
Swarup Bhunia · Sandip Ray
Susmita Sur-Kolay Editors

Fundamentals
of IP and SoC
Security
Design, Verification, and Debug

Fundamentals of IP and SoC Security

Swarup Bhunia ⋅ Sandip Ray
Susmita Sur-Kolay
Editors

Fundamentals of IP and SoC
Security
Design, Verification, and Debug

123

Editors
Swarup Bhunia
Department of Electrical and Computer
Engineering

University of Florida
Gainesville, FL
USA

Sandip Ray
NXP Semiconductors
Austin, TX
USA

Susmita Sur-Kolay
Advanced Computing and Microelectronics
Unit

Indian Statistical Institute
Kolkata
India

ISBN 978-3-319-50055-3 ISBN 978-3-319-50057-7 (eBook)
DOI 10.1007/978-3-319-50057-7

Library of Congress Control Number: 2016958715

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1 The Landscape of SoC and IP Security . 1
Sandip Ray, Susmita Sur-Kolay and Swarup Bhunia

2 Security Validation in Modern SoC Designs. 9
Sandip Ray, Swarup Bhunia and Prabhat Mishra

3 SoC Security and Debug . 29
Wen Chen, Jayanta Bhadra and Li-C. Wang

4 IP Trust: The Problem and Design/Validation-Based
Solution . 49
Raj Gautam Dutta, Xiaolong Guo and Yier Jin

5 Security of Crypto IP Core: Issues and Countermeasures 67
Debapriya Basu Roy and Debdeep Mukhopadhyay

6 PUF-Based Authentication . 115
Jim Plusquellic

7 FPGA-Based IP and SoC Security . 167
Debasri Saha and Susmita Sur-Kolay

8 Physical Unclonable Functions and Intellectual Property
Protection Techniques . 199
Ramesh Karri, Ozgur Sinanoglu and Jeyavijayan Rajendran

9 A Systematic Approach to Fault Attack Resistant Design 223
Nahid Farhady Galathy, Bilgiday Yuce and Patrick Schaumont

10 Hardware Trojan Attacks and Countermeasures. 247
Hassan Salmani

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 277
Yi-Chung Chen, Yandan Wang, Wei Zhang, Yiran Chen
and Hai (Helen) Li

v

12 Security Standards for Embedded Devices and Systems 295
Venkateswar Kowkutla and Srivaths Ravi

13 SoC Security: Summary and Future Directions 313
Swarup Bhunia, Sandip Ray and Susmita Sur-Kolay

vi Contents

Chapter 1
The Landscape of SoC and IP Security

Sandip Ray, Susmita Sur-Kolay and Swarup Bhunia

1.1 Introduction

It has been almost a decade since the number of smart, connected computing devices

has exceeded the human population, ushering in the regime of the Internet of

things [1]. Today, we live in an environment containing tens of billions of computing

devices of wide variety and form factors, performing a range of applications often

including some of our most private and intimate data. These devices include smart-

phones, tablets, consumer items (e.g., refrigerators, light bulbs, and thermostats),

wearables, etc. The trend is toward this proliferation to increase exponentially in the

coming decades, with estimates going to trillions of devices as early as by 2030,

signifying the fastest growth by a large measure across any industrial sector in the

history of the human civilization.

Security and trustworthiness of computing systems constitute a critical and gating

factor to the realization of this new regime. With computing devices being employed

for a large number of highly personalized activities (e.g., shopping, banking, fit-

ness tracking, providing driving directions, etc.), these devices have access to a large

amount of sensitive, personal information which must be protected from unautho-

rized or malicious access. On the other hand, communication of this information to

other peer devices, gateways, and datacenters is in fact crucial to providing the kind

of adaptive, “smart” behavior that the user expects from the device. For example,

S. Ray (✉)

Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124, USA

e-mail: sandip.ray@intel.com

S. Sur-Kolay

Advanced Computing and Microelectronics Unit, Indian Statistical Institute,

Kolkata 700108, India

e-mail: ssk@isical.ernet.in

S. Bhunia

Department of ECE, University of Florida, Gainesville, FL 32611, USA

e-mail: swarup@ece.ufl.edu

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_1

1

2 S. Ray et al.

a smart fitness tracker must detect from its sensory data (e.g., pulse rate, location,

speed, etc.) the kind of activity being performed, the terrain on which the activity is

performed, and even the motivation for the activity in order to provide anticipated

feedback and response to the user; this requires a high degree of data processing and

analysis much of which is performed by datacenters or even gateways with higher

computing power than the tracker device itself. The communication and process-

ing of one’s intimate personal information by the network and the cloud exposes

the risk that it may be compromised by some malicious agent along the way. In

addition to personalized information, computing devices contain highly confidential

collateral from architecture, design, and manufacturing, such as cryptographic and

digital rights management (DRM) keys, programmable fuses, on-chip debug instru-

mentation, defeature bits, etc. Malicious or unauthorized access to secure assets in

a computing device can result in identity thefts, leakage of company trade secrets,

even loss of human life. Consequently, a crucial component of a modern computing

system architecture includes authentication mechanisms to protect these assets.

1.2 SoC Design Supply Chain and Security Assets

Most computing systems are developed today using the system-on-chip (SoC) design

architecture. An SoC design is architected by a composition of a number of pre-

designed hardware and software blocks, often referred to as design intellectual prop-
erties or design IPs (IPs for short). Figure 1.1 shows a simple toy SoC design, includ-

ing some “obvious” IPs, e.g., CPU, memory controller, DRAM, various controllers

for peripherals, etc. In general, an IP can refer to any design unit that can be viewed

as a standalone sub-component of a complete system. An SoC design architecture

then entails connecting these IPs together to implement the overall system function-

ality. To achieve this connection among IPs, an SoC design includes a network-on-

chip (NoC) that provides a standardized message infrastructure for the IPs to coordi-

nate and cooperate to define the complete system functionality. In industrial practice

today, an SoC design is realized by procuring many third-party IPs. These IPs are

then integrated and connected by the SoC design integration house which is respon-

sible for the final system design. The design includes both hardware components

(written in a hardware description language such as Verilog of VHDL language) as

well as software and firmware components. The hardware design is sent to a foundry

or fabrication house to create the silicon implementation. The fabricated design is

transferred to platform developers or Original Equipment Manufacturers (OEMs),

who create computing platforms such as a smartphone, tablet, or wearable devices,

which are shipped to the end customer.

The description above already points to a key aspect of complexity in SoC design

fabrication, e.g., a complex supply chain and stake holders. This includes various

IP providers, the SoC integration house, foundry, and the OEMs. Furthermore, with

increasing globalization, this supply chain is typically long and globally distributed.

Chapter 2 discusses some ramifications of this infrastructure, e.g., the possibility

http://dx.doi.org/10.1007/978-3-319-50057-7_2

1 The Landscape of SoC and IP Security 3

Fig. 1.1 A representative SoC design. SoC designs are created by putting together intellectual

property (IP) blocks of well-defined functionality

of any component of the supply chain incorporating malicious or inadvertent vul-

nerability into the design or the manufacturing process. Malicious activities can

include insertion of specific design alterations or Trojans by IP providers, leaking

of a security asset by the SoC integration house, overproduction or counterfeiting by

a malicious foundry, and even overlooked or apparently benign design errors or fea-

tures that can be exploited on-field. Security architectures and assurance techniques

and methodologies must be robust enough to address challenges arising from this

plethora of sources, arising from different points of the system design life cycle.

4 S. Ray et al.

1.3 The Challenge of Design Complexity

A second dimension of challenges with the secure SoC design is in the sheer com-

plexity. Modern computing systems are inordinately complex. Note from Fig. 1.1

that the CPU represents "merely" one of a large number of IPs in an SoC design.

The CPU in a modern SoC design is arguably more complex than many of the high-

performance microprocessors of a decade back. Multiply this complexity increase

with the large number of IPs in the system (many of which include custom microcon-

trollers of commensurate complexity, in addition to custom hardware and firmware),

and one gets some sense of the level of complexity. Add some other cross-design fea-

tures, e.g., power management, performance optimization, multiple voltage islands,

clocking logic, etc., and the complexity perhaps goes beyond imagination. The num-

ber of different design states that such a system can reach exceeds by a long way the

number of atoms in the universe. It is challenging to ensure that such a system ever

functions as desired even under normal operating conditions, much less in the pres-

ence of millions of adversaries looking to identify vulnerabilities for exploitation.

Why is this complexity a bottleneck for security in particular? For starters, secure

assets are sprinkled across the design, in various IPs and their communication

infrastructure. It is difficult to envisage all the different conditions under which these

assets are accessed and insert appropriate protection and mitigation mechanisms to

ensure unauthorized access. Furthermore, security cross-cuts different IPs of the sys-

tem, in some cases breaking the abstraction of IPs as coherent, distinct blocks of

well-defined functionality. Consider an IP communicating with another one through

the communication fabric. Several IPs are involved in this process, including the

source and destination IPs, the routers involved in the communication, etc. Ensuring

the communication is secure would require an understanding of this overall architec-

ture, identifying trusted and untrusted components, analyzing the consequences of a

Trojan in one of the constituent blocks leaking information, and much more. To exac-

erbate the issue, design functionality today is hardly contained entirely in hardware.

Most modern SoC design functionality includes significant firmware and software

components which are concurrently designed together with hardware (potentially by

different players across the supply chain). Consequently, security design and vali-

dation become a complex hardware/software co-design and co-validation problem

distributed across multiple players with potentially untrusted participants. Finally,

the security requirements themselves vary depending on how an IP or even the SoC

design is used in a specific product. For example, the same IP when used in a wear-

able device will have a different security requirement from when it is used as a gam-

ing system. The security requirements also vary depending on the stage of the life

cycle of the product, e.g., when it is with a manufacturer, OEM, or end customer. This

makes it hard to compositionally design security features without a global view.

1 The Landscape of SoC and IP Security 5

1.4 State of Security Design and Validation:
Research and Practice

There has been significant research in recent years to address the challenges outlined

above. There have been techniques to define security requirements [2, 3], architec-

tures to facilitate such implementation [4–7], testing technologies to define and emu-

late security attacks [8], and tools to validate diverse protection and mitigation strate-

gies [9–12]. There have been cross-cutting research too, on understanding trade-offs

between security and functionality, energy requirements, validation, and architec-

tural constraints [13, 14].

In spite of these advances, the state of the industrial practice is still quite primi-

tive. We still depend on security architects, designers, and validators painstakingly

mapping out various security requirements, architecting and designing various tai-

lored and customized protection mechanisms, and coming up with attack scenarios to

break the system by way of validation. There is a severe lack of disciplined method-

ology for developing security, in the same scale as there is methodology for defining

and refining architectures and micro-architectures for system functionality or perfor-

mance. Unsurprisingly, security vulnerabilities are abound in modern SoC designs,

as evidenced by the frequency and ease in which activities like identity theft, DRM

override, device jailbreaking, etc. are performed.

1.5 The Book

This book is an attempt to bridge across the research and practice in SoC security.

It is conceived as an authoritative reference on all aspects of security issues in SoC

designs. It discusses research issues and progresses in topics ranging from secu-

rity requirements in SoC designs, definition of architectures and design choices to

enforce and validate security policies, and trade-offs and conflicts involving secu-

rity, functionality, and debug requirements, as well as experience reports from the

trenches in design, implementation, and validation of security-critical embedded sys-

tems.

In addition to providing an extensive reference to the current state-of-the-art,

the book is anticipated to serve as a conduit for communication between different

stake holders of security in SoC designs. Security is one of the unique areas of

SoC designs, which cross-cuts a variety of concerns, including architecture, design,

implementation, validation, and software/hardware interfaces, in many cases with

conflicting requirements from each domain. With a unified material documenting

the various concerns side-by-side, we hope this book will help each stake holder

better understand and appreciate the others points of view and ultimately foster an

overall understanding of the trade-offs necessary to achieve truly secure systems.

The book includes eleven -chapters focusing on diverse aspects of system-level

security in modern SoC designs. The book is intended for researchers, students,

6 S. Ray et al.

and practitioners interested in understanding the spectrum of challenges in archi-

tecture, validation, and debug of IP and SoC securities. It can serve as a material

for a research course on the topic, or as a source of advanced research materials in a

graduate class.

Chapter 2 focuses on SoC security validation. Validation is a critical and highly

important component in SoC security. This chapter introduces the different secu-

rity activities performed at different stages of the design life cycle, and the complex

dependencies involved. It draws from examples in industrial practice, identifies the

holes in current state of the practice, and discusses emergent research in industry and

academia to plug these holes.

Chapter 3 discusses interoperability challenges to security. For a system to be usable,

it is not sufficient for it to be secure but also to provide meaningful functionality.

The trade-offs between security and functionality is an old one, stemming from the

notion of availability itself as a security requirement in addition to confidentiality

and integrity. Interoperability between security and functionality is a cornerstone

for design and validation of modern computing systems. The twist in this tale is

that validation itself introduces trade-offs and conflicts with security. In particular,

post-silicon validation imposes observability and controllability requirements which

can conflict with the security restrictions of the system. This chapter discusses the

various ramifications of this conflict, and discusses the current state of the practice

in its resolution.

Chapter 4 introduces the challenge of IP trust validation and assurance. Given the

high proliferation of third-party IPs that are included in a modern SoC design as

well as the complex global supply chain alluded to above, trustworthiness of the IP

is a matter of crucial concern. This chapter enumerates the challenges with the cur-

rent IP trust assurance, discusses protection technologies, and describes certification

methods to validate trustworthiness of acquired third-party IPs.

Chapter 5 discusses challenges in developing trustworthy cryptographic implemen-

tations for modern SoC designs. Cryptographic protocols are crucial to various pro-

tecting a large number of system assets. Virtually, all SoC designs include a number

of IP cores implementing such protocols, which form a critical component of the

root-of-trust for the system. It is obviously crucial that the cryptographic implemen-

tations themselves are robust against adversarial attacks. Attacks on cryptographic

implementations include both attacks on the protocols themselves as well as infer-

ence of implementation behavior and secure data (e.g., key) through side channel

analysis. This chapter provides an overview of these attacks and discusses counter-

measures.

Chapter 6 discusses a promising technology for secure authentication, namely Phys-

ical unclonable function (PUF). PUF is one of the key security primitives that pro-

vides source of randomness for cryptographic implementations (among others) in an

SoC design. The idea is to exploit variations in the structural and electrical character-

istics as a source of entropy unique to each individual integrated circuit. PUFs have

http://dx.doi.org/10.1007/978-3-319-50057-7_2
http://dx.doi.org/10.1007/978-3-319-50057-7_3
http://dx.doi.org/10.1007/978-3-319-50057-7_4
http://dx.doi.org/10.1007/978-3-319-50057-7_5
http://dx.doi.org/10.1007/978-3-319-50057-7_6

1 The Landscape of SoC and IP Security 7

become a topic of significant research over the last decade, with various novel PUF-

based authentication protocols emerging in recent years. This chapter discusses this

exciting and rapidly evolving area, compares PUF-based authentication with other

standard approaches, and identifies several open research problems.

Chapter 7 discusses security with IP and SoC designs based on field-programmable

gate arrays (FPGA). FPGAs have been the focus of attention because they permit

dynamic reconfigurability while still providing the energy efficiency and perfor-

mance compatible with a custom hardware implementation for many applications.

Unfortunately, FPGA-based IP implementations induce a number of significant secu-

rity challenges of their own. An FPGA-based IP is essentially a design implemen-

tation in a low-level hardware description language (also referred to as an FPGA

bitstream) which is loaded on a generic FPGA architecture. To ensure authentica-

tion and prevent unauthorized access, the bitstream needs to be encrypted, and must

thereafter be decrypted on-the-fly during load or update. However, bitstreams are

often updated on field and the encryption may be attacked through side channel or

other means. If the entire SoC is implemented in FPGA, IP management and coordi-

nation may become even more challenging. This chapter discusses the various facets

of security techniques for IP and SOC FPGA, open problems, and areas of research.

Chapter 8 discusses PUFs and IP protection techniques. IP protection techniques

are techniques to ensure robustness of IPs against various threats, including supply

chain challenges, Trojan, and counterfeiting. The chapter provides a broad overview

of the use of PUFs and IP protection techniques in modern SoC designs, and various

conflicts, cooperations, and trade-offs involved.

Chapter 9 discusses SoC design techniques that are resistant to fault injection attacks.

Fault injection attack is a complex, powerful, and versatile approach to subvert SoC

design protections, particularly cryptographic implementations. The chapter pro-

vides an overview of fault injection attacks and describes broad class of design tech-

niques to develop systems that are robust against such attacks.

Chapter 10 looks closely into one of the core problems of SoC security, e.g., hard-

ware Trojans. With increasing globalization of the SoC design supply chain there

has been increasing threat of such Trojans, i.e., hardware circuitry that may per-

form intentionally malicious activity including subverting communications, leaking

secrets, etc. The chapter looks closely at various facets of this problem from IP secu-

rity perspective, the countermeasures taken in the current state of practice, their defi-

ciencies, and directions for research in this area.

Chapter 11 discusses logic obfuscation techniques, in particular for FPGA designs

based on nonvolatile technologies. Logic obfuscation is an important technique to

provide robustness of an IP against a large class of adversaries. It is particularly criti-

cal for FPGA-based designs which need to be updated on field. The chapter proposes

a scheme for loading obfuscated configurations into nonvolatile memories to protect

design data from physical attacks.

Chapter 12 presents a discussion on security standards in embedded SoCs used in

diverse applications, including automotive systems. It notes that security is a critical

http://dx.doi.org/10.1007/978-3-319-50057-7_7
http://dx.doi.org/10.1007/978-3-319-50057-7_8
http://dx.doi.org/10.1007/978-3-319-50057-7_9
http://dx.doi.org/10.1007/978-3-319-50057-7_10
http://dx.doi.org/10.1007/978-3-319-50057-7_11
http://dx.doi.org/10.1007/978-3-319-50057-7_12

8 S. Ray et al.

consideration in the design cycle of every embedded SoC. But the level of secu-

rity and resulting cost–benefit trade-off depend on a target application. This chapter

provides a valuable industry perspective to this critical problem. It describes two lay-

ers of a hierarchical security model that a system designer typically uses to achieve

application-specific security needs: (1) foundation level security targeted at basic

security services, and (2) security protocols like TLS or SSL.

It has been a pleasure and honor for the editors to edit this material, and we hope

the broad coverage of system-level security challenges provided here will bridge

a key gap in our understanding of the current and emergent security challenges.

We believe the content of the book will provide a valuable reference for SoC secu-

rity issues and solutions to a diverse readership including students, researchers, and

industry practitioners. Of course, it is impossible for any book on the topic to be

exhaustive on this topic: it is too broad, too detailed, and touches too many areas of

computer science and engineering. Nevertheless, we hope that the book will provide

a flavor of the nature of the needed and current research in this area, and cross-cutting

challenges across different areas that need to be done to achieve the goal of trustwor-

thy computing systems.

References

1. Evans, D.: The Internet of Things—How the Next Evolution of the Internet is Changing Every-

thing. White Paper, Cisco Internet Business Solutions Group (IBSG) (2011)

2. Li, X., Oberg, J.V.K., Tiwari, M., Rajarathinam, V., Kastner, R., Sherwood, T., Hardekopf, B.,

Chong, F.T.: Sapper: a language for hardware-level security policy enforcement. In: Interna-

tional Conference on Architectural Support for Programming Languages and Operating Sys-

tems (2014)

3. Srivatanakul, J., Clark, J.A., Polac, F.: Effective security requirements analysis: HAZOPs and

use cases. In: 7th International Conference on Information Security, pp. 416–427 (2004)

4. ARM: Building a secure system using trustzone technology. ARM Limited (2009)

5. Basak, A., Bhunia, S., Ray, S.: A flexible architecture for systematic implementation of SoC

security policies. In: Proceedings of the 34th International Conference on Computer-Aided

Design (2015)

6. Intel: Intel® Software Guard Extensions Programming Reference. https://software.intel.com/

sites/default/files/managed/48/88/329298-002.pdf

7. Samsung: Samsung KNOX. www.samsungknox.com

8. Microsoft Threat Modeling & Analysis Tool version 3.0 (2009)

9. JasperGold Security Path verification App. https://www.cadence.com/tools/system-design-

and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-

path-verification-app.html

10. Bazhaniuk, O., Loucaides, J., Rosenbaum, L., Tuttle, M.R., Zimmer, V.: Excite: symbolic exe-

cution for BIOS security. In: Workshop on Offensive Technologies (2015)

11. Kannavara, R., Havlicek, C.J., Chen, B., Tuttle, M.R., Cong, K., Ray, S., Xie, F.: Challenges

and opportunities with concolic testing. In: NAECON 2015 (2015)

12. Takanen, A., DeMott, J.D., Mille, C.: Fuzzing for software security testing and quality assur-

ance. Artech House (2008)

13. Ray, S., Hoque, T., Basak, A., Bhunia, S.: The power play: trade-offs between energy and

security in IoT. In: ICCD (2016)

14. Ray, S., Yang, J., Basak, A., Bhunia, S.: Correctness and security at odds: post-silicon valida-

tion of modern SoC designs. In: Proceedings of the 52nd Annual Design Automation Confer-

ence (2015)

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
www.samsungknox.com
https://www.cadence.com/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html

Chapter 2
Security Validation in Modern SoC Designs

Sandip Ray, Swarup Bhunia and Prabhat Mishra

2.1 Security Needs in Modern SoC Designs

System-on-Chip (SoC) architecture pervades modern computing devices, being the

prevalent design approach for devices in embedded, mobile, wearable, and Internet-

of-Things (IoT) applications. Many of these devices have access to highly sensi-

tive information or data (often collectively called “assets”), that must be protected

against unauthorized or malicious access. The goal of SoC security architecture is to

develop mechanisms to ensure this protection. The goal of SoC security validation
is to ensure that such mechanisms indeed provide the protection needed. Clearly the

two activities are closely inter-related in typical SoC security assurance methodolo-

gies. This chapter is about the security validation component, but we touch upon

architectural issues as necessary.

To motivate the critical role of security validation activities, it is necessary to

clarify (1) what kind of assets is being protected, and (2) what kind of attacks we are

protecting against. One can get some flavor of the kind (and diversity) of assets by

looking at the kind of activities we perform on a typical mobile system. Figure 2.1

tabulates some obvious end user usages of a standard smartphone and the kind of end

user information accessed during these usages. Note that it includes such intimate

information as our sleep pattern, health information, location, and finances. In addi-

tion to private end user information, there are other assets in a smartphone that may

have been put by the manufacturers and OEMs, which they do not want to be leaked

S. Ray (✉)

Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124, USA

e-mail: sandip.ray@intel.com

S. Bhunia ⋅ P. Mishra

Department of ECE, University of Florida, Gainesville, FL 32611, USA

e-mail: swarup@ece.ufl.edu

P. Mishra

e-mail: prabhat@cise.ufl.edu

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_2

9

10 S. Ray et al.

Usages Assets Exposed
Browsing Browsing history

Fitness tracking Health information,sleep pattern
GPS Location

Phone call Contacts
Banking,Stock trading Finances

Fig. 2.1 Some typical smartphone applications and corresponding private end user information

(a) (b)

Fig. 2.2 Some potential attacks on a modern SoC design. a Potential attack areas for a smartphone

after production and deployment. b Potential threats from untrusted supply chain during the design

life cycle of an SoC design

out to unauthorized sources. This includes cryptographic and DRM keys, premium

content locks, firmware execution flows, debug modes, etc. Note that the notion of

“unauthorized source” changes based on what asset we are talking about: end user

may be an unauthorized source for DRM keys while manufacturer/OEM may be an

unauthorized source for end user private information.

In addition to criticality of the assets involved, another factor that makes SoC

security both critical and challenging is the high diversity of attacks possible.

Figure 2.2 provides a flavor of potential attacks on a modern SoC design. Of par-

ticular concern are the following two observations:

∙ Because of the untrusted nature of the supply chain, there are security threats at

most stages of the design development, even before deployment and production.

∙ A deployed SoC design inside a computing device (e.g., smartphone) in the hand

of the end user is prone to a large number of potential attacker entry points, includ-

ing applications, software, and network, browser, and sensors. Security assurance

must permit protection against this large attack surface.

We discuss security validation for the continuum of attacks from design to deploy-

ment. Given that the attacks are diverse, protection mechanisms are also varied, and

2 Security Validation in Modern SoC Designs 11

each induces a significantly different validation challenge. However, validation tech-
nology is still quite limited. For most of the security requirements, we still very much

depend on the perspicuity, talent, and experience of the human validators to identify

potential vulnerabilities.

2.2 Supply Chain Security Threats

The life cycle of a SoC from concept to deployment involves number of security

threats at all stages involving various parties. Figure 2.2b shows the SoC life cycle

and the security threats that span the entire life cycle. These threats are increasing

with the rapid globalization of the SoC design, fabrication, validation, and distribu-

tion steps, driven by the global economic trend.

This growing reliance on reusable pre-verified hardware IPs during SoC design,

often gathered from untrusted third-party vendors, severely affects the security and

trustworthiness of SoC computing platforms. Statistics show that the global market

for third-party semiconductor IPs grew by more than 10% to reach more than 2.1
billion in late 2012 [1]. The design, fabrication, and supply chain for these IP cores is

generally distributed across the globe involving USA, Europe, and Asia. Figure 2.3

illustrates the scenario for an example SoC that includes processor, memory con-

trollers, security, graphics, and analog core. Due to growing complexity of the IPs

as well as the SoC integration process, SoC designers increasingly tend to treat these

IPs as black box and rely on the IP vendors on the structural/functional integrity of

these IPs. However, such design practices greatly increase the number of untrusted

components in a SoC design and make the overall system security a pressing con-

cern.

Hardware IPs acquired from untrusted third-party vendors can have diverse secu-

rity and integrity issues. An adversary inside an IP design house involved in the

IP design process can deliberately insert a malicious implant or design modifi-

cation to incorporate hidden/undesired functionality. In addition, since many of

the IP providers are small vendors working under highly aggressive schedules,

it is difficult to ensure a stringent IP validation requirement in this ecosystem.

Design features may also introduce unintentional vulnerabilities, e.g., intentional

information leakage through hidden test/debug interfaces or side-channels through

power/performance profiles. Similarly, IPs can have uncharacterized parametric

behavior (e.g., power/thermal) which can be exploited by an attacker to cause irrecov-

erable damage to an electronic system. There are documented instances of such

attacks. For example, in 2012, a study by a group of researchers in Cambridge

revealed an undocumented silicon level backdoor in a highly secure military-grade

ProAsic3 FPGA device from MicroSemi (formerly Actel) [2], which was later

described as a vulnerability induced unintentionally by on-chip debug infrastruc-

ture. In a recent report, researchers have demonstrated such an attack where a mali-

cious upgrade of a firmware destroys the processor it is controlling by affecting

the power management system [3]. It manifests a new attack mode for IPs, where

12 S. Ray et al.

Fig. 2.3 An SoC would often contain hardware IP blocks obtained from entities distributed across

the globe

firmware/software update can maliciously affect the power/performance/temperature

profile of a chip to either destroy a system or reveal secret information through appro-

priate side-channel attack, e.g., a fault or timing attack.

Trusted and untrusted CAD tools pose similar trust issues to the SoC design-

ers. Such tools are designed to optimize a design for power, performance, and area.

Security optimization is not an option in today’s tools, hence sometimes during the

optimization new vulnerabilities are introduced [4]. Rogue designers in an untrusted

design facility, e.g., in case of a design outsourced to a facility for Design-for-Test

(DFT) or Design-for-Debug (DFD) insertion, can compromise the integrity of a SoC

design through insertion of stealthy hardware Trojan. These Trojans can act as back-

door or compromise the functional/parametric properties of a SoC in various ways.

Finally, many SoC manufacturers today are fabless and hence must rely upon

external untrusted foundries for fabrication service. An untrusted foundry would

have access to the entire SoC design and thus brings in several serious security con-

cerns, which include reverse-engineering and piracy of the entire SoC design or the

IP blocks as well as tampering in the form of malicious design alterations or Trojan

attacks. During distribution of fabricated SoCs through a typically long globally dis-

tributed supply chain, consisting of multiple layers of distributors, wholesalers, and

retailers, the threat of counterfeits is a growing one. These counterfeits can be low-

quality clones, overproduced chips in untrusted foundry, or recycled ones [5]. Even

after deployment, the systems are vulnerable to physical attacks, e.g., side-channel

attacks which target information leakage, and magnetic field attacks that aim at cor-

rupting memory content to cause denial-of-service (DoS) attacks.

2 Security Validation in Modern SoC Designs 13

2.3 Security Policies: Requirements from Design

In addition to supply-chain threats, the design itself may have exploitable vulnerabil-

ities. Vulnerabilities in system design, in fact, forms the quintessential objective of

security study, and has been the focus of research for over three decades. At a high

level, the definition of security requirement for assets in a SoC design follows the

well-known “CIA” paradigm, developed as part of information security research [6].

In this paradigm, accesses and updates to secure assets are subject to the following

three requirements:

∙ Confidentiality: An asset cannot be accessed by an agent unless authorized to do

so.

∙ Integrity: An asset can be mutated (e.g., the data in a secure memory location can

be modified) only by an agent authorized to do so.

∙ Availability: An asset must be accessible to an agent that requires such access as

part of correct system functionality.

Of course, mapping these high-level requirements to constraints on individual assets

in a system is nontrivial. This is achieved by defining a collection of security poli-

cies that specify which agent can access a specific asset and under what conditions.

Following are two examples of representative security policies. Note that while illus-

trative, these examples are made up and do not represent security policy of a specific

company or system.

Example 1 During boot time, data transmitted by the cryptographic engine cannot

be observed by any IP in the SoC other than its intended target.

Example 2 A programmable fuse containing a secure key can be updated during

manufacturing but not after production.

Example 1 is an instance of confidentiality, while Example 2 is an instance of

integrity policy; however, the policies are at a lower level of abstraction since they

are intended to be translated to “actionable” information, e.g., architectural or design

features. The above examples, albeit hypothetical, illustrate an important character-

istic of security policies: the same agent may or may not be authorized access (or

update) of the same security asset depending on (1) the phase of the execution (i.e.,

boot or normal), or (2) the phase of the design life cycle (i.e., manufacturing or pro-

duction). These factors make security policies difficult to implement. Exacerbating

the problem is the fact that there is typically no central documentation for security

policies; documentation of policies can range from microarchitectural and system

integration documents to informal presentations and conversations among architects,

designers, and implementors. Finally, the implementation of a policy is an exercise

in concurrency, with different components of the policy implemented in different IPs

(in hardware, software, or firmware), that coordinate together to ensure adherence to

the policy.

Unfortunately, security policies in a modern SoC design are themselves signifi-

cantly complex, and developed in ad hoc manner based on customer requirements

14 S. Ray et al.

and product needs. Following are some representative policy classes. They are not

complete, but illustrate the diversity of policies employed.

Access Control. This is the most common class of policies, and specifies how differ-

ent agents in an SoC can access an asset at different points of the execution. Here an

“agent” can be a hardware or software component in any IP of the SoC. Examples 1

and 2 above represent such policy. Furthermore, access control forms the basis of

many other policies, including information flow, integrity, and secure boot.

Information Flow. Values of secure assets can sometimes be inferred without direct

access, through indirect observation or “snooping” of intermediate computation or

communications of IPs. Information flow policies restrict such indirect inference.

An example of information flow policy might be the following.

∙ Key Obliviousness: A low-security IP cannot infer the cryptographic keys by

snooping only the data from crypto engine on a low-security communication fab-

ric.

Information flow policies are difficult to analyze. They often require highly sophisti-

cated protection mechanisms and advanced mathematical arguments for correctness,

typically involving hardness or complexity results from information security. Con-

sequently they are employed only on critical assets with very high confidentiality

requirements.

Liveness. These policies ensure that the system performs its functionality without

“stagnation” throughout its execution. A typical liveness policy is that a request for

a resource by an IP is followed by an eventual response or grant. Deviation from

such a policy can result in system deadlock or livelock, consequently compromising

system availability requirements.

Time-of-Check Versus Time of Use (TOCTOU). This refers to the requirement

that any agent accessing a resource requiring authorization is indeed the agent that

has been authorized. A critical example of TOCTOU requirement is in firmware

update; the policy requires firmware eventually installed on update is the same

firmware that has been authenticated as legitimate by the security or crypto engine.

Secure Boot. Booting a system entails communication of significant security assets,

e.g., fuse configurations, access control priorities, cryptographic keys, firmware

updates, debug and post-silicon observability information, etc. Consequently, boot

imposes more stringent security requirements on IP internals and communications

than normal execution. Individual policies during boot can be access control, infor-

mation flow, and TOCTOU requirements; however, it is often convenient to coalesce

them into a unified set of boot policies.

2 Security Validation in Modern SoC Designs 15

2.4 Adversaries in SoC Security

To discuss security validation, one of the first steps is to identify how a security

policy can be subverted. Doing so is tantamount to identifying potential adversaries

and charactertizing the power of the adversaries. Indeed, effectiveness of virtually all

security mechanisms in SoC designs today are critically dependent on how realistic

the model of the adversary is, against which the protection schemes are considered.

Conversely, most security attacks rely on breaking some of the assumptions made

regarding constraints on the adversary while defining protection mechanisms. When

discussing adversary and threat models, it is worth noting that the notion of adversary

can vary depending on the asset being considered: in the context of protecting DRM

keys, the end user would be considered an adversary, while the content provider (and

even the system manufacturer) may be included among adversaries in the context of

protecting private information of the end user. Consequently, rather than focusing on

a specific class of users as adversaries, it is more convenient to model adversaries

corresponding to each policy and define protection and mitigation strategies with

respect to that model.

Defining and classifying the potential adversary is a highly creative process. It

needs considerations such as whether the adversary has physical access to the sys-

tem, which components they can observe, control, modify, or reverse-engineer, etc.

Recently, there have been some attempts at developing a disciplined, clean catego-

rization of adversarial powers. One potential categorization, based on the interfaces

through which the adversary can gain access to the system assets, can be used to

classify them into the following six broad categories (in order of increasing sophis-

tication). Note that there has been significant research into specific attacks in different

categories, and a comprehensive treatment of different attacks is beyond the scope

of this chapter; the interested reader is encouraged to look up some of the references

for a thorough description of specific details.

Unprivileged Software Adversary: This form of adversary models the most com-

mon type of attack on SoC designs. Here the adversary is assumed to not have access

to any privileged information about the design or architecture beyond what is avail-

able for the end user, but is assumed to be smart enough to identify or “reverse-

engineer” possible hardware and software bugs from observed anomalies. The under-

lying hardware is also assumed to be trustworthy, and the user is assumed to have no

physical access to the underlying IPs. The importance of this naïve adversarial model

is that any attack possible by such an adversary can be potentially executed by any

user, and can therefore be easily and quickly replicated on-field on a large number of

system instances. For these types of attacks, the common “entry point” of the attack

is assumed to be user-level application software, which can be installed or run on the

system without additional privileges. The attacks then rely on design errors (both in

hardware and software) to bypass protection mechanisms and typically get a higher

privilege access to the system. Examples of these attacks include buffer overflow,

code injection, BIOS infection, return-oriented programming attacks, etc. [7, 8].

16 S. Ray et al.

System Software Adversary: This provides the next level of sophistication to the

adversarial model. Here we assume that in addition to the applications, potentially

the operating system itself may be malicious. Note that the difference between the

system software adversary and unprivileged software adversary can be blurred, in

the presence of bugs in the operating system implementation leading to security vul-

nerabilities: such vulnerabilities can be seen as unprivileged software adversaries

exploiting an operating system bug, or a malicious operating system itself. Nev-

ertheless, the distinction facilitates defining the root of trust for protecting system

assets. If the operating system is assumed untrusted, then protection and mitigation

mechanisms must rely on lower level (typically hardware) primitives to ensure pol-

icy adherence. Note that system software adversary model can have a highly subtle

and complex impact on how a policy can be implemented, e.g., recall from the mas-

querade prevention example above that it can affect the definition of communication

fabric architecture, communication protocol among IPs, etc.

Software Covert-Channel Adversary: In this model, in addition to system and

application software, a side-channel or covert-channel adversary is assumed to have

access to nonfunctional characteristics of the system, e.g., power consumption, wall-

clock time taken to service a specific user request, processor performance counters,

etc., which can be used in subtle ways to identify how assets are stored, accessed, and

communicated by IPs (and consequently subvert protection mechanisms) [9, 10].

Naïve Hardware Adversary: Naive hardware adversary refers to the attackers who

may gain the access to the hardware devices. While the attackers may not have

advanced reverse-engineering tools, they may be equipped with basic testing tools.

Common targets for these types of attacks include exposed debug interfaces and

glitching of control or data lines [11]. Embedded systems are often equipped with

multiple debugging ports for quick prototype validation and these ports often lack

proper protection mechanisms, mainly because of the limited on-board resources.

These ports are often left on purpose to facilitate the firmware patching or bug-

fixing for errors and malfunctions detected on-field. Consequently, these ports also

provide potential weakness which can be exploited for violating security policies.

Indeed, some of the “celebrated” attacks in recent times make use of available hard-

ware interfaces including the XBOX 360 Hack [12], Nest Thermostat Hack [13], and

several smartphone jailbreaking techniques.

Hardware Reverse-Engineering Adversary: In this model, the adversary is

assumed to be able to reverse-engineer the silicon implementation for on-chip secrets

identification. In practice, such reverse-engineering may depend on sniffing inter-

faces as discussed for naïve hardware adversaries. In addition, they can depend

on advanced techniques such as laser-assisted device alteration [14] and advanced

chip-probing techniques [15]. Hardware reverse engineering can be further divided

into two categories: (1) chip-level and (2) IP core functionality reconstruction. Both

attack vectors bring security threats into the hardware systems, and permit extrac-

tion of secret information (e.g., cryptographic and DRM keys coded into hardware),

which cannot be otherwise accessed through software or debugging interfaces.

2 Security Validation in Modern SoC Designs 17

Malicious Hardware Intrusion Adversary: A hardware intrusion adversary (or

hardware Trojan adversary) is a malicious piece of hardware inside the SoC design.

It is different from a hardware reverse-engineering adversary in that instead of “pas-

sively” observing and reverse-engineering functionality of the rest of the design

components, it has the ability to communicate with them (and “fool” them into vio-

lating requisite policies). Note that as with the difference between system software

and unprivileged software adversaries above, many attacks possible by an intrusion

adversary can, in principle, be implemented by a reverse-engineering adversary in

the presence of hardware bugs. Nevertheless, the root of trust and protection mecha-

nisms required are different. Furthermore, in practice, hardware Trojan attacks have

become a matter of concern specifically in the context of SoC designs that include

untrusted third-party IPs as well as those integrated in an untrusted design house.

Protection policies against such adversaries are complex, since it is unclear a priori

which IPs or communication fabric to trust under this model. The typical approach

taken for security in the presence of intrusion adversaries (and in some cases, reverse-

engineering adversaries) is to ensure that a rogue IP A cannot subvert a non-rogue

IP B into deviating from a policy.

2.5 IP-Level Trust Validation

One may wonder, why is it not possible to reuse traditional functional verification

techniques to this problem? This is due to the fact that IP trust validation focuses

on identifying malicious modifications such as hardware Trojans. Hardware Trojans

typically require two parts: (1) a trigger, and (2) a payload. The trigger is a set of con-

ditions that their activation deviates the desired functionality from the specification

and their effects are propagated through the payload. An adversary designs trigger

conditions such that they are satisfied in very rare situations and usually after long

hours of operation [16]. Consequently, it is extremely hard for a naïve functional vali-

dation technique to activate the trigger condition. Below we discuss a few approaches

based on simulation-based validation as well as formal methods. A detailed descrip-

tion of various IP trust validation techniques is available in [17, 18].

Simulation-Based Validation: There are significant research efforts on hardware

Trojan detection using random and constrained-random test vectors. The goal of

logic testing is to generate efficient tests to activate a Trojan and to propagate its

effects to the primary output. These approaches are beneficial in detecting the pres-

ence of a Trojan. Recent approaches based on structural/functional analysis [19–

21] are useful to identify/localize the malicious logic. Unused Circuit Identification

(UCI) [19] approaches look for unused portions in the circuit and flag them as mali-

cious. The FANCI approach [21] was proposed to flag suspicious nodes based on

the concept of control values. Oya et al. [20] utilized well-crafted templates to iden-

tify Trojans in TrustHUB benchmarks [22]. These methods assume that the attacker

uses rarely occurring events as Trojan triggers. Using “less-rare” events as trigger

18 S. Ray et al.

will void these approaches. This was demonstrated in [23], where Hardware Trojans

were designed to defeat UCI [19].

Side-Channel Analysis: Based on the fact that a trigger condition usually has

extremely low probability, the traditional ATPG-based method for functional testing

cannot fulfill the task of Trojan activation and detection. Bhunia et al. [16] proposed

the multiple excitation of rare occurrence (MERO) approach to generate more effec-

tive tests to increase the probability to trigger the Trojan. A more recent work by

Saha et al. [24] can improve MERO to get higher detection coverage by identify-

ing possible payload nodes. Side-channel analysis focuses on the side channel sig-

natures (e.g., delay, transient, and leakage power) of the circuit [25], which avoids

the limitations (low trigger probability and propagation of payload) of logic testing.

Narasimhan et al. [26] proposed the Temporal Self-Referencing approach on large

sequential circuits, which compares the current signature of a chip at two different

time windows. This approach can completely eliminate the effect of process noise,

and it takes optimized logic test sets to maximize the activity of the Trojan.

Equivalence Checking: In order to trust an IP block, it is necessary to make sure

that the IP is performing the expected functionality—nothing more and nothing less.

From security point of view, verification of correct functionality is not enough. The

verification engineer has to confirm that there are no other activities besides the

desired functionality. Equivalence checking ensures that the specification and imple-

mentation are equivalent. Traditional equivalence checking techniques can lead to

state space explosion when large IP blocks are involved with significantly different

specification and implementation. One promising direction is to use Gröbner basis

theory to verify arithmetic circuits [27]. Similar to [28], the reduction of specifica-

tion polynomial with respect to Gröbner basis polynomials is performed by Gaussian

elimination to reduce verification time. In all of these methods, when the remainder

is nonzero, it shows that the specification is not exactly equivalent with the imple-

mentation. Thus, the nonzero remainder can be analyzed to identify the hidden mal-

functions or Trojans in the system.

Model Checking: Model checking is the process of analyzing a design for the

validity of properties stated in temporal logic. A model checker takes the Regis-

ter Transfer Level (RTL) (e.g., Verilog) code along with the property written as a

Verilog assertion and derives a Boolean satisfiability (SAT) formulation for validat-

ing/invalidating the property. This SAT formulation is fed to a SAT engine, which

then searches for an input assignment that violates the property [29]. In practice,

designers know the bounds on the number of steps (clock cycles) within which a

property should hold. In Bounded Model Checking (BMC), a property is determined

to hold for at least a finite sequence of state transitions. The Boolean formula for val-

idating/ invalidating the target property is given to a SAT engine, and if a satisfying

assignment is observed within specific clock cycles, that assignment is a witness

against the target property [30]. The properties can be developed to detect Trojans

that corrupt critical data and verify the target design for satisfaction of these proper-

ties using a bounded model checker.

2 Security Validation in Modern SoC Designs 19

Theorem Proving: Theorem provers are used to prove or disprove properties of sys-

tems expressed as logical statements. However, verifying large and complex systems

using theorem provers require excessive effort and time. Despite these limitations,

theorem provers have currently drawn a lot of interest in verification of security prop-

erties on hardware. In [31–33], the Proof-Carrying Hardware (PCH) framework was

used to verify security properties on soft IP cores. Supported by the Coq proof assis-

tant [34], formal security properties can be formalized and proved to ensure the trust-

worthiness of IP cores. The PCH method is inspired from the proof-carrying code

(PCC), which was proposed by Necula [35]. The central idea is that untrusted devel-

opers/vendors certify their IP. During the certification process, the vendor devel-

ops safety proof for the safety policies provided by IP customers. The vendor then

provides the user with the IP design, which includes the formal proof of the safety

properties. The customer becomes assured of the safety of the IP by validating the

design using a proof checker. A recent approach presented a scalable trust validation

framework using a combination of theorem proving and model checking [36].

2.6 Security Along SoC Design Life Cycle

We now turn to the problem of system-level security validation for the SoC designs.

This process takes place in the SoC design house and continues across the system

design life cycle. When performing system-level validation, the constituent IPs are

assumed to have undergone a level of standalone trust validation before integration.

Figure 2.4 provides a high-level overview of the SoC design life cycle. Each com-

ponent of the life cycle, of course, involves a large number of design, development,

and validation activities. Here, we summarize the key activities involved along the

life cycle, that pertain to security. Subsequent sections will elaborate on the individ-

ual activities.

Risk Assessment. Security requirements definition is a key part of product plan-

ning, and happens concurrently with (and in close collaboration with) the definition

of architectural features of the product. This process involves identifying the secu-

rity assets in the system, their ownership, and protection requirements, collectively

defined as security policies (see below). The result of this process is typically the

generation of a set of documents, often referred to as product security specification
(PSS), which provides the requirements for downstream architecture, design, and

validation activities.

Security Architecture. The goal of a security architecture is to design mecha-

nisms for protection of system assets as specified by the PSS. It includes several

components, as follows: (1) identifying and classifying potential adversary for each

asset; (1) determining attacker entry points, also referred to as threat modeling; and

(3) developing protection and mitigation strategies. The process can identify addi-

tional security policies—typically at a lower level than those identified during risk

assessment (see below)—which are added to the PSS. The security definition typi-

20 S. Ray et al.

Fig. 2.4 A typical SoC life cycle from exploration to production

cally proceeds in collaboration with architecture and design of other system features,

including speed, power management, thermal characteristics, etc., with each compo-

nent potentially influencing the others.

Security Validation. Security validation represents one of the longest and most crit-

ical part of security assurance for industrial SoC designs, spanning the architecture,

design, and post-silicon components of the system life cycle. The actual validation

target and properties validated at any phase, of course, depends on the collateral

available in that phase. For example, we target, respectively, architecture, design,

implementation, and silicon artifacts as the system development matures. Below

we will discuss some of the key validation activities and associated technologies.

One key component of security validation is to develop techniques to subvert the

advertised security requirements of the system, and identify mitigation measures.

Mitigation measures for early-stage validation targeting architecture and early sys-

tem design often include significant refinement of the security architecture itself. At

later stages of the system life cycle, when architectural changes are no longer feasi-

ble due to product maturity, mitigation measures can include software or firmware

patches, product defeature, etc.

2.7 Security Validation Activities

Unfortunately, the role of security validation is different from most other kinds of val-

idation (such as functional or power-performance or timing) since the requirements

are typically less precise. In particular, the goal of security validation is to “validate

conditions related to security and privacy of the system that are not covered by other

2 Security Validation in Modern SoC Designs 21

validation activities.” The requirement that security validation focuses on targets not

covered by other validation is important given the strict time-to-market constraints,

which preclude duplication of resources for the same (or similar) validation tasks;

however, it puts onus on the security validation organization to understand activi-

ties performed across the spectrum of the SoC design validation and identify holes

that pertain to security. To exacerbate the problem, a significant amount of security

objectives are not clearly specified, making it difficult to (1) identify validation tasks

to be performed, and (2) develop clear coverage/success criteria for the validation.

Consequently, the validation plan includes a large number of diverse activities that

range from the science to the art and sometimes even “black magic.”

At a high level, security validation activities can be divided roughly among the

following four categories.

Functional Validation of Security-sensitive Design Features. This is essentially

extension to functional validation, but pertain to design elements involved in crit-

ical security feature implementations. An example is the cryptographic engine IP.

A critical functional requirement for the crypographic engine is that it encrypts and

decrypts data correctly for all modes. As with any other design block, the crypto-

graphic engine is also a target of functional validation. However, given that it is a

critical component of a number of security-critical design features, security valida-

tion planning may determine that correctness of cryptographic functionality to be

crucial enough to justify further validation beyond the coverage provided by vanilla

functional validation activities. Consequently, such an IP may undergo more rigorous

testing, or even formal analysis in some cases. Other such critical IPs may include

IPs involved in secure boot, on-field firmware patching, etc.

Validation of Deterministic Security Requirements. Deterministic security

requirements are validation objectives that can be directly derived from security

policies. Such objectives typically encompass access control restrictions, address

translations, etc. Consider an access control restriction that specifies a certain range

of memory to be protected from Direct Memory Access (DMA) access; this may

be done to ensure protection against code-injection attacks, or protect a key that is

stored in such location, etc. An obvious derived validation objective is to ensure that

all DMA calls for access to a memory whose address translates to an address in the

protected range must be aborted. Note that validation of such properties may not

be included as part of functional validation, since DMA access requests for DMA-

protected addresses are unlikely to arise for “normal” test cases or usage scenarios.

Negative Testing. Negative testing looks beyond the functional specification of

designs to identify if security objectives can be subverted or are underspecified.

Continuing with the DMA-protection example above, negative testing may extend

the deterministic security requirement (i.e., abortion of DMA access for protected

memory ranges) to identify if there are any other paths to protected memory in addi-

tion to address translation activated by a DMA access request, and if so, potential

input stimulus to activate such paths.

22 S. Ray et al.

Hackathons. Hackathons, also referred to as white-box hacking fall in the “black

magic” end of the security validation spectrum. The idea is for expert hackers to

perform goal-oriented attempts at breaking security objectives. This activity depends

primarily on human creativity, although some guidelines exist on how to approach

them (see discussion on penetration testing in the next section). Because of their cost

and the need for high human expertise, they are performed for attacking complex

security objectives, typically at hardware/firmware/software interfaces or at the chip

boundary.

2.8 Validation Technologies

Recall from above that focused functional validation of security-critical design com-

ponents form a key constituent of security validation. From that perspective, secu-

rity validation includes and supersedes all functional validation tools, flows, and

methodologies. Functional validation of SoC designs is a mature and established

area, with a number of comprehensive surveys covering different aspects [37, 38].

In this section, we instead consider validation technologies to support other vali-

dation activities, e.g., negative testing, white-box hacking, etc. As discussed above,

these activities inherently depend on human creativity; tools, methodologies, and

infrastructures around them primarily act as assistants, filling in gaps in human rea-

soning and providing recommendations.

Security validation today primarily uses three key technologies: fuzzing, pene-

tration testing, and formal or static analysis. Here we provide a brief description of

these technologies. Note that fuzzing and static analysis are very generic techniques

with applications beyond security validation; our description will be confined to their

applications only on security.

Fuzzing. Fuzzing, or fuzz testing [39], is a testing technique for hardware or soft-

ware that involves providing invalid, unexpected, or random inputs and monitoring

the result for exceptions such as crashes, or failing built-in code assertions or mem-

ory leaks. Figure 2.5 demonstrates a standard fuzzing framework. It was developed

as a software testing approach, and has since been adapted to hardware/software

systems. It is currently a common practice in industry for system-level validation.

In the context of security, it is effective for exposing a number of potential attacker

entry points, including through buffer or integer overflows, unhandled exceptions,

race conditions, access violations, and denial of service. Traditionally, fuzzing uses

either random inputs or random mutations of valid inputs. A key attraction to this

approach is its high automation compared to other validation technologies such as

penetration testing and formal analysis. Nevertheless, since it relies on randomness,

fuzzing may miss security violations that rely on unique corner-case scenarios. To

address that deficiency, there has been recent work on “smart” input generation for

fuzzing, based on domain-specific knowledge of the target system. Smart fuzzing

2 Security Validation in Modern SoC Designs 23

Fig. 2.5 A pictorial representation of fuzzing framework used in post-silicon SoC security vali-

dation

may provide a greater coverage of security attack entry points, at the cost of more

up front investment in design understanding.

Penetration Testing. A penetration test is an attack on a computer system with the

intention to find security weakness, potentially gaining access to it, its functionality,

and data. It is typically performed by expert hackers often with deep knowledge

of system architecture, design, and implementation characteristics. Note that while

there are commonalities between penetration testing and testing done on functional

validation, there are several important differences. In particular, roughly, penetration

testing involves iterative application of the following three phases:

1. Attack Surface Enumeration. The first task is to identify the features or aspects

of the system that are vulnerable to attack. This is typically a creative process

involving a smorgasbord of activities, including documentation review, network

service scanning, and even fuzzing or random testing (see below).

2. Vulnerability Exploitation. Once the potential attacker entry points are discov-

ered, applicable attacks and exploits are attempted against target areas. This may

require research into known vulnerabilities, looking up applicable vulnerability

class attacks, engaging in vulnerability research specific to the target, and writ-

ing/creating the necessary exploits.

3. Result Analysis. If the attack is successful, then in this phase the resulting state of

the target is compared against security objectives and policy definitions to deter-

mine if the system was indeed compromised. Note that even if a security objective

is not directly compromised, a successful attack may identify additional attack

surface which must then be accounted for with further penetration testing.

Note that while there are commonalities between penetration testing and testing done

functional validation, there are several important differences. In particular, the goal

of functional testing is to simulate benign user behavior and (perhaps) accidental

failures under normal environmental conditions of operation of the design as defined

by its specification. Penetration testing goes outside the specification to the limits set

by the security objective, and simulates deliberate attacker behavior.

24 S. Ray et al.

Clearly, the efficacy of penetration testing critically depends on the ability to iden-

tify the attack surface in the first phase above. Unfortunately, rigorous methodologies

for achieving this are lacking. Following are some of the typical activities in current

industrial practice to identify attacks and vulnerabilities. We classify them below

as “easy,” “medium,” and “hard” depending on the creativity necessary. Note that

there are tools to assist the human in many of the activities below [40, 41]. How-

ever, determining the relevancy of the activity, identifying the degree to which each

activity should be explored, and inferring a potential attack from the result of the

activity involve significant creativity.

∙ Easy Approaches. These include review of available documentation (e.g., speci-

fication, architectural materials, etc.), known vulnerabilities or misconfigurations

of IPs, software, or integration tools, missing patches, use of obsolete or out-of-

date software versions, etc.

∙ Medium Approaches. These include inferring potential vulnerabilities in the

target of interest from information about misconfigurations, vulnerabilities, and

attacks in related or analogous products, e.g., a competitor product, a previous

software version, etc. Other activities of similar complexity involve executing rel-

evant public security tools or published attack scenarios against the target.

∙ Hard Approaches. This includes full security evaluation of any utilized third-

party components, integration testing of the whole platform, and identification of

vulnerabilities involving communications among multiple IPs or design compo-

nents. Finally, vulnerability research involves identifying new classes of vulnera-

bilities for the target which have never been seen before. The latter is particularly

relevant for new IPs or SoC designs for completely new market segments.

Static or Formal Reasoning. This involves making use of mathematical logic to

either derive a security assurance requirement formally, or identifying flaws in the

target system (architecture, design, or implementation). Application of formal meth-

ods typically involve significant effort, either in the manual exercise of performing

deductive reasoning or in developing abstractions of the security objective which are

amenable to analysis by automated formal tools [38, 42]. In spite of the cost, how-

ever, the effort is justified for highly critical security objectives, e.g., cryptographic

algorithm implementation. Furthermore, for some critical properties, automated for-

mal methods can be used in a light-weight manner as effective state exploration tools.

For example, TOCTOU property violations often involve scenarios of overlapping

execution of different instances of the same protocol, which are effectively exposed

by formal methods tools [43]. Finally, formal proofs have also been used as certifi-

cation mechanisms for third party IP vendors to convey security assurance to SoC

system integration teams [33].

2 Security Validation in Modern SoC Designs 25

2.9 Summary

We have provided a tutorial overview of the industrial practices in security assurance

and validation of modern SoC designs. The goal has been to give the reader an overall

big picture, provide an understanding of the current state of the practice, and describe

the different pieces of a highly complex ecosystem that must interact and cooperate to

ensure trustworthiness of our computing devices. The picture of the current practice

is scary. On the one hand, the complexity involved is staggering and increasing at

an alarming rate. On the other hand, the state of the art in current practice is to

depend on human creativity and experience to identify innovative attacks within a

small time window before the system goes on field (and is exposed to attacks from

the “bad guys”)—an approach that we know cannot scale over the complexity we

are encountering. While there are promising emergent approaches, we are very far

from solving the problem of creating trustworthy computing devices. The need is to

develop a disciplined approach to security assurance, from the ground up. Perhaps

more importantly, it may require a highly cooperative research initiative involving the

different participants, viz., architects, designers, validators, and even cross-cutting

stake-holders such as power/performance architects, physical design engineers, etc.

Our objective for this chapter has been to serve as the starting point for researchers

to understand the overall complexity and contribute to development of trustworthy

and secure systems.

Although we covered a broad spectrum of activities on security, we only scratched

the surface. There are more complexities involved, including trade-offs with power

management, physical design, testing, etc., as well as complex supply chain issues,

which we only touched peripherally. The readers interested in deeper exploration

are encouraged to explore into some of the references, which include challenges and

surveys of specific components, and use the discussions in this paper as a glue for

connecting the different pieces.

References

1. Ramamoorthy, G.: Market share analysis: semiconductor design intellectual property, world-

wide (2012). https://www.gartner.com/doc/2403015/market-share-analysis-semiconductor-

design

2. Skorobogatov, S., Woods, C.: Breakthrough silicon scanning discovers backdoor in military

chip. In: CHES, pp. 23–40 (2012)

3. Messmer, E.: RSA security attack demo deep-fries Apple Mac components (2014). http://www.

networkworld.com/news/2014/022614-rsa-apple-attack-279212.html

4. Nahiyan, A., Xiao, K., Forte, D., Jin, Y., Tehranipoor, M.: AVFSM: a framework for identifying

and mitigating vulnerabilities in FSMs. In: Design Automation Conference (DAC) (2016)

5. Tehranipoor, M., Guin, U., Forte, D.: Counterfeit Integrated Circuits: Detection and Avoidance.

Springer (2014)

6. Greenwald, S.J.: Discussion topic: what is the old security paradigm. In: Workshop on New

Security Paradigms, pp. 107–118 (1998)

https://www.gartner.com/doc/2403015/market-share-analysis-semiconductor-design
https://www.gartner.com/doc/2403015/market-share-analysis-semiconductor-design
http://www.networkworld.com/news/2014/022614-rsa-apple-attack-279212.html
http://www.networkworld.com/news/2014/022614-rsa-apple-attack-279212.html

26 S. Ray et al.

7. Davi, L., Sadeghi, A.R., Winandy, M.: Dynamic integrity measurement and attestation:

towards defense against return-oriented programming attacks. In: Proceedings of the 2009

ACM workshop on Scalable trusted computing, STC’09 (2009)

8. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.R., Holz, T.: Counterfeit object-

oriented programming: On the difficulty of preventing code reuse attacks in C++ applications.

In: Proceedings of the 36th IEEE Symposium on Security and Privacy (2015)

9. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems. In: 16th Annual International Cryptology Conference, pp. 104–113 (1996)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: 19th Annual International Cryp-

tology Conference, pp. 398–412 (1999)

11. Ray, S., Yang, J., Basak, A., Bhunia, S.: Correctness and security at odds: post-silicon valida-

tion of modern SoC designs. In: Proceedings of the 52nd Annual Design Automation Confer-

ence (2015)

12. Homebrew Development Wiki: JTAG-Hack. http://dev360.wikia.com/wiki/JTAG-Hack

13. Hernandez, G., Arias, O., Buentello, D., Jin, Y.: Smart nest thermostat: a smart spy in your

home. In: Black Hat USA (2014)

14. Rowlette, R., Eiles, T.: Critical timing analysis in microprocessors using near-IR laser assisted

device alteration (LADA). In: IEEE International Test Conference, pp. 264–273 (2003)

15. http://www.chipworks.com/

16. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO: A statistical

approach for hardware trojan detection. In: Workshop on Cryptographic Hardware and Embed-

ded Systems (2009)

17. Mishra, P., Bhunia, S., Tehranipoor, M.: Hardware IP Security and Trust. Springer (2016)

18. Guo, X., Dutta, R.G., Jin, Y., Farahmandi, F., Mishra, P.: Pre-silicon security verification and

validation: a formal perspective. In: ACM/IEEE Design Automation Conference (DAC) (2015)

19. Hicks, M., Finnicum, M., King, S., Martin, M., Smith, J.: Overcoming an untrusted comput-

ing base: detecting and removing malicious hardware automatically. In: IEEE Symposium on

Security and Privacy (SP), pp. 159–172 (2010)

20. Oya, M., Shi, Y., Yanagisawa, M., Togawa, N.: A score-based classification method for iden-

tifying hardware-trojans at gate-level netlists. In: Design Automation and Test in Europe

(DATE), pp. 465–470 (2015)

21. Waksman, A., Suozzo, M., Sethumadhavan, S.: Fanci: identification of stealthy malicious logic

using boolean functional analysis. In: ACM SIGSAC Conference on Computer and Commu-

nications Security, pp. 697–708 (2013)

22. Trust-HUB. https://www.trust-hub.org/

23. Sturton, C., Hicks, M., Wagner, D., King, S.: Defeating UCI: building stealthy and malicious

hardware. In: 2011 IEEE Symposium on Security and Privacy (SP), pp. 64–77 (2011)

24. Saha, S., Chakraborty, R., Nuthakki, S., Anshul, Mukhopadhyay, D.: Improved test pattern

generation for hardware trojan detection using genetic algorithm and boolean satisfiability. In:

Cryptographic Hardware and Embedded Systems (CHES), pp. 577–596 (2015)

25. Aarestad, J., Acharyya, D., Rad, R., Plusquellic, J.: Detecting trojans through leakage current

analysis using multiple supply pad Iddqs. In: IEEE Transactions on Information Forensics and

Security, pp. 893–904 (2010)

26. Narasimhan, S., Wang, X., Du, D., Chakraborty, R., Bhunia, S.: Tesr: a robust temporal self-

referencing approach for hardware trojan detection. In: Hardware-Oriented Security and Trust

(HOST), pp. 71–74 (2011)

27. Farahmandi, F., Mishra, P.: Automated test generation for debugging arithmetic circuits. In:

Design Automation and Test in Europe (DATE) (2016)

28. Lv, J., Kalla, P., Enescu, F.: Efficient groebner basis reductions for formal verification of galois

field arithmetic circuits. IEEE Trans. CAD (TCAD) 32, 1409–1420 (2013)

29. Cadence Berkeley Lab: The cadence SMV model checker. http://www.kenmcmil.com

30. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Tools

and Algorithms for the Construction and Analysis of Systems, p. 193207 (1999)

http://dev360.wikia.com/wiki/JTAG-Hack
http://www.chipworks.com/
https://www.trust-hub.org/
http://www.kenmcmil.com

2 Security Validation in Modern SoC Designs 27

31. Jin, Y.: Design-for-security vs. design-for-testability: A case study on dft chain in cryptographic

circuits. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2014)

32. Jin, Y., Yang, B., Makris, Y.: Cycle-accurate information assurance by proof-carrying based

signal sensitivity tracing. In: IEEE International Symposium on Hardware-Oriented Security

and Trust (HOST), pp. 99–106 (2013)

33. Love, E., Jin, Y., Makris, Y.: Proof-carrying hardware intellectual property: a pathway to

trusted module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1), 25–40 (2012)

34. INRIA: The coq proof assistant (2010). http://coq.inria.fr/

35. Necula, G.C.: Proof-carrying code. In: POPL ’97: Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pp. 106–119 (1997)

36. Guo, X., Dutta, R., Mishra, P., Jin, Y.: Scalable SoC trust verification using integrated theo-

rem proving and model checking. In: IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST) (2016)

37. Bhadra, J., Abadir, M.S., Wang, L., Ray, S.: A survey of hybrid technqiues for functional ver-

ification. IEEE Des. Test Comput. 24(2), 112–122 (2007)

38. Gupta, A.: Formal hardware verification methods: a survey. Formal Methods Syst. Des. 2(3),

151–238 (1992)

39. Takanen, A., DeMott, J.D., Mille, C.: Fuzzing for Software Security Testing and Quality Assur-

ance. Artech House (2008)

40. Corporation, M.: Microsoft free security tools microsoft baseline security analyzer (2015).

https://blogs.microsoft.com/cybertrust/2012/10/22/microsoft-free-security-tools-microsoft-

baseline-security-analyzer/

41. Software, F.: (2012). http://secunia.com

42. Clarke, E.M., Grumberg, O., Peled, D.A.: Model-Checking. The MIT Press, Cambridge, MA

(2000)

43. Krstic, S., Yang, J., Palmer, D.W., Osborne, R.B., Talmor, E.: Security of SoC firmware load

protocol. In: IEEE HOST (2014)

http://coq.inria.fr/
https://blogs.microsoft.com/cybertrust/2012/10/22/microsoft-free-security-tools-microsoft-baseline-security-analyzer/
https://blogs.microsoft.com/cybertrust/2012/10/22/microsoft-free-security-tools-microsoft-baseline-security-analyzer/
http://secunia.com

Chapter 3
SoC Security and Debug

Wen Chen, Jayanta Bhadra and Li-C. Wang

3.1 Introduction

Post-silicon debug includes a diverse range of activities performed after chip man-

ufacturing to diagnose issues on a chip. The debugging activities are performed

at several post-silicon stages. One of such stages is post-silicon validation. Due to

the increasing complexity of hardware implementation, SoC development nowadays

often requires multiple tapeouts. Post-silicon validation has become a necessary step

for validating the functionality and performance of an SoC. Post-silicon validation

offers the benefits of running tests at the chip’s working frequency compared with a

typical frequency of thousands of Hz in pre-silicon simulation. It accelerates discov-

ery of issues in both hardware and software and thus reduces validation time. Once

an issue is found, validation engineers must be able to get access to the internal states

and signals of the SoC in order to localize the bug and resolve the issue. Therefore,

comprehensive support of post-silicon debug capabilities is mandatory for modern

SoC development. Often, such debugging capabilities need to be extended after post-

silicon validation and manufacturing test. For example, authorized application soft-

ware developers need to diagnose why an application software crashes on a specific

SoC. Moreover, when a chip fails in field and is sent back to the manufacturer for

hardware evaluation, the analyst needs the debugging capabilities to find out the root

cause of the failure. The debugging capabilities of an SoC can be needed during its

W. Chen (✉) ⋅ J. Bhadra

NXP Semiconductors N.V., Austin, USA

e-mail: wen.chen@nxp.com

J. Bhadra

e-mail: jayanta.bhadra@nxp.com

L.-C. Wang

University of California, Santa Barbara, USA

e-mail: licwang@ece.ucsb.edu

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_3

29

30 W. Chen et al.

entire product life cycle, spanning from post-silicon validation and chip bring-up to

platform software development and field return evaluation.

One of the most notable challenges in post-silicon debug is the reducedpg

observability and controllability compared with that in pre-silicon debug. Therefore,

a variety of Design-for-Debug (DfD) structures were developed to be instrumented

on-chip for increasing observability and controllability of the internal states of an

SoC. Such instrumentation circuitry enables getting access to the processor regis-

ters and memory from external test and debug interfaces. While the DfD circuitry

facilitates post-silicon debug, it exhibits security risks of exposing the secrets or

intellectual property (IP) stored on-chip under attack. It can be exploited as a back-

door by attackers to steal on-chip secrets or make unauthorized modification of the

IP. The needs for observability and controllability for debugging purposes seemingly

have inherent conflicts with the security requirements of an SoC. Deliberate consid-

erations must be taken in SoC design to make balance between the requirements of

post-silicon debug and system security. Ideally, the goal is to prevent access to confi-

dential or critical information from unauthorized entities and yet to allow debugging

functions from trusted entities. Toward this goal, many solutions have been proposed

by academia and industry, and it is still an open research area.

In this chapter, we introduce the basics of SoC debug circuitry and discuss the

security risks imposed by it. Countermeasures to address the security issues pro-

posed by both academia and industry and their virtues and limitations are reviewed.

The rest of the chapter is outlined as follows. Section 3.2 reviews the requirements

of SoC post-silicon debug and major components of an SoC debug architecture.

Section 3.3 discusses the security hazards induced by the DfD circuitry. Counter-

measures protecting the SoC against security hazards are reviewed in Sect. 3.4.

Section 3.5 summarizes the chapter.

3.2 SoC Debug Architecture

Post-silicon debug can be performed at several different stages in the product life

cycle of an SoC: post-silicon validation, laboratory bring-up, application software

debugging by authorized developers, and field return evaluation. It is aiming to

uncover varieties of issues, including functional bugs, electrical errors and perfor-

mance issues in hardware design, application software bugs, and defects that escaped

manufacturing test. Compared with pre-silicon debug, the observability and control-

lability of SoC internal signals in a post-silicon debug environment is quite limited.

Therefore, the ultimate goal of DfD techniques is to allow the observation and manip-

ulation of internal circuit states via externally accessible interfaces. An SoC debug

architecture is a system comprising protocols for such observation and manipulation

and the supporting DfD circuitry. The architecture should be able to provide debug

capabilities for different debugging scenarios at different stages of SoC life cycle.

Some general requirements for such an SoC debug architecture are listed as below:

3 SoC Security and Debug 31

∙ Observability of system registers and processor states combined with the capabil-

ity to modify their contents out of the program execution flow.

∙ Ability to halt and run the processors as per need.

∙ Ability to obtain information of multiple software threads running on an SoC so

as to debug and tune the software for better performance. Provision for triggering

the collection of such information upon occurrence of a particular run-time event.

∙ Mechanism of securing the SoC from unauthorized access using DfD circuitry.

In a typical debugging environment, a user connects a host computer to the SoC

under debug. The debugger software running on the host sends debugging com-

mands to the SoC via debug interfaces following a certain protocol. The commands

trigger debugging events of the on-chip DfD instrumentation such as halting the

processors. The information gathered from the debugging events can be sent back

to the host as responses to the commands. On the SoC side, the components of the

debug architecture include the debug interface and on-chip DfD instrumentation.

3.2.1 Debug Interface

The debug interface is the port on the SoC that is used to communicate with the

external debugger. It consists of the physical interface (external pins of the SoC)

and hardware implementation of the standard communication protocol for receiving

debug commands and sending the required response. We introduce three commonly

used debug interfaces as follows.

BDM

Background debug mode (BDM) has a single-wire bidirectional debug interface

along with a Background Debug controller (BDC). It appears in many earlier

Freescale Semiconductor Inc. products such as the HCS08 microcontroller family

[19]. The external pin of BDM is a pseudo open-drain with an on-chip pull-up and

the communication is asynchronous. The external debugger, acting as a BDM mas-

ter, can issue commands with arguments to the target SoC. The BDM commands

provide almost all debugging features (e.g., halt, run, memory read/write, and trac-

ing), except boundary scan. BDM is ideal for small SoCs and microcontrollers with

a limited pin count.

SWD

ARM proposes a reduced-pin-count debug interface similar to BDM, known as serial

wire debug (SWD), where the external debugger communicates with the SoC via a

two-wire interface using a packet-based protocol [4]. The protocol packet is split

32 W. Chen et al.

into header, response and data, with the data being skipped if the interface is not

ready. SWD provides full access to the debug and trace functionality on an SoC. It

provides the communication channel to get access to the internal debug bus in an

ARM CoreSight compliant system. SWD also provides simple parity checking for

error detection. SWD is present in most ARM-based SoCs.

JTAG

IEEE Std. 1149.1, Standard Test Access Port and Boundary-Scan Architecture [26],

which came out from recommendations of the joint test action group (JTAG), was

originally proposed to allow effective testing of the interconnections between chips

on a board. Mostly referred to as JTAG, it defines a device architecture comprising

the following components as illustrated in Fig. 3.1:

∙ A Test Access Port (TAP) that includes four mandatory pins-Test Data In (TDI),

Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK)- and one

optional asynchronous Test Reset (TRST) pin.

∙ A series of boundary-scan cells on the device primary input and primary out-

put pins, connected internally to form a serial boundary-scan register (Boundary

Scan).

∙ An n-bit (n ≥ 2) instruction register (IR), holding the current instruction.

Fig. 3.1 JTAG chip architecture [6]

3 SoC Security and Debug 33

∙ A TAP controller, which allows instructions to be shifted into the IR and data to

be shifted into the Boundary Scan (test data register). State transitions of the TAP

controller are controlled by the value of TMS on the rising edge of TCK.

∙ A 1-bit bypass register (Bypass).

∙ An optional 32-bit identification register (Ident) that can be loaded with a perma-

nent device identification code.

At any time, only one register can be connected from TDI to TDO (e.g., IR,

Bypass, Boundary-scan, Ident, or even some appropriate register inside the core

logic). The selected register is determined by the decoded output of the IR. IEEE

Std. 1149.1 defines several mandatory instructions including BYPASS, EXTEST,

and SAMPLE, and optional instructions such as RUNBIST and INTEST. It also

allows adding custom instructions to the controller to aid in configuration, test, or

debug.

Although JTAG was originally proposed for board test, it was being exploited for

other purposes such as post-silicon debug. In early days, its utility was deployed to

support access to chips for in-circuit emulation (ICE), albeit often with additional

pins for proprietary signals [30]. Chip designers had been creative in leveraging the

JTAG capabilities for debug. A few examples of JTAG debug capabilities are listed

as follows [39]:

∙ Loading an internal counter used as a breakpoint

∙ Shadow capturing key registers (with a SAMPLE-like function)

∙ Masking or overwriting key registers (with an EXTEST-like function)

∙ Replacing data in key registers (with an UPDATE-like function)

∙ Selection of scan dump mode (enabling scan-out)

The use of the JTAG TAP as a debug interface was first standardized by NEXUS

5001 (although still requiring additional signaling for many cases) [30]. Today,

thanks to its ubiquity and extensibility, the JTAG TAP is one of the most widely

used debug interfaces. For example, ARM Coresight debug architecture supports

JTAG as the physical interface to get access to its Debug Access Port (DAP).

3.2.2 On-Chip DfD Instrumentation

The principal purpose of on-chip DfD instrumentation is to fulfill all the post-silicon

debug requirements mentioned earlier without noticeable performance impact on

the SoC. Those requirements can be fulfilled by different types of instrumenta-

tion circuitry. For example, observation of system registers and modification of

their contents can be realized by inserting scan chains, which was originally a

design-for-test (DfT) technique. Scan chain insertion replaces the normal flip-flops

with scan flip-flops at the SoC design phase. The scan flip-flops act like normal

flip-flops in the functional mode and can be connected as a shift register chain (scan

34 W. Chen et al.

chain) in the test mode. By scan chain insertion targeting the key registers on the

SoC, the important system states can be controlled and observed.

Another example is halting the processors using the hardware watchpoint/

breakpoint. One of the most common methods of debugging is halting the proces-

sors or getting system states at a particular point of code execution. One approach

to realize this is using software breakpoints, where an instruction is inserted in the

code stored on RAM so that the processor will halt when it executes the inserted

instruction. However, the software breakpoint cannot work when debugging the code

from ROM, which does not allow modifications of the code. In this case, hardware

watchpoint/breakpoint is essential for supporting the debugging functionality. Hard-

ware watchpoint support is implemented in the form of watchpoint registers, which

are programmed with values of address, control and data signals at which a watch-

point should occur. Comparison and mask circuitry compares the current values of

the signals with that programmed in the watchpoint register and generates an out-

put in case of a match, indicating the occurrence of a watchpoint. When a processor

encounters a watchpoint, usually a trace message is emitted or the system state at that

point gets reflected on the debug software. Watchpoints can be programmed to act

as breakpoints, which halt the processor when the program counter reaches a certain

address.

The two example features mentioned so far are primarily concerned with the

observation and control of system state at a single point of time. For complex debug-

ging scenarios such as those involving multiple threads, the user needs to obtain

information on part of the system states in a contiguous period of time. Such infor-

mation is referred to as traces and the collection of traces is realized by the tracing

mechanism. Tracing instrumentation in the SoC captures and compresses the state

data in real time upon triggering, to form traces. Then the traces can be made avail-

able to external debuggers either via a trace port or by being stored in an embedded

trace memory that can be read offline.

The implementation of on-chip DfD instrumentation varies from one SoC design

to another. There have been industrial efforts to establish standards for common

DfD components that can be reused across different SoC implementations. These

efforts result in several popular hardware debug architectures and ecosystems, such

as Nexus and ARM Coresight, which standardize the DfD components and their

communication protocols. We will take the ARM Coresight Debug Architecture as

an example to illustrate DfD components commonly implemented in today’s SoC

debug architecture.

ARM Coresight Debug Architecture

CoreSight is an ARM standard of debug architecture created for ARM-based systems

[3]. The following are the primary components used in this architecture, many of

which are shown in Fig. 3.2.

3 SoC Security and Debug 35

DP APB
-AP

AXI-
AP

DAP

AXI system bus

APB Debug bus

Core 1 Core 2ETM

CTI CTI

CTI

ETM

STM

CTM

ATB
Fun
nel

ATB

Replic
atorATB

ATB

ATB

ETB

TPIU

TPIU
memory

ATB

CTI

Fig. 3.2 Example of a system of Coresight components for dual-processor SoC

∙ DebugAccess Port (DAP): The debug access port (DAP) acts as a bridge between

the external debug interface and multiple core domains and memory mapped

peripherals on the SoC. Each DAP has a debug port (DP), which serves as a mas-

ter device on the DAP bus. External debuggers send debug commands to DP via

interfaces such as a full-fledged JTAG port or a reduced-pin-count SWD port. The

debug commands are then translated as read or write transactions sent to access

ports (AP), which act as slave devices on the DAP bus. As shown in Fig. 3.2, APs

can be connected to system buses (e.g., AXI) or peripheral buses (e.g., Debug

APB), acting as bus masters, thus providing memory-based access to SoC com-

ponents. In addition, an AP can also be connected to an on-chip JTAG scan chain.

∙ ROMTable: The ROM table, as part of DAP, lists the memory mapped addresses

of all CoreSight components present in an SoC. It is to be noted that one ROM

table can point to another ROM table. The ROM table is used for discovery of

on-chip Coresight debug components by the external debugger.

∙ EmbeddedICE: The processor debug and monitor features can vary on differ-

ent processors. Watchpoints and breakpoints are among the most typical ones.

EmbeddedICE is a Coresight macrocell containing watchpoint control and status

registers to facilitate watchpoint functionality on ARM cores which can also act

as breakpoints when debugging from ROM or Flash.

∙ Cross Triggerring: Cross triggering refers to triggering a particular operation in

one debug component from a debug event that happened in another debug compo-

nent. It is essential when debugging complex interactions among multiple cores

[42]. In Coresight, wherever there are signals to sample or drive, a cross trigger

interface (CTI) is used to control the selection of signals that are trigger sources

or trigger targets. Most systems will implement a CTI per processor, and at least

one CTI for system-level components. The CTIs in the system are interconnected

36 W. Chen et al.

using a cross trigger matrix (CTM) which broadcasts the trigger from the CTI to

all other CTIs, to synchronize the operations among different components.

∙ Trace Sources The trace data can be collected from different sources. One impor-

tant source is the processor traces, which consist of mainly program flow traces

and sometimes data traces. Processor trace capturing is implemented by embed-

ded trace macrocells (ETM) or program trace macrocells (PTM). Another source

is the instrumentation traces or system traces, which are driven by instrumented

messaging in the application software, for capturing the active contexts in the sys-

tem. It is implemented with system trace macrocells (STM).

∙ Trace Interconnect: The AMBA trace bus (ATB) protocol is defined for carrying

the trace around the SoC. One advantage of using a standard trace bus protocol

is that a small set of modular components can be used to form sophisticated trace

infrastructure. These components include replicators and funnels for manipulating

data streams, and trace buffers. For example, in Fig. 3.2 the trace funnel combines

the trace data from ETM of two cores and the replicator replicates the trace from

a single STM and sends them to two trace sinks (TPIU and ETB).

∙ Trace Sinks: A trace sink is the terminal CoreSight component in a trace intercon-

nect. A system can have more than one trace sink, configured to collect overlapping

or distinct sets of trace data. Trace streams are stored in on-chip trace buffers called

embedded trace buffers (ETB), sent through an interface called trace port interface

unit (TPIU) to be stored in an off-chip buffer to be read by external debuggers, or

routed to shared system memory.

3.3 Security Concerns and Hazards

3.3.1 SoC Security Requirements

Ubiquitous computing devices now contain an increasing portion of credential and

private information or Intellectual Property (IP) on-chip. For example, set-top boxes,

which are used to allow only authorized users to get access to broadcast contents, rely

on security keys stored on-chip to perform the decryption of the encrypted digital

contents. The emergence of internet-of-things allows pervasive devices to be con-

nected to each other. The security of such connections is a concern and thus imposes

more stringent security requirements on each individual device. Regarding informa-

tion security, there are two fundamental properties to preserve, on which nearly every

higher level property can be based: confidentiality and integrity.

∙ Confidentiality requires that an asset that is confidential cannot be accessed by

an unauthorized entity. This property is essential for assets such as passwords and

cryptographic keys.

∙ Integrity requires that an asset that has its integrity assured is protected from

unauthorized modifications. This property is essential for assets serving as the

3 SoC Security and Debug 37

root of system security, e.g., configuration fuses, chip unique ID, and the secure

boot firmware.

In some circumstances, when integrity cannot be fully ensured, an alternative prop-

erty called authenticity is a must, which requires detecting whether the integrity of

an asset has been compromised. In this case the content of the asset can be altered

by an attacker, but the defender will be able to detect the alteration before the asset

is used and thus mitigate the risks of further loss.

3.3.2 DfD Induced Security Hazards

To satisfy the security requirements, chip architects and designers propose various

security policies to defend against the possible risks of information leak or compro-

mised integrity. However, the enforcement of security policies requires diverse com-

ponents across the entire system to coordinate with each other in a seamless manner,

which is very difficult to implement correctly. Moreover, security risks are aggra-

vated by the existence of debug components mentioned in Sect. 3.2. The increased

observability and controllability of the internal states of the SoC enabled by the

debug circuitry inherently conflict with the requirements of preserving confidential-

ity and integrity. Attackers can exploit the debug access to obtain and affect the inter-

nal states of the SoC, which might reveal the secrets stored on-chip or compromise

integrity of the IPs.

The security hazards induced by SoC debug circuitry fall into two categories. The

first is related to the extensive use of external debug interfaces as a mechanism to

transport configuration data to the SoC. This capability can be abused by a mali-

cious entity to reprogram the firmware or the system configuration. This type of

hazard mostly violates the integrity requirement. The most well-known example is

JTAG, which can be used by attackers to upload corrupted firmware in flash mem-

ories. The second can be attributed to the enhanced controllability and observabil-

ity of the on-chip DfD instrumentation, often accompanied by the communication

channel provided by external debug interfaces. The selected signals to be controlled

and observed by DfD instrumentation are usually related to important system states.

Simply snooping those signals themselves sometimes reveals secret information on

the SoC. Moreover, attackers can manipulate the control and data flow at their will

to reach system states that might leak confidential information. This type of haz-

ard usually violates the confidentiality requirement. A notable example is a category

of attacks called scan-based attacks, which exploit the internal scan chain to derive

secret keys used in cryptographic engines.

Of course, the two types of hazards can often be jointly exploited. For example,

attackers might first try to hack the secret key for verifying signed firmware and

then use the key to sign malicious code and overwrite the embedded flash with the

malicious code. In this example, not only confidentiality and integrity but also the

authenticity requirement is violated. Also note that exploits of on-chip DfD instru-

38 W. Chen et al.

mentation do not always need to go through external debug interfaces. Attack vectors

injected from the supply chain such as hardware Trojans and malicious third-party

IPs can also leverage the on-chip instrumentation to aggravate their attacks.

In this chapter, we will review two exemplary security hazards induced by DfD

circuitry: firmware hazards and scan hazards. These two are the most well-known in

publications. The review by no means includes all the DfD induced security hazards

but suffices to illustrate how the hazards would be incurred.

Firmware Hazards

IEEE Std. 1532, Boundary-Scan-Based In-System Configuration of Programmable

Devices, has extended JTAG even further to support on-board programming [25]. It

allows device programmers to transfer data to non-volatile memory like Flash, which

often stores the firmware of the system. This capability is hazardous to the integrity

of the IPs on-chip and can be exploited by attackers to upload unsigned firmware. If

there are security holes in the firmware authentication scheme, the unsigned firmware

will be running at the attacker’s will. A well-known example of such an exploit is the

first hack of XBox 360 gaming consoles [24]. Using JTAG to upload a version of the

firmware that was hacked to bypass the authentication process, users can run code

that was not initially allowed by Microsoft. This hack cannot be mitigated by releas-

ing new versions of the firmware since the users can always overwrite the firmware

to the known insecure version using JTAG.

The firmware update of set-top boxes used in pay-TV subscriptions also happens

in most cases via the JTAG interface. An insecure JTAG access would allow re-

programming the firmware of set-top boxes, thus unlocking premium services that

were supposed to be only available to paid users. On the other hand, it could be used

to sniff configuration bits thus allowing retrieving the secret keys. There have been

many practical attacks on secure devices such as set-top box decoders by leveraging

the JTAG’s ability to upload the firmware [17].

Other victims include SoCs in smartphones. ARM11 (Cortex) processor, which is

used in latest smartphones, has extensive test and debug facilities through the JTAG

port. This is a well-known backdoor that was used to jailbreak iPhones/iPads, or to

unlock protected services in mobile phones [21].

Scan Hazards

Scan chain insertion is a widely used DfT technique for SoC testing as it provides

full observability and controllability of state elements included in the scan chain

and tremendously reduces the complexity of test generation for sequential circuits.

Furthermore, the scan chains can be connected to the JTAG interface to provide on-

chip debug capability in field [27]. Security hazards induced by the scan-based DfT

technique fall into two categories, the observability and controllability ones [22].

3 SoC Security and Debug 39

Run
cryptographic

process

 Stop and scan
out a

snapshot of
internal states

Analysis on
snapshots

Enough
?

Yes

Func onal mode Test mode

Fig. 3.3 Illustration of scan-based attack flow

The enhanced observability features of a scan-based design may be used for

dumping out the values of flip-flops and thus can possibly be used to snoop the key

retrieving during cryptographic processes. Though the cryptographic engines can

be designed in a way that the keys are obfuscated so that a direct extraction from

the flip-flops are not feasible, the internal states provide information for scan-based

attacks. A scan-based attack can be performed by running a cryptographic process

and then scanning out the internal states at different time points of the process. A

conceptual flow of scan-based attacks is illustrated in Fig. 3.3. The attacker runs an

encryption with a known plain-text in the functional mode. At a certain time point

of the cryptographic process, the attacker switches the circuit to the test mode and

thus scans out a snapshot of the internal state of the circuit. This process is iterated

several times in order to gather enough information. Flip-flops storing intermediate

results of cryptographic process are identified with knowledge of the cryptographic

algorithm and the keys can be derived by analysis.

From the controllability point of view, a scan path can be used for deliberately

inserting data into flip-flops deeply embedded in the circuit. The scan path can be

deemed as a shortcut to fault injection [7]. Randomly injecting faults into the circuits

was very easy to perform compared with other fault injection techniques such as

clock glitching. However, fault injection targeting a specific flip-flop is much more

difficult because it requires deep knowledge of the chip. Thus, the easy access of

fault injection via scan chains seems not helpful enough for such an attack.

From the above analysis, scan-based attacks on cryptographic engines are the

most practical security hazard induced by the existence of scan chains and the exter-

nal access to scan chains via debug interfaces such as JTAG. Figure 3.4 illustrates a

simplified view of how the scan-based attack can be performed against symmetric-

key and public-key cryptographic process, more details of which can be found

in [40].

Both symmetric-key and public-key algorithms usually perform the same oper-

ations for multiple iterations. Each iteration takes the key and intermediate results

from last iteration as the input and outputs intermediate results that serve as input

to the next iteration. For symmetric-key algorithms like Data Encryption Standard

(DES) or Advanced Encryption Standards (AES), each bit of the intermediate result

of one iteration depends on multiple key bits, while the intermediate result of each

iteration of public-key algorithms like RSA or elliptic curve cryptography (ECC)

depends on a single key bit.

40 W. Chen et al.

Fig. 3.4 Illustration of scan-based attacks on symmetric-key cryptography and public-key cryp-

tography [14]

It is generally difficult to figure out the key by observing the plain-text and the

cipher-text since there are many iterations in between. However, it is relatively eas-

ier to infer the key by observing the input data and the intermediate results of one

iteration. Therefore, a scan-based attack on symmetric-key cryptographic engines

focuses on retrieving the intermediate value resulted from the first iteration. The

attacker chooses a plain-text and uses the flow shown in Fig. 3.3 to collect the inter-

mediate value after the first iteration. The attacker repeats this process X times so that

enough information can be collected to reveal the key. Attacking public-key crypto-

graphic engines is slightly different because the attacker has to collect intermediate

values in different iterations to figure out different bits of the key. X pairs of plain-

text and intermediate result are collected for deriving the first bit of the key. Then

the other bits of the key are revealed by shifting out intermediate states of further

iterations.

With knowledge of the cryptographic algorithms, the attackers can simulate the

intermediate results based on hypothetical keys. By comparing the retrieved interme-

diate results with the simulated ones, the attackers can confirm the correct hypothesis

and thus figure out the key. For example, in public-key cryptography, the intermedi-

ate result of the first iteration depends on the first bit of the key, which can be 0 or 1.

The attacker can simply simulate the intermediate results of a plain-text based on

both hypotheses and see which one matches the actual intermediate result. If both

match the intermediate result, then the attacker cannot tell the key bit based on this

(plain-text, intermediate result) pair and need to use other pairs to determine the key

bit. The attack on symmetric-key cryptography is similar though the attacker needs

3 SoC Security and Debug 41

to simulate more hypotheses at once since the intermediate result depends on more

key bits.

The first scan-based attack in the literature [43] was proposed to break a DES

block cipher. By loading 64 pairs of known plain-texts with one-bit difference in

the functional mode and then scanning out the internal states in the test mode, they

first determine the positions of all scan elements in the scan chain. Then only three

chosen plain-texts are applied to recover the first-round keys (48 bits). And similar

attacks can be performed at the second and third rounds to recover the rest of key bits.

Later, the same authors proposed a differential scan-based attack on the AES engine

[44]. After that, scan-based attacks have been found effective on stream ciphers [31],

RSA [41], and ECC [32]. Publications also show that the scan-based attacks can

be performed in the presence of the advanced DfT structures such as partial scan,

X-masking, and X-tolerant architecture thus making the attacks rather practical to

perform [12, 13, 15, 16, 18, 28].

Most state-of-the-art scan-based attacks rely on the ability of switching from the

functional mode to the test mode under the assumption that the data in the scan flip-

flops can be preserved intact. Therefore, the designers can develop a countermea-

sure which injects random noise to the scan chain whenever there is a switch from

functional mode to test mode, thwarting all these attacks. One simple form of this

countermeasure is resetting the data in the scan elements whenever there is a switch

from the functional mode to the test mode [22]. This solution can defend most of the

scan-based attacks, but it also compromises the debugging capability since some-

times, the authorized users need this capability for debugging purposes. Moreover,

a recent work proposed a new scan-based attack using only the test mode [1]. The

initial attack analysis shows that only 375 test vectors are sufficient to reveal the 128-

bit AES secret key with negligible time complexity. Whether this type of attack can

succeed in the presence of advanced DfT structures is still under investigation.

3.4 Protection Against Hazards Induced by Debugging

3.4.1 Trade-Off Between Security and Debug

To prevent the security hazards induced by SoC debug components, one might sim-

ply attempt to disable the debug access after manufacturing tests and validation or

customer configuration. This can be accomplished by blowing a fuse associated with

the debug interface so as to disable access via the debug interface. The TI MSP430

Microcontroller is one example where the JTAG interface can be disabled [11]. The

problem with this approach is that it compromises the capability to debug the SoC

for purposes such as field return evaluation. To regain access to the debug interface

after the fuse is blown, one must resort to complex and expensive techniques. Typ-

ically, using focused ion beam (FIB) modification to blow a counterpart fuse in the

SoC can regain access to the debug interface. However, it has several problems. First,

42 W. Chen et al.

the equipment for performing FIB modification is expensive and complicated and the

modification is often unsuccessful. Second, FIB modification often requires destruc-

tive de-encapsulation of the IC device and thus can prevent future evaluation. Third,

FIB modification also results in an override of the customer configuration, therefore

preventing subsequent access to such configuration information for further analysis.

Finally, FIB modification is also relatively temporary due to metal migration, which

at some point reconnects the blown counterpart fuse and returns the IC device to a

state where the debug interface is inaccessible [9].

Even if the access to debug interfaces is disabled, much of the on-chip DfD instru-

mentation still remains after production. Though it is possible to disable the on-chip

instrumentation, it will change the power/performance/energy profile of the produc-

tion system from what has been used for validation. And again, the instrumentation

is critical to field return evaluation or making in-field patches.

Though we should not permanently disable all debug access after production,

restrictions should be in place in accordance with the life stage of the SoC. Design

trade-off must be made between the debugging capabilities and security of an SoC

along its product life cycle. After an SoC is designed, it has to be manufactured,

tested, assembled, built into a product and shipped to customers. As it progresses

toward a later stage of its product life cycle, the needs for protection gradually out-

weigh the needs for debug access, and therefore the SoC should be configured in

a way that more restrictions are imposed on the debug access and fewer debug-

ging features are allowed. Such configurations should be irreversible under most

circumstances. In some situations such as field return evaluation, the protection of

the device needs to be lowered temporarily. However, this feature should not rede-

fine the default protection. Furthermore, this feature ought to be available to trusted

entities only with restrictive authentication. Following these principles, a pragmatic

designer would identify the security and debug requirements for each stage or mode

and implement corresponding access control of the debug components (most likely

the debug interface) based on authentication. We will give a historical review of the

solutions proposed by both academia and industry along this line.

3.4.2 Authentication-Based Debug Access Control

One of the first approaches utilizes key-based locking/unlocking mechanism for con-

trolling the access to JTAG functionality [33]. The user can unlock JTAG by shifting

in the correct key that matches the secret key stored on the chip boundary. Other-

wise, JTAG bypasses all the data from TDI to TDO. The process of shifting in the

key is un-encrypted, which is vulnerable to eavesdropping on the JTAG communi-

cation. In addition, it is often too restrictive to have only two levels of access. In

[10], authors proposed to reuse the flip-flops in the boundary cells as a linear shift

feedback register to generate the key to reduce the area overhead for key storage.

The methods proposed in [23, 29] are similar in that they use key-based lock-

ing/unlocking mechanism to secure the JTAG scan chains. They allow the user to

3 SoC Security and Debug 43

freely shift the contents of the scan chains without the correct key; however, the

bits themselves are in a random order. The order is generated by a random number

generator, and the correct order can be only restored using a secret key. Instead of

restricting the access to the debug interface, this approach restricts the debug access

by giving incorrect outputs. It still allows users to supply data to the scan chain,

which could be exploited for fault injection. It is also a binary security mechanism

since it either gives full access to the scan chains or scrambles the order.

To prevent eavesdropping attacks, a simple authentication scheme based on cryp-

tograpic hash and shared key can suffice. The SoC device and the authorized user

shall share a private key. For each test instruction (or debug command) to be issued,

the user can use a cryptographic hash algorithm such as Secure Hash Algorithm

(SHA) to generate a signature based on the test instruction and the shared key alto-

gether. Then the test instruction and signature are sent to the SoC. The SoC can run

the same hash on the received test instruction and the shared key to generate a signa-

ture and verify whether it matches the received signature. This approach eliminates

the eavesdropping attack; however, it is still vulnerable to replay attack, in which

an attacker monitors the message communication, duplicates, and replays the whole

message (test instruction + signature) to spoof the SoC.

This replay hazard can be thwarted by the challenge/response authentication-

based scheme proposed in [11], which utilizes SHA-256 cryptographic hash engine,

shared secret key and random number generator to generate a challenge per commu-

nication session and verify the response. The SoC first generates a random number

and sends it to the user as a challenge. The user uses the cryptographic hash to gen-

erate the signature based on the test instruction, shared key and challenge altogether,

and then sends the instruction and signature as the response to the challenge. The SoC

device can verify whether received signature is generated based on the same random

number and the correct shared key, and thus verify the authenticity of the user. In

addition, the authors proposed that a set of instructions should be public while others

that can get access to sensitive information should be private. The public instructions

do not require keys while each private instruction must have an independent secret

key, thus making up different security levels of debug access.

The security of authentication based on shared secret keys largely relies on the

confidentiality of the key. Reliable key management is a challenging problem. If

each device of an SoC product family shares the same key, compromising the key of

a single device would render the protection of all devices useless. If each device is

assigned a unique key, the device provider needs to maintain a database recording the

key corresponding to each device unique ID, which is costly and thus undesirable.

In [8], the authors proposed a three-entity authentication scheme, utilizing a sep-

arate secure server to authenticate the user for improved security. The device will

generate a challenge every time upon the user’s request to access the debug port.

The user is connected to the secure server and relays the challenge to the server. The

secure server’s role is user authorization and verification upon reception of a chal-

lenge and generation of response to a given challenge upon successful verification.

The challenge/response algorithm is based on ECC. The device owns a public-key

and the secure server holds the private key. This approach offers a higher level of

44 W. Chen et al.

security by hiding the key from the user, and supports various security policies for

user authentication and authorization on the server. However, the need for a server to

authenticate the user on each debug interface access requires continuous communi-

cation with the server, disabling debug access and lowering overall availability when

network is unavailable.

To improve the availability over [8], authors of [34] proposed a user authentica-

tion scheme in which the server issues to the authenticated user a credential with

which to authenticate oneself to a particular device. The device verifies the user sub-

mitted credentials and opens the debug port to the users with valid credentials. This

approach eliminates the need for networking with the server after a credential has

been issued. The same authors later proposed an improved solution by incorporating

the the maximum number of authentication allowed for one credential and mecha-

nisms to deal with expired credentials [35].

The authors of [36, 37] formalized the concept of multilevel secure JTAG archi-

tecture and provided detailed hardware implementation specifications for enforcing

the multilevel policy. Each debug instruction is assigned an access level and each user

will be assigned a permission level after authentication. A user with a permission

level Pi can execute any instruction with an access level A if A ≤ Pi. The hardware

implementation of such an architecture is composed of two primary components,

the secure authentication module (SAM) and the access monitor (AM). SAM’s func-

tions are to provide an unlocking communication protocol, to set the user level, and

to allow modification of access levels. The AM prevents potentially harmful data

from being loaded into the scan chain. This work depicts a practical implementation

scheme for multilevel secure debug access, where SAM serves as the security policy

decision point and the AM acts as the security policy enforcement point.

Besides the academic proposals, industrial solutions for securing the debug access

have also been offered. The ARM TrustZone architecture extension [2] is a system-

wide approach to SoC security. JTAG port is a security-related block and thus is

part of the architecture extension. Trustzone imposes hardware-based restrictions

on JTAG operations, such as restricted or nonrestricted debug access, which can be

configured by blowing fuses. Nonrestricted debug access is only used in the devel-

opment phase of the product. The device delivered to customers is in the restricted

mode, in which only the basic, noninvasive debugging functions of JTAG are avail-

able. However, the noninvasive debugging functions of JTAG might still be exploited

as a backdoor to on-chip secrets. Moreover, Trustzone does not address the need of

offering different levels of debug access to different users at different phases.

Freescale Semiconductor introduced the secure JTAG controller since i.MX31

and i.MX31L product families [5]. Freescale secure JTAG controller provides several

configurations determined by a set of fuses. The secure JTAG controller in the latest

i.MX6 processor allows four different JTAG security modes [20]:

∙ Mode 1: No JTAG—Maximum security. All JTAG features are permanently

blocked.

∙ Mode 2: No Debug—High security. All security sensitive JTAG features are per-

manently disabled.

3 SoC Security and Debug 45

∙ Mode 3: Secure JTAG—Medium security. JTAG access is only permitted with

challenge/response-based authentication mechanism.

∙ Mode 4: JTAG Enabled—Low security. All JTAG features enabled.

The fuse blowing for configuring security modes is an irreversible process. Once

the fuse is blown, it is impossible to change the fuse back to its original state. To

address the requirement of field return debug, another fuse is used to override the

configuration by secure JTAG fuses. Once the fuse associated with field return is

blown, maximum debugging access is obtained. The field return fuse can only be

blown when a signed ROM image is loaded. In field return mode, the on-chip secrets

will also be hidden from the debug access.

It is to be noted that these authentication-based protection mechanisms introduce

high area overhead compared with the debug interface such as JTAG itself. For exam-

ple, the key-based locking mechanism in [33] has about over 100 % area overhead.

Challenge/response authentication based on shared keys between the user and the

device such as [11] results in over 500 % area overhead. The three-entity authentica-

tion based on public-key cryptography such as [8] has over 2000 % area overhead.

This is because the area of JTAG implementation is pretty small. Hence, in those

publications, the area overhead is usually calculated considering large SoCs with

cryptographic engines and microprocessors. For large SoC designs, the area over-

head is usually small thus acceptable. However, for small SoCs and microcontrollers,

how to design compact authentication hardware is an open question.

Also note that most of the proposed solutions focus on protecting the debug inter-

faces using authentication. This is based on the assumption that the traditional attacks

would originate externally, without consideration of attack vectors from supply chain

such as hardware Trojans and malicious third-party IPs. However, as there are emerg-

ing concerns about the supply chain security, the protection mechanisms should be

applied not only to the debug interfaces but also to the on-chip DfD instrumentation.

3.4.3 Limitations and Challenges

The existing solutions are at best pragmatic workarounds to combat the security haz-

ards induced by DfD components. A more fundamental approach is to incorporate

the debug access as part of the security requirement and architecture definition.

Besides confidentiality and integrity, there is another less frequently emphasized

security requirement called availability. It requires that an asset must be accessi-

ble to an entity that requires such access per correct system functionality. The debug

requirement can be viewed as an availability requirement [38]. Such a perspective to

view security and debug requirements as an integral one would be more helpful to

developing a comprehensive solution to address the trade-off between them.

The processes for defining the security and debug requirements and architectures

are complex and involving multiple stake-holders. An effective solution for address-

46 W. Chen et al.

ing security and debug trade-off should address a comprehensive set of aspects. An

incomplete set of key aspects highlighted in [38] include:

∙ CentralizedArchitecture: The current security and debug architectures are largely

decentralized, which makes it difficult to implement them correctly. The policy

decision making should be centralized so that it can be effectively introspected for

possible violations of the requirements.

∙ Late Variability: The debug requirements are often subject to late changes, which

can happen during SoC integration or even after a silicon stepping. An effective

solution should allow easy adaptation to the changing requirements and quick val-

idation of the security impacts of the DfD changes.

∙ Reusability: The current solutions are ad-hoc and thus error-prone. A systematic

design methodology with reusable components are essential for a viable solution.

The authors of [38] had a preliminary proposal of a centralized, firmware-controlled

framework to fulfill the requirements of secure post-silicon debug. However, this still

remains an open research area that requires extensive efforts.

3.5 Summary

The capabilities to debug an SoC at post-silicon stages are essential for SoC devel-

opment. SoC debug circuitry, while offering increased observability and control-

lability of the internal states of the circuit, can be a backdoor for security attacks.

Design decisions must be made regarding the trade-off of the debugging capabili-

ties and the security protection at different stages of the SoC product life cycle. In

this chapter, we review the common SoC debug architectures and give a compre-

hensive analysis of the known security hazards induced by SoC debug access. We

review the published solutions for preventing debug access from untrusted entities

while preserving debugging functionality, most of which implement access control

mechanisms based on authentication of trusted entities.
1

References

1. Ali, S., Sinanoglu, O., Saeed, S., Karri, R.: New scan-based attack using only the test mode. In:

2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC),

pp. 234–239 (2013)

2. ARM: Designing with trustzone hardware requirements. ARM whitepaper (2005)

3. ARM: Coresight technical Introduction. ARM whitepaper (2013)

1
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.

& Tm. Off. All other product or service names are the property of their respective owners. ARM and

Cortex are trademark(s) or registered trademarks of ARM Ltd or its subsidiaries. 2014 Freescale

Semiconductor, Inc.

3 SoC Security and Debug 47

4. Ashfield, E., Field, I., Harrod, P., Houlihane, S., Orme, W., Woodhouse, S.: Serial wire debug

and the coresighttm debug and trace architecture (2006)

5. Ashkenazi, A.: Security features in the i.mx31 and i.mx31l multimedia applications processors.

Freescale Semiconductor Inc. (2006)

6. Bennetts, B.: IEEE 1149.1 JTAG and boundary scan tutorial. http://www.asset-intertech.com/

Products/Boundary-Scan-Test/e-Book-JTAG-Tutorial (2012)

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Proceed-

ings of the 17th Annual International Cryptology Conference on Advances in Cryptology.

CRYPTO ’97, pp. 513–525. Springer, London (1997)

8. Buskey, R., Frosik, B.: Protected JTAG. In: 2006 International Conference on Parallel Process-

ing Workshops. ICPP 2006 Workshops, pp. 8–414 (2006)

9. Case, L., Ashkenazi, A., Chhabra, R., Covey, C., Hartley, D., Mackie, T., Muir, A., Redman,

M., Tkacik, T., Vaglica, J., et al.: Authenticated debug access for field returns. https://www.

google.com.ar/patents/US20100199077 (2010). US Patent App. 12/363,259

10. Chiu, G.M., Li, J.M.: A secure test wrapper design against internal and boundary scan attacks

for embedded cores. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(1), 126–134 (2012)

11. Clark, C.: Anti-tamper JTAG TAP design enables DRM to JTAG registers and P1687 on-

chip instruments. In: 2010 IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pp. 19–24 (2010)

12. Da Rolt, J., Das, A., Di Natale, G., Flottes, M., Rouzeyre, B., Verbauwhede, I.: A scan-based

attack on elliptic curve cryptosystems in presence of industrial design-for-testability structures.

In: 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotech-

nology Systems (DFT), pp. 43–48 (2012)

13. Da Rolt, J., Das, A., Di Natale, G., Flottes, M.L., Rouzeyre, B., Verbauwhede, I.: A new scan

attack on RSA in presence of industrial countermeasures. In: Proceedings of the Third Interna-

tional Conference on Constructive Side-Channel Analysis and Secure Design. COSADE’12,

pp. 89–104. Springer, Berlin (2012)

14. Da Rolt, J., Das, A., Di Natale, G., Flottes, M.L., Rouzeyre, B., Verbauwhede, I.: Test versus

security: past and present. IEEE Trans. Emerg. Top. Comput. 2(1), 50–62 (2014). doi:10.1109/

TETC.2014.2304492

15. Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: Are advanced DFT structures sufficient

for preventing scan-attacks? In: VLSI Test Symposium (VTS), 2012 IEEE 30th, pp. 246–251

(2012)

16. DaRolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: Scan attacks and countermeasures in

presence of scan response compactors. In: European Test Symposium (ETS), 2011 16th IEEE,

pp. 19–24 (2011)

17. Dishnet: In house made with locking script. http://www.satcardsrus.com/dish_net%203m.htm

(2012)

18. Ege, B., Das, A., Gosh, S., Verbauwhede, I.: Differential scan attack on AES with x-tolerant

and x-masked test response compactor. In: 2012 15th Euromicro Conference on Digital System

Design (DSD), pp. 545–552 (2012)

19. Freescale: Introduction to HCS08 background debug mode (2006)

20. Freescale: i.mx 6solox applications processor reference manual (2014)

21. Greenemeier, L.: iphone hacks annoy AT&T but are unlikely to bruise apple. Scientific Amer-

ican (2007)

22. Hely, D., Bancel, F., Flottes, M.L., Rouzeyre, B.: Test control for secure scan designs. In: Test

Symposium, 2005. European, pp. 190–195 (2005)

23. Hely, D., Flottes, M.L., Bancel, F., Rouzeyre, B., Berard, N., Renovell, M.: Scan design and

secure chip [secure IC testing]. In: On-Line Testing Symposium, 2004. IOLTS 2004. Proceed-

ings. 10th IEEE International, pp. 219–224 (2004)

24. Homebrew development wiki JTAG-hack. http://dev360.wikia.com/wiki/JTAG-Hack (2012)

25. IEEE standard for in-system configuration of programmable devices: IEEE Std 1532–2001,

pp. 1–130 (2001)

http://www.asset-intertech.com/Products/Boundary-Scan-Test/e-Book-JTAG-Tutorial
http://www.asset-intertech.com/Products/Boundary-Scan-Test/e-Book-JTAG-Tutorial
https://www.google.com.ar/patents/US20100199077
https://www.google.com.ar/patents/US20100199077
http://dx.doi.org/10.1109/TETC.2014.2304492
http://dx.doi.org/10.1109/TETC.2014.2304492
http://www.satcardsrus.com/dish_net%203m.htm
http://dev360.wikia.com/wiki/JTAG-Hack

48 W. Chen et al.

26. IEEE standard test access port and boundary scan architecture. IEEE Std 1149.1-2001,

pp. 1–212 (2001)

27. Josephson, D., Poehhnan, S., Govan, V.: Debug methodology for the Mckinley processor. In:

Test Conference, 2001. Proceedings. International, pp. 451–460 (2001)

28. Kapur, R.: Security vs. test quality: are they mutually exclusive? In: Test Conference, 2004.

Proceedings. ITC 2004. International, pp. 1414– (2004)

29. Lee, J., Tehranipoor, M., Patel, C., Plusquellic, J.: Securing scan design using lock and key

technique. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems, 2005. DFT 2005, pp. 51–62 (2005)

30. Ley, A.: Doing more with less—an IEEE 1149.7 embedded tutorial: standard for reduced-pin

and enhanced-functionality test access port and boundary-scan architecture. In: Test Confer-

ence, 2009. ITC 2009. International, pp. 1–10 (2009). doi:10.1109/TEST.2009.5355572

31. Liu, Y., Wu, K., Karri, R.: Scan-based attacks on linear feedback shift register based stream

ciphers. ACM Trans. Des. Autom. Electron. Syst. 16(2), 20:1–20:15 (2011)

32. Nara, R., Togawa, N., Yanagisawa, M., Ohtsuki, T.: Scan-based attack against elliptic curve

cryptosystems. In: Design Automation Conference (ASP-DAC), 2010 15th Asia and South

Pacific, pp. 407–412 (2010)

33. Novak, F., Biasizzo, A.: Security extension for IEEE Std 1149.1. J. Electron. Test. 22(3), 301–

303 (2006)

34. Park, K., Yoo, S.G., Kim, T., Kim, J.: JTAG security system based on credentials. J. Electron.

Test. 26(5), 549–557 (2010)

35. Park, K.Y., Yoo, S.G., Kim, J.: Debug port protection mechanism for secure embedded devices.

J. Semicond. Technol. Sci. 12(2), 241 (2012)

36. Pierce, L., Tragoudas, S.: Multi-level secure JTAG architecture. In: 2011 IEEE 17th Interna-

tional On-Line Testing Symposium (IOLTS), pp. 208–209 (2011)

37. Pierce, L., Tragoudas, S.: Enhanced secure architecture for joint action test group systems.

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1342–1345 (2013)

38. Ray, S., Yang, J., Basak, A., Bhunia, S.: Correctness and security at odds: post-silicon

validation of modern SoC designs. In: Design Automation Conference (DAC), 2015 52nd

ACM/EDAC/IEEE, pp. 1–6 (2015)

39. Rearick, J., Eklow, B., Posse, K., Crouch, A., Bennetts, B.: IJTAG (internal JTAG): a step

toward a DFT standard. In: Test Conference, 2005. Proceedings. ITC 2005. IEEE International,

pp. 8–815 (2005)

40. Rolt, J.D., Natale, G.D., Flottes, M.L., Rouzeyre, B.: A novel differential scan attack on

advanced DFT structures. ACM Trans. Des. Autom. Electron. Syst. 18(4), 58:1–58:22 (2013)

41. Ryuta, N., Satoh, K., Yanagisawa, M., Ohtsuki, T., Togawa, N.: Scan-based side-channel attack

against RSA cryptosystems using scan signatures. IEICE Trans. Fundam. Electron. Commun.

Comput. Sci. 93(12), 2481–2489 (2010)

42. Tang, S., Xu, Q.: In-band cross-trigger event transmission for transaction-based debug. In:

Design, Automation and Test in Europe, 2008. DATE ’08, pp. 414–419 (2008)

43. Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware imple-

mentations of data encryption standard. In: Test Conference, 2004. Proceedings. ITC 2004.

International, pp. 339–344 (2004)

44. Yang, B., Wu, K., Karri, R.: Secure scan: A design-for-test architecture for crypto chips. IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(10), 2287–2293 (2006)

http://dx.doi.org/10.1109/TEST.2009.5355572

Chapter 4
IP Trust: The Problem
and Design/Validation-Based Solution

Raj Gautam Dutta, Xiaolong Guo and Yier Jin

4.1 Introduction

A rapidly growing third-party intellectual property (IP) market provides IP con-

sumers with more options for designing electronic systems. It also reduces the devel-

opment time and expertise needed to compete in a market where profit windows

are very narrow. However, one key issue that has been neglected is the security of

electronic systems built upon third-party IP cores. Historically, IP consumers have

focused on IP functionality and performance than security. The prejudice against

the development of robust security policies is reflected in the IP design flow (see

Fig. 4.1), where IP core specification usually includes functionality and performance

measurements.

This lack of security assurance on third-party IPs is a major threat for the semi-

conductor industry. For example, a large number of side-channel-based attacks have

been reported, which extract sensitive information from systems that were purport-

edly mathematically unbreakable [1–7]. The emergence of hardware Trojans (mali-

cious logic) embedded in third-party IP cores has largely re-shaped the IP transaction

market and there are currently no comprehensive detection schemes for identifying

these Trojans. Some Trojan detection methods such as side-channel fingerprinting

combined with statistical analysis have shown promising results, but most of the

post-silicon stage Trojan detection methods rely on golden models which may not

be available given the existence of untrusted IP cores.

R.G. Dutta ⋅ X. Guo ⋅ Y. Jin (✉)

University of Central Florida, Orlando, FL, USA

e-mail: rajgautamdutta@knights.ucf.edu

X. Guo

e-mail: guoxiaolong@knights.ucf.edu

Y. Jin

e-mail: yier.jin@eecs.ucf.edu

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_4

49

50 R.G. Dutta et al.

Fig. 4.1 Semiconductor supply chain: IC design flow

Upon the request for trusted IP cores, various IP protection and certification meth-

ods at the pre-silicon stage have been recently developed. In this chapter, most of

these approaches will be introduced including hardware locking/encryption, FPGA

bitstream protection, theorem proving, and equivalence checking.

The rest of the chapter is organized as follows: Sect. 4.2 discusses various hard-

ware locking/encryption methods for preventing various threats to IP cores. For a

better explanation, we divide these methods into three categories (i) combinational

logic locking/encryption, (ii) finite state machine locking/encryption, and (iii) lock-

ing using reconfigurable components. In this section, we also discuss FPGA bit-

stream protection methods. Section 4.3 primarily discusses the existing equivalence

checking and theorem proving methods for ensuring trustworthiness of soft IP cores.

Finally, Sect. 4.4 concludes the chapter.

4.2 Design for IP Protection

Design for IP protection encompasses methods for authentication and prevention

of IP from piracy, reverse engineering, overbuilding, cloning, and malicious tam-

pering. Authentication approaches include IP watermarking [8–10] and IP finger-

printing [11–13], which can be used by IP owners for detecting and tracking both

legal and illegal usages of their designs. However, these methods cannot prevent

reverse engineering of designs and insertion of malicious logic. These limitations

are overcome by the prevention methods. Most of the currently existing prevention

approaches can be grouped under hardware locking/encryption (see Fig. 4.2). Hard-

ware locking/encryption methods can be further divided into (i) combinational logic

4 IP Trust: The Problem and Design/Validation-Based Solution 51

Fig. 4.2 Different stages at which hardware locking/encryption methods are applied

locking [14–18], (ii) finite state machine (FSM) locking [19–28], and (iii) locking

using reconfigurable components [29–31]. The combinational logic locking method

includes cryptographic algorithm for locking and logic encryption. The FSM lock-

ing methods include hardware obfuscation techniques and active hardware metering.

The FPGA protection methods focus on securing the bitstream. In the rest of this

section we will describe the threat model and each prevention method in details.

4.2.1 Threat Model

Security threats to an IP/IC vary depending on the location of the adversary in the

supply chain (see Fig. 4.3). Below we briefly explain these threats to an IP/IC:

∙ Cloning: Adversary creates an exact copy or clone of the original product and

sell it under a different label. To carry out cloning of ICs, an attacker should be

either a manufacturer, system integrator, or a competing company equipped with

necessary tools.

∙ Counterfeiting: When cloned products are sold under the label of the original ven-

dor, without their authorization, it is called counterfeiting. This can be performed

by an attacker in a manufacturing facility or by companies having capability to

manufacture replicas of the original chip.

∙ ICOverbuilding: Another threat to an IC designer is overbuilding. In overbuilding,

manufacturer or system integrator fabricates more IC than authorized.

∙ IP Piracy: In IP piracy, a system integrator steals the IP to claim its ownership or

sell it illegally.

∙ Reverse Engineering: By analyzing an existing IC, manufacturers, system integra-

tors, or companies having reverse engineering capabilities, can bypass security

52 R.G. Dutta et al.

Fig. 4.3 Security threats at different stages of the supply chain

measures to learn and reuse the elements of IP blocks, such as implementation

strategies, optimization algorithms, and design details. Consequently, adversaries

can recreate the IP cores and sell them at much lower cost. Note that reverse engi-

neering can also be used for IP piracy detection but it is out of the scope of this

chapter.

∙ Malicious Tampering: Third-party IP providers can perform malicious tampering

of IP by inserting hardware Trojans into the IP cores. Such attacks can also be

performed by system integrators who have access to the IP core, or by manufac-

turer who can manipulate the lithographic masks by adding, deleting, or modifying

gates/wires.

To protect an IP/IC from such threats, many prevention methods have been proposed,

which are described in Sects. 4.2.2 and 4.2.3.

4.2.2 Combinational Logic Locking/Encryption

Combinational logic locking augments a combinational logic network by adding a

group of lock inputs. Only if the correct key (generated at random) to the lock inputs

is applied, the augmented network can produce the correct functionality [14, 15]. The

locking mechanism is carried out by adding XOR gates on non-critical paths of the

IC and by providing control to the key registers. Combinational locking and public-

key cryptography was used in [14] for protecting the IC design. In [15], an attack

was demonstrated to break the IP/IC protection method of [14] by “sensitizing” the

key values to the output. The attacker on obtaining the modified netlist identified the

unknown key by observing the output, provided the other key bits did not interfere

with the “sensitized” path. In order to prevent key-leakage by “key-sensitization,”

key gates were inserted in such a way that propagation of a key value was possible

only if certain conditions were forced on other key inputs. As these key inputs were

not accessible to an attacker, they could not “sensitize” key values, thereby leaving

the attacker the only option of brute force attacks. An algorithm was presented in

[15], which used key gates interference graphs for insertion of key gates in such a

4 IP Trust: The Problem and Design/Validation-Based Solution 53

way that attackers needed exponential number of brute force attempts to decipher

the key. Compared to random insertion, this procedure incurred less area overhead

as it required less number of XOR/XNOR as key gate. Another limitation of the

combinational logic locking method of [14] was that inappropriate key input did not

affect the output of the circuit.

Logic encryption was proposed in [16, 17], which used conventional fault simu-

lation techniques and tools to guide the XOR/XNOR gate insertions and produced

wrong output with 50 % Hamming distance between the correct and wrong outputs

for an invalid key. This method masked the functionality and the implementation of

a design by inserting key gates into the original design. To prevent collusion attack,

physical unclonable functions (PUFs) were used to produce unique user keys for

encrypting each IC. Instead of encrypting the design file by a cryptographic algo-

rithm, the logic encryptionmethod encrypted the hardware functionality. The perfor-

mance overhead of this method was smaller than random key gate insertion method

as it used smaller number of XOR/XNOR gates to achieve the 50 % Hamming dis-

tance.

Another combinational locking method was proposed in [18], which protected

ICs from illegal overproduction and potential hardware Trojans insertion by mini-

mizing rare signals of a circuit. The method made it harder for an attacker to exploit

rare signals of a circuit to incorporate a hardware Trojan. An encryption algorithm

modified the circuit, but preserved its functionality. The algorithm uses a probability-

based method [32] to identify signals with low controllability. Among the identified

signals, candidate signals for encryption were the ones with an unbalanced proba-

bility (signals with probability below 0.1 or above 0.9). For encryption, AND/OR

gates were inserted in paths with large slack time and unbalanced probability. The

type of gates to be inserted depended on the value of probability on the signal. When

the probability of the signal was close to 0, an OR gate was included and the cor-

responding key value was 0 and when the probability was close to 1, an AND gate

was included and the corresponding key value was 1. However, this method could

not create multiple encryption key for the same design and hence, all the IP con-

sumers of the design used the same key. Due to this limitation, it was not effective

for preventing IP piracy.

4.2.3 Finite State Machine Locking/Encryption

Finite state machine (FSM) locking obfuscates a design by augmenting its state

machine with a set of states. The modified FSM transit from the obfuscated states to

the normal operating states after applying the specific input sequence (aka obfusca-

tion key). The obfuscation method approximately transform the hardware design by

preserving its functionality.

The FSM-based obfuscation method protects an IP/IC from reverse engineering,

IP piracy, IC overproduction, and hardware Trojan insertion. Several variations of

this method have been proposed in the literature [14–31]. In this chapter, we discuss

54 R.G. Dutta et al.

three of its variations: (i) obfuscation by modifying gate-level netlist, (ii) obfuscation

by modifying RTL code, and (iii) obfuscation using reconfigurable logic.

Obfuscation by Modifying Gate-Level Netlist

One of the methods for obfuscating a hardware design is to insert an FSM in the gate-

level netlist [19–23]. The method in [19] obfuscated and authenticated an IP core by

incorporating structural modification in the netlist. Along with the state transition

function, large fan-in and fan-out nodes of the netlist were modified such that the

design produces undesired output until a specific vector was given at the primary

inputs. The circuit was re-synthesized after the modification to hide the structural

changes. The FSM, which was inserted into the netlist to modify the state transition

graph (STG), was connected to the primary inputs of the circuit. Depending on an

initialization key sequence, the FSM operated the IP core in either the normal mode

or the obfuscated mode. The maximum number of unique fan-out nodes (Nmax) of

the netlist were identified using an iterative ranking algorithm. The output of the

FSM and the modified (Nmax) nodes were given to an XOR gate. When the FSM

output was 0, the design produced correct behavior. Although the method required

less area and power overheads, it did not analyze security of the design. New meth-

ods were proposed to overcome this limitation [20–22]. A metric was developed to

quantify the mismatch between the obfuscated design and the original design [20].

Also, the effect of obfuscation on security of the design was evaluated. Certain mod-

ifications were made to the methodology of [19] such as embedding “modification

kernel function” for modifying the nodes selected by the iterative ranking algorithm
and adding an authentication FSM, which acted as a digital watermark. These modi-

fications prevented attacks from untrusted parties in the design flow with knowledge

of the initialization sequence.

The obfuscation scheme of [20] was extended in [21, 22] to prevent insertion of

trigger-activated hardware Trojans. The new method also ensured that such Trojans,

when activated in the obfuscated mode, did not affect normal operation of the cir-

cuit. To incorporate these changes, the obfuscation state space was divided into (i)

initialization state space and (ii) isolation state space [21]. On applying the correct

key at power on, the circuit transitioned from the initialization state space to nor-

mal state space. However, an incorrect key transitioned the circuit to isolation state

space from which the circuit could not return to the normal state space. Due to the

extreme rareness of the transition condition for normal state space, it was assumed

that the attacker was stuck in the isolation state space. Also, the insertion of a Trojan

with wrong observability/controllability in the obfuscation mode would increase its

detection probability at post-manufacturing testing. To further increase the proba-

bility of Trojan detection, the state space of the obfuscated mode was made larger

than the normal mode. The proposed methodology was robust enough to prevent

reverse engineering of modified netlist with large sequential circuits. Also, the area

and power overheads of the method were relatively low.

However, the methodology of [20] could not protect an evaluation version of firm

IP core. In [23], this problem was overcome by embedding a FSM in the IP netlist.

The FSM disrupted normal functional behavior of the IP after its evaluation period.

4 IP Trust: The Problem and Design/Validation-Based Solution 55

The number of cycles required to activate the FSM depended on the number of bits in

the state machine. Also, the activation probability decreased if the number of trigger

nodes were increased. This method helped in putting an expiry date on the evaluation

copy of the hardware IP. To distinguish between legally sold version of an IP and its

evaluation version containing the FSM, IP vendors either (i) used disabling key to

deactivate the FSM or (ii) provided a FSM-free version. The method structurally

and functionally obfuscated the FSM to conceal it during reverse engineering. Area

overhead of this method was directly proportional to the size of the FSM. However,

the overhead decreased with an increase in size of the original IP.

Obfuscation by Modifying RTL Code of Design

Apart from netlist, obfuscation can also be carried out in RTL code of the design

[24–27]. A key-based obfuscation approach for protecting synthesizable RTL cores

was developed in [27]. The RTL design was first synthesized into a technology inde-

pendent gate-level netlist and then obfuscated using the method of [19]. Then, the

obfuscated netlist was decompiled into RTL in such a way that the modifications

made on the netlist were hidden and the high-level HDL constructs preserved. A sim-

ple metric was presented to quantify the level of such structural and semantic obfus-

cation. This approach incurred minimal design overhead and did not affect adversely

the automatic synthesis process of the resultant RTL code. However, decompilation

removed some preferred RTL constructs and hence made the design undesirable for

certain preferred design constraints. This limitation was overcome in [26], where the

RTL code was first converted into a control and data flow graph (CDFG) and then a

key-activated “Mode-Control FSM” was inserted to obfuscate the design. The CDFG

was built by parsing and transforming concurrent blocks of RTL code. Small CDFGs

were merged to build larger ones with more nodes. This helped in better obfuscation

of the “Mode-Control FSM,” which operated the design either in normal or obfus-

cated mode. This FSM was realized in the RTL by modifying a set of host registers.

To further increase the level of obfuscation, state elements of the FSM were dis-

tributed in a non-contiguous manner inside one or more registers. After hosting the

FSM in a set of selected host registers, several CDFG nodes were modified using the

control signals generated from the FSM. The nodes with large fan-out cones were

selected for modification, as they ensured maximum change in functional behavior

at minimal design overhead. At the end of modifications on the CDFG, the obfus-

cated RTL was generated, which on powering up, initialized the design at the obfus-

cated mode. Only on the application of a correct input key, the “mode-control” FSM

transited the system through a sequence of states to the normal mode. This method

incurred low area and power overheads.

Another approach obfuscates the RTL core by dividing the overall functionality

of the design into two modes, “Entry/Obfuscated mode” and “Functional mode,”

and encoding the path from the entry/obfuscated mode to the functional mode with a

“code-word” [24]. The functionality of the circuit was divided by modifying the FSM

representing the core logic. To modify the FSM, its states were extended and divided

into entry/obfuscated mode and functional mode states. Only on the application of

the right input sequence at the entry mode, the correctCode-Word was formed, which

56 R.G. Dutta et al.

produced correct transitions in the functional mode. Unlike those methods where an

invalid key disallowed entry to the normal mode, this method always allowed entry

to the functional mode. However, the behavior in the functional mode depended on

the value of the Code-Word. This Code-Word was not stored anywhere on chip, but it

was formed dynamically during the entry mode. It was integrated into the transition

logic to make it invisible to the attacker. In this method, the length of the Code-Word
was directly related to the area overhead and security level required by the designer.

A longer Code-Word meant higher level of security against brute force attacks, but

at the cost of higher area overhead.

In [25], a key-based obfuscation method having two modes of operation, normal
mode and slow mode, was developed to prevent IP piracy on sequential circuits. This

method modified the state transition graph (STG) in such a way that the design oper-

ated in either mode depending on whether it was initialized with the correct key state.

The key state was embedded in the power-up states of the IC and was known only to

the IP owner. When the IP owner received the fabricated chip, power-up states were

reset from the fixed initial state to the key state. As the number of power-up states

was less in the design, chances of the IC being operational in the normal mode on

random initialization were significantly reduced. Moreover, powering up the design

with an incorrect initial state operated the IC in the slow mode, where it functioned

slower than the normal mode without causing significant performance difference.

This functionality prevented IP pirates from suspecting the performance degrada-

tion in the IC and the presence of key state in the design. To modify the STG, four

structural operations were performed: (i) retiming, (ii) resynthesis, (iii) sweep, and

(iv) conditional stuttering. In retiming, registers were moved in the sequential circuit

using any one of the two operations. These operations included (i) adding a regis-

ter to all outputs and deleting a register from each input of a combinational node

and (ii) deleting a register from all outputs and adding a register to each input of a

combinational node. Resynthesis restructured the netlist within the register bound-

aries whereas removal of redundant registers and logic that did not affect output

was done using sweep. Both the resynthesis and the retiming operations preserved

logical functionality of the design. Conditional stuttering involved addition of con-

trol logic to the circuit to stutter the registers under a given logic condition. On the

other hand, inverse conditional stuttering removed certain control logic. Stuttering
operations were done to obtain circuits which were cycle–accurate–equivalent. This

method mainly focused on those real-time applications which were very sensitive

to throughput. Unlike existing IC metering techniques, the secret key in this method

was implicit, thus making it act as a hidden watermark. However, the area and power

overheads of this method were higher than previous approaches.

An active hardware metering approach prevents overproduction of IC by equip-

ping designers with the ability to lock each IC and unlock it remotely [28]. In this

method, new states and transitions were added to the original finite state machine

(FSM) of the design to create a boosted finite state machine (BFSM). This structural

manipulation preserved the behavioral specification of the design. Upon activation,

the BFSM was placed in the power-up state using an unique ID which was generated

by the IC. To bring the BFSM into the functional initial state, the designer used an

4 IP Trust: The Problem and Design/Validation-Based Solution 57

input sequence generated from the transition table. Black hole states were integrated

with the BFSM to make the active metering method highly resilient against the brute

force attacks. This method incurred low overhead and was applicable to industrial-

size design.

Obfuscation Using Reconfigurable Logic

Reconfigurable logic was used in [29, 30] for obfuscation of ASIC design. In [29],

reconfigurable logic modules were embedded in the design and their final implemen-

tation was determined by the end user after the design and the manufacturing process.

This method assumed that the supply chain adversary has knowledge of the entire

design except the exact implementation of the function and the internal structure of

reconfigurable logic modules. The lack of knowledge prohibited an adversary from

tampering the logic blocks. Combining this method with other security techniques

provided data confidentiality, design obfuscation, and prevention from hardware Tro-

jans. In the demonstration, a code injection Trojan was considered which, when trig-

gered by a specific event, changed input–output behavior or leaked confidential infor-

mation. The Trojan was assumed to be injected at the instruction decoded unit (IDU)

of a processor during runtime and it was not detected by non-lock stepping concur-

rent checking methods, code integrity checker, and testing. To prevent such a Trojan

attack, instruction set randomization (ISR) was done by obfuscating the IDU. For

obfuscation, reconfigurable logic was used, which concealed opcode check logic,

instruction bit permutation, or XOR logic. This method prevented the Trojan from

monitoring an authentic computation. Moreover, Trojans which were designed to

circumvent this method no longer remained stealthy and those trying to duplicate

the IDU or modify it caused significant performance degradation. It was shown that

the minimum code injection Trojan with a 1 KB ROM resulted in an area increase

of 2.38 % for every 1 % increase in the area of the LEON2 processor.

To hide operations within the design and preserve its functionality, the original

circuit was replaced with PUF-based logic and FPGA in [30]. PUF was also used

to obfuscate signal paths of the circuit. The architecture for signal path obfuscation

was placed in a location where most flip-flops were affected most number of times.

To prevent this technique from affecting critical paths, wire swapping components

(MUX’es with PUF as select input) were placed between gates with positive slack.

The PUF-based logic and signal path obfuscation techniques were used simultane-

ously to minimize delay constraints of the circuit and maximize its security under

user-specified area and power overheads. Two types of attacks were considered: (i)

adversary can read all flip-flops, but can only write to primary inputs; (ii) adversary

can read and write to all flip-flops of the circuit [30]. It was assumed that the adver-

sary has complete knowledge of circuit netlist, but not of input–output mapping of

any PUFs. For preventing the first type of attack, FPGA was used after the PUF and

PUF were made large to accept a large challenge. To prevent the second attack, a PUF

was placed in a location that was difficult to control directly using the primary inputs

of the circuit. By preventing this attack, reverse engineering was made difficult for an

adversary. These two methods were demonstrated on ISCAS 89 and ITC 99 bench-

marks and functionality of circuits were obfuscated with area overhead upto 10 %.

58 R.G. Dutta et al.

In [31], obfuscation of DSP circuit was done using high-level transformation, key-

based FSM, and a reconfigurator. High-level transformation does structural obfus-

cation of the DSP circuit at HDL or netlist level by preserving its functionality. This

transformation was chosen based on the DSP application and performance require-

ments (e.g., area, speed, power, or energy). For performing high-level transformation

on the circuit, reconfigurable secure switches were designed in [31]. These switches

were implemented as multiplexers, whose control signals were obtained from a FSM

designed using ring counters. Securities of these switches were directly related to the

design of the ring counters. Another FSM, called the obfuscated FSM, was incorpo-

rated in the DSP circuit along with the reconfigurator. A configuration key was given

to the obfuscated FSM for operating the circuit correctly. This key consisted of two

parts: an L-bit initialization key and a K-bit configure data. The initialization key was

used to activate reconfigurator via the obfuscated FSM, whereas configure data was

used by the reconfigurator to control the operation of the switches. As configuration

of the switches required correct initialization key and configure data, attacks target-

ing either of them could not affect the design. An adversary attempting to attack a

DSP circuit, obfuscated with this method, had to consider the length of the config-

uration key and the number of input vectors required for learning the functionality

of each variation mode. Structural obfuscation degree (SOD) and functional obfus-

cation degree (FOD) were used as metrics for measuring simulation-based attack

and manual attack (visual inspection and structural analysis). SOD was estimated

for manual attacks, whereas FOD estimated obfuscation degree of simulation-based

attacks. A higher value of SOD and FOD indicated a more secure design. The area

and the power overheads of this method were low.

4.2.4 Protection Methods for FPGA IP

Field-programmable gate arrays (FPGAs) have been widely used for many applica-

tions since 1980s. They provide considerable advantage in regards to design cost

and flexibility. Due to accelerated time-to-market, designing a complete system on

FPGA is becoming a daunting task. To meet the demands, designers have started

using/reusing third-party intellectual property (IP) modules, rather than developing

a system from scratch. However, this has raised the risk of FPGA IP piracy. Protec-

tion methods [33–36] have been proposed to mitigate this issue. In [35], a protection

scheme was proposed which used both public-key and symmetric-key cryptography.

To reduce area overhead, the public-key functionality was moved to a temporary con-

figuration bitstream. Using five basic steps, the protection scheme enabled licensing

of FPGA IP to multiple IP customers. However, this scheme restricted system inte-

grators to the use of IP from a single vendor. The scope of the FPGA IP protection

method of [35] was extended in [36], where system integrators could use cores from

multiple sources. In [33], implementation of the protection methods of [35, 36] was

carried out on commercially available devices. For securely transporting the key,

4 IP Trust: The Problem and Design/Validation-Based Solution 59

Fig. 4.4 Different protection methods

[33] used symmetric cryptography and trusted third-party provider. Use of symmet-

ric cryptography also reduced the size of temporarily occupied reconfigurable logic

for building the IP decryption key.

A practical and feasible protection method for SRAM-based FPGA was given

in [34]. This approach allowed licensing of IP cores on a per-device basis and it

did not require contractual agreement with trusted third-parties, large bandwidth,

and complicated communication processes. The IP instance was encrypted for each

system integrator and decryption key was generated using the license for the chips.

This procedure ensured that the licensed IP core was used only on the contracted

devices. Moreover, it helped to prevent IP core counterfeiting by tracking the unique

fingerprint embedded in the licensed IP instance of the vendor. The proposed scheme

did not require an external trusted third-party (TTP) and was applicable on IP cores

designed for commercial purposes. It also helped in secure transaction of IP cores and

prevented sophisticated attackers from cloning, reverse engineering, or tampering

contents of the IP core.

A summary of all the above-described protection methods is shown in Fig. 4.4.

4.3 IP Certification

Recently, pre-silicon trust evaluation approaches have been developed to counter

the threat of untrusted third-party resources [37–39]. Most of these methods try to

trigger the malicious logic by enhancing functional testing with extra test vectors.

Toward this end, authors in [37] proposed a method for generating “Trojan Vectors”

to activate hardware Trojans during functional testing. To identify suspicious cir-

cuitry, unused circuit identification (UCI) [39] method analyzed the RTL code to

find lines of code that were never used. However, these methods assume that the

attacker uses rarely-occurring events as Trojan triggers. This assumption was voided

in [40], where hardware Trojans were designed using “less-rare” trigger events.

Due to the limitations of enhanced functional testing methods in security evalu-

ation, researchers started looking into formal solutions. Although at its early stage,

formal methods have already shown their benefits over testing methods in exhaus-

tive security verification [41–44]. A multi-stage approach was used in [41] for

60 R.G. Dutta et al.

detection of hardware Trojans by identifying suspicious signals. The stages of this

method included assertion-based verification, code coverage analysis, redundant cir-

cuit removal, equivalence analysis, and use of sequential automatic test pattern gen-

eration (ATPG). In [42–44], the PCH framework ensured the trustworthiness of soft

IP cores by verifying security properties. With the help of the Coq proof assistant

[45], formal security properties were proved in PCH. A review of currently existing

formal methods for hardware security is given in [46].

Interactive Theorem Prover

Theorem provers are used to prove or disprove properties of systems expressed as

logical statements. Since 1960s, several automated and interactive theorem provers

have been developed and used for proving properties of hardware and software sys-

tems. However, verifying large and complex systems using theorem provers require

excessive effort and time. Moreover, automated theorem provers require more devel-

opmental effort than proof assistants. Despite these limitations, theorem provers have

currently drawn a lot of attentions in verification of security properties on hardware

designs. Among all the formal methods, they have emerged as the most prominent

solution for providing high-level protection of the underlying designs.

The proof-carrying hardware (PCH) framework uses interactive theorem prover

and SAT solvers for verifying security properties on soft IP cores. This approach

was used for ensuring the trustworthiness of RTL and firm cores [42, 47–49]. It is

inspired from the proof-carrying code (PCC), which was proposed in [50]. Using

the PCC mechanism, untrusted software developers/vendors certify their software

code. During the certification process, software vendor develops safety proof for

the safety policies provided by software customers. The vendor then provides the

user with a PCC binary file, which includes the formal proof of the safety properties

encoded with the executable code of the software. The customer becomes assured of

the safety of the software code by quickly validating the PCC binary file in a proof

checker. Efficiency of this approach in reducing validation time at the customer end

led to its adoption in different applications.

Using the concept of PCC, authors in [48, 49, 51, 52] developed the PCH frame-

work for dynamically reconfigurable hardware platforms. In this framework, authors

used runtime combinational equivalence checking (CEC) for verifying equivalence

between the design specification and the design implementation. A Boolean satisfi-

ability (SAT) solver was used to generate resolution proof for unsatisfiability of the

combinational miter circuit, represented in a conjunctive normal form (CNF). The

proof traces were combined with the bitstream into a proof-carrying bitstream by the

vendor and given to the customer for validation. However, the approach did not con-

sider exchange of a set of security properties between the customer and the vendor.

Rather it considers safety policy, which included agreements on a specific bitstream

format, on a CNF to represent combinational functions, and the propositional calcu-

lus for proof construction and verification.

Another PCH framework was proposed in [42, 47], which overcame the limita-

tions of the previous framework and expanded it for verification of security prop-

erties on soft IP cores. The new PCH framework was used for security property

4 IP Trust: The Problem and Design/Validation-Based Solution 61

Fig. 4.5 Working procedure of the PCH framework [46]

verification on synthesizable IP cores. In the framework, Hoare-logic style reason-

ing was used to prove the correctness of the RTL code and implementation was

carried out using the Coq proof assistant [45]. As Coq supported automatic proof

checking, the security proof validation effort of IP customers was reduced. More-

over, usage of the Coq platform by both IP vendors and IP consumers ensures that

same deductive rules could be used for validating the proof. However, Coq does not

recognize commercial hardware description languages (HDLs) and security prop-

erties expressed in a natural language. To solve this problem, semantic translation

of HDLs and informal security specifications to calculus of inductive construction

(CIC) was done. Based on this PCH framework, a new trusted IP acquisition and

delivery protocol was proposed (see Fig. 4.5), in which IP consumers provided both

functional specifications and a set of security properties to IP vendors. IP vendors

then developed the HDL code based on the functional specifications. The HDL code

and security properties were then translated to CIC. Subsequently, proofs were con-

structed for security theorems and the transformed HDL code. The HDL code and

proof for security properties were combined into a trusted bundle and delivered to

the consumer. Upon receiving the trusted bundle, IP consumers first generate the

formal representation of the design and security properties in CIC. The translated

code, combined with formal theorems and proofs, was quickly validated using the

proof checker in Coq platform.

62 R.G. Dutta et al.

The PCH framework was also extended to support verification of gate-level circuit

netlist [44]. With the help of the new gate-level framework, authors in [44] formally

analyzed the security of design-for-test (DFT) scan chains, which is the industrial

standard testing method, and formally proved that a circuit with scan chain can vio-

late data secrecy property. Although various attack and defense methods have been

developed to thwart the security concerns raised by DFT scan chains [53–58], meth-

ods for formally proving the vulnerability of scan chain inserted designs did not exist.

For the first-time vulnerability of such a design was proved using the PCH framework

of [44]. The same framework was also applied in built-in-self-test (BIST) structure

to prove that BIST structure can also leak internal sensitive information [44].

Equivalence Checking

Orthogonal to the theorem proving approach is equivalence checking, which ensure

that the specification and the implementation of a circuit are equivalent. The tradi-

tional equivalence checking approach uses a SAT solver for proving functional equiv-

alence between two representations of a circuit. In this approach, if the specification

and the implementation were equivalent, the output of the “xor” gate was always zero

(false). If the output was true for any input sequence, it implied that the specifica-

tion and the implementation produced different outputs for the same input sequence.

Following the equivalence checking approach, [38] proposed a four-step procedure

to filter and locate suspicious logic in third-party IPs. In the first step, easy-to-detect

signals were removed using functional vectors generated by a sequential ATPG. In

the next step, hard-to-excite and/or propagate signals were identified using a full-

scan N-detect ATPG. To narrow down the list of suspected signals and identify the

actual gates associated with the Trojan, a SAT solver was used in the third step for

equivalence checking of the suspicious netlist containing the rarely triggered signals

against the netlist of the circuit exhibiting correct behavior. At the final step, clusters

of untestable gates in the circuit were determined using the region isolation approach

on the suspected signals list.

However, traditional equivalence checking techniques could result in state space

explosion when large IP blocks were involved with significantly different specifica-

tions and implementations. They also could not be used on complex arithmetic cir-

cuits with larger bus widths. An alternative approach was to use computer symbolic

algebra for equivalence checking of arithmetic circuit. These circuits constituted a

significant portion of datapath in signal processing, cryptography, multimedia appli-

cations, error root causing codes, etc. Due to this, their chances of malfunctioning

were very high. The new equivalence checking approach allowed verification of such

large circuits and it did not cause state space explosion.

4 IP Trust: The Problem and Design/Validation-Based Solution 63

4.4 Conclusion

In this chapter, we analyzed existing prevention and certification methods for soft/

firm hardware IP cores. The prevention methods largely consisted of various hard-

ware locking/encryption schemes. These methods protected IP cores from piracy,

overbuilding, reverse engineering, cloning, and malicious modifications. On the

other hand, formal methods, such as theorem proving and equivalence checking,

helped validate the trustworthiness of IP cores. These methods can help certify the

trustworthiness of IP cores. Meanwhile, after a thorough analysis of all these pro-

posed IP validation/protection methods, we realized that a single method is not suffi-

cient to eliminate all the threats to IP cores. Combination of these methods becomes

a necessity in order to ensure the security of IP cores and further secure the modern

semiconductor supply chain.

Acknowledgements This work was supported in part by the National Science Foundation (CNS-

1319105).

References

1. Kocher, P.: Advances in Cryptology (CRYPTO’96). Lecture Notes in Computer Science, vol.

1109, pp. 104–113 (1996)

2. Kocher, P., Jaffe, J., Jun, B.: Advances in Cryptology–CRYPTO’99, pp. 789–789 (1999)

3. Quisquater, J.J., Samyde, D.: Smart Card Programming and Security. Lecture Notes in Com-

puter Science, vol. 2140, pp. 200–210 (2001)

4. Gandolfi, K., Mourtel, C., Olivier, F.: Cryptographic Hardware and Embedded Systems

(CHES) 2001. Lecture Notes in Computer Science, vol. 2162, pp. 251–261 (2001)

5. Chari, S., Rao, J.R., Rohatgi, P.: Cryptographic Hardware and Embedded Systems—Ches

2002. Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer, Berlin (2002)

6. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: IEEE Trans. Comput. 51(5), 541 (2002)

7. Tiri, K., Akmal, M., Verbauwhede, I.: Solid-State Circuits Conference, 2002. ESSCIRC 2002.

Proceedings of the 28th European, pp. 403–406 (2002)

8. Fan, Y.C., Tsao, H.W.: Electr. Lett. 39(18), 1316 (2003)

9. Torunoglu, I., Charbon, E.: IEEE J. Solid-State Circuits 35(3), 434 (2000)

10. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkonjak, M.,

Tucker, P., Wang, H., Wolfe, G.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20(10),

1236 (2001)

11. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: IEEE Trans. Comput.-Aided Des. Integr. Cir-

cuits Syst. 20(10), 1253 (2001)

12. Qu, G., Potkonjak, M.: Proceedings of the 37th Annual Design Automation Conference, pp.

587–592 (2000)

13. Chang, C.H., Zhang, L.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(1), 76

(2014)

14. Roy, F.K.J.A., Markov, I.L.: Design, Automation and Test in Europe (DATE), vol. 1 (2008)

15. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Design Automation Conference (DAC), 2012

49th ACM/EDAC/IEEE, pp. 83–89 (2012)

16. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Design, Automation Test in Europe Confer-

ence Exhibition (DATE), vol. 2012, pp. 953–958 (2012). doi:10.1109/DATE.2012.6176634

http://dx.doi.org/10.1109/DATE.2012.6176634

64 R.G. Dutta et al.

17. Rajendran, J., Zhang, H., Zhang, C., Rose, G., Pino, Y., Sinanoglu, O., Karri, R.: IEEE Trans.

Comput. 99 (2013)

18. Dupuis, S., Ba, P.S., Natale, G.D., Flottes, M.L., Rouzeyre, B.: Conference on IEEE 20th Inter-

national On-Line Testing Symposium (IOLTS), IOLTS ’14, pp. 49–54 (2014)

19. Chakraborty, R., Bhunia, S.: IEEE/ACM International Conference on Computer-Aided Design

2008. ICCAD 2008, pp. 674–677 (2008). doi:10.1109/ICCAD.2008.4681649

20. Chakraborty, R., Bhunia, S.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 28(10),

1493 (2009). doi:10.1109/TCAD.2009.2028166

21. Chakraborty, R.S., Bhunia, S.: J. Electr. Test. 27(6), 767 (2011). doi:10.1007/s10836-011-

5255-2

22. Chakraborty, R., Bhunia, S.: IEEE/ACM International Conference on Computer-Aided

Design—Digest of Technical Papers, 2009. ICCAD 2009, pp. 113–116 (2009)

23. Narasimhan, S., Chakraborty, R., Bhunia, S.: IEEE Des. Test Comput. 99(PrePrints) (2011).

http://doi.ieeecomputersociety.org/10.1109/MDT.2011.70

24. Desai, A.R., Hsiao, M.S., Wang, C., Nazhandali, L., Hall, S.: Proceedings of the Eighth Annual

Cyber Security and Information Intelligence Research Workshop, CSIIRW ’13, pp. 8:1–8:4.

ACM, New York (2013). doi:10.1145/2459976.2459985

25. Li, L., Zhou, H.: 2013 IEEE International Symposium on Hardware-Oriented Security and

Trust, HOST 2013, Austin, TX, USA, June 2–3, pp. 55–60 (2013). doi:10.1109/HST.2013.

6581566

26. Chakraborty, R., Bhunia, S.: 23rd International Conference on VLSI Design, 2010. VLSID’10,

pp. 405–410 (2010). doi:10.1109/VLSI.Design.2010.54

27. Chakraborty, R., Bhunia, S.: IEEE International Workshop on Hardware-Oriented Security

and Trust, 2009. HOST ’09, pp. 96–99 (2009). doi:10.1109/HST.2009.5224963

28. Alkabani, Y., Koushanfar, E.: USENIX Security, pp. 291–306 (2007)

29. Liu, B., Wang, B.: Design. Automation and Test in Europe Conference and Exhibition (DATE),

pp. 1–6 (2014). doi:10.7873/DATE.2014.256

30. Wendt, J.B., Potkonjak, M.: Proceedings of the 2014 IEEE/ACM International Conference on

Computer-Aided Design, ICCAD’14, pp. 270–277. IEEE Press, Piscataway (2014). http://dl.

acm.org/citation.cfm?id=2691365.2691419

31. Lao, Y., Parhi, K.: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 99, 1 (2014). doi:10.

1109/TVLSI.2014.2323976

32. Natale, G.D., Dupuis, S., Flottes, M.L., Rouzeyre, B.: Workshop on Trustworthy Manufactur-

ing and Utilization of Secure Devices (TRUDEVICE13) (2013)

33. Maes, R., Schellekens, D., Verbauwhede, I.: IEEE Trans. Inf. Forensics Secur. 7(1), 98 (2012)

34. Zhang, L., Chang, C.H.: IEEE Trans. Inf. Forensics Secur. 9(11), 1893 (2014)

35. Guneysu, T., Moller, B., Paar, C.: IEEE International Conference on Field-Programmable

Technology, ICFPT, pp. 169–176 (2007)

36. Drimer, S., Güneysu, T., Kuhn, M.G., Paar, C.: (2008). http://www.cl.cam.ac.uk/sd410/

37. Wolff, E., Papachristou, C., Bhunia, S., Chakraborty, R.S.: IEEE Design Automation and Test

in Europe, pp. 1362–1365 (2008)

38. Banga, M., Hsiao, M.: IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pp. 56–59 (2010)

39. Hicks, M., Finnicum, M., King, S.T., Martin, M.M.K., Smith, J.M.: Proceedings of IEEE Sym-

posium on Security and Privacy, pp. 159–172 (2010)

40. Sturton, C., Hicks, M., Wagner, D., King, S.: 2011 IEEE Symposium on Security and Privacy

(SP), pp. 64–77 (2011)

41. Zhang, X., Tehranipoor, M.: 2011 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), pp. 67–70 (2011)

42. Love, E., Jin, Y., Makris, Y.: IEEE Trans. Inf. Forensics Secur. 7(1), 25 (2012)

43. Jin, Y., Yang, B., Makris, Y.: IEEE International Symposium on Hardware-Oriented Security

and Trust (HOST), pp. 99–106 (2013)

44. Jin, Y.: IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2014)

45. INRIA: The coq proof assistant (2010). http://coq.inria.fr/

http://dx.doi.org/10.1109/ICCAD.2008.4681649
http://dx.doi.org/10.1109/TCAD.2009.2028166
http://dx.doi.org/10.1007/s10836-011-5255-2
http://dx.doi.org/10.1007/s10836-011-5255-2
http://doi.ieeecomputersociety.org/10.1109/MDT.2011.70
http://dx.doi.org/10.1145/2459976.2459985
http://dx.doi.org/10.1109/HST.2013.6581566
http://dx.doi.org/10.1109/HST.2013.6581566
http://dx.doi.org/10.1109/VLSI.Design.2010.54
http://dx.doi.org/10.1109/HST.2009.5224963
http://dx.doi.org/10.7873/DATE.2014.256
http://dl.acm.org/citation.cfm?id=2691365.2691419
http://dl.acm.org/citation.cfm?id=2691365.2691419
http://dx.doi.org/10.1109/TVLSI.2014.2323976
http://dx.doi.org/10.1109/TVLSI.2014.2323976
http://www.cl.cam.ac.uk/sd410/
http://coq.inria.fr/

4 IP Trust: The Problem and Design/Validation-Based Solution 65

46. Guo, X., Dutta, R.G., Jin, Y., Farahmandi, F., Mishra, P.: Design Automation Conference

(DAC), 2015 52nd ACM/EDAC/IEEE (2015) (To appear)

47. Love, E., Jin, Y., Makris, Y.: 2011 IEEE International Symposium on Hardware-Oriented Secu-

rity and Trust (HOST), pp. 12–17 (2011)

48. Drzevitzky, S., Kastens, U., Platzner, M.: International Conference on Reconfigurable Com-

puting and FPGAs, pp. 189–194 (2009)

49. Drzevitzky, S.: International Conference on Field Programmable Logic and Applications, pp.

255–258 (2010)

50. Necula, G.C.: POPL’97: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 106–119 (1997)

51. Drzevitzky, S., Platzner, M.: 6th International Workshop on Reconfigurable Communication-

Centric Systems-on-Chip, pp. 1–8 (2011)

52. Drzevitzky, S., Kastens, U., Platzner, M.: Int. J. Reconfig. Comput. 2010 (2010)

53. Yang, B., Wu, K., Karri, R.: Test Conference, 2004. Proceedings. ITC 2004. International, pp.

339–344 (2004)

54. Nara, R., Togawa, N., Yanagisawa, M., Ohtsuki, T.: Proceedings of the 2010 Asia and South

Pacific Design Automation Conference, pp. 407–412 (2010)

55. Yang, B., Wu, K., Karri, R.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(10),

2287 (2006)

56. Sengar, G., Mukhopadhyay, D., Chowdhury, D.: IEEE Trans. Comput.-Aided Des. Integr. Cir-

cuits Syst. 26(11), 2080 (2007)

57. Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: 2012 IEEE 30th VLSI Test Symposium

(VTS), pp. 246–251 (2012)

58. Rolt, J., Das, A., Natale, G., Flottes, M.L., Rouzeyre, B., Verbauwhede, I.: Constructive Side-

Channel Analysis and Secure Design. In: Schindler, W., Huss, S. (eds.) Lecture Notes on Com-

puter Science, vol. 7275, pp. 89–104. Springer, Berlin (2012)

Chapter 5
Security of Crypto IP Core: Issues
and Countermeasures

Debapriya Basu Roy and Debdeep Mukhopadhyay

5.1 Introduction

The value of information in modern world has increased manifold in the last decade.

Global spreading of Internet along with the recent advances in IoTs (Internet of

Things) and PAN (Personalized Area Network) has forced the modern SoCs to han-

dle large amount of sensitive information which are needed to be protected. Hence,

cryptographic modules, protecting the sensitive information, are integral parts of

modern SoCs. Most of the SoCs now contain HSM (Hardware Security Module)

which is used for secure key generation and management for cryptographic opera-

tions along with secure crypto-processing. HSMs provide logical and physical pro-

tection for the digital keys which are used for encryption and authentication of secret

information. Along with HSMs, a SoC may also contain dedicated hardware accel-

erator for some cryptographic operations to reduce the delay of the system. Gener-

ally, cryptographic operations involve computation intensive operations; hence usage

of hardware accelerator is highly encouraged as it provides significant performance

improvement of the SoC.

Both hardware accelerators and software routines generally implement stan-

dard cryptographic algorithms which are secure against theoretical attacks. The

algorithms are standardized by FIPS (Federal Information Processing Standards)
and NIST (National Institute of Standards and Technology) and we can consider

them free of any theoretical or mathematical weakness which can be exploited

by the adversaries. Example of such standard cryptographic algorithms are AES

(Advanced Encryption Standard), RSA (Rivest Shamir Adleman Algorithm), ECC

(Elliptic Curve Cryptography), etc. AES is the most popular symmetric key algo-

D.B. Roy (✉) ⋅ D. Mukhopadhyay

IIT, Kharagpur, India

e-mail: deb.basu.roy@cse.iitkgp.ernet.in

D. Mukhopadhyay

e-mail: debeep@cse.iitkgp.ernet.in

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_5

67

68 D.B. Roy and D. Mukhopadhyay

rithm whereas RSA and ECC are the popular asymmetric key algorithms. Imple-

mentation of these algorithms, both in hardware and software, can be considered as

the crypto-IP core. They often form root of trust of the entire security module and

hence need to be protected against malicious adversaries.

However, although these algorithms are proved to be secured in the classical sense

where the attacker has the controllability of the input (plain-texts) and observability

of the output (cipher-texts), in real life the scenarios are often different. This gap

leads to the failure of the proofs when the adversary has access to much more infor-

mation than what the classical cryptanalyst anticipated. Furthermore, the conven-

tional designer engages several optimization techniques to improve the performance

of a given algorithm. But in the field of cryptographic engineering it has been found

repeatedly that naïve implementation optimizations had lead to catastrophic failures

of the crypto-systems. Thus, performance of the crypto-systems is a delicate issue

and the overhead of adding cryptographic layers should be as minimal as possible.

Hence, a fresh approach is often required for developing cryptographic IP, where

security is not an afterthought, but taken care from the beginning of the design cycle.

In this chapter we will show that security cannot be guaranteed by just implement-

ing a perfectly secure crypto-algorithm. A physical design of a crypto-algorithm

can become vulnerable due to unintended leakages emitting from the design. This

chapter provides a detailed analysis of such unintended leakages, popularly known as

side channel leakages. We will also discuss what are the available countermeasures

which can prevent these kinds of threats.

5.1.1 Implementation: An Issue for Security

In the recent past, it has been often found that security of a design is compromised

due to the loopholes present in the design techniques. An example of this type of

phenomenon is the recent Heart Bleed Attack on OpenSSL [1, 2] which affected

lots of websites across the Internet. In OpenSSL, a heartbeat echoes back the data

that the user has sent. The length of the data can be at most 64 KB. Thus a heartbeat
comprises of two parts: data and length of the data. However, if an adversary sets the

length as 64 KB and send just one byte of data, he will still get 64 KB of data as echo.

This 64KB of data comprised of one byte that the adversary has sent in heartbeat and

rest of them are secret information which should not be disclosed to the adversary.

Thus the reason of this Heart Bleed Attack is just a missing bound check in the code

which does not affect the functionalities of OpenSSL, but compromises the security

of the entire module. The web services affected by this Heart Bleed Attack includes

Gmail, Facebook and Yahoo [3, 4]. Thus one can understand how much impact this

kind of wrong engineering can have on security.

Optimization is another issue that need to be taken care of during design of a

crypto-primitive. Modern CAD tools are powerful and are capable of analyzing a

design and optimizing it if possible. However, optimizations may expose a design

to several threats which may leak the key through some other stealthy channels. It

5 Security of Crypto IP Core: Issues and Countermeasures 69

is hence imperative for the designer of crypto-IPs to understand the possible threats

and ensure that those leakages are properly mitigated. In particular in the following

sequel, we shall consider the threats from side channel attacks, which leak informa-

tion of intermediate states of a cipher which can be exploited to develop knowledge

of the secret keys.

5.1.2 Side Channels

When a crypto-algorithm is cryptanalysed for any theoretical weakness, it is assumed

that adversaries have access to the input (plain-text) and output (cipher-text) of the

crypto-algorithm and the objective of the adversary is to find the secret key. In other

words, the module executing crypto-algorithm is treated as black box to which the

adversary can give plain-text as input and obtain cipher-text as output.

However, during the execution of any crypto-algorithm on a crypto-chip, an

attacker has access to various other information other than the input (plain-text) and

output (cipher-text). For example, the adversary can observe the power consumption,

timing performance, electro-magnetic radiation or even acoustic behavior of the cir-

cuit. These information though seem harmless, they are highly alarming as they leak

the internal state of the circuit, threatening compromise of sensitive information and

defeating the very purpose of a crypto-system.

All these information that an adversary can observe from physical implementation

of a crypto-algorithm are considered as side channel information, which essentially

implies that we need to analyze the security of a crypto-system in a gray box model.

Figure 5.1a shows the scenario when an adversary is carrying out theoretical crypt-

analysis, whereas Fig. 5.1b shows the scenario when an adversary is equipped with

the side channel information.

Key

Plain−Text Cipher−Text
Crypto−algorithm

(Black Box)

Adversary

(a) Theoretical Cryptanalysis
Model of a Crypto-Algorithm

Key

Plain−Text Cipher−Text

Time E.M Power

Side Channel

Adversary

Crypto−algorithm
Implementation

Sound

(b) Side Channel Analysis Model
of a Crypto-Algorithm

Fig. 5.1 Theoretical cryptanalysis and side channel analysis

70 D.B. Roy and D. Mukhopadhyay

Side channel analysis can be broadly classified into two different classes, namely

passive and active side channel analysis, which are described as follows:

∙ Passive Side Channel Analysis: In passive side channel analysis, an adversary can

only observe or record side channel information emitting from the system. For

example, an adversary can observe power signatures or record electromagnetic

radiations of the system to learn about the internal states of the circuits. These

attacks, called as power attack and electromagnetic attack, are instances of passive

side channel analysis.

∙ Active Side Channel Analysis: In active side channel analysis, an adversary cannot

only observe the side channel information, but can also interfere with the circuit

operation. An example of such active side channel analysis is fault attack. In this

scenario an adversary intentionally injects faults during the circuit operation to

obtain faulty outputs, which can be used to obtain the secret information.

In this chapter we are going to study in details about the different side channel

analysis with more emphasis on power based side channel attack. We will start by

describing various attack strategies and popular countermeasures. This chapter will

also introduce the readers about the fault attack and side channel attack at the testing

phase. In the next section we will introduce the rationals behind power based side

channel analysis and corresponding attack strategies.

5.2 Power Analysis of Cryptographic Cores

Most modern VLSI circuits are made of CMOS (Complementary Metal Oxide Semi-

conductor) gates which have a power characteristic which depend on the transitions

of data. This forms the basis for power analysis of cryptographic cores. Figure 5.2

shows a CMOS inverter which represents these class of underlying gates and shows

the different charge and discharge paths which leads to different energy consump-

tions when the output capacitance gets charged or discharged, denoted by E0→1 and

E1→0 respectively. Likewise when there is no transition we denote the energy con-

sumptions by E0→0 and E1→1 depending on the output voltage. Consider an AND

gate which is made by a similar complementary realization.

The transitions of the AND gate, denoted as y = AND(a, b) = a ∧ b, where a and b
are bits are shown in Table 5.1. The energy levels are annotated in the fourth column.

This column can be used to estimate the average energy when the output bit is 0 or

1, namely E(q = 0) and E(q = 1) respectively. We show that the power consumption

of the device is correlated by the value of the output bit. It may be emphasized that

this observation is central to the working of a DPA attack.

The average energies when q = 0 or q = 1 are:

E(q = 0) = (3E1→0 + 9E0→0)∕12
E(q = 1) = (3E0→1 + E1→1)∕4

5 Security of Crypto IP Core: Issues and Countermeasures 71

Fig. 5.2 Different power

consumption for 0 → 1 and

1 → 0 transition for CMOS

switch

Charging Path

Discharging
Path

VDD

GND

CL

Table 5.1 Transitions of an AND gate

a b q Energy

0 → 0 0 → 0 0 → 0 E0→0

0 → 0 0 → 1 0 → 0 E0→0

0 → 0 1 → 0 0 → 0 E0→0

0 → 0 1 → 1 0 → 0 E0→0

0 → 0 0 → 0 0 → 0 E0→0

0 → 0 0 → 1 0 → 1 E0→1

0 → 0 1 → 0 0 → 0 E0→0

0 → 0 1 → 1 0 → 1 E0→1

0 → 0 0 → 0 0 → 0 E0→0

0 → 0 0 → 1 0 → 0 E0→0

0 → 0 1 → 0 1 → 0 E1→0

0 → 0 1 → 1 1 → 0 E1→0

0 → 0 0 → 0 0 → 1 E0→0

0 → 0 0 → 1 0 → 0 E0→1

0 → 0 1 → 0 1 → 0 E1→0

0 → 0 1 → 1 1 → 1 E1→1

Observe that if the four transition energy levels are different, then in general

|E(q = 0) − E(q = 1)| ≠ 0. This simple computation shows that if a large number of

power traces are accumulated and divided into two bins: one for q = 0 and the other

for q = 1 and when the means for the 0-bin and 1-bin are computed, the difference-

72 D.B. Roy and D. Mukhopadhyay

of-mean (DOM) is expected to have a non-zero difference at some point. This forms

the basis of Differential Power Analysis (DPA), where the variation of power of a

circuit w.r.t. data is exploited. There are several types of power analysis. The most

primitive form of power analysis is called as Simple Power Analysis or SPA. It is a

technique that involves directly interpreting power consumption measurements with

cryptographic operations. The objective of an SPA attack is to obtain the secret key

in one or few traces. That makes an SPA quite challenging in practice. We first pro-

vide an overview on the same, before describing other forms of power analysis like

Differential Power Attacks (DPA).

5.2.1 Simple Power Attack (SPA)

This subsection focuses on Simple Power Analysis (SPA), which is extremely easy

to execute and if possible, could be extremely deadly for the security of the crypto-

cores. SPA is applicable to the implementations where value of key determines the

type of operations to be executed. Attacker tries to exploit this operation dependency

on the key bits through SPA. Generally, two different operations (for example multi-

plication and addition/squaring) have different power signature and hence it is easy

to identify the type of operation from power traces. If the key value determines the

operation type, an attacker can easily extract the key by classifying the operations

from the power traces.

Apart from attacking, SPA can also be used to extract feature points from the

power traces. Feature points are the points on the power traces which on being ana-

lyzed by DPA will give you the key. For example, while doing DPA on AES, we

need to focus on the last round register update. By using SPA, we can pinpoint the

last round register update and can record the power traces for only those points. This

reduces both number of trace acquisition requirement and attack complexity.

We will provide example for both of the above instances. Using SPA, it is very

easy to administer a successful attack on Elliptic Curve Cryptographic (ECC) oper-

ations, implemented with Double-and-Add algorithm. The next discussion focuses

on this.

SPA on ECC

Elliptic curve cryptography (ECC) is a public key cryptography based on elliptic

curves and finite field. The advantage of ECC over RSA lies in shorter key size and

more security per key bit. Shorter key size of ECC also leads to a compact imple-

mentation on FPGA. Security of ECC depends upon the mathematical intractability

of discrete logarithm of a point in elliptic curve with respect to a known base point.

The most important operation on ECC is scalar multiplication operation which can

be executed by Algorithm 1

5 Security of Crypto IP Core: Issues and Countermeasures 73

Fig. 5.3 Difference between doubling and addition (implemented on SASEBO-GII)

Data: Point P and scalar k = km−1, km−2, km−3 … k2, k1, k0,

where km−1 = 1
Result: Q = kP
Q = P
for i = m − 2 to 0 do

Q = 2Q (Point Doubling)

if ki=1 then
Q = Q + P (Point Addition)

end
end

Algorithm 1: Double-and-Add Algorithm

As shown in Algorithm 1, ECC scalar multiplication operation involves two oper-

ations: point doubling and point addition. Point doubling happens for every key bit,

whereas point addition happens only when the value of the key bit is 1. Thus we

can see an operation dependency on the value of the key bits. So, if we can iden-

tify the point doubling and point addition operation from the power traces, we can

easily extract the key and we can say that the implementation is vulnerable to SPA.

Figure 5.3 shows the corresponding point doubling and point addition power traces

for an elliptic curve implementation in binary curve. Point addition is more complex

operation compared to point doubling and hence requires more time for completion.

As we can in the Fig. 5.3, it is possible to distinguish between point doubling and

point addition operation by just visual inspection. For more difficult situations, where

visual inspection does not work, we can employ pattern matching methodologies to

identify the differences between different operations.

SPA on AES: Extracting Feature Points

Apart from attacking, SPA can be used to identify operations like register update,

multiplication, etc. If these operations are not key dependent, SPA cannot be used to

extract the key and we need to shift our attack methodologies to more sophisticated

74 D.B. Roy and D. Mukhopadhyay

(a) Power Trace of AES (b) Zoomed View of AES Last
Round Power Trace

Fig. 5.4 Extracting feature points from AES

attack strategies like DPA. However, success of DPA depends upon selecting a par-

ticular region in a power trace where data dependency of the key can be exploited

(basic principal of DPA). For example, AES can be attacked by DPA by targeting

last round register update. SPA helps us to identify the last round register update

and in turn enhances the success probability of DPA. Figure 5.4a shows the corre-

sponding power trace of an AES implementation, obtained on SASEBO-GII board.

From Fig. 5.4a, we can easily identify each round of AES algorithm. Moreover, we

can now only focus on the last round register update operation, reducing the attack

complexity. Figure 5.4b shows a zoomed view of last round register update.

Thus, we have seen how an adversary can exploit operation dependency on key

bits through SPA. However, SPA is easy to prevent and can be easily avoided by very

simple countermeasures. For example, SPA on ECC can be countered by employing

Montgomery ladder [5], which removes operation dependency on key bits. But, this

is not the case for Differential Power Attacks (DPA) where data dependency on the

key bits are exploited by complex statistical analysis. In the next subsection we are

going to focus on this.

5.2.2 Differential Power Attacks

Differential Power Attack (DPA) depends on the correlation of power consumption

of the design with the underlying data. Differential power analysis depends largely

on power simulation, which predicts the power variation of a device w.r.t. the change

of internal values. The internal value is often computed from the ciphertext and an

assumed portion of the key, and the power model maps the internal value to a power

level. Actual values of the power are not important, but rather their relative ordering

is crucial. Various forms of power models and variations have been suggested, but

CMOS circuits which is the most common forms of technologies used in the present

hardware design industry use the Hamming weight and Hamming distance power

5 Security of Crypto IP Core: Issues and Countermeasures 75

models to predict the variation of power. We present an overview on these models

next. A more detailed description can be found in [5].

Hamming Weight Power Model

In this model, we assume that the power consumption of a CMOS circuit is propor-

tional to the value at the tth time instance, say vt. The model is oblivious of the state

at the (t − 1)th time instance, vt−1. Thus, given the state vt, the estimated power is

denoted as HW(vt), where HW is the Hamming Weight function. It may be argued

that this is an inaccurate model, given the fact that the dynamic power of a CMOS

circuit rather depends on the transition vt−1 → vt than on the present state. How-

ever, the Hamming Weight model provides an idea of power consumption in several

occasions. Consider situations where the circuit is pre-charged to a logic 1 or 0 (i.e.,

vt−1=0 or 1), the power in that case is either directly or inversely proportional to

the value vt. In situations where the initial value vt is also uniformly distributed,

the dependence still holds directly or inversely owing to the fact that the transition

power due to a 0 → 1 toggle or 1 → 0 switch are not same. This is because of dif-

ferent charge and discharge paths of a CMOS gate (Fig. 5.2). Thus assuming that the

actual power is better captured by P = HW(vt−1 ⊕ vt), there may exist a correlation

between P and HW(vt) due to this asymmetric power consumption of CMOS gates.

Hamming Distance Power Model

This is a more accurate model of the power consumption of a CMOS gate. Here the

power consumption of a CMOS circuit is assumed to be proportional to the Ham-

ming Distance of the input and the output vector. In short, the power consumption

is modeled as P = HD(vt−1, vt) = HW(vt−1 ⊕ vt), where HD denotes the Hamming

Distance between two vectors. This is a more accurate model as it captures the no of

toggles in a net of the circuit. However, in order to use the model the attacker needs

more knowledge than that for using the Hamming Weight model. The attacker here

needs to know the state of the circuit in successive clock cycles. This model is useful

for modeling the power consumption of registers and buses. On the contrary, they

are incapable for estimating the power consumption due to combinatorial circuits as

transitions of combinatorial circuits are unknown due to the presence of glitches.

DPA Using Difference of Means

We provide a discussion on the Difference-of-Mean (DoM) technique to illustrate a

DPA on a block cipher like AES. The basic principle of the DoM method is based

on the fact that the power consumption of a device is correlated with a target bit or

a set of bits. In the simplest form, we obtain a large number of power consumption

curves and the corresponding ciphertexts. The attacker then applies a divide and

76 D.B. Roy and D. Mukhopadhyay

conquer strategy: he assumes a portion of the key which is required to perform the

deciphering for a portion of the cipher for one round. Based on the guessed key he

computes a target bit, typically the computation of which requires evaluation of an S-

Box. Depending on whether the target bit is 0 or 1, the traces are divided into a 0-bin

and 1-bin. Then the mean of all the traces in the 0-bin and 1-bin are computed and

finally we compute Difference-of-Mean (DoM) of the mean curves. It is expected

that for the correct key guess, there will be a time instance for which there is a non-

negligible value, manifesting as a spike in the difference curve. The correlation of

the power consumption of the device on the target bit is thus exploited to distinguish

the correct key from the wrong ones.

Let us consider a sample run of the AES algorithm. We provide several runs of

the AES algorithm with NSample randomly chosen plaintexts. Consider an iterated

AES hardware where a register is updated by the output of the AES round every

encryption. The power trace is stored in the array sample[NSample][NPoint], where

NPoint is the length of the power trace corresponding to the power consumption

after each round of the encryption. For each of the power traces we also store the

corresponding ciphertexts in the array Ciphertext[NSample]. One can check that the

power consumption is corresponding to the state of the register before the encryption,

then updated by the initial key addition, followed by the state after each of the 9

rounds of AES, and finally the ciphertext after the 10th round.

The attack algorithm first targets one of the key bytes, key, for which one of the 16

S-Boxes of the last round is aimed at. We denote the corresponding ciphertext byte

in the array Ciphertext[NSample] by the variable cipher. For each of the NSample
plaintexts, the analysis partitions the traces, sample[NSample][NPoint] into a zero-

bin and one-bin, depending on a target bit at the input of a target S-Box. For comput-

ing or estimating the target bit at the input of the target S-Box, the attack guesses the

target key byte, and then computes the Inverse-SBox on the XOR of the byte cipher
and the guessed key byte, denoted as key. One may observe that the ciphertexts for

which the target byte in the ciphertext, cipher is same, always goes to the same bin.

Thus the traces can be stored in a smaller array, sample[NCipher][NPoint], where

NCipher is the number of cipher bytes (which is of course 256).

It essentially splits the traces into the two bins based on a target bit, say the LSB.

The algorithm then computes the average of all the 0-bin and the 1-bin traces, and

then computes the difference of the means, denoted asDoM. Let the number of traces

present in the 0-bin be count0 and the number of traces present in the 1-bin be count1.

Then the value of DoM is calculated according to the following equation:

DoM =
|
|
|
|
|
|

∑count0
i=0 sample[i][NPoint]cipher[0]=0

count0
−

∑count1
i=0 sample[i][NPoint]cipher[0]=1

count1

|
|
|
|
|
|

(5.1)

It is expected that the correct key will have a significant Difference of Mean,

compared to the wrong keys which have almost a negligible DoM. We then store the

highest value of the DoM as the biasKey[NKey] for each of the key guesses. The key

which has the highest bias value is returned as the correct key. An example of DoM
on AES is shown in Fig. 5.5a.

5 Security of Crypto IP Core: Issues and Countermeasures 77

(a) An Example DPA on AES using
DOM

(b) An Example CPA on AES

Fig. 5.5 Attack result of DPA on AES

DPA Using Correlation Analysis

Like in the DoM-based DPA attack, the Correlation Power Attack (CPA) also relies

on targeting an intermediate computation, typically the input or output of an S-Box.

These intermediate values are as seen previously computed from a known value,

typically the ciphertext and a portion of the key, which is guessed. The power model

is subsequently used to develop a hypothetical power trace of the device for a given

input to the cipher. This hypothetical power values are then stored in a matrix for

several inputs and can be indexed by the known value of the ciphertext or the guessed

key byte. This matrix is denoted as H, the hypothetical power matrix. Along with

this, the attacker also observes the actual power traces, and stores them in a matrix

for several inputs. The actual power values can be indexed by the known value of the

ciphertext and the time instance when the power value was observed. This matrix

is denoted as T, the real power matrix. It may be observed that one of the columns

of the matrix H corresponds to the actual key, denoted as kc. In order to distinguish

the key from the others, the attacker looks for similarity between the columns of the

matrix H and those of the matrix T. The similarity is typically computed using the

Pearson’s Correlation coefficient.

The actual power value for all the NSample encryptions are observed and stored

in the array trace[NSample][NPoint]. The attacker first scans each column of this

array and computes the average of each of them, and stores in meanTrace[NPoint].
Likewise, the hypothetical power is stored in an array hPower[NSample][NKey] and

the attacker computes the mean of each column and stores in meanH[NKey] by scan-

ning each column of the hypothetical matrix. The attacker then computes the corre-

lation value to find the similarity of the ith column of the matrix hPower and the

jth column of trace. The correlation is computed as follows and stored in the array

result[NKey][NPoint]:

78 D.B. Roy and D. Mukhopadhyay

result[i][j] =
∑NSample

k=0 (hPower[i][k] − meanH[i])(trace[j][k] − meanTrace[j])
∑NSample

k=0 (hPower[i][k] − meanH[i])2
∑NSample

k=0 (hPower[i][k] − meanH[i])2

The corresponding attack result is shown in Fig. 5.5b in which correct key value

is easily distinguishable from the wrong key guesses.

Till now we discussed attack strategies in which attacker has the access to the

device only during the attack phase, and does not have any control on the device

prior the attack. These attack strategies are known as non-profiling attacks. On the

other hand, if the adversary has the access to the device prior to the attack phase

and during which adversary can control the inputs to observe power signature for

different key values, he can build more sophisticated attack methodologies, known

as profiling attack. One of the popular profiling attack strategy is template attack,

which is described in the next subsection.

5.2.3 Template Attack

Template attack was introduced by Chari et al. in [6] as “the strongest form of side

channel attack possible in an information theoretic sense.” In the template attack, it is

assumed that the attacker has an access to the device or clone of the device which he

can use for profiling of the device. During profiling the attacker collect power traces

for different key values and classes. In the attack phase, the adversary recovers the

correct key from the design under attack using the estimated leakage distribution.

Profiling attacks are more generic than their non-profiling counterparts in the sense

that they require weaker assumption on the leakage model. But their applications are

limited by the requirement of the access to a cloned device. The first template attack

proposed in [6] consists of following steps:

∙ Template Building:

1. Collect T number of power traces for each class of key value. For example, an

attacker can collect power traces for each hamming weight class of the key. Let

us assume that there are L different classes of key.

2. Compute mean of the power traces for each L classes. Let us denote this mean

power traces as M = (M1,M2,M3,… ,ML).
3. Now, we need to identify high SNR region in the power traces. This is extremely

important for the success of the template attack as it is crucial to reduce the trace

length to reduce the execution time of template attack. There are several ways

to reduce the trace length to a small (n) high SNR sample. In [6], the author

proposed a method in which pairwise difference between mean power traces were

taken and only the points with high differences were considered. Let us assume

these points as (P = P1,P2,… ,Pn). There are other possible methods also. For

example, NICV [7] or analysis in principal subspaces [8] can also be used to find

out the high SNR points.

5 Security of Crypto IP Core: Issues and Countermeasures 79

4. In the next step, noise matrix N is calculated for each of the power traces. The

noise matrix for ith trace is calculated as follows: Ni = (Ti[0] −Ml[0],Ti[1] −
Ml[1],… ,Ti[n] −Ml[n]), where l is the class of the corresponding trace. Then

we compute covariance matrix between the Nis of a particular class, denoted as
∑

Ni
[u, v] = cov(Ni(Pu),Ni(Pv)).

5. Thus, we have now built the template for each of the classes (Mi,
∑

Ni
).

∙ Attack Phase:

1. Let us denote the trace under attack as t. We compute ntesti = Mi − t for each

classes.

2. The probability that the trace under attack t belongs to particular class i can be

computed by maximum likelihood test in multivariate gaussian distribution using

following formula

p(ntesti) =
1

(2𝜋)n|
∑

Ni
|
e−

1
2 ntesti

T (
∑

Ni
)−1ntesti (5.2)

Template attack, based on stronger adversary attack model, requires very few

number of power traces compared to standard DPA. To protect crypto-systems

against this kind of sophisticated profiling attack or standard non-profiling DPA

attack, we need to develop efficient countermeasures which is the focus of the next

section.

5.3 Countermeasures Against Power Analysis

As discussed in the previous section, countermeasure design to mitigate power attack

is of extreme importance. A countermeasure design generally adds more overhead

to the design, making the crypto-system more resource hungry. Hence, the objective

is to design countermeasures which are lightweight but provide adequate security to

thwart power-based side channel attacks.

5.3.1 t-Private Circuit

Private circuit [9] is a countermeasure which provides a theoretical framework to

construct a crypto-circuit to prevent probing attack. Probing attack is the most pow-

erful side channel attack where an adversary can observe exact value of fixed num-

ber of circuit’s internal nets. Though t-private circuit is designed to prevent prob-

ing attack, it is equally applicable to other side channel attacks like power attack or

electromagnetic radiation attack. Moreover, this countermeasure is based on sound

theoretical proof, providing a formal method to develop a countermeasure. In this

80 D.B. Roy and D. Mukhopadhyay

subsection we are going to give a brief description of private circuit with an analysis

of its advantage and disadvantages. For theoretical proofs and analysis of circuit, we

encourage the readers to go through [9].

Construction of t-Private Circuit

In t-private circuit approach, a circuit is transformed in such a way that any adversary,

having capability of observing t nets, cannot get access to a single bit of sensitive

information. The minimum number of probes required by an adversary to extract

one bit of information is t + 1. This subsection provides a brief description of such

transformation.

∙ Input Encoding:- Any input bit a is transformed into a vector of 2t + 1 bits. The

first 2t bits are random values (a1, a2,… , a2t) and the last bit (a2t+1) is computed

by the following way:

a2t+1 = a⊕
2t⨁

i=1
ai . (5.3)

∙ AND gate: Inputs a and b ofAND gate are transformed into vectors à = (a1, a2,… ,

a2t+1) and ̀b = (b1, b2,… , b2t+1). Output of the AND gate is also a vector

c̀ = (c1, c2,… , c2t+1), which is calculated by following steps:

1. Generate random bits ri,j, where i ≠ j and 1 ≤ i ≤ j ≤ 2t + 1.

2. Compute rj,i = (ri,j ⊕ aibj)⊕ ajbi, where i ≠ j and 1 ≤ i ≤ j ≤ 2t + 1.

3. Compute ci = aibi ⊕
⨁

j≠i ri,j, where 1 ≤ i ≤ 2t and 1 ≤ j ≤ 2t.

∙ NOT gate: Input a is transformed into a vector à = (a1, a2,… , a2t+1). Output ̀ā is

computed by inverting any bit of à. E.g., ̀ā = (a1, a2,… , a2t+1).
∙ XOR gate: Like AND gate; inputs a and b of XOR gate are transformed into

vectors à = (a1, a2,… , a2t+1) and ̀b = (b1, b2,… , b2t+1). Output c̀ = (c1, c2,… ,

c2t+1) is calculated in the following way. Perform:

ci = ai ⊕ bi, 1 ≤ i ≤ 2t . (5.4)

Using these transformations, one can easily transform any digital circuit to a t-
private circuit, because this set of gates is universal.

Let us consider an AND gate in t-private circuit for t = 1. Inputs of the AND
gate are two vectors à = (a1, a2, a3) and ̀b = (b1, b2, b3), encoded according to (5.3).

Output c̀ = (c1, c2, c3) is calculated as follows:

c1 = a1b1 ⊕ r1,2 ⊕ r1,3 (5.5)

c2 = a2b2 ⊕ (r1,2 ⊕ a1b2)⊕ a2b1 ⊕ r2,3 (5.6)

c3 = a3b3 ⊕ (r1,3 ⊕ a1b3)⊕ a3b1 ⊕ (r2,3 ⊕ a2b3)⊕ a3b2 (5.7)

5 Security of Crypto IP Core: Issues and Countermeasures 81

The t-private circuits are secure against an adversary capable of observing any t
nets of the circuit at any given time instant. Construction of t-private circuits involves

2t number of random bits for each input bit of the circuit. Moreover, it requires 2t + 1
random bits for each 2-input AND gate present in the circuit. The overall complexity

of the design is (nt2) where n is the number of gates in the circuit.

The complexity of (nt2) is often considered impractical for several practical

implementations. After the publication of [9], there have been many works which

try to improve its result, in particular the area overhead. In [10], the authors have

improved the complexity of private circuit from (nt2) to (nt). Moreover, in their

recent work [11], they have further improved it to ⌈t∕2⌉ for private circuits. They

have also provided theoretical analysis and improvement of private circuit in context

of power-based side channel attack and glitch [12, 13].

Due to its high area requirement, it is not practical to use private circuit as a side

channel countermeasure despite being theoretically secure. However, private circuit

provides the basis of one of the most popular countermeasure Masking, which is

described in the next subsection.

5.3.2 Masking

Masking is probably the most popular countermeasure against side channel analysis

and has been studied in great details. The objective of the masking scheme is to

randomize the intermediate results and is to make power consumption of the device

independent of the sensitive data processed. The countermeasure is based on the fact

that the power consumption of the devices are uncorrelated with the actual data as

they are masked with a random value.

In masking every intermediate value which is related to the key is concealed by

a random value m which is called as the mask. Thus, we transform the intermediate

value v as vm = v ∗ m, where m is randomly chosen and varies from encryption to

encryption. The attacker does not know the value m. The operation ∗ could be either

exclusive or, modulo addition, or modulo multiplication. Boolean masking is a spe-

cial term given to the phenomenon of applying ⊕ as the above operation to conceal

the intermediate value. If the operation is addition or multiplication, the masking is

often referred to as arithmetic masking.

Masking at the Algorithmic Level

In this class of masking, the intermediate computations of an algorithm are masked.

Depending on the nature of the masking scheme, namely Boolean or arithmetic, the

nonlinear functions of the given cipher are redesigned. In the subsequent discussion,

we are going to focus on implementing masking scheme on nonlinear S-Box module.

We will show how to employ masking scheme on an efficient design of S-Box and

will highlight the corresponding design overhead.

82 D.B. Roy and D. Mukhopadhyay

Masking the AES S-Box

AES S-Box is the most critical element in the AES design. It is actually a substitution

table which takes an eight bit input and produce an eight bit output. The output of the

S-Box are generated by computing inverse of the input in GF(28) and then applying

an affine transformation. It can be implemented on hardware using a look-up tables

or embedded memories which will store the 256 entries of the S-Box. However, S-

Box output can be also be produced by doing an isomorphic transformation from

GF(28) to composite field GF((((2)2)2)2) and doing field operation in the composite

field. This approach is highly efficient as it can be implemented with very few gates

compared to table implementation of S-Box [14]. The isomorphic transformation

function is linear and can be masked using XORs quite conveniently.

Now to compute the S-Box using composite field, we need to compute inverse in

GF(24)2, which can be computed as follows: Let the irreducible polynomial of an ele-

ment in GF(24)2 be r(Y) = Y2 + Y + 𝜇 (𝜇 ∈ GF(24)). An element in the composite

field can be represented as 𝛾 = (𝛾1Y + 𝛾0) and let the inverse be 𝛿 = (𝛾1Y + 𝛾0)−1 =
(𝛿1Y + 𝛿0)mod (Y2 + Y + 𝜇).

Thus, the inverse of the element is expressed by the following equations:

𝛿1 = 𝛾1(𝛾21𝜇 + 𝛾1𝛾0 + 𝛾

2
0)

−1
(5.8)

𝛿0 = (𝛾0 + 𝛾1)(𝛾21𝜇 + 𝛾1𝛾0 + 𝛾

2
0)

−1
(5.9)

Equivalently, we can write:

𝛿1 = 𝛾1d′ (5.10)

𝛿0 = (𝛾1 + 𝛾0)d′ (5.11)

d = 𝛾

2
1𝜇 + 𝛾1𝛾0 + 𝛾

2
0 (5.12)

d′ = d−1 (5.13)

Next we consider the masking of these operations. The masked values corre-

sponding to the input is thus, (𝛾1 + mh)Y + (𝛾0 + ml), of which the inverse is to be

computed such that the output of the equations of Eq. 5.10 are also masked by ran-

dom values, respectively m′
h,m

′
l ,md,m′

d.

Let us consider the masking of Eq. 5.10. Thus we have:

𝛿1 + m′
h = 𝛾1d′ + m′

h (5.14)

Hence we need to compute 𝛾1d′ + m′
h. However, because of the additive mask-

ing, we have both 𝛾1 and d′ masked. Thus, we can compute the masked value
(𝛾1 + mh)(d′ + m′

d), and then add some correction terms to obtain 𝛾1d′ + m′
h.

5 Security of Crypto IP Core: Issues and Countermeasures 83

To elaborate, the correction terms will be:

(𝛾1d′ + m′
h) + (𝛾1 + mh)(d′ + m′

d) = (𝛾1 + mh)m′
d + mhd′ + m′

h (5.15)

One has to take care when adding correction terms that no intermediate values

are correlated with values, which an attacker can predict. We thus mask d′ in the

correction term as follows: (𝛾1 + mh)m′
d + mh(d′ + m′

d) + mhm′
d + m′

h.

Thus, the entire computation can be written as:

𝛿1 + m′
h = (𝛾1 + mh)(d′ + m′

d) +
(𝛾1 + mh)m′

d + mh(d′ + m′
d) + mhm′

d + m′
h

= f
𝛾1
((𝛾1 + mh), (d′ + m′

d),mh,m′
h,m

′
d) (5.16)

We thus have:

f
𝛾1
= (𝛾1 + mh)m′

d + mh(d′ + m′
d) + mhm′

d + m′
h (5.17)

This equation can be significantly reduced if we consider reuse of mask value to

reduce the corresponding circuit complexity. Using m′
d = ml and m′

h = mh, we have

the following:

f
𝛾1
= (𝛾1 + mh)(d′ + ml) +
(𝛾1 + mh)ml + mh(d′ + ml) + mhml + mh (5.18)

Likewise, one can derive the remaining 2 equations (Eqs. 5.11 and 5.12) in the

masked form. For Eq. 5.11, we have:

𝛿0 + m′
l = (𝛾1 + 𝛾0)d′ + m′

l
= (𝛾1d′ + m′

h) + (𝛾0 + ml)(d′ + m′
d) + (d′ + m′

d)ml

+(𝛾0 + ml)m′
d + m′

h + m′
l + mlm′

d
= (𝛿1 + m′

h) + (𝛾0 + ml)(d′ + m′
d) + (d′ + m′

d)ml

+(𝛾0 + ml)m′
d + m′

h + m′
l + mlm′

d
= f

𝛾0
((𝛿1 + m′

h), (𝛾0 + ml), (d′ + m′
d),ml,m′

h,m
′
l ,m

′
d) (5.19)

Again the resulting circuit complexity can be reduced by reusing the same mask. we

can choose m′
l = ml and m′

d = mh = m′
h. Thus we have:

84 D.B. Roy and D. Mukhopadhyay

f
𝛾0
= (𝛿1 + mh) + (𝛾0 + ml)(d′ + mh) + (d′ + mh)ml

+(𝛾0 + ml)mh + mh + ml + mlmh (5.20)

Thus continuing for Eq. 5.12 we have:

d + md = 𝛾

2
1p0 + 𝛾1𝛾0 + 𝛾

2
0 + md

= (𝛾1 + mh)2p0 + (𝛾1 + mh)(𝛾0 + ml) + (𝛾0 + ml)2 + (𝛾1 + mh)ml + (𝛾0 + ml)mh

+m2
hp0 + m2

l + mhml + md

= fd((𝛾1 + mh), (𝛾0 + ml), p0,mh,ml,md) (5.21)

We choose mh = md to reduce the gate-count. Thus,

fd = (𝛾1 + mh)2p0 + (𝛾1 + mh)(𝛾0 + ml) + (𝛾0 + ml)2 + (𝛾1 + mh)ml + (𝛾0 + ml)mh

+m2
hp0 + m2

l + mhml + mh (5.22)

The masking of Eq. 5.13 involves performing the following operations on d + md
and obtained the masked inverse, d′ + m′

d. Thus one needs to develop a circuit for fd′
for which:

d′ + m′
d = fd′ (d + md,md,m′

d)
= d−1 + m′

d (5.23)

Masking Eq. 5.13 involves masking an inverse operation in GF(24). Hence the

same masking operations as above can be applied while reducing the inverse to that

in GF(22). Thus, we can express an element in GF(24) 𝛿 = Γ1Z + Γ0, where Γ1 and

Γ0 ∈ GF(22). Interestingly, in GF(22) the inverse is a linear operation making mask-

ing easy! Thus we have, (Γ + m)−1 = Γ−1 + m−1
. This reduces the gate count con-

siderably.

Masking at Gate Level

One of the most popular countermeasures to prevent DPA attacks at gate level is

masking. Although there are various techniques to perform masking, the method

of masking has finally evolved to the technique proposed in [15]. The principle

of this masking technique is explained briefly, in reference to a 2 input and gate.

The same explanation may be extended to other gates, like or, xor etc. The gate

has two inputs a and b and the output is q = a and b. The corresponding mask

values for a, b and q are respectively ma, mb and mq. Thus the masked values

are: am = a⊕ ma, bm = b⊕ mb, qm = q⊕ mq. Hence the masked and gate may be

expressed as: qm = f (am, bm,ma,mb,mq). The design proposed in [15] proposes a

5 Security of Crypto IP Core: Issues and Countermeasures 85

hardware implementation for the function f for the masked and gate, which may be

easily generalized to a masked multiplier. This is because the 2-input and gate is a

special of case of an n-bit multiplier, as for the and gate we have n = 1. The masked

multiplier (or masked and gate by assuming n = 1) is depicted in Fig. 5.6. The cor-

rectness of the circuit may be established by the following argument:

qm = q⊕ mq

= (ab)⊕ mq

= (am ⊕ ma)(bm ⊕ mb)⊕ mq

= (ambm ⊕ bmma ⊕ ammb ⊕ mamb ⊕ mq)

However, it should be noted that the order of the computations performed is of

extreme importance. The correct order of performing the computations are as fol-

lows:

qm = ambm + (mabm + (ammb + (mamb + mq)))

The ordering follows to ensure that the unmasked values are not exposed during

the computations. Further it should be emphasized that one cannot reuse the mask

values. For example one may attempt to make one of the input masks, ma same as

the output mask, mq. While this may seem to be harmless, it can defeat the purpose

of the masking. In the subsequent discussions, we will give examples of side channel

attacks which take advantage of improper implementation of masking scheme.

Attack on Masking

Masking, being the most widely used countermeasure, has been constantly evalu-

ated against sophisticated side channel analysis. There are several instances where a

masked hardware has failed to prevent side channel attacks. Masking prevents first

order (1o) differential power attacks and can be broken by second order differential

attacks. However, in literature it has been shown that masking can be broken by first

order differential attack if it is not implemented in a correct way. We will mainly

focus on two different attack methodologies: Attack due to glitches and collision-
correlation attack.

The Masked and Gate and Vulnerabilities Due to Glitches

The circuit for computing the masked AND gate is shown in Fig. 5.6. The same cir-

cuit can be applied for masking a GF(2n) multiplier as well. We observe that the

masked multiplier (or, AND gate) requires four normal multipliers (or, AND gates)

and four normal n-bit (or 1-bit) XOR gates. Also it may be observed that the multi-

pliers (or, AND gates) operate pairwise on (am, bm), (bm,ma), (ammb) and (ma,mb).

86 D.B. Roy and D. Mukhopadhyay

Fig. 5.6 Architecture of a

masked multiplier

+

+

+

+

AND AND AND AND

amam bmbm mama mbmb

mq

ab ⊕ mq

Each of the element of the pairs has no correlation to each other (if the mask value

is properly generated) and are independent of the unmasked values a, b and q. One

can obtain a transition table and obtain the expected energy for generating q = 0 and

q = 1. The gate now has 5 inputs and thus there can be 45 = 1024 transitions (like

Table 5.1). If we perform a similar calculation as before for unmasked gates, we find

that the energy required to process q = 0 and q = 1 are identical. Thus if we compute

the mean difference of the power consumptions for all the possible 1024 transitions

for the two cases: q = 0 and q = 1, we should obtain theoretically zero. Likewise

the energy levels are also not dependent on the inputs a and b and thus supports

the theory of masking and show that the masked gate should not leak against a first

order DPA. However in this analysis we assume that the CMOS gates switch once

per clock cycle, which is true in the absence of glitches.

But glitches are a very common phenomenon in digital circuits, as a result of

which the CMOS gates switch more than once in a clock signal before stabilizing to

their steady states. One of the prime reasons of glitches in digital circuits is different

arrival times of the input signals, which may occur in practice due to skewed circuits,

routing delays, etc. As can be seen in the circuit shown in Fig. 5.6, the circuit is

unbalanced which leads to glitches in the circuit.

The work proposed in [16] investigates various such scenarios which causes

glitches and multiple toggles of the masked AND gate. The assumption is that each

of the 5 input signals toggle once per clock cycle and that one of the inputs arrive at

different time instance than the others. Moreover we assume that the delay between

the arrival time of two distant signals is more than the propagation time of the gate.

As a special case, consider situations when only one of the five inputs arrives at a

different moment of time than the remaining four inputs.

5 Security of Crypto IP Core: Issues and Countermeasures 87

There exist ten such scenarios as each one of the 5 input signals can arrive either

before or after the four other ones. In every scenario there exist 45 = 1024 possible

combinations of transitions that can occur at the inputs. However, in each of the

ten scenarios where the inputs arrive at two different moments of time, the output

of the masked and gate performs two transitions instead of one. One transition is

performed when the single input performs a transition and another one is performed

when the other four input signals perform a transition. Thus the Transition Table

for such a gate in this scenario would consist of 2048 rows and we observe that

the expected mean for the cases when q = qm ⊕ mq = 0 is different from that when

q = 1. Similar results were found in other scenarios as well. This bias of leakage in

masked gates in presence of glitches can be exploited to apply successful attacks on

masking countermeasure.

Collision -Correlation Attack:

The main objective of a collision-correlation attack is to find out the region in the

power traces which handles same data, and use this knowledge to get access to

secret information. To illustrate this attack methodology, let us consider an exam-

ple. Assume that we are going to implement the attack on an masked AES imple-

mentation. Internal states of the AES design is denoted as (x0, x1,… , x15), where

xi= a data byte. Similarly, key is also denoted as (k0, k1,… , k15). S-Boxes of the

AES implementation is masked and input masks for all the bytes is same. So each

masked S-box has a input x′i = xi + u, u is the input mask. Output of the masked S-

Box(S′) is S′(x′i) = y′i = yi + v, v is the output mask and yi = S(xi). Now we obtain

N power traces for a same message M and identify the power traces for each masked

S-Box access in the first round. Using any statistical distinguisher (for example Pear-

son’s correlation coefficient), we can find out whether any of the S-Boxes are having

collision, i.e., whether they are handling the same data or not.

Once we get a collision between the ith S-Box access and jth S-Box access, we

can obtain following formulation.

x′i = x′j
xi ⊕ u = xj ⊕ u
mi ⊕ ki = mj ⊕ kj
mi ⊕ mj = ki ⊕ kj

This experiment is repeated for multiple times with different messages (mi = ith
byte of plain-text) to obtain sufficient number of collisions such that the guessing

entropy of the key reduces. The attack methodology described here was first intro-

duced in [17]. Consequently more advanced attack methodology with different sta-

tistical tools have been presented in [18, 19].

Generally when a crypto-algorithm is developed, side channel security is not

considered as a required parameter. The crypto-algorithm is initially formulated to

thwart theoretical cryptanalysis techniques. After the development of the algorithm,

side channel protection is provided during the implementation by adding an external

88 D.B. Roy and D. Mukhopadhyay

side channel countermeasure like masking. This approach leads to resource hungry

designs and has a huge overhead. For example, gates required by masked AES is

three times of original AES implementation.

Another alternative approach is to design crypto-algorithms which will be secure

against side channel by its construction. An example of such technique is given in

the next subsection.

5.3.3 DRECON: DPA Resistant Encryption by Construction

The scheme we present is called DRECON (DPA Resistant Encryption by CON-

struction) [20], which attempts to design a complete block cipher with DPA preven-

tion as a prerequisite. The construction is inspired from tweakable block ciphers [21],

where in addition to the plaintext and key, the cipher takes a tweak. However, unlike

the tweakable block ciphers in [21], the construction requires the tweak to be kept

secret. The tweak is used to choose an sbox from a given pool of cryptographically

strong sboxes, thus modifying the mapping between the plaintext and the ciphertext.

Protection against DPA is obtained based on the assumption that the tweak is exclu-

sively shared between the sender and the receiver and modified in every encryption.

The construction is supported by information theoretic proofs of security to show

that is secured against first order power attacks.

DRECON

The secret in DRECON comprises of the tuple (t, k), where t is called the tweak and k
the key used in the block cipher. The key k is held constant for all encryptions, while

the tweak t changes for each encryption, using a tweak generation algorithm. The

tweak is used to select a function from the set {𝖥1, 𝖥2,⋯ , 𝖥r}, where 𝖥j ∶ 𝔽 n
2 ↦ 𝔽 n

2
and (1 ≤ j ≤ r), are cryptographically strong sbox functions. For every application

of the sbox on X, a function from is selected depending on the value of the tweak

(t) and applied to X. This sbox, known as the tweaked-sbox, is represented by ⃗S(⋅, ⋅)
and defined as follows:

⃗S(t,X) ← 𝖥t(X) where t
R
← {1, 2,⋯ , r}.

In a typical iterative block cipher, the first round key is added to plaintext before

the sbox operation and the sbox operation has the form S(x⊕ k). However, in

DRECON, we choose to omit the key-whitening at the beginning and end of the

encryption. Thus, each round except the last round consists of a substitution layer,

diffusion layer and key addition layer. The last round consists of only substitution

layer. Each of the sboxes of the substitution layers is replaced by the tweaked-sbox.

For all round, the same tweaks are used while the sboxes in a round have differ-

5 Security of Crypto IP Core: Issues and Countermeasures 89

Tweaked
Sbox

Tweaked
Sbox

Diffusion Layer

Tweaked
Sbox

Tweaked
Sbox. . .

. . .

. . .

Fi
rs

t R
ou

nd
Se

co
nd

 R
ou

nd

. . .

. . .

T1 Tq

k1

Zq

Z1 ⊕ k1 Zq ⊕ kq

T1 Tq

Z1

X1 Xq

S(X1, T1) S(Xq, Tq)

kq

Fig. 5.7 First round of DRECON. The same structure is repeated for all rounds except the last

round which consists of only substitution layer

ent tweaks. The first round of DRECON is shown in Fig. 5.7. It may be noted that

DRECON requires no key-whitening at the beginning and end of the block cipher

since the tweaked-sboxes provide the required randomization of the input and output

respectively.

Tweak Generation Algorithm

From the master tweak agreed upon by the sender and receiver, tweaks need to be

generated for each encryption. The tweak generation needs to produce uniformly

random tweaks in the range of 1 to r in order to select one of the r sboxes (for

DRECON-AES r = 16 or 256). Further, the algorithm needs to be secure against

power attacks as is discussed in detail in [22].

Any mask generation function (MGF) or stream cipher implemented in a secure

manner can be used as a tweak generator. However, given the fact that the adver-

sary has no control or knowledge of the input and output of the tweak generator,

lightweight solutions can be developed by balancing registers and minimizing the

combinatorial logic, which can otherwise leak [23]. A possible construction for a

tweak generation algorithm makes use of an LFSR as shown in Fig. 5.8. The design

uses two pairs of shift registers (S and S), each comprising of 128 flip-flops. The

flip-flops in S are a complement of the flip-flops in S. To obtain such a state, the

master tweak is used to seed S and the complement of the master tweak is used to

seed S. Further, the feedback obtained from a 128 degree primitive polynomial is

90 D.B. Roy and D. Mukhopadhyay

Clock

s0sd−1

S

d degree primitive polynomial

sd−2 sd−3 sd−4

sd−1 sd−3 sd−4sd−2 s0

S

Fig. 5.8 Tweak generation for DRECON

complemented before being fed back to S. Since all clocks toggle at the same time,

the leakage from the registers is minimized. The alternate source of leakage, from the

combinatorial paths, is also kept minimum by choosing a primitive polynomial with

small number of coefficients. For DRECON-AES, the primitive polynomial chosen

is 𝛼
128

⊕ 𝛼

95
⊕ 𝛼

57
⊕ 𝛼

45
⊕ 𝛼

38
⊕ 𝛼

36
⊕ 1.

Hardware Implementation of DRECON on FPGAs

The adapted n × n AES algorithm with DRECON is called n × n DRECON-AES

where possible values of n are 4 and 8. The DRECON-AES has the following prop-

erties. Each round of DRECON-AES has the same structure as that of n × n AES

except the AddRoundKeys of the first and the last round are omitted. The ShiftRows
operation of the last round is also omitted, and thus last round is left with only the

SubBytes operation (Fig. 5.9). Further, each n × n bit sbox is replaced by a n × n bit

tweaked-sbox. Each tweaked-sbox is a set of 2n (r = 2n, n = 4 or 8) non-linear func-

tions having the equal cryptographic strength.

The implementation of DRECON on an FPGA device is shown in Table 5.2.

DRECON 4 × 4 and 8 × 8 has been implemented and compared with a standard

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

Plaintext

Key

Ciphertext

Round 10Round 9Round 2Round 1

Sh
ift

 R
ow

s

M
ix

 C
ol

um
ns

A
dd

 R
ou

nd
 K

ey

Sh
ift

 R
ow

s

M
ix

 C
ol

um
ns

A
dd

 R
ou

nd
 K

ey

Sh
ift

 R
ow

s

M
ix

 C
ol

um
ns

A
dd

 R
ou

nd
 K

ey

Fig. 5.9 4 × 4 AES adapted for DRECON

5 Security of Crypto IP Core: Issues and Countermeasures 91

Table 5.2 Comparing resource requirements for 4 × 4 DRECON-AES with masking on an FPGA

(XC5VLX50-2FF324)

Implementation Slices LUTs Registers Clock cycles Clock period (ns)

4 × 4 AES 1120 3472 1270 11 11.14

Masked 4 × 4 AES 3427 10589 1765 11 23.83

4 × 4 DRECON-AES 1379 3868 1583 11 10.3

2

4

6

8

10

12

14

16

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
ue

ss
in

g
E

nt
ro

py

Number of Measurements

r=1
r=2
r=4
r=8

r=16

Fig. 5.10 Guessing Entropy versus number of measurements for different size of tweaks

masking scheme. However, it may be stressed DRECON is not a countermeasure,

but a design principle in the block cipher to resist against DPA.

Practical Evaluation: Practical evaluation of 4 × 4 DRECON-AES has been per-

formed on the above design targetting an implementation on SASEBO-GII side-

channel evaluation board [24]. Since block RAMs are difficult to attack [25], we

implemented with distributed RAMs in order to get a faster comparison. We used

CPA as the attack algorithm where the target is computed by randomly guessing the

value of the tweak. The attack was repeated with different tweak sizes and the effi-

ciency was measured using the guessing entropy metric [26]. When the tweak is not

present (the size of the pool of sboxes is one, i.e., ht = 0 and r = 1), as shown in

Fig. 5.10, the guessing entropy decreases as the number of measurements increases,

and with 10000 traces the guessing entropy becomes almost 5. This is significantly

below the guessing entropy of random guess. When r = 16 (i.e., ht = 4, the size of

the input to the sboxes), the guessing entropy is around 8.5 all the time, implying

that the scheme is as secure as a random guess of K. Figure 5.10 presents the results.

5.3.4 Evaluation of Side Channel Leakage for a Crypto Core

When a crypto-chip is designed, it is imperative to analyze the chip for both func-

tionality and side channel security. Now there are two ways to test a design for side

92 D.B. Roy and D. Mukhopadhyay

channel security. The first one is to carry out actual attacks on the chip to see whether

it is possible for an adversary to get the secret information. However, this approach

poses several problems like:

1. The evaluator needs to have a deep understanding of the hardware implementa-

tion of the crypto-algorithm.

2. He needs to carry out several different attacks with different attack models to

become absolutely sure about the side channel resistance of the crypto-chip.

3. Due to the above two constraints, this approach is time consuming and not suit-

able for commercial testing mechanisms.

Another approach is to have a simple test where instead of doing actual attacks,

we try to measure the information leakage from the design. This testing methodology

is fast and does require neither understanding of the intrinsic details of the hardware

design nor attack model. Moreover, this type of leakage testing can help to identify

high SNR (signal to noise ratio) region in the power traces, leading to more efficient

attacks.

In literature, there are two different such test methodologies:

∙ Normalized Inter-Class Variance (NICV) Test: NICV test [7] is similar to sta-

tistical F-test, where we try to find high SNR value in given power traces. The

steps involved in computing NICV are as follows:

1. Let us assume that plain-text input to the design can be separated into n number

of different classes.(For example, a plaintext byte can be divided into 9 different

classes depending upon its hamming weight)

2. Collect power traces and separate them into the n classes depending upon the

input plain-text value

3. Compute the mean of each class and then compute the variance of these mean

curves. Let us denote this variance as mean class variance (MCV)
4. Compute the variance of all the power traces. Let us denote this variance as all

trace variance (ATV)
5. NICV = MCV

ATV

Generally NICV is used to find out favorable points in the power traces to execute

power attack. It can also be useful for profiling and training phase of template

attack. An NICV plot, obtained during power analysis on block cipher SIMON is

shown in Fig. 5.11a.

∙ Test Vector Leakage Assessment (TVLA): TVLA test is similar to the statistical

T-test. Like NICV, this test can be used to find out high SNR region in the power

traces. Moreover, this test provides yes-no answer to the question whether the

device is side channel secure or not. This testing method is fast and can be used in

high speed commercial testing of the crypto-chips.

The steps in TVLA test are as follows:

5 Security of Crypto IP Core: Issues and Countermeasures 93

(a) NICV plot of power analysis of a
SIMON implementation

(b) TVLA plot of power analysis of a
SIMON implementation

Fig. 5.11 Different leakage evaluation methodology

1. Create two different Dataset (Q1 and Q2), each with n instances of plain-text

and key. One comprising of same plain-text and the other one contains random

plain-texts. Both the data-set has same key.

2. Now obtain n power traces for each dataset and compute the TVLA metric

according to the following formula

TVLA =
mean(Q1) − mean(Q2)
√

Var(Q1)
n

+ Var(Q2)
n

(5.24)

3. For any sample point in the power trace, if |TVLA| ≥ 4.5, we consider the device

not secure against side channel attack.

This methodology can be applied on each bit of the plain-text also, i.e., it is possi-

ble to generate TVLA plot for each bit of the plain-text. A TVLA plot of a SIMON

implementation is shown in Fig. 5.11b.

In this chapter we have given a brief introduction of power based side channel

attack and the countermeasures to mitigate the resulting threats. Next we are going

to give readers brief idea about fault analysis which can also threaten the security of

crypto-systems.

5.4 Fault Attack Resistant Crypto Cores

With the growing importance of secured communication the importance of cryp-

tographic cores have increased. Hardware solutions of these cores are developed

using ASIC (Application Specific Integrated Circuit) libraries or on FPGA (Field

94 D.B. Roy and D. Mukhopadhyay

Programmable Gate Array) platforms. Recently the enhancement of the FPGAs has

lead to the use of these platforms for in-house development of cryptographic IPs.

The fact that the entire design can be performed in the laboratory, without relying

on an untrusted third party fab makes such design flows ideal from the point of view

of security [27].

In a System-on-Chip (SoC) the cores are pretested and pre-verified. However the

test and verification is mostly functional and the integrator is satisfied if the core

meets its functionalities. However for cryptographic cores, apart from the normal

functionality it is also important to model the core under not normal conditions. A

related study of cryptographic algorithms and the designs thereof is known as Dif-
ferential Fault Analysis (DFA) [28]. This analysis technique investigates the nature

of induced faults when a device is stressed beyond its normal operating conditions.

While the core integrator is mostly satisfied when the faults are not permanent, for

the attacker a single transient fault is enough to get the complete key for even stan-

dard ciphers like AES-128 [29].

5.4.1 General Principle of DFA of Block Ciphers

In this subsection, we study the basic principle of DFA, which shall be subsequently

applied for the AES algorithm. As apparent from the name, DFA combines the con-

cepts of differential cryptanalysis with that of fault attacks. DFA is applicable to

almost any secret key crypto-system proposed so far in the open literature. DFA has

been used to attack many secret key crypto-systems, including DES, IDEA, and RC5

[30].

There has been considerable amount of work about DFA of AES. Some of the

DFA proposals are based on theoretical model [31–38], while others launched suc-

cessful attacks on ASIC and FPGA devices using previously proposed theoretical

models [37, 39–42]. The key idea of DFA is composed of three steps as shown in

Fig. 5.12. (1) Run the cryptographic algorithm and obtain non-faulty ciphertexts. (2)

Inject faults, i.e., rerun the algorithm with the same input, but in unexpected envi-

ronmental conditions, and obtain faulty ciphertexts (3) Analyze relationship between

the non-faulty and faulty ciphertexts to significantly reduce the key space.

5.4.2 Fault Analysis of AES

Probably AES is the block cipher which has been studied most against DFA. There

has been several works on DFA of AES, using various types of fault models, like (1)

bit faults, (2) random byte faults, (3) multiple byte faults. In the following sequel, we

provide an understanding of DFA on AES.

We consider the attack based on byte level faults. We assume that certain bits of a

byte is corrupted by the induced fault and the induced difference is confined within

5 Security of Crypto IP Core: Issues and Countermeasures 95

Fig. 5.12 Three steps of

DFA

a byte. The fact that the fault is induced in the penultimate round implies that apart

from using the differential properties of S-box (as used in the bit-level DFA on last

round of AES), the attacker also uses the differential properties due to the diffusion

properties of the Mix-Columns operation of AES. AES diffusion is provided using

a 4 × 4 MDS matrix in the Mix-Columns. Due to this matrix multiplication, if one

byte difference is induced at the input of a round function, the difference is spread

to 4 bytes at the round output. Figure 5.13 shows the flow of fault.

The induced fault has generated a single byte difference at the input of the 9th

round Mix-Columns. Let f be the byte value of the difference and the correspond-

ing 4-byte output difference is (2f , f , f , 3f), where 2, 1, and 3 are the elements of the

first row of the Mix-Columns matrix. The 4-byte difference is again converted to

(f0, f1, f2, f3) by the non-linear S-box operation in tenth round. The Shift-Rows oper-

ation will shift the differences to 4 different locations. The attacker has access to the

fault-free ciphertext C and faulty ciphertext C∗
, which differs only in 4 bytes. Now,

we can represent the 4-byte difference (2f , f , f , 3f) in terms of the tenth round key

K10
and the fault-free and faulty ciphertexts by the following equations:

2 f = S−1(C0,0 ⊕ K10
0,0)⊕ S−1(C∗

0,0 ⊕ K10
0,0)

f = S−1(C1,3 ⊕ K10
1,3)⊕ S−1(C∗

1,3 ⊕ K10
1,3)

f = S−1(C2,2 ⊕ K10
2,2)⊕ S−1(C∗

2,2 ⊕ K10
2,2)

3 f = S−1(C3,1 ⊕ K10
3,1)⊕ S−1(C∗

3,1 ⊕ K10
3,1)

(5.25)

These four equations can be represented in the form A = B⊕ C where A,B, and

C are bytes in F28 , having 28 possible values each. Now a uniformly random choice

of (A,B,C) is expected to satisfy the equation with probability
1
28

. Therefore, in this

case 216 out of 224 random choices of (A,B,C) will satisfy the equation.

This fact can be generalized. Consider we have M such related equations. These

M equations consist of N uniformly random byte variables. The probability that a

random choice of N variables satisfy all the M equations simultaneously is (1
28
)M .

96 D.B. Roy and D. Mukhopadhyay

Fig. 5.13 Differences

across the last 2 rounds f

SubByte

ShiftRow

K10

f0

f2

f1
S3

f3

K9

S2

S1

MixCol

f

f

3f

2f

(9)th Round

10th Round

Therefore, the reduced search space is given by (1
28
)M ⋅ (28)N = (28)N−M . For our

case, we have four equations which consist of five unknown variables: f , K10
0,0, K10

1,3,

K10
2,2, and K10

3,2. Therefore, the four equations will reduce the search space of the vari-

ables to (28)5−4 = 28. That means out of 232 hypotheses of the 4 key bytes, only 28
hypotheses will satisfy the above 4 equations. Therefore, using one fault the attacker

can reduce the search space of the 4 key byte to 28. Using two such faulty ciphertexts

one can uniquely determine the key quartet. For one key quartet one has to induce 2

faults in the required location. For all the 4 key quartets, i.e., for the entire AES key

an attacker thus needs to induce 8 faults. Therefore using 8 faulty ciphertexts and a

fault-free ciphertext, it is expected to uniquely determine the 128-bit key of AES.

The attack can further be improved. It was shown in [36] that instead of inducing

fault in 9th round, if we induce fault in between 7th and 8th round Mix-Columns, we

can determine the 128-bit key using only 2 faulty ciphertexts. Figure 5.14 shows the

spreading of faults when it is induced in such a fashion. The single byte difference at

5 Security of Crypto IP Core: Issues and Countermeasures 97

Fig. 5.14 Differences

across the last three rounds

SubByte

ShiftRow

K10

2p

p

p

3p

p2

p1

p3

p0

8th Round

MixCol

2p0

p0

2p3

p3

3p2

2p2

p2

3p1

2p1

p1

p1

p3

p0 3p3

3p0

p2

K8

S3

K9

9th Round

10th Round

S4

S2

S1

SubByte

ShiftRow

MixCol

p

98 D.B. Roy and D. Mukhopadhyay

the input of 8th round Mix-Columns is spread to 4 bytes. The Shift-rows operation

ensures that there is one disturbed byte in each column of the state matrix. Each

of the 4-byte difference again spreads to 4 bytes at 9th round Mix-Columns output.

Therefore, the relation between the fault values in the 4 columns of difference-state

matrix S4 is equivalent to 4 faults at 4 different columns of 9th-round input-state

matrix as explained in the previous attack. This implies that using 2 such faults we

can uniquely determine the entire AES key.

Note that the exact working of the DFA proposed in [36] is slightly different from

above, though the underlying principle is the same. The attack maintains a list for

each column of the difference matrix S4 assuming a one-byte fault in the input of

the penultimate round Mix-Columns. The size of the table is thus 4 × 255 4-byte

values, as the input fault can occur in any byte of a column and can take 255 non-zero

values. Assuming that the fault occurs in the difference matrix S3 in the first column,

then equations similar to equation (5.25) can be written, with the left hand side of the

equations being a 4-byte tuple (𝛥0, 𝛥1, 𝛥2, 𝛥3). It is expected that the correct guess of

the keys K10
0,0,K

10
1,3,K

10
2,2, and K10

3,2 should provide a 4-byte tuple which belongs to the

list . There are other wrong keys which also pass this test, and analysis shows that

on an average 1036 elements pass this test with a single fault. Repeating the same

for all the 4-columns of the difference matrix S4 reduces the AES key to 10364 ≈ 240
(note that as the fault is assumed to be between 7th and 8th round each column of

S3 has a byte disturbed). However, if 2 faults are induced then with a probability of

0.98 the unique AES key is returned.

This is the best-known DFA of AES to date when the attacker does not have access

to the plaintext and the attacker needs to determine the key uniquely. However with

access to the plaintexts, the attacker can still improve the attack by performing the

DFA using only fault and a further reduced brute force guess. Also it is possible to

reduce the time complexity of the attack further from 232 to 230.

When the attacker has access to the plaintexts in addition to the ciphertexts [43],

the attacker can do brute-force on the possible keys. The objective of this attack or

its extensions is to perform the attack using only one fault. While a unique key may

not be obtainable with a single fault, the AES key size can reduce to such a small size

that a brute force search can be easily performed. It may be noted that reducing the

number of fault requirements from 2 to 1 should not be seen in terms of its absolute

values. In an actual fault attack, it is very unlikely that the attacker can have absolute

control over the fault injection method and hence may need more trials. Rather these

attacks are capable of reducing the number of fault requirements by half compared

to the attacks proposed in [36].

This attack is comprised of two phases: the first phase reducing the key space of

AES to around 236 values, while the second phase reducing it to around 28 values.

Consider the Fig. 5.14, where from the first column of S4 we get following 4 dif-

ferential equations:

5 Security of Crypto IP Core: Issues and Countermeasures 99

2 p0 = S−1(C0,0 ⊕ K10
0,0)⊕ S−1(C∗

0,0 ⊕ K10
0,0)

p0 = S−1(C1,3 ⊕ K10
1,3)⊕ S−1(C∗

1,3 ⊕ K10
1,3)

p0 = S−1(C2,2 ⊕ K10
2,2)⊕ S−1(C∗

2,2 ⊕ K10
2,2)

3 p0 = S−1(C3,1 ⊕ K10
3,1)⊕ S−1(C∗

3,1 ⊕ K10
3,1)

(5.26)

In the above 4 differential equation we only guess the 28 values of p0 and get the

corresponding possible 28 hypotheses of the key quartet by applying the S-box dif-

ference distribution table. Therefore, one column of S4 will reduce the search space

of one quartet of key to 28 choices. Similarly, solving the differential equations from

all the 4 columns we can reduce the search space of all the 4 key quartets to 28 values

each. Hence, if we combine all the 4 quartets we get (28)4 = 232 possible hypotheses

of the final round key K10
. We have assumed here that the initial fault value was in

the (0, 0)th byte of S1. If we allow the fault to be in any of the 16 locations, the key

space of AES is around 236 values. This space can be brute-force-searched within

practical time and hence shows that effectively one fault is sufficient to reduce the

key space to practical limits.

The search space of the final round key can be further reduced if we consider the

relation between the fault values at the state matrix S2, which was not utilized in the

previous attacks. This step serves as a second phase, which is coupled with the first

stage on all the 232 keys (for an assumed location of the faulty byte). Hence using

only one faulty ciphertext one can reduce the search space of AES-128 key to 256
choices. However, the time complexity of the attack is 232 as we have to test all the

hypothesis of K10
. The time complexity of the attack can however be improved to

230 by exploiting a property of the key-schedule.

A Practical DFA on an AES-Key Schedule Core

In FPGA implementations, the key schedule operation is often done prior to the AES

encryption and the round keys are stored in RAM which is being read out for each of

the 10 rounds of AES-128 implemented in iterative fashion for the first nine rounds.

An AES round includes all the four transformation operations in a combinatorial

logic. The S-box in SubBytes module is implemented in a look-up table fashion.

Figure 5.15a shows the block diagram of 32-bit AES-128 key schedule. The four 32-

bit registers R0, R1, R2, R3 hold the four words of the round keys (word represents

a data of 32 bit width). As the design is 32-bit, therefore only one word of the AES

round key is generated in each clock cycle. In first four clock cycles, the select1 and

select0 lines will load the initial AES key into the four registers. In the subsequent

clock cycles the select0 line will load the value of output register Wi to R0, R1, R2,
R3. The value of Wi will be stored in one of the four registers depending on the write

enable signals WR0–WR3 of these registers. SW and RW in figure represent the

SubWord and RotWord operations of AES key schedule [44]. In each cycle one

100 D.B. Roy and D. Mukhopadhyay

R3

R2

R1

Wselect
WR2

WR1

WR0

M
U

X
0

M
U

X
1

32

32

32

32

CLK

32

R0

0

1

3

3

2

1

0

2

0

0

0

0

1

1

1

1

WRS

WS WR

32

32

WR3
select0

32

32

In
iti

al
 K

ey

select1

32

32

32

32

In
pu

t d
at

a
to

 R
A

M

Wi

(a) Block diagram of AES-128
key schedule

M
U

X

CLK

FAST_CLK

CLK
Glitched

CLK

Arbitrary
Function Generator
Tektronix AFG3252

Spartan 3E

Trigger

AES

CLK_SEL

PC

Generator

Pro
ChipScope

JTAG

(b) Block diagram of fault
injection setup

Fig. 5.15 Fault injection in AES hardware implementation

word of round key is generated and stored in register Wi and ultimately stored in the

RAM. Therefore, in the first 44 clock cycles, all the ten round keys are generated.

Figure 5.15b shows the fault injection setup. We use two clocks CLK and

FAST_CLK, generated from Tektronix AFG3252 arbitrary function generator. One

is the normal clock (CLK) and the other one is a fast clock. The trigger generator

generates the CLK_SEL signal which initially being low selects CLK. At the begin-

ning of eighth round, the trigger generator makes the CLK_SEL signal high for one

clock pulse which selects FAST_CLK and thus generates glitch in the clock line.

This creates setup time violation in the path LP1 ∶ R0 → SW → RW → MUX1 →
XOR → Wi, which results in faulty data in register Wi depending on time period

(glitch width) of the fast clock. This is the critical (longest) path in the key sched-

ule module of AES-128 architecture. Let the other long paths in decreasing order

of lengths and affected by timing violations be LP2, LP3 and so on which we will

use later on. As the fault is generated during key schedule operation, this fault gets

propagated to the subsequent round keys. The architecture of the AES-128 cipher

is implemented using Verilog HDL in Xilinx Spartan-3E FPGA XC3S500E device

with input clock CLK at an operating frequency of 36 MHz. We used ChipScope Pro

7.1 analyzer to observe the faulty output.

5.4.3 Experimental Results on Fault Models

In the experimental setup, the frequency of CLK is held constant at 36 MHz as the

operating frequency of the AES while the FAST_CLK is increased in steps of 1
MHz from 36 MHz onwards to generate faults in the AES key schedule [45]. In

each step we run 512 encryptions and collect the samples through ChipScope. Until

85 MHz no fault occurs in register Wi. The experimental observations to follow are

specific to our hardware implementation of AES-128. The specific observations of

5 Security of Crypto IP Core: Issues and Countermeasures 101

 0

 100

 200

 300

 400

 500

 600

 700

 85 90 95 100 105 110 115 120

N
um

be
r o

f F
au

lts

Frequency (MHz)

1-Byte Fault
2-Byte Fault
3-Byte Fault
4-Byte Fault

(a) Byte fault patterns vs operating
frequency

 0

 2

 4

 6

 8

 10

 85 90 95 100 105 110 115 120N
um

be
r o

f D
iff

er
en

t F
au

lts

of
 S

am
e

Ty
pe

Frequency (MHz)

1-Byte Fault
2-Byte Fault
3-Byte Fault
4-Byte Fault

(b) Number of different fault patterns
vs operating frequency

Fig. 5.16 Fault patterns versus operating frequency

fault occurrences in other implementations may vary but the trend and comparisons

across different types of faults are similar.

Fault Propagation with Increasing Frequency

From 87 MHz onwards faults start appearing whose distribution can be seen in

Fig. 5.16a. Initially only single-byte faults occur. The number of samples with single-

byte faults increases with the increase in FAST_CLK frequency. At 93 MHz, all the

512 samples in the trace are infected in one byte. The first fault appears in one of

the bits (corresponding to LP1) of the 4-byte Wi register. When the FAST_CLK fre-

quency is further increased, the next fault occurs in another bit (corresponding to

LP2). If LP1 and LP2 are in the same byte then multiple 1-byte faults occur else it

is a 2-byte fault. But the probability of fault occurrence in the same byte (
8−1
31

, i.e.,

7
31

) is lesser than the probability of fault occurrence in other bytes (
32−8
31

, i.e.,
24
31

).

In the overlapping region of 1-byte and 2-byte fault in Fig. 5.16a, the next faulty bit

occurs in a different byte which causes a 2-byte fault in some of the samples. The

same argument applies to other overlapping regions between 2-byte fault and 3-byte

fault and between 3-byte and 4-byte fault.

From this distribution of different faults it is obvious that initially only 1-byte

faults occur and beyond a frequency range (in our case it is 119 MHz) all the samples

have 4-byte faults. From the observed results in Fig 5.16a, it is seen that beyond some

upper limit frequency all bytes can be corrupted by the glitch. Therefore, generating

an all-byte fault is much easier than generating a 1-byte.

Number of Different Types of Faults with Increasing Frequency

In the previous discussion, we observed the distribution of different types of faults

from 1-byte to 4-byte, with change in the operating frequency. However, the number

of different instances of the same type of fault does not follow these distributions.

102 D.B. Roy and D. Mukhopadhyay

We observed that the number of instances of different types of faults increases with

the increase in fault-width of the fault model, i.e., the number of faulty bytes in the

fault model. As shown in Fig. 5.16b, in case of single byte fault model, we get only

one instance of the faults. This can be attributed to the fact that when some samples

suffer timing violation in the two long paths LP1 and LP2, the paths occur in two

different output bytes rather than in the same output byte which is more probable.

With increasing operating frequency, the number of instances of 2-byte faults

gradually increases. This means that the next few long paths, for example LP3,
LP4,… ,LPk2, (where k2 refers to the final long path infected with 2-byte fault)

which suffer timing violation lie in the same two bytes corresponding to LP1, LP2.

Also from Fig. 5.16b, the number of different instances of 2-byte faults increases as

the operating frequency increases beyond 101-MHz. As the FAST_CLK frequency

is increased further, we see that the number of instances of 2-byte faults reduces

to one and 3-byte faults increases. This happens because all the instances of tim-

ing violations LP1, LP2,… ,LPk2, occur simultaneously and each of the separate

individual occurrence of previous fault instances disappear from the samples. Here

ki is a integer number, where 2 ≤ i ≤ 4. At the same time some new long paths

LP(k2 + 1),… , LPk3, suffered from timing violation in some of the samples. Each

of these long paths leads to a faulty byte which is different from the faulty bytes con-

tained in the 2-byte fault. If frequency is increased in such a way, we observe that

after certain frequency range only 4-byte fault instances exist. For even higher levels

of frequencies, we see increasingly more instances of 4-byte faults. This is observed

since more and more paths LP(k3 + 1) … , LP(k4), suffer timing violations leading

to more affected faulty bytes and this observation is seen in almost all samples as we

keep on increasing the FAST_CLK frequency. Also from Fig. 5.16b, the number of

different types of 4-byte faults increases beyond 113 MHz and the number of such

different instances is the highest amongst all the different fault patterns. To sum up,

we see that 1-byte faults are seen to exist within a limited operating frequency win-

dow (only single instance been seen). Beyond this frequency window only multi-byte

faults occur and after a certain maximum operating frequency, only 4-byte faults and

that too with different instances exist in abundance. The existence of such numer-

ous different instances of 4-byte faults in the experiments makes this class of multi

byte faults the most effective to perform DFA of AES Key schedule as we can have

numerous faulty ciphertexts at a particular frequency and hence multiple equations

for many unknown variables in terms of faulty ciphertexts as revealed in the next

subsection.

5.4.4 Proposed DFA on AES-192 Key Schedule

From the experimental results in the previous subsection it is observed that 4-byte

fault in the AES key schedule can be easily injected using methods like clock glitch-

ing. In this subsection, we present DFA on AES-192 and AES-256 key schedule

[45]. The challenge in 4-byte fault model compared to single byte fault model is that

5 Security of Crypto IP Core: Issues and Countermeasures 103

it induces more number of unknown variables in the differential equations that need

to be solved in order reduce the search space of the key. Especially when the fault

is induced in the key schedule, the challenge increases manifold due to the diffu-

sion in the key schedule of AES. When it comes to AES-192 and AES-256, we need

to find two round keys in-order to get the master key which makes the job of the

attacker more difficult as he cannot directly apply the technique of AES-128 which

only retrieves the final round key. In this work we propose new technique which

shows that 4-byte fault model can also be used against AES-192 and AES-256 with

relatively lesser number of fault inductions compared to DFA using single byte fault

model in [46].

The proposed attack on AES-192 requires only two faulty ciphertexts to reduce

the search space to 232. The flow of fault in AES-192 key schedule is shown in

Fig. 5.17a. Figure 5.17b shows the corresponding flow of fault in AES-192 states.

Here, a, b, c, d, e, f , g, and h are the fault values. We have two different faulty cipher-

texts C∗
1 and C∗

2 , based on above figures, corresponding to which we have two sets

of values (a1, b1, c1, d1) and (a2, b2, c2, d2) of (a, b, c, d).
Consider the first row of S0, we can represent these values of a in terms of fault-

free and faulty ciphertexts and the final round key K12
. Therefore, we get a set of four

equations corresponding to four key bytes of K12
. Using two faulty ciphertexts we

get two sets of equations. This is also true for the other three rows of S0. It may be

observed that each set of equations consists of two variables of (a, b, c, d, e, f , g, h)
and four key bytes of K12

. For example, equations from the first row will have (a, e)
and first row bytes of K12

. We solve these equations in row-wise fashion.

For the first row equations, we guess a1, e1, e2, and get the values of four key bytes

from the first set of equations (of C1). We test each of these values by the second set

of equations (of C2). Only, the right candidates of the four key bytes will satisfy both

SubWord

RotWord

RotWord

SubWord

Rcon

Rcon

a
b
c
d d d

c c c
b b

a

d

a
b

a

h
g
f
e e

e⊕c

e
f f⊕b f

gg
h h⊕d h

e⊕a

K12

K11

(a) Flow of fault in the AES-192 key schedule,
from the first column of K11

a

b

c

d

a a a

b b b

c c c

d d da

b

c

d

a a a

b b b

c c c

d d d

ShiftRows

SubBytes
e

h

f

g

e e

f f

g g

h h

Round12

Round11

e⊕a

f⊕b

g⊕c

h⊕d

K12

S0

K11

(b) Flow of fault in the last
two rounds of AES-192

Fig. 5.17 Flow of faults in AES-192

104 D.B. Roy and D. Mukhopadhyay

the sets of equations [29, Sect. 3.1]. We apply, the same technique for the rest of the

three rows of S0 and uniquely determine the values of corresponding key quartets.

Thus, combining all the four quartets we get K12
.

It may be observed in Fig. 5.17a, that in order to get the master key we need K12

and the last two columns of K11
. For the last column of K11

, we consider the relations

between the fault values in Fig. 5.17b. The two sets of fault values (a, b, c, d) and

(e, f , g, h) in Fig. 5.17a, are related by the following equations:

e = SB(K11
1,3)⊕ SB(K11

1,3 ⊕ b) f = SB(K11
2,3)⊕ SB(K11

2,3 ⊕ c)

g = SB(K11
3,3)⊕ SB(K11

3,3 ⊕ d) h = SB(K11
0,3)⊕ SB(K11

0,3 ⊕ a),

where Kr
i,j is the (i, j) byte of the r-th round key Kr

. We have two faulty ciphertexts

corresponding to which we get two sets of equations. In these two sets of equations

the two sets of values of a, b, c, d, e, f , g, h are already determined while retrieving

K12
. Therefore, using the two sets of values of the variables we can uniquely deter-

mine the four key bytes (K11
1,3,K

11
2,3,K

11
3,3,K

11
0,3). Hence, using two faulty ciphertexts the

attack reduces the search space of the AES-192 key to 32 bits which is in practical

search limits.

5.4.5 Countermeasures Against DFA

In this subsection we are going to focus on different countermeasures to protect the

crypto-system against fault attack. We will mainly discuss one such countermeasure

known as Concurrent Error Detection (CED) for DFA [47].

CEDs uses four types of redundancy: information, time, hardware, and hybrid, as

shown in Fig. 5.18.

Information Redundancy

In this technique, the input message is encoded to generate a few check bits, and

these bits are propagated along with the input message. These check bits are derived

from the output message and compared with the check bits encoded from the input.

Three information redundancy techniques are discussed below:

1. Parity-1: One can use single bit parity for the entire 128-bit state, and the parity

bit is checked once for the entire round [48].

2. Parity-16: One parity bit can be generated for each input byte. While some

parity-16 techniques depend on the S-box implementations [49, 50], a general

parity formation is proposed in [51].

3. Robust Code: The parity code suffers from nonuniform fault coverage [52],

e.g., parity-16 cannot detect an even number of faulty bits in a byte. Robust

5 Security of Crypto IP Core: Issues and Countermeasures 105

(a) Information
redundancy: parity.

(b) Information
redundancy: robust

code.

(c) Time
redundancy.

(d) Hardware
redundancy.

(e) Hybrid redundancy:
inverse.

(f) Hybrid
redundancy:

REPO.

Fig. 5.18 Four types of CEDs

code provides uniform fault coverage for all types of faults [52]. It uses a pre-

diction circuit at round input to predict a nonlinear property of the round output

as shown in Fig. 5.18b. The prediction circuit has a linear predictor (L-Predict),

linear compressor (L-Compress), and a cubic function (Cubic). The L-Predict

will take the round key and the round input and generate a 32-bit output. The L-

Compress and cubic function will reduce the 32-bit data into 28 bits. There are

three components at the round output to extract the nonlinear property of the out-

put: the compressor (Compress), the linear compressor, and the cubic function.

Each byte of the compressor output L(j) is equivalent to the component-wise

106 D.B. Roy and D. Mukhopadhyay

XOR of four bytes of the same column. The output of the linear predictor Ll(j)
is the same as the output of the compressor.

Time Redundancy

The function is computed twice with the same input, and results are compared as

shown in Fig. 5.18c. One redundant cycle is required to check each round. Time

redundancy cannot detect permanent and transient faults that appear in both normal

and redundant computations.

A time redundancy is proposed in [53]. The design simply recomputes the input

and compares the results. A variation of the time redundancy is proposed in [54].

The function is computed on both clock edges to speed up the computation.

Hardware Redundancy

The circuit is duplicated, and both original and duplicated circuits are fed with the

same inputs and the outputs are compared as shown in Fig. 5.18d. Hardware redun-

dancy technique offers high fault coverage against both random faults [53], but it

may be bypassed by an attacker who can inject the same faults in both copies of the

hardware.

Hybrid Redundancy

Hybrid redundancy techniques combine the characteristics of the previous CED cat-

egories, and they often explore certain properties in the underlying algorithm and/or

implementation. In [55], an operation, a round, or the entire encryption is followed

by its inverse, and the results are compared with the original input. The detail is

shown in Fig. 5.18e.

In Recomputing with Permuted Operands (REPO) [56] the authors discover a

special invariance of AES and use it to detect faults (Fig. 5.18f). First, the data is

computed usually. Then, the same data is permuted and computed. After the results

are inverse permuted, the result should be the same as without any permutation.

Redundant rounds are inserted in the encryption. In each redundant round, the input

data is permuted and AES computes the permuted data. Then, the round output is

inverse permuted and compared with the original output. Any mismatch shows that

faults are detected. REPO provides close to 100 % fault coverage to both permanent

and transient faults.

Thus in this section we have provided a brief discussion on fault analysis along

with the countermeasures to protect the crypto-system against it. In the next section

we are going to discuss about the vulnerabilities that may arise in the crypto-system

due to conventional chip testing mechanisms.

5 Security of Crypto IP Core: Issues and Countermeasures 107

5.5 Testing and Validation of Crypto Cores

Reliability of devices has become a serious concern, with the increase of complexity

of ICs and the advent of deep sub-micron process technology. The growth of appli-

cations of cryptographic algorithms and their requirement for real time-processing

has necessitated the design of crypto-hardware. But along with the design of such

devices, testability is a key issue. What makes testability of these circuits more chal-

lenging compared to other digital designs, is the fact that popular design for testa-

bility (DFT) methodologies, such as scan chain insertion, can be used as a double-

edged sword. Scan chain insertion, which is a desirable test technique owing to its

high fault coverage and small hardware overhead, open “side channels” for crypt-

analysis [57, 58]. Scan chains are used to access intermediate values stored in the

flip-flops, thereby ascertaining the secret information, often the key. Conventional

scan chains fail to solve the conflicting requirements of effective testing and security

[57]. So, one of the solutions that have been suggested is to blow off the scan chains

from the crypto ICs, before they are released into the market. But such an approach

is unsatisfactory and directly conflicts the paradigm of DFT. In order to solve this

problem of efficiently testing cryptographic ICs several research works have been

proposed.

5.5.1 Working Principle of Scan-Chain-Attacks on Block
Ciphers

In this subsection, we outline the working principle of scan chain-based-attacks on

block ciphers. Similar attacks can be performed on other category of ciphers as well.

Fig. 5.19 Generic Structure

of a block cipher

+
Plaintext

Key

...S1

Diffusion Layer

Sn

To Next Rounds

a

Register b

108 D.B. Roy and D. Mukhopadhyay

The security of the block cipher is obtained due to the properties of the round

function as shown in Fig. 5.19, and the number of rounds in the cipher. However,

when the design is prototyped on a hardware platform, and a scan chain is provided

to test the design, the attacker uses the scan chain to control the input patterns, and

observe the intermediate values in the output patterns. The security of the block

cipher is thus threatened, as the output after few rounds is revealed to the adversary.

The attacker then analyzes the data and applies conventional cryptanalytic methods

on a much lessened cipher [59].

We next summarize the scan based attack, w.r.t. Fig. 5.19. Without loss of gener-

ality, let us assume that the S-boxes are byte-wise mappings, though the discussion

can be easily adapted for other dimensions. The attack observes the propagation of

a disturbance in a byte through a round of the cipher. If one byte of the plaintext is

affected, say p0, then one byte of a, a0 gets changed (see figure). The byte passes

through an S-box and produces an output, which is diffused in the output register,

b0.

The diffusion layer of AES-like ciphers are characterized by a property called as,

branch number, which is the minimum total number of disturbed bytes at the input

and output of the layer. For example, the MixColumns step of AES has a branch num-

ber of 5, indicating that if b1 input bytes are disturbed at the input of MixColumns,

resulting in b2 bytes at the output which get affected, then b1 + b2 ≥ 5.

Depending upon the branch number of the diffusion layer, the input disturbance

spreads to say t-number of output bits in the register b. The attacker tries to exploit

this property to first ascertain the correspondence of the flip-flops of register b, with

the output bits in the scan-out pattern. Next the attacker applies a one-round differ-

ential attack to determine the secret key.

1. The attacker first resets the chip and loads the plaintext p and the key k, and

applies one normal clock cycle. The XOR of p and k is thus transformed by the

S-boxes and the diffusion layers, and is loaded into the register b.

2. The chip is now switched to the test mode and the contents of the flip-flops are

scanned out. The scanned out pattern is denoted by TP1.

3. Next, the attacker disturbs one byte of the input pattern and repeats the above

two steps. In this case, the output pattern is TP2.

It may be observed that if the attacker observes the difference between TP1 and

TP2, the attacker can observe the positions of the contents of the register b. The

ones in the difference are all because of the contents of register b. In order to better

observe all the bit positions of register b, the attacker repeats the process with further

differential pairs. There can be a maximum 256 possible differences in the plaintext

byte being changed. However, the ciphers satisfy avalanche criteria, which states

that if one input bit is changed, on an average at least half of the output bits get

modified. Thus in most cases because of this avalanche criteria of the round, much

fewer plaintexts are necessary to obtain the locations of all the registers b.

However, the attacker has only ascertained the location of the values of the register

b in the scanned-out patterns. But, it is surely an unintended leakage of information.

5 Security of Crypto IP Core: Issues and Countermeasures 109

For example, the difference of the scanned out patterns giving away the Hamming

distance after one round of the cipher.

The attacker now studies the properties of the round structures. The S-box is a

non-linear layer, with the property that all possible input and output pairs are not

possible. As an example, for the present day standard cipher, the Advanced Encryp-

tion Standard (AES), given a possible input and output pair, on an average one value

of the input to the S-box is possible. That is, if the input to the S-box, denoted by S
is x, and the input and output differentials are 𝛼, 𝛽, then there is one solution on an

average to the equation:

𝛽 = S(x)⊕ S(x⊕ 𝛼)

The adversary can introduce a differential 𝛼 through the plaintext. However, he

uses the scanned out data to infer the value of 𝛽. In order to do so, he observes the

diffusion of the unknown 𝛽 through the diffusion layer. In most of the ciphers, like

the AES, the diffusion layers are realized through linear matrices.

To be specific in case of AES, a differential 0 < 𝛼 ≤ 255 in one of the input bytes,

is transformed by the S-box to 𝛽 and then passes to the output after being transformed

by the diffusion layer as follows:

⎛
⎜
⎜
⎝

𝛼 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎠

⇒
⎛
⎜
⎜
⎝

𝛽 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎠

⇒
⎛
⎜
⎜
⎝

2𝛽 0 0 0
3𝛽 0 0 0
𝛽 0 0 0
𝛽 0 0 0

⎞
⎟
⎟
⎠

Thus the attacker knows that the differential in the scanned-out patterns, TP1 and

TP2, has the above property. That is there are 4 bytes in the register b, denoted by

d0, d1, d2, d3, such that:

d0 = 2d2; d1 = 3d2; d2 = d3 (5.27)

The attacker in the previous attack has ascertained the positions of the 32 bits of

the register b in the scanned out pattern. But he does not know the correct pattern. The

above property says that the correct pattern will satisfy the above property. If w is the

number of ones in the XOR of TP1 and TP2, then there are 32Cw
possible patterns. Out

of that, the correct one will satisfy the above property. The probability of a random

string satisfying the above property is 2−24. Thus, if w = 24 as an example, then the

number of satisfying permutations is 32C4
× 2−24 ≈ 1. Thus, there is a single value

which satisfies the above equations. This helps the attacker to get the value of 𝛽.

The attacker already knows the value of 𝛼 from the plaintext differential. Thus, the

property of the S-box ensures that there is on an average one single value of the input

byte of the S-box. Thus, the attacker gets the corresponding byte for a (see figure).

The attacker then computes one byte of the key by XORing the plaintext, p0 with the

value of the byte a0, that is, k0 = p0 ⊕ a0.

110 D.B. Roy and D. Mukhopadhyay

The remaining key bytes may be similarly obtained. In the literature, there are

several reported attacks on the standard block ciphers, namely DES and AES [60],

but all them follows the above general ideas of attacking through controllability and

observability through scan chains.

Countermeasures

An interesting alternative and one of the best method was proposed in [61, 62]

where a secure scan chain architecture with mirror key register was used to provide

both testability and security. Figure 5.20 shows the diagram of the secure scan archi-

tecture. The design uses the idea of a special register called as the mirror key register

(MKR), which is loaded with the key, stored in a separate register, during encryp-

tion. However during encryption, the design is in a secure mode and the scan chains

are disabled. When the design is in the test mode, the design is in the insecure mode

and the scan chains are enabled. During this time the MKR is detached from the key

register. The transition from the insecure mode to the secure mode happens, by set-

ting the Load_key signal high and the Enable_scan_in and Enable_scan_out signals

low. However the transition from the secure mode to the insecure mode happens only

through a power_off state and reversing the above control signals. It is expected that

the power off removes the content of the MKR, and thus does not reveal the key to a

scan-chain based attacker.

But this method has the following shortcomings:

∙ Security is derived from fact that switching off power destroys the data in registers.

So, if the secret is permanently stored on-chip (example credit cards, cell-phone

simcards, access cards) even after turning the power off the information exists

inside the chip. This can be extracted from a device having such a scan chain in

the insecure mode.

∙ At-speed testing or on-line testing is not possible with this scheme.

∙ The cryptographic device can be a part of a critical system that remains ON contin-

uously (like satellite monitoring system). In such devices power off is not possible.

Hence testing in such a scenario requires alternative solutions.

Test

Controller

M
K
R

Logic
K
E
Y

Crypto
CoreEnable_scan_in

Scan_mode
Load
Key

Enable_scan_out

Fig. 5.20 Secure scan architecture with mirror key register [61]

5 Security of Crypto IP Core: Issues and Countermeasures 111

∙ One of the most secured mode of operation of a block cipher like AES is Cipher

Block Chaining (CBC) where the ciphertext at any instant of time depends on the

previous block of ciphertext [60]. If testing is required at an intermediate stage

then the device needs to be switched off. Thus for resuming data encryption all

the previous blocks have to be encrypted again. This entire process has also to

be synchronized with the receiver which is decrypting the data. Therefore such

modes of block ciphers cannot be tested efficiently using this scheme.

5.6 Conclusions

The chapter shows the security issues involved in designing IP cores for crypto-

graphic algorithms. It shows the threats that loom over the designs of even standard

cryptographic algorithms when conventional design approaches are adopted through

the availability of several side channel sources. It starts with the underlying principles

of power analysis and discusses in details on several forms of power attacks. Mitiga-

tion schemes and also evaluation strategies for such attacks are also discussed along-

with. The chapter also discusses on fault attacks of crypto-cores, taking examples of

the AES core. Laboratory results have been furnished throughout to demonstrate the

practicality of such attack vectors. Various redundancy architectures to prevent such

fault attacks are presented. Finally, a discussion on threats from adoption of conven-

tional testing schemes have been provided along with a popular method to improve

resistance against such menacing threats on the crypto-IC.

References

1. The Heartbleed Bug (2014)

2. Green, M.: Attack of the week: OpenSSL Heartbleed (2014)

3. Subramanian, N.: Websites affected by Heartbleed: change your Gmail, Facebook and Yahoo

passwords right now (2014)

4. Team, M.: The Heartbleed Hit List: The Passwords You Need to Change Right Now (2014)

5. Mukhopadhyay, D., Chakraborty, R.S.: Hardware Security: Design, Threats, and Safeguards.

CRC Press (2014)

6. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski, B., Koç, K., Paar, C. (eds.) Crypto-

graphic Hardware and Embedded Systems—CHES 2002. Lecture Notes in Computer Science,

vol. 2523, pp. 13–28. Springer, Berlin (2003)

7. Bhasin, S., Danger, J., Guilley, S., Najm, Z.: NICV: normalized inter-class variance for detec-

tion of side-channel leakage. IACR Cryptol. ePrint Arch. 2013, 717 (2013)

8. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in princi-

pal subspaces. In: Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and Embedded

Systems—CHES 2006. Lecture Notes in Computer Science, vol. 4249, pp. 1–14. Springer,

Berlin (2006)

9. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks.

In: Proceedings of CRYPTO 2003, pp. 463–481. Springer (2003)

10. Park, J., Tyagi, A.: t-Private logic synthesis on FPGAs. In: 2012 IEEE International Sympo-

sium on Hardware-Oriented Security and Trust (HOST), pp. 63–68 (2012)

112 D.B. Roy and D. Mukhopadhyay

11. Park, J., Tyagi, A.: t-private systems: unified private memories and computation. In:

Chakraborty, R., Matyas, V., Schaumont, P. (eds.) Security, Privacy, and Applied Cryptography

Engineering. Lecture Notes in Computer Science, vol. 8804, pp. 285–302. Springer Interna-

tional Publishing (2014)

12. Gomathisankaran, M., Tyagi, A.: Glitch resistant private circuits design using HORNS. In:

IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2014, Tampa, FL, USA, July

9–11, 2014, pp. 522–527 (2014)

13. Park, J., Tyagi, A.: Towards making private circuits practical: DPA resistant private circuits.

In: IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2014, Tampa, FL, USA,

July 9–11, 2014, pp. 528–533 (2014)

14. Wong, M., Wong, M., Hijazin, I., Nandi, A.: Composite field GF(((22)2)2) AES s-box with

direct computation in gf(24) inversion. In: 2011 7th International Conference on Information

Technology in Asia (CITA 11), pp. 1–6 (2011)

15. Trichina, E.: Combinational logic design for AES subbyte transformation on masked data.

IACR Cryptol. ePrint Arch. 2003, 236 (2003)

16. Mangard, S., Popp, T., Gammel, B.: Side-channel leakage of masked cmos gates. In: Menezes,

A. (ed.) Topics in Cryptology CT-RSA 2005. Lecture Notes in Computer Science, vol. 3376,

pp. 351–365. Springer, Berlin (2005)

17. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-correlation

power analysis on first order protected aes. In: Preneel, B., Takagi, T. (eds.) Cryptographic

Hardware and Embedded Systems CHES 2011. Lecture Notes in Computer Science, vol. 6917,

pp. 49–62. Springer, Berlin Heidelberg (2011)

18. Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval, D., Johans-

son, T. (eds.) Advances in Cryptology EUROCRYPT 2012. Lecture Notes in Computer Sci-

ence, vol. 7237, pp. 428–445. Springer, Berlin (2012)

19. Moradi, A., Mischke, O.: How far should theory be from practice? In: Prouff, E., Schaumont,

P. (eds.) Cryptographic Hardware and Embedded Systems CHES 2012. Lecture Notes in Com-

puter Science, vol. 7428, pp. 92–106. Springer, Berlin (2012)

20. Hajra, S., Rebeiro, C., Bhasin, S., Bajaj, G., Sharma, S., Guilley, S., Mukhopadhyay, D.:

DRECON: DPA resistant encryption by construction. In: Pointcheval, D., Vergnaud, D. (eds.)

Progress in Cryptology - AFRICACRYPT 2014 - 7th International Conference on Cryptology

in Africa, Marrakesh, Morocco, May 28–30, 2014. Proceedings. Lecture Notes in Computer

Science, vol. 8469, pp. 420–439. Springer (2014)

21. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO.

Lecture Notes in Computer Science, vol. 2442, pp. 31–46. Springer (2002)

22. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: security against

side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (ed.)

AFRICACRYPT. Lecture Notes in Computer Science, vol. 6055, pp. 279–296. Springer (2010)

23. Guilley, S., Sauvage, L., Flament, F., Vong, V.-N., Hoogvorst, P., Pacalet, R.: Evaluation of

power constant dual-rail logics countermeasures against DPA with design time security met-

rics. IEEE Trans. Comput. 59(9), 1250–1263 (2010)

24. Research Center for Information Security National Institute of Advanced Industrial Science

and Technology. Side-channel Attack Standard Evaluation Board SASEBO-GII Specification

(Version 1.01) (2009)

25. Shah, S., Velegalati, R., Kaps, J.-P., Hwang, D.: Investigation of DPA resistance of block RAMs

in cryptographic implementations on fpgas. In: Prasanna, V.K., Becker, J., Cumplido, R. (eds.)

ReConFig, pp. 274–279. IEEE Computer Society (2010)

26. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of side-channel

key recovery attacks. In: Joux, A. (ed.) EUROCRYPT. Lecture Notes in Computer Science,

vol. 5479, pp. 443–461. Springer (2009)

27. Ali, S., Chakraborty, R.S., Mukhopadhyay, D., Bhunia, S.: Multi-level attacks: an emerging

security concern for cryptographic hardware. In: DATE, pp. 1176–1179. IEEE (2011)

28. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr.,

B.S. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 1294, pp. 513–525. Springer

(1997)

5 Security of Crypto IP Core: Issues and Countermeasures 113

29. Tunstall, M., Mukhopadhyay, D., Ali, S.S.: Differential fault analysis of the advanced encryp-

tion standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP. Lecture Notes in

Computer Science, vol. 6633, pp. 224–233. Springer (2011)

30. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Proceedings

of Eurocrypt. Lecture Notes in Computer Science, vol. 1233, pp. 37–51 (1997)

31. Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption standard (AES).

In: Financial Cryptography, pp. 162–181 (2003)

32. Giraud, C.: DFA on AES. In: IACR e-print archive 2003/008, p. 008. http://eprint.iacr.org/

2003/008 (2003)

33. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differential fault

attack against AES cryptosystem. In: CHES, pp. 91–100 (2006)

34. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption standard. In:

AFRICACRYPT, pp. 421–434 (2009)

35. Dusart, G.L.P., Vivolo, O.: Differential fault analysis on AES. In: Cryptology ePrint Archive,

pp. 293–306 (2003)

36. Piret, G., Quisquater, J.: A differential fault attack technique against SPN structures, with appli-

cation to the AES and Khazad. In: CHES, pp. 77–88 (2003)

37. Saha, D., Mukhopadhyay, D., Chowdhury, D.R.: A diagonal fault attack on the advanced

encryption standard. IACR Cryptol. ePrint Arch. 581 (2009)

38. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption

standard using a single fault. In: WISTP, pp. 224–233 (2011)

39. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When clocks fail: on critical

paths and clock faults. In: CARDIS, pp. 182–193 (2010)

40. Barenghi, A., Hocquet, C., Bol, D., Standaert, F.-X., Regazzoni, F., Koren, I.: Exploring the

feasibility of low cost fault injection attacks on sub-threshold devices through an example of a

65 nm AES implementation. In: Proceedings of Workshop RFID Security Privacy, pp. 48–60

(2011)

41. Khelil, F., Hamdi, M., Guilley, S., Danger, J.L., Selmane, N.: Fault analysis attack on an AES

FPGA implementation. In: ESRGroups, pp. 1–5 (2008)

42. Selmane, N., Guilley, S., Danger, J.-L.: Practical setup time violation attacks on AES. In: Euro-

pean Dependable Computing Conference, pp. 91–96 (2008)

43. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption standard. In:

Preneel, B. (ed.) AFRICACRYPT. Lecture Notes in Computer Science, vol. 5580, pp. 421–

434. Springer (2009)

44. National Institute of Standards and Technology: Advanced Encryption Standard. NIST FIPS

PUB 197 (2001)

45. Ali, S., Mazumdar, B., Mukhopadhyay, D.: A fault analysis perspective for testing of secured

soc cores. IEEE Des. Test 30(5), 63–73 (2013)

46. Kim, C.H.: Improved differential fault analysis on AES key schedule. IEEE Trans. Inf. Foren-

sics Secur. 7(1), 41–50 (2012)

47. Guo, X.: Fault Attacks and Countermeasures on Symmetric/Key Cryptographic Algorithms.

Ph.D. thesis

48. Wu, K., Karri, R., Kuznetsov, G., Goessel, M.: Low cost concurrent error detection for the

advanced encryption standard. In: ITC, pp. 1242–1248 (2004)

49. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and detection proce-

dures for a hardware implementation of the advanced encryption standard. IEEE Trans. Com-

put. 52(4), 492–505 (2003)

50. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: A lightweight high-performance fault detection

scheme for the advanced encryption standard using composite field. IEEE Trans. VLSI Syst.

19(1), 85–91 (2011)

51. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: Concurrent structure-independent fault detec-

tion schemes for the advanced encryption standard. IEEE Trans. Comput. 59(5), 608–622

(2010)

http://eprint.iacr.org/2003/008
http://eprint.iacr.org/2003/008

114 D.B. Roy and D. Mukhopadhyay

52. Karpovsky, M., Kulikowski, K.J., Taubin, E., Member, S.: Robust protection against fault-

injection attacks of smart cards implementing the advanced encryption standard. In: DNS, pp.

93–101 (2004)

53. Malkin, T., Standaert, F.-X., Yung, M.: A comparative cost/security analysis of fault attack

countermeasures. In: FDTC, pp. 109–123 (2005)

54. Maistri, P., Leveugle, R.: Double-data-rate computation as a countermeasure against fault

analysis. IEEE Trans. Comput. 57(11), 1528–1539 (2008)

55. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes of fault based side-

channel cryptanalysis of symmetric block ciphers. IEEE Trans. Comput.-Aid. Des. 21(12),

1509–1517 (2002)

56. Guo, X., Karri, R.: Recomputing with permuted operands: a concurrent error detection

approach. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 32(10), 1595–1608 (2013)

57. Kapoor, R.: Security vs. test quality: Are they mutually exclusive? In: ITC’04: Proceedings

of the International Test Conference, Washington, DC, USA, 2004, p. 1413. IEEE Computer

Society (2004)

58. Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware implementa-

tions of data encryption standard. In: ITC’04: Proceedings of the International Test Conference,

pp. 339–344, Washington, DC, USA, 2004. IEEE Computer Society (2004)

59. Mukhopadhyay, D., Chakraborty, R.: Testability of cryptographic hardware and detection of

hardware trojans. In: 2011 20th Asian Test Symposium (ATS), pp. 517–524 (2011)

60. Stallings, W.: Cryptography and Network Security: Principles and Practice. Pearson Education

(2002)

61. Wu, K., Yang, B., Karri, R.: Secure scan: a design-for-test architecture for crypto-chips. In:

DAC’05: Proceedings of 42nd Design Automation Conference, pp. 135–140 (2005)

62. Yang, B., Wu, K., Karri, R.: Secure scan: a design-for-test architecture for crypto chips. IEEE

Trans. Comput.-Aid. Des. Integr. Circ. Syst. 25(10), 2287–2293 (2006)

Chapter 6
PUF-Based Authentication

Jim Plusquellic

6.1 Introduction

The internet-of-everything has created vast opportunities for the integration of
microelectronic systems into nearly every aspect of our lives, but it has also
expanded the attack surface of such systems, providing an ever-widening oppor-
tunity for malicious adversaries to steal private information, destroy property or
worse, and subvert systems in a manner that results in the loss of human life [1–15].
These problems are becoming particularly acute with the proliferation of mobile
computing and the debut of new information-sharing and control systems such as
the health information exchange, embedded medical devices, smart grid, home
automation, smart cars, smart cards, RFID, and sensor networks. Stronger,
physical-layer security, and trust primitives are needed for modern electronic sys-
tems to counter the advantage made available to adversaries by the increasing
proliferation, diversity, and complexity of software and hardware.

Physical-layer refers to components that are rooted in the hardware, and that
provide support for secure execution of algorithms, and for secure generation and
storage of secrets (keys). A physical unclonable function (PUF) is a physical-layer
primitive that is designed to derive entropy (randomness) from variations in the
structural and electrical characteristics of integrated circuits (ICs) [16]. Similar to
DNA profiles among humans, no two ICs are (or can intentionally be manufactured
to be) identical. PUFs measure and digitize small “analog” differences among
identically designed ICs to generate unique and unclonable bitstrings. The random
and persistent nature of the entropy source within ICs addresses important physical
security requirements that relate to the generation and storage of keys. Most PUF
designs use standard IC manufacturing processes, which benefits low-cost appli-

J. Plusquellic (✉)
University of New Mexico, Albuquerque, NM, USA
e-mail: jimp@ece.unm.edu

© Springer International Publishing AG 2017
S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,
DOI 10.1007/978-3-319-50057-7_6

115

cations by eliminating the need for costly non-volatile memory (NVM). PUFs can
be integrated into any type of system, including system-on-a-chip (SoC), an
application specific integrated circuit (ASIC) or field programmable gate array
(FPGA).

This chapter focuses on the design of authentication protocols which utilize
physical-layer cryptographic primitives such as the PUF, and describes the benefits
(and drawbacks) they offer over traditional software-based authentication protocols.
PUF-based authentication protocols are less than 15 years old and many have not
yet been fully vetted. Therefore, the development of low cost, secure protocols, and
proofs of their attack resilience is still very much a moving target. We provide a
high-level description of algorithmic security primitives and authentication proto-
cols, and then present a snapshot of the current state of the art, fully acknowledging
that the latter is rapidly evolving and still considered an open research problem by
the hardware security and trust community.

6.2 Information Security and Cryptography

The term information security refers to vast array of mechanisms, protocols, and
algorithms, which are designed to protect information from unauthorized access,
modification, and destruction [17]. Information security has four primary objectives
including confidentiality, data integrity, authentication, and non-repudiation [18].
Confidentiality refers to maintaining privacy or secrecy of information and is tra-
ditionally ensured using encryption techniques. Data integrity relates to a property
of the data, that it has not been altered by an unauthorized party, and is typically
implemented using secure hashing schemes. Authentication is a process that con-
firms the identity of an entity or the original source of data using corroborative
evidence, and can be carried out using modification detection codes (MDCs),
message authentication codes (MACs), and digital signatures. Non-repudiation
refers to a process that associates an entity with a commitment or action, thereby
preventing the entity from claiming otherwise, and is traditionally ensured using
digital signature schemes.

The primary goal of cryptography is to provide a theoretical basis and practical
specifications for techniques that meet these information security goals. A wide
variety of cryptographic primitives have been developed to provide information
security. Menezes et al. [18] propose a taxonomy which partitions cryptographic
primitives into three basic categories, namely unkeyed primitives, symmetric-key
primitives, and public-key primitives. Unkeyed primitives include cryptographic
hash functions, one-way permutations, and random sequences. The keyed primi-
tives include a wide variety of symmetric and public-key ciphers, MACs (which are
keyed hash functions), signatures, and pseudo-random number generators (those
relevant to authentication are described in the next section). Each primitive can be
evaluated according to a set of criteria such as the level of security they provide as

116 J. Plusquellic

well as the performance and overhead associated with a particular implementation
of the primitive.

Authentication protocols are implemented as an exchange of messages between
two or more parties, usually over an unsecured network. Authentication utilizes
cryptographic primitives as countermeasures to adversarial manipulation of the
transmitted messages and as mechanisms to protect the interfaces of the commu-
nicating entities from information leakage and tracking. PUFs provide novel ways
of designing protocols but cannot be used by themselves to implement all of the
security requirements of the protocol. Sections 6.3 and 6.4 provide an overview of
traditional security-related primitives commonly used in authentication protocols,
as well as algorithms and evaluation metrics that are required when using PUFs for
authentication. Once the groundwork of authentication has been established, we
then describe several PUF implementations and PUF-based authentication protocols
in Sects. 6.5 and 6.6.

6.3 Cryptographic Primitives for Authentication Protocols

A cryptographic protocol is a distributed algorithm defined by a sequence of steps
precisely specifying the actions required of two or more entities to achieve a
specific security objective [18]. All protocols make use of cryptographic primitives
that provide specific security properties. In this section, we briefly describe the
primitives most commonly used in authentication protocols.

6.3.1 Random Number Generation

Random numbers are important in many cryptographic protocols, e.g., session keys,
nonce for authentication, randomized procedures, etc. Random numbers must be
selected uniformly from a distribution, thereby ensuring that all possible values are
equally likely, as a means of maximizing the difficulty of algorithmic and brute
force attacks carried out by adversaries against the protocol. Requests that are
common in cryptographic protocols include “select an element at random from the
sequence {1, 2, …, n}” or “generate a random string of symbols of length m over
the alphabet G of n symbols.” Uniformly refers to the probability that a given
symbol is selected and by definition is equal to 1/n for an alphabet of n symbols,
and 1/nm for a string of symbols of length m.

Traditionally, deriving random numbers from physical sources was difficult and
costly, spurring the development of software-based alternatives such as techniques
based on pseudorandom sequences and seed parameters (PRNGs) [19]. NIST
recommends several such cryptographically secure PRNGs, each based on different
types of cryptographic primitives such as hash functions, MACs and block ciphers
[20]. Although most are considered cryptographically secure, they each depend on a

6 PUF-Based Authentication 117

random seed with high entropy. An entropy accumulator can be used to derive the
seed from a “non-ideal” physical source of randomness, whereby the input bit-
stream produced by the non-ideal source is processed by the entropy accumulator
into an m-bit pool of high entropy. The entropy accumulator can be a cryptographic
hash function [19]. Alternatively, the physical layer nature of PUFs make them
cost-effective and well suited as the physical source of randomness. Recent work
shows that appropriate post-processing of PUF responses allow them to be used
directly as TRNGs, i.e., without the need of PRNGs [21].

6.3.2 Cryptographic Hash Functions

As mentioned above, secure hash functions are used to realize a fundamental
information security property, namely that related to the integrity of data. Com-
pression is a defining characteristic of many-to-one hash functions, whereby binary
strings of arbitrary length are mapped to strings of fixed length n. The n-bit hash
output is a compact representation of the input string. The many-to-one property
implies that collisions are possible, a condition in which two distinct input strings
map to the same hash. Cryptographic hash functions (referred to as hash functions
subsequently) add important security-related properties to traditional hash functions
and have the following characteristics [22]:

• It is easy to compute the hash for any input string.
• It is computationally infeasible to (1) generate the input string from its hash,

(2) modify the input string without changing the hash, and (3) find two different
input strings which produce the same hash.

More formally, the security properties of a hash function h with input message
m and output y = h(m) are defined as follows:

• preimage resistance: Given any hash y, it is computationally infeasible to find an
m such that h(m) = y.

• second-preimage resistance: Given an input m, it is computationally infeasible to
find a different input m′ such that h(m) = h(m′)

• collision resistance: It is computationally infeasible to find any two distinct
inputs m and m′ such that h(m) = h(m′).

Even stronger security properties are possible, for example it should be infea-
sible to find two inputs that produce similar hashes. Ideally, the hash function
should behave like a random function, where each hash is equally probably, i.e.,
uniformly distributed.

There are two fundamental classes of hash functions: unkeyed hash functions
and keyed hash functions. Keyless hash functions can be used to create modifi-
cation detection codes (MDCs), whose main purpose is to confirm data integrity.
There are two types of MDCs: one-way hash functions (OWHFs) which make it

118 J. Plusquellic

difficult to find an input string m that hashes to specific hash value, and collision
resistant hash functions (CRHFs), which makes it difficult to find two input strings
that map to the same hash. OWHFs are preimage and second-preimage resistant,
and are considered weak one-way hash functions, while CRHFs typically have all
three properties and are called strong one-way hash functions.

Keyed hash functions provide both message authentication and data integrity
and are called message authentication codes (MACs) when used in
symmetric-encryption protocols, and digital signatures when used in asymmetric
encryption protocols. Both schemes hash the message and then sign it with a key.
The receiver authenticates by applying the MAC or digital signature algorithm on
the received message and verifies that the received hash matches the locally
computed value. Hashing compresses the message and makes this data integrity
check more efficient. Outside the scope of this expository, the chip area and
computational complexity of cryptographic hash functions is much larger than that
found in non-cryptographic hash functions [18, Ch. 9].

Similar to authentication protocols, secure hash algorithms continue to evolve,
driving periodic changes, and additions to the public standards [23, 24]. The term
secure hash algorithm (SHA) is used in reference to a set of public standards
maintained by the National Institute of Standards and Technology (NIST). In
particular, SHA-3 refers to subset of the cryptographic primitive family Keccak, a
standard released in August of 2015 that is designed as an alternative to the SHA-2
family of secure hash functions [25].

6.3.3 Secure Sketches and Fuzzy Extractors

The introduction of PUFs as a primitive in authentication (and encryption) proto-
cols made it necessary to enlist error-correcting and randomness extraction
mechanisms into the suite of cryptographic primitives. The analog characteristics of
the entropy source, as well as the embedded analog-to-digital instrumentation
components of a PUF instantiation, combined with environmental (temperature,
supply voltage), coupling and power supply noise sources make it difficult or
impossible to precisely reproduce the bitstrings generated by PUFs from one run of
the protocol to the next. When PUF bitstrings are used as input to traditional
cryptographic primitives, such as hash functions or encryption algorithms, even a
single bit-flip error in the bitstring causes a catastrophic failure in the protocol.
Additionally, PUF-generated bitstrings, in many cases, are not ideal from the
randomness perspective. Systematic bias effects and correlations inherent to the
structure of the entropy source make it difficult for the PUF to produce a bitstring
uniformly from the underlying distribution, i.e., such that all bitstrings of a given
length are equally likely. Secure sketches, strong extractors, and fuzzy extractors
are functions designed to deal with these deficiencies.

There are many types of error-correction algorithms that have been developed to
fix errors that occur in bitstrings. The most popular algorithms used for PUFs

6 PUF-Based Authentication 119

produce helper data as a supplementary source of information during the initial
bitstring generation (Gen) process, which is later used to fix bit-flip errors during
reproduction (Rep). The helper data is typically transmitted and stored openly, in a
public non-secure location, and therefore, it must reveal as little as possible about
the bitstring it is designed to error correct.

The Sketch component of a secure sketch takes an input y and returns a helper
data bitstring w [26, 27]. The Recover component takes a “noisy” input y′ and a
helper bitstring w and returns y″, which is guaranteed to match the original bitstring
y as long as the number of bit flip errors is less than t (t is a parameter that can be
selected based on the level of error correction that is needed). The algorithm is
characterized by a security property, that guarantees that if y is selected from a
distribution with min-entropy m, then an adversary can reverse-engineer y from
m with probability no greater than 2−m′ (m′ is defined below). Entropy is a measure
of the disorder or randomness in a closed system, while min-entropy refers to the
worst-case behavior of a random variable and is defined by Eq. 6.1. It is the
negative log2 of the event with maximum probability.

HðXÞ= − ∑
n

i=1
ðpi log2 piÞ The entropy of a random variable X

with probabilities Pi, . . . , pn

H Xð Þ= 1
ln 2ð Þ log2

1
p

� �
When Pi =1 n̸ equal probabilitiesð Þ

H∞ Xð Þ=min − log2 Pið Þ= − log2 max Pið Þð ÞMin − entropy ð6:1Þ

Dodis et al. [26, 27] proposed two algorithms for a secure sketch, both based on
binary error correcting linear block codes. A linear block code is characterized with
three parameters given as [n, k, t], which indicate that there are 2k codewords of
length n and each codeword is separated from all others by at least 2t − 1 bits. The
last parameter specifies the error correcting capability of the linear block code, in
particular, that up to t bits can be corrected.

The code-offset construction is the simpler of the two linear block codes. The
Sketch(y) procedure samples a uniform, random codeword c (which is independent
of y), and produces an n-bit helper data bitstring w using Eq. 6.2 [19]. The bitstring
w represents the binary offset between y and c.

w= y⊕ c ð6:2Þ

Recover (y′, w) computes a noisy codeword c′ using Eq. 6.3 and then applies an
error-correcting procedure to correct c′ as c″ = Correct(c′).

c′ = y′ ⊕w = > c′ = ðy⊕ y′Þ⊕ c ð6:3Þ

120 J. Plusquellic

The error-corrected value of y′ is computed as given by Eq. 6.4.

y′′ =w⊕ c′′ = y⊕ ðc⊕ c′′Þ ð6:4Þ

If the number of bits that are different between c and c′ < t, where t represents
the error-correcting capability of the code, then the algorithm guarantees y = y″.
Also, w discloses at most n bits of y, of which k are independent of y (with k less
than or equal to n). Therefore, the remaining min-entropy is m − (n − k) (specified
as m′ above), where (n − k) represents the min-entropy that is lost by exposing w to
the adversary.

The second algorithm proposed in [26, 27] is referred to as the syndrome
construction. The Sketch(y) procedure produces an (n − k)-bit helper data bitstring
using the operation specified by Eq. 6.5, where HT is a parity-check matrix
dimensioned as (n − k) x n.

q= y ⋅HT ð6:5Þ

The Recover procedure computes a syndrome s using Eq. 6.6.

s= y′ ⋅Ht ⊕w ⇒ s= ðy⊕ y′Þ ⋅HT ð6:6Þ

Error correction is carried out by finding a unique error word e such that the
hamming weight (the number of ‘1’s) in bitstring e is less than or equal to t (the
error-correcting capability of the code). Also, the error word e satisfies Eq. 6.7.

s= e ⋅HT ð6:7Þ

In both the code-offset and syndrome techniques, the Recover procedure is more
computationally complex than the Sketch procedure. As discussed below, the first
PUF-based authentication protocols implemented the Recover procedure on the
resource-constrained hardware token. Subsequent work proposes a reverse fuzzy
extractor, which implements Sketch on the hardware token and Recover on the
resource-rich server, making the protocol more cost-effective and attractive for this
type of application environment [28].

Similar to error-correction, there is a broad range of techniques for constructing a
randomness extractor. Section 6.3.1 described the requirements for random
number generation, and practical approaches for extracting randomness from
non-ideal physical sources, e.g., those based on the use of seeded cryptographic
PRNGs. Reference [19], Sect. 6.3.2 provides a survey of techniques proposed for
extracting randomness.

Fuzzy extractors combine a secure sketch with a randomness extractor as
shown in Fig. 6.1 (adapted from [19]). A PUF-based authentication protocol, with
the hardware token, e.g., smart card, shown on the left and the secure server, e.g.,

6 PUF-Based Authentication 121

bank, shown on the right is also shown to illustrate one possible usage scenario. The
Sketch, as noted above, takes an input r, which, e.g., might be a PUF response to a
server-generated challenge c, as input and produces helper data w (labeled 1st in the
figure). The Extractor takes both r and a random number (seed) n and produces an
entropy distilled version z, which can be stored as a tuple (c, z, w, n) in a secure
database (DB) on the server. This component of the fuzzy extractor is called
Generate or Gen.

Authentication in the field begins by selecting a tuple (c, z, w, n) from the DB
and transmitting the challenge c, helper data w and the seed n to the hardware token.
The PUF is challenged a second time with challenge c and produces a “noisy”
response r′ (labeled second in the figure). The Reproduce or Rep process of the
fuzzy extractor uses the Recover procedure of the secure sketch to error correct r′
using helper data w. The output r″ of Recover and the seed n are used by the
Extractor to generate z′. As long as the number of bit flip errors in r′ is less than
t (the chosen error correction parameter), the z′ produced by the token’s Extractor
will match the server-DB z and authentication succeeds. Note that the error cor-
rected z′ establishes a shared secret between the server and token, which can
alternatively be used as input to traditional cryptographic primitives such as hash
and block cipher functions (as opposed to being transmitted to the server as shown
in the figure).

6.3.4 Statistical Metrics

PUF-generated bitstrings are often evaluated using techniques designed to measure
the statistical quality of the bitstrings, which include characteristics such as
uniqueness, reproducibility, and randomness. Uniqueness measures how different
the bitstrings are from one device to another in the population. The probability mass

Fig. 6.1 Fuzzy extractor

122 J. Plusquellic

function of the binomial distribution is the appropriate statistical characterization
function for bitstrings and is given by Eq. 6.8, with mean and variance given by
Eqs. 6.9 and 6.10, resp. [29]. Equation 6.8 gives the probability of getting exactly
k successes in n trials.

f ðk; n, pÞ= n!
k! n− kð Þ!P

kð1− pÞn− k ð6:8Þ

μbinomial = np ð6:9Þ

ρbinomial = npð1− pÞ ð6:10Þ

Assuming the probability of a ‘1’ in a bitstring of size n produced by a PUF is
p = 0.5, then µbinomial indicates that half of the bits will be ‘1’ on average. The same
characteristic holds across bitstrings from different devices if the probability of a ‘1’
is 0.5 for any given bit position. It follows then that the average number of bits that
are different from one bitstring to another, in this best case scenario, is 50 %. The
metric used to measure uniqueness is inter-chip hamming distance (HDinter).
HDinter counts the number of bits that are different. In a typical PUF application, the
count is computed over all possible pairings of bitstrings produced by different
devices in the population and then divided by the total number of bits and multi-
plied by 100 to yield a percentage. Note that the set of bits that differ between any
two arbitrary bitstrings necessarily are distinct from one pairing to another.

Reproducibility measures the PUFs ability to regenerate its bitstring(s) over time
and under different environmental conditions. The terms enrollment and regen-
eration are used in reference to the bitstring generation process. Enrollment is
carried out when a new bitstring is required, while regeneration refers to the process
of reproducing the same bitstring at some point later in time. The application
determines whether precise regeneration is required, e.g., encryption requires exact
replicas of the bitstring (when the bitstring is used as the key) while some
authentication schemes have a built-in tolerance to allow some (small) fraction of
bit flip errors to occur. Regeneration without errors is much more challenging when
the process is carried out under different temperatures and/or supply voltages. The
metric used to measure reproducibility is intra-chip hamming distance (HDintra).
Similar to HDinter, HDintra counts the number of bits that are different between
pairings of bitstrings. For HDintra, however, the pairings of bitstrings are composed
from the set of bitstrings produced by a specific device, each regenerated possibly
under different environmental conditions with respect to the enrollment conditions.
The term TV corners is used in reference to the set of environmental conditions
used to test the devices, e.g., 85 °C and +10 % VDD is a TV corner. Similar to
HDinter, HDintra is usually expressed as an average percentage over all devices tested
in the experiment, by counting the total number of bit flip errors that occur, dividing
by the total number of bits inspected and then multiplying by 100. The ideal case is
an average HDintra of 0 %, i.e., no devices produced any bit flip errors under any TV
corner.

6 PUF-Based Authentication 123

The NIST statistical test suite can be used to evaluate the randomness of PUF
response bitstrings [30]. The NIST tests look for patterns in the bitstrings that are
not likely to be found at all or above a given frequency in a “truly random”

bitstring. For example, long or short strings of 0’s and 1’s, or specific patterns
repeated in many places in the bitstring work against randomness. The output of the
NIST statistical evaluation engine is the number of chips that pass the null
hypothesis for a given test, when evaluated at a significance level α (α is set to the
default value of 0.01 which reflects a confidence of 99 %). The null hypothesis is
specified as the condition in which the bitstring-under-test is random. Therefore, a
good result is obtained when the number of bitstrings that pass the null hypothesis
is large.

The NIST test suite consists of 15 separate tests, all of which have constraints on
the size of the bitstring. The following provides an intuitive overview of what the
tests measure, with details regarding the bitstring size requirements and applied test
statistics omitted (see [30]). The test is always conducted against what is expected
in a truly random sequence of similar length.

• Frequency Test: Counts the number of ‘1’ in a bitstring and assesses the
closeness of the fraction of ‘1’s to 0.5. All other tests assume this test is passed.

• Block Frequency Test: Same except bitstring is partitioned into M blocks.
Ensures bitstring is “locally” random.

• Runs Test: Analyzes the total number of runs, i.e., uninterrupted sequences of
identical bits, and tests whether the oscillation between ‘0’s and ‘1’s is too fast
or too slow.

• Longest Run Test: Analyzes the longest run of ‘1’s within M-bit blocks, and
tests if it is consistent with the length of the longest run expected in a truly
random sequence.

• Rank Test: Analyzes the linear dependence among fixed length substrings in the
bitstring, and tests if the number of ranks, i.e., number of rows that are linearly
independent, of size M, M − 1, etc., match the number expected in a truly
random sequence.

• Fourier Transform Test: Analyzes the peak heights in the frequency spectrum of
the bitstring, and tests if there are periodic features, i.e., repeating patterns close
to each other.

• Non-overlapping and Overlapping Template Tests: Analyzes the bitstring for
the number of times pre-specified target strings occur, to determine if too many
occurrences of non-periodic patterns occur.

• Universal Test: Analyzes the bitstring to determine the level of compression that
can be achieved without loss of information.

• Linear Complexity Test: Analyzes the bitstring to determine the length of the
smallest set of LFSRs needed to reproduce the sequence.

• Serial and Approximate Entropy Tests: Analyzes the bitstring to test the fre-
quency of all possible 2m overlapping m-bit patterns, to determine if the number
is uniform for all possible patterns.

124 J. Plusquellic

• Cumulative Sums Test: Analyzes the bitstring to determine if the cumulative
sum of incrementally increasing (decreasing) partial sequences is too large or
too small.

• Random Excursions Test: Analyzes the total number of times that a particular
state occurs in a cumulative sum random walk.

6.4 Traditional, Software-Oriented Authentication

Authentication refers to the process of “verifying the identity of the communicating
principals to one another” [31]. It is usually subdivided into entity authentication
and message (or data origin) authentication [18], with the former referring to
authentication in “real-time” between two parties about ready to engage in com-
munication while the latter refers to data such as email that may later need to be
authenticated by the receiver as to the origin and time sent. Note that authentication
of the origin of data also addresses data integrity, i.e., whether the message has been
tampered with by unauthorized parties, because unauthorized changes imply the
data has a new source.

Authentication is typically carried out between a prover (claimant) A, e.g., a
hardware token such as a smart card, and a verifier B, e.g., a secure server operated
by your bank. The verifier B either confirms or accepts the prover’s identity as
authentic or terminates without acceptance, i.e., rejects. The information exchanged
with verifier B must be designed to prevent reuse by B, otherwise it could imper-
sonate A to a third party C. Protocols should guarantee that the probability of
impersonation is negligible, even when a polynomially large number of previous
authentications occur between A and B.

Authentication can be used for security objectives including access control,
entity authentication, message authentication, data integrity, non-repudiation and
key authentication. Authentication can be carried out using symmetric encryption
techniques, e.g., via message authentication codes or MACs, using public/private
encryption schemes via digital signatures and through authenticated key estab-
lishment methods. The most common usage models include access control to a
resource, e.g., to computer accounts, ATMs, to software, to a building, etc.

The capabilities provided in the authentication protocol depend on the security
requirements. For example, an authentication protocol may be unilateral, i.e., from
prover to verifier, or mutual. Some protocols may preserve privacy, to prevent
malicious adversaries from tracking instances of authentications that occur between
the prover and verifier over time. Others may be symmetric in nature, requiring the
use of a shared secret between the prover and verifier provided by interactions, in
real-time, with a trusted third party (TTP), or may be asymmetric with the prover
and verifier maintaining their own private secrets. The computational and com-
munication overheads associated with the protocols will depend on the type of
protocol, its security requirements and the security properties that must be
guaranteed.

6 PUF-Based Authentication 125

6.4.1 Entity Authentication

Entity authentication techniques can be divided into three categories:

• Something you know: Passwords, PINs and secret or private keys whose
knowledge is demonstrated in challenge-response protocols.

• Something you possess: Physical accessory, resembling a passport in function.
Magnetic striped cards, smart-cards, and hand-held customized calculators
(password generators) which provide time-variant passwords.

• Something inherent: Biometrics, e.g., human physical characteristics such as
fingerprints, voice, retinal patterns, and signatures.

Passwords represent the most widely used form of authentication, but are
considered weak authentication protocols. Passwords provide unilateral and
time-invariant authentication, with the userid serving as the claim of identity and
the password serving as evidence supporting the claim. Attacks include eaves-
dropping to enable replay, and password guessing such as dictionary attacks. On
most systems, the passwords are encrypted using a one-way function (OWF) before
being stored on disk (see Sect. 6.3.2). A technique called salting is also commonly
used to make dictionary attacks more difficult by expanding the search space for the
adversary.

Two-stage authentication and password-derived keys address the insufficient
entropy issue associated with human chosen passwords. An n-digit PIN verifies the
user to the token, e.g., smart card, in the first stage. The token typically embeds
additional secrets for use in stage two between the token and the system. A variant
uses passkeys to map a user password to a cryptographic key using a OWF. The
most secure of the weak authentication schemes uses one-time passwords, which
addresses eavesdropping and replay attacks on password schemes.

Challenge-Response protocols fall in the class of strong authentication pro-
tocols, whereby authentication requires the prover to demonstrate knowledge of a
secret without revealing the secret itself to the verifier. Here, the prover provides a
response to a time-variant challenge, with the response inseparably bound to both
the secret and the challenge. The challenge can be a random number, called a nonce
(for “used only once”), a sequence number or a timestamp. Time variant parameters
are countermeasures to replay attacks and certain types of chosen-text attacks
because the uniqueness and timeliness guarantees allow one protocol instance to be
distinguished from another. Note that challenge-response protocols require some
type of computing device and secure storage for long-term keying material.

Challenge-Response by Symmetric-key: Each pair of communicating parties
share a secret key. In large communities, a trusted third party (TTP) can provide
session keys in real time to circumvent the need to distribute n2 key pairs.
A common form of unilateral authentication uses random number(s) (RN) [18].

126 J. Plusquellic

A←B: rB ðB generates random nonce rBÞ
A←B:EKðrB,B*Þ

B generates random nonce rB and transmits it to A (over an unsecured channel).
A encrypts the nonce and the identifier B using a shared secret key K and transmits
the encrypted message back to B. B then decrypts and (1) checks that the rB
received matches the rB sent and (2) verifies B* is equal to his own B. The shared
secret K must be securely transmitted to A and B beforehand, typically using a
mechanism involving a TTP, in order for this scheme to work.

Mutual authentication requires a second nonce rA and a third message:

A←B: rB B generates random nonce rBð Þ
A←B:EKðrA, rB,B*Þ A generates random nonce rAð Þ
A←B:EKðrA, rBÞ

Encryption ensures the nonce and identifiers are “inseparably” bound as dis-
cussed above.

Challenge-Response using Keyed One-Way Functions: Encryption is con-
sidered a “heavy weight” cryptographic primitive, and may be replaced by a
one-way function (OWF) or a nonreversible function with shared key, and a
challenge, for authentication in resource-constrained devices. The encryption
algorithm EK is replaced by a MAC algorithm hK, i.e., a keyed hash function. The
receiver also computes the MAC and compares it with the received MAC. These
protocols require an additional cleartext field rA to be transmitted [18].

A ← B: rB B generates random nonce rBð Þ
A←B: rA, hKðrA, rB,BÞ A generates random nonce rAð Þ
A←B: hKðrA, rB,AÞ

B confirms that the hash value received, designated as hk(rA, rB, B), is equal to
the value he/she computes locally using the same hash function and shared secret
K. A performs a similar validation using the transmitted hash hK(rB, rA, A) from
B. As discussed in Sect. 6.3.2, the computational infeasibility of finding a second
input to hK that produces the same hash provides the security guarantee in this
mutual authentication protocol.

Challenge-Response by Public-Key: Here, the prover decrypts a challenge
using its secret key component of the public-private pair, which is encrypted by the
verifier under its public key PA. Alternatively, the prover can digitally sign a
challenge.

A←B: hðrÞ,B,PAðr,BÞ

A←B: r

6 PUF-Based Authentication 127

B chooses nonce r, computes the witness x = h(r) (h is a OWF), where
x demonstrates knowledge of r without disclosing it, and computes challenge
e = PA(r, B). A decrypts e to recover r′ and B′, computes x′ = h(r′) and rejects if x′
does not equal x or if B′ does not equal B, otherwise A sends r = r′ to B. B succeeds
with unilateral entity authentication of A upon verifying the received r agrees with
his r. The witness prevents chosen-text attacks.

6.5 Physical Unclonable Functions (PUFs)

Components needed for information security can be implemented using
physical-layer security primitives. A long-standing assumption of software-based
security systems has been that hardware implementations of security primitives are
trustworthy “black boxes.” In particular, for keyed security primitives such as block
ciphers, key generation, and key storage are assumed to be trusted and secure, and
operational state within black box implementations of security algorithms is
assumed to be hidden and inaccessible. Unfortunately, models which assume a
“hardware root of-trust” are becoming increasingly more vulnerable to attacks [32–
34].

PUFs represent physical-layer security components that are designed to deal
with threats to key generation and key storage. PUFs are circuit primitives that
leverage within-die variations in ICs as a means of producing random bitstrings.
Each IC is uniquely characterized by random manufacturing variations, and
therefore, the bitstrings produced by PUFs are unique from one chip to the next.
Cloning a PUF, i.e., making an exact copy, is nearly impossible because it would
require control over the fabrication process that is well beyond our current capa-
bilities. A PUF maps a set of digital “challenges” to a set of digital “responses” by
exploiting these physical variations in the IC. The entropy in the responses is stored
in the physical structures on the IC and can only be retrieved when the IC is
powered up. The analog nature of the entropy source makes PUFs
“tamper-evident,” whereby invasive attacks by adversaries will, with high proba-
bility, change its characteristics.

PUFs have been proposed which leverage variations in transistor threshold
voltages [35–37], speckle patterns [38, 39], delay chains and ROs [40–64],
thin-film transistors [65], FPGAs [66, 67], SRAMs [68–74], leakage current [75,
76], metal resistance [77–81], transistor transconductance [82], the path delays of
core logic macros [83–87], optics and phase change [88], sensors [89], switching
variations [90], sub-threshold design [91], ROMs [92], buskeepers [93], micro-
processors [94], using lithography effects [95, 96], optical proximity correction
[97], aging [98], in subthreshold operation [99], memristors [100] and other
non-volatile memories [101], in scan chains [102], phase change memory [103],
and carbon-nanotubes [104]. Board-level authentication using PUFs has also
recently been proposed [105] and for securing mobile system platforms [106, 107].

128 J. Plusquellic

6.5.1 PUF-Based Authentication

As mentioned above, authentication is the process between a prover, e.g., a hard-
ware token and a verifier, a secure server that confirms the identities, using cor-
roborative evidence, of one or both parties. With the Internet-of-things (IoT), there
are a growing number of applications in which the hardware token is resource-
constrained, and therefore novel authentication techniques are required that are low
in cost, energy and area overhead. Conventional methods of authentication which
use area-heavy cryptographic primitives and non-volatile memory (NVM) are less
attractive for these types of evolving embedded applications. PUFs, on the other
hand, are hardware security and trust primitives that can address issues related to
low cost because they eliminate (in many proposed authentication protocols) the
need for NVM. Moreover, the special class of so-called “strong PUFs” can also
reduce area and energy overheads by reducing the number and type of
hardware-instantiated cryptographic primitives.

PUFs generate bitstrings that can serve the role of uniquely identifying the
hardware tokens for authentication applications. The bitstrings are generated
on-the-fly, thereby eliminating the need to store digital copies of them in NVM, and
are (ideally) reproducible under a range of environmental variations. The ability to
control the precise generation time of the secret bitstring and the sensitivity of the
PUF entropy source to invasive probing attacks (which act to invalidate it) are
additional attributes that make them attractive for authentication in
resource-constrained hardware tokens.

PUF-based protocols have been proposed for applications including encryption,
authentication, for detecting malicious alterations of design components and for
activating vendor specific features on chips. Each of these applications has a unique
set of requirements regarding the security properties of the PUF. For example,
PUFs that produce secret keys for encryption are not subject to model building
attacks (as is true for PUF-based authentication) which attempt to “machine learn”
the components of the entropy source within the chip as a means of predicting the
complete response space of the PUF. This is true for encryption because the
responses to challenges are typically not “readable” from an interface on the
chip. In general, the more access a given application provides to the PUF externally,
the more resilience it needs to have to adversarial attack mechanisms. Authenti-
cation as an application for PUFs clearly falls in the category of extended access.

6.5.2 Strong Versus Weak PUFs

Weak PUFs are those whose challenge-response space is small while strong PUFs
have very large, ideally exponential, challenge-response spaces [108, 109]. The
distinction between strong and weak PUF is rooted in the amount of entropy that
each class can access. The larger the entropy source, the more difficult it is for an

6 PUF-Based Authentication 129

adversary, who has access to the PUF, to collect and analyze challenge-response
pairs (CRPs) until the complete behavior of the PUF can be predicted. The SRAM
PUF is an early example of a weak PUF with only one CRP [68] while the arbiter
PUF is traditionally considered a strong PUF because of its exponentially large
challenge space [41]. However, if the size of the entropy source is considered a
defining characteristic, then the arbiter PUF would fail to meet the definition of a
strong PUF because its response space is derived from a relatively small entropy
source, in particular, as small as a couple hundred gates. Given this latter consid-
eration, very few of the proposed PUFs meet this expanded definition.
Model-building resistance using machine learning techniques has emerged as an
important criterion for determining whether a PUF is strong based only on the size
of its CRP space or whether it is truly strong, i.e., attacks that attempt to learn and
predict its behavior are infeasible [42, 110].

6.5.3 The Arbiter PUF

The most widely referenced strong PUF, the arbiter PUF, was the one of the first
proposed, and is described in [41, 42]. However, it is also widely recognized that it
is considered strong based only on the size of its input challenge space, and not on
the amount of entropy it possesses.

The arbiter PUF measures path delays from a specialized test structure as its
source of entropy as shown in Fig. 6.2. The test structure implements two paths,
each of which can be individually configured using a set of challenge bits (stored in
FFs along the top of the figure). Each of the challenge bits controls a “Switch box”
that can be configured in either pass mode or switch mode. Pass mode connects the
upper and lower path inputs to the corresponding upper and lower path outputs,
while switch mode reverses the connections. A stimulus, represented as a rising
edge on the left side of the figure, cause two edges to propagate along the two paths
configured by the challenge bits. The faster path controls the value stored in the
arbiter located on the right side of the figure. If the propagating rising edge on the
upper input to the arbiter arrives first, the response bit output becomes a ‘0’.
Otherwise, the response bit is a ‘1’. The switch boxes are designed identically as a
means of avoiding any type of systematic bias in the delays of the two paths.1

Within-die process variations cause uncontrollable delay variations to occur in the
switch boxes, which in turn, makes each instance of the arbiter PUF unique in terms
of its generated response bit(s). A bitstring can be obtained from the arbiter PUF by
repeating the measurement process under a set of different challenges.

From this design, it is clear that the arbiter PUF has an exponential number of
input challenges that can be applied, in particular, 2n with n representing the
number of switch boxes. However, the total amount of entropy is relatively small,

1Note that achieving an unbiased layout in an FPGA is a challenging and non-trivial process.

130 J. Plusquellic

and is represented by the four path segments in each of the switch boxes. For
n equal to 128, the total number of path segments that can vary individually from
one instance to another is 4 * 128 = 512. The exponential number of input chal-
lenges simply combines these individual sources of entropy in different ways.
Model building attacks attempt to learn the delay relationships of the two config-
urations for each switch box [110]. Once known, the response under any challenge
then becomes predictable (limited only by the noise margin of the arbiter mea-
surement circuit).

The model-building weakness of the arbiter PUF is addressed in follow-on work,
where the outputs of n arbiter PUFs are XOR’ed, to create a XOR-mixed arbiter
PUF [44, 111, 112]. Figure 6.3 shows an example in which two arbiter PUF output
bits are XOR’ed. The goal is to create an XOR network large enough to achieve the
avalanche criterion. This criterion is commonly found in cryptographic hash and
encryption functions where flipping one of the input bits (or a bit in the key for
encryption) causes half of the output bits to flip. For the XOR-mixed PUF, the goal
is to achieve the avalanche effect by flipping one of the challenge bits. Although
this helps significantly with model building, particularly with networks of XORs
greater than 4, larger XOR networks also reduce reliability by creating a noise-
based avalanche effect, i.e., any odd number of bit flips that occur on the inputs of
any given XOR network results in a response bit flip error. As reported in [111], if a
single arbiter PUF has an HDintra of 5 % (intra-chip HD measures the PUF’s ability
to reproduce the same bitstring over repeated applications of the challenge, usually
under different environmental conditions), the HDintra increases to 19 % for a
4-XOR-mixed arbiter PUF, i.e., nearly 1/5 of the response bits have bit flip errors.

Fig. 6.2 Arbiter PUF [41]

Fig. 6.3 XOR-mixed arbiter PUF [44, 111, 112]

6 PUF-Based Authentication 131

Therefore, error-correction using techniques described in Sect. 6.3.3 become crit-
ical to ensuring proper functional operation when used in authentication protocols.

6.5.4 Hardware-Embedded Delay PUF (HELP)

Similar to arbiter PUFs, the hardware-embedded delay PUF (HELP) derives its
entropy from variations in path delays. However, HELP measures delays from
existing functional units. Therefore, no dedicated test structures are required.
Another major benefit of using existing functional units is the amount of entropy
that can be potentially leveraged. Cryptographic functional units are particularly
attractive because of the complexity of their interconnection networks. On the down
side, the lack of control over the configuration of paths in functional units creates
issues related to systematic bias and reliability, as described in the following
sections.

Interestingly, the authors of the first silicon-based PUF paper describe their
notion of a “better PUF” in Ongoing and future work section, which turns out,
based on our work, to be well founded [40]. The basic concept of measuring path
delays from a core logic functional unit was implemented first by Li and Lach [83],
but was not fully developed as a PUF primitive. In particular, the authors do not
address the bias introduced by paths of different lengths nor do they deal with the
reliability issues associated with paths that glitch.

Our development of HELP began in 2011 on a 90 nm ASIC implementation
[86], but was fully developed as an intrinsic PUF (with full integration of the
control logic, entropy source, and measurement components) on a 130 nm Xilinx
V2Pro [84, 85], and more recently using a 28 nm Xilinx Zynq architecture [87]. We
have developed solutions for path length bias and glitching that occur when core
logic functional units are used as the source of entropy, as well as techniques that
improve the attack resilience of HELP when used in low cost authentication
applications. This section describes the characteristics of the most recent incarna-
tion of HELP and presents new results.

The original version of HELP made use of an embedded test structure called
REBEL [113] for measuring path delays and detecting glitches [84–86]. Recent
implementations of HELP measure path delays in glitch-free functional units,
which allow a simplified version of REBEL to be used [87]. The simplified version
eliminates the delay chain component and instead samples the path delays at the
capture FF directly.

HELP attaches to an on-chip module, such as a hardware implementation of the
Secure Hashing Algorithm (SHA-3) [23], as shown on the left side of Fig. 6.4. The
data path component of the SHA-3 algorithm, configured as keccak-f [200], is used
in our FPGA experiments. This combinational data path component includes 416
primary inputs (PIs) and 400 primary outputs (POs) and is implemented on a Xilinx
Zynq FPGA using 1936 LUTs.

132 J. Plusquellic

Similar to the arbiter PUF described in the previous section, within-die variations
in path delays are the main source of entropy for HELP. Manufacturing variations
change the relative path delays through the functional unit in different ways, and
therefore each instance of the functional unit is uniquely characterized by these
delays. However, the structure of the paths in the arbiter PUF is very different than
those in a typical functional unit, i.e., the arbiter PUF paths are symmetric and
regular (by design) while the paths within a typical functional unit exhibit no such
regularity.

Functional unit paths exhibit fan-out and then reconvergence of fan-out at various
points within the logic structure of the functional unit (called reconvergent-fanout),
as shown on the right side of Fig. 6.5. Also, the lengths of the paths can vary widely,
e.g., the short paths shown have 3 or fewer gates while the long paths are 5 or more
gates in length. Both of these characteristics make it more difficult to build a PUF
with good statistical characteristics. Reconvergent-fanout can cause glitching,
i.e., static and dynamic hazards, to occur on the primary outputs, whereby output
signals transition more than once. Glitching creates ambiguity regarding the “cor-
rect” timing value to use for the path. Operating the functional unit under different

Fig. 6.4 HELP Block Diagram: a Instantiation of the HELP entropy source and b HELP
processing engine

Fig. 6.5 Portion of a functional unit schematic, showing fan-out and reconvergence of paths

6 PUF-Based Authentication 133

environmental conditions, e.g., temperature and supply voltage, exacerbates the
problem, where paths that are glitch-free under nominal environmental conditions
suddenly become glitchy under adverse conditions. Moreover, the systematic bias
associated with paths of different lengths significantly degrades the statistical ran-
domness and uniqueness characteristics of the PUF. We have developed several
techniques to deal with both of these problems. Our most recent work, described here,
implements the functional unit using a special glitch-free logic style called wave
differential dynamic logic (WDDL) [114, 115], while the systematic bias introduced
by paths of different lengths is dealt with by applying a modulus to the digitized path
delay, which effectively removes the bias.

Clock Strobing

Path delay is defined as the amount of time (Δt) it takes for a set of 0-to-1 and
1-to-0 bit transitions introduced on the PIs of the functional unit (input challenge) to
propagate through the logic gate network and emerge on a PO. HELP uses a
clock-strobing technique to obtain high resolution measurements of path delays as
shown on the left side of Fig. 6.4. A series of launch-capture operations are applied
in which the vector sequence that defines the input challenge is applied repeatedly
to the PIs using the Launch row flip-flops (FFs) and the output responses are
measured on the POs using the Capture row FFs. On each application, the phase of
the capture clock, Clk2, is incremented forward with respect to Clk1, by small Δts
(on order of 20 ps), until the emerging signal transition on a PO is successfully
captured in the Capture row FFs. A set of XOR gates connected to the Capture row
FF inputs and outputs (not shown) provide a simple means of determining when
this occurs. When an XOR gate value becomes 0, then the input and output of the
FF are the same (indicating a successful capture). The first occurrence in which this
occurs during the clock strobe sweep causes the current phase shift value to be
recorded as the digitized delay value for this path. This operation is applied to all
POs simultaneously.

The phase shifting module for Clk2 is shown in the middle of Fig. 6.4. On-chip
digital clock managers (DCMs) are commonly included in FPGA architectures. For
example, Xilinx FPGAs typically incorporate at least one DCM with a digitally
controlled fine phase shift control mechanism even on their lowest cost FPGAs. For
low-cost components that do not include a DCM with this capability, a fine phase
shift mechanism can be implemented with a small area overhead using a multi-
tapped delay chain.

The right side of Fig. 6.4 shows the HELP processing engine. The digitized path
delays are collected by a storage module and stored in an on-chip block RAM
(BRAM). Each digitized timing value is stored as a 14-bit value, with 10 binary
digits serving to cover the fine phase shift sweep range of 0–1023 and 4 binary

134 J. Plusquellic

digits of fixed point precision to enable up to 16 samples of each path delay to be
measured and averaged. The 7 KByte BRAM allows 4096 path delays to be stored.
We configure the applied challenges to test 2048 paths with rising transitions and
2048 paths with falling transitions. The 14-bit digitized path delays are referred to
as PUFNums or PN.

PN Processing

Once the PN are collected, a sequence of mathematical operations is applied as
shown on the right side of the Fig. 6.4 to produce the bitstring and helper data. The
difference module creates unique, pseudo-random pairings between the rising and
falling PN groups using two seeded linear feedback shift registers (LFSRs). The
two 11-bit LFSR seeds are user-specified parameters. The PN differences, referred
to as PND, are stored in the lower 2048 memory locations of the BRAM as values
in the range ±511 with four binary digits of fixed point precision, overwriting the
original set of rising-edge PN.

Figure 6.6a shows an example of this process using two groups of 38 curves,
one curve for each Xilinx Zynq 7020 chip that was tested. The curves shown along
the bottom depict the PN obtained from rising transition tests and those along the
top are the PN from falling transition tests. The 13 line-connected points associated
with each curve represent the chip’s PN measured over a range of environmental
conditions, called temperature-voltage (TV) corners. The PN at the x-axis position
given by 0 are those measured under nominal conditions (referred to as enrollment
values below), i.e., at 25 °C, 1.00 V. The PN at positions 1, 2 and 3 are also
measured at 25 °C but at supply voltages of 0.95, 1.00, and 1.05 V. Similarly, the
other groups of 3 consecutive points along the x-axis are measured at these supply
voltages but at temperatures −40, 85, and 100 °C. The PN measured under TV
corners numbered 1–12 are referred to as regeneration values. Figure 6.6b plots
the PND defined by subtracting point-wise, each falling PN from the corresponding
rising PN for the same chip.

Fig. 6.6 a Example rising and falling path delays (PN), b PND and c PNDc

6 PUF-Based Authentication 135

Temperature-Voltage (TV) Compensation

PUFs must be able to reproduce their bitstrings as precisely as possible, ideally
without any bit flip errors, over a range of environmental conditions in which
temperature and supply voltage are different from the conditions present during
enrollment. No PUF construction to date is able to completely eliminate bit flip
errors during regeneration, but some are more resilient to them than others.
A method called temperature–voltage compensation (TVComp as shown on right
side of Fig. 6.4) is proposed for the HELP PUF as a mechanism to improve its
resilience to bit flip errors.

For HELP, bit flip errors occur because changes to the chip’s ambient temper-
ature and supply voltage change its path delays (called TV noise). TVComp applies
a linear transformation to the path delay differences (PND) as a means of shifting
and scaling them to a common reference. The goal is to define a transformation that
eliminates the saw-tooth behavior in the curves shown in Fig. 6.6b, making them as
flat and straight as possible.

TVComp is applied to the entire set of 2048 PND measured for each chip at each
of the 13 TV corners separately (note, Fig. 6.6b shows only one of the PND from
the larger set of 2048 PND that exist for each chip and TV corner). The TVComp
procedure first converts the PND to “standardized” values. Equation (6.11) repre-
sents the first transformation, which makes use of two constants, µTVx and RngTVx,
obtained from a histogram distribution of the measured PND. The second trans-
formation is represented by Eq. (6.12), which translates the standardized zvals to a
new distribution with mean µref and range Rngref. The reference mean and range
values are user-selectable parameters of the HELP algorithm.

zvali =
ðPNDi − μTVX

Þ
RngTVX

ð6:11Þ

TVCPNDiffi = zvaliRngref + μref ð6:12Þ

As an example, Fig. 6.7a shows the PND histogram distribution for chip C1 at
25 °C, 1.00 V. The µTVx is shown as −40 while the RngTVx is computed between
the 5 and 95 % as 136. Figure 6.7b superimposes the PND histograms for C1 at
25 °C, 1.00 V and 100°C, 1.05 V. The TVComp process will shift (and scale) this
distribution to the left to remove the adverse effects introduced by the change in
environmental conditions.

A second illustration of the effect of TVComp is shown in Fig. 6.6b, c. The data
in Fig. 6.6c is obtained by applying TVComp procedure to the 2048 PND measured
under each of the 13 TV corners for each chip, i.e., 13 TV corners * 38 chips = 494
separate applications. Since the same reference mean and range are used for all
transformations, TVComp eliminates both TV noise and chip-wide performance

136 J. Plusquellic

differences between the chips. Note that the curves in Fig. 6.6c no longer exhibits
the saw-tooth behavior introduced by TV noise.2

The differences that remain in the TVComp’ed PND (subsequently referred to as
PNDc) shown in Fig. 6.6c are those introduced by within-die process variations
(WDV) and uncompensated TV noise (UC-TVNoise). For this particular PND, the
TVComp process is able to reduce TV noise to approx. 2 in the worst case, which
translates to approx. 36 ps. In general, PNDc with larger levels of UC-TVNoise are
more likely to introduce bit flip errors.

The implementation of the HELP algorithm shown in Fig. 6.4 constructs a
histogram distribution in the upper 2048 memory locations of the BRAM using the
2048 PND stored in the lower portion and then parses the distribution to obtain µTVx
and RngTVx. Once the distribution constants are available, the PND in the low
portion of the BRAM are converted to PNDc.

The last operation applied to the PN is represented by the Modulus operation
shown on the right side of Fig. 6.4. Modulus is a standard mathematical operation
that computes the positive remainder after dividing by the modulus. The Modulus
operation is required by HELP to eliminate the path length bias that exists in the
PNDc, which acts to reduce randomness and uniqueness in the generated bitstrings.
The value of the Modulus is also a user-selectable parameter, similar to the LFSR
seed, mean and range parameters, and is discussed further in the following.
The HELP engine shown in Fig. 6.4 overwrites the PNDc after applying the
Modulus. The final values, called MPNDc, are used in the bitstring generation
process.

Fig. 6.7 a PND distribution for chip C1 with µTVx and RngTVx depicted and b Chip C1 PND
distributions at 2 TV corners

2TV compensation also serves as a countermeasure to prevent adversaries from manipulating
temperature and supply voltage as a physical attack mechanism.

6 PUF-Based Authentication 137

Bit Generation Algorithm

The bitstring generation process uses a fifth user-specified parameter, called the
Margin, as a means of improving the reliability of the bitstring regeneration pro-
cess. The bottom portion of Fig. 6.8a plots 18 of the 2048 PNDc from Chip1 along
the x-axis. The red curve line-connects the data points obtained under enrollment
conditions while the black curves line-connect data points under the 12 regeneration
TV corners.

The curves plotted along the top of Fig. 6.8a show the MPNDc values after a
modulus of 20 is applied. Figure 6.8b enlarges the upper portion of Fig. 6.8a and
includes a set of margins of size 2 surrounding two strong bit regions of size 6.
Designators along the top given as ‘s0’, ‘s1’, ‘w0,’ and ‘w1’ classify each of the
enrollment data points as either a strong 0 or 1, or a weak 0 or 1, resp. Data points
that fall on or within the hatched areas are classified as weak as a mechanism to
avoid bit flip errors introduced by UC-TVNoise that occurs during regeneration.

The Margin method improves bitstring reproducibility by eliminating data points
classified as “weak” in the bitstring generation process. For example, the data points
at indexes 4, 6, 7, 8, 10, and 14 would introduce bit flip errors at one or more of the
TV corners during regeneration because at least one of the regeneration data points
is in the opposite bit value region from the corresponding enrollment value. We
refer to this bitstring generation technique as the Single Helper Data
(SHD) scheme since the classification of the MPNDc as strong or weak is deter-
mined solely by the enrollment data.

A second technique, referred to as the Dual Helper Data (DHD) scheme,
requires that both the enrollment and regeneration MPNDc be in strong bit regions
before allowing the bit to be used in the bitstring during regeneration. The helper
data, which represents the classification of the MPNDc as strong or weak, is bitwise
‘AND’ed, and then both the enrollment and regeneration bitstrings are generated
(the enrollment data is assumed to be collected earlier in time and stored on a secure
server). The DHD scheme doubles the protection provided by the margin against bit
flip errors because the MPNDc produced during regeneration must now change and

Fig. 6.8 Strong/Weak PNDc classification using margining

138 J. Plusquellic

move across both a ‘0’ and ‘1’ margin before it can introduce a bit flip error. This is
true because both the enrollment and regeneration MPNDc must be classified as
strong to be included in the bitstring and the strong bit regions are separated by
2 * margin.

Figure 6.8 highlights four cases where an enrollment-classified strong bit would
be reclassified as weak in the DHD scheme because 1 or more of the regeneration
PNDc falls within a weak region. This shows that in addition to doubling the
protection against bit flip errors, the DHD scheme can potentially produce different
bitstrings each time the chip regenerates it. Therefore, DHD adds uncertainty by
leveraging UC-TVNoise (and sampling noise to a smaller degree). This feature is a
benefit for authentication applications because only half of the helper data is
revealed to the adversary while the other half is generated and kept on the chip or
server. The missing helper data adds uncertainty for an adversary as to the final
form of the bitstring. Encryption applications can leverage both of these DHD
benefits as well by exchanging the chip and server helper data bitstrings while
keeping the generated keys private. These benefits of DHD are expanded upon in
the following sections.

Entropy Analysis

The Margin technique using either the SHD or DHD schemes adds uniqueness to
the regenerated bitstring. This is true because weak bits are excluded from the
bitstring based on the position of the PNDc and Margins and therefore, different
chips utilize different bits in the constructed bitstring. Figure 6.9a, b depict several
scenarios that show how the Margin and the position of the PNDc affect bitstring
generation. The line-connected curves in Fig. 6.9 are analogous to those described
earlier in reference to Fig. 6.6c. Figure 6.9a plots a set of 20 different PNDc to

Fig. 6.9 a Example PNDc (20 groups) from 38 chips (y-axis) across 1 enrollment and 12 TV
corners (x-axis), and b blow-up of −60 to −80 region

6 PUF-Based Authentication 139

illustrate how PNDc distribute across the range defined by the Modulus, which is set
to 20. Figure 6.9b is a blow-up of the bottom portion of Fig. 6.9a.

As indicated earlier, within-die process variations change path delays uniquely
in different chips, which is reflected by the y-dimensional spread within each group
of PNDc. For the data set labeled as scenario1 in Fig. 6.9b, the range occupied by
the PNDc is approx. 10. The y position of the overall data set is such that, except for
a few points, the bit generated by this data will be 0 for all 38 chips.

However, the enrollment data points (left-most) for some chips fall within the
weak bit regions and therefore, this bit is skipped for these chips using either the
SHD or DHD schemes. Moreover, UC-TVNoise causes some of the regeneration
data points to move from their strong bit positions in the enrollment data to weak
bits during regeneration. The DHD scheme excludes this bit for these chips as well,
creating differences in the generated bitstring for the same chip at different TV
corners, while simultaneously providing a 2 × Margin to bit flip errors. Moreover,
the relative position of the curve associated with each chip, with respect to the other
chips, changes in each data set so it is unpredictable which data points are excluded
during bitstring generation for any particular chip. The curve for chip C1 is high-
lighted in red in each of the PNDc groups to illustrate the change in its relative
position with respect to other chips in the group.

The data set labeled scenario2 in Fig. 6.9b shows a second possibility, that is
closest to the “ideal” case because the position and range of the curves spans the
y-axis into both the strong 0 and strong 1 bit regions. The number of possible
results regarding the status of the bit includes those described for scenario1 plus an
additional possibility that some chips generate a strong 1 bit and others a strong 0
bit. In contrast, scenario3 labeled in Fig. 6.9a is closest to the “worst” case where
nearly the entire data set is positioned with the strong 0 region. Note that this
scenario is only possible when the Modulus is large enough to create strong bit
regions that upper-bound the smallest range (WDV + UC-TVNoise) found among
the MPNDc groups. Generating bitstrings with Moduli larger than 4 * Margin +
this smallest range begins to reduce their statistical quality. The analysis presented
in subsequent sections shows that the upper-bound for this data set is
Modulus = 28.

Statistical Analysis of the Bitstrings

The bitstrings generated using the DHD scheme is subjected to the NIST statistical
test suite as well as Inter-chip and Intra-chip hamming distance (HD) tests. The
analysis is carried out using two different reference scaling factors for TVComp,
referred to as minimum (Min) and mean scaling. The µref and Rngref scaling con-
stants derived from the set of path distributions for the 38 chips are used as the
reference values in Eq. 6.12 to scale all chip data before applying the Modulus
operation and DHD bitstring generation procedures described above. The minimum
scaling constants are derived from the chip with smallest distribution, i.e., smallest
mean and range values. The mean scaling constants are computed from the average

140 J. Plusquellic

mean and range values across the distributions of all chips. We focus our analysis
on these two scaling factors because they represent the extremes of the recom-
mended range. We expect similar results to be produced for all scaling factors
between these limits.

We use the acronym SBS to denote “strong bitstring.” The DHD scheme requires
two helper data bitstrings from the same chip as a means of constructing the two
corresponding SBS’s. The helper data bitstrings, which are derived from the 2048
MPNDc using the Margin technique, are bitwise AND’ed and then used to select
bits for use in the construction of the SBS’s. The SBS’s generated using enrollment
data (TV0) and the nominal regeneration TV corner data (TV2) from the same chip
are used in the NIST statistical tests and Interchip hamming distance (HDInter)
calculations below. UC-TVNoise is smallest using this combination, and therefore
it represents the worst case condition where the effect of the helper data AND’ing
has the smallest impact on the additional entropy as discussed earlier. Only one of
the SBS’s from each chip is used in HDInter and NIST statistical tests, and the SBS’s
are truncated to the length of smallest bitstring among the 38 generated. The same
criteria are used in the Intra-chip HD (HDIntra) calculations except a much larger set
of bits are processed by accumulating the results across a set of 256 different LFSR
seeds (only one LFSR seed is used for NIST and HDInter tests because similar
results are obtained using other seeds).

NIST Statistical Test Results The NIST statistical test results are shown in
Fig. 6.10a, b for minimum and mean scaling, respectively. A test is considered “a
pass” according to the NIST criteria if at least 35 of the 38 chips pass the test
individually. The histogram bar heights indicate the number of chips that pass the
test. The bitstrings generated using a Margin of 3 and a set of Moduli between 14
and 30 are subjected to 10 of the NIST tests. The size of the bitstring was too small
for some values of the Modulus and therefore, the bar heights for these NIST test
results are set to 0 (includes regions along back and left side of the 3-D histogram).

Under minimum scaling, all NIST tests are passed except for four associated
with Modulus 30. These fails are related to scenario3 discussed in reference to

Fig. 6.10 NIST statistical test results using 38 chip bitstrings for each analysis and a Minimum
scaled data and b Mean scaled data

6 PUF-Based Authentication 141

Fig. 6.9, where the range of withindie variation fits entirely within the strong ‘0’ or
‘1’ regions defined by Modulus. This is supported by the results presented under the
mean scaling, where the bitstrings for Modulus 30 pass all tests (only 1 test is failed
under mean scaling, and with a value of 34 instead of 35). Mean scaling enlarges
the y-dimensional spread of the data points over minimum scaling and reduces the
probability that scenario3 occurs. These results indicate that the bitstrings possess a
high degree of randomness, which is a necessary condition for classifying the
bitstrings as cryptographic quality. The results using Margins of 2 and 4 are very
similar.

Interchip Hamming Distance (HDInter)
HDInter is computed using Eq. 6.13. The symbols NC, NB, and NCC represent
“number of chips,” “number of bits,” and “number of chip combinations,”
respectively. This equation simply sums all the bitwise differences between each of
the possible pairing of chip SBS’s (NCC), and then converts the sum into a per-
centage by dividing by the total number of bits that were examined. The XOR
operator generates a 1 when the pair of bits in the SBS’s at the same position is
different and 0 otherwise.

HDinter =
1

NCC ×NB
∑
NC

i=0
∑
NC

j= i
∑
NB

k=0
ðSBSi, k ⊕ SBSj, kÞ

� � !
×100 ð6:13Þ

Figure 6.11a shows the HDInter results for a set of Moduli (x-axis) and Margins
(y-axis). The ideal value for HDInter is 50 %, which indicates that half of the bits in
any arbitrary pairing of bitstrings from the 38 chips have different values. The best
values are produced for smaller Moduli, as expected. However, all values remain
above 48.5 %, which indicates a high degree of uniqueness among the bitstrings
from different chips.

Fig. 6.11 a Interchip hamming distance (HD), b Probability of failure and c Smallest bitstring
size statistics using 4096 PN

142 J. Plusquellic

Intrachip Hamming Distance (HDIntra)
HDInter is computed using Eq. 6.14. The symbols NS, NC, NB, and NT represent
“number of seeds,” “number of chips,” “number of bits,” and “number of TV
corners, respectively. As indicated earlier, we repeat the HDintra analysis for 256
different LFSR seeds as a means of increasing the number of bits used in the
analysis. NT is 12 to represent each of the TV corners used to compute the pair of
chip SBS’s under the DHD scheme. This equation sums all the bitwise differences
between each of the enrollment SBS (TV0) bitstrings and the 12 corresponding SBS
bitstrings from the remaining TV corners for each chip and each LFSR seed, and
then converts the sum into a percentage by dividing by the total number of bits that
were examined. The value for N varied between approx. 12 million for Modulus 10
to more than 165 million for Modulus 30.

HDintra =
1
N

∑
NS

z=0
∑
NC

i=0
∑
NB

j=0
∑
NT

k=1
ðSBSz, i, j, 0 ⊕ SBSz, i, j, kÞ

 !
×100 ð6:14Þ

Figure 6.11b reports HDIntra as the probability of a bit flip failure for the same
set of Moduli and Margins used in 11(a) (note the x-axis is reversed from that
shown in Fig. 6.11a). The value of the exponent x is reported from the
equation 1/10−x so −6 indicates 1 chance in 1 million. Cases where no bit flips
were detected as shown as −10. As expected, the larger Moduli produce lower
probabilities of failure. The probability of failure for Margins 3 and 4 under min-
imum scaling are all set to 10−10 (no bit flip errors were detected), and are less than
10−6 for Margin 2 except for Modulus 10. The probability of failure under mean
scaling is larger but remains below 10−6 for Margins 3 and 4.

Minimum Bitstring Size Figure 6.11c plots the smallest bitstring size for the same
set of Moduli and Margins. Smaller Moduli have smaller strong bit regions for a
given Margin and therefore, fewer bits quality as strong. However, the bitstring
sizes grow quickly, with at least several hundred bits available for Moduli/Margin
combinations with strong bit regions of size 2 and larger. Bitstring size can be
increased as needed by increasing the number of tested paths beyond 4096.

Security Property Analysis

In this section, we investigate several important security properties of HELP that
relate to its resistance to model building and to the number of bitstrings that each
token can generate using the five user-defined parameters described earlier and a
sixth parameter called the Path-Selection-Mask (which is discussed below and in
Sect. 6.6 as it relates to proposed authentication protocol).

6 PUF-Based Authentication 143

Parameter-Based Bitstring Diversity
Due to the interaction of the user-defined parameters, we present a conservative
lower-bound estimate on the number of possible parameter combinations, i.e., those
that ensure the generated bitstrings are random, reliable, and unique for each token.
Note that the source of entropy is fixed in this analysis to a set of 4096 PN (in
contrast to the analysis that includes the Path-Selection-Mask parameter as
described in the next section). In other words, the set of five user-defined param-
eters, namely, µ, Rng, Modulus, Margin, and the LFSR seeds, apply different
transformations to the same set of PN as a means of achieving bitstring diversity.
As noted earlier, the two 11-bit LFSR seed parameters allow any of the 2048 rising
edge PN to be paired with any of the 2048 falling edge PN, yielding 4,194,304
possible combinations. From the results shown in Fig. 6.11, the number of com-
binations of Margins and Moduli that yield high reliability (<e−6) is 12 (using
Moduli from 16–28 for Margin 3, and 20–28 for Margin 4, in steps of size 2). The
number of different µ and Rng parameters is conservatively estimated to be 10 each.
Therefore, a total of 4,194,304 * 12 * 10 * 10 ≅ 5 billion combinations of these
five user-defined parameters are possible. This lower bounds the amount of effort
required by an adversary in possession of the token to read out all the possible
response bitstrings. The probability of achieving this lower bound is nearly zero in
practice because, in the proposed protocol, the token and server generate nonces
that are used to select values of the parameters and therefore, the adversary does not
have direct control of the token’s interface (details covered in Sect. 6.6).

Path-Selection-Mask-Based Bitstring Diversity
Unlike the parameter-based scheme, bitstring diversity introduced by the Path-
Selection-Mask is based on changing the underlying entropy components. In other
words, the 4096 PN are not fixed, but vary from one authentication to the next. In
the protocol proposed in Sect. 6.6, path selection is performed by the server using a
random number generator. Path selection involves choosing a subset x of y timing
values from those produced simultaneously by the challenge. For example, assume
that a challenge vector sequence produces 200 timing values and the server selects a
random subset of 50. The number of ways of choosing 50 from 200 is a very large
number and is given by Eq. 6.15. This number is then multiplied by the number of
vectors required

Path− select− combos=
200
50

� �
=4.5e47 ð6:15Þ

to reach 4096 PN (as an example, we use 82 in our recent experimental evaluation).
Therefore, the number of possible bitstrings using the path-selection-mask is
exponentially related to the number of simultaneously sensitized paths produced by
a challenge and the number of PN randomly selected. More importantly, the Path-
Selection-Mask changes the characteristics of the PND distribution, which in turn
impacts how each PND is transformed by the TVComp process. In other words,
even with all 5 user-defined parameters held constant, the bit value generated by a

144 J. Plusquellic

MPNDc will vary because its value depends on the all of the 4096 PNs selected and
used in the bitstring generation process. This complex relationship is leveraged as a
security property in the HELP authentication protocol as a means of both preserving
privacy and adding resilience to model-building attacks.

6.6 PUF-Based Authentication Protocols

The tamper-evident and unclonable characteristics of PUFs can be leveraged in
authentication protocols to generate nonces and repeatable random bitstrings, to
provide secure storage of secrets, to reduce costs and energy requirements and to
simplify key management. Although weak PUFs have been proposed for authen-
tication as described in the examples that follow, they increase the number and type
of cryptographic primitives required on the token. Strong PUFs provide a distinct
advantage by eliminating some of these cryptographic primitives while providing
higher resistance to protocol attacks.

The cryptographic primitives required in an authentication protocol depend on
the security requirements. For example, in the simplest form, the protocol can be
designed to provide unilateral, e.g., server-based, authentication as discussed in
Sect. 6.4. More advanced features such as mutual authentication and
privacy-preserving protocols, i.e., those that prevent token tracking, require addi-
tional cryptographic primitives and message exchanges.

Entity authentication requires the prover (hardware token) to provide both an
identifier and corroborative and timely evidence of its identity, e.g., a secret, that
could only have been produced by the prover itself. From Sect. 6.4, PUFs carry out
user authentication under the general model of “something you possess,” e.g., a
hardware token such as a smart card, which in turn, incorporate silicon-based
fingerprint-like identities for authentication to a secure server, such as a bank. Bear
in mind that PUFs do not address the task of identifying the user to the token. As
discussed in Sect. 6.4, user-token authentication is layered on top of token-server
authentication using passwords, PINs, actual human fingerprints, etc.

Although passwords, PINs, one-time passwords, etc. can be used for
token-server authentication, they are considered weak authentication methods. The
strong authentication methods described in Sect. 6.4 are based on a challenge-
response mechanism but implicitly require the prover A to demonstrate knowledge
of a secret known to be associated with prover A without revealing the secret itself
to the verifier B. The challenge-response component provides a mechanism to
enable the prover to maintain the secret while allowing, in the composition of
exchanged messages, the prover to demonstrate its knowledge to the verifier. In
order to ensure certain security properties, the random numbers (nonces) that are
cryptographically bound to the secret and exchanged must have sufficient entropy.
Cryptographic functions such as one-way hash functions, symmetric key encryption
algorithms (for MACs), and public–private encryption algorithms (for digital sig-
natures) may also be required. PUFs can certainly be used in these types of tra-
ditional authentication schemes, e.g., for generating nonces with sufficient entropy

6 PUF-Based Authentication 145

(which we discuss below), but the large number of CRPs available in strong PUF
implementations also allow for simpler schemes with stronger security properties.

6.6.1 Protocol 1: Strong PUF with Unprotected Interface

The simplest mechanisms called challenge-response entity authentication, as pro-
posed in [38, 40, 116, 117], exchange cleartext bitstrings directly, thereby elimi-
nating area/energy-expensive cryptographic primitives associated with traditional
schemes. A PUF whose inputs and outputs can be accessed directly, as in this
scheme, is said to have unprotected interfaces. The protocol is shown graphically in
Fig. 6.12 (referred to as naive in [117]), and consists of two phases:

• Enrollment: A process carried out in a secure environment between a token,
A and verifier, B. Verifier B generates a sequence of randomly-chosen chal-
lenges, ci, which are presented to token A and applied to the PUF, and the PUF
responses, ri are then recorded in a secure database as challenge-response pairs,
crpi, along with a unique identifier, htID for the token.

• Authentication: Token A requests authentication by transmitting its ID, htID, to
the verifier B. Verifier B selects one or more challenges from the database using
the htID and transmits them across an unsecured channel to the fielded token.
Token A applies ci to the PUF to generate ri′, which is transmitted to B for
verification. B compares ri with ri′ and accepts if the two bitstrings match with a
tolerance, HDintra, and rejects otherwise. Verifier B removes the crpi from the
database as a countermeasure to replay attacks.

Fig. 6.12 Naive strong PUF authentication [38, 117]

146 J. Plusquellic

The protocol has the benefit of being simple to implement and is very light-
weight for the token. The inability of the PUF to precisely reproduce the response ri
(in simple schemes that do not attempt error correction or error avoidance) makes it
necessary to implement a error-tolerant matching scheme with HDintra > 0. It
should be noted, however, that large values of HDintra increase the chance of
impersonation, and act to reduce the strength of the authentication scheme.

A second drawback is the large number of challenge-response pairs that must be
recorded during enrollment, as a means of ensuring that authentication can be
carried out over a long period of time. This increases the storage requirements for
the verifier, since the worst-case usage scenario must be accommodated, and/or
creates inconveniences for users who exceed the stored CRP capacity. Other
drawbacks include the lack of resistance to denial of service attacks, whereby
adversaries purposely deplete the server database, the inability to carry out
privacy-preserving or mutual authentication and the susceptibility of the scheme to
model-building attacks [118]. The latter is the primary driver for the requirement
that a truly strong PUF be used for authentication protocols with unprotected
interfaces, of which this simple protocol is an example.

A growing list of proposed protocols address these short-coming by incorpo-
rating cryptographic primitives on the prover and verifier side [19, 21, 39, 40, 119].
The inclusion of cryptographic primitives enables significant improvements to the
security properties of the protocols, and additionally allow for privacy-preserving
and mutual authentication. However, their use, in many cases, requires error-free
response bitstrings from the PUF, which in turn requires helper data to be stored
with the CRPs on the server. Many recent protocols target low-cost, resource-
constrained applications, e.g., RFID, and attempt to minimize the implementation
footprint and energy profile on the token side. Error correction algorithms, such as
secure sketches [26, 27], are asymmetric in terms of their computational cost, with
helper data generation requiring fewer resources than the process of using the helper
data to correct bit flip errors in the regenerated response. Recently proposed
authentication protocols attempt to minimize the area and energy requirements for
token-side operations by leveraging this asymmetrical relationship. We discuss
several of these protocols below. An excellent review of these and other protocols
[28, 38, 40, 120–133] is provided in [117, 134].

6.6.2 Protocol 2: Controlled PUF

The most straightforward countermeasure to model building attacks is to protect the
challenge-response interface to the PUF using cryptographic hash function(s)
[16, 117]. One possible implementation of the protocol proposed for a Controlled
PUF is shown in Fig. 6.13. The hash of the challenge prevents chosen-challenge
attacks. This is true because the hash is a one-way-function (OWF), which makes it
computationally infeasible for the adversary to control the composition of the
challenge applied to the PUF. Similarly, by hashing the output of the PUF,

6 PUF-Based Authentication 147

correlations that may exist among different challenges are obfuscated, increasing
the difficulty of model-building even further. The main drawback of using a OWF
on the PUF responses as shown is a requirement that the responses from the PUF be
error-free. This is true because even a single bit flip error in the PUF’s response
changes a large number of bits in the output of the OWF (avalanche effect). The
functions Gen and Rep are responsible for error-correcting the response, using
algorithms that were described earlier in Sect. 6.3.3.

The protocol works as follows. During enrollment in a secure environment, a
one-time interface is used to allow the server to obtain PUF responses, rj, produced
from randomly generated, hashed challenges cj. The Gen routine produces helper
data hdj for each rj, which is sent to the token to produce a hashed version of the
PUF response, r′j. The 3-tuples <cj, r′j, hdj> produced by multiple iterations of this
algorithm are stored in the database for token htID. After enrollment, a fuse is blown
to disable the one-time interface. Authentication is very similar except for the Gen
operation. Note that the response r′n must match the stored response rn in order for
the authentication to succeed, i.e., error-correction eliminates the need for the
“fuzzy matching” component in Protocol 1. Otherwise, the benefits and drawbacks
are similar as those described for Protocol 1 with additional drawbacks related to
the need for a cryptographic hash function and the increased computational and
energy cost associated with Rep.

Fig. 6.13 Controlled PUF [16, 117]

148 J. Plusquellic

6.6.3 Protocol 3: Reverse Fuzzy Extractor

Maes et al. proposes a protocol based on reversed secure sketching that is designed
to address authentication in resource-constrained environments [19, 119]. Their
protocol uses the syndrome technique proposed in [26] (see Sect. 6.3.3) for error
correction but reverses the roles of the prover and verifier, i.e., the prover
(resource-constrained token) performs the lighter-weight Gen procedure while the
verifier (server) performs the compute-intensive Rep procedure. The same process
is carried out during enrollment and regeneration. Given that the sketching pro-
cedure produces a unique bitstring with bits that are different every time it is
executed on the token, in order to authenticate, the verifier is required to correct the
original bitstring stored during enrollment to match each of the regenerated bit-
strings. In order to accomplish this, the helper data produced by each run of Gen on
the token is transmitted to the verifier.

The mutual authentication protocol proposed in [19] is graphically illustrated in
Fig. 6.14. Similar to previous protocols, enrollment involves the verifier generating
challenges and storing the PUF responses ri for hti in a secure database (not shown).
In the proposed protocol, only a single CRP is stored for each token, which is
indexed by IDi in the server’s database, and then this interface is permanently
disabled on the token. The authentication process begins with the token on the left
generating the bitstring response again as r′i and then multiplying it by the
parity-check matrix HT of the syndrome-based linear block code to produce the
helper data hdi. A random number generator is used to produce nonce n1 that is
exchanged with the verifier as a mechanism to prevent replay attacks (see Sect. 6.4
for expository on traditional challenge-response authentication). The tuple <IDi, hdi
and n1> is transmitted over an unsecured channel to the verifier.

Fig. 6.14 “Reversed secure sketching” mutual authentication protocol proposed in [26]

6 PUF-Based Authentication 149

The verifier looks up the response bitstring ri generated by this token during
enrollment in the secure database and invokes the Rep routine of the secure sketch
error correction algorithm with ri and the transmitted helper data hdi. If the PUF
response r′i and corresponding helper data hdi are within the error-correcting
capabilities of the secure sketch algorithm, the output r″i of Rep will match the r′i
generated by the token. A second nonce, n2, is generated to enable secure mutual
authentication (see Sect. 6.4) and a secure hash is applied to the IDi, helper data hdi,
the regenerated response bitstring r″i and both nonces n1 and n2 to produce m1. The
hash m1 conveys to the token that the server has knowledge of the response r′i,
which allows the token to authenticate the server. This verification is carried out by
the token by hashing the same values, except using its own version of r″i and
comparing the output to the transmitted m1. If a match occurs, then r′i must be equal
to r″i, and the token accepts, otherwise authentication of the server fails. The token
then demonstrates knowledge of r′i by hashing it with its IDi and nonce n2 and
transmitting the result m2 to the server. The server then authenticates the token
using a similar process by comparing its result with m2.

The helper data in this “reverse” implementation of the fuzzy extractor changes
from one run of the protocol to the next, based on the number and position of the
bits that flip during each regeneration. The main drawbacks of the proposed scheme
are that it is not privacy-preserving and assumes that the helper data does not leak
any information about the response ri. Moreover, since most PUFs can reliably
reproduce more than 80 % of the secret bitstring, any correlations that occur in the
helper data bitstrings introduced by these “constant” secret bitstring components
may reveal information that the adversary can use to increase the effectiveness of
reverse-engineering attacks.

6.6.4 Protocol 4: Slender PUF Protocol

Majzoobi et al. proposed an authentication protocol [133] based on substring
matching [112], again designed to address authentication in resource-constrained
environments. Their protocol eliminates all types of cryptographic functions on the
token, including hashing and error correction functions. The proposed protocol is
demonstrated using a 4-XOR arbiter PUF, a variant of the arbiter PUF shown in
Fig. 6.3, in which the output of four copies of the arbiter PUF are XOR’ed as a
mechanism to increase its model-building resistance. The enrollment process
involves building compact models of the arbiter PUFs using a one-time interface
that allows access to the individual outputs and provides control over the input
challenges. A compact model is a mathematical representation similar to what an
adversary would construct when model-building the PUF.

The benefit of storing the compact models is the ability to estimate the response
of the 4-XOR arbiter PUF for any arbitrary challenge. This capability is required in
the proposed protocol because the challenge is composed of two parts, one part
generated by the prover and one part generated by the verifier (using TRNGs).

150 J. Plusquellic

This “on-the-fly” random challenge generation requires the verifier to generate a
“simulated” PUF response from the compact model that closely matches that
produced by the actual PUF on the token. The prover’s contribution to the con-
catenated challenge makes it impossible for an adversary to carry out a
chosen-challenge attack. A third feature of the protocol relates to the manner in
which authentication is performed. A seeded LFSR is used to generate a sequence
of challenges that are applied to the 4-XOR PUF to produce a response bitstring.
The prover then selects a fixed length substring randomly from PUF-generated
response bitstring and transmits it to the verifier. The verifier authenticates the token
if it can find the substring (within a predefined noise tolerance) in the corresponding
estimate of the response bitstring generated from the compact model. Revealing
only part of the response bitstring adds again to the difficulty of model-building.

The protocol is graphically portrayed in Fig. 6.15. The compact model is built
during enrollment in a secure environment using a sequence of CRPs applied to the
individual arbiter PUFs. The access mechanism is then disabled by blowing fuses.
Authentication begins with the generation of challenges cV and cP by the verifier
and prover, resp., which are concatenated and applied to the PUF to produce
response r. A random index i is then generated that serves as the staring index into
bitstring r. A substring of r is extracted as r′, and is returned to the verifier along
with challenge cP. The verifier uses the compact model to generate an estimate of
the PUF response r″ using the same concatenated challenge (cV | cP). Authentication
succeeds if the verifier can locate the substring r′ as a substring in r″ within an error

Fig. 6.15 Slender PUF authentication protocol proposed in [133]

6 PUF-Based Authentication 151

tolerance of e. Although the protocol is very light weight for the token, and avoids
NVM, the level of model to—hardware-correlation attained in the compact model
must be very high and must be able to accommodate changes introduced by
TVNoise, resulting in considerable time and effort at enrollment. PUFs that are
easily modeled simplify the development of the compact model, but also represents
somewhat of a contradiction to their required resilience to model-building attacks.
Also, the proposed protocol does not preserve privacy.

6.6.5 Protocol 5: A Privacy-Preserving, Mutual
Authentication Protocol

Aysu et al. recently proposed and implemented a PUF-based authentication pro-
tocol that provides both privacy and mutual authentication in resource-constrained
environments [21]. They adapt the privacy protocol proposed by [135] to work as a
reverse fuzzy extractor, as described in Sect. 6.3. The protocol ensures that an
adversary is unable to identify or trace the tokens across multiple mutual authen-
tications, despite the adversary having the ability to monitor and control commu-
nications and read out the contents of the token’s non-volatile memory (NVM). The
protocol assumes circuit-level countermeasures are implemented in the tokens to
guard against other types of physical attacks, including fault injection and differ-
ential power analysis.

The protocol is designed to minimize the functional operations that are to be
carried out by the token, but given the privacy goal, the protocol requires the token
to implement four cryptographic primitives including the Gen operation of the
fuzzy extractor algorithm, a symmetric encryption algorithm Enc, a random number
generator TRNG and a pseudo-random function PRF. Moreover, the token makes
use of an NVM to store information between authentications, in particular, a secret
key sk1 and a PUF challenge c1. However, the protocol is designed such that
leakage of this stored information cannot be used by an adversary to impersonate
the token. In particular, the stored challenge is used to allow the token to reproduce
a specific PUF response while the secret key is used to encrypt helper data produced
by the fuzzy extractor’s Gen operation on the token. The encryption of the helper
data prevents the adversary from reverse engineering the helper data in an attempt
to learn the PUF response to the NVM-stored challenge c1.

Another key feature of the protocol, in support of the privacy objective, is the
implementation of a key update mechanism. After each successful authentication,
the key stored on the token and in the server’s database is updated by applying a
new challenge to the PUF and obtaining its response, thereby creating a chained
sequence of keys across successive authentications. A copy of the state information
to be replaced is maintained as a countermeasure to de-synchronization, and sub-
sequent denial-of-service, attacks.

152 J. Plusquellic

A graphical illustration of the protocol operation is shown in Fig. 6.16. The
Enrollment operation is carried out in a secure environment. The server generates a
secret key sk1 and a challenge c1 that is stored in NVM on the token. The token
generates a response r1 from the PUF and provides it to the server through a
one-time interface. The server stores two copies of the sk1 and r1 in its secure
database. The combination of sk1 and r1 is used to derive an ID for the token, as
discussed below.

Fig. 6.16 Part 1: Mutual, Privacy-preserving authentication protocol proposed in [21, 135]

6 PUF-Based Authentication 153

The server begins the authentication process by generating a nonce n1, which is
transmitted to the token. The token’s challenge c1 is read from the NVM and used
to generate a noisy PUF response r′1. The Gen component of the fuzzy extractor
produces z′1 (an entropy distilled version of r′1) and helper data hd. Helper data hd
is encrypted using the key sk1 from the NVM to produce hdenc. The token then
generates a nonce n2. The PUF-generated key z′1 and the concatenated nonces
(n1||n2) are used as input to a pseudo-random function PRF to produce a set of
unique values t1 through t5 that are used as an ID, keys, and challenges in the
remaining steps of the protocol.

A second response r2 is obtained from the PUF using a new randomly generated
challenge c2, which will serve as the chained key for the next authentication (as-
suming this one succeeds). It is XOR-encrypted as r2_enc for secure transmission to
the server. PRF’ is then used to compute a MAC m using t3 as the key, over the
concatenated, encrypted helper data and new key (hdenc||r2_enc) to allow the server
to check the integrity of hdenc and r2_enc. The encrypted values hdenc and r2_enc plus
n2, t1 and m are transmitted to the server. The nonce n2, as usual, introduces
“freshness” in the exchange, preventing replay attacks. The ID t1 will be the target
of a search in the server database during the server side execution of the protocol.

The server begins an exhaustive search of the database, carrying out the fol-
lowing operations for each entry in the DB: (1) decrypt helper data hdenc using the
current DB-stored ski to produce hd″, (2) construct z″ using the fuzzy extractor’s
Rep procedure and helper data hd″, (3) compute t′1 through t′5 from PRF(z″, n1||n2)
and (4) compare token generated value t1 with t′1. If a match is found, then the
server verifies that the token’s MAC m matches the PRF′(t′3, henc||r2_enc) computed
by the server. If they match, then the token’s PUF-generated key r2 is recovered
using (r2_enc XOR t′2), and the database is updated by replacing (sk1, r1, skold, rold)
with (t′5, r2, sk1, r1). If the exhaustive search fails, then the entire process is repeated
using (skoldi, roldi). If both searches fail, the server generates a random t′4 (which
guarantees failure when the token authenticates). Otherwise, the t′4 produced from a
match during the first or second search is transmitted to the token. The token
compares its t4 with the received t′4. If they match, the token updates its NVM
replacing (sk1, c1) with (t5, c2). Otherwise, the old values are retained.

Note that the old values are needed for de-synchronization attacks where the
adversary prevents the last step, i.e., the proper transmission of t′4 from the server to
the token. In such cases, the server has authenticated the token and has committed
the update to the DB with (t′5, r2, sk1, r1) but the token fails to authenticate the
server, so the token retains its old NVM values (sk1, c1). On a subsequent
authentication, the first search process fails to find the t′5, r2 components but the
second search will succeed in finding sk1, r1. This allows the token and server to
re-synchronize.

The encryption of the helper data hd, as mentioned, prevents the adversary from
repeatedly attempting authentication to obtain multiple copies of the helper data,
and then using them to reverse engineer the PUF’s secret. Note that encryption does
not prevent the adversary from manipulating the helper data, and carrying out

154 J. Plusquellic

denial-of-service attacks, so the MAC operation is required to attain this security
goal.

The weakest part of the algorithm is the very limited amount of PUF response
information maintained by the server, i.e., effectively only one PUF response.
Although the authors claim that circuit countermeasures can be used to prevent the
PUF response from being extracted from the token using, e.g., differential power
analysis, the entire security of the protocol is based on this premise. If, for example,
the token’s z′1 is extracted, a clone that impersonates the token can be easily
constructed (one that does not even need to embed a PUF), and once it authenticates
successfully the first time, the authentic token is barred forever from succeeding
(denial-of-service). The very limited amount of PUF response information stored on
the server, although attractive from a storage overhead point-of-view, makes it
vulnerable to this type of de-synchronization attack. Other issues relate to the
requirement for NVM and the not-so-light-weight encryption function, which work
against the low-cost, resource-constrained objective.

6.6.6 Protocol 6: The HELP Authentication Protocol

Similar to Protocol 5, the HELP authentication protocol is privacy-preserving and
mutual, targets resource-constrained tokens and makes the same assumptions
regarding adversarial threats to the token and server [136]. However, HELP does
not make use of NVM, does not implement privacy using a chained key-update
mechanism and requires only one cryptographic operation to be implemented on the
token. The protocol is unique among those discussed in that it stores PUF soft
information on the server instead of bitstrings or PUF models. Soft information
refers to digitized path delay values, which from Sect. 6.5.4.2, can each be repre-
sented as a 14-bit value, depending on the digital clock manager parameters. When
combined with the set of user-defined parameters described in Sect. 6.5.4, including
Modulus, Margin, µ, and Rng, two 11-bit LFSR Seeds and a Path-Selection-Mask,
this feature, i.e., storing path delay information, provides some distinct advantages
over storing response bitstrings, as highlighted below.

The enrollment operation is graphically illustrated along the top of Fig. 6.17.
The authentication protocol uses a common set of challenges {ck} for all tokens as a
mechanism to preserve privacy, while establishing the token’s identity on the server
during the ID Phase of in-field authentication. The challenges {ck} are transmitted
to the token in a secure environment during enrollment and applied as inputs to the
PUF. A set of PN are produced and returned to the server as {PNj}. The server
generates an internal identifier IDi for each token using ServerGenID and stores the
set {PNj} under IDi in the secure database.

A similar process is carried out during the Authen Phase of enrollment except
that the challenges are selected from a large set using SelectChallenges(IDi) for
each token among those that have been generated using random vectors or auto-
matic test pattern generation (ATPG). The server ensures that the selected set

6 PUF-Based Authentication 155

overlaps with those chosen for other tokens, but with no more than 50 % over-
lapping with any one token. This policy prevents the challenges used in the Authen
Phase during in-field authentication from being used to track the token (explained
further below). The set of PN {PNy} generated in the Authen Phase are also stored,
along with the challenge vectors, in the secure database under IDi. The number of
structural paths for the data path component of SHA-3 is larger than 860,000, with
more than 80 % testable, so the set of challenge vectors available is large. Note that
the task of generating 2-vector tests for all paths is likely to be computationally
infeasible for even moderately sized functional units. However, it is feasible and
practical to use random vectors and ATPG to target random subsets of paths for the
enrollment requirements.

Fig. 6.17 The HELP authentication protocol

156 J. Plusquellic

The cardinality of {PNy} is approx. twice that of {PNj} at 8192 but both are
relatively small because the parameters, particularly the Path-Selection-Mask, allow
an exponential number of different combinations to be constructed over successive
authentications. The example from Sect. 6.5.4.7 uses the Path-Selection-Mask to
select 50 PN per challenge. In this case, the number of challenges that need to be
applied in the ID and Authen Phases during enrollment is approx. 80 and 160, resp.

The protocol for token authentication is shown in the bottom portion of
Fig. 6.17. The token initiates the process by generating and sending a nonce n1 to
the server. The server generates a nonce n2 and transmits the fixed set of challenges
{ck} and n2 to the token. The concatenated nonce n1 with n2 is used as input to a
hash function and a SelPar function is used to derive the Mod, S, µ, Rng, Mar
parameters from the hash output m. The SelPar function selects bit fields in the hash
output m for use in a table lookup operation to pseudo-randomly constrain the Mod
and Mar parameters to a specific set of values (as given in Fig. 6.11). Other bit
fields are used to define µ and Rng, constrained, in this case, to a range of
fixed-point values. The same SelPar operation is carried out on the server. The hash
function limits the amount of the control an adversary has over picking specific
values for these parameters in an attack scenario in which the adversary has pos-
session of the token. This component of the protocol is similar to the strategy
proposed for the Slender PUF Protocol described in Sect. 6.4 [133] but is used there
for challenge selection.

The set {ck} of challenges are applied to the PUF to generate the set {PN′j}. The
difference, TVComp and modulus operations shown on the right side of Fig. 6.4 are
applied to {PN′j} to generate the set {MPNDc′j}. Bitstring generation using the
single helper data scheme, BitGenS, is then performed as described in Sect. 6.5.4.4
using the Mar parameter. BitGenS produces a strong bitstring SBS′ and helper data
string hd′, which are both transmitted to the server.

A search process is carried out on the server, where the {PNj}i data for each
token i in the database is processed in a similar fashion. However, bitstring gen-
eration is carried out using the dual helper data scheme (BitGenD). BitGenD returns
an SBS computed using the server data and a modified bitstring SBS″, which is a
reduced-in-size version of the token’s SBS′ (see Sect. 6.5.4.4 for details). The
search process terminates when the number of bits that differ in SBS and SBS″ is
less than a tolerance ε (which may be zero) or the database is exhausted. In the
former case, the token identifier IDi is passed to the Authen Phase. Otherwise,
authentication terminates with failure at the end of the ID Phase.

Note that token privacy is preserved in the ID Phase because, with high prob-
ability, the transmitted information SBS′ and hd′ will be different from one run of
the protocol to the next, given the diversity of the parameter space provided by
Mod, S, µ, Rng, Mar, and Path-Select-Mask. Also note that this is a
compute-intensive operation for large databases because the difference, TVComp,
modulus, and BitGenD operations must be applied to each server data set. How-
ever, the search operation can be carried out in parallel on multiple CPUs given the
independence of the operations. Trial run experiments without any type of explicit

6 PUF-Based Authentication 157

parallelism yields runtimes of 200 us per database entry using a database of 10,000
elements when evaluated on an Intel i7-4702HQ CPU @ 2.2 GHz running Linux.

The Authen Phase is not shown but is identical to the ID Phase with the
following exceptions. The subset of 80 token-specific challenges {c1} is randomly
selected from the larger set of 160 in {cx} that were applied during enrollment. As
indicated earlier, the 160 challenges selected for a token overlap with those selected
for other tokens, making it impossible for adversaries to track specific tokens across
multiple authentications. A second difference is that the Authen Phase represents
the mutual authentication step, in which the server is authenticated to the token.
Therefore, the server generates the SBS′ and hd′ using the Single Helper Data
scheme, which is then transmitted to the token, and the token implements the Dual
Helper Data scheme and fuzzy match operations (opposite to that shown in
Fig. 6.17). This is possible in a resource-constrained environment because of the
symmetry in energy requirements of the proposed error avoidance schemes, i.e., the
work performed by the Single Helper Data and Dual Helper Data schemes are
nearly the same. Note that an optional third phase can be implemented to carry out a
second token authentication using the {cx} challenges if needed.

6.7 PUF-Based Authentication for SoC

System-on-chip (SoC) devices continue to proliferate as core components in IoT
applications. Although not considered a resource-constrained device, the hetero-
geneous multi-core, multi-technology characteristics of SoCs, many of which
integrate third party IP, make them easy targets for sabotage, reverse engineering,
substitution, and cloning. The threat is exacerbated when the SoC integrates
cryptographic IP blocks. PUF-based authentication mechanisms can be used to
detect manipulation and substitution in the supply-chain and later as installed
components in fielded systems.

Applications of PUF-based authentication in SoC are expanding. Recent work
focuses on preventing scan chain attacks, carrying out entity authentication and
providing authentication of bitstreams for FPGAs. For example, the authors of
[137] propose a secure test wrapper which allows testing of multiple IP blocks
using PUF-based authentication as a mechanism to improve the security of SoCs
that embed IP cores. A low-cost PUF-based authentication architecture designed to
secure code execution in IoT SoCs is proposed in [138]. The proposed architecture
extracts a PUF-based key from the processor’s cache to address threats against code
and data authenticity and integrity. A scan chain PUF is proposed in [139] for
authenticating SoCs as part of an Infrastructure IP designed to provide multiple
security functions. An overview of traditional and modern-day bitstream authen-
tication (and encryption) in FPGAs is provided in [140].

158 J. Plusquellic

6.8 Conclusion

Authentication protocols, although proposed initially for digital systems over
40 years ago, continue to evolve as new cryptographic functions, such as the
Physical Unclonable Function, become available as primitives for enabling physical
layer security properties including secure key generation and storage. Adversarial
attack surfaces are widening with the proliferation of low-cost and embedded
devices for home automation, RFID, smart cards/cars/grids, embedded medical
devices, and other types of Internet-of-Things applications. Adversarial attack
mechanisms, including physical-layer information extraction techniques, model
building and sophisticated network communication tracking algorithms, exacerbate
the task of implementing secure unilateral, mutual, and privacy preserving
authentication protocols. The introduction of PUFs as primitives can be leveraged
to serve as significant countermeasures to adversarial attack mechanisms, particu-
larly for authentication in resource-constrained environments.

This chapter covered both traditional and emerging PUF-based authentication
protocols. The primary function of a PUF is to securely generate and store secrets,
that can be converted, at any instance in time, into bitstrings for direct use in
authentication functions and/or as keys for hashing and encryption functions within
authentication protocols. The source of a PUF’s entropy is based primarily on
within-die variations that occur among circuit components of an integrated circuit.
Within-die variations are uncontrollable and unique to each copy of the IC, which
allows the PUF to produce unclonable and instance-specific bitstrings.

The integration of PUFs into commercial products is not yet wide-spread.
However, published work on PUF constructions and their use in security and trust
protocols is growing day-by-day. A wide variety of PUF primitives exist, each with
distinctive characteristics related to the number of generated bits (weak vs. strong),
robustness to on-chip noise sources, and the statistical quality of the generated
bitstrings, e.g., randomness and uniqueness. Existing work shows how PUFs can
address shortcoming and provide new capabilities to traditional software-based
approaches to authentication but, as discussed in [117, 134], care must be taken to
properly characterize the security properties of specific PUF constructions in order
to ensure functional and/or practical implementations.

References

1. Goertzel, K.M.: Integrated circuit security threats and hardware assurance countermeasures.
In: Real-Time Information Assurance, CrossTalk, Nov/Dec 2013

2. Pope, S., Cohen, B.S., Sharma, V., Wagner, R.R., Linholm, L.W., Gillespie, S.: Verifying
Trust for Defense Use Commercial Semiconductors

3. Grand Challenges for Engineering. http://www.engineeringchallenges.org/cms/8996/9042.
aspx

6 PUF-Based Authentication 159

http://www.engineeringchallenges.org/cms/8996/9042.aspx
http://www.engineeringchallenges.org/cms/8996/9042.aspx

4. Defense Science Board Task Force On High Performance Microchip Supply, Office of the
Under Secretary of Defense. http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_
Final.pdf. Accessed Feb 2005

5. Dean Collins: TRUST, A Proposed Plan for Trusted Integrated Circuits. http://www.
stormingmedia.us/95/9546/A954654.html

6. Senator Joe Lieberman: National Security Aspects of the Global Migration of the U.S.
Semiconductor Industry. http://lieberman.senate.gov/documents/whitepapers/semiconductor.
pdf. Accessed June 2003

7. TRUST in Integrated Circuits (TIC). http://www.darpa.mil/mto/solicitations/baa07-24/index.html
8. National Cyber Leap Year Summit 2009: Co-Chairs’ Report. http://www.qinetiq-na.com/

Collateral/Documents/English-US/InTheNews_docs/National_Cyber_Leap_Year_Summit_
2009_Co-Chairs_Report.pdf. Accessed 16 Sept 2009

9. Integrity and Reliability of Integrated Circuits. DARPA-BAA-10-33 (2010)
10. Trusted Integrated Chips (TIC). IARPA-BAA-11-09 (2011)
11. Bureau of Industry and Security, U.S. Department of Commence. Defense Industrial Base

Assessment: Counterfeit Electronics. http://www.bis.doc.gov/index.php/forms-documents/
doc_download/37-defense-industrial-base-assessment-of-counterfeit-electronics-2010

12. Grow, B., Tschang, C.-C., Edwards, C., Burnsed, B.: Dangerous fakes. Businessweek. http://
www.businessweek.com/stories/2008-10-01/dangerous-fakes (2008)

13. Kessler, L.W., Sharpe, T.: Faked parts detection. http://www.circuitsassembly.com/cms/
component/content/article/159/9937-smt (2010)

14. Stradley, J., Karraker, D.: The electronic part supply chain and risks of counterfeit parts in
defense applications. IEEE Trans. Compon. Packag. Technol. 29(3), 703–705 (2006)

15. Ke, H., Carulli, J.M., Makris, Y.: Counterfeit electronics: a rising threat in the semiconductor
manufacturing industry. In: International Test Conference (ITC), pp. 1–4 (2013)

16. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Controlled physical random functions.
In: Conference on Computer Security Applications, pp. 149–160 (2002)

17. https://en.wikipedia.org/wiki/Information_security
18. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press. ISBN 0-8493-8523-7. http://cacr.uwaterloo.ca/hac/. Accessed Oct 1996
19. Maes, R.: Physical Unclonable Functions, Constructions, Properties and Applications.

Springer (2013). ISBN 978-3-642-41394-0
20. Barker, E., Kelsey, J.: Recommendation of random number generation using deterministic

random bit generators. NIST SP800-90A. https://en.wikipedia.org/wiki/NIST_SP_800-90A
21. Aysu1, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design of a

PUF-based privacy preserving authentication protocol. In: CHES (2015)
22. https://en.wikipedia.org/wiki/Cryptographic_hash_function
23. https://en.wikipedia.org/wiki/SHA-3
24. https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
25. http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919061
26. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from

biometrics and other noisy data. In: Advances in Cryptology (EUROCRYPT), pp. 523–540
(2004)

27. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong
keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

28. Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R., Sadeghi, A.-R., Verbauwhede,
I., Wachsmann, C.: Reverse fuzzy extractors: enabling lightweight mutual authentication for
PUF-enabled RFIDs. Lecture Notes in Computer Science, vol. 7397, pp. 374–389 (2012)

29. https://en.wikipedia.org/wiki/Binomial_distribution
30. NIST: Computer Security Division, Statistical Tests. http://csrc.nist.gov/groups/ST/toolkit/

rng/stats_tests.html
31. Needham, R., Schroeder, M.: Using encryption for authentication in large networks of

computers. Commun. ACM 21(12), 993–999 (1978)

160 J. Plusquellic

http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.stormingmedia.us/95/9546/A954654.html
http://www.stormingmedia.us/95/9546/A954654.html
http://lieberman.senate.gov/documents/whitepapers/semiconductor.pdf
http://lieberman.senate.gov/documents/whitepapers/semiconductor.pdf
http://www.darpa.mil/mto/solicitations/baa07-24/index.html
http://www.qinetiq-na.com/Collateral/Documents/English-US/InTheNews_docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf
http://www.qinetiq-na.com/Collateral/Documents/English-US/InTheNews_docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf
http://www.qinetiq-na.com/Collateral/Documents/English-US/InTheNews_docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf
http://www.bis.doc.gov/index.php/forms-documents/doc_download/37-defense-industrial-base-assessment-of-counterfeit-electronics-2010
http://www.bis.doc.gov/index.php/forms-documents/doc_download/37-defense-industrial-base-assessment-of-counterfeit-electronics-2010
http://www.businessweek.com/stories/2008-10-01/dangerous-fakes
http://www.businessweek.com/stories/2008-10-01/dangerous-fakes
http://www.circuitsassembly.com/cms/component/content/article/159/9937-smt
http://www.circuitsassembly.com/cms/component/content/article/159/9937-smt
https://en.wikipedia.org/wiki/Information_security
http://cacr.uwaterloo.ca/hac/
https://en.wikipedia.org/wiki/NIST_SP_800-90A
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://www.nist.gov/manuscript-publication-search.cfm%3fpub_id%3d919061
https://en.wikipedia.org/wiki/Binomial_distribution
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

32. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Ron was
wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012)

33. Torrance, R., James, D.: The state-of-the-art in IC reverse engineering. In: Lecture Notes in
Computer Science (LNCS), Workshop on Cryptographic Hardware and Embedded Systems,
vol. 5747, pp. 363–381 (2009)

34. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Lecture Notes in Computer
Science (LNCS), Advances in Cryptology, vol. 1666, pp. 388–397 (1999)

35. Lofstrom, K., Daasch, W.R., Taylor, D.: IC identification circuits using device mismatch. In:
International Solid State Circuits Conference, pp. 372–373 (2000)

36. Puntin, D., Stanzione, S., Iannaccone, G.: CMOS unclonable system for secure authenti-
cation based on device variability. In: Conference on Solid-State Circuits Conference,
pp. 130–133 (2008)

37. Stanzione, S., Iannaccone, G.: Silicon physical unclonable function resistant to a 1025-trial
Brute Force Attack in 90 nm CMOS. In: Symposium VLSI Circuits, pp. 116–117 (2009)

38. Pappu, R.: Physical one-way functions. Ph.D. thesis, MIT, ch. 9, 2001
39. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297

(6), 2026–2030 (2002)
40. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random functions. In:

Conference on Computer and Communications Security, 148–160 (2002)
41. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to build

a secret key in integrated circuits for identification and authentication applications. In:
Symposium of VLSI Circuits, pp. 176–179 (2004)

42. Lim, D.: Extracting secret keys from integrated circuits. M.S. thesis, MIT, 2004
43. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting secret

keys from integrated circuits. Trans. Very Large Scale Integr. Syst. 13(10), 1200–1205
(2005)

44. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret
key generation. In: Design Automation Conference, pp. 9–14 (2007)

45. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. In: Conference on
Computer-Aided Design (2008)

46. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware security. In:
International Test Conference, pp. 185–189 (2008)

47. Ozturk, E., Hammouri, G., Sunar, B.: Physical unclonable function with tristate buffers. In:
Symposium on Circuits and Systems, pp. 3194–3197 (2008)

48. Ozturk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive
devices. In: Conference on Pervasive Computing and Communications, pp. 170–178 (2008)

49. Gassend, B., Van Dijk, M., Clarke, D., Torlak, E., Devadas, S., Tuyls, P.: Controlled
physical random functions and applications. ACM Trans. Inf. Syst. Secur. 10(4) (2008)

50. Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., Khandelwal, V.: Design and
implementation of PUF-based ‘Unclonable’ RFID ICs for anti-counterfeiting and security
applications. In: Conference on RFID, pp. 58–64 (2008)

51. Qu, G., Yin, C.: Temperature-aware cooperative ring oscillator PUF. In: Workshop on
Hardware-Oriented Security and Trust, pp. 36–42 (2009)

52. Maiti, A., Schaumont, P.: Improving the quality of a physical unclonable function using
configurable ring oscillators. In: Conference on Field Programmable Logic and Applications,
pp. 703–707 (2009)

53. Maiti, A., Casarona, J., McHale, L., Schaumont, R.: A large scale characterization of
ROPUF. In: Symposium on Hardware-Oriented Security and Trust, pp. 94–99 (2010)

54. Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and statistical performance
evaluation of arbiter physical unclonable functions on FPGAs. In: Conference on
Reconfigurable Computing and FPGAs, pp. 298–303 (2010)

55. Yin, C.-E.D., Qu, G.: LISA: maximizing RO PUF’s secret extraction. In: Symposium on
Hardware-Oriented Security and Trust, pp. 100–105 (2010)

6 PUF-Based Authentication 161

56. Costea, C., Bernard, F., Fischer, V., Fouquet, R.: Analysis and enhancement of ring
oscillators based physical unclonable functions in FPGAs. In: Conference on Reconfigurable
Computing and FPGAs, pp. 262–267 (2010)

57. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF using programmable delay lines. In:
Workshop on Information Forensics and Security, pp. 1–6 (2010)

58. Xin, X., Kaps, J., Gaj, K.: A configurable ring-oscillator-based PUF for Xilinx FPGAs. In:
Conference on Digital System Design, pp. 651–657 (2011)

59. Qingqing, C., Csaba, G., Lugli, P., Schlichtmann, U., Ruhrmair, U.: The bistable ring PUF: a
new architecture for strong physical unclonable functions. In: Symposium on
Hardware-Oriented Security and Trust, pp. 134–141 (2011)

60. Qingqing, C., Csaba, G., Lugli, P., Schlichtmann, U., Ruhrmair, U.: Characterization
of the bistable ring PUF. In: Design, Automation & Test in Europe Conference,
pp. 459–1462 (2012)

61. Mansouri, S.S., Dubrova, E.: Ring oscillator physical unclonable function with multi level
supply voltages. In International Conference on Computer Design, pp. 520–521 (2012)

62. Addabbo, T., Fort, A., Mugnaini, M., Rocchi, S., Vignoli, V.: Statistical characterization of a
FPGA PUF module based on ring oscillators. In: Instrumentation and Measurement
Technology Conference, pp. 1770–1773 (2012)

63. Maiti, A., Inyoung, K., Schaumont, P.: A robust physical unclonable function with enhanced
challenge-response set. Trans. Inf. Forensics Secur 7(1), Part: 2, pp. 333–345 (2012)

64. Meng-Day, Y., Sowell, R., Singh, A., M’Raihi, D., Devadas, S.: Performance metrics and
empirical results of a PUF cryptographic key generation ASIC. In: Symposium on
Hardware- Oriented Security and Trust, pp. 108–115 (2012)

65. Maeda, S., Kuriyama, H., Ipposhi, T., Maegawa, S., Inoue, Y., Inuishi, M., Kotani, N.,
Nishimura, T.: An artificial fingerprint device (AFD): a study of identification number
applications utilizing characteristics variation of polycrystalline silicon TFTs. Trans.
Electron Dev. 50(6), 1451–1458 (2003)

66. Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfigurable
platforms. In: Cryptographic Hardware and Embedded Systems, vol. 4249, Oct 2006,
pp. 10–13

67. Habib, B., Gaj, K., Kaps, J.-P.: FPGA PUF based on programmable LUT delays. In:
Euromicro Conference on Digital System Design (DSD), pp. 697–704 (2013)

68. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: Physical unclonable functions and
public key crypto for FPGA IP protection. In: Conference on Field Programmable Logic and
Applications, 189–195 (2007)

69. Su, Y., Holleman, J., Otis, B.: A 1.6pJ/bit 96 % stable chip ID generating circuit using
process variations. In: International Solid State Circuits Conference, pp. 406–407 (2007)

70. Guajardo, J., Kumar, S.S., Schrijen, G., Tuyls, P.: Brand and IP protection with physical
unclonable functions. In: Symposium on Circuits and Systems, pp. 3186–3189 (2008)

71. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: Extended abstract: the
butterfly PUF protecting IP on every FPGA. In: Workshop on Hardware-Oriented Security
and Trust, pp. 70–73 (2008)

72. Kassem, M., Mansour, M., Chehab, A., Kayssi, A.: A sub-threshold SRAM based PUF. In:
Conference on Energy Aware Computing, pp. 1–4 (2010)

73. Bohm, C., Hofer, M., Pribyl, W.: A microcontroller SRAM-PUF. In: Conference on
Network and System Security, pp. 25–30 (2011)

74. Bhargava, M., Cakir, C., Mai, K.: Reliability enhancement of bi-stable PUFs in 65 nm bulk
CMOS. In: Workshop on Hardware-Oriented Security and Trust, pp. 79–83 (2012)

75. Alkabani, Y., Koushanfar, F., Kiyavash, N., Potkonjak, M.: Trusted integrated circuits: a
nondestructive hidden characteristics extraction approach. In: Information Hiding (2008)

76. Ganta, D., Vivekraja, V., Priya, K., Nazhandali, L.: A highly stable leakage-based silicon
physical unclonable functions. In: Conference on VLSI Design, pp. 135–140 (2011)

162 J. Plusquellic

77. Helinski, R., Acharyya, D., Plusquellic, J.: Physical unclonable function defined using power
distribution system equivalent resistance variations. In: Design Automation Conference,
pp. 676–681 (2009)

78. Helinski, R., Acharyya, D., Plusquellic, J.: Quality metric evaluation of a physical
unclonable function derived from an IC’s power distribution system. In: Design Automation
Conference, pp. 240–243 (2010)

79. Ju, J., Chakraborty, R., Rad, R., Plusquellic, J.: Bit string analysis of physical unclonable
functions based on resistance variations in metals and transistors. In: Symposium on
Hardware-Oriented Security and Trust, pp. 13–20 (2012)

80. Ju, J., Chakraborty, R., Lamech, C., Plusquellic, J.: Stability analysis of a physical
unclonable function based on metal resistance variations. In: Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 143–150 (2013)

81. Ismari, D., Plusquellic, J.: IP-level implementation of a resistance-based physical
unclonable function. In: Accepted to Symposium on Hardware-Oriented Security and
Trust (HOST) (2014)

82. Chakraborty, R., Lamech, C., Acharyya, D., Plusquellic, J.: A transmission gate physical
unclonable function and on-chip voltage-to-digital conversion technique. In: Design
Automation Conference (DAC), pp. 1–10 (2013)

83. Li, J., Lach, J.: At-speed delay characterization for IC authentication and trojan horse
detection. In: International Workshop on Hardware-Oriented Security and Trust (HOST),
pp. 8–14 (2008)

84. Aarestad, J., Ortiz, P., Acharyya, D., Plusquellic, J.: HELP: a hardware-embedded delay—
based PUF. IEEE Des. Test Comput. 30(2), 17–25 (2013)

85. Aarestad, J., Acharyya, D., Plusquellic, J.: An error-tolerant bit generation technique for use
with a hardware-embedded path delay PUF. In: Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 151–158 (2013)

86. Saqib, F., Areno, M., Aarestad, J., Plusquellic, J.: An ASIC implementation of a
hardware-embedded physical unclonable function. IET Comput. Digit. Tech. 8(6), 288–
299 (2014)

87. Che, W., Saqib, F., Plusquellic, J.: PUF-based authentication, invited paper. In: International
Conference on Computer Aided Design, Nov 2015

88. Kursawe, K., Sadeghi, A.-R., Schellekens, D., Skoric, B., Tuyls, P.: Reconfigurable physical
unclonable functions—enabling technology for tamper-resistant storage. In: Workshop on
Hardware-Oriented Security and Trust, pp. 22–29 (2009)

89. Rosenfeld, K., Gavas, E., Karri, R.: Sensor physical unclonable functions. In: Symposium on
Hardware-Oriented Security and Trust, pp. 112–117 (2010)

90. Xiaoxiao, W., Tehranipoor, M.: Novel physical unclonable function with process and
environmental variations. In: Conference on Design, Automation & Test in Europe,
pp. 1065–1070 (2010)

91. Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power
sub-threshold design of secure physical unclonable functions. In: Symposium on
Low-Power Electronics and Design, pp. 43–48 (2010)

92. Ruhrmair, U., Jaeger, C., Bator, M., Stutzmann, M., Lugli, P., Csaba, G.:
Applications of high-capacity crossbar memories in cryptography. Trans. Nanotechnol.
10(3), 489–498 (2011)

93. Simons, P., van der Sluis, E., van der Leest, E.: Buskeeper PUFs, a promising
alternative to D flip-flop PUFs. In: Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 7–12 (2012)

94. Maiti, A., Schaumont, P.: A novel microprocessor-intrinsic physical unclonable function. In:
Field Programmable Logic and Applications, pp. 380–387 (2012)

6 PUF-Based Authentication 163

95. Sreedhar, A., Kundu, S.: Physically unclonable functions for embedded security based on
lithographic variation. In: Conference on Design, Automation & Test in Europe, pp. 96–105
(2012)

96. Kumar, R., Dhanuskodi, S.N., Kundu, S.: On manufacturing aware physical design to
improve the uniqueness of silicon-based physically unclonable functions. In: International
Conference on Embedded Systems, pp. 381–386 (2014)

97. Forte, D., Srivastava, A.: On improving the uniqueness of silicon-based physically
unclonable functions via optical proximity correction. In: Design Automation Conference,
pp. 7–12 (2012)

98. Meguerdichian, S., Potkonjak, M.: Device aging-based physically unclonable functions. In:
Conference on Design Automation Conference, pp. 288–289 (2011)

99. Kalyanaraman, M., Orshansky, M.: Novel strong PUF based on nonlinearity of MOSFET
subthreshold operation. In: Symposium on Hardware-Oriented Security and Trust (HOST),
pp. 13–18 (2013)

100. Rose, G.S., McDonald, N., Lok-Kwong, Y., Wysocki, B., Xu, K.: Foundations of memristor
based PUF architectures. In: IEEE/ACM International Symposium on Nanoscale Architec-
tures (NANOARCH), pp. 52–57 (2013)

101. Che, W., Bhunia, S., Plusquellic, J.: A non-volatile memory-based physically unclonable
function without helper data. In: International Conference on Computer-Aided Design
(ICCAD) (2014)

102. Yu, Z., Krishna, A.R., Bhunia, S.: ScanPUF: robust ultralow-overhead PUF using scan
chain. In: Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 626– 631
(2013)

103. Zhang, L., Kong, Z.H., Chang, C-H.: PCKGen: a phase change memory based cryptographic
key generator. In: International Symposium on Circuits and Systems (ISCAS), pp. 1444–
1447 (2013)

104. Konigsmark, S.T.C., Hwang, L.K., Deming, C., Wong, M.D.F.: CNPUF: a carbon
nanotube-based physically unclonable function for secure low-energy hardware design. In:
Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 73–78 (2014)

105. Zhang, F., Henessy, A., Bhunia, S.: Robust counterfeit PCB detection exploiting intrinsic
trace impedance variations. In: VLSI Test Symposium, Apr 2015

106. Areno, M., Plusquellic, J.: Securing trusted execution environments with PUF generated
secret keys. In: TrustCom (2012)

107. Areno, M., Plusquellic, J.: Secure mobile association and data protection with enhanced
cryptographic engines. In: PRISMS (2013)

108. Guajardo, J., Kumar, S.S., Schrijen, G.T., Tuyls, P.: FPGA intrinsic PUFs and their use for
IP protection. Cryptogr. Hardware Embedded Syst. 4727, 63–80 (2007)

109. Rührmair, U., Busch, H., Katzenbeisser, S.: Strong PUFs: models, constructions, and
security proofs. In: Sadeghi, A.-R., Naccache, D. (eds.) Towards Hardware-Intrinsic
Security, pp. 79–95. Springer (2010)

110. Gassend, B., Lim, D., Clarke, D., van Dijk, M., Devadas, S.: Identification and
authentication of integrated circuits. Concurr. Comput. 16(11), 1077–1098 (2004)

111. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware security. In:
International Test Conference, pp. 1–10 (2008)

112. Paral, Z., Devadas, S.: Reliable and efficient PUF-based key generation using pattern
matching. In: Symposium on Hardware-Oriented Security and Trust, pp. 128–133 (2011)

113. Lamech, C., Aarestad, J., Plusquellic, J., Rad, R., Agarwal, K.: REBEL and TDC: two
embedded test structures for on-chip measurements of within-die path delay variations. In:
International Conference on Computer-Aided Design, pp. 170–177 (2011)

114. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant
ASIC or FPGA implementation. In: DATE, pp. 246–251 (2004)

164 J. Plusquellic

115. Tiri, K., Verbauwhede, I.: A digital design flow for secure integrated circuits. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 25(7), 1197–1208 (2006)

116. Ranasinghe, D.C., Engels, C.W., Cole, P.H.: Security and privacy: modest proposals for
low-cost RFID systems. In: Auto-ID Labs Research Workshop (2004)

117. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Secure lightweight entity
authentication with strong PUFs: mission impossible? In: CHES, pp. 451–475 (2014)

118. Rührmair, U., Sehnke, F., Solter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling
attacks on physical unclonable functions. In: Conference on Computer and Communications
Security, pp. 237–249 (2010)

119. Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R., Sadeghi, A.-R., Verbauwhede,
I., Wachsmann, C.: Reverse fuzzy extractors: enabling lightweight mutual authentication for
PUF-enabled RFIDs. In: International Conference on Financial Cryptography and Data
Security (2012)

120. Bolotny, L., Robins, G.: Physically unclonable function-based security and privacy in RFID
systems. In: PerCom, pp. 211–220 (2007)

121. Ozturk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive
devices. In: PerCom, pp. 170–178 (2008)

122. Hammouri, G., Ozturk, E., Sunar, B.: A tamper-proof and lightweight authentication
scheme. Pervasive Mobile Comput. 807–818 (2008)

123. Kulseng, L.,. Yu, Z., Wei, Y., Guan, Y.: Lightweight mutual authentication and ownership
transfer for RFID systems. In: INFOCOM, pp. 251–255 (2010)

124. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Enhancing RFID security and privacy by
physically unclonable functions. In: Information Security and Cryptography, pp. 281–305
(2010)

125. Katzenbeisser, S., Unal Kocabas, Van Der Leest, V., Sadeghi, A., Schrijen, G.J., Schroder,
H., Wachsmann, C.: Recyclable PUFs: logically reconfigurable PUFs. In: CHES, pp. 374–
389 (2011)

126. Kocabas, U., Peter, A., Katzenbeisser, S., Sadeghi, A.: Converse PUF-based authentication.
In: TRUST, pp. 142–158 (2012)

127. Lee, Y.S., Kim, T.Y., Lee, H.J.: Mutual authentication protocol for enhanced RFID security
and anticounterfeiting. In: WAINA, pp. 558–563 (2012)

128. Jin, Y., Xin, W., Sun, H., Chen, Z.: PUF-based RFID authentication protocol against secret
key leakage. Lect. Notes Comput. Sci. 7235, 318–329 (2012)

129. Xu, Y., He, Z.: Design of a security protocol for low-cost RFID. In: WiCOM, pp. 1–3 (2012)
130. Lee, Y.S., Lee, H.J., Alasaarela, E.: Mutual authentication in wireless body sensor networks

based on physical unclonable function. In: IWCMC, pp. 1314–1318 (2013)
131. Yu, M.-D.M., M’Rahi, D., Verbauwhede, I., Devadas, S.: A noise bifurcation architecture

for linear additive physical functions. In: HOST, pp. 124–129 (2014)
132. Konigsmark, S.T.C., Hwang, L.K., Chen, D., Wong, M.D.F.: System-of-PUFs: multilevel

security for embedded systems. In: CODES, pp. 27:1–27:10 (2014)
133. Majzoobi, M., Rostami, M., Koushanfar, F., Wallach, D.S., Devadas, S.: Slender PUF

protocol: a lightweight, robust, and secure authentication by substring matching. In:
Symposium on Security and Privacy Workshop, pp. 33–44 (2012)

134. Delvaux, J., Gu, D., Peeters, R., Verbauwhede, I.: A survey on lightweight entity
authentication with strong PUFs. Cryptology ePrint Archive: Report 2014/977

135. Moriyama, D., Matsuo, S., Yung, M.: PUF-based RFID authentication secure and private
under complete memory leakage. IACR Cryptology ePrint Archive 2013, 712 (2013). http://
eprint.iacr.org/2013/712

136. Che, W., Saqib, F., Plusquellic, J.: A privacy-preserving, mutual PUF-based authentication
protocol. Submitted to special issue “Physical Security in Cryptography Environment”,
Cryptogr. J. http://www.mdpi.com/journal/cryptography. Accessed Aug 2016

6 PUF-Based Authentication 165

http://eprint.iacr.org/2013/712
http://eprint.iacr.org/2013/712
http://www.mdpi.com/journal/cryptography

137. Das, A., Kocabas, U., Sadeghi, A.-R., Verbauwhede, I.: PUF-based secure test wrapper
design for cryptographic SoC testing. In: Design, Automation and Test in Europe, pp. 866–
869 (2012)

138. Hoffman, C., Cortes, M., Aranha, D.F., Araujo, G.: Computer security by hardware-intrinsic
authentication. In: Hardware/Software Codesign and System Synthesis, pp. 143–152 (2015)

139. Wang, X., Zheng, Y., Basak, A., Bhunia, S.: IIPS: infrastructure IP for secure SoC design.
Trans. on Comput. 64(8), 2226–2238 (2015)

140. Trimberger, S.M., Moore, J.J.: FPGA security: motivations, features, and applications. Proc.
IEEE 1248–1265 (2014)

166 J. Plusquellic

Chapter 7
FPGA-Based IP and SoC Security

Debasri Saha and Susmita Sur-Kolay

7.1 Introduction

Field-programmable gate arrays (FPGAs) have become almost indispensable in

embedded reprogrammable systems for a plethora of applications in recent times.

An application-specific design can be transformed into a configuration bitstream to

program an already fabricated architecture so that the specific application is realized

on this targeted hardware. FPGA-based IPs are used in communication infrastruc-

ture, digital camera, high-performance signal and image processing applications,

automotive electronics, industrial control, and distributed database applications. A

modern FPGA is becoming increasingly complex, typically comprising embedded

multi-core processors, gigabit serial transceivers, clock managers, analog-to-digital

converters, digital signal processing blocks, ethernet controllers, megabytes of mem-

ory, and other functional blocks in addition to the arrays of basic logic elements.

This introductory section presents a typical FPGA architecture and a design flow.

It continues with brief description of the various associated IPs, typical threats, and

security aspects. Section 7.2 discusses cryptographic primitives because a bitfile or

a partial bitstream is loaded on an FPGA architecture in encrypted form to prevent

an unauthorized access of the IP. This encryption of bitfile may be cracked through

side-channel attacks. In Sect. 7.3, methods for authentication of genuine IP vendor

and the authorized IP user by including their binary signatures in the FPGA bit-

stream are described. Section 7.4 deals with various effective techniques to combat

the threat of Hardware Trojan Horse (HTH) [1] in FPGAs. Finally, as SoCs are also

D. Saha (✉)

A. K. Choudhury School of Information Technology,

University of Calcutta, Kolkata, India

e-mail: sahadebasri@gmail.com

S. Sur-Kolay

Advanced Computing & Microelectronics Unit,

Indian Statistical Institute, Kolkata, India

e-mail: ssk@isical.ac.in

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_7

167

168 D. Saha and S. Sur-Kolay

being implemented with FPGAs, security issues in IP distribution, IP management,

and inter-communication which are more complex and challenging are discussed in

Sect. 7.5. Section 7.6 represents the summary.

7.1.1 Brief Description of an FPGA Architecture and Its
Design Flow

An FPGA vendor, such as Xilinx, Altera (acquired by Intel in 2015), MicroSemi, is a

proprietor of its FPGA chips available in several device families. A design software

tool is used to design, optimize, and load an FPGA design meant for any member

of its device family. For example, Xilinx provides a number of architecture families

such as Spartan, Virtex, Kintex, and Zync. A standard FPGA architecture consists

of various types of basic components—configurable logic blocks (CLBs), memories

(block select RAMs), programmable routing matrix, input/output blocks (IOB), and

clock distributions. Modern architectures are becoming more nonhomogeneous as

those contain block RAM (BRAM), multipliers, and even DSP blocks. Each CLB

contains a large number of slices (logic cells). Each logic cell contains a few lookup

tables (LUTs) to implement fixed capacity Boolean functions, and flip-flops as stor-

age elements. SRAM controlled MUXes and fast carry logic connect outputs of

LUTs (Fig. 7.1a). BRAMs are used for caching and accessing common data. Pro-

grammable routing matrix consists of routing resources for local routing and for

general-purpose routing [2].

The design tool of each vendor broadly follows an FPGA design flow (Fig. 7.1b),

which is somewhat different from that of ASICs. In the design entry phase, the

design description in a hardware description language (HDL) such as Verilog or

VHDL is simulated, and then synthesized to generate the netlist in .ngc or .edif

D
es

ig
n

En
try

Sy
nt

he
si

s

Implementation

Te
ch

no
lo

gy
M

ap
pi

ng

Fl
oo

rp
la

nn
in

g

Pl
ac

e
&

R

ou
tin

g

G
en

er
at

io
n

of
B

its
tre

am

(a) (b)

(c)

Fig. 7.1 FPGA architecture: a a slice of a CLB in Xilinx Virtex family, b FPGA design flow, and

c Xilinx FPGA chip with ultrascale architecture (Courtesy: Xilinx)

7 FPGA-Based IP and SoC Security 169

format. The next phase is implementation. In map subphase of implementation, i.e.,

in technology mapping of the FPGA design flow, the netlist is split into small parts

such that each part can be mapped onto a physical component of the already fab-

ricated architecture, namely slices and IOBs. In place and route (P&R) subphase,

the netlist components are placed in slices and interconnected using the routing

resources to realize the netlist so that the timing report ascertains specified timing

closure. Once the design is implemented, the configuration bitstream is generated in

.bit format and is downloaded in encrypted form either directly onto an FPGA chip,

or in external memory, e.g., flash PROM in Xilinx platform. The bitfile on decryption

configures the FPGA to realize the design.

Modern FPGAs support partial reconfiguration (PR), which facilitates reconfig-

uration of one or more part(s) of the design with different bitstreams. PR enhances

flexibility and the speed of applications within limited hardware resources, thereby

rendering the design to be suitable for adaptive computing. Module-based PR is

widely used to reconfigure distinct modular parts of the design, whereas in difference-

based PR, a partial bitstream contains information only about the minute differences

between the present and the next design. PR may be dynamic or static. Dynamic

(active) PR permits reconfiguring some parts of an FPGA while the rest of the device

is running, whereas static PR does not. Dynamic PR is very effective in real-time

applications but requires fast decryption and other primitive security components for

the partial bitstream. A Microblaze soft processor as microcontroller may be used to

initiate reconfiguration in a reconfigurable system. Other ways to initiate reconfigu-

ration are JTAG, RS232 commands, timer- based, and event-based reconfiguration.

The new partial configuration bitstream is then loaded into FPGA using an internal

configuration access port (ICAP).

PR is supported in the Xilinx architectures Virtex-4 to Virtex-7, Kintex-7, Artix-7

and the Zynq-7000 programmable SoC family. Xilinx ultrascale architecture

(Fig. 7.1c) enables PR of almost all FPGA resources including I/O and clock net-

work. Xilinx PlanAhead tool is used to specify the static partition and the modules

to be reconfigured. It also defines and manages the buses across the partition inter-

face between the reconfigurable modules and the other parts of the design.

7.1.2 IPs in FPGA

Application-specific ICs (ASICs) are reused as intellectual property (IP) cores in

larger circuits, but ASICs need enormous design effort and long design time before

their fabrication and thereby entailing high cost. In order to cope up with the require-

ments of high productivity, low cost, and low time-to-market, nowadays application-

specific designs are also being configured in FPGA. Therefore, in addition to hard-

coded ASICs, FPGA-based designs have been well-accepted as IP cores. Support

to partial reconfigurability enhances the flexibility, and high parallelism increases

efficiency of FPGA-based IPs. Often, in a system-on-chip (SoC), a piece of FPGA

architecture is included along with several ICs on the SoC to enhance flexibility of

170 D. Saha and S. Sur-Kolay

its usage. Alternatively, an SoC with multiple IP cores from different IP core ven-

dors may entirely be configured on an FPGA. An increasing number of companies

are providing IP support to FPGA.

In an FPGA, an application-specific design is optimized in performance, power,

and in size for being loaded in the smallest possible FPGA chip and is taken in the

form of a configuration bitstream file, also known as bitfile. IP for an FPGA may

be in various forms, namely HDL design, FPGA-based design after place-and-route,

stored bitfile before loading, or even bitfile running on an FPGA. The soft bitfile is

the most valuable and vulnerable IP.

7.1.3 Typical Threats for an FPGA-Based IP

In the context of FPGA-based IP security, the following attacks create concern:

T1 unauthorized access of a bitstream IP through hacking a bitfile in transmission,

or through cloning, i.e., copying the bitstream by intercepting it from the FPGA;

T2 reverse engineering of a bitstream IP to extract information about the lower level

design or any embedded secret information, such as a signature used for authen-

tication or a secret key for decryption;

T3 attempt to extract any secret information from side-channel information of an

FPGA chip, i.e., from measurable manifestation of a circuit in operation, such

as delay, power, and electromagnetic emissions of the FPGA chip;

T4 counterfeiting, i.e., selling a low-quality FPGA IP at the price of a branded prod-

uct after extraction of secret signature of the IP core designer from the branded

IP followed by its insertion into a low-quality IP;

T5 malicious modification of an IP through tampering of embedded secret informa-

tion, or through spoofing, i.e., replacing the authentication portion of an FPGA

bitstream by that of the attacker;

T6 modification by inclusion of extraneous logic known as Hardware Trojan Horse

(HTH) in order to affect the performance or lifetime of an IP or to extract secret

design information;

T7 untrustworthy design tool;

T8 fabrication of an FPGA chip with intentional structural defect, or may be a lower

generation device with lower performance.

Some of these threats such as threats T1, T2, and T3 are more alarming for FPGAs

compared to ASICs. As the design tool and the FPGA chip are proprietary to the

FPGA vendor, the last two threats T7 and T8 can cause serious concerns only if the

design team and fabrication facility of the FPGA vendor are not trustworthy.

Nowadays, support to reconfiguration provides enhanced flexibility, but at the cost

of additional security threats such as intrusion through the reconfiguration controller,

damage of the base array by corrupted bitstream during reconfiguration.

7 FPGA-Based IP and SoC Security 171

Widespread usages of FPGA IPs on an FPGA-based SoC, and support for partial

reconfiguration, create causes of concerns, specifically in (i) IP exchange, (ii) iden-

tification and partial decoding of bitstream, (iii) IP management on FPGA-based

SoCs, and also (iv) detection of Trojan sources active across the IPs. Discussion on

these threats on FPGA-based SoCs appears in Sect. 7.5.

7.1.4 Security Aspects: Countermeasures and Vulnerabilities

In order to counter the above-mentioned attacks on FPGA IP cores, a number of

security aspects have been implemented in FPGAs, namely,

(a) encryption of the bitstream to prevent cloning, reverse engineering, and integrity

check of the bitstream to detect malicious modification;

(b) appropriate design of cryptoprocessor unit on an FPGA to protect secret infor-

mation from side-channel attacks;

(c) embedding in the design a signature that is tamper resistant as well as resilient

against reverse engineering to protect the IP against counterfeiting;

(d) applying techniques for detection of Trojans.

These mechanisms ensure trusted use of an IP. On one hand, only the genuine IP

core vendor gets the patent by correctly proving his ownership and also the desired

royalty fees for each legal IP instance as only an authorized user can access his IP

core. On the other, an IP core purchased by a legal buyer is of desired IP value ensur-

ing protection of buyer’s right [3]. Some of the above-mentioned security aspects are

usually included in standard FPGA products, whereas the rest are in research domain.

The FPGA products are still vulnerable to the threats which have not been covered

by the security aspects in them, along with other new types of attacks.

Several surveys on FPGA security, such as [4–6], have on a number of security

challenges and their countermeasures. In the current perspective of partial recon-

figurability of FPGAs and FPGA-based SoCs, this chapter highlights the present

state-of-the-art of FPGA security and existing vulnerabilities.

In commercial FPGAs, the following techniques as countermeasures have been

introduced to enhance FPGA security [7].

∙ The bitfile (i.e., the .bit file) generated in the final stage of a design tool for FPGA

is difficult to read, and the bitstream in the bitfile for Xilinx starting from the

old Virtex-II family to the recent Virtex-7 series remains encrypted, and therefore

cloning of the design is prevented.

∙ In Virtex-6, Spartan-6, and other recent families from Xilinx, a unique but public

57-bit device identifier, known as Device DNA, is programmed into a one-time

programmable (OTP) e-fuse to uniquely identify an FPGA device. It attempts

to make the encryption device-specific so that the encrypted bitfile cannot be

decrypted and utilized in other chips.

172 D. Saha and S. Sur-Kolay

∙ The format of configuration bitstream is in general proprietary and kept confiden-

tial to the vendor, otherwise an adversary with the knowledge of the configuration

format may reverse-engineer the bitstream to obtain the logic design.

∙ Readback reveals the present state of an operating FPGA. Therefore, readback

of any configuration file, even encrypted, is not permitted in Xilinx, or in Altera

Stratix II and Stratix II GX devices. The Altera device families of Arria II GX,

Arria V, Cyclone III LS, Cyclone V, and Stratix V have user mode anti-tamper

features such as controlling interfaces with JTAG. For Xilinx, Readback via

JTAG and other external interfaces is disabled after the device is loaded with an

encrypted design. This helps in prevention of cloning as well as reverse engineer-

ing.

∙ In reconfigurable FPGAs, temporary data storage is cleared and the current com-

munication is terminated before reconfiguration, otherwise an adversary may take

advantage of using the data for reverse engineering.

∙ Hashed message authentication code (HMAC) is incorporated in Xilinx Virtex-6

to ensure authentication of an FPGA design. It also ensures its integrity by detect-

ing spoofing. Cyclic redundancy check (CRC) as integrity check is applied on the

bitstream to detect malicious modification /tampering of the same.

∙ Xilinx includes error-correcting codes for each configuration data frame (the

smallest addressable segments of the device configuration memory space) and a

bitstream scrubbing hardware to monitor configuration data and to correct altered

bits.

∙ Internal monitoring on voltage and temperature in Xilinx has been employed to

identify possible environmental attacks on an operating design. Any attempt to

alter the key or configuration bitstream causes the key and bitstream content to be

cleared.

∙ Further, verification, cross-checking, and constraint checking are done at various

stages of the design tool to check integrity and correctness of the design with

possible detection of any tamper or extraneous logic present.

∙ Mixing of encrypted and non-encrypted data for a single application is prevented,

as the latter may contain Trojans.

In spite of several security measures adopted in the (i) manufacturing flow, (ii)

design tools, (iii) during configuration, and (iv) operation of FPGAs, all the threats

described in Sect. 7.1.3 cannot be tackled. While countermeasures to the threats

T1, T2, and T5 have been implemented, several research proposals are there for T3

and T4. Although the security against the risk in threat T6 for HTH has only been

enhanced, the risk is still alive. An unbiased verification team within an FPGA ven-

dor for verifying their design tool and testing their device can help to tackle threats

T7 and T8.

Moreover, few new attacks have been introduced into the security mechanisms

incorporated. For example, the entire secret key for decryption has already been

recovered by analyzing side-channel information. After measuring the power con-

sumption of a single power-up of Xilinx Virtex-II Pro, all the three different keys

7 FPGA-Based IP and SoC Security 173

used by its triple DES encryption module could be retrieved. The full 128-bit AES

key [8] of an Altera Stratix II has been discovered by applying side-channel analy-

sis with 30,000 measurements in less than three hours. Some internals of hard-

ware crypto engines of the corresponding Xilinx and Altera devices have also been

revealed through these attacks. A keyed test mechanism has already been discovered

for enabling readback for Microsemi FPGAs.

A large number of possible Trojan sources in a design tool as well as in the hard-

ware render complete assurance of a trusted environment to be difficult. The bitfile

with high IP value is more vulnerable for such Trojan intrusion. Of late, attackers

can even interpret the format of a bitfile and insert Trojans very effectively.

A rich adversary may employ costlier attacks like tampering of configuration data

by applying radiation or physical stress. Nowadays, high-profit applications also uti-

lize FPGA IPs. Therefore, these costlier attacks become feasible as an adversary can

gain monetarily notwithstanding the cost of the attacks. Techniques with low perfor-

mance overhead to counter costlier attacks are on demand.

Sometimes, certain security measures to counter various types of attacks may be

conflicting with each other—such as encryption and trustworthy signature verifica-

tion, encryption and reconfigurability.

In the platform of partially reconfigurable FPGA-based SoCs and embedded sys-

tems, some security mechanisms have been adopted to cope up with the increased

vulnerability to attacks mostly targeting the content of memory, the operations of

processors and configuration controller, interfaces and data transmission on a sys-

tem. But, more effective and efficient measures are on demand. Further, during distri-

bution of multiple IPs to several IP tool vendors, key management is quite complex,

and the possibility of partial interception of IPs remains to be handled properly.

The above-mentioned vulnerabilities to attacks are still alive and new security

holes are being introduced. Therefore, IP security in FPGA domain has interesting

challenges and needs special attention.

7.2 Cryptographic Primitives on FPGA Bitstream

For an FPGA design, the corresponding bitfile core is to be kept encrypted when

it is shipped or transmitted to its buyer and also at buyers’ site to prevent cloning

as well as reverse engineering of the bitfile. The encryption algorithm to be used

must be fast, robust against cryptanalysis and the decryption hardware implementing

the decryption algorithm must consume low area and low power, is of high speed

and robust against side-channel attack. Besides encryption, this section discusses

other crypto primitives for authentication, integrity check and freshness of bitstream,

generation of chip-specific encryption keys and partial encryption.

174 D. Saha and S. Sur-Kolay

7.2.1 Symmetric Key Encryption of Bitstream on FPGAs
for Confidentiality

For bitstream encryption, symmetric key encryption is used. The configuration bitfile

is encrypted using a secret key at the vendors’ end. At the users’ end, the encrypted

configuration bitstream from some external nonvolatile memory is loaded into the

FPGA at each system power-up. The same secret key stored on-chip is used to

decrypt the configuration file. Both encryption of bitstream and storing of the key

for decryption take place at the IP vendors’ end and the legitimate user cannot access

the private key.

Xilinx FPGAs apply either triple-data encryption standard (3DES) or 256-bit

advanced encryption standard (AES) [8] in cipher block chaining (CBC) mode.

Altera Stratix II and Stratix II GX devices use 128-bit AES in counter (CTR) mode

for configuration bitstream encryption. Key length in this range provides desired

strength against attacks. CBC or CTR mode prevents the propagation of errors.

Configuration bitstream on decryption is typically stored in SRAM memory,

which facilitates higher performance, greater logic density, improved power effi-

ciency, reduced manufacturing cost, and higher flexibility of self-test. But, SRAM

is volatile, i.e., loses data at power-off. So, battery-backed SRAM is used in Xilinx

to support throughout the application life. In addition, SRAM-based memory facili-

tates fast in-site partial reconfiguration. However, the possibility of data interception

due to the external memory persists in SRAM-based memory.

Actel FPGAs of Microsemi and some other FPGAs use nonvolatile on-chip flash

resource for configuration bitstream to eliminate the risk of using external memory.

But, integration of flash memory on SRAM-based FPGA is costlier as it requires

complex fabrication steps. Use of flash memory for PR is also technologically pos-

sible and several research directions for partially reconfigurable flash memory are

available. But, the presence of configuration data permanently on flash memory-

based chip and reconfigurability of flash may cause similar security threats as in

SRAM.

For key storage, Xilinx uses either battery-backed SRAM with a key clear prop-

erty as volatile storage, or OTP e-fuse as nonvolatile storage. For enhanced secrecy

and persistence of the key in the buyers’ site, OTP nonvolatile memory (flash or

e-fuse) is preferred. The key may be programmed on-chip, or off-chip during the

regular manufacturing flow.

Encryption of bitstream has an overhead due to the additional bitstream storage

and the decryption unit on FPGA. Instead of a built-in decryptor, the decryption unit

may be configured in the configuration logic of the FPGA also.

FPGA Implementations of AES Processors

An AES decryption unit in an FPGA must incur very low overhead in terms of area

and power. Table 7.1 shows the implementation details of a few fast and compact

7 FPGA-Based IP and SoC Security 175

Table 7.1 FPGA implementations of AES and AES-enhanced processors

Processors Device Throughput Resource Efficiency

AES (fastest) [9] Spartan-III 25 Gbps – 1.441 Mbps/slice

AES (fast) [10] Virtex-II 24.922 Gbps – 6.97 Mbps/slice

AES (compact w/o mem) [11] Spartan-6 58.13 Mbps 80 slices –

AES-SHA [12] Virtex-5 575 Mbps 1938 slices –

AES-GCM [12] Virtex-5 913 Mbps 1538 slices –

Pl AES-GCM [13] Virtex-5 27.7 Gbps 3211 slices 8.62 Mbps/slice

4-Pl AES-GCM [13] Virtex-5 102.4Gbps 12152

slices

8.42 Mbps/slice

AES processors in FPGAs. Two FPGA designs for AES are presented by Good and

Benaissa [9]—while one is the fastest design, the second one based on 8-bit data-

path and only 124 slices and 2 BRAMs on Spartan-II is believed to be the smallest

compared to the other designs using 32-bit datapath.

AES or any other cryptoprocessor is designed for FPGA implementation in a way

to defend leakage of the secret key through side-channel information. In order to

defend against differential power analysis (DPA)-based side-channel attacks, which

are measured in terms normalized energy deviation (NED) and normalized stan-

dard deviation (NSD), randomization of computations and equalization of consumed

power are applied in general. These techniques will be discussed in detail in another

chapter. For FPGAs, ROM-based substitution box (S-box) for AES is proposed [14]

which outperforms logic S-box in area, power, performance, and also in power-

analysis resistance. For power-analysis resistance, they propose modification of tra-

ditional ROM to create matched bitline and wordline capacitances across the mem-

ory. One tricky approach to resist any power analysis-based attack is to place a sensor

or detector circuit, which can detect whether any device is attached with the power

pin or not. In order to prevent leakage of information from electromagnetic field

measured by an antenna, the computations are distributed across the FPGA.

7.2.2 Primitive Crypto Units for Authentication and Integrity
Check

Encryption of bitstream cannot ensure authentication of the IP vendor as well as

integrity of the bitstream. For integrity check, cyclic redundancy check (CRC) is

applied to recover from a bit flip in the bitstream, caused due to remote trans-

mission of bitfile or application of electromagnetic field on an FPGA. For mali-

cious and more complex bitstream alteration, integrity check using Secure Hash

Algorithm (SHA-2) [8] is effective. Use of two different algorithms—AES for

176 D. Saha and S. Sur-Kolay

confidentiality and SHA-2 for integrity—may cause speed mismatch and significant

area overhead. Furthermore, such an attempt cannot ensure authentication. For confi-

dentiality, authentication, and integrity check, message authentication code (MAC)

function is to be used over encryption [8]. Alternatively, AES in Galois/Counter

mode (GCM) is preferred as fast authenticated encryption (AE) algorithm with

integrity check. It facilitates area efficiency and high-speed implementation using

dynamic PR. For encryption/decryption, counter (CTR) mode is used which is highly

parallel. For MAC-based authentication, hashing based on product–sum operation in

Galois field GF(2w) (GHASH) [12] is used which enables faster and more compact

hardware implementation. Interleaving of CTR and GHASH in a single function

improves performance. Several implementation details of AES-GCM are given in

Table 7.1. Analyzing parallel implementations, 8-block parallel implementation is

found as a sweet point.

7.2.3 Confidentiality, Authentication, Integrity
and Freshness of Bitstream in Remote
Dynamic Partial Reconfiguration

In recent times, for real-time applications, remote (online) configuration of FPGA

has been proposed, where complete or partial configuration bitstream is sent over

the internet in a compressed form. The compressed bitstream is obtained through

lossless compression technique such as run-length encoding, Lampev–Ziv algorithm

or Huffman coding having high compression ratio, high-speed decompression, and

low resource cost of decompressor. Such remote transmission has the risk of man-in-

the-middle attack and bitstream spoofing [8], so on-the-fly reconfiguration without

integrity check is not allowed in general as it may damage the FPGA hardware with

corrupted bitstream. There may be possibilities of replay attack and even denial of

service in remote transmission. Drimer et al. in [15] proposed secure remote config-

uration of FPGAs facilitating authentication, decryption, integrity cheek, freshness

of bitstream against replay attack, and protection against denial of service.

Finally, authors in [16] propose a single-chip solution (without using any exter-

nal memory) for secure remote reconfiguration of the partial bitstream while the

current configuration is active. They integrate a fast decompression unit with the

cryptographic unit offering all the objectives mentioned in [15]. Station-to-station

(STS) protocol is used to obtain a session key, from which one key for encryption

and another key for message authentication via HMAC are obtained. A microblaze

microcontroller is used to receive a partial bitstream, which is temporarily stored in

BRAM and cryptographic operations are performed through a cryptoprocessor con-

sisting of AES, SHA-256, random number generator and elliptic curve processor,

and finally this encrypted version is sent to ICAP.

7 FPGA-Based IP and SoC Security 177

7.2.4 Generation of FPGA Chip-Specific Encryption Key

If the embedded secret encryption key is specific to an FPGA architecture, i.e., device

family, the user may re-sell the encrypted bitfile, which can be decrypted in any

FPGA chip of the same architecture family. In order to prevent such an attempt, the

secret encryption key is chip-specific, i.e., for each fabricated FPGA chip, a unique

key is used for encryption of the bitfiles to be loaded into that specific chip. The

authors in [17] propose to encrypt the bitfile IP core based on secure device identi-

fication. Using both public-key and secret-key cryptography, the system and the IP

exchange protocol are designed in this work. Several techniques have been developed

to generate the FPGA chip-specific secret information—either secret keys, or some

random number used as initialization vector or a seed for cryptographic primitives.

PUF Design in FPGA for Generation of Encryption Key

FPGA chip-specific secret information is obtained using a circuit for physically

unclonable function (PUF), where for a set of challenge (input) vectors, the responses

are unpredictable. In addition to the challenge vectors, manufacturing variability and

other conditions determine PUF responses. The PUF circuit is unclonable in nature,

therefore PUF response and hence PUF-based encryption key remains unpredictable

to an adversary. Among several types of PUFs, arbiter PUFs, memory-based PUFs,

and ring oscillator (RO) PUFs [18] may easily be implemented in FPGAs. The sim-

plest is the delay-based arbiter PUF, which permits minute variation in delay by a

single lookup element. RO PUF is more stable and reliable under a wide range of

temperature variations, and memory-based PUF provides longer secret information,

therefore enhanced security.

In PUF-based key generation, such as [19], first the uniquely distinguishable

responses from PUFs are collected, then the responses are post-processed by

applying error correction using either artificial neural network (ANN), or Bose–

Chaudhuri–Hocquenghem (BCH) code or Von-Neumann corrector, or sometimes

more complicated one-way hash function such as SHA-1 or SHA-2 to prevent pre-

diction of challenges.

PR facilitates more condition-specific key generation. In [20], the authors mea-

sure the delay of a linear PUF structure by setting the clock frequency at the fre-

quency of PUF using digital clock management (DCM) and a phase-locked loop

(PLL) of Xilinx Virtex architecture. For different challenge configurations, a set of

linear equations are solved to obtain each switch delay of the PUF circuit. Next, using

PR, a secure and robust PUF structure consisting of PUFs connected in parallel rows,

the logic circuits for I/O and wire interconnects are configured. The input network is

attached to parallel PUFs to satisfy strict avalanche criteria (SAC) (i.e., each output

bit changes with a probability of 0.5 whenever a single input bit is complemented)

178 D. Saha and S. Sur-Kolay

for the PUF circuit. A nonlinear transformation applied on the responses of PUFs

to generate the output ensures robustness against reverse engineering. The mixing

property of XOR logic or in general parity generator provides the resilience against

emulation and statistical guessing.

Random Number Generation in FPGA

Partial reconfiguration is effectively used in random number generation (RNG) tech-

niques. In RNG technique [21], the unpredictability of a random number is enhanced

by driving the bi-stable flip-flop in a logic component to its metastable state using

an at-speed monitor and a control mechanism that establishes a closed-loop feed-

back system. The monitor system keeps track of the probabilities of the output bit

over repeated time intervals. Using this information, the control unit decides to

add/subtract the delay to/from the top/bottom paths. The length of the propagation

path is incremented or decremented minutely only by a single LUT in a CLB of an

FPGA architecture so that the delay difference is close to zero. The design of a true

random number generator (TRNG) for FPGA implementation is shown in Fig. 7.2.

Simultaneous generation of random bits and PUF responses has been attempted

in Actel Fusion FPGA using some special hardware circuit known as universal tran-

sition effect ring oscillator (UTERO) [22].

7.2.5 Partial Encryption and Security Issues

Encryption of the entire bitfile discussed so far, without any provision of encrypting a

partial bitstream, causes security concern in the case of partial reconfiguration (PR).

Earlier, authors in [23] suggested encryption of only judiciously selected portions

Coarse Tuning Blocks Fine Tuning Blocks

Decoder

Decoder

Post
Proce-
ssing

Prob.
Analyzer
 and
 Filter

LSB

MSB

Binary
Counter

DFF

D Q

C

inc/dec

output

...

...

p1p2pm p1p2pn

Ibm Ib2 Ib1 Ibn Ib2 Ib1

...

...

Itm It2 It1 Itn It2 It1

Cfn

Ccs

Fig. 7.2 True Random Number Generator [21]: coarse blocks create delay differences over a wide

range; decoder block maps the values of the counter to the number of 1’s in the input to the program-

mable delay lines. The bit rate is 16 Mbit/sec and the propagation delay is 61.06 ns. This TRNG

core uses 128 LUTs packed into 16 Virtex-5 CLBs

7 FPGA-Based IP and SoC Security 179

Table 7.2 Effect of partial reconfiguration on bitstream encryption

Encryption of

bitstream

Design of

cryptoprocessor

Generation of

PUF-based key

Pros A decryption unit in

static partition,

decrypts partial

bitstreams for all

reconfigurable

modules

Different

cryptoprocessors may

be configured for

different applications

Reconfiguarable PUF

generates more

condition-specific

keys; reconfigurable

RNG enhances

randomness

Cons Requires support for

encryption of partial

bitstream

Reconfiguring

different

cryptoprocessors

causes identification

of its bitstream &

guessing its logic

through reverse engg.

Requires binding of

PUF design with h/w

before reconfiguring to

reproduce the same

behavior and the same

key

of the configuration bitstream. Later on, various FPGA tools have been updated so

that those facilitate partial encryption, i.e., encryption of partial bitstreams for the

reconfigurable modules to be loaded thereafter. For Xilinx, Virtex-6 supports partial

encryption but Virtex-5 does not. BitGen pads the FPGA partial bitstream with NOP

commands so that the entire bitstream is evenly divided into AES-256 encryption

blocks and encrypted. Then, encrypted partial reconfiguration (EPRC) system is used

to perform a frame by frame CRC check before loading it.

PR has both positive and negative security aspects (Table 7.2). Loading differ-

ent cryptoprocessors using module-based PR facilitates the use of different encryp-

tion algorithms for different applications. Difference-based PR may be used if the

design for security is adaptive in nature, requiring minute changes at consecutive

times based on some controls. Both types of PR introduce the security threat of

identifying the bitstream for the cryptoprocessors or other crypto designs, such as

PUF circuit to regenerate the secret key. Therefore, the encryption algorithm should

be strong enough to prevent reverse engineering of the bitstream. There is another

concern in generation of PUF-based key. For partially reconfiguring an FPGA with

a design module including a PUF circuit, it is mandatory to bind the PUF design to a

proper location of the hardware at the time of reconfiguration; otherwise the metrics

of the PUF circuit are likely to be changed, so will its response. Thus, the PUF-based

secret key cannot be reproduced.

However, all these techniques cannot prevent a legal buyer from intentional

reselling of his encrypted bitfile core along with the corresponding FPGA hard-

ware to an unauthorized user, who can download the bitfile core into that particular

FPGA hardware. In order to prevent such events, authentication of legitimate buyers

is required by the IP vendor.

180 D. Saha and S. Sur-Kolay

7.3 Authentication of an IP in FPGA

Techniques for embedding signatures of the IP vendor and the legitimate buyer, and

for verification of those signatures for purpose of authentication of an FPGA-based

IPs, are discussed in this section.

7.3.1 Embedding Signatures of IP Vendor and Legitimate
User

The techniques for embedding signatures of the IP vendor and the legitimate buyer

are termed as watermarking and fingerprinting, respectively. Sometimes, design

tool-specific information is embedded instead of the signature of the IP vendor. A

signature embedding technique must be fast, robust against tampering, and incur low

overhead. In a design tool for FPGA, the constraint file, which is used to incorporate

constraints on objectives such as timing or on technology mapping or placement of

I/Os and logic, may be used to embed signatures.

Embedding Signature During Technology Mapping

Authors in [24] propose two protocols for embedding user- and tool- specific infor-

mation into a logic circuit while performing multilevel logic minimization and

technology mapping. It embeds additional constraints, derived uniquely from the

authors’ signature, into the problem specification, such that the final solution can be

retrieved only within a subset of the set of all solutions for multilevel logic mini-

mization and technology mapping.

Watermark may be embedded during logic synthesis through incremental tech-

nology mapping of selective disjoint closed cones [25]. A closed cone is a portion

of a logic network, which contains no outgoing edge to other logic nodes. In order to

minimize and isolate perturbations of the topology, disjoint closed cones are used as

watermark hosts. After logic synthesis, some disjoint closed cones in the optimized

circuit are selected, and re-mapped based on signature bits. In order to retrieve the

signature, the watermarked copy is needed to be compared against the original mas-

ter copy.

Embedding Signature in Timing Constraints

The technique proposed in [26] embeds the bits of the watermark in a constraint file

as the least-significant bit of the timing constraints on signal delays. It has practi-

cally zero overhead on delay. However, the watermark bits can easily be tampered.

Moreover, the watermark embedded through this technique lacks in verification pos-

sibilities.

7 FPGA-Based IP and SoC Security 181

Embedding Signature in Bitstream

A widely used approach is to embed the signature of an IP vendor in the form of

a watermark in the LUTs of unused CLBs in the CLB array of an FPGA. Thus the

signature remains hidden in the configuration bitstream of the FPGA design. Fur-

ther, the netlist level modification is performed to connect those marked LUTs with

the other parts of the design to protect the watermark against reverse engineering.

This technique is then extended in [27] for embedding a fingerprint along with the

watermark in the LUTs of distinct CLBs of distinct design instances for each buyer.

For these techniques, the signatures can be verified from the bitfile core.

In [28], the authors propose to use a master key secret to both the IP vendor and the

buyer, to select the LUTs for embedding watermark from the unused LUTs once the

design is implemented, thereby requiring negligible change in the original design.

The same key is used to extract the watermark, provided the design is verified not to

be tampered by an additive attack.

Embedding Signature in HDL Design

Besides the above-mentioned techniques, a signature included in an HDL design

is propagated through the design flow irrespective of the architecture. Therefore,

such a technique also remains effective for FPGAs. One such technique is signa-

ture hosting [29], where unused locations in a memory implemented using a direct

lookup are used to store the signature. For example, a memory structure, which is

a part of modulo-11 arithmetic, has five (11–15) input patterns, i.e., memory loca-

tions unused. The signature embedded through this technique may be identified at

the output using some additional extraction logic.

Extracting Feature Vector from an FPGA Device Running an IP

For protection of a bitstream IP which is running on an identifiable device against

counterfeiting, a low-cost soft physical hash (SPH) function has been proposed in

[30]. A feature vector is extracted from any physical emanation of the target device

running the IP to form an SPH. The SPH should be robust against IP preserving

transformations such as re-synthesis of design under different sets of constraints or

addition of parasitic IP running in parallel. It should also be sensitive to more sig-

nificant variations of an IP.

7.3.2 Techniques for Verification of Signatures in FPGA

There are several works which emphasize verification issues of the watermark

embedded in FPGA design. Centralized verification team may be biased and

182 D. Saha and S. Sur-Kolay

untrustworthy. Distributed verification with a centralized database requires secure

site and incurs communication overhead to access centralized database. The most

convincing trustworthy way of verifying an embedded signature is public verifica-

tion of the signature of the IP vendor by an authorized buyer from the IP. However,

for the widely used techniques of embedding signature in bitstream, the signature

does not remain secure in case of public verification as the locations of the signa-

ture and the signature pattern are revealed during such verification. Therefore, there

is a trade-off between security and trustworthiness for verification of a signature in

FPGA design.

Trustworthy Verification of Signatures

The two-level verification method discussed in [31] works by embedding a separate

public watermark for public detection. The public mark consists of a short header

(company name) and a long message body generated by applying a public one-way

hash function on the header. During public verification which is applied on the public

mark, the locations of the public mark are revealed. Since the mark is embedded as a

bitstream of LUTs of a programmable FPGA, the attacker can easily tamper the mark

or override the header and the message body in his favor to result in wrong identi-

fication of the IP vendor. Therefore, although the technique facilitates convincing

public verification, it is not secure.

Secure Verification of Signatures

Recent watermark verification techniques collect watermark information either from

a port, or in the form of power or electromagnetic emanations from an FPGA chip.

The work in [32] generates a signature-based power consumption pattern using a

shift register, measures the corresponding voltage at power supply pins of the FPGA

using an oscilloscope, and quantizes this voltage pattern into the signature. In order to

keep the extracted signature encrypted at the user end and thereby secure, the authors

in [33] suggest encoding a security tag with a spread-spectrum code followed by its

transmission as temperature signal which is then measured using a thermocouple.

Both the techniques use a centralized signature database for verification of a signa-

ture.

Trustworthy Yet Secure Verification of Signatures

In order to find an amicable solution to facilitate trustworthy yet secure verification of

a signature hidden in an FPGA design, the concept of the zero-knowledge protocol is

applied in [34]. Zero-knowledge protocol (ZKP) is a an interactive method between

two parties or a two-person game, involving several rounds so that the prover can

7 FPGA-Based IP and SoC Security 183

prove to the verifier that a “statement is true,” without revealing any knowledge other

than the veracity of the statement. The entire proof is split into two parts, say, P1 and

P2. There are several rounds, in each of which the verifier randomly picks one of the

two parts and asks the prover to prove that part. The prover is declared successful if

the part provided by the verifier in each round is proven correctly. Failure in any one

round is taken as failure in verification of the signature.

In the ZKP-based signature verification technique Verify_ZKP, the watermark is

obtained from the public information (say, company name) IPb of the IP vendor,

encoded with a function hs representing s shifts of a nonlinear feedback shift register

(NLFSR). It is embedded as the configuration bitstring of some of the unused CLBs

of an FPGA based on a secret key KC.

The encoding key and the locations of the watermark remain private to the IP

vendor. Verify_ZKP proves with trust that the “desired watermark is present” in the

bitfile core D of the FPGA design without revealing the locations or the bitstring

in the mark. The watermark is verified in a mapped version of D to keep the mark

secure. For verifying a watermark in a mapped design, the proof part P1 is verifica-

tion of the mapping function, whereas the part P2 is verification of the presence of

the public information IPb in the watermark from the mapped design. In each round r,

N Extracted
Contents =hs+s’r(IPb)?

P2

Prove Pi

IP owner (prover)

Step 1: Find locations of marks using K C

Step 2: Generate mapping Mr
C

& mapped design Dr
M =Mr

C(D)
Dr

M

Step 3b

KC, s, D

 r := 0

Step 3a

IP buyer (verifier)
D, IPb

Y

Increment r

r < R?
N VerifiedY

Failed
N

Y

Dr
M = Mr

C(D)?

Pi? P1

Choose i

Mr
C

Mark locations in Dr
M &

mark encoding function hs+s’r

Fig. 7.3 Overview of interactive zero-knowledge protocol Verify_ZKP [34] for secure yet trust-

worthy signature verification

184 D. Saha and S. Sur-Kolay

the prover (IP vendor) generates a distinct mapped design Dr
M from D and commits it

to the verifier (buyer). A genuine IP vendor succeeds to prove P1 or P2 as demanded

by the verifier in that round. If the core D does not have the desired watermark, or the

committed (marked) design is not a mapped version of D, the probability of success

in a round is 1∕2 in either case. Therefore, after sufficiently large number of rounds

R, the cheating prover can succeed with a very low probability 1∕2R. The main steps

of the ZKP-based verification protocol Verify_ZKP are illustrated in Fig. 7.3.

In order to enforce zero-knowledge property, the mapping function Mr
C in each

round r should not be self-mapping, should be distinct, and have low correlation with

the mappings in the other rounds. Mapping in each round consists of two main steps:

(i) location mapping which generates a different assignment of the CLBs to the CLB

locations, and (ii) content encoding which encodes the configuration bitstring of each

CLB separately. For location mapping, space-filling curves and Latin rectangles are

used to achieve the desired properties enlisted above. For content encoding, the shifts

of the NLFSR used differ for each round. The time complexity for Verify_ZKP is

linear in the size of the design. The embedded watermark is robust against typical

attacks like tampering or deletion, finding ghost signature and additive attack. Using

partial reconfiguration, different mappings can be configured for verification. The

strength of Verify_ZKP is determined by the Pearson’s product–moment correlation

coefficients between the location of a CLB and the Manhattan distance to its loca-

tion after mapping, for all CLBs over 20 rounds of interaction. The values are of

the order of 10−2 for FPGA IWLS’05 benchmark designs implemented by Xilinx

ISE tool. Similar correlation coefficients for the content encoding are also quite low.

Verify_ZKP facilitates public verification without any additional design overhead. It

reduces design overhead due to marking by 56.2 % when compared to [31] and has

negligible CPU time requirement.

7.4 Insertion and Detection of HTH in an IP for FPGAs

A Trojan circuit may be inserted in one or more of the following possible modes:

(i) HDL description of a design, (ii) technology mapped design, (iii) placed-and-

routed design, or (iv) the configuration bitstream for a target FPGA. An adversary

aims at inserting a Trojan in an FPGA-based design so that it remains undetected by

the design and validation tool corresponding to the product. Different techniques for

detecting HTH are highlighted below.

7.4.1 RO-Based Detection of HTH in HDL Design and Its
Challenges

A widely used technique for detection of a Trojan inserted in the HDL design is

to use ring oscillators (RO) as a locking mechanism for binding an FPGA design

to a specific area of FPGA hardware. This results in a specific physical placement

of the design on the hardware. A ring oscillator is a delay loop circuit, typically

7 FPGA-Based IP and SoC Security 185

composed of wires and inverters, that oscillates at a particular frequency, which is

very sensitive to wire length, gate delay, and process variation. When malicious mod-

ifications (hardware Trojans) are inserted in the design, the placement gets altered.

Thus the altered wire length of the ring oscillator leads to a discrepancy in its fre-

quency which can be detected by ModelSim HDL simulator. However, the authors

in [35] were able to circumvent the ring oscillator-based protection mechanism by

(i) design Lockdown approach that keeps the locations of the ring oscillators fixed

by applying additional P&R constraints using Xilinx PlanAhead, and more success-

fully by (ii) a ring oscillator emulation approach that reproduces the functionality of

the ring oscillators with a lookup table, in spite of the presence of small Trojans in

the design. The Trojans remain undetected for a limited challenge–response set. The

impact of the ring oscillator emulator module on area is minimal, requiring 1 % more

F/Fs, 5 % more LUTs, 4 additional BRAMs and it causes 15 % increase in delay.

7.4.2 Parity-Based Detection of HTH Inserted in HDL,
Mapped or P&Red Design

The authors of [1] propose an IP protectin (IPP) technique for detection of tampers

such as changes, deletion of existing logic, and addition of extraneous logic such

as Trojans, inserted in FPGA design files. The technique is parity-based and uses

an error-correcting code structure for this purpose. For each test vector, the parity

of outputs of the CLBs in a parity group (PG) produces one parity bit; For a test

set, a parity vector (PV) is generated for each PG. During a trust-checking phase, a

test-pattern generator (TPG) and an output response analyzer (ORA) are configured

in FPGA. The TPG is connected to the inputs of each PG of CLBs, one at a time,

and it feeds identical input/test vectors to each CLB in a parity group, while the

output vector produced by the ORA is checked against the expected PV for this PG

(Fig. 7.4). Failing to detect a desired parity relation signals the possible existence of

additional circuitry, i.e., Trojan in the FPGA design. The technique uses two-level

randomization: (a) randomization of the mapping of the parity groups to the CLB

array, and (b) randomization within each parity group of odd and even parities for

different input combinations. The two-level randomization is meant to counter the

attacks by an adversary who tries to either detect the parity groups and inject tampers

to mask each other, or tamper with the TPG and the ORA in an undetectable manner.

This method using an underlying error-correcting code and its 2-level randomiza-

tion was validated by inserting 1–10 circuit CLB tampers and 1–5 extraneous logic

CLBs in two medium-size circuits and a RISC processor circuit implemented on a

Xilinx Spartan-3 FPGA. The results of 100 % tamper detection and 0 % false alarms,

obtained at a hardware overhead of only 7–10 %, were promising. This technique can

detect extraneous logic implemented completely in some unused CLBs, as it maps

the error-correcting code in all the CLBs, irrespective of functional or not. Support

to partial reconfiguration in modern FPGAs facilitates the TPG to be connected to

the inputs of each PG of CLBs.

186 D. Saha and S. Sur-Kolay

Fig. 7.4 Detection of Trojans [1] in FPGA using error-correcting code: a test-pattern generator

(TPG) for sending test vectors to each CLB of a parity group and output response analyzer (ORA)

for checking responses against desired parity vector, b column and row parity groups in solid and

dashed line, respectively

7.4.3 Trojans Inserted in Bitstream and the Challenge
of Detection

The authors in [36] propose inclusion of Trojans directly in the unencrypted bit-

stream for an FPGA. The process of inclusion has the difficulty of understanding the

structure or format of the bitfile, but has the advantage of bypassing all the checks

in the FPGA design tool except CRC, which can also be disabled. The Trojan cir-

cuits are based on ring oscillator, which have the effect of increasing the operating

temperature, and hence causes increased device aging. The bitstrings corresponding

to these Trojan circuits are inserted into appropriate locations in the configuration

bitstream corresponding to some unused CLBs. Two different types of Trojans have

been inserted, namely (i) isolated Trojans, whose insertion is quite easy and (ii) Tro-

jans connected with the original design, which requires appropriate modification at

several locations in the bitstream for their insertion.

7.4.4 Tamper or Fault Injection in FPGAs and Overhead
of Detection

Applying radiation on an FPGA may cause bit flips in its memory blocks resulting

in a change in its functionality. If the supply voltage or the external clock is altered

intentionally, it may induce glitch and introduce faulty operations. These attacks may

7 FPGA-Based IP and SoC Security 187

change or leak secret information embedded in the FPGA. Constant monitoring, or

applying tamper detection for clock pulse or voltage entails additional overhead on

the process.

7.5 Security in SoCs and Other Advanced Architectures
on FPGAs

Let us discuss now the major security issues in FPGA-based advanced architectures

such as system-on-chips, embedded systems, and cloud architectures.

7.5.1 Security in SoC

An SoC usually contains reusable IPs, based on either ASIC or FPGA, embedded

processor(s) (a general-purpose processor and multiple special-purpose processors

depending on the requirements) or controller(s), memory elements such as SRAM,

ROM, bus architecture for interfacing IPs and other components on SoC, program-

mable blocks (FPGA). Figure 7.5 shows the components of an SoC, an SoC config-

ured on FPGA, and the way of IP reuse in SoC environment.

There are two possible ways of using FPGAs in an SoC. The first is inclu-

sion of FPGA blocks on a system along with other ASIC components, where the

IP vendor1

IP1 IP2 IPk

IP vendor2 IP vendork

SoC1 SoC2 SoCj

Design house1 Design house2 Design housej

(a) (c)

(b)

General purpose µP

µP

Controller

IP

IP

RAM

ROM
Programmable
 block (FPGA)

IP

System

System Designer

Boot
Loader
 in
Region 1

I
C
A
P

IP in Region 2

IP in
Reg 3

IP in
Reg 4

F
e
n
c
e

F e n c e
F
e
n
c
e

Fig. 7.5 a Programmable FPGA with other components on an SoC, b entire SoC configured on

an FPGA chip [6], c reuse of IPs in SoCs and in systems

188 D. Saha and S. Sur-Kolay

reprogrammable block facilitates reprogrammable interfacing between the IPs, and

reconfiguring of different cryptoprocessors or various FPGA IPs based on applica-

tions. The second one is to configure an entire SoC with all FPGA-based IPs on

a single FPGA chip. As FPGA-based systems are growing increasingly complex,

modular, IP-based approach is becoming popular.

In the context of FPGA-based IP security on an SoC, several parties are involved:

∙ IP core vendor (CV),

∙ FPGA vendor (FV),

∙ system developer (SD),

∙ user of the system and sometimes a trusted third party (TTP).

The prospective adversaries of an FPGA IP core are the system developer and the

user of the system.

For an FPGA-based SoC, an SD receives multiple IPs from various CVs, there-

fore the IP cores may be intercepted during their distribution. Further, multiple IPs

from different CVs are simultaneously in operation. Hence, the presence of a Trojan

infected adversary IP may (i) affect the other IPs, (ii) intrude in the controller zone,

or (iii) extract valuable information from the communications among the IPs.

Secure Distribution of FPGA IP Cores

The first requirement in SoC design is to ensure secure distribution of FPGA IP cores

to the system developer. The objectives are to (i) assure confidentiality and authen-

ticity of the core, (ii) limit the number of instances of the core, and (iii) make every

instance operate on a specific set of devices. The second and the third objectives

combinedly aim at preventing over-deployment of an IP. Public-key cryptography

is applied along with symmetric key cryptography to ensure secure distribution of

cores.

One solution for secure distribution of a core is proposed in [37] (Fig. 7.7a). In

step 1, the CV receives the ID of the target FPGA (FID) from the SD. The CV gen-

erates a key KCV from the private key of his private–public-key pair, the public key

of FVs key pair, and the FID. This key KCV is used as symmetric key for encrypting

the bitstream of the IP core. In step 2, at the SD’s end, KCV is again generated using

public-key cryptography. The FV provides a personalization bitstream in encrypted

form, which contains the key generation function as well as the private key of the

FV. The key KCV is generated from the FV’s private key, the CV’s public key and

the FID.

In order to handle different IP cores from independent CVs, different KCVi
s are gen-

erated and used accordingly. When the same core is used on multiple FPGA devices,

a distinct KCVij
based on the FID of the jth device is generated by the ith CV.

Another solution is symmetric key-based pay-per-use licensing scheme [38]

(Fig. 7.6b). A TTP acts as a metering authority (MA) to generate a license to a SD

to use an IP core only once at a small fee paid by the SD to the CV. The SD does not

7 FPGA-Based IP and SoC Security 189

 At CV’s place: CV’s private key + FV’s public key + FID generates K CV

 At SD’s place: CV’s public key + FV’s private key + FID generates K CV

Symmetric
 Key

CV enrolls IP to MA: stores ID(IP), K CV FV enrolls device to MA: stores K F , (KMA)KF in device

At SD’s place: SD receives (IP) KCV from CV and license (K CV)KMA from MA

License processing in device: K F , (KMA)KF K MA , (KCV)KMA K CV , (IP) KCV IP

(a)

(b)

Fig. 7.6 Secure core distribution protocols a described in [37], b described in [38]

need to make a large payment for indefinite use of the IP, so his IP remains protected

from over-use (overbuilding).

In step 1, each CV enrolls each of his IP cores with the MA, when the MA stores

the ID(IP) and the secret key KCV of the CV. Similarly, each FV enrolls each of his

devices with the MA, when the MA programs a unique device secure key KF into the

nonvolatile memory (NVM) of the device. The secret key KMA of the MA encrypted

with KF is also incorporated so that KMA can be generated within the device at the

time of license processing. In step 2, in order to build an IP on a particular FPGA

device, the SD receives the bitstream IP encrypted with KCV from CV, but he needs

a license from the MA. So, the MA sends the license containing KCV encrypted with

KMA. In step 3, during license processing, first KMA is generated as mentioned above,

and then KCV is extracted from the license for loading the bitstream IP on the device.

If the FPGA IPs are in HDL form and the system integrator needs to applymultiple
EDA tools to synthesize (and P&R) the IPs into a single chip, the encryption scenario

is more complex. One possible way is to encrypt each IP using the secret key KCV
of its vendor, then encrypt KCV using the public key of the vendor of the EDA tool,

and send both the encrypted data to the EDA tool.

The output of an EDA tool for a design phase is sent to another EDA tool for the

next design phase. This scenario has the following security risks:

(i) The secret keys of the CVs of many IPs involved, may be extracted by an

untrusted EDA tool.

(ii) One IP vendor may recover one part of the synthesized output netlist.

In order to overcome the risk in (ii), either All-or-Nothing principle is used, or a

separate set of keys other than the KCVs is used to send the output netlist to the next

EDA tool. However, the risk in (i) can only be tackled if end-to-end security can be

established from core to device using PUF response of the device. For example, a

pre-routed IP core is encrypted using the public part of a key, obtained from the IP

core and the PUF response of the device [39].

The work in [40] proposes a method for relocation of partial bitstream IPs on a

device. It ensures enhanced security in IP exchange as it does not disclose to the IP

vendor the information about the FPGA design on which an IP is to be deployed. The

190 D. Saha and S. Sur-Kolay

method receives information about the resource requirements of the IP and the bus

macros at the boundary of the IP from the IP vendor. It calculates the value of frame

address register (FAR) of the desired location for the IP in the FPGA. The system

developer SD may deploy an IP using this protocol onto a number of different FPGA

designs reconfiguring the same device, without communicating with the IP vendor

multiple times.

Spatial Separation of IPs on an FPGA

When an entire SoC is configured on an FPGA, various IPs obtained from differ-

ent IP vendors may not be trustworthy. The system developer needs to partition the

FPGA to allocate space to each of these FPGA-based IPs. The partitions for various

cores should be hard (not flexible). By controlling the mapping onto the device at

the floorplanning stage, spatial isolation of IP cores can be maintained in FPGA.

Fences containing buffers or unused logic are placed between the IPs to isolate their

regions. Fences are wide enough so that a single-bit failure in configuration can-

not connect the neighboring partitions. Continuous monitoring on the configuration

data, known as bitstream scrubbing, is applied particularly in the isolation fences to

detect any bit flip. Restricted use of FPGA interconnects is allowed through the fence

for communication between the IPs. Increased modularization reduces the possibil-

ity of interference and enhances the ease of checking correctness.

Configuration Controller in a Trusted Zone

A cryptoprocessor, which is a special-purpose processor to execute a cryptographic

algorithm, ensures secure communication of data between the IPs. In addition to

secure communication, for the purpose of authentication of IPs and protection of

its firmware, configuration bitstream IPs and data from external attacks as well as

from attacks across the fence, a cryptographic coprocessor (acting as cryptographic

kernel) is designed and placed in an isolated partition. This partition implements the

idea of a trusted platform module (TPM) available in hardcoded SoCs. This module

provides a trusted environment to initiate the system.

In the case of FPGAs, this module primarily acts as a configuration controller

and performs the above-mentioned tasks. For Xilinx, it is termed as “boot loader.”

Authenticated encryption (AE) mechanism ensures trust for it. This trusted controller

then applies the similar concept of trust for loading other FPGA IPs.

An FPGA-based coprocessor is more flexible as well as efficient. This trusted

controller is often realized in the FPGA fabric itself, rather than using FPGA func-

tions to provide more flexibility in choosing the decryption algorithm and handling

keys. Any malicious modification of this trusted module containing a coprocessor

and the firmware, by an external source, is prohibited. For modern reconfigurable

FPGAs, the trusted controller clears the present application in case of any external

7 FPGA-Based IP and SoC Security 191

attempt to configure a device. But, access to the configuration controller from the

internal configuration bitstream is allowed through ICAP for self-reconfiguration.

As a consequence, proper security mechanisms are enforced at this level.

Secure Communication Between the IPs

IP cores may communicate through either shared memory, or direct/RF communi-

cations, or a shared bus. In the case of shared memory, a reference monitor and

static analysis for direct connection enforce security. A reference monitor is a con-

trol mechanism that possesses three properties: it is self protecting, its enforcement

mechanism cannot be bypassed, and it should be correct and complete. It enforces

legal sharing of memory among the cores.

In order to guarantee secure communication of data through the shared bus

between the IPs on an FPGA-based SoC or by RF across the SoCs, encrypted trans-

mission of data is required. FPGA-based designs for symmetric key encryption AES

have been discussed earlier in Sect. 7.2.1. Here, we focus on the FPGA implementa-

tions of some recent cryptoprocessors for asymmetric key algorithms, such as RSA,

elliptic curve cryptography (ECC), and a few other special types of curves. ECC

provides an equally strong security level with a smaller key length, in comparison to

RSA. ECC processors on a prime field are important from the aspect of security.

The characteristics of a few fast and/or compact FPGA-based ECC processors are

given in Table 7.3. In [41], ECC implementation over GF(2163) takes only 5.1µs in

Virtex-5 and 3.5µs in Virtex-7 for an ECC point multiplication (pm). Roy et al. in

[42] implement ECC over GF(2163) which consumes only 3513 slices in Virtex-5 to

perform an ECC pm in 9.5µs. The design of an FPGA-based ECC processor [43]

Table 7.3 FPGA implementations of ECC and ARX processors

Processors Device Throughput Resource

ECC (fastest, binary

field) [41]

Virtex-7 286× 103 pm/s 8736 slices

ECC (fast, binary

field) [42]

Virtex-5 105× 103 pm/s 3513 slices

ECC (fast, prime field)

[43]

Virtex-4 37000 pm/s 24452 slices, 468

DSPs

ECC (smallest) [44] Virtex-5 90.1 pm/s 81 slices, 22 BRAMs,

8 DSP multipliers

ECC (compact) [45] Virtex-II 63 pm/s 2085 slices, 9

BRAMs, 7 multipliers

Salsa20-sr Virtex-II 38 Mbps 193 CLBs

ChaCha_config2 Virtex-6 595 Mbps 77 CLBs, 2 BRAMs

BLAKE-64 Virtex-5 314 Mbps 108 CLBs, 3 BRAMs

Skein Virtex-6 179 Mbps 240 CLBs

192 D. Saha and S. Sur-Kolay

Fig. 7.7 FPGA-based design of an ECC cryptoprocessor [43]: a simplified structure of the DSP

blocks in advanced FPGAs, b l-bit multiplication circuit with a cascade of parallel DSP blocks

for P-224 (i.e., the key length is 224) using DSP cores with other FPGA resources

(Fig. 7.7) provides the highest speed among the ECC processors over prime field.

Among the area efficient compact implementations, the details of the designs in [44]

and in [45] have been provided in Table 7.3. The ECC design [44] with less than

100 slices may be considered as the smallest or most compact one implemented in

modern Virtex-5 device. Benaissa et al. in [46] achieved throughput/slice figures of

19.65, 65.30, and 64.48 (106/(sec × slices)), respectively on Virtex-4, Virtex-5, and

Virtex-7 FPGAs.

The implementations discussed so far are made resistant against simple power

analysis at the algorithmic level, using the Montgomery ladder for modular multi-

plication [47], and by making the number of integer additions and subtractions inde-

pendent of the input values in the modular addition/subtraction component. In order

to ensure resistance against DPA, several models for elliptic curve, such as Edward

curve, binary Huff curve, have been employed. The details of DPA-resistant FPGA

implementations of Edward curve are given in several works, e.g., [48], and those of

Huff curves are in the works like [49]. These details appear in another chapter.

Cryptographic algorithms based on addition (A), rotation (R), and exclusive-or

(X) operations are classified as ARX algorithms. Many FPGA implementations of

the cryptoprocessors supporting ARX-based cryptographic primitives are present in

the literature [50] as given in Table 7.3.

7 FPGA-Based IP and SoC Security 193

7.5.2 Security in Embedded Systems

The major application of an SoC is in embedded systems, where the hardware

components along with the software components are embedded in a larger electri-

cal or mechanical system, termed as cyber-physical systems. In an embedded sys-

tem, an entire OS and several security-sensitive software are loaded in a proces-

sor which is kept in a trusted zone to keep it separated from other application-

specific coprocessors, certain reconfigurable and/or hardcoded chips, and software

processes. The processor controls access to the application-specific hardware IPs by

the other software components. In an FPGA-based embedded system, the processor

and the application-specific coprocessors are configured in the FPGA. In addition to

reverse engineering and cloning, code injection is an additional important attack in

an FPGA-based embedded system.

In an FPGA-based embedded system, the configuration controller or the boot

loader in the processor decrypts and authenticates not only the configuration data

but also the software using session keys. The processor along with cache, memory,

and peripherals may remain hardcoded on a system, and connected with one another

as well as the FPGA programmable logic using AMBA AXI buses.

For example, a multi-core ARM processor exists in the Zynq family of Xilinx.

Then, the cryptoprocessor module of the processor is generally configured in the

FPGA programmable logic. Even the decryption and authentication units are built

in the FPGA fabric to allow an user to choose his decryption and authentication

algorithms, as well as to perform authentication before decryption and reduce the

risk of side-channel attack.

Extraneous Circuits to Enforce Security in Embedded Systems

The work in [51] assumes that the entire hardware component of an embedded sys-

tem is in FPGA, and a software executes on an FPGA hardware only if the hard-

ware manifests a uniqueness based on process variation and device aging. A benign

hardware Trojan (BHT) is designed as delay-logic arbiters and is implemented in

an FPGA platform supporting reconfigurability, in order to realize all the required

device aging. The output of the BHT exploiting process variation and device aging

of the hardware either enables or disables writing to particular general-purpose reg-

isters (GPR). Thus the BHT embedded in the FPGA guarantees that the software is

authorized to execute on the hardware and vice versa. It is shown in [51] that the

worst-case performance penalty is 8 % for zlib benchmark with 22 GPRs.

Security in Embedded Systems Having FPGA-Based MPSoCs

McIntyre et al. in IOLTS 2010 first proposed the use of a distributed software

scheduling algorithm to avoid low trust cores in a hardcoded multi-core

194 D. Saha and S. Sur-Kolay

processor. Later on, trustworthy systems in FPGAs with multi-core processor or

multi-processors were adopted.

Nowadays, FPGAs are sufficiently large to host one or more multi-processor

system-on-a-chip (MPSoCs). For the sake of security, several processors are seg-

regated into a number of domains. Each software on an embedded system is allowed

to access only the processors of some specific domains, not all. Software solution,

such as real-time operating system for time and space partitioning, is the state-of-the-

art technique for domain segregation. The authors in [52] propose a robust, reliable,

and efficient architecture, which targets reconfigurable platform to offer hardware-

enforced segregation. This domain segregation is achieved with a hierarchical con-

nection of memory buses by secure bus bridges.

7.5.3 Security in Cloud Architecture

Among the modern architectures in FPGAs, the cloud architecture is growing pop-

ular, after SoCs and embedded systems. In secure yet fast cloud computing, com-

putation logic targeting a secure hardware is separated from the code for I/O and

coordination, which may run on an untrusted hardware. A tamper-proof FPGA with

small feature size is suitable for a computation-specific processing chip. FPGA archi-

tecture, due to its partial reconfigurability, provides better power-performance ratio

and does not have the security threats caused due to cache sharing [53]. The FPGA-

based computation circuit has a strong secure guarantee. Further, the communication

channel between a processor chip and a state chip for storing a state across power

cycles, such as in a smart card, is also made secure. In order to prevent side-channel

attacks between the circuits sharing an FPGA, a supervisor module such as a TPM

is used.

7.6 Summary

In the domain of FPGAs, several IP threats are still alarming. Most of the crypto units

in FPGA are side-channel cracked. FPGA vendor-specific configuration bitstream

format, support to partial reconfigurability in modern FPGA, enhanced demand for

FPGAs on system-on-chip, increase in remote computing are the sources of open

challenges for IP and SoC security in FPGAs.

References

1. Dutt, S., Li, L.: Trust-based design and check of FPGA circuits using two-level randomized

ECC structures. ACM Trans. Reconfig. Technol. Syst. 2(1) (2009)

2. http://homepages.cae.wisc.edu/~ece554/website/Lectures/Xilinx_Vertex_Tech_s03.pdf

http://homepages.cae.wisc.edu/~ece554/website/Lectures/Xilinx_Vertex_Tech_s03.pdf

7 FPGA-Based IP and SoC Security 195

3. Qu, G., Potkonjak, M.: Intellectual Property Protection in VLSI Designs: Theory and Practice.

Springer, Heidelberg (2003)

4. Drimer, S.: Volatile FPGA design security–a survey. http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-763.pdf (2008)

5. Majzoobi, M., Koushanfar, F., Potkonjak, M.: FPGA-oriented security. In: Introduction to

Hardware Security and Trust, Chapter 1. Springer (2011)

6. Trimberger, S.M., Moore, J.J.: FPGA security: motivations, features, and applications, invited

paper. Proc. IEEE 102(8) (2014)

7. McNeil, S.: Solving Today’s Design Security Concerns, Xilinx White paper FPGAs, WP365

(v1.2) July 30 (2012)

8. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press

(1996)

9. Good, T., Benaissa, M.: AES on FPGA from the fastest to the smallest. In: CHES 2005: Pro-

ceedings of International Conference on Cryptographic Hardware and Embedded Systems,

LNCS 3659, pp. 427-440. Springer (2005)

10. Granado-Criado, J.M., Vega-Rodŕiguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: A

new methodology to implement the AES algorithm using partial and dynamic reconfiguration.

Integr. VLSI J. 43(1), 72–80 (2010)

11. Chu, J., Benaissa, M.: Low area memory-free FPGA implementation of the AES algorithm.

In: FPL 2012: Proceedings of International Conference on Field Programmable Logic and

Applications, pp. 623–626 (2012)

12. Hori, Y., Katashita, T., Sakane, H., et al.: Bitstream protection in dynamic partial reconfigu-

ration systems using authenticated encryption. IEICE Trans. Inf. Syst. E96-D(11), 2333–2343

(2013)

13. Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: Improved method for parallel AES-GCM cores

using FPGAs. In: Proceedings of International Conference on Reconfigurable Computing and

FPGAs, pp. 1–4 (2013)

14. Teegarden, C., Bhargava, M., Mai, K.: Side-channel attack resistant ROM-based AES S-box.

In: HOST 2010: Proceedings of IEEE International Symposium on Hardware-Oriented Secu-

rity and Trust, pp. 124–129 (2010)

15. Drimer, S., Kuhn, M.G.: A protocol for secure remote updates of FPGA configurations. In: Pro-

ceedings of International Workshop on Applied Reconfigurable Computing, Reconfigurable

Computing: Architectures, Tools and Applications, pp. 50–61. Springer, Berlin (2009)

16. Vliege, J., Mentens, N., Verbauwhede, I.: A single-chip solution for the secure remote config-

uration of FPGA using bitstream compression. In: Proceedings of International Conference on

Reconfigurable Computing and FPGAs, pp. 1–6 (2013)

17. Adi, W., Ernst, R., Soudan, B., Hanoun, A.: VLSI design exchange with intellectual property

protection in FPGA environment using both secret and public-key cryptography. In: ISVLSI

2006: Proceedings of IEEE Computer Society Annual Symposium on VLSI, pp. 24–29 (2006)

18. Morozov, S., Maiti, A., Schaumont, P.: An analysis of delay based PUF implementations on

FPGA. In: Proceedings of International Conference on Reconfigurable Computing: Architec-

tures, Tools and Applications, pp. 382–387 (2010)

19. Pappala, S., Niamat, M., Sun, W.: FPGA based trustworthy authentication technique using

physically unclonable functions and artificial intelligence. In: HOST 2012: Proceedings of

IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 59–62 (2012)

20. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for design and implementation of

secure reconfigurable PUFs. ACM Trans. Reconfig. Technol. Syst. 2(1) (2009)

21. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA-based true random number generation using

circuit metastability with adaptive feedback Control. In: CHES 2011: Proceedings of Crypto-

graphic Hardware and Embedded Systems, LNCS 6917, pp. 17–32. Springer (2011)

22. Varchola, M., Drutarovsky, M., Fischer, V.: New universal element with integrated PUF and

TRNG capability. In Proceedings of International Conference on Reconfigurable Computing

and FPGAs, pp. 1–6 (2013)

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-763.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-763.pdf

196 D. Saha and S. Sur-Kolay

23. Yip, K., Ng, T.: Partial-encryption technique for intellectual property protection of FPGA-

based products. IEEE Trans. Consum. Electr. 46(1), 183–190 (2000)

24. Kirovski, D., Hwang, Y., Potkonjak, M., Cong, J.: Protecting combinational logic synthesis

solutions. IEEE Trans. Comput.-Aided Des. Integr. Circuit Syst. 25(12), 2687–2696 (2006)

25. Cui, A., Chang, C.H., Tahar, S.: IP watermarking using incremental technology mapping. IEEE

Trans. Comput.-Aided Des. Integr. Circuit Syst. 27(9), 1565–1570 (2008)

26. Jain, A., Yuan, L., Puri, P., Qu, G.: Zero overhead watermarking technique for FPGA designs.

In: GLSVLSI 2003: Proceedings of ACM Great Lakes symposium on VLSI, pp. 147–152

(2003)

27. Lach J., Mangione-Smith, W.H., Potkonjak, M.: Fingerprinting techniques for field-

programmable gate array intellectual property protection. IEEE Trans. Comput.-Aided Des.

Integr. Circuit Syst. 20(10), 1253–1261 (2001)

28. Saha, D., Sur-Kolay, S.: Robust intellectual property protection of VLSI physical design. J.

IET Comput. Dig. Tech. 4(5), 388–399 (2010)

29. Castillo, E., Meyer-Baese, U., Garcia, A., Parrilla, L., Lloris, A.: IPP@HDL: efficient intel-

lectual property protection scheme for IP cores. IEEE Trans. Very Large Scale Integr. (VLSI)

Syst. 15(5), 578–591 (2007)

30. Kerckhof, S., Durvaux, F., Standaert, F., Gerard, B.: Intellectual property protection for FPGA

designs with soft physical hash functions: first experimental results. In: HOST 2013: Proceed-

ings of IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 7–12

(2013)

31. Qu, G.: Publicly detectable techniques for the protection of virtual components. In: Proceedings

of Design Automation Conference, pp. 474–479 (2001)

32. Ziener, D., Teich, J.: Power signature watermarking of IP cores for FPGAs. J. Signal Process.

Syst. 51(1), 123–136 (2008)

33. Kean, T., McLaren, D., Marsh, C.: Verifying the authenticity of chip designs with the design tag

system. In: HOST 2008: Proceedings of IEEE International Workshop on Hardware-Oriented

Security and Trust, pp. 59–64 (2008)

34. Saha, D., Sur-Kolay, S.: Secure public verification of IP marks in FPGA design through a

zero-knowledge protocol. IEEE Trans. VLSI (VLSI) Syst. 20(10), 1749–1757 (2012)

35. Rilling, J., Graziano, D., Hitchcock, J., et al.: Circumventing a ring oscillator approach to

FPGA-based hardware Trojan detection. In: ICCD 2011: IEEE International Conference on

Computer Design, pp. 289–292 (2011)

36. Chakraborty, R.S., Saha, I., Palchaudhuri, A., Naik, G.K.: Hardware Trojan insertion by direct

modification of FPGA configuration bitstream. IEEE Des. Test Comput. 30(2), 45–54 (2013)

37. Drimer, S., Guneysu, T., Kuhn, M.G., Paar, C.: Protecting multiple cores in a single FPGA

design. http://www.saardrimer.com/sd410/papers/protect_many_cores.pdf (2007)

38. Maes, R., Schellekens, D., Verbauwhede, I.: A Pay-per-use licensing scheme for hardware IP

cores in recent SRAM-based FPGAs. IEEE Trans. Inf. Forensics Secur. 7(1), 98–108 (2012)

39. Guajardo, J., Guneysu, T., Kumar, S.S., Paar, C.: Secure IP-block distribution for hardware

devices. In: HOST 2009: IEEE International Workshop on Hardware-Oriented Security and

Trust, pp. 82–89 (2009)

40. Ebrahim, A., Benkrid, K., Khalifat, J., Hong, C.: A platform for secure IP integration in Xilinx

Virtex FPGAs. In: International Conference on Reconfigurable Computing and FPGAs, pp.

1–6 (2013)

41. Khan, Z.U.A., Benaissa, M.: High speed ECC implementation on FPGA over GF(2m). In:

FPL 2015: Proceedings of International Conference on Field Programmable Logic and Appli-

cations, pp. 1–6 (2015)

42. Roy, S.S., Rebeiro, C., Mukhopadhyay, D.: Theoretical modeling of elliptic curve scalar mul-

tiplier on LUT-based FPGAs for area and speed. IEEE Trans. Very Large Scale Integr. (VLSI)

Syst. 21(5), 901–909 (2013)

43. Guneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on commercial FPGAs,

In: CHES 2008: Proceedings International Workshop on Cryptographic Hardware and Embed-

ded Systems, LNCS 5154, pp. 62–78. Springer (2008)

http://www.saardrimer.com/sd410/papers/protect_many_cores.pdf

7 FPGA-Based IP and SoC Security 197

44. Basu Roy, D., Das, P., Mukhopadhyay, D.: ECC on your fingertips: a single instruction

approach for lightweight ECC design in GF(p). IACR Cryptology ePrint Archive 2015: 1225

45. Vliegen, J., Mentens, N., Genoe, J., Braeken, A., Kubera, S., Touhafi, A., Verbauwhede, I.: A

compact FPGA-based architecture for elliptic curve cryptography over prime fields. In: ASAP

2010: Proceedings of IEEE International Conference on Application-specific Systems Archi-

tectures and Processors, pp. 313–316 (2010)

46. Khan, Z.U.A., Benaissa, M.: Throughput/area-efficient ECC processor using Montgomery

point multiplication on FPGA. IEEE Trans. Circuits Syst. 62-II(11), 1078–1082 (2015)

47. Cho, S.M., Seo, S.C., Kim, T.H., Park, Y.-H., Hong, S.: Extended elliptic curve Montgomery

ladder algorithm over binary fields with resistance to simple power analysis. J. Inf. Sci. 245,

304–312 (2013)

48. Azarderakhsh, R., Reyhani-Masoleh, A.: Efficient FPGA implementations of point multipli-

cation on binary Edwards and generalized Hessian curves using Gaussian normal basis. IEEE

Trans. Very Large Scale Integr. (VLSI) Syst. 20(8), 1453–1466 (2012)

49. Chatterjee, A., Sengupta, I.: High-speed unified elliptic curve cryptosystem on FPGAs using

binary Huff curves. In: VDAT 2012: Proceedings of VISI Design and Test, LNCS 7373, pp.

243–251. Springer (2012)

50. Shahzad, K., Khalid, A., Rkossy, Z.E., Paul, G., Chattopadhyay, A: CoARX: a coprocessor for

ARX-based cryptographic algorithms. In: Proceedings of Annual Design Automation Confer-

ence, Article No. 133 (2013)

51. Zheng, J.X., Chen, E., Potkonjak, M.: A benign hardware Trojan on FPGA-based embedded

systems. In: FPL 2012: Proceedings of International Conference on Field Programmable Logic

and Applications, pp. 464–470 (2012)

52. Kliem, D., Voigt, S.-O.: Scalability evaluation of an FPGA-based multi-core architecture with

hardware-enforced domain partitioning. Microprocess. Microsyst. (2014)

53. Costan, V., Devadas, S.: Security challenges and opportunities in adaptive and reconfigurable

hardware. In: HOST 2011: Proceedings of IEEE International Symposium on Hardware-

Oriented Security and Trust (2011)

Chapter 8
Physical Unclonable Functions and
Intellectual Property Protection Techniques

Ramesh Karri, Ozgur Sinanoglu and Jeyavijayan Rajendran

8.1 Introduction

Mathematically strong cryptographic primitives and protocols assume that the under-

lying hardware is trustworthy and rely on them to store secrets. However, because

of the vulnerabilities in the hardware, an attacker can retrieve these secret keys [1].

Thus, one needs to prevent an attacker from extracting secret keys from the hard-

ware. Additionally, semiconductor companies invest billions of dollars in designing

a chip. Such designs become their intellectual property (IP), and hence, they are

called as IP designs or IP cores. However, because of the vulnerabilities in the hard-

ware design flow, one needs to prevent an attacker from stealing IP designs [2]. In

this book chapter, we will explore hardware design techniques that can thwart these

attacks.

8.1.1 Storing Secret Keys on a Chip

Mobile and embedded devices, which are becoming more ubiquitous day by day,

often handle sensitive private information. Such devices need to authenticate the

user and the data, and protect against attackers who have physical access to those

devices. Furthermore, several security protocols that run on these devices require

cryptographic applications such as encryption, which require secret keys. However,

R. Karri (✉) ⋅ J. Rajendran

Department of Electrical and Computer Engineering, Polytechnic School

of Engineering, New York University, 5, MetroTech Center, Brooklyn 11201, USA

e-mail: rkarri@nyu.edu

J. Rajendran

e-mail: jv.ece@nyu.edu

O. Sinanoglu

Department of Electrical and Computer Engineering, New York University

Abu Dhabi (NYUAD), Building C1, Office: 166, NYUAD Campus Saadiyat Island,

Abu Dhabi 129188, United Arab Emirates

e-mail: os22@nyu.edu

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_8

199

200 R. Karri et al.

when secret keys are stored in an IC, an attacker can easily retrieve them by perform-

ing side channel attacks and/or tampering with the chip. Traditionally, secret keys are

stored in a nonvolatile electrically erasable programmable read-only memory (EEP-

ROM) or battery-backed static random access memory (SRAM). Unfortunately, such

techniques are not only prone to tampering attacks but also result in tremendous area,

power, and delay overhead, thereby increasing the cost of the chip.

To thwart such attacks, researchers have developed a security primitive referred

to as physical unclonable functions (PUFs) [3]. PUFs use random, process varia-

tions inherent in chip manufacturing to produce keys unique to the chip. PUFs are

attractive because one can use them to store secret keys in an efficient and secure

way. Section 8.2 details about the two main types of PUFs (weak- and strong-PUFs),

security metrics to evaluate their capabilities, their applications and protocols for

using PUFs, and the challenges in implementing PUF circuits.

8.1.2 The Need for IP Protection Techniques

Due to the ever increasing complexity and cost of constructing and/or maintaining a

foundry with advanced fabrication capabilities, many semiconductor companies are

becoming fabless. Such fabless companies design ICs and send them to an advanced

foundry, which is usually off-shore, for manufacturing. Also, the criticality of time-

to-market has forced companies to buy several IC/IP blocks to use them in their

systems-on-chips (SoCs). The buyers and sellers of these IP blocks are distributed

worldwide.

As the IC design flow is distributed worldwide today, hardware is susceptible

to new kinds of attacks such as counterfeiting, reverse engineering, and IP piracy

[4–7]. ICs may be recycled or remarked and sold illegally. An attacker, anywhere in

this design flow, can reverse engineer the functionality of an IC/IP. One can then steal

and claim ownership of the IP. An untrusted IC foundry may overbuild ICs and sell

them illegally. Finally, rogue elements in the foundry may insert malicious circuits

(hardware Trojans) into the design without the designer’s knowledge [8]. Because of

the IP right violations alone, the semiconductor industry loses up to $4 billion annu-

ally [2]. The annual losses due to counterfeit ICs, which include recycled, remarked,

tampered, and overproduced ICs, are estimated to be about $169 billion [9]. Such

attacks have led IP and IC designers to reevaluate trust in hardware [10].

To thwart such attacks, researchers have developed IP protection techniques:

watermarking [11], fingerprinting [12], metering [13], logic locking [6, 14], and

split manufacturing [15]. Along with these techniques, Sect. 8.3 explains the differ-

ent classes of IP protection techniques in detail and security metrics used to evaluate

their effectiveness.

8 Physical Unclonable Functions and Intellectual . . . 201

8.2 Physical Unclonable Functions (PUFs)

8.2.1 Motivation

Physical unclonable functions (PUF) are a cost-effective alternative to storing keys

on EEPROM and SRAM that can be used for authentication and key generation [3].

A PUF is an unclonable circuit that uses inherent random variations to produce

unique, stable responses (output) for a given challenge (input). Instead of storing the

secret, PUFs generate the secret on the fly. PUFs are attractive because: (i) unlike

conventional memories, tampering attacks are made difficult, (ii) unlike battery-

powered SRAMs, one does not need to keep the PUF circuit on all the time, and

(iii) unlike EEPROMs, the PUF circuit does not require an additional layer of mask,

thereby reducing manufacturing cost.

8.2.2 Types of PUFs

PUFs are classified based on the number of challenge–response pairs (CRPs) that

they generate. The two main types of PUFs are weak-PUFs and strong-PUFs, which

are described below. Apart from these two types of PUFs, one can also consider

unique objects as a type of PUF [16]. Unique objects use random unclonable prop-

erties which require an external equipment to measure their responses.

Weak-PUFs

In this type of PUF, the number of CRPs generated is polynomial in the number of

components in the PUF circuit. The responses generated by weak-PUFs are used as

a “fingerprint” of the chip and/or as the physical keys of the chip. Thus, they are also

called physically obfuscated keys. Since the number of CRPs is only polynomial

in the number of components in the PUF, these PUFs may not be useful in certain

applications such as authentication, which requires a large number of CRPs (in the

order of millions).

Example—SRAM-based PUF. Static random access memory (SRAM) cells can

be used as a weak-PUF [17]. An SRAM cell, shown in Fig. 8.1, consists of two cross-

coupled inverters and access transistors. “A” and “B” are the two nodes in this cell,

and the voltages at these two nodes determine the output (response) of the SRAM.

When an SRAM cell is powered on, its output transitions to either 0 (AB = 01)

or 1 (AB = 10). This transition is usually driven by the strength of cross-coupled

inverters, which is, in turn, determined by process variations. The strength of the

cross-coupled inverters is dictated by different transistor parameters such as length

of the channel (L
eff

), threshold voltage (V
th

), dopant concentration, etc.

202 R. Karri et al.

Fig. 8.1 Example of a

weak-PUF: state of an

SRAM cell can be used as a

response bit [17]

A B

V

Leff

th

Other examples of weak-PUFs include the following:

(i) Butterfly PUF [18]: It uses cross-coupled NAND gates to generate the response.

Such PUFs are easy to implement on a field-programmable gate array (FPGA),

thereby providing protection for FPGA-based designs.

(ii) Coating PUF [19]: It comprises a matrix material with random distributed

dielectric components. Sensors are used to determine the capacitance of the

matrix material, and their values are used as responses. This PUF can detect

tampering attacks. When an attacker tries to peel off the coat, the capacitance

changes. The sensors detect this change, and thus, detect the tampering attack.

(iii) Resistive PUFs [20, 21]: This PUF uses the resistance value of the power lines

of an IC as the response of PUF. A specialized circuit is used to extract digital

values from the resistance values.

Strong-PUFs

In this type of PUF, the number of CRPs generated is exponential in the number of

components, and thus this type of PUF has a large number of CRPs.

Example—Arbiter-based PUF. One example of a strong-PUF is an arbiter-

based PUF shown in Fig. 8.2 [22]. An arbiter-PUF consists of N stages, where N is

the number of bits in the challenge. Each stage consists of a pair of multiplexers,

whose inputs are connected to the outputs of the previous stage as shown in Fig. 8.2.

The inputs of the first stage are tied together. The output of the last stage is fed to a

D latch, which acts as an “arbiter.”

When a challenge is applied to the arbiter-PUF, two paths are selected. A rising

edge is then applied to the input of the arbiter-PUF. Due to process variations, the

relative speed of the two paths will be different in different chips. Consequently, the

latch may hold a 0 or 1. The output of the latch is the response bit. The number of

path pairs, and hence the response bits is exponential in the number of stages (or

challenges). Thus, this PUF is considered as a strong-PUF.

The disadvantage of the arbiter PUF is that an adversary can model the PUF by

obtaining a polynomial number of challenge–response pairs using linear-delay mod-

els. This way he can predict the response of the PUF [23]. One can solve this problem

by introducing nonlinearity in PUF structure, thereby preventing an adversary from

modeling the PUF.

8 Physical Unclonable Functions and Intellectual . . . 203

Fig. 8.2 Example of a

strong-PUF: arbiter

PUF [22]. Based on the

challenge, two circuit paths

are created. The response bit

“R” can be 1 or 0 and

depends up on which path is

slower

Some of the modified arbiter-PUF architectures include the following:

(i) Feedforward arbiter PUFs [24]: In this type of arbiter-PUF, the number of

stages exceeds the number of challenge bits. The output of some of the internal

stages act as select lines for some of the other stages. This increases the non-

linearity in the PUF circuit, preventing an adversary from modeling the PUF

using linear-delay assumptions.

(ii) XOR-based arbiter PUF [23]: An XOR network is used to combine the responses

of multiple feedforward arbiter PUFs. The output of this XOR network serves

as the response of the PUF. The XOR network introduces nonlinearity into the

PUF circuit, preventing an adversary from modeling the PUF.

(iii) Lightweight PUFs [25]: This PUF is a modified version of the feedforward

arbiter PUF. To increase the nonlinearity, the challenge bits are fed to an XOR

network, whose output drives the individual stages of the arbiter. Furthermore,

an XOR network is used to combine the responses of multiple feedforward

arbiter PUFs. The output of this XOR network serves as the response of the

PUF.

Apart from arbiter-based strong-PUFs, one can also use randomly distributed

glass particles on a transparent token as a strong-PUF. This PUF is called an opti-

cal PUF [26]. The challenge to this PUF is the angle of incidence of the light. The

response of this PUF is the interference pattern. One needs to convert these optical

signals to electrical signals, which increases the cost of this PUF, leading to practi-

cality issues.

8.2.3 Security Metrics

One can use the following security metrics to quantify the security of PUFs:

∙ Uniqueness is defined as the Hamming distance between the responses from PUFs

in two different circuits upon applying the same challenge. This metric helps one

uniquely differentiate an IC from other ICs containing the same PUF structure. Its

ideal value should be 50 % because one can then differentiate maximum number

of ICs. Note that sometimes this metric is called inter-Hamming distance.

204 R. Karri et al.

∙ Uniformity is defined as the proportion of 1’s and 0’s in a response. It ensures the

randomness of the response. Its ideal value should be 50 % because any affinity

toward either 1 or 0 reduces the randomness in the response.

∙ Bit-aliasing is defined as the affinity of a response bit toward either 0 or 1. Because

of bit-aliasing, different PUFs may produce similar response bits. Consequently,

the responses of these PUFs will be more predictable. Ideally, the value should be

50 %.

∙ Steadiness, or robustness, is defined as the ratio of response bits that remain

unchanged at different time intervals. Ideally, the value for steadiness should be

100 %. Note that this metric is different from the uniformity metric. Steadiness

ensures that the responses are stable across different time intervals; uniformity

ensures that responses are random, making them unpredictable. Note that some-

times this metric is called intra-Hamming distance.

A comprehensive analysis of the metrics used to evaluate the security of PUFs can

be found in [27].

8.2.4 Applications and Protocols

User Authentication Using a Strong-PUF

One can use the strong-PUF to authenticate a user. The protocol is as follows:

1. A strong-PUF is manufactured.

2. The authentication server obtains the strong-PUF. It then applies a set of ran-

domly generated challenges and records the corresponding responses. This set

of challenge–response pairs (CRPs) is used to create the CRP table.

3. The user obtains the strong-PUF.

4. Whenever the user wants to be authenticated, he sends a request to the server.

5. The server randomly picks a challenge from the CRP table and sends it to the

user.

6. The user applies this challenge to his strong-PUF and obtains the response. This

response is sent to the server.

7. The server checks if the received response matches with the one from the CRP

table. If so, the user is authenticated; otherwise, the user is not authenticated.

Though, in theory, a perfect match is required, in practice a “close” match suffices

in order tolerate errors.

8. The server deletes the used CRP from the table.

The last step is needed because an attacker can record the response, while the user

sends the correct response, and reuse it later to spoof the server if the server sends

the same challenge. Such an attack is known as the replay attack. Since there is a

finite number of CRPs in the CRP table, there is a non-negligible probability that

8 Physical Unclonable Functions and Intellectual . . . 205

the server may reuse the same challenge if the CRP is not deleted. Hence, the used

CRPs are deleted to avoid such attacks.

Since the server stores only a finite number of CRPs and a CRP is deleted after

being used, the above protocol becomes obsolete when the server runs out of CRPs.

To avoid such problems, researchers have proposed to store a compact model of the

PUF on the server [28]. The server can use this compact model to produce CRPs on

the fly.

Key Generation Using a Weak-PUF

Since a weak-PUF generates unique responses per chip, such responses can be used

to generate secret keys [23]. Such secret keys can be used by other security primitives

such as an encryption engine or a hash engine. Weak-PUF generated keys are used

for certified execution of software on a processor [29]. Weak-PUFs can also be used

to prevent piracy of IC designs (See Sect. 8.3 for more details).

8.2.5 Challenges

Attacks on PUFs

Several attacks on PUFs have been proposed in the literature [30–32]. These attacks

try to build a simulation model of the PUF, especially a strong-PUF, by monitoring

several CRPs. Such attacks use machine learning techniques. Researchers have also

developed side-channel attacks on PUFs. In this type of attack, a simulation model

of PUF is developed based on its power or delay characteristics. This model is then

used to mimic the PUF.

Reliability Issues

The response of the PUFs can vary due to environmental conditions, such as temper-

ature and voltage, and due to aging effects. For example, in the case of arbiter PUF,

a change in operating voltage changes the delays of the transistors, which in turn

affects the response bits. Such changes in response bits at run time impact the usage

of PUFs in security applications. For instance, when a weak-PUF is used to generate

secret keys, a change in the response bit results in a different key. Thus, PUFs are

required being error-prone.

To make the response of a PUF more reliable, encoding schemes and “helper

data” are provided [33–35]. Such schemes tolerate errors and improve security by

not leaking sufficient amount of secret information.

206 R. Karri et al.

8.2.6 Beyond PUFs—Public PUFs (PPUFs)

PPUF is a variant of PUF. Its simulation models are made public [36–38], unlike

a PUF whose simulation models are hidden from the attacker. Although an attacker

can simulate the PPUF on a given challenge to obtain a response, the simulation time

is too large (e.g., several years) compared to the time it takes to apply a challenge

and obtain its response on the PUF primitive (e.g., a few nanoseconds).

A PPUF using XOR gates, as shown in Fig. 8.3, is constructed in [36]. Because

of process variations, different gates will have different delays. The simulation time

of the XOR PPUF is exponential in the number of rows of gates [36]. This PPUF

uses three values: the previous input to the gates in the bottom row, the current input

to those gates, and the output sampling time. When a server wants to authenticate a

user, it will send these three values. A user can apply the previous and current inputs

to the XOR gates, sample the output, and send it back to the server within a stip-

ulated time. The server can verify the output through simulation using the publicly

available simulation model of the user’s PPUF. Here, the server simulates only a pre-

determined subset of the PPUF, but not the entire PPUF. This subset is known only

the server. An attacker can only simulate the PPUF, as he does not have the PPUF

Fig. 8.3 Example of a

PPUF constructed using a

canonical XOR circuit [17]

8 Physical Unclonable Functions and Intellectual . . . 207

circuit. However, since the simulation time is exponential in the number of devices,

he cannot predict the correct response within the stipulated time. Thus, an attacker

cannot break the security offered by PPUF.

Similar to XOR gates, one can also use emerging technology devices to implement

PPUFs [37, 38]. These implementations have a smaller overhead when compared to

the XOR-based implementation.

A PPUF can implement two-party security protocols such as authentication, key

exchange, bit commitment, and time stamping. One cannot use PUF to implement

many of these protocols as it requires both the parties to know the challenge–response

pairs a priori.

8.2.7 Sensor PUFs

The sensor physical unclonable function was originally proposed by Rosenfeld et al.

[39]. Rosenfeld described a technique to build a PUF which accepts light as another

input to the challenge–response generation mechanism. The uniqueness of the sensor

PUF is determined by nonhomogeneous coatings over the photodiode light sensing

elements.

A sensor PUF builds upon the concept of the PUF by introducing a sensed quan-

tity as another challenge input. The PUF is fully defined by a challenge–sensor–

response triple rather than a challenge–response pair. The concept of a sensor PUF

can be interpreted as the utilization of a standard PUF while taking advantage of the

noise associated with variable operating conditions.

An ideal implementation of a sensor-PUF should exhibit the following properties:

1. Stability. Given a fixed challenge and a fixed sensor input, the response bits

should be the same across all operating conditions for an IC.

2. No leakage. No challenge–sensor–response triple should leak information about

any other triple.

3. Manufacturer resistance. The manufacturer should have no control over the

response of the PUF due to the limits of the manufacturing process. Therefore it

should be infeasible to generate two PUFs with identical responses.

Sensor PUFs may similarly be classified as weak or strong, although the number

of sensor inputs cannot be considered as part of the challenge space in this respect.

Rather, the number of distinct sensor inputs defines the sensor resolution and can be

as simple as a binary value (i.e., whether a physical quantity exceeds some threshold)

or as complicated as the whole input space of an image sensor [40].

8.2.8 Other Reads

A detailed survey of different types of PUFs is provided in [3, 16, 41].

208 R. Karri et al.

8.3 IP Protection

8.3.1 Motivation

While the IC design flow spans many countries, not all countries have strict laws

against intellectual property theft. Some of the few exceptions are countries such as

the USA and Japan [42–45]. Thus, every IC/IP designer bears an additional respon-

sibility to protect his/her design. If a designer can harden the functionality of an

IC while it passes through the different, potentially untrustworthy phases of the

design flow, these attacks can be thwarted [6, 7]. Or, a designer should at least be

able to track down the source of piracy, enabling him to file a litigation against the

attacker [12]. Techniques that enable a designer to achieve these objectives are col-

lectively called IP protection techniques.

8.3.2 Classification

IP protection techniques can be classified as:

Active (or) Passive: Active metering techniques provide a way for the designer or

the IP owner to control, modify, enable, or disable the target design or IC [6, 46–49].

For instance, combinational logic locking uses additional logic gates (XOR/XNOR)

to lock the functionality of an IC (see Sect. 8.3.5 for more details).

Passive metering techniques, unlike active metering techniques, do not control,

enable, or disable the design [13, 50, 51]. Instead, they enable a designer to identify

the design or an IC.

Intrinsic (or) Extrinsic: Intrinsic techniques involve modifying the design [46].

For instance, watermarking techniques are intrinsic techniques as they modify the

design to include the watermark, enabling a designer to verify and claim ownership

of the design.

Extrinsic techniques do not modify the design. Instead, additional components are

added [6, 48, 49]. An example of an extrinsic technique is burn-in fuses, where serial

numbers for an IC are embedded. Such serial numbers enable a designer to track the

manufactured ICs.

Reproducible (or) Unclonable IDs: As the name indicates, IDs that can be repro-

duced by an attacker are called reproducible IDs. Examples include indented serial

numbers, digitally stored serial numbers, processor serial numbers [52], and burn-in

fuses. Note that these IDs are easy to probe: An attacker can depackage the chip,

delayer it, and insert probes to read these IDs.

IDs that cannot be copied by an attacker are unclonable IDs. Examples include

different types of PUFs, as discussed in Sect. 8.2. These IDs, unlike reproducible

IDs, cannot be easily reverse engineered. Unfortunately, the hardware cost of these

IDs are greater than that of the reproducible IDs.

8 Physical Unclonable Functions and Intellectual . . . 209

8.3.3 Watermarking

Watermarking is a passive, intrinsic, and reproducible IP protection technique. A

designer’s signature is embedded into the design artifact [53]. Later, if a designer

suspects that an attacker has used his design illegaly, the designer can later reveal

the watermark during litigation and claim ownership of an IC/IP. Watermarks can be

embedded during different synthesis steps of the design flow: high-level [11], logic,

and physical synthesis [54]. One can also embed watermarks for FPGA designs [55].

During high-level synthesis, one needs to map the variable to a register and an

operation to an operator, while optimizing for area, power consumption, and per-

formance. However, there are several possible choices of mapping, resulting in the

same optimal solution. The choice of variable to register mapping and operation to

operator mapping can serve as a watermark [11].

Similarly, during logic synthesis one needs to encode the different states into

Boolean values, while optimizing for area, power consumption, and performance.

When there are multiple optimal solutions, the choice of encoding can act as a water-

mark [54].

As most of these synthesis steps involve graph partitioning, one may encode the

watermark as constraints during graph partitioning [56, 57]. For instance, one can

constrain a set of nodes to be in the same partition. Alternately, a watermark can

constrain the number of edges (edge-cuts) spanning the partitions.

Consider embedding a watermark in the graph shown in Fig. 8.4. This graph has

16 nodes and 31 edges. The number of possible watermarking solutions for differ-

ent number of pairs and the quality of the corresponding solutions are depicted in

1
4

2
14

10

13 15

126

7

8 16

9
11

5

3

Fig. 8.4 A motivational example for IP watermarking based on graph partitioning. Source [56]

210 R. Karri et al.

0 pairs
1 pair

2 pairs
3 pairs
4 pairs
5 pairs
6 pairs
7 pairs
8 pairs

Fig. 8.5 Watermarking: number of possible watermarks vs quality of solutions for the graph when

the following pairs of vertices are merged together: (16, 14), (6, 2), (16, 4), (9, 8), (5, 16), (9, 4),

(11, 10), (9, 4). Source [56]

Fig. 8.5. While there is only one solution for an edge-cut value of 9 (and hence, this

is not a good watermark constraint), there are 37 different solutions for an edge-cut

value of 13. There is a trade-off between number of possible solutions and the output

quality.

A watermark should have the following characteristics [11]:

1. The watermark should not alter the functionality of the design. For example,

in case of embedding the watermark during high-level synthesis, the watermark

embedded as a choice of variable-to-register mapping should yield the same func-

tionality as the original design.

2. The watermark should clearly prove the ownership of the designer. In other

words, the probability of an attacker embedding the same watermark signature

should be very low. This is possible when there is a large number (1080) of opti-

mal solutions, from which the designer randomly selects one as his watermark.

3. Apart from the designer, no one should be able to identify and/or remove the

watermark from the original design.

8.3.4 Fingerprinting

While watermarking enables one to identify that the design has been pirated, it does

not reveal the source of piracy. To solve this problem, fingerprinting has been intro-

duced. Here, along with the watermark of the designer, the signature of the buyer (for

instance, his public key) will be embedded into the design [12]. When challenged,

the designer can reveal the watermark to claim the ownership and the buyer’s sig-

nature to reveal the source of piracy. For example, the power, timing, or thermal

fingerprint of an IC is revealed on applying a set of input vectors.

8 Physical Unclonable Functions and Intellectual . . . 211

Similar to watermarking, fingerprinting can also be applied during high-level,

logic, and physical synthesis [12]. Conventionally, weak-PUFs are used as finger-

prints of an IC. Signatures extracted from static random access memory cells in the

IC can act as fingerprints [17].

Fingerprinting techniques are evaluated using the same set of metrics used to

evaluate watermarking techniques, with one additional metric: the number of pos-

sible fingerprints (watermarks) should be large enough to differentiate signatures of

different buyers.

8.3.5 Logic Locking

Logic locking
1

hides the functionality and the implementation of a design by insert-

ing additional gates into the original design. In order for the design to exhibit its

correct functionality (i.e., produces correct outputs), a valid key has to be supplied

to the locked design. The gates inserted for locking are the key gates. Upon apply-

ing a wrong key, the locked design will exhibit a wrong functionality (i.e., produce

wrong outputs).

EPIC [6] incorporates logic locking into the IC design flow, as shown in Fig. 8.6.

In the untrusted design phases, the IC is locked, and its functionality is not revealed.

Post fabrication, the IP vendor activates the locked design by applying the valid key.

The keys are stored in a tamper-evident memory inside the design to prevent access

to an attacker, rendering these key inputs inaccessible to an attacker.

Logic locking prevents attacks such as IP piracy and hardware Trojans. Since the

design is locked by the designer, the foundry cannot use any copies or overproduced

ICs without the secret keys. Furthermore, it prevents an attacker from analyzing the

structural behavior of the design, thereby hindering Trojan insertion.

Logic locking techniques can prevent IP piracy, overbuilding and reverse engi-

neering attacks. Some logic locking techniques offer protection against multiple

attacks such as IP piracy attacks along with Hardware Trojan insertion [58, 62, 63].

Classification

Logic locking techniques can be broadly classified as:

Sequential logic locking. In sequential logic locking, additional logic (invalid)

states are introduced in the state transition graph [14, 47, 62]. The state transition

graph is modified in such a way that the design reaches a valid state only on the

application of a correct sequence of key bits. If the key is withdrawn, the design,

once again, ends up in a black state.

1
Researchers have previously used the terms “logic obfuscation” [6, 14] and “logic encryption” [58–

60] for this purpose. However, echoing the call for consistent terminology by Plaza and Markov [61],

we use the term “logic locking” in this chapter.

212 R. Karri et al.

Fig. 8.6 IC design flow with logic locking [6]. The design is in the locked form in the untrusted

design regime, shown as dotted lines. Upon fabrication, the IC is activated by applying the secret

key. The attacker in the untrusted foundry can reverse engineer the design, but he can only obtain

the locked design. This prevents an attacker from pirating the design and/or identifying safe places

to insert Trojans

Another sequential locking approach is to withhold a part of the design and

replace it with programmable logic. This way, the IP owner hides a part of the design

from the rogue elements during manufacturing stages [64, 65]. The withheld design

is later configured into programmable logic. The circuit will function correctly only

when these elements are configured/programmed correctly. However, the introduc-

tion of programmable memory elements into the circuit will incur significant perfor-

mance overhead.

Combinational logic locking. In combinational logic locking, also referred to as

logic encryption or logic locking in literature, different logic gates are inserted in a

circuit to conceal the functionality of a design. These elements include XOR/XNOR

gates [6, 7, 59, 60], AND/OR gates [58], muxes [60, 61] or a combination of these

basic elements [66]. One of the inputs to these gates serves as a key input, which is a

newly added signal driven by a tamper-evident memory unit. Unless the correct key

is loaded onto the on-chip memory, a design will not work correctly.

Example: Consider the example design shown in Fig. 8.7a. Three key gates (K0,

K1, and K3) are added to the design to lock it. The correct key is 000.

The insertion of the gates is done after logic synthesis and before physical syn-

thesis. The design can be then be resynthesized or resized. In case of logic locking

using XOR/XNOR gates, if the key gates were left as such without any other modi-

fications to the circuit, the key bits could be extracted by inspecting if a key gate is

8 Physical Unclonable Functions and Intellectual . . . 213

I1

I4

G2

G4

I2

I3

G5

G6 G8 G10

O1

G7

O1

G9

G1

G3

I1

I4

G2

G4

I2

I3

G5

G6 G8 G10

O1

G7

O2

G1

G3

K2

K1

K0

K0

G9

K2

K1

(b)(a)

Fig. 8.7 Logic locking: a The original design. b Design locked by randomly inserting key gates

XOR or XNOR. To eradicate such a simple deduction analysis between the key gate

types and the key values, following post-processing steps can be applied:

1. The netlist can be synthesized such that the XOR/XNOR key gates are replaced

with other gates like AND/OR/NAND, etc., rendering it difficult to identify the

key gates as XOR/XNOR.

2. The existing inverters in the design can be absorbed into the key gates, changing

their polarity in a manner oblivious to the attacker; similarly, additional inverters

can be added next to the key gates to change the polarity of the key gates.

Activation of the Locked ICs.

In logic locking, a circuit is activated/unlocked after fabrication by loading the key

onto the on-chip tamper-evident memory. The activation can be conducted either

prior to or post-manufacturing test. When a chip is to be activated prior to the man-

ufacturing test (pre-test activation), secure communication infrastructure is needed

so to load the key remotely onto the chip. EPIC [7], Secure split test [67, 68] are

platforms, which make use of public key cryptography protocols to load a key onto

the chip. However, it is also possible to conduct the manufacturing test first, using

dummy key values, and later on load the key onto the chip (post-test activation) in a

secure facility.

Metrics

A logic locking technique should:

1. Prevent an attacker from deducing the key, and

2. Produce wrong outputs on applying a wrong key.

Preventing an attacker from deducing the key. Multiple attacks have been pre-

sented against existing logic locking techniques. The objective of an attacker is find

out the key used for locking the circuit [61, 66, 69–71]. Based on the capabilities of

an attacker, these attacks can be broadly classified into two types:

214 R. Karri et al.

1. An attacker with access to input–output pairs [61, 66, 69–71]. An attacker

can gain access to input–output pairs by exercising an activated IC, which can be

obtained from the market. He can buy this IC from the market. He also access

to the netlist of the encrypted design, which he can obtain from the untrusted

foundry or by reverse engineering the IC.

In the attack proposed in [70], an attacker determines the input patterns that sensi-

tizes the key inputs to observable points such as outputs or scan flip-flops. He can

then apply those inputs patterns to determine the secret key values. For example,

consider the locked design shown in Fig. 8.7b, where an input pattern 1000 will

sensitize K0 to O1. Thus, an attacker can determine the value of K0. Similarly,

inputs patterns 0111 and X010 sensitize K1 and K2 to O1 and O2, respectively.
2

In the attack proposed in [71], Boolean Satisfiability (commonly known as SAT)

solvers are used to identify the key values such that render the output of the locked

design identical to that of the original design for all inputs.

2. An attacker with access only to test input data and test responses [61, 69].

An attacker at the testing facility has access to the test data, which are provided to

him by the designer. A hill-climbing search based attack makes use of test stimuli

and responses to recover the secret key [61, 69]. If an attacker gets access to the

scan chains, he can launch the attack even without the netlist.

Producing wrong outputs on applying a wrong key. When the key gates are

inserted randomly in a circuit, there is no guarantee that an incorrect key produces

incorrect output for all the input patterns. Consequently, the resultant logic locking

technique is considered weak.

For example, consider the design shown in Fig. 8.7b. When the input pattern is

X000, the correct output pattern is 00. However, even on applying any incorrect key,

the design still produces the correct output.

To solve this problem, researchers developed an analogy between the problem

of logic locking and IC testing principles such as fault activation, propagation, and

masking [59, 60]. Based on this analogy, a fault impact metric was developed. The

key gates are inserted at places with the highest fault impact. This technique max-

imizes the Hamming distance between the correct output and the incorrect outputs

on applying a random incorrect key. XOR/XNOR key gates are combined with mux

key gates to achieve higher Hamming distance at outputs [66].

Dupuis et al. [58] propose a logic locking scheme that inserts AND/OR key gates

in a circuit to minimize the number of low-controllability locations, which makes it

difficult to insert Hardware Trojans in the circuit.

8.3.6 Metering

It is a set of tools, methodologies, and protocols used to track a manufactured IC.

In passive metering, a part of an IC’s functionality is used for metering [13]. The

2X refers to a don’t care value. It can be freely set to either 1 or 0.

8 Physical Unclonable Functions and Intellectual . . . 215

Duplicate
States

Modified
State

Transistion

Additional
States

Black Hole
States

S1 S2

S0

S3 S4 S5

S7 S8 S31 S31

H1 H2 H3 H4

S3"S3' S3'"

Fig. 8.8 Hardening a controller. Approach 1: Existing states are replicated [46]. Approach 2:

State transitions are modified [14, 72–74]. Approach 3: Additional states are added [47, 50, 75].

Approach 4: Black-hole states are added [47, 50, 75]. S0 through S6 are the states in the original

FSM. All the other states are added for obfuscation. Solid edges are the state transitions in the orig-

inal FSM. Dashed edges are state transitions from an invalid state to a valid state, on applying the

valid key. Dotted edges are the state transitions from a valid state to an invalid state, on applying an

invalid key or when key is withdrawn

identified ICs are matched against their record in a database. This will reveal unreg-

istered ICs or overbuilt ICs. In active metering, parts of the IC’s functionality can

be only accessed, locked, or unlocked by the designer and/or IP rights owners [47].

The difference between metering and locking is that while metering uses a unique

unlock key per IC, locking just locks the IC.

Example: Figure 8.8 shows an example finite state machine (FSM) of a con-

troller and how it has been hardened using several metering techniques. Each node

represents a state. The edges represent the state transition. The solid edges represent

the state transitions in the original design. The dotted edges represent the ones added

for metering.

A controller can be hardened by adding extra states and/or transitions in the FSM.

The controller can be hardened by:

1. State replication: Some states in the original FSM may be replicated [46]. For

example, in Fig. 8.8, the state S2 has been replicated three times. Only the orig-

inal state S2 has an outward transition; none of the other states has an outward

transition. On applying an incorrect key, the design enters into one of the repli-

cated states. Consequently, it enters into a lock-down state.

2. Additional transitions: Additional transitions between the states of the original

design are added into the design [14, 72–74]. For example, in Fig. 8.8, the tran-

sition from S1 to S3 and S3 and S5 are added. On applying an incorrect key, the

design will skip the S2 and S4 states, thus exhibiting a different, and thus, wrong

functionality.

216 R. Karri et al.

3. Additional states: Extra states are added into the design [47, 50, 75]. For exam-

ple, in Fig. 8.8, states S7 through S31 are the additional states. On applying an

incorrect key, the design enters into one of these states and eventually enters the

reset state.

4. Black-hole states: An invalid key leads the design into invalid states via illegal

transitions, and eventually into black-hole states, where the design is stuck [47,

50, 75]. In Fig. 8.8, H1 through H4 are the black-hole states.

8.3.7 Split Manufacturing

Leading fabless semiconductor companies such as AMD and research agencies such

as Intelligence Advanced Research Projects Agency (IARPA) have proposed split

manufacturing to protect against IP piracy and trojan insertion [15, 76]. In split man-

ufacturing, the layout of the design is split into the Front End Of Line (FEOL) layers

and Back End Of Line (BEOL) layers which are then fabricated separately in differ-

ent foundries. The FEOL layers consist of transistors and other lower metal layers

(≤M4) and the BEOL layers consist of the top metal layers (>M4). Post fabrication,

the FEOL and BEOL wafers are aligned and integrated together using either elec-

trical, mechanical, or optical alignment techniques. The final ICs are tested upon

integration of the FEOL and BEOL wafers [15, 76]. The asymmetrical nature of the

metal layers facilitates split manufacturing. The top BEOL metal layers are usually

thicker and have a larger pitch than the bottom FEOL metal layers [77]. Hence, a

designer can easily integrate the BEOL and FEOL wafers.

Figure 8.9 shows a possible split manufacturing aware IC design flow. A gate-

level netlist is partitioned into blocks which are then floorplanned and placed. The

transistors and wires inside a block form the FEOL layers. The top metal wires con-

necting the blocks and the IO ports form the BEOL layers. The BEOL and FEOL

wires are assigned to different metal layers and routed such that the wiring delay

and routing congestion are minimized. The layout of the entire design is split into

two—one layout just contains the FEOL layers and the other layout just contains the

BEOL layers. The two layouts are then fabricated in two different foundries. In one

embodiment, the FEOL layout is first fabricated and then sent to a trusted second

foundry where the BEOL layout is built on top of it [15]. In another embodiment,

the fabricated FEOL and BEOL layouts are obtained by the system integrator, and

are then integrated by using electrical, mechanical, or optical alignment techniques

and tested for defects [76].

Split manufacturing aims to improve the security of an IC as the FEOL and BEOL

layers are fabricated separately and combined post fabrication. This prevents a sin-

gle foundry (especially the FEOL foundry) from gaining full control of the IC. For

instance, without the BEOL layers, an attacker in the FEOL foundry can neither iden-

tify the safe places within a circuit to insert trojans nor pirate the designs without the

8 Physical Unclonable Functions and Intellectual . . . 217

Fig. 8.9 Split manufacturing: the layout of a design is split into two Front End-of-Line (FEOL)

and Back End-of-Line (BEOL) parts. These two parts are manufactured at two different places. This

prevents the attacker at the FEOL foundry from accessing the BEOL part. With only an incomplete

design, an attacker can neither pirate the design nor identify safe places insert hardware Trojans in it

BEOL layers. The economic benefit of split manufacturing comes from performing

the low cost BEOL layer fabrication in-house and outsourcing the expensive FEOL

layer fabrication [15, 76, 78].

Practicality of Split Manufacturing

Even though two foundries are involved in manufacturing a single IC, split manufac-

turing should not degrade the manufacturing quality of an IC. Recently, researchers

have proved the practicality of split manufacturing by manufacturing an FPGA in

two different foundries [79]. One can also leverage the 3D manufacturing technology

where security sensitive components can be placed in one layer and manufactured

in a trusted low-end foundry; and other components of the design can be placed in

another layer and manufactured in an untrusted high-end foundry [80]. Feasibility

of split manufacturing for analog designs has also been demonstrated [81].

Attacks and Defenses for Split Manufacturing

The attacker in the foundry should not be able to determine the missing BEOL con-

nections from the FEOL connections. Naive split manufacturing is vulnerable to

218 R. Karri et al.

proximity attack. This attack exploits the heuristic that floorplanning and placement

(F&P) tools use to reduce the wiring (delay) between the pins to be connected [82]—

place the partitions close by and orient the partitions. This heuristic of most F&P

tools is a security vulnerability that can be exploited by an attacker in the FEOL

foundry who does not have access to the BEOL layers. Thus, the attacker simply

makes the missing connections between the two closest compatible
3

pins.

To thwart such attacks, a fault-analysis-based pin swapping technique is proposed

in [83]. The idea here is to find the best set of pins to swap such that when an attacker

performs the proximity attack, the obtained netlist will be different from that of the

original netlist; the difference between the two netlists can be quantified via Ham-

ming distance of the outputs. Furthermore, instead of splitting the design at M4, one

can also split at M1, thereby increasing the effort of an attacker [84].

In [85], an algorithm to select wires for the BEOL layers is provided. A formal

notion of an attacker’s inability to figure out the missing BEOL connections is pro-

vided. However, this approach has a significant performance overhead, potentially

offsetting the benefits of a high-end FEOL foundry.

8.4 Conclusion

In this chapter, we elaborated on two important security techniques: PUFs and IP pro-

tection techniques. Weak-PUFs have already found applications in securing FPGA

designs [86]. Several companies such as Verayo [87] and Intrinsic ID [88] are try-

ing to commercialize strong-PUFs as well. While reliability challenges still exist for

PUF circuits, PPUFs, PUFs using emerging technology devices, and sensor PUFs

provide a wide variety of applications.

In case of IP protection techniques, a designer can use a technique depending

upon the threat model he faces. For instance, if he does not have access to a BEOL

foundry, he can pursue logic locking. Otherwise, he can pursue split manufacturing

to protect his design, as logic locking requires one to store keys on the chip. However,

note that split manufacturing requires the designer to trust the end user. Thus, one

needs to carefully select an IP protection technique that suits their business model.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Advances in cryptology (CRYPTO

99). Lect. Notes Comput. Sci. 1666, 388–397 (1999)

2. SEMI. Innovation is at risk as semiconductor equipment and materials industry loses up to $4

billion annually due to IP infringement (2008). www.semi.org/en/Press/P043775

3
Two pins are compatible if one pin is the output of a gate or an input port, and the other pin is an

input of a gate or an output port.

www.semi.org/en/Press/P043775

8 Physical Unclonable Functions and Intellectual . . . 219

3. Herder, C., Yu, M.-D., Koushanfar, F., Devadas, S.: Physical unclonable functions and appli-

cations: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

4. Guin, Ujjwal, DiMase, Daniel, Tehranipoor, Mohammad: Counterfeit integrated circuits:

detection, avoidance, and the challenges ahead. J. Electron. Test. 30(1), 9–23 (2007)

5. Rostami, M., Koushanfar, F., Karri, R.: A primer on hardware security: models, methods, and

metrics. P. IEEE 102(8), 1283–1295 (2014)

6. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits. IEEE/ACM

Design, Automation and Test in Europe, pp. 1069–1074 (2008)

7. Roy, J.A., Koushanfar, F., Markov, I.L.: Ending piracy of integrated circuits. Computer 43(10),

30–38 (2010)

8. Karri, R., Rajendran, J., Rosenfeld, K., Tehranipoor, M.: Trustworthy hardware: identifying

and classifying hardware Trojans. IEEE Comput. 43(10), 39–46

9. Top 5 Most Counterfeited Parts Represent a $ 169 Billion Potential Challenge for Global

Semiconductor Market. http://press.ihs.com/press-release/design-supply-chain/top-5-most-

counterfeited-parts-represent-169-billion-potential-cha

10. DARPA. Defense Science Board (DSB) study on High Performance Microchip Supply (2005).

www.acq.osd.mil/dsb/reports/ADA435563.pdf

11. Koushanfar, Farinaz, Hong, Inki, Potkonjak, Miodrag: Behavioral synthesis techniques for

intellectual property protection. ACM Trans. Des. Autom. Electron. Syst. 10(3), 523–545

(2005)

12. Caldwell, A.E., Choi, H.-J., Kahng, A.B., Mantik, S., Potkonjak, M., Qu, G., Wong, J.L.: Effec-

tive iterative techniques for fingerprinting design IP. IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. 23(2), 208–215 (2004)

13. Koushanfar, F., Qu, G., Potkonjak, M.: Intellectual Property Metering. Information Hiding,

Workshop (2001)

14. Chakraborty, R.S., Bhunia, S.: HARPOON: an obfuscation-based soc design methodology for

hardware protection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 28(10), 1493–

1502 (2009)

15. Intelligence Advanced Research Projects Activity. Trusted Integrated Circuits Program. https://

www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6

16. Rhrmair, U., Devadas, S., Koushanfar, F.: Security Based on Physical Unclonability and Dis-

order. Introduction to Hardware Security and Trust, pp. 65–102 (2012)

17. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint

and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)

18. Guajardo, Jorge, Kumar, Sandeep S., Schrijen, Geert-Jan, Tuyls, Pim: FPGA intrinsic PUFs

and their use for IP protection. Cryptographic Hardware Embed. Syst. 4727, 63–80 (2007)

19. Tuyls, P., Schrijen, G.-J., Kori, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-proof hard-

ware from protective coatings. Cryptographic Hardware Embed. Syst. 4249, 369–383 (2006)

20. Helinski, R., Acharyya, D., Plusquellic, J.: A physical unclonable function defined using power

distribution system equivalent resistance variations. ACM/IEEE Design Automation Confer-

ence, pp. 676–681 (2009)

21. Helinski, R., Acharyya, D., Plusquellic, J.: Quality metric evaluation of a physical unclon-

able function derived from an IC’s power distribution system. ACM/IEEE Design Automation

Conference, pp. 240–243 (2010)

22. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. ACM

Conference on Computer and Communications Security, pp. 148–160 (2002)

23. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key

generation. IEEE/ACM Design Automation Conference, pp. 9–14 (2007)

24. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to build a

secret key in integrated circuits for identification and authentication applications. IEEE Inter-

nationall Symposium on VLSI Circuits, pp. 176–179 (2004)

25. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pp. 670–673 (2008)

http://press.ihs.com/press-release/design-supply-chain/top-5-most-counterfeited-parts-represent-169-billion-potential-cha
http://press.ihs.com/press-release/design-supply-chain/top-5-most-counterfeited-parts-represent-169-billion-potential-cha
www.acq.osd.mil/dsb/reports/ADA435563.pdf
https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6
https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6

220 R. Karri et al.

26. Pappu, R., Recht ,B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science

297(5589), 2026–2030 (2002)

27. Maiti, A., Gunreddy, V., Schaumont, P.: A Systematic Method to Evaluate and Compare the

Performance of Physical Unclonable Functions (2011). https://eprint.iacr.org/2011/657.pdf

28. Devadas, S.: Non-networked RFID PUF authentication. U.S. Patent 8 683 210, U.S. Patent

Appl. 12/623 045 (2008)

29. Suh, G.E., O’Donnell, C.W., Devadas, S.: Aegis: a single-chip secure processor. IEEE Des.

Test Comput. 24(6), 570–580 (2007)

30. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks

on physical unclonable functions. ACM Conference on Computer and Communications Secu-

rity, pp. 237–249 (2010)

31. Schuster, D.: Side-channel analysis of physical unclonable functions (PUFs). PhD Dissertation,

Technische Universität München (2010)

32. Wei, S., Wendt, J.B., Nahapetiany, A., Potkonjak, M.: Reverse engineering and prevention tech-

niques for physical unclonable functions using side channels. IEEE/ACM Design Automation

Conference, pp. 1–6 (2014)

33. Devadas, S., Yu, MDM.: Secure and robust error correction for physical unclonable functions.

IEEE Des. Test 99 (2013)

34. Paral, Z., Devadas, S.: Reliable and efficient PUF-based key generation using pattern matching.

IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 128–133 (2011)

35. Yin, C.-E., Qu, G.: Improving PUF security with regression-based distiller. IEEE/ACM Design

Automation Conference, pp. 1–6 (2013)

36. Nathan Beckmann and Miodrag Potkonjak. Hardware-based public-key cryptography with

public physically unclonable functions. Information Hiding, pp. 206–220 (2009)

37. Rajendran, J., Rose, G.S., Karri, R., Potkonjak, M.: Nano-PPUF: a memristor-based security

primitive. IEEE Computer Society Annual Symposium on VLSI, pp. 84–87 (2012)

38. Ruhrmair, U., Chen, Q., Stutzmann, M., Lugli, P., Schlichtmann, U., Csaba, G.: Towards elec-

trical, integrated implementations of SIMPL systems. Information Security Theory and Prac-

tices. Security and Privacy of Pervasive Systems and Smart Devices, vol. 6033, pp. 277–292

(2010)

39. Rosenfeld, K., Gavas, E., Karri, R.: Sensor physical unclonable functions. IEEE International

Symposium on Hardware-Oriented Security and Trust, pp. 112–117

40. Cao, Y., Zalivaka, S.S., Zhang, L., Chang, C.-H., Chen, S.: CMOS image sensor based phys-

ical unclonable function for smart phone security applications. International Symposium on

Integrated Circuits, pp. 392–395 (2014)

41. Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State of the Art

and Future Research Directions, pp. 3–37. Towards Hardware-Intrinsic, Security (2010)

42. Council Decision 96/644/EC of 11 November 1996 on the extension of the legal protection of

topographies of semiconductor products to persons from the Isle of Man (2015). http://eur-lex.

europa.eu/legal-content/EN/TXT/?uri=celex:31996D0644

43. Law on the Circuit Layout of a Semiconductor Integrated Circuits (Act No. 43 of May 31,

1985, as last amended by Act No. 50 of June 2, 2006) (2015)

44. Malbon, J., Lawson, C., Davison, M.: A Commentary. Edward Elgar Publishing, The

WTO Agreement on Trade-Related Aspects of Intellectual Property Rights (2014). ISBN

9781845424435

45. Government Printing Office. The Copyright Law of the United States and Related Laws Con-

tained in Title 17 of the United States Code (2012). ISBN 9780160795084

46. Alkabani, Y., Koushanfar, F., Potkonjak, M.: Remote activation of ICs for piracy prevention

and digital right management. In: Proceedings of IEEE/ACM International Conference on

Computer-Aided Design, pp. 674–677 (2007)

47. Alkabani, Y., Koushanfar, F.: Active Hardware Metering for Intellectual Property Protection

and Security, pp. 291–306. USENIX, Security (2007)

48. Huang, J., Lach, J.: IC activation and user authentication for security-sensitive systems. IEEE

International Workshop on Hardware-Oriented Security and Trust, pp. 76–80 (2008)

https://eprint.iacr.org/2011/657.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31996D0644
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31996D0644

8 Physical Unclonable Functions and Intellectual . . . 221

49. Roy, J.A., Koushanfar, F., Markov, I.L.: Protecting bus-based hardware IP by secret sharing.

ACM/IEEE Design Automation Conference, pp. 846–851 (2008)

50. Koushanfar, F., Qu, G.: Hardware metering. IEEE/ACM Design Automation Conference, pp.

490–493 (2001)

51. Lofstrom, K., Daasch, W.R., Taylor, D.: IC identification circuit using device mismatch. IEEE

International Solid-State Circuits Conference, pp. 372–373 (2000)

52. Pentium III serial numbers. http://www.pcmech.com/article/pentium-iii-serialnumbers/

53. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkonjak,

M., Tucker, P., Wang, H., Wolfe, G.: Watermarking techniques for intellectual property pro-

tection. IEEE/ACM Design Automation Conference, pp. 776–781 (1998)

54. Kahng, A.B., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Robust

IP watermarking methodologies for physical design. IEEE/ACM Design Automation Confer-

ence, pp. 782–787 (1998)

55. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: FPGA fingerprinting techniques for protecting

intellectual property. IEEE Custom Integrated Circuits Conference, pp. 299–302 (1998)

56. Wolfe, G., Wong, J.L., Potkonjak, M.: Watermarking graph partitioning solutions. IEEE/ACM

Design Automation Conference, pp. 486–489 (2001)

57. Alpert, C.J., Kahng, A.: Recent Directions in Netlist Partitioning. Integration, The VLSI jour-

nal (1995)

58. Dupuis, S., Ba, P.-S., Di Natale, G., Flottes, M.L., Rouzeyre, B.: A novel hardware logic

encryption technique for thwarting illegal overproduction and hardware Trojans. IEEE Inter-

national On-Line Testing Symposium, pp. 49–54 (2014)

59. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Logic encryption: a fault analysis perspective.

In: Proceedings of the IEEE/ACM Design, Automation and Test in Europe, pp. 953–958 (2012)

60. Rajendran, J., Zhang, H., Zhang, C., Rose, G.S., Pino, Y., Sinanoglu, O., Karri, R.: Fault

analysis-based logic encryption. IEEE Trans. Comput. 64(2), 410–424 (2015)

61. Plaza, S.M., Markov, I.L.: Solving the third-shift problem in ic piracy with test-aware logic

locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(6), 961–971 (2015)

62. Chakraborty, R.S., Bhunia, S.: Security against hardware Trojan through a novel application

of design obfuscation. IEEE/ACM International Conference on Computer-Aided Design, pp.

113–116 (2009)

63. Colombier, B., Bossuet, L.: Survey of hardware protection of design data for integrated circuits

and intellectual properties. IET Comput. Digital Tech. 8(6), 274–287 (2014)

64. Baumgarten, A., Tyagi, A., Zambreno, J.: Preventing IC piracy using reconfigurable logic bar-

riers. IEEE Des. Test Comput. 27(1), 66–75 (2010)

65. Khaleghi, S., Da Zhao, K., Rao, W.: IC piracy prevention via design withholding and entan-

glement. Asia-Pacific Design Automation Conference, pp. 821–826 (2015)

66. Lee, Y.-W., Touba, N.A.: Improving logic obfuscation via logic cone analysis. IEEE Latin-

American Test Symposium, pp. 1–6 (2015)

67. Contreras, G.K., Rahman, M.T., Tehranipoor, M.: Secure split-test for preventing ic piracy by

uuntrusted foundry and assembly. IEEE International Symposium on Defect and Fault Toler-

ance in VLSI and Nanotechnology Systems, pp. 196–203 (2013)

68. Roy, J.A., Koushanfar, F., Markov, I.L.: Protecting bus-based hardware ip by secret sharing.

In: Proceedings of IEEE/ACM Design Automation Conference, pp. 846–851 (2008)

69. Plaza, S.M., Markov, I.L.: Protecting Integrated Circuits from Piracy with Test-aware Logic

Locking (2014)

70. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfuscation.

IEEE/ACM Design Automation Conference, pp. 83–89 (2012)

71. Subramanyan, P., Ray, S., Malik, S.: Evaluating the Security of Logic Encryption Algorithms.

IEEE International Symposium on Hardware Oriented Security and Trust, pp. 137–143 (2015)

72. Chakraborty, R.S., Bhunia, S.: Hardware protection and authentication through netlist level

obfuscation. IEEE/ACM International Conference on Computer-Aided Design, pp. 674–677

(2008)

http://www.pcmech.com/article/pentium-iii-serialnumbers/

222 R. Karri et al.

73. Chakraborty, R.S., Bhunia, S.: Security against hardware trojan through a novel application

of design obfuscation. IEEE/ACM International Conference on Computer-Aided Design, pp.

113–116 (2009)

74. Chakraborty, R.S., Bhunia, S.: RTL hardware ip protection using key-based control and data

flow obfuscation. IEEE International Conference on VLSI Design, pp. 405–410 (2010)

75. Koushanfar, Farinaz: Provably secure active IC metering techniques for piracy avoidance and

digital rights management. IEEE Trans. Inf. Forensics Secur. 7(1), 51–63 (2012)

76. Jarvis, R.W., McIntyre, M.G.: Split manufacturing method for advanced semiconductor cir-

cuits. US Patent no. 7195931 (2004)

77. FreePDK45:Metal Layers. http://www.eda.ncsu.edu/wiki/FreePDK45:Metal_Layers

78. Jagasivamani, M., Gadfort, P., Sika, M., Bajura, M., Fritze, M.: Split fabrication obfuscation:

metrics and techniques. IEEE Symposium on Hardware Oriented Security and Trust (2014)

79. Hill, B., Karmazin, R., Otero, C.T.O., Tse, J., Manohar, R.: A split-foundry asynchronous

FPGA. IEEE Custom Integrated Circuits Conference, pp. 1–4 (2013)

80. Valamehr, J., Sherwood, T., Kastner, R., Marangoni-Simonsen, D., Huffmire, T., Irvine, C.,

Levin, T.: A 3-D split manufacturing approach to trustworthy system development. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 32(4), 611–615 (2013)

81. Vaidyanathan, K., Liu, R., Sumbul, E., Zhu, Q., Franchetti, F., Pileggi, L.: Efficient and secure

intellectual property (IP) design for split fabrication. IEEE Symposium on Hardware Oriented

Security and Trust (2014)

82. Naveed, A.: Sherwani. Springer Publications, Algorithms for VLSI Physical Design Automa-

tion (2002)

83. Rajendran, O., Sinanoglu, J., Karri, R.: Is split manufacturing secure? IEEE Design, Automa-

tion and Test in Europe Conference, pp. 1259–1264 (2013)

84. Vaidyanathan, K., Das, B.P., Sumbul, E., Liu, R., Pileggi, L.: Building trusted ICs using split

fabrication. IEEE Symposium on Hardware Oriented Security and Trust (2014)

85. Imeson, F., Emtenan, A., Garg, S., Tripunitara, M.: Securing Computer Hardware Using 3D

Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation. USENIX Secu-

rity (2013)

86. Altera. Altera Reveals Stratix 10 Innovations Enabling the Industrys Fastest and Highest

Capacity FPGAs and SoCs. http://newsroom.altera.com/press-releases/nr-altera-stratix10.htm

87. Verayo, P.: Physical unclonable function. http://www.verayo.com/tech.php

88. Intrinsic ID. Physical unclonable function. https://www.intrinsic-id.com/technology/

physically-unclonable-functions-puf/

http://www.eda.ncsu.edu/wiki/FreePDK45:Metal_Layers
http://newsroom.altera.com/press-releases/nr-altera-stratix10.htm
http://www.verayo.com/tech.php
https://www.intrinsic-id.com/technology/physically-unclonable-functions-puf/
https://www.intrinsic-id.com/technology/physically-unclonable-functions-puf/

Chapter 9
A Systematic Approach to Fault Attack
Resistant Design

Nahid Farhady Galathy, Bilgiday Yuce and Patrick Schaumont

9.1 Introduction to Fault Attacks

Electronic systems are subject to temporary and permanent faults caused by imper-

fections in the manufacturing process as well as by anomalies of the environment.

Fault effects in electronics have been intensively studied in the context of system

reliability as well as error resiliency. However, faults can also be used as a hacking

tool. In a fault attack, an adversary injects an intentional fault in a circuit and ana-

lyzes the response of that circuit to the fault. The objective of a fault attack is to

extract cryptographic key material, to weaken cryptographic strength, or to disable

the security. Unlike some other attacks, such as power-based or electromagnetic-

based side-channel analysis, fault attacks do not require complex signal measure-

ment equipment. The threat model of a fault attack assumes an adversary who can

influence the physical environment of the electronic system—a condition that holds

for a large class of embedded electronics such as smart cards, key fobs, access con-

trols, embedded controllers, and so on. Fault attacks have been studied since the turn

of the century, and today a great variety of methods are available to attack all forms

of cryptography [3, 4, 16, 17].

A generic solution against faults is to use redundancy, such as by replicating the

hardware implementation, by repeating computations, or by applying data error-

coding techniques. The idea of redundancy is to tolerate sporadic faults by ensur-

ing that at least part of the circuit obtains a correct result. The advantage of fault

tolerant design is that it can handle (within some limits) any fault regardless of the

N.F. Galathy (✉) ⋅ B. Yuce ⋅ P. Schaumont

Virginia Tech, Blacksburg, USA

e-mail: farhady@vt.edu

B. Yuce

e-mail: bilgiday@vt.edu

P. Schaumont

e-mail: schaum@vt.edu

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_9

223

224 N.F. Galathy et al.

fault location and fault timing in the circuit. However, fault tolerant design using

redundancy is expensive. Spatial redundancy multiplies the hardware cost, and time

redundancy reduces the performance, each by a factor of several times. Full fault

tolerance is therefore only available to systems that can afford over-design. Despite

the costly overhead, most of these fault tolerant solutions are still not applicable to

the fault attack problem because in these designs, the fault is assumed to be random

and sporadic.

In fault attacks, faults are injected by an adversary rather than by nature. The

adversary is intelligent and determined, rather than random and indifferent. The

adversary also makes specific assumptions about the objectives of the fault attack,

and about the algorithm being cryptanalyzed. Indeed, because of the widespread

adoption of cryptographic standards, these assumptions are quite reasonable. This

means that the objective of a fault attack is quite specific: the objective is to extract

a secret key. In this chapter, we assume that rendering a circuit inoperable is not a

valid objective for a fault attack. Instead, such an attack belongs to a class of attacks

known as denial-of-service. We will concentrate instead on fault attacks that extract

a cryptographic key.

Another common assumption of the adversary is that many design details of the

cryptographic implementation are known. Indeed, by using basic reverse engineer-

ing techniques, the adversary may learn the execution schedule of a cryptographic

algorithm as it operates clock cycle by clock cycle, or the meaning of memory loca-

tions and registers used by the digital circuit. Knowledge of such design details is

often helpful for a fault attack, and therefore the worst-case assumption is to assume

that the adversary is fully knowledgeable about the implementation details of a cryp-

tographic design.

The question we wish to address in this chapter is the following: How to systemat-
ically build a fault attack resistant design? To answer this question, we first provide

an analysis of a successful fault attack requirements. The fault attack analysis lead

to two main contributions of this chapter. First, it differentiates the intentional fault

injection from random sporadic faults. Second, it provides an insight for designing a

fault attack resistant design. Although a designer cannot prevent a fault attack from

happening, a designer can control the effects of injected faults. By suitable design

techniques, it is therefore possible to create circuits that are harder to attack using

common fault attack techniques.

The chapter is organized as follows. In Sect. 9.2, we review common fault injec-

tion techniques, and their effects on digital circuits. In Sect. 9.3, we will describe the

four essential steps that an adversary has to take, in order to complete a fault attack.

In Sect. 9.4, we review several common fault analysis methods, and their require-

ments with respect to fault injection. In Sect. 9.5, we combine the insights from fault

injection (Sect. 9.3) with those from fault analysis (Sect. 9.4) to define fault attack

resistant design techniques. Finally, Sect. 9.6 concludes the chapter.

9 A Systematic Approach to Fault Attack Resistant Design 225

9.2 Fundamental Fault Attack Requirements

In a digital circuit, a fault is manifested through a temporary or permanent change

in the correctness of computations. Faults in digital systems originate from a variety

of causes, related to manufacturing issues as well as to environmental issues. Of

primary interest to fault attacks are intentional faults caused by an adversary, as

opposed to faults that have a random, uncontrolled cause.

A successful fault attack is composed of a fault measurement and the fault analysis

process. The fault analysis process is based on the information leaked while building

the fault model. The aim of the attacker is to be able to inject an intentional fault,

using a series of techniques to manipulate the environmental conditions of a circuit,

that results in the desired fault model.

In this section, the emphasis is on the requirements for fault measurement. Two

preliminary concepts to understand fault measurement, are fault model and fault
injection. We will first explain these two, and then explain how they relate to fault

measurement.

9.2.1 Fault Model

The fault characteristics resulting from a fault injection are commonly captured in a

fault model, which is also the starting point of various cryptanalytic methods. A fault

model expresses the important fault characteristics: the location of the fault within

the circuit, the number of bits affected by the fault, and the fault effect on the bits

(stuck-at, bit-flip, random, set/reset).

Table 9.1 lists four common fault effects: chosen bit fault, single bit fault, byte

fault, and random fault. For example, in chosen bit fault model, the attacker must

precisely select the location of the faulty bit and change its value to either 0/1.

Table 9.1 Fault models assumed by an adversary

Fault location Number of bits Fault effect

Chosen bit fault Precise 1 Set/reset

Single bit fault Loose 1 Stuck-at

Byte fault Loose 8 Stuck-at

Random fault Loose Any Random

226 N.F. Galathy et al.

9.2.2 Fault Injection Techniques

As mentioned, the objective of the attacker is to build the fault model for a successful

post-processing of the information. There are several fault injection tools and tech-

niques for building the fault model. The following are six possible mechanisms of

fault injection.

∙ Clock Glitches are used to shorten the clock period of a digital circuit during

selected clock cycles [2, 36]. If the instantaneous clock period decreases below

the critical path of the circuit, then a faulty value will be captured in the memory or

state of the circuit. An adversary can inject a clock glitch by controlling the clock

line of the digital circuit, triggering a fault in the critical path of the circuit. If the

adversary knows the circuit structure, he or she will be able to predict location of

the circuit faults. Glitch injection is one of the least complicated methods of fault

injection, and therefore it can be considered as a broad threat to secure circuits.

∙ Voltage Starving can be used to artificially lengthen the critical path of a circuit,

to a point where it extends beyond the clock period [5]. This method is similar to

injection of clock glitches, but it does not offer the same precise control of fault

timing.

∙ Voltage Spikes cause an immediate change in the logic threshold levels of the

circuit [3]. This changes the logic value held on a bus. Voltage spikes can be used,

for example, to mask an instruction read from memory while it is moving over the

bus. Similar to clock glitches, voltage spikes have a global affect and affect the

entire circuit.

∙ Electromagnetic Pulses cause Eddy currents in a chip, leading to erroneous

switching and isolated bit faults [30]. Using special probes, EM pulses can be

targeted at specific locations of the chip.

∙ Laser and Light Pulses cause transistors on a chip to switch with photoelectric

effects [39]. Through focusing of the light, a very small area of the circuit can be

targeted, enabling precise control over the location of the fault injection.

∙ Hardware Trojans can be a source of faults as well. This method requires that

the adversary has access to the circuit design flow, and that the design is directly

modified with suitable trigger/fault circuitry. For example, recent research reports

on an FPGA with a backdoor circuit which disables the readback protection of the

design [33].

The fault injection mechanism determines the timing of the fault, the duration of

the fault (transient or permanent), and the fault intensity (weak/strong).Together,

these characteristics enable the adversary to select a specific fault model, which

is needed as the starting point of cryptanalysis by fault injection. The method of

fault injection also influences the difficulty of performing it. Depending on the level

of tampering required with the actual circuit, one distinguishes noninvasive, semi-

invasive [34], and invasive attacks. Table 9.2 illustrates the relation between the

aforementioned six possible fault injection mechanisms, along with the fault models

resulting from their use.

9 A Systematic Approach to Fault Attack Resistant Design 227

Table 9.2 Fault injection mechanisms and associate fault effects

Injection Fault characteristic Fault Model
a

Invasiveness

intensity Timing Duration Chosen

bit

Single

bit

Byte Random

Glitches Variable Precise Transient ∙ ∙ Noninvasive

Starving Variable Loose Transient ∙ ∙ Noninvasive

Spikes Fixed Precise Transient ∙ Noninvasive

EM

Pulse

Variable Precise Transient ∙ ∙ ∙ Noninvasive

Laser

Pulse

Fixed Precise Transient ∙ ∙ ∙ ∙ Semi-invasive

Trojans Fixed Precise Permanent ∙ ∙ ∙ ∙ Invasive

a∙ means the Fault Model can be generated with this fault injection method

9.3 Fault Measurement

A fault model and a fault injection mechanism to trigger the fault model are two

essential ingredients of a fault attack. But to apply them in a successful fault attack,

we need to consider a larger scope. Figure 9.1 shows that a successful fault attack

consists of two steps, fault measurement and fault analysis. The fault injection is

part of the fault measurement phase, while the fault model is a building block in

fault analysis.

Indeed, Fig. 9.1 shows both the requirements of a successful fault attack and the

principles of the fault-attack resistant design. From the adversary’s point of view,

each step of the pyramid should be followed in order. An adversary first needs to

choose a fault model and fault analysis technique based on the target cryptosystem,

Then, he needs to obtain exploitable faults by following the steps of fault measure-

ment, from fault injection access to fault observation.

From the designer’s side, the steps of this pyramid should be considered while

designing a fault attack resistant device. For each step, the designer should evaluate

the costs and benefits of securing the design against this step. Using the evaluation

results, the designer is able to make design decisions to prevent the adversary from

building the required fault model. Next, we explain the steps of fault measurement

and demonstrate them using a case study.

9.3.1 Fault Measurement Steps

The reality of fault measurement is more complicated than injecting a fault. First of

all, the adversary needs to be able to physically inject a fault. The fault injection also

needs to have the desired effect, and result in an exploitable fault, that results in the

required fault model. Finally, the exploitable fault needs to be observable. Following

is a more comprehensive definition of these four levels.

228 N.F. Galathy et al.

Fig. 9.1 A fault attack

requires fault measurement

and fault analysis

∙ Fault Injection Access: The first and foremost step of the fault measurement is

getting physical access to the device under test (DUT). For example, an adversary

needs to control external clock and supply voltage ports of DUT for clock and volt-

age glitching attacks, respectively [2]. Similarly, the adversary must have physical

access to chip surface for laser and electromagnetic pulse-based fault attacks [35].

In addition, an adversary may also need to control data inputs and outputs of DUT.

The amount of physical access needed for each attack is different.

∙ Actual Fault Injection: The second step of the fault measurement is disturbing

the operation of DUT by applying a physical stress on it. The applied physical

stress pushes DUT out of its normal operating conditions and causes faulty oper-

ation. Based on the chosen fault injection method, the adversary can control the

timing, location, and intensity of the applied physical stress. Each value of these

three parameters affects DUT differently and causes different faults in DUT oper-

ation. Therefore, the adversary needs to carefully set these parameters to create

an exploitable fault in DUT operation. In clock glitching, for example, the adver-

sary causes setup time violation by temporarily applying shorter clock cycles. The

adversary can control the timing and length (i.e., intensity) of the applied shorter

clock cycle. However, there is no control on the location of the applied physical

stress (i.e., a shorter clock cycle) in this case because clock is a global signal for

DUT.

∙ Fault Effect: The third step is creating a fault effect on DUT operation as a conse-

quence of the applied physical stress. The fault effect can be defined as the logical

(or digital) effect of the applied physical stress on DUT operation. For example, an

applied clock glitch might create 2-bit faults at the fault injection point. Similarly,

a laser pulse might affect 1-bit of DUT. On the other hand, it is also possible to not

9 A Systematic Approach to Fault Attack Resistant Design 229

create any fault effect even though a physical stress is applied on DUT. The adver-

sary has a limited and indirect control on the fault effect through controlling the

physical stress. The fault effect depends on various factors such as circuit imple-

mentation, used fault injection method, applied physical stress, etc. The adversary

may need to apply several physical stresses with different parameters to create the

desired fault effect on DUT operation [13, 22].

∙ Fault Observation: The final step toward the fault measurement is to observe the

effects of the fault injection in the output of the block cipher or the algorithm under

the attack. The authors of [41], show that there are methods that can compute

the probability of success of a fault injection attempt in this phase using observ-

ability analysis. This method basically computes the probability of observability

from the point of fault injection to the output of the cipher. In this work, we use

a probability-based observability analysis method for the probability of propagat-

ing an exploitable fault to the output. Observability analysis, which is widely used

in VLSI test area, reflects the difficulty of propagating the value of a signal to

primary outputs [38].

9.3.2 Fault Measurement Case Study

In this section, we apply the ideas of fault measurement to a specific example.

Figure 9.2 shows a simple combinational logic of two rounds of a hypothetical block

cipher. Each round is composed of an SBOX module and an XOR gate. SBOX is

a substitution module that obscures the relationship between the secret key and the

output. To explain the fault model and fault injection steps, we assume that the inten-

tional fault model required for an attack is to inject a random fault into the output of

the combinational logic in round 9 shown in Fig. 9.2. The injected fault must then

be propagated through round 10 and be observable by the adversary in the output of

round 10.

Each combinational block requires a certain propagation delay (Tpd) to compute

its output value. For the correct operation of the circuit, combinational block outputs

must settle to their final values and remain stable at least some setup time (tsu) before

the sampling clock edge. Therefore, the clock period (Tclk) must satisfy the following

equation for all paths from input registers to output registers:

Tclk ≥ Tpd + Tsu (9.1)

This equation specifies the setup time constraints of a circuit. The setup time

constraint of the longest (i.e., critical) path determines the minimum clock period

for the circuit. Applying a shorter clock period than this value will fail the setup

time constraints.

In this case, we inject faults into the operation of a circuit by violating its setup

time constraints. Setup time violation is a widely used low-cost fault injection mech-

230 N.F. Galathy et al.

Fig. 9.2 Sample combinational logic

anism [1]. In the following paragraphs, we explain fault measurement process for

fault injection using setup time violation.

∙ Fault Injection Access: In synchronous circuits the data is processed by combina-

tional blocks, which are surrounded by input/output registers. The data is captured

when the sampling edge of the clock signal arrives at the registers. The attacker

must have access to the clock signal that is driving this circuit.

∙ Actual Fault Injection: An adversary can cause setup time violation via clock

glitches. Figure 9.2 shows the effect of a glitch on the clock signal. As shown,

the glitch signal is XORed with the normal clock. During round 9, a clock glitch

will temporarily shorten the clock cycle period from Tclk to Tglitch, thereby causing

timing violation of the digital logic.

∙ Fault Effect: When the glitch period (Tglitch) violates timing constraint of a path,

the output value of this path is captured before its computation is completed. As

shown in Fig. 9.2, the computation of the data in the combinational logic is not

yet finished and it is captured as output due to the glitchy clock. Therefore, the

captured value can be faulty.

∙ Fault Observation: To observe the effects of fault injection, the output of round 10

must be different from the correct value. Therefore, the effect of injected fault into

the output of round 9 must be propagated through round 10 without being masked.

If the value of output 9 is different from its correct value and is not masked by the

round 10 operations, the fault measurement process is successful.

9 A Systematic Approach to Fault Attack Resistant Design 231

9.4 Fault Analysis

In this section, we will explain the pyramid in Fig. 9.1 from the adversary’s point of

view. Any fault attack consists of two phases: a fault measurement phase and a fault
analysis phase.

Based on the adversary’s access to the target device and the information required

to attack a specific block cipher, the adversary aims for a fault model. Therefore,

choosing the fault model is a part of the fault analysis process. Then, in the mea-

surement process, the adversary goes through the four steps mentioned in Sect. 9.3

to build the fault model using actual measurements. In this section, we explain the

fault attack process with three different fault models. All of the example attacks are

on the advanced encryption standard (AES) algorithm. The details of this algorithm

are explained in the following section.

9.4.1 Advanced Encryption Standard

The AES algorithm consists of 10 rounds. The first 9 rounds have 4 main operations,

SBOX, ShiftRows(SR), MixColumns(MC), and AddRoundKey(ADK). Round 10

omits the MixColumn operation. Figure 9.3 shows the structure of the AES algo-

rithm. In this figure, P is the applied plaintext to the AES algorithm, S10 is the inter-

mediate state variable for round 10. K10 is the key for round 10 and C represents the

ciphertext. The faulty value of the variable x is shown by x′.

9.4.2 Differential Fault Analysis

DFA is one of the most studied types of attack on cryptographic systems such as

RSA [9], DES [6], and AES. DFA assumes that the attacker is in possession of the

device and is able to obtain two faulty and fault free ciphertexts for the same plaintext.

Fig. 9.3 AES structure

232 N.F. Galathy et al.

DFA also assumes that the attacker is aware of some characteristics of the injected

fault. There are many proposed types of DFA attack on the AES algorithm [7, 27,

29]. These attacks are based on different fault models and choose various methods

of injection techniques based on the fault model. In this section, we will explain the

steps of a simple electromagnetic pulse-based DFA attack on AES, which is proposed

by Dehbaoui et al. [11].

Fault Model: This attack adopts Piret’s fault model [28]. This fault model requires

an adversary to induce one byte fault in AES state between the start of round 9 and

the MixColumns operation.

Fault Measurement: The DUT for the attack is a RISC microcontroller running

AES algorithm. In this attack, the adversary injects faults by means of transient elec-

tromagnetic (EM) pulses. A small magnetic foil is used apply EM pulses without any

physical contact to DUT. The adversary can control the timing, energy, and position

of the applied EM pulses. Using different combinations of these three parameters,

the adversary can affect only one byte of the computation and can select the affected

byte. As a result, an adversary can induce the exploitable faults using this setup.

Fault Analysis: Due to the MixColumns in round 9, one byte fault in the beginning

of round 9 will cause 4 faulty bytes in the ciphertext. Therefore, we can find 4 bytes

of the key of round 9. Assuming that the attacker only injects fault into one byte,

the C and C’ differ in four bytes. There are 255 × 4 possible values for these four

bytes which is saved in a list D. For each key guess, the adversary should compute

the value of these four bytes using inverse equations of AES operations. The key is

potentially a correct candidate if the computed value is in the list D. The adversary

should continue injecting fault in the same location until only 1 key remains as the

candidate.

9.4.3 Fault Sensitivity Analysis

Fault sensitivity analysis (FSA) attack is proposed by Li et al., in CHES 2010 [22].

This attack is based on the fact that fault behavior is biased and can have a data

dependency on a secret value in a circuit.

Fault Model: If an adversary gradually increases the fault intensity, a circuit can

reach a point at which the output of the circuit becomes faulty. This threshold point is

called fault sensitivity. For setup time violation, the critical path delay determines the

fault sensitivity point. As the path delay distribution of a circuit is data-dependent,

the fault sensitivity of the circuit is also data-dependent. Therefore, the FSA fault

model is defined as a dependency between the input values of the SBOX to their

fault sensitivity. Based on the experiments shown in [22], the input values with larger

Hamming weight, have longer critical path delays as well. In this attack, the target

of the fault injection is round 10 of AES.

9 A Systematic Approach to Fault Attack Resistant Design 233

Fault Measurement: Based on the fault model, the authors of [22] choose the setup

time violation or clock glitch for their measurements. The assumption is that the

attacker is in physical possession of the device, therefore, he has access to the exter-

nal clock signal. The fault injection should be in the output of round 10 in the AES

algorithm for each byte of the ciphertext.

To inject the actual fault, the attacker increases the intensity of the fault injection

in the last round, gradually by increasing the frequency of the applied external clock.

As explained in Sect. 9.3, increasing the clock frequency, the timing paths of the

circuit will eventually be violated. Therefore, there is a moment that the output of

round 10 of the block cipher is not correct anymore. To build the fault model, the

adversary should apply several input values to the block cipher and record the clock

frequency corresponding to fault sensitivity for each input data.

Fault Analysis: For FSA, the effect of fault bias is the data dependency of fault

sensitivity. The adversary first inverts the ciphertext to round 10 input (S10) using

a key guess. Then, he estimates the effect of fault bias as the Hamming Weight of

round 10 input HW(S10). In this step, the attacker uses the Pearson correlation coef-

ficient to find the key guess for which the fault sensitivity is strongly correlated to

HammingWeight(S10) for all inputs.

9.4.4 Differential Fault Intensity Analysis

Differential Fault Intensity Analysis (DFIA) is proposed by Ghalaty et al. [13]. This

attack is also based on the concept of biased fault behavior, but has a different per-

ception of the biased fault from the FSA attack.

FaultModel: Fault intensity is the strength by which a circuit is pushed outside of its

nominal operating conditions with the intent of inducing a fault. For example, when

faults are introduced using clock glitches, then the fault intensity corresponds to the

length of clock cycle that is obtained as a result of the glitches. The target of fault

injection for DFIA is the output of round 9 of AES. The fundamental assumption

of DFIA on fault model relies on the fact that a small change in fault intensity will

result in a small change in fault behavior.

Fault Measurement: The target of fault injection for this attack is the output of

round 9 in AES algorithm. The adversary can determine the timing of fault injection

by power analysis methods such as the methods mentioned in [19] to find the start

and end of each round of AES. The fault injection process is similar to FSA attack.

In this attack, first, the attacker applies an input to the AES algorithm. Then, he

gradually increase the fault intensity by increasing the clock frequency at the output

of round 9. Due to the biased effect of the fault injection and non-uniform distribution

of timing paths in the circuit, the number of faulty bits increases by increasing the

fault intensity.

234 N.F. Galathy et al.

Fault Analysis: To estimate the small change, the adversary computes the input of

round 10 (S′
10, S′′

10,...), by inverting the faulty ciphertexts and key guess for several

fault intensity levels. Then, he computes the distance between the hypothesized inter-

mediate variables by using the Hamming Distance function.

The fault bias assumption for DFIA enables the use of a distinguisher that looks

for the smallest change. Unlike the previous techniques, DFIA can combine fault

behaviors collected at multiple fault intensities. Hence, the complete fault bias char-

acteristic of a circuit can be exploited. Based on the assumption of fault attack, the

error values are close to each other for the correct key guess. For wrong key guesses,

the distance between injected error values will be random due to the non-uniform

behavior of the SBOX module. Therefore, the distinguisher function simply chooses

the key that shows the minimal distance between intermediate variables.

9.5 A Systematic Organization of Fault Attack
Countermeasures

In this section, we systematically organize the existing fault attack countermeasures
with respect to the steps of fault measurement. We list a few examples of coun-

termeasures for each step of the fault measurement and explain their main princi-

ples. Figure 9.4 shows the listed countermeasures and the steps of fault measurement

together.

As discussed in Sect. 9.2, the requirements of a successful attack are fault mea-

surement and fault analysis. To build the required fault model for further fault analy-

sis, the attacker must go through the steps of the fault measurement pyramid from

bottom to top. He first has to obtain access to the injection device and finally observe

Fig. 9.4 List of countermeasures and the steps of fault measurement

9 A Systematic Approach to Fault Attack Resistant Design 235

the effects of the injected fault at the output of the system. An interruption in any of

these steps would lead to an unsuccessful fault measurement and therefore a failure

in the fault attack process. From the designer’s point of view, to build a fault attack

resistant design, he should be able to thwart any of the steps of the pyramid and

prevent the attacker from progressing to the next step.

Accordingly, the designers of fault attack resistant hardware systems should aim

at thwarting the steps of fault measurement. Therefore, for each step of the pyramid

given in Fig. 9.4, the options for securing the design against this step should be eval-

uated at the design-time. Using the formulation in Fig. 9.4, the designer can address

each step independently. Depending on the security requirements and design con-

straints, it is also possible to combine different countermeasures that are designed

for different steps of the fault measurement. Each countermeasure brings an overhead

on the design while increasing the level of security. Thus, there is always a tradeoff

between the cost and security of a design. The designers can use the pyramid given in

Fig. 9.4 for a better and more systematic security evaluation of the countermeasures

while comparing cost-security tradeoff of different countermeasure options.

Next, we provide a survey of existing countermeasures against the fault attacks.

9.5.1 Countermeasures for Fault Injection Access

The countermeasures thwarting this step aim at preventing an adversary to gain phys-

ical access to the device so that the adversary cannot apply any physical stress on

DUT.

Shielding

The main principle of shielding is covering sensitive parts of DUT by a protective

layer to make these parts physically inaccessible. For example, a passive metal layer

can be used to make laser or electromagnetic pulse attacks harder. In this case, an

adversary needs to remove the shield to gain physical access to the sensitive parts of

DUT. Similarly, active shields, metal meshes that covers the sensitive circuit parts,

can also be employed for this purpose. In this case, random sequences of data are

continuously fed to the mesh and the values of the sequences are checked after they

pass through the mesh. If a disconnection or modification is detected, the DUT does

not operate correctly anymore [3]. An ultraviolet (UV)-resistant dye can also be used

for protection against fault attacks that use UV light [4]. These countermeasures

makes fault injection access step of the fault measurement harder.

The main problem of shielding is its cost [4]. In addition, shielding has some

physical limitations. For example, a laser pulse can pass through the gaps in a shield

[39]. Alternatively, an adversary can make the shield ineffective by applying a laser

pulse from back-side of DUT instead of applying it from the protected front-side.

236 N.F. Galathy et al.

Filtering

The main principle of filtering is to reduce or filter out the effects of the external

physical stress by placing on-chip components between some external pins (e.g.,

power supply pin) and the internal circuitry of DUT. For example, some devices

have built-in voltage regulators, which first conditions the external supply voltage

and then applies the conditioned supply voltage to the internal circuitry [40]. The

voltage regulators filter out some noise and glitches at the external supply voltage.

However, the filtering capabilities of a voltage regulator depends on its design and the

load capacitance. Therefore, some glitches are able to pass the regulator and affect

the internal circuitry. The problems of this countermeasure are its cost and physical

capabilities. The voltage regulator can only filter glitches with specific parameters.

Therefore, an adversary might create exploitable faults by applying a physical stress

that is outside of filtering capabilities of the regulator.

9.5.2 Countermeasures for Fault Injection

The purpose of the countermeasures at this step is detecting the dangerous physical

changes in DUT’s environment. After detecting a dangerous change, they produce

an alarm signal to indicate possible fault in the DUT operation.

Randomization

In the second step of the fault measurement, an adversary attempts to inject

exploitable faults in DUT operation by applying a physical stress on the device with

certain timing, location, and intensity parameters. Randomization aims at creating

randomness on one of these parameters to make fault injection harder. For exam-

ple, in most fault attacks, an adversary needs to inject faults in a certain point of

the executed cryptographic algorithm. Therefore, the adversary must be able to pre-

dict when this certain point of the algorithm is executed. Randomization can make

this prediction harder by using random clock cycles or a random execution strategy.

Timing randomness at the clock cycle level can be introduced by using a random

internal clock signal which is generated based on a random bit sequence and the

external clock signal [20]. However, this solution degrades the performance as only

some of the external clock cycles are used for actual computation. A random execu-

tion strategy, in which the operations of a cryptographic algorithm are executed in a

random order [8, 25], can also be used as a means of randomization.

Although randomization increases the required time for a successful fault attack,

it does not provide a perfect protection. For instance, Van Woudenberg et al. pre-

sented an optical fault injection attack on a microprocessor protected by an unstable

internal clock [39]. In their attack, they use a pattern-based trigger generator, which

can detect when the target algorithm executed by observing the power consumption

9 A Systematic Approach to Fault Attack Resistant Design 237

Fig. 9.5 a Operation of the Clock Monitor in the case of a Glitch-Free External Clock. b Operation

of the Clock Monitor in the case of a Glitchy External Clock

of the microprocessor. In addition to this weakness, randomization also brings a tim-

ing overhead because DUT does useful computation during only some of the clock

cycles.

Detectors

The fault injection can also be thwarted using detectors that detect anomalies in the

physical environment of DUT. These detectors can sense the changes in the voltage,

light, temperature, and clock frequency. After the detection of an anomaly, an alarm
signal is raised and the required security action is taken by the circuit.

For example, Luo et al. proposed a clock monitor that detects if there is an anom-

aly in the clock signal of a circuit and raises an alarm [24]. The proposed clock

monitor relies on the fact that a clock glitch creates irregularity in the clock signal.

To detect such irregularity, they sample the external design clock (clkd) with a faster

internal sampling clock (clks) as illustrated in Fig. 9.5. For each cycle i of the exter-

nal clock clkd, they measure the length of high phase (nH
i) and low phase (nL

i) using

counters. Then, they compare the measured parameters of two consecutive clock

cycles i and i + 1. If the parameters do not match, an alarm signal is raised. If there

is no glitch in the external clock, the following equations are satisfied as it is shown

in Fig. 9.5(a):

nL
0 = nL

1

nH
0 = nH

1

238 N.F. Galathy et al.

If a glitch is injected in the external clock signal, the parameters of two consecutive

cycles do not match as it is shown in Fig. 9.5(b). In this case, the following equations

is obtained, and thus, an alarm signal is generated:

nL
0 ≠ nL

1 , nL
1 ≠ nL

2

nH
0 ≠ nH

1 , nH
1 ≠ nH

2

The main limitation of the detectors is their physical capabilities. They are gen-

erally designed to detect physical stresses with specific parameters. If an adversary

applies a physical stress outside of the specified parameters, an exploitable fault may

occur. In addition, a detector designed against a specific fault injection means might

be vulnerable to another fault injection means or to a combination of multiple fault

injection means.

9.5.3 Countermeasures for Fault Effect

In this step, the countermeasures are designed to catch the fault effects caused by the

physical stress applied in the fault injection step. The countermeasures monitor the

values of the signals and generate an alarm signal in case of a faulty signal value.

Concurrent Error Detection (CED)

The main principle of the concurrent error detection (CED) is detecting the faults in

parallel with the normal operation of DUT. Most of the proposed CED techniques

follows the general scheme shown in Fig. 9.6 [26]. In this scheme, a design con-

sists of three blocks: operation, prediction, and checker. The operation block takes

inputs and produces outputs based on the DUT specification. The prediction block

takes the same inputs as the operation block and predict some special characteristics

of system outputs based on these inputs. The prediction block can be designed by

Fig. 9.6 A conceptual diagram for concurrent error detection (CED) countermeasure

9 A Systematic Approach to Fault Attack Resistant Design 239

utilizing hardware redundancy, time redundancy, information redundancy, or hybrid

redundancy [15]. The checker block checks if the outputs of the operation block

shows some special characteristics by comparing them with the outputs of predic-
tion block. If the outputs of operation and prediction blocks do not match, an error
signal is generated.

In the hardware redundancy, the operation block is duplicated as the prediction
block. The checker block compares if the outputs of the prediction and operation
blocks are the same. The area overhead of this technique is at least 100 % while its

timing overhead is almost zero.

In time redundancy, the operation is computed twice with the same input and the

results are compared to each other. In other words, the hardware of the operational
block is also used as the prediction block. Although its area overhead is almost zero,

the timing overhead of this technique is 100 %.

The common weakness of the hardware and time redundancy techniques is that

the attacker can bypass them if the same fault can be injected into the operation and

prediction blocks.

The information redundancy utilizes error detecting codes for the prediction
block. In these techniques, some check bits are added to inputs and they are prop-

agated with the inputs. After the computation of the outputs, the results are veri-

fied with the check bits from the prediction block. For example, using parity bits is

a common example of these techniques. Similarly, robust codes and cyclic redun-

dancy check (CRC) can also be used as a CED countermeasure. The information

redundancy allows various area, time, and security tradeoffs based on the used error

detecting code method [15].

The hybrid redundancy-based techniques combine the properties of the previous

CED techniques. For instance, an operation can be followed by the inverse of this

operation and the results these two operations can be compared to detect faults [18].

One of the common weaknesses of the above CED techniques is that they assume

a uniform fault distribution. However, Guo et al. showed that an adversary with the

capability of injecting biased faults might bypass most of these CED techniques [15].

Another common weakness is that an adversary might bypass a CED countermeasure

by tampering with the final checker block of it.

Canary Logic

The fault effect caused by setup time violation [32] can be detected using Canary

logic [31], which predicts timing errors through circuit-level timing speculation.

In Canary logic, each flip-flop (FF) in the design is converted into a timing error-

predicting Canary FF by adding a delay element, a shadow FF, and an XOR gate

(Fig. 9.7). The input data of the shadow FF is the delayed version of the main FF.

The timing errors are predicted by comparing the outputs main and shadow FFs via

the XOR gate. The output of the XOR gate is used as an alarm signal indicating a

timing error is about to occur. Because of the delay element, the shadow FF encoun-

240 N.F. Galathy et al.

Fig. 9.7 Block diagram of the Canary FF

ters a timing error before the main FF. Therefore, the shadow FF protects the main

FF against timing errors.

The main problem is this countermeasure is its area overhead. The area of a canary

FF is at least two times larger than of a regular FF because of the additional logic.

Therefore, replacing each regular FF with a canary FF brings a high area overhead.

A weakness of the canary logic is that it cannot raise the alarm signal if a timing

error occurs in both the main and shadow FFs [21]. Considering fault attacks are

based on intentional fault injection than random faults, this case is likely to happen.

9.5.4 Countermeasures for Fault Observation

The main purpose of the countermeasures at this step is making a faulty output

independent of the processed secret data. These countermeasures let an adversary

to inject faults and let the injected fault to propagate the output of DUT. However,

they guarantee that the adversary cannot exploit the faulty output in the fault analysis.

Delay Balancing

Delay balancing can be used to thwart FSA attacks that use setup time violation as the

fault injection means. In these attacks, characterizing the data dependency of DUT’s

fault sensitivity (i.e., dynamic critical path) is the main issue for the adversary. There-

fore, eliminating the factors that affect the data dependency of fault sensitivity is an

effective countermeasure for such attacks. Ghalaty et al. [12] proposed a systematic

delay balancing countermeasure to remove the dependency of the critical timing

delay to the processed data values in the circuits. They propose a transformation that

operates at two levels of abstraction, at netlist level and at gate level.

∙ Netlist level: The delay of the netlist must be independent of the input data.

∙ Gate level: The switching time of gates must be random during circuit evaluation,

meaning that the switching distribution is uniform over the computation time of

the circuit.

9 A Systematic Approach to Fault Attack Resistant Design 241

The proposed countermeasure is based on inserting delay elements in different

paths of the circuit based on the statistical timing analysis of the circuit. The goal

is to equalize the effective delay of each path in a circuit. The effective delay of

a path is defined as the number of effective gates (i.e., AND and OR gates) in this

path multiplied by their propagation delays. In the countermeasure, first, the effective

delay from each output to each input within fan-in cone of it is computed. Then, the

maximum effective delay is determined. Finally, delay elements are inserted into the

input side of each path such that the sum of effective path delay and inserted buffer

delay becomes equal to the maximum effective delay. The number of delay elements

is inversely proportional to the length of the path. As a result, this countermeasure

eliminates the data dependency of the critical path delay. Therefore, the adversary

cannot exploit the faulty outputs. The main problem of this countermeasure is its

area cost.

Dual-Rail with Precharge Logic (DPL)

Dual-rail with precharge logic (DPL) is a countermeasure that was originally pro-

posed against side-channel attacks [10]. However, it is also inherently resistant

against some fault attacks. The main principle of DPL is to make the power con-

sumption independent of the processed data by consuming a constant amount of

power at each cycle.

In DPL, every signal 𝛼 is represented by two complementary wires (𝛼f , 𝛼t). Every

computation has two phases, namely, precharge and evaluation. In the precharge

phase, all wires are initialized to the same value. Depending on the implementa-

tion, this initialization value is (0, 0) or (1, 1), called NULL0 and NULL1. These

two values are NULL tokens that do not contain any meaningful information. In the

evaluation phase, the actual computation takes place and NULL tokens alternate to

VALID tokens: (1, 0) or (0, 1), called VALID0 and VALID1. These two values are

VALID tokens that contain the value of the signal 𝛼. During evaluation, exactly one

of the complementary wires is toggled.

The inherent fault attack resistance of DPL is based on the fact that a fault turns a

VALID token into a NULL token [14]. The output value of a gate will be NULL if any

input of it is a NULL token. Considering high diffusion capabilities of cryptographic

algorithms, a NULL token will diffuses the very quickly while it is propagated to the

outputs. As a result, the faulty output does not carry any information about secret

data. As it is seen, faults are not detected in DPL. Instead, faulty values are allowed

to propagate to the outputs, knowing that they are not exploitable by an adversary.

Converting a single-rail logic into a dual-rail logic will bring both area and time

overhead.

Infective Computation

The main principle of the infective computation is to make the faulty output look

random (i.e., non-exploitable) [23]. This is achieved by propagating the fault effects

242 N.F. Galathy et al.

Fig. 9.8 A conceptual diagram for the infective computation countermeasure

to the whole computation with a diffusion scheme. The diffusion scheme has no

effect if the fault injection is not successful. Infective computation techniques do not

require checking procedures, and thus they do not alter the computation flow.

In CHES 2014, Tupsamudre et al. proposed an infective countermeasure for AES

that utilize redundant and dummy rounds [37]. The conceptual diagram of their coun-

termeasure is shown in Fig. 9.8. In the cipher and redundant rounds, the round func-

tion of AES (fAES) is applied on the plaintext. Thus, each AES round is executed

twice in this countermeasure. There are also dummy rounds that are randomly exe-

cuted throughout the execution of the algorithm. In a dummy round, the AES round

function is applied on a random data 𝛽 and a dummy secret key kd
. The output of

the dummy round is the random data 𝛽. After each computation of an AES round, a

selection logic decides the output value. The selection logic computes if there is an

error in any of the dummy, redundant, and cipher rounds by applying simple XOR

and OR operations. Then, the output signal of the selection logic (i.e., select signal)

selects the output value. In other words, the select signal activates/deactivates a dif-

fusion mechanism. If the select signal is 0, the result of the cipher round is assigned

to the output (Fig. 9.8). Otherwise, the result of dummy round, which is random and

independent of the secret key, is assigned to output (Fig. 9.8). Therefore, the faulty

output cannot be exploited by the adversary.

9.6 Conclusion

In this chapter, we presented a systematic approach for fault-attack resistant design.

To this end, we proposed a hierarchy of steps that an attacker or a designer should

go through to attack a device or build a secure device. The main objective of this

classification is to clarify the difference between the fault attack resistant designs

and fault tolerant design. The key difference between these two is that in presence of

fault, the fault tolerant design must continue to work correctly, while the fault attack

9 A Systematic Approach to Fault Attack Resistant Design 243

resistant deign must prevent secure data leakage. The proposed hierarchy, classifies

the requirements of fault measurement and fault analysis for attacking a device into

four steps. The interruption of any of these steps prevents the attacker from launch-

ing a successful fault attack. Therefore, the pyramid of fault measurement (Fig. 9.4)

can be used by the designer to build a fault attack resistant design considering the

costs and security coverage of countermeasures in each step. The designer can find

the optimized combination of countermeasures to prevent fault measurement for an

attacker. While the pyramid provides a road map for designers to apply fault attack

countermeasures, it does not provide information on cost and security efficiency of

each countermeasure. This is considered as an open research problem.

Acknowledgements This research was supported through the National Science Foundation Grant

1441710, and through the Semiconductor Research Corporation.

References

1. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When Clocks Fail: On Criti-

cal Paths and Clock Faults. In: Smart Card Research and Advanced Application, pp. 182–193.

Springer (2010)

2. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the

effects of Clock Glitches on 8-bit MCUs. In: 2011 Workshop on Fault Diagnosis and Tolerance

in Cryptography (FDTC), pp. 105–114 (2011)

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprentice

guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006). Feb

4. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic

devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012). Nov

5. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelliccioli, M., Pelosi, G.: Injection technolo-

gies for fault attacks on microprocessors. In: Joye, M., Tunstall, M. (eds.) Fault Analysis in

Cryptography. Information Security and Cryptography, pp. 275–293. Springer, Berlin (2012)

6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Advances in

CryptologyCRYPTO’97, pp. 513–525. Springer (1997)

7. Blömer, J., Seifert, J.P.: Fault based cryptanalysis of the advanced encryption standard (AES).

In: Financial Cryptography, pp. 162–181. Springer (2003)

8. Bo, Y., Xiangyu, L., Cong, C., Yihe, S., Liji, W., Xiangmin, Z.: An AES chip with DPA resis-

tance using hardware-based random order execution. J. Semicond. 33(6), 065009 (2012)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-

graphic computations. J. Cryptol. 14(2), 101–119 (2001)

10. Danger, J.L., Guilley, S., Bhasin, S., Nassar, M.: Overview of dual rail with Precharge logic

styles to thwart implementation-level attacks on hardware cryptoprocessors. In: 2009 3rd Inter-

national Conference on Signals, Circuits and Systems (SCS), pp. 1–8. IEEE (2009)

11. Dehbaoui, A., Dutertre, J.M., Robisson, B., Orsatelli, P., Maurine, P., Tria, A.: Injection of

transient faults using electromagnetic pulses-practical results on a cryptographic system. IACR

Cryptol. ePrint Arch. 2012, 123 (2012)

12. Ghalaty, N.F., Aysu, A., Schaumont, P.: Analyzing and eliminating the causes of fault sensi-

tivity analysis. In: Proceedings of the Conference on Design, Automation & Test in Europe. p.

204. European Design and Automation Association (2014)

13. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential Fault Intensity Analysis. In:

2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 49–58. IEEE

(2014)

244 N.F. Galathy et al.

14. Guilley, S., Sauvage, L., Danger, J.L., Selmane, N.: Fault injection resilience. In: 2010 Work-

shop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 51–65. IEEE (2010)

15. Guo, X., Mukhopadhyay, D., Karri, R.: Provably secure concurrent error detection against

differential fault analysis. IACR Cryptol. ePrint Arch. 2012, 552 (2012)

16. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Security and Cryp-

tography. Springer, Berlin (2012)

17. Karaklajic, D., Fan, J., Verbauwhede, I.: A systematic M safe-error Detection in hardware

implementations of cryptographic algorithms. In: 2012 IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), pp. 96–101 (2012)

18. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for fault-based side-

channel cryptanalysis of symmetric block ciphers. IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst 21(12), 1509–1517 (2002)

19. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: J. Cryptogr. Eng. 1(1), 5–27 (2011)

20. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant Smartcard processors.

In: USENIX Workshop on Smartcard Technology, vol. 12, pp. 9–20 (1999)

21. Kunitake, Y., Sato, T., Yasuura, H., Hayashida, T.: Possibilities to miss predicting timing errors

in canary flip-flops. In: 2011 IEEE 54th International Midwest Symposium on Circuits and

Systems (MWSCAS), pp. 1–4. IEEE (2011)

22. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitiv-

ity analysis. In: Cryptographic Hardware and Embedded Systems, CHES 2010, pp. 320–334.

Springer (2010)

23. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack countermeasures-

application to AES. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC), pp. 85–94. IEEE (2012)

24. Luo, P., Fei, Y.: Faulty clock detection for crypto circuits against differential fault analysis

attack. Cryptol. ePrint Arch. Report 2014/883. http://eprint.iacr.org/ (2014)

25. Markantonakis, K., Mayes, K.: Secure Smart Embedded Devices. Platforms and Applications.

Springer, Berlin (2013)

26. Mitra, S., McCluskey, E.J.: Which concurrent error detection scheme to choose? In: Test Con-

ference, 2000. Proceedings. International, pp. 985–994. IEEE (2000)

27. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differential fault

attack against AES cryptosystem. In: Cryptographic Hardware and Embedded Systems-CHES

2006, pp. 91–100. Springer (2006)

28. Piret, G., Quisquater, J.J.: A differential fault attack technique against SPN structures, with

application to the AES and KHAZAD. In: Cryptographic Hardware and Embedded Systems-

CHES 2003, pp. 77–88. Springer (2003)

29. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-

measures for Smart Cards. In: Smart Card Programming and Security, pp. 200–210. Springer

(2001)

30. Quisquater, J., Samyde, D.: Eddy current for magnetic analysis with active sensor. In: Esmart

(2002)

31. Sato, T., Kunitake, Y.: A simple flip-flop circuit for typical-case designs for DFM. In: 8th

International Symposium on Quality Electronic Design, 2007. ISQED’07, pp. 539–544. IEEE

(2007)

32. Selmane, N., Guilley, S., Danger, J.L.: Practical setup time violation attacks on AES. In:

Seventh European Dependable Computing Conference, 2008. EDCC 2008, pp. 91–96. IEEE

(2008)

33. Skorobogatov, S., Woods, C.: Breakthrough silicon scanning discovers backdoor in military

chip. In: CHES, pp. 23–40 (2012)

34. Skorobogatov, S.P.: Semi-invasive attacks—A new approach to hardware security analysis.

Technical report. UCAM-CL-TR-630, University of Cambridge, Computer Laboratory (2005)

35. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Cryptographic Hard-

ware and Embedded Systems-CHES 2002, pp. 2–12. Springer (2003)

http://eprint.iacr.org/

9 A Systematic Approach to Fault Attack Resistant Design 245

36. Takahashi, J., Fukunaga, T., Gomisawa, S., Li, Y., Sakiyama, K., Ohta, K.: Fault injection

and key retrieval experiments on an evaluation board. In: Joye, M., Tunstall, M. (eds.) Fault

Analysis in Cryptography, pp. 313–331. Information Security and Cryptography, Springer,

Berlin (2012)

37. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with randomiza-

tion. In: Cryptographic Hardware and Embedded Systems–CHES 2014, pp. 93–111. Springer

(2014)

38. Wang, L.T., Wu, C.W., Wen, X.: VLSI Test Principles and Architectures: Design for Testabil-

ity. Academic Press (2006)

39. van Woudenberg, J., Witteman, M., Menarini, F.: Practical optical fault injection on secure

microcontrollers. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC), pp. 91–99 (2011)

40. Yanci, A.G., Pickles, S., Arslan, T.: Characterization of a voltage Glitch attack detector for

secure devices. In: Symposium on Bio-inspired Learning and Intelligent Systems for Security,

2009. BLISS’09, pp. 91–96. IEEE (2009)

41. Yuce, B., Ghalaty, N.F., Schaumont, P.: TVVF: Estimating the vulnerability of hardware cryp-

tosystems against timing violation attacks. In: 2015 IEEE International Symposium on Hard-

ware Oriented Security and Trust (HOST), pp. 72–77. IEEE (2015)

Chapter 10
Hardware Trojan Attacks
and Countermeasures

Hassan Salmani

10.1 Introduction

Reported by Ernst&Young LLP [1], modern devices like smart mobility and cloud
computing are demanding more from silicon chips (e.g., lower power consumption
for mobile devices and data centers, increasing integration of functions).
System-on-chip (SoC) solutions that integrate increasing number of functions on a
single chip serve as a primary way to address costumer demands. Semiconductor
companies are integrating processor and memory cores with power management,
graphic processors, a potentially large number of different wireless communications
technologies (e.g., CDMA, GSM, WiFi, Bluetooth) and many other functions. With
increasing the complexity of modern devices, proliferating specialized require-
ments, and decreasing time-to-market window, some companies are turning to
third-part IP instead of designing in-house as a cost-effective approach. According
to a new market research report of “Semiconductor (Silicon) IP Market by Form
Factor (Integrated Circuit IP, SOC IP), Design Architecture (Hard IP, Soft IP),
Processor Type (Microprocessor, DSP), Application, Geography and Verifica-
tion IP - Forecast & Analysis to 2013–2020” published by MarketsandMarkets is
expected to grow at a CAGR of 12.6 % from 2014 to 2020 and reach $5.63 billion
in 2020 [2].

There are three main categories of IPs [3]: soft, firm, and hard—Fig. 10.1
depicting their relationships and tradeoffs. Soft IP blocks are specified using RTL or
higher level descriptions. As a hardware description language (HDL) is
process-independent, they are more suitable for digital cores. They are highly
flexible, portable, and reusable, but not necessarily optimized in terms of timing and
power. Presented at the layout level, hard IP blocks are highly optimized for a

H. Salmani (✉)
Howard University, Washington, D.C., USA
e-mail: hassan.salmani@howard.edu

© Springer International Publishing AG 2017
S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,
DOI 10.1007/978-3-319-50057-7_10

247

given application in a specific process. Their characteristics are already determined;
however, this comes with high cost and lack of flexibility. Firm IP blocks are
parameterized circuit descriptions so they can be optimized according to specific
design needs. Firm IPs are between soft and hard IPs, being more flexible and
portable that hard IPs, yet more predictable than soft IPs.

SoCs are widely used in modern embedded systems that are dedicated for an
application(s) or specific part of an application or product or part of a larger system.
Modern systems employ embedded systems to enhance their capabilities,
dependability, or performance. For example, smart phones in the telecommunica-
tion industry have been an influential gadget providing variety of services including
banking, gaming, and shopping in the palm of a hand. Or, modern airplanes contain
advance avionics such as inertial guidance systems to meet safety requirements, and
modern vehicles increasingly use embedded systems to maximize efficiency and
reduce pollution. Embedded systems accounted for almost 1.6 trillion dollars of
value and 7.1 billion unit shipments in 2010. International Data Corporation
(IDC) predicted such systems are growing at a compound annual growth rate of
10 % and should reach $2.6 trillion in revenues and nearly 11.6 billion units by
2015 [4]. Furthermore, modern embedded systems constitute a considerable portion
of sophisticated systems as shown in Fig. 10.2.

The typical design and manufacturing flow of SoC is divided into two phases:
front end and back end [5]. The former phase starts with ideas or demands that
should incorporate knowledge about the application area. They are translated into a
design specification in terms of high-level requirements, such as function,
throughput, and power consumption. Then, the design specification is transferred
from the marketing person’s mind, back of envelope or word processor document
into machine-readable form. In the following, architectural exploration will try
different combinations of processors, memories, and bus structures to find an
implementation with good power and load balancing. A loosely timed high-level

Fig. 10.1 Different types of IP blocks [3]

248 H. Salmani

model is sufficient to compute the performance of an architecture. Detailed design
will select IP providers for all of the functional blocks, or else they will exist from
previous in-house designs and can be used without license fees, or else freshly
written. Next, logic synthesis will convert from behavioral RTL to structural RTL.
In the next phase, the back end phase, after RTL synthesis using a target technology
library, a structural netlist with no gate delays is obtained. Place and route gives 2-D
coordinates to each component, adds external I/O pads and puts wiring between the
components. In the following, RTL annotated with actual implementation gate
delays gives a precise power and performance model. If performance is not up to
par, design changes are needed. The last step is design manufacturing. Fabrication
of masks is commonly the most expensive single step (e.g., one million pounds), so
must be correct first time. Fabrication is performed in-house by certain large
companies (e.g., Intel, Samsung) but most companies use foundries (UMC, TSMC).
At all stages (front and back end), a library of standard tests will be run every night
and any changes that cause a previously passing test to fail (regressions) will be
automatically reported to the project manager.

Today’s SoC-based designs present a design team with five facets of complexity
that range from functional complexity, architectural, and verification challenges to
design team communication and deep submicron (DSM) implementation [6]. Facet
one is functional complexity and the sheer amount of functional blocks contained in
a modern system. The fact leads to the wide acceptance that designing these sys-
tems from scratch is far beyond the design productivity or capabilities of even the
largest design teams. Therefore, some form of intellectual property (IP) reuse has
become an inevitable part of SoC design. The second facet is the architectural
challenge. When functional complexity of this scale is implemented in a short
timeframe, there must be a detailed architecture set from the start of the project and
rigorously adhered to throughout implementation. Due to increased design com-
plexity and from the necessity to get the architecture right the first time, it is
increasingly unacceptable, in terms of both time and money, to change the archi-
tecture midway, and equally unacceptable to “over-engineer” from a unit cost
perspective. The verification challenge is the third facet and stems from the first—it

Fig. 10.2 Worldwide—Intelligent systems as percentage of total systems in each major industry
(%) [4]

10 Hardware Trojan Attacks and Countermeasures 249

is impossible to create broad functional content and increasingly difficult to inte-
grate and verify it all. The verification challenge is believed to scale with some-
where between the square and the cube of the complexity of the block being
verified. It should be noted that IP reuse does not solve the problem since IP must
still be verified within the system context.

To bring hardware and software together at the earliest stage possible, one trend
is to perform system integration on a “virtual” prototype using a simulation model.
The challenge is to define just where software development stops and system
integration begins. This leads to the fourth facet, and perhaps the biggest obstacle:
the complexity of design team interactions and communications necessary to suc-
cessfully undertake a SoC-based design. To achieve improvement in the first three
facets, there needs to be interaction between system architects, algorithm designers,
software developers, hardware designers, system integrators, and verification spe-
cialists. However, the reality is different—these organizational functions are rarely
integrated together. More often, there are significant organizational, and sometimes
physical, separation between these functions. The fifth facet is the set of issues that
come with implementing a complex chip design in a DSM process technology.
These include problems of timing closure, placement and routing, including
avoidance of increasingly problematic physical effects such as crosstalk.

Notwithstanding the presence of design challenges, dependability is still one of
key requirements of any computing device. The dependability of a system is based
on the compliance of delivered services by the system with its functional specifi-
cations. The function of the system is described by functional specifications in
terms of functionality and performance. The service delivered by the system, on the
other hand, is its behavior as it is perceived by its user(s). A broad concept,
dependability encompasses availability, reliability, safety, integrity, and maintain-
ability attributes as described in Table 10.1 [7].

Security is more specific, focusing on availability, integrity, and confidentiality.
System security demands availability for only authorized actions, integrity with
improper meaning unauthorized, and confidentiality. Trust is the dependency of a
system (system A) to another system (system B), through which the dependability
of system A is affected by the dependability of system B. Trustworthiness in a
system is the assurance that the system will perform as expected [7].

Along with all challenges and complexity of SoC design bringing forth as a
constituent of a larger system, embedded systems also contain some inherent

Table 10.1 Dependability attributes [7]

Attribute Definition

Availability Readiness for correct service
Reliability Continuity of correct service
Safety Absence of catastrophic consequences on the users and the environment
Integrity Absence of improper system alteration
Maintainability Ability to undergo modification and repairs
Confidentiality The absence of unauthorized disclosure of information

250 H. Salmani

characteristics adversely impacting security. Embedded systems suffer from limited
processing power so that advance defense mechanisms would not be applicable.
Embedded systems typically operate on batteries, so limited power source is
available. As increasing computation reduces system lifetime, limited power source
is available for security measures. Physical exposure is typical of embedded sys-
tems, rendering them vulnerable to attacks that exploit physical proximity of
attacker. Network connectivity of modern embedded systems provides opportuni-
ties to malicious entities to obtain or manipulate sensitive data.

The characteristics of embedded systems make them vulnerable to different types
of attacks at different levels including the circuit level. At the circuit level, there are
a wide range of physical and side-channel attacks that exploit design implemen-
tation and/or properties to lunch a security attack. These attacks are generally
classified into noninvasive and invasive attacks. Noninvasive attacks involve
observing and analyzing a device’s side-channel signals to extract critical infor-
mation. Timing attacks, fault injection techniques, power and electromagnetic
analysis based attacks are some types of noninvasive attacks. Invasive attacks, such
as reverse engineering or micro-probing, require immediate access to the device to
observe, manipulate, and interfere with the system internals. This type of attacks is
expensive and time consuming; therefore, they are usually implanted by organized
groups may even supported by governmental entities.

10.2 IC Supply Chain Globalization and Threats

In early day of the semiconductor industry, a single company would often be able to
design, manufacture, and test a new chip. However, the costs of building manu-
facturing facilities—more commonly referred “fab”—have gone extremely high.
A fab could cost over $200 million dollars back in the 1980s; however, with
employing advanced semiconductor manufacturing equipment to produce chips with
ever-smaller features, a modern fab costs much more [8]. For example, in late 2012
Samsung made a new fab in Xian, China that cost $7 billion. It has been estimated
that “[i]ncreasing costs of manufacturing equipment will drive the average cost of
semiconductor fabs between $15 billion and $20 billion by 2020.” [9].

Due to confluence of increasingly complex supply chains and cost pressures, the
horizontal supply chain has become prevalent [10]. Figure 10.3 shows the per-
centage of design activities outsourced while chip level design constitutes about
40 % by 2005. Integrated Circuits (ICs) or chips are at the core of any modern
computing system, and their security grounds the security of entire system.
Notwithstanding the central impact of ICs security, malicious modification of IC
circuit by untrusted parties has raised serious concerns for critical applications such
as fail-safe military applications.

To address the issue, the Department of Defense and the National Security
Agency of United States jointly funded a “Trusted Foundry” at an IBM semicon-
ductor manufacturing facility in Vermont, US in 2004. The Trusted Foundry

10 Hardware Trojan Attacks and Countermeasures 251

program is “to ensure that mission-critical national defense systems have access to
leading-edge integrated circuits from secure, domestic sources.” Although the
Trusted Foundry program is used to produce the most sensitive chips, these chips
constitute only a small fraction of chips used for military applications. Department
of Defense heavily relies on commercial supply chain to provide routers, navigation
equipment, and most other electronics hardware—and therefore exposed to any
associated vulnerabilities.

10.3 IC Design Flow and Vulnerabilities

A computer system development, as shown in Fig. 10.4, consists of several steps
which are not necessarily performed in the same design house. The first step is to
determine system specifications based on the customer’s needs. A complex system

Fig. 10.3 Design activities outsourced [48]

Fig. 10.4 System integration and test process

252 H. Salmani

may require a variety of components like memories and chips with different
applications and functionalities.

After providing the system specifications and choosing the structure of system
and its required components, design development requires different tools. Each
component demands specific attention to meet all the system specifications. To
expedite system development and to reduce the final cost, outsourced alternatives
have gradually replaced in-house processes. Third-party IP cores have displaced the
in-house libraries of logic cells for synthesis. Commercial software has supplanted
homegrown Computer Aided Design (CAD) tool software. In the next step,
designed chips are signed-off for fabrication. Nowadays, most companies are fab-
less, outsourcing mask production and fabrication. Besides custom designs, com-
panies can reduce total cost and accelerate system development using
commercial-off-the-shelves (COTSs), reprogrammable modules, like
micro-controllers, reconfigurable components, or field programmable gate arrays
(FPGAs). Afterwards, they manufacture printed circuit boards (PCBs) and assemble
system components on them. Finally, the PCBs are put together to develop units;
the entire system is the integration of these units.

In each step, different verifications or tests are performed to ensure its correct-
ness, as shown in Fig. 10.4. Functional and parametric verifications ascertain the
correctness of design implementation in terms of service and associated require-
ments, like power and performance. Wafer and package tests after the fabrication of
custom designs separate defective parts and guarantee delivered chips. The PCB
fabrication is a photolithographic process and susceptible to defects; therefore, a
PCB should be tested before placing devices on it. After the PCB assembly, the
PCB is again tested to verify that the components are properly mounted and have
not been damaged during the PCB assembly process. The tested PCBs create units
and finally the system, which is also tested before shipping for field operation [11].

Each step of system development is susceptible to security breaches. An
adversary may change system specifications to make a system vulnerable to
malicious activities or susceptible to functional failures. As external resources, like
third-party IPs and COTSs, are widely used in design process and system inte-
gration, adversaries may hide extra circuit(s) in them to undermine the system at a
specific time or to gain control over it. The untrusted foundry issue is rooted in the
outsourcing of design fabrication. Establishing a chip fabrication factory is extre-
mely expensive and most semiconductor companies have become fabless in recent
years. They ask foundries to fabricate their designs to reduce the overall cost. The
third party, however, may change the designs by adding extra circuits, like back
doors to receive confidential information from the chip, or altering circuit param-
eters, like wire thickness to cause a reliability problem in the field. The PCB
assembly is even susceptible, as it is possible to mount extra components on
interfaces between genuine components. In short, the cooperative system devel-
opment process creates opportunities for malicious parties to take control of the
system and to run vicious activities. Therefore, as a part of the system development
process, security features should be installed to facilitate validation, and to unveil
any deviation from genuine specifications.

10 Hardware Trojan Attacks and Countermeasures 253

10.4 Hardware Trojans Horses

The practice of outsourcing design and fabrication in the interest of economy, has
raised serious national security concerns, since an adversary can subvert a design by
adding extra circuits, called hardware Trojans [12]. In general, a hardware Trojan is
defined as any intentional alteration to a design in order to alter its characteristics.
A hardware Trojan has a stealthy nature and can alter design functionality under
rare conditions. It can serve as a time bomb and disable a system at a specific time,
or it can leak secret information through side-channel signals.

A Trojan may affect circuit AC parameters such as delay and power; it also can
cause malfunction under rare conditions. As shown in Fig. 10.5, a hardware Trojan
consists of Trojan payload and Trojan trigger. A functional Trojan takes inputs from
some internal nets of the main circuit to the Trojan payload and re-stitches some
other nets of the main circuit through Trojan payload to modify design function-
ality. The Trojan trigger determines the activation condition(s) under which the
Trojan payload can propagate erroneous values into the main circuit.

The first detailed taxonomy for hardware Trojans was presented in [13, 14]. This
comprehensive taxonomy lets researchers examine their methods against different
Trojan types. Currently, the industry lacks metrics to evaluate the effectiveness of
methods in detecting Trojans. Such metrics could foster a comprehensive taxonomy
to help analyze Trojan detection techniques. Because malicious alterations to a
chip’s structure and function can take many forms, the Trojan taxonomy is
decomposed into three main categories (see Fig. 10.6) according to their physical,
activation, and action characteristics. Although Trojans could be hybrids of this
classification (for instance, they could have more than one activation characteristic),
this taxonomy captures the elemental characteristics of Trojans and is useful for
defining and evaluating the capabilities of various detection strategies.

The physical characteristics category describes the various hardware manifes-
tations of Trojans. The type category partitions Trojans into functional and para-
metric classes. The functional class includes Trojans that are physically realized
through the addition or deletion of transistors or gates, whereas the parametric class
refers to Trojans that are realized through modifications of existing wires and logic.

Fig. 10.5 Functional
hardware Trojan
implementation

254 H. Salmani

The size category accounts for the number of components in the chip that have been
added, deleted, or compromised. The distribution category describes the location of
the Trojan in the chip’s physical layout. The structure category refers to the case
when an adversary is forced to regenerate the layout to insert a Trojan, which could
then cause the chip’s physical form factor to change. Such changes could result in
different placement for some or all design components. Any malicious changes in
physical layout that could change the chip’s delay and power characteristics would
facilitate Trojan detection. Wang and colleagues identified current adversaries’
capabilities for minimizing the probability of detection.

Activation characteristics refer to the criteria that cause a Trojan to become
active and carry out its disruptive function. Trojan activation characteristics fall into
two categories: externally activated (e.g., by an antenna or a sensor that can interact
with the outside world) and internally activated (which are further classified as
always on and condition based), as Fig. 10.6 shows. “Always on’” means the
Trojan is always active and can disrupt the chip’s function at any time. This
subclass covers Trojans that are implemented by modifying the chip’s geometries
such that certain nodes or paths have a higher susceptibility to failure. The
adversary can insert the Trojans at nodes or paths that are rarely exercised. The
condition-based subclass includes Trojans that are inactive until a specific condition
is met. The activation condition could be based on the output of a sensor that
monitors temperature, voltage, or any type of external environmental condition
(such as electromagnetic interference, humidity, altitude, or temperature). Alter-
natively, this condition could be based on an internal logic state, a particular input
pattern, or an internal counter value. The Trojan in these cases is implemented by

Fig. 10.6 Hardware Trojan taxonomy [13]

10 Hardware Trojan Attacks and Countermeasures 255

adding logic gates and/or flip-flops to the chip, and hence is represented as a
combinational or sequential circuit.

Action characteristics identify the types of disruptive behavior introduced by the
Trojan. The classification scheme, shown in Fig. 10.6, partitions Trojan actions into
three categories: modify function, modify specification, and transmit information.
The modify-function class refers to Trojans that change the chip’s function by
adding logic or by removing or bypassing existing logic. The modify-specification
class refers to Trojans that focus their attack on changing the chip’s parametric
properties, such as delay when an adversary modifies existing wire and transistor
geometries. Finally, the transmit-information class includes Trojans that transmit
key information to an adversary.

Trojan circuits are sly, triggering only under rare conditions. Trojans are
designed to be silent most of their lifetime, to have a very small size relative to their
host designs, and to make only limited contributions to circuit characteristics.
Analyzing the vulnerabilities of IC development process requires the knowledge of
design, fabrication, and test processes. To ensure a client’s IC is authentic, the entire
design and fabrication process must be made trustworthy or manufactured ICs
should be verified by clients for trustworthiness.

10.5 Hardware Trojans Detection and Prevention

Hardware Trojans have negligible effect on a circuit and rarely become fully
activated. While considerable number work has been presented on hardware Trojan
detection, they can be broadly categorized into two groups: side-channel signal
analysis and logic-value analysis. Majority of work on Trojan detection based on
side-channel analysis has focused on power and delay side-channel signals. To
enhance Trojan detection resolution, some techniques have proposed embedding
monitoring systems into main circuits to capture any abnormality in circuit per-
formance or power consumption. And some other work also recommended design
for hardware trust to magnify Trojan impact during authentication. In addition to
side-channel based techniques, detection techniques based on logic-value analysis
mainly focus on generating effective test patterns to fully activate Trojans and
propagate design malfunction to primary outputs.

10.5.1 Trojan Detection Based on Side-Channel Analysis

Delay-Based Trojan Detection Techniques

In [15], it has shown that extra capacitance incurred by a hardware Trojan attribute
to wire and gate capacitances would change the delay of path connected to Trojan
payload or Trojan trigger. Simulation results for a Trojan (a minimum sized NAND

256 H. Salmani

in 90 nm technology node) connected to the node D on a sensitized path in
Fig. 10.7 show that the path’s delay changes and variations directly depend on the
length of distance l3, Table 10.2 indicating the impact of the same Trojan placed in
four different locations. The Trojan is placed in a further distance from Location 1
to Location 2, to Location 3, and to Location 4, and the results signify the further
the location, the larger path delay. Based on these facts, a number of techniques
have been proposed, and some of them are studied in the following.

Two major challenges of delay-based hardware Trojan detection are (1) to cover
as many as circuit paths possible and (2) incur as low as possible cost. In [15], a
“clock sweeping” technique is proposed to obtain path delay information without
any additional hardware. With one example, Fig. 10.8 illustrates the technique.
Clock sweeping involves applying a pattern over a range of clock frequencies from
low to high, a common practice in industry used for speed binning of parts. The
difference between two successive frequencies defines the sweep step size, i.e.,
Δt = 1/fi – 1/fi+1. With increasing the clock speed, sensitized paths whose delay is
larger than the current clock period start to fail. The obtained start-to-fail clock
frequency can indicate the delay of the paths sensitized by a pattern. For example,
in the Fig. 10.8 the operation frequency of the circuit is f0 correspond to the delay
of A-D path. By increasing the clock frequency to f1, the A-D path fails. If the
frequency was increased to f2, the A-E path would correctly operate in the
Trojan-free circuit. However, the existence of a Trojan on the A-E path would
increase its delay and an incorrect value will be captured at f2 clock frequency.
Collected logic values with corresponding frequencies and patterns are used to
generate a signature for a circuit under authentication. Then the multidimensional
scaling statistical analysis is used to authenticate the circuit under test.

In another work [16], an on-chip path delay measurement circuit using a shadow
register is proposed to measure delay of selected register-to-register path delays,
shown in Fig. 10.9. This method also uses a sweeping-clock-delay measurement
technique to measure path delay. A Trojan can be detected when one or a group of

Fig. 10.7 A NAND Trojan
connected to an internal net
by a wire with the length of l3
[15]

Table 10.2 The impact of different l3 on the delay of a path in the original circuit [15]

Without Trojan
(ps)

Location 1
(ps)

Location 2
(ps)

Location 3
(ps)

Location 4
(ps)

Path delay 764.5 794.5 837.7 890.0 953.8
Increased delay 0 30 73.2 125.5 189.3

10 Hardware Trojan Attacks and Countermeasures 257

path delays are extended beyond the threshold determined by the process variations.
The measurement circuit characterizes a selected path by measuring its exact delay.
CLK1 is the main clock that drives all flop-flops in the main circuit. CLK2 is a clock
with the same frequency as CLK1 but shifted and drives a show register whose
input is the input of register at the end of path being characterized. By shifting
CLK2, the exact delay of selected path is obtained with a precision of the skew step
size whenever the comparison result is unequal.

Fig. 10.8 a An example circuit. b Clock sweeping [15]

Fig. 10.9 The basic architecture for shadow register Trojan prevention scheme [16]

258 H. Salmani

Power-Based Trojan Detection Techniques

One of pioneer work in hardware Trojan detection is [17]. In this work, a set of
patterns is applied to a batch of chips. With each pattern application, the power
trace on each chip is collected. The chips are reverse engineered and inspected to
ensure they are Trojan free. The collection of power traces from Trojan-free chips
serves as a reference. After obtaining the reference, the same set of patterns is
applied to a design under authentication and its power traces are collected. The
power traces are compared with the reference and any measurable difference
beyond a specific threshold flags Trojan existence.

One of major challenges with power-based techniques is process variations.
Manufactured chips of one circuit, although have the same functionality, present
different characteristics in terms of transistor parameters such voltage threshold and
channel length due to limited accuracy of manufacturing equipment. Variations are
broadly categorized into inter-chip and intra-chip variations. Inter-chip variations
show a slight shift in parameters from a chip to another chip. On the other hand,
intra-chip variations imply random process variations inside a chip where voltage
threshold of a transistor is reduced while that of nearby one increased. As a result,
two manufactured chips by the same company may present noticeable difference in
their power consumption. The difference may be too high such that Trojan con-
tribution into power consumption might be masked due to process variations.
A number of techniques have been proposed to reduce the impact of process
variations and enhance power-based Trojan detection techniques.

To mitigate the impact of process variations, a multi-supply transient-current
integration methodology is proposed in [18]. While the Fig. 10.10 presents the
concept, a set of random patterns are applied to both a chip without Trojan and a
chip under authentication. While the vertical axis presents charge (Q), the inte-
gration of current over time (t), any measureable different above a predefined
threshold (D(t)) indicates Trojan existence. The technique benefits the fact that the
impact of intra-chip process variations will be canceled over the time by activating
different portions of a circuit by applying random test patterns. Furthermore, the
technique does not incur any area overhead.

Fig. 10.10 Current
integration method [18]

10 Hardware Trojan Attacks and Countermeasures 259

Multiple Excitation of Rare Switching (MERS) is a side-channel-aware test
generation approach to increase Trojan detection sensitivity [19]. To make
side-channel analysis successful in detecting Trojans, MERS is to maximize the
switching activity in the Trojan circuit and to minimize the switching activity in
other parts of the circuit so that the relative switching effect is maximized. The basic
idea of MERS is that if a rare switching repeated N times where N is sufficiently
large, the chances of switching in a Trojan associated with that rare node would
significantly increases. To obtain a side-channel-aware test pattern set for a circuit,
random patterns are applied to its Trojan-free netlist and switching activity of
signals with low switching activity monitored. Patterns are then ranked based on
exercising rare-triggering signals, and test patterns activating the largest number of
rare nodes are selected. To minimize switching activity across the circuit, Hamming
distance between any two patterns is calculated. Based on this calculation, test
patterns are reordered such that any two consecutive test patterns generate mini-
mum total switching activity.

In some other approaches including [20–23], on-chip sensors are embedded to
capture abnormality in circuit power consumption. In [20] a novel ring oscillator
network technique in ASICs is proposed. The ring oscillator network serves as a
power supply monitor by detecting fluctuations in characteristic frequencies due to
malicious modifications (i.e., hardware Trojans) in the circuit under authentication.
The frequency of a ring oscillator is dependent on the power supply, thus the
malicious addition or omission of gates may be detected by measuring changes in
the frequency. In another work [21], circuit paths in a design are reconfigured into
ring oscillators 1 (ROs) by adding a small amount of logic. To minimize the
overhead, an algorithm is proposed to configure the circuit paths into ROs such that
the number of secured gates is maximized. Rad et al. [22] proposes an on-chip array
of current sensors to monitor supply current inside an IC to improve the sensitivity
of power-based Trojan detection techniques. In a similar work in [23], authors
employ a different kind of current sensor. It should be noted that the current
measurement circuitry in [22] is off-chip while in [23] the whole measurement
structure is on-chip. Karimian et al. [24] uses ring oscillators (ROs) to gather
measurements of ICs and investigates several classification approaches with
incorporating a genetic algorithm and the principal component analysis to distin-
guish between Trojan-inserted ICs and Trojan-free ICs with minimum error rate.

Multi-side Channel Trojan Detection Techniques

A major challenge for side-channel based Trojan detection techniques is the
increasing complexity and scale of the state-of-the-art technology. With scaling
down of technology node and limitation of manufacturing equipment, circuit mask
imprecisions cause non-determinism in chip characteristics. This brings forth a
challenging issue: distinguishing the characteristic deviations because of process
variations and alterations due to Trojan insertion. To enhance Trojan detection
resolution, several multiple-parameter side-channel analyses have been proposed.

260 H. Salmani

In [25], the intrinsic relationship between dynamic current (IDDT) and maximum
operating frequency (Fmax) of a circuit is used to isolate the effect of a Trojan circuit
from process noise. Figure 10.11a, b show average IDDT and Fmax values for an
8-bit ALU circuit (c880 from ISCAS-85 benchmark suite) obtained from simulation
in HSPICE for 100 chips which lie at different process corners. The process corners
are obtained by only considering inter-die variations on transistors’ voltage
threshold. A combinational Trojan (8-bit comparator circuit) is inserted on a
non-critical path in c880; therefore, Trojan impact can be only observed on IDDT
and it does not affect Fmax. As shown in Fig. 10.11a, the spread in IDDT due to
variations easily masks the effect of the Trojan. The problem becomes more severe
with decreasing Trojan size or increasing variations in device parameters in scaled
technologies. Figure 10.11b indicates Fmax for each process corner. While Fmax is
used for calibrating the process corner of the chips, the delay of any path in the
circuit can be used for this purpose.

To distinguish Trojan contribution from process variations impact, the intrinsic
relationship between IDDT and Fmax can be utilized to differentiate between the
original and tampered versions. The plot for IDDT versus Fmax for the ISCAS-85
c880 circuit is shown in Fig. 10.11c. It can be observed that two chips (e.g., Chipi
and Chipj) can have the same IDDT value, one due to the presence of Trojan and the
other due to process variation. By considering only one side-channel parameter, it is
not possible to distinguish between these chips. However, the correlation between
IDDT and Fmax can be used to distinguish malicious changes in a circuit under
process noise. The presence of a Trojan will cause the chip to deviate from the trend
line. As seen in Fig. 10.11c, the presence of a Trojan in Chipi causes a variation in
IDDT when compared to a golden chip (Chipk), while it does not have similar effect
on Fmax as induced by process variation, i.e., the expected correlation between IDDT
and Fmax is violated by the Trojan.

In another work [26], some methods based upon post-silicon multimodal thermal
and power characterization techniques are presented to detect and locate IC Trojans.
The approach first estimates the detailed post-silicon spatial power consumption
using thermal maps of the IC, and it then applies the two-dimensional principal
component analysis to extract features of the spatial power consumption. Finally, it
uses statistical tests against the features of authentic ICs to detect the Trojan.

Fig. 10.11 a Average IDDT values at 100 random process corners (with maximum variation
of ±20 % in inter-die Vth) for c880 circuit. The impact of Trojan (8-bit comparator) in IDDT is
masked by process noise. b Corresponding Fmax values. The Fmax versus IDDT plot can help
identify Trojan-containing ICs under process variations [25]

10 Hardware Trojan Attacks and Countermeasures 261

To accurately characterize real-world ICs, experiments are performed in presence of
20–40 % CMOS process variations to gate lengths, widths and oxide thickness
which can hide Trojans. The results reveal detection of Trojans with 3–4 orders of
magnitude smaller power consumptions than the total power usage of the chip,
while it scales very well because of the spatial view to the ICs internals by the
thermal mapping.

A unified formal framework for integrated circuits (ICs) Trojan detection that
can simultaneously employ multiple noninvasive side-channel measurement types
(modalities) is presented in [27]. First, the IC Trojan detection for each side-channel
measurement is being formally defined and their complexity being analyzed. Then,
a new sub-modular formulation of the problem objective function is devised. Based
on the objective function properties, an efficient Trojan detection method with
strong approximation and optimality guarantees is introduced.

In a different work, power and delay traces of a circuit obtained by
non-destructive measurements create a system of equations to be solved using
linear programming and singular-value decomposition with imposed measurements
errors [28]. By the solution, gates in the circuit are characterized in terms of leakage
current, switching power, or delay, i.e., a scaling factor of nominal value consid-
ering manufacturing variability for each gate is determined. Then Trojan detection
is performed using constraint (equation) manipulation. For Trojan detection, three
heuristic techniques are investigated: (i) statistical analysis; (ii) constraint manip-
ulations; and (iii) comparison with technological and physical laws. In the first
technique, the variable residuals and errors in individual equations are analyzed. In
the second technique, additional constraints are imposed on linear programming
formulation and the objective function is manipulated in a nonlinear program such
that any added circuity will be isolated. The last technique compares the GLC
results to the relative characteristics of the gates with respect to the well-established
physical design and technological laws. A similar work is also presented in [29].

10.5.2 Trojan Detection Based on Logic Value

While majority of work has been focused on Trojan detection based on side-channel
signal analysis, some little work has been on the full activation of hardware Trojans
and the propagation of generated erroneous logic values by the Trojan payload to an
observation point.

Authors in [30] first perform a Trojan target analysis and then apply a Trojan
detection procedure. In the first step, the analysis identifies Trojan trigger vectors
(q), shown in Fig. 10.12, whose occurrence is less than a specific threshold. The
analysis also isolates possible nets used as Trojan payload. In the next step, the
Trojan detection procedure generates a specific set of test vectors to produce
rare-triggering vectors and propagate erroneous logic values to an observation
point. Trojan test vectors are combined with traditional test patterns, such as
stuck-at fault test patterns, and applied during design testing.

262 H. Salmani

The use of combinatorial testing is explored for hardware Trojan detection in
[31] and its efficiency is studied against a various implementation of hardware
Trojan in the AES cryptographic algorithm and in comparison with random-based
testing. Assuming an upper limit of triggering complexity in terms of the number of
gates used, the degree of changes in the physical characteristics of the circuit, and
the number of input signals that can be combined for realizing the triggering logic,
an attacker opts for a rather rare combination of a small number of input signal
values (pattern) for hardware Trojan activation. Combinatorial testing-based
approaches utilize theoretical results from combinatorics that can compact signifi-
cantly the test suite size (i.e., the number of different test inputs applied) under
specific assumptions.

Assuming that that the attacker is self-limited to use only k of the available n
input signals, where n≪ k, as to define the activation sequence. In this case, a test

suite comprising all the 2k ×
n
k

� �
possible input signal combinations will reveal

the presence of the Trojan. On the other hand, Table 10.1 shows, how small size of
a combinatorial test suit can cover a large number of test patterns where n = 128
and t indicates the length of test vector.

10.5.3 Trojan Detection Without a Golden Model

A fundamental limitation of majority of existing hardware Trojan detection tech-
niques is the assumption of a golden IC (GIC) existence as a reference during the IC
authentication. However, the existence and identification of a GIC can never be
guaranteed: (1) if the hardware Trojan is inserted in the GDSII file, or if the foundry
alters the mask to insert a hardware Trojan, then all the ICs will be infected, and
(2) if an IC passes a testing procedure which is thorough and more aggressive than
traditional testing, it still cannot be guaranteed to be a GIC because the hardware
Trojan may be triggered by a rare uncovered event during test. Two groups of
approaches have been investigated to tackle this limitation. A group has practiced

Fig. 10.12 Trojan circuit
model [30]

10 Hardware Trojan Attacks and Countermeasures 263

some design techniques to detect hardware Trojans after design manufacturing, and
the other group has mainly analyzed switching activities in gate-level netlist to
capture hardware Trojans.

Design Techniques

A sensor-assisted self-authentication framework is proposed in [32], shown in
Fig. 10.13. The framework incorporates on-chip detection sensors prior to fabri-
cation and integrates them with the layout. The sensors are design-dependent and
are found by an optimization procedure which decomposes the netlist into a set of
“similar” sequences of logic gates which are frequently instantiated. The opti-
mization procedure decomposes the timing graph representing the design’s netlist
into a set of frequently instantiated “delay features.” Each delay feature is essen-
tially a variation-aware expression with known sensitivities to unknown parameters
such as process variations at the die-to-die and within-die levels. Each instantiation
of a delay feature corresponds to an identified sequence of gates and interconnects
in the netlist which have similar sensitivities to parameter variations. Therefore, the
sensor generation procedure essentially decomposes the netlist into a set of “sim-
ilar” sequences in which two sequences are similar if the changes in their delays are
very close (i.e., less than a specified and small error tolerance). A graphical example
of similar sequences is illustrated on the left-hand-side of Fig. 10.13.

At the post-silicon stage, a sensor-assisted self-authentication process is applied
for each chip. Two “delay fingerprints” are generated. One corresponds to the
on-chip delays of the integrated sensors. The other corresponds to the on-chip delays
of a set of arbitrary-selected design paths. The delay fingerprints of the sensors are
used to predict a delay range for each considered path. An actual on-chip delay range
is also obtained for each path, using an on-chip delay measurement mechanism. For
each considered path, a correlation analysis is then conducted between its predicted
delay range and its actual delay range. If a hardware Trojan is inserted (in either the

Fig. 10.13 Overview of self-authentication Trojan detection framework [32]

264 H. Salmani

sensors or the design path), then its presence can be detected by observing a poor
correlation between these two delay ranges. The post-silicon self-authentication
process is shown on the right-hand-side of Fig. 10.13.

In another work [33], a temporal self-referencing approach is proposed for
detecting sequential Trojan. The approach compares the current signature of a chip
at two different time windows to completely eliminate the effect of process noise,
thus providing high detection sensitivity for Trojans of varying size. The effec-
tiveness of the technique is that the transient current “signature” of a Trojan-free
circuit should remain constant over different time windows when the circuit
undergoes the same set of state transitions multiple times. However, in a
Trojan-infected circuit, the current signature varies over multiple time windows for
the same set of state transitions of the original circuit, due to uncorrelated state
transitions in the Trojan.

Front-End Circuit Switching Activity Analyses

The unused circuitry identification (UCI) technique is one of the first such tech-
niques which distinguishes minimally used logic from the other parts of the circuit
[34]. First, UCI creates a data-flow graph for a circuit. Nodes of graph are signals
(wires) and state elements and its edges indicate data flow between the nodes.
Based on this data-flow graph, UCI generates a list of all direct and indirect signal
pairs where data flows from a source signal to a sink signal. In the following, UCI
simulates the HDL code using design verification tests to find the set of data-flow
pairs where intermediate logic does not affect the data that flows between the source
and sink signals. UCI centers on the fact that the HT circuitry mostly remains
inactive within a design, and hence such minimally used logic can be distinguished
from the other parts of the circuit.

VeriTrust [35] flags suspicious circuitries by identifying potential trigger inputs
used in HTs, based on the observation that these inputs keep dormant under
non-trigger condition and hence are redundant to the normal logic function of the
circuit. In order to detect the redundant inputs, it first performs functional testing
and records the activation history of the inputs in the form of sums-of-products
(SOP) and product-of-sums (POS). Then it further analyzes these unactivated SOPs
and POSs to find the redundant inputs. However, because of the functional veri-
fication constraints, VeriTrust can see several unactivated SOPs and POSs and thus
regard the circuit to be potentially infected resulting in false positives.

FANCI [36] applies Boolean function analysis to flag suspicious wires in a
design which have weak input-to-output dependency. For each input in the com-
binational logic cone of an output wire, a control value (CV), which represents the
percentage impact of changing an input on the output, is computed. If the mean of
all the CVs is lower than a threshold, then the resulting output wire is considered
malicious. This is a probabilistic method where the threshold is computed with
some heuristic to achieve a balance between security and the false positive rate.
A very low threshold may result in a high false positive rate by considering most of

10 Hardware Trojan Attacks and Countermeasures 265

the wires (even non-malicious ones) as malicious, whereas a high threshold may
actually result in false negatives by considering a HT related (malicious) wire to be
not malicious.

An information-theoretic approach for Trojan detection has been proposed in
[37]. It basically estimates the statistical correlation between signals in a circuit for
Trojan detection with the use of OPTICS clustering algorithm. To study the cor-
relation between the signals, inputs patterns are applied and a weighted graph of
design created. While the technique presents full coverage for selected benchmarks,
the accuracy of technique highly depends on observing enough activity on each
signal for studying signals correlation and presented results indicated nonzero false
positive rate. Furthermore, the application of the technique for large circuits may
require considerable processing time and memory usage. In another effort, a
score-based classification method is presented for identifying hardware Trojans
[38]. The proposed technique extracts Trojan characteristics introduced at
Trust-HUB [39] and defines an incremental metric to isolate some of the Trojan
nets from the rest of circuit.

10.6 Trojan Prevention

After circuit synthesis and during physical design, placement tools spread cells such
that circuit routability is guaranteed and circuit constrains in terms of power, per-
formance, and size are met. This often leaves small gaps between cells, it is
impossible to fill 100 % of the area with regular standard cells in VLSI designs.
After completing placement and routing, designers usually fill the empty spaces
with filler cells or decoupling capacitor (DECAP) cells to reduce design rule check
(DRC) violations attributed to the base layers and ensure power rail connection.
However, filler cells do not have functionality. If designers want to make some
changes, well known as Engineering Change Order (ECO), the filler cells could be
deleted and the empty spaces can be utilized for new gates. On the other hand,
intelligent attackers can identify and remove some filler cells for Trojan insertion,
because removing these non-functional filler cells does not change the original
functionality of circuit.

In [40], the built-in self-authentication (BISA) technique is introduced to fill
unused spaces in a circuit layout by functional filler cells, called BISA cells, instead
of non-functional filler cells. These BISA cells are connected together to form a
combinational circuit, the BISA circuit, that is independent from the original cir-
cuits. The BISA circuit is designed so that stuck-at patterns can test all its gates,
thus any change on BISA cells will be detected. Furthermore, BISA cells are the
same as standard cells that the circuit uses, thus identifying these cells will be
extremely difficult. Thus, BISA can be used to prevent Trojan insertion or make
Trojan insertion extremely difficult.

Figure 10.14 shows the structure of BISA consisting of a test pattern generator
module (TPG), BISA circuit under test, and output response analyzer (ORA). In

266 H. Salmani

this paper, the linear feedback shift register (LFSR) is used as TPG and the multiple
input signature response (MISR) as ORA. The output of ORA is used as signature
to detect hardware Trojans. The BISA circuit under test is composed of all BISA
cells which are inserted into unused spaces. The smaller combinational circuit with
fewer gates is, the higher test coverage is. Therefore, the BISA circuit is divided
into a number of smaller combinational logic blocks, called BISA blocks.
Each BISA block can be considered as an independent combinational logic block.
Figure 10.15 shows application of BISA to System05 in 90 nm technology node.

Table 10.3 shows BISA effectiveness under ten attacks. In the system05 circuit,
418 BISA cells are inserted to fill unused spaces. LFSR and MISR with size of 32
are used to form the BISA structure. 616 ATPG patterns can reach 99.65 % testable
coverage. When 500 patterns from LFSR are applied, the stuck-at fault test cov-
erage is 81 %. In Table 10.3, case 0 shows the result for the genuine BISA result.

Fig. 10.14 BISA structure [40]

Fig. 10.15 a System05 before BISA insertion. b System05 after BISA insertion [40]

10 Hardware Trojan Attacks and Countermeasures 267

Five kinds of gates are selected to be removed from different BISA blocks sepa-
rately. In addition, another five types of gates are selected to be changed to other
types of gates in different BISA blocks separately. The results of ten cases are
shown in Table 10.3. In each case, the signature generated from MISR is different
from the genuine signature, which shows that BISA has detected these attacks. In
Table 10.3, an internal cell means it has children cells, and a leaf cell is a cell that
does not have children cells. (Table 10.4)

10.7 Circuit Vulnerability Analysis

Although there has been a significant amount of work on hardware Trojan detection
and prevention, no systematic approach to assess the susceptibility of a circuit to
Trojan insertion has been developed. Sections in a circuit with low controllability
and observability are considered potential areas for implementing Trojans. This
necessitates a thorough circuit analysis to identify potential Trojan locations. Pre-
sented in [41], a comprehensive flow has been developed to perform independent

Table 10.3 Test suite strength and search space reduction [2]

Strength Suit size Covered pattern

t = 2 11 32,512
t = 3 37 2,731,008
t = 4 112 170,688,000
t = 5 252 8,466,124,800
t = 6 720 347,111,116,800
t = 7 2,462 12,099,301,785,600
t = 8 17,544 366,003,879,014,400

Table 10.4 Attack summary [40]

Case Type Attack description Signature

0 Genuine None 0712022D
1 Removal Remove a leaf cell 0DA8936E
2 Removal Remove an internal cell 157F4929
3 Removal Remove a leaf cell 0ED740FC
4 Removal Remove an internal cell D5E2706E
5 Removal Remove an internal cell 43D51D83
6 Change Change a leaf cell OR3X1 to AND3X1 F230864
7 Change Change a leaf cell AOI222X1 to OAI2223X1 157F4929
8 Change Change a leaf cell AOI222X1 to OAI222X1 F39C3B1E
9 Change Change a leaf cell AND3X1 to NAND2X1 157F4929
10 Change Change a leaf cell NAND4X1 to NAND3X1 0B17041F

268 H. Salmani

design vulnerability analysis at behavioral, gate, and layout levels, shown in
Fig. 10.16. The vulnerability analysis at the behavioral level begins with a circuit
described in VHDL language and determines the hardness of executing each
statement of code and the observability of circuit signals. At the gate level, to
measure a Trojan’s resiliency to power and delay side-channel analyses, the tran-
sition probability of every net and the delay of the longest path to which the net
belongs are determined. At the layout level, the vulnerability analysis screens a
circuit layout to find possible locations for Trojan cell placement and their
distributions.

At the behavioral level, a circuit is stated in the form of concurrent and
sequential statements. HDL constructs, such as loop and condition blocks, direct the
execution order of these statements. The circuit’s data and control flows determine
the hardness of executing a statement (statement hardness) and the observability of
internal signals at circuit outputs. A behavioral level circuit is vulnerable to Trojan
insertion when statement hardness is high or observability is low. A Trojan at the
behavioral level can change a statement that is rarely executed or carry out an attack
through a signal with very low observability.

At the gate level, circuits are susceptible to hardware Trojans realized by the
addition or deletion of gates. Gate-level Trojans can cause functional modification
or parametric deviation, under rare conditions. To withdraw Trojan effects from
established testing techniques, an adversary can exploit hard-to-detect areas (e.g.,
nets) in a circuit to implement a Trojan. Hard-to-detect areas are defined as areas
not testable by established fault-testing techniques (stuck-at, transition delay, path
delay, and bridging faults) or not having a noticeable impact on circuit side-channel
signals (transient power and delay). To recognize hard-to-detect areas, power
analysis, delay analysis, and structural analysis are performed to identify nets with
low-transition probability, part of non-critical paths, and untestable by regular
structural testing.

The distribution of Trojan cells across a circuit layout is a deterministic factor in
Trojan impact on circuit side-channel signals. Trojan cells placed tightly in a par-
ticular area could have more impact on circuit power consumption as there would
be greater localized switching activity in the area. On the other hand, the loose
distribution of Trojan cells requires long wire connections for Trojan inputs and
outputs and between Trojan cells. Hence, loose Trojans could affect the circuit

Fig. 10.16 The circuit vulnerability analysis flow [41]

10 Hardware Trojan Attacks and Countermeasures 269

performance or delay distribution. To analyze the vulnerability of a circuit layout to
Trojan insertion, the circuit layout in the form of Design Exchange Format
(DEF) file is screened to determine possible locations for Trojan cells. The distri-
bution of circuit cells and white spaces across the circuit layout are obtained, and
potential locations for circuit cells placement are then determined. White spaces
adjacent to areas with high density are suitable places to insert Trojans resilient to
power-based Trojan detection techniques. The high power consumption of dense
areas can mask the small contribution of Trojan cells to circuit power consumption.
Furthermore, the availability of white spaces across a circuit layout also makes it
easier to insert Trojans resilient to delay-based Trojan detection techniques. Placing
Trojan cells close to their driving cells reduces induced capacitances due to Trojan
wire connections.

10.8 Design for Hardware Trust

Trojan detection resolution in power-based techniques depends on two main fac-
tors: Trojan activation and original circuit activation. Increasing Trojan activity and
reducing original circuit activity enhance Trojan detection resolution. It has been
proven that there is high correlation between the number of switching activity in a
circuit and the number of switching activity at the output of scan flip-flops. A scan
flop-flop (or scan cell) is a modified flip-flop whose data input is multiplex with
another input signal (scan-in) that is accessible through a primary input port. The
scan flip-flop is used to increase circuit testability by providing access to its internal
parts. Scan flip-flops are grouped and chained to create shift registers, referred as
the scan-chain architecture. In a test mode, the shift registers initialize the internal
parts of circuit, the circuit switches to a functional mode, and then it switches back
to the test mode after one or more clock cycles. High correlation between the
switching activity of circuit and the switching activity of scan flip-flops drives two
complementary techniques proposed in [42] and [43].

Salmani et al. [42] introduces a dummy scan flip-flop insertion technique to
increase the probability of Trojan activation. As Trojan triggers are connected to
circuit nets with low-transition probability to realize a latent circuit that is activated
under a rare condition, the dummy scan flip-flop insertion technique identify such
nets and re-stitch them through dummy scan flip-flops, shown in Fig. 10.17. The
dummy scan flip-flops do not change circuit functionality in the functional mode.
They are only used during the testing mode to provide immediate access to
low-transition nets to increase their transition probability.

In a complementary work in [43], a scan-cell reordering technique is proposed to
control switch activity in each portion of circuit. The scan-cell reordering technique
forms the scan chains such that adjacent scan cells in a region of circuit’s physical
layout are connected to each other, shown in Fig. 10.18. Without incurring any area
overhead, the technique provides control on each portion of circuit. By integrating
the dummy scan-cell insertion and scan-cell reordering techniques for Trojan

270 H. Salmani

detection purpose, it is possible to shut down a part of circuit and reduce circuit
switching activity using the scan-chain reordering technique meanwhile increase
Trojan activity using the dummy scan flip-flop technique.

Infrastructure IP for SoC security (IIPS) [44] is another approach to incorporate
security into a design for its protestation against (1) scan-based attack for infor-
mation leakage through low-overhead authentication; (2) counterfeiting attacks
through integration of a Physical Unclonable Function (PUF); and (3) hardware
Trojan attacks through a test infrastructure for trust validation. Figure 10.19 pre-
sents IIPS’s block diagram consisting of a Master Finite State Machine (M-FSM)
that controls the working mode of IIPS, a Scan Chain Enabling FSM (SE-FSM) to
provide individual control over activation of scan chains in the SoC, and a clock
control module to generate necessary clock and control signals for performing
ScanPUF authentication and path delay-based hardware Trojan detection.
Regarding hardware Trojan detection, IIPS enables the clock sweeping technique
for Trojan detection through monitoring of delay shift by observing the latched
value under clock sweep.

Fig. 10.17 The dummy flip-flop structures when (a) Pi0 << Pi1, and (b) Pi0 >> Pi1 [42]

Fig. 10.18 Layout-aware scan-cell reordering concept [43]

10 Hardware Trojan Attacks and Countermeasures 271

10.9 Hardware Trojans in Complex Designs

Authors in [45] have investigated security threats in third-party power management
units. Power management units (PMUs) offer a host of services ranging from
dynamic control of power rails, voltage scaling, to managing power states, and
modern intelligent power management IPs (PMIPs) are to increase energy effi-
ciency and provide flexible power management in high-end Multiprocessor
System-on-Chips (MPSoCs). On the other hand, a Trojan-inserted PMIPs may
cause serious issues such as data corruption, denial of service, or degrade the
system performance and energy efficiency. For example, a malicious increase in the
supply voltage can cause a surge in the peak power and chip temperature, leading to
thermal throttling or functional errors due to chip failure. Jayashankara Shridevi
et al. [45] studied two specific attack models, namely PMU-Voltage driven
Immunity Reduction and Unhealth Syndrome (P-VIRUS) and DROWSY.

P-VIRUS inconspicuously manipulates the supply voltage request made by a
processor for a set frequency, leading to improper voltage-frequency assignments, it
adversely impacts the energy efficiency and performance of the MPSoC. For
example, the voltage supplied by the PMU is less than the requested voltage. As a
result, functional errors are raised due to timing violation rooted in the higher delay
caused by the lower supply voltage. DROWSY tampers with the sleep and wake up
requests of the on-chip components, affecting the availability of on-chip resources.
DROWSY can be realized as delaying the sleep signal that causes extra power
consumption, delaying the wake up signal that causes resource unavailability, or

Fig. 10.19 Block diagram of the IIPS module showing interconnection with other IP cores in a
SoC using SoC boundary scan architecture [44]

272 H. Salmani

abrupt transition of blocks to sleep states that results in loss of data and performance
degradation.

Hardware Trojans in network-on-chip (NoC) is another serious challenge in
complex designs. In [46], it is shown that a hardware Trojan can mask itself as
transient errors which can only be activated under very specific conditions to avoid
detection. Induced transient errors in data can exploit vulnerabilities created by the
fault-tolerant techniques. For example, intentional data corruption requires data
retransmissions that may lead to a Denial-of-Service (DoS) attack by creating false
congestion between the routers by consuming network resources. While the error
may appear as benign for the system, this is intentionally created by HTs to create
DoS attack and disrupt the system. In another work [46] it has studied DoS attacks
in the NoC routers where a hardware Trojan can maliciously change the flit
source/destination address or flit type information of a packet that has left the
transmitter network interface (NI). If a Trojan payload modifies the destination
address of a packet, that packet could be directed to an unauthorized IP core. A drop
of the header flit or tail flit will result in the incomplete packet being retained in the
router until some operation arrives to reset the router. To prevent limit hardware
Trojan in NoCs, a collaborative dynamic permutation and flit integrity check
method is proposed by [46] that is capable of examining the invariables of NoC to
immediately terminate the detected HTs.

A novel technique with low-overhead security framework for a custom
many-core router using Machine Learning techniques has been presented by [47].
While it is assumed that processing cores and memories are safe, and anomaly is
included only through router. The attack corrupts the router packet by changing the
destination address that results in traffic diversion, route looping, or core spoofing
attack. To detect hardware Trojans in routers a “Golden Data Set” based on
hardware feature analysis and anomaly insertion effects has been developed. The
Golden Data Set considers Source Core, Destination Core, Packet Transfer Path,
Distance, Dynamic Power Range, Execution Time Range, Clock Frequency,
Supply Voltage and studies their correlation to reduce the complexity of proposed
machine-leaning-based detection technique.

10.10 Challenges with Hardware Trojans

There have been significant efforts to address hardware Trojans, a very challenging
issue in electronic chips. Although variety of techniques and methodologies has
been proposed, majority of them are carrying certain assumptions or not well
scalable to modern designs such that make their applicability limited. One of main
assumptions is the existence of a golden model as a reference in side-channel based
Trojan detection techniques. A golden model can be obtained by reverse engi-
neering that is a costly and distractive process. Meanwhile, it may not provide a
perfect reference because of variations in process parameters between chips. Fur-
thermore, scalability of proposed techniques is not well studied as most experiments

10 Hardware Trojan Attacks and Countermeasures 273

are performed on small circuits compared with industrial ones. In addition, it would
be difficult to model hardware Trojans contrary to defects caused by manufacturing
as hardware Trojans are intentional and malicious modification by nature. Another
challenge in hardware Trojan detection is the lack of standard metrics to quanti-
tatively determine the security of a design. The metrics make it possible to measure
the effectiveness of different techniques and compare their strengths and weak-
nesses. Finally, although there have been some efforts on developing Trojans
design, there is a need to more comprehensive trust benchmarks that different
researchers can use to evaluate and compare their solutions.

References

1. Ernst&Young: Global semiconductor industry study. http://www.indabook.org/preview/
37zGj6ryslpY95ZaVcT_D8zdtr5D-X-sWb6GMXsJzhQ,/Global-semiconductor-industry-
study-report-Ernst-amp-Young.html?query=Cloud-Computing-Landscape-and-Research-
Challenges

2. http://www.reportlinker.com/p 02070028-summary/Semiconductor-Silicon-IP-Market-by-
Form-Factor-Integrated-Circuit-IP-SOC-IP-Design-Architecture-Hard-IP-Soft-IP-Processor-
Type-Microprocessor-DSP-Application-Geography-and-Verification-IP-Forecast-Analysis-to.
html

3. Saleh, R., Mirabbasi, S., Lemieux, G., Pande, P.P., Grecu, C., Ivanov, A.: System-on-Chip:
Reuse and Integration. Proc. IEEE 94(6), 1050–1069 (2006)

4. Morales, M., Rau, S., Palma, M.J., Venkatesan, M., Pulskamp, F., Dugar, A.: industry
developments and models. Intelligent Systems: The Next Big Opportunity. International Data
Corporation (2011)

5. Greaves, D.J.: System on Chip Design and Modelling. University of Cambridge, Computer
Laboratory. Lecture Notes (2011)

6. Hardee, P.: The five facets of SoC design complexity. http://www.eetimes.com/document.
asp?doc_id=1277891

7. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

8. Villasenor, J.: Compromised By Design? Securing the Defense Electronics Supply Chain. The
Center for Technology Innovation at Brookings (2013)

9. Johnson, B., Freeman, D., Christensen, D., Wang, S.T.: Market Trends: Rising Costs of
Production Limit Availability of Leading-Edge Fabs. GARTNER, INC. http://www.gartner.
com/DisplayDocument?doc_cd=238123. Accessed 1 Sept 2012

10. Villasenor, J., Tehranipoor, M.: The Hidden Dangers of Chop-Shop Electronics. In: IEEE
Spectrum. http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-
chopshop-electronics (2013)

11. Wang, L., Wu, C., Touba, N.: VLSI Test Principles and Architectures: Design for Testability.
Morgan Kaufmann Publishers (2006)

12. Adee, S.: The Hunt for the Kill Switch. In: IEEE Spectrum. http://www.spectrum.ieee.org/
print/6171 (2008)

13. Tehranipoor, M., Koushanfar, F.: A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1), 10–25 (2010)

14. Wang, X., Tehranipoor, M., Plusquellic, J.: Detecting malicious inclusions in secure
hardware: challenges and solutions. In: Proceedings of the IEEE International Workshop on
Hardware-Oriented Security and Trust, pp. 15–19 (2008)

274 H. Salmani

http://www.indabook.org/preview/37zGj6ryslpY95ZaVcT_D8zdtr5D-X-sWb6GMXsJzhQ%2c/Global-semiconductor-industry-study-report-Ernst-amp-Young.html%3fquery%3dCloud-Computing-Landscape-and-Research-Challenges
http://www.indabook.org/preview/37zGj6ryslpY95ZaVcT_D8zdtr5D-X-sWb6GMXsJzhQ%2c/Global-semiconductor-industry-study-report-Ernst-amp-Young.html%3fquery%3dCloud-Computing-Landscape-and-Research-Challenges
http://www.indabook.org/preview/37zGj6ryslpY95ZaVcT_D8zdtr5D-X-sWb6GMXsJzhQ%2c/Global-semiconductor-industry-study-report-Ernst-amp-Young.html%3fquery%3dCloud-Computing-Landscape-and-Research-Challenges
http://www.indabook.org/preview/37zGj6ryslpY95ZaVcT_D8zdtr5D-X-sWb6GMXsJzhQ%2c/Global-semiconductor-industry-study-report-Ernst-amp-Young.html%3fquery%3dCloud-Computing-Landscape-and-Research-Challenges
http://www.reportlinker.com/p
http://www.eetimes.com/document.asp%3fdoc_id%3d1277891
http://www.eetimes.com/document.asp%3fdoc_id%3d1277891
http://www.gartner.com/DisplayDocument%3fdoc_cd%3d238123
http://www.gartner.com/DisplayDocument%3fdoc_cd%3d238123
http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-chopshop-electronics
http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-chopshop-electronics
http://www.spectrum.ieee.org/print/6171
http://www.spectrum.ieee.org/print/6171

15. Xiao, K., Zhang, X., Tehranipoor, M.: A clock sweeping technique for detecting hardware
Trojans impacting circuits delay. IEEE Des. Test 30(2), 26–34 (2013)

16. Li, J., Lach, J.: At-speed delay characterization for IC authentication and Trojan horse
detection. In: Proceedings of IEEE International Symposium Hardware-Oriented Security and
Trust, pp. 8–14 (2008)

17. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection using IC
fingerprinting. In: Proceedings of the Symposium on Security and Privacy, pp. 296–310
(2007)

18. Wang, X., Salmani, H., Tehranipoor, M., Plusquellic, J.: Hardware Trojan detection and
isolation using current integration and localized current analysis. In: Proceedings of the
International Symposium on Fault and Defect Tolerance in VLSI Systems, pp. 87–95 (2008)

19. Huang, H., Bhunia, S., Mishra, P.: MERS: statistical test generation for side-channel analysis
based Trojan detection. In: ACM Conference on Computer and Communications Security
(CCS), Vienna, Austria, 24–28 Oct 2016

20. Ferraiuolo, A., Zhang, X., Tehranipoor, M.: Experimental analysis of a ring oscillator network
for hardware Trojan detection in a 90 nm ASIC. In: Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, pp. 37–42 (2012)

21. Rajendran, J., Jyothi, V., Sinanoglu, O., Karri, R.: Design and analysis of ring oscillator based
design-for-Trust technique. In: Proceedings of IEEE VLSI Test Symposium, pp. 105–110
(2011)

22. Rad, R., Plusquellic, J., Tehranipoor, M.: A sensitivity analysis of power signal methods for
detecting hardware trojans under real process and environmental conditions. IEEE Trans.
Very Large Scale Integr. Syst. 18(12), 1735–1744 (2010)

23. Narasimhan, S., Yueh, W., Wang, X., Mukhopadhyay, S., Bhunia, S.: Improving IC security
against Trojan attacks through integration of security monitors. IEEE Des. Test Comput. 29
(5), 37–46 (2012)

24. Karimian, N., Tehranipoor, F., Rahman, M.T., Kelly, S., Forte, D.: Genetic algorithm for
hardware Trojan detection with ring oscillator network (RON). 2015 IEEE International
Symposium on Technologies for Homeland Security (HST), Waltham, MA, pp. 1–6 (2015)

25. Narasimhan, S., Du, D., Chakraborty, R.S., Paul, S., Wolff, F., Papachristou, C., Roy, K.,
Bhunia, S.: Hardware Trojan detection by multiple-parameter side-channel analysis. IEEE
Trans. Comput. 62(11), 2183–2195 (2013)

26. Hu, K., Nowrozy, A.N., Reday, S., Koushanfar, F.: High-sensitivity hardware Trojan
detection using multimodal characterization. In: Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1271–1276 (2013)

27. Koushanfa, F., Mirhoseini, A.: A Unified framework for multimodal submodular integrated
circuits Trojan detection. IEEE Trans. Inf. Forensics Secur. 6(1), 162–174 (2011)

28. Potkonjak, M., Nahapetian, A., Nelson, M., Massey, T.: Hardware Trojan horse detection
using gate-level characterization. In: Proceedings of Design Automation Conference,
pp. 688–693 (2009)

29. Alkabani, Y., Koushanfar, F.: Consistency-based characterization for IC Trojan detection. In:
Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 123–
127 (2009)

30. Wolff, F., Papachristou, C., Bhunia, S., Chakraborty, R.S.: Towards Trojan free trusted ICs:
problem analysis and detection scheme. In: Proceedings of ACM Design, Automation and
Test in Europe Conference, pp. 1362–1365 (2008)

31. Voyiatzis, A.G., Stefanidis, K.G., Kitsos, P.: Efficient triggering of Trojan hardware logic. In:
2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), Kosice, pp. 1–6 (2016)

32. Li, M., Davoodi, A., Tehranipoor, M.: A sensor-assisted self-authentication framework for
hardware Trojan detection. IEEE Des. Test 30(5), 74–82 (2013)

33. Narasimhan, S., Wang, X., Du, D., Chakraborty, R.S., Bhunia, S.: TeSR: A robust temporal
self-referencing approach for hardware trojan detection. In: Proceedings of IEEE International
Symposium on Hardware-Oriented Security and Trust, pp. 71–74 (2011)

10 Hardware Trojan Attacks and Countermeasures 275

34. Hicks, M., Finnicum, M., King, S.T., Martin, M., Smith, J.M.: Overcoming an untrusted
computing base: detecting and removing malicious hardware automatically. In: IEEE
Symposium on Security and Privacy, pp. 64–77 (2010)

35. Zhang, J., Yuan, F., Wei, L., Sun, Z., Xu, Q.: VeriTrust: verification for hardware trust. In:
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 61:1–61:8 (2013)

36. Waksman, A., Suozzo, M., Sethumadhavan, S.: FANCI: identification of stealthy malicious
logic using Boolean functional analysis. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS), pp. 697–708 (2013)

37. Çakir, B., Malik, S.: Hardware Trojan detection for gate-level ICs using signal correlation
based clustering. In: Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 471–476 (2015)

38. Oya, M., Shi, Y., Yanagisawa, M., Togawa, N.: A score-based classification method for
identifying hardware-Trojans at gate-level Netlists. In: Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 465–470 (2015)

39. Salmani, H., Tehranipoor, M., Karri, R.: On design vulnerability analysis and trust benchmark
development. In: IEEE International Conference on Computer Design (ICCD) (2013)

40. Xiao, K., Tehranipoor, M.: BISA: Built-in self-authentication for preventing hardware Trojan
insertion. In: Proceedings of IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 45–50 (2013)

41. Tehranipoor, M., Salmani, H., Zhang, X.: Integrated Circuit Authentication Hardware Trojans
and Counterfeit Detection. Springer (2014)

42. Salmani, H., Tehranipoor, M., Plusquellic, J.: A novel technique for improving hardware
Trojan detection and reducing trojan activation time. In: IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 20(1), 112–125 (2012)

43. Salmani, H., Tehranipoor, M.: Layout-aware switching activity localization to enhance
hardware trojan detection. IEEE Trans. Inf. Forensics Secur. 7(1), 76–87 (2012)

44. Wang, X., Zheng, Y., Basak, A., Bhunia, S.: IIPS: infrastructure IP for secure SoC design.
IEEE Trans. Comput. 64(8), 2226–2238 (2015)

45. Jayashankara Shridevi, R., Rajamanikkam, C., Chakraborty, K., Roy, S.: Catching the Flu:
emerging threats from a third party power management unit. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, pp. 1–6 (2016)

46. Frey, J., Yu, Q.: A hardened network-on-chip design using runtime hardware Trojan
mitigation methods. Integration (VLSI J.) (2016)

47. Kulkarni, A., Pino, Y., French, M., Mohsenin, T.: 2016. Real-time anomaly detection
framework for many-core router through machine-learning techniques. J. Emerg. Technol.
Comput. Syst. 13(1) Article 10 (June 2016), 22 pp. doi:http://dx.doi.org/10.1145/2827699

48. Mokhoff, N., Wallace, R.: Outsourcing trend proves: complex by design. EE Times. http://
www.eetimes.com/document.asp?doc_id=1152570 (2005)

276 H. Salmani

http://dx.doi.org/10.1145/2827699
http://www.eetimes.com/document.asp%3fdoc_id%3d1152570
http://www.eetimes.com/document.asp%3fdoc_id%3d1152570

Chapter 11
In-place Logic Obfuscation for Emerging
Nonvolatile FPGAs

Yi-Chung Chen, Yandan Wang, Wei Zhang, Yiran Chen
and Hai (Helen) Li

11.1 Introduction

Nowadays, embedded systems are widely adopted in handheld devices, automobile

control, aircraft autopilot, medical instrumentation, and many other applications.

Thus, hardware security becomes very important to prevent piracy on design or leak-

age of sensitive data. Compared to application-specific integrated circuit (ASIC)

chips, systems built in field-programmable gate arrays (FPGAs) do not need ex-

pose design details to foundry or untrusted outsourcing and hence innately have a

higher security level [12]. However, attackers aiming at pirating FPGA configura-

tions, including intellectual property (IP) owned by system designers and sensitive

data owned by users, cannot be fully prevented. More specific, state-of-the-art FP-

GAs face the following security issues [3, 13]:

∙ Conventional FPGAs built with SRAMs need to load logic configuration from

external nonvolatile media during system initialization [2, 32]. Probing attack on

external connections is a common way to steal FPGA design.

Y.-C. Chen ⋅ Y. Wang ⋅ Y. Chen (✉) ⋅ H. (Helen) Li

University of Pittsburgh, Pittsburgh, PA, USA

e-mail: yic63@pitt.edu

Y. Wang

e-mail: yaw46@pitt.edu

Y. Chen

e-mail: yic52@pitt.edu

H. (Helen) Li

e-mail: hal66@pitt.edu

W. Zhang

Hong Kong University of Science and Technology, Hong Kong, China

e-mail: wei.zhang@ust.hk

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_11

277

278 Y.-C. Chen et al.

∙ Nonvolatile memory (NVM) FPGAs utilize antifuse [21] or Flash memory [22]

to maintain configuration data on-chip. Physical attack, e.g., probing after reverse

engineering [4], is the major security threat.

∙ Partial run-time reconfiguration emerges as an important security issue too. For

example, Xilinx products realize run-time reconfiguration via internal configura-
tion access port (ICAP), which is less secure due to port vulnerability [3, 13].

Updating configurations remotely could go through public and insecure network,

which requires more than one authentication schemes to enhance security level.

Many novel FPGA architectures were proposed by utilizing the emerging NVM

technologies, such as phase change memory (PCM), spin-transfer torque RAM (STT-

RAM), and resistive RAM (RRAM) [5, 20, 27]. On the one hand, the use of NVM

technologies promises fast operations as conventional SRAM-based FPGAs (SRAM-

FPGA), increases configuration capacity, and lowers system power consumption sig-

nificantly [18]. On the other hand, the nonvolatile storage of logic configuration in

these architectures raises a big concern in design security: powerful attackers could

access configuration memory which indeed contains the entire design without any

further protection. Note that the situation does not exist in SRAM-FPGA in which

data cannot be retained during powering off. Certainly, user can erase the data in

configuration memory after usage and initialize it from external or in-package mem-

ory when needed. The security concern in such an operation mode then becomes

similar to that of SRAM–FPGA at communication port. In summary, logic and stor-

age components made of NVMs are more vulnerable to physical attacks, making IP

protection, and data security even more challenging.

This work targets at the security issue in NVM-based FPGAs. Particularly, a hard-

ware security scheme is proposed for RRAM-based FPGA (RRAM-FPGA), in which

RRAM devices are used to construct look-up tables (LUTs) for logic functions as

well as block RAMs (BRAMs) for configuration and temporary data storage [7]. The

design demonstrates a high density of logic integration and well supports partial run-

time reconfiguration. The hardware security scheme in the work protects RRAM-

FPGA in three aspects:

1. An obfuscated configuration is loaded to BRAMs, combining a Chip DNA for

logic function identification. The FPGA system operates the designed function-

ality only when all the pieces of the logic configuration are correctly selected

from BRAMs and assembled in a proper sequence.

2. When a higher security level is needed, the system enters the blank mode by eras-

ing the contents on nonvolatile logic and routing elements. Even attackers obtain

the obfuscated configuration on BRAMs through physical attacks, the design can-

not be revealed or reproduced without Chip DNA.

3. We combine the communication ports of initialization and run-time reconfigu-

ration in RRAM-FPGA. The bitstream loading scheme is enhanced by the en-
crypted addressing, which enables partial random configuration loading and se-

cret key updating to resist bitstream piracy and protocol-based denial-of-service

attack.

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 279

The three key components together offer a high level protection on the hardware

and data communication of RRAM-FPGA. Our evaluations show that at acceptable

system loading and execution performance, the proposed scheme can resist level 3
attackers [1, 3]. Meanwhile, the communication port protected by the encrypted ad-

dressing demonstrates a much lower probability of protocol-based denial-of-service

attack compared to the modern FPGAs with AES encryption.

The rest of the paper is organized as follows. Section 11.2 gives a brief introduc-

tion on hardware security in FPGAs and the preliminary of RRAM-FPGA design.

Section 11.3 describes the threat models in RRAM-FPGA and the corresponding

solutions in this work. Section 11.4 presents the design details of the proposed secu-

rity scheme. We present the security evaluation and system performance analysis in

Sect. 11.5. At the end, Sect. 11.6 concludes the paper.

11.2 Background

11.2.1 Hardware Security in FPGAs and Related Work

Most of the commercial FPGAs use SRAM-based look-up tables (LUTs) to realize

logic functions [2, 32]. An external memory is needed to store design configuration

and initialize system during powering up. The connection between FPGA and its

external memory, therefore, is the weakest point in data protection. Attackers could

probe the signal at the connection to discover the bitstream and even reform the sys-

tem into denial-of-service [13]. Encryption technologies, such as AES, are widely

adopted to protect bitstreams in modern FPGAs [34]. Physical unclonable function
(PUF) is another popular solution in preventing attacks of bitstream reverse engi-

neering [17].

Nonvolatile FPGAs equipped with antifuse [19] or Flash memory [24] do not re-

quire external memory, and therefore have higher security level than SRAM-FPGAs.

However, the on-chip logic configuration could be pirated through probing attack

after reverse engineering [13]. For example, Lattice products [19] use a in-system
programmable scheme, which integrates NVMs of bitstream storage and SRAMs of

function logics into one package. Distributed security bits are placed in the silicon

as security fuses in loading configuration data. The technique aims at non-invade at-

tack and provides a moderately high (MODH) security level. Microsemi, previously

known as Actel, supplies FPGAs with functional memory in Flash fabric, which is

innately MODH device [24]. A large variety of cryptography services, e.g., AES-

128, SHA-256, and PUF, are offered [23]. Moreover, anti-tamper protection scheme

is provided to further protect design from physical attacks. It includes a physical con-

tainment to detect physical attacks and a system level protective loop to detect the

disturbs of protective mesh [24]. Once tamper is over the limitation, penalty such as

erasure of the entire design would be kicked in.

280 Y.-C. Chen et al.

As attractive features of FPGA, the remote, and run-time reconfigurability can

significantly enhance the design flexibility. However, the security protection of such

systems is more challenging. For example, Xilinx products support run-time config-

uration through internal configuration access port (ICAP) [34]. These ports provide

logic reconstruction only at the specific locations and are more vulnerable to attacks.

Remote reconfiguration transmits bitstreams through networks, which could be ac-

cessed by anonymous users. To prevent piracy or protocol-based denial-of-service

attack during bitstream transmission, multiple authentications are needed [3].

11.2.2 High Density RRAM-FPGA

FPGAs built with various emerging NVMs have been proposed previously [5, 7, 20,

27]. In this work, the FPGA architecture built with RRAM technology is taken as the

example case for its extremely high density, fast execution speed, and better support

on run-time reconfiguration [7].

As illustrated in Fig. 11.1, the smallest reconfiguration unit (RU) in RRAM-

FPGA includes not only the logic and routing elements but also a block RAM
(BRAM). The BRAM stores temporary data and logic configuration to enhance func-

tionality flexibility, and execution performance [7]. In this architecture, the logic

configuration is divided into two steps.

∙ Step 1: Through bitstream loading, design configuration is broadcast to and stored

in BRAMs.

∙ Step 2: Each RU distributes the configuration in BRAM to the corresponding logic

and routing elements through special tracks.

By leveraging RRAM technology, RRAM-FPGA significantly reduces leakage

power consumption and increases logic integration density [6]. However, the sys-

tem and data protection becomes more challenging.

Fig. 11.1 The reconfiguration unit (RU) in RRAM-FPGA

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 281

11.2.3 Security Advantages and Concerns of Nanoscale
Device

Nanoscale memory devices such as PCM, STT-RAM, and RRAM, demonstrate su-

perior advantages on security primitives as compared with complementary metal

oxide semiconductor (CMOS)-based memory devices in modern silicon on-chip
(SOC) designs. Nanoscale memory devices have native characteristics of ultra low

power consumption, fast accessing time, and stronger robustness, which can be ap-

plied to address security issues, such as piracy, counterfeiting, and side channel at-

tacks. Emerging solutions of hardware security including physical unclonable func-
tions (PUF), public physical unclonable functions (PPUFs), nonvolatile memories
(NVMs), memristor-based true random number generator (MTRNG), unique signa-

tures, tamper detection circuits, and cryptographic architectures, have received in-

tense study in recent years. The following is an introduction of PUF, PPUFs, NVMs,

and MTRNG in modern SOC designs.

1. PUF is a popular solution to address hardware security issue, which provides

a hardware specific unique signature or identification. The principle for PUF is

based on the intrinsic process variations within integrated circuits. Emerging

nanoscale devices such as memristor behaves process variations characteristic,

which becomes a promising device for hardware security solutions [29].

2. PPUFs are advanced technologies based on PUFs which overcome the limita-

tions of PUFs of being a secret key technology. Gap-based, matching-based, and

digital PPUFs are main PPUFs families, which behave the advantages of energy

efficiency, high throughput, low latency, a small footprint, flexibility in the cre-

ation of new classes of security protocols, and permanent integration with sensing

and computing systems to enable trustable flow of information [28].

3. Emerging NVMs, such as resistive STT-RAM and RRAM, demonstrating some

intrinsic randomness in their physical stochastic mechanisms are also explored as

one solution to hardware security. These intrinsic randomness, such as resistance

variation, random telegraph noise, and probabilistic switching behaviors, can be

utilized as entropy source [15].

4. MTRNG leverages the stochastic property when switching a device between its

binary states, which significantly reduces the design cost, offering high operat-

ing speed, and low power consumption. MTRNG plays a crucial role in system

protection and many other security applications [31].

Though nanoscale memory devices have advantages in SOC designs, innate non-

volatility of the devices incurs a concern of data leak in applications of memory

system since data lasts longer time as compared to conventional memory devices,

such as SRAM and DRAM. For a high density RRAM-FPGA, the concern becomes

even serious since FPGAs rely on on-chip memory system to configure logic func-

tions. In the following sections, we will introduce a simple and effective solution to

overcome the security concerns of nanoscale memory devices in FPGAs. The tech-

nique also helps to address conventional FPGA security flaw, such as spoofing and

replay attacks [8, 10].

282 Y.-C. Chen et al.

11.3 Threat Model of RRAM-FPGA and Our Proposed
Hardware Solutions

Figure 11.2 summarizes three major security threats in RRAM-FPGA and the corre-

sponding hardware solutions proposed in this work. The design and implementation

details of the proposed security scheme shall be described in Sect. 11.4.

Threat 1: Pirating configurations in BRAMs. As aforementioned, RRAM-FPGA

first loads a design into distributed BRAMs [7]. It is unlikely to encrypt the logic

configuration at this step because BRAMs are also be used as data memory in system

operation. Moreover, introducing an encryption scheme to each BRAM can severely

increase design area and complexity. Thus, the physical attack is a major threat when

distributing a RRAM-FPGA with preloaded IP: attackers may obtain the BRAM

content through probe attack and then duplicate it on other FPGAs. As illustrated

in Fig. 11.2a, we propose to leverage the extremely high storage density of RRAM

technology and place obfuscated copies of configurations. A Chip DNA is used to

enable the logic function. As such, even an unauthorized attacker has obtained the

data in BRAMs, without the Chip DNA, he/she is not able to identify the correct

logic combination or discover the system functionality.

Threat 2: Physical attack on logic components. After FPGA initialization, attack-

ers can obtain the exact design information by probing the memory units used for

(a)

(b)

(c)

Fig. 11.2 Three major threats in RRAM-FPGA: a Pirating configuration in BRAMs. b Physical

attack on logic components. c Attacking bitstream at communication port

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 283

logic and routing operations. Therefore, it is even more important to protect the data

in logic and routing components. For the designs with a higher security level, we

introduce a blank mode in which the configuration data on logic and routing ele-

ments will be erased at the end of normal operations or as power failure occurs, as

shown in Fig. 11.2b. Note that the design is still maintained in BRAMs and can be

re-initialized with Chip DNA.

Threat 3: Attacking bitstream at communication port. The remote and partial run-

time reconfigurations are naturally supported in RRAM-FPGA. Hence, bitstream

protection is important to prevent piracy or protocol-based denial-of-service attack.

Bitstream piracy targets at revealing logic function by predicting configurations from

load sequence or comparing bitstreams from different customers. Protocol-based

denial-of-service attack, including random pattern injection and replay attacking,

can also hurt system integrity. Here, we propose a encrypted addressing scheme. As

illustrated in Fig. 11.2c, it blends a configuration bitstream by mixing up loading se-

quence and adding redundant pieces. Meanwhile, it can support the change of secret

key for encryption and decryption to prevent replay attacking in remote reconfigu-

ration.

Attacker model: Powerful attacker. This work assumes powerful attackers who

have equipment to perform physical attacks and possess cutting edge supercomput-

ers for brute force attacks. They have the capability to fetch data stored in RRAM

through reverse engineering. They also have knowledge of attacks at communication

port through network or eavesdropping. Such attackers are level 3 attackers based

on IBM’s report [1]. In the proposed secure RRAM-FPGA, three elements—the

preloaded logic configuration with obfuscation, the Chip DNA, and the control of

communication network—are needed to acquire logic configuration data and acti-

vate the chip functionality. In the work, we assume powerful attackers can obtain

either two but not all of the three elements. Attackers shall be able to reveal the logic

design based on the logic configuration and the Chip DNA. However, probing attack

to obtain the data from all the RRAM cells is extremely time and cost consuming.

Attackers with the logic configuration and the control of communication port will

still require the Chip DNA to activate the chip functionality. Otherwise, it is highly

impossible to acquire the real design from the obfuscated data. By taking the control

of communication port and possessing Chip DNA, attackers may perform denial-of-

service attack. However, there is no way to acquire logic function.

11.4 Security Protection of RRAM-FPGA

Figure 11.3 gives an overview of the proposed secure RRAM-FPGA architecture,

which utilizes the obfuscated configurations for logic protection, the blank mode

to resist physical attack, and the encrypted addressing to guard from the bitstream

attacks. The details of these features are explained in this section.

284 Y.-C. Chen et al.

Fig. 11.3 An overview of the proposed secure RRAM-FPGA architecture

11.4.1 Obfuscated Configurations and Chip DNA

By blending the real design with some redundant data, the obfuscated configurations

are generated and then loaded into BRAMs. Each BRAM contains only one required

configuration. All the remaining copies result in denial-of-service. The FPGA system

operates normally only when the required logic configurations are properly selected

and assembled. The indices of correct copies in all the RUs form a configuration

indication, which is defined as Chip DNA.

Here, let’s use a FPGA design with four RUs (R1 ∼ R4) in Fig. 11.3 to demon-

strate the configuration obfuscation. We assume a RU contains up to four different

design configurations (C1 ∼ C4). The different colors in the figure represent the log-

ics belonging to different designs. The FPGA could operate in the following condi-

tions:

1. Blank configuration. Even the configuration data has been loaded in BRAMs, the

logic and routing elements cannot be set up without Chip DNA. In another words,

the FPGA is not functional yet.

2. Normal configuration. The FPGA operates normally under a given design con-

figuration (i.e., Yellow function) after applying a proper DNA sequence (i.e., C1-

C2-C4-C3) to RUs (i.e., R1-R2-R3-R4).

3. Faulty configuration occurs if an incorrect DNA is applied. For instance, the DNA

sequence C1-C2-C4-C4 triggers unmatched logic functions from different RUs:

R4 is set up for Cyan design, which is not compatible to the Yellow functions of

the other RUs. Thus, the FPGA cannot work properly.

4. Multi-boot is naturally supported in the proposed design. For example, beside

the aforementioned Yellow function, the sample FPGA can also realize Magenta

function when applying another DNA sequence C3-C4-C2-C1. To further en-

hance the security level, we can generate the obfuscated data by packing logics

with similar routing connections within the same RU or intentionally inject cer-

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 285

Table 11.1 Area comparison of FPGAs with different BRAM configurations

SRAM-FPGA RRAM-FPGA

No BRAM w/BRAM

1 copy

w/BRAM

4 copies

No BRAM w/BRAM

1 copy

w/BRAM

4 copies

1 1.185 1.742 0.373 0.55 0.66

tain redundant routing information. In this way, guessing the logic pattern through

connection relation would become even harder.

During system initialization, the Chip DNA is loaded through the DNA module

(refer Fig. 11.3). The DNA sequence shall be encrypted by AES to resist wiretap at-

tack. After loading into the FPGA, the DNA sequence will be partitioned and distrib-

uted to corresponding RUs. In hardware implementation, we can allocate an index

to each RU, or share the same piece of DNA among a group of RUs to reduce the

length of DNA.

The introduction of obfuscated copies requires larger BRAMs and potentially in-

creases the size of RUs, which is a major concern of the proposed scheme. For-

tunately, RRAM technology offers very compact data storage (∼40× of SRAM)

and can be integrated in 3D monolithic stacking structure [14], making high den-

sity BRAM possible. Based on the design parameters in [7], we analyzed and com-

pared the area cost of BRAM and RRAM-FPGA. The results are summarized in

Table 11.1. Here, the area values of these designs are all normalized to that of the

baseline SRAM-FPGA which does not utilize BRAMs. Note that the area increment

in RRAM-FPGA has a nonlinear relationship with BRAM capacity: adding a BRAM

with one or four copies of configuration logic induces 47.5 % or 76.9 % area over-

head to the design without BRAM. This is because the 3D structure is adopted in

constructing BRAMs [7]. Overall, a RRAM-FPGA with four copies of configuration

logic occupies 34 % less area compared to the baseline SRAM-FPGA.

The capacity of logic confiscation shall be users’ choice. For economical usage,

users can create obfuscation logic with BRAM of two copies to save area cost. In the

work, we suggest the BRAM capacity of four copies of configuration data. As such,

the system can protect high sensitive designs by utilizing four copies of logic obfus-

cation. Some less sensitive applications, instead, can take only half of the capacity

for logic obfuscation and the rest memory to store temporary data, which improves

system performance by reducing IO accesses.

11.4.2 Blank Mode Operation

In a general purpose application built with nonvolatile FPGA, the configuration data

is kept in logic and routing elements. However, the nonvolatile configuration data

is in danger of physical attack, e.g., probing attack, potentially resulting in security

286 Y.-C. Chen et al.

concerns. Here, blank mode operation is proposed for the RRAM-FPGA to prevent

physical attacks. Whenever the system completes normal operations or detects power

failure, it automatically erases the content on logic and routing elements with assist

of a power-off erasing scheme. At the end of normal operations, an instruction shall

be issued to enable the blank configuration before the system is powered off. In the

case of power failure, a backup power is necessary to erase at last partial config-

uration data. Since the programming energy of RRAM is relative small, on-board

soldered battery [19] or super-capacitor [16] shall be sufficient enough. The blank

configuration in Sect. 11.4.1 indeed is a form of blank mode. Even attackers obtain

the content in BRAMs, recovering the design functionality is difficult because the

correct configuration copies are hidden by the dummy copies.

Note the blank mode operation cannot be supported in the conventional and many

emerging NVM FPGAs, in which the logic configuration is stored only in the logic

and routing elements. In contrast, our design has a copy of obfuscated design in

BRAMs. Therefore, the design can always be recovered as far as the end-user keeps

the proper Chip DNA.

11.4.3 Encrypted Addressing

Conventional SRAM-FPGAs usually have two sets of configuration ports: (1)

the port used for system initialization and (2) the internal configuration access port
(ICAP) for partial run-time reconfiguration. Benefiting from the nonvolatile storage

and logic elements, RRAM-FPGA only requires one-time programming for design

loading. Hence, a dedicated initialization port is not necessary. A bitstream can be

encrypted with AES and loaded in sequence though one communication port.

Here, we propose an alternative solution that provides better loading speed and

leverages the data protection by obfuscated logic. The scheme utilizes the address-

based bitstream [33] and imports the RU addresses and the corresponding logic con-

figurations separately through the two ports. The short address stream needs to be

protected through AES [26]. Simple operation modes such as ECB [11] shall be

sufficient since address is a non-repeated data in the sequence. The long configura-

tion data is already under the protection of obfuscated logic so it can keep the same

format as conventional bitstream. The small size of unencrypted configuration data

promises fast loading and reduced stall time which is critical in many partial recon-

figuration applications [9]. If higher level of security is required, AES can be applied

to encrypt the configuration data. More complicated operation modes might be nec-

essary because there is a chance of repeated configuration in sequence. In the work,

we set the address length as 128 bits to be compatible with AES standard.

To guarantee a piece of configuration data is shipped to its target RU, the sim-

ple serial loading scheme can be applied. As shown in Fig. 11.4a, the RU address

increases sequentially and is loaded followed by its configuration. Then the config-

uration goes to the buffer and the address is decrypted, which takes about 20 ∼ 40
ns [30]. The related hardware components, including AES, Key module, and ad-

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 287

(a)

(b)

(c)

(d)

Fig. 11.4 Various loading schemes: a serial loading; b random loading; c dummy loading; and d
instruction and key loading

dress decryption, are shown in Fig. 11.3. However, such a simple loading scheme

inevitably faces security issues, such as bitstream piracy and protocol-based denial-

of-service attack, due to the sequential address loading and unprotected configura-

tion. In this work, we propose the encrypted addressing to protect the communication

ports aiming at different conditions.

Scenario 1—Bitstream piracy: Attackers could reveal configurations from loading

sequence by comparing two or multiple bitstreams belonging to different customers.

Our Solution—Random loading scheme can be easily realized in the address-based

design by hashing the loading sequence as shown in Fig. 11.4b. As a result, the ad-

dress sequences of different bitstreams are not comparable. The address hashing shall

be done by designers/IP providers at software level. It doesn’t introduce extra hard-

ware cost to RRAM-FPGA system.

Scenario 2—Protocol-based denial-of-service attack: While proceeding partial

reconfiguration, attackers may record the encrypted addresses and inject fake con-

figuration at these addresses. They even do not have to find out decrypted address to

make system malfunction. Our Solution—Dummy loading: We can intentionally in-

serts dummy data during loading process, as illustrated in Fig. 11.4c. These dummy

data eventually will be thrown away once the system detects that the dummy address

corresponds to invalid RU location. Note that a large pool of invalid addresses are

288 Y.-C. Chen et al.

available for dummy loading. For example, a FPGA having 32,768 RUs need only

15 bits to address all the RUs, while length of coded address is 128 bits.

Scenario 3—Replay attacking indicates the situation when attackers record (a

piece of) the old bitstream and replay it after designer configures a new design into

the system. Our Solution – Instruction and key loading: We define a small instruction

set by leveraging a few unused bits of the address code. A Key-renew operation is

introduced to update the secret Key of AES as illustrated in Fig. 11.4d. The instruc-

tion I1 requests the key verification operation and the old key K1 is loaded through

configuration port for comparison. If K1 matches the secret Key stored in the Key

module, the system approves the key updating operation. The instruction I2 initiates

the loading of the new key K2, which is encrypted based on the old secret key.

11.5 Evaluation and Discussion of RRAM-FPGA Security

Major security concerns of FPGAs can be cataloged into two aspects: (1) the piracy

of logic configuration and (2) the denial-of-service attack. Our proposed methodol-

ogy can successfully protect a design from physical attack, analytic attack and pattern

recognition attack. In this section, we will use a RRAM-FPGA composed of 32,768

RUs, each of which allows four design copies, to evaluate the security level of the

proposed scheme.

11.5.1 Protection of Logic Piracy in FPGA

An end-user can design his own logic function or buy IP core from other IP com-

panies or silicon vendors. In RRAM-FPGAs, obfuscated configuration, encrypted

address, and Chip DNA utilize different protection schemes. Without a complete set

of the three parts, it is very difficult for an attacker to pirate the correct logic function.

For powerful attackers who have FPGA board and get all obfuscated configu-

ration data, they still need Chip DNA to activate the function. Here, the length of

Chip DNA determines the complexity of analytic attack, which in general is very

high. Theoretically, the number of rounds through brute attack is 265,536, which is

extraordinary large to figure out the correct DNA.

Loading bitstream to FPGA over insecure network is under protocol eavesdrop-

ping. Attackers could get unencrypted obfuscated logic and encrypted address. Thus,

it is still hard to place a piece of logic function into correct location. Attackers may

be able to duplicate the bitstream to other FPGAs. However, different AES key can

be applied, indicating that the location mapping of logic function pieces is different.

Even AES module is under side channel attack and not secure, we still have the Chip
DNA to protect the chip function: an incorrect DNA cannot activate device or reveal

logic configuration as explained in Sect. 11.4.1.

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 289

(a) Configuration of Customer 1 (b) Configuration of Customer 2

Fig. 11.5 Different logics activated by different DNAs

Here is an extensive application of Chip DNA. For IP companies/silicon providers

who distribute IP core bitstream to many customers, the best way to protect IP cores

is to generate unique configuration bitstream file and Chip DNAs for each customer.

Such strategy can be easily realized by the proposed RRAM-FPGA. An effective

method is changing the index of each RU and the corresponding Chip DNA. For

example, Fig. 11.5 shows that an identical design can be coded into two different

bitstreams and distributed to two customers. Accordingly, they need different Chip
DNAs to enable the logic.

As aforementioned, potentially attackers could compare the obfuscated bitstream

from the two customers and guess the genuine configuration, that is the pattern
recognition attack. For instance, attackers may match the code pieces of R2 config-

urations in two bitstreams and distinguish the Green piece, the only common code

existing in both designs. Two approaches can resist this attack. The designer can

either insert the same dummy configurations in every RU so that attacker cannot

distinguish the real one based on its appearance. Or, as presented in Sect. 11.4.3, the

random loading scheme supported in the encrypted addressing can blend the bit-

stream sequence so that comparing and matching two bitstreams becomes extremely

difficult.

11.5.2 Protocol-Based Denial-of-Service Attack

The run-time and remote reconfigurations have become more and more popular on

FPGA-based embedded systems, e.g., space system and set top boxes [3]. Modern

FPGAs use ICAP for partial run-time reconfiguration, which is more vulnerable

compared to initialization port. Remote configuration usually transmit data through

existing network, which could be insecure. Multiple authentications are needed to

guarantee the authentication process not pirated by the attackers. The proposed

290 Y.-C. Chen et al.

RRAM-FPGA does not differentiate the initialization and partial run-time recon-

figuration. Both operations go through the same communication port, are protected

by the same hardware scheme, and hence have the same security level.

The major threats in run-time and remote reconfiguration include protocol-based
denial-of-service attack and replay attacks. Among the 128 bits of an address code,

only 15 bits are valid for the RRAM-FPGA with 32,768 RUs. Hence, when attack-

ers inject false or blank configurations to damage system integration, the chance to

hit the valid addresses is very low. Probability of protocol-based denial-of-service

attack of the proposed encrypted addressing when varying address length from 128

bits to 256 bits. The size of RRAM-FPGA changes from 16,364 RUs to 65,536 RUs.

For the FPGA with 32,768 RUs and 128-bit address, the probability of a successful

protocol-based denial-of-service attack is as low as 2−116.3. Large FPGA design with

more RUs has a higher attack probability because more bits in address are valid. For

such a system, properly extending the length of address should be sufficient. The

replay attack could be successful if attackers record the information during transfer-

ring and resend it through the same network to attack the FPGA system. The secret

key updating of the encrypted addressing loading scheme can prevent this type of

attack. When attackers replay the old configurations, the decrypted address based on

the new secret key will be mapped to an invalid address. So nothing will be loaded

into RUs. In contrast, the system designers with the new secret key are still able to

change ciphertext of the address and DNA and load function for the next remote

configuration.

11.5.3 Miscellaneous Discussion

The obfuscated configuration of the secure RRAM-FPGA results in bigger bitstream

file and longer loading time. The size of configuration bitstream is determined by not

only the design function but also the resources on routing elements. As an example,

we investigated the length of bitstreams for the RRAM-FPGA with different Look-Up
Table (LUT) designs. Figure 11.6 shows the bitstream size for FPGAs with 4-input,

6-input, or 8-input LUTs, assuming all the FPGAs have 32,768 RUs. After includ-

ing the cost at auxiliary components, we can see the bitstream length increases fast

with the LUT input number. The system based on 8-input LUT with four obfuscated

copies requires an even larger bitstream file than the designs based on 4-input or 6-

input LUTs with eight copies. And the bitstream size grows linearly as the number

of obfuscated configuration copies increases.

To evaluate the overhead on loading time, we tested the loading operation of 20

big MCNC benchmarks [25] assuming using USB 2.0 at 480 Mbps. The results are

given in Fig. 11.6c. The FPGA designs with 4-input LUTs and 6-input LUTs were

examined. The red line shows the ratio of the loading time (LUT 6/LUT 4). Because

the design with four-input LUTs needs less configuration bits and hence spends less

loading time. The ratio, though, is strongly related to the benchmarks. Though the

ratio is strongly related to the benchmarks, all the benchmarks can complete their

loading within 0.02 s.

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 291

(a) Bitstream size of various configura-
tion copies.

(b) Configuration Time.

(c) Loading time of MCNC bench marks.

Fig. 11.6 Performance analysis

The time to distribute the genuine configurations from BRAMs to logic and rout-

ing elements is irrelevant to the number of obfuscated copies. Figure 11.6b shows

the configuration time of different RRAM-FPGAs with various capacity. Because

the programming mechanism is designed to serially program memory cells for less

area cost, the design with 8-input LUTs needs longer configuration time. And larger

FPGAs with more RUs takes longer time in configuration if DNA index is loaded to

RU in sequence. However, if we assume the Chip DNA is prefetched and stored, and

functions in all RUs are distributed in parallel (“fast”), the configuration time can

be shorten to 10−6 to 10−5 s.

11.6 Conclusion

We proposed a secure configuration scheme for a RRAM-FPGAs, in which the high

density of emerging resistive memory technology is leveraged to build logic and

storage elements. The proposed architecture integrates three techniques to enhance

system security—the obfuscated configuration for logic protection, a blank mode

292 Y.-C. Chen et al.

to resist physical attack, and the encrypted addressing to guard from the bitstream

attacks. Our simulations show that the proposed design can resist level 3 attackers

by slightly prolonging system loading and execution performance. The proposed

RRAM-FPGA is suitable for embedded and high performance computing systems

for better design flexibility and hardware security.

References

1. Abraham, D., Dolan, G., Double, G., Stevens, J.: Transaction security system. IBM Syst. J.

30(2), 206–229 (1991)

2. Altera: Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices (2011). http://

www.altera.com

3. Badrignans, B., Danger, J., Fischer, V., Gogniat, G., Torres, L.: Security Trends for FPGAS:

From Secured to Secure Reconfigurable Systems. Springer (2011)

4. Bottom Line Technlogy: Reverse Engineering/Re-Engineering Services (2011). http://www.

bltinc.com

5. Chen, Y., Zhao, J., Xie, Y.: 3D-NonFAR: three-dimensional non-volatile FPGA architecture

using phase change memory. In: International Symposium on Low Power Electronics and De-

sign (ISLPED), pp. 55–60 (2010)

6. Chen, Y.C., Wang, W., Li, H., Zhang, W.: Non-volatile 3D stacking RRAM-based FPGA. In:

International Conference on Field Programmable Logic and Applications (FPL), pp. 367–372

(2012a)

7. Chen, Y.C., Wang, W., Zhang, W., Li, H.: uBRAM-based run-time reconfigurable FPGA

and corresponding reconfiguration methodology. In: International Conference on Field-

Programmable Technology (FPT), pp. 80–86 (2012b)

8. Devic, F., Torres, L., Badrignans, B.: Secure protocol implementation for remote bitstream

update preventing replay attacks on FPGA. In: IEEE International Conference on Field Pro-

grammable Logic and Applications (FPL), pp. 179–182 (2010)

9. Dimou, K., Wang, M., Yang, Y., Kazmi, M., Larmo, A., Pettersson, J., Muller, W., Timner,

Y.: Handover within 3gpp lte: design principles and performance. In: 2009 IEEE Vehicular

Technology Conference Fall (VTC), pp. 1–5 (2009)

10. Drimer, S., Kuhn, M.G.: A protocol for secure remote updates of FPGA configurations. In:

International Workshop on Applied Reconfigurable Computing, pp. 50–61 (2009)

11. Dworkin, M.: Recommendation for Block Cipher Modes of Operation. Technical report, DTIC

Document (2001)

12. Huffmire, T., Brotherton, B., Sherwood, T., Kastner, R., Levin, T., Nguyen, T., Irvine, C.:

Managing security in FPGA-based embedded systems. IEEE Des. Test Comput. 25(6), 590–

598 (2008)

13. Huffmire, T., Irvine, C., Nguyen, T., Levin, T., Kastner, R., Sherwood, T.: Handbook of FPGA

Design Security. Springer (2010)

14. ITRS: International Technology Roadmap for Semiconductors 2011 Edition (2011). http://

www.itrs.net/

15. Karam, R., Liu, R., Chen, P.Y., Yu, S., Bhunia, S.: Security primitive design with nanoscale de-

vices: a case study with resistive RAM. In: ACM Great Lakes Symposium on VLSI (GLVLSI),

pp. 299–304 (2016)

16. Knoth, S.: Supercaps Can Be a Good Choice Over Batteries for Backup Applications (2012).

http://www.eetimes.com/document.asp?doc_id=1280982

17. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF protecting IP

on every FPGA. In: IEEE International Workshop on Hardware-Oriented Security and Trust

(HOST), pp. 67–70 (2008)

http://www.altera.com
http://www.altera.com
http://www.bltinc.com
http://www.bltinc.com
http://www.itrs.net/
http://www.itrs.net/
http://www.eetimes.com/document.asp?doc_id=1280982

11 In-place Logic Obfuscation for Emerging Nonvolatile FPGAs 293

18. Kuon, I., Tessier, R., Rose, J.: Fpga architecture: survey and challenges. Found. Trends Elec-

tron. Des. Autom. 2(2), 135–253 (2008)

19. Lattice: FPGA Design Security Issues: Using the ispXPGA Family of FPGAs to Achieve High

Design Security (2003). http://www.latticesemi.com

20. Liauw, Y., Zhang, Z., Kim, W., Gamal, A., Wong, S.: Nonvolatile 3D-FPGA with monolithi-

cally stacked RRAM-based configuration memory. In: IEEE International Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), pp. 406–408 (2012)

21. Microsemi: Axcelerator Family FPGAs (2012a). http://www.actel.com

22. Microsemi: IGLOO Low Power Flash FPGAs (2012b). http://www.actel.com

23. Microsemi: Introduction to the SmartFusion2 and IGLOO2 Security Model (2013a). http://

www.microsemi.com

24. Microsemi: Overview of Data Security Using Microsemi FPGAs and SoC FPGAs (2013b).

http://www.microsemi.com

25. Minkovich, K.: MCNC benchmark (2007). http://cadlab.cs.ucla.edu/~kirill/

26. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M.: Report on the Development of

the Advanced Encryption Standard (AES). Technical report, DTIC Document (2000)

27. Paul, S., Mukhopadhyay, S., Bhunia, S.: A circuit and architecture codesign approach for a

hybrid CMOS-STTRAM nonvolatile FPGA. IEEE Trans. Nanotechnol. (TNANO) 10(3), 385–

394 (2011)

28. Potkonjak, M., Goudar, V.: Public physical unclonable functions. Proc. IEEE 102(8), 1142–

1156 (2014)

29. Rose, G.S., Rajendran, J., McDonald, N., Karri, R., Potkonjak, M., Wysocki, B.: Hardware

security strategies exploiting nanoelectronic circuits. In: IEEE Asia and South Pacific Design

Automation Conference (ASP-DAC), pp. 368–372 (2013)

30. Suh, G., Clarke, D., Gasend, B., Van Dijk, M., Devadas, S.: Efficient memory integrity verifi-

cation and encryption for secure processors. In: Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pp. 339–350 (2003)

31. Wang, Y., Wen, W., Li, H., Hu, M.: A novel true random number generator design leveraging

emerging memristor technology. In: ACM Great Lakes Symposium on VLSI (GLVLSI), pp.

271–276 (2015)

32. Xilinx: 7 Series FPGAs Overview (2011a). http://www.xilinx.com

33. Xilinx: Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite (2011b). http://www.

xilinx.com

34. Xilinx: Virtex-5 FPGA Configuration User Guide (2012). http://www.xilinx.com

http://www.latticesemi.com
http://www.actel.com
http://www.actel.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://cadlab.cs.ucla.edu/~kirill/
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com

Chapter 12
Security Standards for Embedded
Devices and Systems

Venkateswar Kowkutla and Srivaths Ravi

12.1 Introduction

Embedded system-on-chips (SoCs) are widely used in a variety of applications
today. These range from general purpose and compute to end equipment specific
such as mobile, industrial, networking, payment card systems, and automotive.
A majority of these embedded SoCs capture, store, manipulate, and/or access
sensitive/critical code, and data. Not surprisingly, these embedded SoCs or the
systems deploying them are prone to a wide range of security attacks. It has been
documented in numerous surveys that the cost of not having adequate security
mechanisms in the face of these threats can be significantly high. Classical IT
security threats have been estimated to have costed the U.S companies on an
average $12.7 million in 2014, up by nearly 10 % year on year [1]. In 2012, security
incidents due to mobile computing have been pegged as costing nearly half a
million US dollars just at the enterprise level. This cost is only increasing with the
proliferation of mobile devices [2]. The growing networked nature of any
embedded device in the Internet of Things (IoT) era exposes new security issues on
a daily basis—be it, smart home hacks [3], insulin pump hijacks [4], smartwatch
security flaws [5], remote car commandeering [6], etc.

Given the above factors, security has now become a critical consideration in the
design cycle of every embedded SoC or system to the point that every embedded
SoC needs to provide some level of security [7]. It is only the “level of security” that
is debated based on the critical nature of the applications and the associated

V. Kowkutla (✉)
Texas Instruments, Mail Station E4000 12500 TI Blvd, Dallas, TX 75243, USA
e-mail: venkat@ti.com

S. Ravi
Texas Instruments India, 66/3 Bagmane Tech Park, C V Raman Nagar,
Bangalore 560093, India
e-mail: srivaths.ravi@ti.com

© Springer International Publishing AG 2017
S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,
DOI 10.1007/978-3-319-50057-7_12

295

“cost-benefit-risk” tradeoffs. In many end equipments or applications, there are
well-defined standards that can be used to guide this process. Let us pick a couple
of examples.

• Point of sale (PoS) systems: PoS systems deal with accessing, processing, and
storing sensitive data pertaining directly or indirectly to monetary payments.
Hence, these systems require high level of security and are heavily governed
with multiple security standard committees with involvement of payment card
institutions like Visa, MasterCard, American Express, and Discover. The two
main security standard committees are Payment Card Industry Data Security
Standard (PCI DSS) [8] and Europay Mastercard and Visa (EMV) [9]. These
standards define high-level specifications to ensure that end system is in com-
pliance with the desired security goals. SoCs targeted for these applications
must adhere to these specifications and support required features to allow end
customer pass PCI/EMV certification. In this chapter, we look at the security
standards tied to this application in depth.

• Automotive systems: With the advent and proliferation of innovative in-vehicle
infotainment (IVI) technology and development of next-generation advanced
driver assistance systems (ADAS), automakers are relying heavily on embedded
SoCs to deliver these advanced safety and convenience features. Automotive
safety applications based on vehicle-to-vehicle and vehicle-to-infrastructure
communication have been identified as a means for decreasing the number of
fatal traffic accidents in the future. Examples of such applications are local
danger warnings and electronic emergency brakes. While these functionalities
herald a new era of traffic safety, new security requirements need to be con-
sidered in order to prevent attacks on these systems. This has become urgent
with the rapid increase in the number of electronic components and software
content in a car in recent years.

A “Smart Car” may be equipped with up to 200 embedded ECUs (electronic
control units) for a variety of functions using several million lines of code. The
ECUs are connected via various vehicular buses (e.g., CAN, MOST, MLB,
ETHERNET), forming a complex distributed system. The increasingly intercon-
nected nature of these electronic components, significant software usage along with
the availability of vehicular communication interfaces immediately exposes the
automotive surface to a wide range of security threats. In [10], the authors describe
two different methods of gaining indirect access to the car’s bluetooth unit. Soft-
ware vulnerability in the bluetooth interface code running in telematics unit is then
used to execute arbitrary code.

Hence, functional safety (“the state in which a vehicle function does not cause
any intolerable endangering states”) and security (“protection against malicious
attacks”) are today critical requirements for automotive SoCs. Security features
must include not just physical access and protection of confidential information, but
also protect critical safety subsystems [28]. Safety requirements are governed by

296 V. Kowkutla and S. Ravi

regulatory standards such as ISO 26262 [11] and IEC 61508 [12]. While there is no
uniform automotive security standard in place yet, security has been largely defined
by the general purpose standard Common Criteria [13], which been largely con-
cerned with the protection of assets against malicious attackers. This standard will
also be reviewed later in this chapter.

In the rest of this chapter, we describe the two layers of a hierarchical security
model that the embedded system designer typically uses to achieve his or her
application specific security needs.

• Foundation level security targeted at basic security services such as privacy,
authentication, and integrity is achieved predominantly using the powerful
mathematical functions called cryptographic algorithms. Cryptographic algo-
rithms are the subject of excellent books in data and network security [14, 15].
In Sect. 2, we attempt to give a brief insight into these building blocks and their
coverage through standards.

• Security protocols like TLS or SSL [16], IPSec [17], etc, have been the classical
overlay atop foundational cryptographic algorithms to achieve computer com-
munication and network security. In the embedded world, both general purpose
and end equipment or application level security standards are now becoming
niche overlays that encompass not just foundational cryptographic algorithms
but also a “basket of cryptographic and non-cryptographic solutions” to achieve
system security goals. One example of such a security goal can be “Zero-ize
secure memory in a payment terminal chip” upon detection of an attack. In
Sects. 3 and 4, we look at examples of security standards that are actively used
by chip and system vendors in the embedded space.

It would also be worth noting that both these layers are effectively implemented
using a combination of hardware and software techniques in embedded SoCs.
Examples of various applicable solutions themselves are not covered in this chapter,
and can be found in [7] and other chapters in this book.

12.2 Foundational Cryptographic Algorithms
and Associated Standards

The cryptographic toolkit [18] is a repository for recommended or approved
cryptographic algorithms from the National Institute of Standards and Technology
(NIST). Table 12.1 lists the various algorithms that are approved by NIST for
various cryptographic operations at this time.

The following subsections take a further look into commonly used block
ciphers—AES and Triple DEA or Triple DES, and the secure hash standard (SHS).

12 Security Standards for Embedded Devices and Systems 297

12.2.1 Advanced Encryption Standard (AES)

FIPS-197 [19] is the specification for the Advanced Encryption Standard (AES),
which is a symmetric block cipher that can be used to encrypt and decrypt data.
The AES algorithm (Rijndael was selected as NIST AES standard in Nov. 2001)
encrypts (decrypts) data in blocks of 128 bits. Encryption (decryption) can be
performed using cryptographic keys of 128, 192, or 256 bits.

A representative block diagram of AES is shown in Fig. 12.1, where encryption
and decryption of a block of data happens through an iterative application of four
basic transformations. Each iteration, called a round, works on a block of data
generated from the previous iteration and a round key which is derived from the
AES key through a key expansion cycle. The four basic transformations in an

Table 12.1 NIST cryptographic toolkit and recommended/approved algorithms

Category Recommended or Approved algorithms

Block ciphers AES, Triple DES/DEA, and Skipjack
Digital Signatures DSA, RSA, and ECDSA
Secure hashing SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and

SHA-512/256
Message
authentication

Message Authentication Code (MAC or DAC) and Keyed-Hash
Message Authentication Code (HMAC)

Random number
generation

Approved deterministic random bit generators (DRBGs) or
pseudorandom number generators

Key

Key expansion

Add round key

SubBytes

ShiftRows

MixColumns

Add round key

R
ou

nd
 1

W[0-3]

W[4-7]

Plaintext

SubBytes

ShiftRows

Add round keyR
ou

nd
 1

0

Ex
pa

nd
ed

 k
ey

W[40-43]

Ciphertext

Add round key

InvMixColumns

Add round key

InvSubBytes

InvShiftRows

R
ou

nd
 1

Plaintext

AddRoundKey

InvSubBytes

InvShiftRows R
ou

nd
 1

0

Ciphertext

W[36-39]

EN
C

R
YPTIO

N
D

EC
R

YP
TI

O
N

Fig. 12.1 Representative block diagram of AES Encryption and Decryption Operations

298 V. Kowkutla and S. Ravi

encryption round are SubBytes (substitution using a lookup table), ShiftRows
(“macro” permutation), MixColumns (fixed polynomial multiplication of columns
in GF(28), and Add RoundKey (bitwise xor). Details of the AES operation can be
found in an accessible form at [20]. Decryption is similar to encryption with inverse
transformations now pulled into each round.

AES is known to be cryptanalytically strong at this time with no known theo-
retical attacks that can break it with reasonable time or storage. However, infor-
mation leakage in implementations of AES has been exploited through a range of
side-channel attacks including timing and fault analysis attacks to infer the cryp-
tographic key.

12.2.2 Triple DES (3DES)/Triple DEA

FIPS 46-3 [21] is the standard specification of the Data Encryption Algorithm
(DEA) or Data Encryption Standard (DES). DES/DEA has now become outdated
due to the inherent weakness of a 56-bit key to brute force attacks with evolution of
computational power and has been withdrawn as a standard in 2005 [22]. Please
note that the 56-bit key with additional 8 error detection bits form the 64-bit key
that one commonly associates with DEA.

Triple DES or Triple DEA at its simplest level involves applying the DEA
algorithm three times. When the keys of each application of DEA are independent,
the key strength is equivalent to 168 key bits. Though DES is no longer a NIST
approved standard, Triple DEA with DEA as the core engine is an approved
standard as specified by NIST Special Publication (SP) 800-67 [23].

With the origins of the AES influenced by the DEA algorithm, the structure of
the DEA algorithm is in many ways similar. The DEA algorithm is an iterative
application of mathematical transformations on an input data stream which is
divided into blocks. The block size is 64 bits and each iteration in a DEA algorithm
is called a round. There are 16 rounds and each round processes the 64-bit block in
two 32-bit halves. One half is processed by a transformation function called
F-function, while the other half is xored with the result of the F-function. The
halves are then swapped before the next round. The F-function in each round is a
sequential application of four transformations—expansion, key mixing, substitution
and permutation. Decryption is again a sequence of inverse transformations with the
same key.

12.2.3 Secure Hash Standard (SHS)

FIPS 180-4 [24] specifies the approved algorithms to compute the condensed digest
or hash of a message. A cryptographic hash can conceptually be thought of as
similar to the checksum representation for a given piece of data, but it is

12 Security Standards for Embedded Devices and Systems 299

mathematically more secure. The security comes from two angles—for a given
secure hash algorithm, it is computationally infeasible to (a) find a message that
corresponds to a given message digest, or (b) to find two different messages that
produce the same message digest.

The FIPS 180-4 standard specifies SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, and SHA-512/256 as the approved secure hash algo-
rithms. For these algorithms, the message digests range in length from 160 to 512
bits. As per NIST’s 2012 policy on hash functions [25], recently discovered
weaknesses in SHA-1 have limited its usage to certain applications. The other
approved SHA algorithms today are collectively called SHA-2. There is a plan to
have the next-generation hash algorithms (KECCAK) standardized as SHA-3
algorithms in the future. Secure hash algorithms are also used in combination with
other cryptographic algorithms, such as digital signature algorithms and keyed-hash
message authentication codes, or in the generation of random numbers (bits).

12.3 Generic Security Standards

In this section, we will present a brief overview of the generic security standards
which are also employed in the embedded space.

12.3.1 Federal Information Processing Standard (FIPS)
140

Federal Information Processing Standards (FIPS) 140 is a series of security stan-
dards published by the National Institute of Standards and Technology (NIST) that
specifies security requirements for cryptographic module—loosely, we can define a
cryptographic module as any system with cryptographic components used to secure
sensitive information. The latest version is FIPS 140-2 [27], while there is a draft
version of FIPS 140-3 still under the review/approval process. The security
requirements specified in FIPS 140-2 span 11 specific areas related to secure design
and implementation of cryptographic modules as indicated in Table 12.2.

A given cryptographic module is assessed in each area and receives a security
level rating: from Level 1 (lowest) to Level 4 (highest) depending on the extent to
which requirements are met. An overall rating is then issued to the cryptographic
module which depends on minimum of the independent ratings received and ful-
fillment of other requirements specified in the standard. The four security levels
provided by this standard are compared below in Table 12.3 against various
dimensions such as levels of security, physical security, security against environ-
mental conditions exploits, and the underlying operating system on which the
firmware of the cryptographic module runs.

300 V. Kowkutla and S. Ravi

Table 12.2 A listing of cryptographic design and implementation aspects of a cryptographic
module covered by FIPS 140-2

Category Description

Cryptographic module
specification

Specification of a cryptographic module that may have
hardware and software components

Cryptographic module Ports
and Interfaces

All physical ports and logical interface that define entry/exit
points for a cryptographic module

Roles, services, and
authentication

Definition and separation of roles accorded to operators of the
cryptographic module, along with the corresponding services
and access authentication

Finite state model Definition of all operational and error states of a cryptographic
module, along with the state transition specification

Physical security Protection of sensitive or critical information in the
cryptographic module from physical access

Operational environment Management of the software and hardware components
required to operate the cryptographic module

Cryptographic key
management

Key management spanning the entire lifecycle of cryptographic
keys from key generation, distribution, storage to destruction

Electromagnetic
interference/compatibility

Proof of conformance of cryptographic module to
electromagnetic interference and compatibility

Self-test Self-tests (power up/conditional) to ensure that the
cryptographic module is functioning properly

Design assurance Use of various best practices by the vendor of a cryptographic
module during module development

Mitigation of other attacks Mitigation against emerging attacks that could include (but not
restricted to) power analysis, timing analysis, fault induction,
electromagnetic analysis

Table 12.3 Sample comparison of FIPS 140-2 security levels along various dimensions

FIPS
140-2
security
level

Level
of
security

Physical security Security against
environmental
conditions
exploits

Operating system

Security
level 1

Lowest Not required Not required Unevaluated
operating system

Security
level 2

Tamper evidence Not required Evaluated at the
CC evaluation
assurance level
EAL2 (or higher)

Security
level 3

Tamper Detection and
Response (High
Probability)

Not required Evaluated at the
CC evaluation
assurance level
EAL3 (or higher)

Security
level 4

Highest Tamper Detection and
Response (Highest
Probability). Zeroize
security parameters

Required Evaluated at the
CC evaluation
assurance level
EAL4 (or higher)

12 Security Standards for Embedded Devices and Systems 301

If we review any dimension in FIPS 140-2 in detail, we will see the levels of
security requirements increase from one level to another. Picking physical security
as an example, we can see that

• Physical security mechanisms are not required for Security Level 1.
• Security Level 2 enhances the physical security aspects of a Security Level 1.

Per FIPS 140-2, it includes the requirements for tamper-evidence such as, use of
tamper-evident coatings/seals or for pick-resistant locks on removable module
covers or doors to protect against unauthorized physical access.

• Security Level 3 provides tamper resistant physical security—preventing the
intruder from gaining access to critical security parameters held within the
cryptographic module. This level has a high probability of detecting and
responding to physical tampering of the cryptographic module. Physical security
mechanisms include tamper detection/response circuitry that erases all critical
security parameters when the removable covers/doors of the cryptographic
module are opened.

• Security Level 4 requires physical security mechanisms to detect and respond to
all unauthorized accesses. This level offers high probability of detecting all
physical tamper attacks resulting in the immediate eraser of critical security
parameters. This level of security is appropriate for applications deployed in
physically unprotected environments needing high security.

This is true for other security dimensions as well (in some cases, they could be
same as the previous level). Additional observations on each security level are listed
below for further illustration.

• In Security Level 1, security requirements for cryptographic modules are very
basic—e.g., use one approved algorithm or security function. This level is
appropriate for low-cost applications where the security requirements are very
low and does not need physical/network security. From an operating system
perspective, cryptographic software and firmware can be executed on a general
purpose computing system using an unevaluated operating system. An example
of a Security Level 1 is a personal computer (PC) encryption board.

• Security Level 2 requires role-based authentication to authorize an operator to
assume a specific role to perform corresponding set of tasks. Cryptographic
software and firmware can be executed on a general purpose computing system
using an operating system that has been evaluated at the Common Criteria
(CC) evaluation assurance level EAL2 (or higher). We will be reviewing CC in
the next section.

• Security Level 3 requires identity-based authentication mechanisms to authen-
ticate the identity of an operator and verifies that the identified operator is
authorized to assume a specific role to perform corresponding set tasks. Security
Level 3 requires encryption on critical secure parameters while writing into or
reading from the cryptographic modules. These writing/reading ports must be
physically separated from ports on other interfaces. The underlying operating

302 V. Kowkutla and S. Ravi

system should have been evaluated at the Common Criteria (CC) evaluation
assurance level EAL3 (or higher).

• Security Level 4 provides a complete envelope of protection around the cryp-
tographic module. This level provides protection against all types of tamper
attacks including security vulnerabilities due to environmental conditions or
fluctuations outside of the module’s normal operating ranges for voltage and
temperature.

Overall, these security levels provide a cost-effective way to rate a cryptographic
module covering a wide range of products and application environments in which it
may be deployed. Users of cryptographic modules can make their selection based
on the individual area ratings and overall rating depending on the environment in
which the cryptographic module will be implemented.

12.3.2 Common Criteria (CC)

Common Criteria (CC) [13] is an internationally recognized standard used by
consumers, government agencies, and other organizations to assess the security and
assurance of technology products. With various security criteria existing within the
international community, it was developed in an effort to resolve the differences
(conceptual or technical) and enable standardization right from specification to
implementation to evaluation.

Common Criteria approaches security in a holistic way—Highest security can be
achieved only when security is considered during all phases of the product life cycle
including specification, development, evaluation, and operation. It has two key
components which are defined below.

• Protection Profile (PP): A “Protection Profile (PP)” defines an
implementation-independent set of security requirements and objectives. A PP is
intended to be reusable and to define requirements which are known to be useful
and effective in meeting the identified objectives.

• Evaluation Assurance Level (EAL): An “Evaluation Assurance Level (EAL)”
defines how thoroughly the product is tested. Evaluation Assurance Levels are
scaled from 1–7, with one being the lowest level of security assurance and seven
being the highest level of security assurance. Consumers, Developers and
Evaluators can then specify the security requirements in terms of standard
security Protection Profile (PP) and independently select the Evaluation
Assurance Levels (EAL) from the defined set of assurance levels. As seen in last
section, FIPS 140-2 also uses the definitions of EALs in Common Criteria to
evaluate specific areas of a system. The seven EALs are defined in Table 12.4.

With the above definitions, the security-aware product development cycle
envisioned by CC is outlined in Fig. 12.2. In specification and development phase,
CC-defined protection profiles are first used to create a standardized set of security

12 Security Standards for Embedded Devices and Systems 303

requirements which meet the needs of products. The product security specification
named as “Security Targets” in the chart is used to define the security objectives,
attacks under consideration, specification of the security functions, and the assur-
ance measures. This then forms the input to the evaluation phase where the
expected result is a confirmation that Security Targets meet the desired assurance
levels. The results from the evaluation phase help both the product developer and
end system user. Finally, when the system is in operation, it is highly possible that
new vulnerabilities may surface or the deployment environment assumptions
change. Reports are then made to the developer for changes back to the specifi-
cation and development, and the product cycle is repeated.

Table 12.4 Evaluation assurance levels

Evaluation
assurance
levels

Type of testing Intent and description

EAL1 Functionally tested EAL1 is the lowest assurance level intended to
detect obvious security errors. This level of
assurance is used to support the contention that
personal information is protected and is not
exposed. This will not detect subtle security
weaknesses

EAL2 Structurally tested EAL2 requires developers to deliver minimal
amount of design information and test results.
Intent is to keep additional development and test
cost low on the developer side. This level of
assurance is useful for a low to moderate level of
security

EAL3 Methodically tested
and checked

EAL3 requires developers to follow certain level
of security standards during development process.
Again, substantial changes to existing
development practices are not intended. This level
of assurance is useful if a moderate to high level
of security is desired

EAL4 Methodically
designed, tested and
reviewed

EAL4 requires developers to apply certain
security standards based on specialized
commercial practices. This level is believed to be
the highest assurance level that is economically
feasible to retrofit to an existing product line

EAL5 Semi-formally
designed and tested

Applicable when specialized security techniques
is used to protect high value assets

EAL6 Semi-formally verified
design and tested

Applicable when high level of specialized security
techniques is used in a rigorous development to
protect high value assets

EAL7 Formally verified
design and tested

Applicable when highest level of specialized
security techniques is used for high cost/risk
scenarios

304 V. Kowkutla and S. Ravi

12.4 Application/Market Specific Security Standards

In this section, we will present a brief overview of various standards as dictated by
their respective markets.

12.4.1 Payment Card Industry (PCI) Standard

The Payment Card Industry (PCI) council is responsible for developing and
managing the security standards for payment card transactions. The PCI security
standards define the technical and operational requirements mandated by the Pay-
ment Card Industry Security Standards Council (PCI SSC) for two primary
objectives (a) security of credit, debit, and cash card transactions and (b) protection
of cardholders against misuse of their personal information. These standards cover
end-to-end security requirements starting from the point of entry of card data into a
system, to how the data is processed, through secure payment applications. Com-
pliance with the PCI set of standards is enforced by the Council’s five founding
global payment brands—American Express, Discover Financial Services, JCB
International, MasterCard Worldwide and Visa Inc.

Specification & Development

CC defined Protection Profile (PP) constructs used to create
standardized set of security requirements for product

Security Targets: Product Security specification that form the
primary input to the evaluators for evaluation.

Evaluation

Review the Security Targets as per the target EAL.

Documentation of the evaluation findings.

Opera on

Review feedback from product operation - vulnerabilities that surface
environmental assumptions that change. Feedback revisions to
specification and development

Fig. 12.2 A representative product development cycle with CC

12 Security Standards for Embedded Devices and Systems 305

The standard has three main components as shown in Fig. 12.3.

• PCI PIN Transaction Security (PCI PTS)—This component of the standard
focuses on characteristics and management of devices used in the protection of
cardholder PINs

• PCI Payment Application Data Security Standard (PCI PA-DSS)—This com-
ponent of the standard focuses on requirements for software developers and
integrators of payment applications. Payment applications store, process or
transmit cardholder data as part of authorization or settlement, hence form a key
component of the critical data chain

• PCI Data Security Standard (PCI DSS)—This component of the standard
focuses on requirements related to secure handling of card holder data

The following subsections provide a high-level summary of physical and logic
security requirements for the secure hardware as mandated by the PCI standard [8]:

Physical Security Requirements

The device must have robust tamper detection, protection, and response mecha-
nisms against various physical and side-channel attacks.

• Direct physical attacks: Examples include drilling, lasers, chemical solvents,
opening covers, splitting the casing (seams), and using ventilation openings.

• Indirect physical attacks: Examples include fluctuations in environmental con-
ditions and/or operational conditions—device may be subjected maliciously to
temperatures or operating voltages outside the stated operating ranges. Care
should be taken so that the attacks do not put the device in vulnerable state.
Indirect attacks also include attacks that monitor information leakage through
side-channels such as electromagnetic radiation, power rail noise or sound.

• Multilevel security: Tamper protection of the system should strongly consider
building redundancy into the security mechanisms. This will ensure safe-
guarding for the scenario that failure of a single security mechanism compro-
mises device security.

Fig. 12.3 An overview of the payment card industry security standards [26]

306 V. Kowkutla and S. Ravi

• Secure memory and key protection: Critical secure parameters or data must be
stored in protected area(s) of the device and must be protected from modifica-
tion. There should be no feasible way to determine any PIN-security-related
cryptographic key resident in the device or make any modifications to secure
information.

• Secure interfaces: Data entering or leaving the secure device must always be
encrypted. One strong requirement is that there should be no feasible way to
determine any entered and internally transmitted PIN digit by any means.

• Tamper Reaction/Response: The device must implement tamper response
mechanisms. Upon tamper detection, one of the key responses must be to erase
any sensitive data that may be stored in the device and immediately make the
device inoperable.

Logical Security Requirements

The logical security requirements are predominantly focused on the software and
system aspects of the device.

• Anomalous input handling: The device’s functionality should not be compro-
mised by code or data anomalies. Examples of anomalies include unexpected
command or initialization sequences, invalid commands or data which could
result in the device outputting the unencrypted PIN or other sensitive data.

• Firmware updates: Any firmware and software changes must be inspected and
reviewed using a documented and auditable process. The firmware/software
must be certified as being free from hidden and unauthorized or undocumented
functions. Any firmware updates must be cryptographically authenticated and if
the authentication fails then the firmware update must be rejected and deleted.

• Application Isolation: The system must ensure that it is not possible for one
application to interfere with or tamper with another application or the OS of the
device. Application isolation should ensure that there is separation between
multiple applications. Further, the operating system must be configured securely
and must contain only the necessary components for the intended operation.

• Transaction PIN protection: The device must not display the entered PIN digits.
PINs are encrypted within the device immediately after PIN entry is complete
and has been signified.

• Transaction memory residue protection: The device must automatically clear its
internal buffers after completing a transaction or when the device has timed out
waiting for the response.

• Periodic Self Testing: Secure device must perform periodic self-test, including
integrity and authenticity tests to check whether the device is in a compromised
state. In the event of a test failure, the device must activate the tamper protection
mechanism.

12 Security Standards for Embedded Devices and Systems 307

12.4.2 Europay Mastercard Visa (EMV) Standard

The Europay Mastercard Visa (EMV) Standard is a security standard for payment
cards and terminals with embedded smart cards (also known as chip card). Chip
cards store data on an embedded secure microchip rather than magnetic stripes. The
embedded microchip provides enhanced transaction security features and other
application capabilities not possible with traditional magnetic stripe cards. The
transaction protection benefits offered by EMV standard cover the following.

• Protection against counterfeit fraud: The standard employs stronger authenti-
cation methods and unique transaction elements such as advanced encryption to
verify that the card is genuine. This is applicable to both online and offline
transactions.

• Embedded card risk analysis capabilities: The standard defines the conditions
under which the issuer will permit the transaction to be conducted offline and the
conditions that force transactions online for authorization if offline limits have
been exceeded.

• Card/data tamper protection: Offers protection against tampering of card and
POS data during online transaction processing by attaching a dynamic cryp-
togram to each authorization and clearing transaction.

• Cardholder verification: Robust cardholder verification methods to protect
against lost and stolen card fraud

Thus, the levels of protection available against chip card account data thefts and
counterfeit fraud are significantly enhanced.

EMV Co manages, maintains and enhances the EMV Integrated Circuit Card
Specifications for chip-based payment cards and acceptance devices, including
point of sale (POS) terminals and ATMs. The EMV standard is currently owned by
American Express, JCB, MasterCard, and Visa. EMV specifications ensure inter-
operability between chip-based payment cards and terminals. Specifications
encompass both contact and contactless cards. Contact cards are cards which must
be physically inserted into a card reader for transactions; Contactless cards are cards
capable of transmitting data wirelessly over short distances using radio-frequency
communication technology. The EMV Chip Specifications are based on existing
International Organization for Standardization (ISO) standards as follows:

• ISO/IEC 7816: Identification Cards: Integrated Circuit(s) Cards
• ISO/IEC 14443: Identification Cards: Contactless Integrated Circuit(s) Cards—

Proximity Cards

SoCs designs targeting chip-based payment cards and acceptance devices must
meet EMV security standards as defined in the EMV Integrated Circuit Card
Specifications [9]. EMV also establishes and administers testing and approval
processes to evaluate compliance with the EMV Specifications.

308 V. Kowkutla and S. Ravi

12.4.3 Interplay of EMV and PCI Standards

EMV and PCI Standards together offer an enhanced security for payment trans-
action data in the following ways. EMV chip provides an additional level of
authentication at the point of sale that increases the security of a payment trans-
action and reduces chances of fraud. Once the card is entered into the merchant’s
system, the cardholder’s confidential information is transmitted and stored on their
network in a clear (unencrypted) exposing it for variety of frauds. This is where PCI
Standards come in. On top of EMV chip at the POS, they offer protections for the
POS device itself and provide layers of additional security controls. It covers
end-to-end security requirements starting from the point of entry of card data into a
system, to how the data is processed, through secure payment applications.

12.5 Security Standard Compliance Assessment

Systems or chips that need to comply with various standards need to go through a
rigorous compliance assessment with the standards consortiums or third-party labs
that are approved to evaluate them.

For example, the PCI Security Standards Council is responsible for managing
the security standards, while compliance with the PCI Security Standards is
enforced by the payment card brands. The PCI Security Standards Council operates
a number of programs to train, test, and certify organizations and individuals who
can then assess and validate adherence to PCI Security Standards. PCI Security
Standards Council maintains an up to date list of Qualified Security Assessors—
internal and external organizations who have been qualified by the Council to
assess compliance to PCI Standards.

Similarly, the EMV Standards Committee has setup a Security Evaluation
Process based on a complete set of published EMV Security Standard documents
(specifications, requirements, and security guidelines). These documents are made
available to product providers and security evaluation laboratories for the devel-
opment and security evaluation of their products. Security Evaluation Process is
intended to provide organizations with valuable and practical information relating
to the general security performance characteristics and the suitability of use for
smart card related products, Platforms and ICs.

EMVCo uses independent security evaluation laboratories to perform security
evaluations. An up to date list of these organizations is maintained on its website
[9]. The EMV security guidelines support product providers in developing and
testing their products, and test laboratories in performing security evaluations.

12 Security Standards for Embedded Devices and Systems 309

Security Evaluation Process evaluates the security features of IC, Platform, and
Integrated Chip Card products. Evaluation includes:

• Integrated circuit hardware with its dedicated software, Operating System, Real
Time Environment

• Firmware and software routines required to access the security functions of the
IC

• Payment application software running on the platform

Once the product passes the evaluation assessment, a certificate will be released
indicating the level of security compliance of the product with respect to the
Security Standards requirements.

12.6 Summary

Security standards such as FIPS and Common Criteria have so far been the bulwark
of general purpose systems—software and hardware—that need to offer security
services. In this chapter, we first looked at the need for embedded security, fun-
damental cryptographic algorithms and associated standards, as well as general
purpose security standards. We then also saw how market specific end-to-end
security concerns have led to the evolution of application specific standards.
A specific application we looked at in detail is payment transactions. We saw how
security standards such as PCI and EMV are building on the general security
principles and defining a custom set of security requirements for the payment
ecosystem. We hope the overview provided in this chapter and the references for
further reading will give a good launchpad for any embedded SoC/system devel-
oper to understand their security requirements better and define the next steps in
addressing them.

References

1. HP, Understand the cost of cyber security crime. http://www8.hp.com/us/en/software-
solutions/ponemon-cyber-security-report/index.html

2. Symantec, 2012 State of Mobility Survey. http://www.symantec.com/about/news/release/
article.jsp?prid=20120221_02

3. How to hack and crack the connected home. http://www.bbc.com/news/technology-27373328
4. Black Hat hacker details lethal wireless attack on insulin pumps. http://www.extremetech.

com/extreme/92054-black-hat-hacker-details-wireless-attack-on-insulin-pumps
5. Smartwatches have security flaws says HP. http://www.bbc.com/news/technology-33642728
6. Greenberg, A.: Hackers Remotely Kill a Jeep on the Highway—With Me in It. http://www.

wired.com/2015/07/hackers-remotely-kill-jeep-highway/
7. Kocher, P., Lee, R., McGraw, G., Raghunathan, A., Ravi, S.: Security as a new dimension in

embedded system design. In: Proceedings of the Design Automation Conference (DAC),
2004, pp. 753–760, July 2004

310 V. Kowkutla and S. Ravi

http://www8.hp.com/us/en/software-solutions/ponemon-cyber-security-report/index.html
http://www8.hp.com/us/en/software-solutions/ponemon-cyber-security-report/index.html
http://www.symantec.com/about/news/release/article.jsp%3fprid%3d20120221_02
http://www.symantec.com/about/news/release/article.jsp%3fprid%3d20120221_02
http://www.bbc.com/news/technology-27373328
http://www.extremetech.com/extreme/92054-black-hat-hacker-details-wireless-attack-on-insulin-pumps
http://www.extremetech.com/extreme/92054-black-hat-hacker-details-wireless-attack-on-insulin-pumps
http://www.bbc.com/news/technology-33642728
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

8. Payment Card Industry (PCI) PIN Transaction Security (PTS) Point of Interaction (POI),
Modular Security Requirements Version 4.0, June 2013. https://www.pcisecuritystandards.
org/documents/PCI_PTS_POI_SRs_v4_Final.pdf

9. EMV Requirements Security Requirements—http://www.emvco.com
10. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack surfaces.

In: Proceedings of the Usenix Security Symposium 2011
11. ISO 26262-1:2011 “Road vehicles—Functional safety”. www.iso.org
12. International Electrotechnical Commission (IEC)—Functional Safety and IEC 61508. http://

www.iec.ch/functionalsafety/
13. Common Criteria for Information Technology Security Evaluation Part 1: Introduction and

general model, Sept 2012, Version 3.1, Revision 4, CCMB-2012-09-001
14. Stallings, W.: Cryptography and Network Security: Principles and Practice, 6th edn. Pearson

(2013)
15. Schneier, B.: Applied Cryptography: Protocols, Algorithms and Source Code in C. Wiley

(2015)
16. Transport Layer Security (TLS), https://datatracker.ietf.org/wg/tls/documents/
17. IP Security Maintenance and Extensions (ipsecme). http://datatracker.ietf.org/wg/ipsecme/

documents/
18. NIST, Cryptographic Toolkit. http://csrc.nist.gov/groups/ST/toolkit/index.html
19. Federal Information Processing Standards Publication 197 Nov 26, 2001 “Specification for

the Advanced Encryption Standard (AES)”
20. Advanced Encryption Standard, https://en.wikipedia.org/wiki/Advanced_Encryption_

Standard
21. Federal Information Processing Standards Publication 46-3, 1999 Oct 25 “Data Encryption

Standard (DES)”
22. NIST Withdraws Outdated Data Encryption Standard. http://www.nist.gov/itl/fips/060205_

des.cfm
23. NIST Special Publication 800-67, Recommendation for the Triple Data Encryption Algorithm

(TDEA) Block Cipher. http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-
Rev1.pdf (2012)

24. Federal Information Processing Standards Publication 180-4, March 2012, Secure Hash
Standard (SHS). http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

25. NIST’S Policy on Hash Functions. http://csrc.nist.gov/groups/ST/hash/policy.html
26. PCI Quick Reference Guide. https://www.pcisecuritystandards.org/pdfs/pci_ssc_quick_guide.

pdf
27. Federal Information Processing Standards Publication 140-2, May 25, 2001 “Standard for

Security Requirements for Cryptographic Modules”
28. Safety & security architecture for automotive ICs, Yash SainiArun Jain, 25 Sept 2013

12 Security Standards for Embedded Devices and Systems 311

https://www.pcisecuritystandards.org/documents/PCI_PTS_POI_SRs_v4_Final.pdf
https://www.pcisecuritystandards.org/documents/PCI_PTS_POI_SRs_v4_Final.pdf
http://www.emvco.com
http://www.iso.org
http://www.iec.ch/functionalsafety/
http://www.iec.ch/functionalsafety/
https://datatracker.ietf.org/wg/tls/documents/
http://datatracker.ietf.org/wg/ipsecme/documents/
http://datatracker.ietf.org/wg/ipsecme/documents/
http://csrc.nist.gov/groups/ST/toolkit/index.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://www.nist.gov/itl/fips/060205_des.cfm
http://www.nist.gov/itl/fips/060205_des.cfm
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/groups/ST/hash/policy.html
https://www.pcisecuritystandards.org/pdfs/pci_ssc_quick_guide.pdf
https://www.pcisecuritystandards.org/pdfs/pci_ssc_quick_guide.pdf

Chapter 13
SoC Security: Summary and Future
Directions

Swarup Bhunia, Sandip Ray and Susmita Sur-Kolay

Secure and trustworthy operation of SoCs used in diverse applications is a critical
need for modern computing systems. SoCs serve as the trust anchors for the soft-
ware stack, and hence any security/trust issue at SoC level violates the fundamental
concept of hardware trust anchor and can essentially prevent secure operation of the
whole system. The security and trust issues in SoC are varied and span different
stages of its life cycle—from design to fabrication to deployment. These issues
depend on the business model of the chip manufacturers and the original equipment
manufacturers (OEMs) as well as the target application space for a SoC product.
However, the horizontal business model that emerged with the current trend of
globalization, which favors a long globally distributed manufacturing and pro-
duction process, brings large number of untrusted parties in the SoC life cycle.
Hence, the threat of hardware IP piracy, reverse engineering, tampering, and
counterfeiting are becoming ever more significant for SoCs. The book has pre-
sented an overview of the SoC threat space and attack vectors throughout its life
cycle.

Secure high-assurance SoC design will require appropriate design and test
methodologies and CAD tools. The design process starts with defining the security
requirements, then developing a security architecture, implementing targeted
security solutions in the architecture, and verifying the security properties before
fabrication. The prevalent practice of IP-based SoC design involves an important

S. Bhunia (✉)
University of Florida, 216 Larsen Hall, 968 Center Dr., Gainesville, FL 32611, USA
e-mail: swarup@ece.ufl.edu

S. Ray
NXP, Austin, USA

S. Sur-Kolay
Indian Statistical Institute, Kolkata, India

© Springer International Publishing AG 2017
S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,
DOI 10.1007/978-3-319-50057-7_13

313

new challenge. These IPs are often obtained from untrusted third-party vendors,
which creates trust concerns—in particular, the IPs may potentially come with
malicious implants or Trojans. Similarly, third-party design tools used in the SoC
integration process may be untrusted and can cause malicious design changes.
Designing trusted SoCs with untrusted components has emerged as a major chal-
lenge with modern SoC design flow. Secure SoC design methodologies need to be
accompanied with appropriate post-silicon validation approaches, which aim at
ensuring that the fabricated SoC works in a system in secure trustworthy fashion
and is impervious to known attack vectors.

Design and validation of SoCs require addressing two broad classes of security
and trust issues: (1) protection against the hardware security threats, which include
all forms of side-channel attacks (power analysis, timing, EM, and fault injection),
hardware IP piracy, hardware Trojan attacks, micro-probing attacks, and scan based
attacks; and (2) protection of multitude of security assets on chip against malicious
access by software running on the SoC. With respect to the first class of protection,
it is worth noting that existing IP level solutions do not scale well at SoC level. For
example, an IP level Trojan detection solution may not work at SoC level. It would
almost certainly miss a Trojan instance in the interconnect fabric. Similarly, anal-
ysis of and protection against side-channel attacks for crypto IPs in isolation may
not be as precise or effective when integrated into an SoC. Hence, it requires
consideration of other IP blocks and interaction among them for more accurate
security analysis and for developing countermeasures that provide right level of
protection for an SoC at optimal overhead. Furthermore, even though IP level
solutions are effective to protect individual IPs, they need to be integrated at the
SoC level to enable holistic protection of the SoC. It would require a centralized
infrastructure in SoC to control the protection mechanisms inside individual IPs.

Modern SoC designs contain a number of critical security assets, including keys,
firmware, cryptographic modules, fuses, and private user data, which are sprinkled
across multiple IPs often cross-cutting hardware and software boundaries. Conse-
quently, developing an SoC design critically requires: (1) specifying, implementing,
and validating security policies to govern the access and interaction of these assets
during field operation, (2) developing on-chip security architectures to enable
effective validation of SoC resiliency against security attacks and vulnerabilities;
and (3) comprehensive validation of these security policies both before and after
fabrication to ensure they are protected against undesired leakage or manipulation.

Several chapters of this book have been dedicated to examine the state of the
research and practice in the important areas of design and validation of SoC security
and to emphasize the cooperation and trade-offs between the two areas. We have
also presented an overview of the industrial practices in security assurance and
validation of modern SoC designs. The goal has been to provide an understanding
of the current state of the practice, and to describe the different pieces of a highly
complex ecosystem that must interact and cooperate to ensure security and trust-
worthiness of our computing devices.

314 S. Bhunia et al.

Recent years have seen an explosion of deeply embedded, smart, and highly
connected computing devices in diverse form factors. In particular, wearable and
implant technologies, cyber physical systems (CPS), and Internet of Things
(IoT) have made significant forays into nearly all aspects of our life. With advances
in technology, design of new and advanced sensors, pervasive connectivity, and the
trend in business towards cloud-driven data-centric solutions, the future is projected
to see an even higher proliferation of systems comprising of such devices that
coordinate through cloud to solve complex, distributed tasks. Commensurate with
computing capability, the applications have also scaled in complexity by several
factors, e.g., from smart phones to smart cities. The evolving paradigm of com-
puting systems and their wide-spread deployment in diverse fields would impose
increasingly strong demands on security and trust of SoCs used in these systems.
The problem is accentuated by the features of smartness and ubiquitous connec-
tivity of these systems, which give rise to new opportunities for attacks. Hence, SoC
security designers and validators would face ever-growing challenges in meeting
the security demands of future systems. It would require major research activities
and innovations in architecture, design methodologies, security analysis, and pre-/
post-silicon validation. One related future research direction that we believe will
gain strong momentum and would complement design and validation of
high-assurance SoC will be development of software, which can ensure trusted
system operation in the presence of untrusted hardware—in particular, untrusted
SoC.

Given the broad spectrum of potential vulnerabilities and corresponding miti-
gation strategies, the subject of SoC security today is highly fragmented. Different
research groups focus on different aspects of the problem, often without a good
understanding of the trade-offs and synergies involved in applying the different
approaches on the same artifact. For example, there has been little work on inte-
grating techniques for supply-chain security with architectural initiatives for
design-level security implementation. Consequently, security research in different
communities run the danger of reinventing the “wheel” already employed in
another context, or creating a solution that conflicts with the fundamental
requirements of another one. Hence, effective collaboration between researchers
working in various fields of SoC design and validation is urgently needed.

Although we have covered a broad spectrum of activities on SoC security in this
book and tried to provide a comprehensive overview of SoC security and trust
challenges and solutions, we have only depicted a small but important part of the
SoC design and validation process. There are more complexities involved in the
overall process, including trade-offs with power management, physical design,
testing, as well as complex supply-chain issues, which we have touched periph-
erally. The readers interested in deeper exploration are encouraged to explore into
some of the references, which include challenges and surveys of specific compo-
nents, and use the discussions in this book as a glue for connecting the different

13 SoC Security: Summary and Future Directions 315

pieces. The editors strongly hope that the book will provide adequate background
and stimulate interest of the readership in exploring more relevant knowledge in
this field and in pursuing research towards innovations of critical needs.

Acknowledgements The authors sincerely acknowledge support from number of collaborators,
students as well as funding sources. The work is funded in part by National Science Foundation
(NSF) grants 1603475, 1563924, 1623310, 1603483, and 1662976, as well as research funding
supports from Cisco, Raytheon, Draper and Semiconductor Research Corporation (SRC).

316 S. Bhunia et al.

	Contents
	1 The Landscape of SoC and IP Security
	1.1 Introduction
	1.2 SoC Design Supply Chain and Security Assets
	1.3 The Challenge of Design Complexity
	1.4 State of Security Design and Validation: Research and Practice
	1.5 The Book
	References

	2 Security Validation in Modern SoC Designs
	2.1 Security Needs in Modern SoC Designs
	2.2 Supply Chain Security Threats
	2.3 Security Policies: Requirements from Design
	2.4 Adversaries in SoC Security
	2.5 IP-Level Trust Validation
	2.6 Security Along SoC Design Life Cycle
	2.7 Security Validation Activities
	2.8 Validation Technologies
	2.9 Summary
	References

	3 SoC Security and Debug
	3.1 Introduction
	3.2 SoC Debug Architecture
	3.2.1 Debug Interface
	3.2.2 On-Chip DfD Instrumentation

	3.3 Security Concerns and Hazards
	3.3.1 SoC Security Requirements
	3.3.2 DfD Induced Security Hazards

	3.4 Protection Against Hazards Induced by Debugging
	3.4.1 Trade-Off Between Security and Debug
	3.4.2 Authentication-Based Debug Access Control
	3.4.3 Limitations and Challenges

	3.5 Summary
	References

	4 IP Trust: The Problem and Design/Validation-Based Solution
	4.1 Introduction
	4.2 Design for IP Protection
	4.2.1 Threat Model
	4.2.2 Combinational Logic Locking/Encryption
	4.2.3 Finite State Machine Locking/Encryption
	4.2.4 Protection Methods for FPGA IP

	4.3 IP Certification
	4.4 Conclusion
	References

	5 Security of Crypto IP Core: Issues and Countermeasures
	5.1 Introduction
	5.1.1 Implementation: An Issue for Security
	5.1.2 Side Channels

	5.2 Power Analysis of Cryptographic Cores
	5.2.1 Simple Power Attack (SPA)
	5.2.2 Differential Power Attacks
	5.2.3 Template Attack

	5.3 Countermeasures Against Power Analysis
	5.3.1 t-Private Circuit
	5.3.2 Masking
	5.3.3 DRECON: DPA Resistant Encryption by Construction
	5.3.4 Evaluation of Side Channel Leakage for a Crypto Core

	5.4 Fault Attack Resistant Crypto Cores
	5.4.1 General Principle of DFA of Block Ciphers
	5.4.2 Fault Analysis of AES
	5.4.3 Experimental Results on Fault Models
	5.4.4 Proposed DFA on AES-192 Key Schedule
	5.4.5 Countermeasures Against DFA

	5.5 Testing and Validation of Crypto Cores
	5.5.1 Working Principle of Scan-Chain-Attacks on Block Ciphers

	5.6 Conclusions
	References

	6 PUF-Based Authentication
	6.1 Introduction
	6.2 Information Security and Cryptography
	6.3 Cryptographic Primitives for Authentication Protocols
	6.3.1 Random Number Generation
	6.3.2 Cryptographic Hash Functions
	6.3.3 Secure Sketches and Fuzzy Extractors
	6.3.4 Statistical Metrics

	6.4 Traditional, Software-Oriented Authentication
	6.4.1 Entity Authentication

	6.5 Physical Unclonable Functions (PUFs)
	6.5.1 PUF-Based Authentication
	6.5.2 Strong Versus Weak PUFs
	6.5.3 The Arbiter PUF
	6.5.4 Hardware-Embedded Delay PUF (HELP)
	Clock Strobing
	PN Processing
	Temperature-Voltage (TV) Compensation
	Bit Generation Algorithm
	Entropy Analysis
	Statistical Analysis of the Bitstrings
	Security Property Analysis

	6.6 PUF-Based Authentication Protocols
	6.6.1 Protocol 1: Strong PUF with Unprotected Interface
	6.6.2 Protocol 2: Controlled PUF
	6.6.3 Protocol 3: Reverse Fuzzy Extractor
	6.6.4 Protocol 4: Slender PUF Protocol
	6.6.5 Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
	6.6.6 Protocol 6: The HELP Authentication Protocol

	6.7 PUF-Based Authentication for SoC
	6.8 Conclusion
	References

	7 FPGA-Based IP and SoC Security
	7.1 Introduction
	7.1.1 Brief Description of an FPGA Architecture and Its Design Flow
	7.1.2 IPs in FPGA
	7.1.3 Typical Threats for an FPGA-Based IP
	7.1.4 Security Aspects: Countermeasures and Vulnerabilities

	7.2 Cryptographic Primitives on FPGA Bitstream
	7.2.1 Symmetric Key Encryption of Bitstream on FPGAs for Confidentiality
	7.2.2 Primitive Crypto Units for Authentication and Integrity Check
	7.2.3 Confidentiality, Authentication, Integrity and Freshness of Bitstream in Remote Dynamic Partial Reconfiguration
	7.2.4 Generation of FPGA Chip-Specific Encryption Key
	7.2.5 Partial Encryption and Security Issues

	7.3 Authentication of an IP in FPGA
	7.3.1 Embedding Signatures of IP Vendor and Legitimate User
	7.3.2 Techniques for Verification of Signatures in FPGA

	7.4 Insertion and Detection of HTH in an IP for FPGAs
	7.4.1 RO-Based Detection of HTH in HDL Design and Its Challenges
	7.4.2 Parity-Based Detection of HTH Inserted in HDL, Mapped or P&Red Design
	7.4.3 Trojans Inserted in Bitstream and the Challenge of Detection
	7.4.4 Tamper or Fault Injection in FPGAs and Overhead of Detection

	7.5 Security in SoCs and Other Advanced Architectures on FPGAs
	7.5.1 Security in SoC
	7.5.2 Security in Embedded Systems
	7.5.3 Security in Cloud Architecture

	7.6 Summary
	References

	8 Physical Unclonable Functions and Intellectual Property Protection Techniques
	8.1 Introduction
	8.1.1 Storing Secret Keys on a Chip
	8.1.2 The Need for IP Protection Techniques

	8.2 Physical Unclonable Functions (PUFs)
	8.2.1 Motivation
	8.2.2 Types of PUFs
	8.2.3 Security Metrics
	8.2.4 Applications and Protocols
	8.2.5 Challenges
	8.2.6 Beyond PUFs---Public PUFs (PPUFs)
	8.2.7 Sensor PUFs
	8.2.8 Other Reads

	8.3 IP Protection
	8.3.1 Motivation
	8.3.2 Classification
	8.3.3 Watermarking
	8.3.4 Fingerprinting
	8.3.5 Logic Locking
	8.3.6 Metering
	8.3.7 Split Manufacturing

	8.4 Conclusion
	References

	9 A Systematic Approach to Fault Attack Resistant Design
	9.1 Introduction to Fault Attacks
	9.2 Fundamental Fault Attack Requirements
	9.2.1 Fault Model
	9.2.2 Fault Injection Techniques

	9.3 Fault Measurement
	9.3.1 Fault Measurement Steps
	9.3.2 Fault Measurement Case Study

	9.4 Fault Analysis
	9.4.1 Advanced Encryption Standard
	9.4.2 Differential Fault Analysis
	9.4.3 Fault Sensitivity Analysis
	9.4.4 Differential Fault Intensity Analysis

	9.5 A Systematic Organization of Fault Attack Countermeasures
	9.5.1 Countermeasures for Fault Injection Access
	9.5.2 Countermeasures for Fault Injection
	9.5.3 Countermeasures for Fault Effect
	9.5.4 Countermeasures for Fault Observation

	9.6 Conclusion
	References

	10 Hardware Trojan Attacks and Countermeasures
	10.1 Introduction
	10.2 IC Supply Chain Globalization and Threats
	10.3 IC Design Flow and Vulnerabilities
	10.4 Hardware Trojans Horses
	10.5 Hardware Trojans Detection and Prevention
	10.5.1 Trojan Detection Based on Side-Channel Analysis
	Delay-Based Trojan Detection Techniques
	Power-Based Trojan Detection Techniques
	Multi-side Channel Trojan Detection Techniques

	10.5.2 Trojan Detection Based on Logic Value
	10.5.3 Trojan Detection Without a Golden Model
	Design Techniques
	Front-End Circuit Switching Activity Analyses

	10.6 Trojan Prevention
	10.7 Circuit Vulnerability Analysis
	10.8 Design for Hardware Trust
	10.9 Hardware Trojans in Complex Designs
	10.10 Challenges with Hardware Trojans
	References

	11 In-place Logic Obfuscation for EmergingNonvolatile FPGAs
	11.1 Introduction
	11.2 Background
	11.2.1 Hardware Security in FPGAs and Related Work
	11.2.2 High Density RRAM-FPGA
	11.2.3 Security Advantages and Concerns of Nanoscale Device

	11.3 Threat Model of RRAM-FPGA and Our Proposed Hardware Solutions
	11.4 Security Protection of RRAM-FPGA
	11.4.1 Obfuscated Configurations and Chip DNA
	11.4.2 Blank Mode Operation
	11.4.3 Encrypted Addressing

	11.5 Evaluation and Discussion of RRAM-FPGA Security
	11.5.1 Protection of Logic Piracy in FPGA
	11.5.2 Protocol-Based Denial-of-Service Attack
	11.5.3 Miscellaneous Discussion

	11.6 Conclusion
	References

	12 Security Standards for Embedded Devices and Systems
	12.1 Introduction
	12.2 Foundational Cryptographic Algorithms and Associated Standards
	12.2.1 Advanced Encryption Standard (AES)
	12.2.2 Triple DES (3DES)/Triple DEA
	12.2.3 Secure Hash Standard (SHS)

	12.3 Generic Security Standards
	12.3.1 Federal Information Processing Standard (FIPS) 140
	12.3.2 Common Criteria (CC)

	12.4 Application/Market Specific Security Standards
	12.4.1 Payment Card Industry (PCI) Standard
	12.4.2 Europay Mastercard Visa (EMV) Standard
	12.4.3 Interplay of EMV and PCI Standards

	12.5 Security Standard Compliance Assessment
	12.6 Summary
	References

	13 SoC Security: Summary and Future Directions
	Acknowledgements

