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Series Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines: biomechanics, haptics, neurosciences,
virtual simulation, animation, surgery, and sensor networks among others. In return,
the challenges of the new emerging areas are proving an abundant source of
stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

The volume by J.P. Laumond, N. Mansard and J. Lasserre provides a broad
edited collection on movement analysis, which is the outcome of the workshop
“Geometric and Numerical Foundations of Movements” held at LAAS-CNRS in
Toulouse in November 2015. Following a tutorial presentation of the problem, the
contents are effectively organized into four main sections: geometry, action and
movement; numerical analysis and optimization; foundation of human movement;
robot motion generation. The unique feature of the volume stands in its inherent
multidisciplinary character spanning robotics, control theory, neurosciences and

v



mathematics. New optimization techniques are presented, based on recent results
from real algebraic geometry, which shed new light for advancements on motion
research.

Rich of results by the most active teams in the field, this volume constitutes a
very fine addition to STAR!

Naples, Italy
November 2016

Bruno Siciliano
STAR Editor

vi Series Foreword



Preface

This book aims at gathering roboticists, control theorists, neuroscientists, and
mathematicians, in order to promote a multidisciplinary research on movement
analysis. It follows the workshop “Geometric and Numerical Foundations of
Movements” held at LAAS-CNRS in Toulouse in November 2015.1 Its objective is
to lay the foundations for a mutual understanding that is essential for synergetic
development in motion research. In particular, the book promotes applications to
robotics—and control in general—of new optimization techniques based on recent
results from real algebraic geometry.

Starting from a robotics perspective, the generation of goal oriented motion for
robots obeys classically to a two-step paradigm. The first step is the planning, where
the typical problem is to find a geometric path that allows the robot to reach the
desired configuration starting from the current position while ensuring obstacle
avoidance and enforcing the satisfaction of kinematic constraints. Motion planning
lays its grounding on the decidability properties of this classic geometrical problem.
Moreover, the traditional approaches that are used to find solutions rely on the
global probabilistic certainty of the convergence of path construction stochastically
sampled in the configuration space. The second step of motion generation is the
control, where the robot has to perform the planned motion while ensuring
the respect of dynamical constraints. Motion control seeks primarily for local
controllability or at least the stability of the motion. The basic instances of these
problems have long been tackled using local state-space control. However, the
typical nonlinearity of the dynamics, together with the non-controllability of its
linearization, leads more and more solutions to resort to model preview control.
These methods allow to predict the outcome of a control strategy in a future horizon
and to improve it accordingly, usually by using numerical optimizations which take

1The workshop took place in the framework of the Anthropomorphic Motion Factory launched by
the European project ERC-ADG 340050 Actanthrope (2014–2018) devoted to exploring the
computational foundations of anthropomorphic action. The workshop was also supported by the
European project ERC-ADV 666981 Taming (2015–2019) and the French ANR project Entracte
(2014–2017).
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into account the safety constraints and efficiency intents. However, since few years,
the improvement of computational capabilities and numerical algorithms allows
more and more to deal with complex dynamical systems and for longer horizons.
This allows these approaches to untighten the local nature of their applications and
progressively start wider explorations of their reachable space. This evolution
brings us to the question of the rising overlap between planning and control. Today,
most planning problems would take too much time to be solved online with
numerical approaches. Does that imply that the generation of motion will theo-
retically never be free of the necessity of a prior planning? Or on the contrary, is
planning only a numerical issue?

All these questions are also addressed in Life Sciences. Indeed, movement is a
fundamental characteristic of living systems. How roboticists may benefit from
neurophysiologist know-how and vice versa? System modelling is one way to
gather both communities.

While actions operate in a physical space, motions begin in a motor control
space. For robots and living beings, the link between actions expressed in the
physical space and motions originated in the motor space, turns to geometry in
general and, in particular, to linear algebra. Geometric control theory and numerical
analysis highlight two complementary perspectives on optimal human and huma-
noid motion. Among all possible motions performing a given action, optimization
algorithms tend to choose the best motion according to a given performance
criterion. Optimal motions then appear as plausible action signatures.

How to express actions in terms of motions? How to face the computational
complexity of bridging the 3D physical space with the high-dimension control
space? How to reveal movement synergies? How to account for the underactuation
of the locomotion? What optimality criterion underlies a given action? All these
questions open challenging issues to direct and inverse optimal control, with recent
developments in polynomial optimization and real algebraic geometry.

The multidisciplinary perspective on movement analysis is reflected in the book
by its table of content. After a specific chapter introducing the rational above, the
chapters are gathered within four main parts addressing respectively mathematics
(Part Geometry, Action and Movement), applied mathematics (Part Numerical
Analysis and Optimization), life science (Part Foundations of Human Movement),
and robotics (Part Robot Motion Generation).

Editing a book with a multidisciplinary perspective is not an easy task. We thank
all the authors for their effort in making their own research field accessible to others
and all the reviewers who helped us in reaching this objective.

Toulouse, France Jean-Paul Laumond
August 2016 Nicolas Mansard

Jean-Bernard Lasserre

viii Preface



Contents

Robot Motion Planning and Control: Is It More than
a Technological Problem?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Mehdi Benallegue, Jean-Paul Laumond and Nicolas Mansard

Part I Geometry, Action and Movement

Several Geometries for Movements Generations. . . . . . . . . . . . . . . . . . . . 13
Daniel Bennequin and Alain Berthoz

On the Duration of Human Movement: From Self-paced
to Slow/Fast Reaches up to Fitts’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Frédéric Jean and Bastien Berret

Geometric and Numerical Aspects of Redundancy . . . . . . . . . . . . . . . . . . 67
Pierre-Brice Wieber, Adrien Escande, Dimitar Dimitrov
and Alexander Sherikov

Part II Numerical Analyzis and Optimization

Some Recent Directions in Algebraic Methods
for Optimization and Lyapunov Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 89
Amir Ali Ahmadi and Pablo A. Parrilo

Positivity Certificates in Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . 113
Edouard Pauwels, Didier Henrion and Jean-Bernard Lasserre

The Interplay Between Big Data and Sparsity
in Systems Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
O. Camps and M. Sznaier

ix



Part III Foundation of Human Movement

Inverse Optimal Control as a Tool to Understand
Human Movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Katja Mombaur and Debora Clever

Versatile Interaction Control and Haptic Identification
in Humans and Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Yanan Li, Nathanael Jarrassé and Etienne Burdet

The Variational Principles of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Karl Friston

Modeling of Coordinated Human Body Motion
by Learning of Structured Dynamic Representations. . . . . . . . . . . . . . . . 237
Albert Mukovskiy, Nick Taubert, Dominik Endres, Christian Vassallo,
Maximilien Naveau, Olivier Stasse, Philippe Souères and Martin A. Giese

Physical Interaction via Dynamic Primitives . . . . . . . . . . . . . . . . . . . . . . . 269
Neville Hogan

Human Control of Interactions with Objects – Variability,
Stability and Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Dagmar Sternad

Part IV Robot Motion Generation

Momentum-Centered Control of Contact Interactions . . . . . . . . . . . . . . 339
Ludovic Righetti and Alexander Herzog

A Tutorial on Newton Methods for Constrained Trajectory
Optimization and Relations to SLAM, Gaussian Process Smoothing,
Optimal Control, and Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . . 361
Marc Toussaint

Optimal Control of Variable Stiffness Policies: Dealing
with Switching Dynamics and Model Mismatch . . . . . . . . . . . . . . . . . . . . 393
Andreea Radulescu, Jun Nakanishi, David J. Braun
and Sethu Vijayakumar

x Contents



Robot Motion Planning and Control:
Is It More than a Technological Problem?

Mehdi Benallegue, Jean-Paul Laumond and Nicolas Mansard

Abstract The generation of motion for robots obeys classically to a two-step para-
digm. The first step is the planning, where the typical problem is to find a geometric
path that allows the robot to reach the desired configuration starting from the current
position while ensuring obstacle avoidance and enforcing the satisfaction of kine-
matic constraints. Motion planning lays its grounding on the decidability properties
of this classic geometrical problem. Moreover, the traditional approaches that are
used to find solutions rely on the global probabilistic certainty of the convergence
of path construction stochastically sampled in the configuration-space. The second
step of motion generation is the control, where the robot has to perform the planned
motion while ensuring the respect of dynamical constraints. Motion control seeks
primarily for local controllability or at least the stability of the motion. The basic
instances of this problems have long been tackled using local state-space control.
However, the typical nonlinearity of the dynamics, together with the non controlla-
bility of its linearization, lead more and more solutions to resort to model predictive
control. These methods make it possible to predict the outcome of a control strategy
in a future horizon and to improve it accordingly, commonly by using numerical
optimizations which take into account the safety constraints and efficiency intents.
However, since few years, the improvement of computational capabilities and numer-
ical algorithms allows more and more to deal with complex dynamical systems and
for longer horizons. This allows then these approaches to untighten the local nature
of their applications and progressively start wider explorations of their reachable
space. This evolution brings us to the question of the rising overlap between plan-
ning and control. Today, most planning problems would take too much time to be
solved online with numerical approaches. Does that imply that the generation of
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2 M. Benallegue et al.

motion will theoretically never be free of the necessity of a prior planning? Or on
the contrary, is planning only a numerical issue?

1 The Classic Paradigm

The first prominent book dedicated to motion generation in robotics was subtitled
“Planning and Control” [1]. Under this perspective, this volume theorized a pattern
for the production of robot action which is widely established until today. Indeed,
later reference books such as “Robotmotion planning” [2], “Modelling and control of
robotmanipulators” [3] and the unescapable “Handbook of robotics” [4], crystallized
this scheme and the subsequent dichotomy and scheduling of two major branches of
robotics. This scheme can be synthesized into two successive and poorly connected
steps. At first the motion planning, which occurs usually offline and allows to find
a geometric path avoiding obstacles and kinematic constraints and achieving the
required task. After that, the second step controls the robot to actually follow the
path and generate the motion in the physical world, guaranteeing at the same time
its dynamical feasibility, stability and robustness. This second step generally occurs
online, and may resort to alter the geometric path provided by planning step, for
example through dynamical filtering.

1.1 Geometric Search and Numerical Control

Although these two steps coexist often in the same motion generation frameworks,
they are rooted in different soils and resulted in a deeply historical separation. For
instance, planning techniques are mostly algorithmic answers provided by computa-
tional geometry to the issue of point-to-point path finding, related to the archetypal
“Piano mover’s problem” [2]. Indeed, the problem of path planning of a robot in
geometrically constrained environment (obstacles, joint limits, auto-collisions) boils
down to finding a path for a point in a commonly higher dimensional manifold called
configuration space [5]. Furthermore, sufficient conditions were provided to ensure
the decidability of point-connection queries in this manifold [6]. However, no gen-
eral effective solution was produced through these theoretical yet powerful guaran-
tees [7]. Therefore, computer science community had recourse to theweaker certainty
provided by stochastic search methods. These methods, derived from Monte-Carlo
techniques, are able to find a path between two points lying in a connected com-
ponent in a finite time. This gave birth to the well known probabilistic algorithms
based on sampling in configuration-space: the Probabilistic RoadMap (PRM) [8] and
Rapidly-exploring Random Trees (RRT) [9]. Afterwards, these paths are commonly
improved to minimize a criteria such as length or energy using either probabilistic
or deterministic approaches [10, 11].
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Subsequently, the classic paradigmmoves this path to controllers in order to ensure
the achievement of the actual motion. Robot motion control has naturally emerged
from the classic control theory through the control of manipulator robots for manu-
facturing [12]. It is mainly about achieving the desired path while providing several
guarantees. The most important of these guarantees is feasibility, meaning that the
generated trajectory is possible regarding laws of physics and robot limitations. This
commonly requires to augment the path representation in the configuration manifold
with a curve in its tangent bundle representing the time-derivative of the trajectory.
This augmented space is called phase space or more commonly state space. But
sometimes the workspace of the controller includes second order time-derivatives of
the configuration if not higher and the space is then named ‘control-space’ for which
not only all possible states of the system are represented, but also all possible controls.
Other guarantees are mandatory for the successful achievement of the motion, and
include stability and robustness, which allow the achievement in the task disregarding
perturbations to the system or errors in the model of the robot dynamics. This con-
strained and dynamical systemmakes the generation of trajectories far from reach of
purely geometrical methods. Moreover, the dimensional multiplication of the search
manifold, compared to the configuration space, explodes the required time and space
for stochastic sampling to inconceivable amounts, even for the simplest systems.
Therefore the three guarantees, dynamical feasibility, stability and robustness are
commonly considered as exclusively delegated to the control, and classic motion
planning does not deal with these dimensions. Control, on its side either considers
local representations of this space around the paths provided by planning, or more
and more often resorts to numerical techniques such as constrained optimization to
generate reliable, stable and hopefully efficient trajectories.

Despite the broad general definitions provided above, control is a name given
to various kinds of processes. Often, several of them run concurrently on a robot
for a same motion. They are usually organized into abstraction layers or levels. The
lowest layer deals with the physical world, such as controlling motor currents, facing
sometimes complex dynamics but reduced to only atomic parts of the motion and
using relatively simple solutions. It runs the fastest control loops, and particularly
involves sensor feedback. The highest layers have more global knowledge about
the performed motion, action or task, runs complex control algorithms but usually
receives lower amounts of inputs from embedded sensors. Every layer uses a model
of the layer underneath and constitutes the interface with the upper one.

1.2 Control as a Layered Scheme: The Example of the Biped
Locomotion

A good example is the generation of walking motion for humanoid robots. This
example not only shows the layered nature of control, but also describes how com-
plex tasks are tackled today in robotics. Indeed, humanoid robots have no actuation
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generating translations and rotations of the body. These can only be produced by
using external forces, specifically contacts. The joint actuation allows usually to
generate contact forces in infinite ways. However not all of them are able to guaran-
tee the safety of the robot since the dynamics is intrinsically unstable and limited by
feasibility constraints.

To tackle these problems, there is a classic scheme involving layers of control. The
highest level is the so-called Walking Pattern Generator (WPG). It is the controller
which considers a reference in translation and orientation. To guarantee the long
term stability, it is almost mandatory for the humanoid to consider the outcome of
the control in a sufficiently long future horizon. If the robot is always able to safely
stop in the future, the generated motion in the present is also safe. However, this
process is usually time-consuming and it is applied only in a simplified version of
the dynamics. One famous and broadly used simplification is the linear inverted
pendulum model also called cart-table model, which considers that the robot is a
point mass and constrains the center of mass to stay on a horizontal plane [13]. A
layer below is the inverse kinematics which is an open-loop process allowing to
generate convenient joint trajectories to achieve the reference position of the center
of mass. The next level is the stabilizer, it ensures that the desired contact forces are
correctly respected, together with the reference posture, but it deals also with short
term balance issues such as perturbations recovery. It usually modifies the inverse
kinematics outcome. Finally the motor micro controllers constitute the lowest level
of control, ensuring in a high-frequency closed-loop control that the desired joint
position, velocity and/or torques are correctly tracked.

The example above showsdifferent processes referred to as control. It is interesting
to note that the highest level control, the WPG, generates a prediction of the motion
on a future horizon in which the upcoming trajectory is planned: the proximity of
model predictive control with planning is an important object of discussion presented
in the next section.

On the other hand, the goal provided to the WPG can be produced either by
a controller in the case of visual servoing for example [14], but it is more often
the outcome of an authentic planning algorithm as defined earlier. And here we hit
one of the limitations of the definitions given above. All along our description of
layered control, the planning appears naturally as the actual highest layer of the
control, having a global view on the motion to generate and relying on lower layers
to achieve the actual trajectory. This aspect, among others constitutes the core of
rising semantic collisions between planning and control, sometimes because of what
could be considered as misnomers, but more and more often due to an increasing
proximity leading to the beginning of a true overlap.

We have exploited in this section the example of legged locomotion. However,
similar layered paradigms arise in various types of robot. For example, motion gener-
ation on quadcopters use some flatness properties to plan a guide path among obsta-
cles, which is then refined using trajectory optimization then tracked by a complete
controller. When embedding manipulation effectors on the quadcopter, an additional
layer based on inverse kinematics is also added [15].
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2 The Expanding Overlap

2.1 Is There Any Fundamental Difference Between Planning
and Control?

The haziness between the definitions is maintained by the absence of clear nomencla-
ture stating the classification between planning and control. For example, sometimes
open-loop control is referred to as planning, sometimes asmotion control. But despite
this definition uncertainty, a consensus emerges to state that planning is more than
sampling paths in the configuration space, which would be easy to distinguish from
control.

Among the aspects blurring the lines lies the increasing ability of planning tech-
niques to compute new solutions fast enough to consider interactive, if not real-time,
performances. This is often referred to as motion replanning or reactive planning.
Thanks to new techniques, togetherwith faster computers, the sensors feedback could
be immediately taken into account and new plans could be computed in a more and
more reasonable time.

One more important aspect of overlap is the introduction of velocities, acceler-
ations and forces in trajectory planning, giving what is called kinodynamic motion
planning [16]. With this paradigm, the dynamic feasibility constraints could be
directly taken into account and anticipated for lower lever controller. It had also
the benefit to allow a wider range of motions which would not be possible within
purely geometric constraints.

In the kinodynamic planning methods, even when the planning approaches use
road-map sampling, the path itself is often a result of an optimization scheme, and
here is the most important way planning treads on control’s toes [17]. Optimization
techniques were introduced in planning to enable the planner to generate relevant
and efficient trajectories. These methods are also usually called optimal control.

Optimal trajectories have been studied since centuries ago. First, early mechanics
has stated that a body always move in a way that optimizes a certain cost, giving for-
mulations ranging from Maupertuis’s to Hamilton’s principles. Then, in the 1900’s,
the properties of these optimal trajectories were extensively studied, especially for
the case of actuated systems, in order to be able to generate efficient motions. Two
major principles characterize the optimality of a control system.

One prominent necessary condition for the optimality of a controlled trajectory
is the Pontryagin’s maximum principle (PMP) which gives a local property that
has to be valid each instant. The application of this principle allows the generation
of trajectories optimizing a given criterion for robots such as redundant manipula-
tors. One other important solution to generate optimal trajectories is the dynamic
programming, generally using the Hamilton–Jacobi–Bellman (HJB) equation. This
gives necessary and sufficient condition of the optimality of a trajectory, but its the-
oretical consequence allows to build the control minimizing the criterion in all the
state space. This powerful approach is usually very computationally costly for non-
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linear systems. Therefore, to be applicable, it requires to be approximated, in terms
of dynamics or control space.

Despite their similarities, these two principles reveal a fundamental gap, which
might be seen as the major clustering between planning and control. Pontryagin’s
principle only considers the properties of the optimal path itself, without consider-
ing the dynamical behavior in its neighborhood. We then obtain one unique path
to the goal, that must be carefully tracked as the principle does not reveal how to
behave aside the optimal trajectory. In the majority of the cases, if supposing some
good properties of the dynamics and the cost function, this is only a technologi-
cal issue, and as soon as the replanning is fast enough one can achieve closed-loop
performances with satisfying performances. However such fast replanning lacks the-
oretical guarantees of stability, especially for heavily constrained systems. Therefore
these approaches are unsafe from a control-theory point-of-view. On the other hand,
dynamic programming predicts the dynamics at least in the space around the optimal
trajectory. A local controller is then provided when the state is deviated from the
optimal trajectory. In general this enables the controller to check the stability of the
optimal solution, at least locally.

This consideration may constitute a boundary between pure geometrical plan-
ning approaches (even when dealing with dynamic feasibility) and actual motion
control, which could be part of planning methods. Combining motion planning and
motion control in a single motion generation scheme remains a challenging issue.
The elastic strip framework introduced in [18] tends to enable the execution of a
previously planned motion in a dynamic environment. Control is here dominated by
real-time execution constraints. This general scheme applies also to motion planning
for nonholonomic systems [19] as well as to feedback-based motion planning [20]
for autonomous mobile manipulation.

To summarize in few words, planning is about reasoning on the global trajectory,
without systematically considering the stability of the underlying control scheme, but
can become control, if it is able to recompute a trajectory online and if it guarantees
the stability of the system regarding perturbations and uncertainties in the state-space.

2.2 Model Predictive Control

Up to today,most controllers, including those for complex robots still generatemotion
according to instantaneous feedback linearization (e.g. inverse kinematics, inverse
dynamics), and heavily rely on geometric paths provided by classic planners. But
as seen earlier, the planning [21–23] and control [24, 25] have already started over-
lapping around the corpus of fast numerical optimization approaches of trajectories
on the base of a model of the dynamics. Thanks to these approaches, the controller
can see further in the future, but unlike geometric planning, it is generally too costly
to optimize over the entire trajectory. The trajectory covers a limited time-horizon,
predicting the outcome of a given control, and it has to be recomputed at each instant
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to update the state on the basis of sensors feedback and to keep predicting far enough
in the future. This approach is designated as Model Predictive Control 1 (MPC).

Predictive control is a theoretically well-posed methodology [26]. For instance, it
has been shown that if a system is stabilizable, then there exists a finite horizon for
which the optimal control is stable. In addition, in most situation, it provides efficient
and relevant motions if not optimal regarding a cost function.

Bellman’s principle generates intrinsically a control for the whole state space,
taking implicitly into account its constraints andgeometry.Whencontrolling a system
on the base of this principle, we have to explore the state-space. If the dynamics is
linear, this is possible thanks to Riccati’s equation. If the control space is discretized,
standard dynamic programming requires the full exploration of the resulting graph.
Otherwise, in the general case of nonlinear non-discretized system, it is generally
possible through local modifications of the predicted trajectory. This provides the
model predictive control with the ability to produce its own plan at best and tomodify
it according to the state and the constraints at least. The controller takes the role of
the planner, and this with increasing efficiency and independence.

However, the success of this approach is built upon a fundamental shift of para-
digm, where the globality of the dynamic principle is traded against local properties,
that are well expressed by the naming “differential dynamic programming”. In most
of the case, working on local deformation of a candidate trajectory would bring the
search in a local minimum, and it is in general not possible to characterize the global
optimality of the resulting trajectory, but only its local optimality. Mathematically,
the trade indeed corresponds to exchanging the curse of dimensionality of dynamic
programming against the nonconvexity (hence local property) of a corresponding
numerical program. Reformulating the trajectory optimization as a convex numeri-
cal program is typically a very nontrivial task. We will also discuss in the second part
of this book rising alternatives to solve numerical programs with global algorithms
based on positivity certificate. However such alternatives are yet limited to simple
systems (low-dimension and sparse).

Aside of the problem of local optimality, one of the main challenges for appli-
cation of differential dynamic programming to complex robots is its computational
complexity [27]: a large nonlinear optimization problem needs to be solved online at
control frequency. Yet most current optimization solvers result in long optimization
times keeping them out of the reach of real-time uses, even on the most powerful
processing units. For example, whole body motion generation for humanoid robots
implies solver computation times about minutes of computation, while milliseconds
of reaction times are necessary on the real robot.

In brief, MPC is theoretically able to discover complex movements, while the
recent progresses in computational complexity and numerical mathematics makes
it now relevant in many robotic applications. Therefore, one may ask the following
question: is the difficulty to generate motions for complex robot due to intrinsic
properties lying in the space geometry and the structure of the optimization problem?

1Sometimes it is called also model preview control, but this latter designation seems restrained to
linear systems.
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Or it is only a technological issue that can be solved with the emergence of new
optimization techniques implemented on more powerful computers?

3 A Technological Problem?

3.1 The Room for Improvement

The simplest possible solution for the problem is to wait for better processors and
optimization solutionswhichwill allow faster computations.However, the generation
of complex motions for a humanoid robot could take hours if not days. Therefore,
there is a need of at least four orders of magnitude in the reduction of computa-
tion time. And with the end of Moore’s law [28], the perspective of such a purely
technological revolution is rather uncertain.

In fact, the complexity of nonlinear optimizers comes from two theoretical aspects:
the nominal cost of one iteration and the number of iterations [29]. The first aspect
depends on the size of the optimization problem (number of variables and con-
straints). However, recent progress in both numerical mathematics and computer
power makes it now possible to perform an iteration in less than a fraction of a sec-
ond, even for complex robots like humanoids [25, 30]. The second aspect depends
on the convexity of the numerical problems. If the problem is convex, tens of iter-
ations are sufficient to converge to the global solution. However, most problems in
robotics are not convex, and therefore require thousands of iterations to converge to
a (possibly local) minimum [21, 22, 31].

Due to these aspects, the computational cost of a trajectory optimization is vari-
able, not only from a problem to another, but also depending on the initialization of
the optimizer. For instance, there are many optimal control problems in humanoid
robotics which guarantee that if the initial state is close to the minimum, the cost
function will likely be locally convex and the trajectory will be optimized with few
iterations, in a time short enough for real-time use. Therefore, one important scope
for progress lies in this issue: is it possible to guess in advance the search area of any
instance of this optimization problem?

Answering this question does likely neither call on a new planning approach nor
designing a higher level of control. That is because the answer is not a reference for
the controller but only a guess of a relevant starting value for the optimizer. This
could be considered as a different branch of motion generation.

This novel point-of-view needs a conceptual evolution of model predictive con-
trol, which is more than a technological issue, but tends to show that the motion
generation is not intrinsically condemned to perpetuate the classic paradigm. Fur-
thermore, other solutions may raise and solve the issue in other different ways such
as the promising polynomial optimization. This may finally establish that a simple
technological improvement would solve this issue.
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3.2 What Are the Good Questions to Ask?

All along this text, we seem to show that control is intended to occupy the entire
scene of motion generation in a near future. And the reader may deduce that planning
methods are globally inferior to control in all aspects. However, this exclusive view
would deprive us from the results of one of the most outstanding research areas in
robotics. Indeed, there are still cases for which planning performs better than control
alone, such as the generation of contacts which pose difficult problems to control
because of the associated non-smooth dynamics. In addition, there will always be
motion generation problems which are better solved with geometric reasoning than
with numerical optimization, such as trajectory generation for nonholonomic mobile
robots.

Finally, imagine replacing robots by humans in the context of this discussion. If
we dare to throw an eye on the living world, we would see that sometimes, despite
the motor and control performances of humans, they still take the time to devise and
plan their next actions. Among all the possible motions to grasp an object, what is the
underlying principle that makes the selection of a particular motion? How do humans
organize their behaviors to reach a given objective? Where does the reasoning take
place? What are the relative contributions of voluntary actions computed in frontal
cortex, to reflexive actions computed by spinal reflexes? How and why are different
actions computed by different mechanisms? What are the musculoskeletal synergies
simplifying the control of complex motions? Such questions lie at the core of the
research in Computational Neuroscience and Biomechanics.

Exploring all these questions in a pluridisciplinary perspective constitutes the core
objective of the current book.

References

1. M. Brady, Robot Motion: Planning and Control (MIT press, Cambridge, 1982)
2. J.-C. Latombe, Robot Motion Planning (Kluwer Academic Publishers, Boston, 1991)
3. L. Sciavicco, B. Siciliano, Modelling and Control of Robot Manipulators (Springer, London,

2001)
4. B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer, Berlin, 2008)
5. T. Lozano-Perez, Spatial planning: a configuration space approach. IEEE Trans. Comput.

100(2), 108–120 (1983)
6. J.T. Schwartz, M. Sharir, On the “piano movers” problem. ii. general techniques for computing

topological properties of real algebraic manifolds. Adv. Appl. Math. 4(3), 298–351 (1983)
7. J.E. Hopcroft, J.T. Schwartz, M. Sharir, Planning, Geometry, and Complexity of Robot Motion

(Ablex Publishing Corporation, New Jersey, 1987)
8. L.E. Kavraki, P. Švestka, J.-C. Latombe, M.H. Overmars, Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–
580 (1996)

9. S.M. Lavalle, J.J. Kuffner, Jr, Rapidly-exploring random trees: progress and prospects, in
Algorithmic and Computational Robotics: New Directions (2000), pp. 293–308

10. J. Pan, L. Zhang, D. Manocha, Collision-free and smooth trajectory computation in cluttered
environments. Int. J. Robot. Res. 31(10), 1155–1175 (2012)



10 M. Benallegue et al.

11. S. Sekhavat, P. Svestka, J.-P. Laumond, M.H. Overmars, Multilevel path planning for nonholo-
nomic robots using semiholonomic subsystems. Int. J. Robot. Res. 17(8), 840–857 (1998)

12. R.P. Paul, Robot Manipulators: Mathematics, Programming, and Control: The Computer Con-
trol of Robot Manipulators (MIT Press, Cambridge, 1981)

13. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped
walking pattern generation by using preview control of zero-moment point, in Proceedings of
the 2003 IEEE International Conference on Robotics and Automation, ICRA’03, vol. 2 (IEEE,
2003), pp. 1620–1626

14. C.Dune, A.Herdt, O. Stasse, P-B.Wieber, K.Yokoi, E. Yoshida, Cancelling the swaymotion of
dynamic walking in visual servoing, in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE, 2010) pp. 3175–3180

15. A. Boeuf, J. Cortes, R. Alami, T. Siméon, Planning agile motions for quadrotors in constrained
environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(2014)

16. B. Donald, P. Xavier, J. Canny, J. Reif, Kinodynamic motion planning. J. ACM (JACM) 40(5),
1048–1066 (1993)

17. R. Tedrake, I. Manchester, M. Tobenkin, J. Roberts, Lqr-trees: feedback motion planning via
sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–1052 (2010)

18. O. Brock, O. Khatib, Elastic strips: a framework for motion generation in human environments.
Int. J. Robot. Res. 21(12), 1031–1052 (2002)

19. H. Jaouni, M. Khatib, J.-P. Laumond, Elastic bands for nonholonomic car-like robots: algo-
rithms and combinatorial issues, in Algorithmic Foundations of Robotics on Robotics: The
Algorithmic Perspective, WAFR ’98 (A. K. Peters, Ltd, Natick, 1998), pp. 69–80

20. Y. Yang, O. Brock, Elastic roadmaps–motion generation for autonomous mobile manipulation.
Auton. Robot. 28(1), 113–130 (2010)
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Part I
Geometry, Action and Movement



Several Geometries for Movements
Generations

Daniel Bennequin and Alain Berthoz

Abstract In previous works we reanalyzed the kinematics of hand movements and
locomotion, and suggested that several geometries are used conjointly by the brain for
according the shape and the duration along trajectories; thiswas done in collaboration
with Tamar Flash and her collaborators [10, 64, 67], and with Quang-Cuong Pham
[79]. The variety of geometries which were implied in this process, were associated
to sub-groups of the affine group of a plane: full affine, equi-affine and Euclidean.
Other studies have shown how the above geometries constrain the production of
the movements [92], or began to use the affine geometry in Robotics [80]. In this
article, we propose to use a new variety of geometries which extends the preceding
series in another direction, to cover wider contexts and more complex movements,
like prehension, initiation of walking, locomotion, navigation, imaginedmotion. The
new spaces adapted to those geometries have no points; they come from topos theory,
which is an extension of set theory replacing sets by fields and graphs of dynamics.
Any given topos generates a variety of different geometries, which can bemixed as in
the preceding studies. Suchgeometries take into account efforts, forces anddynamics;
they do not neglect them aside as does traditional geometry. In this preliminary
report we indicate the simplest characteristics of spaces which underly the above
examples. The hypothesis is also that these spaces are implemented in different,
although overlapping, central nervous system networks in the brain, corresponding
to the different action spaces mentioned above. Here, as for the known classical
geometries, the most concrete suggestion concerns the timing of movement: we
predict that different components of the controlled system are using different intrinsic
time courses, and that the mapping between these different internal durations is an
important part of the dynamic under geometrical control. This reminds us of a well
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known psychological observation, for instance that time in imagination does not flow
as ordinary clocks time, but this also suggests that reaching an object with the hand
has its own time, or that equilibrium control in walking works within a specific time,
which is different from the walking trajectory displacement time.

1 Introduction. Geometry, from Spaces to Transformations

Geometries as Transformations Groups; Multiple Geometries.

Geometry appeared first as a science of space (or planes) and simple objects (or
figures). Accumulation of mathematical knowledge about measuring, constructing,
cutting and pasting has begun five thousands of years ago, in Sumer and Babylonia,
cf. Eleanor Robson [95], and in Egypt, cf. Annette Imhausen [51]. A formally perfect
theory, based on axioms and demonstrations, was invented in Greece, cf. Euclide,
Archimedes, Apollonius. But with centuries of practice and reflection, Geometry
became gradually a science of transformations. A strong emphasis in this direction
was proposed by arabian and persian mathematicians of the IX-th to XII-th centuries,
in particular Abd Al-Jalı̄l al-Sijzı̄ (Al-Sijistani), Abu Sahl Al Quhrı̄, Ibn Al-Haytham
(Alhazeen), cf. [94]. A clear formulation of this evolution was proposed at the end of
XIXth century, by F.Klein in his Erlangen program [53],when he told that the essence
of a Geometry is contained in a group and a family of subgroups, cf. Appendix 1.

For our theory, we shall retain first, the idea of multiple geometries, and second
the Galois idea of a spectrum of conjugated subgroups in a group, giving a new
notion of what is a general space in a geometry.

The notion of parallelism was explicitly separated from the notion of distance in
geometry by Euler in the XVIIIth century, under the name of affine geometry; then
an independent treatment of points, lines and planes was at the core of projective
geometry, as it was foreseen by Kepler an Desargues in the first part of the XVIIth
century, when they introduced the idea of points at infinity. In addition a theory of
curved forms and their qualitative relations, anticipated by Pascal and Leibniz, was
offered in the middle of XIXth century by the rising science of Topology, mostly
due to Riemann. This was also the time of the discovery of several geometries which
violate the axiom of parallels of Euclide, in particular the hyperbolic geometry of
Bolyai, Lobatchevski and Gauss, but also the elliptic geometry on the projective
space. We therefore have to admit the multiplicity of geometries. These geometries
are essentially characterized by the type of change of reference frames allowed by
them, which belong to a given group of transformations.Moreover, and crucial to our
proposal, the points which constitute a space, are characterized by the sub-groups of
transformations that let them unchanged. (Cf. Appendix 1.)
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The Origin of Spaces; Indifference Spectrum.

Finally Helmholtz and Poincaré [86–89, 104] invited us to question the nature of
space. Their essential conclusion is that the only way for an animal to organize itself
for acting in space, is to incorporate what is due to its action and what is due to an
external change in theworld. For this purpose, the animal (or any living organism) has
to perform an active internal comparison between the sensory effects which result
of voluntary self motions and the ones resulting from modifications of the world
outside. To internalize this difference is a necessity for survival.

A change of apparent visually perceived form of an object can be due either
to the movement of the object in space or to my own movements around it, this
defines a special set of “ambiguous” transformations (because they deal with this
dual potential interpretation); they form a group G. Every group can be interpreted
as defining a particular structure of ambiguity. However, the form of the thick frontier
between the inner and the outer world is not the group itself, it is a certain faithful
representation of G by permutations on a set (ensemble). In our case, with Euclidean
displacements, Poincaré showed that this set (ensemble) is the collection of certain
sub-groups (of the form gHg−1, cf. Appendix 1), that are transformations having
no effect on particular end sensors, like the end of fingers or the retinal fovea (cf.
[28]); those sub-groups form a structure of indifference. All this framework was
already present in the seminal work of Galois about the ambiguity on the solutions
of an algebraic equation [38]. Forgetting the internal structure of the sub-groups, and
considering each one as a “point”, induces a set, named a quotient set, on which G
acts transitively; by definition, this is a geometrized space. (Cf. the up cited Poincaré
books, and [8, 28].)

From this point of view, spatial knowledge is equivalent to the organisation of the
command of motions, and geometrical rules describe a form of interaction with the
world and with agents acting in the world.

From an experimental point of view, D. Philipona, K. O’Reagan, J.-P. Nadal [82]
have succeeded to implement the approach of Poincaré on a virtual robot, to recover
the dimension 6 of the group of isometries in 3D space.

The consideration of variable curvatures induced a revolution in Geometry: start-
ing with plane and space curves and with surfaces in the space (Monge, Gauss), the
study of curvature was extended to manifolds of every dimension by Riemann. Here
the infinitesimal reference was Euclidean, but after Klein and Sophus Lie, it became
evident that all kinds of Klein geometries associated to a differentiable Lie group
provide an extended notion of curvature. The complete theory was developed by Elie
Cartan in the first part of XXth century, and was named Cartan geometry, cf. [96].
This considerably extended the range of geometrized spaces.

However several new directions appeared in Geometry in the second part of XXth
century; for instance, coming from Topology, the geometrical study of the dynamical
fields onmanifolds and their deformations (Whitney, Thom,Milnor, Smale et al.), cf.
[101, 102], or coming from Algebraic Geometry and Arithmetics, the development
of categories and topos (Eilenberg, Mac Lane, Grothendieck, Verdier et al.), cf.
[42, 62]. As the name “functor” for natural maps between categories is not very
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appealing for a non-mathematician, we prefer in this text to use the name “field” in
its place, which gives a better intuition. This is justified by the following example: the
simplest physical field is a scalar depending on the place, for instance the temperature
T(x, y, z), where x, y, z denote Cartesian coordinates of the points in the usual space,
and it is also a functor from the category 0 → 1, with the two objects 0 and 1, and
one arrow between them, to the category of sets (mathematical word for ensembles).
In the same manner, any vector field V (x, y, z) is such a functor. Note that we can
replace the simple oriented graph 0 → 1 by any oriented graph �, and get in this
way a representation of interacting fields. We will see in what follows how this
categorical framework permits to enrich our description of geometries adapted to
complex movements.

We can summarize the above evolution of geometry as follows:
a geometry is made by a certain set of transformations; in the traditional point of
view, this set constitutes a group of transformations of a space; in the new extended
point of view, it is a field of natural transformations of a field of spaces into itself.

The Relation with Biology and Neuroscience.

Several biologists and psychologists have suggested that the inner representation
of space is associated to movement production; many of them have insisted on
the importance of group theory, and geometrical invariance. They explained that
groups organize perception and action together. In particular, the experiments and
the theories of J.J. and E.J. Gibson [39, 97] deserve to be cited. J. Piaget reported
that the psychological evolution of children follows an ordered sequence of differ-
ent geometries, first topological, then projective, then affine, and finally Euclidean
[83, 84].

In the domain of vision, we must mention the works of J. Koenderinck and A. van
Dorn [54], about the role of affine geometry in visual motion perception, and F. Wolf
and his collaborators, who attributed a decisive role to the group of displacements
in the visual plane for the organization of cortical maps of V 1 [106]. In addition,
J. Koenderinck used all kinds of possible groups for planar geometries arising in the
perception and the analysis of images [55]. Considerations of Differential geome-
try and Lie groups theory were also used in the context of visual neuroscience by
J. Petitot, P. Chossat and O. Faugeras, D. Barbieri, G. Citti and A. Sarti.

As reminded by R. Llinas in his book, I of the vortex: From neurons to self [61],
the structure of vertebrates brains appeared in schematic form in the larvae of the
ascidian, just before the vertebrates (5.108 years ago): the tunicate larva has one eye,
one otolith, a chord and several muscles to control movements and to perceive space.
In particular, the elements for the Euclidian group were already present. Thus, the
origin of our brain’s structure and dynamics is motor control, in the wide sense, to
orient itself, to move in water, to navigate and decide where it will be the best to stop.

As claimed by A. Pellionisz and R. Llinas [74, 75], the brain is a geomet-
ric machine, because there is the need to transform sensory information coded
co-variantly in sensor space into the contra-variant space of the effectors. In par-
ticular, they had attributed to the cerebellum this task of transformation between
covariant and contra-variant coding.
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Following their suggestion detailed analysis of the “eigen vectors” or the six
vestibular organs, six eye muscles, thirty two neck muscles revealed interesting
invariance in their organization. See [18], and the work of Barry Peterson on neck
muscles geometry and its correspondencewith vestibular neuron geometrical coding,
cf. for instance [77, 78].

Hypothesis: Different Geometries for Different Spaces of Actions.

A. Berthoz [14–16] describe many aspects of the fundamental link between brain,
movement and decision. In particular he proposed that several geometries are nec-
essary for guiding several networks controlling actions in different spaces. Neu-
ropsychological observations of pathological behaviors following brain lesions have
revealed that different neural networks are involved in action in different spaces.
(See reviews in [16, 17, 43, 73].) It has been proposed that at least five spaces are
subserved by at least four different mechanisms and networks:
(1) Body space, which is reconstructed in a “body schema” in networks located in
the temporo-parietal junction, as first shown in epileptic patients by the neurologist
Wilder Penfield in Canada, who identified this brain region as responsible for “aware-
ness of body schema and spatial relationships” [76]. It is known that this schema
takes into account all the mechanical and dynamic properties of the real physical
body, and it has been also proposed that the temporo-parietal junction contains an
“internal model” of gravity, cf. [57, 66].
(2) Near action and prehension space, which is equivalent to the space at which we
can reach things with the extended hand. In this space the geometries have to include
forces and dynamic properties of the objects that one manipulates or obstacles that
we may encounter. Simplifying laws of movement are at work to control gestures
(see above and [10]). Actions can be made in ego-centric reference frame or in object
centered reference frame or, if another person is involved, in hetero-centric reference
frame.
(3)Far action space, that is the space that we reach with a short locomotor trajectory
(typically a room). In this space it has been shown that optimizing principles induce
stereotyped trajectories. Both ego and allocentric reference frames can be used as
well as heterocentric ones. Evidence shows that the neural networks involved in this
space are not the same as those for near action space (cf. [85, 105]).
(4) Environmental navigation space, that cannot be explored by a short walk. Typ-
ically a city or a park that requires an allocentric cartographic coding to be able
to navigate and find new paths. Cf. [71]. (5) In addition to this modularity recent
studies have identified multiple reference frames and different neural structures for
“egocentric” (referred to an observer own body viewpoint), “allocentric” (map like,
independent of an observer view point), or even “heterocentric” (taking an other per-
son as a reference) ([6, 12, 24, 37, 58]. This diversity of reference frame has given
rise to a number of terminologies (like first or third person perspective etc.).

Our hypothesis is that evolution has applied a principle of modularity and
designed different networks for actions and perception in these different spaces
because each had different requirements and therefore different “geometries”.
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In the present paper we show, in addition to the already published combination
of Euclidian, affine and equi-affine geometries mentioned above, how a variety of
different geometries is useful (and even necessary) to understand various aspects of
motor control and sensory-motor interaction with the world. We explain how these
geometries intervene for adaptation of neuronal dynamics by virtual systems of
“homological nature”, and how the movements durations reflect geometrical invari-
ants and coordinate choices. Moreover, we suggest that new types of generalized
geometries without points, are necessary for guiding the neural networks underlying
complex actions, movements preparation and execution.

2 Geometries for Motions Timing

2.1 Euclidean and Galilean Brains Structures

It is amazing to see how precisely the geometrical principles of Physics are reflected
in the organization and dynamics of the visual and vestibular system for controlling
posture, locomotion, active vision and equilibrium in highly dynamic conditions.
In particular, the vestibular end sensors of vertebrates, the semi-circular canals and
the otoliths which record heads rotations and translations. (See a recent review in
[40].) Even at the first level of transduction, in the hair cells, there exists a coherent
recording of linear acceleration and rotational velocity, or at higher order, linear jerk
and rotational acceleration. We have described recently the remarkable geometrical
organisation of the otolithicmaculaewhich allow this transducer through the creation
of a “virtual dynamic line” to detect 3D acceleration very rapidly and efficiently [27];
and we have shown that a peculiar geometry of the semi-circular canals ampullae
optimizes the distribution of forces for the detection or rotational forces [65].

All this is compatible with the natural analysis of a Galilean group. From prin-
ciples of the Theory of Relativity, linear acceleration and gravitation are a priori
non separable; however, after two neuronal relays, in the cerebellum, gravitation
and acceleration information are both accessible. (Cf. [3, 107]). With vision (and/or
hearing), we get the ten dimensions of the complete Galilean group R the rotation
(3), V a uniform speed (3), T a spatial translation (3) and τ a time translation (1).
Cf. [9, 41].

In addition, vestibular, visual and proprioceptive information flows are able to
produce in the hippocampal formation a variety of geometrical neurons for navigation
in the Euclidian plane. This is performed by the system of place cells, head direction
cells, grid cells, frame cells, boundary cells etc. Cf. [1]. A variety of frames for
navigation can be obtained with this diversity of modes of coding.

Note that this network involves many structures from other regions of the brain,
for instance in the Thalamus [52], and it exchanges information with other neo-
cortical areas, for instance prefrontal or parietal cortex [13, 21], and even cerebellum
[22, 50].
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2.2 Affine Evidence and Multiplicity of Geometries

The brain uses other geometries than Euclidean. For instance Flash and Handzel [31,
32], Pollick and Shapiro [90] have remarked that the 2/3 law [56] which gives a
non-linear relationship between tangential velocity and curvature during a natural
movement, can be interpreted in terms of affine geometry. The starting point of the
2/3 power law was an old observation [19], that when drawing, or writing, the end
effector moves slower in the more curved parts of the trajectory; the more precise
law tells that the linear velocity V (t) is proportional to R(t)1/3, i.e. the radius of
curvature of the trajectory at time t elevated to the exponent 1/3 (which makes
−2/3 for the angular velocity, and gives its name to the law). Handzel and Flash,
Pollick and Shapiro [31, 90] re-expressed this law as follows: the time course along
a path corresponds to the unique equi-affine invariant way of parameterizations. The
equi-affine group is the subgroup of affine transformations that preserves the area.

For hand movements in space, Maoz et al. [64] have shown that torsion with
exponent 1/6 comes into the play, and this also can be interpreted by the equi-affine
invariant parameterization. Concerning the shape of trajectories, Polyakov et al. [91,
92] studying scribbling in monkeys, have shown a dominance of arcs of parabola,
which are the curves with the highest dimension of affine symmetries.

A remarkable finding was that the same kind of law also holds for human loco-
motion, but with an exponent smaller than 1/3 and depending upon the form of the
trajectory. References [47, 103] The idea that similar laws subserve the generation
of a trajectory for a similar gesture executed by different effectors was known in
Physiology under the name of “the principle of motor equivalence”. In accordance,
it was shown recently that in the motor system a large distributed population encode
handwriting movements in scale independent manner [44].

Studies on locomotion have also suggested that general optimizing principles
probably involving non trivial euclidian geometries subserve the formation of loco-
motor trajectories [4, 48, 81].

A systematic exploration of kinematics of drawing and walking [10] showed that
different geometries (Euclidian, equi-affine, affine) are used together for generating
the time course of a trajectory, depending on its local shape. This incorporates the
observation of Binet and Courtier that isochrony guides successive productions of
point to point motion with the hand. And this is compatible with the necessary
interplay between vision and motion, because, for instance, when we have to walk
on a circle what we see on the ground is an ellipse. Geometry appears to serve the
action/perception coupling. (For the comparison between perception and production
with respect to the geometric parameterizations see [60].)

The combination of the different geometries during a movement was modeled
by logarithmic combinations of invariant abscissae. This allowed to revisit the time
course of velocities from the point of view of shifts between different geometries. As
a result, we have compared the duration in drawing and walking, and shown that the
main difference between them is a larger impact of Euclidean geometry for walking
and a larger impact of pure affine deformation for drawing.



20 D. Bennequin and A. Berthoz

The fact that affine geometry underlies hand movements production was estab-
lished from a statistical analysis of a large set of scribbling [79]. More precisely, if
two paths segments can be transformed accurately one into each other by an affine
transformation, then the timing on these segments are accurately matched by the
affine transportation, once it is normalized by total time. Also these finding have
been recently applied to robotics.1

Of course, we do not assert that geometry alone is responsible of movement
planing and generation; geometry must conjugate its role with other principles, like
min jerk, min variance, min time or min energy (cf. [67]).

3 Geometries for Adaptation

3.1 Homological Spaces and Galois Operations

Below we propose some suggestions to explain how the brain creates several differ-
ent geometries and why these geometries allow a great flexibility i.e a capacity of
adaptation to the variety of conditions in which action has to be made.

Specificity.

According to Poincaré, Euclidean geometry has its origin in the overlap of infor-
mation between the inner world and the outer world, during movements and explo-
rations. As reminded in the first sections, this overlap produces an ambiguity which
possesses a structure, described by a convenient group and a convenient space. Every
geometry used by the brain offers a specific process to overcome the complexity of
the interaction with the external world, it guides the choice of pertinent aspects in an
excessively rich set of interaction, and it allows to plan actions in various spaces. This
is compatible with the with the concept of modularity and simplexity proposed by
Berthoz [16]. Our hypothesis is that during evolution, living organisms have created
in the brain new neuronal structures adapted to different action spaces, extending the
range and abilities of interactions with the world. These new structures are organized
according to specific geometries.

Let it be clear that we do not suppose that geometries are organised as such in
the brain, or as described by the abstract concepts of mathematics like those below.

1Recently,Q.-C. PhamandY.Nakamura developed a new trajectory deformation algorithmbased on
affine transformations. Reference [80]. The idea is to apply a set of predefined affine transformations
to a set of trajectory segments, to avoid unexpected obstacles or to achieve a newobjective goal. They
also conjugate this idea with optimization algorithms for better accuracy, respecting C1 continuity,
keeping fixed final configuration and avoiding joint limits. The method was tested on a virtual
planar three-links manipulator, and compared to polynomial interpolations; the main result is a
considerable gain in computation time for equal accuracy. This can also be efficiently applied for
minimizing curvature’s changes in 3D point to point deformation. The method was applied to rapid
motion transfer from humans to robots, with better performance in kinematics than polynomial
interpolation methods.
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But these geometries correspond to specific processing characteristics of certain
cells and networks, defined by particular sets of transformations which occur within
these networks and which constrain and modulate the interactions between several
brain areas, dedicated to a given type of functions. A simple example is given by
Affine geometry, present in movement preparation and execution, as in visual or
somatosensory perception; there is apparently no center dedicated to this geometry,
to the contrary it seems operating indirectly in some dispersed co-variant states
of neuronal networks, premotor and cerebellar areas or in higher visual areas for
instance.

Adaptation.

We suggest that adaptation is the main goal of most of the non Euclidean geometries
that are used by the brain. In Biology, adaptation is an ubiquitous and essential prop-
erty of sensory and motor processing, allowing the living systems to sense and antic-
ipate what is changing in the world [14]. An example is the decline in the frequency
of firing of a neuron in response to constantly applied environmental conditions, or
more generally, any change in the relationship between stimulus and response that
is induced by the level of stimulus [59]. For surviving, acting and perceiving effi-
ciently, every living entity must dispose of functional systems that adapt themselves
continuously to the changing environment and to internal modifications.

A general hypothesis of homology for adaptation [8] can be expressed as follows:
for every decision organ, or every function (that are dynamics transforming an input in
output, or predicting an output from prior experience), denoted by X, which depends
on parameters, or modules, denoted byU (corresponding to the mathematical notion
of unfolding, that is a deployment), there exists necessarily a secondary organ, or
functional system, I , which “builds” the schema (plan) of the functional dynamics in
X, and at the same time“shapes” themodules inU (gives thema structure), for guiding
the adaptation of X. Up to this point I could be the support of any “internal model” or
“supervisor” as it was already suggested in the neurosciences or robotics or artificial
intelligence literatures; for instance, a notion of observerwas proposedby J.-J. Slotine
and W. Lohmiller [99, 100], with interesting applications to dynamical systems that
satisfy a property of contraction. However this would not generate a new geometry;
thus the most important point here is that I comes naturally equipped with a set of
virtual transformations, forming a groupG, which characterizes theGaloisian nature
of homology. This group corresponds to a scheme of deformations of the modules
in U. The definition of a group (or more generally a groupoid, cf. Appendix 2), i.e.
operational associativity and reversibility, corresponds to the main requirements for
an adaptation scheme. In the simplest examples, where X describes the competitions
between minima of a potential function, the space U is made by significant minimal
deformations coefficients of the potential, the space I introduces imaginary linear
combinations of vanished minima, that do not correspond to realizable situations,
and the geometry G on I is an extension of the Galois group of a generic numerical
equation. The correspondence between I and U is induced by the map from the
roots (real or imaginary) to the coefficients, it is not one to one, thus the induced
real deformations in U are only the shadows of the geometrical operations of G.
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Consequently, the natural homological operations in I create a new world, including
the various plans for adaptation. This is a new formulation, leading to a control. In
other terms, I is at the same time, able to “understand” when the dynamics of X
needs to be adapted, and able to “drive” the required adequate deformation of the
parameters of U, by working in an imaginary space. This represents a higher level
of control than a simple direct coupling between the dynamics of X and U.

This process involves therefore a true ternary structure, with three equals actors,
X, U and I , where I expresses the convenient geometry G. This structure can be
generalized in the framework of localized categories, to get new geometries without
points, corresponding to a field of groups. An interesting example is given by the
co-homology of information topos, where X is a category of observables, U a set of
probability laws, and I the localized mutual information quantities of Shannon, see
[7, 8].

Let us insist on an important point: the geometry G on I introduces a particular
structure of ambiguity between the brains states and the external world. As this point
is surprising and certainly difficult to accept for lectors who are not familiar with
homology or Galois theory, let us take the example of Affine geometry in movement
production. In this case, there is no compensation between a transformation in neu-
ronal states induced by a bodymotion and a transformation in neuronal states induced
by a change in the world, but there is a compensation between a transformation in
neuronal states induced by an internal dynamics and a virtual coordinates change
on the world. For instance, preparing a hand writing “up to dilatation” expresses an
internal ambiguity with respect to the achieved motion. A dilatation of the dimen-
sions of the ambient space has no experimental support, it is only a virtual change of
the world, that can be reflected by a transformation of the dynamics in a particular
structure of the brain and compensated by the dynamics of another structure. (Cf.
[44] for an experimental support of this hypothesis in the motor system.)

Properties of Homology.

Thus our hypothesis is that geometries are properties of spaces I which are of homo-
logical nature with respect to a neuronal dynamics X, they define the relevant char-
acteristics of X, they structure these characteristics, and define virtual operations
on them (see [8, 20]). In the same manner that Poincaré associated a group and a
geometrized space to the ambiguity structure of rigidmotions, a geometry, associated
to a group G and a spectrum of sub-groups (gHg−1), is implemented in I to make
standard and flexible the deformations for adaptation in the space U which repre-
sents the control of the changes in X (the unfolding of the dynamics). In general,
the relationship between I and U is ambiguous, reflecting the ambiguity between I
and the real world, but in most known cases, they are related by a locally one-to-one
correspondence, in particular they have the same dimension.

We suggest that concretely, X, U and I are probably implemented in interacting
neuronal networks, frequently organized in brain areas, or interacting nuclei. For
instance, an interesting brain structure for containing homological areas is the thala-
mus. Even if he used other words and concepts, D. Mumford [68, 69] described the
thalamus as a kind of black-board were transiently complex messages are schema-



Several Geometries for Movements Generations 23

tized. This is compatible with another important role of the thalamus, which is to
transmit information between brains areas, in particular neo-cortical ones [29], and
to systematically send traces of this information to the motor system [98].

A paradigmatic example of homological space I , with an affine geometry on it,
is for color in LGN (cf. [8]). Of course other regions are possibly of this nature, for
instance the Entorhinal cortex EC, in relation to CA3, CA1 and Subiculum in the
Hippocampal formation, and several thalamic nuclei (cf. [1, 52]), may play this role
for navigation and more generally for memory.

An homological network I is also a dynamical function, thus it can itself be
transformed by a higher degree homology for adaptation. This can generate a cascade
of homological folds: H(H(...))...). ... In fact, there exist in a developed brain many
ternary structures, supported by different but overlappingmaterial structures, that are
interacting cellular networks. Several ternary structures can share a given geometry,
or several different geometries on different ternary structures can interact coherently.
We saw this result in our analysis of duration of curved trajectories [10].

Therefore our general hypothesis is that (1) the brain is a creator of ambigui-
ties (on the model of the initial ambiguity between inner and external world, but
comparing now internal modulations with external coordinates changes), (2) the
associated geometries G are virtual operations on ideal homology spaces I , that
are engaged in ternary structures X, U, I , for guiding control and adaptation.

In reality, during the Evolution, it is likely that the three components and the
corresponding geometry evolved together.

3.2 Canonical Times and Moving Frames

A geometry G on a space I can offer a repertoire of virtual movements and plans
of actions. In the present text, we focus on trajectories of body systems and their
generalizations, and we replace I by a geometrized space E that represents the con-
sidered body system. This space E is identified with an homogeneous quotient G/H
of G by a sub-groupH (cf. Appendix). Elie Cartan (1937) summarized in a beautiful
concrete method one century of research about the geometric invariants of curves in
E; this is the moving frames method. (Cf. [10, 23, 35, 72].) In [10, 32], this method
was used to define a series of natural timing on trajectories for drawing and walking,
and compare it with experiments.

The Cartan’s method is inspired by the Galois theory [38], and consists in estab-
lishing a natural bijection from a product of spaces issued from the groups G and
H to the manifold of infinitesimal elements of every order of curves in E. On the
side of G, this gives a sequence of homogeneous spaces Gn/Gn+1, where Gn is a
decreasing sequence of groups, starting with G0 = G and G1 = H, plus numer-
ical values for geometrical invariants until the order n (i.e. quantities which do
not depend on the frames and depend only on the derivatives of the trajectory up
to the order n), and on the side of curves, this corresponds to the sequence of
derivatives (jets) of order n modulo derivatives (jets) of order n − 1, that define
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the infinitesimal curve up to the order n. The decreasing sequence of sub-groups
i.e. {e} = GN ⊂ GN−1 ⊂ · · · ⊂ G1 ⊂ G0 = G ends at the order N , which coincides
with the dimension of H.

For the concrete algorithm of the moving framemethod, see the above references.
[Briefly, for mathematicians readers, it consists to fix a frame F0 and to choose
order after order the frames gnF0 attached to the given curve in such a manner that
the differential equations which describes their displacement along � involve the
less possible number of free parameters. It follows that a given curve � determines
step by step, starting with n = 0 a canonical sequence of subgroups Hn = gnGng

−1
n .

The element gn being defined modulo multiplication to the right by a sub-group Gn

(ambiguity of order n), the frame at this order is only partially defined. At the orderN
the frame becomes fixed, then the following orders, larger thanN , give new invariant
quantities for �, that correspond in general to higher order derivatives of a finite set
of curvatures.]

Up to a simple ambiguity, like t changes at + b, the canonical parametrization
emerges as the only one were the moving frames equations keep their form.

Classical examples are the Serret–Frenet frame in Euclidean geometry, parameter-
ized by arc-length, giving rise to usual Euclidean curvature and torsion. Less classical
examples are the equi-affine frame, corresponding to the osculating rational helix, in
the 1/3 parametrization, giving the equi-affine curvature, and the more general affine
frame, cf. [10]. The order N is given by the dimension of H; in the case of planar
geometry, this gives 1 for Euclidean, 3 for equi-affine, 4 for affine, 6 for projective.

The final canonical moving frame equation can be seen as an optimal form of
sparseness for transportation description. The decreasing sequence of sub-groups
can be intuitively understood as a manner to break progressively the ambiguity on
the space surrounding a curve, by choosing canonically a system of coordinates,
attached to our trajectory. Thus, we see that in this context, of a trajectory in a
geometrized space, information is formulatedwith groups theory, as in other contexts
it is formulated with probability theory.

For preparation of action (or its reverse face, that is perception, as proposed by
Rodolfo Llinas, [61]), the above geometrical description represents an economy
of planning (e.g. the affine group invariance for seeing or imagining, to prepare
walking); then, step by step, from anticipation to execution, a sequence of sub-groups
breaks the indetermination.

Timing along trajectories and canonical coordinates on geometrized spaces
arise from the group structure of the geometry, by an analysis of the ambiguity
about coordinates in space for stabilizing position, velocity, acceleration, jerk, and
so on.

However new concepts are needed to address complex organizations in different
spaces, like, as mentioned in the introduction: action on body space, or reaching in
near action and prehension space, or locomotor out of reach space, or environmental
space. Composite motions can require more than two geometrized spaces. We would
like to consider here what are the neural underlying “spaces” in these cases.
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4 Geometrical Spaces for Movements

4.1 Topos and New Geometries Without Points

We have previously, as described above, found evidence of combinations of sev-
eral geometrical systems for the production and control of point’s trajectories, their
rhythms and timing of duration. In the case of drawing and writing, the considered
effector is the end of a finger, or a pointer, and in the case of walking locomotion, the
pointwhich is considered in place of the effector is the projection on the floor of a con-
venient point in the body (for instance the center of the head), thus we characterised
these movements by precisely defined points in space or on the ground. However,
most of the natural voluntary movements, or gestures, cannot be represented by the
motion of only one point.

A first natural suggestion is to work in a large “parameter space” with many
dimensions corresponding to the control of many points attached to the body, as it
is frequently done in robotics. However, this method can hide a geometry, as for
instance was first the case in astronomy by the description of planets motions by
composition of circular motions with constant velocity; this method occluded for a
long time the Kepler motion on conics. Thus we prefer to look at the possibility of
geometries without points.

Such geometries and dynamics do exist, they are associated to Topos, (cf. Appen-
dix 2). The idea of topos [42, 93] is to replace sets and points in these sets by
networks of arrows with fixed topology, between sets, and we forget about the notion
of points. For example a chain • → • → · · · → � of fixed length n + 1, gives rise
to all sequences of length n + 1 of transformations. More generally, an oriented
graph � gives rise to the articulated structures of several maps between spaces acting
coherently as indicated by �; we proposed to designate generically these families
of maps by the name of “fields”. Thus a usual set is replaced by a field. And the
usual transformations from a set to a set are now replaced by a collection of maps
between the sets that are placed over the same vertex of �, which satisfy a condition
of compatibility: that going on two different paths from a set to another one, either
following the fields or following the transformations of fields, we get the same result.
For instance in the above example of the chains, a generalized transformation from a
fieldA0 → A1 → · · · → An to a fieldB0 → B1 → · · · → Bn, consists in a collection
of transformations A0 → B0, A1 → B1, …, An → Bn, such that for any index k < n,
the two manners of going from Ak to Bk+1 give the same map.

The theory of topos was applied to intuitionist logic. (William Lawvere et al., cf.
[93] and the references inside.) Even the simplest example of the chain of length 2,
that is 0 → 1, gives a topos (associated in fact to the site which is the dual graph
1 → 0, because presheaves are contra-variant functors). This topos is named the
topos of Shadoks by Alain Prouté, that has a table of truth with more than two values,
then violating the contradiction principle. The Boolean calculus of characteristics
functions of sets is replaced by a 3-valued logic (Heyting algebras): true, false and
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... uncertain. See the exact statement and its proof at the end of the second appendix
below.

All the usual objects in mathematics can be reconsidered in this setting. This
applies in particular to dynamical systems and their deformation. The construction
of homology I can be extended for giving “homological fields”, that are fields I0 → I1
in the case of Shadoks. We can look again at the familiar geometries in the plane,
affine, equi-affine and Euclidean, where each geometry corresponds to a group G
and a subgroupH; in the new setting of Shadoks,G has to be replaced by amorphism
of groups G0 → G1 andH by has to be replaced by a restricted morphismH0 → H1

from a subgroup H0 ⊂ G0 to a subgroup H1 ⊂ G1.
Then, assume we can develop a generalization of the algorithm of the Cartan’s

moving frame in this context, each group of the chain will contain a canonical
sequence of sub-groups, order by order; then the usual sequence is replaced by a
grid of morphisms.

Continuing thisway,we obtain a newnotion ofmoving frames,which is amapping
between sets of frames. But remind that each pair (G,H) determines a parametriza-
tion of trajectories that gives a virtual timing in accord with the geometry, thus two
pairs (G0,H0) andG1,H1) gives two notions of timing. As a consequence something
very interesting happens with time: we discover that there is no reason for a unified
timing, or unified rhythm. The canonical parametrization becomes a change between
two parametrization times.

Of course the executed motion is realized in a coherent timing, our assertion
applies to the working systems which prepare and execute the action; like in elab-
oration of a movie, each image and scene being worked in their own timings, and
then glued together for projection.

Remark this is not in contradiction with the known relation between the timing of
actual executions of action and the timing of the mental imagination of this action,
cf. [26, 70], because, as said in [25], imagined and executed actions share, to some
extent, the same central structures. On the other side, our assertion accords with the
adaptive compression of timing in imagination and memory for navigation, cf. [5],
because, in this case, there are probably two different topos geometries at work, one
for locomotion and another one for navigation.

In fact, the notion of trajectory itself is now problematic: for example, in the chain,
like the shadoks one, a real interval I of numbers for parameterizing the time is only
needed at the end, over 1, but at the origin, over 0, we can get a manifold Y , not
necessarily an interval, equipped with a map f : Y → I . Thus the parametrization
of a trajectory by the time is replaced in the case of a shadoks space π : E0 → E1

by a field F : Y → E0 underlying the ordinary trajectory γ : I →→ E1, in the sense
that π(F(y)) = γ(f (y)) for every y in Y . This leads to the notion of a non-linear
time, which can have many dimensions, corresponding to a network in movement
preparation and execution.

Thus we obtain a well established psychological fact: that inner times are mani-
folds.
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Applications to Different Action Spaces.

We shall now apply these concepts to the question of the different action spaces:
prehension, initiation of locomotion, near locomotion, environmental imagined nav-
igation. In these example the action relies on fields of forces of very different nature.
It is natural to expect that the timing to keep an object, to stand up, to press the floor
with a foot or to imagine and dream of a city are different from the timing of an ordi-
nary clocks. Theses action-times should give an insight of the different geometries
at works.

4.2 Examples

Wewill consider shortly several sorts of naturalmotions, and sketch afirst preliminary
essay to model them by topos geometries. Our first approximation will use only two
levels, i.e. geometries in Shad (the topos of shadoks), which are associated to an
homomorphism of groups GB → GA, that respects subgroups HB → HA of GB and
GA respectively. This will correspond to a division in two parts of the motor system,
representing the body and a point of interest. In the same spirit, we could have used a
longer chain, taking into account the torso, the shoulder, the hand position and finally
the end effected move. Of course this should have been more realistic and efficient in
applications. But in this section, we want to present the main idea without modelling
experiments, and for that purpose, two levels seem sufficient.

A general fact will appear: that GA is a group, in accord with usual geometry,
but GB is not a group, only a groupoid (the notion that extends groups in category
theory, cf. appendix), corresponding to the fact that physical articulations of a body’s
part limit the iteration of its motions. However this makes no profound difference
for the following discussion, and we neglect this fact, considering GB and HB as if
they were ordinary groups.

4.2.1 Prehension

The convenient geometry has to be polarized, from the surface of body to the external
world containing objects; this polar structurewas also underlined byTamar Flash.We
model this geometry by a two levels sequenceGB → GA, whereGA is a geometry for
the classical external space, that could be the Euclidean one or an affine extension,
and a two levels sequence of subgroups HB → HA. We consider for simplicity that
the object of interest must be reached and moved by the hand. The compensation
scheme of Poincaré implies that the group GB describes the configurations frames
that the body can attain with respect to the hand position, indifferently on the fact
that the movement is voluntary or imposed from another subject. It describes the
allowed equilibrium states of the arm. Stabilizing mechanisms of neuro-muscular
activity at equilibrium of the arm should play an important role here, for allowing
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the compensation of transformations of GB on neural activities. This can be seen as
the set of postures of the arm. In this respect, we can cite the results of Tamar Flash
on the stiffness field of the hand in multi-joints arm movements [30].

The map from GB to GA represents the induced hand movement. The sub-group
HB ofGB must go intoHA, thus it is a set of deformations of the arm with a fixed end.
The choice of HB defines a sort of redundancy. The quotient space EB = GB/HB

defines the geometrical degrees of freedom of the arm, or postural schemes. The
minimal choice for EB is the linear space of vectors from the shoulder to the wrist,
which is probably not sufficient for most neural control; a more interesting choice
considers in addition the three articulations, at the shoulder, at the elbow and at the
wrist. In the Euclidean framework, this gives three angles, but in affine geometry the
space is more intricate.

If we want to take in account the eyes movements information to the reaching
system, a better representation of the geometry should involve two groups,GB1 ,GB2 ,
one for the arm, the other for the eyes, going to the rigid motions GA, and two sub-
groups HB1 in GB1 fixing the hand position, and HB2 in GB2 fixing the direction of
the gaze.

What appears on this example is an interesting possibility to revisit the notion of
spatial reference frames used in reaching (cf. [2, 46]. For instance the notion of center
of frame is replaced by at least two centers, one in the object, with a possible virtual
identification with the subject, and one in the articulation points of the arm, and/or
the eyes center. The flexibility in defining a reference frame on the aye, the shoulder
or even in arbitrary points has been documented in several papers from the groups
of John Soechting, Francesco Lacquaniti, Paolo Viviani and Alain Berthoz. In fact,
in the spirit of topos, what replaces the notion of a center is the graph which relates
arm, eyes and objects, here the graph has two arrows from arm and eye respectively
to the object; thus, in some sense, two new geometries are acting together, one for
the eye and the object, the other one for the arm.

4.2.2 Initiation of Locomotion

The convenient geometry has also to be polarized, from the support of the body
to to the Euclidean objective space, where locomotion is effectuated. Consequently
we take again, as for prehension, for GA and HA an ordinary space geometry. This
geometry can be Euclidean or affine, depending on the level of preparation in the
brain.The second level ambiguity groupGB describes the configurations that the body
can attain; it corresponds to the posture of the whole body. The arrow (morphism)
from GB to GA is given by the movement of a rigid frame attached to the body, that
can be the head, or the torso.We see that probably, several arrows shall be considered,
corresponding to several new geometries, working together.

We observe again that GB is not a complete group, it is only a groupoid, because
the body has to keep contact with the floor, and cannot be deformed arbitrarily; in
particular the map from GB to GA is not surjective. The group HA is the set of rigid
motion fixing the center of gravity of the chosen body frame. The constraint on the
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sub-groupHB is that it must go toHA, and that EB = B = GB/HB defines sufficiently
simple parameters to be controlled, like particular angles at the articulations.

If we take for HB the subgroup of all postures giving a fixed body’s center of
gravity, we obtain for GB/HB a part of the ambient space, representing vectors of
standing.However this is not the most interesting choice, we could impose more
constraints onHB, at articulations under control, for instance the neck, or head stabi-
lization, this would give a larger space GB/HB, defining a more interesting postural
scheme. This corresponds precisely to a choice of reduction of number of degrees of
freedom (cf. [11]).

In addition, as in the case of reaching, we can take into account the visual infor-
mation, that enlarges greatly the dimension of the adapted frames dynamics. Note
also the possibility to enlarge the geometry by coupling to the topos geometry of
another moving subject.

4.2.3 Locomotion

Here GA and HA respectively correspond to a choice of geometry in the horizontal
plane. We must be careful to not confound this plane with the ground floor, which
has a role in the second level group GB, where resistance and stand up are taken into
account. Here, the horizontal plane means the plane that is transversal to the vertical
gravity direction. InGA we can suppose that only the horizontal movement is planed.

The groupGB is again a definition of posture, but now far fromequilibrium (at least
in humans), and HB determines the posture with respect to the vertical. A possible
choice of HB could be the sub-group which stabilizes a given vector attached to the
body, for instance the axis of torso, or the vector joining the contact on the floor with
the center of mass.

It would be interesting to enlarge the postural group GB by including the transfor-
mations of the relief and the nature of the ground floor, modulating the feet positions
and the control of the center of mass. Also obstacles and objects in the environment
could also be integrated in the geometry through a variety of changing reference
frames.

We constat that in each situation, prehension, initiation of walking, locomotion,
a variety of spaces and topos geometries appear naturally, as we previously saw that
several geometries were useful for the analysis of points trajectories in hand drawing
and locomotory motion.

Note that in all the above examples, GB and HB have their origin in the usual
forces fields and dynamical mechanisms that underly the motions of bodies and
objects described by GA and HA, but they shall not be confounded with these forces
and dynamics, they define operational schemes for them, that can be used for instance
to overcome environmental changes for maintaining the success of an action, without
much changes of its form.

Also, in all these examples, it is tempting to extend the geometry for including
an external time into the geometry itself, taking for GA the Galilean group in place
of the Euclidean group. This will accord better with the fundamental role of the
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visuo-vestibular system for controlling motor coordination, locomotion, navigation,
awareness of space, and social interactions.

5 Discussion

In this article, we began by reviewing the evolution of the mathematical point of
views onGeometry, underlying the growing role of transformations and group theory.
Then we developed the hypothesis that the brain’s evolution used a principle of
modularity and designed different networks for actions and perception in different
spaces implementing different geometries for different requirements, and we added
the hypothesis that the necessity of geometries is found in their role for shaping
and guiding adaptation. Note that, when Andras pellionisz Rodolfo Llinas claimed
that the the brain is a geometric machine, they had particularly in mind the fact
that neurons with their particular form of dendrites and axon collaterals, and neural
systems, in particular in the cerebellum, but also in other structures of the brain,
are performing a geometrical work, but they also linked this work with the hidden
geometrical functioning, which links actions and perception.

We had previously suggested that several geometries, Euclidean, affine and equi-
affine, serve as a guide for humans hand drawing and locomotion. In particular the
timing along the trajectories of significant points effectors was reanalyzed and well
explained by a mixture of geometrically invariant parameterizations (cf. [10]). More
generally, it appeared that preparation and execution of these movements can be
better understood by using operations that are organized by those geometries (cf.
[31, 32, 34, 64, 67, 79, 80, 92]).

However in more complex situations, the body motion cannot be described con-
veniently by one point, as an end effector, or even by a finite collection of points. In
fact, this remark applies if we want to analyze more precisely the movements of the
hand in drawing or the movements of the body in walking. In the present article we
have addressed the problem to extend the geometrical approach to such movements.
Our new suggestion is to use the extension of the traditional geometries in the context
of topos theory.

This theory generalizes the theory of sets (i.e. ensembles), by replacing sets by
diagrams of fields between sets (cf. the appendices), thus the notion of point disappear
but the concept of geometry are maintained and enlarged.

The examples we had in mind were prehension, initiation of walking, locomotion,
navigation, imagined motion. In all those cases A. Berthoz had suggested before that
several geometries are necessary for guiding several networks in the brain controlling
actions in different spaces (cf. [14–16]).

In the present article we have indicated preliminary suggestions of useful topos
geometries for prehension, initiation of locomotion and locomotion. In each case,
the geometry has a polarized structure, for prehension or initiation of locomotion the
polarization goes from the body to the environment, for locomotion the polarization
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corresponds to the vertical direction opposed to the gravity vector, and in both cases,
principles are emerging to define a workspace of postures.

The goal is to describe a field of spaces with scheme for preparing, controlling,
executing and adapting movements. For that purpose we have connected the new
suggestion to previous developments, in two directions: homology for adaptation
(cf. [8]) and time correspondence (cf. [10, 32]). The first notion is the formation,
for each neuronal function, of a secondary functional space that extracts and defines
dynamical characteristics and admit ideal operations (Galoisian in nature) forming
a geometry, and then applies these operations for guiding the necessary adaptation
of the dynamics, at this level invariants are created. The second notion is a kind of
Galois correspondence between parameterized manifolds in the geometrized space
and frames in the geometry (Cartanmoving frame). Then we suggested in the present
study, that these two ingredients, homology for adaptation and time correspondence,
must be extended in the context of topos geometries.

Topos were invented by Grothendieck and Verdier to unify homological alge-
bra and co-homology theories. Thus, certainly, the co-homological spaces that are
adapted to represent the working of chained ternary structures for adaptation of
neuronal functions, would come from homological algebras of convenient modules
over a ringed topos. We mention that a step in this direction was the definition of
Information Homology in [7].

However much has to be done for giving theoretical hypotheses about the geome-
tries underlying the different classes of movements, to be experimentally tested. One
direction where we can look for that, would be given by concrete predictions of
timing and duration for the body’s segments, in relation to stiffness fields and EMG
signals. An article in preparation will give more details on the hypothetical brain’s
networks that are involved in the new geometries.

These new geometries must be compatible with the notion of internal models
of the world, as it is well expressed for instance by the Free Energy minimization
principle [36], with the optimization of smoothness [33, 49] andwith optimal control,
including the minimal variance principle [45], but they give a different point of view,
for complementing them.

With respect to the more usual applications of geometry and dynamics, as in
optimal feedback control, that were used for the understanding of principles guiding
voluntary motions in neurosciences or robotics, the main difference of our approach
is the research of invariance principles that are based on a fully developed geometry.

These invariance principles based on geometry, are starting with physical forces
and physical constraints, but in some sense they are integrating them, and become
free from them, to get a scheme for preparation, control and execution of movements.
For that, planning is elaborated in neuronal networks that are working as if there were
ideal geometrized spaces, not as spaces mimicking the real external physical world,
because these ideal spaces are structured for allowing the operations of the more
convenient geometry for adaptation, and then, paradoxically, only at the end of the
process, movements are realized in the physical space through the determination of
configurations in time.
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6 Appencices

6.1 Groups

Definitions: a group is a set G, with a privileged element e, in which a product law is
defined, which associates an element gh to every pair of elements g, h ofG, satisfying
three axioms: (i) associativity (gh)k = g(hk); (ii) neutrality ge = eg = g; (iii) the
existence of an inverse for each element g, i.e. g−1 such that gg−1 = g−1g = e. The
principal example is given by the group Aut(X) of permutations of a set X, that are all
themanners to exchange the elements ofX between themselves; the product lawbeing
the composition of successive permutations; the neutral element e being the identity,
when nothing changes; the inverse of a permutation consisting to replace things in
the former order. A subgroup H of G is a subset containing e which is preserved by
products and inversions. Examples are given by subsets of transformations of a set
X, containing the identity, and closed by composition and reversibility.

In general, we define an action (or representation) ofG on a set X, as an operation
law, (g, x) �→ g.x, satisfying the two axioms (i) ∀x, e.x = x (ii) ∀g, h, x, (gh).x =
g.(h.x). An action gives amap fromG toAut(X), which respects the neutral elements
and themultiplication laws.More generally, such amap between twogroups is named
an homomorphism.

Conjugation by g in the group is the important operation which sends every
element g′ to the conjugated element gg′g−1. The set of all conjugations in G is a
subgroup Int(G) of Aut(G).

The group Iso+(E) of rigid isometric displacements of the ordinary Euclidean
space E, infinitely extended around us, is a subgroup of the group of all permutations
of the points of E. This group Iso+(E) is made by translations, rotations and twists,
i.e. compositions of a rotation and a translation in the direction of the axis of rotation.
The group GA(E) of affine transformations of E contains Iso+(E), but its is richer, it
is made by all permutations f for which there exists a linear transformation ϕ = Tf
of vectors of translations, such that, for any point P and any vector −→v , the image of
P + −→v by f is equal to f (P) + ϕ(−→v ); for instance all dilatation, stretching, squeezing
are affine transformations. The number of dimensions of Iso+(E) is 6, and forGA(E)

it is 12. They are permutations which send parallel lines to parallel lines. Generally
these transformations do not respect the distance, nor the volume. The subgroup
which preserves the volume is named equi-affine.

Larger than GA(E), we can consider the 3D projective group PGL(P), acting
on the projective space P, which is obtained from the affine space E by adding a
set of points at infinity. In fact, these ideal points are in one to one correspondence
with the non-oriented directions of parallel lines in E; and a sequence of points xn
in E approaches a point at infinity corresponding to the direction d if it escapes to
infinity in the direction of d. Projective transformations are not required to respect
the parallelism relation, but they must send any straight line to a straight line, and
respect the incidence properties; they depend on 15 dimensions.
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Much larger is the diffeomorphism group, which preserves continuity and differ-
ential regularity of figures; it has an infinite number of dimensions.

More generally, Felix Klein suggested that a Geometry is associated to a group G
and a subgroup H, in such a manner that the points that G transforms are the subsets
of G of the form xH = {xh ∈ G|h ∈ H} when x describes G; two elements x, y of
G are said equivalent modulo H when xH = yH, and the set of equivalence classes
is denoted by G/H and named a Klein space. However, if we adopt this definition,
a special marked point appears in the space, which is H itself. To forget this special
point, geometers introduced general homogeneous spaces, which are sets X where
G acts in such a manner that, each time a point x is chosen in X, the stabilizer Gx of
x (i.e. the subgroup of G formed by the elements g such that g.x = x), is conjugated
to H; therefore X can be identified with a Klein space G/Gx.

However, for most of the useful geometries, it appeared that the set G/H, or the
isomorphic homogeneous space X with its action of G, can be identified with the set
of the subgroups gHg−1 that are conjugated to H; this is due to the fact that in these
cases, the application of G onto Int(G) is almost an embedding. Therefore, in such
a case, the points of the given geometry identify with the subgroups fixing them.

For all the above examples of groups, there exist natural families of sub-groups
that define convenient geometries, which are useful for Mathematics, Physics and
Biology. For instance, the traditional Euclidean space, certainly the more useful of
all for the ordinary life, is given by the set E of all sub-groups SOP, where SOP

designates the set of rotations of any angles and any axis containing the point P.
It can be easily seen that such a subgroup characterizes a point. Moreover, in this
case, the group of translations acts transitively on E: for any pair of points (P,Q) the
translation be the vector

−→
PQ gives a canonical choice of transformation g in Iso+(E)

that conjugates SOP to SOQ, i.e. SOP = gSOQg−1. Therefore, once a point of origin
is chosen, all other points are described by vectors.

Remark: it is necessary to distinguish a family of conjugated subgroups for charac-
terizing a geometry, the whole group G is not sufficient by itself; this can be seen
on a simple example: the group is G = PSL2(C) is made by the two by two matri-
ces with complex coefficients, where g and λg are identified when λ is a nonzero
complex number. If we consider in it, the the family of maximal compact sub-groups
conjugated to unitary matricesH = PU2, we get the setting for the hyperbolic space,
i.e. the 3D simply connected complete Riemannian manifold with curvature −1.
The pair G,H also appears to be the setting for the conformal geometry of the
Euclidean plane, i.e. the science of circles, the geometry where distances are forgot-
ten but angles are preserved. They are not really two different geometries, one is the
natural boundary of the other. We see the pertinence of Klein’s formulation. How-
ever, G gives also the setting for the complex projective line P1(C); every projective
transformation in dimension one over complex numbers is an homography. But the
conjugated subgroups in this case have to be the stabilizers of lines through 0 in C2,
or equivalently of points in P

1(C), which are the groups of an affine complex line,
whose standard form is made by triangular matrices with one element of the diagonal
equals to 1.
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6.2 Categories and Topos

A category C is formed by a set of objects C0 and a family of sets of arrows C1(a, b)
between pairs of objects (a, b), such that, each time an arrow g goes from an object
a to an object c and an arrow f goes from c to b, there exists an associated arrow
f ◦ g from a to b, satisfying the two following axioms: (i) (associativity) for three
consecutive arrows f , g, h we have (f ◦ g) ◦ h = f ◦ (g ◦ h), (ii) (neutral elements)
for each object c there is an identity arrow 1c such that for each arrow g coming to c
and each arrow f leaving c we have g = 1c ◦ g and f = f ◦ 1c. An arrow from a to b
in a category is also called a morphism from a to b, and the set of arrows from a to
b is also denoted by Mor(a, b) or MorC(a, b). A good reference is the book of Mac
Lane [62].

A group G can be seen as a category with only one object e, and where any arrow
g has an inverse g−1, such that 1e = gg−1 = g−1g.

Between two categories C, C ′ there is also a good notion of morphism; it is a
functor T : C → C ′, which associates to each object c an object T(c) and to each
arrow f : a → b an arrow T(f ) : T(a) → T(b), sending the identity morphisms to
the identity morphisms and respecting compositions. This kind of functor is named
co-variant; there is also a notion of contra-variant functor which reverses the sense of
arrows; that isT∗(f ) goes fromT∗(b) toT∗(a). And between two functorsT : C → C ′
and S : C ′ → C ′′ of the same variance, there is also a nice notion of morphism: a
natural transformation α, which associates to each object c of C of a morphism
α(c) : T(c) → S(c) in C ′, in such a way that for each morphism f : a → b in C we
have the commutativity relation: α(b) ◦ T(a) = S(b) ◦ α(a). As said by Mac Lane
[63], “intuitively, a natural transformation is one which is defined in the same way
or by the same formula for every object in the category in question.”

The following example makes all these definitions quickly understandable; it
corresponds to rectangularmatrices of every finite dimensions over a field of numbers
K ; the setM0 is the set of natural integers N, including 0, and for any pair (n,m) of
natural integers the setMorM(n,m) is the set of m × n matrices with coefficients in
K ; when n = m we have the identity matrix 1n, and the composition in the category
is given by the multiplication of matrices. An example of a much larger category V is
given by the set of structures of finite dimensional K-vector spaces on a given large
set, and by the family of linear applications between these spaces. An example of
functor is the embedding ε of M in V which sends an integer n to Kn and a matrix
M of size m × n to the operation of multiplication of M with a column vector in
Kn. A less canonical functor β in the other direction, from V to M, is obtained by
choosing at the level of objects a basis on every vector space, and at the level of
morphisms, the matrix which expresses a linear operator in the chosen basis at the
source and the goal. Let us consider the two manner of composing these functors
ε ◦ β and β ◦ ε; a natural transformation A from the identity functor IdV to ε ◦ β
associates to V the map which sends each vector of V to its coordinates in Kn, and
a natural transformation B from the identity functor IdM to β ◦ ε associates to n the
element 1n. For any V , A(V ) is a bijection, and for any n, B(n) is a bijection; it is
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said in such a case that ε and β defines an equivalence of category. If we think that
the most important things are the properties of morphisms and not the properties of
objects, the equivalence of two categories means that they contain essentially the
same information; even if one of them contains much less objects, as this is the case
forM with respect to V .
Remark: in category theory it is frequent to encounter collections of objects that are
not sets, for instance the collection of all the vector spaces, all the groups, or all the
sets; the paradoxes found by Russell and Cantor, for instance, have shown that these
examples cannot be sets; but the notion of collection is too vague to justify most
aimed theorems, consequently the inventors (Eilenberg, Mac Lane, Grothendieck,
...) managed to constrain the objects and the arrows to be sets C0, C1. They tried to
find a setting where most of the general constructions that could be expected for
“collections” can be done, but also can be controlled. For instance the fact that there
cannot exist a set of all sets is overturned by the introduction of a category SetU ,
whose objects are the sets belonging to a given set U, which is named the universe
and which verifies convenient properties. The same thing can be made for groups
GrpsU or K-vector spaces VectKU . The axioms for a universe are the following ones:
(1) ifC ∈ U and a ∈ C then a ∈ U, (2) ifC andD are elements ofU, the set with two
elements C,D belongs to U, and the set with one element (C,D) (the pair (C,D),
which exists in every set theory), and also the product C × D (made by the pairs
(c, d) for c ∈ C and d ∈ D) belongs to U; (3) the set P(C) of parts of an element C
of U belongs to U, as does the union

⋃
C of all the elements x of the elements a of

C; (4) natural integers are included inU; (5) ifC ∈ U andD ⊂ U (i.e. d ∈ D implies
d ∈ U) and if there exists a surjection f from C onto D, it follows that D ∈ U.

(Again see [62].)
A problem is that the set of integers N is the only known universe, in fact the

existence of other universes was proved to be undecidable in the usual axiomatics of
set theory (as Zermelo–Frankel theory for instance). Real numbers are so useful that
Grothendieck and Verdier have suggested to add to set theory the following axiom:
for every set X there exists a universe U such that X ∈ U. There is no proof that it is
safe, i.e. without contradiction, because this is already the case for ZF theory.

By definition, a category is aU-category when all the setsMor(a, b) are elements
of U, a category is inside U when C0 and C1 are parts of U, a category is said to be
U-small when C0 and C1 are elements of U.

In general, when C0 and C1 are only unspecified “collections”, Mac Lane prefers
to speak of a meta-category, and he reserves the name of category to the case where
C0 and C1 are sets. In what follows, we assume that a universe U is chosen, but we
do not mention it.

An important sort of category generalizes the notion of group; it is named a
groupoid. The special axiom specifies that every arrow has an inverse; in particular
for every a, the set Mor(a, a) is a group.

When a is an object of a category C, the category C|a (a fiber over a) has for
objects the pairs (b, f ) where b is an object of C and where f ∈ Mor(b, a), and for
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set of morphisms between (b, f ) and (c, g) the subset of the h ∈ Mor(b, c) which
satisfy f = g ◦ h. A refinement (more frequently named a sieve) R of the object a
is a sub-category of C|a, that contains (c, f ◦ g) each time g ∈ Mor(c, b) and (b, f )
belongs to R.

A topology on a category C, in the sense of Grothendieck, is made by the asso-
ciation of a set J(a) of refinements to every object a, which satisfies the following
axioms: (i) for every f : b → a, if R ∈ J(a), then f ∗R ∈ J(b), where f ∗R is made by
the g : c → b such that f ◦ g belongs to R; (ii) for any a and R ∈ J(a), the refinement
R′ of a belongs to J(a) if and only if, for any b → a in R, the category f ∗R′ belongs
to J(b). A site is a category equipped with a topology. In the examples below, most
of them being in a finite setting, we take the discrete topology, where, by definition,
for any a, the set J(a) has only one element, which is the category C|a itself. All the
site we will consider are U-small.

An usual topological space X gives a topology in this sense: the objects of the site
are the open sets and its morphisms are the inclusions between them, and for every
open set U, an element of J(U) is an open covering of U, taken with all the finer
coverings.

A presheaf on a category C is a contra-variant functor from C to the category
Set of the sets in a given universe U. In the category Set, there is a notion of infinite
product, and for any presheaf F on C, and any refinement R of a in C, if FR : R → Set
denotes the restriction, we can consider the projective limit limFR, which is the subset
of the product of all the F(b) for b ∈ R, made by the families (xb); b ∈ R, such that
f : c → b, implies xc = F(f )(xb). A sheaf on a site C is a presheafF : C → Set, such
that, for any a and any R ∈ J(a), the natural map from F(a) to limFR is a bijection.
In the discrete case, every presheaf is a sheaf.

Definition: A topos is a category isomorphic to the category of sheaves over a site.
The category Set is the simplest topos, associated to the site with one element. An

interesting generalization is given by the category of G-sets, where G is a group, a
G-set being a set on which G acts to the left, and a G-morphism being an equivariant
map.

Most of the constructions that are possible in Set, are also possible in every topos.
For instance projective and injective limits exist. In particular Cartesian squares do
exist; they are defined as follows: if f : a → c and g : b → c, there exists a (non-
necessarily unique) object d, equipped with two morphisms h : d → a, k : d → b,
satisfying f ◦ h = g ◦ k, such that for any pairs of morphisms u : x → a, v : x → c
satisfying f ◦ u = g ◦ v, there exists a unique morphism w : x → d which satisfies
u = h ◦ w and v = k ◦ w. The object d is denoted by a ×c b.

In every topos, there exists a final object, i.e. an object 1 such that any for other
object F the set Mor(F, 1) has one and only one element. This object is interpreted
as a singleton.

There exists also an initial object ∅ which is the empty functor, having a unique
morphism to every object in the topos.
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Starting with the category having two elements and one arrow between them,
a very interesting generalization of set theory occurs, cf. Prouté [93], which corre-
sponds to an intuitionist point of view,where a property can be true, false, or uncertain
in various manners. We will come back soon to this example, named the topos of
Shadoks.

First we have to generalize the notion of parts of an object in any category, where
the notion of point is absent: an arrow f : b → a is said monic (or injective, or a
monomorphism) if, for any pairs of arrows g, h : c → b, the equality f ◦ g = f ◦ h
implies g = h. Two monics f : b → a and f ′ : b′ → a are said equivalent, when
there exist arrows (necessarily monics) g and h such that f = f ′ ◦ g and f ′ = f ◦ h.
By definition and equivalence class of monics going to a is a subobject of a in C.

A special Cartesian square occurs whenwe consider amorphism f : a → c and an
injective morphism g : b → c; the particularity comes from the fact that k : d → b is
determined by g; in this case, d = a ×c b is named the pull-back of the sub-object X
defined by g and is written f −1(X); the morphism h : d → a is a monic. Its universal
property is that a morphism u : x → a can be factorized by a morphism to d (as
u = h ◦ w) if and only if the morphism f ◦ u can be factorized by a morphism to b
(as f ◦ u = g ◦ v). Therefore in a topos, even if points do not exist, every morphism
f : a → c induces a map f −1 from the sub-objects of c to the sub-objects of a.

The relation with intuitionist logic comes from the fact that every set Sub(X), of
the sub-objects of an object X, possesses a natural structure of Heyting pre-algebra
(cf. [93]). This is the natural origin of contextual logic.

An important property of a topos F is the existence of a classifying object for
sub-objects, i.e. an object � marked with a special sub-object T , which is given
by a morphism from 1 to �, such that for any monic f : G → F there exists a
unique morphism χf : F → � satisfying T ◦ 1G = χf ◦ f , i.e. G is the pull-back of
T by χf . Moreover the correspondence between sub-objects f and morphisms χf is
natural, in the sense that sub-objects of sub-objects go to composition of characteristic
morphisms χ, and so on. The sub-objects of � give the different values of truth of
the logic associated to the topos; for instance T is true, ∅ is false.

Aswe said, a simple and surprising example of topos is given by the category Shad
made by the presheaves over the category with two objects A,B and three arrows,
which are the neutral elements 1A, 1B and only one more element α : A → B; it is
named the topos of Shadoks by Alain Prouté [93]. An object of this topos can be seen
as a pair of sets X,Y (X for the shadoks set, Y for their eggs) respectively associated
to A and B, and a map f from Y to X, associated to α, like the map which associates
to each egg its unique parent. The singleton 1 of Shad is given by a point 1 for A
and a point 1 for B. But there is a natural embedding of Set in Shad, made by the
shadoks without eggs, which corresponds to the case where Y is empty. In particular,
the singleton of Set is an intermediary object between the empty element of Shad
and the singleton of Shad; it is denoted by the symbol 1/2.

A morphism in Shad is a pair of maps G : Y → Y ′, F : X → X ′ making a com-
mutative diagram, i.e. f ′ ◦ G = F ◦ f . This morphism is monic (resp. epic) if and
only if the two maps are injective (resp; surjective). A sub-object of f : Y → X can
be represented by a subset X ′ of X and a subset Y ′ of Y (necessarily empty if X ′
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is empty) such that f (Y ′) ⊂ X ′. If a map (F,G) : (Z,W ) → (X,Y) is given, the
pull-back of (X ′,Y ′) is simply given by (F−1(X ′),G−1(Y ′)).

Let us consider the sheaf � defined by �(A) = {0, 1}, �(B) = {0, 1/2, 1}, and
�(α) sending 0 to 0 and 1 and 1/2 to 1. We write T for the sub-object of source the
shadok singleton 1 (one bird and one egg), which sends the egg to 1 in �(B) and the
bird to 1 in �(A). Now, given the sub-object S = (X ′,Y ′) of f : Y → X, we define
χS by sendingX ′ to 1 andX\X ′ to 0 (no choice here if wewant to recover the Boolean
characteristic function of set theory), and by sending Y ′ to 1 (the only possibility if
we want that S = χ−1

S (T)), the elements of Y\Y ′ that are sent in X ′ by f to 1/2 (the
only possibility if we want that χS is a morphism), and the rest of the elements of Y
to 0 (also the only possibility if we want that χS is a morphism). This proves that �
and T are respectively the classifying space of sub-objects and its universal element.

We also see, by comparison with the case of sets, that the sub-object obtained by
sending 1(A) to 0 in �(A) and 1(B) to 0 in �(B) can be interpreted as describing
the failure of S, a strict complementary, but the third possible sub-object of source
1, which is obtained by sending 1(A) to 1 in �(B) and 1(B) to 1/2 in �(A), gives
neither the failure of S neither its success, in some sense, if the egg is considered as
the future of the bird, the temporary success of S at the level X becomes a failure
at the level of Y , but it could be better to tell that an incertitude is maintained here.
This clearly gives a logic with more possibilities than true or false, something like
undecidable.

A group object in Shad is an homomorphism of ordinary groups ϕ : GB → GA,
a subgroup is a pair of respective sub-groups HA, HB such that ϕ(HB) ⊂ HA.

For spaces, behind the usual objective spaceGA/HA or the set of groups conjugated
toHA, several situations are distinguished: the elements of the complementary subset
of HB in GB that go to HA, and the elements that do not.

In [7] it is shown that the Shannon information quantities have their origin in
the first co-homology of a module associated to probability laws for a canonical
sheaf over the site of random variables for observation of a system. Relations with
Galois theory was also suggested in this article, and relation with geometry has to
be developed. It would be nice to go one step further and connect this information
co-homology or a derived more homotopical theory to the structures that are needed
in ternary structures for adaptation.
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On the Duration of Human Movement:
From Self-paced to Slow/Fast Reaches
up to Fitts’s Law

Frédéric Jean and Bastien Berret

Abstract In this chapter, we present a mathematical theory of human movement
vigor. At the core of the theory is the concept of the cost of time. According to it,
natural movement cannot be too slow because the passage of time entails a cost which
makes slow moves undesirable. Within this framework, an inverse methodology is
available to reliably and robustly characterize how the brain penalizes time from
experimental motion data. Yet, a general theory of human movement pace should
not only account for the self-selected speed but should also include situations where
slow or fast speed instructions are given by an experimenter or required by a task. In
particular, the limit case of a “maximal speed” instruction is linked to Fitts’s law, i.e.
the speed/accuracy trade-off. This chapter first summarizes the cost of time theory
and the procedure used for its accurate identification. Then, the case of slow/fast
movements is investigated but changing the duration of goal-directed movements
can be done in various ways in this framework. Here we show that only one strategy
seems plausible to account for both slow/fast and self-paced reachingmovements. By
relying upon a free-time optimal control formulation of the motor planning problem,
this chapter provides a comprehensive treatment of the linear-quadratic case for
single degree of freedom arm movements but the principles are easily extendable to
multijoint and/or artificial systems.

1 Introduction

Everyday actions are usually performed at a pace that people would commonly qual-
ify of “comfortable”, which is neither too fast nor too slow. Movement duration or
average speed are inherent characteristics of biological and artificial sensorimotor
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control, a process that takes place both in space and time. Understanding the
underpinnings ofmovement pace formation is of crucial importance not only inmotor
neuroscience (asmany disorders lead to bradykinesia, [3, 36]) but also in fieldswhere
humans are brought to interact with artificial systems, such as humanoid robotics,
robot-assisted rehabilitation, neuroprosthetics or computer animation. The presence
of temporal discrepancies may considerably affect the way humans perceive and col-
laborate with such entities. More generally, to improve the human-likeness of artifi-
cial sensorimotor systems, high-level computational principles leading to appropriate
movement pace must be developed. In human motor control, most research efforts
on the topic have been turned toward specific paradigms such as the speed/accuracy
trade-off [23, 24, 49] where movements are assumed to be performed as fast as
possible for a given level of accuracy (see [15, 41], for reviews). This empirical
observation has been formalized as Fitts’s law [17] and successfully implemented
in human-computer interaction to model movement time [34]. An interesting obser-
vation is that any system assuming an exponential decay of the distance left to the
center of the target will trivially yield Fitts’s law [10, 12]. Actually, robotic studies
often exploit this property to drive reliably a robot to some desired spatial target in an
adjustable amount of time (e.g. [35]). This is typically achieved by tuning a parame-
ter that the modeler must set by hand. A similar tuning of parameters is required to
vary movement time when using PID controllers and even more involved feedback
schemes (e.g. [40]). Therefore, task duration is often hard coded by fixing a desired
movement time at the planning stage or merely results from the application of a (pos-
sibly finely tuned) feedback gain at the execution stage. The approach undertaken in
this chapter lies in-between.

A recent hypothesis advanced the idea that the duration of biological movement
could be driven by a “cost of time” [44, 46, Chap.11]. In this view, slow movements
are undesirable because the passage of time incurs a cost: it is “better” to achieve
a task soon than later. This would be a property of the neural controller for reasons
that may relate to the functioning of the reward system (i.e. temporal discounting
of reward [44, 47]) via the cortico-basal ganglia loop. Movement vigor may indeed
originate from the basal ganglia [45, 54] and its interaction with cortical areas encod-
ing movement speed [11, 28]. In [4], we developed an inverse approach allowing
to automatically infer, from experimental data, what would be the cost of time for
reaching movements. The time cost then proved to allow elaborating and predicting
the duration of upcoming reaching movements of various amplitudes and directions
performed at a self-selected speed: motion time was thus an emergent property of the
motor preparation stage. Here, we further analyze how this framework can embrace
task instructions such as “move slow” or “move fast”. We also give an account of
Fitts’s law in this context. This workwas conductedwithin the optimal control frame-
work and, more precisely, the free-time optimal control formalism. Optimal control
theory relies upon the choice of cost functions that define what is optimal behavior
for a given system [50, 51]. One great feature of optimal control is the high-level of
abstraction that it enables, allowing to easily port findings from biological to artificial
systems and vice-versa. For our purpose, we shall distinguish between subjective
and objective cost functions throughout the chapter. An objective cost function is



On the Duration of Human Movement … 45

specified or imposed by the task itself. Typical examples are the specification of a
target location (e.g. endpoint error) or a reference trajectory to track (e.g. draw an
ellipse). In contrast, a subjective cost function is specified by the sensorimotor sys-
tem itself and crucially serves to resolve the remaining degrees of freedom that are
left free by the (redundant) task. It may measure energy expenditure, effort, jerk or
any other quantity such as the cost of time which is at the core of the present work.

This chapter is organized as follows. First, we briefly review how the cost of
time can be characterized unequivocally from real data in the proposed framework.
We then analyze quite extensively the linear quadratic case and explain how the
theory can account for speed changes resulting from explicit constraints given by
an experimenter such as Fitts’s like instructions. Throughout the chapter, we give a
theoretical treatment of the problem together with illustrations in the context of a
single degree of freedom arm performing reaching movements in a horizontal plane.
The concepts are however easily transferable to more complex systems and tasks.

2 Theory and Results

2.1 Theory of the Cost of Time

The present theory is derived within the framework of optimal control (OC) theory,
which assumes that the signature of human movement is optimality (with respect
to a certain cost function) [50]. It implicitly supposes that the trajectories triggered
by the central nervous system can be accounted for by a certain infinitesimal cost
h(x, u, t), which depends on the system state x ∈ R

n , the motor command u ∈ R
m

and the time t ∈ I ⊂ R, respectively. In a sense, biological trajectories would adhere
to a principle of least action where the “action” would be the time integral of h. In
seminal studies assuming this framework [18, 38, 55], the timewindowof integration
was set a priori by the modeler: movement time was simply fixed in accordance with
experimental measurements. However, since movement time or average speed are
motor decision variables, then a free-time formulation of the problem should rather
be used [30, 42]. In this way, the duration of movement would emerge implicitly
from the optimality of behavior, as already proposed by [25]who assumed to penalize
the total motion duration itself. In the same vein, at the core of the present theory
aiming to account for the vigor of movement is the idea of the “cost of time” (CoT)
[4, 44]. The theory assumes that h can be separated into a term that penalizes time
only, g(t) (the infinitesimal CoT), plus a term that depends on the state/control
variables, l(x, u), which allows to shape the trajectories followed by the system.
Thus, if h(x, u, t) = g(t) + l(x, u), a mathematical analysis shows that it is actually
possible to compute the value g(t) by resolving an OC problem in fixed time t
with known initial/final states (denoted by x0 and x f respectively), given a system
dynamics dx

dt = ẋ = f(x, u) and a trajectory cost l(x, u). We briefly recall how this
is achieved but the reader is referred to [4] for more details.
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Given an input u(·) defined on an interval [0, tu], we denote by xu(·) the trajectory
of ẋ(t) = f

(
x(t), u(t)

)
satisfying xu(tu) = x f . As explained above, we consider the

following cost function:

C(u, tu) =
∫ tu

0

(
g(t) + l

(
xu(t), u(t)

))
dt, (1)

where the functions g and l are non-negative. The function l has been the subject
of extensive investigations in motor control (e.g. [7, 18, 55]) and may capture both
subjective (related to an individual’s decision) and objective (task related) goals.
The trajectory cost l(x, u) is assumed to be known or identifiable (in fixed time OC
formulations). The function g is the infinitesimal (i.e. instantaneous) CoT we can
identify and whose antiderivative is the actual CoT, G(t) = ∫ t

0 g(s)ds (we assume
G(0) = 0 for simplicity).

We consider the following free-time OC problems:
Given an initial state x0, minimize the cost C(u, tu) among all inputs u(·) and all

times tu such that xu(0) = x0 and xu(tu) = x f (by definition of xu).
Wewill assume the existence of minimal solutions u(·)with a finite time tu, which

may be guaranteed under some technical conditions on the dynamics and on the cost
[31].

Next, let Vx f (t, x0) be the value function1 of the OC problem joining x0 to x f in
fixed-time t , that is

Vx f (t, x0) = inf
∫ t

0
l
(
xu(s), u(s)

)
ds, (2)

where the infimum is taken among all inputs u(·) such that xu(0) = x0 and xu(t) =
x f . It is the optimal cost of a motion in time t between x0 and x f .

Then the movement time τ , that is the time tu of an optimal solution u(·) of the
free-time OC problem, satisfies

τ ∈ argmint≥0

(∫ t

0
g(s)ds + Vx f (t, x0)

)
, (3)

and, assuming that Vx f is differentiable with respect to t , we get:

g(τ ) = −∂Vx f

∂t
(τ, x0). (4)

It is well-known from the Hamilton–Jacobi–Bellman theory that ∂Vx f

∂t (τ, x0) =
H �

0

(
x(τ ), p(τ )

)
, with H �

0 (x, p) = maxv H0(x, p, v) where H0 = p�f(x, v) +

1Note that we did not use the standard way to define the value function: for a movement dura-
tion equal to t , this is usually Ṽx f (w, x0(w)) = inf

∫ t
w l

(
xu(s), u(s)

)
ds. Here we set Vx f (t −

w, x0(w)) = Ṽx f (w, x0(w)), hence
∂Vx f

∂t = − ∂ Ṽx f

∂t .
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l(x, v) is the Hamiltonian associated with the fixed-time OC problem,2 x(t) is an
optimal solution, and p(t) ∈ R

n is the co-state vector [42]. Since it is obvious that
the corresponding optimal control u(·) is also a minimal solution of the OC problem
in fixed time τ we then haveH �

0

(
x(τ ), p(τ )

) = H0
(
x(τ ), p(τ ), u(τ )

)
, we get in this

way g(τ ) = −H0
(
x(τ ), p(τ ), u(τ )

)
.

Interestingly, the above analysis shows that the derivation extends to stochastic
settings [48, 51]. In particular in the linear quadratic Gaussian (LQG) case, the
infinitesimal CoT can be easily computed because the value function has a parametric
form whose parameters can be evaluated via the resolution of decoupled ordinary
differential equations [29].

In summary, it suffices to solve a stochastic or deterministic OC problem in fixed
time t to recover the value of g(t). This will be exemplified in the linear quadratic
(LQ) case in the next section, before the problem of tuning movement time (around
the optimal one) will be addressed.

To test the above methodology, we asked subjects to perform 1-dof arm move-
ments in the horizontal plane. These reaching movements were of different ampli-
tudes and, for each amplitude, the duration was estimated from motion capture data.
In Fig. 1, we depict the main results. Overall, an affine relationship between move-
ment extent and time can be drawn from the experimental data. When identifying
g(t) for several movement times t , one can characterize the shape of g on the interval
of actual movement durations. This can be done either using the regression line and
single data points. For the depicted subject, movement times varied between about
600ms (for an amplitude of 5◦) to about 1400ms (for an amplitude of 95◦). There-
fore, we were able to identify the CoT in a robust and reliable manner on the interval
600–1400ms when using the affine amplitude-duration relationship. Outside of this
interval, extrapolation was required. However, it must be noticed that the shape of g
on the range of empirical movement times was sufficient to conclude that the CoT
was neither linear nor purely convex or concave. Actually, its shape tended to be
sigmoidal. The present shapes were obtained when assuming the torque change [55]
as trajectory cost l. Assuming the angle jerk [18] as trajectory cost would not change
the sigmoidal shape. It is visible that when identified from single trials, the cost of
time g(t) appears to be quite noisy (gray dots in Fig. 1). This might be due to the
discrepancy between planning (the frame of our model) and execution where all the
musculoskeletal properties of the arm and sensorimotor noise do perturb the planned
trajectory and the movement time (see also Sect. 3.3). This may also be linked to the
way the brain actually finds optimal strategies and to the shape of the total cost: even
though it has a “U” shape with respect to motion duration, a relative flatness around
the optimal time may induce variability in duration even at the planning stage. For a
more thorough analysis of the identification process of g(t) with additional assess-
ments, the reader is referred to [4]. The biomechanical model of the arm is described
in Sect. “Model for arm reaching movements”. Finally, it must also be noted that the

2We assume here that there are no abnormal extremals (an hypothesis which is satisfied in particular
by controllable linear systems). As a consequence, it is not necessary to put a Lagrange multiplier
in front of l in H0.
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(a) (b)

(c)

Fig. 1 Movements at spontaneous speed. a Experimental amplitude-duration relationship for one
individual. b Infinitesimal and integral time costs. Values of the infinitesimal CoT were recovered
either in single trials (gray dots) or by making use of the affine fit of the amplitude-duration
relationship presented in the first panel. Dotted lines are extrapolated values. c OC simulations in
free-time using the CoTG(t). The duration movement is exactly recovered for every amplitude, and
the corresponding trajectories are displayed (standard bell-shaped velocity profiles for such 1-dof
movements in the horizontal plane)

free-time optimal control model predicts smooth and bell-shaped velocity profiles,
which agrees with classical observations for such planar arm movements.

At this point, it is useful tomake some comments about the presentmodeling. First
of all, we chose to rely upon the optimal control formalism but alternative approaches
have been proposed to account for the duration of motion. Among them, an interest-
ing approach is based on invariance principles in affine geometry [2], which proved
to explain well both isochrony and isogony laws during drawing movements (e.g.
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ellipses). However the link between both approaches is not obvious and it is likely
that considering the same kind of cyclical curve-drawing movements in our frame-
work could help to understand how each approach relates to the other. Interestingly, a
recent study introducing the concept of “drive”, which is mathematically equivalent
to assuming a constant value of g(t) here, analyzed such curve-drawing movements
and was able to replicate the two-third power law and the overall size and speed
scaling of biological movement from this simple principle. An interpretation in our
framework could be that the asymptotic value of the g(t) is not zero, but the confir-
mation of such an hypothesis requires tasks with larger durations in order to sample
g(t) on a larger interval. Another central assumption in our approach is the additive
separability between the cost of time g(t) and the trajectory cost l(x, u) that does not
depend on time. This is a strong assumption which has nonetheless the advantage
of leading to a model that extends previous classical optimal control models devel-
oped in fixed time with time-independent trajectory costs (i.e. the optimal fixed-time
trajectories coincide with the free-time trajectories of the same duration). This addi-
tive separability is also in the spirit of a first-order approximation of a general cost
h(x, u, t) and can thus be viewed as a simplification of a more general problem. The
reader is referred to [4, p. 1057] for other comments about this hypothesis.

2.2 Linear Quadratic Models

2.2.1 General Settings and Solutions

Let us focus on deterministic LQ models for 1 degree-of-freedom (dof) motions.
This framework is relevant to model simple arm reaching movements. The state of
such systems can be described by x = (θ, . . . , θ (n−1)) ∈ R

n and then the dynamics
has the form

θ(n) + cn−1θ
(n−1) + · · · + c0θ = u, (5)

which is a single-input linear system ẋ = Ax + Bu, u ∈ R. Typically n = 2 or 3 for
dynamical models of the arm (see below). The single-input LQ case is also interest-
ing from a theoretical point of view as strong results of well-posedness of the inverse
problem exist. In particular (see [4]), the uniqueness and robustness to perturbations
of experimental data can be proven for g(t). Indeed, the underlying quadratic cost can
be identified unequivocally [39] from the empirical and presumably optimal trajec-
tories and in a continuous way (roughly speaking, the mapping between the optimal
trajectories and the quadratic cost is continuous, so that small changes in experi-
mental trajectories result in small changes in the quadratic cost). This remarkable
theoretical result motivates a deeper investigation of the LQ scenario.

A quadratic cost for the system given in Eq. (5) is a function αu2 + xT Qx +
2xT Su, with α > 0, which is a positive semidefinite quadratic form in (x, u). Up to
a normalization we can assume α = 1 and then consider a cost of the form l(x, u) =
u2 + xT Qx + 2xT Su.
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The associated OC problem in fixed time τ > 0 is the following: given terminal
conditions x0, x f ∈ R

n , minimize the cost

Cτ (u) =
∫ τ

0

(
u(t)2 + xu(t)T Qxu(t) + 2xu(t)T Su(t)

)
dt,

among all controls u such that the solution xu of ẋ = Ax + Bu, xu(0) = x0, satisfies
xu(τ ) = x f .

Initial and final points x0 and x f are always chosen as equilibrium states of the
system, that is, x0 = (θ0, 0, . . . , 0) and x f = (θ f , 0, . . . , 0). We also make the tech-
nical assumption that the pair (A, Q1/2) is observable (this assumption is necessary
for Eq. (6) below to hold). Ferrante et al. [16] showed that the optimal trajectory xu
of this problem is given by

xu(t) = et A+p1 + et A−p2, (6)

where the vectors p1, p2 ∈ R
n are the unique solution of

{
x0 = p1 + p2,

x f = eτ A+p1 + eτ A−p2.
(7)

The matrices A−, A+ are respectively anti-stable and stable (the eigenvalues of A+
are actually the opposite of the ones of A−). These matrices are determined through
a Riccati equation and do not depend on x0, x f , and τ , but only on the parameters
(A, B) of the dynamic and (Q, S) of the cost.

Remark 1 When x f = 0, the vectors p1 and p2 depend linearly on x0 and so do xu(t)
for every t . This is also true for u(t) since its expression has a form similar to Eq.6
(see [16]).

Remark 2 Note that the corresponding OC problem in infinite time is the following:
given an initial condition x0 ∈ R

n , minimize the cost

C∞(u) =
∫ ∞

0

(
u(t)2 + xu(t)T Qxu(t) + 2xu(t)T Su(t)

)
dt,

among all controls u, where xu is the solution of ẋ = Ax + Bu, xu(0) = x0. The
solution of this problem is given again by Eq. (6), with the same matrices A−, A+,
but with parameters p1 = x0 and p2 = 0.

2.2.2 Computation of the Infinitesimal CoT

Up to a translation in θ (position variable), we can always assume x f = 0. We
then choose a family of initial conditions x0(a) = (a, 0, . . . , 0), parameterized by
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the movement extent a > 0 (i.e. the amplitude of the motion). For every amplitude
a > 0 we denote by t∗(a) the duration (which can be estimated experimentally) of
the motion between x0(a) and x f , and by ua(·) a control minimizing the integral
cost Ct∗(a)(u) in fixed time t∗(a) between xu(0) = x0(a) and xu(t∗(a)) = x f = 0.

By standard computations (see [4])we obtain ∂Vx f

∂t (t∗(a), x0(a)) = −ua(t∗(a))2, and
so from Eq.4,

g
(
t∗(a)

) = ua(t∗(a))2. (8)

Moreover, the value ua(t∗(a)) can be seen to depend linearly on xu(0) in the LQ case
(see Remark 1), and so it depends linearly on a since xu(0) = x0(a) = ax0(1). In
other words, ua(t∗(a)) = aϕ(t∗(a)), where the function ϕ(·) is defined as follows:
for every τ > 0, ϕ(τ) is the value u1(τ ) of the control minimizing the integral cost
Cτ (u) = ∫ τ

0 (u2 + xT Qx + 2xT Su)dt in fixed time τ between xu(0) = x0(1) and
xu(τ ) = 0. Note that ϕ(·) is a universal function of time that depends only on the
system dynamics (A, B) and the trajectory cost and not on the specific behavior of
an individual. This universal function of time can be computed explicitly thanks to
the equations given in [16]. We finally obtain g

(
t∗(a)

) = ϕ
(
t∗(a)

)2
a2.

Empirical observations show that the time t∗(a) is typically an increasing function
of the amplitude, so that its inverse a∗(t) exists. We can then determine the function
g(·) by g(t) = ϕ(t)2a∗(t)2. In particular, if it appears from experiments that the
function t∗ is approximately affine of the form t∗(a) = αa + β, then the infinitesimal
CoT can bewritten g(t) = ϕ(t)2( 1

α
t − β

α
)2. Hence, it suffices to computeϕ(t), which

can be done explicitly, to recover the actual infinitesimal CoT from the experimental

Fig. 2 The universal function ϕ for the minimum torque change and minimum jerk optimality
criteria, for a 1-dof armmoving in the horizontal plane. The function was found to be quasi identical
for these two costs. From this function, the infinitesimal CoT can be recovered as g(t) = ϕ(t)2a(t)2

where a(t) is the amplitude corresponding to a movement in time t (which can be determined
experimentally)
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duration/amplitude mapping. For illustration, the function ϕ is plotted in the Fig. 2
for the two main trajectory costs considered here, namely the angle jerk and torque
change optimality criteria.

3 Accounting for Other Motion Speeds

A general theory of human movement vigor should also be able to account for move-
ment times departing from the self-chosen ones. It is clear that motion duration can
vary in function of the task, in particular verbal instructions given by an experimenter
such as go quickly/slowly to the target. How can the CoT theory take account of this
variation? Remind that, from Eq. (3), the duration of a motion satisfies

τ ∈ argmint≥0

(∫ t

0
g(s)ds + inf

u

∫ t

0
l
(
xu(s), u(s)

)
ds

)
. (9)

Hence variations of the motion duration can be explained by changes either of g(t)
or of l(x, u). The first question is: is it possible to explain changes of motion duration
by playing on the CoT g(t)?

3.1 The Sole Modification of the Cost of Time Cannot
Explain Slower/Faster Movements

Let us assume first that the cost of the trajectory is independent of the task and
hence that changes in motion duration only result from changes of the CoT. Typ-
ically, it is clear from Eq. (9) that any increase of the values of G(t) = ∫ t

0 g(s)ds
implies a decrease of the duration τ . The effect of instructions such as “go quickly
to the target” could then simply correspond to an increase of the CoT G(t). Con-
versely, instructions such as “go slowly to the target” could produce a decrease of
the CoT, which implies in turn an increase of the motion duration. Let us examine
the consequence of this hypothesis for the model described in Sect. 2.2, that is, in
the context of linear quadratic (LQ) models. In this case, motions are always solu-
tions of a LQ optimal control problem in fixed finite time, with always the same cost
l(x, u) = u2 + xT Qx + 2xT Su but with a time τ that depends on the term G(t).

Rescaling of g.

An intuitive idea would be to rescale g by multiplying it by some positive para-
meter κ . A simple investigation however proves that such an approach is falsified
by experimental findings (see for instance [9, 58]). Indeed, such a rescaling would
induce a new amplitude

√
κa∗(t) for a movement in time t (we use the notations of

Sect. 2.2.2, i.e. κg
(
t
) = ϕ

(
t
)2(√

κa∗(t)
)2
). Therefore, the rescaled CoT would yield
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the affine amplitude-duration relationship t∗(a) = α a√
κ

+ β. It can be concluded that
just rescaling the CoT does not allow to change both the slope and the intercept of
the amplitude/duration relationship. Hence, since both the intercept and slope are
found to change experimentally when the instructed speed is varied, this observation
cannot be attributed to a global rescaling of the CoT g. Typically, when a subject is
asked to move faster, not only α is reduced significantly but also β.

Arbitrary change of g.

We now consider that g can be changed both in shape and magnitude. Consider first
the case of an overall decrease of the CoT, which produces a longer duration τ , i.e.
slower movements. The asymptotic analysis of Appendix “Asymptotic Study for
Small/Large Time and Fixed Cost” shows that, for a large duration τ , the solution in
time τ of the LQ problem associated with the cost l(x, u) looks alike the solution of
the same LQ problem in infinite time (see Lemma 4). The latter solutions have an
exponential decay to the final state and, moreover, a single peak of velocity whose
magnitude is independent of the time τ . These characteristics are not compatible
with what is known of slow reaching movements where velocity traces are gradually
more multipeaked [27, 56], which moreover seems to be a preplanned property not
simply due to sensory feedback processing [14].

Consider now the case of an increase of the CoT, which induces a shorter duration
τ and hence faster movements. The asymptotic analysis when τ → 0 shows that, for
small enough durations, the solutions of the LQ problem are almost identical, up to a
change of time-parameterization, and are of polynomial form (see Lemma 5). More
precisely, the theory would predict that for faster and faster movements the velocity
profiles are dilatations of each other and have a symmetric shape (see Remark 6).
Such a strict scaling law of symmetric speed profiles is falsified by experimental
observations. Indeed, it was shown that movements become more asymmetric as
speed increases,where the relative duration of the deceleration phase increases during
extremely fast reaches (from ~50% of total motion duration for rapid reaches to
~70% for maximally fast reaches) [32, 33]. This is moreover incompatible with the
exponential decay of the distance left to the target observed in Fitts’s like studies.

In summary, the sole modification of the CoT cannot explain slower/faster move-
ments in the LQ framework. Of course we could consider different models than the
linear-quadratic ones. Indeed, in the latter models we make several hypotheses: first,
the evolution of the state is given by linear differential equations; second, the state
and the control are unbounded; third, we restrict ourselves to the class of costs func-
tion which are quadratic function of both state and control. The first assumption is
not questionable as soon as we do not finely model the dynamics of muscles or do not
consider multijoint systems, which is consistent at the present level of investigation.
The third one seems to be reasonable since the class of quadratic costs is sufficient
to reproduce accurately simple arm motions at least [18, 26, 38]. Moreover, the con-
clusions above should be very similar for a slightly larger class of costs functions
(for instance a class including the absolute work as in [5]), even if the asymptotic
studywould bemuchmore difficult in that case. Themost critical hypothesis actually
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is the second one. Indeed it is evident that the state and the control, being physical
quantities, are bounded. In a LQmodel, this fact is taken into account implicitly since
high values are penalized in the cost. This approach is valid as long as the values
of the state and the control in the optimal solutions do not exceed the bounds. This
condition is not easy to check since most of the bounds are not really known, it is
however clearly satisfied when the duration of the motion is not too small. Another
approach would be to take into account explicitly these bounds. In that case, it exists
a minimum time to go from one given state to another one. When the CoT G(t)
increases (for instance because of instructions such as “go quickly to the target”), the
time τ of the motion converges to the minimum time and, under standard convexity
hypotheses on the cost [19], the optimal solutions converge to the minimum time
solutions. This scenario is not really plausible for different reasons. First, minimum
time solutions present, in general time-intervals, saturations of the control’s bounds.
Since such characteristic saturations have never been observed in fast motions for
quantities such as velocity, acceleration and jerk, the control would necessarily be a
higher-order quantity. Even if they existed, such saturations would hardly be com-
patible with trajectories satisfying Fitts’s law (exponential decay of the end-effector
position to the goal). Conceivably, saturation may occur at the level of motoneu-
rons activity but experimental data of surface electromyography (EMG), the main
non-invasive approach to estimate the overall activity of motor units, indicate that
EMG activity is relatively far from maximal during rapid reaching [1]. Moreover,
no plateau is visible on any sensible time window and the so-called triphasic pat-
tern, with well-distinguished EMG bursts, is known to govern ballistic movements
[8, 22]. Secondly, the hypothesis of minimum time trajectories has already been
studied in [49] and contradicted in [58]. Intuitively, the reason is that humans do not
always move as fast as possible for a given level of accuracy: in most daily activities,
we could move faster without degrading task performance. At last, one may mention
that even when instructed to move as fast as possible, the actual maximal speed of
a subject is not attained. It has been proven that subjects can move faster without
altering accuracywhen explicitly asked to co-contract muscles, an energy consuming
strategy [37].

In summary, we presented strong arguments supporting that the sole modification
of the CoT cannot be put forward to explain neither slower nor faster movements.
Then, it seems necessary to assume that task-induced changes of motion duration
are due to changes of the cost of the trajectory, i.e. l(x, u).

3.2 From Self-paced Motion to Slower/Faster Movements

How do changes of the cost l(x, u) affect the duration? Consider the example of the
linear quadratic models. For our purpose, we propose to interpret the total infinites-
imal cost

g(t) + l(x, u) = g(t) + u2 + xT Qx [+ possibly mixed terms xT Su].
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by distinguishing three types of terms:

• g(t) is the cost of the time, it penalizes slow motion by accumulating infinitesimal
values during the passage of time;

• u2 is a subjective cost that evaluates the “effort” associatedwith amovement. It can
reflect mechanical energy expenditure, amount of joint torques, smoothness etc.,
depending on the modeling; we can also include the mixed terms in the subjective
cost, and possibly some part xT Q′x of the quadratic terms in x. In essence, the
subjective part of the trajectory cost reflects an individual’s motor decision (often
useful to resolve all residual task redundancy).

• xT Qx = (x − x f )T Q(x − x f ) is an objective cost, also part of the trajectory cost.
Here, it penalizes the fact of being away from the goal x f (recall that x f = 0 here
without loss of generality) and can be modulated by the requirements of the task.
It is objective in the sense that it is directly related to the task’s demand.

Hencewe postulate that a change in the description of the task (e.g. go quickly/slowly
to the target) will affect only the objective cost, not the two other ones. Let us
explain how it could work. To simplify, we assume that the matrix Q is diagonal (i.e.
cost function with separate variables), xT Qx = rθ2 + s1θ̇2 + · · · + sn−1(θ

(n−1))2.
Since the term rθ2 = r(θ − θ f )2 penalizes the fact of being away from the goal,
the instruction “go quickly to the goal” translates as “increase r”. In the same way,
since the term s1θ̇2 penalizes high velocities, the instruction “go slower” translates
as “increase s1” (it can also increase the other parameters si ). And it appears actually
that the duration of a trajectory minimizing the cost
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Fig. 3 Slower and faster movements for the 1-dof planar arm movement under consideration.
Effects of varying r and s1 on the motion duration. These graphs were drawn from the CoT of the
individual presented in Fig. 1 and amplitude was set to a = 45◦. Increasing the positional weight
r induces an decrease of movement duration, as predicted by the free-time optimal solutions. The
opposite effect can be observed when increasing the velocity weight s1. Modifying the objective
trajectory cost is a sensible way to tune movement duration around the individual’s self-selected
one



56 F. Jean and B. Berret

∫ tu

0

(
g(t) + u2 + rθ2 + s1θ̇

2 + · · · + sn−1(θ
(n−1))2

)
dt, (10)

decreases with r and increases with s1, as expected. This fact was checked through
numerical simulations and the dependence of motion duration on r and s1 is reported
in Fig. 3. Tuning the objective cost provides a means to modify the motion duration
around the reference value corresponding to a self-selected movement pace. Verbal
instructions such as “produce a quick movement” or “produce a slow movement”
can thus be accounted for in this way. It should be noted that increasing r or s1
breaks the affine relationship between movement amplitude and time. If linearity is
preserved for relatively small enough values of r and s1, the correlation coefficients
nevertheless go down as these weights increase. The next section actually shows that
there is a gradual distortion of the amplitude/time relationship such that Fitts’s law
is actually recovered for very large values of r .

3.3 Towards Fitts’s Law and the Speed/Accuracy Trade-Off

To take into account accuracy constraints, we propose to consider goal-directed
movements such as arm pointing as the superposition of an open-loop motion (the
planned trajectory) and of a feedback process whose role is to provide on-line cor-
rections and in particular to stabilize the hand around the target [13, 52]. We then
distinguish two different motion times:

• the planning time, denoted by τp, which is the duration of the planned trajectory
and can be determined by solving a free time OC problem involving the CoT as
described previously;

• the execution time, denoted by τs , which is the actual duration of the motion; it
may differ from the planning time because of the feedback process.

In general planning and execution times may differ for two reasons: the presence
of perturbations and the fact that the point aimed at differs from the actual stopping
point. The former situation occurs because of the presence of sensorimotor noise in
the nervous system and the latter may occur in the case of accuracy requirements.
For example, if the target has a width w, and if the instruction is “as fast and as
accurate as possible”, the subject will conceivably aim at a point inside or near the
center of the target to ensure target achievement (see [53]), whereas the motion can
actually be stopped once the trajectory meets the target via the activation of terminal
feedback processes.

Again, we will consider a 1-dof LQ model as in Sect. 2.2. Let x0 be the starting
point, x f = 0 be the center of a target of width w and x(·) be the planned trajectory
between these points. On the one hand, the planning time τp satisfies x(τp) = 0. In
other words, the end-effector attains the center of the target exactly in time τp (no
perturbations are assumed here). On the other hand, the movement will be stopped
as soon as θ(t) ≤ w/2, i.e. the stopping time τs satisfies approximately θ(τs) = w/2.
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Consider for instance the case of as fast as possible and as accurate as possible
movements,which is the standard scenario behindFitts’s law [17].As explained in the
previous section, the instruction “move fast” corresponds to a cost with a very large
coefficient r (see Eq. (10)). It can be shown (see Appendix “Asymptotic Study for
Fixed Time”) that in that case the planning time τp is rather small and the planned
trajectory is of the form

θ(t) ≈ cθ0e−αr t , for t/τp large enough,

where c, αr are positive constants with αrτp large (i.e. αrτp → ∞ as r → ∞).
The stopping time is determined by the constraint θ(τs) = w/2. Therefore it sat-

isfies

τs ≈ 1

αr
log c + 1

αr
log(2θ0/w),

which is of the same form than the original formulation of Fitts’s law, that is, t =
α̃ log2(2a/w) + β̃ with t = τs and a = θ0 [17]. Hence Fitts’s law can be accounted
for by our theory, although developed in a deterministic context, without explicitly
assuming a linear feedback control law that would lead to an exponential decay of
the distance left to the target as done in [12] or [43].

Remark 3 Note that the distinction between planning and stopping movement times
allows one to recover Fitts’s law as soon as the planned trajectory decreases expo-
nentially. It is in particular the case in all models with infinite horizon and quadratic
costs (either deterministic, i.e. LQR, or stochastic, i.e. LQG), and more generally in
all linear models with a proportional feedback u = Kx, even though in those cases
there would be no planned movement time. Hence, this is mainly the shape of the
trajectory which explains Fitts’s law in such models: one does not increase motion
duration specifically because of a higher accuracy demand but rather motion dura-
tion increases as a consequence of the exponential decrease of the distance left to the
target during maximally fast reachings. It is likely that the planned motion duration
could also be increased on purpose if modeling signal-dependent noise and adding
a terminal error term in a stochastic context [23] but we did not consider stochastic
formulations of the present deterministic free-time OC problems.

To illustrate the convergence to Fitts’s law, we performed simulations for the same
1-dof armmodel with r = 108 and s1 = 0.05r in Eq. (10). The results are depicted in
Fig. 4 where the switch from affine to logarithmic relationships between amplitude
and duration is illustrated. In accordancewith experimental findings, velocity profiles
also becomemore asymmetrical in the sense that the relative duration of deceleration
drastically increases for maximally fast reaches [32, 33]. These graphs also explain
why Fitts’s law does not hold for self-paced movements but is mainly a limit case,
which agrees with experimental observations (see [58]).
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(a) (b)

(c)

Fig. 4 The case of Fitts’s law for 1-dof planar arm pointing movements. a Relationship between
amplitude and duration. In gray, the original amplitude/duration of the example individual is recalled
(i.e. r = s1 = 0 for self-paced movements). When r becomes very large (here r = 108 and s1 =
0.05r ), movements become faster and the amplitude/duration relationship departs from its linear
shape (black traces, where a logarithmic profile is visible).bRelationship between index of difficulty
(ID = log2(

2a
w )) and duration. In gray, for self-paced movements (r = s1 = 0). In black, for Fitts’s

instructions (r = 108 and s1 = 0.05r ). Fitts’s law is recovered very accurately in the latter case
in contrast to self-paced motions where a convex, instead of linear, trend is observed. c Position
and velocity profiles corresponding to Fitts’s law simulations in the free time OC formalism. The
exponential decrease of the distance left to the target is visible for the position variable and the
asymmetry of speed profiles can be compared to those of Fig. 1c
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4 Conclusion

In this chapter, we have presented a theoretical view of the computational principles
that may underlie the control of movement vigor within the central nervous system.
We tackled the issue of how reach duration can be adjusted to speed instructions in
this framework. At the core of the theory is the hypothesis of the existence of a “cost
of time” [44]. It assumes that the passage of time has a cost per se, which explainswhy
ourmovements are not slower.Using an inverse optimal control approach,we showed
that this hypothetical time cost can be reliably identified from experimental data of
movement extent andduration andwithout resorting to anyparametric adjustment [4].
Yet, the cost of time aims at explaining the spontaneous/natural movement vigor, i.e.
self-chosen motion pace. When explicitly asked to move slower or faster, we argued
that humans do not seem to modify the cost of time itself but rather an objective
trajectory cost reflecting the specific task constraints. Whereas the time cost and the
subjective trajectory cost seem to be relatively invariant (at least on a short time
scale), we provided evidence that the introduction of an objective trajectory cost is
crucial to capture speed instructions given by an experimenter. In particular, Fitts’s
law is recovered in our framework as a limit case.
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Appendix: Technical Details

Asymptotic Study

We describe in this asymptotic studies the behavior of the solutions of the linear
quadratic model introduced in Sect. 2.2 when some parameters of the problem go to
zero or infinity.

Asymptotic Study for Small/Large Time and Fixed Cost

Let us study the behavior of the optimal solutions when the final time τ varies,
the quadratic cost l(x, u) = u2 + xT Qx + 2xT Su and the terminal conditions x0 =
(θ0, 0, . . . , 0), x f = 0 being fixed. For every τ > 0 we denote by xτ (t) =(
θτ (t), . . . , θ (n−1)

τ (t)
)
, t ∈ [0, τ ], the solution of the free-time OC problem in fixed

time τ whose expression is given by Eq. (6). Consider first the case of large times,
that is the case where τ → ∞. Remind that in this case eτ A+ and e−τ A− tend to zero.
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Lemma 4 When τ → ∞, there holds

xτ (t) = et A+x0 + O(‖eτ A+x0‖).

As a consequence, there exists constants c, α > 0, and ε ∈ (0, 1), such that

θτ (t) = cθ0e−αt + O(e−ατ ), for any t ∈ [ετ, τ ].

We thus recover a somewhat intuitive result: the solution of a LQ problem in fixed
time converges to the solution of the same LQ problem with infinite horizon when
the time goes to infinity (see Remark 2).

Proof We deduce directly from the conditions of Eq. (7) the values of p1 = p1(τ )

and p2 = p2(τ ) in function of x0. By putting these values into Eq. (6), we obtain

xτ (t) = et A+
(
I − e−τ A−eτ A+

)−1
x0 − e(t−τ)A−eτ A+x0,

which is of the form et A+x0 + O(‖eτ A+x0‖) since A+ is stable and A− is anti-
stable. Now, et A+x0 is a function of t which can be written as a sum of decreas-
ing exponential terms. Denoting by e−αt the less decreasing term in this sum, it
appears that all other exponential terms in et A+x0 are negligible in front of e−ατ

for t/τ not too small and we obtain the formula for θτ (note that in general
α = min {−�(λ) : λ eigenvalue of A+}). �
Consider now the case of small times, i.e. the case where τ → 0. In that case we can
prove the following result.

Lemma 5 Let p(s) be the polynomial function of degree 2n − 1 defined by(
p(0), p′(0), . . . , p(n−1)(0)

) = x0 and
(
p(1), p′(1), . . . , p(n−1)(1)

) = x f . Then

θτ (t) = p

(
t

τ

)
+ O(τ ).

As a consequence, θτ (t) ≈ p( t
τ
) for small times τ : a change of the final time induces

approximately a temporal rescaling of the solutions.

Remark 6 Note that since the terminal conditions are equilibriums, the polynomial
p(·) satisfies ṗ(t) = ṗ(1 − t), which implies that the velocity profiles of θτ have an
almost symmetric shape for small times τ . Indeed, the polynomial function p̃(t) =
θ0 − p(1 − t) satisfies the same conditions at t = 0 and t = 1 as p(t), which implies
by unicity of the solution that p̃(t) = p(t), and so the conclusion.

Proof Let us start with a preliminary remark on the optimal solution θτ . On one
hand, it follows from Eq. (6) that θτ (t) is an analytic function (i.e. it is equal to its
Taylor series) which depends linearly on the vectors p1 = p1(τ ) and p2 = p2(τ ).
Hence, all derivatives of θτ at 0 depend linearly on the pair (p1, p2). On the other
hand, due to the particular properties of the matrices A−, A+ (see [16, Lemma 1]),
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there is a one-to-one correspondence between (p1, p2) and the 2n first derivatives of
θτ at 0, i.e. by θ(k)

τ (0), 0 ≤ k ≤ 2n − 1. As a consequence, all derivatives of θτ at
0 depend linearly on the 2n first ones: for every integer k there exists a constant Ck

such that, for any τ, |θ(k)
τ (0)| ≤ CkΘτ , where

Θτ = max
{|θ(k)

τ (0)|, 0 ≤ k ≤ 2n − 1
}
.

Set φτ (t) = θτ (t) − p( t
τ
). We have to prove that φτ (t) = O(τ ). The above remark

and the fact that
(
p(0), . . . , p(n−1)(0)

) = (
θτ (0), . . . , θ (n−1)

τ (0)
) = (θ0, 0, . . . , 0)

imply that the Taylor expansion of φτ has the form,

φτ (t) =
2n−1∑

k=n

tk

k!
(

θ(k)
τ (0) − p(k)(0)

τ k

)
+ Θτ O(t2n), (11)

where all O(·) are uniform with respect to τ. By definition of p(·) we have also
φ

( j)
τ (τ ) = 0 for j = 0, . . . , n − 1, and from Eq. (11) we get

2n−1∑

k=n

1

(k − j)!
(
τ kθ(k)

τ (0) − p(k)(0)
) = Θτ O(τ 2n), j = 0, . . . , n − 1.

It follows that, for k = n, . . . , 2n − 1 there holds τ kθ(k)
τ (0) − p(k)(0) = Θτ O(τ 2n),

and thus from the definition of Θτ we obtain that Θττ
2n = O(τ ). This and Eq. (11)

give φτ (t) = O(τ ), which proves the lemma. �

Asymptotic Study for Fixed Time

Let us try to understandnowhow theoptimal solutions behavewhen somecoefficients
in the cost function are modified. We fix an initial state x0 = (θ0, 0, . . . , 0), a final
one x f = 0, and an infinitesimal CoT g(t). We consider a family of costs lr (x, u)

depending on a parameter r of the form

lr (x, u) = u2 + rθ2 + xT Q0x + 2xT Su,

that is, with a matrix Q(r) = Q0 + re1eT1 (e1 = (1, 0, . . . , 0) denotes the first vector
of the canonical basis of Rn). We want to study the behavior when r tends to ∞ of
the optimal solutions of the following free-time OC problem: minimize the cost

Cr (u, tu) =
∫ tu

0

(
g(t) + lr

(
xu(t), u(t)

))
dt,
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among all inputs u(·) and all times tu such that xu(0) = x0 and xu(tu) = x f . As we
have seen previously, the time τ = τ(r) is determined by Eq. (9) and the optimal
solutions are the one of the OC problem min

∫ τ

0 lr (x, u) in fixed time τ .

Lemma 7 For every r > 0 we denote by xr (t) = (
θr (t), . . . , θr (n−1)(t)

)
,

t ∈ [0, τ (r)], the solution of the free-time OC problem associated with Cr . Assume
that the infinitesimal cost of time g(·) is a bounded function. Then there exists con-
stants c, α > 0, and ε ∈ (0, 1), such that, when r → ∞, we have r1/2nτ(r) → ∞
and

θr (t) = cθ0e−αr1/2n t + O
(
e−αr1/2nτ(r)

)
, for any t ∈ [ετ(r), τ (r)].

Note that the boundedness assumption on g is very natural and seems to be verified
experimentally since we obtain functions g(t) that are decreasing for large t .

Proof To simplify the study, we give only the proof in the case where the matrices
Q0 and S are zero, and the dynamics (Eq. (5)) is of the form θ(n) = u. The proof
of the complete result can be obtained by showing that this case actually gives the
highest order terms with respect to r . With the preceding hypothesis, θr (t) is the
solution of the OC problem in fixed time τ = τ(r) associated with the infinitesimal
cost u2 + rθ2, or equivalently with 1

r u
2 + θ2. Set θ̃r (t) = θr (tr−1/2n). Then θ̃r (t) is

the solution of the OC problem in fixed time r1/2nτ associated with the infinitesimal
cost u2 + θ2. In the latter problem, nothing depends on r except the duration r1/2nτ .
It results from the analysis of Sect. 2.2.2 that there exists a universal function of time
ϕ(·) such that ũr (r1/2nτ) = θ0ϕ(r1/2nτ). Since we have ur (t) = r1/2ũr (r1/2nt), we
obtain

ur (τ ) = r1/2θ0ϕ(r1/2nτ).

Now remember (see Eq. (8)) that the time τ must satisfy g(τ ) = (ur (τ ))2, which
gives g(τ ) = r

(
θ0ϕ(r1/2nτ)

)2
. Assume by contradiction that the quantity r1/2nτ(r)

is bounded as r → ∞. Then ϕ(r1/2nτ) is bounded away from zero (ϕ is positive and
continuous on (0,+∞), and converges to +∞ as t → 0, see Fig. 2), and therefore
g(τ (r)) → ∞ as r → ∞, which contradicts the boundedness of g. Thus we get
r1/2nτ(r) → ∞.

Since θ̃r (t) is the solution of an OC problem in fixed time with a very large

time r1/2nτ(r), it results from Lemma 4 that θ̃r (t) = cθ0e−αt + O
(
e−αr1/2nτ(r)

)
for

t larger than εr1/2nτ(r) for some ε ∈ (0, 1). The conclusion follows from θr (t) =
θ̃r (tr1/2n). �

Model for Arm Reaching Movements

Single degree-of-freedom (dof) limb. For a 1-dof arm moving in the horizontal plane,
the basic model used throughout the study was already described in numerous other
studies (e.g. [4, 20, 21, 26, 49]) and is as follows:
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{
I θ̈ = τ − bθ̇

τ̇ = u
(12)

where is θ the shoulder joint angle, τ is the muscle torque, b is the friction coefficient
(b = 0.87 here), I is the moment of inertia of the arm with respect to the shoulder
joint (value estimated based upon Winter’s table for each participant; [57]) and u is
the single control variable.

For the trajectory cost we typically considered canonical quadratic costs of the
form l(x, u) = u2 + xT Qx + 2xT Su, where x = (θ, θ̇ , θ̈ ) ∈ R

3 denotes the system
state. The twomost famous examples are the minimum torque change corresponding
to l(x, u) = u2 [55] and theminimum jerk corresponding to l(x, u) = ...

θ
2 [18]. Other

costs, possibly composite, may account for such planar movements in fixed time but
such an investigation is out of the scope of the present chapter (but see [4–7, 19] for
studies related to the trajectory cost identification).
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Geometric and Numerical Aspects
of Redundancy

Pierre-Brice Wieber, Adrien Escande, Dimitar Dimitrov
and Alexander Sherikov

Abstract If some resources of a robot are redundant with respect to a given objec-
tive, they can be used to address other, additional objectives. Since the amount of
resources required to realize a given objective can vary, depending on the situation,
this gives rise to a limited form of decision making, when assigning resources to dif-
ferent objectives according to the situation. Such decision making emerges in case
of conflicts between objectives, and these conflicts appear to be situations of linear
dependency and, ultimately, singularity of the solutions. Using an elementary model
of a mobile manipulator robot with two degrees of freedom, we show how standard
resolution schemes behave unexpectedly and inefficiently in such situations.We pro-
pose then as a remedy to introduce carefully tuned artificial conflicts, in the form of
a trust region.

1 Preamble on Redundancy in Robotics

According to the Oxford Dictionary of English, redundancy is the state of being
not or no longer needed or useful. If some resources of a robot appear to be not
needed or useful to realize a given objective, a common idea is to make use of them
to address another, additional objective. This gives rise to so-called redundancy
resolution schemes [1]. In the typical, iterative procedure, the robot is assigned to:
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1. Realize a first objective. If some resources appear to be redundant, they can be
used to additionally…

2. Realize a second objective. If some resources still appear to be redundant, they
can be used to additionally…

3. Realize a third objective, etc.

1.1 Kinematic Redundancy

Historically, the primary target of redundancy resolution schemes has been the kine-
matics of robots, where the resources considered are basically degrees of freedom,
and the objectives are standard kinematic tasks (reaching, pointing) [1]. Recent devel-
opments in this field include the capacity to consider tasks expressed either as equality
or inequality constraints [2]. This allows handling kinematic tasks such as avoiding,
or staying within a region. As a typical example, proposed in [2], a humanoid robot
is assigned with the following objectives:

1. Maintain balance. If possible, additionally…
2. Avoid collisions. If possible, additionally…
3. Reach an object. If possible, additionally…
4. Keep this object within sight.

A key property of inequality constraints is that they can be active or not, depending
on the situation. As a result, the amount of resources required to realize an objective
can vary. In the example given above, depending on the position of obstacles, the
robot may have enough remaining resources to reach the target object or not, and
keep it within sight or not (see Fig. 1). This gives rise to a limited form of decision
making.

Fig. 1 As a typical example,
proposed in [2], a humanoid
robot is assigned with the
following objectives:
1. Maintain balance;
2. Avoid collisions; 3. Reach
an object; 4. Keep this object
within sight



Geometric and Numerical Aspects of Redundancy 69

Fig. 2 In this example, a
humanoid robot avoids
putting weight with its left
hand on a potentially risky
surface, unless absolutely
necessary to reach a target
object with the right hand

1.2 Force Redundancy

Forces are another resource than can classically become redundant in a robot. This can
be actuator forces, or contact forces with the environment. As an example, proposed
in [3], a humanoid robot is assigned with the following objectives:

1. Maintain balance. If possible, additionally…
2. Reach an object. If possible, additionally…
3. Use only specified contact forces.

In this case, the redundancy resolution scheme decides whether to use only the
specified contact forces or not, depending on the position of the target object. This
is used to avoid putting weight on a potentially risky surface, unless absolutely
necessary (see Fig. 2).

1.3 Time Redundancy

Another resource which is less often discussed is time. Typical circumstances are
that some objectives should be realized either:

• as much as possible (it is equally important to realize the objectives now and later),
as actually investigated in [3] to make decisions on balanced contact phases,
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Fig. 3 In this example, two
industrial manipulator robots
are assigned with the
following objectives:
1. Avoid collisions;
2. Do not accelerate too
rapidly; 3. Reach their
targets as soon as possible

• as long as possible (they should be realized now, and if possible, they should be
realized later aswell), as investigated in [4] to generate safemotions in uncontrolled
environments,

• as soon as possible (they should be realized at some point in the future, and if
possible, they should be realized earlier as well), as used in the example below to
generate time optimal motions.

As an example, proposed in [5], two industrial manipulator robots (Fig. 3) are
assigned with the following objectives:

1. Avoid collisions. If possible, additionally…
2. Do not accelerate too rapidly. If possible, additionally…
3. Reach their targets as soon as possible.

This results in generating time-optimal reaching motions online, under acceleration
constraints and, more importantly, collision avoidance.

1.4 A General and Fundamental Issue

Beyond kinematics, forces, and time, the idea of making use of redundant resources
to address additional objectives is very general. Even Isaac Asimov’s famous Three
Laws of Robotics can be reformulated to emphasize an underlying aspect of redun-
dancy of resources:
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1. A robot may not injure a human being or, through inaction, allow a human being
to come to harm. If possible, additionally…

2. A robot must obey the orders given to it by human beings. If possible, addition-
ally…

3. A robot must protect its own existence.

These three laws exemplify our final goal as roboticists, which is to have robots
able to tackle complex situations, where different objectives have to be addressed
concurrently. These objectives may conflict, and the robot has to make decisions
accordingly. These decisions may involve important safety issues such as ‘maintain
balance’, ‘avoid collisions’, ‘do not injure a human being’. Our observation here is
that redundancy resolution schemes are all about that: resolving conflicts between
objectives, making decisions accordingly, and enforcing in the end the safety of the
robot and of its environment. This is undeniably a fundamental issue in robotics, and
the main motivation for the following analysis.

2 The Case with Two Objectives

Suppose that a robot is assigned with two objectives, that can be expressed as two
functions f (r) and g(r) that should be equal to 0. If there is a conflict and these
functions can’t be equal to 0, they should at least be as close as possible to 0.
Traditional approaches are to weight the (squared) norm of these objective functions,
or to prioritize them.

2.1 Weighting

Weighting would lead to solving the following, unconstrained nonlinear program:

minimize
r

1

2
‖ f (r)‖2 + ω

2
‖g(r)‖2, (1)

with some given positive weight ω. In this case, the first order necessary condition
for optimality is that

f (r)T
∂ f (r)

∂r
+ ω g(r)T

∂g(r)

∂r
= 0. (2)

If there is no conflict between these objectives, a solution with both f (r) = 0 and
g(r) = 0 can be realized, and the necessary optimality condition above is trivially
satisfied. However, if there is a conflict, the solutions are with f (r) �= 0 or g(r) �= 0
or both, and the necessary optimality condition above reveals that the rows of the
Jacobian matrices are linearly dependent.
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2.2 Prioritizing

Prioritizing would lead to imposing that g(r) = 0 (if possible), and solving the fol-
lowing, constrained nonlinear program:

minimize
r

1

2
‖ f (r)‖2 (3)

such that g(r) = 0. (4)

In this case, the first order necessary condition for optimality is that

f (r)T
∂ f (r)

∂r
+ λT ∂g(r)

∂r
= 0 (5)

with some Lagrange multipier λ to be determined.
Once again, if there is no conflict between these objectives, a solution with

f (r) = 0 can be realized, and the necessary optimality condition above is trivially
satisfied (with λ = 0). However, if there is a conflict, the solutions are with f (r) �= 0
(and potentially λ �= 0), and the necessary optimality condition above reveals that
the rows of the Jacobian matrices are again linearly dependent.

2.3 Conflicts and Linear Dependency

It appears that situations of conflict are actually situations of linear dependency. This
shouldn’t come as a surprise, as this linear dependency is nothing more than the
mathematical expression of the fact that objectives would like to draw from the same
set of resources of the robot (expressed here in the variable r ). We’re going to see
that this linear dependency can be the source of significant problems.

3 An Elementary Mobile Manipulator Robot

Consider an elementary mobile manipulator robot with two degrees of freedom: able
to translate along the x axis, and equipped with an arm of unit length attached to a
rotary joint with an angle θ , as depicted on Fig. 4, so r = (x, θ). Suppose that it is
assigned with the following two objectives:

1. Reach a target with its end effector, at a coordinate equal to 2,

g = 2 − (x + cos θ) → 0. (6)
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Fig. 4 An elementary mobile manipulator robot, able to translate along the x axis, and equipped
with one rotary joint of angle θ , is assigned with the following objectives: 1. Reach an object with
its end effector, g = 2 − (x + cos θ) → 0; 2. Stay at the origin, f = x → 0

2. If possible, additionally, stay at the origin,

f = x → 0. (7)

3.1 Unreachability in the Objectives Space

In the space defined by the two functions ( f, g), the common objective is to be as
close as possible to the origin (0, 0) (see Fig. 5). We can observe however that this
point is not reachable since, following the definitions (6) and (7) of these functions,
we obviously always have

f + g ≥ 1. (8)

This unreachability means that these two functions can’t be equal to 0 at the same
time: there is a conflict between these objectives.

3.2 Solutions Lie at Singularities

We have seen that situations of conflict are situations of linear dependency. In this
example, depending on the choice of resolution scheme, weighted (1) or priori-
tized (3) and (4), solutions will lie at different points on the boundary of the reachable
space, where f + g = 1 (see Fig. 5). We can see from the definitions (6) and (7) that
on this boundary, θ = 2kπ . Our mobile manipulator looks then as in Fig. 6, and the
Jacobian matrix of the two objective functions

[
d f
dg

]
=

[
1 0

−1 sin(θ)

] [
dx
dθ

]
(9)

becomes singular.
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Fig. 5 In the space defined
by the two functions ( f, g),
the common objective is to
be as close as possible to the
origin (0, 0). However, this
point is not reachable since,
following the definitions of
these functions, we
obviously always have
f + g ≥ 1. Depending on
the choice of resolution
scheme, solutions will lie at
different points on the
boundary, where f + g = 1

Fig. 6 When f + g = 1,
θ = 2kπ , and the Jacobian
matrix of the two objective
functions becomes singular

3.3 A Common Outcome of Redundancy Resolution Schemes

Most examples provided in the literature on redundancy resolution schemes typically
consider conflicts with objective functions ‖ f (r)‖2 of the form ‖r − rp‖2, where rp
is some preferred value for the resources r [6–8]. In those cases, the Jacobian matrix
∂ f (r)
∂r is the identity matrix, which is always trivially linearly dependent with any

Jacobian matrix ∂g(r)
∂r . It follows that in those cases, linear dependency does not

materialize only at the optima: there are no particular losses of matrix rank at the
solutions, they do not particularly lie at singularities.

But such objective functions involve by construction all the resources of the robot,
so there are no redundant resources left afterwards for the redundancy resolution
scheme to proceed with. Objective functions which do not involve all the resources
of the robot are naturally much more frequent. However, few examples of conflicts
in such situations have appeared in the literature, and mostly in the case of humanoid
robots [2, 9–11], probably because such robots can be particularly redundant. In
these cases, linear dependency may materialize only at the optima, so there is a
loss of matrix rank there: solutions lie at singularities, as above. This has already
been acknowledged in [12] to be a common occurrence in redundancy resolution
schemes. This singularity at the solutions is what will make standard approaches
behave inefficiently.
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4 Resolution Process

The usual resolution method for Nonlinear Least Squares Programs is to perform
a sequence of Gauss–Newton steps, where nonlinear functions are replaced with
their first-order linear approximations [13]. In the case of the nonlinear programs
introduced earlier for theweighted and prioritized approaches, this leads toQuadratic
Programs (QPs)

minimize
dr

1

2

∥∥∥∥ f (r) + ∂ f (r)

∂r
dr

∥∥∥∥
2

+ ω

2

∥∥∥∥g(r) + ∂g(r)

∂r
dr

∥∥∥∥
2

(10)

and

minimize
dr

1

2

∥∥∥∥ f (r) + ∂ f (r)

∂r
dr

∥∥∥∥
2

(11)

such that g(r) + ∂g(r)

∂r
dr = 0. (12)

In robotics, this would correspond to a Closed-Loop Inverse Kinematics (CLIK)
method, or to a task-space velocity control (but similar results are actually observed
for task-space acceleration or torque control).

4.1 On the Boundary of the Reachable Space

When the state of our robot is on the boundary of the reachable space, when f + g =
1 and θ = 2kπ , we have seen that the rows of the Jacobian matrices ∂ f (r)

∂r and ∂g(r)
∂r

are linearly dependent, and the robot is in a singularity (as in Fig. 6). In this case, the
solutions to the QPs above are such that

dx = ω

1 + ω
− x (13)

for the weighted approach, and
dx = 1 − x (14)

for the prioritized approach. Considering a least-norm solution, as usual in this case,
wewould also have dθ = 0. The two numerical schemes appear therefore to converge
to their respective solutions (on the boundary of the reachable space): x = ω

1+ω
and

θ = 2kπ for theweighted approach, x = 1 and θ = 2kπ for the prioritized approach.
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4.2 Away from the Boundary

When the state of our robot is away from the boundary of the reachable space, when
f + g > 1, rows of the Jacobian matrices are linearly independent, so the linearized
objectives

f (r) + ∂ f (r)

∂r
dr = 0 (15)

and

g(r) + ∂g(r)

∂r
dr = 0 (16)

do not conflict and can be realized altogether. In this case, both numerical schemes
lead the robot in the same direction dr , such that

d f = ∂ f (r)

∂r
dr = − f (17)

and

dg = ∂g(r)

∂r
dr = −g. (18)

This direction points towards the origin (0, 0) of the objectives space, towards the
boundary of the reachable space (Fig. 5).

4.3 Not Going in the Right Direction

We have seen that both the weighted and the prioritized numerical schemes converge
to their respective solutions when on the boundary of the reachable space, and when
away from this boundary, they first move towards it. It appears however that they
don’t go really in the right direction in that case. Indeed, following definition (7),
equation (17) means

dx = −x, (19)

so the mobile base of the robot (with coordinate x) is actually moving towards the
origin x = 0, instead of any of the desired solutions x = ω

1+ω
or x = 1.

This is because the two linearized objectives do not conflict when away from
the boundary, so the resolution schemes can temporarily aim at satisfying both, and
that means having x go towards 0 in the first place. This behavior can be grasped
visually on Fig. 4, where the two linearized objectives can be represented as two red
arrows: the mobile base will move in the direction of the origin until the robot looks
as on Fig. 6, when the state of the robot arrives on the boundary of the reachable
space, and the two linearized objectives finally conflict. This conflict is then resolved
satisfactorily, and the robot is eventually led to the desired solution.
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The robot must therefore reach first a situation of conflict between the linearized
objectives, i.e., a singularity, before going in the right direction. And in case the
numerical scheme is not made robust to singularities, it might get stuck oscillating
around this singularity, never reach it, and never start moving in the right direction.
This exact behavior was clearly observed in [14]. The usual approach to singularity
robustness is to introduce damping (Tikhonov regularization) [15], which has been
observed to work properly in the case of conflicting objectives [10], although it has
been acknowledged to be difficult to tune by hand, as the problem is actually very
sensitive [2]. This is one of the issues addressed in the method proposed next, a key
feature of which is automatic tuning of parameters.

5 Introducing Artificial Conflicts

Having the robot go in a wrong direction, and waiting until it reaches a singularity
before it starts going in the right direction, introduces an unpredictable delay before
convergence begins, what is inefficient and undesirable. This happens because the
desired solutions lie at singularities, and to provide a meaningful approximation,
the first-order linear models have to be singular in a similar way. Otherwise, these
models basically point in a wrong direction. The idea then is to introduce carefully
tuned artificial conflicts, to interfere with these models and have them point in a
better direction.

5.1 A Trust-Region Method

A standard remedy to rank-deficiency issues in Nonlinear Least Squares Programs
is to resort to the Levenberg–Marquardt method, which can be seen as combining
Gauss–Newton steps with a trust-region method [13]. For the prioritized approach,
the QP (11) and (12) can be modified in the following way:

minimize
dr

1

2

∥∥∥∥ f (r) + ∂ f (r)

∂r
dr

∥∥∥∥
2

(20)

such that g(r) + ∂g(r)

∂r
dr = 0, (21)

‖dr‖∞ ≤ Δ, (22)

introducing a bound Δ on the norm of the step dr , using here an L∞-norm to obtain
a standard QP formulation.

The crucial consequence of introducing this bound is that it doesn’t only affect
the size of dr , it also affects its direction, by interfering with the minimization of
the objective in (20). This is unlike a line search method, which keeps the direction
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constant and adapts only the size of dr (that would correspond in robotics to simply
varying control gains, such as in task scaling [16]).

If the bound Δ is chosen large enough, it will not interfere, and the solution
of the QP will be unaffected. But if chosen small enough, it will conflict with the
minimization of the objective in (20), producing a direction dr that fully reflects the
objective in the constraint (21), much less the objective to minimize in (20), as if
these two objectives were themselves conflicting.

Introducing such an artificial conflict is appropriate only if the two objectives do
conflict in the end. The problem is that there is usually no way to know in advance
if this is the case or not. The bound Δ must therefore be carefully adapted online,
based on some heuristics. It has been proposed in [14] to adapt this bound, depending
on the occurrence of oscillations, due to singularity. In that case however, it is only
when approaching singularity that the artificial conflict would be introduced, so the
problem of going in a wrong direction in the first place would remain.

We propose here to follow a standard trust-region method, where this bound
is adapted, depending on how much the nonlinear objective functions differ from
their first-order linear approximations throughout the Gauss–Newton iterations [13].
As a result, artificial conflict can be introduced early in the process, taking care
automatically that it does not interfere with convergence.

5.2 Adaptive Damping

Following a theorem due to Moré and Sorenson [13], trust-region methods can also
be considered as a form of adaptive damping. For the weighted approach, the QP (10)
can be modified in the following way:

minimize
dr

1

2

∥∥∥∥ f (r) + ∂ f (r)

∂r
dr

∥∥∥∥
2

+ ω

2

∥∥∥∥g(r) + ∂g(r)

∂r
dr

∥∥∥∥
2

+ Λ

2
‖dr‖2 (23)

with a regularization coefficient Λ that has to be carefully chosen and adapted.
If Λ = 0, the QP and its solution are unaffected. But if Λ > 0, the regularization

term ‖dr‖2 naturally conflicts with both objectives. And if Λ is large enough with
respect to min. {1, ω}, this regularization term will interfere significantly with the
objective with lower weight, producing a direction dr that reflects relatively much
more the objective with higher weight, as if these two objectives were themselves
conflicting.

As before, introducing such an artificial conflict is appropriate only if the two
objectives do conflict in the end, and there is usually no way to know in advance if
this is the case or not. The regularization weight Λ must therefore be adapted online
as well, based on some heuristics. As before, we propose to follow a standard trust-
region method, where this weight is adapted, depending on how much the nonlinear
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objective functions differ from their first-order linear approximations throughout the
Gauss–Newton iterations [13].

Adjusting the damping coefficient is usually proposed in robotics with the goal to
interfere as little as possible with the linearized objectives, only when they become
close to singular [1]. The situation here is opposite, since the goal is to interfere
significantly with the linearized objectives, and especially in situations where they
are far from singular.

5.3 Implementation Aspects

Concerning the weighted approach, the QP (10) could also be modified to include a
bound (22) instead of a regularization, but that would transform the original, uncon-
strained Least Squares problem into a slightly more complex, constrained one. This
is the reason why the regularized formulation (23) is usually favored.

Concerning the prioritized approach, the QP (11) and (12) could also be modified
to include a regularization instead of a bound, as in [2, 10]. But solutions to the
non-regularized prioritized problem can be obtained very efficiently, with the help
of specific matrix factorizations, and lexicographic active set methods when han-
dling inequality constraints [9, 17], which do not apply to the regularized case. The
difference in computation time can be more than 30-fold – a good reason to favor
the bounded formulation (20) and (22). An advantageous aspect of regularization
however is that it precludes ill-conditioning when approaching singularities, and ill-
conditioning can prevent the proper termination of the active set methods used to
handle inequality constraints, by inducing a cycling in their iterations. Which option
should be favored in the end is still an open question.

Finally, traditional trust-region methods are designed for unconstrained, single-
objective optimization problems [13]. They apply naturally to the regularized Least
Squares problem (23) that appears in the weighted approach. But for the constrained,
multi-objective problems that appear in the prioritized approach, we have to resort
to more recent and experimental, multidimensional filter methods [18].

6 Numerical Results

We are going to observe now more precisely how the numerical schemes discussed
above behave with the problem (6) and (7). A set of initial guesses for the solutions is
chosen randomly, each assigned a unique color, and subsequent iterations are plotted
in the objectives space, defined by the two functions ( f, g), using the same layout as
in Fig. 5. The distance to the solutions is also provided as a function of the number
of iterations in order to visualize convergence speed.
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(a) Weighted f and g
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Fig. 7 Sequences of Gauss–Newton steps, as introduced in the QP (10) for the weighted approach
(on the left, with a weight ω = 10), and in the QP (11) and (12) for the prioritized approach (on the
right), do not converge to the corresponding optima ( 1

11 , 10
11 ) and (0, 1), represented by red crosses

on the ( f, g) plots above, except when initialized exactly on the boundary f + g = 1. The curves
below show the corresponding evolutions of the distance to the optima with each iteration, which
does not decrease at all in general

We can see in Fig. 7 that sequences of Gauss–Newton steps, as introduced in
the QP (10) for the weighted approach (on the left, with a weight ω = 10), and in the
QP (11) and (12) for the prioritized approach (on the right), do not converge to the
corresponding optima ( 1

11 ,
10
11 ) and (0, 1), represented by red crosses, except when

initialized exactly on the boundary f + g = 1. Note how iterations are identical
between the weighted approach (on the left) and the prioritized approach (on the
right) when f + g > 1, as discussed earlier in Sect. 4.2.

We can see in Fig. 8 that simply dividing the length of the steps by 10, as would
occur with a gain of 0.1 in a Closed Loop Inverse Kinematics scheme, naturally slows
down each and every iteration, but does not lead to any improvement in convergence.
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Fig. 8 Simply dividing the length of the steps by 10, as would occur with a gain of 0.1 in a Closed
Loop Inverse Kinematics scheme, naturally slows down each and every iteration, but does not lead
to any improvement in convergence

We can see in Fig. 9 that for theweighted approach, introducing a regularization as
in the QP (23), with a coefficient as high as Λ = 0.4, still does not lead to any better
convergence. For the prioritized approach, introducing a bound as in the QP (20)
and (21), with a constant Δ = 0.5, leads to convergence in a few occasions, but not
systematically. We can see in Fig. 10 that it is only with a regularization coefficient
as high as Λ = 0.55 and a bound as small as Δ = 0.1 that convergence begins to
appear more reliably.

It appears that the regularization coefficient Λ and the bound Δ must be tuned
carefully in order to reach convergence.This canbedone automatically and efficiently
with a simple trust-region method, as discussed in [13]. The corresponding behavior
can be observed in Fig. 11. Of course, convergence speed may not always be as good
as with a finely hand tuned coefficient or bound, but this does not account for the
time required to hand tune these problem-specific parameters in the first place.
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Fig. 9 For the weighted approach (on the left), introducing a regularization as in the QP (23), with
a coefficient as high as Λ = 0.4, still does not lead to any better convergence. For the prioritized
approach (on the right), introducing a bound as in the QP (20) and (21), with a constant Δ = 0.5,
leads to convergence in a few occasions, but not systematically

7 Conclusion

We have seen that redundancy resolution schemes can result in a limited form of
decision making, when attributing the resources of a robot to its different objectives.
This is because the amount of resources required to realize a given objective can vary,
due particularly to the introduction of inequality constraints, that can be active or
not, depending on the situation. Such decision making emerges in case of conflicts
between objectives, and we have seen that these conflicts are directly related to
situations of linear dependency.

The problem is that such linear dependency often results in singular solutions. In
that case, standard resolution processes appear to go in the wrong direction, causing
an unpredictable delay in convergence, because they rely on linearized objectives,
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Fig. 10 It is only with a regularization coefficient as high as Λ = 0.55 (on the left) and a bound as
small as Δ = 0.1 (on the right) that convergence begins to appear more reliably

which can be inappropriate. It is striking to observe that the resolution processes
behave nearly identically for the weighted and for the prioritized approach: both face
exactly the same numerical difficulty here.

We propose to use trust-region methods as a remedy. They can be seen as a way to
introduce artificial conflicts, automatically and carefully tuned to drive the resolution
processes towards the desired solution. This has been demonstrated numerically with
a simple system. More complex situations, with a greater number of objectives, need
to be addressed now for a more thorough validation of the proposed method.

In conclusion, no claims can be made yet as to having fully solved the prob-
lem uncovered in this chapter. Further study of how humans handle such situations
could prove enlightening in this regard, and may provide inspiration for more refined
solutions.
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Fig. 11 It appears that the regularization coefficient Λ and the bound Δ must be chosen and
adapted carefully in order to obtain convergence. This can be done automatically and efficiently
with a simple trust-region method, as discussed in [13]
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Some Recent Directions in Algebraic
Methods for Optimization and Lyapunov
Analysis

Amir Ali Ahmadi and Pablo A. Parrilo

Abstract Exciting recent developments at the interface of optimization and control
have shown that several fundamental problems in dynamics and control, such as
stability, collision avoidance, robust performance, and controller synthesis can be
addressed by a synergy of classical tools from Lyapunov theory and modern com-
putational techniques from algebraic optimization. In this chapter, we give a brief
overview of our recent research efforts (with various coauthors) to (i) enhance the
scalability of the algorithms in this field, and (ii) understand their worst case per-
formance guarantees as well as fundamental limitations. The topics covered include
the concepts of “dsos and sdsos optimization”, path-complete and non-monotonic
Lyapunov functions, and some lower bounds and complexity results for Lyapunov
analysis of polynomial vector fields and hybrid systems. In each case, our relevant
papers are tersely surveyed and the challenges/opportunities that lie ahead are stated.

1 Algebraic Methods in Optimization and Control

In recent years, a fundamental and exciting interplay between convex optimization
and algorithmic algebra has allowed for the solution or approximation of a large class
of nonlinear and nonconvex problems in optimization and control once thought to be
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out of reach. The success of this area stems from two facts: (i) Numerous fundamental
problems in optimization and control (among several other disciplines in applied and
computational mathematics) are semialgebraic; i.e., they involve optimization over
sets defined by a finite number of possibly quantified polynomial inequalities. (ii)
Semialgebraic problems can be reformulated as optimization problems over the set
of nonnegative polynomials. This makes them amenable to a rich set of algebraic
tools which lend themselves to semidefinite programming—a subclass of convex
optimization problems for which global solution methods are available.

Application areas within optimization and computational mathematics that have
been impacted by advances in algebraic techniques are numerous: approximation
algorithms for NP-hard combinatorial problems [31], equilibrium analysis of con-
tinuous games [57], robust and stochastic optimization [23], statistics and machine
learning [50], software verification [63], filter design [65], quantum computation
[29], and automated theorem proving [32], are only a few examples on a long list.

In dynamics and control, algebraic methods and in particular the so-called area of
“sum of squares (sos) optimization” [2, 26, 33, 41, 55] have rejuvenated Lyapunov
theory, giving the hope or the outlook of a paradigm shift from classical linear
control to a principled framework for design of nonlinear (polynomial) controllers
that are provably safer, more agile, and more robust. As a concrete example, Fig. 1

Fig. 1 From [51] (with Majumdar and Tedrake): The “swing-up and balance” task via sum of
squares optimization for an underactuated and severely torque limited double pendulum (the “Acro-
bot”).Top projections of basins of attraction around a nominal swing-up trajectory designed by linear
quadratic regulator (LQR) techniques (blue) and by SOS techniques (red). Bottom projections of
basins of attraction of the unstable equilibrium point in the upright position stabilized by a linear
controller via LQR (blue), and a cubic controller via SOS (red). To our knowledge, this work con-
stitutes the first hardware implementation and experimental validation of sum of squares techniques
in robotics
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demonstrates our recent work with Majumdar and Tedrake [51] in this area applied
to the field of robotics. As the caption explains, sos techniques provide controllers
with much larger margins of safety along planned trajectories and can directly reason
about the nonlinear dynamics of the system under consideration. These are crucial
assets for more challenging robotic tasks such as walking, running, and flying. Sum
of squares methods have also recently made their way to actual industry flight control
problems, e.g., to explain the falling leaf mode phenomenon of the F/A-18 Hornet
aircraft [25, 64] or to design controllers for hypersonic aircraft [20].

2 Our Target Areas in Algebraic Optimization
and Control

Despite the wonderful advances in algebraic techniques for optimization and their
successful interplay with Lyapunov methods, there are still many fundamental chal-
lenges to overcome and unexplored pathways to pursue. In this chapter, we aim at
highlighting two concrete areas in this direction:

Area 1—Struggle with scalability Scalability is arguably the single most outstand-
ing challenge for algebraic methods, not just in control theory, but in all areas of
computational mathematics where these techniques are being applied today. It is
well known that the size of the semidefinite programs (SDPs) resulting from sum
of squares techniques (although polynomial in the data size) grows quickly and this
limits the scale of the problems that can be efficiently and reliably solved with avail-
able SDP solvers. This drawback deprives large-scale systems of the application
of algebraic techniques and perhaps equally importantly shuts the door on the oppor-
tunities that lie ahead if we could use these tools for real-time optimization.

In nonlinear control, problems with scalability also manifest themselves in form
of complexity of Lyapunov functions. It is common for “simple” (e.g., low degree)
stable systems to necessitate “complicated” Lyapunov functions as stability certifi-
cates (e.g., polynomials of high degree). The more complex the Lyapunov function,
the more variables its parametrization will have, and the larger the sum of squares
programs that search for it will have to be. In view of this, it is of particular inter-
est to derive conditions for stability that are less stringent than those of classical
Lyapunov theory. A related challenge in this area is the lack of a unified and com-
parative theory for various classes of Lyapunov functions available in the literature
(e.g., polytopic, piecewise quadratic, polynomial, etc.). These problems are more
pronounced in the study of uncertain or hybrid system, which are of great practical
relevance in engineering.

Area 2—Lack of rigorous guarantees While most works in the literature formulate
hierarchies of optimization problems that—if feasible—guarantee desired properties
of a control system of interest (e.g., stability or safety), relatively few establish
“converse results”, i.e., proofs that if certain policies meet design specifications,
then a particular level in the optimization hierarchy is guaranteed to find a certificate



92 A.A. Ahmadi and P.A. Parrilo

as a feasible solution. This is in contrast to more discrete areas of optimization where
tradeoffs between algorithmic efficiency and worst-case performance guarantees are
often quite well-understood.

A study of performance guarantees for some particular class of algorithms (in
our case, sum of squares algorithms) naturally borders the study of lower bounds,
i.e., fundamental limits on the efficiency of any algorithm that provably solves a
problem class of interest. Once again here, the state of affairs in this area of controls
is not entirely satisfactory: there are numerous fundamental problems in the field
that while believed to be “hard” in folklore, lack a rigorous complexity-theoretic
lower bound. One can attribute this shortcoming to some extent to the nature of most
problems in controls, which typically come from continuous mathematics and at
times describe qualitative behavior of a system rather thanquantitative ones (consider,
e.g., asymptotic stability of a nonlinear vector field).

The remainder of this chapter presents a brief report on some recent progress we
havemade on these two target areas, as well as some challenges that lie ahead. This is
meant neither as a comprehensive survey paper, as there are many great contributions
by other authors that we do not cover, nor as a stand-alone paper, as for the most part
only entry points to a collection of relevant papers will be provided. The interested
reader can find further detail and a more comprehensive literature review in the
references presented in each section.

2.1 Organization of the Chapter

The outline of the chapter is as follows. We start by a short section on basics of sum
of squares optimization in the hope that our chapter becomes accessible to a broader
audience. In Sect. 4, we describe some recent developments on the optimization side
to provide more scalable alternatives to sum of squares programming. This is the
framework of “dsos and sdsos optimization”, which is amenable to linear and sec-
ond order cone programming as opposed to semidefinite programming. In Sect. 5, we
describe some new contributions to Lyapunov theory that can improve the scalabil-
ity of algorithms meant for verification of dynamical systems (either continuous or
hybrid). These include techniques for replacing high-degreeLyapunov functionswith
multiple low-degree ones (Sect. 5.1), and amethodology for relaxing the “monotonic
decrease” requirement of Lyapunov functions (Sect. 5.2). The beginning of Sect. 5
also includes a list of recent results on complexity of deciding stability and on suc-
cess/limitations of algebraic methods for finding Lyapunov functions. Both Sects. 4
and 5 are ended with a list of open problems or opportunities for future research.

We note that the chapter by J.B. Lasserre in this edited volume is also closely
related to some of what we present here with respect to sum of squares optimization
and its applications to control theory. The theory of moments, which is dual to the
theory of sum of squares polynomials, is not present in the current chapter. For a
treatment of this topic and its applications to control and robotics, see e.g. [34, 44,
45, 54].
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3 A Quick Introduction to SOS for the General Reader

At the core of most algebraic methods in optimization and control is the sim-
ple idea of optimizing over polynomials that take only nonnegative values, either
globally or on certain regions of the Euclidean space. A multivariate polynomial
p(x) := p(x1, . . . , xn) is said to be (globally) nonnegative if p(x) ≥ 0 for all x ∈ R

n .
As an example, consider the task of deciding whether the following polynomial in 3
variables and degree 4 is nonnegative1:

p(x) = x41 − 6x31 x2 + 2x31 x3 + 6x21 x
2
3 + 9x21 x

2
2−6x21 x2x3 − 14x1x2x23 + 4x1x33+5x43 − 7x22 x

2
3 + 16x42 .

(1)

This may seem like a daunting task (and indeed it is as testing for nonnegativity
is NP-hard), but suppose we could “somehow” come up with a decomposition of the
polynomial as a sum of squares:

p(x) = (x21 − 3x1x2 + x1x3 + 2x23 )
2 + (x1x3 − x2x3)2

+(4x22 − x23 )
2.

(2)

Then, we have at our hands an explicit algebraic certificate of nonnegativity of p(x),
which can be easily checked (simply by multiplying the terms out). A polynomial p
is said to be a sum of squares (sos), if it can be written as p(x) = ∑

q2
i (x) for some

polynomials qi . Interestingly, the question of existence of an sos decomposition (i.e.,
the task of going from (1) to (2)) can be cast as a semidefinite program (SDP) and be
solved, e.g., by interior point methods. This is because of the following well-known
theorem (see, e.g., [55]).

Theorem 3.1 A multivariate polynomial p in n variables and of degree 2d is a
sum of squares if and only if there exists a positive semidefinite matrix Q (often
called the Gram matrix) such that

p(x) = zT Qz, (3)

where z is the vector of monomials of degree up to d

z = [1, x1, x2, . . . , xn, x1x2, . . . , xdn ].

Proof If (3) holds, then we can do a Cholesky factorization on the Gram matrix,
Q = V T V , and obtain the desired sos decomposition as

p(x) = zT V T V z = (V z)T (V z) = ||V z||2.

1The familiar readermay safely skip this section. For amore comprehensive introductary exposition,
see: https://blogs.princeton.edu/imabandit/guest-posts/.

https://blogs.princeton.edu/imabandit/guest-posts/
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Conversely, suppose p is sos:
p =

∑

i

q2
i (x),

then for some vectors of coefficients ai , we must have

p =
∑

i

(aT
i z(x))

2 =
∑

i

(zT (x)ai )(a
T
i z(x)) = zT (x)(

∑

i

aia
T
i )z(x),

so the positive semidefinite matrix Q := ∑
i aia

T
i can be extracted. As a corollary

of the proof, we see that the number of squares in our sos decomposition is exactly
equal to the rank of the Gram matrix Q. �

Note that the feasible set defined by the constraints in (3) is the intersection of
an affine subspace (arising from the equality constraints matching the coefficients
of p with the entries of Q) with the cone of positive semidefinite matrices. This is
precisely the semidefinite programming (SDP) problem. The size of the Grammatrix
Q is

(n+d
d

) × (n+d
d

)
, which for fixed d is polynomial in n. Depending on the structure

of p, there are well-documented techniques for further reducing the size of the Gram
matrix Q and the monomial vector z. We do not pursue this direction here but state
as an example that if p is homogeneous of degree 2d, then it suffices to place in the
vector z only monomials of degree exactly d.

Example 3.1 Consider the task proving nonnegativity of the polynomial in (1). Since
this is a form (i.e., a homogeneous polynomial), we take

z = (x21 , x1x2, x
2
2 , x1x3, x2x3, x

2
3 )

T .

One feasible solution to the SDP in (3) is given by

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −3 0 1 0 2
−3 9 0 −3 0 −6
0 0 16 0 0 −4
1 −3 0 2 −1 2
0 0 0 −1 1 0
2 −6 4 2 0 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

UponadecompositionQ = ∑3
i=1 a

T
i ai ,witha1 = (1,−3, 0, 1, 0, 2)T ,a2 = (0, 0, 0,

1,−1, 0)T , a3 = (0, 0, 4, 0, 0,−1)T , one obtains the sos decomposition

p(x) = (x21 − 3x1x2 + x1x3 + 2x23 )
2 + (x1x3 − x2x3)

2 + (4x22 − x23 )
2.

This is exactly how the expression in (2) was obtained. We remark that the task of
generating semidefinite programs from sum of squares constraints has been auto-
mated in a number of freely-available software packages such as YALMIP [49] and
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SOSTOOLS [60]. The interested reader can find a short tutorial and some examples
here: https://yalmip.github.io/tutorial/sumofsquaresprogramming/. �

The question of when nonnegative polynomials admit a decomposition as a sum
of squares is one of the central questions of real algebraic geometry, dating back
to the seminal work of Hilbert [35, 62], and an active area of research today. This
question is commonly faced when one attempts to prove guarantees for performance
of algebraic algorithms in optimization and control.

In short, sum of squares decomposition is a sufficient condition for polynomial
nonnegativity. It has become quite popular because of three reasons: (i) the decompo-
sition can be obtained by semidefinite programming, (ii) the proof of nonnegativity
is in form of an explicit certificate and is easily verifiable, and (iii) there is strong
empirical (and in some cases theoretical) evidence showing that in relatively low
dimensions and degrees, “most” nonnegative polynomials are sums of squares.

But why do we care about polynomial nonnegativity to begin with? We briefly
present two fundamental application areas next: the polynomial optimization prob-
lem, and Lyapunov analysis of control systems.

3.1 The Polynomial Optimization Problem

The polynomial optimization problem (POP) is currently a very active area of
research in the optimization community. It is the following problem:

minimize p(x)
subject to x ∈ K := {x ∈ R

n | gi (x) ≥ 0, hi (x) = 0}, (4)

where p, gi , and hi are multivariate polynomials. The special case of problem (4)
where the polynomials p, gi , hi all have degree one is of course linear programming,
which can be solved very efficiently.When the degree is larger than one, POPcontains
as special case many important problems in operations research; e.g., all problems
in the complexity class NP, such as MAXCUT, travelling salesman, computation of
Nash equilibria, scheduling problems, etc.

A set defined by a finite number of polynomial inequalities (such as the set K
in (4)) is called basic semialgebraic. By a straightforward reformulation of problem
(4), we observe that if we could optimize over the set of polynomials, nonnegative on
a basic semialgebraic set, then we could solve the POP problem to global optimality.
To see this, note that the optimal value of problem (4) is equal to the optimal value
of the following problem:

maximize γ

subject to p(x) − γ ≥ 0, ∀x ∈ K .
(5)

https://yalmip.github.io/tutorial/sumofsquaresprogramming/
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Here, we are trying to find the largest constant γ such that the polynomial p(x) − γ

is nonnegative on the set K ; i.e., the largest lower bound on problem (4). For ease
of exposition, we only explained how a sum of squares decomposition provides a
sufficient condition for polynomial nonnegativity globally. But there are straight-
forward generalizations for giving sos certificates that ensure nonnegativity of a
polynomial on a basic semialgebraic set; see, e.g., [44, 56]. All these generaliza-
tions are amenable to semidefinite programming and commonly used to tackle the
polynomial optimization problem.

3.2 Lyapunov Analysis of Dynamical Systems

Numerous fundamental problems in nonlinear dynamics and control, such as sta-
bility, invariance, robustness, collision avoidance, controller synthesis, etc., can be
turned by means of “Lyapunov theorems” into problems about finding special func-
tions (the Lyapunov functions) that satisfy certain sign conditions. The task of con-
structing Lyapunov functions has traditionally been one of the most fundamental and
challenging tasks in control. In recent years, however, advances in convex program-
ming and in particular in the theory of semidefinite optimization have allowed for
the search for Lyapuonv functions to become fully automated. Figure2 summarizes
the steps involved in this process.

As a simple example, if the task in the leftmost block of Fig. 2 is to establish
global asymptotic stability of the origin for a polynomial differential equation ẋ =
f (x), with f : R

n → R
n, f (0) = 0, then the Lyapunov inequalities that a radially

unbounded Lyapunov function V would need to satisfy are [43]:

V (x) > 0 ∀x �= 0
V̇ (x) = 〈∇V (x), f (x)〉 < 0 ∀x �= 0.

(6)

Here, V̇ denotes the time derivative of V along the trajectories of ẋ = f (x), ∇V (x)
is the gradient vector of V , and 〈., .〉 is the standard inner product in R

n . If we
parametrize V as an unknown polynomial function, then the Lyapunov inequalities
in (6) become polynomial positivity conditions. The standard sos relaxation for these
inequalities would then be:

Fig. 2 The steps involved in Lyapunov analysis of dynamical systems via semidefinite program-
ming. The need for “computational” converse Lyapunov theorems is discussed in Sect. 5
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V sos and − V̇ = −〈∇V, f 〉 sos. (7)

The search for a polynomial function V satisfying these two sos constraints is a
semidefinite program, which, if feasible, would imply2 a solution to (6) and hence a
proof of global asymptotic stability through Lyapunov’s theorem. Let us spell out a
similar application to formal verification of collision avoidance.

3.2.1 Barrier Certificates for Collision Avoidance

Whether on the ground or in the air, the fundamental requirement in motion planning
for unmanned vehicles (UVs) in cluttered environments is collision avoidance. In
recent years, the idea of “barrier functions” has been proposed for obtaining formal
certificates of collision avoidance through sum of squares optimization [22, 58, 59].
The idea is simple and resembles Lyapunov theory: If we find a function V : R

n → R

with the following properties,

V < 0 on the safe region, V > 0 on the obstacles,

V̇ ≤ 0 along all trajectories,

then, trajectories starting from safe regions are certified to not collide with the obsta-
cles. Once again, if we assume the dynamics ofmotion are given by some polynomial
differential equation ẋ = f (x) (or closely approximated as such via a Taylor expan-
sion of high-enoughdegree), and further ifwe contain the obstacles and the region that
requires safety verification with basic semialgebraic sets, then the search for a poly-
nomial function V satisfying the inequalities above can be fully automated using sum
of squares techniques. Indeed, suppose the safe region and an obstacle are respec-
tively represented with a set of polynomial inequalities S = {x ∈ R

n| hi (x) ≥ 0},
O = {x ∈ R

n| g j (x) ≥ 0}. Then, we can use semidefinite programming to find the

2Here, we are assuming a strictly feasible solution to the SDP. Indeed a strictly feasible solution to
(7) is required to get the strict inequalities in (6). Luckily, unless the SDP has an empty interior, a
strictly feasible solutionwill automatically be returned by the interior point solver. See the discussion
in [1, p. 41].
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coefficients of a polynomial V and polynomials τi , σ j satisfying

V −
∑

j

σ j g j sos, − V −
∑

i

τi h j sos, and − V̇ = −〈∇V, f 〉 sos. (8)

These algebraic identities indeed certify3 the prescribed inequalities on V .
We remark that for this approach to be applicable to real-timemotion planning, the

underlying sum of squares programs need to be solved in real time as the obstacles
enter the range of vision of the UV. At the moment, it is fair to say that sum of
squares solvers are not quite capable of handling real-time applications. The same
can be said about offline, but large-scale applications. Such limitations motivate the
developments of our next section.

4 More Tractable Alternatives to sos Optimization [Area 1]

As explained in Sect. 3, a central question of relevance to applications of algorith-
mic algebra is to provide sufficient conditions for nonnegativity of polynomials, as
working with nonnegativity constraints directly is in general intractable. The sum of
squares (sos) condition achieves this goal and is amenable to semidefinite program-
ming (SDP). Although this has proven to be a powerful approach, its application to
many practical problems has been challenged by a simple bottleneck: scalability.

For a polynomial of degree 2d in n variables, the size of the semidefinite program
that decides the sos decomposition is roughly nd . Although this number is polynomial
in n for fixed d, it can grow rather quickly even for low degree polynomials.

In addition to being large-scale, the resulting semidefinite programs are also often
ill-conditioned and challenging to solve. In general, SDPs are among themost expen-
sive convex relaxations and many practitioners try to avoid them when possible. In
the field of integer programming for instance, the cutting-plane approaches used
on industrial problems are almost exclusively based on linear programming (LP) or
second order cone programming (SOCP). Even though semidefinite cuts are known
to be stronger, they are typically too expensive to be used even at the root node of
branch-and-bound techniques for integer programming. Because of this, many high-
performance solvers, e.g., the CPLEX package of IBM [27], do not even provide
an SDP solver and instead solely work with LP and SOCP relaxations. In the field
of sum of squares optimization, however, a viable alternative to sos programming
that can avoid SDP and take advantage of the existing mature and high-performance
LP/SOCP solvers is lacking. This is precisely what we aim to achieve in this section.

Let PSDn,d and SOSn,d respectively denote the cone of nonnegative and sum of
squares polynomials in n variables and degree d, with the obvious inclusion relation
SOSn,d ⊆ PSDn,d . The basic idea is to approximate the cone SOSn,d from the

3Once again, strict feasibility of the constraints in (8) is required to rule out trivial solutions and
lead to the strict inequalities that we would like to impose on V .
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inside with new cones that are more tractable for optimization. Towards this goal,
one may think of several natural sufficient conditions for a polynomial to be a sum
of squares. For example, consider the following sets:

• The cone of polynomials that are sums of 4-th powers of polynomials: {p| p =∑
q4
i },• The set of polynomials that are a sum of three squares of polynomials: {p| p =

q2
1 + q2

2 + q2
3 }.

Even though both of these sets clearly reside inside the sos cone, they are not
any easier to optimize over. In fact, they are much harder! Indeed, testing whether
a (quartic) polynomial is a sum of 4-th powers is NP-hard [36] (as the cone of
4-th powers of linear forms is dual to the cone of nonnegative quartic forms [61])
and optimizing over polynomials that are sums of three squares is intractable (as
this task even for quadratics subsumes the NP-hard problem of positive semidefinite
matrix completion with a rank constraint [52]). These examples illustrate the rather
obvious point that inclusion relationship in general has no implications in terms of
complexity of optimization. Indeed, we would need to take some care in deciding
what subset of SOSn,d we exactly choose to work with—on one hand, it has to
comprise a “big enough” subset to be useful in practice; on the other hand, it should
be computationally simpler for optimization.

4.1 The Cone of r-dsos and r-sdsos Polynomials

We now describe cones inside SOSn,d (and some incomparable with SOSn,d but
still inside PSDn,d ) that are naturally motivated and that lend themselves to linear
and second order cone programming. There are also several generalizations of these
cones, including some that result in fixed-size (and “small”) semidefinite programs.
These can be found in [7] and are omitted from here.

Definition 4.1 (Ahmadi, Majumdar,‘13 [53])

• A polynomial p is diagonally-dominant-sum-of-squares (dsos) if it can be written
as

p =
∑

i

αim
2
i +

∑

i, j

β+
i j (mi + m j )

2 + β−
i j (mi − m j )

2,

for some monomials mi ,m j and some constants αi , β
+
i j , β

−
i j ≥ 0.

• A polynomial p is scaled-diagonally-dominant-sum-of-squares (sdsos) if it can
be written as

p =
∑

i

αim
2
i +

∑

i, j

(β+
i mi + γ +

j m j )
2 + (β−

i mi − γ −
j m j )

2,
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for some monomials mi ,m j and some constants αi , β
+
i , γ +

j , β−
i , γ −

j ≥ 0.

• For a positive integer r , a polynomial p is r-diagonally-dominant-sum-of-squares
(r-dsos) if p · (

1 + ∑
i x

2
i

)r
is dsos.

• For a positive integer r , a polynomial p is r-scaled-diagonally-dominant-sum-of-
squares (r-sdsos) if p · (

1 + ∑
i x

2
i

)r
is sdsos.

We denote the set of polynomials in n variables and degree d that are dsos, sdos,
r-dsos, and r-sdsos by DSOSn,d , SDSOSn,d , r DSOSn,d , r SDSOSn,d , respectively.

The following inclusion relations are straightforward:

DSOSn,d ⊆ SDSOSn,d ⊆ SOSn,d ⊆ POSn,d ,

r DSOSn,d ⊆ r SDSOSn,d ⊆ POSn,d ,∀r.

Our terminology in Definition4.1 comes from the following concepts in linear
algebra.

Definition 4.2 Asymmetricmatrix A isdiagonally dominant (dd) ifaii ≥ ∑
j �=i |ai j |

for all i . A symmetric matrix A is scaled diagonally dominant (sdd) if there exists
an element-wise positive vector y such that:

aii yi ≥
∑

j �=i

|ai j |y j ,∀i.

Equivalently, A is sdd if there exists a positive diagonal matrix D such that AD (or
equivalently, DAD) is dd. We denote the set of n × n dd and sdd matrices with DDn

and SDDn respectively.

Theorem 4.3 (Ahmadi, Majumdar,’13)

• A polynomial p of degree 2d is dsos if and only if it admits a representation as
p(x) = zT (x)Qz(x), where z(x) is the standard monomial vector of degree d, and
Q is a dd matrix.

• A polynomial p of degree 2d is sdsos if and only if it admits a representation as
p(x) = zT (x)Qz(x), where z(x) is the standard monomial vector of degree d, and
Q is a sdd matrix.

Theorem 4.4 (Ahmadi, Majumdar,’13) For any nonnegative integer r , the set
r DSOSn,d is polyhedral and the set r SDSOSn,d has a second order cone repre-
sentation. For any fixed r and d, optimization over r DSOSn,d (resp. r SDSOSn,d )
can be done with linear programming (resp. second order cone programming), of
size polynomial in n.
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Fig. 3 A comparison of the different approximations to the set of nonnegative polynomials for a
parametric family of bivariate quartics given in (9)

4.2 How Fast/powerful is the Dsos and Sdsos Methodology?

A good portion of our recent papers [6, 7, 53] is devoted to this question. We provide
a sample of these results in this section.

As it is probably obvious, the purpose of the parameter r inDefinition4.1 is to have
a knob for trading off speed with approximation quality. By increasing r , the hope is
to obtain more accurate inner approximations to the set of nonnegative polynomials.
The following example shows that even the linear programs obtained from r = 1 can
outperform the semidefinite programs resulting from sum of squares.

Example 4.1 Consider the polynomial

p(x) = x41 x
2
2 + x42 x

2
3 + x43 x

2
1 − 3x21 x

2
2 x

2
3 .

One can show that this polynomial is nonnegative but not a sum of squares [62].
However, we can give an LP-based nonnegativity certificate of this polynomial by
showing that p ∈ 1DSOS. Hence, 1DSOS � SOS.

Figure3 considers a parametric family of bivariate quartic polynomials given by

p(x1, x2) = 1

2
x41 + 1

2
x42 + ax31 x2 + bx21 x

2
2 + (1 − 2a − 4b)x1x

3
2 (9)

and demonstrates the set of values for a and b for which the resulting polynomial
is nonnegative, sos, sdsos, dsos, 1-sdsos, and 1-dsos. The fact that the sos restriction
is exact here (i.e., recovers the set of nonnegative polynomials perfectly) is to be
expected since it is easy to show that all nonnegative bivariate forms are sos. The
dsos and sdsos inner approximations are doing reasonably well and indeed the 1-dsos
and 1-sdsos versions improve the quality of approximation.
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More generally, by employing appropriate results from real algebraic geometry,
we can prove that some asymptotic guarantees that hold for sum of squares program-
ming also hold for dsos and sdsos programming.

Theorem 4.5 (Ahmadi, Majumdar,’13)

• Let p be an even form (i.e., a form where no variable is raised to an odd power).
If p(x) > 0 for all x �= 0, then there exists an integer r such that p ∈ r DSOS.

• Let p be any form. If p(x) > 0 for all x �= 0, then there exists a form q such that
q is dsos and pq is dsos. (Observe that this is a certificate of nonnegativity of p
that can be found with linear programming.)

On the practical side, we have preliminary evidence for major speed-ups with
minor sacrifices in conservatism. Figure5 shows our experiments for computing the
region of attraction (ROA) for the upright equilibrium point of a stabilized inverted
N -link pendulum with 2N states; see Fig. 4 for an illustration with N = 6 and [53]
for experiments with other values of N . The same exact algorithm was run (details
are in [53]), but polynomials involved in the optimization which were required to
be sos, were instead required to be dsos and sdsos. Even the dsos program here is
able to do a good job at stabilization. More impressively, the volume of the ROA of
the sdsos program is 79% of that of the sos program. For this problem, the speed up
of the dsos and sdsos algorithms over the sos algorithm is roughly a factor of 1400

Fig. 4 An illustration of the
N-link inverted pendulum
system (with N = 6)
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Fig. 5 From [53] (withMajumdar and Tedrake): comparisons of projections of the ROAs computed
for the 6-link pendulum system using DSOS, SDSOS and SOS programming, via LP, SOCP, and
SDP respectively

(when SeDuMi is used to solve the SDP) and a factor of 90 (when Mosek is used to
solve the SDP).

Perhapsmore important than the ability to achieve speedups over the sos approach
in small ormedium sized problems is the opportunity towork inmuch bigger regimes
where sos solvers have no chance of getting past even the first iteration of the interior
point algorithm (at least with the current state of affairs). For example, in work with
Majumdar and Tedrake [53], we use sdsos optimization to compute (in the order
of minutes) a stabilizing controller and a region of attraction for an equilibrium
point of a nonlinear model of the ATLAS robot (built by Boston Dynamics Inc.
and used for the 2013 DARPA Robotics Challenge), which has 30 states and 14
control inputs. (See video made by Majumdar and Tedrake: https://www.youtube.
com/watch?v=6jhCiuQVOaQ) Similarly, in [7], we have been able to solve dense
polynomial optimization problems of degree 4 in 70 variables in a few minutes.

Opportunities for future research. We believe the most exciting opportunity
for new contributions here is to reveal novel application areas in control, robotics,
and polynomial optimization where problems have around 20–100 state variables
and can benefit from tools for optimization over nonnegative polynomials. It would
be interesting to see for which applications, and to what extent, our new dsos and
sdsos optimization tools can fill the gap for sos optimization at this scale. To ease
such investigations, a MATLAB package for dsos and sdsos optimization is soon to
be released as part of the SPOTless toolbox.4

On the theoretical side, comparing worst-case approximation guarantees of dsos,
sdsos, and sos approaches for particular classes of polynomial optimization problems
(beyond our asymptotic results) remains a wide open area.

4https://github.com/spot-toolbox/spotless.

https://www.youtube.com/watch?v=6jhCiuQVOaQ
https://www.youtube.com/watch?v=6jhCiuQVOaQ
https://github.com/spot-toolbox/spotless


104 A.A. Ahmadi and P.A. Parrilo

5 Computational Advances in Lyapunov Theory
[Areas 1&2]

If we place the theory of dynamical systems under a computational lens, our under-
standing of the theory of nonlinear or hybrid systems is seen to be very primitive
compared to that of linear systems. For linear systems, most properties of interest
(e.g., stability, boundedness of trajectories, etc.) can be decided in polynomial time.
Moreover, there are certificates for all of these properties in form of Lyapunov func-
tions that are quadratic. Quadratic functions are tractable for optimization purposes.
By contrast, there is no such theory for nonlinear systems. Even for the class of
polynomial differential equations of degree two, we do not currently know whether
there is a finite time (let alone polynomial time) algorithm that can decide stability.
In fact, a well-known conjecture of Arnold from [19] states that there should not
be such an algorithm. Likewise, the classical converse Lyapunov theorems that we
have only guarantee existence of Lyapunov functions within very broad classes of
functions (e.g. the class of continuously differentiable functions) that are a priori not
amenable to computation. The situation for hybrid systems is similar, if not worse.

We have spent some of our recent research efforts [3, 9, 12, 14, 17] understanding
the behavior of nonlinear (mainly polynomial) and hybrid (mainly switched linear)
dynamical systems both in terms of computational complexity and existence of com-
putationally friendly Lyapunov functions. In a nutshell, the goal has been to estab-
lish results along the “converse arrow” of Fig. 2 in Sect. 3. Some of our results are
encouraging. For example, we have shown that under certain conditions, existence
of a polynomial Lyapunov function for a polynomial differential equation implies
existence of a Lyapunov function that can be found with sum of squares techniques
and semidefinite programming [9, 12]. More recently, we have shown that stability
of switched linear systems implies existence of an sos-convex Lyapunov functions
[4]. These are Lyapunov functions that can be found with semidefinite programming
and that have algebraic certificates of convexity [4, 11]. Unfortunately, however, we
also have results that are very negative in nature:

Theorem 5.1 (Ahmadi, Krstic, Parrilo [14]) The quadratic polynomial vector field,

ẋ = −x + xy
ẏ = −y,

(10)

is globally asymptotically stable but does not admit a polynomial Lyapunov function
of any degree.

Theorem 5.2 (Ahmadi, Parrilo [12]) For any positive integer d, there exist homo-
geneous5 polynomial vector fields in 2 variables and degree 3 that are glob-
ally asymptotically stable but do not admit a polynomial Lyapunov function of
degree ≤ d.

5A homogeneous polynomial vector field is one where all monomials have the same degree. Linear
systems are an example.
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Theorem 5.3 (Ahmadi, Jungers [5]) Consider the switched linear system xk+1 =
Ai xk . For any positive integer d, there exist pairs of 2 × 2 matrices A1, A2 that are
asymptotically stable under arbitrary switching but do not admit (i) a polynomial
Lyapunov function of degree ≤ d, or (ii) a polytopic Lyapunov function with ≤
d facets, or (iii) a piecewise quadratic Lyapunov function with ≤ d pieces. (This
implies that there cannot be an upper bound on the size of the linear and semidefinite
programs that search for such stability certificates.)

Theorem 5.4 (Ahmadi [3]) Unless P=NP, there cannot be a polynomial time (or
even pseudo-polynomial time) algorithm for deciding whether the origin of a cubic
polynomial differential equation is locally (or globally) asymptotically stable.

Theorem 5.5 (Ahmadi, Majumdar, Tedrake [17]) The hardness result of
Theorem5.4 extends to ten other fundamental properties of polynomial differen-
tial equations such as boundedness of trajectories, invariance of sets, stability in
the sense of Lyapunov, collision avoidance, stabilizability by linear feedback, and
others.

These results show a sharp transition in complexity of Lyapunov functions when
we move away from linear systems ever so slightly. Although one may think that
such counterexamples are not representative of the general case, in fact it is quite
common for simple nonlinear or hybrid dynamical systems to at least necessitate
“complicated” (e.g., high degree) Lyapunov functions. In view of this, it is natural to
ask whether we can replace the standard Lyapunov inequalities with new ones that
are less stringent in their requirements but still imply stability. This would enlarge
the class of valid stability certificates to include simpler functions and hence reduce
the size of the optimization problems that try to construct these functions.

In this direction, we have developed two frameworks: path-complete graph
Lyapunov functions (with Jungers and Roozbehani) [15, 18] and non-monotonic
Lyapunov functions [1, 8]. The first approach is based on the idea of using multiple
Lyapunov functions instead of one and brings in concepts from automata theory to
establish how Lyapunov inequalities should be written among multiple Lyapunov
functions. The second approach relaxes the classical requirement that Lyapunov
functions shouldmonotonically decrease along trajectories.We briefly describe these
concepts next.

5.1 Lyapunov Inequalities and Transitions in Finite
Automata [Areas 1&2]

Consider a finite set of matrices A := {A1, . . . , Am}. Our goal is to establish global
asymptotic stability under arbitrary switching (GASUAS) of the difference inclusion
system

xk+1 ∈ coA xk, (11)
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where coA here denotes the convex hull of the setA. In other words, we would like
to prove that no matter what the realization of our uncertain and time-varying linear
system turns out to be at each time step, as long as it stays within coA, then we have
stability. Let ρ(A) be the joint spectral radius (JSR) of the set of matrices A:

ρ (A) = lim
k→∞ max

σ∈{1,...,m}k
∥
∥Aσk ...Aσ2 Aσ1

∥
∥1/k

. (12)

It is well-known that ρ < 1 if and only if system (11) is GASUAS.
Aside from stability of switched systems, computation of the JSR emerges in

many areas of application such as computation of the capacity of codes, continuity
of wavelet functions, convergence of consensus algorithms, trackability of graphs,
andmany others; see [42]. In [15, 18], we give SDP-based approximation algorithms
for the JSR by applying Lyapunov analysis techniques to system (11). We show that
considerable improvements in scalability are possible (especially for high dimen-
sional systems) if instead of a common Lyapunov function of high degree for the set
A, we use multiple Lyapunov functions of low degree (quadratic ones). Motivated
by this observation, the main challenge is to understand which sets of inequalities
among a finite set of Lyapunov functions imply stability. We give a graph theoretic
answer to this question by defining directed graphs whose nodes are Lyapunov func-
tions and whose edges are labeled with matrices from the set of input matrices A.
Each edge of this graph defines a single Lyapunov inequality as depicted in Fig. 6a.

Definition 5.6 (Ahmadi, Jungers, Parrilo, Roozbehani [15]) Given a directed graph
G(N , E) whose edges are labeled with words (matrices) from the setA, we say that
the graph is path-complete, if for all finite words Aσk . . . Aσ1 of any length k (i.e.,
for all words in A∗), there is a directed path in the graph such that the labels on the
edges of this path are the labels Aσ1 up to Aσk .

An example of a path-complete graph is given in Fig. 6b, with dozens more
given in [18]. In the terminology of automata theory, path-complete graphs cor-
respond precisely to finite automata whose language is the set A∗ of all words

Fig. 6 Path-complete graph Lyapunov functions. a The nodes of the graph are Lyapunov func-
tions and the directed edges, which are labeled with matrices from the set A, represent Lyapunov
inequalities. b An example of a path-complete graph on the alphabet {A1, A2}. This graph contains
a directed path for every finite word. c The SDP associated with the graph in (b) when quadratic
Lyapunov functions V1,2(x) = xT P1,2x are assigned to its nodes. This is an SDP inmatrix variables
P1 and P2 which if feasible implies ρ(A1, A2) ≤ 1. We prove an approximation ratio of 1/ 4

√
n for

this particular SDP
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(i.e., matrix products) from the alphabet A. There are well-known algorithms in
automata theory (see e.g. [37, Chap.4]) that can checkwhether the language accepted
by an automaton isA∗. Similar algorithms exist in the symbolic dynamics literature;
see e.g. [48, Chap. 3]. Our interest in path-complete graphs stems from the following
two theorems that relate this notion to Lyapunov stability.

Theorem 5.7 (Ahmadi, Jungers, Parrilo, Roozbehani [15]) Consider any path-
complete graph with edges labeled with matrices from the set A. Define a set of
Lyapunov inequalities, one per edge of the graph, following the rule in Fig.6a. If
Lyapunov functions are found, one per node, that satisfy this set of inequalities, then
the switched system in (11) is GASUAS.

Theorem 5.8 (Jungers, Ahmadi, Parrilo, Roozbehani [16]) Consider any set of
inequalities of the form Vj (Akx) ≤ Vi (x) among a finite number of Lyapunov func-
tions that imply GASUAS of system (11). Then the graph associated with these
inequalities, drawn according to the rule in Fig.6(a), is necessarily path-complete.

These two theorems together give a characterization of all stability proving Lya-
punov inequalities. Our result has unified several works in the literature, as we
observed that many LMIs that appear in the literature [28, 30, 38–40, 46, 47] corre-
spond to particular families of path-complete graphs. In addition, the framework has
introduced several new ways of proving stability with new computational benefits.
Finally, by relying on some results in convex geometry, we have been able to prove
approximation guarantees (converse results) for the SDPs that search for Lyapunov
functions on nodes of path-complete graphs. For example, the upper bound ρ̂ that
the SDP in Fig. 6c produces on the JSR satisfies

1
4
√
n
ρ̂(A) ≤ ρ(A) ≤ ρ̂(A).

5.2 Non-monotonic Lyapunov Functions [Area 1]

Our research on this topic ismotivated by a very natural question: If allwe need for the
conclusion of Lyapunov’s stability theorem to hold is for the value of the Lyapunov
function to eventually reach zero, why should we require the Lyapunov function
to decrease monotonically? Can we write down conditions that allow Lyapunov
functions to increase occasionally, but still guarantee their convergence to zero in the
limit? In [1, 8], we showed that this is indeed possible. The main idea is to invoke
higher order derivatives ofLyapunov functions (or higher order differences in discrete
time). Intuitively, whenever we allow V̇ > 0 (i.e., V increasing), we should make
sure some higher order derivatives of V are negative, so the rate at which V increases
decreases fast enough for V to be forced to decrease later in the future. An example
of such an inequality for a continuous time dynamical system ẋ = f (x) is [24]:
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τ2
...
V (x) + τ1V̈ (x) + V̇ (x) < 0. (13)

Here, τ1 and τ2 are nonnegative constants and by the first three derivatives of the
Lyapunov function V : R

n → R in this expression, we mean

V̇ (x) = 〈 ∂V (x)
∂x , f (x)〉,

V̈ (x) = 〈 ∂ V̇ (x)
∂x , f (x)〉,

...
V (x) = 〈 ∂ V̈ (x)

∂x , f (x)〉.

In [1, 10], we establish a link between non-monotonic Lyapunov functions and
standard ones, showing how the latter can be constructed from the former. The main
advantage of non-monotonic Lyapunov functions over standard ones, however, is
that they can often be much simpler in structure. As a simple example, consider the
linear time-varying dynamical system

ẋ(t) =
[
cos(20t) − 0.2 1

−1 cos(20t) − 0.2

]

x(t). (14)

Figure7 shows a trajectory of this system on the left. By looking at this trajectory,
it should be clear that a time-invariant standard Lyapunov function for this system
either does not exist, or if it does, its structure should be extremely complicated.
However, if one uses condition (13), the simple quadratic non-monotonic Lyapunov
function ||x ||2 provides a proof of stability. Indeed, if we let V (x) = xT x , then we
have

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x1

x 2

Fig. 7 Non-monotonic Lyapunov functions [1]. A typical trajectory of a linear time-varying dynam-
ical system given in (14) (left). The value of a stability proving quadratic non-monotonic Lyapunov
function along the trajectory (right). A classical time-independent Lyapunov function would have
to be extremely complicated
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τ2
...
V (x) + τ1V̈ (x) + V̇ (x) = xT x {

τ2[−240 sin(20t)(cos(20t) − 0.2)
+8(cos(20t) − 0.2)3 − 800 cos(20t)]
+τ1[−40 sin(20t) + 4(cos(20t) − 0.2)2]
+2[cos(20t) − 0.2]
}.

(15)
One can check that the expression in (15) can be made strictly negative for all x and
all t for a range of positive values for τ1 and τ2; for example, for τ1 = 0.0039 and
τ2 = 0.0025.

One disadvantage of a condition of the type (13) is that the expression is bilinear
in the decision variables τ1, τ2 and the unknown coefficients of the polynomial V .
Hence a joint search for these decision variables cannot be done via a convex program.
We have shown in [10] however that one can replace condition (13) with other
inequalities involving the first three derivatives which are at least as powerful, but
also convex in the decision variables. This allows for sum of squares methods to
become applicable for an automated search for non-monotonic Lyapunov functions.
Once again, the concrete advantage of these Lyapunov functions over standard ones is
the lower complexity associated with the parameterization of the candidate function.
For optimization purposes, this directly translates to savings in the number of decision
variables of the underlying sos programs; see, e.g., [10, Ex. 2.1].

Opportunities for future research. The body of work described in this section
leaves several directions for future research:

• On the topic of complexity: What is the complexity of testing asymptotic stability
of a polynomial vector field of degree 2? For degree 1, the problem can be solved
in polynomial time; for degree 3, we have shown that the problem is strongly
NP-hard [3, 12].

• On the topic of existence of polynomial Lyapunov functions: Is there a locally
asymptotically stable polynomial vector field with rational coefficients that does
not admit a local polynomial Lyapunov function? Our work in [14] presents an
example with no global polynomial Lyapunov function. Bacciotti and Rosier [21,
Prop. 5.2] present an independent example with no local polynomial Lyapunov
function, but their vector field needs to have an irrational coefficient and the non-
existence of polynomial Lyapunov functions for their example is not robust to
arbitrarily small perturbations.

• On the topic of existence of sos Lyapunov functions: Does existence of a poly-
nomial Lyapunov function for a polynomial vector field imply existence of an
sos Lyapunov function (see [9] for a precise definition)? We have answered this
question in the affirmative under a few assumptions [2, 9], but not in general.

• On the topic of path-complete graph Lyapunov functions: Characterize all
Lyapunov inequalities amongmultiple Lyapunov functions that establish switched
stability of a nonlinear difference inclusion. We know already that the situation is
more delicate here than the characterization for the linear case presented in [18].
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Indeed, we have shown [4] that path-complete graphs no longer guarantee stability
and that convexity of Lyapunov functions plays a role in the nonlinear case.

• On the topic of non-monotonic Lyapunov functions: Characterize all Lyapunov
inequalities involving a finite number of higher order derivatives that imply stabil-
ity. Determine whether the search for Lyapunov functions satisfying these inequal-
ities can be cast as a convex program.

Acknowledgements We are grateful to Anirudha Majumdar for his contributions to the work pre-
sented in Sect. 4 and to Russ Tedrake for the robotics applications and many insightful discussions.
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This simple concept allows us to express very concisely powerful approximation cer-
tificates in control. The relevance of this technique is illustrated on three applications:
region of attraction approximation, direct optimal control and inverse optimal con-
trol, for which it constitutes a common denominator. In a first step, we highlight the
core mechanisms underpinning the application of positivity in control and how they
appear in the different control applications. This relies on simple mathematical con-
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step, we describe briefly relations with broader literature, in particular, occupation
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1 Introduction

1.1 Context

In the context of understanding and reproducing human movements and more gen-
erally in motion control, there has recently been a growing interest in using optimal
control to model and account for the complexity of underlying processes [1, 7, 10,
20, 23, 24, 30, 32]. The question of the validity of this approach is still open and
the interface between optimal control and human locomotion is an active field of
research.

The so-called weak formulation of the optimal control problem has a long history
in the control community [10, 16, 35], see also [9, Part III] for a detailed historical
perspective. This approach comes with a rich convex duality structure [34], one
side of which involves functional non negativity constraints. This type of constraint
constitutes the focus of this chapter.

In general, functional positivity constraints are not tractable computationally.
Advances in semialgebraic geometry on the representation of positive polynomi-
als [29] have allowed us to construct provably convergent hierarchies of sums-of-
squares approximations to this kind of intractable constraint when the problem
at hand only involves polynomials [17, 18]. Based on semidefinite programming
[33], these approximations provide a new perspective on infinite dimensional linear
programs and functional non negativity constraints, along with tractable numerical
approximations. Application of these hierarchies in control lead to the design of new
methods to address control problems with global-optimality guaranties [6, 13, 15,
19, 25].

1.2 Content

This chapter is a tutorial which focuses on the application of infinite dimensional
conic programming to control problems. This constitutes a very relevant tool for the
human locomotion and humanoid robotics research communities. Indeed the sums-
of-squares (SOS) hierarchy provides a systematic numerical scheme to solve related
practical control problems. We will illustrate the power of this approach by focusing
on three such particular problems, namely:

• region of attraction approximation.
• direct optimal control.
• inverse optimal control.

The infinite dimensional linear programming approach combined with its asso-
ciated SOS hierarchy of approximations has been applied to these problems in [14,
19, 26, 27]. All in all, the content of this chapter is not new and is merely based on
existing materials from the control and sums-of-squares approximations literature.
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The purpose of the chapter is to reveal and highlight a few simple mechanisms and
ideas that constitute a common denominator of all these applications.

Being concerned with accessibility to a broad audience, we deliberately hide
important aspects of the approach. In particular, we focus on functional positivity
constraints (one side of a coin in this approach) because we think that this is the
most accessible way to present a general intuition regarding the weak formulation
of optimal control problems. Another reason is that this simple notion of positivity
allows us to provide very strong sub-optimality certificate stemming from elementary
mathematics. Other facets of the same problem (the other side of the coin described
in the dual of the infinite-dimensional linear program), including conic duality and
details about the weak formulation of control problems on occupation measures, are
only briefly mentioned in a second step with very few details. Indeed, this material is
often perceived as more technical and less accessible from a mathematical point of
view.Althoughwe do not emphasizemuch themoment relaxation approximation and
its relation with occupation measures, it would provide a more complete picture to
speak about themoment-SOS hierarchy (instead of the SOS-hierarchy) because each
semidefinite programof theSOS-hierarchy of approximations of functional positivity
constraints has a dual (also a semidefinite program) which deals with “moments”
of occupation measures. We mention this point only briefly and invite the reader
interested in more details about these aspects to consult the existing literature.

1.3 Organization of the Chapter

The optimal control problem and its value function are introduced in Sect. 2. In
Sect. 3, we introduce functional positivity constraints which involve surrogate value
functions.We discuss implications of these types of constraints in the context of opti-
mal control, and in particular we describe how they relate to the approximation of
the value function. This constitutes a general and flexible core result that is useful in
the control applications that we consider. Section4 illustrates the concept in several
control problems dealing with (i) the approximation of region of attraction, (ii) opti-
mal control and (iii), inverse optimal control. Finally, Sect. 5 discusses connections
with the optimal control literature and additional aspects of the approach that we do
not describe explicitly. We also briefly describe how the sums-of-squares hierarchy
of approximations can be implemented and discuss convergence issues.

2 Optimal Control and Value Function

2.1 Notations and Preliminaries

If A is a subset of Rn , C (A) denotes the space of continuous functions from A
to R while C 1(A) denotes the space of continuously differentiable functions from
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A to R. Let X ⊆ R
dX andU ⊆ R

dU denote respectively the state and control spaces,
both supposed to be compact. The system dynamics are given by a continuously dif-
ferentiable vector field f ∈ C 1(X ×U )dX . Terminal state constraints are represented
by a given compact set XT ⊆ X .

Given all the above ingredients one may define admissible trajectories in the
context of optimal control. We will use the following definition.

Definition 1 (Admissible trajectories) Consider an initial time t0 ∈ [0, 1] and a pair
of functions (x, u) from [t0, 1] to RdX and RdU respectively. This pair constitutes an
admissible trajectory if it has the following properties:

• u is a measurable function from [t0, 1] to U .
• For any t ∈ [t0, 1], x(t) = x0 + ∫ t

t0
f (x(s), u(s))ds.

• x(1) ∈ XT .

Given x0 ∈ X , denote by trajt0,x0 the set of such admissible trajectories starting at
time t0 with x(t0) = x0. Note that the second property implies that x is differentiable
almost everywhere as a function of t , with ẋ(t) = f (x(t), u(t)) for almost all
t ∈ [t0, 1].
The class of admissible trajectories constitutes the decision variables of an optimal
control problem.

2.2 Optimal Control and Value Function

Anoptimal control problem consists ofminimizing a functional over the set of admis-
sible trajectories. The functional has a specific integral form involving a continuous
Lagrangian l ∈ C (X × U ) and a continuous terminal cost lT ∈ C (XT ). Given an
initial time t0 ∈ [0, 1] and a starting point x0 ∈ X , consider the infimum value:

v∗(t0, x0) := inf
∫ 1

t0

l(x(t), u(t))dt + lT (x(1))

s.t. (x, u) ∈ trajt0,x0

(OCP)

of the functional over all admissible trajectories. It is a well defined value that only
depends on t0 and x0 and v∗ : [0, 1] × X → R ∪ {+∞} is called the value function
associated with the optimal control problem.

Note that the constraints in (OCP) ensure that we only consider admissible trajec-
tories starting from x0 at t0, and therefore if trajt0,x0 is empty then v∗(t0, x0) = +∞.
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3 Bounds on the Value Function

The value function introduced in (OCP) can be a very complicated object. The exis-
tence of minimizing sequences, the question of the infimum being attained and the
regularity of v∗ are all quite delicate issues. In this section we show that functional
positivity constraints that are expressible in a simple form lead to powerful approx-
imation results. In addition, and remarkably, a striking feature of these results is
that their proof arguments are elementary. We now focus on the description of these
constraints while their origin and connection with control theory are postponed to
Sect. 5.

3.1 Global Lower Bounds

We let “·” denote the dot product between two vectors of the same size. For a given
function v ∈ C 1([0, 1] × X), consider the following positivity conditions:

l(x, u) + ∂v

∂t
(t, x) + ∂v

∂x
(t, x) · f (x, u) ≥ 0 ∀(x, u, t) ∈ X ×U × [0, 1] (1)

lT (x) − v(T, x) ≥ 0 ∀x ∈ XT .

Note that these conditions are indeed functional positivity constraints since both of
them must hold for all arguments in certain sets. How to ensure or approximate such
conditions in practical situations is discussed in Sect. 5.3. We focus for the moment
on the consequences of condition (1) in terms of control, the following proposition
being an elementary, yet powerful example.

Proposition 1 (Global lower bound on the value function) If v ∈ C 1([0, 1] × X)

satisfies condition (1) then v(t0, x0) ≤ v∗(t0, x0) for any x0 ∈ X and t0 ∈ [0, 1].
Proof Fix x0 ∈ X and t0 and consider the set trajt0,x0 of admissible trajectories starting
at x0 at time t0 as described in Definition 1. If this set is empty then v∗(t0, x0) =
+∞. Since v is continuous on a compact set, it is bounded and hence finite at
(t0, x0) which ensures that v(x0, t0) ≤ v∗(x0, t0). If trajt0,x0 is not empty, consider an
arbitrary but fixed admissible trajectory (x, u) : [t0, 1] → X ×U which satisfies all
the requirements of Definition 1 with x(t0) = x0. Combining admissibility with the
first condition in (1) yields:

l(x(t), u(t)) + ∂

∂t
[v(t, x(t))] = l(x(t), u(t)) + ∂v

∂t
(t, x(t)) + ∂v

∂x
(t, x(t)) · ẋ(t)

= l(x(t), u(t)) + ∂v

∂t
(t, x(t)) + ∂v

∂x
(t, x(t)) · f (x(t), u(t))

≥ 0, for almost all t ∈ [t0, 1].

Integrating between t0 and 1, and using non negativity of the first term, we obtain
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∫ 1

t0

l(x(t), u(t)) dt + v(1, x(1)) − v(t0, x0) ≥ 0.

Combining with the second condition in (1) yields

v(t0, x0) ≤
∫ 1

t0

l(x(t), u(t)) dt + lT (x(1)).

Since (x, t) was arbitrary among all admissible trajectories, this inequality is still
valid if we take the infimum in the right hand side, which coincideswith the definition
of v∗ in (OCP), and the proof is complete. �

Proposition 1 provides a sufficient condition to obtain global lower bounds on the
value function v∗. A remarkable property of this condition is that it does not depend
explicitly on v∗. In particular, condition (1) does not depend explicitly on regularity
properties of v∗ or on the existence of optimal trajectories in (OCP). Furthermore, they
are expressed in a relatively compact form and the proof arguments are elementary.

3.2 Local Upper Bounds

We now turn to upper bounds on the value function v∗ of problem (OCP). First,
observe that if the set of admissible trajectories is empty in (OCP) then v∗(t0, x0) =
+∞. Hence upper bounding v∗ using a continuous function only makes sense when
the set of admissible trajectories is not empty. Therefore such upper bounds depend
on admissible trajectories and only hold in a certain “local sense”. In particular,
global upper bounds do not exist in general, whence the local characteristic for the
type of bounds derived in this section. We introduce the following notation

Definition 2 (Domain of the value function) Denote by V ⊂ [0, 1] × X the domain
of v∗, that is, the subset of [0, 1] × X on which v∗ takes finite values,

V := {
(t0, x0) ∈ [0, 1] × X : trajt0,x0 �= ∅}

Consider a fixed pair (t0, x0) ∈ V and a given fixed admissible trajectory (x, u) ∈
trajt0,x0 , starting at x0 at time t0. For a given ε ≥ 0, the following conditions are a
counterpart to the positivity condition in (1).

l(x(t), u(t)) + ∂v

∂t
(t, x(t)) + ∂v

∂x
(t, x(t)) · f (x(t), u(t)) ≤ ε

2
, for almost all t ∈ [t0, 1]

(2)

lT (x(T )) − v(1, x(1)) ≤ ε

2
.

They can be used to obtain the following upper approximation result.
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Proposition 2 (Local upper bound on the value function) Let (t0, x0) ∈ V be fixed.
Let (x, u) ∈ trajt0,x0 be an admissible trajectory starting at x0 at time t0. Assume
that v ∈ C 1([0, 1] × X) satisfies condition (2) for a given ε > 0. Then v∗(t, x(t)) ≤
v(t, x(t)) + ε for all t ∈ [t0, 1]. In addition, if v satisfies condition (1) then (x, u)

is at most ε sub-optimal for problem (OCP): feasible with objective value at most ε
greater than the optimal value.

Proof Following similar integration arguments as in the proof of Proposition 1, using
the first part of condition (2) yields:

∫ 1

t
l(x(s), u(s)) ds + v(1, x(1)) − v(t, x(t)) ≤ (1 − t)

ε

2
≤ ε

2
, ∀ t ∈ [t0, 1],

and combining with the second part of condition (2),

∫ 1

t
l(x(s), u(s)) ds + lT (x(1)) ≤ lT (x(1)) − v(1, x(1)) + v(t, x(t)) + ε

2
≤ v(t, x(t)) + ε,

for all t ∈ [t0, 1]. As the left hand side is an upper bound on v∗(t, x(t)), the first
statement follows. In addition, if condition (1) is satisfied thenwe can use Proposition
1 at (t, x(t)) to obtain:

∫ 1

t
l(x(s), u(s)) ds + lT (x(1)) ≤ v∗(t, x(t)) + ε.

In particular, letting t = t0 in the previous relation yields that (x, u) is at most
ε-sub-optimal for problem (OCP). �

Again, a remarkable property of condition (2) is that it depends neither on the
regularity of v∗ nor on the existence of optimal trajectories and still provides powerful
sub-optimality certificates. Note that Proposition 2 characterizes properties of v∗ only
along the specific chosen trajectory, whence the name “local” for this type of bounds.

4 Applications in Control

In this section, we consider applications in control and show how conditions (1) and
(2) can be used to solve control problems.

The general methodology is to use conditions (1) and (2) as constraints in
combination with additional constraints and linear objective functions depending

on the application.

The reason why this is relevant and produces valid practical methods comes
from the connection with Propositions 1 and 2. Depending on the problem at hand,
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definition of objective functions or addition of constraints allow to provide a sys-
tematic numerical scheme to solve the control problems we consider: approximating
the region of attraction of a controlled system, solving optimal control and inverse
optimal control problems, provided that they are described with polynomials and
semi-algebraic sets (see also Sect. 5.3). All the material of this section is based on
reformulation and simplification of the work presented in [14, 19, 26, 27].

4.1 Region of Attraction

The region of attraction is a subset of the domain of the value function, V inDefinition
2, corresponding to a fixed initial time t0. In other words, we are looking for the set
X0 of initial conditions, x0, for which there exists an admissible trajectory starting
in state x0 at a given time t0.

Definition 3 (Region of attraction) The region of attraction at time t0, denoted by
X0 ⊂ X , is the set that satisfies

X0 = {
x0 ∈ X : trajt0,x0 �= ∅}

,

where trajt0,x0 is the set of admissible trajectories as given in Definition 1. Following
Definition 2, we have {t0} × X0 = V ∩ [{t0} × X ].

This exactly corresponds to the situation where l = 0 and lT = 0 in (OCP).
Indeed, in this case, v∗ becomes the indicator of X0 (equal to 0 on X0 and +∞
otherwise) and the optimal control problem is a feasibility problem.

Condition (1) becomes

∂v

∂t
(x, t) + ∂v

∂x
(x, t) · f (x, u) ≥ 0 ∀(x, u, t) ∈ X ×U × [0, 1] (3)

v(T, x) ≤ 0 ∀x ∈ XT

and Proposition 1 has the following consequence.

Corollary 1 If v ∈ C 1([0, 1] × X) satisfies condition (3) then v(x0, t0) ≤ 0 for any
x0 ∈ X0.

Corollary 1 states that X0 is contained in the zero sublevel set of vwhenever v satisfies
condition (3). However this is not sufficient to have a good approximation of X0

and condition (3) is not strong enough to distinguish between accurate and rough
sublevel set approximations of this type. In order to sort out accurate candidates v, a
possibility is to search among all functions which satisfy condition (3) an “optimal”
one, e.g. in the sense that it should be as greater than 0 as possible outside of X0.
Following [14], we introduce an additional decision variable w ∈ C (X). We will
construct an optimization problem which ensures that w is non positive on X0 and
as close as possible to 1 on X\X0. This can be obtained by combining Corollary 1
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with additional positivity constraints and a linear objective function. The following
problem is a reformulation of problem (16) in [14].

sup
v,w

∫
X w(x)dx

s.t. 0 ≤ ∂v
∂t + ∂v

∂x · f
0 ≤ −v(T, ·)
w(·) ≤ v(·, t0)
w ≤ 1.

(4)

In problem (4), the first two constraints are exactly condition (3) and Corollary 1
ensures that v(·, t0) ≤ 0 on X0. Therefore, the third constraint ensures that w ≤ 0
on X0. The last constraint combined with the objective function allow to “choose”
w as close as possible to 1 on X\X0. In general the supremum in (4) is not attained,
but any candidate solution w, is such that its zero sublevel contains X0 and remains
close to it in a certain sense. Indeed it was shown in [14] that the supremum in (4) is
equal to the volume of X0 and this quantity can be approximated by hierarchies of
semidefinite approximations which we describe in Sect. 5.

4.2 Optimal Control

In this section, we fix t0 and x0. As described in Sect. 3, condition (1) provides
a global lower bound on v∗. However, the family of functions v which satisfy this
condition is too large. For example, if l ≥ 0 and lT ≥ 0, then v = 0 satisfies condition
(1) and does not provide much insight regarding solutions of (OCP). Therefore, one
should design away to choose lower bounds of specific interest. In the (direct) optimal
control problem, one is interested in the value v∗(t0, x0). Hence an informal approach
is to choose among all v that satisfy condition (1) one for which v(t0, x0) is close to
v∗(t0, x0). Note that under condition (1) we already have v(t0, x0) ≤ v∗(t0, x0) and
hence it is sufficient to look for a function v such that v(t0, x0) is as large as possible.
This leads to the following optimization problem.

sup
v

v(t0, x0)

s.t. 0 ≤ l + ∂v
∂t + ∂v

∂x · f
0 ≤ lT (·) − v(T, ·).

(5)

In general the supremum is not attained. Furthermore, for most reasonable practical
situations, the value of the problem is exactly v∗(t0, x0), providing a valid conceptual
solution to the optimal control problem.

At this point a remark is in order. Solutions of problem (5) allow to approximate
from below the value function v∗. In this respect they provide solutions of (OCP)
because of their relations to v∗ which is the value of specific interest. However, this
approach does not give access to an optimal trajectory which achieves this optimal
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value. Indeed, without further assumptions, the existence of such an optimal trajec-
tory is not guaranteed. In order to compute optimal trajectories, further conditions are
required in combination with additional methods to search for optimal trajectories.
When such a method is available, it is always possible to combine it with solutions
of (5) by using condition (2) and Proposition 2 to certify the sub-optimality of the
computed trajectory.

4.3 Inverse Optimal Control

In inverse optimal control the situation is somewhat reversed compared to direct
optimal control. The Lagrangian is unknown but we are given a set of trajectories
that should be optimal with respect to the unknown Lagrangian. So the goal is to find
a Lagrangian for which the given trajectories are optimal. In Fig. 1, we display an
informal description of this problem and its relation with the direct optimal control
problem in the framework of positivity certificates. Briefly, the main goal is to infer
a cost function (a Lagrangian) which can generate a set of given trajectories through
an optimality process. The applications of this are twofold:

• Provide a tool for applications in which one assumes the existence of an optimality
process behind decisions.

• Provide amodeling tool which could allow to summarize and reproduce the behav-
iour of observed systems.

In the rest of this section, we fix an admissible trajectory (x, u) starting from x0 ∈
X0 at time 0. We suppose that the state trajectory x as well as the control trajectory u
are given and we look for candidate Lagrangians. The whole methodology naturally
extends to an arbitrary number of trajectories. Actually, the higher the number of
trajectories, the better and the more (physically) meaningful is the characterization

Fig. 1 Direct optimal and inverse optimal control flow chart. The dynamical system is described
through the dynamics f , the state constraint set X , control constraint set U and terminal state
constraint set XT which are all given. We emphasize that the Lagrangian and the trajectories have
symmetric roles for the direct and inverse problems. In particular, the output of the inverse problem
is a Lagrangian
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of the candidateLagrangian thatwe are looking for.However for clarity of exposition,
the approach is better understood when we consider a single given trajectory.

In order to provide a solution to the inverse problem, we combine conditions
(1) and (2). The relevance of doing this comes from Proposition 2 which provides
a sub-optimality certificate. In addition, we enforce lT = 0 in order to simplify
the problem. Among all potential certificates we look for the one that provides the
smallest sub-optimality gap as described in Proposition 2. This leads to the following
optimization problem.

inf
ε,l,v

ε

s.t. 0 ≤ l + ∂v
∂t + ∂v

∂x · f
0 ≤ lT (·) − v(T, ·)
ε
2 ≥ l(x(t), u(t)) + ∂v

∂t (t, x(t)) + ∂v
∂x (t, x(t)) · f (x(t), u(t)) ∀t ∈ [0, 1]

ε
2 ≥ lT (x(T )) − v(1, x(1)).

(6)

By Proposition 2, if l is a Lagrangian part of a feasible solution (ε, l, v) for problem
(6), then the trajectory (x, u) is ε-sub-optimal for problem (OCP) with Lagrangian
l. In other words, every feasible solution (ε, l, v) of (6) provides us with an ε-sub-
optimality certificate for the trajectory (x, u).

However, this is not sufficient. Indeed, problem (6) always admits the trivial
solution (0, 0, 0) and it turns out that this solution is also valid from a formal point of
view. Indeed, every admissible trajectory is optimal for the trivial null Lagrangian,
and therefore, from the point of view of inverse optimality, the null Lagrangian
is a valid (but not satisfactory) solution. To avoid trivial Lagrangians, additional
constraints on l are needed. We will settle upon problem (6) as it highlights the
main mechanism behind positivity in inverse optimal control and invite the reader to
see [26, 27] for further discussions and more details about application in practical
situations.

5 Duality, Hamilton–Jacobi–Bellman, SOS Reinforcement
and Convergence

The results presented so far without much context are related to principles which
have a long history in optimal control theory. In this section we mention a few of
them and we also comment on how to use these results in practical contexts through
the SOS hierarchy.
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5.1 Occupation Measures

The constraints imposed in (1) have a conic flavor as they combine linear operators
and positivity constraints. The space of continuous functions that are nonnegative
on a given set form a convex cone. This cone admits a (convex) dual cone, see [4,
Chap. IV] for a description of conic duality in Banach spaces. Representation results
of Riesz type ensure that this dual cone can be identified with that of nonnegative
measures on the same set. As is classical for duality in convex optimization:

• To the inequality constraints appearing in the conic optimization problem (1) are
associated nonnegative dual variables in the dual conic optimization problem, and

• to the variables appearing in (1) are associated constraints on these dual variables.

The constraints in the dual problem describe a transport equation satisfied by the
dual variables, more precisely the transport along the flow followed by admissible
trajectories in Definition 1. These dual variables are called “occupation measures”,
see e.g. [34] for an accurate description and [11] for an extension to infinite horizons.

In other words, the dual counterpart of condition (1) allows to formally work with
generalized trajectories instead of classical ones. Whence the name “relaxation” for
this approach. Equivalently, one speaks of “weak formulation” of the optimal control
problem (OCP) because the differential equation is replaced by a weaker constraint
(the transport equation for occupation measures). One main benefit of working with
weak formulations is that the question of attaining the infimum is solved, at least
from a theoretical point of view, under weak conditions, e.g. compactness of the sets
X and XT . However, the relaxed problem is not equivalent to the original problem,
and its optimal value may be smaller. But for most reasonable practical situations,
there is no relaxation gap and the optimal values of both problems are the same [34,
35]. Although the use of occupation measures is much less popular than classical dif-
ferential equations in the engineering community, it is classical in Markov processes
and ergodic dynamical systems. Furthermore, understanding these dual aspects is
crucial in the framework of positivity constraints that we describe.

5.2 Hamilton–Jacobi–Bellman Equation

Conditions (1) and (2) have the sameflavor and structure as thewell knownHamilton–
Jacobi–Bellman (HJB) sufficient optimality conditions (see e.g. exposition in [2]). In
fact, if we combine (1) with (2) with ε = 0, we recover exactly the same condition.
This provides a certificate of optimality for a given trajectory.However, this condition
is not necessary. Indeed if the value function v∗ is not smooth (which is the case in
most practical situations) then it is not possible to fulfill this condition in the classical
sense. Whence the use of a relaxed condition involving ε > 0 that measures how
far we are from the true optimality condition. Another possible workaround is the
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use of the elegant viscosity solution concept to define “solutions” of HJB equation
[3]. This involves a lot more sophisticated mathematical machinery, far beyond the
scope of this chapter.

5.3 SOS Reinforcement

Finally, conditions (1) and (2) are actually positivity constraints for functions. More-
over, all the examples presented in Sect. 4 consist of combining these constraints
with additional constraints of the same type and linear objective functions. In full
generality this type of constraint is not amenable to practical computation. In order to
be able to use the results of this chapter to actually solve control problems, involving
some practical “algorithm”, we need to enforce more structure on the objects we
manipulate. A now widespread approach is to work with the following assumption.

Assumption 1 The dynamics f , the Lagrangian l and the terminal cost lT are poly-
nomials. Constraints set X , U and XT are compact basic semi-algebraic sets.

Recall that a closed basic semi-algebraic set G can be defined by inequalities involv-
ing a finite number of polynomials g1, . . . , gq ∈ R [X ]:

G = {x : gi (x) ≥ 0, i = 1, . . . , q} . (7)

Given a family of sum-of-squares (SOS) polynomials p0, p1, . . . , pq , hence non-
negative, it is direct to check that the following polynomial P in Putinar form

P = p0 +
q∑

i=1

pi gi , (8)

is nonnegative on G. Checking whether a given polynomial of degree 2d in n vari-
ables is a SOS reduces to solving a semidefinite program of size

(n+d
d

)
. For moderate

number of variables and degrees, this is thus amenable to efficient practical compu-
tation [33]. Actually dedicated software tools exist [21]. Hence under Assumption 1,
if v is a polynomial then Condition (1) can be enforced by semidefinite constraints.
This is of course an approximation and in fact the SOS constraints (7) are stronger
than the original positivity constraints, whence the name “reinforcement”. But a
counterpart of this approximation is that it is amenable to practical computation on
moderate size problems which is not the case for general positivity constraints.

Conic convex duality also holds for semidefinite programs. In the present context
of control, the dual variables associated with the SOS reinforcement of condition (1)
are “moments” of the occupation measures discussed in Sect. 5.1. Hence the SOS
approximation actually bears the name moment-SOS approximation, see [18] for a
comprehensive treatment.
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5.4 Convergence

The positivity certificate in Eq. (8) describes a family of nonnegative polynomials
over the set G involving a family of SOS polynomials {pi }qi=0. By increasing the
degree allowed for these SOS polynomials pi , one provides a hierarchy of increasing
families of polynomials nonnegative on G. A relevant issue is:

What happens when we let the degrees of the SOS polynomials {pi }qi=0 defining
this hierarchy goes to infinity?

This issue is related to the question of the representation of nonnegative polyno-
mials on compact basic semi-algebraic sets. Fortunately, powerful results from real
algebraic geometry state that it is enough to work with certificates of the form of
(8) [29]. This usually translates in global convergence results: replacing nonnegativ-
ity constraint in condition (1) by their SOS reinforcement and letting the degree of
the SOS polynomials go to infinity is, in some sense, equivalent to the intractable
constraints in condition (1). Applications of sufficient conditions to represent pos-
itive polynomials date back to [17] in static optimization and to [19] in optimal
control; see also [6, 18] for a more recent overview. This methodology can be used
for all the control problems described in Sect. 4 to provide converging hierarchies of
semidefinite approximations [14, 19, 27], see also [12] for a detailed overview.

The size of the semidefinite programs which need to be solved grows extremely
fast with the number of state and control variables and the degree of the SOS poly-
nomials defining the hierarchy. It is worth emphasising that we are dealing with
non-linear non-convex infinite-dimensional optimal control problems, arguably a
broad class of difficult mathematical problems. Yet, despite the generality and the
difficulty of the problems considered, this general methodology provides increas-
ingly tight bounds with mathematically rigorous convergence guarantees. In terms
of number of states and control, good bounds can be obtained at a moderate cost
(say a few minutes of CPU time on a standard desktop PC) for problems with 4–5
states and 2–3 controls, see e.g. the experiments reported in [14]. With some addi-
tional engineering insights and programming skills, these techniques can be applied
to larger size problems see e.g. [23] or [22] for a robotics example with 30 states and
14 controls.

6 Numerical Illustration

In this section we briefly describe numerical results obtained when applying the SOS
reinforcement techniques of Sect. 5.3 to the abstract optimization problems of Sect. 4.
We choose a simple but non trivial nonlinear system: Brockett’s integrator. This sys-
tem is of importance in humanoid robotics since it is equivalent to the nonholonomic
Dubbins vehicle [31], a model of human walking [1], up to a change of variable
[8]. The numerical results presented here relate to free terminal time optimal control
problem, which is different from the fixed terminal time setting considered in this
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work. They still illustrate most important aspects of these simulations. Indeed, most
of the ideas presented in Sects. 3 and 4 have direct equivalent in the free terminal
time setting. In a nutshell, the terminal time in (OCP) is not fixed to be 1 but is a
decision variable of the problem. In this case, the value function v∗ aswell as its lower
approximations v can be chosen to be independent of time. The numerical examples
of this section were originally presented in [14, 19, 26, 27]. All these examples were
computed by combining the abstract infinite dimensional optimization problems of
Sect. 4 with the SOS reinforcement techniques of Sect. 5.3.

6.1 Brockett’s Integrator

Brockett’s integrator is a 3-dimensional nonlinear system with two dimensional con-
trol. We set X = {

x ∈ R
3 : ‖x‖∞ ≤ 1

}
, U = {

u ∈ R
2 : ‖u‖2 ≤ 1

}
and we let XT

be the origin in R
3. The dynamics of the system are given by

f (x, u) =
⎛

⎝
u1
u2

u1x2 − u2x1

⎞

⎠ , (9)

where the subscripts denote the corresponding coordinates. All the following exam-
ples are related to the minimum time to reach the origin under the previous dynam-
ical constraints. The value function of this problem is known and described in
[5, Theorems 1.36 and 1.41] and the corresponding optimal control is computed
in [28, Corollary 1]. In what follows, T (x) denotes the optimal time to reach the
origin, starting at initial state x under the dynamical constraints (9).

6.2 Region of Attraction

For this application, the final time is set to 1 and initial time is set to 0. The region
of attraction described in Sect. 4 is the set X0 of initial states for which there exists
a feasible trajectory reaching the origin in time less or equal to 1. In other words, it
consists of the set of initial states x , for which T (x) ≤ 1. This quantity is computable
explicitly [5]. Combining the formulation in Eq. (4) with the SOS reinforcement
technique described in Sect. 5.3, we get sublevel sets which are outer approximations
of X0. This is represented in Fig. 2 which compares the true region of attraction and
its outer approximation in R3.
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Fig. 2 Sublevel set outer approximations (light red, larger) to the region of attraction X0 (dark red,
smaller) for different degrees of the SOS reinforcement. d is the degree of the SOS polynomial
in the reinforcement, for d = 10 the size of the corresponding SDP is 252 times 252. This was
originally published in [14]

Table 1 Brockett’s integrator, comparison of exact optimal time and SOS reinforcement. This was
originally published in [19]. The cells represent different initial conditions: x1 = 1 and xi ∈ {1, 2, 3}
for i = 2, 3. The degree of the SOS polynomials of the reinforcement is 4 and the corresponding
SDP is of size 126 times 126

SOS reinforcement Optimal time

1.7979 2.3614 3.2004 1.8257 2.3636 3.2091

2.3691 2.6780 3.3341 2.5231 2.6856 3.3426

2.8875 3.0654 3.5337 3.1895 3.1008 3.5456

6.3 Minimum Time Direct Optimal Control

For the direct optimal control problem, we are interested in the value of the optimal
time T (x). Following [19], we combine the formulation in (5) with the SOS rein-
forcement technique described in Sect. 5.3. As a result, we get a lower approximation
of the optimal time T (x). This is illustrated in Table1 for different initial conditions:
x1 = 1 and xi ∈ {1, 2, 3}, i = 2, 3. As expected, we obtain lower bounds on the
optimal time which is known analytically. For these examples, the approximation is
reasonably accurate.

6.4 Inverse Optimal Control

In this example, we are interested in recovering the minimum time Lagrangian (con-
stant) from optimal trajectories which reach the origin in minimal time under dynam-
ical constraints (9). These trajectories can be computed analytically [28]. As outlined
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Fig. 3 Error versus a regularization parameterλ for the inverse optimal control problem. Estimation
error (est) is a measure of distance between a candidate solution computed with (6) and the constant
Lagrangian (normalized between 0 and 1). Epsilon error (eps) corresponds to the value of ε in (6).
The Lagrangian is looked for among all 3-variate polynomials of degree up to 4 and the degree of
the SOS polynomials in the reinforcement is 10 which means that the size of the matrix variables
in the corresponding SDP is 252 times 252. These results were originally presented in [27]

in Fig. 1, the trajectories constitute an input of the inverse problem and the output
is a Lagrangian function. In order to find this function, we follow the work of [26,
27] which combines the abstract problem in (6) with SOS reinforcement techniques
described in Sect. 5.3 and additional constraints. We emphasize that the problem of
Lagrangian identification is much less well posed than the direct optimal control
problem and that accuracy of solutions highly depend on prior information about
expected Lagrangians. In [26, 27], it is shown that the success of such a procedure
requires careful normalization and prior knowledge enforcement (sparsity through a
regularization term). We do not describe the details of the procedure here and refer
to [26, 27] for more details. This formulation includes a regularization parameter
denoted by λ. Figure3 presents measures of inverse optimality accuracy, (the value
of ε in (6)), and estimation accuracy (a distance to the constant Lagrangian, the true
Lagrangian of minimum time optimal control), for various values of this parameters.
The input is made of optimal time trajectories and Fig. 3 illustrates that the original
Lagrangian can be recovered with a reasonable inverse optimality accuracy for some
values of the regularization parameter close to 1.
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The Interplay Between Big Data
and Sparsity in Systems Identification

O. Camps and M. Sznaier

Abstract Recent advances in distributed control, coupled with an exponential
growth in data gathering capabilities, havemade feasible awide range of applications
with potential to profoundly impact society, from safer self-aware environments and
smart cities to enhanced model-based medical therapies. Yet, achieving this vision
requires addressing the challenge of handling large amounts of very high dimen-
sional data. In this chapter, we provide a tutorial showing how to exploit the inherent
sparsity of the data, which is present in a large class of identification problems, to
overcome the “curse of dimensionality”. The concepts presented here extend tra-
ditional ideas from machine learning linking big data and sparsity, to challenging
dynamic settings. In particular, we explore the connections between system identifi-
cation and information extraction from large data sets, using as an example human
activity analysis from video data.

1 Introduction

Recent advances in sensing, actuation, and data collection capabilities provide access
to exponentially increasing amounts of data. The availability of this data opens up a
wide range of applications that have the potential to profoundly impact society, with
benefits ranging from safer, self-aware environments and smart cities, to enhanced
model-based medical therapies. However, a major impediment to realize this vision
stems from the amount of data and its high dimensionality.
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The goal of this chapter is twofold: (i) to describe a set of techniques that exploit
the inherent sparsity of the data, available in a large class of problems, to combat the
curse of dimensionality; and (ii) discuss new research opportunities at the intersection
of machine learning, dynamical system theory and sparse optimization to extend big
data and sparsity ideas to dynamic settings.

The first part of the chapter illustrates the key role that machine learning and
sparse optimization play while developing robust and computationally efficient sys-
tem identification algorithms, capable of handling very large data sets. We start by
showing that parsimonious models of Linear Time Invariant (LTI) systems can be
identified from noisy, potentially incomplete, data by using a regularized atomic
norm form. This approach leads to problems that can be efficiently solved by using
a randomized version of the Frank-Wolfe algorithm, whose complexity scales lin-
early with the number of data points. Next, we address the harder case when the
data is corrupted with outliers due to gross measurement errors or sensor failures.
While this problem is generically NP-hard, we show that it can be reformulated as
a regularized robust regression problem that recovers the exact solution, as long as
the outliers are sparse. Lastly, we discuss the problem of identification of switched
linear systems. These systems are particularly interesting because they are univer-
sal approximators [1, 2] and provide tractable approximations to general nonlinear
control problems. Moreover, there is an intimate connection between identifying
piece-wise affine systems and the problem of extracting actionable information from
very large data streams [3]. Unfortunately, identification of switched linear systems
is generically NP-hard, even in the absence of outliers. However, as shown here, it is
possible to obtain tractable convex relaxations by using robust regression or sparse
polynomial optimization methods that exploit the structure of the problem.

The chapter concludes by illustrating these techniques with several examples,
including identification of a physical lightly damped structure for a civil engineering
application and the problem of activity detection and analysis in video streams.

2 Notation

In this section we summarize, for ease of reference, the notation used in this chapter.

R, N set of real number and non-negative integers
D unit disk in the complex plane
x,M a vector in Rn (matrix in Rm×n)
M(:,j) jth column of matrixM.
‖x‖2 �2 norm of a vector: ‖x‖22 =∑i x

2
i‖x‖w,1 weighted �1 norm: ‖x‖w,1

.=∑ |wi xi |
‖x‖0 �0 quasi-norm, number of non-zero elements in x
‖x‖∞ �∞ norm, ‖x‖∞

.= maxi |xi |
M � N M − N is positive semidefinite
‖A‖∗ Nuclear norm: ‖A‖∗

.=∑ svd(A)
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conv(A) Convex hull of the set A.
|E | cardinality (e.g. number of elements) of the set E .

3 Identification of LTI Systems in the Presence of Missing
Data via Atomic Norm Minimization

As indicated in the introduction, the goal of this chapter is to illustrate the ability
of sparsification based techniques to provide computationally tractable solutions to
hard problems. To this effect, we begin by considering the problem of identifying
low order linear time invariant (LTI) models from noisy measurements. Specifically,
we are interested in solving:

Problem 1 Given:

• N (noisy) samples of the time response yt of an unknown plantG to a known input
ut :

yt = (g ∗ u)t + ηt , t = 1, . . . , N , (1)

where g(.) denotes the impulse response of the unknown plant and ∗ denotes
convolution.

• A priori information about the peak value of the frequency response of the plant
(e.g. |G(e jθ)| ≤ 1 for all θ ∈ [0, 2π)), and its time constant ρ (e.g. the impulse
response of the plant is known to decay as ρk), and

• Worst case bounds ε on the noise, that is |ηt‖�∞ ≤ ε

(i) Determine whether there exists a model of the form (1) with the desired time
constant and peak frequency response that explains the observed experimental data,
and, (ii) if so, find the coefficients of the lowest order model with this property.

In principle, the problem above can be solved by minimizing the rank of a suitable
constructed matrix, subject to additional semidefinite constraints to enforce stability
of the resulting model. Specifically, as shown in [4], Problem 1 is equivalent to the
following constrained rank minimization:

ming rank H(g) subject to:

[
R−2 T(g)T

T(g) R2

]

� 0 and |yt − (T(g)u)t | ≤ ε, t = 1, . . . , N
(2)

where, for an infinite sequence gi , the corresponding Hankel and Toeplitz matrices
are defined as:
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H(g)
.=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1 g2 · · · gn . . .

g2 g3 · · · gn+1 . . .
...

...
. . .

... . . .

gn gn+1 · · · g2n−1 . . .
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, T(g)
.=

⎡

⎢
⎢
⎢
⎢
⎣

g1 0 . . . 0 . . .

g2 g1
. . . 0 . . .

...
. . .

. . . 0 . . .

gn gn−1 . . . g1 . . .

⎤

⎥
⎥
⎥
⎥
⎦

(3)

and where R = diag(1 ρ . . . ρn . . .). In principle, the problem above is very chal-
lenging due to the non-convex, non-differentiable objective function and the infinite
dimensional constraints. However, a tractable convex relaxation can be obtained by
using the nuclear norm as a surrogate for rank and considering truncated versions of
the matrices H,T, leading to a semi-definite program (SDP) of the form:

ming ‖Hn(g)‖∗ subject to:
[
R−2 Tn(g)T

Tn(g) R2

]

� 0 and |yt − (Tn(g)u)t | ≤ ε, t = 1, . . . , N
(4)

where n � N . In turn, this problem can be solved using first order, ADMMtype algo-
rithms (see [4] for details). However, the computational complexity of this approach
scales as O(number of variables3), thus practically limiting its use to moderately
large problems (few hundreds of data points). On the other hand, as briefly described
below, recasting the identification problem into an atomic-norm constrained mini-
mization leads to very efficient algorithms whose complexity scales linearly with the
number of data points. In order to elaborate on these ideas, we briefly recall some
key results on using atomic norms to promote sparsity.

3.1 Atomic Norms, Sparse Optimization and Low Order
Models

The main motivation for using atomic norms is to obtain a sparse representation
of a given object in terms of the elements of a given dictionary (the “atoms”). In
particular, we will consider the case where this dictionary,A, is centrally symmetric,
that is, a ∈ A ⇒ −a ∈ A. Under this condition, we can assign to each point in space
an “atomic norm” [5], ‖x‖A defined as:

‖x‖A = inf{t > 0 : x ∈ t conv(A)} (5)

Alternatively, an equivalent definition is given by:

‖x‖A = inf

{
∑

a∈A
|ca| : x =

∑

a∈A
caa

}

(6)
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Atomic normsplay a key rolewhen seeking sparse solutions to optimization problems
of the form:

min
x

f (x) subject to ‖x‖A ≤ τ (7)

where f (x) is a smooth convex function, and τ is used to promote sparsity [5]. Note
that (7) can be considered a constrained version of a regularized problem of the form:

min
x

f (x) + λ‖x‖A (8)

For instance, in the case where the set of atoms consists of basis vectors and their
symmetric images with respect to the origin, ±ei ∈ R

n , the corresponding atomic
norm is simply the �1 norm and the problem above reduces to the well known form
minx f (x) + λ‖x‖1. Similarly, a set of of atoms consisting of all unit norm rank-1
matrices leads to problems of the form minx f (x) + λ‖x‖∗. The advantage of the
formulation (7) over (8) is that it can be solved using the following Frank-Wolfe type
algorithm (see e.g. [6]), which has a convergence rate of O( 1t ).

Algorithm 1 Generic Frank-Wolfe algorithm to minimize a convex function over
the τ -scaled atomic norm ball
1: x0 ← τa0 for arbitrary a0 ∈ A � Initialization
2: for t = 0,1,2,3,... do
3: at ← argmina∈A〈∂ f (xt ), a〉
4: αt ← argminα∈[0,1] f (xt + α[τat − xt ])
5: xt+1 ← xt + αt [τat − xt ]
6: end for

3.2 LTI Identification as an Atomic Norm Minimization

Recasting Problem 1 into an atomic norm framework requires identifying a suitable
set of atoms. As shown in [7] one such set is given by: A = A1 ∪ A2 ∪ A3 ∪ A4,
where:

A1 =
{

Ψp(z) = ± (1 − |p|2)
2

(
1

z − p
+ 1

z − p∗

)

: p ∈ D

}

A2 =
{

Ψp(z) = ± (1 − |p|2)
2

( − j

z − p
+ j

z − p∗

)

: p ∈ D

}

A3 = {Ψp(z) = ±1
}

A4 =
{

Ψp(z) = ± (1 − |p|2)
z − p

: p ∈ [−ρ, ρ]
}

(9)
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p∗ denotes the complex conjugate of p, and where the normalization factor 1 − |p|2
guarantees that each Ψp has norm less or equal to 1. The intuition behind this choice
of atoms is to try to express the impulse response of the unknown plant as the sum
of impulse responses of first order systems (the same idea used in partial fraction
expansions), with the specific choice for Ai motivated by the need to restrict the
optimization to real numbers even in the case of oscillatory responses.

The set of atoms introduced above leads to the following convex relaxation of
Problem 1:

min
gi

1

2

N∑

t=1

⎛

⎝yt −
t∑

j=1

g j ut− j

⎞

⎠

2

s.t ‖g‖A ≤ τ (10)

= min
g

1

2
‖Tn

ug − y‖2�2 s.t ‖g‖A ≤ τ (11)

where g denotes the (truncated) impulse response of the plant to be identified. Here
the objective seeks to minimize the quadratic fitting error to the given experimental
data, while the atomic norm constraint is used to promote sparsity. In principle, this
problem can be solved using Algorithm 1. However, since the “dictionary” here is
the set of impulse responses associated with poles in the (open) unit disk, it is infinite
dimensional. Thus, finding the atom that leads to the steepest descent (step 3 in
the algorithm) is far from trivial. In the case of well damped plants, this difficulty
can be overcome by simply gridding the unit disk [8]. However, plants with poles
close to the stability boundary require using dense grids, substantially increasing the
computational complexity. To avoid dense griddings [9] proposed the randomized
variant of Algorithm 1 shown in next page.

The main difference with Algorithm 1 is that here the search for the atom that
provides the steepest descent has been replaced by a random search for an atom
that just provides a descent direction. The main advantage of this strategy is that
Algorithm 2 requires performing only inner products, resulting both in a substantial
speed increase and reduction of memory requirements vis-a-vis rank minimization
based algorithms. Further, it can be shown [9] that this algorithm retains the rate of
convergence (albeit now in expected value) of its deterministic counterpart.

Algorithm 2 Randomized algorithm for atomic norm constrained minimization
1: Initialize g0 ← τ {a0} for arbitrary a0 ∈ A
2: for k = 0,1,2,3,..., kmax do
3: Pick N poles uniformly distributed over Dρ, denote the set of these poles Sk
4: ak ← {argmina∈A{Sk }〈∇ f (gk), a〉}
5: αk ← argminα∈[0,1] f (gk + α[τak − gk])
6: gk+1 ← gk + αk [τak − gk]
7: end for
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Remark 1 Missing data can be easily accommodated by the algorithm above by
simple introducing a “selection” variable:

si =
{
0 data at ti is missing
1 otherwise

and replacing the objective in (10) with 1
2‖si (Tn

ug − y)‖2�2
Remark 2 Frequency domain experimental data can be handled by simplymodifying
the objective in (10) to:

1

2
‖Tn

ug − y‖2�2 + λ

2
‖(G − �)‖2�2 (12)

whereG and � denote the frequency response of the unknown plant and the experi-
mental measurements, respectively, and the parameter λ weights the relative impor-
tance of the time-domain versus the frequency domain fitting error.

4 Handling Outliers in LTI Identification

Many practical scenarios involve situations where the data is corrupted by outliers.
Examples of these situations include sensor outages, data corruptedwhile transmitted
over a wireless link or, in the case of computer vision applications, target occlusion.
If the location of these outliers is known, then they can be handled as outlined in
Remark 1 above. However, in most of the situations above, the location of these
outliers is unknown. In these cases, it is of interest to find a model that interpolates
the largest number of data points (the “inliers”), while, at the same time, identifying
the outliers, leading to the following problem:

Problem 2 Given noisy input/output data {(ut , yt )Tt=t0}, find an ARX model of the
form

yt =
na∑

k=1

ak yt−k +
∑nb

k=1
bkut−k + ηt (13)

that maximizes the number of points interpolated.

It is well known [10] that identification in the presence of outliers is generically NP
hard. However, as we discuss next, efficient convex relaxations can be obtained by
recasting the problem into either (i) a regularized robust regression form or (ii) a
polynomial optimization form.
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4.1 Identification with Outliers as a Robust Regression
Problem

Define r = [a1 · · · ana b1 · · · bnb
]T

and xt = [yt−1 · · · yt−na ut−1 · · · ut−nb

]T
. In this

context, Problem 2 can be compactly stated as finding a parameter vector r that max-
imizes the cardinality of the set T .= {t : ∣∣yt − rT xt

∣
∣ ≤ ε}. Equivalently, by intro-

ducing additional variables ri ∈ R
d the problem can be reformulated as:

r∗ = argminr,ri ‖{r − ri }‖0 subject to:
|yi − xTi ri | ≤ ε, i = 1, . . . , N

(14)

where ‖{r − ri }‖0 denotes the cardinality (e.g. number of non-zero vectors) of the
sequence {r − ri }Ni=1. While this problem is still generically NP hard, a convex relax-
ation can be obtained using the fact that the convex envelope of the cardinality of a
vector sequence {vi } is given by ‖{v}‖0,env =∑i ‖vi‖∞ [11], leading to the follow-
ing relaxation:

renv = argminr,ri
∑N

i=1‖r − ri‖∞ subject to:
|yi − xTi ri | ≤ ε, i = 1, . . . , N

(15)

As shown in [12], under certain conditions,1 renv = r∗, the solution to (14). It is also
worth noting that (15) is equivalent to:

minr,η
∑N

i=1
|yi−xTi r+ηi |

‖xi‖1
subject to |ηi | ≤ ε, i = 1, . . . , N

(16)

that is, a traditional �1-regularized robust regression where the data points have been
scaled. As shown in [12], this “self-scaling” property substantially reduces the effect
of gross outliers on the estimation error.

4.2 A Moments Based Approach

The results of the previous section show that, under certain conditions, Problem 2
can be exactly solved by solving the convex relaxation (15). However, when these
conditions fail, renv may provide a poor approximation to r∗. To avoid this difficulty,
in this section we introduce an alternative approach based on polynomial optimiza-
tion. This approach is guaranteed to recover the optimal solution r∗, at the price of
increased computational complexity. The idea is to associate to each pair (yi , xi )
a binary variable si ∈ {0, 1} that indicates whether the point is an inlier (si = 1)

1These conditions are related to the number of outliers and the minimum separation between the
inlier and outliers subspaces.
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or outlier (si = 0), allowing for recasting Problem 2 into the following polynomial
optimization form:

p∗ = max
s j ,r

∑Np

j=1s j

s.t. |s j (y j − rT x j )| ≤ εs j , s2j = s j , ∀Np

j=1

rT r = 1, r(1) ≥ 0

(17)

Here, the first constraint enforces that (y j , x j ) is an inlier when s j �= 0 and is trivially
satisfied otherwise; the second is simply a restatement of the fact that s j ∈ {0, 1},
while the third and fourth constraints normalize the vector r and remove ambiguities.
Clearly, since si = 1 ⇐⇒ (yi , xi ) is an inlier, the objective maximizes the number
of inliers.

Problem (17) is a polynomial optimization problem and thus can be solved using
the techniques outlined in the Appendix. Specifically, its first order moment relax-
ation has the following form:

p̃∗ = max
M j

Np∑

j=1

m j (s j ) subject to: (18)

Tr(Q+)M ≤ 0, Tr(Q−M) ≥ 0,
M � 0,M(1, 1) = 1

(19)

Here m j (s j ) denotes the moment variable associated with s j , M denotes the
moment matrix containing up to second-order moments of the variables r and
si , i = 1, . . . , Np and Q+,Q− are matrices of the form

Q± = block-diag (Q j,±) with Q j,± =

⎡

⎢
⎢
⎢
⎣

0 0 0
...

...
...

0 0 0
y j ± ε −xTj 0

⎤

⎥
⎥
⎥
⎦

Further, due to the block diagonal structure of Q±, the problem above exhibits the
running intersection property (see Definition 2 in the Appendix), which allows for
using the reduced complexity relaxation (49), leading to:

p̃∗ = max
M j

Np∑

j=1

m j (s j ) subject to: (20)

Tr(Q j,+M j ) ≤ 0, Tr(Q j,−M j ) ≥ 0,∀Np

j=0

M j � 0,M j (1, 1) = 1,∀Np

j=0

M j (1 : n + 1, 1 : n + 1) = M0,∀Np

j=1

(21)
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whereM j denotes the moment matrix containing up to second-order moments of the
variables r and s j , and where Mo denotes the moment matrix containing up to sec-
ond order moments of the variables r. In principle, the formulation above provides
only a relaxation of the original problem. However, optimality of the solution can be
enforced by exploiting a result, originally from [13], showing that a sufficient con-
dition for the relaxation (20) to be exact is that rank(Mo) = 1. Combining this result
with the usual re-weighted heuristics for rank minimization leads to the following
algorithm:

Algorithm 3 Identification in the presence of outliers via polynomial optimization

1: Initialize: k = 0, W(0) = I, 0 < δ � 1, kmax
2: repeat
3: solve

{M(k)
j } = argmin Tr(W(k)M0) − λ

∑Np
i=1 si

s.t. (21)
(22)

4: updateW(k+1) = [M(k)
0 + σ2(M

(k)
0 )]−1, k = k + 1;

5: until σ2(M
(k)
0 ) < δσ1(M

(k)
0 ) or k > kmax.

It isworth emphasizing that in this algorithm, there are Np semi-definite constraint,
having fixed size (nr + 2 × nr + 2). Hence computational complexity scales linearly
with the number of data points. To the best of our knowledge, this is the first algorithm
for robust regression in the presence of outliers that exhibits this property.

5 Identifying Dynamical Graphical Models

So far, we have considered only unstructured models. However, in the past few years
substantial attention has been devoted to the problem of identifying dynamical graph-
ical models, represented by a directed graph structure G = {V, E}, where each node
V corresponds to a given time series, and the edges E are linear shift invariant oper-
ators relating the values of these series at different time instants. The corresponding
equations are given by

x j (t) = ∑n
i=1

∑r
k=1c j,i (k)xi (t − k) + η j (t),
t ∈ [r + 1, T ], j = 1, . . . , n

(23)

where x j (.) denotes the time series at the j th node, c j,i (.) are the coefficients of an
ARX model relating the present value of the time series at node j to the past values
measured at node i , and η j (t) represents measurement noise. As briefly described
below, these models, which appear in fields ranging from systems biology and chem-
istry to economics and video-analytics, can be identified from experimental data by
recasting the problem into a super-atomic constrained minimization form. Note in
passing that, unless a regularization criteria is added, the problem is ill posed, since
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an infinite number of topologies can explain a given set of finite, noisy observations.
In this chapter, we will use “sparsity” to regularize the problem, reflecting the fact
that usually the solution with the fewest number of edges is the correct one. Let

x j
.= [

x j (T ), . . . , x j (r + 1)
]T

η j
.= [

η j (T ), . . . , η j (r + 1)
]T

c j,i
.= [

c j,i (1), . . . , c j,i (r)
]T

c j
.= [

cTj,1 . . . , cTj,n
]T

C .= [
c1, . . . , cn

]

X .= [
x1, . . . , xn

]

Hi
.=

⎡

⎢
⎢
⎢
⎣

xi (T − 1) xi (T − 2) . . . xi (T − r)
xi (T − 2) xi (T − 3) . . . xi (T − r − 1)

... . . . . . .
...

xi (r) . . . . . . xi (1)

⎤

⎥
⎥
⎥
⎦

H .= [
H1 . . . Hn

]

Ξ
.= [

η1, . . . ,ηn

]

With this notation, the equations describing the complete model can be written in
compact form as:

X = HC + Ξ (24)

and the problem of interest here can be precisely stated as:

Problem 3 Given T measurements of n time series xi (t), i = 1, . . . , n, t ∈ [1, T ],
and upper bounds ε and r on the noise level and edgemodel order, respectively, solve:

min
∑

i‖{ci }‖0 s. t. (24) and ‖ηi‖2 ≤ ε,
∀i = 1, . . . , n

(25)

where ci ∈ R
r and ‖{ci }‖0 denotes the number of non-zero elements of the vector

sequence ci .

Note that the objective function in this problem is precisely |E |, the number of
edges in the graph, and that, due to its structure, the problem above decouples into n
subproblems of the form:

min ‖{ci }‖0 s. t. ‖η j‖2 ≤ ε and
x j =∑iHici + η j

(26)

This is a (vector) sparsification problem similar to (14) and thus can be solved using
a relaxation similar to (15). However, as we show next, a computationally attractive
alternative can be obtained by expanding the concept of atomic norm introduced in
Sect. 3.1 to encompass the case where it is desired to block-spasify a vector sequence.
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5.1 Super Atoms and Block Sparsity

In this section we briefly discuss how to promote block-sparsity, rather than sparsity,
using the concept of atoms, and present a computationally efficient algorithm to solve
the resulting optimization problem.

Definition 1 ([14]) Assume that the setA can be partitioned into N centrally sym-
metric subsets Ai (the super-atoms), such that A = ∪iAi and Ai ∩ A j = ∅, i �= j
and associate to each super-atom Ai = {ai,1, ..ai,ni } the matrix Ai having as its jth

column ai, j , the coordinates of the atom ai, j in a suitable basis in X . Given a point
x ∈ X , its super-atomic norm is defined as:

‖x‖sA .= inf

{

τ > 0 : x =
∑

i

(τAi )ci and
∑

i

‖ci‖∞ = 1

}

(27)

An alternative definition of the super atomic norm is given by:

‖x‖sA = minc
∑N

i=1‖ci‖∞ s.t x =∑iAici (28)

Since the convex envelope of the cardinality of a vector sequence {c}, ‖ci‖∞ ≤ 1 is
given by [11]:

‖{c}‖0,env =
∑

i

‖ci‖∞

it follows that, minimizing the super-atomic norm indeed promotes block-sparsity.
Further, problems involving the minimization of a function subject to super-atomic
norm constraints can be efficiently solved by using the following modification of
Algorithm 1 [14]:

Algorithm 4 Convex minimization subject to super-atomic norm constraints
1: Data: set of super-atoms A = {A1, . . . ,Ai , . . . }
2: Initialize x(0) ← τa for some arbitrary a ∈ A
3: for k = 0,1,2,3,..., kmax do
4: L ← argminm

{
min‖c‖∞≤1〈∂ f (x(k)),

∑
ai,mci 〉 s.t. ai,m ∈ Am

}

5: c ← arg min‖c‖∞≤1
〈∂ f (x(k)),

∑
ai,Lci 〉 s.t. ai,L ∈ AL .

6: a ←∑
i ai,Lci

7: αk ← argminα∈[0,1] f (x(k) + α[τa − x(k)])
8: x(k+1) ← x(k) + αk [τa − x(k)]
9: end for

As shown in [14],when the super-atoms are centrally symmetric, explicit solutions
to steps 4–6 of Algorithm 4 are given by

(i) Step 4: L ← argmaxm{‖[∂ f (z(k))]TAm‖1}
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(ii) Step 5: c = − sign([∂ f (z(k))]TAL)

(iii) Step 6: a ← ALc

where Am denote the matrix having as columns the coordinates of ai,m , the elements
of the super-atom Am .

5.2 Sparse Graphical Model Identification as a Super-Atomic
Norm Minimization

The techniques discussed above can be used to solve Problem 3 by simply defining
each super-atom as the collection of columns from the matricesHi , (e.g. a collection
of vectors, each containing delayed measurements of the respective time-series):

Ai = {Hi (:, t)}, t = 1, . . . r

each of these subproblems can be relaxed to a super-atomic norm minimizations of
the form

min ‖z‖sA subject to ‖x j − z‖2 ≤ ε (29)

where z =∑i Hici . Finally, imposing soft, rather than hard constraints on the fitting
error leads to:

min ‖x j − z‖2 subject to ‖z‖sA ≤ τ (30)

This is precisely a problem of the form discussed in Sect. 5.1 and can be efficiently
solved using Algorithm 4.

Remark 3 Many practical scenarios require taking into account relatively rare exter-
nal events, for instance to model interactions of the network with its environment.
As proposed in [14], these interactions can be handled by adding at each node, a
piecewise constant signal u j (·), with a sparse derivative, modifying (23) to

x j (t) = ∑n
i=1

∑r
k=1c j,i (k)xi (t − k) + u j (t) + η j (t),

t ∈ [r + 1, T ], j = 1, . . . , n
(31)

and the corresponding objective in (25) to

min ‖{ci }‖0 + λ‖{Δu j }‖0 (32)

where Δu j
.= [u j (2) − u j (1), . . . , u j (t) − u j (t − 1), . . .

]
and the parameter λ

allows for trading-off graph versus input sparsity. The problem above can be solved
using Algorithm 4 by simply adding the following super-atoms to the set A:
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Au = 1

λ
{u1, . . . ,uT } (33)

where ut is defined as the t-th column of a lower triangular matrix with {0, 1} ele-
ments.

6 Semi-supervised Identification of Switched Systems
in the Presence of Outliers

In the previous sections we have addressed identification of LTI systems. The goal
of this section is to indicate how these techniques can be extended to switching sys-
tems. These systems are interesting in their own, since they appear in many scenarios
(biological systems transitioning amongst different metabolic stages, human activity,
physical systems with different operation modes, etc.) and as tractable approxima-
tions to more complex non-linear dynamics. For simplicity, we consider only single-
input single-output systems, but extension to the MIMO case is straightforward.
Specifically, we are interested in the following extension of Problem 2:

Problem 4 Given:

• A set of input/output data {(ut , yt )Tt=t0} generated by an SARX model of the form

yt =
na∑

k=1

ak(σt )yt−k +
nb∑

k=1

bk(σt )ut−k + ηt (34)

• A-priori information consisting of (i) a bound Ns on the number of subsystems
(e.g. σt ∈ NNs ), (ii) a bound ε on the process noise ηt , (iii) additional information,
such as N fi , the relative frequency of each submodel, point wise co-occurrences,
constraints on the switching sequence, etc.

Find a set of coefficients {anak=1(i), b
nb
k=1(i)}, each associated with the submodel

Gi ,∀Ns
i=1, that maximizes the number of inliers.

As in Sect. 4, we will present two alternative approaches to solving the problem
above, one based on robust-regression and the second based on polynomial opti-
mization.

6.1 A Sparsification Based Approach

The idea underlying this approach (originally presented in [11]) is to find one
submodel at a time, by successively finding a parameter vector r that makes∣
∣yt − xTt r

∣
∣ ≤ ε feasible for as many time instants t as possible. Once this model
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is found, the points explained by it are removed from the data set and the procedure
is repeated until all data points are clustered. By considering at each stage, points not
explained by the model as outliers, each parameter vector ri can be found using the
algorithm described in Sect. 4, leading to Algorithm 5. When the subspaces spanned
by each subsystem are well separated, the recovery results in [12] guarantee that
this approach will indeed find the correct set of models. On the other hand, if these
conditions do not hold, due to its greedy nature, the algorithm can overestimate the
number of subsystems required to explained the observed data. Nevertheless, con-
sistent numerical experience shows that these instances are very rare, specially when
the algorithm is combined with a re-weighted heuristics to enhance sparsity [11].

Algorithm 5 SARX ID via regularized regression
t0 ← max(na, nb), N1 ← {t0, . . . , T }, l ← 0.
while i < l do

l ← l + 1
Find rl by solving (14)

i ← 1
while i < l do

Kil ← {
t ∈ Ni : ∣∣yt − xTt rl

∣
∣ ≤ ε

}

if #Kil > #Ki then
ri ← rl and l ← i ;

end if
i ← i + 1

end while
Kl ← {

t ∈ Nl : ∣∣yt − xTt rl
∣
∣ ≤ ε

}

Nl+1 ← Nl \ Kl
end while
return s = l and Ki , i = 1, . . . , s

6.2 A Moments Based Approach

As in Sect. 4.2, an alternative approach, with optimality certificates can be obtained
by recasting the problem into a polynomial optimization form, by introducing a set
of binary variables si,t that indicate whether the submodel Gi is active at time instant
t (σt = i ⇔ si,t = 1) and auxiliary variables ei,t (the fitting error of point t to model
i), leading to:
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max
ri ,ei,t ,si,t

∑T
t=to

∑Ns
i=1 si,t

subject to
rTi xt − ei,t = 0
||ri ||2 = 1
|si,t ei,t | ≤ εsi,t
s2i,t = si,t ,

∑Ns
i=1 si,t ≤ 1

∀i = 1, . . . , Ns,∀t = to + na, . . . , T

(35)

Here, ri ( j) is the j th entry of ri , and the last two constraints on si,t guarantee that no
more than one submodel is active at time instant t . As before, it can be easily shown
that this problem satisfies the running intersection property. Thus, from the results in
the Appendix, it follows that a convergent sequence of convex relaxations is given
by:

maxmN

∑
i,t m(si,t )

subject to
∀T
t=t0 : Mt,N � 0

∀T
t=t0 : Lt,N � 0

(36)

where m(si,t) denotes the first order moments corresponding to the variables si,t and
Mt,N and Lt,N are the (truncated) moment and localizing matrices involving the
moments of the variables si,t , ei,t and ri , i = 1, .., Ns . Further, as before, optimality
can be guaranteed by introducing the rank constraint rank({Mr } = 1), where Mr

denotes the matrix containing up to second order moments of the variables ri . The
resulting rank-constrained optimization can be solved by using a straightforward
generalization of Algorithm 3.

Remark 4 In many practical scenarios, additional information is available about the
system to be identified. Examples of these situations include knowledge about cer-
tain transitions are inhibited (common in biological applications), or co-occurrences
(common in image processing and computer vision) where some of the data may be
manually annotated, so that it is known that two given data points belong (or do not
belong) to the same system. A salient feature of the approach above is its ability to
incorporate these priors by imply imposing additional constraints on the variables
si,t . For instance:

(i) submodel Gi is active for f% of the time ⇐⇒∑T
t=t0+na

si,t = 0.01 f (T + 1 −
t0 − na);

(ii) the same submodel is active at time instants m and n ⇐⇒ si,m = si,n, ∀i =
1, . . . , Ns ;

(iii) different submodels are active at time instants m and n ⇐⇒ si,msi,n = 0, ∀i =
1, . . . , Ns ;

(iv) submodel i cannot be followed by submodel j ⇐⇒ si,t s j,t+1 = 0,∀t .
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7 Model (In)Validation of Switched Systems

Model (in)validation is the dual problem of identification: given a model and exper-
imental data, the goal here is to determine whether these are consistent. That is,
whether or not the observed data (corrupted by noise) could have been generated
by the model. Validating identified models against additional data is a key step
before using these models for control synthesis. Additional applications of model
(in)validation include fault detection and isolation, and, interestingly, to detect anom-
alies in time series, including abnormal human activity. While (in)validation of LTI
models is a well understood problem (see for instance Chaps. 9 and 10 in [15]), the
case of switched systems is considerably less developed. Nevertheless, as we show
in the sequel, this problem can be addressed using the same polynomial optimization
tools used for switched systems identification. Formally, the problem of interest here
can be posed as determining whether a noisy input/output sequence could have been
generated by a given model of the form:

ξt = ∑na
i=1 ai (σt)ξt−i +∑nb

i=1 bi (σt )ut−i

yt = ξt + ηt , σt ∈ {1, . . . , s}, ‖ηt‖∞ ≤ ε
(37)

where yt denotes themeasuredoutput corruptedby thenoiseηt . Like the identification
case, this problem is known to be generically NP-hard, due to the presence of noise
and because the mode variable σt is not directly measurable. However, it is possible
to obtain tractable relaxations by using sparsification and polynomial optimization
tools. This can be done by noting that (37) holds if and only if there exist a set of
“indicator” variables si,t and admissible noise sequence ηt such that

si,t
(
gi,t − hiηt :t−na

) = 0 ∀ t ∈ [to + na, T ]
subject to∑ns

i=1 si,t = 1
si,t ∈ {0, 1} and ‖ηt‖∞ ≤ ε

(38)

where the notation was simplified by defining:

gi,t
.= a1(i)yt−1 + · · · + ana (i)yt+na

−yt + b1(i)ut−1 + · · · + bnb(i)ut−nc
hi

.= [−1 a1(i) . . . ana (i)
]

ηT
t :t−na

.= [ηT
t . . . ηT

t−na

]T

7.1 Sparsification-Based Certificates

It is easy to show that the above condition is equivalent to the feasibility of:
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si,tgi,t − hiηi,t :t−na = 0

0 ≤ si,t ≤ 1,
∑

i

si,t = 1, ∀t ∈ [to + na, T ] (39)

‖ηi,t :t−na‖∞ ≤ si,tε,
ns∑

i=1

ηi,t :t−na = ηt :t−na

and

‖s‖o = T − to − na + 1

where ηi,t :t−na
.= si,tηt :t−na are auxiliary variables. Then, since all the constraints,

except the last one, are convex, we can use a weighted �1 norm as proxy for car-
dinality [16, 17], to obtain a convex relaxation and (in)validation certificates using
Algorithm 6.

Algorithm 6 Sparsification Based (In)Validation Certificates

Initialize: k ← 0, ∀Ns
i=1∀T

t=na+t0 : w
(0)
i,t ← 1;

repeat
solve

mins,η
∑

i,t w
(k)
i,t si,t

subject to (39)
(40)

update
w

(k+1)
i,t ← (s(k)

i,t + δ)(−1),∀i∀t
k ← k + 1

where s(k)
i,t denotes the optimal solution at the k-th iteration, and δ is a (small) regularization

constant.
until convergence.

This algorithmcanbeused to efficiently compute convex (in)validation certificates
– i.e. infeasibility of (40) – or to establish that the experimental data is compatible
with the a priori models, when the solution satisfies si, j ∈ {0, 1}. However, it should
be noted that these conditions are only sufficient. That is, they cannot explain the case
when the relaxation admits a solution with non-integer elements. This case arises if,
due to noise, some of the data points can be explained by more than one model, or
if a model is invalid (it can be explained by a linear combination of other models).
It is possible to obtain sharper certificates, albeit at a higher computational cost, by
using moments to solve directly the following polynomial optimization problem (see
[18]):

p∗ = mins,η
∑

i,t s
2
i,t‖gi,t − hiηt :t−na‖2

subject to
si,t = sni,t∑

i s
2
i,t = 1 ∀t

‖ηt :t−na‖∞ ≤ ε

(41)
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where the experimental data does not invalidate the model iff p∗ = 0. It is easy
to show that problem (41) exhibits the running intersection property. Thus, only the
smallermomentmatrices involving themoments of the variables s1,t , .., sns ,t ,ηt ,ηt−1
. . . ηt−na need to be considered, leading to Algorithm 7 below.

Algorithm 7Moments Based (In)Validation Certificates
N ← 2;

repeat
solve p∗

m = minm
∑

i,t li,t subject to:

MN (mt−na :t) � 0
LN (mt−na :t) � 0

}

∀t ∈ [to + na, T ]

update N ← N + 1

until

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p∗
m > 0, or

p∗
m = 0, rank[MN (mt−na :t)]

= rank[MN−1(mt−na :t)]; or
N = T + 1.

If p∗
m > 0 the model is invalid, otherwise the data record is consistent with the a-priori assump-

tions.

8 Applications

Next, we illustrate the ideas presented in this tutorial with several application exam-
ples.

8.1 Identification of a Lightly Damped System

Consider the non-trivial problem of identifying of a very lightly damped two-degrees
of freedom structure [19] from the time and frequency domain experimental data
shown in Figs. 1 and 2. Using Algorithm 2 (Sect. 3) leads to a 6th order system that
fits well the data, in approximately 2 s. For comparison, the ADMM approach in [4],
while producing similar results, requires approximately 2500s and the nonparametric
approach in [19] led to a 19th order model.
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Fig. 1 Step response of a lightly damped structure

Fig. 2 Frequency response of the structure

8.2 Finding Causally Correlated Activities in Video
Sequences

The goal of this section is to illustrate the use of dynamical graphical models to unveil
causal relationships from time series generated by different agents. In particular, we
consider here the first example from [20], which analyzed two video sequences (6
and 16) from the UT Human Interaction Data Set [21]. The specific time series used
in this example are the trajectories of each individual’s head, normalized to lie in the
interval [−1, 1]. Figure3 shows the result of using Algorithm 4 (Sect. 5), modified
to take into account the existence of derivative-sparse exogenous inputs. As shown
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Fig. 3 Sample Frames of the UT Sequences 6 and 16 showing the causally interacting groups
identified using the approach outlined in Sect. 5

there, this algorithm successfully identified the interactions between agents in both
sequences. In addition, the super-atomic norm based approach was, depending on
the examples, 3 to 5 times faster than the ADMM approach proposed in [20].

8.3 Activity Analysis from Noisy Video Data

The goal of this application is to segment a video containing multiple activities
into sub-activities, each characterized by an affine model. As described in Sect. 9,
these models can then be used to recognize contextually abnormal activity. The
experimental data used in this section (taken from [22]), illustrated in Fig. 4, consist of
55 frames extracted fromavideo sequenceof a personwalking, bending and resuming
walking. To simulate a realistic scenario, several frames were corrupted with large
amounts, consistent with a scenario where the data is corrupted by interference. In
order to recast the segmentation problem into an identification form, the position
of the center of mass of the person in each frame was modeled as the output of a
switched affine system consisting of 2 first order submodels, and the system was
identified using the algorithm outlined in Sect. 6.2. As shown in Fig. 5, this approach
successfully segmented the sequence in the presence of outliers.
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Frame 8 Frame 33 Frame 45

Fig. 4 Sample frames for the activity segmentation application

Fig. 5 Activity
segmentation as a SARX
identification problem with
outliers (red stars and green
circles denote the detected
and true outliers,
respectively)

0 10 20 30 40 50 60
0

1

2
Moment Clustering

9 Detection of Contextually Abnormal Activities

Next, we discuss the application of the ideas presented in this chapter to the problem
of extracting actionable information from large data sets. Framing this problem using
concepts from dynamical systems, allows us to exploit the tractable relaxations dis-
cussed above. This approach leads to scalable, computationally tractable algorithms,
which can help making critical decisions based on dynamic information that is very
sparsely encoded in the available data streams in real time. To this effect, we will
consider the observed data as the output of a switched dynamical system, where
jumps between systems indicate events that can be characterized by the parameters
of the corresponding subsystems.

As an example, consider the problem of abnormal activity detection from video
sequences which arises in surveillance systems of large public spaces. This is a very
challenging problem since the video data usually contains many different activities.
Thus, most machine learning based techniques must parse the data into sub-activities
before they can detect an anomaly. Furthermore, the parsing can be very difficult if
the individual segments are very short, spanning only a few frames. However, explicit
parsing canbe avoidedby formulating the problemas amodel (in)validation one: first,
identifying models corresponding to “safe activities” and then detecting anomalies
by usingAlgorithm 7 to invalidate the observed data against the set of trajectories that
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could have been generated by switching among these safe activities. This approach
is illustrated by an example with three safe activities {waiting, walking, running},
described by the models (see [23])2

(
xt
yt

)

=
(

0.4747 0.0628
−0.3424 1.2250

)(
xt−1

yt−1

)

+
(
0.5230 −0.1144
0.3574 −0.2513

)(
xt−2

yt−2

) (walking)

(
xt
yt

)

=
(
1 0
0 1

)(
xt−1

yt−1

)

(waiting)

(
xt
yt

)

=
(
0.6058 0.0003
0.2597 0.8589

)(
xt−1

yt−1

)

+
(

0.3608 0.1853
−0.2381 0.1006

)(
xt−2

yt−2

) (running)

where (xt , yt ) are the coordinates of the centroid of the actor, and where transitions
from waiting to running are not allowed, as shown in Fig. 6. The proposed approach
successfully flagged the sequence in Fig. 7 as “anomalous”, even though it all the
sub-activities are safe activities, because it exhibits a forbidden transition.

10 Conclusions

A wide range of applications with potential for profound societal impact, such as
self-aware and smart environments, have become feasible thanks to the ease of col-
lecting data and recent developments in distributed control. However, achieving their
full potential remains challenging due to the need for processing large amounts of
very high dimensional data. As shown in this chapter, it is possible to exploit the
inherent sparsity in the data, exhibited in a large class of identification problems,
to overcome the “curse of dimensionality” by extending to dynamic settings ideas
that were originally proposed in machine learning and polynomial optimization,
often leading to algorithms that scale linearly with the number of data points. The
potential of the techniques presented here was illustrated with several practical appli-
cations, including the problem of individual and group activity analysis from video
data. Finally, a related issue not addressed in this chapter is the connection between
non-linear systems identification and non-linear manifold embeddings. Interested

2These models were identified by considering the trajectories of the centroid of the person and
using LP to find the coefficients that minimized the peak value of the fitting error. Note that both
walking and running have two poles at 1, corresponding to constant velocity motion. However, the
remaining two poles for the running model are complex conjugate, corresponding to oscillatory
motion, while those in the walking model are real.
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frame30

frame16

frame7

Fig. 6 A structurally constrained transition graph. One-step transitions from waiting to running
are not allowed

Fig. 7 Anomalous behavior detection as a switched (in)validation problem. The video sequence
is flagged as abnormal, even though it consists of “normal” activities (walking,waiting,running),
since it contains an anomalous transition (waiting → running)

readers are directed to [24] where the authors find low order embeddings of dynamic
data by recasting the problem as a Wiener system identification problem that can be
efficiently solved using technique similar to the ones presented here.

Appendix: Polynomial Optimization

Many identification and model (in)validation problems can be framed as a (non-
convex) constrained polynomial optimization problem of the form:
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p∗
K := min

x∈K p(x) .=
∑

α

pαxα (42)

where xα = xα1
1 xα2

2 · · · xαn
n and K ⊂ R

n is a compact semi-algebraic set defined
by a collection of polynomial inequalities of the form gk(x)

.=∑β gk,βxβ ≥ 0,
k = 1, · · · , d. This problem is equivalent to the following convex, albeit infinite-
dimensional, optimization [25]:

p̃∗
K := min

μ∈P(K )

∫

p(x)μ(dx) := min
μ∈P(K )

Eμ [p(x)] = min
mα

∑

α

pαmα (43)

whereP(K ) is the space of probability measures supported on K ,Eμ denotes expec-
tation with respect to μ, and where we have defined:

mα = Eμ(xα)
.=
∫

K
xαμ(dx) (44)

As shown in [25], existence of a measure μ satisfying (44) is equivalent to positive
semidefiniteness of the (infinite) moment M(m) and localizing L(gkm) matrices.
Thus, (43) is equivalent to:

p∗
K := min

mα

∑

α

pαmα subject toM(m) � 0 and L(gkm) � 0, k = 1, .., d (45)

While the problem above is still infinite dimensional, a convergent sequence of finite
dimensional approximations is given by

p∗
N := min

mα

∑

α

pαmα subject toMN (m) � 0 and LN (gkm) � 0, k = 1, .., d

(46)
where MN and LN are truncated versions of the matrices M(.) and L(.), given by:

MN (m)(i, j) = mα(i)+α( j) , ∀i, j = 1, . . . , SN

LN (gkm)(i, j) =
∑

β

gk,βmβ+α(i)+α( j) ,

∀i, j = 1, · · · , SN−� degree (gk )

2 �

(47)

where SN =
(
N + n
n

)

(e.g. the number of moments in R
n up to order N ) and the

moments have been arranged according to a grevlex ordering. Further, it can be
shown that as N increases, p∗

N in (46) monotonically increases to p∗
K from below.

The necessary and sufficient conditions to guarantee the equivalence between (45)
and (42) are either:
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• positive semi-definiteness of the infinite dimensionalmatricesMN andLN−� degree(gk )

2 �
as N increases to infinity; or

• for a finite N , the flat extension property holds [25], that is, for MN � 0,
LN−� degree(gk )

2 � � 0, and rank(MN ) = rank(MN−� degree(gk )

2 �).

Exploiting Sparsity: The problems considered in this chapter exhibit a special sparse
structure that can be exploited to reduce the computational complexity entailed in
solving (42).

Definition 2 Consider problem (42) and let Ik ⊂ {1, . . . , n} be the set of indices of
variables such that each gk(x) contains variables only from some Ik . Assume that the
objective function p(x) can be partitioned as p(x) = p1(x) + . . . + pl(x)where each
pk contains only variables from Ik . Problem (42) satisfies the running intersection
property if there exists a reordering Ik ′ of Ik such that for every k ′ = 1, . . . , l − 1:

Ik ′+1 ∩
k ′
⋃

j=1

I j ⊆ Is for some s ≤ k ′ (48)

As shown in [26], for problems satisfying the running intersection property, the
sequence of approximations (45) can be replaced by a hierarchy of semidefinite
programs of smaller size:

p∗
N = minm

∑l
j=1

∑
α( j) p j,α( j)mα( j)

s.t. MN (mIk ) � 0, k = 1, . . . , l,
LN (gkmIk ) � 0, k = 1, . . . , l,

(49)

where p j,α( j) is the coefficient of the α( j)th monomial in the polynomial p j ,
MN (mIk ) denotes the moment matrix, andLN (gkmIk ) is the localizing matrix for the
subset of variables in Ik . Note that, for a given N , (49) involves matrices containing
O(κ2N ) variables, where κ is the maximum cardinality of Ik , rather than O(n2N ).
Since in the problems considered in this chapter κ � n this leads to substantial
complexity reduction.
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Part III
Foundation of Human Movement



Inverse Optimal Control as a Tool
to Understand Human Movement

Katja Mombaur and Debora Clever

Abstract In this paper, we discuss numerical foundations and computational results
for inverse optimal control of human locomotion based on human motion capture
data. The task of inverse optimal control is to identify the precise underlying objective
function that is optimized in an observed motion. The presented methods can cope
with partial and imprecise measurements of the state variables which is typically
the case for motion capture recordings. We investigate human walking and running
motions on different levels of detail and consequently different underlying models
which all have their own motivation depending on the question asked. Whole-body
models are used to explore the mechanisms of motions on joint level, while sim-
ple models describing the subject as a single entity can be used to describe overall
locomotion behavior. At an intermediate level, template models describe some rel-
ative motions of bodies while maintaining simplicity and computational efficiency.
Results will be presented for all model types and different walking tasks. We also
show for some of them how the identified objective functions can be used to generate
new waking motions for humanoid robots in novel scenarios.

1 Introduction

Movement is a central aspect of our life, since it represents an important way to
interact with the world. The human body is a remarkably complex system capable
of a wide range of movements such as walking and running on different terrains
and at different speeds, grasping and manipulating complex objects or interacting
with other humans. Gaining a fundamental understanding of the human body and
its movements has long been an important research topic in biomechanics, sports
science, physiology, neuroscience, computer animation and humanoid robotics. The
human body is at the same time redundant and under-actuated. Redundancy in this
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context means that there usually is an infinite number of ways to perform a given
motion task, e.g. walk from A to B, since many degrees of freedom of the human
body are involved and different combinations of joint trajectories lead to the same
goal. Underactuation means that only internal degrees of freedom - the joints - are
actuated by muscles, but the overall position and orientation of the human body in
space only results indirectly from the combination of the internal joints’ actions and
the interaction of the body with the environment (e.g. foot contact with the ground,
touching a wall or a hand rail or holding an object).

How does the central nervous system control human movement? How does the
motor system activate themore than 600 highly interdependentmuscles to control the
over 200 mechanical degrees of freedom of the body? How is the redundancy issue
solved? Which is the way we choose to walk from A to B? How do we distinguish
natural from unnatural movement?

It is a commonassumption thatmotions of humans and animals are performed in an
optimalway due to evolution, learning and training [4, 5]. Optimization effects can be
found on the mechanical properties of the execute movements, but also in the closed
loop sensorymotor system [53]. As a logical consequence of this optimizing property
of nature, from a mathematical perspective human movements can be formulated
as optimal control problems. Researchers from different fields have used optimal
control approaches to generate or synthesize realistic anthropomorphic movements,
e.g. in human movement studies to generate optimal walking and running [1, 18,
22, 50], in computer animation to generate motions for human shapes and legged
fantasy characters [21] and in robotics to compute motions for specific humanoid
robots [7, 10, 31]. Here the optimization criterion has been predefined along with
the underlying dynamic model, and the optimal motions are computed as the result
of a (forward) optimal control problem, i.e. an optimization problem with a dynamic
process model as a constraint.

In this paper, we are addressing the opposite or inverse problemwhich is called the
inverse optimal control problem.Given a specific humanmovement forwhichmotion
capture data is available, and a defined model used for its description, which is the
underlying objective function that gives rise to this movement? The are special types
of human movement for which this question is easy to answer since the objective
function corresponds to the voluntary goal of the human subjects. This is particularly
true in sports, e.g. in sprinting (maximization of speed) or in long or hight jump
(maximization of jump width or height). However in most situations this question
is far from trivial since motion control is performed in a less conscious way. What
is the optimization criterion of everyday motions such as walking, opening a door
or shaking hands? It can be assumed that for most types of motion, not a single
objective function is optimized but rather a combined criterion of several elementary
functions.

Objective functions have been identified for some particular motions. Flash and
Hogan study the effects of theminimization of jerk in reachingmotions [20], and Park
and Levine investigate different optimality criteria in running motions [46]. Berret
et al. [8] have identified combined criteria in reaching movements. Mainprice et al.
study the concepts of optimality in collaborative manipulation tasks [38]. However,
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there is no commonly identified criterion for human movement since everything
depends on the specific motion task and situation, and partly also on the specific
subject.

In this paper, we discuss the use of inverse optimal control for the example of
human locomotion. We are interested in human locomotion from different perspec-
tives:

• The whole-body perspective, which considers detailed rigid multi-body system
models of the human body and investigates optimality of the motion on joint level;

• The perspective of the overall locomotion trajectory selection and its optimality
criterion considering only the position and orientation of the subject as a whole in
the plane of locomotion, i.e. only external degrees of freedom (DOF);

• The intermediate perspective which considers template models with some internal
DOFs and partial dynamics of the system and studies optimality on this level.

We will give several examples of successful inverse optimal control computations in
all cases and identify future research directions. In all cases, we used motion capture
data as reference which typically only provides partial and imprecise information
about the state and control variables of the system.

Inverse optimal control problems are challenging since they require the solution
of an identification problem inside and optimal control problem.We discuss different
methods for the numerical solution of this class of problems.

There is always a discussion to what extent optimality criteria of particular move-
ment tasks are generalizable between different subjects and to what extent the criteria
define the individual style of a subject. The approach discussed in this paper can be
used to answer this question since inverse optimal control problems can be solved
for different data sets - either using data for many subjects simultaneously to study
average behavior or just using data for one subject to describe individual behavior
and perform a comparison afterwards. In Sect. 3.1, we address this issue in more
detail.

Once optimality criteria are identified for a particular class of motions, they are
expected to provide useful insights into the nature of the motion itself. In addition,
they are of big importance for the use in robotics and computer graphics. Using this
same criterion and applying it to the corresponding dynamic model of a robot or an
animated character it is possible to generate new motions (also for new situations)
in the same style as the ones considered in the inverse optimal control problem.
However, some special care has to be taken to properly handle kinematic and dynamic
constraints of the robots which typically differ from those of humans. This problem
is usually less relevant for computer graphics.

The paper is organized as follows. Section2 gives an introduction to the mathe-
matical formulation and numerical solution approaches for inverse optimal control
problems. In Sect. 3, we give different examples of inverse optimal control applied to
locomotion tasks seen from the different perspectives: whole body models describ-
ing level ground running motions with 25 DOF in 3D and walking motions with 16
DOF in 2D, overall walking trajectory selection tasks to a defined point for single
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entity models in the plane, as well 3D template walking models for different walk-
ing scenarios such as step stones, stairs and level ground. Section4 presents options
for the transfer of these results to humanoid robots and discusses the necessity for
adapted transfer rules. In Sect. 5, we finally give some conclusions and perspectives
on future research in this area.

2 The Inverse Optimal Control Problem

The practical relevance of the inverse optimal control problem has been discussed in
the introduction. The purpose of this section is to show how the problem of solving a
parameter estimation problem within an optimal control problem will be transferred
into an appropriate mathematical formulation. We also discuss different numerical
solution approaches.

2.1 Mathematical Problem Formulation

The mechanical model of the locomotion system in form of a system of differential
equations is a first important part of the model formulation. We do not discuss this
in detail in this paper due to reasons of space, but only give a verbal description of
the model underlying the examples in Sect. 3. But it is crucial to choose a model
that corresponds to the desired description accuracy since an approximation of a
measured trajectory can only be as good as the underlying model permits. This
accuracy concerns the choice of degrees of freedom of the model as well as the
determination of model parameters correctly describing the recorded subject(s).

As a basis for the formulation of the unknown objective function inside the inverse
optimal control problem, we assume that we are able to establish a set of reasonable
independent base objective functions Ψi (t). Typically there are some expert guesses
in the literature in biomechanics ormedicine for the differentmovement tasks, stating
that some specific physical quantity e.g. mechanical energy, jerk, joint torques, vari-
ability of end position, stability etc. might be optimized. Other base functions can be
generated by independent reflections about the movement possibilities and potential
intentions of the subject. Such formulations can also take into account metabolic
effects and other internal processes of the human body. From a mathematical per-
spective the use of mathematical base functions, such as Fourier series would also
seem reasonable, however they are much less interesting from the human movement
science or robotics perspective, since they do not have any physical meaning. The
relative contributions of all base functions Ψi (t) to the overall objective function can
be expressed by the respective weight factors αi , which are the unknown variables
to be determined by the inverse optimal control problem. The choice of good basis
functions is the second crucial step in the formulation of the inverse optimal control
problem, since any optimal solution can only get as close to the measured trajectory
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Fig. 1 Inverse optimal control. Bi-level problem with a parameter identification prob-
lem on the upper and an optimal control problem on the lower level (List of symbols:
α weighting vector of objective, x ′∗ (subset of) optimal state, x ′

M reference data, u con-
trol, p model parameters, T final process time, n number of basis criteria, Ψi basis cri-
teria, g path constraints, req point equality constraints, rineq point inequality constraints,
m number of data points)

as possible within the range of its base functions. It should be taken care that they are
as complete as possible but redundancy has to be avoided. This may not be trivial for
complex problems since global as well as local redundancy may occur, and it should
be carefully performed. No general rule can be given for the required number and
type of base functions since the problem is highly nonlinear and the answer depends
on the specific system and solutions.

The formulation of the inverse optimal control problem is shown in Fig. 1.
This problem is a bi-level optimization problem. This structure results naturally

from the two problems that have to be solved simultaneously. In the upper level, we
aim to minimize the distance between the measured motion and the computed one
by optimizing over the vector of weight parameters α. In the lower level, we solve
a (forward) optimal control problem for the current iterate of α in order to compute
the solution x∗ to evaluate the objective function of the higher level problem.

It should be noted that the distance between recorded and computed solution is
usually not evaluated based on a full knowledge of the states. We therefore use the
notation x ′ instead of x to show that either only a subset of the states is measured or
the measurements concern variables which are not direct state variables but allow to
draw conclusions about state variables.

Another thing that should be noted is that we have here - for clarity of presen-
tation - only given the problem formulation for a single phase, i.e. for a problemwhich
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uses just one set of dynamic equations. However, locomotion is typically described
as a multi-phase problemwhich implicitly switches between different models. Using
appropriate numerical methods, it is no problem to extend this formulation to loco-
motion models with multiple phases, and this has actually been done to solve many
of the examples discussed in Sect. 3.

2.2 Numerical Solution Approaches

In this section, we will give a brief overview about some possible solution methods
for inverse optimal control problems. We will also describe the link between inverse
optimal control problems and reinforcement learning problems.

A straightforward way is to maintain the bi-level structure of the inverse optimal
control problemandaddress eachof the levels by an appropriate optimizationmethod.
We have proposed a method for nonlinear inverse optimal control problems in [42]
and recently implemented anewversionof thismethod.All the resultswe are showing
here have been computed with this kind of method.

In the lower level an efficient approach to solve optimal control problems is
required. These methods have to handle the fact that state and control variables
are functions in time, i.e. infinite dimensional variables. Direct - also called first-
discretize-then-optimize-methods - use a discretization of the control variables. For
the treatment of states, collocation or shooting methods can be applied. While col-
location only considers states at discrete points, multiple shooting keeps only the
states at so called multiple sooting points in the optimization problem, but the full
dynamics of the system are simultaneously treated by an integrator communicating
with the optimization problem. These discretizations and parameterizations together
result in large and structured nonlinear optimization problem.We have chosen to use
the direct multiple shooting optimal control code MUSCOD [9, 34] which is able to
efficiently solve this task. For the identification in the upper level a solution approach
based on non-differentiable optimization approaches seems to be promising since the
function evaluation of this problem involves a whole solution of the lower level opti-
mal control problem. This function can therefore not be expected to satisfy the usual
smoothness assumptions. Derivative information of this function could only be gen-
erated in a black-box finite difference way. The derivative-free optimization codes
COBYLA (Constrained Optimization BY Linear Approximation) and BOBYQA
(Bound Optimization BYQuadratic Approximation) byMichael Powell [47, 48] are
an excellent choice. They are both suitable to handle bounds on the free parameters,
where COBYLA even allows for more general constraints on these parameters. We
have chosen to use them (in the original form, and for the reimplementation in the
version implemented in NLOPT) since they perform particularly well in this con-
text. Other options we tested are e.g. Nelder-Mead simplex methods [44] which are
however much slower.

In the mathematical community, there is a big interest to resolve the natural bi-
level structure of inverse optimal control problems and to develop solution methods
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based on a reformulation of the original problem as one-level problem treating it as a
so-called MPEC (mathematical program with equilibrium constraints). Here the
lower level optimal control problem is replaced by the corresponding first order
optimality conditions, also called Karush-Kuhn-Tucker (KKT) conditions which
essentially state that the first order derivatives of the Lagrangian function (taking
into account objective function and constraints) have to be zero. These are then for-
mulated as constraints of the higher level parameter estimation problem [37]. A lot
of work is performed on the theory of MPECs formulating appropriate optimality
conditions and constraint qualifications (e.g. [16, 54]). If this approach is applied
in the context of direct optimal control methods (or first-discretize-then-optimize-
methods), the optimality conditions must be formulated for the discretized optimal
control problem. One example for an applied method of this type is given in [3]
which is based on a state discretization by collocation and a solution of the resulting
nonlinear programming problem (NLP) by an interior point method, and which is
applied to study human arm movement. In [24] the authors propose an alternative
approach in which the KKT conditions are formulated for an optimal control prob-
lem discretized by a direct multiple shooting technique and which solves the NLP by
sequential quadratic programming (SQP). The method is used to investigate walking
motions of cerebral palsy patients [23] and has also been used by us to analyzes
simple walking models [13].

In [36] pioneering work has been performed in the area of physics-based char-
acter animation addressing a problem similar to the optimal control problem stated
here: instead of the objective function, which is assumed to be known, they iden-
tify unknown model parameters from motion capture data using a nonlinear inverse
optimization technique.

Inverse optimal control is related to learning control [6]. Like inverse optimal con-
trol, learning systems assume the existence of both an optimization objective and an
estimation of performance index [2].While such a performance index is evaluated by
direct numerical optimization in inverse optimal control, in learning control the index
can be evaluated on the basis of physical experiences. In [35] and [17] optimization
and policy learning is combined to find optimal policies from initial human demon-
strations and practice to demonstrate the improved generalization ability compared
to learning from human demonstration alone.

3 Identifying Optimality Criteria of Human Locomotion
on Different Levels

In this section, we give an overview of several inverse optimal control computations
wehaveperformed so far in the context of human locomotion studies.AsFig. 2 shows,
we have investigated whole-body models, template models, and overall locomotion
trajectory tasks. As also shown, the time segments studied in the different cases vary
- from the study of single periodic steps over sequences of steps to entire locomotion
maneuvers.
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Fig. 2 Three different perspectives for the study of human locomotion: whole-body models, tem-
plate models, and models of locomotion trajectory generation

3.1 Optimality Criteria for Whole-Body Motions
on Joint Level

In this section, we briefly present results achieved for the study of motions by means
of whole-bodymodels. These contain the study of a 3D level ground runningmotions
for one subject as well as a study of 2D level ground walking performed for sev-
eral subjects. Both problems are multi-phase problems since the models go through
different phases with different contacts with the environment.

Whole-body 3D running model

This section summarizes the inverse optimal control studies we have performed on
whole-body models of running at a moderate pace. More detailed information about
these results can be found in [41].

The human runningmodel consists of 12 rigid bodies, namely thighs, shanks, feet,
upper arms and lower arms, as well as two combined bodies for pelvis + lower trunk
and upper trunk + head. The model has 25 degrees of freedom (DOF) in flight - 6
global DOF associated with the position and orientation of the pelvis and 19 internal
DOF related to internal joint angles. The system is equipped with torque actuators at
each of the 19 internal DOF replacing the action of the humanmuscles. For geometry
and inertia parameters, anthropometric table data by deLeva [15] is used and adjusted
to the subject’s height andweight. Themodel describes human-like forefoot running,
i.e. there is no flat foot ground contact but only point-like contact with the ball of
foot. This assumption is very realistic for high speed sprinting which we studied
with a similar model in [50], and for slower running speeds it still holds for the type
of runners who tend to run on the forefoot. In the inverse optimal control case we
have studied slower running motions at 10km/h for which tread-mill data has been
collected by our collaboration partners at the University of Rennes using a Vicon
system at 100Hz and 43 markers (see [41]). The fit between modeled and recorded
motion here is achieved on the level of marker positions: marker locations on the
model are computed as functions of the model variables and the distances to the
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Fig. 3 3D human model performing the running motion under investigation

Table 1 Weight factors of base objective function contributions for 3D runner

Hip
torques

Knee
torques

Ankle
torques

Trunk
torques

Shoulder
torques

Elbow
torques

Head
rotation

Step
length

0.56 3.7 4.0 9.1 9.1 5.8 435 337

10.7 3.0 300

0.0 0.0

real marker locations are minimized in the upper level of the inverse optimal control
problem.

Running motions consist of a sequence of alternating flight phases and single-leg
contact phases. Since we assume that the running motion considered in this study
is periodic and symmetric, i.e. right and left steps are assumed to be identical, we
can cut down the study of running to the study of one step to which appropriate
periodicity constraints (including the shift of sides) are formulated (Fig. 3).

As discussed above, an important prerequisite for any inverse optimal control
computation is the establishment of a basis of potential objective functionswhich then
form the base functionsΨi (x(t), u(t), p) for the lower level problem.These functions
are context specific and should reflect the current expert guesses on the problem
under investigation. For running at controlled slow to medium speed (jogging), we
postulate that runners typically are capable to set their speed to the desired value
- which mathematically can be formulated as a constraint - and then adjust their
running style which results from the solution of the optimization problem. For this
mode, we formulate as potential base functions:

• minimization of all 19 joint torques (squared) - these receive individual weights
for each internal DOF, but corresponding left and right torques have the same
weights. This results in 10 different inverse optimal control parameters αi .

• minimization of head motions, compare [49] (e.g. velocities squared) - resulting
in two parameters αi

• maximization of stride length - i.e. one more term.

Step time and phase times are not explicitly minimized or maximized, however it
should be noted that they are of course free variables of the problem and are indirectly
influenced by the objective functions listed above. The identified weights (using the
inverse optimal control codewithBOBYQAin theupper level) are shown in (Table1).

A fundamental drawback of the model used in this study is the small number of
DOF in the back and neck area. These missing mechanical DOF make it hard to
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follow the recorded trajectories precisely which also blurs the subsequent inverse
optimal control analysis. It also makes the formulation of the head related criterion
difficult since here the head is rigidly connected to the upper trunk. This drawback is
addressed in our more recent whole-body models for walking presented in [18, 19]
and also used in the next section. Corresponding running models with more DOF
are currently being developed. The distance minimization on marker level makes
it hard to analyze which DOF and which functions might contribute to improving
the fit, and a distance minimization on the level of joint angles might facilitate the
interpretation.

Whole-Body 2D Walking Model

To analyze walking motions taking into account changing contacts with the ground,
we consider a planar whole-body human model that consists of 14 rigid segments
connected by 13 rotational joints: a pelvis, two trunk segments, a head, two thighs,
two shanks, two feet, two upper arms and two lower arms. Including a floating base
with 3 DOFs this results in a full-body model with 16 planar DOF. We assume that
motions of the human body are driven by torques in the joints that summarize the
action of all related muscle forces. Contacts of the feet with the ground are described
by additional constraints. Discontinuities due to impacts which are assumed to be
fully inelastic are computed based on conservation of angular momentum equations.
As before, we assume human walking to be periodic and symmetric and therefore
we can model a sequence of several steps by just one step with proper periodic
state constraints on the boundaries. Foot contact in walking is more complex than in
running, since the possibilities of flat foot, heel only and toe only contact have to be
considered, and as a consequence, each of these steps is divided in four continuous
phases with varying contact sets and two discontinuities at heel and hallux touch
down. All phase durations are left free and phase switching conditions are specified
implicitly and therefore the identification procedure allows to identify optimality
criteria which are not only related to motion in space but which are also related to
timing issues.

We consider seven different optimality criteria as base functions. Four criteria are
devoted to the minimization of squared joint torques in different parts of the body
(legs, arms, hip, head+torso) one is meant for head stabilization, one is maximizing
the step length, and the last one is maximizing the step frequency. All criteria are
scaled such that they have approximately the sameorder ofmagnitude.As a pre-study,
we have investigated the effect on the model of each of these functions separately.
Not surprisingly, the motion maximizing the step frequency results in the fastest
step and the motion maximizing the step length results in the largest step. More
interesting is the observation that a minimization of squared joint torques in the
legs results in a bend posture whereas a minimizing the squared torques in the arms
results in an overstretched back. For a more detailed definition based on formulas
and a visualization of the different elementary motions we refer to [14].
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We focus on unconstrained and straight human walking on level ground (i.e. no
obstacles, predefined footholds or curves), using motion capture data collected by
our KoroiBot project partners from CIN, Tübingen, Germany (M. Giese and team)
and publicly available in the KoroiBot motion capture data base, set up by our project
partner KIT, Karlsruhe, Germany (T. Asfour and team) [32, 39]. The data have been
collected with a Vicon system at a frame rate of 100Hz. We consider six different

Fig. 4 Optimal motions for the identified objective function weights and the corresponding
reference motions. Computed motions are shown by multi-colored walkers (left), their corre-
sponding reference motion by the single-colored walkers (corresponding to the head color) on the
right. Each motion is visualized as a sequence of five screen-shots, arranged next to each other.
A corresponding video is available online: http://orb.iwr.uni-heidelberg.de/ftp/CleverEtAl_IOC_
wholebody

http://orb.iwr.uni-heidelberg.de/ftp/CleverEtAl_IOC_wholebody
http://orb.iwr.uni-heidelberg.de/ftp/CleverEtAl_IOC_wholebody
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Table 2 Weight factors of base objective function contributions for different subjects
Subject Hip torques Head and

torso torques
Leg torques Arm torques Head stab. Step length Frequency

S1 1.61 1.53 1.52 0.30 0.71 1.08 0.25

S2 1.44 1.55 1.53 0.51 0.35 1.33 0.29

S3 0.73 0.41 1.75 0.66 0.59 2.64 0.23

S4 1.59 0.63 0.80 0.76 1.62 1.13 0.48

S5 0.87 1.66 1.17 0.95 0.73 0.88 0.74

S6a 1.54 0.77 1.18 1.44 0.79 1.12 0.16

S6b 1.90 1.51 1.47 0.51 0.38 0.86 0.38

subjects with significantly different total height. From each of the trials (one per
subject, two for subject 6) we extract the first quasi periodic step on the right leg,
see Fig. 4, right (single colored walkers). As distance minimization on the level of
joint angles facilitates the interpretation of inverse optimal control results, 3Dmarker
positions are transformed via theMMM framework [52] to quasi-measured positions
and joint angles for the DOF of our planar walking model to which then a fit of the
modeled motion is performed.

The identified objective weights are presented in Table2 and the resulting motion
in Fig. 4, left (multi-colored walkers). The head color of the multi-colored walkers
(computedmotions) coincides with the color of the single-colored walkers represent-
ing the corresponding reference motion. Computations here have been performed
using COBYLA in the upper level. The fitting results are very good, except for sub-
ject 5, where the phase transition time of phase 1 is reproduced less accurate than
for the others.

It is not surprising that for the different walking styles of the different subjects
no unique combination of weights can be found. However, looking at the correlation
matrix all entries show a correlation coefficient between 0.7 and 1.0. This means that
even though we can not identify the objective function for all walking motions, we
can observe that there exists a significant correlation between the individual ones.

3.2 Optimality Criteria for Locomotion Trajectory Selection

In this section we study the generation of the overall locomotion trajectory, i.e. how
persons choose to move from starting point and orientation A to a given end point
and orientation B. For this question, we can take a high level perspective at walking
which results in a very simplified model representing the person only as one single
body described by its global position and orientation in the walking plane. All details
about internal joint movements are ignored for this purpose. The understanding of
the natural human locomotion trajectory selection is important for many applications
in computer animation, humanoid robotics, and human interaction behavior, see
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Fig. 5 The left part of the figures shows a person and her orientation in the walking plane (a),
the locomotion model used for inverse optimal control consisting of one body only (b), and the
extended model with a body and a separate head (c). The right part of the figure shows the five
different locomotion tasks (1–5, green: start, red: target) investigated in inverse optimal control with
dashed lines for the data of the 5 subjects and a solid red line for the modeled optimal trajectory

Table 3 Weight factors of base objective functions for locomotion trajectory generation

Time Forward
acceleration

Orthogonal
acceleration

Rotational
acceleration

Orientation to
target

1.0 1.2 1.7 0.7 5.2

e.g. [25, 33, 45]. Also ignoring the joint level actions there still is redundancy in
locomotion since there is an infinite number of ways to go from A to B.

Human and human-like locomotion is omnidirectional in a partial way - which
means that in contrast to wheeled systems, humans are in principle capable to move
in all different directions in the walking plane, however they have a clear preference
for walking in forward direction due to perception and lower limb anatomy. These
capabilities and preferences have a direct influence on the locomotion trajectory
selection. It can be observed that for longer trajectories humans always tend to move
in forward directionwhile for shorter trajectories also sidewards, backward or oblique
steps are taken. Sometimes humans turn on the spot, but it is more likely that they do
this at the beginning than at the end or in the middle of a motion. There also seems
to be a clear preference to look towards the goal early on. Can this behavior also be
described as an optimization problem in the same sense as walking generation on
joint level?

In [42] we have investigated the optimality criteria of the overall locomotion tra-
jectory generation by inverse optimal control. The state variables used for this model
are its position and orientation in the walking plane, as well as the corresponding
velocities and rotational velocities, respectively (see Fig. 5 (left)). The model in this
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case does only describe the kinematic relationships in the model and no dynamics.
There are also no directly produced forces and torques related to the state variables
in this model since they represent exactly the unactuated DOF of the human body,
and forces and torques only appear indirectly by the interaction of the external limbs
with the environment. The control variables used in this model are the corresponding
accelerations in forward, sidewards and rotational direction. We have postulated the
following base functions for inverse optimal control:

• minimization of total time from A to B
• minimization of forward acceleration squared
• minimization of sidewards (orthogonal) acceleration squared
• minimization of rotational acceleration squared
• minimization of difference between current orientation and direction to goal
squared.

We have formulated the inverse optimal control problem simultaneously for five
different subjects all performing motions to five different target positions and orien-
tations (see Fig. 5 (right)) and used the bilevel formulation with BOBYQA as solver
in the upper level. We have identified weights for the base functions above, which
allowed to explain all 25 motions at the same time (See Table3). The last term in
the objective function describes an origin-target asymmetry while all others repre-
sent symmetric properties. With symmetry we mean in this case that the direction of
motion on a given path does not play a role: the terms related to timing and accel-
erations would produce the same path for walking from A to B as for walking from
B to A, just the timing would be exactly inversed. For the last term however, the
walking direction on the path is a crucial factor, and it therefore plays an important
role to explain why people are not walking back on their paths. Intuition as well
as the resulting clearly non-zero weight tell us that this asymmetry is important.
The dependency of this asymmetry on different parameters was investigated in more
detail in [51].The dominant reason for this asymmetry is obviously perception. In
fact, we do not want to turn our body towards the target but we want to see the target
which then induces the orientation of the body, closely following the orientation of
the head. In order to investigate this connection between head and trunk orientation
further, we have developed an extension of the above model with a second segment
for the head sitting on top of the body segment. i.e. they share the same position, but
have different orientations [26]. While the orientation of the head is assumed to be
controlled, the orientation of the trunk follows closely via a passive spring-damper-
like element. We have identified parameters of the model based on experiments in
[26], but the solution of the inverse optimal control problem for this extended model
is subject of current research.
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3.3 Optimality Criteria for Walking Motions of Template
Models

Besides the two previously presented levels of modeling locomotion (whole-body
and locomotion trajectory) so called template models are an interesting alternative.
Template models describe an abstract version of the embodiment under investigation
and definemotion on the basis of some relevant quantities, e.g. the center of mass, the
foot placement, the phase timing. This offers the possibility to study both, motion
and locomotion trajectories over several steps on the one hand and internal body
characteristics such as swing foot trajectories, torso orientation and phase timing on
the other hand. Furthermore, due to their abstract architecture, template models are
suitable to describe motion for very different embodiments and are therefore a good
candidate for transfer models between humans and humanoids.

In this section, we consider the 3D dynamical template model that we have intro-
duced in [11, 12] to describe and analyze human locomotion. The model consists of
two legs with prismatic joints combined with damped series elastic actuators (SEA)
instead of knees, two point-masses as feet and a reactive mass as upper body. Motion
is described on the basis of center of mass trajectory, foot trajectories and upper body
orientation. We consider a particularly interesting constrained environment, namely
a step stone scenario, which is also very difficult, because it combines several steps
of different step length, direction and duration for which common optimality criteria
have to be found.

In Sect. 4 we then use the same template model with robot specific parameters to
generate similar walking motions for different robots in a new environment.

The objective function to be determined is parameterized by twelve basis function,
that depend on the states, the controls, and one optimality parameter which defines
the optimal ratio of double and single support:

• minimization of the SEA actuation in the stance foot,
• minimization of the SEA actuation in the swing foot,
• minimization of hip torque of the swing foot,
• minimization of angular momentum in x-direction,
• minimization of angular momentum in y-direction,
• minimization of vertical center of mass oscillations,
• minimization of absolute swing foot velocity,
• minimization of the planar distance between the foot position at touch down and
the capture point,

• minimization of the periodicity gap in center of mass velocities,
• minimization/maximization of overall single support duration,
• minimization of absolute swing foot velocity at touch down,
• tracking of ratio between sub-sequent double and single support phase to constant
but unknown parameter.



178 K. Mombaur and D. Clever

Table 4 Weight factors of base objective function contributions for 3D template model

act.
stance

act.
swing

hip
tor.

AM
x

AM
y

CoM
osc.

foot
vel.

CP peri ss
dur.

vel.
TD

ratioα ratiop

1.0 1.3 0.8 0.92 0.93 0.91 0.91 1.35 1.28 0.51 0.98 0.1 1.61

Fig. 6 Identification of optimality criteria for a 3D template model. The identified motion of
interest is shown by the 3D template model. The reference motion (extracted from motion capture
data) is sketched by light colored lines as legs and a small ball as head. The head trajectory of the
motion (which is not an explicit state) is only plotted for the reference solution and is meant to
simplify the comparison of the torso orientation. A corresponding video is available online: http://
orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016

All criteria are scaled such that they have approximately the same order ofmagnitude.
For amoredetailed definition including themathematical formulaswe refer the reader
to [12].

For the identification of optimality criteria, or to be more precise, of the optimal
weights and optimality criteria related parameters, we rely on a least square fit of
the model trajectories of the center of mass (CoM), feet, torso orientation, and phase
durations to the corresponding reference trajectories and reference times.

As in the previous section, we use motion capture and subject specific data,
recorded in Tübingen and published in the KoroiBot motion database, but here of
course data for step stone scenarios is used. The reference motion starts, when the
rear leg is about to lift off from the first step stone while the front leg is already on
the second tread. The motion ends after four full steps, when the front leg is on the
last step stone and the rear leg is about to take off again.

The weights and parameters optimized by inverse optimal control (based on
BOBYQA), are given in Table4.

With the identified weights, the average deviation between optimized and refer-
ence motion is reduced to quantities in the order of 10−2 which means that phase
durations, feet trajectories, and x-y coordinates of the center ofmass are reconstructed
to a satisfying degree. The torso orientation and the vertical CoM velocities have the
greatest relative difference. However, this is due to their small scaling and can be
changed by adjusting the corresponding weight vector.

The optimal motion for the identified objective function, together with indicators
of the reference motion is visualized as motion sequence in Fig. 6.

http://orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016
http://orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016
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Fig. 7 Model flexibility. Due to its reduced and abstract architecture the 3D template model is
suitable to explain human and humanoid walking over several steps in very different scenarios

Fig. 8 From inverse optimal control to optimal control: The aim is to transfer optimality princi-
ples identified for human locomotion to humanoid robots in order to generate robot locomotion. This
takes the different dynamic properties of humans and robots into account since objective functions
are applied to different models

Due to its abstract and reduced architecture this 3D template model is suitable to
explain human and humanoid walking over several steps in very different scenarios,
as walking on level ground, on slopes, up and down stairs or even around curves, see
Fig. 7.

4 Use of Inverse Optimal Control Results for Robots

One important application area for the results of inverse optimal - besides gaining
a deeper understanding of human movement - is robotics. The identified optimality
criteria for human motions can be used for a generation of new walking motions for
a robot, as shown in Fig. 8. The principal idea is to apply these criteria to a model
of the robot at the same level as the model used for identification, and to formulate
appropriate boundary conditions to describe the specific walking task. This approach
is particularly advantageous over a direct transfer of trajectories since it can handle
differences in embodiments and environments in a natural way. Furthermore, the
approach of identifying weights for physically meaningful basis optimality criteria
even allows for an intuitive handling of the differences with respect to kinematic and
dynamic bounds even though some care has to be taken to address them properly.
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A first attempt to transfer optimality criteria for motions from humans to robots
has been made for the optimization of locomotion trajectories discussed in Sect. 3.2,
see also [42]. The optimal solutions generated for the human model never bring the
human to any of its position, velocity or acceleration constraints in forward, orthog-
onal or rotational limits, since we are only considering regular walking motions,
so we are observing an unconstrained optimum. However, if the same optimality
criteria are applied to the corresponding model of a humanoid robot (in this case
HRP-2), limits - as for example in the velocities - are very quickly reached. This has
complex consequences: if the limit e.g. of the forward velocity is reached, this does
not only mean that the forward velocity can not be further increased, but also that the
same criterion which in the quasi unconstrained case produced a motion essentially
moving in forward direction may now also produce the emergence of an orthogonal
component and the robot would end upmoving in oblique direction where the human
moved forward. This of course changes the nature of themotion completely andmust
be avoided by appropriate measures. The general idea applied here was to modify
the objective function parameters αi such that the resulting solution automatically
stays inside the velocity bounds without reaching them. We were able to achieve a
similar balance between time minimization and the fast angle change term on one
side and the terms minimizing acceleration of the other side by applying a simple
scaling rule: we estimated that humans are about four times as fast as the HRP-2
robot, and therefore scale the weight parameters α1 − α3 for the robot by this factor.
The optimal control problem with the modified parameters has then been solved,
which lead to quite human-like locomotion trajectories for HRP-2, as shown in [42].

As mentioned before, due to their abstract architecture, template models are a
suitable candidate to be used for a transfer between humans and humanoids. To run
a computed robot motion on the real platform, the computed trajectories serve as
control variables of the robot specific whole-body motion generation tools. In the
following, we present an example for such a procedure based on the analyzed step
stone scenario (see Sect. 3) and two very different humanoid robots. The first robot,
the iCub platform of Heidelberg University (HeiCub), has 21 degrees of freedom
and consists of an upper body, a hip and two legs [28, 40]. It does neither have arms
nor a head and is therefore quite similar to the considered template model. It has
a total height of 0.97m and a total mass of 26kg. The second robot, which is the
HRP2-2 robot mentioned above, is a full humanoid with 36 degrees of freedom. It
has a total height of 1.54m and a total mass of 58kg [29, 30]. We set up two different
step stone scenarios, one for each robot. On the level of template models, differences
between the three embodiments (human model, HeiCub, HRP-2) and the three step
stone scenarios can be directly taken into account by adjusting the model parameters,
model constraints and environment constraints.

Performing motion transfer based on optimality, it is desirable to transfer the
identifiedweights of human optimality criteria as directly as possible to the humanoid
objective function. However, as robots have much harder kinematic and dynamic
constraints than humans (with respect to joint velocities and accelerations, joint
torque etc.), a direct transfer of objective weights usually drives the robot model to
some of its bounds. Those active constraints can change the nature of the motion



Inverse Optimal Control as a Tool to Understand Human Movement 181

significantly, as we have already seen above in the case of locomotion trajectory
optimization. Therefore, it is necessary to identify transfer rules in terms of weight
re-scaling which prevent the model to be stuck on a certain bound which was not
active in the human model but lead to some balancing with respect to the constraints.

For the first robot model (HeiCub) the onlymodificationwe introduce is a division
of the timeminimization weight by two, to take into account the ratio describing how
much slower the robot moves than the human. In addition to a decrease of the weight
for time minimization, for the second robot model (HRP-2) we exploit the fact that
in previous experiments (using a standard pattern generator) the robot HRP-2 has
successfully crossed the considered step stone scenario with a ratio of double to
single support of 1/7 and include this knowledge in the corresponding parameter.
In scenario 1 the topology of the step stones is quite similar to the human example,
except for the smaller distances and the fact, that the robot has to start the motion
with the other leg. Due to the characteristics of the template model this issue does
not require any additional modifications, neither in the dynamics of the model, nor
in the constraints, nor in the objective. In the second example, HRP-2 is asked to
manage steps with a step height of 5cm which is twice as much as the highest step in
the training step stone scenario. This environmental difference is taken into account
by dividing the weight for swing foot SEA actuation by two such that it allows for
appropriate leg shortening which is necessary to step on a 5cm higher step stone.

Considering those transfer rules, we now use the same optimal control model
which we have used in the lower level of the inverse optimal control approach, but
adjust model parameters and constraints to the robot properties, for more details
see [12]. The results of these computations are optimal trajectories for the center of
mass, the feet, the torso angles and the phase durations for the two robot models, see
Fig. 9. Note, that the computed motions are not meant to be run open loop on the
robot. Rather they substitute existing methods (e.g. based on the table cart model) to
generate the input for the robot specific whole body motion generation tools.

The situation gets even more challenging for whole-body models. The optimality
criteria identified in Sect. 3.1 could now easily be used to generate motions in new
situations for models of humans, also with different parameter distributions. This
might be very interesting for the fields of computer animation and biomechanical
movement studies. However it gets more difficult if robots are concerned, since
humans and robots have not only very different dynamic characteristics in terms

Fig. 9 Robot templatemotions as result of an optimal control problem in terms of CoMand feet
trajectories, torso orientation and phase durations. Objective weights, model parameters and bounds
are adjusted to the constraints of the two robots HeiCub (red) and HRP-2 (gray). A corresponding
video is available online: http://orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016

http://orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016
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of geometry and mass distribution (which would be taken care of by the different
dynamic models used), but also very different kinematic and dynamic constraints.
These are not only caused by hardware limitations, e.g. motors which are weaker
than muscles and therefore produce smaller torques or smaller joint range or velocity
limits, but also by the control software, which e.g. heavily constrains the ZMP.
The effect of this can be clearly seen when comparing results of minimizing joint
torques for a human model [18] and for an HRP-2 model [31]. The behaviors are
fundamentally different especially if the ZMP bounds for the robot are introduced.
It is of course not a very satisfying approach to put a lot of effort into the solution of
the inverse optimal control problem to identify the objective function and then use
some heuristics in order to adjust the function for the new system. We therefore have
started a detailed study on defining the similarity ofmotions formodels with different
dynamic and kinematic constraints. The study consists in an online survey on the
perceived similarity of motions which can be accessed on [43] and the following
analysis. We expect to be able to derive general rules for similarity which will then
serve as a basis for the formulation of transfer rules between walking trajectories on
joint level, and also between optimality criteria.

5 Conclusions and Outlook

In this paper,we have discussed inverse optimal control as a tool to identify optimality
criteria of human movement, based on the fundamental hypothesis that everyday
and well trained human movement is optimal in some sense. The mathematical and
numerical foundations of the algorithms have been presented. We have also given an
overview of previous inverse optimal control studies of human walking and running
motions. Human locomotion is a very diverse movement task and can take place in
many different terrains and situations, as studied extensively in the European project
KoroiBot.

The presented inverse optimal control studies help to shed light on human loco-
motion from different perspectives. Whole-body dynamic models of walking and
running allow to study optimality of motions on joint level by considering the com-
plex nonlinear kinematic and dynamic interactions of the relevant segments of the
human body, typically looking at single steps in the cyclic or close to cyclic move-
ments. On the other end of the spectrum, single entity kinematic models are used
to study the overall locomotion trajectory selection considering the entire walking
maneuver from origin to target. In between those two, template models provide a
simple description of walking behavior while allowing to perform limited studies
on the kinematics and dynamic interaction of segments and can be applied to single
steps, but also to sequences of many steps. Along with the model descriptions also
the possibilities to formulate objective functions change. Corresponding base objec-
tive functions have been formulated in each case, and the inverse optimal control
task generally consisted in identifying the correct weights, i.e. the contribution of
each base function to the overall objective underlying a measurement. For all three
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perspectives we have presented results giving insights into the optimality properties
of the movement. We also have treated different walking scenarios such as walking
and running on flat ground, on step stones and stairs, in straight lines an on arbitrary
locomotion trajectories.

Besides contributing to the knowledge of human walking, such identified opti-
mality criteria can be used to generate human walking movements in computer
animations or in biomechanical or rehabilitation studies, but they are also very inter-
esting for walking generation for humanoid robots. We have discussed some of the
research performed to transfer identified optimality criteria for humans to humanoid
robots based on the different modeling levels, including the challenges of adjusting
the weights in a systematic way such that differences in kinematic and dynamic
inequality constraints between humans and robots are considered.

There are still many open questions and ongoing research in the context of inverse
optimal control of human movement and its transfer to robots.

We are currently working on systematic studies of walking motions based on
2D whole body models and their 3D extensions (see [19]). The goal is to have a
full comparison of optimality criteria for walking, not only for different subjects,
as shown in Sect. 3.1, but also for different walking scenarios, also including stairs,
slopes and step stones in addition to level ground.We also plan to include ourwalking
models with compliance modulation in the joints [27] in the inverse optimal control
studies. Another possible path to pursue is the inclusion of muscle models in the
whole-body models for inverse optimal control which however would represent a
significant boost of complexity. Also the walking investigations based on template
models will be continued for all kinds of terrains, since in particular the type of
template model used here presents a very good compromise between simplicity and
consideration of dynamic intersegmental effects.We plan to include further objective
function terms related to efficiency, stability and timing in the future.

The most pressing issue, however, is the development of appropriate transfer
rules for trajectories and optimality criteria from humans to humanoids taking into
account the different kinematic and dynamic limits (i.e. inequality constraints). This
question can not be answered by the research on retargeting performed in computer
animation, since it does not address the feasibility issue, but in general only the dif-
ference in kinematic and sometimes dynamic segment parameters between different
embodiments (forming part of the equality constraints). Asmentioned in the previous
section, we have developed a similarity survey tool [43], with which we are currently
evaluating the dominant factors for perceived similarity between motions of models
with different kinematic and dynamic limitations. This will serve as a basis to define
appropriate norms that allow to define closeness of two motions - which can not
be identical due to different constraints - in the sense of this perceived similarity
measure.

Acknowledgements The research leading to these results has received funding from the EU sev-
enth Framework Program (FP7/2007-2013) under grant agreement no 611909 (KoroiBot), the Ger-
man Excellence Initiative and the French ANR project Locanthrope. We thank the Simulation and
Optimization group of H.G. Bock at Heidelberg University for providing the optimal control code
Muscod-II.



184 K. Mombaur and D. Clever

References

1. M. Ackermann, A.J. van den Bogert, Optimality principles for model-based prediction of
human gait. J. Biomech. 43(6), 1055–1060 (2010)

2. N. Aghasadeghi, T. Bretl,Maximum entropy inverse reinforcement learning in continuous state
spaces with path integrals, in Proceedings of IEEE/RSJ IROS (2011)

3. S. Albrecht, C. Passenberg, M. Sobotka, A. Peer, M. Buss, M. Ulbrich, Optimization criteria
for human trajectory formation in dynamic virtual environments. in Haptics: Generating and
Perceiving Tangible Sensations, LNCS (2010)

4. R.M. Alexander, The gaits of bipedal and quadrupedal animals. Intern. J. Robot. Res. 3(2),
49–59 (1984)

5. R.M. Alexander, Optima for Animals (Princeton University Press, New Jersey, 1996)
6. C.G. Atkeson, S. Schaal, Learning control in robotics. IEEE Robot. Autom. Mag. 17, 20–29

(2010)
7. C.G. Atkeson, C. Liu, Trajectory-based dynamic programming, in Modeling, Simulation and

Optimization of Bipedal Walking Cognitive Systems Monographs, vol 18 (Springer, Berlin
Heidelberg, 2013), pp. 1–15

8. B. Berret, E. Chiovetto, F. Nori, T. Pozzo, Evidence for composite cost functions in arm
movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7(10) (2011)

9. H.G. Bock, K.-J. Plitt, A multiple shooting algorithm for direct solution of optimal control
problems, in Proceedings of the 9th IFACWorld Congress, Budapest, (International Federation
of Automatic Control, 1984), pp. 242–247

10. T. Buschmann, S. Lohmeier, M. Bachmayer, H. Ulbrich, F. Pfeiffer, A collocation method for
real-time walking pattern generator, in Proceedings of the IEEE-RAS International Conference
on Humanoid Robots (2007)

11. D. Clever, K. Mombaur, A new template model for optimization studies of human walking
on different terrains, in 2014 14th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), (IEEE, 2014), pp. 500–505

12. D. Clever, K.Mombaur, An inverse optimal control approach for the transfer of humanwalking
motions in constrained environment to humanoid robots, in Robotics: Science and Systems
(RSS) (2016)

13. D. Clever, K. Mombaur, On the relevance of common humanoid gait generation strategies
in human locomotion - an inverse optimal control approach, in Modeling, Simulation and
Optimization ofComplexProcesses -HPSC2015, ed. byX.P.Hoang,R.Rannacher, J. Schlöder,
H.G. Bock (Springer, Heidelberg, 2016) (to appear)

14. D. Clever, R.M. Schemschat, M.L. Felis, K. Mombaur, Inverse optimal control based identifi-
cation of optimality criteria in whole-body human walking on level ground, in Proceedings of
International Conference on Biomedical Robotics and Biomechatronics (BioRob2016) (2016)

15. P. De Leva, Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. biomech.
29(9), 1223–1230 (1996)

16. S. Dempe, N. Gadhi, Necessary optimality conditions for bilevel set optimization problems.
Glob. Optim. 39(4), 529–542 (2007)

17. A. Dörr, N. Ratliff, J. Bohg, M. Toussaint, S. Schaal, Direct loss minimization inverse optimal
control, in Proceedings of Robotics Sciece and Systems (RSS) (2015)

18. M.L. Felis, K.Mombaur, Synthesis of full-body 3-D human gait using optimal controlmethods,
in IEEE International Conference on Robotics and Automation (ICRA 2016) (2016)

19. M.L. Felis, K. Mombaur, A. Berthoz, An optimal control approach to reconstruct human gait
dynamics from kinematic data, in IEEE/RAS International Conference on Humanoid Robots
(Humanoids 2015) (2015), pp. 1044–1051

20. T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed math-
ematical model. J. Neurosci. 5, 1688–1703 (1984)

21. T. Geijtenbeek, M. van de Panne, A.F. van der Stappen, Flexible muscle-based locomotion for
bipedal creatures. ACM Trans. Graph. 32(6) (2013)



Inverse Optimal Control as a Tool to Understand Human Movement 185

22. H.Geyer, H.Herr, Amuscle-reflexmodel that encodes principles of leggedmechanics produces
human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3),
263–273 (2010)

23. K.Hatz, EfficientNumericalMethods forHierarchicalDynamicOptimizationwithApplication
to Cerebral Palsy Gait Modeling. Ph.D. thesis, University of Heidelberg (2014)

24. K. Hatz, J.P. Schlöder, H.G. Bock, Estimating parameters in optimal control problems. SIAM
J. Sci. Comput. 34(3), 1707–1728 (2012)

25. H. Hicheur, Q.-C. Pham, G. Arechavaleta, J.-P. Laumond, A. Berthoz, The formation of trajec-
tories during goal-oriented locomotion in humans I: a stereotyped behaviour. Eur. J. Neurosci.
27(8), 2376–2390 (2007)

26. M. Horn, M. Sreenivasa, K. Mombaur, Optimization model of the predictive head orientation
for humanoid robots, in IEEE/RAS International Conference onHumanoid Robots (Humanoids
2014) (2014)

27. Y. Hu, K. Mombaur, Analysis of human leg joints compliance in different walking scenarios
with an optimal control approach, in IFAC InternationalWorkshop on Periodic Control Systems
(PSYCO 2016) (2016)

28. Y. Hu, K. Mombaur, F. Nori, Using optimal control to generate squat motions for the humanoid
robot iCub with SEA, in Proceedings of Dynamic Walking (2015)

29. S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, K. Tanie, A running controller of humanoid biped
HRP-2LR, in ICRA (2005)

30. K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, T. Isozumi,
Design of prototype humanoid robotics platform for HRP, in 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3 (IEEE, 2002), pp. 2431–2436

31. K.H. Koch, K. Mombaur, P. Souères, Studying the effect of different optimization criteria
on humanoid walking motions, in Simulation, Modeling, and Programming for Autonomous
Robots, Lecture Notes in Computer Science, ed. by I. Noda, N. Ando, D. Brugali, J.J. Kuffner,
vol. 7628 (Springer, Berlin Heidelberg, 2012), pp. 221–236

32. KoroiBot Motion Capture Database. https://koroibot-motion-database.humanoids.kit.edu/
(2016) Last visited, May 2016

33. J.P. Laumond, G. Arechavaleta, T.-V.-A. Truong, H. Hicheur, Q.-C. Pham, A. Berthoz, The
words of the human locomotion, in Proceedings of 13th International Symposium on Robotics
Research (ISRR-2007) (Springer Star Series, 2007)

34. D.B. Leineweber, I. Bauer, H.G. Bock, J.P. Schlöder, An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization - Part I: theoretical aspects
(2003), pp. 157 – 166

35. S. Levine, V. Koltun, Guided policy search, in ICML (2013)
36. C.K. Liu, A. Hertzmann, Z. Popovic, Learning physics-based motion style with inverse opti-

mization. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 1071 (2005)
37. Z.-Q. Luo, J.-S. Pang, D. Ralph,Mathematical Programs with Equilibrium Constraints (Cam-

bridge University Press, Cambridge, 1996)
38. J. Mainprice, R. Hayne, D. Berenson, Predicting human reaching motion in collaborative tasks

using inverse optimal control and iterative re-planning, in 2015 IEEE International Conference
on Robotics and Automation (ICRA), (IEEE, 2015), pp. 885–892

39. C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, T. Asfour, The KIT whole-body human
motion database, in IEEE International Conference onAdvancedRobotics (ICAR2015) (2015),
pp. 329–336

40. G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. Von Hofsten, K. Rosander,
M. Lopes, J. Santos-Victor et al., The iCub humanoid robot: an open-systems platform for
research in cognitive development. Neural Netw. 23(8), 1125–1134 (2010)

41. K.Mombaur, A.H. Olivier, A. Crétual, Forward and inverse optimal control of bipedal running,
inModeling, Simulation andOptimization of BipedalWalking, Cognitive SystemsMonographs,
vol. 18 (Springer, Berlin Heidelberg, 2013), pp. 165–179

42. K. Mombaur, A. Truong, J.-P. Laumond, From human to humanoid locomotion an inverse
optimal control approach. Auton. Robots 28(3), 369–383 (2010)

https://koroibot-motion-database.humanoids.kit.edu/


186 K. Mombaur and D. Clever

43. Motion Similarity Study. https://orb.iwr.uni-heidelberg.de/ratingapp/similarity/ (2016) Last
visited, May 2016

44. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313
(1965)
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Versatile Interaction Control and Haptic
Identification in Humans and Robots

Yanan Li, Nathanael Jarrassé and Etienne Burdet

Abstract Traditional industrial robot controllers are typically dedicated to a specific
task, while humans always interact with new objects yielding unknown interaction
forces and instability. In this chapter, we examine the neuromechanics of such con-
tact tasks. We develop a model of the necessary adaptation of force, mechanical
impedance and planned trajectory for stable and efficient interaction with rigid or
compliant surfaces of different structures. Simulations demonstrate that this model
can be used as a novel adaptive robot controller yielding versatile control in repre-
sentative interactive tasks such as cutting, drilling and haptic exploration, where the
robot acquires a model of the geometry and structure of the surface along which it
is moving.

1 Introduction

Current industrial robots generally work in well-controlled environments and are
mostly involved in non-contact tooling tasks such as welding and gas cutting, where
the robot does not physically come in contact with the tooled object. However,

This work was funded in part by the European Community under the grants EU-FP7 PEOPLE-
ITN-317488-CONTEST, ICT-601003BALANCE, ICT-611626SYMBITRON, andEU-H2020
ICT-644727 COGIMON.

Y. Li · E. Burdet (B)
Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
e-mail: e.burdet@imperial.ac.uk

Y. Li
e-mail: yanan.li@imperial.ac.uk

E. Burdet
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore,
Singapore

N. Jarrassé
CNRS, Sorbonne University, UPMC Univ Paris 06, UMR 7222, ISIR INSERM, Paris U1150
Agathe-ISIR, France
e-mail: jarrasse@isir.upmc.fr

© Springer International Publishing AG 2017
J.-P. Laumond et al. (eds.), Geometric and Numerical Foundations of Movements,
Springer Tracts in Advanced Robotics 117, DOI 10.1007/978-3-319-51547-2_9

187



188 Y. Li et al.

new robotic applications require interaction with unknown environments and human
beings [1]. Such interactions can generate instability and large forces, e.g. when
working with a tool.

Surface exploration is one of the few applications where current robot manip-
ulators make purposeful contact with the external objects. Surface exploration is
performed either using tactile sensing [2–6] or aided by vision [7, 8] but utilises
minimal contact forces. It aims at either forming a 3D model of the object [9–11]
or determining the texture of the object’s surface [12], for which dedicated sensors
and controls have been proposed [13, 14]. Thus, the control of the robot during
non-contact tool tasks and surface exploration is relatively easy as it only deals with
the robot kinematics and dynamics (which are assumed to be known), and can use
specialised sensors.

In contrast, the challenge in controlling contact tool tasks like polishing, carving,
cutting, drilling or writing is to follow a given surface profile while maintaining a
significant force on the surface. A contact-tool task is influenced by the dynamics
of the robot, and also by that of the tooled surface, which is normally unknown.
Furthermore, the presence of a large contact force makes the task highly unstable to
disturbances caused by friction, irregularities in the surface or noise in the robotmotor
output. The robot must maintain the right impedance to counter these instabilities.
As contact tooling usually involves penetration of the object’s surface, vision cannot
help in determining its irregularities and variations.

When the tooling task and environment are well known, specific controllers can
be implemented to perform the task. For example, a drilling task may be achieved
with stiff position control or impedance control [15], though the task instability will
require careful tuning of impedance. Also, exploration of simple surfaces may be
achieved using hybrid control [16] by controlling position tangential to the surface
and force normal to it, but a stable interaction requires an accurate model. However,
the challenge is to develop a controller able to handle a variety of contact tasks
with minimal prior knowledge about the tooled surface while interacting with the
unknown and possibly inhomogeneous material.

Compared to current robots, humans are very versatile and interact with all kinds
of objects without requiring specialised controllers. To illustrate this, humans can
learn to compensate for novel force fields in a few trials [17–19]. In order to under-
stand the way humans deal with unstable dynamics typical of tool use, studies inves-
tigated how subjects adapt arm movements in negative damping [20] and negative
stiffness [21, 22] environments. The results revealed that humans automatically learn
to activate muscles in order to compensate for the environment force and instabil-
ity [23, 24]. Computational modelling of this human motor adaptation capability
gave rise to the first controller able to simultaneously adapt force and mechanical
impedance in the presence of unknown dynamics [25, 26]. A theoretical analysis
of this novel adaptive controller and robotic implementations demonstrated how it
can deal with unstable situations typical of tool use and gradually acquire a desired
stability margin [26].

Humans can explore unknown objects with the hand even blindly without any
difficulty. How to realise such versatile, flexible control with a robot that has to deal
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with rigid or soft objects of unknown shape? If the planned trajectory enters the
surface, the human-like robotic control behaviour such as in [25, 26] will tend to
increase interaction force until the actuator limits are reached or the arm or environ-
ment breaks. To address this issue, we proposed in the robotic adaptive behaviour
of [27, 28] that the planned trajectory is deformed to comply to the rigid object and
lower the contact force. Interestingly, recent studies [29, 30] provide evidence that
a similar adaptation is occurring when humans interact with a stiff environment.

In this chapter, we take the opportunity offered by these recent studies to shed light
on the manner in which humans interact with unknown objects, suggesting how they
modify the planned trajectory in order to comply with rigid environments and com-
bine force and trajectory adaptation. We develop and demonstrate a robotic model of
the concurrent adaptation of impedance, force and planned trajectory in humans nec-
essary to deal with contact tasks. We show that our computational model has similar
adaptive properties as exhibited by humans [29, 30]. We then simulate the corre-
sponding adaptive robot behaviour in typical contact tasks of drilling, cutting and
polishing, thus developing haptic identification of an unknown surface. Finally, we
outline the frontier developments of our interdisciplinary approach of neuroscience
and robotics to interaction control in robotics, haptic sensing and human-robot inter-
action.

2 Neuromechanical Control During Transport

In this section, we analyse the dynamics of a human carrying out arm movements
while interacting with the environment. The nomenclatures used in this chapter are
summarised in Table1. To carry out a reaching movement, the nervous system will
generate a motor command u that will activate muscles and generate a force F at
the endpoint of the arm x . In general F(u, x) is a nonlinear but smooth function of
the neural activation u and the state of the musculoskeletal system x . Furthermore,
muscles and neural feedback together yield a spring-like response to mechanical
perturbations, both at static positions [31] and during movement [32]. We express
these perturbationdynamics by linearising the endpoint force F along the undisturbed
trajectory xu :

F(u, x) ≡ FF(u, xu) + K (u, xu) ε , ε ≡ e + δ(u, xu) ė , e ≡ xu − x (1)

where FF(u, xu) is feedforward force, K (u, xu) ≡ (∂F/∂x)x=xu endpoint stiffness
and K (u, xu)δ(u, xu) damping.

By planning a reference trajectory xr ≡ xu along which the feedforward is com-
puted and relative towhich the spring force K (u, xr )(xr − x) + K (u, xr )δ(u, xr )(ẋr −
ẋ) is exerted, Eq. (1) can be considered as a model of how the nervous system con-
trols the endpoint force to interact with the environment. To facilitate the discussion
of this controller, let us simplify Eq. (1) to
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Table 1 Nomenclature F Endpoint force

u Motor command

x Actual trajectory

xu Undisturbed trajectory

e Position error

ε Tracking error

FF Feedforward force

K Endpoint stiffness

δ, δE Ratio of damping over stiffness

xr Reference trajectory

K0 Minimal endpoint stiffness to ensure
stability

Ke Stiffness to compensate for the
environment

QF , QK , Qx Learning rates for force, stiffness,
trajectory

γ Time constant of effort minimisation

FE Interaction force

KE Environment stiffness

x0 Surface without interaction

Fd Desired interaction force

F(u, xr ) ≡ FF(u, xr ) + K (u, xr )(xr − x) . (2)

Is the force control redundant? To increase F , it would be a-priori possible to use
a larger feedforward force FF , increase stiffness K , or modify xr . However, the
redundancy due to the stiffness term is only apparent. We could show, by studying
reaching arm movements in unstable dynamics typical of tool use [21–23, 33], that
humans automatically learn to activate muscles which compensate for the environ-
ment instability independently of the applied force. For instance, considering Eq. (2),
stiffness can be modelled as

K (u, xr ) ≡ K0(u, xr ) + Ke(u, xr ) (3)

where K0(u, xr ) ensures motion stability in free motion, and Ke(u, xr ), which
increases monotonically with the torque magnitude [34], is adapted to compensate
for the stiffness of the environment [35]. This means that mechanical impedance,
which can be characterised by stiffness, viscosity and inertia, regulates our interac-
tion with the environment independently of the applied force [21]. Thus, it cannot
be used to control the desired force.

On the other hand, the representation of force in Eq. (2) is redundant, as FF and
Kxr could be combined in an infinite number of ways to generate a desired force F .
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For instance, one could set FF ≡ 0 and regulate the force using xr . This corresponds
to a form of the equilibrium point trajectory hypothesis, which was popular until the
1990s. Interestingly, according to this hypothesis the central nervous system would
only need to plan themovement kinematics. Themovement would then be carried out
by muscles through shifting the reference position along the equilibrium point tra-
jectory without needing to model the movement dynamics. As during arm reaching,
the hand movement is stereotyped along a straight line between start and end points
[36], therefore the brain could rely on these points to plan motion [37]. However, the
relatively low stiffness value estimated during arm reaching movements identified
in [38] means that the reference trajectory would become complex and would need
to widely deviate from the actual movement in order to produce sufficiently large
forces to move the arm. This contradicts the simplifying idea of the equilibrium point
trajectory hypothesis and makes it unattractive.

A simple way to identify the parameters of Eq. (1) or (2) for transport move-
ments is to use the undisturbed trajectory as a reference trajectory of the spring-like
response: xr ≡ xu . As a consequence, the feedforward term FF should produce the
movement dynamics and compensate for the forces experienced during movement.
An advantage of such feedforward control is that the movement dynamics are not
affected by the delays of sensory feedback. Various nonlinear adaptive controllers
have been proposed in computational neuroscience and control theory to identify
the feedforward term FF during movements [39, 40]. These algorithms can be used
to model the force adaptation in novel dynamics as well as the generalisation to
movements different from the trained movements [18, 19], as was demonstrated
in [25].

Traditional nonlinear adaptive controllers use constant feedback gains. In contrast,
humans can control mechanical impedance independent of the applied force [21, 33,
41]. By observing the changes of muscle activation during repeated arm movements
in unstable dynamics, we could develop a model of human motor adaptation encom-
passing force and impedance adaptation [24, 25] that reproduces various properties
of human motor adaptation and generalisation. In this model, we consider repeated
or periodic movements, and the update laws for force and impedance

FF j+1 ≡ FF j + QF (ε j − γ FF j ) , γ < 1 (4)

K j+1 ≡ max{K0, K
j + QK [ε j (x j )T − γ K j ]}

ε ≡ (xu − x) + δ(ẋu − ẋ) , δ > 0

that minimise the tracking error ε and effort [26]. Here j is the iteration number
(of either movement trial or period), QF and QK are learning rates, and γ is the
decay to minimise effort. The terms QF ε j and QK ε j (x j )T aim at reducing tracking
error ε. x j appears in the impedance adaptation because Kx corresponds to the
stiffness force that is adapted. This computational model has given rise to a novel
nonlinear adaptive control behaviour for robots that was analysed using Lyapunov
theory, and demonstrated on the DLR LWR manipulator and on variable impedance
actuators [26].
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Fig. 1 Surface deformation
coordinates. x is the actual
position of the tool, x0 the
surface without interaction
and xr the reference position
for the restoring force

3 Control of Contact Tasks

While humans constantly make contact with objects in order to carry out activities of
daily living, few studies have investigated the control of contact tasks. Recently, the
group of Mussa-Ivaldi examined reaching movements along a convex obstacle [29]
and the adaptation of force control [30]. Contact tasks, in which an object’s surface
is detected by tactile sensors and proprioception (e.g. through an impact), consist
of moving the hand along an object while applying a contact force Fd (Fig. 1). This
desired force will be counterbalanced by the interaction force FE with the environ-
ment. For instance, assuming an elastic environment characterised by stiffness KE ,

FE ≡ KE (x − x0) , (5)

where x0 is the position of the object surface without interaction.
To apply the desired force Fd and let FF provide the actual movement dynamics,

it is necessary to adapt xr . We therefore introduce the trajectory adaptation update
law

x j+1
r ≡ x j

r + Qx (Fd − F j ) , (6)

that minimises the error between the actual interaction force and the desired one,
where Qx is the learning rate and F j is given in Eq. (2). This update law converges
when Fd = F = FF + K (xr − x). From the error dynamics developed in [26, 42],
together with the force and impedance adaptation of Eq. (4), we then have Fd =
FE , which indicates that the desired interaction force between the human and the
environment is maintained.

The adaptive controller of Eqs. (2), (4), (6) yields simultaneous adaption of force,
impedance and reference trajectory to achieve stable and efficient control of contact
tasks. This controller is discussed here only in task space and the transformation
between task and joint spaces can be carried out by usual means as described e.g. in
[43]. The reference trajectory is adapted automatically to maintain a desired inter-
action force with the environment. Through force and impedance adaptation, the
actual trajectory is guaranteed to track the (adapted) reference trajectory. More-
over, force and impedance adaptations result in just-as-needed feedforward force
and impedance, corresponding to minimisation of the control effort.
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These properties are in line with a human’s interaction control. In non-contact
tasks, motion control is similar to tracking a planned trajectory by compensating
for the disturbance due to the interaction with the environment and reducing the
control effort when the interaction weakens or disappears, as described in Sect. 2. In
a contact task, this interactionmay lead to an undesired large force, so that the original
reference trajectory has to be adapted tomaintain a desired interaction force. Through
interaction, the adaptive controller further enables the robot/human to identify the
geometry (i.e. the adapted reference trajectory) and impedance characteristics of the
environment. The rigorous analysis of this adaptive controller can be found in [42],
which also discusses the conditions that need to be satisfied for achieving the above
properties and how to choose the controller’s parameters.

4 Adaptation of Force and Trajectory

The adaptation of feedforward force and impedance of Eq. (4) was illustrated exten-
sively in [25, 26]. To understand how humans deal with contact tasks and illustrate
the adaptation of applied force and reference trajectory, let us first simulate the
experiment of [30]. In this experiment, subjects were required to push in the forward
direction against environments of various stiffnesses produced by a haptic interface.
The subjects had to match the desired force profile

Fd(t) = 5(1 − cos(π t)) [N ], 0 ≤ t ≤ 1s (7)

displayed on a computer monitor by pushing appropriately on the interface. The
interface was controlled to render a viscoelastic environment characterised by the
force

FE = KE (x + δE ẋ) (8)

where x is relative to the spring rest position 0. The subjects first had to exert a
force against a rigid surface. Figure2a shows that the subjects were able to match
the desired force profile. Then, the surface became compliant (b) and the subjects
adapted to this novel environment (c), which was tested in catch trials with the rigid
environment (d).

The results of force field adaptation studies [17, 18] suggest that humans form
a model of the interaction force and compensate for it. If neuromechanical control
would consist only of this feedforward force, approximately the same interaction
force should be measured when the interface switches to a more compliant environ-
ment. However, a significantly lower interaction force was measured by the interface
(Fig. 2b). This mismatch can be easily interpreted when considering the spring-like
properties at the endpoint of the arm, as expressed e.g. in Eq. (2). As the first trial in
the compliant condition exhibits a reduced force, this means that xr (t) < x(t), and
it is practical to assume xr (t) ≈ 0, corresponding to the surface learned during the
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Fig. 2 Results of the force control task from [30] (reproduced with permission). After subjects
learned to push an increasing force profile on a rigid surface (a), this surface became compliant (b),
and the subjects had to adapt contact to this new environment (c). d exhibits after-effects of this
learning

previous trials. During subsequent trials in the compliant environment, the subjects
adapted their control, the force converged to the desired profile and the trajectory
penetrated the surface deeper trial after trial.

We simulate this experiment using pointmass dynamics mẍ with m = 4kg and
the adaptive controller of Eqs. (2), (4), (6). The rigid environment is characterised by
KE = −1000N/m, δE = 1s and the compliant environment by KE = −100N/m,
δE = 1s. The control and learning parameters used for simulation are δ(t) = 10 s,
K0 = 100N/m, γ (t) = 10−4

1+1000‖ε‖ , QK = 10, QF = 15, Qx = 2.5/104.
Simulation results are shown in Fig. 3. Figure3a exhibits that the desired force is

achieved in the case of a rigid surface. Figure3b illustrates that when the surface sud-
denly becomes compliant, the desired force is not achieved because of the trajectory
control component. However, the trajectory iteratively moves forward and interac-
tion force increases. After learning, the reference trajectory has adapted to penetrate
the surface and the desired interaction force is reached again. Note that while the
same desired force is achieved as in Fig. 3a, the reference trajectory changes due
to the compliant surface in Fig. 3b. Figure3c illustrates the after-effects of learning;
when the surface becomes rigid again, the interaction force surpasses the desired
force.

These results are similar to the behaviour observed in human experiments (Fig. 2).
Note that both force/impedance adaptation and trajectory adaptation are involved
in the evolution: the latter adapts the reference trajectory to achieve the desired
force, while the former adapts feedforward force and impedance to track the updated
reference trajectory.
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(a) (b) (c)

Fig. 3 Simulation of concurrent adaption of force, impedance and trajectory as in the experiment
of Fig. 2. Top panels show the interaction force and bottom panels the actual trajectory (solid) and
updated reference trajectory (dotted): a after learning in a rigid environment; b in a compliant envi-
ronment (plotted from blue to red in every 16 trials, with the actual trajectories almost superimposed
on the respective reference trajectories); and c exposed to a rigid environment after learning the
compliant environment

5 Haptic Identification

Using the above model of motor adaptation, we can also simulate the haptic explo-
ration observed when human subjects carry out reaching movements along surfaces
of different stiffnesses [29]. We simulate a 1 s long armmovement ahead of the body,
D = 0.1m in the forward direction, with a smooth planned trajectory

[
xr (t)
yr (t)

]
=

[
x(0)
y(0)

]
+ t3(10 − 15t + 6t2)

[
0
D

]
, (9)

[
x(0)
y(0)

]
≡

[
0.4385
0.4494

]
m . (10)

The interaction force is generated according to

FE =

⎧⎪⎪⎨
⎪⎪⎩
KE (t)

[
x(t) − x0(t)
y(t) − y0(t)

]
if x(t) ≥ x0(t)[

0
0

]
otherwise.

(11)
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The surface rest position is set as the smooth sine wave

[
x0(t)
y0(t)

]
=

[
x(0) − 0.0083(1 + sin (20π(y(t) − y(0)) − π

2 )

y(t)

]
(12)

where x(0) and y(0) are defined in Eq. (10). The stiffness matrices of a compliant,
medium and rigid surface KE are −200I2, −800I2 and −2000I2 N/m respectively,
where I2 ≡ [1, 0; 0, 1] is the 2× 2 identity matrix. The desired interaction force is
set as Fd(t) = [−3e−(5(t− T

2 ))2 0]T N . The following control and learning parame-
ters are used: δ(t) = 10 s, K0 = 50I2 N/m, γ (t) = 10−4

1+1000‖ε‖ , QK = I2, QF = 10I2,

Qx = 2/104 I2.
Simulation results are shown in Fig. 4. The resulting trajectory adaptation is in

line with experimental results in [29]: the reference trajectory conforms to a rigid
surface, but is little influenced by a compliant surface. The resulting forces illustrate
the underlying reason: a large interaction force is generated from the interaction
with a stiff surface, and trajectory adaptation reduces this force to track the desired
interaction force. The trajectory does not change much with a compliant surface
as the small interaction force is achieved soon. The trajectory conformation is in
between when the surface stiffness is medium. After-effect trajectories (i.e. when the
surface disappears after learning) exhibit the converse effect. After learning along a
surface, the trajectories move in the direction into the surface as a desired interaction
force is expected to be maintained. Moreover, the adaptation is found to involve
two processes: first, force and impedance adaptation compensate for the interaction
and leads to slightly larger force, then the trajectory adapts to reduce the force and
achieve the desired force.

The results of this and the previous sections show that themodel of Sect. 3 predicts
the adaptation of force and trajectory observed when humans carry out movements
in contact with rigid and compliant environments [29, 30]. To further understand
the role of trajectory adaptation in human-like learning behaviour, we simulate this
learning when trajectory adaptation is frozen. We see in Fig. 4d that trajectories
after learning come closer to the initial straight reference trajectory, such that the
interaction force becomes even larger. Without trajectory adaptation the reference
trajectory is tracked, at the cost of a possibly large force and surface deformation.
These results contrast to those of Fig. 4c where trajectory adaptation prevented too
large interaction force and surface deformation.

In above simulations, the initial reference trajectory was set inside the surface. Let
us now consider the case that the initial reference trajectory lies outside the surface.
In this case a small non-zero interaction force e.g. Fd(t) = [−2 0]T N is required
to follow the surface. In particular, let us consider the adaptation along the 1s long
rotated initial reference trajectory

[
xr (t)
yr (t)

]
=

[
x(0)
y(0)

]
+ t3(10 − 15t + 6t2)

[−D sθ
D cθ

]
(13)
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Fig. 4 Haptic exploration. Top panels: Rest position of the surface (dotted grey line), before-
learning reference (dashed blue line covered by solid red line) and actual (solid blue line) trajecto-
ries, reference (dashed red line) and actual (solid red line) trajectories in the 20th trial, reference
(dashed black line) and actual (solid black line) trajectories in the last trial and after-effect actual
trajectory (solid pink line). Bottom panels: Desired interaction force (dotted green line), before-
learning interaction force (solid blue line), interaction forces in the 20th trial (solid red line) and in
the last trial (solid black line)

where x(0) and y(0) are defined in Eq. (10), sθ ≡ sin(3◦) and cθ ≡ cos(3◦). The
interaction force is generated by Eq. (11) with stiffness KE = −2000I2 N/m. The
same control and learning parameters are used as above in this section.

Figure4e shows that after adaptation both the reference and actual trajectories are
within the surface and there is a small distance between them and the rest position
of the surface, corresponding to the interaction force which is close to the desired
force. While some parts of the initial reference trajectory lie outside of the surface
and other parts inside, surface identification is achieved for the whole trajectory after
adaptation. These results demonstrate how the human-like adaptive behaviour leads
to haptic exploration, using a desired non-zero interaction force. Note that with a
positive desired interaction force the reference trajectory will drift in the direction
opposite to the surface.
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6 Versatile Human-Like Interaction Behaviour for Robots

Can the above model of interaction control in humans be used to control a robot
carrying out typical contact tasks? In this section, we simulate three typical contact
tooling tasks to test the abilities of human-like interaction control. We use the algo-
rithm of Eqs. (2), (4), (6) in the robot task space. The tool is modelled as a point
mass in two degrees-of-freedom, with y in the forward direction and x normal to the
surface as is shown in Fig. 1. The tool stiffness is assumed to be much more rigid
than the material being tooled, such that there is no deformation of the tool during
interaction. In all tasks the default learning parameters are QF = 0.005, QK = 7,
γ = 0.005, Qx = 0.01.

6.1 Cutting

Cutting is similar to milling or carving. It is difficult to perform with force-based
control that would require thorough knowledge of the object geometry and mechan-
ical structure in order to determine the force level required for the cut. This task may
be achieved using impedance control [15], but the gains would have to be tuned to
each surface. In particular, during cutting some amount of tool stiffness is required
to counter friction, but too high rigidity can get the tool stuck in the material, such as
when meeting a knot while sawing wood. In contrast, the above human-like control
automatically adjusts the stiffness as required for each surface. Cutting requires:

• a constant feedforward force to cut against the material;
• minimal contact force (normal to the direction of cut) to avoid excessive penetration
of the surface;

• adjustment of stiffness so as to maintain stability against the irregularities in the
tooled material.

In our simulation, the surface to cut is modelled such that an unknown threshold
force is required to penetrate it with the tool (in the x direction). Once inside, large
damping opposes further penetration and forward movement. When the tool reaches
the desired cutting depth, a high frequency and low amplitude sinusoidal vertical
(i.e. along x) force simulates the effect of the material’s internal texture. Some dry
friction (proportional to the force applied normally by the tool) along the forward
movement requires the force to reach a threshold level for the tool to start moving in
that direction. The robot is required to make a cut of d = 3cm depth on a surface.
Figure5 shows the normal force, position and stiffness of the robot simulated in the
cutting task with our controller. At the beginning of the task, the reference (red trace
in Fig. 5b) is set at the required depth below the surface corresponding to the required
depth of cut. The reference adaptation Eq. (6) is switched off for this operation.

First, the robot automatically increases the contact force (Fig. 5a) and penetrates
to the required depth. It then proceeds with a horizontal cut, during which the contact
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(a)

(b)

(c)

Fig. 5 Cutting task simulation. This figure shows, along the x forward movement direction: a the
contact force; b the task reference (in red) and position of the tool (blue); c stiffness of the tool
along x . Irregularities in the surface were simulated (orange region) by a sinusoidal external force

force (normal to the cut) is reduced to 0. In the presence of irregularities (marked in
Fig. 5a), the robot automatically increases its stiffness (Fig. 5c) with little increase
in contact force (note the small perturbations in the orange region in Fig. 5b). In
the absence of irregularities, and after the end of the cutting operation, the robot
automatically reduces stiffness.

6.2 Drilling

While drilling is similar to cutting, it usually involves a larger contact force on the
surface. Furthermore, drilling is inherently unstable as the heavy drill (and the robot)
supported at the end of a narrow tool tip will amplify any noise. Thus, a drilling task
requires:

• constant force and minimal stiffness in the drilling direction;
• stability against the large, random perturbations perpendicular to the drilling direc-
tion.
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While force control could be used tomaintain the drilling force, additional control
would be required to maintain stability in the lateral direction. Hybrid position/force
control [44] or hybrid impedance control [45] are thus probably suited for this oper-
ation. However, the controller would still require some additional control along the
drilling direction so as to monitor the movement and increase the controlling force
in the presence of obstacles (for instance, a knot in wood would temporarily require
more force in the drilling direction).

Our controller provides all these requirements automatically. In our simulation,
the surface is modelled as for the cutting task. In addition, the tool encounters sinu-
soidal horizontal force perturbations (along y) simulating the vibrations generated
by the drilling process. The trajectory learning Eq. (6) is again switched off in this
operation. We see in Fig. 6e that the feedforward learning in the algorithm adapts the
movement force as required and reduces the position error and hence the feedback
gain (Eq. (4)), making the drill compliant along x (Fig. 6f). At the same time, the
algorithm automatically increases stiffness along y.

6.3 Surface Exploration

This task, similar to polishing, requires the robot to glide along unknown surfaces,
with controlled e.g. constant force. This operation needs force control normal to
the unknown surface and position control tangential to it. At the same time, the
robot could also acquire information about the object geometry and texture. Some
hybrid force-position or force-impedance control appears to be suitable strategies
for this task, but would require an additional surface estimation algorithm in order
to modulate the control dimensions dependent on the object surface as it explores
it. With its ability to adapt the reference trajectory (Eq. (6)) and to identify stiffness
duringmovement (Eq. (4)), our algorithm inherently possesses capabilities to observe
the surface geometry and texture.

In our simulation, the surface is composed of a rising and then falling ramp, an
area similar to a “macro velcro” (modelled as a high frequency and low amplitude
sinusoidal position perturbation) and finally a large sinusoidal profile. Some dry
friction (proportional to the normal force applied on the surface) was again added
along the forward horizontal direction, alongwith some damping resistive forcewhen
the tool is in contact with the surface. To implement exploration with our algorithm,
a rough reference trajectory is initially set below the unknown surface (see start of
simulation in Fig. 7b, where the red trace starts below green) similar to a cutting task.

The adapted reference follows the surface (Fig. 7b) and can be used to estimate the
surface normal and tangent at any time instance. Note that the normal force (Fig. 7a)
is kept at a low value throughout the movement while the stiffness (Fig. 7c) increases
only when there are surface irregularities.
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Fig. 6 Drilling task simulation. Along y: In the presence of perturbations lateral to the drilling
direction (a), the robot increases stiffness only along this direction (c) to keep the tool vibrations
low (blue trace in b) and close to the reference (red trace in b). Once the vibrations decrease,
stiffness is reduced to a low value again. Along x : position (d), feedforward force (e) and tool
stiffness (f) in the drilling direction. Note that a low stiffness is maintained while feedforward force
is learnt to achieve the task. In the presence of an internal obstacle (like a wood knot, during the
orange period), the feedforward is automatically increased to counter this, before returning to a
lower value
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Fig. 7 Surface exploration task simulation. The robot explores an unknown surface and maps it
(red trace in b) while moving (blue trace in b). The contact force (along x) during the movement is
maintained (a) at a minimum value while stiffness along x increases (c) only in the presence of a
rough texture (orange region) on the surface. The stiffness changes could be thus used to identify
the texture of the explored surface

7 Outlook: Frontiers in Interaction Control

In this chapter, we have used an interdisciplinary approach of neuroscience and
robotics to investigate interactive control in humans and robots. Robotics and con-
trol theory were used as tools to investigate human sensorimotor control and develop
a computational model of neuromechanical control in humans, which in turn yielded
a novel adaptive robot behaviour. We have described recent advances enabled by
such human robotics approach [46] for adapting the interaction with soft and rigid
surfaces, as well as the resulting haptic identification. The simulation of represen-
tative interactive tasks of a robot in contact with the environment demonstrated the
versatility and efficiency of the novel adaptive behaviour. Future research may inves-
tigate how such methodologies can be used to build expectation about future action
in robots and how such cognitive motor memory is built in humans. In the following
paragraphs, let us outline three other frontiers in interaction control whose solu-
tions require both human motor control experiments and the development of suitable
robotic strategies.

Transitions between transport and contact.Many actions such as opening a door
or parts insertions involve transport and contact phases. We have analysed how to
control both of these phases in Sects. 2 and 3, but have not dealt with the transition
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between them. Arguably the detection of a contact and corresponding consideration
of a desired contact force by dedicated sensors would arise gradually, thus addressing
the continuity issue for slow transitions. However, further studies are required when
the transition involves an impact. In order to understand how the human central
nervous system learns to control the limbs in such a transition task, we have recently
investigated how subjects perform an insertion task [47]. We could observe how
the subjects modify the movement velocity and the impedance during movement to
minimise time, effort and the impact force. Such learning is not addressed by the
supervised learning techniques described in this chapter, but could be addressed by
reinforcement learning techniques developed in recent years, e.g. [48].

Haptic interaction using tactile and force information. Haptic sensing used for
objects manipulation requires the integration of signals from both tactile sensing
and proprioception. However, research in tactile sensing on the one hand, and in
sensorimotor control using proprioception and vision information on the other were
pursued in parallel, with little communication between these two communities.What
role does/can tactile information play in characterising the environment in which
the human or robotic limb interacts during movements? Behavioural experiments
with humans should be designed to examine how the nervous system combines
tactile sensing and proprioception, and how robots should use and integrate these
two sources of information.

Human-like interactionwith robots.Humanmotor control and robotics have inves-
tigated the interaction with time-invariant dynamical systems, e.g. fixed force fields.
In contrast, interacting with another human or any autonomous agent involves time-
varying dynamics. How do humans interact with each other, e.g. to carry a table
together, perform interpersonal physical therapy, or to assist an infant or an elderly
in walking? Experiments with pairs of human subjects who have to carry out a col-
laborative task whilst being mechanically connected have been carried out for over a
decade [49]. These studies could show that physical coupling enables pairs or dyads
to improve in joint tasks [50–52], and promote interacting individuals to negotiate
specialised roles [51, 53, 54]. Computational modelling of these results is needed
to reveal the underlying mechanism and enable human-like collaboration algorithm
for robots. The interactive motor control framework of [55] may serve as a starting
point for such developments, that could be extended to encompass the estimation of
the partner’s state and motion intention.

Acknowledgements The authors thank Atsushi Takagi for editing the text.
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The Variational Principles of Action

Karl Friston

Abstract This chapter provides a theoretical perspective on action and the control
of movement from the point of view of the free-energy principle. This variational
principle offers an explanation for neuronal activity and ensuing behavior that is
formulated in terms of dynamical systems and attracting sets. We will see that the
free-energy principle emerges when considering the ensemble dynamics of biologi-
cal systems like ourselves. When we look closely what this principle implies for the
behavior of systems like the brain, one finds a fairly straightforward explanation for
many aspects of action and perception; in particular, their (approximately Bayesian)
optimality. Within the Bayesian brain framework, the ensuing dynamics can be sep-
arated into those serving perceptual inference, learning and behavior. Variational
principles play a key role in what follows; both in understanding the nature of self-
organizing systems but also in explaining the adaptive nature of neuronal dynamics
and plasticity in terms of optimization—and the process theories that mediate opti-
mal inference and motor control. A special focus of this chapter is the pre-eminent
role of heteroclinic cycles in providing deep and dynamic (generative) models of the
sensorium; particularly the sensations that we generate ourselves through action. In
what follows, we will briefly rehearse the basic theory and illustrate its implications
using simulations of action (handwriting)—and its observation.

1 Introduction

The premise we will pursue is that the brain is trying to optimize something (specif-
ically variational free-energy), using a generalized gradient descent to perform this
optimization. In other words, one can understand neuronal dynamics as optimiz-
ing a quantity through the method of steepest descent that can be described with a
(complicated) set of ordinary differential equations. It is these equations that give
rise to purposeful movement that have been described in previous chapters. In what
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follows, we will see how the optimization of free-energy leads naturally to optimal
action and perception. Crucially, the nature of this optimization rests on an internal,
forward or generative model of the world that it navigates. This model includes prior
beliefs about the causal structure and dynamics in the world, which constrain both
perception and action. This adds a second layer of dynamics, reflecting our prior
expectations about the trajectories of states and their attractors in our environment.
This chapter focuses on itinerant (wandering) dynamics and how movement can be
understood in terms of prior beliefs about sensorimotor trajectories. In particular,
we will look at action-observation in the context of handwriting and how it rests on
stable heteroclinic channels. This is one ofmany examples of how itinerant dynamics
are embedded in generative models of the sensorium. It is particularly relevant in the
context of this book, given we appeal again and again to variational principles. Here,
we disclose their fundamental role in shaping action and perceptual inference.

This chapter comprises two parts. In the first, we provide a didactic overview
of the free-energy principle, motivating it from basic principles. We will consider
the underlying imperative that applies to all biological agents; namely to conserve
themselves by minimizing surprise – and how this calls upon the minimization of
variational free-energy. We then unpack the free-energy principle in terms of action
and perception. This leads to active inference that subsumes perceptual inference
the sort considered by the Bayesian brain hypothesis. We illustrate the key aspects
of this treatment with a few selected examples and conclude by thinking about the
timescales over which the dynamics of free-energy minimization may be manifest.
The second part of this chapter presents a particular example in greater detail. This
example considers handwriting in terms of itinerant expectations about sequences
of movements. Not only does it provide a plausible account of sensorimotor execu-
tion but touches upon the cognitive neuroscience of action-observation and how we
represent ourselves and others.

2 The Free-Energy Principle

In recent years, there has been growing interest in free-energy formulations of brain
function [13, 22], not just from the neuroscience community, where has caused some
puzzlement [69] but from fields as far apart as psychotherapy [7] and social politics
[35]. The free-energy principle has been described as a unified brain theory [40] and
mayhavebroader implications for howwe interactwith our environment. This section
describes the origin of the free-energy formulation, its underlying premises and the
implications for how we represent and interact with the world. Table1 provides a
glossary of the quantities that we will be dealing with and the appendix offers a
technical overview of how the free energy principle applies to the brain.

The free-energy principle is a simple postulate that has complicated ramifications.
It says that all agents or biological systems (like us) must minimize free-energy. This
postulate is closely related to Hamilton’s law of Least Action and the celebrated
H -theorems in statistical physics [49]. The principle was originally formulated as
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Table 1 Generic variables and quantities in the free-energy formation of active inference, under
the Laplace assumption (i.e., generalized predictive coding)

Variable Description

m ∈ M Generative model or agent: In the free-energy
formulation, each agent or system is taken to be a model
of the environment in which it is immersed. The model
specifies the form of the process generating predictions of
sensory signals

a ⊂ A Action: These variables are states of the world that
correspond to the movement or configuration of an agent
(i.e., its effectors)

s̃(t) = s ⊕ s′ ⊕ s′′ ⊕ . . . ∈ S Sensory signals: These generalized sensory signals or
samples comprise the sensory states, their velocity,
acceleration and temporal derivatives to high order. In
other words, they correspond to the trajectory of an
agent’s sensations

L(s̃ |m) = − ln p(s̃ | m) Surprise: This is a scalar function of sensory samples and
reports the improbability of sampling some signals, under
a generative model of how those signals were caused. It is
sometimes called (sensory) surprisal or self-information.
In statistics it is known as the negative log-evidence for
the model

H(S |m) ∝ ∫
dtL(s̃(t) |m) Entropy: Sensory entropy is, under ergodic assumptions,

proportional to the long-term time average of surprise

G(s̃, ψ) = − ln p(s̃, ψ |m) Gibbs energy: This is the negative log of the density
specified by the generative model; namely, surprise about
the joint occurrence of sensory samples and their causes

F(s̃, μ̃) = G(s̃, μ̃) + 1
2 ln |Gμ̃μ̃ |

≥ L(s̃ |m)
Free-energy: This is a scalar function of sensory samples
and a recognition density, which upper bounds surprise. It
is called free-energy because it is the expected Gibbs
energy minus the entropy of the variational density. Under
a Gaussian (Laplace) assumption about the form of the
variational density, free-energy reduces to the simple
function of Gibbs energy shown in Fig. 2

S(s̃, μ̃) = ∫
dtF(s̃, μ̃)

≥ H(S |m)
Free-action: This is a scalar functional of sensory
samples and a variational density, which upper bounds the
entropy of sensory signals. It is the time or path integral of
free-energy

q(ψ) = N (μ̃, C)

μ̃ = μ ⊕ μ′ ⊕ μ′′ ⊕ . . .

C = G−1
μ̃μ̃

Variational density: This is also known as an ensemble or
recognition density and becomes (approximates) the
conditional density over hidden causes of sensory
samples, when free-energy is minimized. Under the
Laplace assumption, it is specified by its conditional
expectation and covariance

(continued)
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Table 1 (continued)

Variable Description

� = {u, ϕ}
ψ = {u, ϕ}
u = {x, v}
ϕ = {θ, γ }

True (bold) and hidden (italics) causes: These quantities
cause sensory signals. The true quantities exist in the
environment and the hidden homologues are those assumed
by the generative model of that environment. Both are
partitioned into time-dependent variables and time-invariant
parameters

θ ⊂ ϕ ⊂ ψ Hidden parameters: These are the parameters of the
mappings (e.g., equations of motion) that constitute the
deterministic part of a generative model

γ ⊂ ϕ ⊂ ψ Log-precisions: These parameters control the precision
(inverse variance) of fluctuations that constitute the random
part of a generative model

x(t) = x (1) ⊕ x (2) ⊕ x (3) . . . Hidden states: These hidden variables encode the
hierarchical states in a generative model of dynamics in the
world

v(t) = v(1) ⊕ v(2) ⊕ v(3) . . . Hidden causes: These hidden variables link different levels
of a hierarchical generative model

g(x (i), v(i), θ)

f (x (i), v(i), θ)
Deterministic mappings: These are equations at the i-th
level of a hierarchical generative model that map from states
at one level to another and map hidden states to their motion
within each level. They specify the deterministic part of a
generative model

ω(i,v)

ω(i,x) Random fluctuations: These are random fluctuations on
hidden causes and the motion of hidden states. Gaussian
assumptions about these fluctuations furnish the
probabilistic part of a generative model

�̃(i,v) = R(i,v) ⊗ �(γ (i,v))

�̃(i,x) = R(i,x) ⊗ �(γ (i,x))
Precision matrices: These are the inverse covariances
among (generalized) random fluctuations on the hidden
cases and motion of hidden states

R(i,v)

R(i,x) Roughness matrices: These are the inverse of a matrix
encoding serial correlations among (generalized) random
fluctuations on the hidden cases and motion of hidden states

ε̃(i,v) = ṽ(i−1) − g̃(i)

ε̃(i,x) = Dx̃ (i) − f̃ (i) Prediction errors: These are the prediction errors on the
hidden causes and motion of hidden states evaluated at their
current conditional expectation

ξ (i,v) = �̃(i,v)ε̃(i,v)

ξ (i,x) = �̃(i,x)ε̃(i,x) Precision-weighted prediction errors: These are the
prediction errors weighted by their respective precisions

a computational account of perception [22] that borrows heavily from statistical
physics and machine learning [19, 38, 50]. However, its explanatory scope includes
action and behavior [25] and may be linked, at a fundamental level, to our very exis-
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tence [24]). In brief, the free-energy principle takes well-known statistical ideas and
applies them to problems in population (ensemble) dynamics and self-organization
[1, 36, 42, 54]. In applying these ideas, many aspects of our brains, how we perceive
and the way we act become understandable as necessary and self-evident attributes
of biological systems [9, 39]). To see this consider the following problem:

How, in a changing and unpredictable world, do biological agents resist a natural
tendency to disorder and thermodynamic equilibrium? All the physics that we know,
such as the fluctuation theorem (which generalizes the second law of thermody-
namics; [16]), suggests that random fluctuations in our environment will ultimately
change our physical states to the point we cease to exist (i.e., we should gently
decompose or evaporate). And yet, biological systems seem to violate these laws,
maintaining precise physiological states for long periods of time [4]. In other words,
they occupy a small number of stateswith a high probability and avoid a large number
of other states. In short, they appear to resist thermodynamic imperatives. Mathe-
matically, we can summarize this remarkable capacity by saying biological agents
maintain a low entropy bound on the distribution over states that they could occupy.
Entropy is just the average surprise (aka surprisal or self information) or negative
log probability of an agent being in a particular state (see Table1). In short, the
question we need to address is how biological systems minimize their average sur-
prise. Surprise here just means something unexpected, like tripping and falling in the
street. Onemight think that exotic phenomena from theories of pattern-formation and
self-organization may provide a sufficient explanation for the emergence of orderly
(unsurprising) state-transitions. However, they do not. These patterns certainly have
beautiful structures that unfold over short periods of time; but self-organization per se
cannot explain the ability of biological agents to avoid surprise indefinitely. However,
there is a solution that is almost tautological in its simplicity:

The solution lies in noting that surprise in ensemble dynamics is exactly the
same as the (negative log) evidence for a model in statistics: L = − ln p(s |m) (see
Table1). The conceptual link between surprise and log-evidence rests on assuming
that every agent or person is a model of their environment or, more specifically,
the sensory data to which they are exposed. This means that to minimize average
surprise (entropy), each agent should maximize the evidence for its model of sensory
exchanges with the world. Model optimization of this sort is a solved problem in
statistics and machine learning (e.g., [47, 50]). In fact, most forms of statistical
inference rest on comparing the evidence for one model relative to another, given
some data.

So what does this mean for our brains? It suggests that we are obliged to opti-
mize our model of the world through evolution, neurodevelopment and learning.
In other words, we are statistical machines that make inferences about the world,
given the (sensory) data available to us. The idea that we are inference machines is
very old and was most clearly articulated by the renowned physicist [71]. Indeed,
perception has been explicitly equated with hypothesis testing [34] and the brain has
been referred to as a Helmholtz machine [13]. More recent incarnations of this idea
appear as the Bayesian brain hypothesis [43, 46] and are instantiated in schemes like
predictive coding [52, 57]. All these explanations borrow fromHelmholtz’s idea that
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the brain makes inferences about its sensations. A large body of work in theoreti-
cal neuroscience provides a plausible and compelling account of perception and the
architecture of the wet-ware (brain) required to make these inferences. The ensuing
perspective on biological systems says something quite profound: It says that all bio-
logical organisms can be regarded as a model of the environmental niche (econiche)
they inhabit. In this sense, each species represents the product of evolutionary model
optimization and each phenotype (including our brain) is a physical model or tran-
scription of causal structure in its econiche. However, we have overlooked one small
problem: Optimizing models is not easy and, in most situations, evaluating surprise
or model evidence is an intractable problem. This is where variational free-energy
comes in:

Free-energy was introduced (in the context of quantum physics) by Feynman [19]
to solve the sort of difficult integration problems inherent in computing model evi-
dence. It has been exploited in statistics and machine learning (e.g., [53]) as a very
efficient way of measuring and maximizing model-evidence (i.e., minimizing sur-
prise). The idea is quite simple, instead of trying to minimize something that cannot
be measured, one simply creates a bound that can be measured, which is always
bigger than the unknown quantity. One then minimizes the unknown quantity by
minimizing the bound. So, what is this bound? In physics and statistics it is varia-
tional free-energy (recent statistical treatments of evolution consider a related quan-
tity called free-fitness; [64]). Its construction is simple (See Fig. 1): The free-energy
bound is constructed by adding a non-negative (Kullback–Leibler divergence) quan-
tity to surprise. The clever thing is that adding this term renders the free-energy easily
measurable. This Kullback–Leibler divergence measures the difference between two
probability distributions; the first is called a variational density and is an arbitrary
probability distribution used to create the bound. The second is the posterior or con-
ditional density on the causes of our sensations (for example the presence of an
object in our field of view). The posterior density is the probability of causes after
seeing their consequences. Minimizing the bound reduces the difference between the
variational and the posterior density. When they are identical, free-energy becomes
surprise or negative log-evidence. This means to evaluate surprise, we have to make
(Bayesian) inferences about what caused our sensations. This is the Bayesian brain
hypothesis,whereminimizing free-energy entailsBayes-optimal perception. In short,
free-energy converts an intractable mathematical integration problem into a simple
optimization problem. This statistical device furnishes another important perspective
on how we, as organisms, work. It suggests that we minimize surprise by optimizing
an upper bound on surprise. In other words, everything we do can be cast in terms
of optimization. This is self-evidently true in many contexts, certainly in fields like
reinforcement learning and economics [8, 12, 58, 68] but also fields like evolutionary
biology, where adaptive fitness is optimized.



The Variational Principles of Action 213

Fig. 1 The free-energy principle. This schematic shows the dependencies among the quantities
that define the free-energy of an agent or brain, denoted by m. These include, its generalized
internal states μ̃(t) and sensory signals s̃(t) (generalized states include their generalized motion;
i.e., velocity, acceleration etc..). The environment is described by equations, which specify the
motion of its states ψ , when depend on action a(t). Both internal brain states and action minimize
free-energy F(s̃, μ̃), which is a function of sensory input and the internal states. Internal states
encode a variational density q(ψ | μ̃) on the causes of sensory input. These comprise states of the
world and the amplitude of random fluctuations ω(t). The lower panels provide the key equations
behind the free-energy formulation. The right equality shows that optimizing brain states, with
respect to the internal states, makes the variational density an approximate conditional density on
the causes of sensory input. Furthermore, it shows that free-energy is an upper bound on surprise.
This is because the first term of the equality is a divergence between the variational density and the
true conditional or posterior density. Because this divergence can never be less than zero,minimizing
free-energy renders it a proxy for surprise. At the same time, the variational density becomes the
posterior density. The left equality shows that action can only reduce free-energy by selectively
sampling sensory data that are predicted under the variational density

2.1 The Bayesian Brain

TheBayesian brain hypothesismakes complete sense in this context. If our imperative
is to reduce surprise, then we need to have some reference or expectations against
which to measure surprise. These expectations depend upon a model of the world
and its current state. The probabilistic state of the world we infer is the variational
density above (Fig. 1) and – when things are working properly – corresponds to the
true but unknown posterior density. In the brain, this variational density (or more
precisely, its sufficient statistics like its mean or expectation) may be encoded by
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neuronal activity or connection strengths among different parts of the brain. This
leads to an understanding of perceptual inference and learning as changing synaptic
activity and connectivity respectively, to minimize free-energy.

There are many schemes that have been proposed to implement this optimization.
Among the more popular is predictive coding. Under some simplifying assumptions
about the shape of the probability densities involved, the free-energy reduces to the
sum of squared prediction error (see Fig. 2). In short, minimizing free-energy cor-
responds to reducing prediction errors. The hierarchical scheme depicted in Fig. 3
represents a fairly plausible architecture that the brain might use to suppress predic-
tion errors and thereby reduce free-energy. Crucially, this scheme is based upon a
gradient descent on free-energy (squared prediction error) and, as such, can be cast
as a set of ordinary differential equations. It is these equations of motion that we
suppose provide a model for neuronal dynamics that will be used in the second part
of this chapter.

In summary, surprise cannot be measured directly but we can induce a bound
on surprise called variational free-energy and reduce this bound by optimizing the
activity and connectivity in our brains. This renders free-energy approximately the
same as surprise and obliges us to make Bayesian inferences about the state of our
world. The implementation of this optimization may rest upon the minimization of
prediction errors of the sort considered by predictive coding. In this context, the
gradient descent on free-energy (prediction errors) provides a plausible account or
process theory for synaptic activity (perceptual inference) and synaptic efficacy (per-
ceptual learning). An important aspect of this optimization is the proper estimation
of the precision (inverse variance or uncertainty) associated with prediction errors.
In the generalized predictive coding scheme of Fig. 3, we consider this precision to
be encoded by synaptic gain, which has to be optimized in exactly the same way
as synaptic activity (encoding expected states of the world) and synaptic efficacy
(encoding the coupling among these states). The role of precision or synaptic gain
will become important later when we consider the difference between action and
action-observation later. The scheme described in Fig. 3 has been used to explain
many different aspects of perceptual learning and inference in psychophysics and
psychology. Figure4 shows an example of perceptual categorization using simulated
bird songs. However, perceptual inference and learning does not itself reduce sur-
prise; it just reduces the difference between free-energy and surprise. To understand
how surprise per se is reduced, we have to consider action and the active sampling
of sensory data.

3 Active Inference

So far, we have seen that perception can be understood as furnishing a proxy for
surprise, in the sense that perception reduces the divergence between the variational
density and the true conditional density over hidden states causing sensations. In
doing this, it makes free-energy a tighter bound or better approximation to surprise.
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Fig. 2 Action and perception. This schematic illustrates the bilateral role of free-energy (i.e.,
prediction error) in driving action and perception:Action: Acting on the environment byminimizing
free-energy enforces a sampling of sensory data that is consistent with the current representation
(i.e., changing sensations to minimize prediction error). This is because free-energy is a mixture of
complexity and accuracy (the first expression for free-energy in Fig. 1). Crucially, action can only
affect accuracy. This means the brain will reconfigure its sensory epithelia to sample inputs that
are predicted by its representations; in other words, to minimize prediction errors. The equation
above action simply states that action performs a gradient decent on (i.e., minimizes) free-energy.
Perception: Optimizing free-energy by changing the internal states that encode the variational
density makes it an approximate posterior or conditional density on the causes of sensations. This
follows because free-energy is surprise plus a Kullback–Leibler divergence between the variational
and conditional densities (the second expression for free-energy in Fig. 1). Because this difference
is non-negative, minimizing free-energy makes the variational density an approximate posterior
probability. This means the agent implicitly infers or represents the causes of its sensory samples in
a Bayes-optimal fashion. At the same time, the free-energy becomes a tight bound on surprise that is
minimized through action. The equation above perception describes a gradient decent in a moving
frame of reference for generalized states and accumulates gradients over time for the parameters.
Prediction error: The equations show that the free-energy comprises a (Gibb’s) energy G(t),
which is effectively the (precision weighted) sum of squared prediction error. This error contains
the sensory prediction error and other differences that mediate empirical priors on the motion of
hidden states. The predictions rest on a generative model of how sensations are caused. These
models have to explain complicated dynamics on continuous states with hierarchical or deep causal
structure. An example of one such generic model is shown on the right. Generative model: Here
g(i) and f (i) are continuous nonlinear functions of (hidden) causes and states, parameterized by
θ ⊂ ψ at the i-th level of a hierarchical dynamic model. The random fluctuations ω(i,u) : u ∈ x, v
play the role of observation noise at the sensory level and state-noise at higher levels. Hidden causes
v(i) ⊂ ψ link hierarchical levels, where the output of one level provides input to the next. Hidden
states x (i) ⊂ ψ link dynamics over time and lend the model memory. Gaussian assumptions about
the random fluctuations specify the likelihood of the model and furnish empirical priors in terms of
predictedmotion. These assumptions are encoded by the precision or inverse variance of the random
fluctuations on hidden causes and the motion of hidden states;�(i,v) and�(i,x), respectively. These
depend on precision parameters γ ⊂ ψ . The associated message-passing scheme implementing
perception is shown in the next figure. Here, D is a temporal derivative operator that acts on
generalized states
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Fig. 3 Hierarchical message-passing in the brain. The schematic details a neuronal architecture
that optimizes the conditional expectations of causes in hierarchical models of sensory input of the
sort illustrated in the previous figure. It shows the putative cells of origin of forward driving con-
nections that convey prediction-error from a lower area to a higher area (red arrows) and nonlinear
backward connections (black arrows) that construct predictions [22, 52]. These predictions try to
explain away (inhibit) prediction-error in lower levels. In this scheme, the sources of forward and
backward connections are superficial and deep pyramidal cells (triangles) respectively, where state-
units are black and error-units are red. The equations represent a generalized gradient descent on
free-energy using the generative model of the previous figure. Predictions and prediction-error:
If we assume that synaptic activity encodes the conditional expectation of states, then recogni-
tion can be formulated as a gradient descent on free-energy. Under Gaussian assumptions, these
recognition dynamics can be expressed compactly in terms of precision weighted prediction-errors
ξ (i,u) : u ∈ x, v on the causal states and motion of hidden states (at level i of the hierarchy). The
ensuing equations suggest two neuronal populations that exchangemessages; causal or hidden state-
units encoding expected states and error-units encoding prediction-error. Under hierarchicalmodels,
error-units receive messages from the state-units in the same level and the level above; whereas
state-units are driven by error-units in the same level and the level below. These provide bottom-up
messages that drive conditional expectations μ(i,u) : u ∈ x, v towards better predictions to explain
away prediction-error. These top-down predictions correspond to g(μ̃(i,u)) that are specified by the
generative model. This scheme suggests the only connections that link levels are forward connec-
tions conveying prediction-error to state-units and reciprocal backward connections that mediate
predictions. Note that the prediction errors that are passed forward are weighted by their precision.
This tells us that precision may be encoded by the postsynaptic gain or sensitivity or error units,
which also has to be optimized: see [26] for further details

Next, we consider how action can actually reduce surprise. In brief, we can mini-
mize prediction error in one of two ways: We can either change our expectations or
predictions (perception) or we can change the things that are predicted (action). This
perspective suggests that we should selectively sample data (or place ourselves in
relation to the world) so that we experience what we expect to experience. In other
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(a) (b)

(c)

Fig. 4 Birdsongs and perceptual categorization. a The generative model of birdsong used in this
simulation comprises a Lorenz attractor with two control parameters (or hidden causes) (v1, v2),
which, in turn, delivers two control parameters to a synthetic syrinx to produce ‘chirps’ that were
modulated in amplitude and frequency (an example is shown as a sonogram). Simulated chirps were
presented to a synthetic bird to see if it could infer the hidden causes and thereby categorize the
song. This entails minimizing free-energy by changing the conditional expectations of the control
parameters. Examples of this perceptual inference or categorization are shown on the right. b Three
simulated songs are shown (upper panels) in sonogram format. Each comprises a series of chirps
whose frequency and number fall progressively from song a to song c, as a causal state (known as
the Raleigh number; v1 in the left panel) is decreased. c The graph on the left depicts the conditional
expectations of the hidden causes, shown as a function of peristimulus time for the three songs. It
shows that the causes are identified after about 600 milliseconds with high conditional precision
(90% confidence intervals are shown in grey). The graph on the right shows the conditional density
on the causes shortly before the end of peristimulus time (i.e., the dotted line in the left panel).
The small dots correspond to conditional expectations and the grey areas correspond to the 90%
conditional confidence regions. Note that these encompass the true values (large dots) that were
used to generate the songs. These results illustrate the nature of perceptual categorization under the
inference scheme in Fig. 3: Here, recognition corresponds tomapping from a continuously changing
and chaotic sensory input to a fixed point in perceptual space

words, we will act upon the world to ensure that our predictions come true [23]. This
is exactly the sort of behavior that wewere trying to explain at the beginning; namely,
how do biological systems avoid surprising exchanges with the environment?

It is fairly easy to show that the only part of free-energy that can be changed by
action is sensory prediction error. This simple fact provides a nice explanation for how
we interact with the world at a number of levels. First, in biological terms, it suggests
that our muscles are wired to cancel sensory prediction errors. We are all familiar
with this as a reflex: If I stretched the muscles in your leg by tapping the tendons
below your knee, then they respond by contracting to cancel the unpredicted stretch-
receptor signals. This reflects a basic functional architecture in movement (motor)
control; whereby movements are elicited by prediction errors about the position of
limbs – this is the classical motor reflex. If we generalize this view of how the
brain controls our bodies, then peripheral motor or muscle systems are enslaved to
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fulfill predictions. This means we only have to expect or predict an action and it
will be executed automatically – an old idea dating back to ideomotor theories of the
19th-century. The resulting perspective implies a curious yet compelling relationship
between action and perception: on the one hand, perception optimizes predictions
so that action can minimize surprise, while, on the other hand, our motor behavior
is prescribed entirely by perceptual predictions. If action and perception work in
synergy, we will navigate our econiche, never straying from well trodden paths,
eluding surprise (and potential danger).

At a more abstract level, the selective sampling of sensory data we expect to
encounter may provide a metaphor for the way we live. This is particularly true of
scientists, who spend most of their life designing experiments to gather data they
hope will confirm their predictions (hypotheses). It is precisely this imperative that
underlies variational explanations for the way we sample data from our visual world,
with saccadic eye movements [18, 29, 73]. Indeed, one could regard any phenotype
as garnering evidence for its own existence. This brings us back to the notion that
each individual is a model of its environment – a model that has to be continually
affirmed by actively sampling from that environment. So far, we have only considered
action as supplying further evidence for internal models of how the world works. Is
this sufficient to explain behaviors such as goal-seeking, exploration and innovation?
Not quite. To conclude this summary we will look at the fundamental role of prior
expectations in shaping predictions and behavior.

3.1 Polices and Priors

Clearly, if each individual is adapted or optimized to their own environment, either at
an evolutionary level or on a day-to-day basis in terms of learning and inference, the
expectations of each individualmust differ. Furthermore,wemust inherit some aspect
of these expectations, such that the physical form encoding each generation’s model
of its econiche is conserved (e.g., the way that the brain is wired). This speaks to the
important role of innate or prior expectations about how and what we will sample
from the world. For example, the fact we have eyes belies the fact our environment
is bathed in light; and we avoid the dark because we expect to see things. This
perspective touches on situated and embodied cognition [74] and the notion that we
adapt environment to fulfill our expectations [5, 45]).

In the free-energy formulation, prior expectations are a key determinant of behav-
ior and are an integral part of an individual’s model. These priors may not be very
complicated but can have a profound effect on what we expose ourselves to. For
example, one could cast innately rewarding states (e.g. being sated or warm) as
states we expect to encounter and that we are least likely to avoid. In brief, if an
agent expects to move when, and only when, it is not in a rewarding state, then action
will fulfill this prior and remove it from costly (non-rewarding states). This means
that the probability of finding an agent in a non-rewarding state is much smaller than
finding it in a rewarding state. This is precisely the low entropy distribution of states
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we want to explain and can be accounted for by one prior belief: “I will move unless
rewarded”. Simulations of this implicit policy produce remarkably intentional and
adaptive behaviors that can solve benchmark problems in optimal control theory (like
the mountain car problem: see Fig. 5 for an example). Heuristically, agents in these
simulations move through the space of their states as if they were in a medium with
negative viscosity or friction. This means that in most parts of state-space they speed
up, until they find states they, a priori, believe they should occupy. At this point the
viscosity becomes positive and the agent slows down to exploit the state it expects to
be in. The trick here is to formulate prior expectations about movement through state
space in terms of cost or loss-functions, of the sort considered in reinforcement and
value learning. In this example, cost (negative reward) controls the viscosity the agent
believes it will encounter at different points in state space. Viscosity is positive only
in low cost or rewarding regions and it is these regions that agents populate. This is
one example of a generic link between active inference and optimal decision theory.
Briefly, the complete class theorem suggests that all admissible decision rules are
equivalent to a Bayesian decision policy given some prior beliefs and a cost-function
[55]. This means that any decision is optimal for a Bayesian generative model and
cost-function or it is not rational. In fact, the implicit equivalence between priors and
cost-functions means that we can recast any cost-function as a prior belief.

The example in Fig. 5 illustrates this by incorporating the cost-function into prior
beliefs about motion through state-space. It also illustrates a simple mechanism for
generating itinerant or wandering exploration of state-space. The basic idea is that
unattractive or surprising fixed points destroy themselves by being rendered unstable.
We have referred to this as autovitiation (see [23] for details). This sort of prior on
state-transitions (a policy) provides a simple explanation for foraging behavior in
ethology and, to a certain extent, addresses the exploitation-exploration trade-off in
game theory and economics [10, 41].

3.1.1 Epistemic (Intrinsic) and Pragmatic (Extrinsic) Priors

The very existence of the exploitation and exploration trade-off speaks to the epis-
temic value of certain behaviors in reducing uncertainty or expected surprise in the
future. A generic formulation of the prior beliefs about action that covers both epis-
temic (information seeking) and pragmatic (goal seeking) behavior is afforded in
terms of expected free energy. In brief, if it is sufficient for organisms to minimize
variational free energy, then it is sufficient for them to have prior beliefs that they
will minimize expected free energy – via their action. In other words, actions are
a priori more likely if they reduce the expected free energy of future states. It is
relatively straightforward to show that expected free energy can be decomposed or
carved in a number of ways that make sense in relation to established criteria for
adaptive behavior. For example, one can express expected free energy in terms of
information gain or Bayesian surprise plus expected utility – where utility is defined
as log probability of preferred outcomes. Conversely, one can express expected free
energy in terms of ambiguity and risk [32].
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(a) (b)

Fig. 5 Solving the mountain car problem with prior expectations. a This Figure shows how
paradoxical but adaptive behavior (e.g. moving away from a target to ensure it is secured later)
emerges from simple priors on the motion of hidden states in the world. The Figure shows the
landscape or potential energy function (with a minimum at position x = −0.5) that exerts forces
on a mountain car. The car is shown at the target position on the hill at x = 1, indicated by the
ball. The true and expected equations of motion of the car are shown below. Crucially, at x = 0 the
force on the car cannot be overcome by the agent, because a squashing function −1 ≤ σ(a) ≤ 1 is
applied to action to prevent it being greater than one. This means that the agent can only access the
target by starting halfway up the left hill to gain enough momentum to carry it up the other side.
B. The results of active inference under priors that destroy fixed points outside the target domain.
The priors are encoded in a loss or cost function c(x) (upper left), which acts like negative friction.
When ‘friction’ is negative the car expects to go faster. The inferred hidden states (upper right)
show that the car explores its landscape until it encounters the target, when friction increases (i.e.,
cost decreases) dramatically to prevent the car from escaping the target (by falling down the hill).
The ensuing trajectory is shown in the lower left. The paler lines provide exemplar trajectories from
different trials, with different starting positions. In the real world, friction is constant. However, the
car ‘expects’ friction to change as it changes position, thus enforcing exploration or exploitation.
These expectations are fulfilled by action (lower right)

The imperative tominimize expected free energy provides a useful explanation for
saccadic searches of the visual environment [28] and has been used tomodel a variety
of tasks in psychology and behavioral economics: for example, waiting games [24]
the urn task and evidence accumulation [20], trust games from behavioral economics
[51, 62], addictive behavior [63], two-step maze tasks [32] and the mountain car
problem considered in Fig. 5 [28]. It has also been used in the setting of computational
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fMRI [61]. Given the importance of prior beliefs, one might ask where they come
from.

The answer is implicit in their evolutionarymotivation; in that they canbe specified
genetically and elaborated through (Bayes-optimal) learning. This explains how one
generation tells the next what is valuable (expected, preferred or characteristic of a
phenotype), without having to prescribe the details of how to attain preferred states.
This is a nice aspect of the free-energy formulation because it connects dynamics at
different levels or scales. For example, the same free-energy isminimized by inferring
things about someone on the phone and by the evolution of our ancestors. The only
difference is that the long-term average of free-energy is optimized by evolution,
development and learning,whereas perceptionminimizes free-energy over short time
scales. Interestingly, the long-term average or path-integral of energy is called action
in physics. This means the free-energy principle is just an example of Hamilton’s
principle of least action.1

3.2 Summary

In conclusion, we have reviewed the free-energy principle in terms of explaining
how self-organizing adaptive and biological systems manage to resist a tendency
to disorder. When we unpack this principle, we see that it accommodates both per-
ception and action, while embedding the action-perception cycle in an evolutionary
context. We have seen that the underlying imperative of all biological systems can
be expressed as minimizing (a free-energy bound) on surprise; and that surprise,
self-evidently, depends upon predictions. These predictions can be constrained by
prior expectations (that will minimize free energy), which allow our behavior to be
optimized by evolution and neurodevelopment (learning). In the next section, we
will apply these ideas to understand how agents emit sequences of movements or
action. We will focus on handwriting, noting that the same principles should apply
to any structured and sequential pattern of behavior. This example has been chosen
to highlight the central role of itinerant dynamics in furnishing prior expectations
about action and concomitant perception.

4 Action and Its Observation

In this section, we describe a generative model of handwriting and then apply the fee-
energy scheme of the previous section to simulate the emergent neuronal dynamics
and behavior. To create these simulations, all we have to do is specify a generative
model. This model and (generalized) sensations define the free-energy, which deter-
mines the dynamics of action and neuronal states encoding the conditional expec-

1We have used italics to distinguish action (integral of energy) from action (enacted by the agent).
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tations of hidden states in the world. Action and perception are prescribed by the
equations in Fig. 2, which simulate neuronal and behavioral responses respectively.

˙̃μ = Dμ̃ − ∂μ̃F(s̃(a), μ)

ȧ = −∂aF(s̃(a), μ)

�̇ = f(�, a) + ω(ψ)

s̃ = g(�) + ω(s)

(1)

The first equation represents a generalized or instantaneous gradient descent on
free-energy for the conditional expectations of hidden states causing sensory input
(i.e., neuronal activity). The first term represents their expected generalized motion,
while the second is simply the gradient of the free-energy with respect to the expec-
tations. The reason that this is a generalized descent is that it is formulated in gen-
eralized coordinates of motion, such that the first term augments and anticipates the
descent so that it becomes effectively instantaneous. Representing states in general-
ized coordinates of motion μ̃ = (μ,μ′, μ′′, . . .) means that each state comprises its
current value, velocity, acceleration, jerk and so on. This means that the generalized
motion Dμ̃ = (μ′, μ′′, μ′′ . . .) just involves shifting generalized expectations to the
left: see [23] for details.

The second equality is the equivalent gradient descent for action. Both of these
equations rest upon the free-energy, which is a function of sensory information and
current expectations. This function depends upon a generative model, which is spec-
ified completely by equations of motion of the hidden states and a function mapping
hidden states to sensory signals (see Fig. 2). This means all we have to do to simulate
action and perception is to specify the equations of the generative model and then
solve or integrate Eq.1 over time.

The second pair of equalities describes how true (but hidden) states in the world
evolve and generate sensations, where both are subject to random fluctuations. The
dependencies among hidden states, sensory states, expectations and action mean that
sensations and action constitute a Markov blanket that separates hidden (external)
states from expected (internal) states (see also Fig. 1). The very existence of this
Markov blanket can be used to show that the free energy principle is necessarily true
for any ergodic system; including those that possess random dynamical attractors
and therefore attain nonequilibrium steady-state. This provides a theoretical back
story for the free energy principle, as a fundament of biological self organisation
[24, 31].

In what follows, we describe the generativemodel that will be used for the remain-
der of this chapter. We have chosen this model because it entails the sort of itinerant
dynamics found in real-world movements, such as reading and walking.
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4.1 Itinerant Dynamics and Attractors

Our agent was equipped a simple hierarchical model of its sensorium based on a
Lotka–Volterra system. The particular form of this model has been discussed pre-
viously as the basis of putative speech decoding [44]. Here, it is used to model a
stable heteroclinic channel [59] encoding successive locations to which the agent
expects its arm to move. The resulting trajectory was contrived to simulate synthetic
handwriting.

A stable heteroclinic channel is a particular form of itinerant trajectory or orbit
that revisits a sequence of (unstable) fixed points. In our model, there are two sets
of hidden states, which we will associate with two levels of a hierarchical model.
The first set x (2) ∈ R

6×1 corresponds to the state-space of a Lotka–Volterra system.
This is an abstract (attractor) state-space, in which a series of attracting points are
visited in succession. The second set x (1) = {x1, x2, x ′

1, x
′
2} corresponds to the (angu-

lar) positions and velocities of two joints in (two dimensional) physical space. The
dynamics of hidden states at the first level embody the agent’s prior expectation
that the arm will be drawn to a particular location, v(1) = g(x (2)) specified by the
attractor states of the second level. This is implemented simply by placing a (virtual)
elastic band between the tip of the arm and the attracting location. The hidden states
basically draw the arm’s extremity (finger) to a succession of locations to produce
an orbit or trajectory, under classical Newtonian mechanics. We chose the locations
so that the resulting trajectory looked like handwriting. These hidden states gener-
ate both proprioceptive and visual (exteroceptive) sensory data: The proprioceptive
data are the angular positions and velocities of the two joints x (1), while the visual
information was the location of the arm in physical (Cartesian) space {1, 1 + 2},
where 2(x (1)) is the displacement of the finger from the location of the second joint
1(x (1)) (see Fig. 6 and Table2).

Crucially, because this generativemodel generates two (proprioceptive and visual)
sensory modalities, the solutions to Eq.1 implement Bayes-optimal multisensory
integration. However, because action is also trying to reduce prediction errors, it
will move the arm to reproduce the expected trajectory (under the constraints of
the motor plant). In other words, the arm will trace out a trajectory prescribed by
the itinerant priors (to cancel proprioceptive prediction errors). This closes the loop,
producing autonomous self-generated sequences of behavior of the sort described
below. Note that the real world does not contain any attracting locations or elastic
bands: The only causes of observed movement are the self-fulfilling expectations
encoded by the itinerant dynamics of the generative model. In short, hidden attractor
states essentially prescribe the intended movement trajectory, because they generate
predictions that action fulfils. Thismeans expected states encode conditional percepts
(concepts) about latent abstract states (that do not exist in the absence of action),
which play the role of intentions. We now describe the model formally.
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Fig. 6 Simulating self-generated movement. This schematic details a simulated (mirror neuron)
system and the motor plant that it controls (left and right respectively). The right panel depicts the
functional architecture of the supposed neural circuits underlying active inference. The red ellipses
represent prediction error-units (neurons or populations), while the black ellipses denote state-units
encoding conditional expectations about hidden states of the world (for simplicity, we have omitted
hidden causes). The hidden states are split into two hierarchical levels: the higher abstract attractor
states (that supports stable heteroclinic orbits) and lower physical states of the arm (angular positions
and velocities of the two joints). Red arrows are forward connections conveying prediction errors
and black arrows are backward connections mediating predictions. Motor commands are emitted
by the black units in the ventral horn of the spinal cord. Note that these just receive prediction errors
about proprioceptive states. These, in turn, are the difference between sensed proprioceptive input
from the two joints and descending predictions from optimized representations in the motor cortex.
The two jointed arm has a state space that is characterized by two angles, which control the position
of the finger that will be used for writing in subsequent figures

4.2 The Generative Model

The model used in this section concerns the movements of a two-joint arm. When
simulating active inference, it is important to distinguish between the agent’s genera-
tive model and the actual dynamics generating sensory data. To make this distinction
clear, we will use bold for true equations and states, while those of the generative
model will be written in italics. Proprioceptive input corresponds to the angular posi-
tion and velocity of both joints, while the visual input corresponds to the location of
the extremities of both parts of the arm. This means the mapping from hidden states
to sensory consequences is:

g(1) = g(1) =
⎡

⎣
x (1)

1(x (1))

1(x (1)) + 2(x (1))

⎤

⎦ (2)
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Table 2 Variables and quantities specific to the writing example of active inference (see main text
for details)

Variable Description

x (2) ∈ R
6×1 Hidden attractor states: A vector of hidden states that

specify the current location towards which the agent expects
its arm to be pulled

x (1) ∈ R
4×1 Hidden effector states: Hidden states that specify the

angular position and velocity of the i-th joint of a
two-jointed arm

1(x (1)) ∈ R
2×1

2(x (1)) ∈ R
2×1 Joint locations: Locations of the end of the two arm parts in

Cartesian space. These are functions of the angular positions
of the joints

v(1) = g(x (2)) ∈ R
2×1 Attracting location: The location towards which the arm is

drawn. This is specified by the hidden attractor states

φ(x (1), v(1)) ∈ R
2×1 Newtonian Force: This is the angular force on the joints

exerted by the attracting location

A ∈ R
6×6 ⊂ θ Attractor parameters: A matrix of parameters that govern

the (sequential Lotka–Volterra) dynamics of the hidden
attractor states

L ∈ R
2×6 ⊂ θ Cartesian parameters: A matrix of parameters that specify

the attracting locations associated with each hidden attractor
state

We will ignore the complexities of inference on retinotopically mapped visual
input and assume the agent has direct access to the locations of the arm in visual
space. The kinetics of the arm conforms to Newtonian laws, under which action
forces the angular position of each joint. Both joints have an equilibrium position at
ninety degrees; with inertia mi ∈ 8, 4 and viscosity κi ∈ 4, 2, giving the following
equations of motion for the hidden states

x(1) =

⎡

⎢
⎢
⎣

x1
x2
x

′
1

x
′
2

⎤

⎥
⎥
⎦ f (1) =

⎡

⎢
⎢
⎢
⎣

x
′
1

x
′
2

(a1 + v1 − 1
4 (x1 − π

2 ) − κ1x′
1)/m1

(a2 + v2 − 1
4 (x2 − π

2 ) − κ2x′
2)/m2

⎤

⎥
⎥
⎥
⎦

(3)

However, the agent’s empirical priors on this motion have a very different form.
Its generative model assumes the finger is pulled to a (goal) location v(1) by a force
φ(t), which implements the virtual elastic band above:
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x (1) =

⎡

⎢
⎢
⎣

x1
x2
x ′
1
x ′
2

⎤

⎥
⎥
⎦ f (1) =

⎡

⎢
⎢
⎢
⎢
⎣

x ′
1

x ′
2

(φT 2
T
2 O1 − 1

16 (x1 − π
2 ) − κ1x ′

1)/m1

(φT O2 − 1
16 (x2 − π

2 ) − κ2x ′
2)/m2

⎤

⎥
⎥
⎥
⎥
⎦

1 =
[
cos(x1)
sin(x1)

]

2 =
[− cos(−x2 − x1)
sin(−x2 − x1)

]

O =
[
0 −1
1 0

]

φ = 1
2 (v

(1) − 1 − 2)

(4)

The (moving) target location is specified by the second level of the hierarchy as
a nonlinear (softmax) function of the hidden attractor states.

v(1) = g(x (2)) = Ls(x (2))

f (2) = Aσ(x (2)) − 1
8 x

(2) + 1

σ(xi ) = 1
1+e2xi

s(xi ) = e2αi∑
j e

2x j

(5)

Heuristically, these equations of motion mean that the agent thinks that changes
in its world are caused by the dynamics of attractor states on an abstract (conceptual)
space. The currently active state selects a location v(1) in the agent’s physical (Carte-
sian) space, which exerts a force φ(t) on its finger. The equations of motion in Eq.4
pertain to the resulting motion of the arm in Cartesian space, while Eq.5 mediates
the attractor dynamics driving these movements.

The (Lotka–Volterra) form of the equations of motion for the hidden attractor
states ensures that only one has a high value at any one time and imposes a particular
sequence on the underlying states. Lotka–Volterra dynamics basically induce com-
petition among states that no state can win. The resulting winnerless competition
rests on the (logistic) function σ(x (2)), while the sequence order is determined by
the elements of the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 − 1
2 −1 −1 · · ·

− 3
2 0 − 1

2 −1

−1 − 3
2 0 − 1

2

. . .

−1 −1 − 3
2 0

...
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

Each attractor state has an associated location in Cartesian space, which draws
the arm towards it. The attracting location is specified by a mapping from attractor
space to Cartesian space, which weights different locations,

L =
[
1 1.1 1.0 1 1.4 0.9
1 1.2 0.4 1 0.9 1.0

]
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with a softmax function s(x (2)) of the attractor states. The location parameters were
specified by hand but could, in principle, be learnt as described in [23, 25]. The iner-
tia and viscosity of the arm were chosen somewhat arbitrarily to reproduce realistic
writing movements over 256 time bins, each corresponding to roughly eight mil-
liseconds (i.e., a second). Unless stated otherwise, we used a log-precision of four
for sensory noise and eight for random fluctuations in the motion of hidden states.

Figure7 shows the results of integrating Eq.1, using the generative model above.
The top right panel shows the hidden states embodying Lotka–Volterra dynamics
(the hidden joint states are smaller in amplitude). These generate predictions about
the position of the joints (upper left panel) and consequent prediction errors that drive
action. Action is shown on the lower right panel and displays intermittent forces that
move the joint to produce a motor trajectory. This trajectory is shown on the lower
left in visual space over time. This trajectory or orbit is translated as a function of time
to reproduce handwriting. Although this is a pleasingly simple way of simulating an
extremely complicated motor trajectory, it should be noted that this agent has a very
limited repertoire of behaviors; it can only reproduce this sequence of graphemes,
and will do so ad infinitum.

In summary, we have covered the functional architecture of a generative model
whose autonomous (itinerant) expectations prescribe complicated motor sequences
through active inference. This rests upon itinerant dynamics (stable heteroclinic chan-
nels) that can be regarded as a formal prior on abstract causes in the world. These are
translated into physical movement through classical Newtonian mechanics, which
correspond to the physical states of the model. Action tries to fulfill predictions about
proprioceptive inputs and is enslaved by autonomous predictions, producing realistic
behavior. These trajectories are both caused by neuronal representations of abstract
(attractor) states and cause those states in the sense that they are conditional expecta-
tions. Closing the loop in this way ensures a synchrony between internal expectations
and external outcomes.

An interesting technical issue – that follows from formulating kinetics in gener-
alized coordinates of motion – is that prior beliefs about the amplitude of random
fluctuations enter free energy in a way that is consistent with minimum variance
heuristics in the motor control literature [37]. This follows from the fact that smooth
trajectories can be characterized by precise (low variance) velocities and accelera-
tions. In short, if an agent believes its generalised motion is precise, it will execute
smooth movements of the sort seen empirically.

In the next section,wewillmake a simple changewhichmeans thatmovements are
no longer caused by the agent. However, we will see that the conditional expectations
about attractor states are relatively unaffected, which means that they still anticipate
observed movements. We conclude with this example because it illustrates nicely
the potential role of itinerant dynamics in explaining some of the higher cognitive
aspects of brain function. Our focus here is on emulating the electrophysiological
phenomenology of the mirror neuron system; in particular, the fact that certain neu-
rons in the ventral premotor cortex and inferior parietal cortex respond not only to
the execution of particular movement primitives but also when these movements are
observed in other agents [14, 21, 33, 60].
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(a) (b)

(c) (d)

Fig. 7 Itinerant dynamics and active inference. This figure shows the results of simulated action
(writing), under active inference, in terms of conditional expectations about hidden states of the
world (upper right), consequent predictions about sensory input (upper left) and the ensuing behav-
ior (lower left) that is caused by action (lower right). The autonomous dynamics that underlie this
behavior rest upon the expected hidden states that follow Lotka–Volterra dynamics. These are the
thinner lines in the upper right panel. The hidden physical states (thicker lines) have smaller ampli-
tudes and map directly on to the predicted proprioceptive and visual signals (shown on the left).
The visual locations of the two joints are shown above the predicted joint positions and angular
velocities that fluctuate around zero. The dotted lines correspond to prediction error, which shows
small fluctuations about the prediction. Action tries to suppress this error by ‘matching’ expected
changes in angular velocity through exerting forces on the joints. These forces are shown on the
lower right. The subsequent movement of the arm is traced out on the lower left; this trajectory
has been plotted in a moving frame of reference so that it looks like synthetic handwriting (e.g., a
succession of ‘j’ and ‘a’ letters). The straight lines on the lower left denote the final position of the
two jointed arm and the hand icon shows the final position of its finger

4.3 Action-Observation

The simulations above were repeated but with one small but important change. Basi-
cally, we reproduced the same movements but the proprioceptive consequences of
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action were removed, so that the agent could see but not feel the arm moving. From
the agent’s perspective, this is like seeing an arm that looks like its own arm but
does not generate proprioceptive input (i.e., the arm of another agent). However, the
agent still expects the arm to move with a particular itinerant structure and will try
to predict the trajectory with its generative model. In this instance, the hidden states
still represent itinerant dynamics (intentions) that govern the motor trajectory but
these states do not produce any proprioceptive prediction errors and therefore do not
result in action. Crucially, the perceptual representation still retains its anticipatory
or prospective aspect and can therefore be taken as a perceptual representation of
intention, not of self, but of another. We will see below that this representation is
almost exactly the same under action-observation as it is during action.

Practically speaking, to perform these simulations, we simply recorded the forces
produced by action in the previous simulation and replayed them as exogenous
forces (real causes in Eq.2) to move the arm. This change in context (agency) was
modeled by down-weighting the precision of proprioceptive signals. This is exactly
the same mechanism that we have used previously to model attention [17]. In this
setting, reducing the precision of proprioceptive prediction errors prevents them from
having any influence on perceptual inference (i.e., the agent cannot feel changes in
its joints). Furthermore, action is not compelled to reduce these prediction errors
because they have no precision. In these simulations, we reduced the log-precision
of proprioceptive prediction errors from eight to minus eight. To illustrate the key
results of these simulations of action-observation, in relation to simulated action, we
recorded the activity of units encoding hidden attractor states and examined and their
relationship to observed movements:

4.4 Place-Cells, Itinerancy and Oscillations

It is interesting to think about the attractor states as representing trajectories through
abstract representational spaces (cf., the activity of place cells; [6, 56, 70]). Figure8
illustrates the sensory or perceptual correlates of units representing expected attrac-
tor states. The left hand panels show the activity of one (the fourth) hidden state
unit under action, while the right panels show exactly the same unit under action-
observation. The top rows show the trajectories in visual space, in terms of horizontal
and vertical displacements (grey lines). The black dots correspond to the time bins
in which the activity of the hidden state unit exceeded an amplitude threshold of
two arbitrary units. They key thing to take from these results is that the activity
of this unit is very specific to a limited part of Cartesian space and, crucially, a
particular trajectory through this space. The analogy here is between directionally
selective place-cells of the sort studied in hippocampal recordings: In tasks involving
goal-directed, stereotyped trajectories, the spatially selective activity of hippocampal
cells depends on the animal’s direction of motion [3]. A further interesting connec-
tion with hippocampal dynamics is the prevalence of theta rhythms during action:
“Driven either by external landmarks or by internal dynamics, hippocampal neu-
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Fig. 8 Simulating action-observation. These results illustrate the sensory or perceptual correlates
of units encoding expected hidden (attractor) states. The left hand panels show the activity of one
(the fourth attractor) hidden state-unit under action, while the right panels show exactly the same
unit under action-observation. The top rows show the trajectory in visual space in terms of horizontal
and vertical position (grey lines). The dots correspond to the time bins during which the activity of
the state-unit exceeded an amplitude threshold of two arbitrary units. They key thing to take from
these results is that the activity of this unit is very specific to a limited part of visual space and,
crucially, a particular trajectory through this space. Notice that the same selectivity is seen under
action and observation. The implicit direction selectivity can be seen more clearly in the lower
panels, in which the same data are displayed but in a moving frame of reference to simulate writing.
They key thing to note here is that this unit responds preferentially when, and only when, the motor
trajectory produces a down-stroke, but not an up-stroke

rons form sequences of cell assemblies. The coordinated firing of these active cells
is organized by the prominent “theta” oscillations in the local field potential (LFP):
place cells discharge at progressively earlier theta phases as the rat crosses the respec-
tive place field (phase precession)” [66]. Quantitatively, the dynamics of the hidden
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state-units in Fig. 7 (upper left panel) show quasiperiodic oscillations in the (low)
theta range. The notion that quasiperiodic oscillations may reflect stable heteroclinic
channels is implicit in many treatments of episodic memory and spatial navigation,
which “require temporal encoding of the relationships between events or locations”
[15], and may be usefully pursued in the context of active inference under itinerant
priors.

Notice that the same ‘place’ and ‘directional’ selectivity is seen under action and
observation (Fig. 8 right and left columns). The direction selectivity can be seenmore
clearly in the lower panels, in which the same data are displayed but in a moving
frame of reference (to simulate writing). They key thing to note here is that this
unit responds preferentially when, and only, when the motor trajectory produces a
down-stroke, but not an up-stroke. There is an interesting dissociation in the firing of
this unit under action and action-observation: during observation the unit only starts
responding to down-strokes after it has been observed once. This reflects the finite
amount of time required for visual information to entrain the perceptual dynamics
and establish veridical predictions.

5 Conclusion

In this chapter, we have tried to show that many aspects of action, perception and
high-level (cognitive) inference are consistent with (Bayes-optimal) active inference
under the free-energy principle. Put simply, the brain does not represent intended
motor acts or the perceptual consequences of those acts separately. The constructs
represented in the brain are both intentional and perceptual: They are amodal infer-
ences about the states of the world generating sensory data that have both sensory and
motor correlates, depending upon the context inwhich they aremade. The predictions
generated by these representations aremodality-specific, prescribing both exterocep-
tive (e.g., visual) and interoceptive (e.g., proprioceptive) predictions, which action
fulfils. The functional segregation of motor and sensory cortex could be regarded
as a hierarchical decomposition, in the brain’s model of its world, which provides
predictions that are primarily sensory (e.g. visual cortex) or proprioceptive (motor
cortex). If true, this means that high level representations can be used to furnish
predictions in either visual or proprioceptive modalities, depending upon the context
in which those predictions are called upon. This picture of functional anatomy fits
well with the juxtaposition of somatosensory and motor cortex – and speaks to the
participation of the motor and premotor cortex to sensory information flow through
the thalamus [67].

In one sense, this conclusion takes us back to very early ideas concerning the
nature of movements and intentions. The notion of an ideomotor reflex or response
was introduced in the 1840s by the Victorian physiologist and psychologist William
Benjamin Carpenter. The ideomotor response (reflex) refers to the process whereby
a thought or mental image induces reflexive or automatic movements, often very
small and potentially outside awareness. Active inference formalizes this idea and
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suggests that all movements are prescribed by mental images that correspond to
prior beliefs about what will happen next. These priors are inherently dynamic and
itinerant. This suggests that our exchanges with our environment are constrained to
an exquisite degree by local and global brain dynamics; and that these dynamics have
been carefully crafted by evolution, neurodevelopment and experience to optimize
behavior. In short, our variational treatment is quintessentially enactivist [2, 65].

Acknowledgements The Wellcome trust funded this work. I would also like to thank Daniel
Bennequin for invaluable help in formulating these ideas.

Appendix

This appendix provides a brief technical overview of how the free energy principle
applies to neuronal dynamics. In this setting, the states of the brain (e.g., the activity
of neurons and other systems that are crucial for its function, such as glial cells), are
viewed as encoding the sufficient statistics of probability measures on hidden states
of the external world. In this view, the main quantities are probabilities measures,
denoted by p(s̃, ψ |m), on the product S × � of possible values of (generalized)
sensory states and hidden states, under a particular model m. Time plays a hidden
but fundamental role in this formalism, in the sense that (S, �) are path spaces, and
(s̃, ψ) are points in manifolds that depend on time. Particular attention is required
by this point in Bayesian modelling [11, 48]).

The underlying premise is that the sufficient statistics μ̃ and the induced proba-
bility q(ψ | μ̃) evolve to maximize the marginal likelihood or model evidence:

p(s̃ |m) =
∫

dψp(s̃, ψ |m) (A.1)

However, this marginalization is generally intractable. The main simplification
rests on replacing the difficult marginalization in A.1, by the practically easier prob-
lem of minimizing free energy:

F = Eq [G(s̃, ψ)] − H [q(ψ | μ̃)] (A.2)

where H [q(ψ | μ̃)] denotes the entropy of the probability law q(ψ | μ̃) on �, and
the first term is the Gibbs internal energy G(s̃, ψ) = − ln p(s̃, ψ |m) expected under
q(ψ | μ̃). It is easy to show that the concavity of the logarithmic function on ]0,∞[
implies:

F(s̃, μ̃) ≥ − ln p(s̃ |m) (A.3)

Then, the minimization of free energy with respect to the sufficient statistics μ̃

affords a constraint on the good direction for the maximization of the marginal like-
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lihood or model evidence. In general, the problem is further simplified, for instance
by an Ansatz of mean-field approximation, or by reducing to a belief propagation
algorithm; c.f., [72].
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Abstract The modeling and online-generation of human-like body motion is a
central topic in computer graphics and robotics. The analysis of the coordination
structure of complex body movements in humans helps to develop flexible tech-
nical algorithms for movement synthesis. This chapter summarizes work that uses
learned structured representations for the synthesis of complex human-like body
movements in real-time. This work follows two different general approaches. The
first one is to learn spatio-temporalmovement primitives from human kinematic data,

J.P. Laumond et al. (Eds.): Geometric and Numerical Foundations of Movements, Springer
STAR Series, 2016. c© Springer-Verlag Berlin Heidelberg 2016.

A. Mukovskiy (B) · N. Taubert · M.A. Giese (B)
Section for Computational Sensomotorics, Department of Cognitive Neurology,
Hertie Institute for Clinical Brain Research & Center for Integrative Neuroscience,
University Clinic Tübingen, Otfried-Müller Str. 25, 72076 Tübingen, Germany
e-mail: albert.mukovskiy@medizin.uni-tuebingen.de

N. Taubert
e-mail: nick.taubert@uni-tuebingen.de

M.A. Giese
e-mail: giese@uni-tuebingen.de

D. Endres
Theoretical Neuroscience Group, Section for General and Biological Psychology,
Department of Psychology, University of Marburg,
Gutenbergstr. 18, 35032 Marburg, Germany
e-mail: dominik.endres@uni-marburg.de

C. Vassallo · M. Naveau · O. Stasse · P. Souères
Gepetto Lab, LAAS/CNRS, Université de Toulouse,
Av. du Colonel Roche 7, 31400 Toulouse, France
e-mail: christian.vassallo@laas.fr

M. Naveau
e-mail: maximilien.naveau@laas.fr

O. Stasse
e-mail: ostasse@laas.fr

P. Souères
e-mail: philippe.soueres@laas.fr

© Springer International Publishing AG 2017
J.-P. Laumond et al. (eds.), Geometric and Numerical Foundations of Movements,
Springer Tracts in Advanced Robotics 117, DOI 10.1007/978-3-319-51547-2_11

237



238 A. Mukovskiy et al.

and to derive from this Dynamic Movement Primitives (DMPs), which are modeled
by nonlinear dynamical systems. Such dynamical primitives are then coupled and
embedded into networks that generate complex human-like behaviors online, as self-
organized solutions of the underlying dynamics. The flexibility of this approach is
demonstrated by synthesizing complex coordinated movements of single agents and
crowds. We demonstrate that Contraction Theory provides an appropriate frame-
work for the design of the stability properties of such complex composite systems.
In addition, we demonstrate how such primitive-basedmovement representations can
be embedded into a model-based predictive control architecture for the humanoid
robot HRP-2. Using the primitive-based trajectory synthesis algorithm for fast online
planning of full-body movements, we were able to realize flexibly adapting human-
like multi-step sequences, which are coordinated with goal-directed reaching move-
ments. The resulting architecture realizes fast online planing ofmulti-step sequences,
at the same time ensuring dynamic balance during walking and the feasibility of the
movements for the robot. The computation of such dynamically feasible multi-step
sequences using state-of-the-art optimal control approaches would take hours, while
our method works in real-time. The second presented framework for the online syn-
thesis of complex body motion is based on the learning of hierarchical probabilistic
generative models, where we exploit Bayesianmachine learning approaches for non-
linear dimensionality reduction and the modeling of dynamical systems. Combining
Gaussian Process Latent Variable Models (GPLVMs) and Gaussian Process Dynam-
ical Models (GPDMs), we learned models for the interactive movements of two
humans. In order to build an online reactive agent with controlled emotional style,
we replaced the state variables of one actor by measurements obtained by real-time
motion capture from a user and determined the most probable state of the interac-
tion partner using Bayesian model inversion. The proposed method results in highly
believable human-like reactive body motion.

Keywords Dynamic movement primitives · Animation · Machine learning ·
Gaussian process latent variable model ·Gaussian process dynamical model ·Navi-
gation ·Walking pattern generator ·Goal-directedmovements ·Motor coordination ·
Action sequences

1 Introduction

The generation of realistic human movements in reactive fashion is a difficult task
with high relevance for computer graphics and robotics. An especially challenging
task in this domain is the online-synthesis of complex behaviors that consist of
sequences of individual actions,which adapt to continuously changing environmental
constraints.

The whole body movements of humans and animals are organized in terms of
muscle synergies or movement primitives [4, 17]. Such primitives characterize the
coordinated involvement of subsets of the available degrees of freedom in different
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actions. An example is the coordination of periodic and non-periodic components of
the full-body movements during reaching while walking, where behavioral studies
reveal a mutual coupling between these components [8, 12, 47, 68]. The realism and
human-likeness of synthesized movements in robotics and computer graphics can be
improved by taking such biological constraints into account [15, 18, 73].

In this chapter we present two learning-based frameworks that make such bio-
logical properties applicable to the realtime synthesis of human-like movements in
technical systems, one that is based on Dynamic Movement Primitives (DMPs), and
another one that exploits unsupervised Bayesian learning methods.

The chapter is organized into three main sections. Section 2 introduces a frame-
work that approximates complex human movements by combining learned dynamic
movement primitives. Highly adaptive coordinated full-body movements, and even
the coordination of themovements ofmultiple agents, can be generated online by net-
works of such dynamic primitives, which are mutually coupled. Section 3 discusses
how the same methods can be exploited for the movement planning of humanoid
robots. We present an architecture that embeds such an online synthesis model into
a control architecture of a real humanoid robot, which is based on model predictive
control. The proposed solution ensures the dynamic balance of the robot, so that it is
prevented from falling, while realizing highly flexible online planning ofmovements.
The last Sect. 4 introduces a completely different approach for the learning-based
representation of reactive human movements, which is based on Bayesian machine
learning methods for dimension reduction and model inversion. Space constraints
allow us only to give the outline of these different approaches, and we refer to the
cited original publications with respect to many technical and mathematical details.

2 Modeling of Human Movements Based on Learned
Primitives

Human full-bodymovements involve typically a large number of degrees of freedom.
It has been a classical idea in biological motor control that such complex body
movements might be composed from lower-dimensional control units, often referred
to as movement primitives or synergies. Substantial work in motor control has been
dedicated to the identification of such primitives from kinematic and EMG data,
applying unsupervised learning techniques for dimension reduction [14, 31, 71].
Different techniques have been applied, including Principle Component Analysis
(PCA), Independent Component Analysis (ICA), or more sophisticated methods that
include time shifts of the superpositioned components. Such methods approximate a
set of time-dependent signals by a superposition of learned source functions, which
have been interpreted as movement primitives or (muscle) synergies.

Work in computer graphics shows that the accurate approximation of motion cap-
ture data from complex full-bodymovements using PCA requires typicallymore than
8 principal components (e.g. [70]). In the following section we describe a method
that often leads to more compact representations with less components or primitives.
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Such compact representations are important especially if parameters of the learned
models have to be interpreted, e.g. in order to characterize motion styles [65]. Com-
pact models tend to concentrate the data variance on a low number of interpretable
parameters. Compact primitive-based representations are also beneficial if they are
embedded into control systems or dynamic architectures for the online generation
of motion. In this case, the number of primitives determines the dimensionality of
the underlying system dynamics, and systems with lower dimensionality often are
easier to control and more robust against perturbations.

In the following, after reviewing some related methods in Sect. 2.1, we give first
a short introduction in the method that we apply to learn primitives from trajec-
tory data (Sect. 2.2). The resulting kinematic primitives are given by basis functions
or trajectories, which by appropriate combination can approximate complex joint
angle trajectories. We then discuss how from such kinematic primitives dynamic
movement primitives can be constructed that generate the learned trajectories online
(cf. Sect. 2.3). These dynamic primitives are nonlinear dynamical systems that pro-
duce the learned basis trajectories as stable solutions. In the following Sect. 2.4
we demonstrate how such learned dynamical generative models can be augmented
by controllers that make the behaviors adaptable, realizing for example navigation
through space or the control of step length or emotional style. It is demonstrated
that the developed approach is suitable for the online generation of quite complex
coordinated behaviors, either of single agents or even of whole crowds of agents that
execute coordinated collective behaviors. In Sect. 2.5 we discuss finally, how such
complex generative dynamical models can be designed, guaranteeing the robustness
of their solutions. Contraction Theory, a special type of mathematical stability analy-
sis, which is especially applicable to nonlinear systems which are composed of many
components, makes it possible to ensure that the desired behavior is the only stable
solution of the resulting nonlinear dynamical system.

2.1 Related Work

The synthesis of the kinematics of sequences of human full-body movements has
been treated extensively in computer graphics [42]. The prominent classical approach
for the synthesis of human motion in computer graphics is the adaptive interpolation
betweenmotion-captured example actions, which is typically realized off-line [2, 22,
23, 93]. Other approaches are based on learned low-dimensional parameterizations
of whole body motion that are embedded in mathematical frameworks for the online
generation of motion [9, 27, 43, 44, 66, 70, 88]. In addition, a variety of methods for
the segmentation of action streams into individual actions have been proposed, where
the models for individual actions can be adapted online in order to fulfill additional
constraints, such obstacle avoidance or the correct positioning of end-effectors [16,
28, 34, 62, 67]. Only very few of these works have focused on the modeling of
the flexible coordination of groups of degrees of freedom, similar to synergies in
biological systems [70, 75].
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2.2 Approximation of Human Movement Data by Anechoic
Mixtures

Many standard approaches use principle component analysis (PCA) or independent
component analysis (ICA) for the reduction of the dimensionality of motion data.
A set of trajectories is represented as a linear combination of a limited number of
basis components or source functions. In our work we used a more sophisticated
mixture model for the approximation of the joint angle trajectories that contains time
shifts for the superposed components or sources [11, 56]. This model is known from
acoustics as anechoic mixture and superposes source functions sj that are temporally
shifted with the time delays τij in order to to approximate a set of trajectories ξi(t).
The corresponding model is characterized mathematically by the equation

ξi(t)
︸︷︷︸

angles

= mi +
∑

j

wij sj
(

t − τij
)

︸ ︷︷ ︸

sources

+ noise (1)

The parameters wij specify the mixing weights, and the variables mi signify constant
offsets (means) of the approximated trajectories. Learning of an anechoic mixture
model requires the estimation of these parameters, the source functions sj, and the
delays τij. In our case, the trajectories were given by the angle trajectories of 17 joints
expressed as quaternions. We have shown in previous work for different classes of
human movements that this anechoic mixture model results in very accurate approx-
imations of complex human movent data, often with as few as 3–4 source functions,
and typically with factor 2 less sources than classical approaches using PCA or ICA
[50, 60].

2.3 Online Synthesis by Networks of Dynamic Primitives

The discussed mixture model can be applied for an off-line analysis and synthesis
of classes of trajectories. Movement types or styles can be characterized by the
mixing weights (and delays) of the model, and the movement can be analyzed using
these weights as features. In addition, novel movement trajectories can be generated
off-line by specifying or interpolating these parameters, and using the Eq. (1) as a
generative model [65]. However, this approach is not sufficient for applications that
require an online synthesis of complex movements.

In order to make the learned structured model applicable for real-time synthesis
we associated each learned source function (kinematic primitive) with an associated
dynamic primitive [19, 29]. The dynamic primitives are defined by dynamical sys-
tems whose stable solutions approximate the learned source functions. Each dynam-
ical primitive is defined by a canonical dynamical system, which has an attractor
solution with well-defined mathematical properties. We used limit cycle oscillators
(Andronov-Hopf oscillators) for the approximation of periodic source functions, and
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Fig. 1 Architecture for the online synthesis of body movements using dynamic primitives. The
solutions xj(t) of a canonical dynamical systems (limit cycle oscillators) are mapped by Support
Vector Regression (SVR) onto the values of the periodic source functions sj(t). In addition, a non-
periodic source function s0(t) is constructed from these solutions. From these online generated
source functions joint angle trajectories are computed using the learned anechoic mixing model

a ramp-like solution, which is derived from the state of a limit cycle oscillator, for
the non-periodic ones. We then learned nonlinear functions that map the state spaces
of the canonical dynamics onto the values of the source functions sj(t) using Sup-
port Vector Regression (SVR) [10]. Figure1 shows an overview of the developed
architecture for real-time synthesis.

By insertion of couplings between the different canonical dynamical systems it
is possible to synchronize their dynamics, so that the corresponding source signals
are evolving in synchrony. Such couplings can be used either to model coordinated
behavior between themovement primitiveswithin a single agent, or by introductionof
couplings between the dynamics ofmultiple agents, for the simulation of coordinated
interactive behavior of multiple agents.

2.4 Style Morphing and Navigation

The proposed method for the online generation of body motion trajectories can
be combined with a dynamic variations of motion style. For this purpose multiple
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Fig. 2 a Reactive online control of locomotion. Agents avoid the obstacles (poles) and other
agents in the scene. Trajectories are generated by morphing between steps with different length,
and curvatures of the walking path (left, straight, right), where blending weight are controlled by a
navigation dynamics that controls the heading direction dependent on obstacle and goal positions.
b Folk dance of two couples, one forming a bridge, and the other crouching beneath it. The behavior
is fully self-organized,where the behavior of the agents depends on the relative positionswith respect
to the other agents

examples of the same motion were motion-captured that realize different styles, and
intermediate styles were generated by online interpolation (motion blending). For
thus purpose, we linearly interpolated the average angles mi, the mixing weights
wij, and the delays τij of mixing models that were learned from training trajectories
representing different motion styles. (See [21, 50] for further details.)

The blending weights were modulated by controllers that depend on task parame-
ters, such as the position or orientations of agents in the scene, distances of agents to
goal points, etc. One example is the generation of walking steps that realize locomo-
tion along curved paths by morphing between straight and curved walking steps to
the right or to the left. In this case, themorphing weights of the three walking patterns
were determined by a controller that determines the heading direction dependent on
obstacles and desired goal points (cf. [74, 91]). Likewise, movements with differ-
ent emotional styles can be generated by blending between models that realize the
same motion with different emotional styles, or steps with different length can be
generated by morphing between long and short steps.

We worked out an application of this approach for the simulation of locomoting
and navigating agents. Blending weights were controlled by a simplified version of
a dynamic navigation model that had been applied successfully in robotics before
[74], and which we extended by inclusion of a prediction of expected collision points
with obstacles in order to make the navigation behavior more human-like [59]. The
heading direction is controlled by a nonlinear first-order differential equation that
depends on the actual positions of the agents and of obstacles in the scene. (See [21,
59] for details.)

An example for the navigation behavior that can be simulated with the described
architecture is illustrated in Fig. 2a, where six agents avoid the obstacles and the
other agents. Demo Movie I1 shows this example and other obstacle avoidance

1http://tinyurl.com/hvwv9ra.

http://tinyurl.com/hvwv9ra
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scenarios. The same method can also be exploited in order to model interactions
between multiple agents that realize more complex behaviors, which integrate peri-
odic and non-periodic movement primitives. An example is shown in Fig. 2b that
shows a figure from a folk dance that requires one couple of agents to walk beneath
a bridge that is formed by the arms of another couple. Both both couples take turn
and change places. This whole complex behavior with highly human-like appearance
was completely self-organized using only 10 prototypical movements (normal walk,
walks with left or right arm lifted, crouching walk, left and right forward turnings
with two different angular velocities, left and right backward stepping turns). See
alsoDemoMovie I. The proposed approach thus can be used to simulate highly com-
plex full-body coordination patterns, and even patterns that include multiple agents.
The underlying architecture is very simple, consisting only of a low-dimensional
nonlinear dynamical system and some linear and nonlinear mappings. This makes it
possible to generate the behavior, even of larger groups of agents in realtime.

2.5 Dynamic Stability Design Exploiting Contraction Theory

Effectively, the proposed method synthesizes desired motion trajectories online by
generating them as stable solutions of a complex dynamical system, which can be
characterized as a ‘network’ of dynamic movement primitives. The elements of such
networks are highly nonlinear: the canonical dynamics, the mappings from the state
space of the canonical state variables to the source functions, and the kinematic
relationship between the joint angles and the behavior of the agent in the external
space. This raises the question whether for such systems any guarantees can be given
that the desired behavior is the only stable solution of the system. This question is
of particular importance because for nonlinear systems, and even more for complex
ones, multiple stable solutions may exist.

An interesting control-theoretical approach for the analysis of the stability of com-
posite dynamical systems that consist of coupled nonlinear elements is Contraction
Theory (CT) [45]. We were able to show that this method is suitable to guarantee the
stability of highly coordinated behaviors of crowds of locomoting avatars, where our
dynamical models included the full complexity and nonlinearity that is generated by
the body articulation of the locomoting agents.

The question of the dynamic stability of the created behaviors has been rarely
addressed in traditionalwork on crowd animation. Like in ourwork, some approaches
also tried to learn rules of interactive behaviors from human crowds [13, 41, 58],
while other approaches tried to optimize the interaction within crowds by numerical
optimization of appropriate cost functions (e.g. [25]). Most existing approaches for
the control of group motion in computer graphics neglect the effects of the body
articulation during locomotion on the control dynamics [36, 54, 63]. Another field
that typically pays attention to the dynamic stability of solutions is control theory.
Some work in this area has studied the temporal and spatial self-organization of
crowds, typically assuming highly simplified and partly even linear agent models
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(e.g. [57, 72]). This shows that for more detailed models of the agent dynamics
systematic methods for the design of a stable system dynamics are largely lacking.

Contraction Theory is a special type of nonlinear stability analysis that has been
introduced by J.-J. Slotine and coworkers [45, 64, 89] The special property of this
framework, which makes it possible to simplify the analysis of complex composite
systems, is that it permits to transfer stability results from parts to composite systems.
In general, such a transfer is not possible for nonlinear dynamical systems, which
typically renders the analysis of composite nonlinear dynamical systems impossible,
even for moderately-sized systems.

Opposed to the classical approach for stability analysis that computes first a sta-
tionary solution and then linearizes about it, Contraction Theory analyzes differences
between trajectorieswith different initial conditions. If these differences vanish expo-
nentially over time, all solutions converge towards a single trajectory, independent
from the initial states. In this case, the system is called contracting, and at the same
time is globally asymptotically stable. More specifically, for a general dynamical
system of the form

ẋ = f(x, t) (2)

assume that x(t) is one solution of the system, and x̃(t) = x(t) + δx(t) a neighbor-
ing one with a different initial condition. The function δx(t) is also called virtual
displacement. With the Jacobian of the system J(x, t) = ∂f(x,t)

∂x it can be shown [45]
that any nonzero virtual displacement decays exponentially to zero over time if
the symmetric part of the Jacobian Js = (J + JT )/2 is uniformly negative definite,
denoted as Js < 0. This implies that it has only negative eigenvalues for all rel-
evant state vectors x (within a contraction region). In this case, it can be shown
that the norm of the virtual displacement decays at least exponentially to zero, for
t → ∞. If the virtual displacement is small enough, one can also prove the inequal-
ity: ||δx(t)|| ≤ ||δx(0)|| e

∫ t
0 λmax(Js(x,s)) ds. This implies that the virtual displacements

decay with a convergence rate (inverse timescale) that is bounded from below by the
quantity ρc = − supx,t λmax(Js(x, t)), where λmax(.) signifies the largest (negative)
eigenvalue.

Contraction analysis canbegeneralized to systemswith individual non-contracting
directions (partial contraction) [89]. This is important, for example, for limit cycle
oscillators, where the directions tangential to the stable oscillatory solution are non-
contracting, but the system is contracting in all other directions orthogonal (transver-
sally) to these trajectories. Contraction analysis can be applied to hierarchically
coupled systems [45], where the systems on higher hierarchy levels do not feed
back into the lower levels. Such systems can be shown to be contracting if each
component system is contracting for all bounded inputs. In addition, one can derive
constraints for the coupling between two contracting systems that are reciprocally
connected (i.e. in a non-hierarchical forward-backward fashion) that guarantee that
the resulting system also is contracting. This makes it possible to design contracting
systems from contracting system components, by appropriate design of hierarchical
and reciprocal connections of themodules.We applied this framework to a simplified
model of the dynamics that generates coordinated behavior of crowds.
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Fig. 3 Self-organized reordering of a crowd. Control dynamics affects direction, row and column
distances, and gait phases. a When the sufficient contraction conditions of the system dynamics
are satisfied the agents organize into an ordered formation where all agents synchronize their steps.
b For a violation of the contraction conditions the behavior becomes unstable, and the agents diverge
and do not synchronize their behaviors. See [52]

In order to apply Contraction Theory for the stability analysis of locomoting
crowds, we used a model that integrated the following control levels: (i) Control of
heading direction (as described before); (ii) step-size control by morphing between
long and short steps; (iii) control of the gait phase in order to achieve a synchro-
nization between all agents; and (iv) control of step frequency by adaptation of the
frequency parameters of the limit cycle oscillators. (See [21, 51, 61] for further
details.) The resulting dynamics can be approximated by a simplified nonlinear dif-
ferential equation system that depends on a nonlinear function that describes the
relationship between the propagation speed of the characters and the correspond-
ing state variable of the canonical system. This approximative system dynamics is
accessible for an application of tools from Contraction Theory. This allows to derive
sufficient contraction conditions that ensure that the generated behavior is stable
and that no other attractors of the system dynamics exist. (Further details about this
analysis are laid out in [51, 52].)

Figure 3a shows a crowdwith 36 avatars generatedwith a dynamics that fulfills the
derived contraction conditions. By self-organization the group evolves into a spatially
ordered configuration with a synchronization of gait phase, and step frequency. This
behavior is robustly approached from different initial conditions and placements of
the agents within the scene. Figure3b shows the situation of the relevant contraction
condition is violated. In this case, the crowd diverges and the dynamics becomes
unstable. This example demonstrates the applicability of CT for stability design
even for systems that model quite complex coordinated behaviors. (See also Demo
Movie II2).

2http://tinyurl.com/jxgpptb.

http://tinyurl.com/jxgpptb
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3 Planning of Movements for Humanoid Robots

Standard approaches for kinematic planning in robotics model complex sequential
activities by concatenations of elementary motions, each one accomplishing a spe-
cific sub-task. Differing from this, skilled human behavior is highly predictive, and
behaviors are adapted to task constraints even far in the future. An example for this
is the maximum end-state comfort principle [69] that has been demonstrated for the
human coordination of walking and reaching [37, 92]:

It seems desirable to transfer such flexible human-like planning strategies to
robots, e.g. for the generation of locomotion behaviors that are coordinated with
hand or arm actions. The mathematical framework presented in Sect. 2 is suitable for
the modeling of such highly predictive coordinations strategies. For this purpose, the
desired behavior of the robot is synthesized online by a network of dynamic prim-
itives, exploiting the architecture described in the previous section and specifying
a virtual kinematic trajectory that the robot should follow. However, real robots are
associated with additional constraints, e.g. for the joint angles or realizable torques.
In addition the behavior of bipedal walking robots has to ensure specific constraints
to ensure dynamic balance, in order to prevent the robot from falling. This part of the
chapter describes how the framework presented in Sect. 2 can be embedded as online
motion planning system in the control architecture of the humanoid robot HRP-2.

The core of this control architecture is aWalking Pattern Generator (WPG), which
is based on nonlinear Model Predictive Control [55]. The underlying algorithm is
based on a simplified model of a bipedal walker and synthesizes a dynamically feasi-
ble behavior of the legs that prevents the robot from falling. This lower body motion
is then combined with the desired motion of the arms, correcting the lower body
motion by a special Dynamic Filter [94], in order to ensure that the overall behavior
is always dynamically feasible and thus realizable on the real robot without falling.
We demonstrated the functionality of this architecture for the example of coordinated
walking and reaching. The developed system models flexible and and very human-
like behaviors for the online replanning after perturbations of the behavior, which
realizes the maximum end-state comfort principle of human motor control.

Compared to a direct computation of dynamically feasible multi-step movements
using optimal control approaches (c.f. [33]), our method is characterized by a much
lower computational complexity. Optimal control methods using a accurate model of
the robot require typically hours of computation time for the generation of multi-step
sequences that ensure that the robot does not fall. The same goal can be achieved
with our method with a computational complexity that is of the same order as the
one of standard real time-capable WPG algorithms [26].



248 A. Mukovskiy et al.

3.1 Related Work

Some work in prioritized control and stack-of-task approaches in the synthesis of
trajectories from training trajectories [16, 75]. In robotics, numerous architectures
which combine walking and grasping have been proposed that are not directly
inspired by human behavior [1, 7, 35, 78]. Human-inspired frameworks for the
decomposition of human reach-to-grasp movements into sequential actions were
proposed in [48, 76]. An algorithm for the computation of optimal stance locations
with respect to the reaching target within a dynamical systems approach was pro-
posed in [20]. In [96] a task priority approach was applied for the integration of
several sub-tasks, including stepping, hand motion, and gaze control. Other work
has exploited global path planning in combination with walking pattern generators
(WPGs) [32] in order to generate collision-free dynamically stable gait paths. A
first attempt to transfer human reaching movements to humanoid robots by using
motion-primitives was proposed in [79].

3.2 Drawer Opening Task

Human motor sequences have been shown to be highly predictive. Our implemen-
tation of such predictive strategies on a humanoid robot is based on recent study on
the coordination of walking and reaching in humans [37]. Participants had to walk
towards a drawer and to grasp an object, which was located at different positions in
the drawer. Participants optimized their behavior already multiple steps before the
object contact, consistent with the hypothesis of maximum end-state comfort during
the reaching action [68, 92]. This implies that the steps prior to the reaching were
modulated in a way that optimized the distance for the final reaching action in a way
that simplified the reaching and grasping.

The initial distance from the drawer and the position of the object inside it were
varied in the data set. The participants walked towards a drawer, opened it with their
left hand and reached for an object inside the drawer with their right hand [49] (see
Fig. 4). Each recorded sequence included three subsequent actions: (1) a normal
walking step; (2) a shortened step with the left-hand reaching towards the drawer.
This step showed a high degree of adaptability, and its lengthwas typically adjusted in
order to create an optimum distance from the drawer for the final reaching movement
(consistent with the maximum end-state comfort hypothesis); (3) the drawer opening
combined with the reaching for the object while standing. Demo Movie III3 shows
an example for the recorded human behavior.

3http://tinyurl.com/he3dhb2.

http://tinyurl.com/he3dhb2
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Fig. 4 Important intermediate postures from the human behavior: step with initiation of reaching,
standing while opening the drawer, and reaching for the object

3.3 Adaptive Model of the Kinematics of Multi-step
Sequences

In order tomake the recordedmotion capture data useful for a transfer of the behavior
to the robot, it was retargeted on a kinematic model of the human-sized humanoid
robot HRP-2 using the commercial software MotionBuilder. During retargeting the
feet positions of the HRP-2 were constrained to level ground, and the step sizes
were reduced proportionally to the height of the robot. This made the joint angle
ranges compatible with the ones that can be realized by the robot. The data was split,
separating the stored pelvis trajectories (pelvis position and pelvis direction angles
in the horizontal plane), and the upper body trajectories, approximating the human
trajectories by a kinematic model of the HRP-2. The pelvis position trajectories were
also rescaled in order to match the maximally admissible propagation speed limit of
the HRP-2 (0.5 m/s). In addition, corrections were applied to the pelvis and trunk
yaw-angle trajectories. Figure5 shows a comparison between an original human
and the retargeted pose, illustrated using the corresponding avatar models. (See also
Demo Movie IV.4)

In order to model step sequences with a human-like coordination of the periodic
walking and the non-periodic reaching behavior, we approximated the training data
by anechoic mixtures (see Sect. 2.2). For this specific application, we used a step-
wise regression approach. We introduced a total of five sources in order to model
the three different actions (steps) within the sequence. The first action is the normal
walking gait cycle. After extraction of the mean value and non-periodic component
from this step, we approximated the remaining residuals by anechoic mixtures with

4http://tinyurl.com/j8qnbtp.

http://tinyurl.com/j8qnbtp
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Fig. 5 Retargeting of the
movements from a human to
the unconstrained skeleton of
the HRP-2 robot

three sources, applying a modified demixing algorithm that constrained all time
delays belonging to the same source function and joint angle to be equal across all
trials. These additional constraints make it necessary to introduce more sources in
order to reach the same approximation quality, but significantly simplify the motion
morphing. The second highly adaptive step was approximated by the same sources,
and the remaining residuals were modeled by introducing two additional periodic
sources. The same set of five sources were then used to model the last action.

In order to control the styles of the actions online, we learned nonlinear map-
pings between task parameters (step length and duration) and the weights of the
source functions in our mixing model, applying Locally Weighted Linear Regres-
sion (LWLR) [3, 49]. For the synthesis of multi-step sequences the step lengths was
computed from the actual estimated target distance. Based on the training data, we
computed the achievable step ranges. Additional stepswere automatically introduced
if the target could not be reached within three steps. For the second step, the step
length was adjusted in order to realize amaximum comfort distance for reaching, and
the planning distance of the other steps was adjusted accordingly. A more detailed
description of the algorithms for the smooth interpolation of the weights of the kine-
matic primitives at the transition points between the different steps is given in [49].

For the learned parameters the system generates very natural-looking coordinated
three-step sequences for total goal distances between 2.3 and 3 m, which were not
included in the training data set. This is illustrated in Fig. 6. When the specified
goal distance exceeds this interval, the system automatically introduces additional
gait steps, adapting the behavior for goal distances above 3 m. Clips illustrating
the highly flexible synthesis of multi-step sequences are shown in Demo Movie V.5

Figure7 shows the highly adaptive online replanning if the goal (drawer) jumps away
while the agent is approaching it, requiring the introduction of an additional step.

5http://tinyurl.com/gktjxre.

http://tinyurl.com/gktjxre
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Fig. 6 Two synthesized behaviors for two conditions with different initial distance of the character
from the drawer. Both distances were not present in the training data set. Adopted from [49]

3.4 Embedding in the Robot Control Architecture

The algorithm described in Sect. 3.3 generates trajectories for human-like coordi-
nated behavioral sequences. However, these sequences are not guaranteed to result
in dynamically stable behavior of the robot, and the robot just may fall due to a
loss of dynamic balance. To solve this problem, we integrated the described algo-
rithm for the online planning of multi-step-sequences with the control architecture
of the HRP-2 robot that ensures the dynamic feasibility of the executed behaviors.
An overview of the developed architecture is given in Fig. 8. The online planning
module is called ‘Kinematic Pattern Synthesis’ in the figure. The planned gait cycle
trajectory is transmitted to a Walking Pattern Generator (WPG) that is based on
model predictive control, which computes the foot placements and the trajectory of
the Zero Moment Point (ZMP) for the current step from the desired Center of Mass
(CoM) velocity and the pelvis angular velocity of the planned gait cycle [55]. It can
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Fig. 7 Online perturbation experiment. The goal (drawer) jumps away while the agent is approach-
ing it, requiring online replanning of the multi-step sequence. The algorithm introduces automati-
cally an action of type 2 (short step) in order to adjust for the increased distance to the goal

Fig. 8 Control architecture of HRP-2 humanoid robot. The online kinematic pattern synthesis
module is linked to aWalking Pattern generator, which computes foot placements and the ZMP tra-
jectory (see text). The Dynamic Filter corrects the walking trajectory dependent on the joint angles
of the upper body. Both, gait control parameters and upper body joint angles are integrated in a
generalized kinematic planning module using a Stack-of-Task (SOT) approach, which computes
the control torques for the robot. The variables [vref ,ωref ] signify the linear and angular velocity
of CoM, and qupperbody are the upper-body joint trajectories computed from the kinematic pat-
tern synthesis. The variables q, q̇, q̈ are the generalized position, velocity and acceleration vectors
computed by the Stack of Tasks (SoT) approach
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be shown that the gait of the robot is dynamically stable if the projection of the Zero
Moment Point to the ground plane is within the support polygon on the floor, which
surrounds the feet that are in contact with the ground [86].

The generated preplanned CoM and ZMP trajectories are corrected, taking into
account the planned upper-body joint angles by a Dynamic Filter (DF), which oper-
ates in closed-loop together with the WPG. Both, the planned CoM and ZMP tra-
jectories, and the upper-body joint angles are then combined in an inverse kinemat-
ics module that implements ‘Stack-of-Task’ approach (SoT) [46, 77]. This module
outputs angular trajectories for legs and upper-body and ensures that the executed
behavior respects the dynamic stability constraints of the robot, at the same time
approximating the desired behavior of the upper body, as far as possible. These
resulting trajectories q(t) can then feasibly be realized by the low-level controllers
of HRP-2 robot.

During motion execution, the real-world environmental and task parameters and
the current state of the robot are fed back to the kinematic planner, closing the control
loop for adaptive interaction in the real world. For the successful realization of the
system it is important to retrain the primitives on example trajectories that are feasible
for the robot, which are generated by a robot physics simulator.

3.5 Experiments on the Robot

The synthesis architecture was first tested by simulating ‘open-loop’ control, using
the OpenHRP simulator to realize a physical model of HRP-2 robot. In the open
loop simulations the robot replays the training movements, but does not create online
adaptedmovementswith adjusted step sizes and sequences dependent on the distance
of the robot from the reaching target. In the simulations, the robot starts from the
parking position and makes a transition to a normal step. At the end of this step
the pelvis velocities (propagation and angular) were determined and used as initial
conditions for the generation of a three-action sequence. At the end of the last action
a spline interpolation of pelvis angular and positional coordinates was used to change
the robots state back to the parking position (introducing two additional steps on the
spot). A snapshot of the executed behavior is shown in Fig. 9. Examples of full three-
and four-action sequences are provided in Demo Movie VI.6

As final step of this validation, the architecture was also tested using the real
HRP-2 robot (Fig. 10). The behavior could be successfully realized, maintaining the
balance of the robot. Examples of the corresponding behaviors of the real HRP-2
robot are provided in Demo Movie VI.

After these tests of the ‘open loop behavior’ of the system, without an adaptation
of step and reaching parameters using the movement planning algorithm, we tested
the full system including such online planning in extensive simulations using the
OpenHRP simulator. As result, we found that the proposed architecture really works

6http://tinyurl.com/jxwmwnt.

http://tinyurl.com/jxwmwnt
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0.4 sec 2.0 sec

3.6 sec 5.2 sec

6.8 sec 8.4 sec

Fig. 9 Off-line synthesised trajectories generated with the OpenHRP simulator using a realistic
physical model of the robot

robustly also in the case of online adaptation and replanning. In addition,we tested our
architecture in comparison with a simpler machine learning-based approach, where
one learns the output trajectories q(t) from many training examples that produce
dynamically behavior of the robot, and where one tries to interpolate between them
using learning techniques. It turns out that this simplistic strategy works for only a
subset of the training trajectories and fails completely for the generation of adaptive
behavior online planning of new adapted step sizes and reaching movements [53].

An example of the quantitative validation of the method is shown in Fig. 11,
that illustrates the ground reaction forces (maximal normal force of the feet over
the whole action sequence, based on 30 simulations with parameters that different
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Fig. 10 Real HRP-2 robot
performing walking-reaching
sequences at LAAS-CNRS

from the training data). The maximum admissible ground reaction force for the
real HRP-2 is 800 N. The figure compares the peak forces for trajectories directly
created by the WPG without approximation of human behavior, the results from
the naïve machine learning approach, and the ones obtained with our method. For
the synthesis methods, the figure compares the results of the reconstruction of the
training trajectories, using different numbers of source functions of the anechoic
mixing model, and the case with an optimum number of sources with an inference
of novel step sizes and reaching distances in the closed-loop system that includes
online planning. For the naïve machine learning approach except for the case of 9
source functions, the force limit of the robot gets violated. Even with this optimum
number of sources, the force limit is violated when the system is operating in closed
loop. Consequently, the robot falls sometimes during the execution of such behaviors
[53]. Contrasting with this result, for our methods the peak ground reaction forces
remain always in the feasible region, and they are extremely similar to the ones when
the movement was directly planed using the WPG without training to approximate
human behavior. In is remarkable that even for the most difficult case, the closed-
loop inference of adaptive behavior, the ground reaction forces do not significantly
increase. Similar behavior is observed for other critical mechanical parameters, like
the joint torques. (See [53] for details.) This demonstrates that the special form of
the integration of the planning algorithm in the control system if critical in order to
obtain dynamically feasible behavior of the robot that prevents it from falling.
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Fig. 11 Peak ground reaction forces obtained for simulated test trials. Comparison of three different
synthesis methods: WPG: trajectories generated with the WPG without approximation of human
behavior; naïveML: interpolation of feasible trajectories using machine learning methods; and with
ourmethod. In addition, the figure compares the results for the resynthesis of the training trajectories
with different numbers of sources, and the full closed-loop behavior with an adaptive synthesis of
novel step sizes and reaching distances. (Blue error bars indicate mean and standard deviation, and
red lines indicate the ranges between minimum and maximum values)

4 Probabilistic Model for the Online Synthesis of Stylized
Reactive Movements

In the last section of this chapter we describe a completely different approach for
the generation of reactive complex body movements that exploits state-of-the-art
Bayesian approaches in machine learning. We applied this approach in order to
simulate a reactive avatar in Virtual Reality (VR) that reacts to the movements of
the user with gradually controlled emotional style. Reactive motions are generated
by a dynamical extension of hierarchical Gaussian Process Latent Variable Model
(GPLVM). (See [80, 81] for details.) This probabilistic model includes latent vari-
ables that encode the emotional style of the executed actions, where these variables
can be adjusted at run-time.We have verified by psychophysical experiments that this
method generates human motion that is almost indistinguishable from real human
trajectories. In addition, it allows to control precisely and continuously the emotional
style of the executed actions [82, 83]. This makes the developed method interest-
ing for many applications, including experiments in neuroscience and psychology,
computer graphics, and for the realization of human-machine interactions.
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4.1 Related Work

Themodeling of emotional styles is a classical problem in computer graphics (e.g. [6,
90]). A variety of statisticalmotionmodels have been proposed for style interpolation
[6, 30], the editing ofmotions styles [38], and for the analysis and synthesis of human
motion data in general (e.g. [9]). However, many of these techniques result either
in off-line models that cannot react in real-time to external inputs, such as other
characters in the scene, or they are strongly simplified, resulting in movements that
are not completely believable when compared with real human motion.

More recent approaches have tried to learn highly accurate models of human
motion in an unsupervisedmanner frommotion capture data bases. A very successful
approach has been the use of Gaussian Process Latent Variable Models (GPLVMs),
a nonlinear dimension reduction technique. GPLVMs have been applied in computer
graphics for the modeling of kinematics and motion interpolation [24], for the real-
ization of inverse kinematics [42], and for the learning of low-dimensional dynamical
models [95]. A related approach are Gaussian Process Dynamical Models (GPDM),
a method that uses the same framework for the learning on nonlinear dynamical
systems that generate highly realistic human motion [88]. In our previous work [80]
we introduced a dynamical mapping similar to a GPDM in a hierarchical genera-
tive model to learn the dynamics of stylized interactive movements and interpolate
between them. The major problem of these models for real-time synthesis is the
associated computational cost, which requires additional approximations, such as
the introduction of sparsified representations, to accomplish synthesis in real-time.

4.2 Probabilistic Model for Interactive Movements

In order to learn a generativemodel for two-person interactionsweusemotion capture
data from couples of actors that executed interactive behaviors, such as handshakes
or high-five movements with different emotional styles [82, 83].

The learnedprobabilisticmodel is depicted inFig. 12. It has a hierarchical structure
and consists of three levels, an agent layer which encodes the kinematics (joint
angles) of either agent, an interaction layer that encodes the interaction between the
two agents on the level of individual time points (frames), and a dynamics layer that
encodes a dynamic sequence of states in the interaction layer. Along the hierarchy
a strong dimension reduction is realized, with a reduction from 159 joint angles
to a two-dimensional latent space at the agent layer, and a further reduction from
four to three dimensions in the interaction layer. The dynamics that is modeled by
the dynamics layer runs in a three-dimensional state space. The whole model can
be interpreted as a probabilistic graphical model, and inference techniques for such
models can be applied to determine the state of the latent variables [5]. Specifically,
we used a maximum-a-posteriori approximation to determine the most probable
settings of the latent xj

t and it (see Fig. 12) In the following, the individual layers are
described in more detail.
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Fig. 12 Hierarchical probabilistic model for interactive movements. The graphical model com-
prises three layers. At the bottom are the observable joint angle vectors yj

t of each actor j ∈ {1, 2}
and point in time t. The means of the yj

t are generated by the latent states x
j
t of the agent layer and the

emotion style variable e via functions fj(x
j
t, e) drawn from Gaussian processes. The xj

t have a much

smaller dimensionality than the yj
t . The means of the xj

t of both actors are generated by a function
g(it) from a yet lower-dimensional interaction-layer state it , whose time evolution is controlled by
a mapping h(it−2, it−1) in the dynamics layer. Both g() and h() are drawn from Gaussian processes,
too. The plates denote the assumption of replicated independent identically distributed (i.i.d.) draws
across R trials per E many emotions from C couples of actors. For details, see text. Figure adopted
from [82]

The agent layer approximates, separately for the two agents j ∈ {1, 2}, a set of
training trajectories by nonlinear dimensionality reduction using a GPLVM. For this
purpose, we learn a nonlinear mapping from a two-dimensional latent variable xj

t

and emotional style e onto the 159-dimensional joint angle vectors yj
t . The nonlin-

ear functions fj that realize this mapping are drawn from a Gaussian process with a
composite kernel that combines a radial basis functions (RBF) kernel for the joint
angle variables, and a linear kernel for an additional style variable e that controls the
emotional style of the movements. This defines a multi-factor model [87], where the
kernel function for the GPLVM is constructed by a product of different kernel func-
tions for motion and style. In addition, we engineered a special prior that promotes
factorization of the latent variables intomotion dimensions and style dimensions dur-
ing learning via back constraints [40], expressing the approximately periodic nature
of the movements (i.e. the avatar begins and ends a trial in approximately the same
pose). This step stabilizes the highly ill-posed factorization problem in a way that
results in relatively simple manifolds representing the data in the latent space. Math-
ematically, the mapping from latent into joint angle space is given by the equation
(time index t omitted):
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yj = fj(xj, e) + εj, fj(xj, e) ∼ GP(0, kj
Y ([xj, e], [(x′)j, e′])), j ∈ {1, 2}, (3)

where kj
Y is an appropriate kernel function, and where εj is isotropic Gaussian noise.

The linear kernel component makes it possible to morph easily along this dimension.
AGPLVMcan be seen as a nonlinear extension of probabilistic dual PCA that learns a
low-dimensional latent space and amapping from this space to the data space. Unlike
PCA, this mapping is nonlinear. It turned out that already two latent dimensions plus
a dimension per emotion were sufficient to achieve a highly accurate approximation
of the data. See [80, 83] for further details.

The latent variable of the agent layer represents the behavior of the two agents as a
trajectory in a four-dimensional space. The dimensionality of this high-dimensional
trajectory is further reduced in the interaction layer, which learns a mapping from
a three-dimensional latent space (variable i) onto this trajectory. This mapping is
again realized by a GPLVM that is trained with the aforementioned data basis. Con-
sequently, the individual points of the latent space of the interaction layer are mapped
by the two lower layers of the model onto a pair of postures of both agents for each
moment of the evolving interaction. The temporal evolution of the interaction corre-
sponds to a three-dimensional trajectory it in the latent space of this layer.

This time course is modeled by the dynamics layer by learning of an autonomous
dynamical system that generates this trajectory as stable solution. This dynamical
system was modeled using a Gaussian Process Dynamical Model (GPDM) [88],
which can be interpreted as a nonlinear generalisation of an Autoregressive (AR)
model in time series analysis.Mathematically, this model is defined by the equations:

it = h(it−1, it−2) + ξ ,

h(it−1, it−2) ∼ GP(0, kh([it−1, it−2], [iτ−1, iτ−2])) (4)

where the function h is drawn from a Gaussian process with the kernel function kh,
and where ξ signifies Gaussian noise.

The described model allows for the generation of pair interactions with control-
lable emotional style by variation of the emotion parameter e. The accuracy of the
synthesized movements was validated in psychophysical experiments that show that
the generated motion is perceptually almost indistinguishable from real motion cap-
ture data from human pair interactions [80].

4.3 Inference for the Generation of Reactive Movements

The described generative probabilistic model can be exploited for the simulation of
the interactive behaviors of reactive human virtual agents, who react to the move-
ments of a real human user in a human-like fashion. For this purpose, we exploited
the fact that probabilistic generative models can be ‘inverted’ by conditioning. More
precisely, using standard techniques [5], such models allow to make inference of
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unobserved nodes in the network, dependent on given (observed) information on a
subset of the nodes. For this application, we strongly simplified the model for one
agent and modeled only its hand position y2. We then replaced the corresponding
random variables by online motion capture data from the user of the system. It is then
possible to infer the distributions of all other nodes in the network by conditioning
on the available hand position information. Maximizing the joint probability of the
latent variables and the observed hand trajectory, one can then in principle find the
most probable values of all other variables in the probabilistic network. Specifically,
this allows to determine the most probable joint angles of the other agent (agent 1)
that correspond best to the observed trajectories of the user. The resulting way of
inferring a likely posture sequence from a generative probabilistic model, using the
observations as constraints to find the most probable trajectory can be interpreted as
a special form of ‘style-based inverse kinematics’ [24].

The straightforward practical implementation of this idea suffers from a very
high computational cost, like many naïve Bayesian machine learning approaches.
The inversion of the described probabilistic model using straight-forward methods
results in a system that is way too slow for real-time synthesis of reactivemovements.
In order to solve this problem, we implemented in addition the following two approx-
imations: (1) Direct mappings from the data variables to the latent variables were
explicitly learned and modeled by Gaussian process regression. This is much faster
than to determine the latent variables by conditioning on the observed input, since
we only need to evaluate a Gaussian process prediction. We are learning these direct
mappings from latent/observed pairs during an off-line training phase. (2) To learn
the model from large data sets we applied sparse approximations techniques, which
approximate the data manifolds in latent space by a small set of inducing points,
resulting in much fewer effective model parameters and computational cost for the
evaluation of the kernel-dependent functions: This approximation makes computa-
tional cost per learning step effectively linear in the number of data-points, as opposed
to cubic for the exact solution [39]. With these two additional approximations, which
simplify both learning and latent inference, a speed increase of more than factor 100
was obtained, making the resulting architecture suitable for the real-time synthesis
of interactive behaviors.

4.4 Application Results

The proposed architecture was testedwith different types of interactive humanmove-
ments. One data set consisted of ‘high fives’ with four emotional styles (neutral,
happy, angry and sad) executed by different actors. A total of 105 motion-captured
trajectories was learned, which were performed on a imaginary 3 × 3 spatial grid for
hand contact positions.

The synthesized movements look so natural that human observers were not able
to distinguish them from original motion-captured trajectories, the method passes
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Fig. 13 Motion sequences of synthesized emotional handshakes. a neutral, b angry, c happy and
d sad. Different emotions are associated with different postures and ranges of joint movements

effectively the ‘Turing test of computer graphics’ [80]. Demonstration movies are
also provided as part of Demo Movie VII.7

For testing of the reactive movement generation the architecture was embedded
in a virtual reality setup that is described in detail in [83]. The underlying animation
pipeline integrated a Vicon (Nexus) motion capture system, the game engine Ogre
3D, and the proposed learning-based architecture. The reconstruction took place in
real-time with Ogre rendering at a frame rate of 68 fps. The functioning of this
system, including the variation of emotional style, are also shown in Demo Movie
VII. A second data set for which the novel architecture was tested were handshakes,
which were executed with different emotional styles. Snapshots from the generated
stylized motions are shown in Fig. 13. Movies can be found in Demo Movie VII.

5 Conclusions and Future Work

In this chapter we reviewed two approaches that approximate complex human full-
body motion by structured models that can be embedded in architectures that require
a real-time synthesis of complex human motion. Opposed to the many available
methods for the off-line synthesis of human motion, online synthesis requires an
embedding of the synthesis process into dynamical systems that can be integrated in

7http://tinyurl.com/j3d9xtk.

http://tinyurl.com/j3d9xtk
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control architectures. We have shown two different approaches how such models can
be generated, exploiting concepts frommachine learning and the theory of nonlinear
dynamical systems.

The first approach approximated human joint angle trajectories by highly compact
(anechoic) mixturemodels. The resulting source functions were then synthesized on-
line by mapping the solutions of canonical nonlinear dynamical systems onto them,
defining a special form of dynamic movement primitive (DMP). This allowed to
synthesize highly complex coordinated full-bodymovements by networks of dynam-
ically coupled dynamic primitives. We showed that one can systematically design
the stability of such ‘primitive networks’ exploiting tools from Contraction Theory.
We also demonstrated how this framework can be used to model complex coordi-
nated behaviors of individual agents, and of whole crowds of interacting individuals.
In addition, we demonstrated that this method is suitable for the online planning of
multi-step sequenceswhich are coordinatedwith armmovements in humanoid robots
in real-time, accomplishing dynamically feasible behaviors on a real humanoid robot
including the control of dynamically stable walking. The advantage of the chosen
approach is that it is computationally more efficient than the synthesis of the same
behaviors using straight-forward optimal control approaches, since the computa-
tional complexity of the underlying optimization problems with the presently avail-
able computational power would not permit an adaptive planning of such multi-step
sequences in real-time.

The second approach for the learning of such real-time capable synthesis mod-
els was based on established methods in Bayesian machine learning. We demon-
strated that an approach that learns a hierarchical (‘deep’) architecture by combining
GPLVMs andGPDMswas suitable for the synthesis of highly natural-looking human
movements. In addition, the resulting probabilistic graphical model can be inverted
(Bayesian model inversion), i.e. conditioned on observable data. This allowed us to
learn interactions from pairs of actors, and to use these learned models then to gener-
ate online the maximally probable reactive behavior of a virtual agent that responds
directly to a human, whose movements were motion-captured online.

To make this system working in real-time required a substantial amount of engi-
neering work, due to the high computational cost of the chosen Bayesian machine
learning approach. This shows that it is a non-trivial step to make such methods work
in real-world applications, especially with real-time constraints. It seems likely that it
will be even less trivial to embed suchmethods in complex control architectures, such
as the one shown in Fig. 8. This illustrates limitations of these popular approaches
which cannot ignored when dealing with real technical control systems. An advan-
tage of the described probabilistic architectures is that they can be integrated with
other probabilistic systems, e.g. in computer vision or pattern analysis.

Another interesting challenge is to link the discussed hierarchical probabilistic
architectures to spatial movement primitives that, similar to the source functions
discussed in Sect. 2, allow the modeling of separately coordinated clusters of degrees
of freedom. First work in this direction has been successfully performed [84, 85],
and it seems an exciting avenue for future research to see how far such approaches
can be extended in the context of real-world problems.
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Physical Interaction via Dynamic Primitives

Neville Hogan

Abstract Humans out-perform contemporary robots despite vastly slower
‘wetware’ (e.g. neurons) and ‘hardware’ (e.g. muscles). The basis of human sensory-
motor performance appears to be quite different from that of robots. Human haptic
perception is not compatible with Riemannian geometry, the foundation of classical
mechanics and robot control. Instead, evidence suggests that human control is based
on dynamic primitives, which enable highly dynamic behavior with minimal high-
level supervision and intervention. Motion primitives include submovements (dis-
crete actions) and oscillations (rhythmic behavior). Adding mechanical impedance as
a class of dynamic primitives facilitates controlling physical interaction. Both motion
and interaction primitives may be combined by re-purposing the classical equivalent
electric circuit and extending it to a nonlinear equivalent network. It highlights the
contrast between the dynamics of physical systems and the dynamics of computation
and information processing. Choosing appropriate task-specific impedance may be
cast as a stochastic optimization problem, though its solution remains challenging.
The composability of dynamic primitives, including mechanical impedances, enables
complex tasks, including multi-limb coordination, to be treated as a composite of
simpler tasks, each represented by an equivalent network. The most useful form of
nonlinear equivalent network requires the interactive dynamics to respond to devia-
tions from the motion that would occur without interaction. That suggests some form
of underlying geometric structure but which geometry is induced by a composition
of motion and interactive dynamic primitives? Answering that question might pave
the way to achieve superior robot control and seamless human-robot collaboration.
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1 The Paradox of Human Performance

Using tools is a hallmark of human behavior. While some animals have been shown
capable of making and using tools, this ability remains the distinctive signature that
has given humans an evolutionary advantage [10, 51, 53, 60]. Tool use requires
dexterous control of physical interaction, and we excel at it. Yet one of the most
critical features of the human neuromuscular system is that it is agonizingly slow.
The fastest neural transmission speed in humans is no more than 120 m/s [56]. That
compares very poorly with information transmission in electro-mechanical systems
such as robots, which can conservatively be estimated at 108 m/s, about a million
times faster. Moreover, muscles are slow. The typical isometric twitch contraction
time1 for the human biceps brachii is about 50 ms [56]. Assuming a linearized model
to approximate this behavior implies a bandwidth of about 3 Hz. In comparison,
electro-mechanical actuator technology routinely achieves bandwidths from tens to
hundreds of Hz [9, 76, 84] and can achieve motion up to 1 KHz, albeit in special-
ized applications [8, 77]. Furthermore, our brains are slow. A now-classical study of
human mental rotations to assess congruency of visually-presented objects demon-
strated a reaction time of about 1 second plus 1 additional second per 60◦ of rotation
(i.e. ∼4 s for a 180◦ rotation) [96].

Despite slow neurons, muscles and brains, humans achieve astonishing agility and
dexterity manipulating objects—and especially using tools—far superior to anything
yet achieved in robotic systems. Slow neuro-mechanical response implies that pre-
diction using some form of internal representation is a key aspect of human motor
control, yet the nature of that representation remains unclear [18, 27, 57, 111]. Con-
sider fly-casting or cracking a whip: These objects comprise flexible materials that
interact with complex compressible fluid dynamics and, in the case of whip-cracking,
operate into the hypersonic regime. Models of their behavior based on mechanical
physics tax even modern super-computers. The likelihood that anything resembling a
physics-based model underlies real-time human control of these objects seems slim,
yet some humans can manipulate them with astonishing skill. If humans use inter-
nal models for planning and predictive control of dynamic objects—which seems
likely—what form might their internal models take?

2 Human Performance Is Not Consistent with Riemannian
Geometry

To address this question we studied haptic illusions [26]. ‘Haptic’ refers to the com-
bination of motor and sensory information used when we feel objects, sometimes
also called ‘active touch’. ‘Illusion’ in this context refers to the fact that, like other
perceptual modalities (e.g. vision), haptic perception is distorted. Experimentally, it

1Twitch contraction time is the time from an impulsive stimulus (e.g. electrical) to peak isometric
tension.
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is observed that the perceived length of a line segment depends on its orientation
with respect to the subject; line segments oriented radially from the shoulder are per-
ceived as being longer than line segments oriented tangentially to circles centered at
the shoulder [63, 73]. Moreover, the amount of distortion is configuration dependent;
distortion becomes more pronounced as the center of the object moves away from
the shoulder [45].

During contact and physical interaction, afferent and efferent information is
acquired. Afferent information comes from mechanoreceptors such as cutaneous
and deep tissue sensors, muscle spindles, Golgi tendon organs and joint capsule
receptors [56]. Efferent information is available from so-called corollary discharge,
information available from motor areas of the central nervous system (CNS) that
project onto sensory areas [56]. Percepts of external objects are formed based on
afferent and efferent information acquired during interaction. Perception of objects
can be viewed as an integrative, computational process in which geometric proper-
ties are inferred from acquired efferent and/or afferent information, combined with
prior knowledge. Geometric properties of objects, such as lengths of segments, con-
tinuity of paths, angles between edges, etc., may be determined based on the spatial
stimulus alone. It therefore seems reasonable to describe the perceptual processes as
implementing an underlying, abstract geometrical reasoning system.

What geometric structure underlies human sensory-motor performance? A dis-
torted haptic perception might reflect a Riemannian geometry, consistent with classi-
cal mechanics. Riemannian geometry is a mathematically simple extension of Euclid-
ean geometry based on an inner product of vectors v and w denoted 〈v,w〉 = vT Gw,
where the metric G is characterized by a symmetric, positive-definite matrix. This
metric can vary from location to location and, in general, haptic perceptual distortion
is known to be location dependent [45]. In our study we were concerned only with
haptic perceptual distortion in a small region, hence we assumed the metric was
effectively constant.

Inner products provide measures of length and measures of angle. The length of
a vector v is the square root of the inner product of that vector with itself, ‖v‖ =
〈v, v〉1/2. The angle α between two vectors v and w may be determined from 〈v,w〉 =
‖v‖‖w‖ cos α. To be metrically consistent, the perception of length and angle must be
related. If the metric is constant in a given locality (as we assumed) the Riemannian
geometry corresponds to a linear stretch of Euclidean geometry (Fig. 1). If, due
to perceptual distortion, a certain rectangle is perceived to be square, then if that
rectangle is cut in half along the diagonal, a metrically consistent observer would
perceive the acute angles of the resulting right triangle to be equal.

To test the metric consistency of human haptic perception, we measured subjects’
judgment of length and angle at the same workspace location; details are in [26]. In
a length-judgment experiment, subjects felt rectangular holes oriented at 0◦ and 45◦
(the latter shown schematically in Fig. 2, Panel (a) and judged which pair of sides
was longer. The rectangular holes were simulated by a planar robotic manipulandum
with two degrees of freedom. Rectangles of the same area but with 15 different
aspect ratios were presented, allowing accurate assessment of the rectangle which
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Fig. 1 With a constant metric, a Riemannian geometry is a linear stretch of a Euclidean geometry.
Reproduced from [26]

Fig. 2 Panel a Subjects felt rectangular holes and were asked to judge which sides were longer. Panel
b Subjects felt triangular holes and were asked to judge which acute angle was larger. Reproduced
from [26]

was perceived to be square. That information for the two orientations was sufficient
to identify a metric underlying haptic length perception.

A metric can be used to generate geometrical shapes similar to Euclidean shapes.
For example, a Riemannian circle of radius r can be identified with the set of dis-
placement vectors of length r from its center,

{
v|vT Gv = r

}
. This is the equation

of an ellipse which can be used to depict the ‘subjective circle’ corresponding to
haptic length perception. The ‘subjective circles’ for 8 subjects were remarkably
similar, with an eccentricity of ε = 1.29 and a major axis oriented at θ = 17◦ counter-
clockwise from the line joining the shoulders (Fig. 3, Panel a).

In an angle-judgment experiment at the same location, subjects felt triangular
holes oriented at 0◦ and 45◦ (the former shown schematically in Fig. 2, Panel b)
and judged which acute angle was larger. To prevent inference based on judging
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Fig. 3 Panel a Average subjective circles determined from the length experiment (ε = 1.29, θ =
17◦) and the angle experiment (ε = 1.28, θ = −62◦). Panel b The angle judgment experiment
implies the observer uses the distorted protractor shown on the left, which is perceived as the
Euclidean protractor on the right. Reproduced from [26]

the lengths of the perpendicular sides, the right-angled corner was inaccessible (see
[26] for details). Triangles with a constant base length and 19 different aspect ratios
were presented, allowing accurate assessment of the angles that were perceived to
be equal. That information for the two orientations was sufficient to identify a metric
underlying haptic angle perception. The ‘subjective circles’ corresponding to haptic
angle perception were more variable between subjects but had an average eccentricity
of 1.28 and a major axis oriented at –62◦ counter-clockwise from the line joining the
shoulders (Fig. 3, Panel a). This difference was highly significant (p < 0.01).

This is remarkable. Riemannian geometry is a foundation of mechanical physics.
Yet, at least in the context of haptic perception, the brain’s ‘internal representation’
is not consistent with Riemannian geometry.

3 Dynamic Primitives

Combined with the slow response of muscles, the long communication delays due
to slow neural transmission impair reactive control. It therefore appears that a major
component of human motor control requires planning and ‘pre-computation’ using
some internal representation of the relevant dynamics. Neural evidence has been
presented to support this hypothesis, and suggests that the cerebellum is one of the
major structures instantiating this ‘internal model’ [7, 111]. Prediction based on the
mathematical models of mechanical physics figures prominently in the control of
modern robots yet it appears that our ‘internal models’ are incompatible with those
of mechanical physics—even the underlying geometry is incompatible. Nevertheless,
humans substantially out-perform robots. What might be alternative bases for our
internal models?

One possibility is that human motor performance is based on dynamic primitives
[47, 48, 52]. A dynamic primitive is conceived as an attractor that emerges from
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the nonlinear dynamics of a neuro-mechanical system—a network of neurons and/or
their interaction with the musculo-skeletal periphery [20, 52, 97, 102]. Examples
include the familiar point attractor (which may underlie the maintenance of pos-
ture) and limit-cycle attractor (which may give rise to rhythmic behavior). Attractor
dynamics confers important stability and robustness. It also accounts for nonlin-
ear interference between primitives [19, 94, 100, 101]. Evoking or ‘launching’ a
dynamic primitive may require minimal central control and reduce the need for con-
tinuous intervention. At the same time, because each primitive is a highly dynamic
behavior, highly dynamic performance may be achieved.

4 Evidence of Dynamic Primitives

Biological evidence supports this account. The most compelling comes from obser-
vations of persons recovering their ability to move after having survived a stroke
(cerebral vascular accident) that left them partially paralyzed. In the course of study-
ing the feasibility and effectiveness of using physically-interactive robots to aid
neuro-recovery, kinematic records were obtained of the earliest movements made
by patients as they recovered [61]. These first recovered movements were conspicu-
ously fragmented. Even simple point-to-point reaching movements exhibited a highly
irregular speed profile, with large speed fluctuations and frequent stops. This is quite
unlike unimpaired movements, which tend to be smooth [29].

Remarkably, each of the movement fragments exhibited a highly stereotyped
speed profile—even for patients with brain lesions of widely differing location
and extent [61]. This suggests that human movements are composed of primitive
submovements. A submovement may be defined as an attractor that describes a
smooth sigmoidal transition of a variable from one value to another with a stereo-
typed time profile [47]. For limb position, the variable is a vector in some coordi-
nate frame, e.g., hand position in visually-relevant coordinates x = [x1, x2 . . . xn]T .
Each coordinate’s speed profile has the same unimodal shape which has finite sup-
port: ẋ j (t) = v̂ jσ (t) , j = 1 . . . n where v̂ j is the peak speed of the submovement;
σ (t) > 0 iff b < t < e where b is the time when the submovement begins and e is
the time it ends, otherwise σ (t) = 0; and the speed profile has only one peak: there
is only one point tp ∈ (b, e) at which σ̇

(
tp

) = 0 and at that point σ
(
tp

) = 1. This
definition was used to identify sequences of submovements underlying continuous
movements.

Reliably extracting overlapping submovements from a continuous kinematic
record is a notoriously hard problem. The common practice of examining zero-
crossings of progressively higher derivatives (acceleration, jerk, etc.) is fundamen-
tally misleading. Even aside from the practical difficulty of obtaining reliable higher-
order derivatives from kinematic data, a composition of two single-peaked speed pro-
files may yield a composite speed profile with one, two or three speed peaks, hence
one to five zero-crossings in the acceleration profile, etc. [92]. Instead, submove-
ment identification is better approached as an optimization problem, minimizing
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Fig. 4 Typical movements of one representative patient on the first and last therapy days. Bold lines
indicate tangential speed measured during movement. The later movement is briefer with a single
speed peak, while the earlier movement has an irregular speed profile with multiple peaks. Fine
lines indicate underlying submovements. The later movement shows fewer submovements which
have greater peak speed, duration and overlap than the earlier movement. Reproduced from [91]

mean-squared error between kinematic data and its reconstruction as a sequence of
submovements. That avoids the problems mentioned above and yields robust iden-
tification even in the presence of substantial measurement noise [92, 93].

This approach was applied to identify submovement sequences in the movements
of a cohort of 41 sub-acute and chronic phase stroke survivors as they progressed
through robot-aided therapy [91]. Although there was substantial variability across
patients, who had widely differing brain lesions, as they recovered they made fewer
submovements, which had higher peak speed, longer duration and greater tempo-
ral overlap; these changes were statistically significant (p < 0.05). Figure 4 shows
typical submovements of one patient observed on the first and last days of therapy.
These observations indicate that the ability to generate stereotyped submovements
appears to be preserved after injury to the CNS and that a major part of the recovery
process manifests as re-learning how to combine and blend these dynamic primitives
to produce desired behavior.

5 Consequences of Control via Dynamic Primitives

Motor control based on dynamic primitives may facilitate performance of highly
dynamic behavior without the need for continuous intervention by the higher lev-
els of the CNS. However, it may also lead to limitations of motor performance that
cannot be ascribed to biomechanics. In particular, the parameters of submovements
appear to be limited. Their maximum duration is typically on the order of a second.
There appears to be a ‘refractory period’, a minimum interval (on the order of 100
ms) between the onsets of adjacent submovements. Together, these limitations imply
that humans would have difficulty generating slow, smooth movements. Observations
of unimpaired human subjects have confirmed this prediction. In one experiment,
unimpaired subjects made horizontal planar discrete reaching movements between
two targets 14 cm apart in the mid-sagittal plane. Subjects were instructed to move
smoothly at three different self-paced speeds: ‘comfortable’, ‘fast’ (instructed to be
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Fig. 5 Tangential speed profiles of discrete reaching movements made by an unimpaired subject at
three self-paced speeds. Top ‘fast’; middle: ‘comfortable’; Bottom ‘slow’. Note the different vertical
scales. Slower movements were progressively more irregular

twice as fast as ‘comfortable’) and ‘slow’ (instructed to be twice as slow as ‘com-
fortable’). Averaged across subjects, peak speeds were 0.28 ± 0.04 m/s (mean ±
standard deviation) for ‘fast’ movements; 0.10 ± 0.03m/s for ‘comfortable’ move-
ments; and 0.05 ± 0.01m/s for ‘slow’ movements, demonstrating that subjects could
successfully follow task instructions.

Figure 5 shows typical speed profiles for the three cases. The ‘fast’ movement
has a single speed peak with a ‘bell-shaped’ profile similar to that of a maximally-
smooth movement [29]. The speed profile of the ‘comfortable’ movement also has a
single speed peak, but is noticeably more irregular. Irregularity of the speed profile
is most pronounced in the ‘slow’ movement, which has multiple peaks. Figure 6
shows a different set of movements for the three cases, and includes the minimal
sequences of overlapping submovements that fit the speed profiles with residual
error less than 3%. Each submovement has a support-bounded lognormal speed
profile, which may be lepto- or platy-kurtic and positively or negatively skewed [85].
With a statistical significance p < 0.01 the number of submovements increased with
movement duration: nslow > ncom f ortable > n f ast .

Taken together, these data provide strong evidence that discrete reaching move-
ments are composed of submovements. The observations of submovements in stroke
patients as they recovered was serendipitous (they were not the focus of the experi-
ments) but could not be overlooked. The observation that speed fluctuations increased
as unimpaired subjects moved slowly cannot be attributed to mechanics or biome-
chanics. Factors that might contribute to movement irregularity, such as the torques
required to compensate for nonlinear kinematic and inertial coupling between joints
or the nonlinear and noisy behavior of muscles, all decline as movements slow. The
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Fig. 6 Tangential speed profiles (left) and paths (right) of discrete reaching movements made by an
unimpaired subject at three self-paced speeds: ‘fast’ (top); ‘comfortable’ (middle); ‘slow’ (bottom).
The underlying sequences of submovements are superimposed. Colored dots denote the beginning
and end of each submovement

fact that, instead, they increased strongly implicates the ‘software’ underlying motor
control. Moving slowly and smoothly is hard for humans.

Similar results have been reported for rhythmic movements: unimpaired subjects
were unable to sustain smoothly rhythmic performance as period increased; instead,
kinematic irregularity increased as movement slowed, consistent with composition
as a sequence of submovements [22, 23]. A complementary result was reported in
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another study: unimpaired subjects made sequential back-and-forth discrete move-
ments, instructed to dwell at rest at the end of each movement for a duration equal to
the movement time. Movements were paced by a metronome which slowly decreased
its period. As frequency increased, subjects were progressively less able to sustain
the dwell at the end of movement, eventually producing smoothly rhythmic move-
ments. Importantly, changing the duration of the metronome sound (to 50% of the
metronome period) significantly reduced the frequency at which dwell time disap-
peared. In that case, the passage to zero dwell time cannot be attributed to biome-
chanical limitations, because with different sensory conditions subjects were demon-
strably capable of faster discrete movements with non-zero dwell time. Instead, sub-
jects switched to using an oscillatory dynamic primitive. This was confirmed by a
‘discreteness index’ which changed abruptly from values corresponding to discrete
movements to those corresponding to smoothly rhythmic movements [103].

6 Dynamic Primitives for Physical Interaction

Submovements and oscillations may provide a basis for unconstrained movements,
but contact and physical interaction are essential for that quintessentially human
ability, manipulating objects and using tools. It may seem reasonable to control force
when in contact with objects, but that is not sufficient. Simple hand tools illustrate
this point; many are elaborated versions of a stick that you push on. A woodworker’s
chisel is a stick with a sharpened tip; axial compression is required to cut with it. A
screwdriver is a stick with a specialized tip designed to mate with a corresponding
shape in the head of a screw; to use it effectively, it must be maintained in axial
compression.

Unfortunately, pushing on a stick destabilizes its posture. Consider a stick of length
R pushed against a surface. To keep matters simple, assume its tip cannot slip but may
pivot about the point of contact on the surface.2 If the stick is initially perpendicular
to the surface, the compressive force fc exerted by the hand on the stick must be
strictly axial, also perpendicular to the surface. Small angular displacements �θ of
the stick’s orientation from the perpendicular (which might arise from fluctuations
or “noise” in the neuromuscular system) displace the point of action of the force
laterally (i.e. parallel to the surface) by an amount �x ∼= R�θ . If the force exerted
by the hand is maintained constant in magnitude and direction, displacement evokes a
torque about the tip of τti p = fc�x ∼= ( fc R)�θ which acts to increase the deviation.
Force control in this situation is statically unstable [89].

To counteract this effect the hand must generate the equivalent of a lateral
translational stiffness kxx at the point of contact with the tool so as to produce a
lateral restoring force fx = −kxx�x . This generates a rotational restoring torque
τ = − (

R2kxx
)
�θ about the tip. The minimum stiffness required to maintain static

2This is one advantage of a Phillips (cross-head) screwdriver, invented by John P. Thompson, U.S.
Patent 1,908,080 May 9, 1933, assigned to Henry F. Phillips.
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stability is kxx > fc/R. This highly simplified analysis demonstrates a point that may
easily be overlooked: even in this idealized static task (nothing varies with time) to
exert a force independent of motion would be unworkable. Because the act of exerting
force may destabilize posture, stiffness must also be present to ensure stability, and
greater stiffness is required to stabilize greater forces. Humans generate the required
stiffness via the grip of the fingers on the handle, supported by the wrist, the shoul-
der, and so forth. Remarkably, because the minimum required stiffness increases with
applied force, the maximum force a human can exert in this task is determined by
the limits of muscle-generated stiffness rather than by the limits of muscle-generated
force [90].

Generating stiffness is a minimum requirement for controlling interaction. More
generally, other effects equivalent to viscous damping and/or higher-order phenom-
ena will also be required, collectively termed mechanical impedance. Loosely speak-
ing, mechanical impedance is a generalization of stiffness to encompass nonlinear
dynamic behavior [39, 44]. Mathematically, it is a dynamic operator that determines
the force (time-history) evoked by an imposed displacement (time-history). Phys-
ical interaction requires including mechanical impedances as an additional class
of dynamic primitives to describe force evoked by motion [47, 48]. Biologically,
mechanical impedance at the hand may be modulated by adjusting neural reflex
gains [37, 80], co-activating opposing muscles [38, 50], selecting the pose or con-
figuration of the limbs [42] or combinations of these approaches.

The practicality of mechanical impedance as a dynamic primitive underlying
human dexterity was demonstrated by implementing it in a ‘bio-mimetic’ controller
for a motorized trans-humeral amputation prosthesis [2]. Control inputs were derived
from surface myoelectric activity (EMG) obtained from antagonist muscles in the
limb residuum. The difference of their amplitudes determined a ‘zero-force’ trajec-
tory along which the prosthesis actuator torque was zero. Displacement from that
trajectory evoked torque determined by mechanical impedance that was implemented
as position and velocity feedback to a highly-back-drivable electro-mechanical actu-
ator. The sum of EMG amplitudes determined the prosthesis mechanical impedance,
mimicking the action of natural muscles [1]. Comparison of this controller with
conventional velocity control (difference of EMG amplitudes determined prosthesis
angular velocity with high mechanical impedance) showed a marked superiority,
especially in tasks requiring coordination of natural and artificial joints (e.g. accom-
modation of a kinematic constraint as in turning a crank), bi-manual coordination
and production of mechanical work [3, 86].

7 Combining Motion and Interaction Primitives

An important question is how interactive and motion primitives work together
to enable and potentially simplify dexterous manipulation. Two distinct domains
are involved. Motion planning belongs in the domain of ‘signals’ or information-
processing, which permeates conventional computation and control theory.
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Information-processing operations are uni-directional (input affects output but not
vice-versa) and the only constraints appear to be temporal causality (no output before
input) and boundedness (no infinite quantities). In contrast, interactions due to phys-
ical contact are fundamentally bi-directional—each system affects the other with
mutual causality, as expressed in Newton’s 3rd law [79]. They are subject to the numer-
ous additional constraints that arise from the storage and transmission of energy, e.g.
conservation of energy, production of entropy, etc.

A combination of dynamic behavior arising from computational information-
processing with that arising from physical systems may be described in a unified
framework by re-purposing and extending a remarkably effective tool of engineer-
ing analysis, the equivalent electric circuit. A comprehensive history of this concept
is presented by Johnson [54, 55]. Originally Helmholtz and later (independently)
Thévenin showed that any electric circuit containing electromotive forces (voltage
sources) and resistors could be replaced at any pair of terminals by a single voltage
source in series with a single resistor [34, 105]. Subsequently Mayer and Norton
simultaneously (and independently) formulated an equivalent electric circuit com-
posed of a current source in parallel with a resistor [75, 81]. The concept of impedance
introduced by Heaviside and its dual, admittance, allowed equivalent electric circuits
to be extended to include dynamic behavior (e.g. capacitance and inductance) [32,
33].

An electric circuit comprisingarbitrarily complicatednetworks of voltage sources,
current sources, and linear resistors, capacitors and inductors may be represented by
a Thévenin or Norton equivalent circuit. At a terminal pair where the circuit interacts
with its environment—an interaction port—it behaves as though composed of only
two parts with a simple connection. Moreover, each of those parts may be identified
unambiguously by simple experiments performed at the interaction port. This prodi-
gious simplification is one reason why equivalent circuits remain a core conceptual
tool of engineering analysis.

An equivalent circuit describes an interface between the domain of signals and
the domain of energy. In an audio amplifier, signals with negligible power (e.g.
retrieved from a storage medium or synthesized by a computer) control some of
the amplifier’s internal voltage and/or current sources which act to deliver sub-
stantial power to a loudspeaker, thereby generating sound energy. An equivalent
circuit ‘parses’ the dynamics of the entire audio amplifier into two pieces. The
Thévenin or Norton equivalent source describes the ‘forward-path’ dynamics relating
the low-power input signals to the high-power electrical excitation delivered to the
loudspeaker—independent of interaction with the loudspeaker. The equivalent admit-
tance or impedance describes the dynamics of the high-power interaction between
the amplifier and the loudspeaker—independent of the forward-path dynamics.

The equivalent circuit concept may be re-purposed to describe the relation between
the dynamics of computational information processing and the dynamics of physical
systems. The ‘equivalent source’ (Thévenin or Norton) describes unidirectional for-
ward path dynamics through which computation may influence physical events. The
‘equivalent resistance’ (admittance or impedance) describes bidirectional dynamic
interactions through which physical events evoke a physical response.
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Fig. 7 A nonlinear equivalent network relating the information and energy domains of dynamic
behavior. Reproduced from [43]

Equivalent circuits were originally applied to electrical systems with linear
dynamics. The concept is readily extended to non-electrical systems though, as gen-
eral physical systems do not necessarily form closed circuits, the term ‘equivalent
network’ is more appropriate. The concept may further be extended to important
classes of nonlinear systems, especially actuators (including mammalian muscles)
which occupy the interface between physical and informational dynamics [43].

Extending classical circuit theory to nonlinear systems combining informational
and physical dynamics provides a unified description of how central commands and
peripheral mechanics cooperate to produce observable behavior (Fig. 7). It specifies
how three classes of dynamic primitives may be related. Independent of interaction
with the environment, the ‘equivalent source’ describes the nominal unidirectional
forward-path dynamic response to central commands, which may consist of sub-
movements and oscillations. Bidirectional interactive dynamics (also modifiable by
central commands) are characterized by mechanical impedances. These two parts,
unidirectional and bidirectional, can be identified unambiguously by simple experi-
ments [43]. This disambiguation teases apart the contributions of mechanical dynam-
ics and the problems solved by computation.

8 Identifying the Equivalent Source Without
‘Opening the Box’

The challenge of describing and detailing human interactive dynamics is particularly
acute. First, the biological actuator (muscle) has notoriously complicated and highly
nonlinear dynamics [112]. Second, the neural control system is prodigiously com-
plicated and largely uncharted [56]. Third, there is as yet no ethical way to ‘open
the box’ and reliably observe relevant variables internal to the human neural control
system. To date, imaging technologies provide only a coarse-grained measure of lim-
ited parts of this system. If applicable, an equivalent network representation could
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summarize all of that complexity in a few elements that could (at least in principle)
be identified unambiguously from external measurements.

Can the equivalent source be identified during movement, i.e. when commands
from the central nervous system are changing? Several attempts have been made by
assuming a reasonable form for interactive dynamics (e.g. time-varying mass-spring-
and-damper behavior), identifying parameters of that model, and extrapolating from
the results. Unfortunately, the outcome is exquisitely sensitive to the assumed form
of the model—see [30] but compare with [31]. In fact, even the order of interactive
dynamics is not reliably known. For example, though it is reasonable to assume
that high-frequency behavior is dominated by skeletal inertia, yielding 2nd order
dynamics, in fact there is evidence of anti-resonance due to muscle mass moving
relative to skeletal inertia, and that requires higher-order dynamics [108, 109].

However, an equivalent network motion source can, in principle, be identified
without any knowledge of the neuro-muscular actuator impedance. A workable
method to do so during arm movements was presented in [36]. The essence of
the method was to estimate multi-variable skeletal inertia, then generate exogenous
forces with a robotic manipulandum so that the neuro-muscular forces were nom-
inally zero throughout a discrete reaching movement. The resulting trajectory was
the motion source of an equivalent network model of the neuro-muscular actua-
tor. Iteration over several nominally-identical movements was required to improve
the estimate and the exogenous forces were presented only on randomly selected
movements to preclude human adaptation to the stimulus. Passing over the details,
which are presented in [35, 36], a significant result was that, despite the intrinsic
variability of human motor control, the method converged rapidly. The result was a
reliable estimate of the motion source output, independent of any assumptions about
neuro-muscular mechanical impedance.

9 The Preferred Form of Equivalent Network Models

A linear equivalent circuit may be expressed in four different and fully interchange-
able ways: there are two choices for the equivalent source (Thévenin or Norton)
and two choices for the operational form of the interactive dynamics (admittance or
impedance—force in, motion out or vice versa). A nonlinear equivalent network is
more restricted. Because a nonlinear dynamic operator may not have a well-defined
inverse, the interactive dynamics may be expressible in only one of the two opera-
tional forms (admittance or impedance). For example, mammalian muscle is always
well-defined in impedance operational form (motion in, force out) but not necessarily
in admittance operational form.

The type of source may also be restricted. Key properties of physical system
dynamics manifest as symmetries or invariances—features that do not change when
other factors do. Noether’s theorem famously identifies conservation principles with
symmetries (e.g. energy conservation with time-shift invariance, etc.) [106]. One
desirable geometric symmetry for interactive dynamics is translation invariance. If
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the reference frame origin is translated, interactive behavior should not change. That
is, the commands required to perform a contact task should ideally be identical at
all locations. While this may be challenging in some cases—a fixed-based robot’s
limited workspace obviously limits translation invariance to within its reach—it is
highly desirable, at least within a region near the center of the robot’s workspace.
Translation invariance restricts the choice of equivalent source as follows.

For many contact and interaction tasks it seems natural for the forward path
dynamics to specify a nominal force (or torque) f0(t). Examples include the nominal
force that must be exerted by the feet on the ground during normal locomotion;
averaged over a gait cycle, the net vertical foot-ground force must equal the vehicle’s
(or animal’s) weight. Interactive dynamics (in impedance operational form) Z {·}
modify that nominal force based on actual motion x(t), f(t) = f0(t) − Z {x(t)}.

To clarify the following argument, consider that impedance is like a dynamic,
nonlinear version of a linear spring of stiffness k. In one dimension f = f0 − kx .
Further consider translating the coordinate frame to a new origin so that x

′ = x + c
where c is a constant. In the new coordinate frame f

′ = ( f0 + kc) − kx ′. In this
case, the translated ‘force source’ is f

′
0 = f0 + kc. This is not translation invariant; it

depends both on the origin of the coordinate frame c and on the stiffness k. The latter is
especially troubling as it compromises the separation of forward path dynamics from
interactive dynamics—yet that is one of the particular advantages of an equivalent
network representation.

Instead, consider an equivalent network with forward path dynamics that specifies
a nominal or ‘zero-force’ motion x0 (t). Interactive dynamics (in impedance opera-
tional form) generate forces in response to deviations of actual motion from nominal
motion f(t) = Z {�x(t)} where �x(t) = x0(t) − x(t). As above, impedance is like
a dynamic, nonlinear version of a linear spring of stiffness k. In one dimension
f = k(x0 − x). Again consider translating the coordinate frame to a new origin so
that x

′ = x + c. With x
′
0 = x0 + c, �x

′ = �x , hence f
′ = f and k

′ = k or, more
generally, Z

′ {·) = Z {·}. The advantages of an equivalent network representation have
been preserved.

Maxwell identified a correspondence between electrical and mechanical systems,
with electrical voltage analogous to mechanical force and current to velocity [74].
Using that analogy, a Norton equivalent network (i.e. with a motion source) is trans-
lation invariant whereas a Thévenin equivalent network (i.e. with a force source)
is not. Both the structure of the mathematical representation and (more important)
the separation of forward path dynamics from interactive dynamics are independent
of the choice of coordinate frame origin. It is interesting (and probably no coinci-
dence) that a Norton equivalent network also permits unambiguous identification of
the source term from observations made at the interaction port, while a Thévenin
equivalent network does not [43].

Summarizing, actuators such as muscles are at the interface between the computa-
tional dynamics of the information domain and the physical dynamics of the energy
domain. A nonlinear equivalent network provides a competent ‘canonical model’
of these dynamic objects that may be used to compare alternatives. An equivalent
network of the Norton (motion source) type appears to be superior, both unambigu-
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ously identifiable and invariant under coordinate frame translation. This may seem
counter-intuitive as some tasks seem naturally to require specification of nominal
forces. Nevertheless, the more robust description is in terms of nominal motion.

Remarkably, the human motor control system exhibits a strong preference to plan
motions rather than forces. Point-to-point reaching movements are generally exe-
cuted by an approximately straight, smooth hand path [29]. Exposed to mechanical
perturbations, subjects spontaneously adapt their muscle forces to restore an approx-
imately straight, smooth hand path [64, 95]. Exposed to a distorted mapping between
motion of the hand and motion of a cursor on a screen, subjects spontaneously adapt
their hand path to restore an approximately straight, smooth path of the screen cursor
[28]. This emphasis on motions is the basis of a successful robot-aided approach to
neuro-recovery [46].

10 Choosing Task-Specific Impedance

The most appropriate physical interaction dynamics varies with the task to be accom-
plished. One effective way to choose that dynamic behavior is to describe the task as
an optimization problem. Optimization is a powerful and general approach to robot
motion planning which has become more practical with advances in both computa-
tional speed and algorithmic sophistication [21, 62].

For optimization to yield specifications for interactive dynamics, the objective
function to be optimized should include terms involving both motion and ‘exertion’
at the interaction port. The term motion is here intended as an ‘umbrella’ label for
velocity and its integrals and derivatives (e.g. displacement, acceleration, etc.) The
term exertion is here intended as an ‘umbrella’ label for force and its integrals and
derivatives (momentum, force rate, etc.) The essential distinction between motion
and exertion is articulated in [43]. An interaction port is defined by any set of motion
variables and their energetic conjugates such that energy and its integrals or deriv-
atives are well-defined. Thus mechanical work is defined by W = ∫ fT dx where f
is a vector of forces or torques and dx is a vector of translational or angular dis-
placements. The displacements need not refer to the same physical location (e.g.
they may be displacements of a robot’s several degrees of freedom) provided the
corresponding forces are energetic conjugates such that work is correctly defined.

A simple ‘toy’ example may illustrate the point. Assume a manipulator and its
control system are modeled as a massmm moving in 1 degree of freedom, retarded by
linear damping b and driven by a linear spring referenced to a ‘zero-force’ point x0.
With no interaction force,mmẍ + bẋ = k(x0 − x). Assume the manipulator interacts
with an object modeled as mass mo such that both move with common motion
x . The connection between manipulator and object is an interaction port, and the
force exerted by the manipulator on the object is fo = moẍ . Further assume the
object is subject to stochastic perturbation forceswe, modeled as zero-mean Gaussian
white noise of strength S. Defining m = mm + mo, state-determined equations for
the coupled system are



Physical Interaction via Dynamic Primitives 285

d

dt

[
x
v

]
=

[
0 1

−k/m −b/m

] [
x
v

]
+

[
0

k/m

]
x0 +

[
0

1/m

]
we

fo =
[
−mo

m
k−mo

m
b
] [

x
v

]
+

[mo

m
k
]
x0

The objective function should include force and displacement at the interaction port.
Define displacement �x = x0 − x and the objective function

Q = E

⎧
⎨

⎩
1

t f inal

t f inal∫

0

(
f 2
o

f 2
tol

+ �x2

�x2
tol

)
dt

⎫
⎬

⎭

where ftol and �xtol are tolerances on interface force and displacement. The state
(x, v) and output fo are random variables due to the presence of the stochastic input.
The expectation operator E {·} makes the objective Q a deterministic scalar. The
stochastic perturbation is included only to ensure the optimization yields non-trivial
stable solutions. Once a solution with non-zero noise strength S has been identified,
we may consider the limit as the noise strength approaches zero.

For simplicity, assume x0 (t) = constant = 0; i.e. the object is to be held at a con-
stant position despite perturbations. A summary of subsequent analysis is presented
in an appendix, based on a method presented in [38, 41]. A steady-state solution for
the optimal stiffness and damping is

lim
S→0

kopt = mm + mo

mo

ftol
�xtol

lim
S→0

bopt = √
2kopt (mm + mo)

The optimal damping coefficient bopt is such that the 2nd order coupled
system (manipulator plus object) has a dimensionless damping ratio of
ζ = bopt/2

√
kopt (mm + mo) = √

2/2. As a result the 2nd order frequency response
function relating object motion to perturbations is ‘optimally flat’ up to a break fre-
quency defined by the optimal stiffness and the total mass, manipulator plus object.

The optimal stiffness kopt is proportional to the ratio of force tolerance to dis-
placement tolerance. That is physically reasonable; if an object is delicate and can-
not tolerate large applied forces, the manipulator should be compliant in proportion.
Perhaps less obvious is that the optimal stiffness is also proportional to the ratio
(mm + mo) /mo of total mass (manipulator plus object) to object mass. As a result
the 2nd order frequency response function relating object motion to perturbations has
a break frequency 	break independent of manipulator mass.
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	break =
√

kopt
mm + mo

=
√

1

mo

ftol
�xtol

A minimal stiffness kopt = ftol/�xtol of would be obtained if the object mass was
much larger than the manipulator mass apparent at the interaction port. That may be
achieved with some of the newer designs of back-drivable or compliant robot ‘hands’
or end-effectors [83]. Unfortunately, the converse is usually true. For a typical robot,
the mass apparent at its gripper dwarfs the mass of the objects it can manipulate.
Greater manipulator apparent mass implies greater optimal stiffness for the same
ratio of force and displacement tolerances.

Despite its simplicity, this ‘toy’ example may provide insight. Apparent mass
matters, even if the emphasis is on choosing the optimal stiffness, e.g. to be imple-
mented via one of the recent variable-stiffness actuator designs [11, 107]. Apparent
mass includes actuator inertia, ‘reflected’ or transformed through the transmission
system relating end-effector motion to actuator motion. Electro-mechanical robot
transmissions commonly include high-ratio gear trains to amplify motor torques.
That dramatically increases the motor’s contribution to end-effector apparent mass,
which is proportional to the square of the gear ratio. A recent study of a commercially-
available robot showed that the contribution of its motors to end-effector apparent
mass was more than 2.5 times the contribution of its link segments [49].

This ‘toy’ example also hints at one of the challenges of choosing impedance. Con-
structing an objective function to include terms involving both motion and ‘exertion’
at an interaction port is straightforward but solving the resulting optimization prob-
lem is not. Even this linear 1 degree of freedom example with 2nd order dynamics
required solving 6 simultaneous nonlinear differential equations, and only a steady-
state solution was presented (see Appendix). The complexity of the computational
problem may be expected to grow exponentially with the number of degrees of free-
dom and the order of the dynamics associated with each degrees of freedom. Some
tasks—especially if they require active vibration absorption—will require higher-
order interaction dynamics. Furthermore, a general task will require a time-varying
‘trajectory’ of impedances rather than a steady-state time-invariant solution. Power-
ful methods for numerical optimization are now available but unfortunately, variable
impedance makes the optimization non-convex, and this appears to be fundamen-
tal. Nevertheless, despite the formidable challenges, solutions have been presented
[12, 13, 72]. Advances in computational algorithms and processing power may be
expected to yield further progress.

11 Using Composability to Meet Multiple Task Objectives

Unlike the ‘toy’ example above, realistic tasks may have multiple objectives which
may present conflicting requirements. In addition, realistic tasks are commonly per-
formed against the backdrop of other ongoing activities, which may interfere. For
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example, fly-casting is usually performed from a standing position. The required
arm motions generate inertial and gravitational perturbations to balance and pos-
ture; in turn, changing posture influences those arm motions. In principle, multiple
conflicting goals may be incorporated into a single optimization problem; indeed, a
well-formulated objective function must quantify some compromise between con-
flicting requirements if a non-trivial solution is to be identified. In principle, all of the
human body’s roughly 200 degrees of freedom could be included in the dynamics of
the system to be optimized. Unfortunately, the exponential growth of computational
complexity with degrees of freedom renders all but the simplest problems infeasible;
this is Richard Bellman’s notorious ‘curse of dimensionality’.

Even if continuing advances in algorithms and processor speed may push back the
boundaries of what can be computed in practice, it seems doubtful that global opti-
mization is the best description of processes underlying human motor control. The
composability of dynamic primitives provides an alternative. ‘Composability’ refers
to the fact that dynamic primitives may be combined to produce more complex behav-
ior. Experimental evidence indicates that some human movements are composed of
a sequence of overlapping submovements (Figs. 4, 5 and 6). Oscillatory movements
may also be combined, though there appears to be a strong preference for a limited set
of phase relations between component oscillations [58, 59, 98, 99, 104]. Mechanical
impedances are also composable. Remarkably, multiple impedances may be com-
bined by linear superposition, even if the interactive dynamic relations they embody
are nonlinear [39, 41]. This is due to a fact of Newtonian mechanics: an inertial
object such as the skeleton or a tool determines acceleration in response to the linear
sum of forces to which it is subjected.

Taking advantage of composability can dramatically simplify control. A simple
example illustrates this point. Exerting force on a tool requires producing a concomi-
tant minimum stiffness [90]. Expressed as an equivalent network, the required static
behavior may be written as f = k (x0 − x) where f, k and x are end-point force, stiff-
ness and position and x0 is the zero-force position. This may be transformed to joint
coordinates as τ = J T (θ) k (x0 − L (θ)) where τ and θ are joint torque and angle,
x = L (θ) describes the forward kinematics and J (θ) its derivative, the Jacobian
matrix. With a high-level controller that specifies k and x0 and controllable-torque
actuators, that expression may be implemented as a nonlinear joint-space controller
to achieve the specified end-point equivalent network behavior.

With kinematic redundancy—more joint than end-point degrees of freedom
(dim θ > dim x)—that equivalent network alone is insufficient to control config-
uration. Many joint configurations θ yield the same stiffness f = k (x0 − x) and
‘null-space’ motions that leave x unchanged are unaffected by this controller. How-
ever, configuration may be managed by a controller that implements a joint-space
equivalent network behavior τ j = K�θ = K (θr − θ) where K is a non-singular
joint-space stiffness and θr is a zero-torque configuration. Even though one of these
controllers is nonlinear, they may be superimposed by simple addition to achieve
desirable behavior, τnet = τ + τ j = J T (θ) k (x0 − L (θ)) + K (θr − θ). This com-
posite controller readily manages redundant degrees of freedom. Importantly, inver-
sion of the kinematic equations is not required. Not only is a difficult computational
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problem avoided but, unlike controllers that fundamentally require inversion of the
kinematic equations, this approach is indifferent to kinematic singularities. It can
operate at and into kinematic singularities (e.g. at maximum reach).

12 Modulating Inertia via Multi-limb Coordination

Managing redundant degrees of freedom is especially important for modulating iner-
tial behavior, which dominates interactive dynamics at the transitions between free
and constrained motion. Modulating a robot’s inertial behavior using feedback con-
trol is challenging. It usually requires expensive and delicate force/torque sensors.
Moreover, the extent of feedback modulation of inertial behavior is severely con-
strained if contact stability is to be guaranteed [14, 16]. However, choosing the
configuration of the joints has a profound influence on the inertial behavior apparent
at a point of contact such as the hand [40]. Importantly, it allows inertial dynamics,
which determine the magnitude of impulsive forces, to be pre-tuned prior to contact
thereby avoiding possible problems with time delays due to reactive control.

The advantages of dynamic primitives and the composability of impedance extend
to multi-limb coordination. Controlling inertia with a single limb is challenging
due to the distribution of physical inertia along the limb segments. In particular,
translational force impulses almost always induce undesirable rotational motion.
In contrast, two-handed control of interaction with a tool affords advantages. In
particular, with two hands, the inertial terms that couple translational impulses to
rotational motion can be made to cancel, making the response to the collision that
occurs on contact fundamentally more predictable.

Unfortunately, wielding a tool with two hands ‘closes the kinematic chain’ relating
joint motions to end-point motions. Closed-chain kinematic equations are notoriously
challenging. However, this challenge may be avoided entirely by taking advantage of
the composability of impedance. If the motion of the two hands at the point of contact
with the tool is common (more generally, if they are kinematically related through
the tool) their interactive behaviors superimpose linearly. Each limb may be endowed
with stiffness as described above based on the open-chain kinematics of each limb
separately (and without inverting its kinematic equations). The net stiffness of both
arms interacting with the tool is simply the sum of their individual stiffnesses. The
net inertia of both arms interacting with the tool is the sum of their individual inertias.
The undesirable coupling terms of the ‘left’ arm are generally equal and opposite to
those of the ‘right’ arm; combined, they cancel.

The above considered only stiffness and inertia. Dissipative behavior (e.g. damp-
ing) is also important, indeed essential to ensure stability. Once again, the com-
posability of impedance allows damping terms to be implemented independent of
stiffness or inertia, separately for each limb (or even for each joint), then combined
by simple superposition. Higher-order dynamic terms, should they be relevant, may
be treated in an exactly analogous manner. Moreover, if each of these terms, singly
or in combination, is configured to exhibit attractor dynamics, then it becomes a
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dynamic primitive in the sense that we have defined [47, 48]. This, in turn, confers
an important robustness to the behavior implemented.

13 Advantages and Consequences of Composability

The composability of dynamic primitives provides one way to ‘work around’ the
curse of dimensionality, allowing the challenge of coordinating many degrees of free-
dom in a multi-objective task to be broken down into a set of much smaller problems.
Each sub-task may be expressed in the form of an equivalent network (Fig. 7) which
combines uni-lateral forward-path dynamic behavior, which outputs a zero-force
trajectory x0 (t), with bi-lateral interactive dynamic behavior, the impedance Z {·}.
Each equivalent network responds to the motion of the inertial object with which
it interacts. Interactions may be at different locations; for example, one equivalent
network may specify a desired behavior of the hand, another a desired behavior of
the elbow, and so forth. In this way, different body parts may be used to ‘manipulate’
the world, even simultaneously; humans do this frequently. Each equivalent network
determines an output force or torque which adds to the net force or torque applied
to the inertial object (e.g. the skeleton) and produces force or motion, depending on
the totality of all interacting equivalent networks and physical objects (e.g. tools).
If conflicting goals are expressed by different equivalent networks, their respec-
tive impedances determine the resolution. Coordination emerges from the combined
action of all equivalent networks. Because of its generality, this approach has been
extended to non-contact tasks such as avoiding obstacles while acquiring targets,
even obstacles which may move [6, 41, 78].

This ‘divide et impera’ approach may have interesting consequences. Using it as
outlined above to manage kinematic redundancy, to ensure control of configuration
the joint-space stiffness matrix K must be positive-definite. Its inverse exists, defining
a joint-space compliance �θ = K−1τ j . For small �θ , the corresponding end-point
compliance is �x ∼= J (θ) K−1 J T (θ) f , where �x = x − xr = x − L (θr ).3The
end-point compliance c j (θ) = J (θ) K−1 J T (θ) provides a ‘default’ interactive
behavior which renders force control difficult. Its inverse4 determines a mini-
mum end-point stiffness. Even with extremely back-drivable actuators (e.g. current-
controlled electric motors) ‘perfect’ force control, corresponding to infinite com-
pliance or zero stiffness, cannot be achieved. Of course, this is also a limitation of
human motor control. Whether this is a disadvantage (a ‘bug’) or an advantage (a
‘feature’) depends on context. As outlined above, in most tool-using tasks, simulta-
neous modulation of stiffness and force is essential.

3This result may be extended to large �θ and �x : for any �x imposed within the workspace, at
equilibrium the linkage assumes a pose that minimizes total potential energy; the analysis is omitted
for brevity.
4When it can be computed; in some configurations and some directions, e.g., arm fully outstretched,
compliance approaches zero and stiffness approaches infinity.
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14 Integrating Tool Use with Posture, Balance
and Locomotion

The composability of dynamic primitives may simplify the control of complex behav-
ior, and using mechanical impedance to manage physical interaction may facilitate
integration of arm motion with posture, balance and locomotion. Indeed, considera-
tion of posture is essential to understand contact tasks and force control. Many tools
are used from a standing position. In that case the dynamics of force production
depends critically on the posture of the feet. Pushing hard by leaning with the feet
together introduces an unstable dynamic zero—force must transiently increase before
it can decrease and vice versa. Spreading the feet apart eliminates this behavior—foot
pose affects hand dynamics [88].

However, the precise nature of dynamic motion primitives underlying posture and
locomotion is unclear. At first blush it might seem that a point attractor is the appro-
priate dynamic primitive for posture and balance, but time-series analysis of center
of pressure variation during standing indicates that multiple limit cycles are present
[17, 25]. Rhythmic walking might seem to require a limit-cycle attractor and, consis-
tent with this model, human walking exhibits entrainment to periodic perturbations,
both on a treadmill and overground [4, 5, 82]. However, rhythmic walking might
alternatively emerge as a consequence of a ‘capture point’ foot-placement strategy:
the swing foot is placed at a location where present momentum would bring the body
to rest over it; observations of human walking appear consistent with this model [24,
87, 110].

Unimpaired human walking is highly dynamic, to the extent that it may be regarded
as ‘controlled falling’; during single-leg stance the system is unstable (like an inverted
pendulum). From that perspective, one important function of the foot—and especially
the ankle—is analogous to the function of an automobile shock-absorber, acting to
‘catch’ the descending body. The essential ‘shock-absorbing’ behavior is charac-
terized by mechanical impedance. While neural feedback of motion and force con-
tributes to net mechanical impedance, the delays due to neural transmission render
feedback modulation of mechanical impedance ineffective during the rapid events
associated with heel-strike. Consequently, we may expect ankle/foot mechanical
impedance to be pre-tuned prior to heel-strike. Observations of multi-variable human
ankle mechanical impedance show that it is reliably increased by simultaneous co-
activation of opposing muscles [65, 66, 69, 71]. Furthermore, observations of the
time-varying ‘trajectory’ of ankle mechanical impedance during treadmill walking
show that it is elevated by co-contracting opposing muscles prior to heel-strike [67,
70]. Remarkably, these measurements also show that ankle mechanical impedance
is energetically passive, even when muscles are active (up to 30% of maximum
voluntary contraction) [68]. The significance of this observation is that, in general,
physical interaction (e.g. due to foot-ground contact) might compromise stability.
Energetic passivity guarantees that physical contact cannot induce instability [15].
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Summarizing, while it is clear that dynamic primitives such as oscillations and
mechanical impedances likely play an important role in posture and locomotion,
many of the details of how this is accomplished remain to be uncovered.

15 A Geometry of Dynamic Primitives?

The paradox of human performance—how do we out-perform modern robots despite
inferior ‘wetware’ and ‘hardware’?—is both a challenge and opportunity. The chal-
lenge is to understand how it is done; the opportunity is to identify bio-inspired
approaches to improve robot performance. This may require substantial re-thinking
of robot control, even down to the fundamentals of the underlying geometry. Model-
based robot control implicitly assumes a Riemannian geometry, yet human haptic
perception appears to be incompatible with Riemannian geometry.

A growing body of evidence suggests that human motor performance is based on
dynamic primitives. Combinations of motion primitives (submovements and oscilla-
tions) account for recovery after neurological injury as well as some counter-intuitive
limitations of human motor control (moving slowly is hard for humans). Controlling
physical interaction may also be based on interactive dynamic primitives (impedance
or admittance). Forward-path dynamics and interactive dynamics may be combined
by re-purposing and extending the classical linear equivalent electric circuit to define
a nonlinear equivalent network.

Interestingly, the most useful form of nonlinear equivalent network requires the
forward-path dynamics to prescribe motions, not forces. That is consistent with unim-
paired human motor behavior and recovery after neural injury. It suggests some form
of underlying geometric structure but prompts an open question: Which geometry is
induced by a composition of motion and interactive dynamic primitives? What are
its properties? Answering those questions might pave the way to achieve superior
robot control and seamless human-robot collaboration.
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Appendix: Choosing Impedance via Stochastic Optimization

Assume a manipulator and its control system are modeled as a mass mm moving
in 1 degree of freedom, retarded by linear damping b and driven by a linear spring
referenced to a ‘zero-force’ point x0. It interacts with an object modeled as mass
mo such that both move with common motion x . State-determined equations for the
coupled system are
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where m = mm + mo, fo is the force exerted by the manipulator on the object, and
we denotes stochastic perturbation forces, modeled as zero-mean Gaussian white
noise of strength S, i.e. E {we(t)} = 0, E {we (t)we (t + τ)} = Sδ (τ ), where E {·}
is the expectation operator and δ (·) denotes the unit impulse function. The objective
function to be minimized is

Q = E
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f 2
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)
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⎫
⎬

⎭

where �x = x0 − x and ftol and �xtol are tolerances on interface force and displace-
ment. Due to the stochastic input, the state (x (t) , v (t)) and output fo (t) are random
variables. Assume x0 (t) = constant = 0 and find conditions for a steady-state solu-
tion (i.e. consider the limit as t f inal → ∞). The mean state and output variables
propagate deterministically, i.e. E {x (t)} = E {v (t)} = E { fo (t)} = 0. Define the
input covariance We (t) = E

{(
w2
e (t)

)} = S and the state covariance matrix

� (t) = E

{[
x (t)
v (t)

]
[
x (t) v (t)

]
}

= E

{[
x2(t) x (t) v (t)

x (t) v (t) v2(t)

]}

For notational convenience, omit the explicit time dependence and use overbar nota-

tion � =
[
x2 xv
xv v2

]

. Covariance propagation through a linear time-invariant system

is described by the dynamic equation �̇ = A� + �AT + BSBT where A and B are
system and input weighting matrices.

d

dt

[
x2 xv
xv v2

]

=
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2xv v2 − x2k/m − xvb/m
v2 − x2k/m − xvb/m −2xvk/m − 2v2b/m

]

+
[

0 0
0 1/m2

]
S

Re-write as 3 coupled scalar differential equations

d
dt x

2 = 2xv
d
dt xv = v2 − x2k/m − xvb/m

d
dt v

2 = S/m2 − 2xvk/m − 2v2b/m

The scalar to be minimized is
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Defining q = ( ftol/�xtol)(m/mo)
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Construct the ‘control Hamiltonian’

H = (
k2 + q2

)
x2 + 2kbxv + b2v2

+λ12xv

+λ2

(
v2 − x2k/m − xvb/m

)

+λ3

(
S/m2 − 2xvk/m − 2v2b/m

)

where λi denote Lagrange multipliers. Minimize with respect to k and b.

∂H

∂k
= 2kx2 + 2bxv − λ2x2/m − λ32xv/m = 0

∂H

∂b
= 2kxv + 2bv2 − λ2xv/m − λ32v2/m = 0

The Lagrange multipliers are defined by ‘co-state’ equations.

∂H

∂x2
= −λ̇1 = k2 + q2 − λ2k/m

∂H

∂xv
= −λ̇2 = 2kb + 2λ1 − λ2b/m − λ32k/m

∂H

∂v2
= −λ̇3 = b2 + λ2 − λ32b/m

Assume steady state exists and set all rates of change to zero.
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2xv = 0
v2 − x2k/m − xvb/m = 0

S/m2 − 2xvk/m − 2v2b/m = 0
k2 + q2 − λ2k/m = 0

2kb + 2λ1 − λ2b/m − λ32k/m = 0
b2 + λ2 − λ32b/m = 0

A little manipulation shows that

xv = 0

v2 = x2k/m

x2 = S/2kb

v2 = S/2bm

The first co-state equation yields

k2 + q2 = λ2k/m

λ2 = km + q2m/k

The optimal stiffness is defined by

2kopt x2 = λ2x2/m

kopt = q = ftol
�xtol

m

mo

Note that this manipulation requires x2 = 0 and hence S = 0. However, kopt is inde-
pendent of noise strength S.

The third co-state equation yields

b2 + λ2 = λ32b/m

λ3 = (
b2 + λ2

)
m/2b = bm

2
+ km

2b
+ q2m2

2kb

The optimal damping is defined by

2bopt v2 = λ32v2/m

bopt = √
2koptm
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This manipulation requires v2 = 0 and hence S = 0. However, bopt is independent
of noise strength S.

References

1. C. Abul-Haj, N. Hogan, An emulator system for developing improved elbow-prosthesis
designs. IEEE Trans. Biomed. Eng. 34, 724–737 (1987)

2. C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow
prostheses. 1. Description of the technique. IEEE Trans. Biomed. Eng. 37, 1025–1036 (1990a)

3. C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow
prostheses. 2. Application of the technique. IEEE Trans. Biomed. Eng. 37, 1037–1047 (1990b)

4. J. Ahn, N. Hogan, A simple state-determined model reproduces entrainment and phase-locking
of human walking dynamics. PLoS ONE 7, e47963 (2012a)

5. J. Ahn, N. Hogan, Walking is not like reaching: evidence from periodic mechanical perturba-
tions. PLoS ONE 7, e31767 (2012b)

6. J.R. Andrews, N. Hogan, Impedance Control as a Framework for Implementing Obstacle
Avoidance in a Manipulator, in BOOK, D. E. H. A. W. J. (ed.) Control of Manufacturing
Processes and Robotic Systems (ASME, 1983)

7. A.J. Bastian, T.A. Martin, J.G. Keating, W.T. Thach, Cerebellar ataxia: abnormal control of
interaction torques across multiple joints. J. Neurophysiol. 76, 492–509 (1996)

8. A. Bissal, J. Magnusson, E. Salinas, G. Engdahl, A. Eriksson, On the design of ultra-fast
electromechanical actuators: a comprehensive multi-physical simulation model, in Sixth Inter-
national Conference on Electromagnetic Field Problems and Applications (ICEF) (2012)

9. T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi, D.G. Caldwell, Dynamic torque
control of a hydraulic quadruped robot, in IEEE International Conference on Robotics and
Automation (IEEE, Saint Paul, Minnesota, USA, 2012)

10. C. Boesch, H. Boesch, Tool use and tool making in wild chimpanzees. Folia Primatologica
54, 86–99 (1990)

11. D.J. Braun, S. Apte, O. Adiyatov, A. Dahiya, N. Hogan, Compliant actuation for energy effi-
cient impedance modulation, in IEEE International Conference on Robotics and Automation
(2016)

12. J. Buchli, F. Stulp, E. Theodorou, S. Schaal, Learning variable impedance control. Int. J.
Robot. Res. 30, 820–833 (2011)

13. M. Cohen, T. Flash, Learning impedance parameters for robot control using an associative
search network. IEEE Trans. Robot. Autom. 7, 382–390 (1991)

14. E. Colgate, On the intrinsic limitations of force feedback compliance controllers, in Robotics
Research - 1989, eds. by K. Youcef-Toumi, H. Kazerooni (ASME, 1989)

15. J.E. Colgate, N. Hogan, Robust control of dynamically interacting systems. Int. J. Control 48,
65–88 (1988)

16. J.E. Colgate, N. Hogan, The interaction of robots with passive environments: application
to force feedback control, in Fourth International Conference on Advanced Robotics, June
13–15 (Columbus, Ohio, 1989)

17. J.J. Collins, C.J. de Luca, Open-loop and closed-loop control of posture: a random-walk
analysis of center-of-pressure trajectories. Exp. Brain Res. 95, 308–318 (1993)

18. F. Crevecoeur, J. McIntyre, J.L. Thonnard, P. Lefèvre, Movement stability under uncertain
internal models of dynamics. J. Neurophysiol. 104, 1301–1313 (2010)

19. A. de Rugy, D. Sternad, Interaction between discrete and rhythmic movements: reaction time
and phase of discrete movement initiation against oscillatory movements. Brain Res. 994,
160–174 (2003)

20. S. Degallier, A. Ijspeert, Modeling discrete and rhythmic movements through motor primi-
tives: a review. Biol. Cybern. 103, 319–338 (2010)



296 N. Hogan

21. R. Deits, R. Tedrake, Efficient mixed-integer planning for UAVs in cluttered environments,
in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Seattle, WA,
2015)

22. J.A. Doeringer, N. Hogan, Intermittency in preplanned elbow movements persists in the
absence of visual feedback. J. Neurophysiol. 80, 1787–1799 (1998a)

23. J.A. Doeringer, N. Hogan, Serial processing in human movement production. Neural Netw.
11, 1345–1356 (1998b)

24. J. Englsberger, C. Ott, A. Albu-Schaffer, Three-dimensional bipedal walking control based
on divergent component of motion. IEEE Trans. Robot. 31, 355–368 (2015)

25. C.W. Eurich, J.G. Milton, Noise-induced transitions in human postural sway. Phys. Rev. E
54, 6681–6684 (1996)

26. E.D. Fasse, N. Hogan, B.A. Kay, F.A. Mussa-Ivaldi, Haptic interaction with virtual objects -
spatial perception and motor control. Biol. Cybern. 82, 69–83 (2000)

27. J. Flanagan, P. Vetter, R. Johansson, D. Wolpert, Prediction precedes control in motor learning.
Curr. Biol. 13, 146–150 (2003)

28. J.R. Flanagan, A.K. Rao, Trajectory adaptation to a nonlinear visuomotor transformation:
evidence of motion planning in visually perceived space. J. Neurophysiol. 74, 2174–2178
(1995)

29. T. Flash, N. Hogan, The coordination of arm movements - an experimentally confirmed
mathematical model. J. Neurosci. 5, 1688–1703 (1985)

30. H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiff-
ness during multijoint movement. Science 272, 117–120 (1996)

31. P. Gribble, D.J. Ostry, V. Sanguinetti, R. Laboissiere, Are complex control signals required
for human arm movement? J. Neurophysiol. 79, 1409–1424 (1998)

32. O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925a)
33. O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925b)
34. H.V. Helmholtz, II. Uber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen

Leitern mit Anwendung auf die thierisch-elektrischen Versuche [Some laws concerning the
distribution of electrical currents in conductors with applications to experiments on animal
electricity]. Annalen der Physik und Chemie 89, 211–233 (1853)

35. A.J. Hodgson, Inferring Central Motor Plans from Attractor Trajectory Measurements, Ph.D,
Institute of Technology, Massachusetts, 1994

36. A.J. Hodgson, N. Hogan, A model-independent definition of attractor behavior applicable to
interactive tasks. IEEE Trans. Syst. Man Cybern. Part C- Appl. Rev. 30, 105–118 (2000)

37. J.A. Hoffer, S. Andreassen, Regulation of soleus muscle stiffness in premammillary cats:
intrinsic and reflex components. J. Neurophysiol. 45, 267–285 (1981)

38. N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles.
IEEE Trans. Autom. Control 29, 681–690 (1984)

39. N. Hogan, Impedance control - an approach to manipulation. 1. Theory. J. Dyn. Syst. Meas.
Control Trans. Asme 107, 1–7 (1985a)

40. N. Hogan, Impedance control - an approach to manipulation. 2. Implementation. J. Dyn. Syst.
Meas. Control Trans. Asme 107, 8–16 (1985b)

41. N. Hogan, Impedance control - an approach to manipulation. 3. Applications. J. Dyn. Syst.
Meas. Control Trans. Asme 107, 17–24 (1985c)

42. N. Hogan, Mechanical impedance of single-and multi-articular systems, in Multiple Muscle
Systems: Biomechanics and Movement Organization, eds. by J. Winters, S. Woo (Springer,
New York, 1990)

43. N. Hogan, A general actuator model based on nonlinear equivalent networks. IEEE/ASME
Trans. Mechatron. 19, 1929–1939 (2014)

44. N. Hogan, S.P. Buerger, Impedance and interaction control, in Robotics and Automation
Handbook, ed by T.R. Kurfess (CRC Press, Boca Raton, FL, 2005)

45. N. Hogan, B.A. Kay, E.D. Fasse, F.A. Mussaivaldi, Haptic illusions - experiments on human
manipulation and perception of virtual objects. Cold Spring Harbor Symp. Quant. Biol. 55,
925–931 (1990)



Physical Interaction via Dynamic Primitives 297

46. N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes,
W.R. Frontera, D. Lynch, B.T. Volpe, Motions or muscles? Some behavioral factors underlying
robotic assistance of motor recovery. J. Rehab. Res. Dev. 43, 605–618 (2006)

47. N. Hogan, D. Sternad, Dynamic primitives of motor behavior. Biol. Cybern. 106, 727–739
(2012)

48. N. Hogan, D. Sternad, Dynamic primitives in the control of locomotion. Front. Comput.
Neurosci. 7, 1–16 (2013)

49. L.A. Hosford, Development and Testing of an Impedance Controller on an Anthropomorphic
Robot for Extreme Environment Operations, Master of Science, Massachusetts Institute of
Technology (2016)

50. D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and
joint stiffness: reciprocal activation and coactivation of antagonist muscles, in Motor Control
Mechanisms in Health and Disease, ed. by J.E. Desmedt (Raven Press, New York, 1983)

51. G.R. Hunt, Manufacture and use of hook-tools by New Caledonian crows. Nature 379, 259–
251 (1996)

52. A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives:
learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)

53. S.H. Johnson-Frey, The neural basis of complex tool use in humans. Trends Cogn. Sci. 8,
71–78 (2004)

54. D.H. Johnson, Origins of the equivalent circuit concept: the current-source equivalent. Proc.
IEEE 91, 817–821 (2003a)

55. D.H. Johnson, Origins of the equivalent circuit concept: the voltage-source equivalent. Proc.
IEEE 91, 636–640 (2003b)

56. E.R. Kandel, J.H. Schwartz, T.M. Jessell (eds.), Principles of Neural Science (McGraw-Hill,
New York, 2000)

57. M. Kawato, Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol.
9, 718–727 (1999)

58. J.A. Kelso, Phase transitions and critical behavior in human bimanual coordination. Am. J.
Physiol. Regul. Integr. Comp. Physiol. 246, R1000–R1004 (1984)

59. J.A.S. Kelso, On the oscillatory basis of movement. Bull. Psychon. Soc. 18, 49–70 (1981)
60. B. Kenward, A.A.S. Weir, C. Rutz, A. Kacelnik, Behavioral ecology: Tool manufacture by

naïve juvenile crows. Nature 433 (2005)
61. H.I. Krebs, M.L. Aisen, B.T. Volpe, N. Hogan, Quantization of continuous arm movements

in humans with brain injury. Proc. Natl. Acad. Sci. U.S.A. 96, 4645–4649 (1999)
62. S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion,

R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the
Atlas humanoid robot. Auton. Robot. 40, 429–455 (2016)

63. T.M. Kunnapas, An analysis of the "vertical-horizontal illusion". J. Exp. Psychol. 49, 134–140
(1955)

64. J.R. Lackner, P. Dizio, Rapid adaptation to coriolis force perturbations of arm trajectory. J.
Neurophysiol. 72, 299–313 (1994)

65. H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical
impedance with relaxed muscles. J. Biomech. 44, 1901–1908 (2011)

66. H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical
impedance with active muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 44–52 (2013)

67. H. Lee, N. Hogan, Time-varying ankle mechanical impedance during human locomotion.
IEEE Trans. Neural Syst. Rehab. Eng. (2014)

68. H. Lee, N. Hogan, Energetic passivity of the human ankle joint. IEEE Trans. Neural Syst.
Rehab. Eng. (2016)

69. H. Lee, H. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with active
muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 971–981 (2014a)

70. H. Lee, H.I. Krebs, N. Hogan, Linear time-varying identification of ankle mechanical
impedance during human walking, in 5th Annual Dynamic Systems and Control Conference
(ASME, Fort Lauderdale, Florida, USA, 2012)



298 N. Hogan

71. H. Lee, H.I. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with
relaxed muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 1104–1114 (2014b)

72. Y. Li, S.S. GE, Impedance learning for robots interacting with unknown environments. IEEE
Trans. Control Syst. Technol. 22 (2014)

73. F.M. Marchetti, S.J. Lederman, The haptic radial-tangential effect: two tests of Wong’s
’moments-of-inertia’ hypothesis. Bull. Psychon. Soc. 21, 43–46 (1983)

74. J.C. Maxwell, A Treatise on Electricity and Magnetism (1873)
75. H.F. Mayer, Ueber das Ersatzschema der Verstärkerröhre [On equivalent circuits for electronic

amplifiers]. Telegraphen- und Fernsprech-Technik 15, 335–337 (1926)
76. Moog, Moog G761/761 Series Flow Control Servovalves (Moog Inc, 2014)
77. J.M. Morgan, W.W. Milligan, A 1 kHz servohydraulic fatigue testing system, in Conference

onHigh Cycle Fatigue of StructuralMaterials, ed. by Srivatsan, W. O. S. A. T. S. (Warrendale,
PA, 1997)

78. W.S. Newman, N. Hogan, High speed robot control and obstacle avoidance using dynamic
potential functions, in IEEE International Conference on Robotics and Automation (IEEE,
New Jersey, 1987)

79. I. Newton, Philosophiæ Naturalis Principia Mathematica (1687)
80. T.R. Nichols, J.C. Houk, Improvement in linearity and regulation of stiffness that results from

actions of stretch reflex. J. Neurophysiol. 39, 119–142 (1976)
81. E.L. Norton, Design of Finite Networks for Uniform Frequency Characteristic (Western Elec-

tric Company Inc, New York, 1926)
82. J. Ochoa, D. Sternad, N. Hogan, Entrainment of overground human walking to mechanical

perturbations at the ankle joint, in International Conference on Biomedical Robotics and
Biomechatronics (BioRob) (IEEE, Singapore, 2016)

83. L.U. Odhner, L.P. Jentoft, M.R. Claffee, N. Corson, Y. Tenzer, R.R. Ma, M. Buehler, R.
Kohout, R.D. Howe, A.M. Dollar, A compliant, underactuated hand for robust manipulation.
Int. J. Robot. Res. 33, 736–752 (2014)

84. N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series
elastic actuators. IEEE/ASME Trans. Mechatron. 19, 1080–1091 (2014)

85. R. Plamondon, A.M. Alimi, P. Yergeau, F. Leclerc, Modelling velocity profiles of rapid move-
ments: a comparative study. Biol. Cybern. 69, 119–128 (1993)

86. R.A. Popat, D.E. Krebs, J. Mansfield, D. Russell, E. Clancy, K.M. Gillbody, N. Hogan,
Quantitative assessment of 4 men using above-elbow prosthetic control. Arch. Phys. Med.
Rehab. 74, 720–729 (1993)

87. J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push
recovery, in Humanoids 2006 (IEEE, New Jersey, 2006)

88. D. Rancourt, N. Hogan, Dynamics of pushing. J. Mot. Behav. 33, 351–362 (2001a)
89. D. Rancourt, N. Hogan, Stability in force-production tasks. J. Mot. Behav. 33, 193–204

(2001b)
90. D. Rancourt, N. Hogan, The biomechanics of force production, in Progress in Motor Control:

A Multidisciplinary Perspective, ed by D. Sternad (Springer, Heidelberg, 2009)
91. B. Rohrer, S. Fasoli, H.I. Krebs, B. Volpe, W.R. Frontera, J. Stein, N. Hogan, Submovements

grow larger, fewer, and more blended during stroke recovery. Mot. Control 8, 472–483 (2004)
92. B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions: a globally optimal

algorithm. Biol. Cybern. 89, 190–199 (2003)
93. B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions II: a scattershot algo-

rithm. Biol. Cybern. 94, 409–414 (2006)
94. R. Ronsse, D. Sternad, P. Lefevre, A computational model for rhythmic and discrete move-

ments in uni- and bimanual coordination. Neural Comput. 21, 1335–1370 (2009)
95. R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a

motor task. J. Neurosci. 14, 3208–3224 (1994)
96. R.N. Shepard, J. Metzler, Mental rotation of three-dimensional objects. Science 171, 701–703

(1971)



Physical Interaction via Dynamic Primitives 299

97. D. Sternad, Towards a unified framework for rhythmic and discrete movements: behavioral,
modeling and imaging results, in Coordination: Neural, Behavioral and Social Dynamics,
eds. by A. Fuchs, V. Jirsa (Springer, New York, 2008)

98. D. Sternad, E.L. Amazeen, M.T. Turvey, Diffusive, synaptic, and synergetic coupling: an
evaluation through inphase and antiphase rhythmic movements. J. Mot. Behav. 28, 255–269
(1996)

99. D. Sternad, D. Collins, M.T. Turvey, The detuning factor in the dynamics of interlimb rhythmic
coordination. Biol. Cybern. 73, 27–35 (1995)

100. D. Sternad, A. de Rugy, T. Pataky, W.J. Dean, Interactions of discrete and rhythmic movements
over a wide range of periods. Exp. Brain Res. 147, 162–174 (2002)

101. D. Sternad, W.J. Dean, Rhythmic and discrete elements in multi-joint coordination. Brain
Res. 989, 152–171 (2003)

102. D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in
single-joint movements. Hum. Mov. Sci. 19, 627–664 (2000)

103. D. Sternad, H. Marino, S.K. Charles, M. Duarte, L. Dipietro, N. Hogan, Transitions between
discrete and rhythmic primitives in a unimanual task. Front. Comput. Neurosci. 7 (2013)

104. D. Sternad, M.T. Turvey, R.C. Schmidt, Average phase difference theory and 1:1 phase entrain-
ment in interlimb coordination. Biol. Cybern. 67, 223–231 (1992)

105. L.C. Thévenin, Sur un nouveau théorème d’électricité dynamique [On a new theorem of
dynamic electricity]. Comptes Rendus des Séances de l’Académie des Sciences 97, 159–161
(1883)

106. W.J. Thompson, Angular Momentum: An Illustrated Guide to Rotational Symmetries for
Physical Systems (Wiley-Interscience, 1994)

107. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M.
Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Had-
dadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis,
M.V. Damme, R.V. Ham, L.C. Visser, S. Wolf, Variable impedance actuators: a review. Robot.
Autonom. Syst. 61, 1601–1614 (2013)

108. J.M. Wakeling, A.-M. Liphardt, B.M. Nigg, Muscle activity reduces soft-tissue resonance at
heel-strike during walking. J. Biomech. 36, 1761–1769 (2003)

109. J.M. Wakeling, B.M. Nigg, Modification of soft tissue vibrations in the leg by muscular
activity. J. Appl. Physiol. 90, 412–420 (2001)

110. Y. Wang, M. Srinivasan, Stepping in the direction of the fall: the next foot placement can be
predicted from current upper body state in steady-state walking. Biol. Lett. 10 (2014)

111. D.M. Wolpert, R.C. Miall, M. Kawato, Internal models in the cerebellum. Trends Cogn. Sci.
2, 338–347 (1998)

112. G.I. Zahalak, Modeling muscle mechanics (and energetics), in Multiple Muscle Systems:
Biomechanics and Movement Organization, eds. by J.M. Winters, S.L.-Y. Woo (Springer,
New York, 1990)



Human Control of Interactions
with Objects – Variability,
Stability and Predictability

Dagmar Sternad

Abstract How do humans control their actions and interactions with the physical
world? How do we learn to throw a ball or drink a glass of wine without spilling?
Compared to robots human dexterity remains astonishing, especially as slow neural
transmission and high levels of noise seem to plague the biological system. What
are human control strategies that skillfully navigate, overcome, and even exploit
these disadvantages? To gain insight we propose an approach that centers on how
task dynamics constrain and enable (inter-)actions. Agnostic about details of the
controller, we start with a physical model of the task that permits full understanding
of the solution space. Rendering the task in a virtual environment, we examine how
humans learn solutions that meet complex task demands. Central to numerous skills
is redundancy that allows exploration and exploitation of subsets of solutions. We
hypothesize that humans seek solutions that are stable to perturbations to make
their intrinsic noise matter less. With fewer corrections necessary, the system is
less afflicted by long delays in the feedback loop. Three experimental paradigms
exemplify our approach: throwing a ball to a target, rhythmic bouncing of a ball, and
carrying a complex object. For the throwing task, results show that actors are sensitive
to the error-tolerance afforded by the task. In rhythmic ball bouncing, subjects exploit
the dynamic stability of the paddle-ball system.Whenmanipulating a “glass ofwine”,
subjects learn strategies that make the hand-object interactions more predictable.
These findings set the stage for developing propositions about the controller: We
posit that complex actions are generated with dynamic primitives, modules with
attractor stability that are less sensitive to delays and noise in the neuro-mechanical
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1 Introduction

Imagine a dancer, perhaps Rudolf Nureyev or Margaret Fonteyn, both legends in
classical ballet: we can only marvel at how they are in complete control of their
body, combining extraordinary flexibility and strength with technical difficulty and
elegance. And yet, I submit that Evgenia Kanaeva, two-times all-around Olympic
champion in rhythmic gymnastics, equals, if not surpasses their level of skill:Not only
does shemove her lithe bodywith perfection and grace, she also plays with numerous
objects: she throws, catches and bounces a ball, she rolls and swivels a hoop, and
sets a 6m-long ribbon into smooth spirals with the most exquisite movements of her
hands and fingers – and yes, sometimes also using her arms, shoulders, or her legs
and feet. Her magical actions and interactions with objects arguably represent the
pinnacle of human motor control.

How do humans act and interact with objects and tools? After all, tool use is
what gave humans their evolutionary advantage over other animals. In robotics,
manipulation of tools has clearly been one of the primary motivations to develop
robots, going back to the first industrial robots designed to automate repetitive tasks
such as placing parts or tightening screws. However, these actions lack the dexterity
that not only elite performers, but all healthy humans display. Opening a bottle of
wine with a corkscrew or eating escargot with a fork and tongs are skills that require
subtle interactions with complex tools and objects. How do humans control these
actions and interactions?

Research in motor neuroscience has only arrived at limited answers. To assure
experimental control and rigor, computational research has confined itself to sim-
ple laboratory tasks, most commonly reaching to a point target, while restricting
arm movements to two joints moving in the horizontal plane [57, 58]. Research on
sequence learning has typically been limited to finger presses evaluated with simple
discrete metrics of timing and serial errors [43, 81]. Grasping has been reduced to
isometric finger presses with predetermined contact points to analyze contact forces
[37, 82]. The obvious benefit of such simplifications is that the data are accessible
and tractable for testing theory-derived hypotheses. Over the past 20years, numerous
studies in computational neuroscience have embraced control-theoretical concepts,
such as Kalman filters [39], Bayesian multi-sensory integration [2, 80], and optimal
feedback control [74] to account for such experimentally controlled human data.
While advances have been made, nobody would deny that this approach encounters
challenges when the actions become more complex and realistic. This is particularly
problematic when actions are no longer free, as in reaching, but involve contact with
objects, ranging from pouring a glass of wine to moving the ribbon in gymnastics.
Needless to say, current state-of-the-art movements of robots are still a far cry from
those of Elena Kanaeva. Why do humans perform so much better, at least to date?
What can robotic control learn from human neuromotor control?
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1.1 The Paradox: Delays and Noise in the Human
Neuromotor System

A first look into the biological neuromotor control system reveals some puzzling
facts: information transmission in the human central nervous system is extremely
slow and also very noisy. Action potentials, the basic unit of information coding,
travel at a speed of approximately 100 m/s [32]; the shortest feedback loop is around
50 ms and reserved for startle reactions [35, 47]. When feedback is integral to more
meaningful responses, loop times of 200 ms and longer are a more realistic estimate.
In addition to such long delays, the biological neuromotor system displays noise and
fluctuations at all levels [13]. The biological system is an extremely complex non-
linear system with multiple levels of spatiotemporal scales, ranging from molecular
and cellular processes to motor units and muscle contractions, and to overt behavior.
Noise and fluctuations from all these levels manifest themselves at the behavioral
level as ubiquitous variability. For example, in simple rhythmic finger tapping even
trained musicians exhibit at least 5% variance of the period [19, 72]. In a discrete
throwing action, humans display a limit in timing resolution of 9 ms [8]. Such large
delays and high levels of noise pose extreme challenges for any control model. And
yet, humans are amazingly agile and dexterous.

While the human controller appears clearly inferior to robotic systems, the bio-
logical “hardware” with its compliant muscles and soft tissues defy any comparison
with the heavy actuators of robots. It seems highly likely that the dexterous hu-
man controller exploits these features. More recent developments in robotics have
produced actuators with variable compliance, such as hands or grippers made of soft
material [12] or actuators withmechanically adjustable series compliance [78]. How-
ever, the flexibility that comes with variable stiffness may also incur costs, such as
loss in precision or higher energy demands. How do humans combine their software
limitations and use their compliant and high-dimensional actuators to solve complex
task demands?

1.2 Intrinsic and Extrinsic Redundancy

The biological sensorimotor system has a large number of hierarchical levels with
high dimensionality on each level. One important consequence of this high dimen-
sionality is that it affords redundancy and thereby an infinite variety of ways a given
action can be performed. At the behavioral level, hammering a nail into a wooden
block can be achieved with multiple different arm trajectories and muscle activa-
tion patterns. The adage “repetitions without repetition” conveys that the ubiquitous
and ever-present fluctuations prevent any action to be the same as another one. Im-
portantly, this intrinsic redundancy faces an additional extrinsic redundancy that is
inherent to the task. Imagine dart throwing: the bull’s eye or the rings on the dart-
board allow a set of hits that achieve a given score. Further, orientation angle of
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the dart stuck on the board does not change the score. Hence, the task has extrinsic
redundancy that permits a manifold of solutions [68]. However, not all solutions are
equally suitable: some may not be biomechanically optimal, others may be risky,
yet others may have a lot of tolerance to error and noise. Examining human per-
formance may reveal how humans navigate the task’s redundancy and preferences
may give insight into the controller. Hence, a suitably constructed extrinsic redun-
dancy presents an important entry point into examining human control, strategies, or
objective functions.

1.3 An Agnostic Approach to Human Motor Control

Recognizing these challenges, our research has adopted an approach with minimal
assumptions about humanneuromotor control. Insteadof startingwith a hypothesized
controller and the plant, i.e., the brain and the musculo-skeletal system, connected
by forward and feedback loops transmitting motor and sensory signals, we take an
agnostic stance. We begin with what is known and can be analyzed: the physical task
that the actor performs. Under simplified conditions, very few assumptions need to
be made about the human controller.

This chapter will review this task-dynamic approach as it was developed in three
experimental paradigms that examine human interactive skills. These three skills
progress from the simple action of throwing a ball, to rhythmic intermittent bouncing
of a ball, to the continuous manipulation of a complex object, a cup with a rolling
ball inside, mimicking a cup of coffee – or a glass of wine. Mathematical analyses
and exemplary results will show that variability, stability and predictability matters
in human motor control. I will close with a still largely speculative hypothesis on
how the human control system generates such actions, a perspective that may be less
hampered by long delays and noise: control via dynamic primitives.

2 A Task-Dynamic Approach to Understanding
Control of Interactions

Using mathematical modeling and virtual technology we developed a task-dynamic
approach to study the acquisition and control of simple andmore complex interactive
skills. Following a brief outline of the methodological steps, three exemplary lines
of research will be reviewed with some selected results.
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2.1 Identifying a Motor Task

The important initial step is choosing a motor task that satisfies several desiderata:
First, it should represent a core aspect germane to many other tasks that is “inter-
esting” from a control perspective. Second, the motor task should have redundancy:
the well-defined goal should allow for a variety of solutions to achieve the task goal.
Third, the task should be novel and sufficiently challenging to require practice to
achieve success. The changes over practice provide an important lens to reveal how
humans navigate through the space of solutions. (Note this differs from studying
everyday behaviors, such as reaching or grasping, where only adaptations to novel
scenarios produce change.) Fourth, improvement should happen within one or few
experimental session(s), but should also allow for fine-tuning over a longer time
scale. These stages are likely to reveal processes underlying motor learning.

We selected and designed three tasks: The arguably simplest (inter-)active task
is to throw a ball to a target. While the ball only needs to be released, the size and
location of the target imposes constraints on the release that fully determine the
projectile’s trajectory and thereby the hitting accuracy. A next step in interaction is
to repeatedly contact the ball – such as in bouncing a ball rhythmically in the air.
This intermittent interaction extends the control demands, as the propelled object
needs to be intercepted again. Any error at one contact influences the subsequent
contact – these repeated interactions render the task a dynamic system. The third task
takes interactions one significant step further: motivated by the seemingly mundane
action of carrying a cup of coffee or glass of wine, we designed a simplified task that
exemplifies the continuous interaction with a complex object.

2.2 Mathematical Model of the Task

Once the core control challenge is identified, the task is modeled mathematically to
formalize and prune away irrelevant aspects of the real-life task. A simple physical
model also facilitates subsequent analyses of both model and human data. What
system captures the essential demands of ball release and permits a full analysis of
the solution space? What is the simplest intermittent dynamical system that lends
itself tomathematical analysis?What is the simplest physical system that captures the
continuous interaction between the human and a dynamically complex object? One
core element in ourmathematicalmodeling and analysis is the distinction between the
execution variables x and the result variables r: The result variable(s) are defined by
the task goal and the instruction to the subject andquantify the quality of performance.
This is typically an error measure, although this error measure can take many forms.
Execution variables are under control of the performer and determine the task result.
For the analysis it is important to identify all execution variables that fully determine
the result, in order to have an analytic or numerical understanding of the space of
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solutions. The functional relation between execution and result is the essence of the
model and analysis: r = f (x).

2.3 Mathematical Analysis and Derivation of Hypotheses

Based on the physical model, the space of all possible solutions to the task can be
derived. As the model system is typically nonlinear, the space of solutions may be
complex and subsets of solutionsmayhave additional properties, such as dynamic sta-
bility, risk, or predictability, as elaborated below. The model structure determines the
mathematical tools that can be used to derive predictions. Core to our task-dynamic
approach are analyses of stability, error sensitivity, or robustness to perturbations
and noise. Importantly, exact quantitative hypotheses can be formulated that define
those solutions with the greatest probability of success.

2.4 Implementation in a Virtual Environment

Based on the explicit mathematical model, the task is rendered in a virtual envi-
ronment that permits precise measurement of human execution and errors, i.e., the
execution and result variables. The execution variables are those that the subject con-
trols via interfacing with the virtual system. For example, while the subject performs
a throwing task, the real arm trajectory controls the ball release, but the ball and the
target are virtual. The virtual rendering has the advantage that it confines the task to
exactly the model variables and its known parameters. There are no uncontrolled as-
pects as would occur in a real experiment. Further, the parameters and result variables
can be freely manipulated to test hypotheses about human control strategies.

2.5 Measurement, Analysis, and Hypothesis Testing
of Human Performance

Subjects interact with the virtual physics of the task via manipulanda that simul-
taneously render the task dynamics and measure human performance strategies.
The measured execution variables and the task result are then evaluated against the
mathematical analysis of the solution space. The virtual environment affords easy
manipulation of the model, its parameters, and specific task goals. Hypotheses about
preferred solutions are derived from model analysis and can be evaluated based on
the human data. As shown below, the task can be parameterized to create interesting
task variations to contrast alternative control hypotheses.
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2.6 Interventions

Based on the findings, the controlled virtual environment can also be used to create
interventions that guide or shape behavior. This is significant for clinical applications,
where scientifically-grounded quantitative assessments and interventions are still
rare. While this review will focus on the basic science issues, some applications
to questions on motor control in children with dystonia or on interventions for the
elderly can be found in Sternad [60], Chu et al. [5], Hasson and Sternad [24].

3 Throwing a Ball to Hit a Skittle – Variability, Noise,
and Error-Tolerance

3.1 The Motor Task

This experimental paradigm was motivated by a ball game found in many pubs and
playgrounds around the world: The actor throws a ball that is tethered to a virtual
post by a string like a pendulum; the goal is to hit a target skittle (or skittles) on the
opposite side of the pole (Fig. 1a). Accurate throwing requires a controlled hand/ball
trajectory that prepares the ball release at exactly the right position with the right
velocity to send the ball onto a trajectory that knocks over the target skittle. The
practical advantage of this game is that the tethered ball cannot be lost and the
game can be played in a small space; the theoretical advantage is that the pendular
motions of the ball introduce “interesting” dynamics with a nonlinear solution space
including discontinuities that present challenges to trivial learning strategies such as
gradient descent. Importantly, the task has redundancy and thereby offers a manifold
of solutions with different properties.

Target

Ball

Center Post

2D Model

Error

C

PC

force 
sensor

optical
encoder

(a) (b) (c)

Fig. 1 The virtual throwing task. a Schematic of the real task. b The 2D model from a top-down
view. c The experimental set-up with force and position sensors for recording of human movement.
Measured movements are shown in real time on the screen (Reproduced from [68])
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3.2 The Model and Its Virtual Implementation

To simplify the three-dimensional task, the ball was confined to the horizontal plane,
eliminating the pendular elevation during excursion (Fig. 1b). In the model, the ball
is attached to two orthogonal, massless springs with its rest position at the center
post. In the virtual implementation, the actor views the workspace from above on
a backprojection screen (Fig. 1c). S/he throws the virtual ball by moving his/her
real arm in a manipulandum that measures the forearm rotations with an optical
encoder; thesemeasuredmovements are shownonline by a virtual lever arm (Fig. 1b).
Deflecting the ball from the rest position and throwing the ball with a given release
angle and velocity, the ball traverses an elliptic path generated by the restoring forces
of the two springs. The following equations describe the ball motion in the x − y
coordinates of the workspace:

(
x(t)
y(t)

)
=

(
xp
yp

)
cosωt +

(
cos φr − sinφr

− sinφr cos φr

) (
l cosωt
vr/ωt

)
(1)

ω denotes the natural frequency of the springs, (xp, yp) denotes the lever’s pivot
point, and l the length of the arm (Fig. 1b). Damping of the springs can be added;
asymmetric damping and also stiffness may be used to introduce a more complex
force field in the workspace. For a given throw, the two execution variables angle φr

and velocity vr of the virtual hand at ball release fully determine the ball trajectory
in the workspace x(t), y(t) (for more details see [7]).

The actor’s goal is to throw the ball to hit the target skittle, without hitting the
center post. The latter restriction eliminates simple ball releases with zero velocity.
Post hits are therefore penalized with a large fixed error. Otherwise, error is defined
as the minimum distance between the ball trajectory and the target center (Fig. 1b).
Thus, the result variable is the scalar error that is fully determined by φr and vr .
Importantly, there is more than one combination of φr and vr that leads to zero error,
i.e. the task has the simplest kind of redundancy: two variables map onto one. While
this low dimensionality permits easy visualization in 3D to develop intuitions, the
manifold of zero-error solutions can also be analytically derived and expressed in
implicit form:

vr
ω

=
∣∣(−l sinφr − yp

)
xt +

(
l cos φr + xp

)
yt

∣∣√(
l + cos φrxp + sinφryp

)2 − ( cos φrxt + sinφryt)
2

(2)

3.3 Geometry of the Solution Space

Figure 2 illustrates two different target constellations that generate two different
topologies of the result space [61]. Figure 2a, b show the top-down view of the
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Fig. 2 Two target constellations (a, b) and their corresponding result spaces (c, d). For each task,
three exemplary ball trajectories are shown which correspond to the three release points plotted
in the result spaces (green dots). White denotes zero-error solutions, increasing error is shown by
increasingly darker grey shades, black denotes a post hit. In both constellations, two ball trajectories
exemplify how different release variables can lead to the same result with zero error (1, 2, dashed
lines). Trajectory 3 shows a trajectory that does not intersect the target (Modified from [61])

workspace with the red circle representing the center post and the yellow circle the
target. The manipulandum is shown at the bottom with its angular coordinates. The
three elliptic trajectories are three exemplary ball trajectories with different release
angles and velocities. In both work spaces two ball trajectories (1, 2) go through the
target and have zero error, while one (3) has a non-zero error. Figure 2c, d show
the respective result spaces, spanned by release angle and velocity; error is depicted
by shades of gray, with lighter shades indicating smaller errors. White denotes the
zero-error solutions, or the solution manifold. Black signifies those releases that hit
the center post, which incur a penalty in the experiment. The three points are the ball
releases pertaining to the three ball trajectories above.

The two result spaces present several interesting features: In target constellation
(a) the solution manifold has a nonlinear J-shape that represents solutions over a
wide range of release velocities and angles. As indicated by the grey shades, the



310 D. Sternad

regions adjacent to the solution manifold have different gradients and the sensitivity
of the zero-error solution changes along the solution manifold. Further, the region
on the J-shaped manifold with the lowest sensitivity is directly adjacent to the black
penalty region. Hence, strategies with the lowest velocity were adjacent to penalized
post hits; this poses risk and a simple gradient descent may run into problems. In
target constellation (b) the zero-error solutions are independent of velocity and fully
specified by the release angle, as the solution manifold runs parallel to velocity. As
visible from color shading, low-velocity solutions have slightly less error tolerance
compared to high-velocity solutions and again transition directly into the penalty
region. Note that other target locations have yet different geometries of the solution
manifold creating different challenges to the performer [68].

3.4 Generating Hypotheses from Task Analysis

One study created two result spaces with different topologies to generate specific
predictions [61]. Given that humans have limited control accuracy due to the per-
vasive noise in their neuromotor system, we hypothesized that in such redundant
tasks humans seek solutions that are tolerant to their intrinsic noise and also to
extrinsic perturbations (Hypothesis 1). Such error-tolerant solutions have higher like-
lihood to be accurate and would therefore also obviate some error corrections. This
is advantageous as error corrections incur computational cost and, importantly, the
sensorimotor feedback loop suffers from the long delays in the human system. Note
that our definition of error tolerance differs from standard sensitivity analyses that
assess local sensitivity in a linearized neighborhood. As humans make relatively
large errors and the topology is highly nonlinear, we calculated error tolerance as the
average error over an extended neighborhood around a chosen solution; this neigh-
borhood is defined by the individual’s variability. An alternative hypothesis was that
humans select strategies that minimize velocity at release to avoid costs associated
with higher effort or signal-dependent noise (Hypothesis 2). There is much evidence
that movements at slow velocities are preferred, as higher speed tends to decrease
accuracy (speed-accuracy trade-off) [16, 17, 42]. This observation concurs with the
information-theoretical expectation that noise increases with signal strength. In mo-
tor control, signal strength is typically equated with firing rate of action potentials,
i.e. force magnitude in the isometric case or, in the dynamic case, movement velocity
or acceleration. A third hypothesis discussed in the human motor control literature
is that risk is avoided, and participants stay at a distance from the penalty area
(Hypothesis 3) [6, 40, 48].

3.5 Error Tolerance Over Minimizing Velocity and Risk

Nine participants practiced 540 and 900 throws with Task (a) and (b), respectively.
Figure 3 illustrates the predictions as computed forHypothesis 1 and 2 in the top two
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Fig. 3 Hypotheses and experimental results for two task a (left column) and task b (right column).
The top row shows the expected results, E(R) forHypothesis 1:Maximizing error tolerance; the sec-
ond row shows simulated predictions for Hypothesis 2: Minimizing velocity and signal-dependent
noise. The expected result E(R) was computed as average error over a neighborhood scaled by a
softmax function (for details see [61]). The peaks highlighted by the red circles denote the expected
solutions. The third row shows the data as histograms plotted over the result spaces to compare
against the predicted solutions (Modified from [61])
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rows. Error tolerance was quantified as the expected error or result E(R) over a neigh-
borhood around each strategy, simulating that human strategies are noisy: it was then
by a softmax function. For Hypothesis 2, expected velocity was computed over the
same neighborhood, again scaled by a softmax function. The solutions that are most
error-tolerant and those with lowest velocity are indicated by red circles in themiddle
panels. Examining all throws after removing the initial transients, the bottom panels
show the histograms of all subjects’ releases in both result spaces (from Fig. 2c, d).
In Task (a) the data distribution clustered along the solution manifold at low veloc-
ities and close to the discontinuity. The mode at angle 236 deg and velocity 136
deg/s was close to the maximally error-tolerant point as predicted by Hypothesis 1.
However, the solutions also had relatively low velocity, which was consistent with
Hypothesis 2. These two benefits seemed to outweigh that these solutions were close
to the high-penalty area, i.e. risky strategies were not avoided, counter toHypothesis
3. Task (b) was designed to dissociate Hypotheses 1 and 2. The histograms on the
right panel illustrate that the data were distributed across a large range of velocities
between 140 and 880 deg/s, with the mode of the data distribution at 544 deg/s, al-
though individual preferences were more clustered on the velocity axes. The fact that
individuals chose solutions over a wide range of velocities, without a specific prefer-
ence for low-velocity or the high-tolerance point was at first sight inconsistent with
both Hypotheses 1 and 2. However, in further analyses the observed variability of
each individualwas regressed against release velocity, which revealed that variability
did not increase at higher velocities, as would be expected from Hypothesis 2. In-
stead, these analyses showed that strategies were better explained by error-tolerance,
consistent with Hypothesis 1 (for details see [61]).

Taken together, this first study showedhowa task analysis can generate predictions
that permit direct tests based on human data. The conclusion from this study is that
humans seek out error-tolerant strategies, i.e., thosewhere variability at the execution
level has minimal detrimental effect on the result. As these strategies attenuate noise
effects on the result, fewer errors occur that in turn require fewer corrections to stay
on target. This not only reduces computations but also diminishes the negative effect
that delays may cause.

3.6 Tolerance, Covariation, and Noise

Increasing error-tolerance is only one of three avenues to deal with unavoidable
variability in execution. Two more, conceptually different avenues exist for how
variability can be transformed to lessen its effect on the task result. Figure 4 illustrates
this notion with data from a representative subject who practiced the same throwing
task for 15days, 240 throws per day [7]. The geometry of the result space shows a
U-shaped solution manifold due to a different target constellation. The broad scatter
of the data onDay1 reflects initial exploratory attemptswith inferior results compared
to those after some practice. Most visibly, on Day 6 the data not only translated to a
location on the solution manifold with more error-tolerance (shown as a wider band
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Fig. 4 Data from an
exemplary subject who
practiced the throwing task
for 15days. The initially
broad scatter translated to a
more error-tolerant strategy,
rotated to covary with the
solution manifold (white)
and scaled of reduced the
amplitude of dispersion over
the course of practice
(Modified from Cohen and
Sternad [7])
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of white), but the observed variability also started to covary with the direction of
the solution manifold, while overall variability was only moderately reduced. The
distribution on Day 15 clearly reveals a third transformation: the overall dispersion
was significantly reduced or scaled, over and above the further enhanced covariation.
These three data transformations, corresponding to the matrix transformations of
translation, rotation, and scaling, were numerically quantified from individual data
distributions as costs: The average result of a given data set could be improved by
1.2cmonDay 1, if it were translated to the optimal location. The difference in average



314 D. Sternad

result from actual to optimal renders Tolerance-cost. If the actual data were rotated
or permuted optimally, the difference in result with the real data would quantify
Covariation-cost. If the real data distribution was scaled or its noise was reduced
optimally, the difference between initial and optimal data quantifies Noise-cost. The
parallel, but differential evolution of the three costs was shown in Cohen and Sternad
[7].

3.7 Covariation, Sensitivity to Geometry of Result Space
in Trial-by-Trial Learning

A separate study specifically focused on covariation and examined not only the dis-
tributions of the data, but also their temporal evolution to assess whether subjects’
trial-by-trial updateswere sensitive to the direction of the solutionmanifold [1]. Three
detailed hypotheses guided our experimental evaluation: Hypothesis 1: Humans are
sensitive to the direction of the solution manifold, which is reflected in preferred
directions of their trial-to-trial updates. Hypothesis 2: This direction-sensitivity be-
comesmore pronouncedwith practice.Hypothesis 3: The distributional and temporal
structure is oriented in directions orthogonal and parallel to the solution manifold.
Note that sensitivity to the directions of the null space is also core to several other
approaches, which employ covariance-based analyses that linearize around the point
of interest using standard null space analysis [10, 55]. In contrast to our approach,
those analyses do not exploit the entire nonlinear geometry of the result space.

Thirteen subjects practiced for 6days throwing to the same target as above, with
240 throws per day (4 blocks of 60 trials). To assess the distribution and also trial-
to-trial evolution, each block of 60 throws was examined as illustrated in Fig. 5a.
To assess whether the trial-to-trial changes had a directional preference, the 60 data
pointswere projected onto lines through the center of the data set (red lines in Fig. 5a).
The center was typically on or was close to the solution manifold. The direction
parallel to the solution manifold was defined as θpar , the direction orthogonal to the
solution manifold was defined as θort . The black horizontal line in Fig. 5a defines
the direction of θ = 0 deg. The time series of the projected data was then analyzed
using autocorrelation and Detrended Fluctuation Analysis (DFA).

This line was then rotated through 0 < θ < π rad, in 100 steps, with its pivot
at the center of the data. At each rotation angle θ , the data were projected onto the
line and time series analyses conducted. We expected that in directions orthogonal
to the solution manifold θort successive trials show negative lag-1 autocorrelation,
reflecting error corrections; in the parallel direction θpar correctionwas not necessary,
as deviations have no effect on the task result. Note that the result space is spanned
by angle and velocity, i.e. with different units; hence, both axes had to be normalized
to each individual’s variance to ensure orthogonality and a metric.

Figure 5b shows two time series of projected data from those directions that
rendered maximum and minimum autocorrelation. Note the visible difference in
temporal structure, reflecting that direction in the result space does matter. Plotting
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Fig. 5 aResult spacewith solutionmanifold (green),with angle andvelocity normalized to variabil-
ity of each individual. Red lines denote directions parallel and orthogonal to the solution manifold.
The black line denotes = 0 rad. Data are projected onto lines between 0 < θ < π rad and autocor-
relations are computed for each projection. b Time series of projected data where autocorrelation
was at a minimum and a maximum. Note that these directions do not necessarily correspond to
parallel and orthogonal directions (Reproduced from [1])

the results of the lag-1 autocorrelations across angle of the projection in Fig. 6 reveals
a marked modulation: The red lines (with variance across subjects shown by shaded
bands) show autocorrelation values for each rotation angle. The modulation supports
Hypothesis 1 that trial-by-trial updates are sensitive to the angle, and implicitly, the
direction of the solution manifold. The green vertical lines denote the orthogonal
and parallel directions of the solution manifold. The minima and maxima of the
autocorrelation values are indicated by triangles. Consistent with Hypothesis 2, the
modulation gets more pronounced across the three practice blocks, expressing that
after the initial stage, trial-to-trial dynamics becamemore directionally sensitive. The
structure in the orthogonal direction changed from initially positive autocorrelations
to white noise and eventually very small negative values [1].
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Fig. 6 Autocorrelation of time series of projected data in all directions in result space. The mod-
ulation across directions becomes more pronounced with practice, expressing increased sensitivity
to the geometry of the result space. Note that while the extrema are close to the directions of the
solution manifold (SMpar and SMort) they are not coincident (Modified from [1])

3.8 Orthogonality and Sensitivity to Coordinates

This analysis also revealed important discrepancies to Hypothesis 3. The directions
of minimum and maximum autocorrelation were near, but not coincident with the
orthogonal and parallel directions, as hypothesized. This finding alerts to an
important issue: orthogonality is sensitively dependent on the chosen variables. In
the present case, the original physical variables, angle and velocity, had different
units and required normalization. While technically correct, it raises the question
whether these units accurately reflect the units of the central nervous system. One
important caveat for this and related approaches is that the structure of variability is
fundamentally sensitive to the chosen coordinates.

This fact was highlighted in a separate study, which showed that this sensitiv-
ity is particularly pertinent for covariance-based analyses [69]. Even simple lin-
ear transformations can critically alter the results, as demonstrated by a simulation
that examined 2-joint pointing movements to a target line in the horizontal plane.
Given the univariate error measure, distance to the line, the mapping between error
and bivariate joint angles was redundant. Analysis of variability of error as a func-
tion of joint angles, revealed that the anisotropy of the data distribution depends on
the definition of joint angles: relative angles or absolute angles with reference to the
shoulder. While covariance-based analysis of anisotropy of data is dependent on the
coordinates, we also demonstrated that our analysis of error tolerance, covariation
and noise is significantly less sensitive, as it projects the execution variables into
the result space. Nevertheless, these critical questions open an interesting avenue
for conceptually deeper questions: What are the coordinates of the nervous system?
What is the appropriate metric? What is the best or most suitable representation of
the problem? While data may be dependent on the coordinates, can data be used to
reversely shed light on the coordinates that the nervous system uses?

To pursue these questions, the study by Abe and Sternad further examined how
a rescaling of the execution variables in a simple model of task performance with
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similar redundancy may reproduce these deviations [1]. While this revealed possi-
ble sources for these observations, much more work is needed. For example, scal-
ing noise in different execution variables or sensory signals might also give rise to
such “deviations”. These are clearly important issues for understanding biological
movement control, and possibly also worth reflection when designing control in
robotic systems.

3.9 Interim Summary

The throwing skill illustrated our model-based approach and its opportunities to
shed light on human control. The findings showed that humans choose strategies that
obviated the potentially detrimental effects of intrinsic noise. With less noise and
variability, less error corrections are needed. Error corrections are not only compu-
tationally costly, they are also hampered by the slow transmission speed in biologi-
cal systems. Are similar strategies also possible in different tasks, especially when
interacting with an object?

4 Rhythmic Bouncing of a Ball – Dynamic Stability
in Intermittent Interactions

4.1 The Motor Task

Rhythmically bouncing a ball on a racket is a playful and seemingly simple task. Yet,
it requires a high degree of visually-guided coordination to intercept the ball at the
right position and with the right velocity to reach a target amplitude and perform in
a rhythmic fashion (Fig. 7a–c). As in the throwing task, success is determined at one
critical moment when the racket intercepts the ball, as this impact fully determines
its amplitude. Hence, the core challenge of this task is the control of collisions, a
feature germane to numerous other behaviors, ranging from controlling foot-ground
impact in running to playing the drums. One key difference to throwing is that these
impacts are performed in a repeated fashion, and errors from one contact propagate
to the next. Hence, the actor becomes part of a hybrid dynamical system combining
discrete and continuous dynamics [11, 44, 46, 53].

4.2 The Model

The physical model for this task is again an extremely simple dynamical system,
originally developed for a particle bouncing on a vibrating surface [21, 75]. The
model consists of a planar surface moving sinusoidally in the vertical direction; a
point mass moving in the gravitational field impacts the surface with instantaneous
contact (Fig. 7b). The vertical position of the ball xb between the kth and the k + 1th
racket-ball impact follows ballistic flight:
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Fig. 7 Bouncing a ball with a racket. a The real task. b The physical and mathematical model.
c Simulated time series assuming invariant sine waves of the racket. d Redundancy of the result
space: Racket position and velocity and ball velocity determine ball amplitude. Blue data points are
from early practice, yellow data points are from late practice (Reproduced from [68])

xb(t) = xr(tk) + v+
b (t − tk) − g/2(t − tk)

2

where xr is racket position, v
+
b is the ball velocity just after impact, tk is the time of the

kth ball-racket impact, and g is the acceleration due to gravity. With the assumption
of instantaneous impact, the ball velocity just after impact v+

b is determined by:

v+
b = ((1 + α)v−

r − αv−
b )

where v−
b and v−

r are the ball and racket velocities just before impact, and the energy
loss at the collision is expressed in the coefficient of restitution α. The maximum
height of the ball between tk and tk+1 depends on v

−
b and v−

r and the position at impact
xr :

maxtk≤t≤tk+1xb(t) = xr(tk) + (((1 + α)v−
r − αv−

b )(t − tk))
2/2g (3)
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4.3 Redundancy

The task goal is to bounce the ball to a target height, and the error is defined as the
deviation from the target height (Fig. 7c). Even in this simplified form, the task has
redundancy, as the result variable error is determined by three execution variables:
v−
b , v−

r and xr . Figure 7d shows the execution spacewith the solutionmanifold, i.e. the
planar surface that represents all solutions leading to zero error. The blue and yellow
data points are two exemplary data sets from early and late practice, respectively;
each data point corresponds to one ball-racket contact. As to be expected, the early
(blue) data show a lot of scatter, while the late practice data (yellow) cluster around
the solution manifold.

4.4 Dynamic Stability

While the redundancy analysis is performed on separate collisions, the racket and
ball model also lends itself to dynamic stability analysis. To facilitate analysis, the
racketmovements are assumed to be sinusoidal, such that racket position and velocity
at impact collapse into a single state variable, racket phase θk . Applying a Poincare
section at the ball-racket contact, where xr and xb are identical, a discrete map can
be derived with v+

k and θk as state variables:

v+
k+1 = (1 + α)Aω cos θk+1 − αv+

k + gα(θk+1 − θk)/ω

0 = Aω2( sin θk − sin θk+1) + v+
k ω(θk+1 − θk) − g/2(θk+1 − θk)

2
(4)

A and ω are the amplitude and frequency of the sinusoidal racket movements [11,
53, 65]. This nonlinear system displays dynamic stability and, despite its simplicity,
shows the complex dynamics of a period-doubling route to chaos [21, 75]. For
present purposes, only stable fixed-point solutions are considered as they correspond
to rhythmic bouncing. Local linear stability analysis of this discrete map identifies a
stable fixed point, if racket acceleration at impact ar satisfies the inequality:

− 2g
(1 + α2)

(1 + α)2
< ar < 0 (5)

4.5 Hypotheses

In this dynamically stable state, small perturbations of the racket or ball die out
without requiring corrections. Hence, if subjects establish such dynamically sta-
ble regime, they need not correct for small perturbations that may arise from
the persistent neuromotor noise. Thus, we hypothesized that subjects learn these
“smart” solution and exploit dynamic stability by hitting the ball with negative racket
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acceleration (Hypothesis 1). Further, due to the system’s redundancy infinitely many
stable solutions can be adopted. Hence, we administered perturbations to test if sub-
jects established and re-established such stable states (Hypothesis 2).

4.6 Virtual Implementation

In the experiments, the participant stood in front of a projection screen and rhythmi-
cally bounced the virtual ball to a target line using a real table tennis racket. Similar
to the throwing task, the projected racket movements were shown on the screen in
real time impacting the ball. The display was minimal and only showed the modeled
and measured elements, a horizontal racket and a ball, both moving vertically to a
target height (Fig. 7b). A light rigid rod was attached to the racket and ran through
a wheel, whose rotations were registered by an optical encoder, which measured
the vertical displacement of the racket, in analogy with the model, and shown on
the screen. Racket velocity was continuously calculated. The vertical position of the
virtual ball was calculated using the ballistic flight equation initialized with values at
contact. To simulate the haptic sensation of a real ball-racket contact, a mechanical
brake, attached to the rod, was activated at each bounce and decelerated the up-
ward motions. Racket acceleration at or just before the impact was analyzed after the
experiment and served as the primary measure of dynamic stability to test
Hypothesis 1 [79]. Ball position and velocity and racket velocity at contact were
measured and analyzed to evaluate the data with respect to the solution manifold
(Hypothesis 2).

4.7 Learning and Adaptation to Perturbations

Did human subjects seek and exploit dynamic stability of the racket-ball system?
How robust is this system if the actor has to change and adapt to new situations?
An experiment tested these questions in two stages: On Day 1, 8 subjects performed
a sequence of 48 trials of rhythmic bouncing to a target height, each trial lasting
60 s. With the target height at 0.8m from the lowest racket position, and α = 0.6, the
average period between repeated contacts was 0.6 s, leading to approximately 100
contacts per trial. OnDay 2, subjects performed 10 trials under the same conditions as
on Day 1, but then performed another 48 trials after a perturbation was implemented.

Stage 1: Figure 8a shows the ball amplitude errors averaged of all subjects across
48 trials. As expected, the error decreased with practice with a close-to exponential
decline. Concomitantly, the acceleration of the racket at contact decreased from an
initially positive to a negative value, indicative of performance attaining dynamic
stability (Fig. 8b). Importantly, it took approximately 11 trials for subjects to “dis-
cover” this strategy, showing that it was not trivial and required practice to learn it.
The parallel evolution of both error and racket acceleration with practice provide
strong support for Hypothesis 1 that subjects seek dynamic stability.
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Fig. 8 Ball amplitude errors and racket accelerations over 48 trials. All data points are averages
over 8 subjects. a, b Stage 1 of the experiment. c, d Stage 2 of the experiment. The shading denotes
the perturbed trials

Stage 2: The second experimental session presented an even stronger test. Starting
with 10 regular trials as on Day 1, subjects were exposed to a perturbation over the
subsequent 48 trials (yellow shading in Fig. 8c, d). This perturbation was calculated
using the redundancy of the execution: three execution variables, v−

b , v−
r and xr ,

determined the one result variable, absolute error of ball peak amplitude to the target
height. Following Day 1, the average and standard deviations of v−

b and v−
r and

xr of the first 10 baseline trials were calculated for each individual to render an
ellipsoid in result space representing the individually preferred solution (9). In the
subsequent perturbed trials this preferred strategy was penalized with an error in ball
amplitude. This error was delivered by replacing the veridical ball release velocity
with one calculated based on the execution ellipsoid. This new ball velocity over- or
undershot the target height as calculated. By simply replacing the ball velocity at the
contact discontinuity, subjects did not explicitly perceive the perturbation. Within
the ellipsoid, the penalty was maximal at its centroid and it linearly decreased to
zero towards the boundaries (defined by one standard deviation around its centroid).
Hence, assuming sensitivity to the error gradient in result space and the redundancy
of the task, subjects were expected to search for a new un-penalized solution. This
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Fig. 9 Presentation of performance in execution space; the planar surface is the solution manifold.
a The large execution ellipsoid represents the initially preferred strategy that is subsequently pe-
nalized during the perturbation phase. The smaller ellipsoid represents the final strategy that is
established during the perturbation phase to avoid the penalty. b The right panel shows the same
data and execution ellipsoid. The points are the sequence of trial means following the perturbation
onset. It shows that subjects stay on the manifold but migrate outside the penalty ellipsoid

perturbationwas calculated and delivered only in the virtual display such that subjects
saw their drop in performance, but did not notice its cause explicitly.

Figure 9 illustrates the performance of one representative subject. Starting with
the (larger) execution ellipsoid from the initial 10 trials (Fig. 9a), upon onset of the
perturbation the subject gradually translated her execution along the planar solution
manifold to a new location. The smaller and darker ellipsoid on the right depicts the
average execution of the last trial: The strategy shifted and the variability decreased
even further; importantly, there was no overlap with the initial ellipsoid (Hypoth-
esis 2). This illustrates that the subject not only found a new successful solution
without penalty, but the non-overlap also suggested that the subject was aware of her
variability.

Returning to themeasures or error and racket acceleration at impact for these same
data, shown in Fig. 8c, d, reveals that upon perturbation onset, both errors and racket
acceleration changed significantly as expected. However, over the course of the 48
perturbed trials, subjects incrementally decreased their errors and reestablished the
previously preferred racket acceleration of −3 m/s2. In fact, this acceleration value
was determined to be optimal for the given parameters in additional Lyapunov analy-
ses of the model system [53]. This result shows that subjects successfully established
dynamic stability in multiple different ways.

Experimental evidence that subjects learn to hit the ball with a decelerating racket
has been replicated in several different scenarios. The different experimental set-ups
included a pantograph linkage with precise control of the haptic contact, a real tennis
racket to bounce a real ball attached to a boom, and freely bouncing a real ball in
3D [65, 66]. The findings were robust: with experiences, performers learn to hit
the ball with negative racket acceleration; based on stability analyses of the model



Human Control of Interactions with Objects – Variability … 323

we concluded that they learn to tune into the dynamic stability of the racket-ball
system. Based on these findings, we also designed an intervention to guide subjects
towards this dynamically stable solution. Manipulating the contact parameters via a
state-based shift indeed successfully accelerated subjects’ learning the dynamically
stable solution, which correlated with faster performance improvement [30].

4.8 Interim Summary

These studies provided strong evidence that humans seek dynamic stability in a
task, a solution that is computationally efficient as small errors and noise converge
without necessitating explicit error correction. In the face of perturbations, subjects
successfully navigated the result space and established new solutions available due to
the redundancy. Therewas also evidence that theywere aware of their own variability.
As in skittles, subjects seek solutions where noise matters less.

5 Chaos in a Coffee Cup – Predictability in Continuous
Object Control

5.1 The Motor Task

Leading a cup of coffee to one’smouth to drink is a seemingly straightforward action.
However, transporting a cup filled with sloshing fluid to safely contact the mouth
without spilling remains a challenge not to be underestimated for both humans and
robots. Carrying a cup of coffee (or a glass of wine) exemplifies a class of tasks that
require continuous control of an object that has internal degrees of freedom. How
do humans control interactions with such an object, where the sloshing fluid creates
time-varying, state-dependent forces that have to be preempted and compensated to
avoid spill? Can humans or robots really have a sufficiently accurate internal model
of the complex fluid dynamics to online predict and react to the complex interaction
forces? In search of human strategies that apparently deal with this problem easily,
we started again with the analysis of the task dynamics, following the steps outlined
above.

5.2 The Model

In principle, the task presents a problem in fluid dynamics [38, 49]. To make this
complex infinitely-dimensional system more tractable, several simplifications were
made [23]: (1) the 3D cup was reduced to 2D, (2) the sloshing coffee was reduced to
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Fig. 10 Carrying a cup of coffee. a The model task. b The conceptual model: a 2D arc with a
ball rolling inside. c Control model of the cart-and-pendulum. d Virtual implementation with the
HapticMaster robot to control the cup in the horizontal direction. e The interactive screen display;
the green rectangles specify the amplitude of the cup movement. The lower panel shows a sequence
of moving cups with the arrows depicting the respective forces of cup and ball (Reproduced from
[60])

a ball with point mass rolling in a cup, (3) the hand contact with the cup was reduced
to a single point of interaction, (4) the cup transport was limited to a horizontal
line (Fig. 10a–c). More precisely, the moving liquid is represented by a pendulum
suspended to a cart that is translated in the horizontal x-direction. The pendulum is
a point mass m (the ball) with a mass-less rod of length l with one angular degree of
freedom θ . Subjects control the ball indirectly by applying forces to the cup, and the
ball can escape if its angle exceeds the rim of the cup. The cup is a point massM that
moves horizontally. The hand moving the cup is represented by a horizontal force
F(t). Despite these simplifications, the model system retained essential elements of
complexity: it is nonlinear and creates complex interaction forces between hand and
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object. The equations of the system dynamics are:

(m + M)ẍ = ml(−θ̈cosφ + θ̇2sinφ) + F(t)

lθ̈ = −ẍcosθ − gsinθ (6)

where θ, θ̇ , and θ̈ are angular position, velocity, and accelerationof theball/pendulum;
x, ẋ, and ẍ and are the cart/cup position, velocity, and acceleration, respectively; F
is the force applied to the cup by the subject; g is gravitational acceleration. The
model has four state variables x, ẋ, θ, θ̇ and the externally applied force F(t) that
determines the behavior of the ball and cup system. Hence, only one variable F(t) is
under direct control of the subject, but this is co-determined by the ball/pendulum
interacting with the cart. These instantaneous interaction forces make the distinc-
tion into execution and result variables significantly more complicated than in the
previous two examples.

5.3 Virtual Implementation

The ball-and-cup systemwas implemented in a virtual environment. The cart and the
pendulum rod was hidden, leaving only the ball visible. In addition, a semicircular
arc with radius equal to pendulum length l was drawn on the screen so that the ball
appeared to roll in a cup (Fig. 10d, e). Subjects manipulate the virtual cup-and-ball
system via a robotic arm, which measures hand forces FExternal applied to the cup
but also exerts forces from the virtual object onto the hand (HapticMaster, Motek
[76]). θ and θ̇ were computed online and the ball force FBall was computed based
on system equations such that the force that accelerated the virtual mass (m + M)

was Fapplied = Mẍ = FExternal + FBall. Two rectangular target boxes set the required
movement distance and spatial accuracy (for more details see [23]).

5.4 Model Analysis and Hypothesis

The cup of coffee can be moved as a relatively short discrete placement to a target, or
in a more continuous fashion, as for example carrying the cup while walking. A pre-
vious study examined a single placement onto a target focusing on the discontinuous
aspect of the task: the coffee can be spilled [23, 24]. Given the noise intrinsic to the
neuromotor system and the fluctuations created by the extrinsic cart-and-pendulum
system, avoiding spilling coffee, or losing the ball, became the core challenge when
the task was to move as fast as possible. The “distance” from losing the ball was
quantified by an energy margin, defined as the difference between the current energy
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state and the one where the ball angle would exceed the rim angle. Results showed
that this continuous metric sensitively captured performance quality and learning in
healthy and also older subjects.

Here, we review another study that examined more prolonged interaction, where
the nonlinear dynamics manifests its full complexity and, technically, displays
chaos [41, 67]. To this end, the task instruction was to move the cup rhythmically
between two very large targets leaving amplitude under-specified; the task-specified
frequency defined the result variable. Movement strategies were fully described
by the execution variables cup amplitude, frequency, and initial angle and velocity
of the ball, A, f , θ0, θ̇0. To derive hypotheses about the space of solutions, inverse
dynamics analysis was conducted to calculate the force F(t) required to satisfy the
task. Numerical simulations were run for combinations of the scalar execution vari-
ables A, f , θ0, θ̇0. To keep the number of simulations manageable, frequency f was
fixed to the task-required frequency, and θ̇0 was set to zero.

Figure 11 shows two example profiles generated by inverse dynamics calculations
with two different initial ball states θ0(θ̇0 = 0) that both result in a sinusoidal cup
trajectory x(t). The left profile F(t) shows irregular unpredictable fluctuations for
θ0 = 0.4 rad, while the right profile initialized at θ0 = 1.0 rad shows a periodic
waveform with high regularity. To characterize the pattern of force profiles with
respect to the cup dynamics, F(t)was strobed at every peak of cup position x(t). The
marginal distributions of the strobed force values are plotted as a function of initial
ball phase θ0 in the bottom panel. This input-output relation reveals a bifurcation
diagram with a pattern similar to the period-doubling behavior of chaotic systems,
indicating chaos in the cup-and-ball system.

5.5 Hypotheses for Human Control Strategies

It seems uncontested that controlling physical interaction requires “knowledge” and
prediction of object dynamics. On the other hand, it is reasonable to doubt that
the complex details of object dynamics are known or faithfully represented in an
internal model. In chaotic dynamics, small changes in initial states can dramatically
change the long-term behavior and, technically, lead to unpredictable solutions. Can
or should internal models be able to represent this complex dynamics? To make
this challenge more tractable for the neural control system we hypothesized that
subjects seek solutions that render the object behavior more predictable to reduce
computational effort and facilitate at least some prediction.

To quantify the concept of predictability of the object dynamics based on the
human’s applied force, we computed mutual information MI between the applied
force and the kinematics of the cup, i.e. long-term predictability of the object’s
dynamics [9].MI is a nonlinear correlation measure defined between two probability
density distributions that quantifies the information shared by two random variables,
F(t) and the kinematics of the cup x(t):
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Fig. 11 Inverse dynamics simulations of the cart-and-pendulum model. Top panels show two
different simulation runs with different initial ball angles θ0, requiring a complex and a relatively
simple input force (top row). Strobing force values at maxima of the cup profile x and plotting the
marginal distributions against all initial ball angles renders the bifurcation-like diagram (Reproduced
from [41])

MI (x,F) =
∫∫

p (x,F) loge
p(x,F)

p (x) p(F)
dxdF (7)

MI presents a scalar measure of the performer’s strategy calculated at each
point of the 4D execution space spanned by A, f , θ0, θ̇0. The higher MI, the more
predictable the relation between force and object dynamics. Hence, we expected
that subjects would seek strategies with high MI (Hypothesis 1, Fig. 12a). Pre-
dictability as a control priority had to be tested against alternative hypothesis. The
experiments permitted testing two alternative control priorities: minimizing effort
(Hypothesis 2, Fig. 12b) and maximizing smoothness (Hypothesis 3, Fig. 12c); both
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Fig. 12 Result space computed for three different hypothesized control priorities. The space is
computed for different initial ball angles and cup amplitudes; frequency is set to 1Hz, and ball
velocity is set to zero. a Mutual information. b Effort defined as mean squared force over a given
trial. c Smoothness or mean squared jerk defined over a given trial. The optimal strategy for each
hypothesis is noted by the large dot (Reproduced from [41])

are commonly accepted and widely supported criteria in free unconstrained move-
ments. To calculate the effort required for each strategy, the Mean Squared Force of

the force profile was calculated:MSF = 1
nT

nT∫
0
F(t)2dt, where n denoted the number

of cycles and T = 1/f the period of each cycle. Mean Square Jerk was calculated

asMSJ = 1

T(

...

θmax − ...

θmin)

T∫
0

|θ |
...

2dt, where the value was normalized with respect to

ball jerk amplitude to make it dimensionless [27]. Similar to MI, MSF-values were
calculated for all strategies in 4D execution space. To constrain the calculations, the
initial value of the angular velocity θ̇0 was set to zero, consistent with the experimen-
tal data. Figure 12 compares the corresponding predictions for MI, MSF, and MSJ.
Color shades express the degree as explained in the legend. The large dots denote
the points of maximum MI, minimum MSF and MSJ. Importantly, these predicted
strategies are at very different locations in result space.

To test these hypotheses, equivalent measures had to be calculated from the
experimental data to evaluate observed human strategies against the simulated result
space. In contrast to the simulations, the experimental trajectories were not fully
determined by initial values as online corrections were likely. Therefore, to attain
better estimates of the execution variables from the experimental trajectories, esti-
mates were extracted at each cycle k of the cup displacement x during each 40 sec
trial (see Fig. 11); trial averages Ā, f̄ , θ̄0,

¯̇θ0 served as correlates for the variables
in the simulations. MI, MSF, and MSJ were calculated for each measured strategy
Āk, f̄k, θ̄k,

¯̇θk .



Human Control of Interactions with Objects – Variability … 329

5.6 Predictable Interactions

An experimental study provided first evidence that subjects indeed favored pre-
dictable solutions over those that minimized the expended force and smoothness
[41]. Subjects performed rhythmic cup movements paced at the natural frequency
of the pendulum, which corresponded to the anti-resonance of the coupled system.
This facilitated the emergence of the system’s nonlinear characteristics with chaotic
solutions that maximized the challenge. Amplitude was free to choose and relative
phase between ball and cup was also unspecified. Each subject performed 50 trials
(40 s each). By choosing the cup amplitude and phase, subjects could manipulate
interaction forces of different complexity and predictability.

The main experimental results are summarized in Fig. 13; the plot shows MI in
shades of purple (lighter shades denote higher MI) and contours of selected values
ofMSF (green) from the simulations overlaid with the results from human subjects;
each data point represents one trial (red). The data clearly show how subjects gravi-
tated towards areas with higherMI, i.e. strategies with more predictable interactions,
consistent with Hypothesis 1. The left panel shows individual trials pooled over all
subjects; darker red indicates early practice and lighter red indicates late practice.

Fig. 13 Result space with Mutual Information as the result variable, shown by shades of purple.
The left panel plots trial data from all 9 subjects showing that they converge to the area with highest
MI. Each data point is one trial; darker color shades denote later in practice. The arrows in the
right panel show each subject with initial trial values the start of the arrow and the final practice
trial the tip of the arrow (Reproduced from [41])
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The right panel shows the same data separated by subject: the red arrows mark how
each subject’s average strategy changed from early practice (mean of first 5 trials) to
late practice (mean of last 5 trials). The majority of subjects switched from low- to
high-predictability regions in the result space. Both figures also show that all subjects
increased their movement amplitude, associated with an increase in overall exerted
force. None of the subjects moved toward the minimum force strategy, nor towards a
strategy with maximum smoothness (counter toHypotheses 2 and 3). In fact, overall
force exerted, or MSF, rather increased with practice.

5.7 Interim Summary

These results highlight that humans are sensitive to object dynamics and favor strate-
gies that make interactions predictable. In the case shown, these predictable solutions
were even favored over those with less effort. This is plausible because unpredictable
interaction forces are experienced as disturbances that continuously require reactions
and corrections. Knowing that in real life we carry a glass of wine without paying
much attention to the carrying, more predictable strategies appear plausible. Analo-
gous to the dynamically stable solutions in ball bouncing, predictable solutions may
require fewer computations as they obviate error corrections. Given that in chaotic
solutions small changes due to external or internal perturbations lead to unpredictable
behavior, noise matters less in predictable solutions.

6 From Analysis to Synthesis: Dynamic Primitives
for Movement Generation

This brief overview of our research revealed potential control priorities or cost func-
tions that humans may use to coordinate simple and complex interactions. Humans
favor strategies that are sensitive to dynamics and stability, that exploit redundancy
of the solution space to channel their intrinsic noise into task-irrelevant dimensions,
and that exploit predictable solutions of potentially very complex task dynamics.
The review also demonstrated what can be learnt from analysis of human data in
conjunction with mathematical understanding of the task and its solution space. The
only assumption is that the dynamics and stability properties of the task are funda-
mental and determine “opportunities” and “costs”. The known solution space serves
as reference to evaluate human movement.

The task-dynamic approach as outlined is analytic and largely agnostic about
details of the controller. This contrasts with other research in computational mo-
tor neuroscience that starts with a hypothesized controller and then compares the
predicted with the experimentally observed behavior. One recent prominent exam-
ple for this direction is work that has sought evidence that the brain operates like an
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optimal feedback controller [56, 73, 74]. Other control models include internal mod-
elswithKalman-filters or tapped-delay lines, tomention just a few [39].Our approach
refrains from such assumptions directly borrowed from control theory; rather, we aim
to extract principles from human data with as few assumptions as possible. Never-
theless, the question of synthesis remains: what controller or control policy would
generate these strategies? While still largely speculative, our task-dynamic perspec-
tive presents a sound foundation for a generative hypothesis.

To begin, let’s return to the initial pointer to the seemingly inferior features of
the human neuromotor system - the high degree of noise and the slow informa-
tion transmission. These features seem puzzling given the extraordinary dexterity
of humans that by far surpasses that of robots, at least to date. Therefore, the direct
translation of control policies that heavily rely on central control and feedback loops
may remain inadequate to achieve human dexterity. As mentioned earlier, the human
wetware with its compliant actuators and high dimensionality appears to provide
an advantage. Hence, lower levels of the hierarchical neuromotor system should be
given more responsibility. Consistent with our task-dynamic perspective, we have
therefore suggested that the biological system generates movements via dynamic
primitives, defined over the high-dimensional nonlinear neuromotor system [26, 28,
45, 50, 51, 59, 64]. We propose that the human neuromotor system exploits attrac-
tors states, defined over both the neural and mechanical nonlinear system. If the
neuromotor system is parameterized to settle into such stable states, central control
may only need to occasionally intervene. In principle, nonlinear autonomous sys-
tems have three possible stable attractor states: fixed point, limit cycle, and chaotic
attractors. Putting chaotic attractors aside for now, we proposed fixed-point and limit
cycle attractors for primitives.

The two main stable attractors fixed points and limit cycles directly map onto dis-
crete and rhythmic movements. To understand discrete movements such as reaching
to a target as convergence to a stable end state is not completely new. Equilibrium-
point control was first posited by Feldman for simple position control [14, 15].
Numerous subsequent studies, both behavioral and neurophysiological, have given
evidence for attractive properties in reaching behavior [4, 20, 25, 36]. This work has
widened to include a virtual trajectory, even though details are still much contested.
For rhythmic behavior a similar host of experimental and modeling studies have
presented support for stable limit cycle dynamics. For example, bimanual rhythmic
finger movements showed transitions from anti-phase to in-phase coordination that
bear the hallmarks of nonlinear phase transitions in coupled nonlinear oscillators
[22, 33]. Our own work has shown how extremely simple oscillator models can
account for synchronization in bimanual rhythmic coordination, including subtle
phase differences between oscillators with different natural frequencies [62, 70, 71].
Several different oscillator models have been developed that produce autonomous
oscillations to represent central pattern generators in the spinal cord of invertebrates
[31, 45]. Support for the distinction between rhythmic and discrete movements also
came from a neuroimaging study [54]. Brain activation revealed that in rhythmic
movements only primary motor areas were activated, while significantly more areas
were needed to control discrete movements.
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In an attempt to synthesize this evidence from largely disparate research groups,
our own research made first forays into combining the two types of building blocks.
Playing piano is after all a combination of complex rhythmic finger movements
combined with reaches across the keyboard. Note that in principle, optimal feedback
control could also achieve such movements, including those with dynamic stability.
In fact, there is no inherent limit to what optimal feedback control may achieve.
It is this omnipotence that contrasts with the well-known coordinative limitations
that may reveal features of the human controller. Beyond “patting your head while
rubbing your stomach”, research has revealed that rhythmic bimanual actions tends
to settle into in-phase and anti-phase coordination [34, 71], humans avoid moving
very slowly [3, 77], and the 2/3 power law in handwriting and drawing may reveal
intrinsic geometry or other limitations [18, 52]. Several modeling and experimental
studies showed the possibilities and limitations of combining twodynamic primitives.
Wiping a table rhythmically, while translating the hand across the table revealed that
rhythmic and discrete elements cannot be combined arbitrarily [63, 64].

However, research is still far from having generated conclusive evidence that
dynamic motion primitives underlie observed behavior. More specifically,
interactions with objects cannot be addressed with the two primitives alone. There-
fore, recently Hogan and myself argued that impedance is needed as a third dy-
namic primitive to enable the system to interact with objects and the environment
[28, 29]. Combining discrete and rhythmic primitives with impedance in an equiv-
alent network is a first proposal on how humans may interact with objects in the
environment. More details and first theoretical developments can be found in the
chapter of Hogan in the same volume. With these theoretical efforts under way, also
further complementary empirical work is needed. The challenge for the future is
to combine analysis and synthesis. How can dynamic primitives be employed to
pour—and enjoy—a glass of wine?
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Part IV
Robot Motion Generation



Momentum-Centered Control of Contact
Interactions

Ludovic Righetti and Alexander Herzog

Abstract The control and planning of interaction forces is fundamental for locomo-
tion and manipulation tasks since it is through the interaction with the environment
that a robot can walk forward or manipulate objects. In this chapter we present a
control and planning strategy focused on the control of interaction forces to gen-
erate multi-contact whole-body behaviors. Centered around the robot momentum
dynamics, our approach consists of a hierarchical inverse dynamics controller that
treats the control of the robot’s momentum as a contact force task and a trajectory
optimization algorithm that can generate desired whole-body motions, momentum
and desired contact forces for multiple contacts. Experimental results demonstrate
the capabilities of the approach on a humanoid robot.

1 Introduction

Theplanning and control of interaction forces is fundamental for both locomotion and
manipulation tasks. Indeed, it is only through the action of external forces (gravity
and contact with the environment) that a robot can move its center of mass or that
an object can be manipulated. While external (and internal) forces can explain the
motion of humans, robots or objects by applying Newton’s laws of motion, the
converse is not always true. It is not always possible to deduct all the important forces
in action during a manipulation or locomotion task by solely observing movements.
Indeed, it is possible to create contact forces with the environment that do not create
motion and yet are important for behavior. For example, squeezing an object in one’s
hand changes the forces exerted on the object without creating motion. Since the
acceleration of the center of mass of a body is proportional to the sum of all external
forces, it is therefore not always possible to infer each individual force uniquely from
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the observed motion without making additional assumptions (i.e. only the sum of
the forces can be deducted).

Each time a robot (or a human) creates multiple contacts with the environment,
there is an infinite number of possible contact forces that will explain a certain
motion. Contact forces can therefore be controlled to achieve additional objectives.
For example, they can be chosen to ensure that all contact forces reside within their
friction cone to prevent the robot from slipping. We demonstrated in Righetti et al.
[30] how the optimization of contact forces in the nullspace of the movement could
help a robot traverse difficult terrains. The controller was reorienting contact forces
to stay inside the friction cone without changing the actual motion of the robot.

The importance of controlling interaction with the environment has been recog-
nized for quite some time, for example by developing impedance control approaches
[14] or more recently for balancing biped robots [15, 27]. However, most motion
planning or optimal control methods for locomotion or multi-contact behaviors have
either ignored the importance of contact forces to simplify the problem, or made
additional assumptions to make the contact model invertible by pre-defining an actu-
ation redundancy resolution rule [34], such as minimizing torque effort, therefore
significantly reducing the opportunities to exploit interaction forces.

In this chapter, we present our recent results on the control and planning of multi-
contact behaviors for legged robots. Based on the robot dynamics model and more
particularly on the (linear and angular) momentum dynamics, we develop a method
to plan and control interaction forces and robotmotion concurrently. In a first step, we
use a hierarchical inverse dynamics controller that makes a special use of interaction
forces to control the momentum of the robot. In a second step, optimal control is
used to plan momentum trajectories and contact forces together with whole-body
motion. The central aspect of robot momentum in this approach allows to explicitly
consider the role of interaction forces for robot control while providing a natural
problem decomposition that simplifies our optimization problems.

1.1 Structure of the Robot Dynamics Equations

The approach strongly relies on the structure of the robot dynamics, in particular the
way the interaction forces enter the equations related to the robot’s momentum. It
leads to a task decomposition for feedback control that we use in our hierarchical
inverse dynamics where momentum control is central and to a natural decomposition
of the whole-body multi-contact planning problem.

The rigid-body dynamics model of a legged robot is usually written as

M(q)q̈ + h(q, q̇) = ST τ + JTλ (1)

whereq ∈ SE(3) × R
n is a vector of position and orientation of the robot in space and

its joint configuration,M(q) is the inertia matrix, h(q, q̇) is the vector of generalized
forces including Coriolis, centrifugal and gravitational forces, τ is the vector of
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actuation torques, λ the contact forces, ST = [0n×6 In×n]T is the actuation matrix
reflecting the unactuated pose of the robot in space and J is the contact Jacobian.

This equation has a notable structure that we will exploit throughout the chapter.
We can separate the robot dynamics into actuated and unactuated parts

Mu q̈ + hu = JTu λ (2)

Ma q̈ + ha = τ + JTa λ (3)

Equation (2) corresponds to the6-dimensional unactuateddynamics (Mu ∈ R
6×(n+6)).

It is in fact equivalent to the Newton–Euler equations of the robot that describe the
change of (angular and linear) momentum of the robot through external forces as
explained in Wieber [37]. Equation (3), which is n dimensional, is equivalent to the
equations of a manipulator in contact with no under-actuation. For any combination
of q̈ and λ there exists a unique vector of actuation torques τ that satisfy this equa-
tion. It means that for any combination of desired motion and contact forces it is in
principle possible to find a control command that will achieve both, if we neglect
actuation limits.

Equation (2) will play a key role in associatingmotion and contact forces. It repre-
sents the under-actuated dynamics of any legged robots: i.e. the part of the dynamics
that cannot be directly influenced by our choice of control τ . It therefore constitutes
themain dynamic constraint of any control and planning algorithm. Equation (3) will
be mainly useful to express constraints on the actuation torques (or equivalently by
enforcing bounds onMa q̈ + ha − JTa λ) or to gain information about the kinematics
of the robot: this equation tells us how to create joint accelerations from actuation
torques.

Since Eq. (2) relates to the momentum of the robot, the robot dynamics can equiv-
alently be written

H(q)q̈ + Ḣ(q)q̇ =
[

Mg + ∑
e fe∑

e(κe + (xe(q) − xCoM(q)) × fe)

]
(4)

Ma(q)q̈ + ha(q, q̇) = τ + Ja(q)Tλ (5)

where H is the centroidal momentum matrix that maps the generalized velocities q̇
to the linear and angular momentum of the robot as described by Orin and Goswami
[26]. M is the mass of the robot and g the vector of accelerations due to gravity. In
Eq. (4), the contact forces λ were decomposed into the sum of wrenches applied at
each contact point e, where fe is the force component and κe the torque component
of the wrench. xe(q) is the position of the contact e and xCoM(q) is the position of
the robot CoM. Equation (4) is nothing else than the Newton–Euler equations of a
rigid multi-body, i.e. the (linear and angular) momentum rate of change is equal to
the sum of external forces (for the linear part) and moments (for the angular part).
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1.2 Momentum-Centric Hierarchical Optimal Control

This decomposition will play a key role in the rest of the chapter to plan and control
whole-bodymotion and interaction forces.Our approach is decomposed in two levels,
depicted in Fig. 1, and is centered around the control and optimization of contact
forces and momentum.

The first level, described in Sect. 2, consists of a hierarchical inverse dynamics
controller. This controller is used to compute actuation torques that will allow the
concurrent execution of several tasks while enforcing certain constraints. The hier-
archical aspect of the controller allows to enforce execution priorities between tasks
when it is not possible to execute all the tasks at once. Each task is written as a desired
closed-loop behavior. One of the important task in this controller is the control of
the momentum of the robot.

In the second level, described in Sect. 3, trajectory optimization is used to find
optimal momentum and whole-body motion together with contact forces over a
certain time-horizon. The problem is split into two sub-problems: the optimization of
contact forces and momentum (as described by Eq. (4)) which creates a dynamically
consistent momentum profile and the optimization of the whole-body motion of the
robot, which is a kinematic problem. Moreover, along the momentum trajectory a
time-varying feedback control law is computed that finds the locally optimal change

τ

Torque control

Sensor feedback
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Desired whole body posture

Dynamic 
consistency 
Equation (7)

Actuation 
limits 
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Fig. 1 Schematic representation of the system presented in the chapter. The trajectory optimization
algorithm computes desired motions for each end-effector, the entire body and the center of mass.
It also generates optimal momentum trajectories, desired contact forces and optimal force feedback
gains to stabilize themomentum. The hierarchical inverse dynamics computes the required actuation
torques to achieve these optimized motion and force trajectories on the robot. The state estimation
algorithm is used to compute the position, orientation and velocity of the robot in space from inertial
and kinematic measurements as in Rotella et al. [31]. The equations mentioned in the diagram are
developed in Sects. 2 and 3



Momentum-Centered Control of Contact Interactions 343

of contact forces necessary to correct tracking errors in momentum trajectories. The
computed force, momentum and desired robot motion (e.g. the motion of each end-
effector) directly define all the objectives of the tasks controlled in the first level.

With this approach, the control of whole-body multi-contact behaviors is decom-
posed into simpler optimization problems that can be run at different time scales. The
idea is to use only the model information that is relevant for reasoning at a specific
time scale. For example, at the highest control frequency, it is necessary to take into
account the detailed dynamic constraints to ensure, for example, that joint limits
are not violated and that the commands stay within actuation limits. However, it is
not necessarily important to replan foot steps or momentum motions at 1kHz and
therefore this can be decided on a slower time scale using reduced dynamic models.

2 Feedback Control with Hierarchical Inverse Dynamics

The first level of our control approach consists of the hierarchical inverse dynamics
controller presented in Herzog et al. [11]. In a complex locomotion andmanipulation
scenario, it is desirable to achieve several tasks concurrently using all the motion
capabilities of robots with a large number of degrees of freedom. For example, a
robot tasked with drilling a hole in a wall would need to: (1) keep its CoM above
the support polygon to ensure it does not fall, (2) move the drill at a specific position
on the wall, (3) apply a force on the wall with the drill bit to drill the hole and (4)
move its head to keep the drill visible to the cameras to allow visual servoing. While
ideally all these tasks should be achieved concurrently, they do not have the same
importance. In case of a disturbance, it might be better to ensure that balance is
preserved while keeping the drill bit in sight might not be so important. Keeping the
drill at a proper location might be more important than the vision task but not as
crucial as balancing. We see that there exists natural priorities between tasks (i.e. a
hierarchy of tasks). It is therefore desirable to design feedback controllers that can
enforce the task hierarchy when needed.

This example is interesting because it also shows that the control tasks can be of
very different nature. Keeping the drill at a specific location on the wall is a position
task, it means that the controller should regulate the position of the drill bit as well
as possible. Drilling inside the wall is a task that requires to regulate the amount of
force applied on the wall, it is a force task.1 Keeping the CoM above the support
polygon, especially when trying to reject disturbances from drilling, can be seen as
an impedance task with hard constraints on the allowed location of the CoM. Tasks
can consist in the regulation or tracking of positions, forces or impedance in task
space. They can also consist in limits on these quantities (e.g. allowed CoM position
or maximum allowed torque).

1One could argue that it could be seen as an impedance task, which is also valid and does not change
the argument.
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Hierarchical inverse dynamics algorithms have recently been developed by several
groups to allow the execution of concurrent tasks and the satisfaction of inequality
constraints while preserving priorities [8, 20, 22]. These algorithms have also been
used to achieve complex whole-body tasks, as in Jarquin et al. [16] or Saab et al.
[32]. While it is possible to control interaction forces with these algorithms (e.g. in
Sherikov et al. [33] or Herzog et al. [12]), focus is generally put on kinematic tasks.

In this section, we detail the inverse dynamics algorithm used in this chapter. In
particular we explain how it can be used to control interaction forces and how a
task that controls the linear and angular momentum of the robot can be written as a
contact force task. All tasks are written as desired closed loop behaviors.

2.1 Tasks Formulation

The hierarchical inverse dynamics controller computes at each instant of time the
accelerations q̈, contact forces λ and actuation torques τ that will best satisfy all the
tasks and constraints and their hierarchy. For this controller, all tasks are written as
equalities or inequalities that are linear in the decision variables q̈, λ and τ , i.e. they
are written in the form

A

⎡
⎣q̈

λ

τ

⎤
⎦ = a or B

⎡
⎣q̈

λ

τ

⎤
⎦ ≤ b (6)

In the following we detail the type of tasks and constraints that we will use in this
chapter.

Dynamic Model of the Robot

It is the controller’s highest priority to ensure that the control law is compatible with
the dynamics of the robot. As explained in Sect. 1, to ensure dynamic consistency of
the control law, it is only necessary to consider the underactuated dynamics of the
robot

Mu q̈ + hu = JTu λ (7)

The actuated part of the dynamic equations of the robot is only necessary to express
tasks related to actuation torques. For example, we will write actuation limits

τmin ≤ τ ≤ τmax (8)

by substituting τ with Eq. (3)

τmin ≤ Ma q̈ + ha − JTa λ ≤ τmax (9)
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Therefore, in our control problem τ will never explicitly appear as an optimization
variable. Only accelerations and contact forces will be optimized and the resulting
actuation torques will be computed using Eq. (3). Joint limits can also be enforced
by setting limits on the admissible accelerations q̈.

Contact Model

A contact model is necessary to predict contact forces. We use the following contact
model

Jq̈ = −J̇q̇ (10)

A f r ictionλ < 0 (11)

Acopλ < bcop (12)

The first equality imposes as a constraint that the robot parts in contact with the
environment should not move. The first inequality is a linear approximation of the
friction cones. The second inequality is a limit on the individual centers of pressure on
each contact surface to ensure that these center of pressure stay inside the boundary
of the contact surface. These constraints ensure that the robot can create physically
consistent forces and avoid slippage (cf. Herzog et al. [11] for more details).

Motion and Force Control Tasks

Motion tasks are written using the Jacobian of the task as

ẍdes = Jx q̈ + J̇x q̇ (13)

where x represents the task vector, Jx (q) is the Jacobian of the task and ẍdes is
the desired acceleration for the task. The desired acceleration is computed using a
feedback controller, for example a linear feedback controller for the task would be
written as

ẍdes = P(xre f − x) + D(ẋre f − ẋ) + ẍre f (14)

where P and D are positive definite gain matrices and xre f is a reference trajec-
tory computed by a motion planner. In our case, these reference trajectories will be
computed using the whole-body planner presented in Sect. 3.

Force tasks are written as
λ = λdes (15)

where λdes is a desired contact force. Force tasks, specially used to distribute the
weight of the robot during multi-contact turned out to be very important to get
more stable behavior in real robot experiments. They also have a central role in the
execution of the optimal plan computed in Sect. 3.

Momentum Control Task

While most methods (e.g. [18, 23, 36]) regulate momentum and CoM dynamics
using kinematics information, i.e. through q̈, it is also possible to explicitly use the
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contact forces to derive a desired closed loop behavior [9, 11].While both approaches
are equivalent in principle, we prefer to use the formulation involving contact forces
because it will allow us to use optimal feedback gains to track a desired momentum
and CoM trajectory through desired contact forces (Sect. 3.2).

Using Eq. (4), we can write the CoM and momentum dynamics in terms of gen-
eralized contact forces λ

ẋCoM = 1

M
hlin (16)

ḣ =
[

I3×3 03×3 · · ·
(xe(q) − xCoM(q))× I3×3 · · ·

]
λ +

[
Mg
0

]
(17)

where h = [hT
linh

T
ang]T is the vector of linear and angular momentum and a× is the

matrix such that a× · b = a × b.
With this formulation, we can consider the contact forces λ to be the control input

in Eq. (17). Therefore, we can write a control law for momentum control as

λdes = −K
[
xCoM

h

]
+ k(xCoMref ,hre f ) (18)

where K is a gain matrix and k is a feedforward control term depending on the
reference CoM and momentum trajectories. Both the gain matrix and feedforward
terms will be computed by the optimal control approach presented in Sect. 3.2.

The desired momentum corresponding to the desired contact forces is found by
using Eq. (18) inside Eq. (17)

ḣdes =
[

I3×3 03×3 · · ·
(xe(q) − xCoM (q))× I3×3 · · ·

] (
−K

[
xCoM
h

]
+ k(xCoMref ,hre f )

)
+

[
Mg
0

]

And therefore the desired closed-loop behavior ḣ = ḣdes can be written in terms of
contact forces as

[
I3×3 03×3 · · ·

(xe(q) − xCoM(q))× I3×3 · · ·
] (

λ + K
[
xCoM

h

]
− k(xCoMref ,hre f )

)
= 0 (19)

This equation is linear in the contact forcesλ.While it can seemabit complicated, this
equation merely asks the contact forces λ to have the same effect on the momentum
of the robot than the desired contact forces λdes would have. The desired contact
forces have been projected in the range space of the momentum. This formulation
will allow to exploit the contact forces acting in the nullspace of the momentum
(i.e. the contact forces that do not create movement) to achieve other force tasks.
For example, to ensure that forces are within the friction cones or to redistribute the
weight of the robot between the different contacts.
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2.2 Hierarchical Inverse Dynamics Using a Cascade of
Quadratic Programs

All the tasks and constraints described above can be written as equality or inequality
constraints. Therefore, for each priority level the optimization problem consists of
finding decision variables that will best satisfy these constraints and ensure that the
solution is still optimal with respect to higher priority levels. As mentioned above,
it is not necessary to explicitly incorporate the torque command in the optimization.
For each priority level i , the problem can be written as

[q̈∗
i , λ∗

i , v∗
i , w∗

i ] = argmin
q̈, λ, vi , wi

||vi ||2 + ||wi ||2

s.t. Ai

[
q̈
λ

]
− ai = vi , Bi

[
q̈
λ

]
− bi ≤ wi

}
Tasks of priority i

A j

[
q̈
λ

]
− a j = v∗

j , B j

[
q̈
λ

]
− b j ≤ w∗

j , ∀ j < i
}Ensures optimality w.r.t.
higher priority tasks

This quadratic program tries to achieve all the inequality and equality tasks by min-
imizing the slack variables vi and wi . The tasks are described in the first line of
constraints where a slack variable of 0 means that all tasks can be achieved. It also
ensures that the solution remains optimal with respect to the previous priorities, this
is the second line of constraints. A series of quadratic programs can then be solved
(one for each priority). The control command is then simply computed using the
result from the last quadratic program

τ = Maq̈∗
n + ha − JTa λ∗

n (20)

There are several ways to efficiently compute the solution for this hierarchy of
quadratic programs. In this chapter we numerically solve the problem using the
algorithm developed in Herzog et al. [11]. It proved to be fast enough to be run in a
1kHz feedback control loop. However, it is worth mentioning that other numerical
algorithms might be faster, such as the ones recently presented in Escande et al.
[8], Dimitrov et al. [6], at the cost of a potentially reduced ability to regularize the
solutions of the optimizer.

3 Optimal Control of Contact Forces and Momentum

When a robot has to perform tasks in complex contact environments such as crossing
a difficult terrain or getting up from a seat, it becomes necessary to take into account
limb motion and contact forces over a complete execution horizon. Consider for
instance a human sitting in a chairwith both feet on the ground. It is almost impossible
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to move up in slow motion, because no feasible forces can be applied on the ground
and surface of the chair that support the body throughout the motion. On the other
hand, by building up momentum, forces can be applied that will swing up the body
in a more dynamic manner. It is therefore important to consider the combination of
jointmotions and contact forces applied throughout the execution horizon to generate
dynamically feasible motions to achieve a larger range of tasks.

Traditionally, simplified models such as the linear inverted pendulum model
(LIPM) are used to plan a center of mass motion for legged locomotion, as in Kajita
et al. [17], Englsberger et al. [7]. However, for more complex behaviors simplified
models do not capture anymore the relevant parts of the dynamics or they keep parts
of the state uncontrolled [1] and more complex models become necessary. Planning
and optimal control algorithms usingmore complexmodels have also been used since
the seminal work of Bretl [2] and Hauser et al. [10]. Complete dynamics models have
been used in Mordatch et al. [25], Lengagne et al. [24] to plan complex whole-body
behaviors but they usually come at a high computational cost and usually contact
forces are not explicitly controlled during the execution of the task.

In this section, we discuss a whole-body motion and force generation approach
that decouples the problem into a motion trajectory generator and optimal control
of contact forces [12, 13]. As we will show, the two sub-problems are coupled only
through the momentum that is defined by either the contact forces or the whole-
body motion respectively leading to better structured and therefore more efficient
optimization algorithms. Further, we describe an optimal control based feedback
law to track resulting force and momentum profiles inside the hierarchical inverse
dynamics framework presented in Sect. 2.

3.1 Trajectory Optimization

In Sect. 2 we discussed an approach to compute torque commands for fast feedback
control. The input to the controller can be a desired execution plan in the form of
end-effector or joint trajectories q(t), a desired momentum trajectory as well as
contact wrenches λ(t). In this section, we discuss an optimization algorithm for
computation of motion plans q(t),λ(t) that minimize a task specific cost function
J = Jq(q) + Jλ(λ) and at the same time remain dynamically feasible (i.e. they satisfy
Eq. (4)). The motion plans of interest are specified by the following mathematical
program

min.
q(t),λ(t)

Jq(q) + Jλ(λ) (21)

s.t. H(q)q̈ + Ḣ(q)q̇ =
[

Mg + ∑
e fe∑

e(κe + (xe(q) − xCoM(q)) × fe)

]
(22)

λ ∈ Sλ,q ∈ Sq (23)
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The scalar cost function Jq + Jλ is designed to express howwell motion and force
trajectories q,λ achieve a certain task. For example, a robot that is crossing a difficult
terrain should move its end-effectors from one contact location to the other, i.e. Jq
could penalize the distance to a contact point or to the final position of the robot on the
terrain. Similarly, Jλ could penalize certain types of contacts and encourage others
(e.g. to minimize the strain put on the hands during climbing). The cost J is shaped
such that its minimizer will solve the desired task requirement but it does not consider
dynamic feasibility. It is the Newton–Euler Equation (22) that couples motion and
force and guarantees solutions to be consistent with physics. Additionally, we need
to guarantee that solutions remain in the constraint sets Sq,Sλ, which describe
kinematic constraints (e.g. joint limits) and contact constraints (e.g. the contactmodel
defined in Eqs. (11)–(12)).

Note that the control commands τ do not appear in our optimal control problem.
Indeed, as we have seen in the previous sections, they are only necessary when
enforcing actuation limits which we ignore when computing the motion and contact
forces trajectories. Therefore, the only “control” commands present in the optimal
control problem are the contact forces. Despite the fact that we do not have direct
access to contact forces λ (i.e. the environment exerts these forces on the robot),
the whole-body controller developed in Sect. 2 allows to indirectly control them by
finding appropriate joint actuation torques τ .

Solving the problem defined by Eqs. (21)–(23) is challenging in general. At first
glance, we have many degrees of freedom in q,λ coupled in a non-linear way.
Naive solvers would have to iteratively update all variables and constraints together
suffering from polynomial computational complexity. However, realizing that the
variables q,λ are only coupled through the Newton–Euler equations describing the
evolution of the momentum of the system, we can decompose our mathematical
program into two better structured, simpler, sub-problems: one that depends only
on kinematics q(t) and another optimizing for contact forces λ(t). As we showed
in Herzog et al. [13], the two sub-problems have a more beneficial structure than
the full problem (Eqs. (21)–(23)) and can be solved efficiently using better informed
solvers.

In order to decompose ourmovement generation problem,we rewrite theNewton–
Euler equations (Eq. (22)) into

xCoM(q) = r (24)

xe(q) = ce (25)

H(q)q̈ + Ḣ(q)q̇ = ḣ =
[

Mg + ∑
e fe∑

e(κe + (ce − r) × fe)

]
(26)

Here we introduced variables for the CoM r, contact locations ce and momentum
h. Note that the left-hand side ofEqs. (24)–(26) depends only on kinematics (q),while
the right-hand side is only dependent on momentum and contact forces and locations
(r, c,h and λ = [

. . . fTe κT
e . . .

]T
). This means that r, c,h can be computed either

purely through the kinematic motion of the whole-body or by applying external
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forces to the robot. It is therefore sufficient to solve independently the kinematic
trajectory optimization problem and the optimal control problem associated to the
contact forces while forcing both problems to converge to the same values of r, c,h.
When both problems agree on these values, a solution to the original problem is
found. In what follows, we solve the problem by iteratively holding one side of
Eqs. (24)–(26) fixed to a constant reference r̄, c̄, h̄ and optimizing the other side to
match this reference.

Motion Optimization

First we keep the dynamic plan fixed (right-hand side), express our problem as a
function of q and add in a cost term to penalize deviation of r, c and h from the
values found with the contact force optimization

Motion Optimization

min.
q(t)

Jq(q)︸ ︷︷ ︸
Task Cost

+ ||H(q)q̇ − h̄||2 + ||xCoM(q) − r̄||2 + ||xe(q) − c̄e||2︸ ︷︷ ︸
Consistency with Force Optimization

(27)

s.t. q ∈ Sq (28)

This mathematical program optimizes only over joint trajectories q and as such
reduces the problem to a kinematic trajectory optimization. In this sub-problem we
do not have to consider contact forces therefore significantly reducing computational
complexity. The cost is constructed from two objective terms. On the one hand, we
minimize the task specific cost Jq and on the other hand we bias our solution to
match momentum and contact location references r̄, c̄, h̄. Since our sub-problem is
only optimized over q, we can reuse wide-spread kinematic solvers that are suited
for this type of problem structure. Our plan contains CoM, xCoM(q), end-effector
trajectories, xe(q), and also the momentum profile,Hq̇, that is induced by the motion
of the robot, e.g. our plan might find a swing leg motion generating a momentum
around the hip.

Force Optimization

In the next step, we compute admissible contact forces that accomplish the required
motion-induced momentum and contact location references r̄, c̄e, h̄. Therefore, we
solve the problem

Force Optimization

min.
r,c,h,λ

Jλ(r, c,h,λ)︸ ︷︷ ︸
Task Cost

+ ||h − h̄||2 + ||r − r̄||2 + ||ce − c̄e||2︸ ︷︷ ︸
Consistency with Motion Optimization

(29)

s.t. ḣ =
[

Mg + ∑
e fe∑

e(κe + (ce − r) × fe)

]
(30)

λ, r, c ∈ Sλ (31)
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Contrary to the kinematic trajectory optimizer, here we optimize only over contact
forces λ, contact locations ce and resulting CoM r and momentum h. Similar to the
MotionOptimization problemwe trade-off a task relevant cost Jλ with the tracking of
reference trajectories h̄, r̄, c̄e that were found by the Motion Optimization problem.
The solutions to the Force Optimization problem are dynamically feasible since they
remain in the admissible setSλ and satisfy the Newton–Euler Equation (30).

Note that the Force Optimization problem can be seen as an optimal control
problem if we assume that the contact forces are the control inputs. In fact, this
allowed us to identify interesting structure in the problem [13] that is beneficial for
dedicated solvers.

Alternating Algorithm for Whole-Body Planning

The two sub-problems Motion Optimization and Force Optimization consider sepa-
rate cost and constraint terms and at the same time they try to accomplish a coherent
momentum profile. We can now solve the two problems iteratively passing on refer-
ence momentum profiles from one solver to the other until both agree on a common
solution as summarized inAlgorithm1. It exploits dedicated solvers that are suited for
kinematic (line 3) and optimal control problems (line 5). Both solvers communicate
only the common set of variables in lines 4, 6 but remain independent otherwise. In
our experience, only a few iterations (typically 2) are necessary before convergence.

Algorithm 1 momentum-centric motion generation

1: initialize r̄, c̄, h̄
2: repeat
3: solve the Motion Optimization problem
4: r̄, c̄, h̄ ← xCoM (q), xe(q),H(q)q̇
5: solve the Force Optimization problem
6: r̄, c̄, h̄ ← r, c,h
7: until convergence

A Note on the Structure of the Force Optimization problem

In the Force Optimization Problem we are facing non-linear dynamics that result
in non-convex optimization in general. The non-convexity stems from the cross
product in Eq. (30). We have shown in Herzog et al. [13] that this expression can
be written as the difference of two positive semi-definite quadratic functions in the
form s+(r, c, λ) − s−(r, c, λ), where s+, s− : R9 → R

3 are both convex functions
with quadratic components. The decomposition into a difference of convex functions
can be performed analytically and does not require additional computation effort
inside the solver. Decomposing the problem into its convex and concave parts and
exploiting sparsity patterns specific to the problem has the advantage that better
approximations can be made inside of dedicated optimizers leading to more efficient
solvers [13, 29]. For a more detailed discussion on the structure of the optimization
problem please refer to Herzog et al. [13].



352 L. Righetti and A. Herzog

3.2 Contact Forces Feedback Control

In the previous section we discussed a motion generation algorithm that computes
dynamically consistent joint trajectories q(t) together with momentum h(t) and
contact forcesλ(t). These trajectorieswill then be controlledwith hierarchical inverse
dynamics as presented in Sect. 2. This controller converts q(t),λ into joint torques
τ and regulates disturbances through feedback in task space directly. In particular,
we explained in details how momentum control tasks could be thought as a force
control problem. In this section,we showhow the results from theForceOptimization
problem can be used to create a locally optimal feedback control law for stabilizing
momentum trajectories through contact forces.

Given optimal CoM and momentum trajectories x∗ = [
r∗T ,h∗T ]T

and contact
wrenches λ∗(t), we linearize Eq. (30) along the optimal trajectories and compute a
quadratic approximation of the performance cost (Eq. (21)). We now have a time-
varying linear quadratic control problem along a desired trajectory where the control
inputs are the contact forces.

We can use time-varying LQR to obtain a locally optimal feedback control policy
of the form

λdes = k(x∗,λ∗) − K(t)x (32)

where K(t) is a time-varying feedback gain, k a feedforward term and x the current
CoM and momentum measurements. These terms can then readily be used in the
momentum control task defined by Eq. (19).

In the hierarchical inverse dynamics, we can now trackmomentum at high priority
and use the contact force references from the whole-body planner at a lower priority.
The part of the forces that do not create momentum will only be tracked as long as
they do not conflict with higher priority tasks. With this feedback design approach,
we fully exploit the coupling between CoM and angular momentum (cf. Eq. (4)) and
find controls that optimize our desired task. We also found in practice [11] that the
control law in Eq. (19) not only performs better than a manually tuned PD controller
for momentum tracking, but also allows to remove any tuning of parameters in the
momentum task (e.g. different contact configurations would require different gain
tuning).

4 Experiments

In this section we present a set of experiments illustrating the capabilities of both
the hierarchical inverse dynamics and the trajectory optimization for multi-contact
motions.
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4.1 Hierarchical Inverse Dynamics on a Humanoid Robot

Using the controller described above, we performed experiments on the lower body
of a Sarcos Humanoid robot which is a torque controlled robot offering high perfor-
mance torque tracking capabilities. In order to estimate the position, orientation and
velocity of the robot in space, we use the base state estimator developed in Rotella
et al. [31]. The control diagram is similar to what is described in Fig. 1 except that
the trajectory optimization block is not used yet (except to compute LQR gains as
explained in Sect. 3.2).

Several experiments were conducted to evaluate the capabilities of the robot to
balance by regulating its linear and angular momentum. During double support, the
robotwas placed onmoving platforms such as a seesaw and a rolling platform (shown
in Fig. 2). In another experiment, the task was to move from a two leg balance to
standing on one leg. Then the robot started to move its swing leg in a periodic manner
(following sine trajectories for the swing foot). During this motion, the robot was
pushed with forces of different magnitudes (as shown in Fig. 2).

(a) Typical behavior after a push

(b) Seesaw and rolling platform

(c) Balancing on one foot

Fig. 2 On the left, typical disturbance rejection behavior of the center of mass and momentum
when the robot is pushed while standing on two feet. We notice the fast damped dissipation of
the push. On the right, pictures of the various experiments performed on the robot. The robot was
balancing on a seesaw and a rolling platformwith unknown disturbances. It also moves from double
support to a single support balancing while executing a swing leg motion in the air under external
disturbances (The figures are taken from Herzog et al. [11])
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Experiments demonstrate a very high performance for balancing by using solely
feedback control. We notice that regulating the angular momentum helped to create
more stable balancing behaviors. Moreover, the use of inequality constraints for
the center of pressure of each foot was very useful for balancing: the controller
actively generates angular momentum to maintain the CoP within the constraints
when necessary. During the experiments, the robot was pushed with a peak force
up to 293N and impulse of 9.5Ns which is rather high for balancing experiments
(note that the robot weights 51kg and each foot is 0.09m wide and 0.25m long). A
systematic analysis of the results can also be found in Herzog et al. [11].

4.2 Control and Planning of Multi-contact Behaviors

We demonstrate how Algorithm 1 can generate locomotion on a terrain of step-
ping stones by jointly optimizing joint trajectories q(t) and contact forces λ(t).
The stepping stones (cf. Fig. 3) are angled and vary in height, which breaks the
LIPM assumptions and requires consideration interaction forces at individual con-
tact locations. We initialize our algorithm with a reference CoM r̄ in form of a linear
interpolation between the desired position of the robot at the beginning and at the
end of the task. The reference momentum is simply initialized to h̄ = 0. In line 3
of our algorithm the motion generator computes a constrained joint trajectory that

Fig. 3 A visualization of a kinematic plan generated by Algorithm 1. After the first iteration (left-
hand side) the CoM remains above the center between the feet and the arms are at rest. Although, the
joint trajectories remain inside of their limits and the task relevant cost is minimized, momenta are
required that are not feasible. For instance, one might notice that the CoMmoves forward, although
the robot is in single support and can only push on a stone orthogonal to the motion. After the
last iteration (right-hand side) the kinematic plan is in coherence with constrained force profiles.
The CoM has a wider sway in lateral direction and the robot uses its arms to account for angular
momentum (Figure taken from Herzog et al. [13])
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Fig. 4 Momentum plans generated by the motion optimization Algorithm 1. The Motion Opti-
mization problem optimizes for an unfeasible CoM lateral motion (top), which is corrected after
the first Force Optimization iterations. In the second iteration of the algorithm, the kinematic plan is
adapted to realize a CoM sway, this time resulting in an admissible momentum profile. Horizontal
angular momentum (bottom two plots) is also found to be consistent across kinematic as well as
momentum optimization. It is interesting to note that non-trivial angular momentum trajectories are
computed that would be difficult to design by hand (Figure taken from Herzog et al. [13])

Fig. 5 A visualization of a gain matrix as it is computed from LQR on the momentum equations.
It is interesting to see that off-diagonal terms, which are not obvious to design by hand, contribute
significantly to the feedback. For instance we can see that the lower left part of the matrix exploits
coupling between linear and angular momentum and uses angular momentum in order to correct
errors in CoM and linear momentum tracking (Figure taken from Herzog et al. [13])

minimizes the distance between end-effectors ce and stepping stones as it tries to
track the desired CoM r̄. As a result we obtain a motion that is kinematically feasible
and crosses the terrain in a kinematically optimal way, however, ignoring limitations
on contact wrenches. The desired motion is then optimized to ensure that contact
wrenches are restricted to push on stepping stones without violating friction con-
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straints (cf. Fig. 4). In practice we noted that 2 iterations were usually sufficient to
converge, i.e. consecutive momentum profiles would not change.

Then the feedback policy around optimal momentum and wrench profiles is com-
puted and embedded into the hierarchical inverse dynamics controller presented in
Sect. 2. As can be seen in Fig. 5, coupling between linear and angular momentum is
exploited. The resulting controller led to better stabilization behavior. The trajecto-
ries generated by the plan were difficult to stabilize with a hand-tuned PD controller
while they were tracked without problem using our feedback law. Figure3 shows an
example of the motion before and after dynamic optimization, illustrating the effect
of dynamic constraints on the whole-body motion.

5 Discussion: Strengths and Limitations

Algorithmic Considerations

In previous sections we have presented a method to plan and control dynamically
consistent multi-contact behaviors. The planning and control methods are centered
around the momentum equations and contact forces. While several recent work have
considered the effect of (linear and angular) momentum for motion generation, they
either do not plan it explicitly [36] or do not address the problem of controlling
momentum and contact forces together [5], which is in contrast with the approach
we proposed. We rely on a dynamic model of the robot and make no simplifying
assumption to compute trajectories and control laws. Therefore, it should in principle
be possible to generate arbitrarymulti-contactmovements for complex robots such as
a humanoid. In our architecture we assumed that a sequence of desired contacts was
given but recent algorithms [35] planning acyclic contact sequences could be used
instead to find contact sequences automatically. One strong advantage with dynamic
models and optimization methods is that the approach can generalize to arbitrary
conditions, ensures locally optimized behaviors with guaranteed constraint satisfac-
tion. However, using complex dynamic model can be problematic because they are
usually synonymous to computational complexity. While recent results suggest that
some of these computations can be done very efficiently (cf. Ponton et al. [29] for
example), there remains significant research to be done to improve the numerical
efficiency of such algorithms.

What About Multi-modal Sensing?

Methods based on models and optimal control usually make a very limited use of
the available sensory information. Modern robots usually come equipped with a
large number of sensor modalities (position and force sensors, inertial measurement
units, artificial skin, etc.). Typically, these algorithms only use sensory information
to reconstruct the state of the robot for feedback and then discard the information.
It is also the case in the approach we proposed here and it constitutes a potential
limitation of the approach. Indeed, it seems reasonable to think that much more
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information could be extracted from sensing, especially during contact interaction,
to create more reactive and robust behaviors. Data-driven approaches have been
successfully proposed to create more robust behaviors in manipulation research. For
example, by learning impedance behaviors directly from demonstration [4] or using
reinforcement learning [3]. Our previous work also demonstrated some results on
learning force control for manipulation skills using reinforcement learning [19]. We
have also shownhow to create very reactive and robustmanipulation skills by learning
a model of the task directly in sensor space with little a-priori on the task dynamics
[28]. This work was successfully extended to sequence more complex manipulation
tasks in Kappler et al. [21] where the authors demonstrated very robust performance
without the need for an explicit model of the task nor a computationally complex
optimization algorithm. However, these data-driven approaches are still very limited
and do not generalize well across tasks nor scale tomore complex tasks such asmulti-
contact whole-body behavior. A more systematic use of multi-modal sensing, from
a data-driven perspective, remains therefore an important challenge to complement
the approach we presented in this chapter and optimal control approaches in general.

6 Conclusion

Centered around the recognition that interaction forces are fundamental to explain
motion, we have proposed a method to control and plan multi-contact behaviors.
The method is based on hierarchical inverse dynamics and optimal control for tra-
jectory generation. The angular and linear momentum of the robot play a central
role in the approach, first as a fundamental quantity that needs to be controlled
through interaction forces and second as a natural way to decompose the optimiza-
tion of dynamically consistent multi-contact trajectories. Future work will include
the extension of the approach to more complex behaviors and a systematic inclusion
of multi-modal sensing in the optimization approach to increase robustness.
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A Tutorial on Newton Methods
for Constrained Trajectory Optimization
and Relations to SLAM, Gaussian Process
Smoothing, Optimal Control,
and Probabilistic Inference

Marc Toussaint

Abstract Many state-of-the-art approaches to trajectory optimization and optimal
control are intimately related to standard Newton methods. For researchers that work
in the intersections of machine learning, robotics, control, and optimization, such
relations are highly relevant but sometimes hard to see across disciplines, due also to
the different notations and conventions used in the disciplines. The aim of this tutorial
is to introduce to constrained trajectory optimization in a manner that allows us to
establish these relations.We consider a basic but general formalization of the problem
and discuss the structure of Newton steps in this setting. The computation of Newton
steps can then be related to dynamic programming, establishing relations to DDP,
iLQG, and AICO. We can also clarify how inverting a banded symmetric matrix
is related to dynamic programming as well as message passing in Markov chains
and factor graphs. Further, for a machine learner, path optimization and Gaussian
Processes seem intuitively related problems. We establish such a relation and show
how to solve a Gaussian Process-regularized path optimization problem efficiently.
Further topics include how to derive an optimal controller around the path, model
predictive control in constrained k-order control processes, and the pullback metric
interpretation of the Gauss–Newton approximation.

1 Introduction

It is hard to track down explicitly when Newton methods were first used for tra-
jectory optimization. As the method is centuries old it seems fair to assume that
they were used from the very beginning. More recent surveys, such as [3, 36], take
Newton methods and standard non-linear constrained mathematical programming
(NLP) methods as granted. Reference [3] for instance states that Newton methods
were the standard in the 60’s, often executed analytically by hand. Presumably the
Apollo missions relied on Newton methods to compute paths. In the 70’s, with rais-
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ing computational powers and quasi-Newton methods (such as BFGS), they became
prevalent for many kinds of control problems.

Why do we need, half a century later, a tutorial on Newton methods for trajec-
tory optimization? Especially in the last decade the fields of machine learning, AI,
robotics, optimization and control becamemore and more intertwined, with methods
of one discipline fertilizing ideas or complementing methods in another. This often
leads to great advances in the fields. However, the interrelations between methods in
the different fields are sometimes hard to see and acknowledge because the languages
differs, textbooks are not cross-disciplinary, and technical papers cannot focus on
length on this.

Many interesting novel approaches to trajectory optimization have been proposed
in the last decade. However, identifying and relating the actual state-of-the-art across
disciplines is hard. An excellent and very necessary paper in the robotics community
(TrajOpt; [27]), proposing non-linear mathematical programming (NLP) for trajec-
tory optimization, might in other communities perhaps have been located decades
earlier. That paper is in fact an important answer on previous papers within robotics,
esp. (CHOMP; [24]), that have not compared to the NLP view on trajectory opti-
mization. To comment also on own work, the Approximate Inference approach to
Trajectory Optimization (AICO; [31]) establishes important relations between itera-
tive message passing and trajectory optimization (see below) and still inspires great
advances in the field [8]. But the optimization view on the same problem formulation
leads to basic Newton methods that can more easily be extended to hard constraints
and are more robust in practice. Similarly, it seems important to acknowledge the
tight relations between the optimal control approaches DDP [20] and iLQG [30] and
plain (Gauss–) Newton methods, as discussed in more detail below.

In this tutorialwe take the stand that suchmethods and especially their relations are
best understood by considering optimization as their common underlying foundation,
in particular the Newton method. With this we hope to give a basis for fertilization
and understanding across disciplines.

What is proposed in this tutorial is not fundamentally novel: We discuss basic
Newton and NLP methods for a general problem formulation, including also control
and model predictive control around the optimum. However, some specifics of the
presentation are novel, for instance:

(i) The specific k-order path optimization formulation is in contrast to the more
common phase-space formulation of path problems. This, and the banded prob-
lem Jacobians and Hessians were previously mentioned in [34].

(ii) The particular generalization of dynamic programming and model-predictive
control to constrained k-order processes are, to our knowledge, novel. Also the
related approximate constrained Linear-Quadratic Regulator (acLQR) around
an optimal path has, to our knowledge, not been described in this form before.
Related work is [28].

(iii) The intimate relations between Newton-based trajectory optimization and
Graph-SLAM have only very recently been mentioned [8]; the recast of
CHOMP as plain Newton that drops some terms seems novel.
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(iv) Reference [8] introduced the interesting idea to consider global-scale Gaussian
Process smoothness priors over paths and utilizeGTSAM to optimize the result-
ing problem. Here we propose a simpler approach to account for “banded-
support” covariance kernels in the path objective with leads to linear-in-T
complexity of computing Newton steps.

(v) Throughout the paper we discuss complexities of computing the Newton steps,
which has not been presented in this way before.

1.1 Structure of This Tutorial

Although the material presented is closely related to optimal control, we think it is
insightful for this tutorial to first consider a pure trajectory optimization perspective.
Controls and optimal control are not mentioned until Sect. 4. With this we aim to
show howmuch we can learn about the structure of Newton-based path optimization
that then relates intimately to optimal control methods.

Hence, in the first part, we formulate a path optimization problem of a particular
k-order structure. Section2.3 discusses the resulting banded structures of the prob-
lem Jacobian and Hessian and based on this derives the complexities of computing
Newton steps. These basic properties of the Jacobian, Hessian and the computation
of Newton steps seem technical, but they are the core to understand the relations
discussed later. For instance, this allows us to understand relations to the pullback of
Riemannian metrics in differential geometry, to Graph-SLAM methods, and to the
CHOMP optimization method.

Section3 asks how we can incorporate a more global smoothness objective in
the optimization formulation. We briefly consider a B-spline representation of paths,
which are intuitively very promising to enforce smoothness and speed up optimiza-
tion. However, in practice they hardly reduce the number of Newton steps needed
and the complexity of each Newton step is equal to non-spline representations. We
then consider an alternative way to include more global smoothness objectives: with
a covariance kernel function as in Gaussian Processes (GPs), efficiently optimizing
the neg-log probability of a GP with a banded kernel function.

Section4 then reconsiders the problem from an optimal control perspective. We
first briefly introduce the basic optimal control framework and discuss direct versus
indirect approaches. To tackle our specific k-order path optimization problem we
then consider dynamic programming to compute cost-to-go functions under hard
constraints and the respective approximate constrained Linear Quadratic Regula-
tor, which, just for sanity, is shown to be equivalent to the Riccati equation in the
unconstrained LQR case. We extend the dynamic programming formulation to a
model predictive control (MPC) formulation (in fact, a constrained k-order version
of MPC) that allow us to control around pre-optimized trajectories. Moving to the
probabilistic setting the relations to DDP, iLQG and AICO become clear. On the
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conceptual level, this section establishes the relations between (i) inverting a banded
Hessian (in aNewton step), (ii) dynamic programming and (iii) probabilisticmessage
passing, all three of them making the linear-in-T complexity of computing Newton
steps explicit.

2 k-Order Path Optimization and Its Structure

2.1 Problem Formulation: k-Order Constrained Path
Optimization (KOMO)

Let x ∈ R
T×n be the path1 of T time steps in an n-dimensional configuration space

X . That is, in the dynamic case, xt does not include velocities and x is not a state
space (or phase space) trajectory. Instead, x only represents a series of configurations.

A general non-linear program over a path x is of the form

min
x

f (x) s.t. g(x) ≤ 0 , h(x) = 0 , (1)

where f : R
T×n → R is a scalar objective function, g : R

T×n → R
dg defines dg

inequality constraint functions, and h : R
T×n → R

dh defines dh equality constraint
functions. We generally assume f , g, and h to be smooth, but not necessarily convex
or unimodal.

For the case of path optimization we make the following assumption:

Assumption 1 (k-order Markov Assumption) We assume

f (x) =
T∑

t=1

ft (xt−k:t ) , g(x) =
T⊗

t=1

gt(xt−k:t ) , h(x) =
T⊗

t=1

ht (xt−k:t ) , (2)

for a given prefix xk−1:0, where each ft is scalar, gt is dgt -dimensional, and ht is
dht -dimensional.

Here we use the tuple notation xt−k:t = (xt−k, xt−k+1, .., xt ). The prefix xk−1:0 are
the system configurations before the path; assuming this to be known simplifies the
notation, without the need to introduce a special notation for the first k terms. The
outer product

⊗
notation means that the constraint functions gt of each time step

are stacked to become the full (dg = ∑
t dgt )-dimensional constraint function g over

the full path. Under this assumption, we define our problem as

1We use the words path and trajectory interchangeably: we always think of a path as a mapping
[0, T ] → R

n , including its temporal profile.
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Fig. 1 Illustration of the structure implied by the k-order Markov Assumption (Eq.2)

Definition 1 (k-order Motion Optimization (KOMO; [34]))

min
x

T∑

t=1

ft (xt−k:t ) s.t. ∀T
t=1 : gt(xt−k:t ) ≤ 0 , ht (xt−k:t ) = 0 . (3)

Figure1 illustrates the structure implied by the k-order Markov Assumption:
Tuples xt−k:t of k + 1 consecutive variables are coupled by the objectives and con-
straints

φt (xt−k:t ) Δ=
⎛

⎜⎜⎜⎜⎝

ft (xt−k:t )
gt(xt−k:t )
ht (xt−k:t )

⎞

⎟⎟⎟⎟⎠
. (4)

We call these φt (xt−k:t ) ∈ R
1+dgt+dht the features at time t , encompassing cost,

inequality, and equality features. In Fig. 1, the coupling features φt (xt−k:t ) are rep-
resented by the boxes. The graphical notation is used in analogy to factor graphs
and conditional random fields (CRFs) [16, 18], helping us to discus these relations
already on the level of the problem formulation.

The structure of CRFs is typically captured in the form

P(y|x) = 1

Z(x, β)
exp{

∑

i

φ̃i (y∂i , x)
�βi } , (5)

where φ̃i (y∂i , x) are features that couple the input x to a tuple y∂i of output variables.2

These features capture the structure of the output distribution P(y|x). Going back to
path optimization, in our case the features φt (xt−k:t ) not only encompass costs, but
also inequality and equality constraints. As plain path optimization is not a learning
problem, we have no global model parameters β. However, as a side note, in the
case of inverse optimal control it is exactly the case that we want to parameterize an

2∂i denotes the neighborhood of feature i in the bipartite graph of features and variables; and thereby
indexes the tuple of variables on which the i th feature depends.
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unknown path cost function and learn it from data—which can be done exactly by
introducing parameters β that weight potential cost features, as in CRFs [9].

2.2 Background on Basic Constrained Optimization

The field of optimization has developed a large amount of methods for non-linear
programming—see [22] for an excellent introduction. These existing methods are
highly relevant also in the context of path optimization. We cannot review in detail
the material here. Instead we summarize, in a very subjective nutshell, a few essential
insights from the field of optimization as follows:

(i) The core two issues in unconstrained optimization are stepsize and step direc-
tion.

(ii) Concerning stepsize, solid adaptation schemes with guarantees are line search
(backtracking and Wolfe conditions) and trust regions.

(iii) Concerning step direction, the Newton direction is the golden standard. If Hes-
sians are not readily available, try to approximate them (quasi-Newtonmethods,
BFGS) or at least account for correlations of gradients or the search space met-
ric (conjugate gradient, natural gradient). Never use plain gradients or even
black-box sampling if there is a chance to be more informed towards New-
ton directions. The Hessian represents the structure of the problem, analogous
to graphical models and factor graphs (see below)—and efficiency requires to
exploit such structure.

(iv) There are various ways to address constrained programs by solving a series
of unconstrained problems, in particular: log-barrier (interior point), primal-
dual-Newton, augmented Lagrangian, and sequential quadratic programming
(SQP). If done properly, each of these approaches might lead to comparable
performance and the best choice depends on the specifics of the application.
Arguably, this choice is less relevant than the previous two points.

As a consequence, in the case of path optimization we need to discuss especially
the structure of the problem, that is, the structure of the Hessian. This will be a
central topic of this tutorial, and we will discuss how this structure relates to factor
graphs and graphical models, and how exploitation of this structure in terms of the
respective linear algebra methods is analogous or equivalent to message passing or
dynamic programming in such graphical models.

In the case of unconstrained optimization (dg = dh = 0), we could directly con-
sider the structure of Newton steps

−∇2 f (x)−1 ∇f (x) (6)

under our assumptions. However, as we are concernedwith a constrained problemwe
first want to recap standard approaches to constrained optimization and discuss what
the implication of these approaches is w.r.t. the structure of the resulting Newton
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steps. We focus on sequential quadratic programming (SQP) and the augmented
Lagrangian (AuLa)method, and only brieflymention standard log barrier and primal-
dual Newton methods.

The Newton method steps, in every iteration, towards the optimum of a local 2nd-
order Taylor approximation of f (x). Sequential Quadratic Programming (SQP, see
[22] for details) is a direct generalization of this: In every iteration we step towards
the optimum of a local Taylor approximation of the original constrained problem
(1). Concretely, we compute the local 2nd-order Taylor of the objective,

f (x + δ) ≈ f (x) + ∇ f (x)�δ + 1

2
δ�∇2 f (x)δ , (7)

and the local 1st-order Taylor of the constraints,

g(x + δ) ≈ g(x) + ∇g(x)�δ , h(x + δ) ≈ h(x) + ∇h(x)�δ . (8)

This defines the sub-problem

min
δ

f (x) + ∇ f (x)�δ + 1

2
δ�∇2 f (x)δ s.t. g(x) + ∇g(x)�δ ≤ 0 , h(x) + ∇h(x)�δ = 0 , (9)

which can be solved with a standard Quadratic Programming solver. In a robotics
context, the computation of the terms ∇f (x),∇2 f (x),∇g(x),∇h(x) is typically
expensive, requiring to query kinematics, dynamics and collision models; but once
these terms are computed locally at x , the sub-problem of computing δ∗ considers
these as constant and does not require further queries. The dimensionality of the sub-
problem (9) is though still the same as that of (1). As in ordinary Newton methods,
the optimal δ∗ only defines a good search direction and we need to backtrack until we
found a point that decreases f sufficiently (Wolfe condition) and that is feasible—
these criteria again require the real kinematics, dynamics and collision models to be
queried.

As a general conclusion, an optimizer should try to reduce the number of queries
as much as possible by putting much effort in deciding on a good step direction and
stepsize. SQP does so by solving the QP (9).

SQP became a standard in robotics. However, we want to also highlight another
method that is not as frequently mentioned in the robotics context and not well
documented for the inequality case: the augmented Lagrangian (AuLa) method [4,
33]. The method is simple and effective. First consider an imprecise but common
practice to handle constraints, namely by adding squared penalty terms. Instead of
solving (1) we address

F(x) = f (x) + ν
∑

j

h j (x)
2 + μ

∑

i

[gi (x) > 0] gi (x)2 , (10)
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which adds squaredpenalties if constraints are violated.3 F(x) canbe efficientlymini-
mizedby a standardGauss–Newtonmethod,which approximates theHessianof F(x)
by∇2F(x) ≈ ∇2 f (x) + ν

∑
j ∇h j (x)∇h j (x)� + μ

∑
i [gi (x) > 0]∇gi (x)∇gi (x)�.

Because the squared penalties are flat at h j = 0 and gi = 0, minimizing F(x)
will lead to constraint violations for the critical (active) constraints. The amount of
violation could be controlled by increasing ν and μ. However, there is a very elegant
alternative: from the amount of violation we can guess Lagrange parameters that,
in the next iteration, push out of constraint violations and “should” lead to satisfied
constraints. Concretely, we define the augmented Lagrangian as

L̂(x) = f (x) +
∑

j

κ j h j (x) +
∑

i

λi gi (x) + ν
∑

j

h j (x)
2 + μ

∑

i

[gi (x) > 0] gi (x)2 , (11)

which includes both, squared penalties and Lagrange terms.
In the first iteration, κ = λ = 0 and L̂(x) = F(x). We compute x ′ = minx L̂(x),

and then reassign Lagrange parameters using the AuLa updates4

κ j ← κ j + 2νh j (x
′) , λi ← max(λi + 2μgi (x

′), 0). (12)

Note that 2νh j (x ′) is the force (gradient) of the equality penalty at x ′, and max(λi +
2μgi (x ′), 0) is the force of the inequality penalty at x ′. What this update does is it
considers the forces exerted by the penalties, and translates them to forces exerted
by the Lagrange terms in the next iteration. This tries to trade the penalizations
for the Lagrange terms. It is straight-forward to prove that, if f, g and h are linear
and the same constraints are active in two consecutive iterations, the AuLa update
(12) assigns “correct” Lagrange parameters, all penalty terms are zero in the second
iteration, and therefore the solution fulfills the first KKT condition after one iteration
[33]. The convergence behavior and efficiency is, in practice, very similar to the
simple and imprecise squared penalty approach, while it leads to precise constraint
handling. Unlike SQP it does not need a QP solver for the sub-problems, but only
a robust Gauss–Newton method on L̂(x). For reference, we include a basic robust
Newton method in Table1.

SQP and AuLa are excellent choices for constrained path optimization also
because in practice they can bemade rather robust against numerically imprecise and
non-smooth objective and constraint functions. For instance, the distance between
two convex 3D polyhedra is a continuous but only piece-wise smooth function; the
gradients and Hessian discontinuously depend on what are the closest points on the
polyhedra. Levenberg–Marquardt damping and the Wolfe conditions help to make
standard Newton methods still lead to efficient monotone decrease. The log barrier
method is an approach to constrained optimization that, in our experience, interferes

3[expr] is the indicator function of a boolean expression.
4There is little literature on the AuLa updates to handle inequalities. The update rule described here
is mentioned in by-passing in [22]; a more elaborate, any-time update that does not strictly require
x ′ = minx L̂(x) is derived in [33], which also discusses more literature on AuLa.
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Table 1 Abasic robust Newtonmethod. Line 3 computes theNewton step d = −∇2 f (x)−1∇ f (x);
in practice, e.g., use the Lapack routine dposv to solve Ax = b using Cholesky. The parameter
λ controls the Levenberg–Marquardt damping, being dual to trust region methods, and makes the
parabola steeper around current x

Input: initial x ∈ R
n , functions f (x), ∇f (x), ∇2 f (x), tolerance θ , parame-

ters (defaults: ρ+
α = 1.2, ρ−

α = 0.5, ρ+
λ = 1, ρ−

λ = 0.5, ρls = 0.01)
Output: x
1: initialize stepsize α = 1 and damping λ = λ0
2: repeat
3: compute d to solve [∇2 f (x) + λI] d = −∇f (x)

if [∇2 f (x) + λI] is not positive definite, increase λ ← 2λ − σmin
4: while f (x + αd) > f (x) + ρls∇f (x)�(αd) do // line search
5: α ← ρ−

α α // decrease stepsize
6: optionally: λ ← ρ+

λ λ and recompute d // increase damping
7: end while
8: x ← x + αd // step is accepted
9: α ← min{ρ+

α α, 1} // increase stepsize
10: optionally: λ ← ρ−

λ λ // decrease damping
11: until ||αd||∞ < θ

non-robustly with such imprecisions of constraint gradients—presumably because
of the extreme conditioning of the barrier functions at convergence.

Primal-dualNewtonmethods are an equally strong candidate for path optimization
asSQPandAuLa, as they sharemany structural aspects. Theprimal anddual variables
are updated conjointly using Newton steps. Thereby we can equally exploit the
structure of the Hessian as we will discuss it in the following. However, for the sake
of brevity we do not go into more details of primal-dual Newton methods.

2.3 The Structure of the Jacobian and Hessian

We can summarize the previous section by observing that AuLa requires to compute
Newton steps of L̂(x),

−
[
∇2 f (x) + ν

∑

j

∇h j (x)∇h j (x)
� + μ

∑

i

[gi (x) > 0] ∇gi (x)∇gi (x)�
]−1

(∇ f (x) + (κ + 2ν)�∇h(x) + (λ + 2μI[gi (x)>0])�∇g(x)) , (13)

and SQPwill apply Newton steps in one or another way to solve the sub-problem (9),
which structurally will involve the same or similar terms as in (13). The efficiency
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Fig. 2 Structure of the Jacobian and Hessian, illustrated for k = 2

of both approaches hinges on how efficiently we can compute such Newton steps,
and this depends on the structure of the bracket term.

Going back to our k-order Markov Assumption (2), the Jacobian of the features

φ(x) =
T⊗

t=1

φt (xt−k:t ) , J (x) = ∂φ(x)

∂x
(14)

reflects the factor graph structure illustrated in Fig. 1. Namely, Fig. 2 shows that the
Jacobian is composed of blocks of rows, each one corresponding to a time t , which
are non-zero only for those columns that correspond to the tuple xt−k:t . Storing the
dense Jacobian would require a Tn × (T + dg + dh)-dimensional matrix with many
zeros. A more natural storage of such a matrix is a row-shifted packing, which clips
all the leading zeros of a row (shifting them to the left) and stores the number of
zeros clipped. This leads to a matrix of at most (k+1)n non-zero columns. Trivially
we have:

Lemma 1 If A is a row-shifted matrix of width l, the product A�A is a banded
symmetric matrix of band width 2l − 1.

Proof Let si be the shift (number of clipped zeros) of the i th row of A. Let B = A�A.
We have

Bi j =
n∑

t=1

Ati At j =
n∑

t=1

Ati At j [st ≤ i < st + l][st ≤ j < st + l] . (15)

If |i − j | ≥ l, then i and j can never be in the same interval [st , st + l), and Bi j = 0.
Therefore B has a band width of 2l − 1.
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In (13) the constraints contribute to the approximate Hessian with terms ∇h j (x)
∇h j (x)� and ∇g j (x)∇g j (x)�. Therefore:

Corollary 1 Under the k-order Markov Assumption, the matrix J (x)� J (x) with
J (x) = ∂φ(x)

∂x is banded symmetric with width 2(k+1)n − 1.

The Hessian ∇2 f (x) of the cost features has the structure

∇2 f (x) =
T∑

t=1

∇2 ft (xt−k:t ) . (16)

Each ∇2 ft (xt−k:t ) is a (k+1)n × (k+1)n block matrix, as illustrated in Fig. 2. The
sum of these block matrices is again banded symmetric and we have

Corollary 2 Under the k-order Markov Assumption, the Hessian∇2 f (x) is banded
symmetric with width 2(k+1)n − 1.

2.4 Computing Newton Steps for Banded Symmetric
Hessians

In the previous section we established the banded symmetric structure of the Hessian
of the augmented Lagrangian. Also when using SQP or other constrained optimiza-
tion approaches, the Hessian for computing Newton steps in the sub-problems will
have this structure, and the efficiency of path optimization will crucially hinge on
the efficiency of computing these Newton steps. Specifically, we have:

Lemma 2 The complexity of computing Newton steps−A−1b for a banded symmet-
ric A of bandwidth 2l − 1 and b ∈ R

m is O(ml2).

Proof Reference [11] describes in Sect. 4.3.5 explicit Algorithms for computing the
Cholesky decomposition of for banded symmetric matrices (Algorihtm 4.3.5) with
complexity O(ml2). Solving the remaining banded triangular system (Algorithm
4.3.2) is O(ml).

As a side note, these algorithms are accessible in LAPACK as dpbsv, which inter-
nally first computes the Cholesky decomposition using dpbtrf and then uses
dpbtrs to solve the remaining linear equation system.

Corollary 3 The complexity of computing Newton steps of the form [∇2 f (x) +
J (x)� J (x)]−1b (as for the KOMO problem (3)) is O(T k2n3).

We emphasize that the complexity is only linear in the number T of time steps.
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2.5 Sum-of-Square Costs, Gauss–Newton Methods,
and the Pullback of Features Space Metrics

The path cost terms ft (xt−k:t ) are, in practice, often sums-of-squares. For instance,
to get smooth paths we might want to minimize squares of accelerations,

||xt + xt−2 − 2xt−1||2 .

In optimal control, we typically want to minimize ||u||2H which, using a local approx-
imation u = Mq̈ + F , implies cost terms

||M(xt + xt−2 − 2xt−1)/τ
2 + F ||2H .

If H is Cholesky decomposed as H = A�A, this is the sum-of-squares of the features
f̂t (xt−k:t ) = A[M(xt + xt−2 − 2xt−1)/τ

2 + F]. Given a kinematic map ψ : R
n →

R
d (e.g., mapping to an endeffector position), we often want to penalize a squared

error ||ψ(xt ) − y∗
t ||2Ct

to a target yt with precisionCt . Again, with a Cholesky decom-

position Ct = A�
t At , defining f̂t (xt−k:t ) = At [ψ(xt ) − y∗

t ] renders this a sum-of-
squares cost.

If all cost terms are sum-of-squares of features f̂t (xt−k:t ) we have

f̂ (x) Δ=
⊗T

t=1
f̂t (xt−k:t ) (17)

f (x) = ∑T
t=1 f̂t (xt−k:t )� f̂t (xt−k:t ) = f̂ (x)� f̂ (x) (18)

∇ f (x) = 2∇ f̂ (x)
�
f̂ (x) (19)

∇2 f (x) = 2∇ f̂ (x)
�∇ f̂ (x) + 2 f̂ (x)�∇2 f̂ (x) . (20)

The Gauss–Newton method computes approximate Newton steps by replacing the

full Hessian∇2 f (x)with the approximation 2∇ f̂ (x)
�∇ f̂ (x), that is, approximating

∇2 f̂ (x) ≈ 0. Note that the pseudo Hessian 2∇ f̂ (x)
�∇ f̂ (x) is always semi-positive

definite. Therefore, no problems arisewith negativeHessian eigenvalues. The pseudo
Hessian only requires the first-order derivatives of the cost features. There is no need
for computationally expensive Hessians of features f̂t or kinematic maps.

It is interesting to add another interpretation of the Gauss–Newton approximation,
see also [25]: The mapping f̂ : RTn → R

d f maps a path to a cost feature space. We
may think of both spaces as Riemannian manifolds and f̂ a differentiable map from
one manifold to the other. In the feature space, the cost f (x) is just the Euclidean
norm f̂ (x)� f̂ (x), which motivates us to think of the feature space as “flat” and
define the Riemannian metric in feature space to be the Euclidean metric. Now, what
is a reasonable metric to be defined on the path space? In differential geometry one
defines the pullback of a metric w.r.t. a differentiable map f̂ as
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〈
x, x ′〉

X =
〈
d f̂ (x), d f̂ (x ′)

〉

Y
(21)

where d f̂ is the differential of f̂ (a Rd f -valued 1-form) and 〈·, ·〉Y is a metric in the
output space of f̂ . In coordinates, and if 〈·, ·〉Y is Euclidean as in our case, we have

〈x, y〉X = ∇ f̂ (x)�∇ f̂ (x) (22)

and therefore, the pseudo Hessian 2∇ f̂ (x)
�∇ f̂ (x) is the pullback of a Euclidean

cost featuremetric. For instance, if some cost features f̂t penalize velocities in feature
space, finding paths x that minimize f (x) corresponds to computing geodesics in
the configuration space w.r.t. the pullback of a Euclidean feature space metric. If
some cost features penalize accelerations (or control costs, as above) in some feature
space, the result are geodesics in the system’s phase space w.r.t. a pullback metric.

2.6 Relation to Graph-SLAM Methods

Simultaneous Localization andMapping (SLAM) is closely related to path optimiza-
tion. Essentially the problem is to find a path of the camera that is consistent with
the sensor readings. Graph-SLAM [10, 29] explicitly formulates this problem as an
optimization problem on a graph.

Following the conventions of G2O [17], the graph SLAMproblem can be reduced
to the form

min
x

∑

(i, j)∈C
e(xi , x j , zi j )

�Ωi j e(xi , x j , zi j ) , (23)

where e(xi , x j , zi j ) is a “vector-valued error function” that indicates the consistency
of states xi and x j with constraints zi j . If we decompose the metricΩi j = A�

i j Ai j and
define fi j (x) = Ai j e(xi , x j , zi j ), this becomes a standard structured sum-of-squares
problem. For k = 1, the KOMO problem (3) without constraints becomes a special
case of (23), where the graph is just a chain. G2O is a highly-efficient solver for
general graph least squares problems.

GTSAM [5] is another solver that allows for higher-order tuples of factors. It
adopts a probabilistic interpretation of the problem (as also discussed below), but
targets at computing the maximum-likelihood assignment of all random variables,
which is equivalent to optimization on a factor graph. Again, unconstrained KOMO
is the special k-orderMarkov case for such general least squares problems. Reference
[8] exploit exactly these relations. They demonstrate the efficiency of using GTSAM
for motion optimization, in addition to making the relation to Gaussian Processes
(see below). As the approach fully exploits the structure of the problem’s Hessian,
the method is drastically more efficient as compared to other methods.
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As a final note, none of the above consider hard constraints as we have them in
KOMO.However, using, e.g., the AuLamethods it should not be hard to extend them
to include hard constraints.

2.7 Relation to CHOMP

Let me briefly recap the notion of a covariant gradient of an objective function f (x).
The plain partial derivative ∇ f (x) is, strictly speaking, not a vector, but a co-vector.
The direction of∇ f (x) depends on the choice of coordinates. Related to this,∇ f (x)
only describes the steepest descent directionw.r.t. a Euclidean metric. In general, the
steepest descent direction should be defined depending on the metric as

δ∗ = argmin
δ

∇ f (x)�δ s.t. 〈δ, δ〉 = 1 .

Here we take a step of length one and check how much f (x) decreases in its linear
approximation. The “length one” depends on themetric 〈·, ·〉. If, in given coordinates,
the metric is 〈x, y〉 = x�Gy, with metric tensor G, then one can show that

δ∗ ∝ −G−1∇ f (x) . (24)

It turns our that δ∗ is a proper (covariant) vector that does not depend on the choice of
coordinates. δ∗(x) is a covariant gradient of f (x), more precisely, it is the covariant
gradient w.r.t. the metric G. The Newton step is also a covariant vector: its direction
is the covariant gradient of f (x) w.r.t. the metric H(x), that is, the Hessian acts as
the local metric.

Covariant gradient descent therefore utilizes a metric in X to make the partial
derivative become a covariant gradient. In the context of probability distributions,
this metric is typically chosen to be the Fisher metric, also referred to as “natural
gradient”.

CHOMP [24] chooses the Hessian of smoothing costs as the path metric, and
implements steepest descent (24) w.r.t. this metric. This is like a Newton step that
drops the Hessian of the other, non-smoothing cost terms. More concretely, as
smoothing cost terms CHOMP may, for instance, consider sum-of-squared accel-
erations

∑T
t=1 f 2t with cost features f̂t = xt + xt−2 − 2xt−1. The Hessian H =

2∇ f̂ �∇ f̂ we established above is what CHOMP takes a path metric. In that sense,
KOMO or any other classical Newton method generalize CHOMP to also include
the Hessian of other cost terms in the Newton step.

However, this particular setting of CHOMP has the benefit that H (the Hessian
of acceleration costs) is constant and sparse, making the linear algebra operations of
computing quasi-Newton steps fast. Very fast kinematics and collision evaluations
(using precomputed distance fields and a set-of-capsules approximation of the robot)
further contributed to the performance and success of CHOMP.
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3 Including More Global Smoothness Objectives

Smoothness is a basic objective we have about robot motion. Typically, smoothness
is implied by minimizing accelerations, control costs, or jerk along a path. While
these objectives are local and complywith out local k-orderMarkov assumption, they
still imply a form global smoothness. E.g., it is well-known that B-splines minimize
squared accelerations subject to the knot constraints.

However, it is interesting to consider objectives that directly imply a form of
global smoothness. We have in particular Gaussian Processes in mind, where the
kernel functions directly defines the correlatedness of distal points and thereby the
desired form of smoothness. We will show below that such kind of smoothness
objectives are not compliant with the k-order Markov assumption, but propose ways
to handle them anyway.

Before discussingGaussianProcess smoothness objectiveswefirst consider spline
encodings of paths as a means to impose global smoothness.

3.1 Splines

Basis splines, or B-splines, are a simple way to reduce the dimensionality of the path
representation. First assumewewant to represent a continuous 1D path x : [0, T ] →
R with K+1 knots zk ∈ R, k = 0, .., K . For a given degree p, let tk ∈ [0, T ], k =
0, .., K + p + 1 be a series of increasing time steps associated with the knots.5 Then
we can compute coefficients6 b(t) ∈ R

K+1 such that x(t) = b(t)�z. Therefore, x(t)
is linear in the spline parameters z.

We previously defined x ∈ R
T×n to be a discrete time path in n-dimensional

configuration space. In this case we can compute once the discrete time spline basis
matrix B̄ ∈ R

T+1×K+1 with Bt · = b(t/T ) and then can represent

x̄ = B̄ z̄ , (26)

with spline parameters z ∈ R
K×n . Here, x̄ = x0:T and z̄ = z0:K include the given start

configuration x0 = z0 ∈ R
n . To match better with the previous sections’ notation we

5The time steps can, e.g., be chosen “uniformly” within [0, T ], tk = T

⎧
⎪⎨

⎪⎩

0 k ≤ p

1 k ≥ K+1
k−p

K+1−p otherwise

,

which also assigns t0:p = 0 and tK+1:K+p+1 = T , ensuring that x0 = z0 and xT = zK .
6The coefficients can be computed recursively. We initialize b0k (t) = [tk ≤ t < tk+1] and then com-
pute recursively for d = 1, .., p

bdk (t) = t − tk
tk+d − tk

bd−1
k (t) + tk+d+1 − t

tk+d+1 − tt+1
bd−1
k−1 (t) , (25)

up to the desired degree p, to get b(t) ≡ bp
0:K (t).
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rewrite this as

x = Bz + bx�
0 , (27)

where B = B̄1:T,1:K and b = B1:T,0.
In conclusion, spline representations provide a simple linear re-representation of

paths. In the spline representation, the feature Jacobian and Hessian are

Jz = Jx B (28)

Hz = B�Hx B , (29)

where Jx and Hx are the feature Jacobian and Hessian in the original path space.7

Note that the spline basis matrix is also structured in a “banded”, or row-shifted,
manner, similar to the feature Jacobian. Namely,

b(t)k �= 0 ⇒ tk ≤ t ≤ tk+p+1 (30)

Btk �= 0 ⇒ T (k − p)

K + 1 − p
≤ t ≤ T (k+1)

K + 1 − p
(31)

⇔ (K + 1 − p) t/T − 1 ≤ k ≤ (K + 1 − p) t/T + p . (32)

So the non-zero width of each row is p + 2, and the non-zero height of each column
is T (p + 2)/(K + 1 − p).

Corollary 4 In a spline representation of degree p, the Hessian B�Hx B has band-
width O(kpn).

It is imperative to exploit this kind of sparsity of the spline basis matrix to ensure that
the complexity of the matrix multiplication Jx B in (28) is only O(dknp) (recall, d
is the number of features) instead of O(dTnK ). Equally, computing Hx B in (29) is
O(Tn2kp).

Now, does such a lower-dimensional spline representation of paths speed upNew-
ton methods? We first note

Corollary 5 The computational complexity of computing Jz is O(dknp), of Hz is
O(Tn2kp), of a Newton step H−1

z z is O(Kn(kpn)2).

Overall, the complexity w.r.t. T is dominated by the computation of Jz and Hz and
gives O(T ); and w.r.t. n, k it is dominated by the Newton step giving O(k2n3).
Both are exactly as for the original Newton step without spline representation. Note
that also line search steps (e.g., checking the Wolfe condition) is O(T ) in both
representations as the whole path needs to be evaluated.

If the complexity of computing Newton steps is not reduced in the spline rep-
resentation, perhaps we need less iterations? We first note that Newton steps are

7As x is a matrix, Jx is, strictly speaking, a tensor and the above equations are tensor equations in
which the t index of B binds to only one index of Jx and Hx .
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covariant, that is, their direction is invariant under coordinate transforms. There-
fore, if B would have full rank, the Newton steps are identical. Performing Newton
steps on a lower-dimensional linear projection B is the same as projecting the high-
dimensional Newton steps onto the low-dimensional hyperplane. There is no a priori
reason for why this should lead to less iterations.

In conclusion, optimizing on a low-dimensional spline representation of the path
does not necessarily lead to more efficient optimization. Empirically we often find
that more Newton iterations are needed in a spline representation where the found
path is less optimal.

Nevertheless, splines are a standard approach in path optimization. Perhaps
the real motivation for using splines in practice is that they impose a large-scale
smoothness on the solution which cannot efficiently be captured by cost features
on k+1-tuples xt :t+k . However, let us consider alternative approaches to large-scale
smoothness in the following section.

3.2 Covariance Smoothness Objectives and Gaussian Process
Priors

The k-order Markov structure allows us to express smoothness objectives in terms
of cost features over the kth path derivatives. Such local smoothness objectives are
different to global smoothness constraints as implied by spline projections, or the
kind of smoothness implied by Gaussian Process (GP) priors.

Considering the latter, for discretized time, a GP is nothing but a joint Gaussian
over all path points. For instance, a GP represents the prior

P(x) = N (x |0, K ) ∝ exp{−1

2
x�K−1x} , Kts = k(t, s) , (33)

where the kernel function k(t, s) is the correlation between the configurations xt
and xs at two different times t and s. A typical kernel function used in GPs is the
squared exponential kernel k(t, s) = exp{−(t − s)2/σ 2} for some band width σ .
Figure3(left) illustrates such a covariance matrix K in gray shading.

In our optimization context, such a GP prior translates to neg-log-probability
costs, namely

− log P(x) ∝ 1

2
x�K−1x . (34)

Note the matrix inversion here! Fig. 3(right) illustrates the matrix K−1, which turns
out to be in no way ‘local’ or banded. This precision matrix K−1 plays the role
of a Hessian in the cost formulation. The checker board structure can vaguely be
understood as penalizing derivatives of the path. The rather surprising non-local
structure of K−1 clearly breaks our k-order Markov assumption. However, it turns
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Fig. 3 Left The 20 × 20 covariance matrix Ki j = exp{−((i − j)/3)2} (zero=white). Right its
inverse (precision matrix) K−1 (zero=gray)

out that we can still compute Newton steps efficiently, in a manner that exploits the
structure of K . To derive this, let us more formally define the generalized problem
as

Definition 2 (Covariance regularized KOMO (CoKOMO))

min
x

∑

t

ft (xt−k:t ) + 1

2
x�K−1x s.t. ∀t : gt(xt−k:t ) ≤ 0 , ht (xt−k:t ) = 0 (35)

We define, as before, H = ∑
t ∇2 ft as the Hessian of the cost features, or H =

∇ f̂ �∇ f̂ in theGauss–Newton case.The system’s fullHessian is H + K−1. Therefore

Corollary 6 In CoKOMO, for a finite-support kernel, the total Hessian H̄ = H +
K−1 is a sum of a banded matrix H and the inverse of a banded matrix K .

Computing a Newton step of the form −H̄−1g for some g8 can be tackled as follows

(H + K−1)−1g = K (HK + I )−1g . (36)

Note that, if H and K are both banded, then (HK + I ) is banded and computing
(HK + I )−1g is, exactly as before, O(Tnb2) if b is the bandwidth of HK . We have

Lemma 3 If H is of semi-bandwidth h (that is, total bandwidth 2h − 1) and K is
of semi-bandwidth c, then HK is of semi-bandwidth h + c.

8In the AuLa case, g = ∇L̂(x), see Eq. (12). In the SQP case, the inner loop for solving the QP (9)
would compute Newton steps w.r.t. the Hessian H̄ .
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Proof

(HK )i j =
∑

k

Hik Kkj =
∑

k

[−h ≤ i − k ≤ h][−c ≤ j − k ≤ c] HikKkj (37)

= [−h − c ≤ i − j ≤ h + c]
∑

k

Hik Kkj . (38)

Corollary 7 Under the k-orderMarkov Assumption and including a banded covari-
ance regularization of semi-bandwidth cn, the complexity of computing Newton steps
of the form −(H + K−1)−1g is O(T (k + c)2n3).

This is in comparison to the O(T k2n3) without the covariance regularization. We
assumed a semi-bandwidth cn for K to account for the dimensionality of each xt ∈
R

n .
As a side note, the Woodbury identity and rank-one update (Sherman–Morrison

formula) provide alternatives ideas to handle terms like (H + K−1)−1, namely

(H + K−1)−1 = K − (I + K H)−1K HK (39)

(vv� + K−1)−1 = K − Kvv�K
1 + v�Kv

. (40)

The first line (Woodbury) involves only bandedmatrices, but seems less efficient than
(36). The second line (Sherman–Morrison) provides a way to recursively compute
(H + K−1)−1 as a series of rank-one updates if H = ∑

i vi v
�
i —as is exactly the case

in the Gauss–Newton approximation H ≈ 2∇ f̂ �∇ f̂ . Again, all computations only
rely on multiplication with banded matrices.

4 The Optimal Control Perspective

So far we have not mentioned controls at all. However, path optimization and KOMO
are intimately related to standard optimal control methods. The aim of this section
is two-fold, namely to clarify these relations as well as to derive algorithms for
controlling a system around an optimal path.

Our starting point will be the discussion of an alternative solution approach to
our optimization problem: a dynamic programming perspective on solving the gen-
eral KOMO problem (3). This will be rather straight-forward, adapting Bellman’s
equation to the k-order constrained case, and leads to an optimal regulator around
the path. This though leads to many insights:

(i) Using a 2nd-order approximation of all terms, the backward equation can be
used to compute aNewton step—which now very explicitly shows the linear-in-
T complexity of computing Newton steps and gives interesting insights in how
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the inversion of a banded symmetric matrix is related to dynamic programming
on Markov chains.

(ii) Assuming a k = 1-order linear-quadratic control process, the 2nd-order approx-
imate backward equation coincides with the Riccati equation. This gives
insights in the tight interrelations between DDP, iLQG and Newton methods.

(iii) Moving to a probabilistic interpretation of the objective function we can con-
nect to the recent work on using probabilistic inference methods for optimal
control [26]. In particular, backward and forward dynamic programming in our
KOMO problem become equivalent to backward and forward message passing
in Markov chains. Based on this we can point to the relations with path integral
control methods, AICO,�-learning, ExpectationMaximization and eNAC that
are detailed in [26].

4.1 Background on Basic Optimal Control

Let us first recap the basic formulation of optimal control problems. In the discrete
time setting, we consider a controlled system xt+1 = f (xt , ut ) and aim to minimize

min
x,u

∑T
t=1 ct (xt , ut ) s.t. xt+1 = f (xt , ut ) . (41)

Here we optimize over both, the state path x = x1:T and the control path u = u1:T .
Both are of course related by the system dynamics. Given a control path u we can
compute the state path x = F(u) as a function of the start state and the controls by
iterating the dynamics f (xt , ut ). The control problem can be recast as

min
u

∑T
t=1 ct (F(u)t , ut ) , (42)

and is typically solved by iteratively finding a better control path u (e.g. by a Newton
step on u, or by dynamic programming, see below) and then recomputing the state
path x = F(u). This is called indirect method or multiple shooting. DDP and iLQG,
which we discuss below, are such indirect methods.

This is in contrast to directmethodswhich instead consider x to be the optimization
variable. Roughly, let u(xt , xt+1) be the control needed to transition from xt to xt+1.
In non-holonomic systems, where not all transitions are feasible, let h(xt , xt+1) = 0
express an equality constraint that ensures the existence of a control signalu(xt , xt+1).
Then the problem can be recast as

min
x

∑T
t=1 ct (xt , u(xt , xt+1)) s.t. h(xt , xt+1) = 0 . (43)

Such direct methods eliminate the controls from the problem. Our KOMO formula-
tion is therefore a direct method.
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The dynamic programming approach to solving such problems is to define the
optimal cost-to-go function (or value function). In the indirect view (see below for
the Bellman equation in the direct view) we define

Vt (x) = min
ut :T

∑T
s=t cs(xs, us) , (44)

which, for every possible xt = x , computes the optimal (minimal) cost for the remain-
ing path. Bellman’s optimality equation can be derived by separating out the opti-
mization over the next control ut ,

Vt (x) = min
ut

[
ct (x, ut ) + min

ut+1:T

∑T
s=t+1 cs(xs, us)

]
(45)

= min
ut

[
ct (x, ut ) + Vt+1( f (x, ut ))

]
. (46)

In a nutshell, the core implications of Bellman’s equation are

(i) In principle we can compute all Vt recursively, iterating backward from VT+1 ≡
0 to V1 using Eq. (46). To retrieve the optimal control path u and state path x
we then iterate forward

ut = argmin
ut

[
ct (xt , ut ) + Vt+1( f (x, ut ))

]
, xt+1 = f (xt , ut ) , (47)

starting from the start state x1. This forward iteration is called shooting. There-
fore, if we can compute all Vt exactly, we can solve the optimization problem.

(ii) In the LQ case, where f (x, u) = Ax + Bu is linear and c(x, u) = x�Qx +
u�Hu is quadratic, all cost-to-go functions are quadratic of the form Vt (x) =
x�V̂t x and the minimization in the Bellman Eq. (46) is analytically given by
the Riccati equation

V̂t = Q + A�[V̂t+1 − V̂t+1B(H + B�V̂t+1B)−1B�V̂t+1]A , V̂T+1 = 0 .

(48)

Given we computed all V̂t , the optimal controls for forward shooting (47) are

ut = (H + B�V̂t+1B)−1B�V̂t+1Axt , (49)

which is call the Linear Quadratic Regulator. The fact that we have this optimal
regulator defined globally for all possible xt adds a fully new perspective: We
can not only use it for forward shooting to find the optimal path, but we can also
use it during execution as a controller to react to perturbations of our system
from the planned path.

(iii) The LQ case is the analogy to the 2nd-order Taylor approximation of a non-
linear objective function: To solve a non-LQ control problem one typically
starts with an initial path x , approximates the dynamics and costs to 1st- or
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2nd-order around x , and then solves this locally approximate problem to yield
a new, better path x . There are some alternatives on how to do this in detail:

• If we approximate all terms exactly up to 2nd-order, compute all Vt in (46) and
also use this second order approximation for the forward shooting (47), then
this is exactly equivalent to a Newton step on the path optimization problem:
We approximated all terms up to 2nd order and found the minimum of that
local approximation. However, this is not what typical control methods do:

• If we use 2nd-order approximations to compute all Vt in (46), but then the
true non-linear dynamics for forward shooting in (47), this is referred to as
Differential Dynamic Programming (usually formulated in continuous time)
[20, DDP;].

• If we use an LQ-approximation (which neglects the dynamic’s Hessian) to
compute all Vt using the Riccati equation, but then the true non-linear dynam-
ics for forward shooting in (47), this is referred to as iterative LQG [30,
iLQG;].

Both, DDP and iLQG have additional details on how exactly to ensure con-
vergence, analogous to Levenberg–Marquardt damping and backtracking in a
robust Newton method. The fine difference to Newton’s method has its origin
in the fact that they are indirect methods, and therefore can use the exact non-
linear dynamics in the forward shooting [19]. For very non-linear systems this
may be beneficial [30].
In all three cases, the computed Vt in principle define a linear regulator around
the path, which, however, does not guarantee to keep the system close to the
state region where the local approximation is viable. This can be addressed
using Model Predictive Control (MPC) as discussed below.

With this background, let us first discuss a (direct) dynamic programming
approach to solve the KOMO problem, and then compare to standard LQG, DDP
and iLQG methods.

4.2 k-Order Constrained Dynamic Programming
and Constrained LQR Control

For easier reference we restate the general KOMO problem (3),

min
x

T∑

t=1

ft (xt−k:t ) s.t. ∀T
t=1 : gt(xt−k:t ) ≤ 0 , ht (xt−k:t ) = 0 . (3)
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Following the dynamic programming principle we define a value function over a
separator9 xt−k:t−1,

Definition 3 (k-order constrained Dynamic Programming (KODP))

Jt (xt−k:t−1) Δ= min
xt :T

T∑

s=t

fs(xs−k:s) s.t. ∀T
s=t : gs(xs−k:s) ≤ 0 , hs(xs−k:s) = 0 , (50)

= min
xt

[
ft (xt−k:t ) + Jt+1(xt−k+1:t )

]
s.t. gt (xt−k:t ) ≤ 0 , ht (xt−k:t ) = 0 , (51)

JT+1 Δ= 0 . (52)

Such k-order constrained Bellman equations are comparatively rare in the literature,
but straight-forward and mentioned already by Bellman in the 50’s [1]. See also
[7]. Reference [28] presented a DP approach for the special case with constraints
on the controls only. Solving the general non-linear constrained case, computing
Jt (xt−k:t−1) for all xt−k:t−1, is infeasible.

If, as in DDP and SQP, we approximate all cost terms ft as second order and con-
straints gt , ht in first order, [2] shows an explicit derivation of an optimal constrained
LQR (C-LQR) controller. The computation is complex and the resulting C-LQR is
piece-wise linear and continuous, where the pieces correspond to constrained activ-
ities of the underlying QP. Reference [2] emphasize the benefit of computing such
optimal constrained regulators offline, for all xt−k:t−1, rather than requiring a fast
local MPC within the control loop to solve the resulting QP for the current xt−k:t−1.

An alternative approximation to the problem (50) is to not only linearize around
an optimal path, but also adopt the Lagrange parameters of the optimal path [1]. This
clearly is not optimal, as the true pathmight hit constraints other than the optimal path
and therefore require different Lagrange parameters. But it lends itself to a simple
regulator that also, using a one-step-lookahead, is guaranteed to generate feasible
paths.

For fixed Lagrange parameters κt , λt , the dynamic programming principle for the
Lagrangian is

J̃t (xt−k:t−1)
Δ= min

xt :T

T∑

s=t

fs(xs−k:s) + λ�
s gs(xs−k:s) + κ�

s hs(xs−k:s) (53)

= min
xt

[
ft (xt−k:t ) + λ�

t gt(xt−k:t ) + κ�
t ht (xt−k:t ) + J̃t+1(xt−k+1:t )

]
.

(54)

This can efficiently be computed in the LQ approximation, see below. Given
Jt (xt−k:t−1) for all t , we define

9We use the word separator as in Junction Trees: a separator makes the sub-trees conditionally
independent. In the Markov context, the future becomes independent from the past conditional to
the separator.
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Definition 4 (Approximate (fixed Lagrangian) constrained LQR (acLQR))

πt : xt−k:t−1 �→ argmin
xt

[
ft (xt−k:t ) + J̃t+1(xt−k+1:t )

]

s.t. gt (xt−k:t ) ≤ 0, ht (xt−k:t ) = 0 . (55)

Note that to determine the controls at time step t , we release the Lagrange parameters
again and hard constrain w.r.t. gt and ht . Only the Lagrange-cost-to-go function
J̃t+1(xt−k+1:t ), computed via (53), employs the fixed Lagrange parameters. If for all
t a feasible xt is found, the whole path is guaranteed to be feasible.

To compute J̃t (xt−k:t−1) in the fixed Lagrange parameter case (53), the Lagrange
terms can be absorbed in the cost terms fs . To simplify the notation let us therefore
focus only the unconstrained k-order dynamic programming case,

J̃t (xt−k:t−1) = min
xt

[
f̃t (xt−k:t ) + J̃t+1(xt−k+1:t )

]
, J̃T+1 = 0 , (56)

where f̃ = f + λ�g + κ�h, for all indices.

In the quadratic approximation we assume

J̃t (x) = x�Vt x + 2v�
t x + v̄t (57)

f̃t (x) ≈ ∇ f̃t (x
∗)�(x − x∗) + 1

2
(x − x∗)�∇2 f̃t (x

∗)(x − x∗) + f̃t (x
∗) . (58)

To derive an explicit minimizer xt in (56) wewrite the 2nd-order polynomial in block
matrix form[

f̃t (xt−k:t ) + J̃t+1(xt−k+1:t )
]

Δ=
⎛

⎝xt−k:t−1
xt

⎞

⎠
�⎛

⎝Dt Ct

C�
t Et

⎞

⎠

⎛

⎝xt−k:t−1
xt

⎞

⎠ + 2
⎛

⎝dt
et

⎞

⎠
�⎛

⎝xt−k:t−1
xt

⎞

⎠ + ct ,

(59)

where the componentsDt , Et ,Ct , dt , et , ct are trivially defined in termsof∇2 f̃t (x∗),∇
f̃t (x∗), f̃t (x∗), Vt+1, vt+1 and v̄t+1. Then

x∗
t = argmin

xt

[
f̃t (xt−k:t ) + J̃t+1(xt−k+1:t )

]
= −E−1

t (C�
t xt−k:t−1 + et ) (60)

Vt = Dt − Ct E
−1
t C�

t , vt = dt − Ct E
−1
t et , v̄t = ct − e�

t E
−1
t et . (61)

To get more intuition about this equation, let us first discuss the Riccati equation
as special case.
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4.3 Sanity Check in the LQG Case and Relation
to DDP and iLQG

Let us assume k = 1 (a standard Markov chain) and standard linear control of a
holonomic system,

xt = Axt−1 + But−1 , Jt (xt−1) = min
xt :T

T∑

s=t

||xs − Axs−1||2Ĥ + ||xs ||2Q (62)

with Ĥ = B-�HB−1. Identifying ft (xt−1:t ) = ||xt − Axt−1||2Ĥ + ||xt ||2Q we have

∇ ft = 2
⎛

⎜⎝
−A�
1

⎞

⎟⎠Ĥ(xt − Axt−1) + 2
⎛

⎜⎝
1
0

⎞

⎟⎠Qxt , ∇2 ft = 2
⎛

⎜⎜⎝
A� Ĥ A −A� Ĥ
−Ĥ A Ĥ + Q

⎞

⎟⎟⎠ (63)

Dt = A� Ĥ A , Et = Ĥ + Q + Vt+1 , Ct = −A� Ĥ (64)

Vt = A�
[
Ĥ − Ĥ(Ĥ + Q + Vt+1)

−1 Ĥ
]
A = A�

[
(Ĥ−1 + V̂−1)−1)

]
A (65)

= A�
[
V̂ − V̂ (Ĥ + V̂ )−1V̂ )

]
A . (66)

where V̂ = Q + Vt+1 and the last lines use theWoodbury identity (A−1 + B−1)−1 =
A − A(A + B)−1A twice. The last line is the classical Riccati equation for V̂ .

This was just a sanity check, confirming that in the unconstrained LQ-case, the
DP equation (53) reduces to the standard Riccati equation. Let us recap what we have
found:

(i) We know that in the unconstrained LQ case, or KOMO problem is just an
unconstrained quadratic program, where the first Newton step directly jumps
to the optimum.

(ii) One way to compute this Newton step (or optimum) is via the methods we
described in the first part of the paper where we emphasized the importance
of the structure of the Hessian as a banded symmetric matrix, allowing for the
complexity O(T k2n3) of computing Newton steps under the KOMO assump-
tion. We derived this complexity by looking at the respective matrix operations,
in particular the implicit Cholesky decomposition.

(iii) We have now seen a second way to compute the optimum, by recursing back-
ward the explicit DP equation (53), or (61) in the LQ approximation, which
equally has complexity O(T k2n3). This establishes an explicit relation between
matrix inversion and the dynamic programming case.

(iv) If these methods are applied to local LQ approximations of a non-linear prob-
lem, the Newton step and Riccati equation lead to the same next iterate, that
is, the same next path. In that view, the standard indirect multiple shooting
methods DDP and iLQG can be viewed as Newton methods that use the Ric-
cati equation (or DDP’s equation) to compute Newton steps instead of banded
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matrix inversion. Both algorithms also require step size controlling, such as
Levenberg–Marquardt, to become robust.

(v) However, as mentioned already in Sect. 4.1, DDP and iLQG are different to
Newton steps in one respect: Both use a Riccati sweep or 2nd-order Taylor
approximations to compute the next control path u. However, the control path
u is then used to compute the next state path x = F(u) using the exact forward
dynamics.
If we wanted to get equivalent iterates using Newton steps we would have to:
(1) compute the next state path x using a Newton step, (2) compute the control
path u for x , (3) use the exact non-linear dynamics x ′ = F(u) to compute a
corrected state path x ′.

This clarifies the tight relations between classical DDP and iLQG and Newton
steps in KOMO. A further technical difference is that in KOMO we can alterna-
tively represent the problem as a k = 2-order process on the configuration variables,
instead of as a k = 1-order process in phase space, which may be numerically more
stable. Hard constraints have been considered in iLQG only for the special case
with constraints on the controls [28]. The particular k-order constrained Dynamic
Programming (50) has, to our knowledge, not been proposed before.

4.4 Constrained Model Predictive Control and Staying Close
to the Reference

Stochasticity (or un-modelled additional aspects such as control delay or motor con-
troller properties) will always lead us away from the optimal path. Depending how
far we are off, the 2nd-order approximations we used to optimize the path and derive
the acLQR around the path become imprecise and might lead to even more devia-
tion from the optimal path. The standard approach to compensate for this is Model
Predictive Control (MPC) (see, e.g., [6]).

In MPC we solve, in real time, at every time step t a finite horizon trajectory
optimization problem given the concrete current state xt . This finite horizon problem
will also be non-linear and require local 2nd-order approximations, but these approx-
imations are computed at the true xt . When an optimal path x∗ was precomputed,
the finite-horizon MPC problem can be defined as finding controls that steer back
to the reference path, e.g., minxt :t+H ||u||2H s.t. xt+H = x∗

t+H . However, MPC can
also be viewed as an H -step lookahead variant of the optimal controller we get from
the Bellman equation. In this view our acLQR (55) is a 1-step MPC. We can more
generally define
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Definition 5 (Approximate (fixed Lagrangian) constrained MPC Regulator
(acMPC))

πt : xt−k:t−1 �→ argmin
xt :t+H−1

[ t+H−1∑

s=t

fs(xs−k:s) + J̃t+H (xt+H−k:t+H−1) + ρ||xt+H−1 − x∗
t+H−1||2

]

s.t. ∀t+H−1
s=t : gs(xs−k:s) ≤ 0, hs(xs−k:s) = 0 . (67)

Let’s neglect the ρ-term first. For H = 1 this optimizes over only one configuration,
xt , and reduces to the acLQR (55) that relies on the (fixed Lagrangian) cost-to-
go estimate J̃t+1. For H = T − t + 1, acMPC becomes the full, long-horizon path
optimization problem until termination T .

In typical applications, that is, for typical choices of the original KOMO prob-
lem (3) there is a caveat: Very often the objectives concern control costs and
costs/constraints associated with the final state xT only. The effect is that the value
functions J̃t+H have, for t � T , very low eigenvalues. The resulting “gains” of the
acLQR or acMPC will therefore also be very low. If the real system was linear, this
would not be a problem—the Riccati equation tells us that this low-gain controller
is optimal globally no matter how far we perturbed from the reference. However, in
practice, for non-linear and imprecisely modeled systems, this would lead to a large
and undesirable drift away from the reference, making the precomputed x∗ and its
local linearizations irrelevant, and be non-robust against small model errors.

The standard way to enforce staying closer to the reference during execution is to
add the ρ-term to enforce steering back to the reference at horizon H . The second
option is to introduce additional penalties f̃t ← f̃t + ρ||xt − x∗

t ||2 for deviations in
every time step10 and use this f̃t in the backward dynamic programming (53) to
compute value functions J̃t for the KOMO problem with cost terms f̃t . Using such
MPC we get robust trajectory tracking and can tune the stiffness of tracking by
adjusting ρ and H .

4.5 Probabilistic Interpretation and the Laplace
Approximation

Let us neglect constraints and consider problems of the form

min
x

f (x) , f (x) =
∑

t

ft (xt−k:t ) . (68)

There is a natural relation between cost (or “neg-energy”, “error”) and probabilities.
Namely, if f (x) denotes a cost for state x—or an error one assigns to choosing

10Note the relation to Levenberg–Marquardt regularization.
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x—and p(x) denotes a probability for every possible value of x , then a natural
relation11 is

P(x) ∝ e− f (x) , f (x) = − log p(x) . (69)

Given a problem of the form (68) we may therefore define a distribution over paths
as

P(x) ∝
∏

t

exp{− fi (xt−k:t )} . (70)

It is interesting to investigate how this probability distribution over paths is related
to finding the optimal path, and to stochastic optimal control under the respective
costs. Note that in the optimal control context (k = 1), ft (xt−1:t ) subsumes control
costs and state costs, e.g., ft (xt−1:t ) = ||u||2H + ||xt ||2R where u = u(xt−1, xt ).

References [26, 31] discuss an approach to stochastic optimal control that con-
siders the distribution

P(x0:T , u0:T ) ∝ P(x0)
T∏

t=0

P(xt+1|xt , ut ) π(ut |xt ) exp{−ηct (xt , ut )} . (71)

Here, in contrast to (70), this is the joint distribution over controls and states. Ref-
erence [26] discuss in detail how inference, or more precisely, minimizing KL-
divergences under such probabilistic models generalizes previous approaches such
as path integral control methods [14], Approximate Inference Control [31], but also
model-free Expectation Maximization and eNAC policy search methods [23, 35].

In all these contexts, a central problem of interest is to approximate the marginals
of the path distribution (71). Above we already established the equivalence of DP
programming andNewton steps in an LQ setting.Message passing inGaussian factor
graphs is generally equivalent to DPwith squared cost-to-go functions. Typically one
distinguishes between DP, which computes cost-to-go functions, and the forward
unrolling of the optimal controller, to compute the optimal path. This can be viewed
more symmetrically: computing optimal cost-to-go and cost-so-far functions forward
and backward (or cost-to-go functions for all branches of a tree) equally yields the
optimal path.

If the factor graph is not Gaussian, or the objective not 2nd-order polynomial,
message passing as well as DP are approximated. Again, using Gaussian approx-
imate message passing—e.g., as in extended Kalman filtering and smoothing—is
equivalent to approximating the cost-to-go function locally as quadratic [31]. In

11Why is this a natural relation? Let us assume we have p(x). We want to find a cost quantity f (x)
which is some function of p(x). We require that if a certain value x1 is more likely than another,
p(x1) > p(x2), then picking x1 should imply less cost, f (x1) < f (x2) (Axiom 1). Further, when
we have two independent random variables x and y probabilities are multiplicative, p(x, y) =
p(x)p(y). We require that, for independent variables, cost is additive, f (x, y) = f (x) + f (y)
(Axiom 2). From both follows that f needs to be a logarithm of p.
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conclusion, iterative Gaussian message passing to estimate marginals of (71) is very
closely related to iterative DP using local LQG approximations and Newton methods
to minimize (68).

So what are the motivations for the mentioned family of methods that build on
the probabilistic interpretation? Essentially it is specific ideas on how exactly to
do the approximation that arise from the probabilistic view, other than the Laplace
approximation. For instance, in the probabilistic setting Gaussian messages can also
be approximated using the Unscented Transform [12], or Expectation Propagation
[21]. These are slightly different to local Laplace approximations. Importantly, if the
path distribution cannot well be approximated as Gaussian, esp. because it is multi-
modal, the probabilistic view provides alternative approaches to approximation, for
instance, sampling from thepath distribution [13].Herewe see that the goal of optimal
control under a multi-modal path distribution really deviates from just computing an
optimal path.

Incorporating hard constraints in approximatemessage passing is hard. In the con-
text of Gaussian messages, truncated Gaussians could be used to approximate hard
constraints [32]. However, in our experience this is far less precise and robust than
using Lagrangian methods in optimization. Arguably, the handling of constraints, as
well as the availability of robust optimization methods are the most important argu-
ments in favor of the optimization view in comparison to the probabilistic interpreta-
tions. Multi-modality and true stochastic optimal control under such multi-modality
are the strongest arguments for the probabilistic view.

As a side node on parallelizing message passing computations: KOMO, DDP,
and iLQG all do full path updates in each iteration, that is, they compute a full
new path x0:T in each Newton(-like) or line search step. This is a difference to
AICO which allows to update individual states xt in arbitrary order, not necessarily
sweeping forward and backward. E.g. in AICO we can update a single xt multiple
times in sequence when the updates are large and therefore the local linearization
changes significantly locally. This is possible becauseAICO computes backward and
forward messages which define a local posterior belief for xt that includes forward
and backward messages. In the dynamic programming view this means that cost-to-
go and cost-so-far functions are computed to define a local optimization problem
over xt only. In practice, however, these local path updates are harder to handle than
global steps, especially because global monotonicity, as guaranteed by global Wolfe
conditions, cannot easily be realized.

5 Conclusion

In this tutorialwe chose the k-order cost and constraint feature convention to represent
trajectory optimization problems as NLP. The implied structure of the Jacobians and
Hessian is of central importance to understand the complexity of Newton steps in
such settings.
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Newton approaches are not just one alternative under many—they are at the core
of efficient optimization as well as at the core of understanding the fundaments of the
many related approaches mentioned in this tutorial. In particular, we’ve discussed the
structure and complexity of computing Newton steps for banded symmetric Hessians
and its relation to solving (tree- or Markov-) structured least squares problems using
dynamic programming, both of which have a computational complexity linear in the
number of variables.We have discussed control in the KOMO convention, especially
constrained k-order dynamic programming to compute an approximate regulator
around the optimal path with guaranteed feasibility, and its MPC extension. For the
unconstrained LQ case we highlighted the relations to DDP, iLQG, and AICO.

An interesting line of future research based on this discussion is related to path
optimization processes that are not strictly Markovian in the KOMO sense. One
example is jointly optimizing over paths and model parameters, which equally
implies non-banded terms in the Hessian [15]. Another example is sequential manip-
ulation, in which costs that arise in some later part of the motion may directly depend
on configuration decisions (grasps) made much earlier. The gradient of such costs
then will always be non-zero w.r.t. the grasp configuration. These introduce “loops”
in the dependencies that violate the k-order Markov assumption. However, Graph-
SLAM has successfully addressed exactly this problem. The established relations
between path optimization and Graph-SLAM may therefore be a promising candi-
date for an optimization-based approach to sequential manipulation.
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Optimal Control of Variable Stiffness
Policies: Dealing with Switching Dynamics
and Model Mismatch

Andreea Radulescu, Jun Nakanishi, David J. Braun
and Sethu Vijayakumar

Abstract Controlling complex robotic platforms is a challenging task, especially in
designs with high levels of kinematic redundancy. Novel variable stiffness actuators
(VSAs) have recently demonstrated the possibility of achieving energetically more
efficient and safer behaviour by allowing the ability to simultaneously modulate the
output torque and stiffness while adding further levels of actuation redundancy. An
optimal control approach has been demonstrated as an effective method for such
a complex actuation mechanism in order to devise a control strategy that simul-
taneously provides optimal control commands and time-varying stiffness profiles.
However, traditional optimal control formulations have typically focused on opti-
misation of the tasks over a predetermined time horizon with smooth, continuous
plant dynamics. In this chapter, we address the optimal control problem of robotic
systems with VSAs for the challenging domain of switching dynamics and dis-
continuous state transition arising from interactions with an environment. First, we
present a systematic methodology to simultaneously optimise control commands,
time-varying stiffness profiles as well as the optimal switching instances and total
movement duration based on a time-based switching hybrid dynamics formulation.
We demonstrate the effectiveness of our approach on the control of a brachiating
robot with a VSA considering multi-phase swing-up and locomotion tasks as an
illustrative application of our proposed method in order to exploit the benefits of
the VSA and intrinsic dynamics of the system. Then, to address the issue of model
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discrepancies in model-based optimal control, we extend the proposed framework by
incorporating an adaptive learning algorithm. This performs continuous data-driven
adjustments to the dynamics model while re-planning optimal policies that reflect
this adaptation. We show that this augmented approach is able to handle a range of
model discrepancies in both simulations and hardware experiments.

1 Introduction

Modern robotic systems are used in various fields and operate in environments highly
dangerous to humans (e.g., space and deep sea exploration, search and rescue mis-
sions). Controlling these robotic platforms is a challenging task due to the design
complexity and the discontinuity in the dynamics, e.g., introduced by mechanical
contact with the environment. Inspired by the efficiency of biological systems in
locomotion and manipulation tasks, the robotics community has recently developed
a new generation of actuators equipped with an additional mechanically adjustable
compliant mechanism [12, 24, 42]. These variable stiffness actuators (VSAs) can
provide simultaneous modulation of stiffness and output torque with the purpose of
achieving dynamic and flexible robotic movements. However, this adds further levels
of actuation redundancy, making planning and control of such systems even more
complicated, especially in the case of underactuated systems.

Several studies of stiffness modulation in the context of domains with contacts
showed that VSAs provide a significant improvement in energy efficiency due to their
energy storage capabilities and ability to modulate the system’s dynamics [22, 40].
The use of stiffness modulation in scenarios involving interaction with the environ-
ment has been shown to provide several safety benefits [11, 38]. Other advantages of
variable stiffness capabilities have been observed in terms of robustness and adapt-
ability. These are often required by tasks involving unpredictable changes in the
environment and noise [9, 47].

In this chapter, we first introduce a systematic methodology for movement op-
timisation with multiple phases and switching dynamics in robotic systems with
VSAs arising from contacts and impacts with the environment [21]. By modelling
such tasks as a hybrid dynamical system with time-based switching, our proposed
method simultaneously optimises control commands, time-varying stiffness profiles
and temporal aspect of the movement such as switching instances and total movement
duration to exploit the benefits of the VSA and intrinsic dynamics of the system. We
present numerical simulations and hardware experiments on a brachiating robot with
a VSA to demonstrate the effectiveness of our proposed framework in achieving a
highly challenging task on an underactuated system.

Then, we present an augmented method to improve the robustness of the proposed
framework with respect to model uncertainty by incorporating an adaptive learning
algorithm [29]. The performance of model-based control is dependent on the accuracy
of the dynamics models, which are traditionally obtained by model-based parameter
identification procedures. However, certain elements cannot be fully represented by
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simple analytical models (e.g., complex friction of the joints or dynamics resulting
from cable movement [35]), while changes in the behaviour of the system can occur
due to wear and tear, or due to the use of a tool [36]. Our proposed adaptive learning
method performs continuous data-driven adjustments to the dynamics model while
re-planning optimal policies that reflect this adaptation. We build on prior efforts to
employ adaptive dynamics learning in improving the performance of robot control
[15, 19, 23]. We present results showing that our augmented approach is able to
handle a range of model discrepancies in both simulations and hardware experiments
on a brachiating robot platform with a VSA.

2 Spatio-Temporal Optimisation of Multi-phase
Movements in Domains with Contacts

Traditional optimal control approaches have focused on the formulation over a pre-
determined time horizon with smooth, continuous plant dynamics. In this section,
we present our framework of optimal control problems for tasks with multiple phase
movements including switching dynamics and discrete state transition and its appli-
cation to the control of robotic systems with VSAs [21].

Dynamics with intermittent contacts and impacts such as locomotion and juggling
are often modelled as hybrid dynamical systems [2, 6, 14]. From a control theoretic
perspective, a significant effort has been made to address optimal control problems
of various classes of hybrid systems [25, 34, 44]. However, only a few robotic ap-
plications of optimal control with hybrid dynamics formulation can be found on
movement of optimisation over multiple phases [7, 14]. Instead of employing hy-
brid dynamics modelling formulation, different optimisation approaches to dealing
with multiple contact events have been proposed such as model predictive control
with smooth approximation of contact forces [37], a direct multiple-shooting based
method [18], direct trajectory optimisation methods [26, 43], and a further exten-
sion of the direct collocation method with linear quadratic regulator and quadratic
programming [27].

In this section, we present an approach to the hybrid optimal control problem
proposed in [21] with an extension to the iterative linear quadratic regulator (iLQR1)
algorithm [13] and generalisation of the time-based switched LQ control with state
jumps [44]. We also incorporate temporal optimisation in order to simultaneously
optimise control commands and temporal parameters (e.g., movement duration) [30].
iLQR/G is a practically effective method for iteratively solving optimal control prob-
lems and has been used in our previous work, e.g., [3, 4, 16]. Time-based switch-
ing approximation in hybrid dynamics is motivated due to the difficulties associated
with the state-based switching formulation in dealing with the need of imposing con-
straints and finding the time for switching [5, 46]. Discussions on the benefits and

1iLQG is the stochastic extension to iLQR [13] and in the sequel, we may refer to these two
interchangeably.
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practical difficulties of alternative optimal control approaches such as indirect meth-
ods (e.g., multiple-shooting methods), direct methods, and successive approximation
methods (e.g., iLQR/G and differential dynamic programming) can be found in [4].
Numerical simulations and hardware experiments on a brachiating robot driven by
a VSA will be presented to demonstrate the effectiveness of the proposed approach.

2.1 Outline of Multi-phase Spatio-Temporal Hybrid Optimal
Control Approach

We address spatio-temporal stiffness optimisation problems for tasks that consist
of multiple phases of movements including switching dynamics and discrete state
transitions (arising from interaction with the environment) in order to exploit the
benefits of VSAs. In addition to optimising control commands and stiffness, we
develop a systematic methodology to simultaneously optimise the temporal aspect of
the movement (e.g., movement duration). Our proposed formulation also provides an
optimal feedback control law while many trajectory optimisation algorithms typically
compute only optimal feedforward controls.

The main ingredients of our proposed optimal control framework are as follows:

1. use of nonlinear time-based switching dynamics with continuous control input to
model the dynamics of multi-phase movements;

2. use of nonlinear discrete state transition to model contacts and impacts;
3. use of realistic plant dynamics with a VSA model;
4. introduction of a composite cost function to describe task objectives with multi-

phase movements;
5. simultaneous optimisation of joint torque and stiffness profiles across multiple

phases;
6. optimisation of switching instances and total movement duration.

As presented below, we formulate this problem as time-based switching hybrid
optimal control with temporal optimisation.

2.2 Problem Formulation

2.2.1 Time-Based Switching Hybrid Dynamics

In order to represent multi-phase movements having interactions with an environ-
ment, we consider the following time-based switching hybrid dynamics formulation
composed of multiple sets of continuous dynamics (1) and discrete state transition
(2) as in [8, 45]:
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Fig. 1 A hybrid system with time-based switching dynamics and discrete state transition with a
known sequence. The goal is finding an optimal control command u, switching instances Ti and
final time T f which minimises the composite cost J

ẋ = fi j (x,u), Tj ≤ t < Tj+1 for j = 0, . . . , K (1)

x(T+
j ) = Δi j−1,i j (x(T−

j )) for j = 1, . . . , K (2)

where fi j : Rn × R
m → R

n is the subsystem i j , x ∈ R
n is a state vector and u ∈ R

m

is a control input vector for subsystems. At the moment of dynamics switching
from fi j−1 to fi j , we assume an instantaneous discrete (discontinuous) state transition
according to the impact map in (2), where x(T+

j ) and x(T−
j ) denote the post- and

pre-transition states, respectively (see Fig. 1).

2.2.2 Robot Dynamics with Variable Stiffness Actuation for
Multi-phase Movement

Given the general form of the plant dynamics of our concern in a hybrid dynamics
representation introduced in Sect. 2.2.1, we consider the following multiple set of
robot dynamics with VSAs to describe multi-phase movements:

Mi (q)q̈ + Ci (q, q̇)q̇ + gi (q) + Di q̇ = τi (q,qm) (3)

where i denotes the i-th subsystem corresponding to its associated phase of the
movement, q ∈ R

n is the joint angle vector, qm ∈ R
m is the motor position vector of

the VSA, Mi ∈ R
n×n is the inertia matrix, Ci ∈ R

n is the Coriolis term, gi ∈ R
n is

the gravity vector, Di ∈ R
n×n is the viscous damping matrix, and τi ∈ R

n is the joint
torque vector from the VSA given in the form:

τi (q,qm) = NT
i (q,qm)Fi (q,qm) (4)



398 A. Radulescu et al.

where Ni ∈ R
p×n(p ≥ n) is the moment arm matrix and Fi ∈ R

p is the forces gen-
erated by the elastic elements. The joint stiffness is defined by

Ki (q,qm) = −∂τi (q,qm)

∂q
. (5)

We model the servo motor dynamics in the VSA as a critically damped second order
dynamical system:

q̈m + 2αi q̇m + α2
i qm = α2

i u (6)

where αi determines the bandwidth of the servo motors2 and u ∈ R
m is the motor

position command [3]. We assume that the range of the control command u is limited
as umin � u � umax.

In order to formulate an optimal control problem, we consider the following state
space representation of the combined plant dynamics composed of the rigid body
dynamics (3) and the servo motor dynamics (6):

ẋ = fi (x,u) =

⎡
⎢⎢⎣

x2

M−1
i (x1) (−Ci (x1, x2)x2 − gi (x1) − Dix2 + τi (x1, x3))

x4

−α2
i x3 − 2αix4 + α2

i u

⎤
⎥⎥⎦ (7)

where x = [ xT1 , xT2 , xT3 , xT4 ]T = [ qT , q̇T , qT
m, q̇T

m ]T ∈ R
2(n+m) is the

augmented state vector consisting of the robot state and the servo motor state.

2.2.3 Composite Cost Function for Multi-phase Movement
Optimisation

For the given hybrid dynamics (1) and (2), in order to describe the full movement
with multiple phases, we consider the following composite cost function

J = φ(x(T f )) +
K∑
j=1

ψ j (x(T−
j )) +

∫ T f

T0

h(x,u)dt (8)

where φ(x(T f )) is the terminal cost, ψ j (x(T−
j )) is the via-point cost at the j-th

switching instance and h(x,u) is the running cost. When optimising multi-phase
movements, it is possible to optimise each phase in a sequential manner. However,
the total cost of such a sequential optimisation could result in a suboptimal solution
[30].

For the given plant dynamics (1) and state transition (2), the optimisation problem
we consider is to a) find an optimal feedback control lawu = u(x, t) which minimises

2α = diag(a1, . . . , am) and α2 = diag(a2
1 , . . . , a2

m) for notational convenience.
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the composite cost (8) and b) simultaneously optimise switching instances T1, . . . , Tk
and the final time T f . Note that in our formulation, we denote the final time separately
from switching instances for notational consistency with the case of single phase
optimisation. However, the final time can be absorbed as a part of switching instances,
e.g., T f = TK+1.

2.2.4 Spatio-Temporal Multi-Phase Optimisation Algorithm

In this section, we present an overview of our framework for spatio-temporal op-
timisation for multi-phase movements. First, the iLQR method [13] is extended in
order to incorporate timed switching dynamics with discrete and discontinuous state
transitions. Then, we present a temporal optimisation algorithm to obtain the optimal
switching instances and the total movement duration. For more detailed description,
we refer the interested readers to [21].

In brief, the iLQR method solves an optimal control problem of the locally linear
quadratic approximation of the nonlinear dynamics and the cost function around a
nominal trajectory x̄ and control sequence ū in discrete time, and iteratively improves
the solutions.

In order to incorporate switching dynamics and discrete state transition with a
given switching sequence, the hybrid dynamics (1) and (2) are linearised in discrete
time around the nominal trajectory and control sequence as

δxk+1 = Akδxk + Bkδuk (9)

δx+
k j

= Γk j δx
−
k j

(10)

Ak = I + Δt j
∂fi j
∂x

∣∣∣
x=xk

, Bk = Δt j
∂fi j
∂u

∣∣∣
u=uk

(11)

Γk j = ∂Δ
i j−1 ,i j

∂x

∣∣∣
x=x−

k j

(12)

where δxk = xk − x̄k , δuk = uk − ūk , k is the discrete time step, Δt j is the sampling
time being optimised for the time interval Tj ≤ t < Tj+1, and k j is the j-th switching
instance in the discretised time step. The composite cost function and the optimal
cost-to-go function are locally approximated and the local optimal control problem
is solved via modified Riccati-like equations as described in detail in [21]. Once
we have a locally optimal control command δu, the nominal control sequence is
updated as ū ← ū + δu. Then, the new nominal trajectory x̄ and the cost J are
computed by running the obtained control ū on the system dynamics, and the above
process is iterated until convergence (no further improvement in the cost within
certain threshold).

In order to optimise the switching instance and the total movement duration,
following our previous work in [30], we introduce a scaling parameter and sampling
time for each duration of between switching as
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Δt ′j = 1

β j
Δt j for Tj ≤ t < Tj+1 where j = 0, . . . , K . (13)

By optimising the vector of temporal scaling factors β = [ β0, . . . , βK ]T via gra-
dient descent, we can obtain each switching instance Tj+1 = (k j+1 − k j )Δt ′j + Tj

and the total movement duration T f = ∑K
j=0(k j+1 − k j )Δt ′j + T0, where k0 = 1 and

kK+1 = N .
In the complete optimisation, computation of the optimal feedback control law and

update of the temporal scaling parameters are iteratively performed in an alternate
manner until convergence. As a result, we obtain the optimal feedback control law

u(x, t) = uopt(t) + Lopt(t)(x(t) − xopt(t)) (14)

and the optimal switching instances T1, . . . , TK and the final time T f , where uopt is
the feedforward optimal control sequence, xopt is the optimal trajectory, and Lopt is
the optimal feedback gain matrix.

2.3 Brachiating Robot Dynamics with VSA

The dynamics of a two-link brachiating robot with a VSA shown in Fig. 2 take the
standard form of rigid body dynamics (3) where only the second joint has actuation
(underactuation):

Mi (q)q̈ + Ci (q, q̇)q̇ + gi (q) + Di q̇ =
[

0
τ(q,qm)

]
(15)

where q = [ q1, q2 ]T is the joint angle vector. The same definitions for the elements
in the rigid body dynamics are used as in (3). The index i in (15) is introduced to
specify the configuration of the robot to indicate which hand is holding the bar. Since
we assume that the robot has an asymmetric structure in the dynamics, we have two
sets of subsystems denoted by the subscripts i = 1 (hand of link 1 is holding) and
i = 2 (hand of link 2 is holding). In the multi-phase brachiation, the effective model
switches between i = 1 and i = 2 interchangeably at the switching instance when
the robot grasps the bar.

We use MACCEPA (Fig. 2) as our VSA implementation of choice [39], which
has the desirable property that the joint can be passively compliant. This allows
free swinging with a large range of movement by relaxing the spring, which is
highly suitable for the brachiation task we consider. MACCEPA is equipped with two
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q

κ
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Fig. 2 Two-link brachiating robot model with the MACCEPA joint with the inertial and geometric
parameters. The parameters of the robot are given in Table 1

position controlled servo motors, qm = [ qm1, qm2 ]T which control the equilibrium
position and the spring pre-tension, respectively.3

The joint torque for the MACCEPA model is given by:

τ = BC sin(qm1 − q)

A︸ ︷︷ ︸
moment arm in (4)

F (16)

where A = √
B2 + C2 − 2BC cos (qm1 − q), q is the joint angle.4 F is the spring

tension
F = κs(l − l0) (17)

where κs the spring constant, l = A + rdqm2 is the current spring length, l0 = C − B
is the spring length at rest and rd is the drum radius (see Fig. 2). The joint stiffness
can be computed as k = − ∂τ

∂q . Note that the torque and stiffness relationships in
MACCEPA are dependent on the current joint angle and two servo motor angles in
a complicated manner and its control is not straightforward.

To formulate the multi-phase movement optimisation in brachiation, we use the
state space representation in (7). At the transition at handhold, an affine discrete state
transition x+ = Δ(x−) = Γ x− + γ is introduced to shift the coordinate system for
the next handhold and reset the joint velocities of the robot to zero, which is defined
as:

3We include position controlled servo motor dynamics as defined in (6). For the bandwidth para-
meters for the motors we use α = diag(20, 25). The range of the commands of the servo motors
are limited as u1 ∈ [−π/2, π/2] and u2 ∈ [0, π/2].
4In the brachiating robot model in Fig. 2, q = q2.
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Table 1 Model parameters of the two-link brachiating robot and the VSA. The index i in this table
denotes the link number in Fig. 2. The final column (numbers in in italic) in the robot parameters table
shows the change of parameters of the first link of the system under the changed mass distribution
described in Sect. 3.2

Robot parameters i=1 i=2 i=1
Mass mi (kg) 1.390 0.527 1.240

Moment of inertia Ii (kgm2) 0.0297 0.0104 0.0278
Link length li (m) 0.46 0.46 0.46

COM location lci (m) 0.362 0.233 0.350
Viscous friction di (Nm/s) 0.03 0.035 0.03

MACCEPA parameters value
Spring constant κs (N/m) 771

Lever length B (m) 0.03
Pin displacement C (m) 0.125

Drum radius rd (m) 0.01

Γ = diag(Γ1, . . . , Γ4), (18)

where:

Γ1 =
[

1 1
0 −1

]
, Γ2 =

[
0 0
0 0

]
, Γ3 = Γ4 =

[−1 0
0 1

]
(19)

and γ = [ −π, 0, . . . , 0 ]T . Note that in this example, we have Δ = Δ1,2 = Δ2,1.

2.4 Exploitation of Passive Dynamics With Spatio-Temporal
Optimisation of Stiffness

In this section, we explore the benefits of simultaneous stiffness and temporal opti-
misation for tasks exploiting the intrinsic dynamics of the system. Brachiation is an
example of a highly dynamic manoeuvre requiring the use of passive dynamics for
successful task execution [10, 20, 31, 32].

2.4.1 Optimisation of a Single Phase Movement in Brachiation Task

In this section, we consider the brachiation task of swing locomotion from handhold
to handhold on a ladder. A natural and desirable strategy for a swing movement
in brachiation would be to make good use of gravity by making the joints passive
and compliant. For a system with VSAs, our idea in exploiting passive dynamics is
to frame the control problem in finding an appropriate (preferably small) stiffness
profile to modulate the system dynamics only when necessary and compute the virtual
equilibrium trajectory to fulfil the specified task requirement.
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To implement this idea of passive control strategy, we consider the following cost
function to encode the task:

J = (y(T ) − y∗)TQT (y(T ) − y∗) +
∫ T

0

(
uTR1u + R2F

2
)
dt (20)

where y = [ r, ṙ ]T ∈ R
4 are the position and the velocity of the gripper in the

Cartesian coordinates, y∗ contains the target values when reaching the target y∗ =
[ r∗, 0 ]T and F is the spring tension in the VSA given in (17). QT is a positive
semi-definite matrix, R1 is a positive definite matrix and R2 is a positive scalar. This
objective function is designed in order to reach the target located at r∗ at the time
T , while minimising the spring tension F in the VSA. The term uTR1u is added
for regularisation with a small choice of the weights in R1, which is necessary in
practice since iLQG requires a control cost in its formulation to compute the optimal
control law.

2.4.2 Benefit of Temporal Optimisation

One of the issues in a conventional optimal control formulation is that the time horizon
needs to be given in advance for a given task. While on fully actuated systems, control
can be used to enforce a pre-specified timing, it is not possible to choose an arbitrary
time horizon on underactuated systems. In a brachiation task, determination of an
appropriate movement horizon is essential for successful task execution with reduced
control effort.

Consider the swing locomotion task on a ladder with the intervals starting
from the bar at dstart = 0.42 m to the target located at dtarget = 0.46 m. We opti-
mise both the control command u and the movement duration T . We use QT =
diag(10000, 10000, 10, 10), R1 = diag(0.0001, 0.0001) and R2 = 0.01 for the cost
function in (20). The optimised movement duration was T = 0.806 s.

Figure 3 shows the simulation result of (a) the optimised robot movement, (b)
joint trajectories and servo motor positions, and (c) joint torque, spring tension
and joint stiffness. In the plots, trajectories of the fixed time horizon ranging
T ∈ [0.7, 0.75, . . . , 0.9] s are overlayed for comparison in addition to the case of
the optimal movement duration T = 0.806 s. In the movement with temporal opti-
misation, the spring tension and the joint stiffness are kept small at the beginning
and end of the movement resulting in nearly zero joint torque. This allows the joint
to swing passively. The joint torque is exerted only during the middle of the swing
by increasing the spring tension as necessary. In contrast, with non-optimal time
horizon, larger joint torque and spring tension as well as higher joint stiffness can be
observed resulting in the requirement of increased control effort. This result suggests
that the natural plant dynamics are fully exploited for the desirable task execution
with simultaneous stiffness and temporal optimisation.
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(a) Movement of the robot (simulation)
with optimal variable stiffness control
(optimised duration T=0.806 s).
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Fig. 3 Simulation result of the single phase brachiation task with temporal optimisation. In b and
c, grey thin lines show the plots for non-optimised T in the range of T = [0.7, 0.75, . . . , 0.9] s
and blue thick lines show the plots for optimised T = 0.806 s. With temporal optimisation, at the
beginning and the end of the movement, joint torque, spring tension and joint stiffness are kept
small allowing the joint to swing passively in comparison to the non-optimal time cases

2.5 Spatio-Temporal Optimisation of Multiple Swings in
Robot Brachiation

To demonstrate the effectiveness of our proposed approach in multi-phase movement
optimisation, we consider the following brachiation task with multiple phases of the
movement: The robot initially swings up from the suspended posture to the target
at d1 = 0.40 m and subsequently moves to the target located at d2 = 0.42 m and
d3 = 0.46 m. The composite cost function to encode this task is designed as:

J = (y(T f ) − y∗
f )

TQT f (y(T f ) − y∗
f ) +

K∑
j=1

(y(T−
j ) − y∗

j )
TQTj (y(T

−
j ) − y∗

j )

+
∫ T f

0

(
uTR1u + R2F

2
)
dt + wT T1 (21)

where K = 3 is the number of phases, y = [ r, ṙ ]T ∈ R
4 are the position and the

velocity of the gripper in the Cartesian coordinates measured from the origin at
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(b) Joint trajectories and servo motor positions with temporal optimisation.

Fig. 4 Simulation result of the multi-phase brachiation task with temporal optimisation

current handhold, y∗ is the target values when reaching the target y∗ = [ r∗, 0 ]T
and F is the spring tension in the VSA. Note that this cost function includes the
additional time cost wT T1 for the swing up manoeuvre in order to regulate the dura-
tion of the swing up movement. We use QT f = QTj = diag(10000, 10000, 10, 10),
R1 = diag(0.0001, 0.0001) and R2 = 0.01 and wT = 1. In addition, we impose con-
straints on the range of the angle of the second joint during the course of the swing
up manoeuvre as q2min ≤ q2 ≤ q2max , where [q2min , q2max ] = [−1.745, 1.745] rad by
adding a penalty term to the cost (21). This is empirically introduced and adjusted
considering the physical joint limit of the hardware platform used in the experiments.

Figure 4a shows the sequence of the optimised multi-phase movement of the
robot using the proposed algorithm including temporal optimisation in numerical
simulations. The optimised switching instances and the total movement duration
are T1 = 5.259 s, T2 = 6.033 s and T f = 6.835 s, respectively, and the total cost is
J = 37.815. Figure 4b shows the optimised joint trajectories and servo motor posi-
tions.

To illustrate the benefit of the proposed multi-phase formulation, we performed
movement optimisation with a pre-specified nominal (fixed, non-optimal)
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Fig. 5 Experimental result of the single phase locomotion task on the brachiating robot hardware.
In b, red and blue think lines show the experimental data, and grey thin lines show the corre-
sponding simulation result with the optimised planned movement duration T = 0.806 s presented
in Sect. 2.4.2

time horizon with T1 = 5.2 s, T2 = 5.9 s and T f = 6.7 s using the same cost pa-
rameters both in sequential and multi-phase optimisation. With sequential individual
movement optimisation, large overshoot was observed at the end of the final phase
movement (distance from the target at t = T f was 0.0697 m) incurring a significantly
large total cost of J = 101.053. In contrast, for the same pre-specified time horizon,
by employing multi-phase movement optimisation, it was possible to find a feasible
solution to reach the target bars. The error at the final swing at t = T f was 0.0020 m,
which was significant improvement compared to the case of individual optimisation.
The largest error observed in this sequence was 0.0109 m at the end of the first swing
up phase. In this case, the total cost was J = 50.228. These results demonstrate the
benefit of the multi-phase movement optimisation in finding optimal control com-
mands and temporal aspect of the movement using the proposed method resulting in
lower cost.

2.6 Evaluation on Hardware Platform

This section presents experimental implementation of our proposed algorithm on a
two-link brachiating robot hardware developed in our laboratory [21]. The robot is
equipped with a MACCEPA variable stiffness actuator and the parameters of the
robot are given in Table 1.

Figure 5 shows the experimental result of a swing locomotion corresponding to
the simulation in Sect. 2.4.2 with the optimal movement duration. In the experiments,
we only use the open-loop optimal control command to the servo motors without
state feedback as in [3].

Figure 6 shows the experimental result of multi-phase movements consisting of
swing-up followed by two additional swings, which corresponds to the simulation
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(a) Movement of the robot (experiment)
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(b) Joint trajectories and servo motor positions

Fig. 6 a Experimental results of multi-phase locomotion task with the brachiating robot hardware.
In b, red and blue lines show the actual hardware behaviour, and grey lines show the corresponding
simulation results presented in Sect. 2.5

in Fig. 4 (Sect. 2.5). Note that at the end of each phase of the movement, switching
to the next phase is manually done by confirming firm grasping of the bar in order
to avoid falling off from the ladder at run-time.

The joint trajectories in the experiment closely match the planned movement in
the simulation. The observed discrepancy is mainly due to the inevitable difference
between the analytical nominal model and the hardware system. In the next section,
we introduce an adaptive learning algorithm to improve the accuracy of the dynamics
model used in optimisation.

These experimental results demonstrate the effectiveness and feasibility of the
proposed framework in achieving highly dynamic tasks in compliantly actuated ro-
bots with variable stiffness capabilities under real conditions.
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Fig. 7 The iLQG-LD learning and control scheme [16]

3 Optimal Control with Learned Dynamics

Classical optimal control is formulated using an analytical dynamics model, however,
recent work [1, 17] has shown that combining optimal control with dynamics learning
can produce an effective and principled control strategy for complex systems affected
by model uncertainties.

In [17], using online (non-parametric) supervised learning methods, an adaptive
internal model of the system dynamics is learned. The learned model is used after-
wards to derive an optimal control law. This approach, named iLQG with learned
dynamics (iLQG-LD),5 proved efficient in a variety of realistic scenarios including
problems where the analytical dynamics model is difficult to estimate accurately or
subject to changes and the system is affected by noise [16, 17]. The initial state and
the cost function (which includes the desired final state) are provided to the iLQG
planner alongside a preliminary model of the dynamics. An initial (locally optimal)
command sequence ū is generated together with the corresponding state sequence
x̄ and feedback correction gains L. Applying the feedback controller scheme, at
each time step the control command is corrected by δu = L(x − x̄), where x is the
true state of the plant. The model of the dynamics is updated using the information
provided by the applied command u + δu and observed state x (Fig. 7).

This iLQG-LD methodology employs a Locally Weighted Learning (LWL)
method, or more specifically, the Locally Weighted Projection Regression (LWPR),
to train a model of the dynamics in an incremental fashion. LWL algorithms are non-
parametric local learning methods that proved successful in the context of (online)
motor learning scenarios [1]. Incremental LWL was proposed in [33] (ReceptiveField
Weighted Regression (RFWR) method) in order to achieve fast learning and compu-
tational efficiency. RFWR works by allocating resources in a data driven fashion,
allowing online adaptation to changes in the behaviour. The LWPR [41] extends the
RFWR method by projecting the input information into a lower dimensional mani-
fold along selected directions before performing the fitting. Thus, it proves effective
in high dimensionality scenarios where the data lies in a lower dimensional space.
Consequently, iLQG-LD proved to be a robust and efficient technique for incremental
learning of nonlinear models in high dimensions [17].

5Hereafter, we use the term iLQG for the optimisation algorithm of our concern.
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We incorporate the iLQG-LD scheme into our approach involving learning the
dynamics of a brachiating robot with a VSA and employing it in planning for multi-
phase locomotion tasks [29]. The method proved capable of adapting to changes
in the system’s properties and provided a better accuracy performance than the op-
timisation without model adaptation. Based on these results, iLQG-LD could be a
strong candidate for optimal control strategy for more complex hardware systems.
We demonstrate the effectiveness of our adaptive learning approach in numerical
simulations (Sect. 3.2) and hardware experiments (Sect. 3.3).

3.1 Multi-Phase Optimisation with Adaptive Dynamics
Learning

In this section, we introduce the changes by the use of the LWPR method in the
context of iLQG-LD for integration within the multi-phase optimisation approach
described in Sect. 2.2. We assume that initially we have a nominal analytical dynamics
model that takes the form presented in (3) and (6) which has inaccuracies. We use
the LWPR method to model the error between the true behaviour of the system and
the initial nominal model provided. For this purpose, we replace the dynamics fi in
(7) with a composite dynamics model fci :

ẋ = fci (x,u) = f̃i (x,u) + f̄i (x,u), fci ∈ R
2(n+m), (22)

where f̃i is the initial nominal model and f̄i is the LWPR model to learn the discrepancy
between f̃i and the behaviour of the system.6

When using the composite model of the dynamics fc introduced in (22), the lin-
earisation of the dynamics is provided in two parts. The linearisation of f̃ is obtained
by replacing f with f̃ in (9) and (11). The derivatives of the learned model f̄ are
obtained analytically by differentiating the LWPR model with respect to the inputs
z = (x;u) as suggested in [1]. With these modifications, the developed optimisa-
tion methodology is applied as described in Sect. 2.2 to obtain the locally optimal
feedback control law.

3.2 Numerical Evaluations

In this section, we numerically demonstrate the effectiveness of the proposed model
learning approach on a brachiating robot model with a VSA used in Sect. 2.3. In the
nominal model, we introduce a mass (and implicitly mass distribution) discrepancy
on one of the links (i.e., the mass of the true model is smaller by 150 g located

6Note that the changes introduced by iLQG-LD only affect the dynamics modelling in (1), while
the instantaneous state transition map in (2) remains unchanged.



410 A. Radulescu et al.

at the joint on link i = 1). The changed model parameters are shown in the right
column of Table 1 (the numbers in italic). The introduced discrepancy affects the
rigid body dynamics in the joint accelerations (q̈1, q̈2). Thus, in the composite model
fc, the information from the nominal model f̃ requires correction only in those two
dimensions (i.e., the required dimensionality of the LWPR model output f̄ is 2, the
remaining dimensions can be filled with zeros).

We demonstrate the effectiveness of the proposed approach on a multi-phase
swing-up and brachiation task with a VSA while incorporating continuous, online
model learning. In the multi-phase task, we consider the same task of swing-up and
multi-swing locomotion presented in Sect. 2.5. Since the system has an asymmetric
configuration and the state space of the swing-up task is significantly different from
that of a brachiation movement, we proceed by first learning a separate error model
for each phase. This procedure contains two steps. The initial exploration phase is
performed in order to pre-train the LWPR model f̄i (as an alternative to applying
motor babbling), while the second phase is using iLQG-LD to refine the model
in an online fashion. In our evaluations, the training data are obtained by using a
simulated version of the true dynamics, which is an analytical model incorporating
the discrepancy.

3.2.1 Individual Phase Learning

As presented in Sect. 2.5, using our multi-phase spatio-temporal optimisation frame-
work with the correct dynamics model, we successfully achieved a multi-phase
brachiation task with a position error of as small as 0.002 m at the target bar in
numerical simulations. However, once the discrepancy is introduced to the nominal
model as described in Sect. 3.2, the planned solution is no longer valid and the final
position deviates from the desired target in each individual swing-up and locomo-
tion movement as illustrated in simulations (Fig. 8, blue line). We demonstrate the
effectiveness of the iLQG-LD framework in order to learn the characteristics of the
system dynamics and recover the task performance.

As a measure of the model accuracy, we use the normalised mean squared error
(nMSE) of the model prediction on the true optimal trajectory (if given access to the
analytical form of the true dynamics of the system). The evolution of the nMSE at
the stage of training for each movement phase is shown in Fig. 9.

In the first part (pre-training phase in Fig. 9), we generate (p = 7) random targets
around the desired xT . A movement is planned for these targets using the nominal
model f̃ . The obtained optimal feedback controller for the nominal model is then
applied to the simulated version of the true dynamics. We repeat this procedure for a
set of 10 noise added versions of the commands. The collected data are used to train
the model.

This pre-training phase seeds the model with information within the region of
interest prior to its use for planning. The aim is to reduce the number of iterations re-
quired for convergence in iLQG-LD. For each movement, at the end of the procedure,
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Fig. 8 Individual phase learning with model adaptation in simulation: Comparison of the final
position achieved (for each individual phase) when using the initial planning (inaccurate nominal
model in blue) and the final planning (composite model after learning in red). Intermediary solutions
obtained at each step of the iLQG-LD run are depicted in grey

the planned trajectory matched the behaviour obtained from running the command
solution on the real plant (the final nMSE has an order of magnitude of 10−4).

Overall, the discrepancy is found to be small enough to reach the desired end-
effector position within a tolerance of εT = 0.040 m. Figure 8 shows the effect of the
learning by comparing the performance of the planning with the inaccurate nominal
model and with the composite model obtained after training.

3.2.2 Multi-phase Performance

In order to evaluate the validity of the learned model, we optimise the multi-phase
brachiation task with the composite cost function given in (21) using the obtained
model from the individual phase learning procedure in Sect. 3.2.1. We use the optimal
solutions obtained for each individual phase above as an initial command sequence
for the multi-phase optimisation. The simulation result is shown in Fig. 10. The
planner is able to successfully achieve the intermediate and final goals, while the
expected behaviour provides a reliable match to the actual system’s behaviour.7 The
cost of multi-phase optimised solution (J = 35.13) is significantly lower than the
sum of the costs of the individual phase solutions (J = 44.45).

7We assume that if the position at the end of each phase is within a threshold εT = 0.040 m from
the desired target, the system is able to start the next phase movement from the ideal location
considering the effect of the gripper on the hardware.
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3.3 Hardware Experiments: Individual Phase Learning
for a Brachiating Robot

In this section, we perform hardware experiments to evaluate the simulation results
obtained in Sect. 3.2 on our two-link brachiating robot with a VSA. In the hardware
experimental set-up, we only have access to sensory readings from two IMU units
attached to each link, a potentiometer mounted on the main joint and the internal
potentiometers of the servo motors in the VSA. The outputs of the IMU units are
fairly accurate and adequate filtering provides reliable readings for estimating the
positions and velocities of the robot links. However, the internal potentiometers of
the servo motors suffer from significant amount of noise; with filtering, their readings
can be used as an estimation of the motor position, but they are not reliable enough
to derive the servo motor accelerations, which are needed for model learning. For
this reason, we reduce the dimensionality of the input for the model approximation
from 10 ([qT , q̇T ,qT

m, q̇T
m,uT ]T ) to 8 ([qT , q̇T ,qT

m,uT ]T ).8

In the pre-training phase, we generate random targets around the desired xT and
plan movements for those targets using the nominal model f̃ as in the numerical
simulations described in Sect. 3.2.1 (with 150 g of mass discrepancy introduced). We
apply the obtained solution to the hardware with a set of 10 noise added versions of
the commands. The collected data are used to train the model. In the second phase,
we apply iLQG-LD as described in Sect. 3.2. The evolution of the nMSE at the stage
of training for each phase is shown in Fig. 11.

For each phase of the movement, at the end of the procedure, the planned trajectory
matched the behaviour obtained from running the command solution on the real plant
(the final nMSE has an order of magnitude of 10−4 and 10−2, respectively).

In Fig. 12, we compare the performance of the system under the (i) solution ob-
tained from the nominal (incorrect) analytical model (blue) and (ii) solution obtained
after training the LWPR model (red). We can observe that the error in the position
of the end-effector (i.e., open gripper) at the end of the allocated time improved sig-
nificantly in both brachiation tasks from (i) 0.0867 m and 0.1605 m to (ii) 0.0161 m
and 0.0233 m, respectively. The final positions are close enough to allow the gripper
to compensate for the rest of the error by grasping it, thus resulting in the final error
of 0.004 m. Note that the true positions of the gripper are actually at the target as it is
securely locked on the target bar. The error comes from the variability of the sensor
readings. The experimental conditions for the individual phase learning in hardware
presented in this section correspond to the second and third phases of the movement
from the multi-phase brachiation task considered in this chapter.

Besides the mass change, we perform an additional experiment in which we also
modify the stiffness of the spring in the MACCEPA actuator from κs = 771 N/m
to κs = 650 N/m in the nominal model. As before, at the end of the procedure,

8With the reduced input dimensionality, practically, there could be the case that it is not possible
to predict the full state of the system particularly in the swing-up motion due to unobserved input
dimensions. Thus, we only considered the swing locomotion task in the hardware experiment with
model learning.
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Fig. 14 Individual phase
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the planned trajectory matched the behaviour obtained from running the command
solution on the real plant (the final nMSE ≈ 10−2, Fig. 13).

In Fig. 14, we observe the improvement in performance from an initial reaching
error (at the end of the planned time) of (i) 0.1265 m (blue line) to (ii) 0.0167| m
(red line). The robot was able to grab the bar located at the desired target with the
optimised control command using the improved model. The experimental results
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demonstrate the feasibility of the developed adaptive learning framework for the
application to real-world systems.

4 Summary

In this chapter, we addressed the optimal control problem of robotic systems with
VSAs including switching dynamics and discontinuous state transitions.

First, we presented a systematic methodology for movement optimisation with
multiple phases and switching dynamics in robotic systems with variable stiffness ac-
tuation with the focus on exploiting intrinsic dynamics of the system. Tasks including
switching dynamics and interaction with an environment are approximately modelled
as a hybrid dynamical system with time-based switching. We have demonstrated the
benefit of simultaneous temporal and variable stiffness optimisation leading to re-
duction in control effort and improved performance. With an appropriate choice of
the composite cost function to encode the task, we have demonstrated the effective-
ness of the proposed approach in various brachiation tasks in numerical simulations
and hardware implementation in a brachiating robot with VSA. In [21], we have
presented additional numerical evaluations of the proposed approach on the control
of a hopping robot model with a VSA having different mode of dynamics (flight and
stance) and impact with the environment. Simulation results on the hopping robot
control in [21] illustrated the feasibility of our approach and the robustness of the
obtained optimal feedback controller against external perturbations.

Next, we extended our approach by incorporating adaptive learning, which allows
for adjustments to the dynamics model, based on changes occurred to the system’s
behaviour, or when the behaviour cannot be fully represented by a rigid body dy-
namics formulation. The method employed (in the form of the LWPR algorithm)
is particularly suited for certain regression situations such as non-linear function
learning with the requirement of incremental learning. We demonstrated that the
augmented developed methodology was successfully applied in the case of underac-
tuated systems such as a brachiating robot. We provided results for a range of model
discrepancies in both numerical simulations and real hardware experiments.

In our previous work, we have addressed movement optimisation of variable
impedance actuators including damping [28], and our framework presented in this
chapter can be generalised to deal with such systems in a straightforward manner.
Our future interest is in the application of our approach to a broad range of complex
physical and robotic systems having interactions with environments.
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