.
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3.4 Lyapunov Exponents and Lyapunov Dimension

We take the initial values of the novel chaotic system (1) as in (3) and the parameter

values of the novel chaotic system (1) as in (2).

Then the Lyapunov exponents of the novel chaotic system (1) are numerically

obtained as

L1 = 0.4715, L2 = 0, L3 = −2.4728 (23)

Since L1 + L2 + L3 = −2.0013 < 0, the system (1) is dissipative.

Also, the Lyapunov dimension of the system (1) is obtained as

DL = 2 +
L1 + L2
|L3|

= 2.1907, (24)

which is fractional.

Figure 5 depicts the Lyapunov exponents of the novel chaotic system (1). From

this figure, it is seen that the Maximal Lyapunov Exponent (MLE) of the novel

chaotic system (1) is L1 = 0.4715.

Fig. 5 Lyapunov exponents of the novel chaotic system
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4 Adaptive Feedback Control of the 3-D Novel
Chaotic System

This section derives new results for adaptive feedback controller design in order to

stabilize the unstable novel chaotic system with unknown parameters for all initial

conditions.

The controlled novel 3-D chaotic system is given by

ẋ1 = −ax2 + x2x3 + u1
ẋ2 = px1 + bx2 − x1x3 + u2
ẋ3 = x1 − cx3 + x1x2 + u3

(25)

where x1, x2, x3 are state variables, a, b, c, p are constant, unknown, parameters of the

system and u1, u2, u3 are adaptive feedback controls to be designed.

An adaptive feedback control law is taken as

u1 = â(t)x2 − x2x3 − k1x1
u2 = −p̂(t)x1 − b̂(t)x2 + x1x3 − k2x2
u3 = −x1 + ĉ(t)x3 − x1x2 − k3x3

(26)

In (26), â(t), b̂(t), ĉ(t), p̂(t) are estimates for the unknown parameters a, b, c, p,

respectively, and k1, k2, k3 are positive gain constants.

The closed-loop control system is obtained by substituting (26) into (25) as

ẋ1 = −[a − â(t)]x2 − k1x1
ẋ2 = [p − p̂(t)]x1 + [b − b̂(t)]x2 − k2x2
ẋ3 = −[c − ĉ(t)]x3 − k3x3

(27)

To simplify (27), we define the parameter estimation error as

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = d − p̂(t)

(28)

Using (28), the closed-loop system (27) can be simplified as

ẋ1 = −eax2 − k1x1
ẋ2 = epx1 + ebx2 − k2x2
ẋ3 = −ecx3 − k3x3

(29)
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Differentiating the parameter estimation error (28) with respect to t, we get

ėa = − ̇̂a
ėb = − ̇̂b
ėc = − ̇̂c
ėp = − ̇̂p

(30)

Next, we find an update law for parameter estimates using Lyapunov stability

theory.

Consider the quadratic Lyapunov function defined by

V(x1, x2, x3, ea, eb, ec, ep) =
1
2

(
x21 + x22 + x23 + e2a + e2b + e2c + e2p

)
, (31)

which is positive definite on IR7
.

Differentiating V along the trajectories of (29) and (30), we get

V̇ = −k1x21 − k2x22 − k3x23 + ea[−x1x2 − ̇̂a] + eb[x22 −
̇̂b] + ec[−x23 − ̇̂c]

+ep[x1x2 − ̇̂p]
(32)

In view of Eq. (32), an update law for the parameter estimates is taken as

̇̂a = −x1x2
̇̂b = x22
̇̂c = −x23
̇̂p = x1x2

(33)

Theorem 1 The novel chaotic system (25) with unknown system parameters is glob-
ally and exponentially stabilized for all initial conditions x(0) ∈ IR3 by the adaptive
control law (26) and the parameter update law (33), where ki, (i = 1, 2, 3) are posi-
tive constants.

Proof The result is proved using Lyapunov stability theory [32]. We consider the

quadratic Lyapunov function V defined by (31), which is positive definite on IR7
.

Substitution of the parameter update law (33) into (32) yields

V̇ = −k1x21 − k2x22 − k3x23, (34)

which is a negative semi-definite function on IR7
.

Therefore, it can be concluded that the state vector x(t) and the parameter estima-

tion error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ 𝐋∞. (35)
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Define

k = min
{

k1, k2, k3
}

(36)

Then it follows from (34) that

V̇ ≤ −k‖x‖2 or k‖x‖2 ≤ −V̇ (37)

Integrating the inequality (37) from 0 to t, we get

k

t

∫
0

‖𝐱(𝜏)‖2 d𝜏 ≤ −
t

∫
0

V̇(𝜏) d𝜏 = V(0) − V(t) (38)

From (38), it follows that 𝐱(t) ∈ 𝐋2.

Using (29), it can be deduced that ẋ(t) ∈ 𝐋∞.

Hence, using Barbalat’s lemma, we can conclude that 𝐱(t) → 0 exponentially as

t → ∞ for all initial conditions 𝐱(0) ∈ IR3
.

This completes the proof. □

For numerical simulations, the parameter values of the novel system (25) are taken

as in the chaotic case, viz.

a = 2.2, b = 3, c = 5, p = 0.1 (39)

The gain constants are taken as ki = 6, (i = 1, 2, 3).
The initial values of the parameter estimates are taken as

â(0) = 5.4, b̂(0) = 12.7, ĉ(0) = 21.3, p̂(0) = 16.2 (40)

The initial values of the novel system (25) are taken as

x1(0) = 18.3, x2(0) = 11.6, x3(0) = 7.9 (41)

Figure 6 shows the time-history of the controlled states x1(t), x2(t), x3(t).
Figure 6 depicts the exponential convergence of the controlled states and the effi-

ciency of the adaptive controller defined by (26).

5 Adaptive Synchronization of the Identical 3-D Novel
Chaotic Systems

This section derives new results for the adaptive synchronization of the identical

novel chaotic systems with unknown parameters.
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Fig. 6 Time-history of the

states x1(t), x2(t), x3(t)

The master system is given by the novel chaotic system

ẋ1 = −ax2 + x2x3
ẋ2 = px1 + bx2 − x1x3
ẋ3 = x1 − cx3 + x1x2

(42)

where x1, x2, x3 are state variables and a, b, c, p are constant, unknown, parameters

of the system.

The slave system is given by the controlled novel chaotic system

ẏ1 = −ay2 + y2y3 + u1
ẏ2 = py1 + by2 − y1y3 + u2
ẏ3 = y1 − cy3 + y1y2 + u3

(43)

where y1, y2, y3 are state variables and u1, u2, u3 are adaptive controls to be designed.

The synchronization error is defined as

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(44)

The error dynamics is easily obtained as

ė1 = −ae2 + y2y3 − x2x3 + u1
ė2 = pe1 + be2 − y1y3 + x1x3 + u2
ė3 = e1 − ce3 + y1y2 − x1x2 + u3

(45)
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An adaptive control law is taken as

u1 = â(t)e2 − y2y3 + x2x3 − k1e1
u2 = −p̂(t)e1 − b̂(t)e2 + y1y3 − x1x3 − k2e2
u3 = −e1 + ĉ(t)e3 − y1y2 + x1x2 − k3e3

(46)

where â(t), b̂(t), ĉ(t), p̂(t) are estimates for the unknown parameters a, b, c, p, respec-

tively, and k1, k2, k3 are positive gain constants.

The closed-loop control system is obtained by substituting (46) into (45) as

ė1 = −[a − â(t)]e2 − k1e1
ė2 = [p − p̂(t)]e1 + [b − b̂(t)]e2 − k2e2
ė3 = −[c − ĉ(t)]e3 − k3e3

(47)

To simplify (47), we define the parameter estimation error as

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ep(t) = p − p̂(t)

(48)

Using (48), the closed-loop system (47) can be simplified as

ė1 = −eae2 − k1e1
ė2 = epe1 + ebe2 − k2e2
ė3 = −ece3 − k3e3

(49)

Differentiating the parameter estimation error (48) with respect to t, we get

ėa = − ̇̂a
ėb = − ̇̂b
ėc = − ̇̂c
ėp = − ̇̂p

(50)

Next, we find an update law for parameter estimates using Lyapunov stability

theory.

Consider the quadratic Lyapunov function defined by

V(e1, e2, e3, ea, eb, ec, ep) =
1
2

(
e21 + e22 + e23 + e2a + e2b + e2c + e2p

)
, (51)

which is positive definite on IR7
.
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Differentiating V along the trajectories of (49) and (50), we get

V̇ = −k1e21 − k2e22 − k3e23 + ea
[
−e1e2 − ̇̂a

]
+ eb

[
e22 −

̇̂b
]

+ec
[
−e23 − ̇̂c

]
+ ep

[
e1e2 − ̇̂p

] (52)

In view of Eq. (52), an update law for the parameter estimates is taken as

̇̂a = −e1e2
̇̂b = e22
̇̂c = −e23
̇̂p = e1e2

(53)

Theorem 2 The identical novel chaotic systems (42) and (43) with unknown sys-
tem parameters are globally and exponentially synchronized for all initial conditions
x(0), y(0) ∈ IR3 by the adaptive control law (46) and the parameter update law (53),
where ki, (i = 1, 2, 3) are positive constants.

Proof The result is proved using Lyapunov stability theory [32].

We consider the quadratic Lyapunov function V defined by (51), which is positive

definite on IR7
.

Substitution of the parameter update law (53) into (52) yields

V̇ = −k1e21 − k2e22 − k3e23, (54)

which is a negative semi-definite function on IR7
.

Therefore, it can be concluded that the synchronization error vector e(t) and the

parameter estimation error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) ea(t) eb(t) ec(t) ep(t)

]T ∈ 𝐋∞. (55)

Define

k = min
{

k1, k2, k3
}

(56)

Then it follows from (54) that

V̇ ≤ −k‖e‖2 or k‖𝐞‖2 ≤ −V̇ (57)

Integrating the inequality (57) from 0 to t, we get

k

t

∫
0

‖𝐞(𝜏)‖2 d𝜏 ≤ −
t

∫
0

V̇(𝜏) d𝜏 = V(0) − V(t) (58)

From (58), it follows that 𝐞(t) ∈ 𝐋2.
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Using (49), it can be deduced that �̇�(t) ∈ 𝐋∞.

Hence, using Barbalat’s lemma, we can conclude that 𝐞(t) → 0 exponentially as

t → ∞ for all initial conditions 𝐞(0) ∈ IR3
.

This completes the proof. □

For numerical simulations, the parameter values of the novel systems (42) and

(43) are taken as in the chaotic case, viz.

a = 2.2, b = 3, c = 5, p = 0.1 (59)

The gain constants are taken as ki = 6 for i = 1, 2, 3.

The initial values of the parameter estimates are taken as

â(0) = 6.2, b̂(0) = 12.9, ĉ(0) = 28.5, p̂(0) = 17.3 (60)

The initial values of the master system (42) are taken as

x1(0) = 5.8, x2(0) = 18.3, x3(0) = −12.1 (61)

The initial values of the slave system (43) are taken as

y1(0) = 16.4, y2(0) = 4.5, y3(0) = −7.8 (62)

Figures 7-9 show the complete synchronization of the identical chaotic systems

(42) and (43).

Figure 7 shows that the states x1(t) and y1(t) are synchronized in one second

(MATLAB).

Fig. 7 Synchronization of

the states x1 and y1
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Fig. 8 Synchronization of

the states x2 and y2

Fig. 9 Synchronization of

the states x3 and y3

Figure 8 shows that the states x2(t) and y2(t) are synchronized in one second

(MATLAB).

Figure 9 shows that the states x3(t) and y3(t) are synchronized in one second

(MATLAB).

Figure 10 shows the time-history of the synchronization errors e1(t), e2(t), e3(t).
From Fig. 10, it is seen that the errors e1(t), e2(t) and e3(t) are stabilized in one second

(MATLAB).



An Eight-Term 3-D Novel Chaotic System . . . 737

Fig. 10 Time-history of the

synchronization errors

e1, e2, e3

6 Conclusions

In this work, we described an eight-term 3-D novel polynomial chaotic system

consisting of three quadratic nonlinearities. The qualitative properties of the novel

chaotic system have been discussed in detail. We showed that the novel chaotic sys-

tem has four equilibrium points of which two equilibrium points are saddle points

and the other equilibrium points are saddle-foci. The Lyapunov exponents of the

novel chaotic system were derived as L1 = 0.4715,L2 = 0 and L3 = −2.4728. The

Lyapunov dimension of the novel chaotic system was obtained as DL = 2.1907. Next,

we worked on the design of adaptive feedback controller for globally stabilizing the

trajectories of the novel chaotic system with unknown parameters. Furthermore, we

derived new results for the design of adaptive feedback controller for achieving com-

plete synchronization of the identical novel chaotic systems with unknown parame-

ters. The main adaptive control results were proved using Lyapunov stability theory.

MATLAB simulations were displayed to illustrate all the main results presented in

this research work.
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Dynamics of Fractional Order Complex
Uçar System

Sachin Bhalekar

Abstract The fractional order delay differential equations are models with rich

dynamical properties. Both fractional order and delay are useful in modelling mem-

ory and hereditary properties in the physical system. In this chapter, we have pro-

posed a complex version of fractional order Uçar system with delay. The stability of

the numerical methods for solving such equations is discussed. It is observed that a

slight modification in the proposed system generates chaotic trajectories. The bifur-

cation and chaos is studied in the modified system. The delayed feedback method is

used to control chaos in the system. Finally, the system is synchronized by using the

method of projective synchronization.

Keywords Fractional derivative ⋅ Delay differential equation ⋅ Uçar system ⋅
Chaos ⋅ Bifurcation ⋅ Synchronization

1 Introduction

For any positive integer n, Leibniz introduced a notation Dnf (x) = dnf (x)
dxn for n-th order

differentiation of suitable function f . In a letter dated September 30, 1695 L’Hopital

asked Leibniz about the meaning of above operation when n = 1∕2. This moment is

popularly believed as origin of Fractional Calculus (FC). The day September 30 is

now celebrated as Fractional Calculus Day or the Birthday of Fractional Calculus.

When the order of differentiation is any real or complex number or some function of

t then it is called as Fractional Derivative (FD). Though this branch of mathematics

is as old as conventional calculus, the applications are rather recent.
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The subject was not popular among scientists because of following weird things

related to FD.

(1) Though the fractional integration was given uniquely by Riemann-Liouville

(RL) sense, FD had several inequivalent definitions.

(2) Several simple rules involving integer order derivative (ID) take a complicated

form during the generalization to FD. For example, the finite sum

Dn(fg) =
n∑

k=0

(
n
k

)(
Dn−kf

) (
Dkg

)
(1)

in a Leibniz rule of ordinary differentiation turned out to be an infinite series

[109]

RD𝛼(fg) =
∞∑

k=0

𝛤 (𝛼 + 1)
𝛤 (k + 1)𝛤 (𝛼 − k + 1)

(
D𝛼−kf

) (
Dkg

)
(2)

for Riemann-Liouville (RL) fractional differentiation of order 𝛼.

(3) One has to provide initial conditions at the arbitrary ordered derivative of the

function while considering the initial value problems (IVP) involving RL frac-

tional derivatives. Such initial conditions are not physically relevant in many

cases. (Of course this drawback was overcame by Caputo fractional derivative).

(4) The scientists were unable to provide satisfactory geometrical or physical mean-

ing of any FD unlike an integer order derivative (ID).

(5) The ID of a suitable function f at a point t0 can be approximated by using values

of f at some points in a neighborhood of t0. However, one has to consider all

the history from the initial point while approximating FDs. In other words, the

FDs are nonlocal operators in contrast with the local operator ID. Hence the

numerical solutions of fractional differential equations (FDE) require a lot of

time.

Later on, it was realized that the FDs are able to model nonlocal properties in a

system such as memory which ID cannot. Further, there are some natural systems

which show intermediate behaviour (e.g. visco-elasticity [93]) which can be mod-

elled in a more accurate way by using FDs. In result the subject become popular in

pure as well as applied scientists.

We now list some applications of fractional calculus in various branches of Sci-

ence, Engineering and Social Sciences. A well-known fractional diffusion equation

is studied by researchers to model numerous phenomena [45, 76–78, 92]. Mainardi

in his monograph [93] discussed the application of fractional calculus in linear vis-

coelasticity. Applications of this branch to bioengineering are discussed by Magin

[91]. Few more applications include signal processing [6, 102], image processing

[113], image encryption [107, 132, 138], cryptography [130], control theory [108],

thermodynamics [97] and nonlinear dynamics [62, 88, 134]. Chaotic fractional order

systems can be used to generate reliable cryptographic schemes [99–101, 136].
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Various results on existence and uniqueness (EU)of the solutions of fractional dif-

ferential equations (FDE) are derived by researchers. EU result for linear equations

of the form
RD𝛼y(x) − 𝜆y(x) = f (x), (n − 1 ≤ Re(𝛼) < n), (3)

where
RD𝛼

is Riemann-Lioville fractional derivative is derived by Barret in [21].

Method of successive approximation is used by Al-Bassam [5] to derive EU result

for nonlinear problem

RD𝛼y(x) = f (x, y(x)), (0 < 𝛼 ≤ 1). (4)

Schauder’s fixed point theorem was utilized by Delbosco and Rodino [49] to

derive EU results for nonlinear equations. Cauchy problems of the form (4) with

Caputo derivative are discussed by Diethelm and Ford [53]. Existence, uniqueness

and stability of solutions of systems of FDEs are proposed by Daftardar-Gejji and

Babakhani in [41].

Linear FDEs can be solved exactly by using transform methods and operational

method. Laplace transform is used to solve linear FDEs of the form (5) with Caputo

fractional derivative by Gorenflo and Mainardi [64]. An operational method is pro-

posed by Luchko and Gorenflo [89] to solve multi-term linear FDEs of Caputo type.

Daftardar-Gejji and coworkers [42, 44] used method of separation of variables to

solve these equations.

However, the methods described above cannot be used to solve nonlinear FDEs.

In this case, one has to use either some numerical method or approximate analytical

method (AAM). A popular numerical method is fractional Adam’s method devel-

oped by Diethelm et al. [54]. An improved method derived by Daftardar-Gejji et

al. [39] is more efficient. If the analytical solutions are required instead of numeri-

cal approximations then one has to consider some AAM. Few terms of the solution

series provided by AAM can be used as a good approximation to the exact solution.

However, it should be noted that the AAM solutions are local whereas the numerical

solutions are global. Adomian decomposition method (ADM) [1], variational itera-

tion method (VIM) [69], homotopy perturbation method (HPM) [70] and Daftardar-

Gejji-Jafari method (DJM) [43] are popular AAMs used by researchers. The chapter

is organized as below: Review of the work related to chaos control, synchronization,

delay differential equations and the Uçar system is taken in Sect. 2. Basic definitions

regarding fractional calculus are listed in Sect. 3. We have described two numerical

methods viz. FAM and NPCM in Sect. 4. Section 4.3 deals with the stability of these

methods. The complex version of Uçar system is presented in Sect. 5. The modified

system is proposed in Sect. 6. Further, the bifurcation analysis, chaos control and

synchronization in the modified system is also discussed in this section. Sections 7

and 8 deal with discussion and conclusions respectively.
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2 Related Work

2.1 Chaos Control and Synchronization

Nonlinear autonomous systems of ordinary differential equations (ODE) of order

three or higher may exhibit aperiodic oscillations which are extremely sensitive to

initial conditions. Such bounded orbits are known to be chaotic. The first chaotic sys-

tem reported in the literature is by a meteorologist and mathematician Lorenz [90]. A

large number of examples of dynamical systems which exhibit chaos have been pre-

sented in the literature [4, 18]. Chaos has been shown to exist in various branches of

science e.g. Chua’s circuit in electronics [95], Belousov-Zhabotinsky chemical reac-

tion [2, 60], economics and finance [36, 58, 110], fluid dynamics [133], population

dynamics [68], physiology [22, 56], pharmacodynamics [55], artificial intelligence

systems [10, 11] and so on.

The Poincare-Bendixson theorem [4] gives necessary condition for the existence

of chaos. However, there does not exists any sufficient condition for the chaos. Some

tests such as maximum Lyapunov exponent are useful in chaos detection.

Since the chaotic systems are unpredictable, the control of chaos is necessary

in various physical applications [12, 139]. However, one can also utilize this unpre-

dictability to generate secure communication schemes [71, 72] by applying the tech-

niques of chaos synchronization. If the trajectory of a chaotic system follow the path

of some (same or distinct) chaotic system with different initial conditions after apply-

ing a suitable control then the phenomena is called as synchronization [103, 104].

Different control strategies are described in the literature such as nonlinear feed-

back control [74], adaptive control [33, 87, 122–124, 137], adaptive feedback con-

trol [121], adaptive backstepping control [125], active control [19, 20, 116], sliding

mode control [9, 13, 15, 98, 117–119, 135], deadbeat control [14], backstepping

control [120], function synchronization [34], PID control [17], IMC-PID control [8],

backlash control [16] and so on.

Grigorenko and Grigorenko [65] discussed chaos in fractional order system first

time in the literature. The system was obtained by replacing IDs in Lorenz system

by FDs of order between 0 and 1. Though there was an error in numerical solutions

of this system, it gave rise to a new field of research. Till date, there are so many

fractional order chaotic dynamical systems (FCDS) are reported in the literature. It

is observed in all these systems that the FCDS shows chaos for system order less

than that of its integer counterpart. i.e. A three dimensional FCDS can be chaotic for

the system order (sum of all the fractional orders of the derivatives in the system)

less than three. The bifurcation value of the system order is called as the minimum

effective dimension (MED). For a given system, the stable orbits are observed for

the system order less than MED. Further increase in system order leads to chaotic

trajectories. Fractional order chaotic systems discussed in the literature are Lorenz

system [65], Chua system [67], Rossler system [83], Newton-Leipnik system [111],

Liu system [46] and so on.
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Synchronization of fractional order chaotic systems was first studied by Deng

and Li [51, 52] who carried out synchronization in the fractional Lü system. The

theory and techniques of fractional order chaos synchronization are summarized in

[84] by Li and Deng. Li et al. [85] used the Pecora-Carroll (PC) method, the active-

passive decomposition method, the one-way coupling and the bidirectional coupling

methods to synchronize two identical fractional order Chua systems. PC and one

way coupling methods were used to synchronize unified system by Wang and Zhang

[129]. Nonlinear control theory is successfully extended by Wang et al. [128] to

fractional order Chen systems to achieve synchronization. The same technique is

further used by Jun et al. [79] for chaotic synchronization between fractional order

financial system and financial system of integer orders.

The technique of active control (AC) is extended by Bhalekar and Daftardar-Gejji

[23, 24] to synchronize and anti-synchronize non-identical commensurate fractional

chaotic systems. It is observed that the synchronization is faster as the system order

tends to one. Further, Bhalekar utilized AC to synchronize incommensurate order

systems [29] and hyperchaotic systems [30] of fractional order.

A new approach named fractional-order dynamics rejection scheme is proposed

for fractional-order system based on active disturbance rejection control (ADRC)

method in [86]. The ARDC is then used by Gao and Liao [63] to synchronize differ-

ent fractional order chaotic systems.

2.2 Delay Differential Equations

If the rate of change of the current state depends on its values at earlier points then

the system can be modelled by using delay differential equation (DDE). The DDEs

ẋ(t) = f (x(t), x(t − 𝜏)) are particular cases of more general class called functional

equations. The term 𝜏 in this DDE is known as a delay. The 𝜏 may be constant, time

dependent or a state dependent. DDEs are proved useful in control systems [61],

traffic models [47], epidemiology [38], neuroscience [35], population dynamics [81],

chemical kinetics [57], economics [7, 48, 58] etc. It is observed that some nonlinear

DDEs of order one can generate chaotic solutions also.

Fractional order delay differential equations (FDDE) are the models containing

both non-integer order derivatives and time delays. FDDEs have applications in Con-

trol Theory [112], Agriculture [59], Chaos [127], NMR [26] and so on. Daftardar-

Gejji and coworkers presented efficient numerical methods [25, 40] for solving

FDDEs. A good number of research articles is devoted to analyze the stability of

linear time invariant fractional delay systems (LTIFDS). LTIFDS with character-

istic equation (as𝛼 + b) + (cs𝛼 + d)e−𝜌s = 0 are discussed by Hotzel [73]. Lambert

function is used to study the stability of ẏ(t) = ay(t − 1) in [37]. The generalization

of this equation is analyzed using Laplace transform by Deng et al. [50]. Hwang

and Cheng [75] developed a numerical algorithm to study the BIBO (bounded input

and bounded output) stability of LTIFDS. The fractional order PI𝜆D𝜇
controller is

utilized in [66] to stabilize LTIFDS. Recently, Bhalekar discussed stability of gen-

eralized nonlinear FDDE in [32].
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2.3 Uçar System

In [114, 115] Uçar proposed and analyzed a simple scalar delay differential equation

exhibiting chaos. This scalar equation consists of a cubic nonlinearity. The modelling

equation is

ẋ(t) = 𝛿x(t − 𝜏) − 𝜀 [x(t − 𝜏)]3 , (5)

where 𝛿 and 𝜀 are positive parameters and 𝜏 is time delay. There are three equilibrium

points namely 0,±
√
𝛿∕𝜀 when the delay 𝜏 = 0 in (5). It is easy to verify that 0 is

unstable and ±
√
𝛿∕𝜀 are stable equilibriums. The chaotic behaviour is observed in

this model for some positive values of delay element 𝜏. Stable orbits or limit cycles

are observed for the parameters 𝜀 = 𝜏 = 1 and for 𝛿 < 1. Multiple limit cycles are

observed by the author for 1 < 𝛿 < 1.56. The system was chaotic when 1.64 < 𝛿 <

1.8 and for higher values of 𝛿 the solutions become unbounded.

Further the author [115] has discussed the effect of 𝜏 on the chaotic behaviour

of the system for fixed values 𝜀 = 𝛿 = 1. The solutions were stable for 0 ≤ 𝜏 ≤ 0.76
whereas the limit cycles for 0.8 < 𝜏 ≤ 1.25. The first chaotic region sets around 𝜏 ≅
1.55. The multiple bifurcation and the second chaotic region is shown by the system

for higher values of 𝜏.

The system was generalized by present author [27] to a fractional order case and

discussed the chaotic properties in new model. Further, in [28] he generalized (5) to

involve two delays. In both the generalizations, the system was exhibiting one-scroll

as well as two-scroll attractors. The stability analysis of (5) is presented in [31].

3 Preliminaries

In this section, we discuss some basic definitions and analytical results regarding

fractional calculus.

Definition 3.1 [80, 105] Riemann-Liouville fractional integration of order 𝛼 is

defined as

I𝛼f (t) = 1
𝛤 (𝛼) ∫

t

0
(t − y)𝛼−1f (y) dy, t > 0. (6)

Definition 3.2 [80, 105] Caputo fractional derivative of order 𝛼 is defined as

D𝛼f (t) = Im−𝛼
(

dmf (t)
dtm

)
, 0 ≤ m − 1 < 𝛼 ≤ m. (7)

Note that for 0 ≤ m − 1 < 𝛼 ≤ m, a ≥ 0 and 𝛾 > −1
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I𝛼 (t − a)𝛾 = 𝛤 (𝛾 + 1)
𝛤 (𝛾 + 𝛼 + 1)

(t − a)𝛾+𝛼 , (8)

(I𝛼D𝛼f ) (t) = f (t) −
m−1∑
k=0

f (k)(0) tk

k!
. (9)

Lemma 3.1 ([96]) The fractional order linear system D𝛼𝐗 = 𝐁𝐗 is asymptotically
stable if and only if |arg(𝜆)| > 𝛼𝜋∕2, for all eigenvalues 𝜆 of matrix 𝐁. In this case,
the component of the state decay towards 0 like t−𝛼 .

4 Numerical Methods for FDDEs

4.1 Fractional Adams Method (FAM)

In this section, we present the modified Adams-Bashforth-Moulton predictor-

corrector scheme (FAM) described in [25] to solve delay differential equations of

fractional order (FDDE). Consider the following FDDE

D𝛼y(t) = f (t, y(t), y(t − 𝜏)) , t ∈ [0,T] , 0 < 𝛼 ≤ 1 (10)

y(t) = g(t), t ∈ [−𝜏, 0] . (11)

We consider a uniform grid
{

tn = nh ∶ n = −k,−k + 1,… ,−1, 0, 1,… ,N
}

where

k and N are integers satisfying h = T∕N and h = 𝜏∕k. The corrector formula for this

scheme is given by

yh
(
tn+1

)
= g(0) + h𝛼

𝛤 (𝛼 + 2)
f
(
tn+1, yh

(
tn+1

)
, yh

(
tn+1−k

))

+ h𝛼
𝛤 (𝛼 + 2)

n∑
j=0

aj,n+1f
(
tj, yh

(
tj
)
, yh

(
tj−k

))
, (12)

where aj,n+1 are given by

aj,n+1 =
⎧
⎪⎨⎪⎩

n𝛼+1 − (n − 𝛼)(n + 1)𝛼, if j = 0,
(n − j + 2)𝛼+1 + (n − j)𝛼+1 − 2(n − j + 1)𝛼+1, if 1 ≤ j ≤ n,
1, if j = n + 1.

(13)

The unknown term yh
(
tn+1

)
on the right hand side of (12) is replaced by an approx-

imation

yP
h
(
tn+1

)
= g(0) + 1

𝛤 (𝛼)

n∑
j=0

bj,n+1f
(
tj, yh

(
tj
)
, yh

(
tj−k

))
, (14)
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where

bj,n+1 =
h𝛼
𝛼

(
(n + 1 − j)𝛼 − (n − j)𝛼

)
. (15)

The term yP
h is termed as a predictor.

4.2 New Predictor-Corrector Method (NPCM)

The FAM described in previous section is improved by Daftardar-Gejji et al. using

an iterative method [43]. The new predictor-corrector method (NPCM) [39, 40] is

as below:

yp
n+1 =

⌈𝛼⌉−1∑
k=0

𝜙k
tk
n+1

k!
+ h𝛼

𝛤 (𝛼 + 2)

n∑
j=0

aj,n+1f1(tj, yj, y(tj − 𝜏)), (16)

zp
n+1 =

h𝛼
𝛤 (𝛼 + 2)

f1(tn+1, y
p
n+1, y(tn+1 − 𝜏)), (17)

yc
n+1 = yp

n+1 +
h𝛼

𝛤 (𝛼 + 2)
f1(tn+1, y

p
n+1 + zp

n+1, y(tn+1 − 𝜏)). (18)

Here yp
n+1 and zp

n+1 are called as predictors and yc
n+1 is the corrector, and yj denotes

the approximate value of the solution.

4.3 Numerical Stability

Numerical stability is a property which determines the suitability of the scheme for

sufficiently large value of step size. A simple linear equation with known stability

properties is chosen as a test equation. The difference equation is then obtained by

applying numerical scheme to this test equation. Further, the stability properties of

these two equations are compared. The stability region is a region in parameter space

in which the numerical solution is stable. We consider the following test equation [3]

y′(t) = 𝜆y(t) + 𝜇y(t − 1). (19)

We use the result in [82] to state the stability of (19) when 𝜆 and 𝜇 are real.

Theorem 1 The zero solution of (19) is asymptotically stable if one of the following
conditions is satisfied:
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(i) |𝜇| < −𝜆
(ii) arccos(−𝜆∕𝜇) >

√
𝜇2 − 𝜆2.

Applying FAM and NPCM to (19) and setting h = 1∕k, k ∈ ℕ we get the difference

equations

yn =
(
1 + 𝜆h

(
1 + 𝜆h

2

))
yn−1 +

𝜇h
2

(1 + 𝜆h) yn−1−k +
𝜇h
2

yn−k (20)

and

yn =
(
1 + 𝜆h

(
1 + 𝜆h

2
+ (𝜆h)2

4

))
yn−1 + 𝜇h

(
1
2
+ 𝜆h

4
+ (𝜆h)2

4

)
yn−1−k +

𝜇h
2

(
1 + 𝜆h

2

)
yn−k (21)

respectively. The characteristic equations of these equations are given by

rk+1 −
(
1 + 𝜆h

(
1 + 𝜆h

2

))
rk − 𝜇h

2
r − 𝜇h

2
(1 + 𝜆h) = 0 (22)

and

rk+1 −
(
1 + 𝜆h

(
1 + 𝜆h

2
+ (𝜆h)2

4

))
rk − 𝜇h

2

(
1 + 𝜆h

2

)
r − 𝜇h

(
1
2
+ 𝜆h

4
+ (𝜆h)2

4

)
= 0 (23)

respectively.

Definition 4.1 The stability region of a numerical method is a collection of points

(𝜆0, 𝜇0) in 𝜆𝜇-parameter space for which all the roots s of characteristic equation

satisfy |s| < 1.

We plot stability regions of FAM and NPCM for k = 1, 2, 3, 4 in Figs. 1 and 2 respec-

tively and compare with the stability region of DDE (19) described in Theorem 1.

Now we consider another case 𝜆 = 0 and 𝜇 = 𝜌exp(𝜄𝜙) complex number. The

stability of test equation (19) is described in the following Theorem.

Theorem 2 The zero solution of y′(t) = 𝜌exp(𝜄𝜙)y(t − 1) is asymptotically stable if
𝜋

2
< 𝜙 <

3𝜋
2

and 0 < 𝜌 < min
(

3𝜋
2
− 𝜙, 𝜙 − 𝜋

2

)
.

In this case, the characteristic equations of FAM and NPCM solutions coincide and

are given by

rk+1 − rk − 𝜌exp(𝜄𝜙)h
2
(r + 1) = 0. (24)

The stability region is shown in Fig. 3.
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Fig. 1 Stability regions of

FAM

Fig. 2 Stability regions of

NPCM
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Fig. 3 Stability regions of

FAM and NPCM for 𝜆 = 0
and 𝜇 = 𝜌exp(𝜄𝜙)

5 Complex Uçar System

The complex Uçar system of fractional order can be described as

D𝛼z = 𝛿z
𝜏
− 𝜀z3

𝜏
, (25)

where z = x + 𝜄y, x, y are real functions and z
𝜏
(t) = z(t − 𝜏). Equivalently, we can

write system of real equations as

D𝛼x = 𝛿x
𝜏
− 𝜀

(
x3
𝜏
− 3x

𝜏
y2
𝜏

)
,

D𝛼y = 𝛿y
𝜏
− 𝜀

(
3x2

𝜏
y
𝜏
− y3

𝜏

)
. (26)

There are three equilibrium points viz. O = (0, 0) which is unstable and E± =(
±
√
𝛿∕

√
𝜀, 0

)
which are asymptotically stable. The system doesn’t shows chaotic

behavior for a wide range of parameters. However, the modified system described in

next section involving incommensurate delays does exhibit chaotic oscillations for

some values of delays.
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6 Modified System with Incommensurate Delays

Consider the modified system as

D𝛼x = x
𝜏1
−
(

x3
𝜏1
+ 3x

𝜏1
y2
)
,

D𝛼y = −y
𝜏1
−
(
3x2y

𝜏2
+ y3

)
. (27)

The equilibrium points of modified system (27) are O1 = (0, 0) (saddle) and P± =
(±1, 0) (asymptotically stable).

6.1 Bifurcation and Chaos

We consider 𝛼 = 0.9 and 𝜏2 = 0.5. The stable solutions are observed for 0 ≤ 𝜏1 <

0.2. At the bifurcation value 𝜏1 = 0.2 the system starts periodic one-cycle. Period

doubling at 𝜏1 = 1.03 gives rise to chaotic trajectories at 𝜏1 ≈ 1.12. The bifurcation

diagrams are shown in Figs. 4 and 5. The limit cycle at 𝜏1 = 1.1 is presented in Fig. 6.

The Fig. 7 shows chaotic attractor observed for 𝜏1 = 1.12.

We also provide bifurcation diagrams (cf. Figs. 8 and 9) for the system (27) with

𝛼 = 0.8.

Fig. 4 Bifurcation diagram for x trajectory of system (27) with 𝛼 = 0.9
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Fig. 5 Bifurcation diagram for y trajectory of system (27) with 𝛼 = 0.9

Fig. 6 Limit cycle at

𝜏1 = 1.1

6.2 Chaos Control

We use delayed feedback control i.e. Pyragas method [106] to control chaos in the

system (27). The controlled system can be described as

D𝛼x = x
𝜏1
−
(

x3
𝜏1
+ 3x

𝜏1
y2
)
+ k

(
x − xT

)
,

D𝛼y = −y
𝜏1
−
(
3x2y

𝜏2
+ y3

)
. (28)
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Fig. 7 Chaotic attractor at 𝜏1 = 1.12

Fig. 8 Bifurcation diagram for x trajectory of system (27) with 𝛼 = 0.8
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Fig. 9 Bifurcation diagram for y trajectory of system (27) with 𝛼 = 0.8

Fig. 10 Controlled trajectory of system (27)

As we have seen, the system (27) is chaotic for the parameter values 𝛼 = 0.9, 𝜏1 =
1.14 and 𝜏2 = 0.5. It is observed that the chaos can be controlled for the values k =
−22 and T = 3.8, as shown in Fig. 10.

6.3 Chaos Synchronization

In some nonlinear systems, it is not possible to synchronize all the state variables.

However, one can synchronize such states up to a scaling factor. This type of strategy

is termed as Projective Synchronization [94, 126, 131]. We consider (27) as a master

system. We rewrite this system as
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D𝛼X(t) = AX
(
t − 𝜏1

)
+ F

(
X(t),X

(
t − 𝜏1

)
,X

(
t − 𝜏2

))
, (29)

where

X = (x, y)tr , (30)

A =
(
1 0
0 −1

)
(31)

and

F
(
X(t),X

(
t − 𝜏1

)
,X

(
t − 𝜏2

))
=

(
−
(

x3
𝜏1
+ 3x

𝜏1
y2
)

−
(
3x2y

𝜏2
+ y3

)
)
. (32)

The slave system is described as

D𝛼Y(t) = AY
(
t − 𝜏1

)
+ F

(
Y(t),Y

(
t − 𝜏1

)
,Y

(
t − 𝜏2

))
+ U, (33)

where U is a control term.

We say that projective synchronization (PS) is achieved between systems (29) and

(33) if there exists a scaling matrix 𝛬 such that

lim
t→∞

||E(t)|| = 0, (34)

where E(t) = Y(t) − 𝛬X(t) is the error in synchronization. We set 𝛬 = diag(2, 2).
The error system can now be written as

D𝛼E(t) = AE
(
t − 𝜏1

)
+ F

(
Y(t), Y

(
t − 𝜏1

)
, Y

(
t − 𝜏2

))
− 𝛬F

(
X(t),X

(
t − 𝜏1

)
,X

(
t − 𝜏2

))
+ U. (35)

If the control term is chosen as

U = 𝛬F
(
X(t),X

(
t − 𝜏1

)
,X

(
t − 𝜏2

))
− F

(
Y(t),Y

(
t − 𝜏1

)
,Y

(
t − 𝜏2

))
+ BE

(
t − 𝜏1

)
,

(36)

where B is a matrix of same dimension as A then (35) becomes

D𝛼E(t) = CE
(
t − 𝜏1

)
, (37)

with C = A + B.

From a Corollary 3 in [50], the system (37) is globally asymptotically stable if

the characteristic equation

𝜆
2𝛼 − (c11 + c22) exp(−𝜆𝜏1)𝜆𝛼 − c12c21 exp(−2𝜆𝜏1) = 0 (38)

has no purely imaginary eigenvalues for any 𝜏1 > 0. If we set B = diag(−3, 0) then

the (38) becomes

𝜆
2𝛼 + 3 exp(−𝜆𝜏1)𝜆𝛼 = 0. (39)
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Fig. 11 Chaos synchronization: x trajectories

Fig. 12 Chaos synchronization: y trajectories

The condition is now satisfied and the synchronization can be achieved. We show

the synchronized orbits in Figs. 11 and 12 and the synchronization errors in Fig. 13.

We have taken 𝛼 = 0.9, 𝜏1 = 1.16 and kept other parameters unchanged. The slave

systems and the second component in error system are shown by dashed lines in

these figures.

7 Discussion

Fractional order systems are now used to model natural systems in a more realistic

way than those involving integer order derivatives. The memory and hereditary prop-

erties of such systems cannot be modeled properly unless one uses nonlocal oper-



764 S. Bhalekar

Fig. 13 Synchronization errors

ators such as fractional derivatives. The scientists from diverse field are attracting

to the relatively new field viz. chaos control and synchronization in fractional order

systems due to its applications in various fields. In this chapter, we have discussed

complex version of Uçar delayed model. The stability of two numerical methods

viz. FAM and NPCM is analyzed for solving fractional delay differential equations

(FDDE). The fractional order complex Uçar system is equivalent to a system of two

real FDDEs. The system doesn’t exhibit any chaotic oscillations. However, a slight

modification in this system involving incommensurate delay leads to a chaotic solu-

tions for some parameter values. The Pyragas method is used to control the chaos in

proposed system. Synchronization in this modified system is achieved up to a scaling

factor. The strategy is known as Projective Synchronization. The nonlinear stability

analysis is used to choose proper control terms.

8 Conclusions

Complex versions of dynamical systems are obtained by replacing real state vari-

ables in a system by complex ones. There are very few research articles devoted

to fractional order complex dynamical systems (FOCDS). In the present work, we

have presented a complex Uçar system of fractional order. Different qualitative struc-

tures including chaos are observed in the system by varying the parameter values.

The bifurcation diagrams are provided to illustrate the results. We plan in future

to analyzed the system in higher dimensions. Further, the system can be general-

ized to include time-dependent delays. We hope that this chapter will motivate the

researchers to work in the field of FOCDS.
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Hyperchaos and Adaptive Control of a Novel
Hyperchaotic System with Two Quadratic
Nonlinearities

Sundarapandian Vaidyanathan, Ahmad Taher Azar and Adel Ouannas

Abstract Liu-Su-Liu chaotic system (2007) is one of the classical 3-D chaotic

systems in the literature. By introducing a feedback control to the Liu-Su-Liu chaotic

system,we obtain a novel hyperchaotic system in this work, which has two quadratic

nonlinearities. The phase portraits of the novel hyperchaotic system are displayed

and the qualitative properties of the novel hyperchaotic system are discussed. We

show that the novel hyperchaotic system has a unique equilibrium point at the origin,

which is unstable. The Lyapunov exponents of the novel 4-D hyperchaotic system

are obtained as L1 = 1.1097, L2 = 0.1584, L3 = 0 and L4 = −14.1666. The max-

imal Lyapunov exponent (MLE) of the novel hyperchaotic system is obtained as

L1 = 1.1097 and Lyapunov dimension as DL = 3.0895. Since the sum of the Lya-

punov exponents of the novel hyperchaotic system is negative, it follows that the

novel hyperchaotic system is dissipative. Next, we derive new results for the adaptive

control design of the novel hyperchaotic system with unknown parameters. We also

derive new results for the adaptive synchronization design of identical novel hyper-

chaotic systems with unknown parameters. The adaptive control results derived in

this work for the novel hyperchaotic system are proved using Lyapunov stability the-

ory. Numerical simulations in MATLAB are shown to validate and illustrate all the

main results derived in this work.
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1 Introduction

Chaotic systems are defined as nonlinear dynamical systems which are sensitive to

initial conditions, topologically mixing and with dense periodic orbits [10, 11, 13].

Sensitivity to initial conditions of chaotic systems is popularly known as the but-
terfly effect. Small changes in an initial state will make a very large difference in the

behavior of the system at future states.

Poincaré [15] suspected chaotic behaviour in the study of three bodies problem

at the end of the 19th century, but chaos was experimentally established by Lorenz

[45] only a few decades ago in the study of 3-D weather models.

The Lyapunov exponent is a measure of the divergence of phase points that are

initially very close and can be used to quantify chaotic systems. It is common to

refer to the largest Lyapunov exponent as the Maximal Lyapunov Exponent (MLE).

A positive maximal Lyapunov exponent and phase space compactness are usually

taken as defining conditions for a chaotic system.

Hyperchaotic systems are chaotic systems with more than one positive Lyapunov

exponent. They have important applications in control, cryptography and secure

communication. Some recently discovered hyperchaotic systems are hyperchaotic

Lorenz system [32], hyperchaotic Chen system [76], hyperchaotic Lü system [19],

hyperchaotic Fang system [25], hyperchaotic Qi system [22], etc.

In the last five decades, there is significant interest in the literature in discov-

ering new chaotic systems [78]. Some popular chaotic systems are Lorenz system

[45], Rössler system [67], Arneodo system [2], Henon-Heiles system [30], Genesio-

Tesi system [28], Sprott systems [77], Chen system [20], Lü system [46], Rikitake

dynamo system [66], Liu-Su-Liu system [44], Shimizu system [75], etc.

In the recent years, many new chaotic systems have been found such as Pandey

system [50], Qi system [58], Li system [39], Wei-Yang system [176], Zhou system

[183], Zhu system [184], Sundarapandian systems [81, 86], Dadras system [23],

Tacha system [89], Vaidyanathan systems [97, 98, 100–103, 106, 117, 131–138,

140–142, 144, 153, 155, 164, 166, 168, 171–173], Vaidyanathan-Azar systems

[147, 148, 150–152], Pehlivan system [52], Sampath system [68], Akgul system

[1], Pham system [53, 55–57], etc.

Chaos theory and control systems have many important applications in science

and engineering [3, 10–12, 14, 185]. Some commonly known applications are oscil-

lators [120, 124, 126–129, 139], lasers [41, 179], chemical reactions [107, 108,

112–114, 116, 118, 119, 122, 123, 125], biology [24, 37, 105, 109–111, 115, 121],

ecology [29, 79], encryption [38, 182], cryptosystems [65, 90], mechanical systems

[5–9], secure communications [26, 48, 180], robotics [47, 49, 174], cardiology [59,

177], intelligent control [4, 42], neural networks [31, 35, 43], memristors [54, 175],

etc.
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Synchronization of chaotic systems is a phenomenon that occurs when two or

more chaotic systems are coupled or when a chaotic system drives another chaotic

system. Because of the butterfly effect which causes exponential divergence of the

trajectories of two identical chaotic systems started with nearly the same initial con-

ditions, the synchronization of chaotic systems is a challenging research problem in

the chaos literature.

Major works on synchronization of chaotic systems deal with the complete syn-

chronization of a pair of chaotic systems called the master and slave systems. The

design goal of the complete synchronization is to apply the output of the master sys-

tem to control the slave system so that the output of the slave system tracks the output

of the master system asymptotically with time. Active feedback control is used when

the system parameters are available for measurement. Adaptive feedback control is

used when the system parameters are unknown.

Pecora and Carroll pioneered the research on synchronization of chaotic systems

with their seminal papers [18, 51]. The active control method [34, 69, 70, 80, 85,

91, 95, 156, 157, 160] is typically used when the system parameters are available

for measurement.

Adaptive control method [71–73, 82–84, 93, 99, 130, 143, 149, 154, 158, 159,

165, 169, 170] is typically used when some or all the system parameters are not

available for measurement and estimates for the uncertain parameters of the systems.

Adaptive control method has more relevant for many practical situations for systems

with unknown parameters. In the literature, adaptive control method is preferred over

active control method due to the wide applicability of the adaptive control method.

Intelligent control methods like fuzzy control method [16, 17] are also used for

the synchronization of chaotic systems. Intelligent control methods have advantages

like robustness, insensitive to small variations in the parameters, etc.

Sampled-data feedback control method [27, 40, 178, 181] and time-delay feed-

back control method [21, 33, 74] are also used for synchronization of chaotic

systems. Backstepping control method [60–64, 88, 161, 167] is also used for the

synchronization of chaotic systems, which is a recursive method for stabilizing the

origin of a control system in strict-feedback form.

Another popular method for the synchronization of chaotic systems is the sliding

mode control method [87, 92, 94, 96, 104, 145, 146, 162, 163], which is a nonlinear

control method that alters the dynamics of a nonlinear system by application of a

discontinuous control signal that forces the system to “slide” along a cross-section

of the system’s normal behavior.

Liu-Su-Liu chaotic system [44] is one of the classical 3-D chaotic systems in

the literature. By introducing a feedback control to the Liu-Su-Liu chaotic system,

we obtain a novel hyperchaotic system in this work, which has two quadratic

nonlinearities.

Section 2 describes the dynamics and phase portraits of the novel hyperchaotic

Liu system. Section 3 describes the dynamic analysis of the novel hyperchaotic sys-

tem. We show that the novel hyperchaotic system has a unique equilibrium at the

origin, which is a saddle point and unstable.
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The Lyapunov exponents of the novel 4-D hyperchaotic system are obtained

as L1 = 1.1097, L2 = 0.1584, L3 = 0 and L4 = −14.1666. The maximal Lyapunov

exponent (MLE) of the novel hyperchaotic system is obtained as L1 = 1.1097 and

Lyapunov dimension as DL = 3.0895.

Section 4 describes the adaptive feedback control of the novel hyperchaotic sys-

tem with unknown parameters. Section 5 describes the adaptive synchronization of

the identical novel hyperchaotic systems with unknown parameters. The adaptive

feedback control and synchronization results are proved using Lyapunov stability

theory [36].

MATLAB simulations are depicted to illustrate all the main results for the 4-D

novel hyperchaotic system. Section 6 concludes this work with a summary of the

main results.

2 A Novel 4-D Hyperchaotic System

Liu-Su-Liu chaotic system [44] is modelled by the 3-D dynamics

ẋ1 = a(x2 − x1)
ẋ2 = bx1 + dx1x3
ẋ3 = −cx3 − x1x2

(1)

where x1, x2, x3 are the states and a, b, c, d are constant, positive parameters of the

system.

Liu-Su-Liu system (1) describes a strange chaotic attractor for the parameter val-

ues

a = 10, b = 40, c = 2.5, d = 16 (2)

For numerical simulations, we take the initial values of the Liu-Su-Liu system (1)

as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2 (3)

Figure 1 shows the strange, two-scroll, chaotic attractor of the Liu-Su-Liu system

(1). This strange attractor is a reversed butterfly-shaped attractor for the Liu-Su-Liu

system (1).

The Lyapunov exponents for the Liu-Su-Liu system (1) for the parameter values

(2) and the initial conditions (3) are numerically obtained as

L1 = 1.2047, L2 = 0, L3 = −13.6986 (4)

Since the sum of the Lyapunov exponents in (4) is negative, it follows that Liu-

Su-Liu system (1) is a dissipative chaotic system.
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Fig. 1 Strange attractor of the Liu-Su-Liu chaotic system in IR3

The Lyapunov dimension of the Liu-Su-Liu system (1) is numerically obtained

as

DL = 2 +
L1 + L2
|L3|

= 2.0879 (5)

In this research work, we obtain a novel 4-D hyperchaotic system by introducing

a feedback control to the 3-D Liu-Su-Liu chaotic system (1).

We announce our novel 4-D hyperchaotic system as

ẋ1 = a(x2 − x1) + x4
ẋ2 = bx1 + dx1x3
ẋ3 = −cx3 − x1x2
ẋ4 = −x1 − x2 + px4

(6)

where x1, x2, x3, x4 are the states and a, b, c, d, p are constant, positive parameters.

The 4-D system (6) is hyperchaotic when the parameter values are taken as

a = 10, b = 40, c = 3, d = 18, p = 0.1 (7)

For numerical simulations, we take the initial state of the hyperchaotic system (6)

as

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2, x4(0) = 0.2 (8)
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The Lyapunov exponents of the novel hyperchaotic system (6) for the parameter

values (7) and the initial values (8) are numerically determined as

L1 = 1.1097, L2 = 0.1584, L3 = 0, L4 = −14.1666 (9)

The Lyapunov dimension of the novel hyperchaotic system (6) is calculated as

DL = 3 +
L1 + L2 + L3

|L4|
= 3.0895, (10)

which is fractional.

The presence of two positive Lyapunov exponents in (9) shows that the 4-D novel

system (6) is hyperchaotic.

Figure 2 describes the 3-D projection of the strange attractor of the novel hyper-

chaotic system (6) on (x1, x2, x3)-space. From Fig. 2, it is clear that the strange attrac-

tor of the novel hyperchaotic system (6) is a reversed butterfly-shaped attractor in

(x1, x2, x3)-space.

Figure 3 describes the 3-D projection of the strange attractor of the novel hyper-

chaotic system (6) on (x1, x2, x4)-space.

Figure 4 describes the 3-D projection of the strange attractor of the novel hyper-

chaotic system (6) on (x1, x3, x4)-space.

Figure 5 describes the 3-D projection of the strange attractor of the novel hyper-

chaotic system (6) on (x2, x3, x4)-space.

Fig. 2 3-D projection of the novel hyperchaotic system on (x1, x2, x3)-space



Hyperchaos and Adaptive Control . . . 779

Fig. 3 3-D projection of the novel hyperchaotic system on (x1, x2, x4)-space

Fig. 4 3-D projection of the novel hyperchaotic system on (x1, x3, x4)-space



780 S. Vaidyanathan et al.

Fig. 5 3-D projection of the novel hyperchaotic system on (x2, x3, x4)-space

3 Analysis of the 4-D Novel Hyperchaotic System

This section gives the qualitative properties of the novel hyperchaotic system (6).

3.1 Dissipativity

In vector notation, the system (6) can be expressed as

ẋ = f (x) =
⎡
⎢⎢⎢⎣

f1(x)
f2(x)
f3(x)
f4(x)

⎤
⎥⎥⎥⎦
, (11)

where

f1(x) = a(x2 − x1) + x4
f2(x) = bx1 + dx1x3
f3(x) = −cx3 − x1x2
f4(x) = −x1 − x2 + px4

(12)

We take the parameter values as

a = 10, b = 40, c = 3, d = 18, p = 0.1 (13)
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The divergence of the vector field f on IR4
is obtained as

div f =
𝜕f1(x)
𝜕x1

+
𝜕f2(x)
𝜕x2

+
𝜕f3(x)
𝜕x3

+
𝜕f3(x)
𝜕x4

= −a − c + p = −𝜇 (14)

where

𝜇 = a + c − p = 12.9 > 0 (15)

Let 𝛺 be any region in IR4
with a smooth boundary. Let 𝛺(t) = 𝛷t(𝛺), where 𝛷t

is the flow of the vector field f . Let V(t) denote the hypervolume of 𝛺(t).
By Liouville’s theorem, it follows that

dV(t)
dt

= ∫
𝛺(t)

(divf )dx1 dx2 dx3 dx4 (16)

Substituting the value of divf in (16) leads to

dV(t)
dt

= −𝜇 ∫
𝛺(t)

dx1 dx2 dx3 dx4 = −𝜇V(t) (17)

Integrating the linear differential equation (17), V(t) is obtained as

V(t) = V(0) exp(−𝜇t) (18)

From Eq. (18), it follows that the hypervolume V(t) shrinks to zero exponentially

as t → ∞.

Thus, the novel hyperchaotic system (6) is dissipative. Hence, any asymptotic

motion of the system (6) settles onto a set of measure zero, i.e. a strange attractor.

3.2 Symmetry

It is easy to check that novel hyperchaotic system (6) is invariant under the change

of coordinates

(x1, x2, x3, x4) ↦ (−x1,−x2, x3,−x4) (19)

Since the transformation (19) persists for all values of the system parameters, it

follows that the novel hyperchaotic system (6) has rotation symmetry about the x3-

axis and any non-trivial trajectory must have a twin trajectory.
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3.3 Invariance

It is easily seen that the x3-axis is invariant for the flow of the novel chaotic system

(6). The invariant motion along the x3-axis is characterized by the scalar dynamics

ẋ3 = −cx3, (c > 0) (20)

which is globally exponentially stable.

3.4 Equilibria

The equilibrium points of the novel hyperchaotic system (6) are obtained by solving

the nonlinear equations

f1(x) = a(x2 − x1) + x4 = 0
f2(x) = bx1 + dx1x3 = 0
f3(x) = −cx3 − x1x2 = 0
f4(x) = −x1 − x2 + px4 = 0

(21)

We take the parameter values as in the hyperchaotic case (7), viz.

a = 10, b = 40, c = 3, d = 18, p = 0.1 (22)

Solving the nonlinear system (21) with the parameter values (22), we obtain a

unique equilibrium point at the origin, viz.

E0 =
⎡
⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎦

(23)

The Jacobian matrix of the novel hyperchaotic system (6) at E0 is obtained as

J0 = J(E0) =
⎡
⎢⎢⎢⎣

−10 10 0 1
40 0 0 0
0 0 −3 0

−1 −1 0 0.1

⎤
⎥⎥⎥⎦

(24)

The matrix J0 has the eigenvalues

𝜆1 = −3, 𝜆2 = −25.6291, 𝜆3 = 0.2010, 𝜆4 = 15.5281 (25)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
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3.5 Lyapunov Exponents and Lyapunov Dimension

We take the initial values of the novel hyperchaotic system (6) as in (8) and the

parameter values of the novel hyperchaotic system (6) as in (7).

Then the Lyapunov exponents of the novel hyperchaotic system (6) are numeri-

cally obtained as

L1 = 1.1097, L2 = 0.1584, L3 = 0, L4 = −14.1666 (26)

Since L1 + L2 + L3 + L4 = −12.8985 < 0, the system (6) is dissipative.

Also, the Lyapunov dimension of the system (6) is obtained as

DL = 3 +
L1 + L2 + L3

|L4|
= 3.0895, (27)

which is fractional.

Figure 6 depicts the Lyapunov exponents of the novel hyperchaotic system (6).

From this figure, it is seen that the Maximal Lyapunov Exponent (MLE) of the novel

hyperchaotic system (6) is L1 = 1.1097.

Fig. 6 Lyapunov exponents of the novel hyperchaotic system
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4 Adaptive Control of the Novel Hyperchaotic System

This section derives new results for the adaptive controller design in order to stabi-

lize the unstable novel hyperchaotic system with unknown parameters for all initial

conditions of the system.

The controlled novel hyperchaotic system is given by

ẋ1 = a(x2 − x1) + x4 + u1
ẋ2 = bx1 + dx1x3 + u2
ẋ3 = −cx3 − x1x2 + u3
ẋ4 = −x1 − x2 + px4 + u4

(28)

where x1, x2, x3, x4 are state variables, a, b, c, d, p are constant, unknown, parameters

of the system and u1, u2, u3, u4 are adaptive controls to be designed.

An adaptive feedback control law is taken as

u1 = −â(t)(x2 − x1) − x4 − k1x1
u2 = −b̂(t)x1 − d̂(t)x1x3 − k2x2
u3 = ĉ(t)x3 + x1x2 − k3x3
u4 = x1 + x2 − p̂(t)x4 − k4x4

(29)

In (29), â(t), b̂(t), ĉ(t), d̂(t), p̂(t) are estimates for the unknown parameters a, b, c,
d, p, respectively, and k1, k2, k3, k4 are positive gain constants.

The closed-loop control system is obtained by substituting (29) into (28) as

ẋ1 = [a − â(t)](x2 − x1) − k1x1
ẋ2 = [b − b̂(t)]x1 + [d − d̂(t)]x1x3 − k2x2
ẋ3 = −[c − ĉ(t)]x3 − k3x3
ẋ4 = [p − p̂(t)]x4 − k4x4

(30)

To simplify (30), we define the parameter estimation error as

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ed(t) = d − d̂(t)
ep(t) = p − p̂(t)

(31)

Using (31), the closed-loop system (30) can be simplified as

ẋ1 = ea(x2 − x1) − k1x1
ẋ2 = ebx1 + edx1x3 − k2x2
ẋ3 = −ecx3 − k3x3
ẋ4 = epx4 − k4x4

(32)
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Differentiating the parameter estimation error (31) with respect to t, we get

ėa = − ̇̂a
ėb = − ̇̂b
ėc = − ̇̂c
ėd = − ̇̂d
ėp = − ̇̂p

(33)

Next, we find an update law for parameter estimates using Lyapunov stability

theory.

Consider the quadratic Lyapunov function defined by

V(𝐱, ea, eb, ec, ed, ep) =
1
2

(
x21 + x22 + x23 + x24 + e2a + e2b + e2c + e2d + e2p

)
, (34)

which is positive definite on IR9
.

Differentiating V along the trajectories of (32) and (33), we get

V̇ = −k1x21 − k2x22 − k3x23 − k4x24 + ea[x1(x2 − x1) − ̇̂a] + eb[x1x2 −
̇̂b]

+ec[−x23 − ̇̂c] + ed[x1x2x3 −
̇̂d] + ep[x24 − ̇̂p]

(35)

In view of Eq. (35), an update law for the parameter estimates is taken as

̇̂a = x1(x2 − x1)
̇̂b = x1x2
̇̂c = −x23
̇̂d = x1x2x3
̇̂p = x24

(36)

Theorem 1 The novel hyperchaotic system (28) with unknown system parameters
is globally and exponentially stabilized for all initial conditions x(0) ∈ IR4 by the
adaptive control law (29) and the parameter update law (36), where ki, (i = 1, 2, 3, 4)
are positive constants.

Proof The result is proved using Lyapunov stability theory [36]. We consider the

quadratic Lyapunov function V defined by (34), which is positive definite on IR9
.

Substitution of the parameter update law (36) into (35) yields

V̇ = −k1x21 − k2x22 − k3x23 − k4x24, (37)

which is a negative semi-definite function on IR9
.
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Therefore, it can be concluded that the state vector x(t) and the parameter estima-

tion error are globally bounded, i.e.

[
x1(t) x2(t) x3(t) x4(t) ea(t) eb(t) ec(t) ed(t) ep(t)

]T ∈ 𝐋∞. (38)

Define

k = min
{

k1, k2, k3, k4
}

(39)

Then it follows from (37) that

V̇ ≤ −k‖𝐱‖2 or k‖𝐱‖2 ≤ −V̇ (40)

Integrating the inequality (40) from 0 to t, we get

k

t

∫
0

‖𝐱(𝜏)‖2 d𝜏 ≤ −
t

∫
0

V̇(𝜏) d𝜏 = V(0) − V(t) (41)

From (41), it follows that 𝐱(t) ∈ 𝐋2.

Using (32), it can be deduced that ẋ(t) ∈ 𝐋∞.

Hence, using Barbalat’s lemma [36], we can conclude that 𝐱(t) → 0 exponentially

as t → ∞ for all initial conditions 𝐱(0) ∈ IR4
.

This completes the proof. □

For numerical simulations, the parameter values of the novel system (28) are taken

as in the hyperchaotic case (7), viz.

a = 10, b = 40, c = 3, d = 18, p = 0.1 (42)

The gain constants are taken as ki = 6, (i = 1, 2, 3, 4).
The initial values of the parameter estimates are taken as

â(0) = 7.2, b̂(0) = 13.7, ĉ(0) = 18.5, d̂(0) = 5.4, p̂(0) = 16.2 (43)

The initial values of the novel hyperchaotic system (28) are taken as

x1(0) = 2.3, x2(0) = 4.6, x3(0) = 6.5, x4(0) = 12.8 (44)

Figure 7 shows the time-history of the controlled states x1(t), x2(t), x3(t), x4(t).
Figure 7 depicts the exponential convergence of the controlled states and the effi-

ciency of the adaptive controller defined by (29).
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Fig. 7 Time-history of the states x1(t), x2(t), x3(t), x4(t)

5 Adaptive Synchronization of the Identical 4-D Novel
Hyperchaotic Systems

This section derives new results for the adaptive synchronization of the identical

novel hyperchaotic systems with unknown parameters.

The master system is given by the novel hyperchaotic system

ẋ1 = a(x2 − x1) + x4
ẋ2 = bx1 + dx1x3
ẋ3 = −cx3 − x1x2
ẋ4 = −x1 − x2 + px4

(45)

where x1, x2, x3, x4 are state variables and a, b, c, d, p are constant, unknown, para-

meters of the system.

The slave system is given by the controlled novel hyperchaotic system

ẏ1 = a(y2 − y1) + y4 + u1
ẏ2 = by1 + dy1y3 + u2
ẏ3 = −cy3 − y1y2 + u3
ẏ4 = −y1 − y2 + py4 + u4

(46)
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where y1, y2, y3, y4 are state variables and u1, u2, u3, u4 are adaptive controls to be

designed.

The synchronization error is defined as

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(47)

The error dynamics is easily obtained as

ė1 = a(e2 − e1) + e4 + u1
ė2 = be1 + d(y1y3 − x1x3) + u2
ė3 = −ce3 − y1y2 + x1x2 + u3
ė4 = −e1 − e2 + pe4 + u4

(48)

An adaptive control law is taken as

u1 = −â(t)(e2 − e1) − e4 − k1e1
u2 = −b̂(t)e1 − d̂(t)(y1y3 − x1x3) − k2e2
u3 = ĉ(t)e3 + y1y2 − x1x2 − k3e3
u4 = e1 + e2 − p̂(t)e4 − k4e4

(49)

where â(t), b̂(t), ĉ(t), d̂(t), p̂(t) are estimates for the unknown parameters

a, b, c, d, p, respectively, and k1, k2, k3, k4 are positive gain constants.

The closed-loop control system is obtained by substituting (49) into (48) as

ė1 = [a − â(t)](e2 − e1) − k1e1
ė2 = [b − b̂(t)]e1 + [d − d̂(t)](y1y3 − x1x3) − k2e2
ė3 = −[c − ĉ(t)]e3 − k3e3
ė4 = [p − p̂(t)]e4 − k4e4

(50)

To simplify (50), we define the parameter estimation error as

ea(t) = a − â(t)
eb(t) = b − b̂(t)
ec(t) = c − ĉ(t)
ed(t) = d − d̂(t)
ep(t) = p − p̂(t)

(51)
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Using (51), the closed-loop system (50) can be simplified as

ė1 = ea(e2 − e1) − k1e1
ė2 = ebe1 + ed(y1y3 − x1x3) − k2e2
ė3 = −ece3 − k3e3
ė4 = epe4 − k4e4

(52)

Differentiating the parameter estimation error (51) with respect to t, we get

ėa = − ̇̂a
ėb = − ̇̂b
ėc = − ̇̂c
ėd = − ̇̂d
ėp = − ̇̂p

(53)

Next, we find an update law for parameter estimates using Lyapunov stability

theory.

Consider the quadratic Lyapunov function defined by

V(𝐞, ea, eb, ec, ed, ep) =
1
2

(
e21 + e22 + e23 + e24 + e2a + e2b + e2c + e2d + e2p

)
, (54)

which is positive definite on IR9
.

Differentiating V along the trajectories of (52) and (53), we get

V̇ = −k1e21 − k2e22 − k3e23 − k4e24 + ea
[
e1(e2 − e1) − ̇̂a

]
+ eb

[
e1e2 −

̇̂b
]

+ec
[
−e23 − ̇̂c

]
+ ed[e2(y1y3 − x1x3) −

̇̂d] + ep
[
e24 − ̇̂p

] (55)

In view of Eq. (55), an update law for the parameter estimates is taken as

̇̂a = e1(e2 − e1)
̇̂b = e1e2
̇̂c = −e23
̇̂d = e2(y1y3 − x1x3)
̇̂p = e24

(56)

Theorem 2 The identical novel hyperchaotic systems (45) and (46) with unknown
system parameters are globally and exponentially synchronized for all initial condi-
tions x(0), y(0) ∈ IR4 by the adaptive control law (49) and the parameter update law
(56), where ki, (i = 1, 2, 3, 4) are positive constants.

Proof The result is proved using Lyapunov stability theory [36].

We consider the quadratic Lyapunov function V defined by (54), which is positive

definite on IR9
.
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Substitution of the parameter update law (56) into (55) yields

V̇ = −k1e21 − k2e22 − k3e23 − k4e24, (57)

which is a negative semi-definite function on IR9
.

Therefore, it can be concluded that the synchronization error vector e(t) and the

parameter estimation error are globally bounded, i.e.

[
e1(t) e2(t) e3(t) e4(t) ea(t) eb(t) ec(t) ed(t) ep(t)

]T ∈ 𝐋∞. (58)

Define

k = min
{

k1, k2, k3, k4
}

(59)

Then it follows from (57) that

V̇ ≤ −k‖e‖2 or k‖𝐞‖2 ≤ −V̇ (60)

Integrating the inequality (60) from 0 to t, we get

k

t

∫
0

‖𝐞(𝜏)‖2 d𝜏 ≤ −
t

∫
0

V̇(𝜏) d𝜏 = V(0) − V(t) (61)

From (61), it follows that 𝐞(t) ∈ 𝐋2.

Using (52), it can be deduced that �̇�(t) ∈ 𝐋∞.

Hence, using Barbalat’s lemma, we can conclude that 𝐞(t) → 0 exponentially as

t → ∞ for all initial conditions 𝐞(0) ∈ IR4
.

This completes the proof. □

For numerical simulations, the parameter values of the novel systems (45) and

(46) are taken as in the hyperchaotic case (7), viz. a = 10, b = 40, c = 3, d = 18 and

p = 0.1.

The gain constants are taken as ki = 6 for i = 1, 2, 3, 4.

The initial values of the parameter estimates are taken as

â(0) = 6.2, b̂(0) = 5.8, ĉ(0) = 18.2, d̂(0) = 7.5, p̂(0) = 12.4 (62)

The initial values of the master system (45) are taken as

x1(0) = 3.4, x2(0) = 12.1, x3(0) = 14.7, x4(0) = 25.6 (63)

The initial values of the slave system (46) are taken as

y1(0) = 12.6, y2(0) = 5.3, y3(0) = 5.2, y4(0) = −12.5 (64)
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Fig. 8 Synchronization of the states x1 and y1

Fig. 9 Synchronization of the states x2 and y2
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Fig. 10 Synchronization of the states x3 and y3

Fig. 11 Synchronization of the states x4 and y4
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Fig. 12 Time-history of the synchronization errors e1, e2, e3, e4

Figures 8, 9, 10 and 11 show the complete synchronization of the identical chaotic

systems (45) and (46). Figure 12 shows the time-history of the synchronization errors

e1(t), e2(t), e3(t), e4(t).

6 Conclusions

In this work, we derived a novel hyperchaotic system by introducing a feedback con-

trol to the Liu-Su-Liu chaotic system (2007). The qualitative properties of the novel

hyperchaotic system were discussed. We showed that the novel hyperchaotic sys-

tem has a unique equilibrium point at the origin, which is unstable. The Lyapunov

exponents of the novel 4-D hyperchaotic system were obtained as L1 = 1.1097,

L2 = 0.1584, L3 = 0 and L4 = −14.1666. Lyapunov dimension of the novel hyper-

chaotic system was derived as DL = 3.0895. Next, we derived new results for the

adaptive control design of the novel hyperchaotic system with unknown parame-

ters. We also derived new results for the adaptive synchronization design of iden-

tical novel hyperchaotic systems with unknown parameters. We established all the

main results of this work by using Lyapunov stability theory. Numerical simulations

in MATLAB were shown to validate and illustrate all the main results derived in

this work. As future work, fractional-order models of the novel hyperchaotic system

may be investigated and new controllers may be designed for the adaptive control

and synchronization of such systems.
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Chaotic Planning Paths Generators
by Using Performance Surfaces

C.H. Pimentel-Romero, J.M. Munoz-Pacheco, O. Felix-Beltran,
L.C. Gomez-Pavon and Ch. K. Volos

Abstract Chaotic systems have been widely used as path planning generators in

autonomous mobile robots due to the unpredictability of the generated trajectories

and the coverage rate of the robots workplace. In order to obtain a chaotic mobile

robot, the chaotic signals are used to generate True RNGs (TRNGs), which, as is

known, exploit the nondeterministic nature of chaotic controllers. Then, the bits

obtained from TRNGs can be continuously mapped to coordinates (xn, yn) for posi-

tioning the robot on the terrain. A frequent technique to obtain a chaotic bitstream is

to sample analog chaotic signals by using thresholds. However, the performance of

chaotic path planning is a function of optimal values for those levels. In this frame-

work, several chaotic systems which are used to obtain TRNGs but by computing

a quasi-optimal performance surface for the thresholds is presented. The proposed

study is based on sweeping the Poincaré sections to find quasi-optimal values for

thresholds where the coverage rate is higher than those obtained by using the equi-

librium points as reference values. Various scenarios are evaluated. First, two scroll

chaotic systems such as Chua’s circuit, saturated function, and Lorenz are used as

entropy sources to obtain TRNGS by using its computed performance surface. After-

wards, n-scrolls chaotic systems are evaluated to get chaotic bitstreams with the ana-

lyzed performance surface. Another scenario is dedicated to find the performance

surface of hybrid chaotic systems, which are composed by three chaotic systems

where one chaotic system determines which one of the remaining chaotic signals

will be used to obtain the chaotic bitstream. Additionally, TRNGs from two chaotic

systems with optimized Lyapunov exponents are studied. Several numerical simula-

tions to compute diverse metrics such as coverage rate against planned points, robot’s

trajectory evolution, covered terrain, and color map are carried out to analyze the
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resulting TRNGs. This investigation will enable to increase several applications of

TRNGs by considering the proposed performance surfaces.

Keywords Chaos ⋅ Planning paths ⋅ Poincaré map ⋅ Robots ⋅ n-scroll

1 Introduction

First attempt to describe the physical reality in a quantitative way back to the

Pythagoreans with their effort to explain the tangible world through integers. From a

conceptual point of view, the main Galileo and Newton’s legacy is the idea that nature

obeys immutable laws that can be formulated in mathematical language, physical

events can be predicted with certainty (determinism).

Ironically, the first clear example of what we now know as chaos was found in

celestial mechanics. Science of regular and predictable phenomena. Taken into a

count the law of gravity, positions and initial velocities of three bodies that interact

gravitationally, for example, Sun-Earth-Moon, the equations of mechanics determine

the positions and higher speeds. However, despite the deterministic nature of the

system, H. Poincaré found that the evolution of these celestial bodies can be chaotic

in nature, which means that small disturbances in initial state, as a slight change in

the initial position of one body, could lead to dramatic differences in the later stages

of the system [10].

The deep implication of these results involves determinism and predictability are

different problems. However, Poincaré results not received due attention for a long

time. There are probably two main reasons for this delay. First, in the early twentieth

century, scientists and philosophers lost interest in classical mechanics because they

were attracted primarily by two new revolutionary theories: relativity and quantum

mechanics. Second, an important role in the recognition of the importance and ubiq-

uity of chaos has been interpreted by the development of the computer, which came

long after the contribution of Poincaré. In fact, only thanks to the advent of com-

puter visualization was possible to compute (numerically) and see the complexity of

chaotic behavior emerging nonlinear deterministic systems. A widespread opinion

holds that the line of scientific inquiry opened by Poincaré was neglected until 1963,

when the American meteorologist E. Lorenz rediscovered deterministic chaos while

studying the evolution of a simplified model of the atmosphere.

In that framework, chaos behavior has been widely pointed out as a potential solu-

tion a different kinds of engineering problems. One of them is focused on finding a

method to generate a trajectory for autonomous mobile robots. Recently, the engi-

neering applications for autonomous mobile robots have been increased in different

fields, such as industrial, civil and, mainly, military activities (searching for explo-

sives or intruders). The key parameter for the success of those tasks is the path plan-
ning. It means the positioning of the robot on the terrain and how it moves through

the terrain to find an objective. The path planning approaches must try to guarantee

and maximize two performance metrics, i.e., the exploration of the whole terrain
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needs to be increased and the trajectory described by the robot system must be the

more erratic or random. The first metric is related to the efficiency of the proposed

path planning approaches. The latter, it is required to avoid the anticipation of the

trajectory by the possible intruders.

Therefore, scientific community is trying to propose novel methods to improved

for path planning. Due to high sensitivity to initial conditions of

autonomous chaotic systems, they have been used as the core to generate the tra-

jectories for the autonomous mobile robots. To do that, the chaotic signals are con-

tinuously mapped to coordinates (xn, yn) by using true random numbers generators

(RNGs) for positioning the robot on the terrain. However, a typical approach to

obtain path planning is using thresholds. In this manner, the performance of chaotic

path planning is a function of the optimal values for those levels.

In this chapter, we analyze several chaotic systems which are used to obtain

chaotic trajectories but by computing a quasi-optimal performance surface for the

thresholds. The proposed study is based on sweeping the Poincaré sections to find

quasi-optimal values for thresholds where the coverage rate is higher than those

obtained by using the equilibrium points as reference values. Various scenarios are

evaluated by using several chaotic systems, such as; two scroll chaotic systems, n-

scrolls chaotic systems, hybrid chaotic systems (composed by three chaotic systems),

and chaotic systems with optimized Lyapunov exponents. Numerical simulations to

compute coverage rate against planned points, robot’s trajectory evolution, covered

terrain, and color map are carried out to analyze the resulting trajectories.

This chapter contains in Sect. 2 the related work. An overview of three nonlin-

ear systems: Chua’s circuit, Lorenz system and the multi-scrolls saturated function-

based system is presented in Sect. 3, while Sect. 4 deals with the chaotic attractors

with 2D multi-scrolls as well as random number generators. Furthermore, two tech-

niques (thresholds and hybrid signals) for path planning are presented in Sect. 5.

Sections 6 and 7 show the results of the proposed RNGs for different nonlinear sys-

tems. Section 8 introduces advanced RNGs by considering a dual RNG and a hybrid

RNG. Finally, a detailed discussion of the results are given in Sect. 8 and conclusions

in Sect. 9.

2 Related Work

During a decade the nonlinear dynamical systems have been researched, includ-

ing chaotic behavior applied in several fields of applications, such as mathematics,

physics, engineering, economics, sociology, etcetera [3, 11, 12, 14, 15, 19, 20, 25,

37, 39, 40].

Chaotic systems have special and attractive characteristics, which have been

exploited to solve several problems in science and engineering. These systems are

extremely sensitives to tiny variations on the initial conditions. Just one small differ-

ence between these one, the future behavior is completely different. Moreover, it is
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difficult to distinguish from a random system, which make them highly unpredictable

systems [7, 13, 19, 26–28].

On the other hand, autonomous robots design is essential to explore narrow and

dangerous spaces [17, 38]. There are many applications, which are need to cover

large areas, i.e., exploration of tunnels in archaeological excavations, exploration

of planets, detection of mines in military missions, or more simple an autonomous

robots like vacuum cleaners, lawnmowers or even toys [7, 19, 27, 36].

Autonomous robots design merges to describe optimal planning paths on explo-

ration task, besides maximal performance search through properties of chaotic sig-

nal. In robotics, the first mobile robot following a chaotic path was proposed by T.

Nakamura and S. Kikuchi using the Arnold equation to generate the desired move-

ments [19]. Chaotic systems have been widely used as path planning generators in

autonomous mobile robots due to the unpredictability of the generated trajectories

and the coverage rate of the robots workplace. In order to obtain a chaotic mobile

robot, the chaotic signals are used to generate True RNGs (TRNGs), which, as is

known, exploit the nondeterministic nature of chaotic controllers. Other advanced

controllers based on fuzzy, adaptive, or intelligent soft computing control techniques

can be also used to control the chaotic patterns in order to obtain chaotic paths [4–6,

8, 9, 29–34, 42].

A simple and frequent technique to obtain a chaotic bitstream is to sample ana-

log chaotic signals by using thresholds as shown in latest reported research [7, 13,

17, 19, 21, 24, 27, 35]. However, the performance of chaotic path planning is a

function of optimal values for those levels. Therefore, quasi-optimal thresholds are

vital to improved chaos-based path planning. The published papers in [7, 13, 17,

19, 21, 24, 27, 35] have not taken into account this issue. Regularly, the definition

of the threshold lies on an heuristic approach. This means that the experience of

engineer is used to approximate its best value. In other cases, the equilibrium points,

zero-cross, or a point closer to the basin of attraction are defined as reference values

for thresholds. In this scenario, the study of techniques for path planning based on

chaotic systems is still an open problem.

In this chapter, a quasi-optimal performance surface for the thresholds is pre-

sented. The proposed study is based on sweeping the Poincaré sections to find quasi-

optimal values for thresholds where the coverage rate is higher than those obtained

by using the basic reference values. Thus, this work presents the explorations plan-

ning paths strategies search of a mobile robot using chaotic signals. Chua, Lorenz

and function based on a saturated system are proposed as nonlinear systems. In par-

ticular, last one with two and multiple scrolls on 1-Dimension (1D) and 2-Dimension

(2D). Furthermore, through numerical simulations in MATLAB a study of chaotic

dynamics in the generation of planning paths is realized. The main goal is achieve

high efficiency to cover a determinate area at the same time is highly unpredictable.

In addition, the effect and the dependence of maximum Lyapunov exponent (MLE)

on planning paths is determined.
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3 Overview

Although the chaos is seem in classical mechanics since B.C., Poincaré brought pay

attention in the deeply implication of the difference between the determinism and

predictively. An important role in the recognition of the importance and ubiquity of

chaos has been played by the development of the computer, which came long after the

contribution of Poincaré. In fact, only thanks to the advent of computer visualization

was possible to compute (numerically) and see the complexity of chaotic behavior

emerging nonlinear deterministic systems.

A widespread opinion holds that the line of scientific inquiry opened by Poincaré

was neglected until 1963, when the American meteorologist E. Lorenz rediscov-

ered deterministic chaos while studying the evolution of a simplified model of the

atmosphere (see Eq. (1)) [16]:

ẋ = 𝜎(y − x),
ẏ = 𝛾x − y − xz,
ż = xy − bz.

(1)

Lorenz studied the temporal evolution of the signal of a nonlinear system for a para-

meters values set, and the relation of the integration with an initial condition. Irreg-

ular aperiodic oscillation with t → ∞ are presents in the develop of the dynamical.

Also, an height sensibility on the initial conditions was observed. This one was plot

on a beautiful structure as phase path, z versus x, as you can see in Fig. 1a [28].

3.1 Chaotic Systems

Chaos refers to a kind of dynamic behavior with special features [28]: (i) extreme

sensitivity to small variations in initial conditions, (ii) defined paths in phase space

with an exponent of positive Lyapunov, (iii) an finite entropy of Komogorov-Sinai,

(iv) a spectrum of continuous power, and (v) a fractional topological dimension,

among other [18]. That is, chaos is a long term aperiodic behavior of a deterministic

system that exhibits sensitive dependence on initial conditions.

Attractor is a limit set to which all neighboring paths converge when t ⟶
∞ [10]. A continuous autonomous system requires more time to display

two-dimensional chaos. The behavior of the paths is more complex as asymptotic

attraction for neighboring paths keep. These are known as strange attractors. More-

over, the paths contained in this kind of attractor may be locally divergent each other

within the whole attraction. Such structures are associated with the quasi-random

behavior of solutions called chaos [18].

A method for the analysis of dynamical systems oscillations is the phase space

representation, which was introduced to the oscillations theory by Andronov et al.

[1]. This method has become the standard tool for studying various oscillatory
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Fig. 1 2-scrolls chaotic attractors

phenomena. When the oscillations of complex shape were discovered, such as

dynamic chaos, this method increases in relevance [2].

A nonlinear systems are numerically solved and this behavior is shown through

the phase portrait. Then, the phase portrait of the system is obtained directly from

the properties of 𝐟 (𝐱). So, it can to generate a variety of phase portraits.

Since it is not possible to display paths on d > 3, the technique called map of

Poincaré is used, construction can be done as follows: (i) To simplify the represen-

tation, it is considered an autonomous system of three-dimensional f (x), and focus

on one of their trajectories; (ii) to define a plane (generally a surface (d − 1)) and

consider all points P − n in which the path crossing the plane from the same side.

Poincaré flux map f is defined as the map G related with two crossing associated

points:

Pn+1 = G(Pn). (2)

This results is obtained with the integration of differential ordinal equation into to

account n to (n + 1) intersections, which is well defined ever, as well as the inverse

function Pn−1 = G−1(Pn). Then, the map (2) is invertible. Poincaré maps allow a
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space of d-dimensional phase to be reduced to a (d − 1)-representation, which iden-

tifies the path periodicity. Such maps preserve the stability properties of the points

and curves [10].

3.1.1 System Based on the Chua’s Circuit

Chua’s circuit consists of five elements: a linear resistor (R), an inductor (L), two

capacitors (C1 and C2), and a non-linear resistance known as Chua’s diode (NR).

Using Kirchhoff’s Laws, the system is represented by state variables as follows:

dVC1
dt

= −
VC1
RC1

+
VC2
RC1

−
INR
C1

,

dVC2
dt

=
VC1
RC2

−
VC2
RC2

−
iL
C2

,

dIL
dt

= −
VC2
L

(3)

iNR is a nonlinear function of the Chua’s diode, this could be linearized with a PWL

function [18]:

iNR =
⎧
⎪⎨⎪⎩

−g2VC1 + (g1 − g2)BP1, VC1 < −BP1,

−g1VC1, −BP1 ≤ VC1 ≤ BP1,

−g2VC1 + (g2 − g1)BP1, VC1 > BP1.
(4)

where g1, g2 and g3 are the slopes which behave as negative resistances; ±BP1 and

±BP2 represent the breaking points.

This nonlinear system exhibits chaos if its electronic components take the numer-

ical values [18]: C1 = 450 pF, C2 = 1.5 nF, L = 1mH, g1 = 1∕1358, g2 = 1∕2464,

g3 = 1∕1600, BP1 = 0.114V, BP2 = 0.4V and R = 1625Ω. Numerical simulation

results using MATLAB software are shown in Fig. 1b.

3.1.2 Lorenz System

Lorenz system is a mathematical model describing a meteorological phenomenon

known as Rayleigh-Benard convection and reduces it to a set of three ordinary dif-

ferential equations [10]:

ẋ = 𝜎(y − x),
ẏ = 𝛾x − y − xz,
ż = xy − bz.

(5)

Physical variables are linked to the convection intensity x, upstream-downstream dif-

ference temperature y and temperature deviation seen from linear profile z. Constants
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𝜎, 𝛾 and b are positive dimensionless parameters related to the physical problem: 𝜎

is the Prandtl number, which measures the relationship between fluid viscosity and

thermal diffusivity; 𝛾 can be regarded as the standard temperature difference imposed

(more precisely is the relationship between the value of Rayleigh number and its crit-

ical value) and is the main control parameter; finally, b is a geometric factor [10, 28].

However, defining nominal parameters given in literature: 𝜎 = 10, 𝛾 = 24, b = 8∕3,

the solution of system is such shown in Fig. 1a.

3.1.3 System Based on a Saturated Function

Chaotic system based on a series of saturated functions is described in Eq. (6), where

x, y, z are state variables; the constants a, b, c, d ∈ +ℝ, and f (x) is defined by (7),

where ±k are called saturated levels, ±sp are the breaking points and (k∕sp) is the

saturated slope.

ẋ = y,
ẏ = z,
ż = −ax − by − cz + df (x).

(6)

f (x) =
⎧
⎪⎨⎪⎩

k x > sp
(k∕sp)x −sp ≤ x ≤ sp
−k, x < −sp.

(7)

If we define the saturated levels and slope values, we can construct a PWL function

to obtain the desired amplitude on the signal x(t). However, in case on one defines

a f (x), expressed in (7), considering the numerical values ±k = 2.5, (k∕sp) = 100
and a = b = c = d = 0.7 in Eq. (6), the obtained attractor has the shape as shown in

Fig. 1c, where we can see two scrolls around the equilibrium points of the system.

3.1.4 Multi-scroll Chaotic Attractors on 1D

To generate multi-scrolls dimension (1D), one piecewise linear function (PWL) is

added f (x; k, h, p, q). Such that is given in Eq. (8) defined with the function (9).

ẋ = y,
ẏ = z,
ż = −ax − by − cz + df (x; k, h, p, q).

(8)

f (x; 𝛼, k, h, p, q) =
⎧
⎪⎨⎪⎩

(2q + 1)k x > qh + 𝛼

k∕𝛼(x − ih) + 2ik |x − ih| ≤ 𝛼,−p ≤ i ≤ q
(2i + 1)k ih + 𝛼 < x < (i + 1)h − 𝛼,−p ≤ i ≤ q − 1
−(2p + 1)k x < −ph − 𝛼

(9)



Chaotic Planning Paths Generators by Using Performance Surfaces 813

−5 0 5
−2

−1

0

1

2

(a) 4 scrolls 1D attractor.

−10 −5 0 5 10
−10

−5

0

5

10

(b) 2 scrolls 2D attractor.

Fig. 2 Multi-scrolls chaotic attractors

Equations system (8) have 2(p + q) + 3 equilibrium point on the axis x, called saddle

points of 1 and 2 indices. These are defines in concordance with the system eigen-

values. The scrolls are generated into around to the saddle points of index 2. Equa-

tion (8) is capable of generating scrolls defining the suitable values on a, b, c, d, k
and h. Responsible to connect the scrolls are (p + q + 1), saddle points of index 1,

forming an attractor. We can say that on the saddle points of index 2 have a saturated

time delay just corresponding to a scroll, whereas the saddle points of index 1 have

a saturated slope corresponds to ones connection between two scrolls-neighbors.

Saturated plateau on the function of saturated series defined by (9) is: plateau =
±nk for even scrolls and plateau = ±mk for odds scrolls. The saturated time delay

for the core of the slopes is defined by hi = ±mk for even scrolls and hi = ±nk for

odds scrolls. Multiplicative factors for the previous expressions are defined by n =
1, 3,… , (p + q + 1) for odd scrolls and n = 1, 3,… , (p + q − 1) for even scrolls; and

m = 2, 4,… , (p + q) for two kinds of scrolls [18].

If a PWL is constructed with four saturated levels k = 1.1, slope = 100, p = 1,

q = 1, h = 2.2 and the numerical values a = b = c = d = 0.7 in Eq. (9), the obtained

attractor has the shape as shown in Fig. 2a, where we can see an attractor formed by

four scrolls around the equilibrium points of the system in 1D.

4 Chaotic Attractors of Multiple Scrolls on 2D

To generate a chaotic behavior on two-dimensions (2D) is needed to change the

chaotic system given by the Eq. (6). This kind of 2D dynamic is shaped by applying

approximation through the state variables as (10), with x, y, z as the state variables

and the constants a, b, c, d1 and d2 ∈ +ℝ.

A chaotic system for two-dimensional, two series of functions saturated f (x) and

f (y) are needed in the system of equations (10) also defined by the function (9), where

p1, p2, q1 and q2 are positive integers. Then the chaotic system can create (p1 + q1 +
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2) × (p2 + q2 + 2) pairs scrolls 2D or (p1 + q1 + 1) × (p2 + q2 + 1) odd scrolls 2D

properly setting the parameters a, b, c, d1, d2, k1, k2, h1 y h2. In addition, the plateau

saturated in the function of saturated series described in Eq. (9) is meseta = ±nk for

2D pairs scrolls and meseta = ±mk for odd scrolls 2D. Saturated for outstanding

delays centers are defined by hi = ±mk mk pairs scrolls for 2D and hi = ±nk for odd

scrolls 2D.

The multiplicative factors for the above expressions are defined by n = 1, 3,… ,

(p2 + q2 + 1) for even scrolls 2D and n = 1, 3,… , (p2 + q2 − 1) for odd scrolls 2D;

m = 2, 4,… , (p1 + q1) for two types of scrolls [18].

ẋ = y −
d2
b
f (y; k2, h2, p2, q2),

ẏ = z,
ż = −ax − by − cz + d1f (x; k1, h1, p1, q1) + d2f (y; k2, h2, p2, q2).

(10)

If we consider the f (x) PWL function defined in the Sect. 3.1.3 and we use the same

values of f (x) to f (y), the attractor obtained has the shape as shown in Fig. 2b, where

we can see two scrolls in two dimensions (2D).

4.1 Random Number Generators

A RNG is an unpredictable source of numbers. Mathematically defined as a source

of long sequences of symbols independent and identically distributed [23]. There are

basically two types of generators used to produce random sequences. RNGs (RNG)

and pseudorandom number generators (PRNGs) [22–24].

Generators RNG generally use a non-deterministic source (Entropy) along with

some processing functions to produce randomness. It is necessary to have a post-

processing to overcome any weakness in the entropy source, do not result in the

production of non-random numbers (for example, the appearance of long strings of

zeros or ones). The entropy source is typical of any physical quantity, such as noise

in an electrical circuit, interrupt processing by the user (for example, keystrokes or

mouse movements), quantum effects in a semiconductor or using various combina-

tions of above entries. Outputs a RNG may be used directly as a random number or

may be fed in a pseudorandom number generator (PRNG). To be used directly, the

output of any RNG must meet strict criteria of randomness measured by statistical

tests to determine the physical sources of the RNG entries appear at random [24].

A PRNG uses one or more multiple inputs and generates pseudo-random num-

bers. At the inputs of a PRNG they are called seeds, which must also be random and

unpredictable. Hence, by default, a PRNG should get their seeds from the outputs of a

RNG, i.e., a PRNG requires a RNG as partner. The outputs of a PRNG are typically

deterministic functions of the seed, that is, all true randomness is confined to the

generation of seeds. The deterministic nature of the process leads to the expression

“pseudo”. Since each element of a pseudorandom sequence is reproducible seed.
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Seed needs only be saved if the reproduction or validation of the pseudorandom

sequence is required. Ironically, the pseudorandom numbers often seem to have more

randomness than those obtained random numbers from physical sources. If a pseudo-

random sequence is constructed correctly, each value of the sequence occurs from the

previous value through transformations introduce additional randomness. A number

of these transformations can eliminate self-statistical correlations between input and

output. Therefore, the outputs of a PRNG may have better statistical properties and

be faster than RNG.

A sequence of random bits could be interpreted as the result of coin tosses with

sides labeled as “0” and “1”, with a probability of 0.5 for each side. Moreover, all

elements of the sequence must be independent of each other, and the value of the

next element in the sequence should not be predictable regardless of the number of

items that have already occurred [24].

5 Generation Planning Paths

5.1 Technique 1: Thresholds Levels

A technique to generate random numbers reported in the literature with chaotic sys-

tems consists basically of five blocks, as it is shown in Fig. 3 [35, 41]. Each block

contain the following informations:

∙ The block 𝐒𝟏 is responsible to generate the chaotic signal x(t).
∙ In the block 𝐒𝟐, the bits are obtained when the Poincaré’s sections (c1 and c2) are

crossed by the signal x(t) (Fig. 4). The bits are obtained as follows:

S2 ∶
𝜎
1(x(t)) =

{
0, si x(t) < c1
1, si x(t) ≥ c1

𝜎
0(x(t)) =

{
0, si x(t) > c2
1, si x(t) ≤ c2

∙ In the third block 𝐒𝟑 a sequence of bits is generated by:

Fig. 3 Basic structure of the RNGs used
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Fig. 4 Sampling process of the chaotic signal x(t), using c1 and c2 thresholds

S3 ∶ 𝜎i(𝜎0
, 𝜎

1) =
{

0, si 𝜎
0 = 0, 𝜎1 ∶ 0 ↑1

1, si 𝜎
1 = 0, 𝜎0 ∶ 0 ↑1

where 𝜎
0
:0 ↑1 is the logical transition ‘0’ to ‘1’ of 𝜎

0
and i ∈ {0, 1, 2,… , n}.

∙ The block 𝐒𝟒 implements the Von Neumann’s technique (VN) [41] to reduce the

correlation into the bits sequence. The VN post-processing consists in convert the

pair of bits “01” in the logic output ‘0’, “10” in the logic output ‘1’ and the pairs

“00” y “11” are discarded.

∙ Finally a binary to decimal conversion is required to obtain the pair of coordinates

(x, y).

Then, to generate a pair of coordinates x and y, a total of 10 bits (5 bits for x
and 5 bits for y) are needed, discarding the numbers 0 and 31. As result, each RNG

designed, has a set of coordinates (x, y), which are the paths of motion of a mobile

robot. The coverage rated is quantified by the coordinates that were visited in an

area of 30 × 30 units, so there are 900 different coordinates. In each RNG 3000 ran-

dom numbers were generated to form 1500 trajectories, this because the coverage

rate curve has an exponential behavior, so the probability to get a new coordinate

is reduced significantly along the planning of the coordinates, also 1500 paths are

sufficient to cover the most of the area proposed and is possible to determine if the

location of the Poincaré section is efficient in generating scan paths or not. As a

starting point, the Poincaré’s sections (c1 and c2) were located in the fixed points for

this analysis, then they are moved to optimal sections by sweeping along the chaotic

signal. With this information we can create a surface graphic in order to determine

the Poincaré’s sections that present the highest coverage percentages. Also, changes

in the parameters of a chaotic system was proposed in order to analyze the effect of

the variation in the Lyapunov exponent in the path generation.
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Fig. 6 Construction of the hybrid signal x(t)

5.2 Technique 2: Hybrid Signal

The generation technique scan paths from hybrid chaotic systems is the generation of

routes from RNGs combining the non-linear dynamical systems with chaotic behav-

ior of Chua, Lorenz and saturated function based on previously analyzed system. The

main idea is switching between two chaotic systems during the integration process

with the goal of creating a more complex dynamic, and especially the sources of

entropy not be correlated. Figure 5 shows the blocks that make up this type of RNGs.

In this case, at block 𝐒𝟏 is performed switching between two chaotic systems, which

are determined by the bits generated by the signal x3(t) corresponding to a third sys-

tem chaotic. That is, if the signal evaluating x3(t) is in its positive or negative part

during the integration process (Fig. 6a). These control bits are obtained as follows:

𝜙(x3(t)) =
{

0, si x3(t) < 0
1, si x3(t) ≥ 0 (11)

Thus, when 𝜙 = 1 the system is integrated with the number one chaotic system

and when 𝜙 = 0 the system is integrated with the chaotic system number two. As

result, one obtains a signal x(t) composed of two chaotic systems such as shown

in Fig. 6b. In blocks 𝐒𝟐, 𝐒𝟑, 𝐒𝟒 and 𝐒𝟓, the technique for obtaining bits is the same
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described in the block diagram of Fig. 3. Finally it carried out the process to find the

optimal sections of Poincaré by sweeping the signal.

6 RNGs 2-Scrolls

6.1 RNG Based on the Chua’s Circuit Without VN Technique

The first RNG proposed is based on Chua’s circuit, which is applied to the bits gener-

ation technique described in Sect. 3.1.1 regardless of the post-processing technique.

The Fig. 7a shows the surface plot of coverage percentages after 1500 simulated

scan paths in each pair of Poincaré sections included in the sweep. In the axis x is

the Poincaré section positive c1, on the axis y is found the negative section c2 and

the axis z the coverage percentages.

The Fig. 7a shows that the Poincaré sections, where the highest percentage were

(c1 = 4.7, c2 = −4.7) obtained with a coverage percentage of 66.11%. Also you can

see that in the other combinations, the coverage percentage is very low. In Fig. 7b
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Fig. 7 RNG based on Chua circuit with and without VN technique
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the evolution of the coverage percentage is observed related to the scanned planning

paths in optimal Poincaré sections, where an exponential behavior is observed which

it will saturate as the number of paths. In Fig. 7c, 1500 planning paths that would

follow a robot in an area of 30 × 30 units are shown, using the RNG based on the

Chua’s circuit without post-processing techniques the optimal sections (c1 = 4.7,

c2 = −4.7). It can be seen that the area edges are rarely visited and therefore the

coverage is not very good, this can check with the scatterplot of Fig. 7d, which shows

the number of times that the coordinates were visited in the exploration area.

6.2 RNG Basen on Chua’s Circuit with VN Technique

Now, in this section we consider the implementation of a bits post-processing tech-

nique, particularly the known Von Neumann Technique. Thus, this RNG is also

based on the Chua’s circuit, the difference with the previous one lies in the imple-

mentation of bits post-processing technique Von Neumann (VN). Figure 7b shows

that by implementing the VN technique, coverage percentages increase considerably.

Poincaré sections were optimal in this RNG (c1 = 4.3, c2 = −4.7) with a coverage

percentage 82.22%, while in Fig. 7d shows the scatterplot of the planning paths.

Table 1 shows the results of RNGs based on Chua’s circuit. As you can see,

implementing the post-processing VN technique the coverage percentages improved

considerably and the repetition in the coordinates decreases. Although, this is also

reflected in a much larger number of iterations because the bits discarded by VN

technique and therefore a more computationally time. For the purpose of checking

Table 1 Results obtained of RGN based on Chua circuit

Data RNG Chua RNG Chua with VN

Integration step width 1 × 10−7 1 × 10−7

Coverage percentage in

equilibrium points

13.1111 68.5556

Optimal Poincaré sections c1 = 4.7
c2 = −4.7

c1 = 4.3
c2 = −4.7

M1500 on the optimal sections

equilibrium points (%)

66.1111 82.2222

Average percent 17.0632 52.6895

Total bits generated in optimal

sections

15550 101392

Bits discarded by Von

Neumann technique

– 68692

Bits discarded by out of limit

(1 ≤ x ≤ 30)

550 1350

MLE 0.0036 0.0036
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Fig. 8 RNG based on Lorenz system

the relevance of the post-processing technique in generating random numbers, only

in this system is designed a generator without the VN technique and other one with

this technique.

In the following RNGs, the analysis is carry out with the VN post-processing

technique.

6.3 RNG Based on the Lorenz System

In the RNG based on the Lorenz System, the signal x(t) is the entropy source. Like

the early RNGs, a sweep was performed on the signal x(t) to determine the optimal

Poincaré sections in generating random numbers for planning paths exploration. In

Fig. 8a, the coverage percentages evaluated in all sections, where one can see that is

larger and more uniform compared to previous RNGs shown. Sections c1 = 3.4 and

c2 = −2,… ,−2.8 proved to be the optimal coverage percentage with 84.33%.

In Fig. 8 one can observe the increased coverage percentage under the planned

trajectories in optimal sections. In Fig. 8a, 1500 trajectories follow a robot in an area

of 30× 30 units using the RNG based on the Lorenz system in sections optimum

cutting are shown, while in Fig. 8b the scatterplot of these planning paths is shown.

6.4 RNG Based on a 𝟐 × 𝟏 Saturated Function (L1)

Other kind of interesting RNGs are based on saturated functions. In RNG based on

a 2 × 1 saturated function, the signal x(t)-based function as a entropy source is used.

This system is based on a PWL function with a slope of 100 and an optimal step

width as function of the system eigenvalues as well as two saturation levels of 2.5
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Fig. 9 RNG based on a 2 × 1 SF (L1)

units with the parameters values a = b = c = d = 0.7. After performing the scan-

ning for optimum thresholds sections, the coverage percentages of all combinations

are collected. In Fig. 9a we can see the coverage percentages of all sections, in which

sections are c1 = 3.2, c2 = −4.4. They turn out to be the best, since the highest cov-

erage percentage is obtained with 83.2222%, while in Fig. 9b the scatterplot of these

paths is shown. Table 5 the most important data are presented.

7 RNGs Multi-scrolls

7.1 RNG Based on a 𝟒 × 𝟏 Saturated Function

Now, in the case of the RNG based on a 4 × 1 saturated function, this uses the

signal x(t)-based saturated function in one dimension (4 × 1) in the RNG system.

The Fig. 10 shows the coverage percentages corresponding to all Poincaré sections

included in the sweep, where c1 = 1.7 and c2 = −1.8 turn out to be the optimal sec-

tions with a coverage percentage of 84.1111%. In Fig. 10a 1500 planning paths are

displayed in an area of 30 × 30 units using the RNG based on a saturated 4 × 1 func-

tion on the optimal Poincaré sections, while Fig. 10b shows the scatterplot of these.

In Fig. 10 can see the coverage percentage increases along the 1500 paths on the

optimal cutting sections. In Table 5, the most important data are presented.

7.2 RNG Based on a 𝟐 × 𝟐 Saturated Function

At the same way, RNG with entropy given by the signal x(t) based on a 2 × 2 sat-

urated function is now analyzed. For this, the PWL function take into account the
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Fig. 10 Planning paths based on RNG-4 × 1 chaotic PWL
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Fig. 11 Planning paths obtained with RNG based on a chaotic PWL system 2 × 2

slope of 100, a step integration optimum width depending on the system eigenvalues

and two saturation levels of 2.5 units. Figure 11 shows the coverage percentages with

c1 = 1.7 and c2 = −1.6 turn out to be sections optimal coverage with a percentage of

81.7777%, and the scatterplot of the visited coordinates, (a) and (b) respectively. The

results of the aforementioned cases (subsections 6.3, 6.4, 7.1, 7.2) are summarized

in Table 2.

8 Advanced RNGs

8.1 RNG Dual

In this RNG, the signals x(t) and y(t)-based saturated functions 2 × 2 are used to

obtain the simultaneous random number function system. That is, they will have
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Table 2 Results obtained from RGN based on one system

Data Results

Lorenz 2 × 1 SF (L1) 4 × 1 SF 2 × 2 SF

Integration step

width

0.0037 0.0152 0.1102 0.0152

Coverage

percentage in

equilibrium

points

81.8889 66.1111 71.2222
75.6667
68.1111

58.3333

Optimal Poincaré

sections

c1 = 3.4
c2 = −2.5

c1 = 3.2
c2 = −4.4

c1 = 1.7
c2 = −1.8

c1 = 1.7
c2 = −1.6

Coverage

percentage on

optimal sections

equilibrium

points

84.3333 83.2222 84.1111 81.7777

Average percent 78.9815 57.4542 73.38 56.0615
Total bits

generated in

optimal sections

equilibrium

points

72286 60548 90114 81762

MLE equilibrium

points

0.0029 0.0011 0.0156 0.0010

two sources to generate random numbers from a single system. To do this, Poincaré

sections corresponding to signal x(t), where the coverage percentage was found, are

also taken by the signal y(t).
In Fig. 12 the percentage increase coverage throughout the 1500 coordinates gen-

erated from the signal x(t) (blue line) and the signal y (red line), where coverage

percentage are 81.444% and 77.8889% respectively. Additionally, in Fig. 13, scatter-

plots of each used signal are shows, these results are given with 1500 trajectories

in an exploration area of 30 × 30 units. Using the RNG Dual in optimal Poincaré

sections, scatterplots show the coordinates distribution the scan. Dual RNG results

are shown in Table 3.

8.2 Hybrid RNG Chua-Lorenz-Saturated

We define a hybrid system such that will be in charge of Chua switch between Lorenz

system and function based on a saturated two scrolls for generating random numbers

(Fig. 14) system. When the x(t) signal system Chua is in its positive part of the inte-

gration method solves the Lorenz system and when it is in its negative part based on
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Fig. 12 Coverage percentage plot of the RNG dual with respect to M
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(b) Scatterplot (signal y(t)).

Fig. 13 Scatterplot of planning paths obtained with RNG Dual for each signal: a x(t) and b y(t)

Table 3 Results of RGN Dual

Data Signal x(t) Signal y(t)
Integration step width 0.0152
Coverage percentage on

equilibrium points

58.3333% 63.4444

Optimal sections x(t) (c1 = 1.7 c2 = −1.6)

Coverage percentage in

optimal sections

81.7777 78.8889

Total bits generated in optimal

sections equilibrium points

81762 168222

Bits discarded by the VN

technique

49002 136122

Bits discarded for being off

limits

1380 1050
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Fig. 14 Planning paths based on RNG-hybrid chaotic system

Table 4 Results obtained

from RGN-hybrid system
Data Results

Optimal sections c1 = 3.0
c2 = −4.8

Coverage percentage in

optimal sections equilibrium

points

83.8889

Average percent optimal

sections equilibrium points

76.3085

Total bits generated in

optimal sections equilibrium

points

320676

MLE 0.00072478

a saturated function system is solved, forming thus a combined signal by these two

systems.

Once you have the combined signal is necessary to perform the scanning process

to determine the optimal Poincaré sections according to the coverage percentage.

In the graph in Fig. 14a the corresponding percentages are observed at all sections

including, where c1 = 3 and c2 = −4.8 turn out to be the optimal sections as the

highest coverage percentages is obtained with 83.8889%. In Fig. 14b the dispersion

of the planned routes shown. The most important data are presented in Table 4.

8.3 RNGs Based on Chaotic Systems with Optimized
Lyapunov Exponents

In this section the dependence of the maximum Lyapunov exponent in the genera-

tion of random numbers is analyzed. For this, the standard system Chua and based
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Table 5 Results obtained from RGN based on a saturated function 2 × 1 (L3, 2, 1)

Data Results

2 × 1 SF (L1) 2 × 1 SF (L2) 2 × 1 SF (L3)

Integration step width 0.0152 0.0152 0.0152

Coverage percentage

in equilibrium points

66.1111 53.1111 27.8889

Optimal Poincaré

sections

c1 = 3.2
c2 = −4.4

c1 = 1.6
c2 = −3.8

c1 = 3.9
c2 = −2.6

Coverage percentage

on optimal sections

equilibrium points

83.2222 82.7778 83.6667

Average percent 57.4542 69.1299 73.2444

Total bits generated in

optimal sections

equilibrium points

60548 50270 126086

Bits discarded by the

VN technique

25208 17430 90886

Bits discarded for

being off limits

(1 ≤ x ≤ 30)

2670 1420 2600

MLE equilibrium

points

0.0011 0.0018 0.0031

on a 2 × 1 saturated function. The analysis implements the technique of generating

random bits. After performing the sweep signal to obtain Poincaré sections, the opti-

mal parameters of system are modified to optimize the maximum Lyapunov expo-

nent computed with an iterative process. For each system parameters are changed

twice, this provides us information about the correlation between the coverage per-

centage and maximum Lyapunov exponent, which is calculated using time-series

approaches.

In the first case (L2), the signal x(t) -based saturated function as input is used.

Thus, the difference lies in the change in the system parameters to optimize the MLE.

To increase the value of the MLE of the system parameters are set as follows: a =
1, b = 1, c = 0.499, d = 1. The results show that the highest coverage percentage was

obtained after performing the sweep signal x(t) is found in sections (c1 = 1.6, c2 =
−3.8) to 82.7778%.

Second case (L3), the signal x(t)-based saturated as a entropy source function

system is used, in this case the system parameters were modified as follows: a =
1, b = 0.788, c = 0.643, d = 0.666. The results indicate that in sections c1 = 3.9 and

c2 = −2.6 and higher coverage percentage is 83.6667%.

Table 5 shows RNG results based on a saturated function, which has the optimiza-

tions of Lyapunov exponents (L2 and L3) (Fig. 15).
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Fig. 15 RNG based on a saturated function 2 × 1 (L3 2)

9 Discussion

First, we have demonstrated the relevance of post-processing techniques in the

RNG’s design. Particularly, it is shown that implementing the Von Neumann tech-

nique the bits distribution is improved, reducing repetition number generation, and

therefore the coverage percentage increases considerably.

However, a series of tests with which, it is concluded that any Poincaré section

that is near or above 80% can be considered as an optimal combination for obtaining

random bits, were made even more if the sections cuts are located in the middle of

the signal. This ensures that fewer bits discarded by the VN technique as shown in

comparative Table 1 bits are obtained faster and there.

Because most of the RNGs give us percentages of ∼80%, a way to conclude that

a RNG is more efficient than the other would be through the analysis of the average

percentages and through the plots of surface, which give us an idea of uniformity

that exists in the coverage coverage percentages during the sweep of the Poincaré

sections as shown in Fig. 16.
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Fig. 16 Comparative table of RNGs designed

Based on the fact that a RNG has submitted to the higher coverage percentage

in the optimal Poincaré sections, other cases not guaranteed to be more efficient.

This is because, after performing a series of tests and comparisons with the PRNG

MATLAB, it was determined that any section of Poincaré that is near or above 80%

can be considered as an optimal combination for obtaining random bits. Thus, the

way was determined if a RNG is more efficient than another, was through analysis

of the coverage percentages average, uniformity in surface plot, and the number of

combinations in Poincaré sections that they found over 80% in the coverage per-

centage. With this approach, the Lorenz system presented a higher average coverage

percentage, more uniformity than others and a greater number of sections with rates

of around or above 80% coverage (see Fig. 16). However, from the point of view of

hardware implementation, the PWL chaotic system turns out to be the most con-

venient. Importantly, there is a strong dependence on the location of the Poincaré

sections in the efficiency of the planning paths, even for minor variations.



Chaotic Planning Paths Generators by Using Performance Surfaces 829

An advantage of these RNGs with respect to those existing in the literature, is

that obtaining bits is performed by two cross sections defined by quasi-optimal sec-

tions where there is a higher coverage percentage. This proves to be of great impor-

tance from the point of view of implementation. Faced with the real situation, one

can conclude that the RNGs based on PWL chaotic systems have great advantages

over all other RNGs that were designed in this chapter. In this regard, the RNG-

Saturated-4× 1 it be the most convenient according to the criteria mentioned above

(see Fig. 16).

Moreover, a technique for the generation of hybrid systems by combining three

different chaotic systems (Chua-Lorenz-Saturated) for the design of a proposed

RNG. The results indicate that no significant or radical change in coverage percent-

ages regarding designed with a single system. Moreover, it is difficult to propose

algebraic operations for systems not destabilized when switching. Therefore, it is

concluded that it is not convenient to combine the dynamics of three systems to

achieve similar results to those provided by the RNGs with a single chaotic system

as given in Fig. 16.

To determine the dependence of the maximal Lyapunov exponent (MLE), equi-

librium points were designed and analyzed based RNGs Chua standardized systems

and function based on a saturated system. It was found that there exists a correlation

between increased MLE equilibrium points and increased the coverage percentage,

which is most noticeable in the RNGs of saturated function based systems as demon-

strated in Fig. 16.

10 Conclusions

It have been proposed and analyzed a technique to generate planning paths with

RNGs by using Poincaré sections as thresholds to sample the chaotic signals. Vari-

ous chaotic systems have been considered for the analysis, such as chaotic systems

with double scroll attractors (Chua, Lorenz, Saturated function system); multi-scroll

attractors in 1D (4× 1-scrolls saturated function system); multi-scroll attractors in

2D (2× 2-scrolls saturated function system); hybrid systems composed by three dif-

ferent chaotic systems; and double scroll chaotic systems but with an optimized Lya-

punov exponent.

In each RNG was designed a comprehensive study focus to determine the opti-

mal Poncaré sections, where the high coverage percentages occurred and the impor-

tance of implementing post processing techniques (Von Neumann technique) in the

generation of random numbers was found. After comparing the coverage percent-

ages of all RNGs it was observed that the RNG based on the Lorenz system present

a more uniform and higher coverage percentage than other coverage distribution.

However, from the point of view of hardware implementation, the PWL chaotic sys-

tem turns out to be the most convenient. Importantly, there is a strong dependence

on the location of the Poincaré sections in the efficiency of the planning paths, even

for minor variations. Overall, we conclude that the RNGs based on Poincaré sections
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were designed to prove that they are a suitable tool in generating random paths for

autonomous mobile robots.

This investigation will enable to increase several applications of TRNGs by con-

sidering the proposed performance surfaces. Also, it is necessary to consider another

kind of chaotic oscillators, such as, fractional order chaotic systems, chaotic systems

with hidden attractors, hyperchaotic systems, non-equilibrium chaotic systems and

so on. In this manner, a general conclusion about the quasi-optimal performance

surfaces can be obtained. Additionally, circuit implementation is a must in order to

validate the proposed analysis. This physical implementation may require advanced

circuit design methodologies that can be adjusted with required accuracy of the value

for quasi-optimal thresholds. Otherwise, it would be neccessary to propose novel

techniques for generating RNGs but by using zero-cross in order to avoid circuit

variations for the quasi-optimal thresholds. Finally, fuzzy, adaptive, or soft comput-

ing control techniques could be proved to increase the performance of path planning

generators.
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Chaotic System Modelling Using a Neural
Network with Optimized Structure

Kheireddine Lamamra, Sundarapandian Vaidyanathan,
Ahmad Taher Azar and Chokri Ben Salah

Abstract In this work, the Artificial Neural Networks (ANN) are used to model a
chaotic system. A method based on the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) is used to determine the best parameters of a Multilayer Per-
ceptron (MLP) artificial neural network. Using NSGA-II, the optimal connection
weights between the input layer and the hidden layer are obtained. Using NSGA-II,
the connection weights between the hidden layer and the output layer are also
obtained. This ensures the necessary learning to the neural network. The optimized
functions by NSGA-II are the number of neurons in the hidden layer of MLP and
the modelling error between the desired output and the output of the neural model.
After the construction and training of the neural model, the selected model is used
for the prediction of the chaotic system behaviour. This method is applied to model
the chaotic system of Mackey-Glass time series prediction problem. Simulation
results are presented to illustrate the proposed methodology.
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1 Introduction

Dynamical systems serve as mathematical models for many exciting real-world
problems in many fields of science, engineering and economics [1]. Dynamical
systems can be classified into two categories: (1) continuous-time and
(2) discrete-time dynamical systems.

A continuous-time dynamical system is generally represented as a system of
differential equations given by

dx
dt

=Fðx, tÞ ð1Þ

where F is a continuously differentiable function and x∈Rn is the state vector.
A discrete-time dynamical system is generally described by

xðk+1Þ=GðxðkÞ, kÞ ð2Þ

where G is a continuous function and x∈Rn is the state vector.
A dynamical system is called chaotic if it is very sensitive to initial conditions,

topologically mixing and exhibits dense periodic orbits [2–4, 5, 6].
Chaos modeling with nonlinear dynamical systems is an active area of research

[2–4, 7, 8].
Chaos theory has applications in different fields such as medicine [9, 10],

chemical reactions [11–14], biology [15], Tokamak systems [16, 17], dynamos [18,
19], population biology systems [20, 21], oscillators [22, 23], etc.

Several methods have been designed to control a chaotic system about its
unstable equilibrium such as active control [24]; Pehlivan et al. [25], adaptive
control [26–31], backstepping control [32], sliding mode control [33, 34], fuzzy
control [35, 36], artificial neural networks [37, 38], etc.

Artificial Neural Network (ANNs) are networks inspired by biological neuron
networks. In machine learning and cognitive science, Artificial Neural Networks
(ANNs) are used to estimate functions that can depend on a large number of inputs.

Usually, research in the field of Artificial Neural Network (ANN) is focused on
architectures by which neurons are combined and the methodologies by which the
weight of the interconnections are calculated or adjusted [39, 40].

The use of neural networks is very large because of its advantages such as the
ability to adapt to difficult environments and that change its behaviour, etc. [41].
The Artificial Neural Networks (ANN) are used to model and control both linear
and nonlinear dynamical systems [42, 43].
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The research on artificial neural networks gives great importance on the
construction of an appropriate network, how to combine neurons together, how to
calculate and adjust the connection weights and how to find other parameters of the
Artificial Neural Networks [44, 45].

Currently some biologists, physicists and psychologists are carrying out research
to develop a neural model that is able to simulate the behaviour of the brain by
improving the accuracy and the precision. Some engineers are interested in the
neural network structure and how to improve their powerful computing capabilities
[46, 47].

Recently, a Multi-Layer Perceptron neural network with a fast learning algo-
rithms [48] was developed for the prediction of the concentration of the
post-dialysis blood urea. Eight different learning algorithms are used to study their
capabilities and compared their performances. Artificial neural networks are used
for breast cancer classification [49]. Artificial Neural Networks (ANNs) are used to
model a photovoltaic power generation system, by applying the Levenberg–Mar-
quardt algorithm adopted into back propagation learning algorithm for training a
feed-forward neural network [50].

In this chapter, the ANNs are used to model a nonlinear chaotic system of
Mackey Glass and the structure of the neural model is optimized by Non-dominated
Sorting Genetic Algorithm II (NSGA-II), which ensures the obtaining of an optimal
neural structure and its learning. We use this neuronal model of Mackey Glass
chaotic system to predict the time series of this system and also to test the effec-
tiveness of this technique for the construction of optimal structures for chaotic
systems. The resulting model can be also used for the control and synchronization
of chaotic systems.

This chapter is organized as follows. Section 2 details the related work in
modelling chaotic systems with neural networks. Section 3 details the chaotic
systems and the prediction in chaotic systems. Section 4 outlines the modelling of
systems using neural networks. Section 5 describes the operating principle of the
NSGA-II multi-objective genetic algorithm. Section 6 details the construction and
the learning of the MLP neural model using NSGA-II algorithm. As an application,
Sect. 7 discusses the Mackey–Glass chaotic time series prediction. Section 8 details
the simulation results. Section 9 contains a discussion of the main results. Sec-
tion 10 contains the conclusions of this work and suggests future research
directions.

2 Related Work

Neural networks have many applications in chaos theory. Many researchers have
used neural networks in their work for modelling or control of chaotic systems.

Recently, Cellular Neural Networks (CNN) have been applied for the modelling
and control of chaotic systems [51–55]. Cellular Neural Networks are similar to
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neural networks with the difference that communication is allowed between
neighbouring units only.

Chen [56] presented a work in which he proposed the application of
neural-network based fuzzy logic control to a nonlinear time-delay chaotic system.

Zhang and Shen [57] have studied memristor-based chaotic neural networks
with both time-varying delays and general activation functions. Pham et al. [58]
proposed a novel simple neural network having a memristive synaptic weight.

Wen et al. [59] have studied the problem of exponential lag synchronization
control of memristive neural networks via the fuzzy method and applications in
pseudorandom number generators.

Kyprianidis and Makri [60] have presented a study of a complex dynamics of a
system of two nonlinear neuronal cells, coupled by a gap junction, which is
modelled as a linear variable resistor and the coupled cells of the FitzHugh-Nagumo
oscillators systems.

He et al. [61] proposed a pinning control method focused on the chaotic neural
network, and they demonstrated that the chaos in the chaotic neural network can be
controlled with this method and the states of the network can converge in one of its
stored patterns if the control strength and the pinning density are chosen in a
suitable manner.

Ramesh and Narayanan [62] discussed the chaos control of Bonhoeffer–van der
Pol oscillator using neural networks. Ren et al. [63] have proposed a dynamic
control method using a neural network for unknown continuous nonlinear systems
through an online identification and adaptive control.

Neural networks have been applied for the synchronization of chaotic systems.
Many control methods have been used for the synchronization of chaotic systems
such as sampled-data control [64], fuzzy neural control [65], adaptive control [66],
chaotic time-series method [67], simulated annealing method [68], sliding mode
control [69], time-delay control [70], etc.

In this chapter, we use the Multi-Layer Perceptron (MLP) neural networks
optimized by multi-objective genetic algorithms of NSGA-II type for the modelling
of chaotic systems and making the prediction.

In this approach, the training of the resulting neural network is provided by the
NSGA-II algorithm and the structure is considered optimal, since the NSGA-II
algorithm evolves over many generations. Each generation of the NSGA-II algo-
rithm is composed of several individuals who are neural network models proposed
to model the chaotic system. At the end of the evolution of the last generation, we
obtain a set of solutions (called Pareto front) that are a set of models of the chaotic
system, and we choose from this set, the model that suits us most. The details of the
NSGA-II algorithm are presented in Sect. 5.

This optimization technique of the neural network structure has been used in
further work and has proven its efficiency. We cite for example; the use of radial
basis function (RBF) neural networks optimized by the NSGA-II multi-objective
genetic algorithm for modelling of a nonlinear systems of Box and Jenkins which is
a gas-fired boiler. For this model, the input is the gas at the inlet and the output is
the concentration of released CO2. In the neural networks model for the gas-fired
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boiler, the NSGA-II algorithm is used to find the best number of neurons in the
hidden layer of the RBF neural network and provide the best connection weights
between neurons in the hidden layer and the output layer, and also find the
parameters of the radial function of neurons hidden layer. A Gaussian form of the
radial functions is used in all the neurons. The NSGA-II algorithm finds the best
centers and the best widths sigma for the Gaussian functions. The chromosome then
contains the number of neurons in the hidden layer, Gaussian functions centers and
widths of the hidden layer neurons, and the weights of connections between the
hidden layer and the output layer [71].

3 Chaotic Systems and Prediction

3.1 Chaotic Systems

Chaotic systems are nonlinear dynamical systems which are very sensitive to initial
conditions [38]. Chaotic behaviour is observed in many branches of science and
engineering [2–4]. The behaviour of chaotic systems can be studied with chaotic
mathematical models [2, 3, 72]. Chaos theory has applications in several areas such
as computer science, engineering, physics, biology, meteorology, sociology,
economics, etc. [4, 8, 72].

3.2 Prediction in Chaotic Systems

The prediction in chaotic systems has important applications in science and engi-
neering [73, 74]. Chaotic systems like Lorenz system have important applications in
weather models [4]. Several errors of weather forecasts are caused by the use of
overly simplified models and the lack of accurate measurement of various param-
eters such as pressure, temperature, wind speed, etc. [74].

The existence of chaos was first introduced by Poincaré at the end of the
nineteenth century [4]. Poincaré discovered chaos when he investigated the stability
of the three-body model (e.g. Earth-Moon-Sun). Poincaré tested the stability of the
three-body model by comparing the trajectories followed by one of the bodies from
two very close initial positions. These phase trajectories remain close to each other
in the short term and can therefore predict eclipses, but they become completely
different in the long term. This is due to the chaotic nature of the three-body
problem (e.g. Earth-Moon-Sun).

Thus, there is a need to build a good mathematical model that can make good
predictions of the trajectories of the chaotic system. Neural networks serve as a
good mathematical model for building a chaotic system and making predictions of
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the trajectories of the system. In this work, a Multi-Layer Perceptron (MLP) neural
network is used to model a chaotic system and make prediction thereafter starting
from this model.

4 Modelling Using a Neural Network

Artificial neural networks have the approximation property which may be stated as
follows: Every bounded function sufficiently regular can be approximated with
arbitrary precision in a finite area of space of its variables, by a neural network
comprising a layer of hidden neurons finite in number, all possessing the same
activation function and a linear output neuron [75, 76].

Usually we do not use neural networks to make approximations of known
functions. The system identification problem is typically to find a relationship
between a set of outputs of a given process, and all the corresponding entries,
through the measurements. It is assumed that this relationship exists despite the
measures are finite in number, which are often blemished by noise [77]. Also, all
the variables that determine the outcome of the process may not be measurable.
Thus, neural networks are considered as important models for system identification
using available outputs of the system [3, 78–80].

Generally, a neural network allows to make better use of available measures than
the conventional linear approximation methods [77, 81]. This advantage is espe-
cially important when the process to be modelled depends on several variables such
as in the case of shaping processes where it intervenes several types of non-linearity
and multiple hardware and technological parameters. Thus, the concept of classi-
fication can be conducted to a problem of approximation of nonlinear regression
functions. For this reason, neural networks are frequently used as classifiers or
discriminators [82].

When the data related to the system are well controlled and with significant
number and where the boundaries between each collected data class are not overly
complex, neural networks are used to perform sorting and pattern recognition of
surfaces, characters, or symbols [83–85].

5 The NSGA-II Multi-objective Genetic Algorithm

The construction and learning of the Multi-Layer Perceptron (MLP) neural model
for a chaotic system are performed by the Multi-Objective Genetic Algorithm of
NSGA-II type (Non-dominated Sorting Genetic Algorithm). NSGA-II algorithm
has important applications in multi-objective optimization problems [86].

NSGA-II algorithm is a popular genetic algorithm in multi-objective function
optimization theory [86]. NSGA-II algorithm has been used in many research works
in multi-objective optimization problems [87–91].
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NSGA-II algorithm is an improved version of NSGA algorithm for
multi-objective function optimization [92]. NSGA-II algorithm has helped to solve
the problems encountered in the NSGA algorithm such as the complexity,
non-elitist and the use of sharing.

NSGA-II algorithm makes the dominance relationships between individuals and
provides a fast sorting method of chromosomes [86, 93]. It uses a selection operator
based on the measure of crowding around individuals to ensure diversity in the
population.

NSGA-II algorithm is an elitist algorithm. In order to manage elitism, NSGA-II
algorithm evolves so that at each new generation, the best individuals encountered
are retained. The operating principle of NSGA-II algorithm is shown in Fig. 1 [94].

The working principle of NSGA-II algorithm is described as follows: At first, an
initial population is randomly created. Then a sorting operation is performed using
the non-domination concept. For each solution, we assign a rank equal to the level
of non-dominance, viz. the rank 1 for best, 2 for the next level, etc. Then, a
tournament of selection of parents is performed during the reproduction process.

Once two individuals of the population are randomly chosen, the tournament is
performed on a comparison of the domination with constraints of the two
individuals.

For a given generation t, after creating a children population Qt from the pre-
vious population Pt (generated from the parents via the genetic operators, crossover
and mutation), a population Rt is created that includes the parents population Pt and
the children population Qt such that Rt =Pt ∪Qt. This ensures the elite nature of the
NSGA-II algorithm. Then the population Rt contains twice the size of the previous
population, i.e. Rt has 2N individuals consisting of N parents and N children).

Next, the concept of non-dominance of Preto is applied to sort the population Rt.
Then the individuals of Rt will be grouped in successive fronts F1,F2, . . .ð Þ where
F1 represents individuals of rank 1, F2 represents individuals of rank 2, etc.

Fig. 1 Operating principle of NSGA-II algorithm
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After the sorting, the size of Rt should be reduced to N individuals in order to
form the next population Pt+1. Thus, N individuals from Rt must be excluded for
forming the next population. If the size of the front F1 is less than N, then all its
individuals are preserved and the same procedure is followed for the other fronts
while the number of the preserved individuals does not exceed the size N.

In the example illustrated by Fig. 1, both fronts F1 and F2 are fully preserved.
However, keeping the front F3 will result in exceeding the size N of the population
Pt+1. Thus, it is necessary to make a selection to determine which individuals to
keep. For this purpose, NSGA-II performs a mechanism for preserving the diversity
in the population based on the evaluation of the density of the individuals around
each solution across a calculating procedure of the “distance proximity”. Thereby, a
low value of the proximity distance for an individual is an individual “well
surrounded”.

NSGA-II algorithm then proceeds with a descending sorting according to this
proximity distance to preserve the necessary number of individuals of F3 front and
remove some individuals from the densest areas. In this manner, the population
Pt+1 is made up to N individuals and diversity is ensured. The individuals with
extreme values of the criteria are maintained by this selection mechanism, which
keeps the external bounds of the Pareto front.

At the end of this phase, the population Pt+1 is created. Then a new population
Qt+1 is generated from Pt+1 by the reproduction operators.

The above procedure is repeated by ensuring elitism and diversity until the
stopping criteria defined beforehand is reached.

6 Construction and Learning of the MLP Neural Model
by NSGA-II Algorithm

In this work, the learning of the MLP neural model of a chaotic system is performed
by using Multi-Objective Genetic Algorithms of NSGA-II type. Therefore this
genetic algorithm is used to optimize the structure and parameters of the MLP
neural model through the optimization of the following objective functions:

• The first function to be optimized ðf1Þ is the number of neuron of the hidden
layer of the MLP neural model.

• The second function to be optimized ðf2Þ is the quadratic cumulative error which
is the square sum of the difference between the desired output and the output of
the MLP neural model.

The NSGA-II algorithm evolves to find the best neurons number of the hidden
layer denoted Nhl and to provide the best connection weights between neurons of
the input layer of the MLP neural model and the hidden layer, and also the best
connection weights between the hidden layer and the output layer.
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Then the chromosome contains the number of neurons in the hidden layer, and
the connection widths connecting the different layers of the MLP neural model.

The MLP neural network used here to model a chaotic system is composed of
three layers:

• The Input layer, which is composed of two neurons. The first neuron corre-
sponds to the input data of the chaotic system, whereas the second neuron
corresponds to the modelling instantaneous error.

• The hidden layer, which is composed of an undetermined number of neurons
ðNhlÞ. In fact, the number Nhl varies according to the optimized neural network
model. The multi-objective genetic algorithm NSGA-II seeks to find the best
number that ensures the best possible structure with the smallest model error in
order to guarantee good modelling of the chaotic system.

• The output layer, which is composed of one neuron. This neuron corresponds to
the output of the neural model of the chaotic system. Our objective is to keep
this output the nearest possible to the desired output of the chaotic system to
ensure thereafter (after the construction of the neural model) a good prediction
of the future states of the chaotic system.

The structure of the neural model used is shown in Fig. 2.
In Fig. 2, x1 corresponds to the chaotic system input data, x2 corresponds to the

modelling instantaneous error and y corresponds to the output of the neural model
of the chaotic system.

W is the matrix of the connection weights of the input layer neurons and the
neurons of the hidden layer. In our case, this matrix is composed of W11 to W1Nhl

which are the x1 input connection weights with the neurons of the hidden layer Nhl

and W21 to W2Nhl that are the x2 input connection weights with the neurons of the
hidden layer Nhl. Therefore, the size of the matrix W is 2 ×Nhl.

Z is a vector composed of Z1 to ZNhl which are the connection weights between
the neurons of the hidden layer Nhl and the neuron of the output layer y. Therefore,
the size of the matrix Z is 1 ×Nhl.

The chromosome of the multi-objective algorithm NSGA-II generic therefore
takes the following form:

Fig. 2 Structure of the MLP neural model
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Chromosome= Nhl W11 ⋯ W1Nh1 W21 ⋯ W2Nh1 Z1 ⋯ ZNh1½ �

The chromosome length ðLcÞ depends on the number of neurons in the hidden
layer Nhl and it is given by the formula:

Lc= ðNhl ×3Þ+1.

For example, for a neural model with 4 neurons in the hidden layer (i.e.
Nhl = 4), the chromosome will have a length equal to 13 (i.e. Lc=13) and it will
have the following form:

Chromosome= 4 W11 W12 W13 W14 W21 W22 W23 W24 Z1 Z2 Z3 Z4½ �

We have chosen a variation range of the number of neurons in the hidden layer
Nhl between 2 and 20.

Then the population size matrix ðSpmÞ will have the following size.

SizeðSpmÞ=N × Lcmax =N × Nhlmax × 3ð Þ+1½ �

where N is the number of individuals in the population, and Nhlmax is the maximum
number of neurons of the hidden layer of the current population. This number is not
necessarily equal to 20, because the number of neurons in the hidden layer of each
individual (or neural model) is randomly initialized (such as the initial connection
weights) during the creation of the initial population at the beginning of the evo-
lution of the multi-objective genetic algorithm NSGA-II.

Therefore, the size of the population in columns is not fixed and it takes every
time a corresponding size to the greatest number of neurons in the hidden layer.

It is noted that this value (which cannot exceed 20 neurons, according to the
interval that we have chosen) may change over the generations following the
process of crossover and mutation.

Also, since we have to keep the same number of columns of the population
matrix for all individuals, we have proceeded to put zeros in columns so that their
Nhl is less than Nhlmax.

For example, we consider two individuals of the same population i, having a
different number of neurons in the hidden layer. Suppose that the first individual has
a Nhl1(i) = 4 and the second has a number Nhl2(i) = Nhlmax(i) = 16. In this case, the
size of the population is:

SpmðiÞ=N × LcmaxðiÞ=N × NhlmaxðiÞ×3+1ð Þ=N × 16× 3+ 1ð Þ=N ×49;

The chromosome of the second individual of this population (i) will have the
following structure:
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Chromosome2ðiÞ= 16W11 W12 . . . W116 W21 W22 . . . W216 Z1 Z2 . . . ZN16½ �

whereas the chromosome of the first individual of this population will have the
following structure:

Chromosome1ðiÞ= 4W11 W12 . . . W14 W21 W22 . . . W24 Z1 Z2 . . . ZN4 0 0 . . . 0½ �

Thus, the lengths of the vectors of these two individuals are equal and they have
the value of Lc1(i) = Lc2(i) = Nhlmax(i) × 3 + 1 = 49. This is the length of all
individuals within the population i. However, the chromosome of the first indi-
vidual will include 36 zeros to reach the same size as its counterparts individuals
within the population i.

It is quite obvious that the evolution process of the multi-objective genetic
algorithm takes much time to provide in the end the non-dominated solutions (often
they are the optimal solutions), but it does not hamper our technique. that This is
because the NSGA-II algorithm is used to evolve off-line and at the end we choose
the model which gives the smallest modelling error among those of the Pareto front
to make the prediction without the intervention of NSGA-II algorithm.

7 Application to the Chaotic System: Mackey–Glass
Chaotic Time Series Prediction

Our method is applied to model the chaotic system of MacKey–Glass Time Series
with 1000 data for predicting the time series [95].

A time series is a sequence of observations on a variable measured at successive
points in time or over successive periods of time. The measurements may be taken
every hour, day, week, month, or year, or at any other regular interval. The pattern
of the data is an important factor in understanding how the time series has behaved
in the past. If such behaviour can be expected to continue in the future, we can use
the past pattern to guide us in selecting an appropriate forecasting method.

To identify the underlying pattern in the data, a useful first step is to construct a
time series plot. A time series plot is a graphical presentation of the relationship
between time and the time series variable; time is on the horizontal axis and the
time series values are shown on the vertical axis. Let us review some of the
common types of data patterns that can be identified when examining a time series
plot [96].

The chaotic system of MacKey–Glass Time Series is the first delay chaos dis-
covered in 1977 from a physiological model. It is generated by the following
differential equation:
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x ̇ðtÞ= βxðtÞ+ αx t− τð Þ
1+ x10 t− τð Þ

where α=0.2, β= − 0.1 and τ=17. It is well-known that the MacKey-Glass sys-
tem is chaotic with the fractal dimension 2.1 for these parameters [97].

For this chaotic system, when xð0Þ=1.2 and τ=17, there is a non-periodic
series and non-convergent time series which are highly sensitive to initial
conditions.

The training phase of the neural model is done on 200 data and the validation on
the 800 remaining data. The NSGA-II algorithm is applied to minimize simulta-
neously the following fitness functions:

1. The number of neurons in the hidden layer ðNhlÞ
2. The quadratic cumulative error ðEcÞ that is the difference between the reference

(or desired output) and neural model output.

EcðWÞ= ∑m
i=1 yrðiÞ− ydðiÞð Þ2

where:

• W is the matrix of connection weights.
• m is the number of data of input vector (equal to the number of data vector of

desired outputs yd); m is equal to 1000; (200 data for the training phase of the
neural model; and 800 data for the validation phase).

• yrðiÞ is the ith output value of the MLP neural model.
• ydðiÞ is the ith output of the desired data.

8 Results of Simulation

The multi-objective genetic algorithm NSGA-II evolves along the generations with
the aim to build, train and provide in the end a neural model with optimal structure
and connection weights ensuring a good training (construction and training phase).
The parameters of the NSGA-II algorithm used are the following:

• Search intervals:

– Connexion weights: W ∈ [−30, 30]; Z ∈ [−30, 30];
– Neural number in the hidden layer Nhl ∈ [2, 20]

• The population size (number of individuals): N = 100
• Number of generations = 300
• Crossover Probability = 0.9
• Mutation Probability = 0.08
• Selection type: Stochastic selection
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At the end of the evolution of the latest generation of the NSGA-II algorithm, a
set of neural models is provided in the Pareto front (set of non-dominated
solutions).

When the construction and training of the neural model are finished (construc-
tion and training phase), the selected model (among the Pareto front) is placed
separately (without the intervention of the NSGA-II) for the prediction of the future
of the Mackey Glass chaotic system.

The neural models of the Pareto front of the latest generation are given in the
Table 1.

The training phase of the MLP neural model is carried out on 200 data, and the
prediction phase is done on the 800 data.

Ect is the training quadratic cumulative error; Ecp is the prediction quadratic
cumulative error and Eg is the global quadratic cumulative error.

All the individuals (MLP neural models) of the Table 1 are non-dominated
solutions of the Pareto front. Nonetheless, the individual N° 6 is chosen as the best
solution because it provides the smallest error and also there is a great difference
between this value and that of other individuals.

The choice of this individual is done through the first fitness function (which is
the error) which has a higher importance than the second fitness function which is
the number of neurons in the hidden layer of the neural model. This individual is a
neural model, with nine neurons in the hidden layer Nhl =9ð Þ and offers a global
modelling error equal to 3.3315.

Figure 3 shows the Mackey Glass chaotic time series considered as the desired
output yd. Figs. 4 and 5 show the results of the training phase. Figures 5 and 6 show
the results of the prediction phase. Figures 8 and 9 depict the representation of the
overall data of the two phases together. Figure 10 shows the non-dominated indi-
viduals of the Pareto front of the latest generation of NSGA-II algorithm.

The Mackey Galss time series

See Fig. 3.

Table 1 Pareto front of the MLP NN Model

N° of
individual

Hidden layer neurons
number Nhl

Training
error Ect

Prediction
error Ecp

Global
error Eg

1 2 93.2314 399.7845 493.0159
2 3 15.3047 71.6695 86.9742
3 4 10.4758 35.8125 46.2883
4 5 4.2154 16.8541 21.0695
5 6 1.6245 7.5231 9.1476
6 7 1.1687 5.0054 6.1741
7 8 0.8876 3.3251 4.2127
8 9 0.8340 2.4975 3.3315
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The training phase:

The Mackey Glass chaotic time series data which are the desired output yd and the
output of MLP neural model yr of the training phase are shown in Fig. 4 and the
global instantaneous quadratic training error is represented in the Fig. 5.

The prediction phase:

The desired output yd and the output of MLP neural model yr of the prediction
phase are shown in Fig. 6 and the global instantaneous quadratic prediction error is
represented in Fig. 7.

Fig. 3 The Mackey glass chaotic system time series

Fig. 4 The Mackey glass chaotic system time series and the output of MLP neural model during
the training phase
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The global data:

The global data of the desired output yd and the output of MLP neural model yr are
shown in Fig. 8 and the global instantaneous quadratic error is represented in the
Fig. 9.

The Pareto front:

Pareto front which is composed of non-dominated individuals (that are the MLP
neural models) of the last generation of the multi-objective genetic algorithm
NSGA-II is shown in Fig. 10.

Fig. 5 The instantaneous quadratic training error

Fig. 6 The Mackey glass chaotic system time series and the output of MLP neural model during
the prediction phase
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9 Discussion of Results

The figures shown in Sect. 8 represent the results of the individual which gives a
global quadratic error equal to Eg =3.3315 for 1000 data. This gives rise to an
average modelling error Egm =3.3315 × 10− 3. The training quadratic cumulative
error is Ect =0.8340 for 200 data and the predictive quadratic cumulative error is
Ecp =2.4975 for 800 data. Thus, the average training error is Ectm =4.17× 10− 3

Fig. 7 The instantaneous quadratic prediction error

Fig. 8 The Mackey Glass chaotic system time series and the MLP neural model output
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and the average prediction error is Ecpm =3.1218 × 10− 3. These errors are very
small for a chaotic system modelling.

It can be noted that the average training error is bigger than the average pre-
diction error. This is caused from the fact that during the training phase, the neural
network needs to adapt to the changes coming to the chaotic system. This is a very
important property of a neural network (it has the ability to adapt to the conditions
imposed by any environment). During the training phase, the biggest peak in the
training error (Fig. 4) appears at 15th iteration with a training error equal to
0.04192, and this error is the greatest instantaneous error for all data of the two

Fig. 9 The global instantaneous quadratic error

Fig. 10 The Pareto front
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phases. During the prediction phase, the most significant peak in the prediction
error is at the 712th iteration with a predictive error of 0.03486.

Through these results, we can observe that the output of MLP neural model has
perfectly followed the Mackey Glass time series (the desired output). In Fig. 7, it is
difficult to differentiate between these two signals (the desired output and the MLP
neural model). According to these results, it is clear that the multi-objective genetic
algorithm NSGA-II provided a good structure of the MLP neural network model for
the Mackey Glass chaotic system, with a good number of neurons in the hidden
layer and good connection weights linking the three layers that constitute this
model, which brings us to note that the modelling process using this technique is
very efficient.

10 Conclusion and Future Directions

Chaos theory has wide applications in several fields of physics, biology, chemistry,
robotics, communication theory, networks, medicine, economics, etc.

Chaotic systems are very sensitive to initial conditions. Thus, the evolution of
phase trajectories of chaotic systems follows a very complex pattern and it is a very
difficult task to predict long-term behaviour of chaotic systems

In this work we presented the modelling of chaotic systems by Multi-Layer
Perceptron (MLP) neural networks. Since the construction of an optimal structure
of neural networks is usually difficult, we proceeded to optimize their structure by
multi-objective genetic algorithm of NSGA-II type (Non-dominated Sorting
Genetic Algorithm).

The proposed neural model is composed of three layers: an input layer, the
output layer and the hidden lawyer. The input layer has two inputs which are the
input data of the chaotic system and the modelling error. The output layer is
composed of a single neuron that represents the output the neural model of the
chaotic system. Also, the hidden layer consists of a variable number of neurons.
The NSGA-II algorithm determines the optimum number of neurons in the hidden
layer. Also, the NSGA-II algorithm is intended to provide the optimal connection
weights between the three layers of the neural model of the chaotic system and
thereby ensuring its training. Thus it operates to minimize the following two fitness
functions: the number of neurons in the hidden layer and the modelling error. This
method is applied in two phases. The first phase is the construction and training
phase of the neural model with the NSGA-II algorithm. The second phase is the
application of the neural model for predicting the future of the modelled chaotic
system. Thus, once the construction and training phase of the neural model are
finished, the model chosen (among the Pareto front of the latest generation of the
NSGA-II) is used alone (without the NSGA-II) in the prediction phase.

This technique is applied to model the Mackey Glass chaotic system. The
objective is to make from this neuronal model, the predicting of the Mackey Glass
time series and test whether this technique is effective for the construction of
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optimal structures for chaotic systems. The resulting model can be also used for the
study, control and synchronization of the chaotic systems.

The obtained results show that the two signals of the desired data and of the
neural model data are almost completely identical whether during the training phase
or into the prediction phase. These results are very satisfying and encouraging and
show that this method provides a good model of the chaotic system.

In future work, we plan to improve this technique for the neural networks type of
Multi-Layer Perceptron (MLP) and for those of Radial basis function type, by the
application of NSGA-II algorithm and even the use of others algorithms such that
the Particle Swarm Optimization (PSO). These techniques will also be applied in
different areas, such as the modelling and the control in the field of renewable
energy mainly for the maximum power point tracking for dynamics photovoltaic
systems, and also for the control of highly complex nonlinear systems.
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A New Fractional-Order Predator-Prey
System with Allee Effect

Afef Ben Saad and Olfa Boubaker

Abstract In this chapter, a new Fractional-order (FO) predator-prey system with

Allee Effect is proposed and its dynamical analysis is investigated. The two case

studies of weak and strong Allee Effects are considered to bring out the consequence

of such extra factors on the FO system’s dynamics. Not only it will be proven, via

analytic and numerical results, that the system’s stability is governed by the type of

the Allee Effect but also it will be shown that such extra factor is a destabilizing force.

Finally, simulation results reveal that rich dynamic behaviors of the (FO) predator-

prey model are exhibited and dependent on the order value of the FO system.

Keywords Fractional-order (FO) ⋅ Predator-prey model ⋅ Weak Allee effect ⋅
Strong Allee effect ⋅ Bifurcation analysis

1 Introduction

In recent times, the protection of biological and ecological systems is central to

a huge range of scientific areas. Therefore, analyzing and controlling the complex

dynamics of these systems are a great challenge for researchers [27].

The complexity of such systems is primarily introduced by the interaction between

populations [4, 5]. In this framework, Predator-Prey models are the most popular

models for interacting populations [6, 29]. The interaction between the predator and

prey as well as extra factors effects have long been an important topic in mathematical

ecology. Among the most famous types of interaction, there are the predation [4] and

the competition species [3]. The competition occurs either when both populations

are independent of each other or when the populations interact and each population
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exerts downward pressure on the other. These interactions are generally described by

nonlinear polynomial models. Lotka Volterra model [29] is the most famous one. It

is based on polynomial differential equations inducing mostly a functional response

which describes the relationship between individuals rate of consumption and food

density. This functional response can be prey dependent [24], predator dependent

[32] or ratio dependent [1, 31]. Prey dependent is when the predators rate of prey

consumption depends on the densities of both prey and predator. Predator depen-

dent is when predators have to search, share or compete for food [15]. However,

ratio-dependent is a combination between the two previous functional responses. In

the same context, there are several types of polynomial functional responses such as

the Michaelis Menten type [31], the Beddington DeAngelis type [26] and the Holling

type functional response [13]. Among the known predator-prey systems introducing

the holling type I functional response, there are the BB-model proposed by Bazykin

and Berezovskay [4] and the Lesli Gower model proposed by Leslie and Gower [21].

Modeling of such systems by integer order polynomials permits to describe a lim-

ited set of system features. Polynomial models can not fit all the system’s data [25].

However, modeling of predator-prey systems by FO is recently used to fit nonlinear

functions and offer an extended family of curves. Fractional order calculus (FOC) is

an old mathematical field [16] which has attracted, in recent years, many attentions.

The FOC advantages over classical mathematics are investigated with studies on real

world process. It has been applied to several areas in science and engineering [12,

19, 20, 25, 30] such as biological systems, neural systems, diffusion processes, etc.

Stability analysis of systems based on fractional order polynomial models permits

to describe more features of dynamics [18, 25] and creates more and more com-

plex dynamic behaviors. Its power term are restricted to a small set of integer and

non integer values. Despite, research in this area is still in its early stages due to the

complexity of the FOC understanding. Hence, such research papers are rare which

motivate the present work.

Thus, in this chapter, based on the predator-prey BB-model inducing an Allee

Effect extra factor, a new FO predator-prey BB-model with strong and weak Allee

Effects is proposed. The model is, first, designed with FO prey’s growth rate and a

FO predator’s functional response. Then, a full stability and bifurcation analysis is

investigated for the two case studies of Allee Effects.

This chapter is organized in three sections: Sect. 2 recalls the stability and bifur-

cation analysis of the basic integer polynomial order BB-model with Allee Effect. In

Sect. 3, an accurate stability and bifurcation analysis of the new BB-model with a FO

prey’s growth rate and a FO predator’s functional response is investigated. Finally,

the theoretical and numerical results of the proposed Fractional models are discussed

in Sect. 4.
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2 Related Work

In a previous work [7], a full dynamical behavior analysis of the polynomial BB-

model was presented. It introduces one of the most important extra factors which is

the Allee Effect factor [8, 11, 17, 22]. It is defined as positive relationships between

any component of fitness of species and eithers numbers or densities of conspecific,

meaning that an individual of species that is subject to an Allee Effects will suffer a

decrease in some aspect of its fitness when conspecific density is low [11, 22]. The

stability and bifurcation analysis proves that the incorporation of Allee Effect factor

destabilizes the predator-prey system and creates a set of complex dynamic behavior

according to the type of Allee Effect which can be strong [10, 28] or weak [23].

Consider the general Predator-prey model described by Abrams and Ginzburg

[2], Berryman [9], Van Voorn et al. [28]

{ dx1
dt

= ax1 − f (x1)x2
dx2
dt

= cx1x2 − dx2
(1)

where

x1 is the size of the prey population,

x2 is the size of the predator population,

a is the prey’s growth rate in absence of the predator,

f (x1) is the functional response of the predator to prey density

c is the predator’s conversion efficiency

d is the mortality rate of the predator depending on the predator’s efficiency.

Let a = (x1 − l)(k − x1), f (x1) = x1 and d = c m, where l, k, m are the Allee Effect

threshold, the carrying capacity and the predator’s mortality rate, respectively. Sys-

tem (1) can be then written as:

{ dx1
dt

= x1(x1 − l)(1 − x1) − x1x2
dx2
dt

= c(x1 − m)x2
(2)

System (2) describes the BB-model predator prey system [4, 28]. The prey’s

growth rate is modeled by a nonlinear polynomial introducing the Allee Effect extra

factor [8, 11, 17, 22]. However, the predation is modeled by a polynomial prey-

dependent functional response. A strong Allee Effect is obtained for l ∈ [0 1] whereas

the weak Allee Effect is obtained for l ∈ [−1 0].

Stability analysis of system (2) is investigated for the two case studies of Allee

Effects by linearizing the system (2) and using the following Jacobian matrix

J =
(
−3x21 + 2(l + 1)x1 − (l + x2) −x1

x2 (x1 − m)

)
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Table 1 Stability analysis of system (2) with strong Allee Effect for m ∈ [0, l] [7]

m ∈ [0, l]
Equilibrium Eigenvalues Singularity

E0(0, 0) 𝜆1 = −l
𝜆2 = −m

Stable node

E1(l, 0) 𝜆1 = l(1 − l)
𝜆2 = l − m

Unstable node

E2(1, 0) 𝜆1 = l − 1
𝜆2 = l − m

Saddle point

As shown in Tables 1, 2 and 3, system (2) with strong Allee Effect admits three

equilibrium points when m ∈ [0 l] but, when m ∈ [l 1] it admits four equilibrium

points. Furthermore, the system (2) with weak Allee Effect admits only three equi-

librium points ∀ m ∈ [0 l] as shown in Table 3.

Calculus of the Jacobian matrix J at the equilibrium point E3(m, (m − l)(1 − m))
gives two complex eigenvalues as shown in Tables 2 and 3 with 𝛿, tr(J3) and det(J3)
are defined as follow:
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Table 2 Stability analysis of system (2) with strong Allee Effect for m ∈ [l, 1] [7]

m ∈ [l, 1]
Equilibrium Eigenvalues Singularity

E0(0, 0) 𝜆1 = −l
𝜆2 = −m

Stable node

E1(l, 0) 𝜆1 = l(1 − l)
𝜆2 = l − m

Saddle point

E2(1, 0) 𝜆1 = l − 1
𝜆2 = l − m

Saddle point

(continued)
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Table 2 (continued)

m ∈ [l, 1]
Equilibrium Eigenvalues Singularity

E3(m, (m − l)(1 − m))
𝜆1 =

tr(J3)−i
√
𝛿

2

𝜆2 =
tr(J3)+i

√
𝛿

2

m 0.75
Center

m 0.75
Unstable Focus

m 0.75
Stable Focus

tr(J3) = m(l + 1 − 2m)
𝛿 = tr2(J3) − 4det(J3)

det(J3) = m(m − l)(1 − m)

The previous theoretical and numerical results show that the number as well as the

stability of equilibrium points depend on the value of the parameters m and l. For the

weak Allee Effect, the extinction equilibrium E0 is unstable whereas for the strong

Allee Effect the extinction equilibrium becomes stable. Thus, system (2) admits the

extinction of the two species at low density if and only if the Allee Effect is strong.

As shown by Fig. 1, bifurcation analysis of the system (2) is with respect to the

bifurcation parameter m for both case studies of Allee Effects.
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Table 3 Stability analysis of system (2) with weak Allee Effect for m ∈ [0, 1] [7]

m ∈ [l, 1]
Equilibrium Eigenvalues Singularity

E0(0, 0) 𝜆1 = −l
𝜆2 = −m

Saddle point

E2(1, 0) 𝜆1 = (l − 1)
𝜆2 = l − m

Saddle point

(continued)
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Table 3 (continued)

m ∈ [l, 1]
Equilibrium Eigenvalues Singularity

E3(m, (m − l)
(1 − m))

𝜆1 =
tr(J3)−i

√
𝛿

2

𝜆2 =
tr(J3)+i

√
𝛿

2

m 0.4
Center

m 0.4
Unstable Focus

m 0.4
Stable Focus

Bifurcation analysis of system (2) proves that the predator prey BB-model admits

three bifurcation points: one Hopf point bifurcation and two branch points bifurca-

tions. Moreover, the population growth rate of the predator is sensitive to the value

of the mortality rate of the prey. In Fig. 1, for the strong Allee Effect, the population

growth rate of the predator decreases below a critical Allee threshold and becomes

negative, while for the weak Allee Effect, it decreases but never becomes negative

which confirms that the two species never go to extinct, expect in the case of the

strong Allee Effect. As a conclusion, the strong Allee Effect is a critical Allee Effect

whereas the weak Allee Effect is not.
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Fig. 1 Bifurcation diagram of system (1) with the two types of Allee Effect

3 The New Predator-Prey BB Model with a FO Growth
Rate of the Prey and a FO Predator’s Functional
Response

In this section, the dynamical behavior of the new BB-model with a FO prey’s growth

rate and a FO predator’s functional response is proposed and analyzed.

3.1 The FO Model

Let for system (2):

a = xq1−1
1 (x1 − l)(1 − x1),

f (x1) = xq2
1

where q1 and q2 are two fractional order elements (FOE) pertaining to the interval

]0, 1[∪]1, 2[, so:

{ dx1
dt

= xq1
1 (x1 − l)(1 − x1) − xq2

1 x2
dx2
dt

= c(x1 − m)x2
(3)
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The overall dynamical analysis of the new FO model BB-model requires a full

stability and bifurcation analysis of the system (3) with each of the strong and weak

Allee Effects.

3.2 Bifurcation and Stability Analysis: The Strong Allee
Effect Case Study

For 0 ≤ l ≤ 1, the equilibrium solutions are given by:

E0 ∶ xq1
1 = 0; x2 = 0

E1 ∶ x1 = l; x2 = 0
E2 ∶ x1 = 1; x2 = 0
E3 ∶ x1 = m; x2 = (m−l)(1−m)

mq2−q1

∙ For m ∈ [0, l], the system admits the same three equilibriums as those of the orig-

inal system (2):

−The extinction equilibrium E0(0, 0),
−The positive equilibrium E1(l, 0),
−The boundary equilibrium E2(1, 0).

∙ For m ∈ [l, 1], the system (3) has four equilibriums:

−The zero equilibrium E0(0, 0),
−The equilibrium E1(l, 0),
−The boundary equilibrium E2(1, 0),

−The non-isolated equilibrium E3(m,
(m − l)(1 − m)

mq2−q1
).

The Jacobian matrix of system (3) is given by:

J =
(

a11 a12
a21 a22

)

tr(J3) = a11 + a22

𝛿 = tr2(J3) − 4det(J3)
det(J3) = a11a22 − a12a21
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where

a11 = −(2 + q1)x
q1+1
1 − (1 + q1)(l + 1)xq1

1 − lq1xq1−1
1 − q2xq2−1

1 x2
a12 = −xq2

1
a21 = x2
a22 = (x1 − m)

Theoretical and numerical analysis in the neighborhood of all equilibrium points

is investigated by determining their eigenvalues as well as their singularities as pre-

sented in the Tables 4 and 5 using the graphical MATLAB package MATCONT [14].

As shown in Tables 4 and 5 the FO system (3) admits the same singularities as

those of the original system (2) at equilibiriums E1(l, 0) and E2(1, 0). However, at

equilibriums E0 and E3(m,
(m−l)(1−m)

mq2−q1
), new types of singularities are occurred:

∙ For the extinction equilibrium E0, a collision of saddle point and stable node sin-

gularities according to the value of parameters m, q1 and q2 is obtained. Thus, the

system may undergo a saddle-node bifurcation. In this bifurcation the fixed point

can appear and disappear depending on q1 and q2.

∙ For the non-isolated equilibrium E3, the same singularities as those of the original

system (2) at this equilibrium are obtained if and only if q1= q2. However, when

q1 ≠ q2 and m = 0.75, the equilibrium is destabilized. Its singularity is switched

from a stable focus to an unstable focus while the value of the FO parameter q1
increases and becomes higher than the FO parameter q2. In other word, at a special

value of mortality rate equal to 0.75, the FO system (3) is destabilized when the

FO prey’s growth rate becomes higher than FO predator’s functional response to

prey density and may undergo a Hopf bifurcation.

Stability of system (3) is sensitive to the variation of the parameters m, q1 and q2.

Thus, a numerical bifurcation analysis of the system (3) with strong Allee Effect

according to the bifurcation parameter m is proposed for a set of q1 and q2 values.

Bifurcation diagram of system (3) with strong Allee Effect confirms the previous

stability analysis and proves that the system keeps the same bifurcation types as

those of system (2) a Hopf codimension 0 bifurcation point and two Branch points

bifurcation as it is shown in Fig. 2. Existence of the Hopf bifurcation indicates the

change of the system (3) behavior from a stationary dynamic to an oscillatory one.

For each value of (q1, q2), a new Hopf point with a new first lyapunov coefficient is

created corresponding to a new value of mortality rate m.
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Table 4 Stability analysis of system (3) with strong Allee Effect for m ∈ [0, l]
m ∈ [0, l]
Equilibrium Eigenvalues Singularity

E0(0, 0) 𝜆1 = 0
𝜆2 = −m

Stable node

E1(l, 0) 𝜆1 = lq1 (1 − l)
𝜆2 = l − m

Unstable node

E2(1, 0) 𝜆1 = l − 1
𝜆2 = l − m

Saddle point
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Table 5 Stability analysis of system (3) with strong Allee Effect for m ∈ [l, 1]
m ∈ [l, 1]
Equilibrium Eigenvalues Singularity

E0(0, 0) 𝜆1 = 0
𝜆2 = −m

Saddle point-Stable node

E1(l, 0) 𝜆1 = lq1 (1 − l)
𝜆2 = l − m

Saddle point

E2(1, 0) 𝜆1 = l − 1
𝜆2 = l − m

Saddle point

(continued)
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Table 5 (continued)

m ∈ [l, 1]
Equilibrium Eigenvalues Singularity

E3(m,
(m−l)(1−m)

mq2−q1
)

𝜆1 =
tr(J3)−i

√
𝛿

2

𝜆2 =
tr(J3)+i

√
𝛿

2

m 0.75
Ifq1=q2 Center

Ifq1<q2 Stable Focus

Ifq1>q2 UnStable Focus

m 0.75
Unstable Focus

m 0.75
Stable Focus



A New Fractional-Order Predator-Prey System with Allee Effect 871

Fig. 2 Bifurcation diagram of system (3): Strong Allee Effect case study

3.3 Bifurcation and Stability Analysis: The Weak Allee Effect
Case Study

For −1 ≤ l ≤ 0, the equilibrium solutions are given by:

E0 ∶ xq1
1 = 0 ; x2 = 0

E1 ∶ x1 = l ; x2 = 0
E2 ∶ x1 = 1 ; x2 = 0
E3 ∶ x1 = m ; x2 =

(m−l)(1−m)
mq2−q1

By considering the biological meaningful condition, x1 ≥ 0, system (3) admits

only this three equilibrium points for all parameter m ∈ [0 1]:

−The zero equilibrium E0(0, 0),
−The trivial equilibrium E2(1, 0),

−The non-isolated equilibrium E3(m,
(m − l)(1 − m)

mq2−q1
).

Using the same Jacobian matrix of system (3), the corresponding eigenvalues as

well as the corresponding singularities are determined for each equilibrium as shown

in Table 6.
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Table 6 Stability analysis of system (3) with weak Allee Effect

m ∈ [0, 1]
Equilibrium Eigenvalues Singularity

E0(0, 0) 𝜆1 = 0
𝜆2 = −m

Saddle point

E2(1, 0) 𝜆1 = l − 1
𝜆2 = l − m

Saddle point

(continued)
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Table 6 (continued)

m ∈ [0, 1]
Equilibrium Eigenvalues Singularity

E3(m,
(m−l)(1−m)

mq2−q1
) 𝜆1 =

tr(J)−i
√
𝛿

2

𝜆2 =
tr(J)+i

√
𝛿

2

m 0.4
If q1 < q2 Stable Focus

If q1 > q2 Unstable Focus

m 0.4
Stable Focus ∀q1andq2

Stability analysis of system (3) with weak Allee Effect proves that:

∙ The equilibrium point E0 and E2 keep the same type of singularities as those of

the original system (2) with weak Allee Effect.

∙ However, the singularity of the equilibrium E3(m,
(m−l)(1−m)

mq2−q1
) is switched from sta-

ble focus to an unstable focus when the value of the FOE q1 increases under the

value of FOE q2 and the mortality rate m is lower or equal to 0.4. When q1 is small,

the system (3) admits a stable focus singularity for all m values. It means biolog-

ically, that when the FO growth rate is smaller than the FO predator’s functional

response, the effect of the mortality rate variation on the dynamical behavior of

the system (3) at E3 will be omitted.

For that, numerical bifurcation analysis according to m and a set of FOE q1 and

q2 values is realized and is shown in Fig. 3.
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Fig. 3 Bifurcation diagram of system (3): Weak Allee Effect case study

Bifurcation diagram of system (3) with weak Allee Effect illustrates a set of bifur-

cation points

∙ When q1 = q2, the system (3) admits the same bifurcation points as those of the

original system (2) with weak Allee Effect: one Hopf point and two Branch points.

∙ When q1 < q2, the system exhibits a new Hopf point in the right of the Fig. 3. It

indicates that the system starts to oscillate around the equilibrium E3. When the

FO prey’s growth rate is less than the FO predator’s functional response value,

the predator population increases and can never go to the extinction at low prey

density.

∙ However, when q1 > q2, the predator growth rate decreases and can be negative

indicating the extinction of both populations. Thus, the FO prey’s growth rate

aggravates the influence of Allee Effect on the dynamical behavior of the system

(3) and can lead the weak Allee Effect to be a critical Allee Effect.

4 Comparative Analysis

The dynamical behavior analysis of the system (3) with both types of Allee Effects

proves that FO prey’s growth rate and the predator’s functional response to prey

density destabilizes the system (3) especially at E3.
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∙ For the strong Allee Effect case study, the system (3) is destabilized at the zero

equilibrium E0 and the non isolated equilibrium E3 when the FO prey’s growth

rate is very high. In other hand, the system (3) exhibits new types of bifurcation

which are the saddle-node bifurcation and the Hopf point bifurcation. This latter

can be supercritical Hopf bifurcation or a subcritical hopf bifurcation according

to the first lyapunov coefficient (FLC) sign. It is dependent on the value of the FO

prey’s growth rate and the FO predator’s functional response.

∙ For the weak Allee Effect, the system (3) is destabilized only at the non isolated

equilibrium E3 especially when the mortality rate is below or equal the value 0.4

and the FO prey’s growth rate is very high. The system (3) exhibits too new Hopf

bifurcation points when the FO prey’s growth rate is unequal to the FO preda-

tor’s functional response. In addition, when the FO prey’s growth rate is highly

increasing, the influence of Allee Effect on the system becomes more important.

As a conclusion, modeling the relationship between the predator’s prey consump-

tion rate and prey density by a FO prey dependent functional response and the

prey’s growth rate by a FO polynomial permit to describe more features of system

(2) and to obtain more complex dynamic behaviors.

5 Conclusion

In this chapter, a new FO predator-Prey BB-model is proposed for both case studies

of Allee Effects. The model is proposed for analyzing the dynamical behavior of the

BB-model with a FO prey’s growth rate and a FO predator’s functional response

to prey density. Bifurcation and stability analysis of the new FO system prove that

FO modeling of the prey’s growth rate and predator’s functional response creates

more complex dynamical behaviors according to the FO values but never converge

to chaos.

In future works, a FO modeling of predator’s efficiency will be proposed and its

analysis will permit to obtain a period doubling bifurcation. Such bifurcation gives

a new behavior by doubling the period of the original system. Its existence can even

indicate the onset of a chaotic behavior at particular value.
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